Figuring large optics at the sub-nanometer level: compensation for coating and gravity distortions.
Gensemer, Stephen; Gross, Mark
2015-11-30
Large, precision optics can now be manufactured with surface figures specified at the sub-nanometer level. However, coatings and gravity deform large optics, and there are limits to what can be corrected by clever compensation. Instead, deformations caused by stress from optical mounts and deposited coatings must be incorporated into the optical design. We demonstrate compensation of coating stress on a 370mm substrate to λ/200 by a process of coating and annealing. We also model the same process and identify the leading effects that must be anticipated in fabrication of optics for future gravitational wave detectors and other applications of large, precisely figured optics, and identify the limitations inherent in using coatings to compensate for these deformations.
Numerical simulation of deformation and figure quality of precise mirror
NASA Astrophysics Data System (ADS)
Vit, Tomáš; Melich, Radek; Sandri, Paolo
2015-01-01
The presented paper shows results and a comparison of FEM numerical simulations and optical tests of the assembly of a precise Zerodur mirror with a mounting structure for space applications. It also shows how the curing of adhesive film can impact the optical surface, especially as regards deformations. Finally, the paper shows the results of the figure quality analysis, which are based on data from FEM simulation of optical surface deformations.
High quality optically polished aluminum mirror and process for producing
NASA Technical Reports Server (NTRS)
Lyons, III, James J. (Inventor); Zaniewski, John J. (Inventor)
2005-01-01
A new technical advancement in the field of precision aluminum optics permits high quality optical polishing of aluminum monolith, which, in the field of optics, offers numerous benefits because of its machinability, lightweight, and low cost. This invention combines diamond turning and conventional polishing along with india ink, a newly adopted material, for the polishing to accomplish a significant improvement in surface precision of aluminum monolith for optical purposes. This invention guarantees the precise optical polishing of typical bare aluminum monolith to surface roughness of less than about 30 angstroms rms and preferably about 5 angstroms rms while maintaining a surface figure accuracy in terms of surface figure error of not more than one-fifteenth of wave peak-to-valley.
High quality optically polished aluminum mirror and process for producing
NASA Technical Reports Server (NTRS)
Lyons, III, James J. (Inventor); Zaniewski, John J. (Inventor)
2002-01-01
A new technical advancement in the field of precision aluminum optics permits high quality optical polishing of aluminum monolith, which, in the field of optics, offers numerous benefits because of its machinability, lightweight, and low cost. This invention combines diamond turning and conventional polishing along with india ink, a newly adopted material, for the polishing to accomplish a significant improvement in surface precision of aluminum monolith for optical purposes. This invention guarantees the precise optical polishing of typical bare aluminum monolith to surface roughness of less than about 30 angstroms rms and preferably about 5 angstroms rms while maintaining a surface figure accuracy in terms of surface figure error of not more than one-fifteenth of wave peak-to-valley.
Ion beam figuring of small optical components
NASA Astrophysics Data System (ADS)
Drueding, Thomas W.; Fawcett, Steven C.; Wilson, Scott R.; Bifano, Thomas G.
1995-12-01
Ion beam figuring provides a highly deterministic method for the final precision figuring of optical components with advantages over conventional methods. The process involves bombarding a component with a stable beam of accelerated particles that selectively removes material from the surface. Figure corrections are achieved by rastering the fixed-current beam across the workplace at appropriate, time-varying velocities. Unlike conventional methods, ion figuring is a noncontact technique and thus avoids such problems as edge rolloff effects, tool wear, and force loading of the workpiece. This work is directed toward the development of the precision ion machining system at NASA's Marshall Space Flight Center. This system is designed for processing small (approximately equals 10-cm diam) optical components. Initial experiments were successful in figuring 8-cm-diam fused silica and chemical-vapor-deposited SiC samples. The experiments, procedures, and results of figuring the sample workpieces to shallow spherical, parabolic (concave and convex), and non-axially-symmetric shapes are discussed. Several difficulties and limitations encountered with the current system are discussed. The use of a 1-cm aperture for making finer corrections on optical components is also reported.
Fabrication of precision optics using an imbedded reference surface
Folta, James A.; Spiller, Eberhard
2005-02-01
The figure of a substrate is very precisely measured and a figured-correcting layer is provided on the substrate. The thickness of the figure-correcting layer is locally measured and compared to the first measurement. The local measurement of the figure-correcting layer is accomplished through a variety of methods, including interferometry and fluorescence or ultrasound measurements. Adjustments in the thickness of the figure-correcting layer are made until the top of the figure-correcting layer matches a desired figure specification.
Adaptive x-ray optics development at AOA-Xinetics
NASA Astrophysics Data System (ADS)
Lillie, Charles F.; Cavaco, Jeff L.; Brooks, Audrey D.; Ezzo, Kevin; Pearson, David D.; Wellman, John A.
2013-05-01
Grazing-incidence optics for X-ray applications require extremely smooth surfaces with precise mirror figures to provide well focused beams and small image spot sizes for astronomical telescopes and laboratory test facilities. The required precision has traditionally been achieved by time-consuming grinding and polishing of thick substrates with frequent pauses for precise metrology to check the mirror figure. More recently, substrates with high quality surface finish and figures have become available at reasonable cost, and techniques have been developed to mechanically adjust the figure of these traditionally polished substrates for ground-based applications. The beam-bending techniques currently in use are mechanically complex, however, with little control over mid-spatial frequency errors. AOA-Xinetics has been developing been developing techniques for shaping grazing incidence optics with surface-normal and surface-parallel electrostrictive Lead magnesium niobate (PMN) actuators bonded to mirror substrates for several years. These actuators are highly reliable; exhibit little to no hysteresis, aging or creep; and can be closely spaced to correct low and mid-spatial frequency errors in a compact package. In this paper we discuss recent development of adaptive x-ray optics at AOA-Xinetics.
Adaptive x-ray optics development at AOA-Xinetics
NASA Astrophysics Data System (ADS)
Lillie, Charles F.; Pearson, David D.; Cavaco, Jeffrey L.; Plinta, Audrey D.; Wellman, John A.
2012-10-01
Grazing-incidence optics for X-ray applications require extremely smooth surfaces with precise mirror figures to provide well focused beams and small image spot sizes for astronomical telescopes and laboratory test facilities. The required precision has traditionally been achieved by time-consuming grinding and polishing of thick substrates with frequent pauses for precise metrology to check the mirror figure. More recently, substrates with high quality surface finish and figures have become available at reasonable cost, and techniques have been developed to mechanically adjust the figure of these traditionally polished substrates for ground-based applications. The beam-bending techniques currently in use are mechanically complex, however, with little control over mid-spatial frequency errors. AOA-Xinetics has been developing been developing techniques for shaping grazing incidence optics with surface-normal and surface-parallel electrostrictive Lead magnesium niobate (PMN) actuators bonded to mirror substrates for several years. These actuators are highly reliable; exhibit little to no hysteresis, aging or creep; and can be closely spaced to correct low and mid-spatial frequency errors in a compact package. In this paper we discuss recent development of adaptive x-ray optics at AOAXinetics.
Ultra-Light Precision Membrane Optics
NASA Technical Reports Server (NTRS)
Moore, Jim; Gunter, Kent; Patrick, Brian; Marty, Dave; Bates, Kevin; Gatlin, Romona; Clayton, Bill; Rood, Bob; Brantley, Whitt (Technical Monitor)
2001-01-01
SRS Technologies and NASA Marshall Space Flight Center have conducted a research effort to explore the possibility of developing ultra-lightweight membrane optics for future imaging applications. High precision optical flats and spherical mirrors were produced under this research effort. The thin film mirrors were manufactured using surface replication casting of CPI(Trademark), a polyimide material developed specifically for UV hardness and thermal stability. In the course of this program, numerous polyimide films were cast with surface finishes better than 1.5 nanometers rms and thickness variation of less than 63 nanometers. Precision membrane optical flats were manufactured demonstrating better than 1/13 wave figure error when measured at 633 nanometers. The aerial density of these films is 0.037 kilograms per square meter. Several 0.5-meter spherical mirrors were also manufactured. These mirrors had excellent surface finish (1.5 nanometers rms) and figure error on the order of tens of microns. This places their figure error within the demonstrated correctability of advanced wavefront correction technologies such as real time holography.
Fabrication of high precision metallic freeform mirrors with magnetorheological finishing (MRF)
NASA Astrophysics Data System (ADS)
Beier, Matthias; Scheiding, Sebastian; Gebhardt, Andreas; Loose, Roman; Risse, Stefan; Eberhardt, Ramona; Tünnermann, Andreas
2013-09-01
The fabrication of complex shaped metal mirrors for optical imaging is a classical application area of diamond machining techniques. Aspherical and freeform shaped optical components up to several 100 mm in diameter can be manufactured with high precision in an acceptable amount of time. However, applications are naturally limited to the infrared spectral region due to scatter losses for shorter wavelengths as a result of the remaining periodic diamond turning structure. Achieving diffraction limited performance in the visible spectrum demands for the application of additional polishing steps. Magnetorheological Finishing (MRF) is a powerful tool to improve figure and finish of complex shaped optics at the same time in a single processing step. The application of MRF as a figuring tool for precise metal mirrors is a nontrivial task since the technology was primarily developed for figuring and finishing a variety of other optical materials, such as glasses or glass ceramics. In the presented work, MRF is used as a figuring tool for diamond turned aluminum lightweight mirrors with electroless nickel plating. It is applied as a direct follow-up process after diamond machining of the mirrors. A high precision measurement setup, composed of an interferometer and an advanced Computer Generated Hologram with additional alignment features, allows for precise metrology of the freeform shaped optics in short measuring cycles. Shape deviations less than 150 nm PV / 20 nm rms are achieved reliably for freeform mirrors with apertures of more than 300 mm. Characterization of removable and induced spatial frequencies is carried out by investigating the Power Spectral Density.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Britten, J
WET-ETCH FIGURING (WEF) is an automated method of precisely figuring optical materials by the controlled application of aqueous etchant solution. This technology uses surface-tension-gradient-driven flow to confine and stabilize a wetted zone of an etchant solution or other aqueous processing fluid on the surface of an object. This wetted zone can be translated on the surface in a computer-controlled fashion for precise spatial control of the surface reactions occurring (e.g. chemical etching). WEF is particularly suitable for figuring very thin optical materials because it applies no thermal or mechanical stress to the material. Also, because the process is stress-free themore » workpiece can be monitored during figuring using interferometric metrology, and the measurements obtained can be used to control the figuring process in real-time--something that cannot be done with traditional figuring methods.« less
Ion Figuring of Replicated X-Ray Optics
NASA Technical Reports Server (NTRS)
Cantey, Thomas M.; Gregory, Don A.
1997-01-01
This investigation included experiments to demonstrate ion beam figuring effects on electroless nickel with the expressed desire to figure X-ray optic mandrels. It was important to establish that ion beam figuring did not induce any adverse effects to the nickel surface. The ion beam has consistently been shown to be an excellent indicator of the quality of the subsurface. Polishing is not the only cause for failure in the ion beam final figuring process, the material composition is equally important. Only by careful consideration of both these factors can the ion beam final figuring process achieve its greatest potential. The secondary goal was to construct a model for representing the ion beam material removal rate. Representing the ion beam removal rate is only an approximation and has a number of limiting factors. The resolution of the metrology apparatus limits the modeling of the beam function as well. As the surface error corrections demand more precision in the final figuring, the model representing beam function must be equally precise. The precision to which the beam function can be represented is not only determined by the model but also by the measurements producing that model. The method developed for determining the beam function has broad application to any material destined to be ion beam figured.
The precision segmented reflectors: Moderate mission figure control subsystem
NASA Technical Reports Server (NTRS)
Sevaston, G.; Redding, D.; Lau, K.; Breckenridge, W.; Levine, B.; Nerheim, N.; Sirlin, S.; Kadogawa, H.
1991-01-01
A system concept for a space based segmented reflector telescope figure control subsystem is described. The concept employs a two phase architecture in which figure initialization and figure maintenance are independent functions. Figure initialization is accomplished by image sharpening using natural reference targets. Figure maintenance is performed by monitoring the relative positions and alignments of the telescope components using an optical truss. Actuation is achieved using precision positioners. Computer simulation results of figure initialization by pairwise segment coalignment/cophasing and simulated annealing are presented along with figure maintenance results using a wavefront error regulation algorithm. Both functions are shown to perform at acceptable levels for the class of submillimeter telescopes that are serving as the focus of this technology development effort. Component breadboard work as well as plans for a system testbed are discussed.
High-precision MoSi multilayer coatings for radial and 2D designs on curved optics
NASA Astrophysics Data System (ADS)
Kriese, Michael D.; Li, Yang; Platonov, Yuriy Y.
2017-10-01
The development of industrial infrastructure for EUV lithography requires a wide array of optics beyond the mask and the scanner optics, which include optics for critical instruments such as exposure testing and actinic inspection. This paper will detail recent results in the production of a variety of high-precision multilayer coatings achieved to support this development. It is critical that the optical designs factor in the capabilities of the achievable multilayer gradients and the associated achievable precision, including impact to surface distortion from the added figure error of the multilayer coating, which adds additional requirements of a specific shape to the period distribution. For example, two different coatings may achieve a ±0.2% variation in multilayer period, but have considerably different added figure error. Part I of the paper will focus on radially-symmetric spherical and aspherical optics. Typical azimuthal uniformity (variation at a fixed radius) achieved is less than ±0.005nm total variation, including measurement precision, on concave optics up to 200mm diameter. For highly curved convex optics (radius of curvature less than 50mm), precision is more challenging and the total variation increases to ±0.01nm total variation for optics 10-30mm in diameter. Total added figure error achieved has been as low as 0.05nm. Part II of the paper will focus on multilayer designs graded in two directions, rather than radially, in order to accommodate the increased complexity of elliptical, toroidal and hyperbolic surfaces. In most cases, the symmetry of the required multilayer gradient does not match the symmetry of the optical surface, and this interaction must be countered via the process design. Achieving such results requires additional flexibility in the design of the deposition equipment, and will be discussed with several examples in the paper, such as the use of variable velocity of an inline substrate carrier in conjunction with a shaped target aperture to produce ±0.03nm total variation on an off-axis elliptical surface.
Deterministic ion beam material adding technology for high-precision optical surfaces.
Liao, Wenlin; Dai, Yifan; Xie, Xuhui; Zhou, Lin
2013-02-20
Although ion beam figuring (IBF) provides a highly deterministic method for the precision figuring of optical components, several problems still need to be addressed, such as the limited correcting capability for mid-to-high spatial frequency surface errors and low machining efficiency for pit defects on surfaces. We propose a figuring method named deterministic ion beam material adding (IBA) technology to solve those problems in IBF. The current deterministic optical figuring mechanism, which is dedicated to removing local protuberances on optical surfaces, is enriched and developed by the IBA technology. Compared with IBF, this method can realize the uniform convergence of surface errors, where the particle transferring effect generated in the IBA process can effectively correct the mid-to-high spatial frequency errors. In addition, IBA can rapidly correct the pit defects on the surface and greatly improve the machining efficiency of the figuring process. The verification experiments are accomplished on our experimental installation to validate the feasibility of the IBA method. First, a fused silica sample with a rectangular pit defect is figured by using IBA. Through two iterations within only 47.5 min, this highly steep pit is effectively corrected, and the surface error is improved from the original 24.69 nm root mean square (RMS) to the final 3.68 nm RMS. Then another experiment is carried out to demonstrate the correcting capability of IBA for mid-to-high spatial frequency surface errors, and the final results indicate that the surface accuracy and surface quality can be simultaneously improved.
Manufacturing Precise, Lightweight Paraboloidal Mirrors
NASA Technical Reports Server (NTRS)
Hermann, Frederick Thomas
2006-01-01
A process for fabricating a precise, diffraction- limited, ultra-lightweight, composite- material (matrix/fiber) paraboloidal telescope mirror has been devised. Unlike the traditional process of fabrication of heavier glass-based mirrors, this process involves a minimum of manual steps and subjective judgment. Instead, this process involves objectively controllable, repeatable steps; hence, this process is better suited for mass production. Other processes that have been investigated for fabrication of precise composite-material lightweight mirrors have resulted in print-through of fiber patterns onto reflecting surfaces, and have not provided adequate structural support for maintenance of stable, diffraction-limited surface figures. In contrast, this process does not result in print-through of the fiber pattern onto the reflecting surface and does provide a lightweight, rigid structure capable of maintaining a diffraction-limited surface figure in the face of changing temperature, humidity, and air pressure. The process consists mainly of the following steps: 1. A precise glass mandrel is fabricated by conventional optical grinding and polishing. 2. The mandrel is coated with a release agent and covered with layers of a carbon- fiber composite material. 3. The outer surface of the outer layer of the carbon-fiber composite material is coated with a surfactant chosen to provide for the proper flow of an epoxy resin to be applied subsequently. 4. The mandrel as thus covered is mounted on a temperature-controlled spin table. 5. The table is heated to a suitable temperature and spun at a suitable speed as the epoxy resin is poured onto the coated carbon-fiber composite material. 6. The surface figure of the optic is monitored and adjusted by use of traditional Ronchi, Focault, and interferometric optical measurement techniques while the speed of rotation and the temperature are adjusted to obtain the desired figure. The proper selection of surfactant, speed or rotation, viscosity of the epoxy, and temperature make it possible to obtain the desired diffraction-limited, smooth (1/50th wave) parabolic outer surface, suitable for reflective coating. 7. A reflective coat is applied by use of conventional coating techniques. 8. Once the final figure is set, a lightweight structural foam is applied to the rear of the optic to ensure stability of the figure.
NASA Astrophysics Data System (ADS)
Sugawara, Jun; Kamiya, Tomohiro; Mikashima, Bumpei
2017-09-01
Ultra-low thermal expansion ceramics NEXCERATM is regarded as one of potential candidate materials crucial for ultralightweight and thermally-stable optical mirrors for space telescopes which are used in future optical missions satisfying extremely high observation specifications. To realize the high precision NEXCERA mirrors for space telescopes, it is important to develop a deterministic aspheric shape polishing and a precise figure correction polishing method for the NEXCERA. Magnetorheological finishing (MRF) was tested to the NEXCERA aspheric mirror from best fit sphere shape, because the MRF technology is regarded as the best suited process for a precise figure correction of the ultralightweight mirror with thin sheet due to its advantage of low normal force polishing. As using the best combination of material and MR fluid, the MRF was performed high precision figure correction and to induce a hyperbolic shape from a conventionally polished 100mm diameter sphere, and achieved the sufficient high figure accuracy and the high quality surface roughness. In order to apply the NEXCERA to a large scale space mirror, for the next step, a middle size solid mirror, 250 mm diameter concave parabola, was machined. It was roughly ground in the parabolic shape, and was lapped and polished by a computer-controlled polishing machine using sub-aperture polishing tools. It resulted in the smooth surface of 0.6 nm RMS and the figure accuracy of λ/4, being enough as pre-MRF surface. A further study of the NEXCERA space mirrors should be proceeded as a figure correction using the MRF to lightweight mirror with thin mirror sheet.
Subaperture metrology technologies extend capabilities in optics manufacturing
NASA Astrophysics Data System (ADS)
Tricard, Marc; Forbes, Greg; Murphy, Paul
2005-10-01
Subaperture polishing technologies have radically changed the landscape of precision optics manufacturing and enabled the production of higher precision optics with increasingly difficult figure requirements. However, metrology is a critical piece of the optics fabrication process, and the dependence on interferometry is especially acute for computer-controlled, deterministic finishing. Without accurate full-aperture metrology, figure correction using subaperture polishing technologies would not be possible. QED Technologies has developed the Subaperture Stitching Interferometer (SSI) that extends the effective aperture and dynamic range of a phase measuring interferometer. The SSI's novel developments in software and hardware improve the capacity and accuracy of traditional interferometers, overcoming many of the limitations previously faced. The SSI performs high-accuracy automated measurements of spheres, flats, and mild aspheres up to 200 mm in diameter by stitching subaperture data. The system combines a six-axis precision workstation, a commercial Fizeau interferometer of 4" or 6" aperture, and dedicated software. QED's software automates the measurement design, data acquisition, and mathematical reconstruction of the full-aperture phase map. The stitching algorithm incorporates a general framework for compensating several types of errors introduced by the interferometer and stage mechanics. These include positioning errors, viewing system distortion, the system reference wave error, etc. The SSI has been proven to deliver the accurate and flexible metrology that is vital to precision optics fabrication. This paper will briefly review the capabilities of the SSI as a production-ready, metrology system that enables costeffective manufacturing of precision optical surfaces.
Global optimization method based on ray tracing to achieve optimum figure error compensation
NASA Astrophysics Data System (ADS)
Liu, Xiaolin; Guo, Xuejia; Tang, Tianjin
2017-02-01
Figure error would degrade the performance of optical system. When predicting the performance and performing system assembly, compensation by clocking of optical components around the optical axis is a conventional but user-dependent method. Commercial optical software cannot optimize this clocking. Meanwhile existing automatic figure-error balancing methods can introduce approximate calculation error and the build process of optimization model is complex and time-consuming. To overcome these limitations, an accurate and automatic global optimization method of figure error balancing is proposed. This method is based on precise ray tracing to calculate the wavefront error, not approximate calculation, under a given elements' rotation angles combination. The composite wavefront error root-mean-square (RMS) acts as the cost function. Simulated annealing algorithm is used to seek the optimal combination of rotation angles of each optical element. This method can be applied to all rotational symmetric optics. Optimization results show that this method is 49% better than previous approximate analytical method.
Study of parameters in precision optical glass molding
NASA Astrophysics Data System (ADS)
Ni, Ying; Wang, Qin-hua; Yu, Jing-chi
2010-10-01
Precision glass compression molding is an attractive approach to manufacture small precision optics in large volume over traditional manufacturing techniques because of its advantages such as lower cost, faster time to market and being environment friendly. In order to study the relationship between the surface figures of molded lenses and molding process parameters such as temperature, pressure, heating rate, cooling rate and so on, we present some glass compression molding experiments using same low Tg (transition temperature) glass material to produce two different kinds of aspheric lenses by different molding process parameters. Based on results from the experiments, we know the major factors influencing surface figure of molded lenses and the changing range of these parameters. From the knowledge we could easily catch proper molding parameters which are suitable for aspheric lenses with diameter from 10mm to 30mm.
Precision machining of optical surfaces with subaperture correction technologies MRF and IBF
NASA Astrophysics Data System (ADS)
Schmelzer, Olaf; Feldkamp, Roman
2015-10-01
Precision optical elements are used in a wide range of technical instrumentations. Many optical systems e.g. semiconductor inspection modules, laser heads for laser material processing or high end movie cameras, contain precision optics even aspherical or freeform surfaces. Critical parameters for such systems are wavefront error, image field curvature or scattered light. Following these demands the lens parameters are also critical concerning power and RMSi of the surface form error and micro roughness. How can we reach these requirements? The emphasis of this discussion is set on the application of subaperture correction technologies in the fabrication of high-end aspheres and free-forms. The presentation focuses on the technology chain necessary for the production of high-precision aspherical optical components and the characterization of the applied subaperture finishing tools MRF (magneto-rheological finishing) and IBF (ion beam figuring). These technologies open up the possibility of improving the performance of optical systems.
Precision optical slit for high heat load or ultra high vacuum
Andresen, N.C.; DiGennaro, R.S.; Swain, T.L.
1995-01-24
This invention relates generally to slits used in optics that must be precisely aligned and adjusted. The optical slits of the present invention are useful in x-ray optics, x-ray beam lines, optical systems in which the entrance slit is critical for high wavelength resolution. The invention is particularly useful in ultra high vacuum systems where lubricants are difficult to use and designs which avoid the movement of metal parts against one another are important, such as monochromators for high wavelength resolution with ultra high vacuum systems. The invention further relates to optical systems in which temperature characteristics of the slit materials is important. The present invention yet additionally relates to precision slits wherein the opposing edges of the slit must be precisely moved relative to a center line between the edges with each edge retaining its parallel orientation with respect to the other edge and/or the center line. 21 figures.
2010-12-01
including thermal optics Much more precise target engagement and stabilization method Drawbacks Mechanical malfunctions more common Gunner has...complete panorama view that extends from 0–180 degrees off-center, from our camera system. Figure 20 360° view dome projection Figure 21 shows the...method can incorporate various types of synthetic vision aids, such as thermal or electro-optical sensors, to give the user the capability to see in
Binary Studies with the Navy Precision Optical Interferometer
2013-01-01
the O9.7 supergiant primary. Meanwhile, another high-precision measurement was taken with the UVES 128 Cent. Eur.Astrophys. Bull. 37 (2013) 1, 127–135...spectrometers used for the measurements are labeled as follows: UVES (diamond), HEROS/FEROS (triangle down), ELODIE (squares), FOCES (circle), BESO (triangles up...collaborators report spectro - Cent. Eur.Astrophys. Bull. 37 (2013) 1, 127–135 131 C.A. HUMMEL, R.T. ZAVALA AND J. SANBORN Figure 4: Orbit of ξ Tauri. Figure 5
Rankin, R.; Kotter, D.
1994-04-26
An optical voltage reference for providing an alternative to a battery source is described. The optical reference apparatus provides a temperature stable, high precision, isolated voltage reference through the use of optical isolation techniques to eliminate current and impedance coupling errors. Pulse rate frequency modulation is employed to eliminate errors in the optical transmission link while phase-lock feedback is employed to stabilize the frequency to voltage transfer function. 2 figures.
Precise Determination of the Zero-Gravity Surface Figure of a Mirror without Gravity-Sag Modeling
NASA Technical Reports Server (NTRS)
Bloemhof, Eric E.; Lam, Jonathan C.; Feria, V. Alfonso; Chang, Zensheu
2007-01-01
The zero-gravity surface figure of optics used in spaceborne astronomical instruments must be known to high accuracy, but earthbound metrology is typically corrupted by gravity sag. Generally, inference of the zero-gravity surface figure from a measurement made under normal gravity requires finite-element analysis (FEA), and for accurate results the mount forces must be well characterized. We describe how to infer the zero-gravity surface figure very precisely using the alternative classical technique of averaging pairs of measurements made with the direction of gravity reversed. We show that mount forces as well as gravity must be reversed between the two measurements and discuss how the St. Venant principle determines when a reversed mount force may be considered to be applied at the same place in the two orientations. Our approach requires no finite-element modeling and no detailed knowledge of mount forces other than the fact that they reverse and are applied at the same point in each orientation. If mount schemes are suitably chosen, zero-gravity optical surfaces may be inferred much more simply and more accurately than with FEA.
Active Figure Control Effects on Mounting Strategy for X-Ray Optics
NASA Technical Reports Server (NTRS)
Kolodziejczak, Jeffery J.; Atkins, Carolyn; Roche, Jacqueline M.; ODell, Stephen L.; Ramsey, Brian D.; Elsner, Ronald F.; Weisskopf, Martin C.; Gubarev, Mikhail V.
2014-01-01
As part of ongoing development efforts at MSFC, we have begun to investigate mounting strategies for highly nested xray optics in both full-shell and segmented configurations. The analytical infrastructure for this effort also lends itself to investigation of active strategies. We expect that a consequence of active figure control on relatively thin substrates is that errors are propagated to the edges, where they might affect the effective precision of the mounting points. Based upon modeling, we describe parametrically, the conditions under which active mounts are preferred over fixed ones, and the effect of active figure corrections on the required number, locations, and kinematic characteristics of mounting points.
Deterministic magnetorheological finishing of optical aspheric mirrors
NASA Astrophysics Data System (ADS)
Song, Ci; Dai, Yifan; Peng, Xiaoqiang; Li, Shengyi; Shi, Feng
2009-05-01
A new method magnetorheological finishing (MRF) used for deterministical finishing of optical aspheric mirrors is applied to overcome some disadvantages including low finishing efficiency, long iterative time and unstable convergence in the process of conventional polishing. Based on the introduction of the basic principle of MRF, the key techniques to implement deterministical MRF are also discussed. To demonstrate it, a 200 mm diameter K9 class concave asphere with a vertex radius of 640mm was figured on MRF polish tool developed by ourselves. Through one process about two hours, the surface accuracy peak-to-valley (PV) is improved from initial 0.216λ to final 0.179λ and root-mean-square (RMS) is improved from 0.027λ to 0.017λ (λ = 0.6328um ). High-precision and high-efficiency convergence of optical aspheric surface error shows that MRF is an advanced optical manufacturing method that owns high convergence ratio of surface figure, high precision of optical surfacing, stabile and controllable finishing process. Therefore, utilizing MRF to finish optical aspheric mirrors determinately is credible and stabile; its advantages can be also used for finishing optical elements on varieties of types such as plane mirrors and spherical mirrors.
NASA Technical Reports Server (NTRS)
Kilaru, Kiranmayee; Ramsey, Brian D.; Gubarev, Mikhail V.
2011-01-01
A coating technique is being developed to correct the surface figure deviations in reflective-grazing-incidence X-ray optics. These optics are typically designed to have precise conic profiles, and any deviation in this profile, as a result of fabrication, results in a degradation of the imaging performance. To correct the mirror profiles, physical vapor deposition has been utilized to selectively deposit a filler material inside the mirror shell. The technique, termed differential deposition, has been implemented as a proof of concept on miniature X-ray optics developed at MSFC for medical-imaging applications. The technique is now being transferred to larger grazing-incidence optics suitable for astronomy and progress to date is reported.
Inverting Image Data For Optical Testing And Alignment
NASA Technical Reports Server (NTRS)
Shao, Michael; Redding, David; Yu, Jeffrey W.; Dumont, Philip J.
1993-01-01
Data from images produced by slightly incorrectly figured concave primary mirror in telescope processed into estimate of spherical aberration of mirror, by use of algorithm finding nonlinear least-squares best fit between actual images and synthetic images produced by multiparameter mathematical model of telescope optical system. Estimated spherical aberration, in turn, converted into estimate of deviation of reflector surface from nominal precise shape. Algorithm devised as part of effort to determine error in surface figure of primary mirror of Hubble space telescope, so corrective lens designed. Modified versions of algorithm also used to find optical errors in other components of telescope or of other optical systems, for purposes of testing, alignment, and/or correction.
Formation metrology and control for large separated optics space telescopes
NASA Technical Reports Server (NTRS)
Mettler, E.; Quadrelli, M.; Breckenridge, W.
2002-01-01
In this paper we present formation flying performance analysis initial results for a representative large space telescope composed of separated optical elements [Mett 02]. A virtual-structure construct (an equivalent rigid body) is created by unique metrology and control that combines both centralized and decentralized methods. The formation may be in orbit at GEO for super-resolution Earth observation, as in the case of Figure 1, or it may be in an Earth-trailing orbit for astrophysics, Figure 2. Extended applications are envisioned for exo-solar planet interferometric imaging by a formation of very large separated optics telescopes, Figure 3. Space telescopes, with such large apertures and f/10 to f/100 optics, are not feasible if connected by massive metering structures. Instead, the new virtual-structure paradigm of information and control connectivity between the formation elements provides the necessary spatial rigidity and alignment precision for the telescope.
Analysis of Active Figure Control Effects on Mounting Strategy for X-Ray Optics
NASA Technical Reports Server (NTRS)
Kolodziejczak, Jeffrey J.; Roche, Jacqueline M.; O'Dell, Stephen L.; Ramsey, Brian D.; Elsner, Ryan F.; Gubarev, Mikhail V.; Weisskopf, Martin C.
2014-01-01
As part of ongoing development efforts at MSFC, we have begun to investigate mounting strategies for highly nested x-ray optics in both full-shell and segmented configurations. The analytical infrastructure for this effort also lends itself to investigation of active strategies. We expect that a consequence of active figure control on relatively thin substrates is that errors are propagated to the edges, where they might affect the effective precision of the mounting points. Based upon modeling, we describe parametrically, the conditions under which active mounts are preferred over fixed ones, and the effect of active figure corrections on the required number, locations, and kinematic characteristics of mounting points.
Surface Figure Measurement of Silicon Carbide Mirrors at Cryogenic Temperatures
NASA Technical Reports Server (NTRS)
Blake, Peter; Mink, Ronald G.; Chambers, John; Robinson, F. David; Content, David; Davila, Pamela
2005-01-01
The surface figure of a developmental silicon carbide mirror, cooled to 87 K and then 20 K within a cryostat, was measured with unusually high precision at the Goddard Space Flight Center (GSFC). The concave spherical mirror, with a radius of 600 mm and a clear aperture of 150 mm, was fabricated of sintered silicon carbide. The mirror was mounted to an interface plate representative of an optical bench, made of the material Cesic@, a composite of silicon, carbon, and silicon carbide. The change in optical surface figure as the mirror and interface plate cooled from room temperature to 20 K was 3.7 nm rms, with a standard uncertainty of 0.23 nm in the rms statistic. Both the cryo-change figure and the uncertainty are among the lowest such figures yet published. This report describes the facilities, experimental methods, and uncertainty analysis of the measurements.
Ion beam figuring of high-slope surfaces based on figure error compensation algorithm.
Dai, Yifan; Liao, Wenlin; Zhou, Lin; Chen, Shanyong; Xie, Xuhui
2010-12-01
In a deterministic figuring process, it is critical to guarantee high stability of the removal function as well as the accuracy of the dwell time solution, which directly influence the convergence of the figuring process. Hence, when figuring steep optics, the ion beam is required to keep a perpendicular incidence, and a five-axis figuring machine is typically utilized. In this paper, however, a method for high-precision figuring of high-slope optics is proposed with a linear three-axis machine, allowing for inclined beam incidence. First, the changing rule of the removal function and the normal removal rate with the incidence angle is analyzed according to the removal characteristics of ion beam figuring (IBF). Then, we propose to reduce the influence of varying removal function and projection distortion on the dwell time solution by means of figure error compensation. Consequently, the incident ion beam is allowed to keep parallel to the optical axis. Simulations and experiments are given to verify the removal analysis. Finally, a figuring experiment is conducted on a linear three-axis IBF machine, which proves the validity of the method for high-slope surfaces. It takes two iterations and about 9 min to successfully figure a fused silica sample, whose aperture is 21.3 mm and radius of curvature is 16 mm. The root-mean-square figure error of the convex surface is reduced from 13.13 to 5.86 nm.
Figure Text Extraction in Biomedical Literature
Kim, Daehyun; Yu, Hong
2011-01-01
Background Figures are ubiquitous in biomedical full-text articles, and they represent important biomedical knowledge. However, the sheer volume of biomedical publications has made it necessary to develop computational approaches for accessing figures. Therefore, we are developing the Biomedical Figure Search engine (http://figuresearch.askHERMES.org) to allow bioscientists to access figures efficiently. Since text frequently appears in figures, automatically extracting such text may assist the task of mining information from figures. Little research, however, has been conducted exploring text extraction from biomedical figures. Methodology We first evaluated an off-the-shelf Optical Character Recognition (OCR) tool on its ability to extract text from figures appearing in biomedical full-text articles. We then developed a Figure Text Extraction Tool (FigTExT) to improve the performance of the OCR tool for figure text extraction through the use of three innovative components: image preprocessing, character recognition, and text correction. We first developed image preprocessing to enhance image quality and to improve text localization. Then we adapted the off-the-shelf OCR tool on the improved text localization for character recognition. Finally, we developed and evaluated a novel text correction framework by taking advantage of figure-specific lexicons. Results/Conclusions The evaluation on 382 figures (9,643 figure texts in total) randomly selected from PubMed Central full-text articles shows that FigTExT performed with 84% precision, 98% recall, and 90% F1-score for text localization and with 62.5% precision, 51.0% recall and 56.2% F1-score for figure text extraction. When limiting figure texts to those judged by domain experts to be important content, FigTExT performed with 87.3% precision, 68.8% recall, and 77% F1-score. FigTExT significantly improved the performance of the off-the-shelf OCR tool we used, which on its own performed with 36.6% precision, 19.3% recall, and 25.3% F1-score for text extraction. In addition, our results show that FigTExT can extract texts that do not appear in figure captions or other associated text, further suggesting the potential utility of FigTExT for improving figure search. PMID:21249186
Figure text extraction in biomedical literature.
Kim, Daehyun; Yu, Hong
2011-01-13
Figures are ubiquitous in biomedical full-text articles, and they represent important biomedical knowledge. However, the sheer volume of biomedical publications has made it necessary to develop computational approaches for accessing figures. Therefore, we are developing the Biomedical Figure Search engine (http://figuresearch.askHERMES.org) to allow bioscientists to access figures efficiently. Since text frequently appears in figures, automatically extracting such text may assist the task of mining information from figures. Little research, however, has been conducted exploring text extraction from biomedical figures. We first evaluated an off-the-shelf Optical Character Recognition (OCR) tool on its ability to extract text from figures appearing in biomedical full-text articles. We then developed a Figure Text Extraction Tool (FigTExT) to improve the performance of the OCR tool for figure text extraction through the use of three innovative components: image preprocessing, character recognition, and text correction. We first developed image preprocessing to enhance image quality and to improve text localization. Then we adapted the off-the-shelf OCR tool on the improved text localization for character recognition. Finally, we developed and evaluated a novel text correction framework by taking advantage of figure-specific lexicons. The evaluation on 382 figures (9,643 figure texts in total) randomly selected from PubMed Central full-text articles shows that FigTExT performed with 84% precision, 98% recall, and 90% F1-score for text localization and with 62.5% precision, 51.0% recall and 56.2% F1-score for figure text extraction. When limiting figure texts to those judged by domain experts to be important content, FigTExT performed with 87.3% precision, 68.8% recall, and 77% F1-score. FigTExT significantly improved the performance of the off-the-shelf OCR tool we used, which on its own performed with 36.6% precision, 19.3% recall, and 25.3% F1-score for text extraction. In addition, our results show that FigTExT can extract texts that do not appear in figure captions or other associated text, further suggesting the potential utility of FigTExT for improving figure search.
NASA Astrophysics Data System (ADS)
Maloney, Chris; Lormeau, Jean Pierre; Dumas, Paul
2016-07-01
Many astronomical sensing applications operate in low-light conditions; for these applications every photon counts. Controlling mid-spatial frequencies and surface roughness on astronomical optics are critical for mitigating scattering effects such as flare and energy loss. By improving these two frequency regimes higher contrast images can be collected with improved efficiency. Classically, Magnetorheological Finishing (MRF) has offered an optical fabrication technique to correct low order errors as well has quilting/print-through errors left over in light-weighted optics from conventional polishing techniques. MRF is a deterministic, sub-aperture polishing process that has been used to improve figure on an ever expanding assortment of optical geometries, such as planos, spheres, on and off axis aspheres, primary mirrors and freeform optics. Precision optics are routinely manufactured by this technology with sizes ranging from 5-2,000mm in diameter. MRF can be used for form corrections; turning a sphere into an asphere or free form, but more commonly for figure corrections achieving figure errors as low as 1nm RMS while using careful metrology setups. Recent advancements in MRF technology have improved the polishing performance expected for astronomical optics in low, mid and high spatial frequency regimes. Deterministic figure correction with MRF is compatible with most materials, including some recent examples on Silicon Carbide and RSA905 Aluminum. MRF also has the ability to produce `perfectly-bad' compensating surfaces, which may be used to compensate for measured or modeled optical deformation from sources such as gravity or mounting. In addition, recent advances in MRF technology allow for corrections of mid-spatial wavelengths as small as 1mm simultaneously with form error correction. Efficient midspatial frequency corrections make use of optimized process conditions including raster polishing in combination with a small tool size. Furthermore, a novel MRF fluid, called C30, has been developed to finish surfaces to ultra-low roughness (ULR) and has been used as the low removal rate fluid required for fine figure correction of mid-spatial frequency errors. This novel MRF fluid is able to achieve <4Å RMS on Nickel-plated Aluminum and even <1.5Å RMS roughness on Silicon, Fused Silica and other materials. C30 fluid is best utilized within a fine figure correction process to target mid-spatial frequency errors as well as smooth surface roughness 'for free' all in one step. In this paper we will discuss recent advancements in MRF technology and the ability to meet requirements for precision optics in low, mid and high spatial frequency regimes and how improved MRF performance addresses the need for achieving tight specifications required for astronomical optics.
A Deployable Primary Mirror for Space Telescopes
NASA Technical Reports Server (NTRS)
Lake, Mark S.; Phelps, James E.; Dyer, Jack E.; Caudle, David A.; Tam, Anthony; Escobedo, Javier; Kasl, Eldon P.
1999-01-01
NASA Langley Research Center, Composite Optics, Inc., and Nyma/ADF have developed jointly a deployable primary mirror for space telescopes that combines over five years of research on deployment of optical-precision structures and over ten years of development of fabrication techniques for optical-precision composite mirror panels and structures. The deployable mirror is directly applicable to a broad class of non-imaging "lidar" (light direction a nd ranging) telescopes whose figure-error requirements are in the range of one to ten microns RMS. Furthermore, the mirror design can be readily modified to accommodate imaging-quality reflector panels and active panel-alignment control mechanisms for application to imaging telescopes. The present paper: 1) describes the deployable mirror concept; 2) explains the status of the mirror development; and 3) provides some technical specifications for a 2.55- m-diameter, proof-of-concept mirror. Keywords: precision deployment, hinge joint, latch joint, deployable structures, fabrication, space telescopes, optical instruments, microdynamics.
Taylor, John S.; Folta, James A.; Montcalm, Claude
2005-01-18
Figure errors are corrected on optical or other precision surfaces by changing the local density of material in a zone at or near the surface. Optical surface height is correlated with the localized density of the material within the same region. A change in the height of the optical surface can then be caused by a change in the localized density of the material at or near the surface.
Research on the magnetorheological finishing (MRF) technology with dual polishing heads
NASA Astrophysics Data System (ADS)
Huang, Wen; Zhang, Yunfei; He, Jianguo; Zheng, Yongcheng; Luo, Qing; Hou, Jing; Yuan, Zhigang
2014-08-01
Magnetorheological finishing (MRF) is a key polishing technique capable of rapidly converging to the required surface figure. Due to the deficiency of general one-polishing-head MRF technology, a dual polishing heads MRF technology was studied and a dual polishing heads MRF machine with 8 axes was developed. The machine has the ability to manufacture large aperture optics with high figure accuracy. The large polishing head is suitable for polishing large aperture optics, controlling large spatial length's wave structures, correcting low-medium frequency errors with high removal rates. While the small polishing head has more advantages in manufacturing small aperture optics, controlling small spatial wavelength's wave structures, correcting mid-high frequency and removing nanoscale materials. Material removal characteristic and figure correction ability for each of large and small polishing head was studied. Each of two polishing heads respectively acquired stable and valid polishing removal function and ultra-precision flat sample. After a single polishing iteration using small polishing head, the figure error in 45mm diameter of a 50 mm diameter plano optics was significantly improved from 0.21λ to 0.08λ by PV (RMS 0.053λ to 0.015λ). After three polishing iterations using large polishing head , the figure error in 410mm×410mm of a 430mm×430mm large plano optics was significantly improved from 0.40λ to 0.10λ by PV (RMS 0.068λ to 0.013λ) .This results show that the dual polishing heads MRF machine not only have good material removal stability, but also excellent figure correction capability.
Reduced cost and improved figure of sapphire optical components
NASA Astrophysics Data System (ADS)
Walters, Mark; Bartlett, Kevin; Brophy, Matthew R.; DeGroote Nelson, Jessica; Medicus, Kate
2015-10-01
Sapphire presents many challenges to optical manufacturers due to its high hardness and anisotropic properties. Long lead times and high prices are the typical result of such challenges. The cost of even a simple 'grind and shine' process can be prohibitive. The high precision surfaces required by optical sensor applications further exacerbate the challenge of processing sapphire thereby increasing cost further. Optimax has demonstrated a production process for such windows that delivers over 50% time reduction as compared to traditional manufacturing processes for sapphire, while producing windows with less than 1/5 wave rms figure error. Optimax's sapphire production process achieves significant improvement in cost by implementation of a controlled grinding process to present the best possible surface to the polishing equipment. Following the grinding process is a polishing process taking advantage of chemical interactions between slurry and substrate to deliver excellent removal rates and surface finish. Through experiments, the mechanics of the polishing process were also optimized to produce excellent optical figure. In addition to reducing the cost of producing large sapphire sensor windows, the grinding and polishing technology Optimax has developed aids in producing spherical sapphire components to better figure quality. In addition to reducing the cost of producing large sapphire sensor windows, the grinding and polishing technology Optimax has developed aids in producing spherical sapphire components to better figure quality. Through specially developed polishing slurries, the peak-to-valley figure error of spherical sapphire parts is reduced by over 80%.
Precision production: enabling deterministic throughput for precision aspheres with MRF
NASA Astrophysics Data System (ADS)
Maloney, Chris; Entezarian, Navid; Dumas, Paul
2017-10-01
Aspherical lenses offer advantages over spherical optics by improving image quality or reducing the number of elements necessary in an optical system. Aspheres are no longer being used exclusively by high-end optical systems but are now replacing spherical optics in many applications. The need for a method of production-manufacturing of precision aspheres has emerged and is part of the reason that the optics industry is shifting away from artisan-based techniques towards more deterministic methods. Not only does Magnetorheological Finishing (MRF) empower deterministic figure correction for the most demanding aspheres but it also enables deterministic and efficient throughput for series production of aspheres. The Q-flex MRF platform is designed to support batch production in a simple and user friendly manner. Thorlabs routinely utilizes the advancements of this platform and has provided results from using MRF to finish a batch of aspheres as a case study. We have developed an analysis notebook to evaluate necessary specifications for implementing quality control metrics. MRF brings confidence to optical manufacturing by ensuring high throughput for batch processing of aspheres.
Study on optical polishing experiment of zerodur mirror
NASA Astrophysics Data System (ADS)
Wang, Huijun; Li, Hang; Wang, Peng; Guo, Wen; Wang, Yonggang; Du, Yan; Dong, Huiwen
2014-08-01
A zerodur mirror whose aperture is 900mm is chosen to be the primary mirror of an optical system. The mirror is polished by rapid polishing and precision polishing methods relatively. The final surface figures of the mirror are as follows: the peak-to-valley value (P-V value) is 0.204λ (λ=632.8nm), and the root-mean-square value (RMS value) is 0.016λ, which meet the requirement of the optical system. The results show that the polishing process is feasible.
Improved Edge Performance in MRF
NASA Technical Reports Server (NTRS)
Shorey, Aric; Jones, Andrew; Durnas, Paul; Tricard, Marc
2004-01-01
The fabrication of large segmented optics requires a polishing process that can correct the figure of a surface to within a short distance from its edges-typically, a few millimeters. The work here is to develop QED's Magnetorheological Finishing (MRF) precision polishing process to minimize residual edge effects.
New high-precision deep concave optical surface manufacturing capability
NASA Astrophysics Data System (ADS)
Piché, François; Maloney, Chris; VanKerkhove, Steve; Supranowicz, Chris; Dumas, Paul; Donohue, Keith
2017-10-01
This paper describes the manufacturing steps necessary to manufacture hemispherical concave aspheric mirrors for high- NA systems. The process chain is considered from generation to final figuring and includes metrology testing during the various manufacturing steps. Corning Incorporated has developed this process by taking advantage of recent advances in commercially available Satisloh and QED Technologies equipment. Results are presented on a 100 mm concave radius nearly hemispherical (NA = 0.94) fused silica sphere with a better than 5 nm RMS figure. Part interferometric metrology was obtained on a QED stitching interferometer. Final figure was made possible by the implementation of a high-NA rotational MRF mode recently developed by QED Technologies which is used at Corning Incorporated for production. We also present results from a 75 mm concave radius (NA = 0.88) Corning ULE sphere that was produced using sub-aperture tools from generation to final figuring. This part demonstrates the production chain from blank to finished optics for high-NA concave asphere.
Development of Multi-Beam Long Trace Profiler
NASA Technical Reports Server (NTRS)
Kilaru, Kiranmayee; Merthe, Daniel J.; Ali, Zulfiqar; Gubarev, Mikhail V.; Kester, Thomas; McKinney, Wayne R.; Takacs, Peter Z.; Yashchuk, Valeriy V.
2011-01-01
In order to fulfill the angular resolution requirements and make the performance goals for future NASA missions feasible, it is crucial to develop instruments capable of fast and precise figure metrology of x-ray optical elements for further correction of the surface errors. The Long Trace Profilometer (LTP) is an instrument widely used for measuring the surface figure of grazing incidence X-ray mirrors. In the case of replicated optics designed for x-ray astronomy applications, such as mirrors and the corresponding mandrels have a cylindrical shape and their tangential profile is parabolic or hyperbolic. Modern LTPs have sub-microradian accuracy, but the measuring speed is very low, because the profilometer measures surface figure point by point using a single laser beam. The measurement rate can be significantly improved by replacing the single optical beam with multiple beams. The goal of this study is to demonstrate the viability of multi-beam metrology as a way of significantly improving the quality and affordability of replicated x-ray optics. The multi-beam LTP would allow one- and two-dimensional scanning with sub-microradian resolution and a measurement rate of about ten times faster compared to the current LTP. The design details of the instrument's optical layout and the status of optical tests will be presented.
Optimal design of a Φ760 mm lightweight SiC mirror and the flexural mount for a space telescope
NASA Astrophysics Data System (ADS)
Li, Zongxuan; Chen, Xue; Wang, Shaoju; Jin, Guang
2017-12-01
A flexural support technique for lightweighted Primary Mirror Assembly (PMA) of a space telescope is presented in this article. The proposed three-point flexural mount based on a cartwheel flexure can maintain the surface figure of the PMA in a horizontal optical testing layout. The on-orbit surface error of the PMA causes significant degradation in image quality. On-ground optical testing cannot determine the zero-gravity figure of the PMA due to surface distortion by gravity. We unveiled the crucial fact that through a delicate mounting structure design, the surface figure can remain constant precisely without inducing distinguishable astigmatism when PMA rotates with respect to the optical axis, and the figure can be considered as the zero-gravity surface figure on the orbit. A design case is described to show the lightweight design of a SiC mirror and the optimal flexural mounting. Topology optimization and integrated opto-mechanical analysis using the finite element method are utilized in the design process. The Primary Mirror and mounting structures were fabricated and assembled. After the PMA mirror surface was polished to λ/50 RMS, optical testing in different clocking configurations was performed, respectively, through rotating the PMA by multiple angles. Test results show that the surface figure remained invariant, indicating that gravity release on the orbit will not cause an additional surface error. Vibration tests including sweep sine and random vibration were also performed to validate the mechanical design. The requirements for the mounting technique in space were qualified.
Neutral ion sources in precision manufacturing
NASA Technical Reports Server (NTRS)
Fawcett, Steven C.; Drueding, Thomas W.
1994-01-01
Ion figuring of optical components is a relatively new technology that can alleviate some of the problems associated with traditional contact polishing. Because the technique is non contacting, edge distortions and rib structure print through do not occur. This initial investigation was aimed at determining the effect of ion figuring on surface roughness of previously polished or ductile ground ceramic optical samples. This is the first step in research directed toward the combination of a pre-finishing process (ductile grinding or polishing) with ion figuring to produce finished ceramic mirrors. The second phase of the project is focusing on the development of mathematical algorithms that will deconvolve the ion beam profile from the surface figure errors so that these errors can be successfully removed from the optical components. In the initial phase of the project, multiple, chemical vapor deposited silicon carbide (CVD SiC) samples were polished or ductile ground to specular or near-specular roughness. These samples were then characterized to determine topographic surface information. The surface evaluation consisted of stylus profilometry, interferometry, and optical and scanning electron microscopy. The surfaces, were ion machined to depths from 0-5 microns. The finished surfaces were characterized to evaluate the effects of the ion machining process with respect to the previous processing methods and the pre-existing subsurface damage. The development of the control algorithms for figuring optical components has been completed. These algorithms have been validated with simulations and future experiments have been planned to verify the methods. This paper will present the results of the initial surface finish experiments and the control algorithms simulations.
Research on high-efficiency polishing technology of photomask substrate
NASA Astrophysics Data System (ADS)
Zhao, Shijie; Xie, Ruiqing; Zhou, Lian; Liao, Defeng; Chen, Xianhua; Wang, Jian
2018-03-01
A method of photomask substrate fabrication is demonstrated ,that the surface figure and roughness of fused silica will converge to target precision rapidly with the full aperture polishing. Surface figure of optical flats in full aperture polishing processes is primarily dependent on the surface profile of polishing pad, therefor, a improved function of polishing mechanism was put forward based on two axis lapping machine and technology experience, and the pad testing based on displacement sensor and the active conditioning method of the pad is applied in this research. Moreover , the clamping deformation of the thin glass is solved by the new pitch dispensing method. The experimental results show that the surface figure of the 152mm×152mm×6.35mm optical glass is 0.25λ(λ=633nm) and the roughness is 0.32nm ,which has meet the requirements of mask substrate for 90 45nm nodes.
Automated Figuring and Polishing of Replication Mandrels for X-Ray Telescopes
NASA Technical Reports Server (NTRS)
Krebs, Carolyn (Technical Monitor); Content, David; Fleetwood, Charles; Wright, Geraldine; Arsenovic, Petar; Collela, David; Kolos, Linette
2003-01-01
In support of the Constellation X mission the Optics Branch at Goddard Space Flight Center is developing technology for precision figuring and polishing of mandrels used to produce replicated mirrors that will be used in X-Ray telescopes. Employing a specially built machine controlled in 2 axes by a computer, we are doing automated polishing/figuring of 15 cm long, 20 cm diameter cylindrical, conical and Wolter mandrels. A battery of tests allow us to fully characterize all important aspects of the mandrels, including surface figure and finish, mid-frequency errors, diameters and cone angle. Parts are currently being produced with surface roughnesses at the .5nm RMS level, and half-power diameter slope error less than 2 arcseconds.
NASA Astrophysics Data System (ADS)
Ruiz de Galarreta Fanju, C.; Philippon, A.; Bouzit, M.; Appourchaux, T.; Vial, J.-C.; Maillard, J.-P.; Lemaire, P.
2017-11-01
The understanding of the solar outer atmosphere requires a simultaneous combination of imaging and spectral observations concerning the far UV lines that arise from the high chromospheres up to the corona. These observations must be performed with enough spectral, spatial and temporal resolution to reveal the small atmospheric structures and to resolve the solar dynamics. An Imaging Fourier Transform Spectrometer working in the far-UV (IFTSUV, Figure 1) is an attractive instrumental solution to fulfill these requirements. However, due to the short wavelength, to preserve IFTSUV spectral precision and Signal to Noise Ratio (SNR) requires a high optical surface quality and a very accurate (linear and angular) metrology to maintain the optical path difference (OPD) during the entire scanning process by: optical path difference sampling trigger; and dynamic alignment for tip/tilt compensation (Figure 2).
Multispectral optical telescope alignment testing for a cryogenic space environment
NASA Astrophysics Data System (ADS)
Newswander, Trent; Hooser, Preston; Champagne, James
2016-09-01
Multispectral space telescopes with visible to long wave infrared spectral bands provide difficult alignment challenges. The visible channels require precision in alignment and stability to provide good image quality in short wavelengths. This is most often accomplished by choosing materials with near zero thermal expansion glass or ceramic mirrors metered with carbon fiber reinforced polymer (CFRP) that are designed to have a matching thermal expansion. The IR channels are less sensitive to alignment but they often require cryogenic cooling for improved sensitivity with the reduced radiometric background. Finding efficient solutions to this difficult problem of maintaining good visible image quality at cryogenic temperatures has been explored with the building and testing of a telescope simulator. The telescope simulator is an onaxis ZERODUR® mirror, CFRP metered set of optics. Testing has been completed to accurately measure telescope optical element alignment and mirror figure changes in a cryogenic space simulated environment. Measured alignment error and mirror figure error test results are reported with a discussion of their impact on system optical performance.
A Deployable Primary Mirror for Space Telescopes
NASA Technical Reports Server (NTRS)
Lake, Mark S.; Phelps, James E.; Dyer, Jack E.; Caudle, David A.; Tam, Anthony
1999-01-01
NASA Langley Research Center, Composite Optics, Inc., and Nyma/ADF have developed jointly a deployable primary mirror for space telescopes that combines over five years of research on deployment of optical-precision structures and over ten years of development of fabrication techniques for optical-precision composite mirror panels and structures. The deployable mirror is directly applicable to a broad class of non-imaging "lidar" (Light direction and ranging) telescopes whose figure-error requirements are in the range of one to ten microns RMS. Furthermore, the mirror design can be readily modified to accommodate imaging-quality reflector panels and active panel-alignment control mechanisms for application to imaging telescopes. The present paper: 1) describes the deployable mirror concept; 2) explains the status of the mirror development; and 3) provides some technical specifications for a 2.55- m-diameter, proof-of-concept mirror.
A Deployable Primary Mirror for Space Telescopes
NASA Technical Reports Server (NTRS)
Lake, Mark S.; Phelps, James E.; Dyer, Jack E.; Caudle, David A.; Tam, Anthony; Escobedo, Javier; Kasl, Eldon P.
1999-01-01
NASA Langley Research Center, Composite Optics, Inc., and Nyma/ADF have developed jointly a deployable primary mirror for space telescopes that combines over five years of research on deployment of optical-precision structures and over ten years of development of fabrication techniques for optical-precision composite mirror panels and structures. The deployable mirror is directly applicable to a broad class of non-imaging "lidar" (light direction and ranging) telescopes whose figure-error requirements are in the range of one to ten microns RMS. Furthermore, the mirror design can be readily modified to accommodate imaging-quality reflector panels and active panel-alignment control mechanisms for application to imaging telescopes. The present paper: 1) describes the deployable mirror concept; 2) explains the status of the mirror development; and 3) provides some technical specifications for a 2.55-m-diameter, proof-of-concept mirror.
SOLARIS 3-axis high load, low profile, high precision motorized positioner
DOE Office of Scientific and Technical Information (OSTI.GOV)
Acome, Eric; Van Every, Eric; Deyhim, Alex, E-mail: adc@adc9001.com
A 3-axis optical table, shown in Figure 1, was designed, fabricated, and assembled for the SOLARIS synchrotron facility at the Jagiellonian University in Krakow, Poland. To accommodate the facility, the table was designed to be very low profile, as seen in Figure 2, and bear a high load. The platform has degrees of freedom in the vertical (Z) direction as well as horizontal transversal (X and Y) directions. The table is intended to sustain loads as large as 1500 kg which will be sufficient to support a variety of equipment to measure and facilitate synchrotron radiation. After assembly, the tablemore » was tested and calibrated to find its position error in the vertical direction. ADC has extensive experience designing and building custom complex high precision motion systems [1,2].« less
The development of composite materials for spacecraft precision reflector panels
NASA Technical Reports Server (NTRS)
Tompkins, Stephen S.; Bowles, David E.; Funk, Joan G.; Towell, Timothy W.; Lavoie, J. A.
1990-01-01
One of the critical technology needs for large precision reflectors required for future astrophysics and optical communications is in the area of structural materials. Therefore, a major area of the Precision Segmented Reflector Program at NASA is to develop lightweight composite reflector panels with durable, space environmentally stable materials which maintain both surface figure and required surface accuracy necessary for space telescope applications. Results from the materials research and development program at NASA Langley Research Center are discussed. Advanced materials that meet the reflector panel requirements are identified. Thermal, mechanical and durability properties of candidate materials after exposure to simulated space environments are compared to the baseline material.
Optical mounts for harsh environments
NASA Astrophysics Data System (ADS)
Mimovich, Mark E.; Griffee, Jonathan C.; Goodding, James C.
2009-08-01
Development and testing of a lightweight-kinematic optical mount with integrated passive vibration-and-shock mitigation technologies and simple / robust optical alignment functionality is presented. Traditionally, optical mounts are designed for use in laboratory environments where the thermal-mechanical environments are carefully controlled to preserve beam path conditions and background disturbances are minimized to facilitate precise optically based measurements. Today's weapon and surveillance systems, however, have optical sensor suites where static and dynamic alignment performance in the presence of harsh operating environments is required to nearly the same precision and where the system cannot afford the mass of laboratory-grade stabilized mounting systems. Jitter and alignment stability is particularly challenging for larger optics operating within moving vehicles and aircraft where high shock and significant temperature excursions occur. The design intent is to have the mount be suitable for integration into existing defense and security optical systems while also targeting new commercial and military components for improved structural dynamic and thermal distortion performance. A mount suitable for moderate-sized optics and an integrated disturbance-optical metrology system are described. The mount design has performance enhancements derived from the integration of proven aerospace mechanical vibration and shock mitigation technologies (i.e. multi-axis passive isolation and integral damping), precision alignment adjustment and lock-out functionality, high dimensional stability materials and design practices which provide benign optical surface figure errors under harsh thermal-mechanical loading. Optical jitter, alignment, and wave-front performance testing of an eight-inch-aperture optical mount based on this design approach are presented to validate predicted performance improvements over an existing commercial off-the-shelf (COTS) design.
Optical Fiber Array Assemblies for Space Flight on the Lunar Reconnaissance Orbiter
NASA Technical Reports Server (NTRS)
Ott, Jelanie; Matuszeski, Adam
2011-01-01
Custom fiber optic bundle array assemblies developed by the Photonics Group at NASA Goddard Space Flight Center were an enabling technology for both the Lunar Orbiter Laser Altimeter (LOLA) and the Laser Ranging (LR) Investigation on the Lunar Reconnaissance Orbiter (LRO) currently in operation. The unique assembly array designs provided considerable decrease in size and weight and met stringent system level requirements. This is the first time optical fiber array bundle assemblies were used in a high performance space flight application. This innovation was achieved using customized Diamond Switzerland AVIM optical connectors. For LOLA, a five fiber array was developed for the receiver telescope to maintain precise alignment for each of the 200/220 micron optical fibers collecting 1,064 nm wavelength light being reflected back from the moon. The array splits to five separate detectors replacing the need for multiple telescopes. An image illustration of the LOLA instrument can be found at the top of the figure. For the laser ranging, a seven-optical-fiber array of 400/440 micron fibers was developed to transmit light from behind the LR receiver telescope located on the end of the high gain antenna system (HGAS). The bundle was routed across two moving gimbals, down the HGAS boom arm, over a deployable mandrel and across the spacecraft to a detector on the LOLA instrument. The routing of the optical fiber bundle and its end locations is identified in the figure. The Laser Ranging array and bundle is currently accepting light at a wavelength of 532 nm sent to the moon from laser stations at Greenbelt MD and other stations around the world to gather precision ranging information from the Earth to the LRO spacecraft. The LR bundle assembly is capable of withstanding temperatures down to -55 C at the connectors, and 20,000 mechanical gimbal cycles at temperatures as cold as -20 C along the length of the seven-fiber bundle (that is packaged into the gimbals). The total bundle assembly is 10 meters long with two interconnections requiring precise clocking of the seven-fiber array pattern.
On-orbit figure sensing and figure correction control for 0.5 arc-second adjustable X-ray optics
NASA Astrophysics Data System (ADS)
Reid, Paul
This investigation seeks to develop the technology to directly monitor on-orbit changes to imaging performance of adjustable X-ray optics so as to be able to efficiently correct adverse changes at a level consistent with 0.5 arc-second X-ray telescope imaging. Adjustable X-ray optics employ thin film piezoelectric material deposited on the back of a thin glass Wolter mirror segment to introduce localized stresses in the mirror. These stresses are used in a deterministic way to improve mirror figure from 10 arc-sec, half power diameter (HPD), to 0.5 arc-sec, HPD, without the need for a heavy reaction structure. This is a realizable technology for potential future X-ray telescope missions with 0.5 arc-second resolution and several square meters effective area, such as SMART-X. We are pursuing such mirror development under an existing APRA grant. Here we propose a new investigation to accomplish the monitoring and control of the mirrors by monitoring the health of the piezoelectric actuators of the adjustable optics to a level consistent with 0.5 arcsec imaging. Such measurements are beyond the capability of conventional, thin metal film strain gauges using DC measurements. Instead, we propose to develop the technology to deposit different types of strain gauges (metal film, semiconductor) directly on the piezoelectric cells; to investigate the use of additional thin layers of piezoelectric materials such as lead zirconate titanate or zinc oxide as strain and temperature gauges; and to use AC measurement of strain gauges for precise measurement of piezoelectric adjuster performance. The intent is to use this information to correct changes in mirror shape by adjusting the voltages on the piezoelectric adjustors. Adjustable X-ray optics are designed to meet the challenge of large collecting area and high angular resolution. The mirrors are called adjustable rather than active as mirror figure error is corrected (adjusted) once or infrequently, as opposed to being changed constantly at several cycles/sec (active). In our approach, the mirror figure is corrected based on ground measurements, accounting for figure errors due to mirror manufacturing, mounting induced deformations, modeled gravity release, and modeled on-orbit thermal effects. The piezoelectric strain monitoring we seek to develop in this program extends adjustable mirror technology development, as it enables efficient adjustment and correction of mirror figure on-orbit, as required. This unprecedented level of system robustness will make telescopes less expensive to build because requirements for the non-optical systems can be looser, and it will also make the system more resistant to degradation, promoting mission success. The largest drivers for changes from ground calibration to on-orbit performance are piezoelectric material aging and an unexpected thermal environment (i.e., larger gradients than modeled or other thermal control system problem). Developing the capability to accurately monitor the health of each piezoelectric cell and the local mirror surface temperature will enable the real time sensing of any of these potential issues, help determine the cause, and enable corrections via updating models of on-orbit conditions and re-optimizing the required piezoelectric cell voltages for mirror figure correction. Our 3 year research program includes the development of the strain monitoring technology, its deposition on the adjustable optics, modeling and performance simulation, accelerated lifetime testing, and optical and electrical metrology of sample adjustable optics that incorporate monitoring sensors. Development of the capability to remotely monitor piezo performance and temperature to necessary precision will vastly improve reliability of the SMART-X mission concept, or the sub-arc-second X-ray Surveyor mission described in the 2013 NASA Astrophysics Roadmap, Enduring Quests Daring Visions.
NASA Technical Reports Server (NTRS)
Mehle, Greg; Stahl, Phil (Technical Monitor)
2002-01-01
This presentation provides an overview of the development of the 1.6 meter hybrid mirror demonstrator for the NGST Mirror System Demonstrator (NMSD) program. The COI design approach for the NGST program combines the optical performance of glass, with the high specific stiffness capabilities of composite materials The foundation technologies being exploited in the development of the hybrid mirror focus upon precision Composite Materials for cryogenic operation, and non-contact optical processing (ion figuring) of the lightweight mirror surface. The NGST Mirror System Demonstrator (NMSD) has been designed and built by Composite Optics, Inc. (COI) with optical processing performed by SAGEM (REOSC). The sponsors of these efforts are the NASA Marshall and Goddard Space Flight Centers.
2011-09-01
accurately displaying the point of aim to a precision of two minutes of angle. • At the distance of approximately 240 inches from the muzzle of the SRS...line, rapid stage, shooters will engage a static Dog (D)-target firing ten rounds, referenced in Figure 12. Shooters will prepare for this stage by
Mirror Metrology Using Nano-Probe Supports
NASA Technical Reports Server (NTRS)
Robinson, David; Hong, Maoling; Byron, Glenn; McClelland, Ryan; Chan, Kai-Wing
2012-01-01
Thin, lightweight mirrors are needed for future x-ray space telescopes in order to increase x-ray collecting area while maintaining a reduced mass and volume capable of being launched on existing rockets. However, it is very difficult to determine the undistorted shape of such thin mirrors because the mounting of the mirror during measurement causes distortion. Traditional kinematic mounts have insufficient supports to control the distortion to measurable levels and prevent the mirror from vibrating during measurement. Over-constrained mounts (non-kinematic) result in an unknown force state causing mirror distortion that cannot be determined or analytically removed. In order to measure flexible mirrors, it is necessary to over-constrain the mirror. Over-constraint causes unknown distortions to be applied to the mirror. Even if a kinematic constraint system can be used, necessary imperfections in the kinematic assumption can lead to an unknown force state capable of distorting the mirror. Previously, thicker, stiffer, and heavier mirrors were used to achieve low optical figure distortion. These mirrors could be measured to an acceptable level of precision using traditional kinematic mounts. As lighter weight precision optics have developed, systems such as the whiffle tree or hydraulic supports have been used to provide additional mounting supports while maintaining the kinematic assumption. The purpose of this invention is to over-constrain a mirror for optical measurement without causing unacceptable or unknown distortions. The invention uses force gauges capable of measuring 1/10,000 of a Newton attached to nano-actuators to support a thin x-ray optic with known and controlled forces to allow for figure measurement and knowledge of the undeformed mirror figure. The mirror is hung from strings such that it is minimally distorted and in a known force state. However, the hanging mirror cannot be measured because it is both swinging and vibrating. In order to stabilize the mirror for measurement, nano-probes support the mirror, causing the mirror to be over-constrained.
Surface characterization protocol for precision aspheric optics
NASA Astrophysics Data System (ADS)
Sarepaka, RamaGopal V.; Sakthibalan, Siva; Doodala, Somaiah; Panwar, Rakesh S.; Kotaria, Rajendra
2017-10-01
In Advanced Optical Instrumentation, Aspherics provide an effective performance alternative. The aspheric fabrication and surface metrology, followed by aspheric design are complementary iterative processes for Precision Aspheric development. As in fabrication, a holistic approach of aspheric surface characterization is adopted to evaluate actual surface error and to aim at the deliverance of aspheric optics with desired surface quality. Precision optical surfaces are characterized by profilometry or by interferometry. Aspheric profiles are characterized by contact profilometers, through linear surface scans to analyze their Form, Figure and Finish errors. One must ensure that, the surface characterization procedure does not add to the resident profile errors (generated during the aspheric surface fabrication). This presentation examines the errors introduced post-surface generation and during profilometry of aspheric profiles. This effort is to identify sources of errors and is to optimize the metrology process. The sources of error during profilometry may be due to: profilometer settings, work-piece placement on the profilometer stage, selection of zenith/nadir points of aspheric profiles, metrology protocols, clear aperture - diameter analysis, computational limitations of the profiler and the software issues etc. At OPTICA, a PGI 1200 FTS contact profilometer (Taylor-Hobson make) is used for this study. Precision Optics of various profiles are studied, with due attention to possible sources of errors during characterization, with multi-directional scan approach for uniformity and repeatability of error estimation. This study provides an insight of aspheric surface characterization and helps in optimal aspheric surface production methodology.
Precision segmented reflectors for space applications
NASA Technical Reports Server (NTRS)
Lehman, David H.; Pawlik, Eugene V.; Meinel, Aden B.; Fichter, W. B.
1990-01-01
A project to develop precision segmented reflectors (PSRs) which operate at submillimeter wavelengths is described. The development of a light efficient means for the construction of large-aperture segmented reflecting space-based telescopes is the primary aim of the project. The 20-m Large Deployable Reflector (LDR) telescope is being developed for a survey mission, and it will make use of the reflector panels and materials, structures, and figure control being elaborated for the PSR. The surface accuracy of a 0.9-m PSR panel is shown to be 1.74-micron RMS, the goal of 100-micron RMS positioning accuracy has been achieved for a 4-m erectable structure. A voice-coil actuator for the figure control system architecture demonstrated 1-micron panel control accuracy in a 3-axis evaluation. The PSR technology is demonstrated to be of value for several NASA projects involving optical communications and interferometers as well as missions which make use of large-diameter segmented reflectors.
Precision segmented reflectors for space applications
NASA Astrophysics Data System (ADS)
Lehman, David H.; Pawlik, Eugene V.; Meinel, Aden B.; Fichter, W. B.
1990-08-01
A project to develop precision segmented reflectors (PSRs) which operate at submillimeter wavelengths is described. The development of a light efficient means for the construction of large-aperture segmented reflecting space-based telescopes is the primary aim of the project. The 20-m Large Deployable Reflector (LDR) telescope is being developed for a survey mission, and it will make use of the reflector panels and materials, structures, and figure control being elaborated for the PSR. The surface accuracy of a 0.9-m PSR panel is shown to be 1.74-micron RMS, the goal of 100-micron RMS positioning accuracy has been achieved for a 4-m erectable structure. A voice-coil actuator for the figure control system architecture demonstrated 1-micron panel control accuracy in a 3-axis evaluation. The PSR technology is demonstrated to be of value for several NASA projects involving optical communications and interferometers as well as missions which make use of large-diameter segmented reflectors.
Automated and model-based assembly of an anamorphic telescope
NASA Astrophysics Data System (ADS)
Holters, Martin; Dirks, Sebastian; Stollenwerk, Jochen; Loosen, Peter
2018-02-01
Since the first usage of optical glasses there has been an increasing demand for optical systems which are highly customized for a wide field of applications. To meet the challenge of the production of so many unique systems, the development of new techniques and approaches has risen in importance. However, the assembly of precision optical systems with lot sizes of one up to a few tens of systems is still dominated by manual labor. In contrast, highly adaptive and model-based approaches may offer a solution for manufacturing with a high degree of automation and high throughput while maintaining high precision. In this work a model-based automated assembly approach based on ray-tracing is presented. This process runs autonomously, and accounts for a wide range of functionality. It firstly identifies the sequence for an optimized assembly and secondly, generates and matches intermediate figures of merit to predict the overall optical functionality of the optical system. This process also takes into account the generation of a digital twin of the optical system, by mapping key-performance-indicators like the first and the second momentum of intensity into the optical model. This approach is verified by the automatic assembly of an anamorphic telescope within an assembly cell. By continuous measuring and mapping the key-performance-indicators into the optical model, the quality of the digital twin is determined. Moreover, by measuring the optical quality and geometrical parameters of the telescope, the precision of this approach is determined. Finally, the productivity of the process is evaluated by monitoring the speed of the different steps of the process.
Simmons, Cameron S.; Knouf, Emily Christine; Tewari, Muneesh; Lin, Lih Y.
2011-01-01
A method to manipulate the position and orientation of submicron particles nondestructively would be an incredibly useful tool for basic biological research. Perhaps the most widely used physical force to achieve noninvasive manipulation of small particles has been dielectrophoresis(DEP).1 However, DEP on its own lacks the versatility and precision that are desired when manipulating cells since it is traditionally done with stationary electrodes. Optical tweezers, which utilize a three dimensional electromagnetic field gradient to exert forces on small particles, achieve this desired versatility and precision.2 However, a major drawback of this approach is the high radiation intensity required to achieve the necessary force to trap a particle which can damage biological samples.3 A solution that allows trapping and sorting with lower optical intensities are optoelectronic tweezers (OET) but OET's have limitations with fine manipulation of small particles; being DEP-based technology also puts constraint on the property of the solution.4,5 This video article will describe two methods that decrease the intensity of the radiation needed for optical manipulation of living cells and also describe a method for orientation control. The first method is plasmonic tweezers which use a random gold nanoparticle (AuNP) array as a substrate for the sample as shown in Figure 1. The AuNP array converts the incident photons into localized surface plasmons (LSP) which consist of resonant dipole moments that radiate and generate a patterned radiation field with a large gradient in the cell solution. Initial work on surface plasmon enhanced trapping by Righini et al and our own modeling have shown the fields generated by the plasmonic substrate reduce the initial intensity required by enhancing the gradient field that traps the particle.6,7,8 The plasmonic approach allows for fine orientation control of ellipsoidal particles and cells with low optical intensities because of more efficient optical energy conversion into mechanical energy and a dipole-dependent radiation field. These fields are shown in figure 2 and the low trapping intensities are detailed in figures 4 and 5. The main problems with plasmonic tweezers are that the LSP's generate a considerable amount of heat and the trapping is only two dimensional. This heat generates convective flows and thermophoresis which can be powerful enough to expel submicron particles from the trap.9,10 The second approach that we will describe is utilizing periodic dielectric nanostructures to scatter incident light very efficiently into diffraction modes, as shown in figure 6.11 Ideally, one would make this structure out of a dielectric material to avoid the same heating problems experienced with the plasmonic tweezers but in our approach an aluminum-coated diffraction grating is used as a one-dimensional periodic dielectric nanostructure. Although it is not a semiconductor, it did not experience significant heating and effectively trapped small particles with low trapping intensities, as shown in figure 7. Alignment of particles with the grating substrate conceptually validates the proposition that a 2-D photonic crystal could allow precise rotation of non-spherical micron sized particles.10 The efficiencies of these optical traps are increased due to the enhanced fields produced by the nanostructures described in this paper. PMID:21988841
Advancements in non-contact metrology of asphere and diffractive optics
NASA Astrophysics Data System (ADS)
DeFisher, Scott
2017-11-01
Advancements in optical manufacturing technology allow optical designers to implement steep aspheric or high departure surfaces into their systems. Measuring these surfaces with profilometers or CMMs can be difficult due to large surface slopes or sharp steps in the surface. OptiPro has developed UltraSurf to qualify the form and figure of steep aspheric and diffractive optics. UltraSurf is a computer controlled, non-contact coordinate measuring machine. It incorporates five air-bearing axes, linear motors, high-resolution feedback, and a non-contact probe. The measuring probe is scanned over the optical surface while maintaining perpendicularity and a constant focal offset. Multiple probe technologies are available on UltraSurf. Each probe has strengths and weaknesses relative to the material properties, surface finish, and figure error of an optical component. The measuring probes utilize absolute distance to resolve step heights and diffractive surface patterns. The non-contact scanning method avoids common pitfalls with stylus contact instruments. Advancements in measuring speed and precision has enabled fast and accurate non-contact metrology of diffractive and steep aspheric surfaces. The benefits of data sampling with twodimensional profiles and three-dimensional topography maps will be presented. In addition, accuracy, repeatability, and machine qualification will be discussed with regards to aspheres and diffractive surfaces.
Mirrors for High Resolution X-Ray Optics---Figure Preserving IR/PT Coating
NASA Technical Reports Server (NTRS)
Chan, Kai-Wing; Olsen, Lawrence; Sharpe, Marton; Numata, Ai; McClelland, Ryan; Saha, Timo; Zhang, Will
2016-01-01
Coating stress of 10 - 20 nm of Ir is sufficiently high to distort the figure of arc-second thin lightweight mirrors. For iridium: --Stress sigma 4 GPa for 15 nm film implies 60 Nm integrated stress-- Need less than 3 N/m (or stress less than 200 MPa) for sub-arcsecond optics. Basic Approaches for Mitigation. A. Annealing the film-- Glass can be heat up to 400 C without distortion. Silicon is even more resistant.-- It was found that recovery is limited by residual thermal stress from taking the mirror down from high T. B. Coating bi-layer films with compressive stress with tensile stress. C. Front-and-back coating with magnetron sputtering or atomic layer deposition-- Sputtering involve spanning of substrates. Geometric difference in setup (convexness/concaveness of curved mirrors) does not permit precise front-and-back matching-- Atomic layer deposition can provide a uniform deposition front and back simultaneously.
Combined fabrication technique for high-precision aspheric optical windows
NASA Astrophysics Data System (ADS)
Hu, Hao; Song, Ci; Xie, Xuhui
2016-07-01
Specifications made on optical components are becoming more and more stringent with the performance improvement of modern optical systems. These strict requirements not only involve low spatial frequency surface accuracy, mid-and-high spatial frequency surface errors, but also surface smoothness and so on. This presentation mainly focuses on the fabrication process for square aspheric window which combines accurate grinding, magnetorheological finishing (MRF) and smoothing polishing (SP). In order to remove the low spatial frequency surface errors and subsurface defects after accurate grinding, the deterministic polishing method MRF with high convergence and stable material removal rate is applied. Then the SP technology with pseudo-random path is adopted to eliminate the mid-and-high spatial frequency surface ripples and high slope errors which is the defect for MRF. Additionally, the coordinate measurement method and interferometry are combined in different phase. Acid-etched method and ion beam figuring (IBF) are also investigated on observing and reducing the subsurface defects. Actual fabrication result indicates that the combined fabrication technique can lead to high machining efficiency on manufaturing the high-precision and high-quality optical aspheric windows.
NASA Technical Reports Server (NTRS)
Finley, D.; Malina, R. F.; Bowyer, S.
1985-01-01
The four flight Wolter-Schwarzschild mirrors currently under fabrication for the Extreme Ultraviolet Explorer (EUVE) satellite are described. The principal figuring operation of these grazing incidence metal mirrors (gold over nickel on an aluminum substrate) is carried out by diamond turning at the Lawrence Livermore National Laboratories. Turning has been accomplished and optical testing results analyzed for three of the mirrors. As-turned values of 1.7 arc sec full width at half maximum (FWHM) and half energy width (HEW) of 5 arc seconds in the visible have been achieved. These results illustrate the great potential of precision fabrication technology for the production of large grazing incidence optics.
The Vernier Caliper and Significant Figures.
ERIC Educational Resources Information Center
Oberhofer, E. S.
1985-01-01
Misconceptions occur because the caliper is often read with the same significant figures as a meter stick; however, the precision of the vernier caliper is greater than the precision of a meter stick. Clarification of scale reading, precision of both tools, and significant figures are discussed. (JN)
One-dimensional ion-beam figuring for grazing-incidence reflective optics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Lin; Idir, Mourad; Bouet, Nathalie
2016-01-01
One-dimensional ion-beam figuring (1D-IBF) can improve grazing-incidence reflective optics, such as Kirkpatrick–Baez mirrors. 1D-IBF requires only one motion degree of freedom, which reduces equipment complexity, resulting in compact and low-cost IBF instrumentation. Furthermore, 1D-IBF is easy to integrate into a single vacuum system with other fabrication processes, such as a thin-film deposition. The NSLS-II Optical Metrology and Fabrication Group has recently integrated the 1D-IBF function into an existing thin-film deposition system by adding an RF ion source to the system. Using a rectangular grid, a 1D removal function needed to perform 1D-IBF has been produced. In this paper, demonstration experimentsmore » of the 1D-IBF process are presented on one spherical and two plane samples. The final residual errors on both plane samples are less than 1 nm r.m.s. In conclusion, the surface error on the spherical sample has been successfully reduced by a factor of 12. The results show that the 1D-IBF method is an effective method to process high-precision 1D synchrotron optics.« less
Optimization and application of influence function in abrasive jet polishing.
Li, Zhaoze; Li, Shengyi; Dai, Yifan; Peng, Xiaoqiang
2010-05-20
We analyze the material removal mechanism of abrasive jet polishing (AJP) technology, based on the fluid impact dynamics theory. Combined with the computational fluid dynamics simulation and process experiments, influence functions at different impingement angles are obtained, which are not of a regular Gaussian shape and are unfit for the corrective figuring of optics. The influence function is then optimized to obtain an ideal Gaussian shape by rotating the oblique nozzle, and its stability is validated through a line scanning experiment. The fluctuation of the influence function can be controlled within +/-5%. Based on this, we build a computed numerically controlled experimental system for AJP, and one flat BK7 optical glass with a diameter of 20mm is polished. After two iterations of polishing, the peak-to-valley value decreases from 1.43lambda (lambda=632.8nm in this paper) to 0.294lambda, and the rms value decreases from 0.195lambda to 0.029lambda. The roughness of this polished surface is within 2nm. The experimental result indicates that the optimized influence function is suitable for precision optics figuring and polishing.
Forming mandrels for making lightweight x-ray mirrors
NASA Astrophysics Data System (ADS)
Blake, Peter N.; Saha, Timo; Zhang, William W.; O'Dell, Stephen; Kester, Thomas; Jones, William
2011-09-01
Future x-ray astronomical missions, similar to the proposed International X-ray Observatory (IXO), will utilize replicated mirrors to reduce both mass and production costs. Accurately figured and measured molds (called mandrels) - on which the mirror substrates are thermally formed, replicating the surface of the mandrels - are essential to enable these missions. The Optics Branches of the Goddard Space Flight Center (GSFC) and Marshall Space Flight Center (MSFC) have developed fabrication processes along with metrologies that yield high-precision mandrels; and through the SBIR program, they encourage small businesses to attack parts of the remaining problems. The Goddard full-aperture mandrel polisher (the MPM-500) has been developed to a level where mandrel surfaces match the 1.5 arcsec HPD level allocation in a 5 arcsec telescope program. This paper reviews this current technology and describes a pilot program to design a suite of machine tools and process parameters capable of producing many hundreds of these precision objects. A major challenge is to keep mid-spatial frequency errors below 2 nm rms - a severe specification; but we must also note the factors which work to our advantage: e.g., how the figure departs from a pure cone by only one micron, and how the demanding figure specifications which apply in the axial direction are relaxed by an order of magnitude in the azimuthal. Careful study of other large optical fabrication programs in the light of these challenges and advantages has yielded a realistic plan for the economical production of mandrels that meet program requirements in both surface and quantity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bryan, J.B.; Carter, D.L.
1985-04-01
Large, complicated, aspherical optical elements of glass are presently used in many astronomical devices, both on land and in space. Grazing-incident mirrors are envisioned for use in such missions as the proposed Advanced X-Ray Astrophysical Facility (AXAF), the Far Ultraviolet Spectroscopic Explorer (FUSE), and others. These elements are very expensive to fabricate because a great deal of time and labor are required to shape a glass blank. The fabrication of these mirrors can best be achieved by applying precision machining techniques and precision machines for figuring and finishing low-expansion glasses such as Zerodur.
Toward Active X-ray Telescopes II
NASA Technical Reports Server (NTRS)
O'Dell, Stephen L.; Aldroft, Thomas L.; Atkins, Carolyn; Button, Timothy W.; Cotroneo, Vincenzo; Davis, William N.; Doel, Peter; Feldman, Charlotte H.; Freeman, Mark D.; Gubarev, Mikhail V.;
2012-01-01
In the half century since the initial discovery of an astronomical (non-solar) x-ray source, the sensitivity for detection of cosmic x-ray sources has improved by ten orders of magnitude. Largely responsible for this dramatic progress has been the refinement of the (grazing-incidence) focusing x-ray telescope. The future of x-ray astronomy relies upon the development of x-ray telescopes with larger aperture areas (greater than 1 m2) and finer angular resolution (less than 1.). Combined with the special requirements of grazing-incidence optics, the mass and envelope constraints of space-borne telescopes render such advances technologically challenging.requiring precision fabrication, alignment, and assembly of large areas (greater than 100 m2) of lightweight (approximately 1 kg m2 areal density) mirrors. Achieving precise and stable alignment and figure control may entail active (in-space adjustable) x-ray optics. This paper discusses relevant programmatic and technological issues and summarizes progress toward active x-ray telescopes.
Micro-precision control/structure interaction technology for large optical space systems
NASA Technical Reports Server (NTRS)
Sirlin, Samuel W.; Laskin, Robert A.
1993-01-01
The CSI program at JPL is chartered to develop the structures and control technology needed for sub-micron level stabilization of future optical space systems. The extreme dimensional stability required for such systems derives from the need to maintain the alignment and figure of critical optical elements to a small fraction (typically 1/20th to 1/50th) of the wavelength of detected radiation. The wavelength is about 0.5 micron for visible light and 0.1 micron for ultra-violet light. This lambda/50 requirement is common to a broad class of optical systems including filled aperture telescopes (with monolithic or segmented primary mirrors), sparse aperture telescopes, and optical interferometers. The challenge for CSI arises when such systems become large, with spatially distributed optical elements mounted on a lightweight, flexible structure. In order to better understand the requirements for micro-precision CSI technology, a representative future optical system was identified and developed as an analytical testbed for CSI concepts and approaches. An optical interferometer was selected as a stressing example of the relevant mission class. The system that emerged was termed the Focus Mission Interferometer (FMI). This paper will describe the multi-layer control architecture used to address the FMI's nanometer level stabilization requirements. In addition the paper will discuss on-going and planned experimental work aimed at demonstrating that multi-layer CSI can work in practice in the relevant performance regime.
Aligning Arrays of Lenses and Single-Mode Optical Fibers
NASA Technical Reports Server (NTRS)
Liu, Duncan
2004-01-01
A procedure now under development is intended to enable the precise alignment of sheet arrays of microscopic lenses with the end faces of a coherent bundle of as many as 1,000 single-mode optical fibers packed closely in a regular array (see Figure 1). In the original application that prompted this development, the precise assembly of lenses and optical fibers serves as a single-mode spatial filter for a visible-light nulling interferometer. The precision of alignment must be sufficient to limit any remaining wavefront error to a root-mean-square value of less than 1/10 of a wavelength of light. This wavefront-error limit translates to requirements to (1) ensure uniformity of both the lens and fiber arrays, (2) ensure that the lateral distance from the central axis of each lens and the corresponding optical fiber is no more than a fraction of a micron, (3) angularly align the lens-sheet planes and the fiber-bundle end faces to within a few arc seconds, and (4) axially align the lenses and the fiber-bundle end faces to within tens of microns of the focal distance. Figure 2 depicts the apparatus used in the alignment procedure. The beam of light from a Zygo (or equivalent) interferometer is first compressed by a ratio of 20:1 so that upon its return to the interferometer, the beam will be magnified enough to enable measurement of wavefront quality. The apparatus includes relay lenses that enable imaging of the arrays of microscopic lenses in a charge-coupled-device (CCD) camera that is part of the interferometer. One of the arrays of microscopic lenses is mounted on a 6-axis stage, in proximity to the front face of the bundle of optical fibers. The bundle is mounted on a separate stage. A mirror is attached to the back face of the bundle of optical fibers for retroreflection of light. When a microscopic lens and a fiber are aligned with each other, the affected portion of the light is reflected back by the mirror, recollimated by the microscopic lens, transmitted through the relay lenses and the beam compressor/expander, then split so that half goes to a detector and half to the interferometer. The output of the detector is used as a feedback control signal for the six-axis stage to effect alignment.
Absolute measurements of large mirrors
NASA Astrophysics Data System (ADS)
Su, Peng
The ability to produce mirrors for large astronomical telescopes is limited by the accuracy of the systems used to test the surfaces of such mirrors. Typically the mirror surfaces are measured by comparing their actual shapes to a precision master, which may be created using combinations of mirrors, lenses, and holograms. The work presented here develops several optical testing techniques that do not rely on a large or expensive precision, master reference surface. In a sense these techniques provide absolute optical testing. The Giant Magellan Telescope (GMT) has been designed with a 350 m 2 collecting area provided by a 25 m diameter primary mirror made out from seven circular independent mirror segments. These segments create an equivalent f/0.7 paraboloidal primary mirror consisting of a central segment and six outer segments. Each of the outer segments is 8.4 m in diameter and has an off-axis aspheric shape departing 14.5 mm from the best-fitting sphere. Much of the work in this dissertation is motivated by the need to measure the surfaces or such large mirrors accurately, without relying on a large or expensive precision reference surface. One method for absolute testing describing in this dissertation uses multiple measurements relative to a reference surface that is located in different positions with respect to the test surface of interest. The test measurements are performed with an algorithm that is based on the maximum likelihood (ML) method. Some methodologies for measuring large flat surfaces in the 2 m diameter range and for measuring the GMT primary mirror segments were specifically developed. For example, the optical figure of a 1.6-m flat mirror was determined to 2 nm rms accuracy using multiple 1-meter sub-aperture measurements. The optical figure of the reference surface used in the 1-meter sub-aperture measurements was also determined to the 2 nm level. The optical test methodology for a 1.7-m off axis parabola was evaluated by moving several times the mirror under test in relation to the test system. The result was a separation of errors in the optical test system to those errors from the mirror under test. This method proved to be accurate to 12nm rms. Another absolute measurement technique discussed in this dissertation utilizes the property of a paraboloidal surface of reflecting rays parallel to its optical axis, to its focal point. We have developed a scanning pentaprism technique that exploits this geometry to measure off-axis paraboloidal mirrors such as the GMT segments. This technique was demonstrated on a 1.7 m diameter prototype and proved to have a precision of about 50 nm rms.
Toward Large-Area Sub-Arcsecond X-Ray Telescopes
NASA Technical Reports Server (NTRS)
O'Dell, Stephen L.; Aldcroft, Thomas L.; Allured, Ryan; Atkins, Carolyn; Burrows, David N.; Cao, Jian; Chalifoux, Brandon D.; Chan, Kai-Wing; Cotroneo, Vincenzo; Elsner, Ronald F.;
2014-01-01
The future of x-ray astronomy depends upon development of x-ray telescopes with larger aperture areas (>1 sq m) and finer angular resolution(<1).Combined with the special requirements of nested grazing incidence optics, the mass and envelope constraints of spaceborne telescopes render such advances technologically challenging. Achieving this goal will require precision fabrication, alignment, mounting, and assembly of large areas (>100 sq m) of lightweight (1 kg/sq m areal density) high quality mirrors-possibly entailing active (in-space adjustable) alignment and figure correction. This paper discusses relevant programmatic and technological issues and summarizes progress toward large area sub-arcsecond x-ray telescopes. Key words: X-ray telescopes, x-ray optics, active optics, electroactive devices, silicon mirrors, differential deposition, ion implantation.
Integrating the FEL on an All-Electric Ship
2007-06-01
6 4. Optical Cavity ( Oscillator Configuration...36 Figure 12. Optical energy in an oscillator FEL with an electron beam tilt. ......................37 Figure 13. Optical energy in an oscillator ...38 Figure 15. Optical energy in an oscillator FEL with a mirror tilt. ....................................39 Figure 16. Diagram of a
The Mount Wilson Optical Shop during the Second World War
NASA Astrophysics Data System (ADS)
Abrahams, P.
2004-12-01
During the Second World War, the Optical Shop of Mount Wilson Observatory, located in Pasadena, engaged in a variety of exacting and pioneering ventures in optical design and fabrication. Roof prisms for military optics were produced on a large scale, leading to the production of an instruction manual, for guidance in other workshops. Triple mirrors, or autocollimating corner cubes, were another precision part made in large numbers. Aerial photography was extensively developed. Test procedures for measuring resolution of lenses were researched. Various camera shutters and film sweep mechanisms were devised. The most significant work concerned Schmidt cameras, for possible use in night-time aerial photography. Variations included a solid Schmidt, and the Schmidt Cassegrain, which was fabricated for the first time at MWO. Key figures include Don Hendrix, Roger Hayward, Aden Meinel, and Walter Adams.
NASA Astrophysics Data System (ADS)
Sanger, Gregory M.; Reid, Paul B.; Baker, Lionel R.
1990-11-01
Consideration is given to advanced optical fabrication, profilometry and thin films, and metrology. Particular attention is given to automation for optics manufacturing, 3D contouring on a numerically controlled grinder, laser-scanning lens configurations, a noncontact precision measurement system, novel noncontact profiler design for measuring synchrotron radiation mirrors, laser-diode technologies for in-process metrology, measurements of X-ray reflectivities of Au-coatings at several energies, platinum coating of an X-ray mirror for SR lithography, a Hilbert transform algorithm for fringe-pattern analysis, structural error sources during fabrication of the AXAF optical elements, an in-process mirror figure qualification procedure for large deformable mirrors, interferometric evaluation of lenslet arrays for 2D phase-locked laser diode sources, and manufacturing and metrology tooling for the solar-A soft X-ray telescope.
Large optics technology; Proceedings of the Meeting, San Diego, CA, August 19-21, 1985. Volume 571
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanger, G.M.
1986-01-01
The present conference on telescope primary mirror design and manufacturing technologies considers topics in mirror fabrication and testing, novel technology currently under development, recently instituted large optics development programs, and large mirror materials. Among the topics discussed are aspheric figure generation using feedback from an IR phase-shifting interferometer, thermal stability tests of CFRP sandwich panels for far-IR astronomy, Zerodur lightweight (large mirror) blanks, and the precision machining of grazing-incidence X-ray mirror substrates. Also treated are the rapid fabrication of large aspheric optics, steps toward 8-m honeycomb mirrors, a novel telescope design employing the refraction of prism rows, telescope technology formore » the Far-UV Spectroscopic Explorer, hot isostatic-pressed Be for large optics, and a concept for a moderate cost large deployable reflector.« less
NASA Astrophysics Data System (ADS)
Zhong, Xianyun; Hou, Xi; Yang, Jinshan
2016-09-01
Nickel is the unique material in the X-ray telescopes. And it has the typical soft material characteristics with low hardness high surface damage and low stability of thermal. The traditional fabrication techniques are exposed to lots of problems, including great surface scratches, high sub-surface damage and poor surface roughness and so on. The current fabrication technology for the nickel aspheric mainly adopt the single point diamond turning(SPDT), which has lots of advantages such as high efficiency, ultra-precision surface figure, low sub-surface damage and so on. But the residual surface texture of SPDT will cause great scattering losses and fall far short from the requirement in the X-ray applications. This paper mainly investigates the magnetorheological finishing (MRF) techniques for the super-smooth processing on the nickel optics. Through the study of the MRF polishing techniques, we obtained the ideal super-smooth polishing technique based on the self-controlled MRF-fluid NS-1, and finished the high-precision surface figure lower than RMS λ/80 (λ=632.8nm) and super-smooth roughness lower than Ra 0.3nm on the plane reflector and roughness lower than Ra 0.4nm on the convex cone. The studying of the MRF techniques makes a great effort to the state-of-the-art nickel material processing level for the X-ray optical systems applications.
Achieving quantum precision limit in adaptive qubit state tomography
NASA Astrophysics Data System (ADS)
Hou, Zhibo; Zhu, Huangjun; Xiang, Guo-Yong; Li, Chuan-Feng; Guo, Guang-Can
2016-02-01
The precision limit in quantum state tomography is of great interest not only to practical applications but also to foundational studies. However, little is known about this subject in the multiparameter setting even theoretically due to the subtle information trade-off among incompatible observables. In the case of a qubit, the theoretic precision limit was determined by Hayashi as well as Gill and Massar, but attaining the precision limit in experiments has remained a challenging task. Here we report the first experiment that achieves this precision limit in adaptive quantum state tomography on optical polarisation qubits. The two-step adaptive strategy used in our experiment is very easy to implement in practice. Yet it is surprisingly powerful in optimising most figures of merit of practical interest. Our study may have significant implications for multiparameter quantum estimation problems, such as quantum metrology. Meanwhile, it may promote our understanding about the complementarity principle and uncertainty relations from the information theoretic perspective.
Selective reinforcement of a 2m-class lightweight mirror for horizontal beam optical testing
NASA Astrophysics Data System (ADS)
Besuner, R. W.; Chow, K. P.; Kendrick, S. E.; Streetman, S.
2008-07-01
Optical testing of large mirrors for space telescopes can be challenging and complex. Demanding optical requirements necessitate both precise mirror figure and accurate prediction of zero gravity shape. Mass and packaging constraints require mirrors to be lightweighted and optically fast. Reliability and low mass imply simple mounting schemes, with basic kinematic mounts preferable to active figure control or whiffle trees. Ground testing should introduce as little uncertainty as possible, ideally employing flight mounts without offloaders. Testing mirrors with their optical axes horizontal can result in less distortion than in the vertical orientation, though distortion will increase with mirror speed. Finite element modeling and optimization tools help specify selective reinforcement of the mirror structure to minimize wavefront errors in a one gravity test, while staying within mass budgets and meeting other requirements. While low distortions are necessary, an important additional criterion is that designs are tolerant to imperfect positioning of the mounts relative to the neutral surface of the mirror substrate. In this paper, we explore selective reinforcement of a 2-meter class, f/1.25 primary mirror for the proposed SNAP space telescope. We specify designs optimized for various mount radial locations both with and without backup mount locations. Reinforced designs are predicted to have surface distortions in the horizontal beam test low enough to perform optical testing on the ground, on flight mounts, and without offloaders. Importantly, the required accuracy of mount locations is on the order of millimeters rather than tenths of millimeters.
Software system design for the non-null digital Moiré interferometer
NASA Astrophysics Data System (ADS)
Chen, Meng; Hao, Qun; Hu, Yao; Wang, Shaopu; Li, Tengfei; Li, Lin
2016-11-01
Aspheric optical components are an indispensable part of modern optics systems. With the development of aspheric optical elements fabrication technique, high-precision figure error test method of aspheric surfaces is a quite urgent issue now. We proposed a digital Moiré interferometer technique (DMIT) based on partial compensation principle for aspheric and freeform surface measurement. Different from traditional interferometer, DMIT consists of a real and a virtual interferometer. The virtual interferometer is simulated with Zemax software to perform phase-shifting and alignment. We can get the results by a series of calculation with the real interferogram and virtual interferograms generated by computer. DMIT requires a specific, reliable software system to ensure its normal work. Image acquisition and data processing are two important parts in this system. And it is also a challenge to realize the connection between the real and virtual interferometer. In this paper, we present a software system design for DMIT with friendly user interface and robust data processing features, enabling us to acquire the figure error of the measured asphere. We choose Visual C++ as the software development platform and control the ideal interferometer by using hybrid programming with Zemax. After image acquisition and data transmission, the system calls image processing algorithms written with Matlab to calculate the figure error of the measured asphere. We test the software system experimentally. In the experiment, we realize the measurement of an aspheric surface and prove the feasibility of the software system.
Active Optics: stress polishing of toric mirrors for the VLT SPHERE adaptive optics system.
Hugot, Emmanuel; Ferrari, Marc; El Hadi, Kacem; Vola, Pascal; Gimenez, Jean Luc; Lemaitre, Gérard R; Rabou, Patrick; Dohlen, Kjetil; Puget, Pascal; Beuzit, Jean Luc; Hubin, Norbert
2009-05-20
The manufacturing of toric mirrors for the Very Large Telescope-Spectro-Polarimetric High-Contrast Exoplanet Research instrument (SPHERE) is based on Active Optics and stress polishing. This figuring technique allows minimizing mid and high spatial frequency errors on an aspherical surface by using spherical polishing with full size tools. In order to reach the tight precision required, the manufacturing error budget is described to optimize each parameter. Analytical calculations based on elasticity theory and finite element analysis lead to the mechanical design of the Zerodur blank to be warped during the stress polishing phase. Results on the larger (366 mm diameter) toric mirror are evaluated by interferometry. We obtain, as expected, a toric surface within specification at low, middle, and high spatial frequencies ranges.
Optic nerve axons and acquired alterations in the appearance of the optic disc.
Wirtschafter, J D
1983-01-01
The pathophysiologic events in optic nerve axons have recently been recognized as crucial to an understanding of clinically significant acquired alterations in the ophthalmoscopic appearance of the optic disc. Stasis and related abnormalities of axonal transport appear to explain most aspects of optic nerve head swelling, including optic disc drusen and retinal cottonwool spots. Loss of axoplasm and axonal death can be invoked to interpret optic disc pallor, thinning and narrowing of rim tissue, changes in the size and outline of the optic cup, laminar dots, atrophy of the retinal nerve fiber layer, and acquired demyelination and myelination of the retinal nerve fiber layer. It is speculated that the axons may also play a role in the mechanical support of the lamina cribrosa in resisting the pressure gradient across the pars scleralis of the optic nerve head. Axons and their associated glial cells may be involved in those cases where "reversibility" of cupping of the optic disc has been reported. The structure, physiology, and experimental pathologic findings of the optic nerve head have been reviewed. Many aspects concerning the final anatomic appearance of the optic nerve head have been explained. However, many questions remain concerning the intermediate mechanisms by which increased intracranial pressure retards the various components of axonal transport in papilledema and by which increased IOP causes axonal loss in glaucoma. Investigation of the molecular biology of axonal constituents and their responses to abnormalities in their physical and chemical milieu could extend our understanding of the events that result from mechanical compression and local ischemia. Moreover, we have identified a need to further explore the role of axons in the pathophysiology of optic disc cupping. Images FIGURE 2 FIGURE 3 FIGURE 4 FIGURE 5 FIGURE 6 FIGURE 7 FIGURE 8 FIGURE 11 FIGURE 12 FIGURE 13 PMID:6203209
NASA Astrophysics Data System (ADS)
Menapace, Joseph A.
2010-11-01
Over the last eight years we have been developing advanced MRF tools and techniques to manufacture meter-scale optics for use in Megajoule class laser systems. These systems call for optics having unique characteristics that can complicate their fabrication using conventional polishing methods. First, exposure to the high-power nanosecond and sub-nanosecond pulsed laser environment in the infrared (>27 J/cm2 at 1053 nm), visible (>18 J/cm2 at 527 nm), and ultraviolet (>10 J/cm2 at 351 nm) demands ultra-precise control of optical figure and finish to avoid intensity modulation and scatter that can result in damage to the optics chain or system hardware. Second, the optics must be super-polished and virtually free of surface and subsurface flaws that can limit optic lifetime through laser-induced damage initiation and growth at the flaw sites, particularly at 351 nm. Lastly, ultra-precise optics for beam conditioning are required to control laser beam quality. These optics contain customized surface topographical structures that cannot be made using traditional fabrication processes. In this review, we will present the development and implementation of large-aperture MRF tools and techniques specifically designed to meet the demanding optical performance challenges required in large aperture high-power laser systems. In particular, we will discuss the advances made by using MRF technology to expose and remove surface and subsurface flaws in optics during final polishing to yield optics with improve laser damage resistance, the novel application of MRF deterministic polishing to imprint complex topographical information and wavefront correction patterns onto optical surfaces, and our efforts to advance the technology to manufacture largeaperture damage resistant optics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menapace, J A
2010-10-27
Over the last eight years we have been developing advanced MRF tools and techniques to manufacture meter-scale optics for use in Megajoule class laser systems. These systems call for optics having unique characteristics that can complicate their fabrication using conventional polishing methods. First, exposure to the high-power nanosecond and sub-nanosecond pulsed laser environment in the infrared (>27 J/cm{sup 2} at 1053 nm), visible (>18 J/cm{sup 2} at 527 nm), and ultraviolet (>10 J/cm{sup 2} at 351 nm) demands ultra-precise control of optical figure and finish to avoid intensity modulation and scatter that can result in damage to the optics chainmore » or system hardware. Second, the optics must be super-polished and virtually free of surface and subsurface flaws that can limit optic lifetime through laser-induced damage initiation and growth at the flaw sites, particularly at 351 nm. Lastly, ultra-precise optics for beam conditioning are required to control laser beam quality. These optics contain customized surface topographical structures that cannot be made using traditional fabrication processes. In this review, we will present the development and implementation of large-aperture MRF tools and techniques specifically designed to meet the demanding optical performance challenges required in large-aperture high-power laser systems. In particular, we will discuss the advances made by using MRF technology to expose and remove surface and subsurface flaws in optics during final polishing to yield optics with improve laser damage resistance, the novel application of MRF deterministic polishing to imprint complex topographical information and wavefront correction patterns onto optical surfaces, and our efforts to advance the technology to manufacture large-aperture damage resistant optics.« less
2011-03-22
the nanogaps are engraved on. Simulations show that smaller diameters of the nanowires should provide higher enhancement factors for SERS signal...Inverted Microscope with lasers of wavelengths of 512 to 633 nm as the excitation source. The signal was collected and analyzed by a 50cm Spectrometer...the optical path which can selectively pass the Raman signals and reject the excitation lasers . Figure 2.12 Custom built Raman microscope for the
Precise Stabilization of the Optical Frequency of WGMRs
NASA Technical Reports Server (NTRS)
Savchenkov, Anatoliy; Matsko, Andrey; Matsko, Andrey; Yu, Nan; Maleki, Lute; Iltchenko, Vladimir
2009-01-01
Crystalline whispering gallery mode resonators (CWGMRs) made of crystals with axial symmetry have ordinary and extraordinary families of optical modes. These modes have substantially different thermo-refractive constants. This results in a very sharp dependence of differential detuning of optical frequency on effective temperature. This frequency difference compared with clock gives an error signal for precise compensation of the random fluctuations of optical frequency. Certain crystals, like MgF2, have turnover points where the thermo-refractive effect is completely nullified. An advantage for applications using WGMRs for frequency stabilization is in the possibility of manufacturing resonators out of practically any optically transparent crystal. It is known that there are crystals with negative and zero thermal expansion at some specific temperatures. Doping changes properties of the crystals and it is possible to create an optically transparent crystal with zero thermal expansion at room temperature. With this innovation s stabilization technique, the resultant WGMR will have absolute frequency stability The expansion of the resonator s body can be completely compensated for by nonlinear elements. This results in compensation of linear thermal expansion (see figure). In three-mode, the MgF2 resonator, if tuned at the turnover thermal point, can compensate for all types of random thermal-related frequency drift. Simplified dual-mode method is also available. This creates miniature optical resonators with good short- and long-term stability for passive secondary frequency ethalon and an active resonator for active secondary frequency standard (a narrowband laser with long-term stability).
Vibrational Analysis of a Shipboard Free Electron Laser Beam Path
2011-12-01
2 Figure 2. Optical Extraction (η) vs. Separation and Electron Beam Tilt for a Notional FEL Oscillator . (From [1...in Figure 2. Figure 2. Optical Extraction (η) vs. Separation and Electron Beam Tilt for a Notional FEL Oscillator . (From [1]) The narrow beam...3 is a top down view of the entire electron beam path. Figure 3. Electron Beam Line of a Notional FEL Oscillator . 2. Optical Path The optical
Multiple-Path-Length Optical Absorbance Cell
NASA Technical Reports Server (NTRS)
2001-01-01
An optical absorbance cell that offers a selection of multiple optical path lengths has been developed as part of a portable spectrometric instrument that measures absorption spectra of small samples of water and that costs less than does a conventional, non-portable laboratory spectrometer. The instrument is intended, more specifically, for use in studying colored dissolved organic matter (CDOM) in seawater, especially in coastal regions. Accurate characterization of CDOM is necessary for building bio-optical mathematical models of seawater. The multiple path lengths of the absorption cell afford a wide range of sensitivity needed for measuring the optical absorbances associated with the wide range of concentrations of CDOM observed in nature. The instrument operates in the wavelength range of 370 to 725 nm. The major subsystems of the instrument (see figure) include a color-balanced light source; the absorption cell; a peristaltic pump; a high-precision, low-noise fiber optic spectrometer; and a laptop or other personal computer. A fiber-optic cable transmits light from the source to the absorption cell. Other optical fibers transmit light from the absorption cell to the spectrometer,
Differential Deposition for Surface Figure Corrections in Grazing Incidence X-Ray Optics
NASA Technical Reports Server (NTRS)
Ramsey, Brian D.; Kilaru, Kiranmayee; Atkins, Carolyn; Gubarev, Mikhail V.; Broadway, David M.
2015-01-01
Differential deposition corrects the low- and mid- spatial-frequency deviations in the axial figure of Wolter-type grazing incidence X-ray optics. Figure deviations is one of the major contributors to the achievable angular resolution. Minimizing figure errors can significantly improve the imaging quality of X-ray optics. Material of varying thickness is selectively deposited, using DC magnetron sputtering, along the length of optic to minimize figure deviations. Custom vacuum chambers are built that can incorporate full-shell and segmented Xray optics. Metrology data of preliminary corrections on a single meridian of full-shell x-ray optics show an improvement of mid-spatial frequencies from 6.7 to 1.8 arc secs HPD. Efforts are in progress to correct a full-shell and segmented optics and to verify angular-resolution improvement with X-ray testing.
Active telescope systems; Proceedings of the Meeting, Orlando, FL, Mar. 28-31, 1989
NASA Astrophysics Data System (ADS)
Roddier, Francois J.
1989-09-01
The present conference discusses topics in the fundamental limitations of adaptive optics in astronomical telescopy, integrated telescope systems designs, novel components for adaptive telescopes, active interferometry, flexible-mirror and segmented-mirror telescopes, and various aspects of the NASA Precision Segmented Reflectors Program. Attention is given to near-ground atmospheric turbulence effects, a near-IR astronomical adaptive optics system, a simplified wavefront sensor for adaptive mirror control, excimer laser guide star techniques for adaptive astronomical imaging, active systems in long-baseline interferometry, mirror figure control primitives for a 10-m primary mirror, and closed-loop active optics for large flexible mirrors subject to wind buffet deformations. Also discussed are active pupil geometry control for a phased-array telescope, extremely lightweight space telescope mirrors, segmented-mirror manufacturing tolerances, and composite deformable mirror design.
Optical coherence tomography of dental structures
NASA Astrophysics Data System (ADS)
Baumgartner, Angela; Hitzenberger, Christoph K.; Dichtl, Sabine; Sattmann, Harald; Moritz, Andreas; Sperr, Wolfgang; Fercher, Adolf F.
1998-04-01
In the past ten years Partial Coherence Interferometry (PCI) and Optical Coherence Tomography (OCT) have been successfully developed for high precision biometry and tomography of biological tissues. OCT employs the partial coherence properties of a superluminescent diode and the Doppler principle yielding resolution and precision figures of the order of a few microns. Presently, the main application fields of this technique are biometry and imaging of ocular structures in vivo, as well as its clinical use in dermatology and endoscopic applications. This well established length measuring and imaging technique has now been applied to dentistry. First in vitro OCT images of the cemento (dentine) enamel junction of extracted sound and decayed human teeth have been recorded. These images distinguish dentine and enamel structures that are important for assessing enamel thickness and diagnosing caries. Individual optical A-Scans show that the penetration depth into enamel is considerably larger than into dentine. First polarization sensitive OCT recordings show localized changes of the polarization state of the light backscattered by dental material. Two-dimensional maps of the magnitude of the interference intensity and of the total phase difference between two orthogonal polarization states as a function of depth can reveal important structural information.
Retinal and optic nerve atrophy induced by intravitreous vincristine in the primate.
Green, W R
1975-01-01
Vincristine is known to be toxic to neural tissue, where it is thought to react with microtubules and impair axonal transport. Intravitreous vincristing-induced changes of the retina have been reported to be reversible after 10 micrograms. In the present study, the effects of 0.01 to 100 micrograms of intravitreous vincristine in monkeys were studied ophthalmoscopically and by light microscopy and electron microscopy. Retinal degeneration and optic atrophy were evident ophthalmoscopically in two to three weeks. Morphological changes included swelling of retinal neurons, loss of organelles and microtubules and accumulation of fibrillar-granular material. Progression of effects, with plasma membrane rupture and cell death, was observed with all doses of 0.1 micrograms and higher. The retina and optic nerve of monkeys appear to be more sensitive to intravitreous vincristine than are the same structures in certain lower animals. Images FIGURE 10 FIGURE 18 FIGURE 1 FIGURE 2 FIGURE 3 FIGURE 4 FIGURE 5 FIGURE 6 FIGURE 7 FIGURE 8 FIGURE 9 FIGURE 11 FIGURE 12 FIGURE 13 FIGURE 14 FIGURE 15 FIGURE 16 FIGURE 17 FIGURE 19 FIGURE 20 PMID:813350
Subsurface Optical Microscopy of Coarse Grain Spinels. Phase 1
2013-12-01
A 456 nm LED line bar illuminated in figure 15 and a Xenon fiber optic bar illuminator is shown for figure 16. The optical in situ or subsurface ... imaging of coarse grain spinels and AlONs is optically more complex than expected. An overhead view of the side illumination field is shown in figure 20
Progress in ion figuring large optics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allen, L.N.
1995-12-31
Ion figuring is an optical fabrication method that provides deterministic surface figure error correction of previously polished surfaces by using a directed, inert and neutralized ion beam to physically sputter material from the optic surface. Considerable process development has been completed and numerous large optical elements have been successfully final figured using this process. The process has been demonstrated to be highly deterministic, capable of completing complex-shaped optical element configurations in only a few process iterations, and capable of achieving high-quality surface figure accuracy`s. A review of the neutral ion beam figuring process will be provided, along with discussion ofmore » processing results for several large optics. Most notably, processing of Keck 10 meter telescope primary mirror segments and correction of one other large optic where a convergence ratio greater than 50 was demonstrated during the past year will be discussed. Also, the process has been demonstrated on various optical materials, including fused silica, ULE, zerodur, silicon and chemically vapor deposited (CVD) silicon carbide. Where available, results of surface finish changes caused by the ion bombardment process will be discussed. Most data have shown only limited degradation of the optic surface finish, and that it is generally a function of the quality of mechanical polishing prior to ion figuring. Removals of from 5 to 10 {mu}m on some materials are acceptable without adversely altering the surface finish specularity.« less
Wu, Dong; Liu, Yumin; Yu, Li; Yu, Zhongyuan; Chen, Lei; Li, Ruifang; Ma, Rui; Liu, Chang; Zhang, Jinqiannan; Ye, Han
2017-01-01
In this work, using finite-difference time-domain method, we propose and numerically demonstrate a novel way to achieve electromagnetically induced transparency (EIT) phenomenon in the reflection spectrum by stacking two different types of coupling effect among different elements of the designed metamaterial. Compared with the conventional EIT-like analogues coming from only one type of coupling effect between bright and dark meta-atoms on the same plane, to our knowledge the novel approach is the first to realize the optically active and precise control of the wavelength position of EIT-like phenomenon using optical metamaterials. An on-to-off dynamic control of the EIT-like phenomenon also can be achieved by changing the refractive index of the dielectric substrate via adjusting an optical pump pulse. Furthermore, in near infrared region, the metamaterial structure can be operated as an ultra-high resolution refractive index sensor with an ultra-high figure of merit (FOM) reaching 3200, which remarkably improve the FOM value of plasmonic refractive index sensors. The novel approach realizing EIT-like spectral shape with easy adjustment to the working wavelengths will open up new avenues for future research and practical application of active plasmonic switch, ultra-high resolution sensors and active slow-light devices. PMID:28332629
Precision topographic inspection of MOEMS by moiré interferometry
NASA Astrophysics Data System (ADS)
Meguellati, S.
2016-04-01
The manufacturing of micro components is useful and necessary for eventual use in the field of MOEMS micro technologies, but, micro fabrication process inspection quality is required. The accuracy of components geometry is parameter which influences the precision of the function. Moiré topography is full-field optical technique in which the contour and shape of object surfaces is measured by means of geometric interference between two identical line gratings. The technique has found various applications in diverse fields, from biomedical to industrial, scientific applications, and miniaturized instrumentation for space applications. This method of optical scanning presented in this paper is used for precision measurement deformation or absolute forms in comparison with a reference component form, of optical or mechanical micro components, on surfaces that are of the order of mm2 and more. The optical device used allows high magnification dimensional surface inspected which allows easy processing and reaches an exceptional nanometric imprecision of measurements. This measurement technique can be used advantageously to measure the deformations generated by constraints on functional parts and the influence of these variations on the function. It can also be used for dimensional control when, for example, to quantify the error as to whether a piece is good or rubbish. It then suffices to compare a figure of moiré fringes with another previously recorded from a piece considered standard, which saves time, money and accuracy. This method of control and measurement allows real time control; speed control and the detection resolution may vary depending on the importance of defects to be measured.
Bonding by Hydroxide-Catalyzed Hydration and Dehydration
NASA Technical Reports Server (NTRS)
Gwo, Dz-Hung
2008-01-01
A simple, inexpensive method for bonding solid objects exploits hydroxide-catalyzed hydration and dehydration to form silicate-like networks in thin surface and interfacial layers between the objects. The method can be practiced at room temperature or over a wide range of temperatures. The method was developed especially to enable the formation of precise, reliable bonds between precise optical components. The bonds thus formed exhibit the precision and transparency of bonds formed by the conventional optical-contact method and the strength and reliability of high-temperature frit bonds. The method also lends itself to numerous non-optical applications in which there are requirements for precise bonds and/or requirements for bonds, whether precise or imprecise, that can reliably withstand severe environmental conditions. Categories of such non-optical applications include forming composite materials, coating substrates, forming laminate structures, and preparing objects of defined geometry and composition. The method is applicable to materials that either (1) can form silicate-like networks in the sense that they have silicate-like molecular structures that are extensible into silicate-like networks or (2) can be chemically linked to silicate-like networks by means of hydroxide-catalyzed hydration and dehydration. When hydrated, a material of either type features surface hydroxyl (-OH) groups. In this method, a silicate-like network that bonds two substrates can be formed either by a bonding material alone or by the bonding material together with material from either or both of the substrates. Typically, an aqueous hydroxide bonding solution is dispensed and allowed to flow between the mating surfaces by capillary action. If the surface figures of the substrates do not match precisely, bonding could be improved by including a filling material in the bonding solution. Preferably, the filling material should include at least one ingredient that can be hydrated to have exposed hydroxyl groups and that can be chemically linked, by hydroxide catalysis, to a silicate-like network. The silicate-like network could be generated in situ from the filling material and/or substrate material, or could be originally present in the bonding material.
Plasma surface figuring of large optical components
NASA Astrophysics Data System (ADS)
Jourdain, R.; Castelli, M.; Morantz, P.; Shore, P.
2012-04-01
Fast figuring of large optical components is well known as a highly challenging manufacturing issue. Different manufacturing technologies including: magnetorheological finishing, loose abrasive polishing, ion beam figuring are presently employed. Yet, these technologies are slow and lead to expensive optics. This explains why plasma-based processes operating at atmospheric pressure have been researched as a cost effective means for figure correction of metre scale optical surfaces. In this paper, fast figure correction of a large optical surface is reported using the Reactive Atom Plasma (RAP) process. Achievements are shown following the scaling-up of the RAP figuring process to a 400 mm diameter area of a substrate made of Corning ULE®. The pre-processing spherical surface is characterized by a 3 metres radius of curvature, 2.3 μm PVr (373nm RMS), and 1.2 nm Sq nanometre roughness. The nanometre scale correction figuring system used for this research work is named the HELIOS 1200, and it is equipped with a unique plasma torch which is driven by a dedicated tool path algorithm. Topography map measurements were carried out using a vertical work station instrumented by a Zygo DynaFiz interferometer. Figuring results, together with the processing times, convergence levels and number of iterations, are reported. The results illustrate the significant potential and advantage of plasma processing for figuring correction of large silicon based optical components.
Optical figuring specifications for thin shells to be used in adaptive telescope mirrors
NASA Astrophysics Data System (ADS)
Riccardi, A.
2006-06-01
The present work describes the guidelines to define the optical figuring specifications for optical manufacturing of thin shells in terms of figuring error power spectrum (and related rms vs scale distributon) to be used in adaptive optics correctors with force actuators like Deformable Secondary Mirrors (DSM). In particular the numerical example for a thin shell for a VLT DSM is considered.
Sputter deposition of PZT piezoelectric films on thin glass substrates for adjustable x-ray optics.
Wilke, Rudeger H T; Johnson-Wilke, Raegan L; Cotroneo, Vincenzo; Davis, William N; Reid, Paul B; Schwartz, Daniel A; Trolier-McKinstry, Susan
2013-05-10
Piezoelectric PbZr(0.52)Ti(0.48)O(3) (PZT) thin films deposited on thin glass substrates have been proposed for adjustable optics in future x-ray telescopes. The light weight of these x-ray optics enables large collecting areas, while the capability to correct mirror figure errors with the PZT thin film will allow much higher imaging resolution than possible with conventional lightweight optics. However, the low strain temperature and flexible nature of the thin glass complicate the use of chemical-solution deposition due to warping of the substrate at typical crystallization temperatures for the PZT. RF magnetron sputtering enabled preparation of PZT films with thicknesses up to 3 μm on Schott D263 glass substrates with much less deformation. X-ray diffraction analysis indicated that the films crystallized with the perovskite phase and showed no indication of secondary phases. Films with 1 cm(2) electrodes exhibited relative permittivity values near 1100 and loss tangents below 0.05. In addition, the remanent polarization was 26 μC/cm(2) with coercive fields of 33 kV/cm. The transverse piezoelectric coefficient was as high as -6.1±0.6 C/m(2). To assess influence functions for the x-ray optics application, the piezoelectrically induced deflection of individual cells was measured and compared with finite-element-analysis calculations. The good agreement between the results suggests that actuation of PZT thin films can control mirror figure errors to a precision of about 5 nm, allowing sub-arcsecond imaging.
Toward Adaptive X-Ray Telescopes
NASA Technical Reports Server (NTRS)
O'Dell, Stephen L.; Atkins, Carolyn; Button, Tim W.; Cotroneo, Vincenzo; Davis, William N.; Doel, Peer; Feldman, Charlotte H.; Freeman, Mark D.; Gubarev, Mikhail V.; Kolodziejczak, Jeffrey J.;
2011-01-01
Future x-ray observatories will require high-resolution (less than 1 inch) optics with very-large-aperture (greater than 25 square meter) areas. Even with the next generation of heavy-lift launch vehicles, launch-mass constraints and aperture-area requirements will limit the surface areal density of the grazing-incidence mirrors to about 1 kilogram per square meter or less. Achieving sub-arcsecond x-ray imaging with such lightweight mirrors will require excellent mirror surfaces, precise and stable alignment, and exceptional stiffness or deformation compensation. Attaining and maintaining alignment and figure control will likely involve adaptive (in-space adjustable) x-ray optics. In contrast with infrared and visible astronomy, adaptive optics for x-ray astronomy is in its infancy. In the middle of the past decade, two efforts began to advance technologies for adaptive x-ray telescopes: The Generation-X (Gen-X) concept studies in the United States, and the Smart X-ray Optics (SXO) Basic Technology project in the United Kingdom. This paper discusses relevant technological issues and summarizes progress toward adaptive x-ray telescopes.
Toward active x-ray telescopes
NASA Astrophysics Data System (ADS)
O'Dell, Stephen L.; Atkins, Carolyn; Button, Timothy W.; Cotroneo, Vincenzo; Davis, William N.; Doel, Peter; Feldman, Charlotte H.; Freeman, Mark D.; Gubarev, Mikhail V.; Kolodziejczak, Jeffery J.; Michette, Alan G.; Ramsey, Brian D.; Reid, Paul B.; Rodriguez Sanmartin, Daniel; Saha, Timo T.; Schwartz, Daniel A.; Trolier-McKinstry, Susan; Wilke, Rudeger H. T.; Willingale, Richard; Zhang, William W.
2011-09-01
Future x-ray observatories will require high-resolution (< 1") optics with very-large-aperture (> 25 m2) areas. Even with the next generation of heavy-lift launch vehicles, launch-mass constraints and aperture-area requirements will limit the areal density of the grazing-incidence mirrors to about 1 kg/m2 or less. Achieving sub-arcsecond x-ray imaging with such lightweight mirrors will require excellent mirror surfaces, precise and stable alignment, and exceptional stiffness or deformation compensation. Attaining and maintaining alignment and figure control will likely involve active (in-space adjustable) x-ray optics. In contrast with infrared and visible astronomy, active optics for x-ray astronomy is in its infancy. In the middle of the past decade, two efforts began to advance technologies for adaptive x-ray telescopes: The Smart X-ray Optics (SXO) Basic Technology project in the United Kingdom (UK) and the Generation-X (Gen-X) concept studies in the United States (US). This paper discusses relevant technological issues and summarizes progress toward active x-ray telescopes.
Nanopatterning of optical surfaces during low-energy ion beam sputtering
NASA Astrophysics Data System (ADS)
Liao, Wenlin; Dai, Yifan; Xie, Xuhui
2014-06-01
Ion beam figuring (IBF) provides a highly deterministic method for high-precision optical surface fabrication, whereas ion-induced microscopic morphology evolution would occur on surfaces. Consequently, the fabrication specification for surface smoothness must be seriously considered during the IBF process. In this work, low-energy ion nanopatterning of our frequently used optical material surfaces is investigated to discuss the manufacturability of an ultrasmooth surface. The research results indicate that ion beam sputtering (IBS) can directly smooth some amorphous or amorphizable material surfaces, such as fused silica, Si, and ULE under appropriate processing conditions. However, for IBS of a Zerodur surface, preferential sputtering together with curvature-dependent sputtering overcome ion-induced smoothing mechanisms, leading to the granular nanopatterns' formation and the coarsening of the surface. Furthermore, the material property difference at microscopic scales and the continuous impurity incorporation would affect the ion beam smoothing of optical surfaces. Overall, IBS can be used as a promising technique for ultrasmooth surface fabrication, which strongly depends on processing conditions and material characters.
Ion beam machining error control and correction for small scale optics.
Xie, Xuhui; Zhou, Lin; Dai, Yifan; Li, Shengyi
2011-09-20
Ion beam figuring (IBF) technology for small scale optical components is discussed. Since the small removal function can be obtained in IBF, it makes computer-controlled optical surfacing technology possible to machine precision centimeter- or millimeter-scale optical components deterministically. Using a small ion beam to machine small optical components, there are some key problems, such as small ion beam positioning on the optical surface, material removal rate, ion beam scanning pitch control on the optical surface, and so on, that must be seriously considered. The main reasons for the problems are that it is more sensitive to the above problems than a big ion beam because of its small beam diameter and lower material ratio. In this paper, we discuss these problems and their influences in machining small optical components in detail. Based on the identification-compensation principle, an iterative machining compensation method is deduced for correcting the positioning error of an ion beam with the material removal rate estimated by a selected optimal scanning pitch. Experiments on ϕ10 mm Zerodur planar and spherical samples are made, and the final surface errors are both smaller than λ/100 measured by a Zygo GPI interferometer.
Plantet, C; Meimon, S; Conan, J-M; Fusco, T
2015-11-02
Exoplanet direct imaging with large ground based telescopes requires eXtreme Adaptive Optics that couples high-order adaptive optics and coronagraphy. A key element of such systems is the high-order wavefront sensor. We study here several high-order wavefront sensing approaches, and more precisely compare their sensitivity to noise. Three techniques are considered: the classical Shack-Hartmann sensor, the pyramid sensor and the recently proposed LIFTed Shack-Hartmann sensor. They are compared in a unified framework based on precise diffractive models and on the Fisher information matrix, which conveys the information present in the data whatever the estimation method. The diagonal elements of the inverse of the Fisher information matrix, which we use as a figure of merit, are similar to noise propagation coefficients. With these diagonal elements, so called "Fisher coefficients", we show that the LIFTed Shack-Hartmann and pyramid sensors outperform the classical Shack-Hartmann sensor. In photon noise regime, the LIFTed Shack-Hartmann and modulated pyramid sensors obtain a similar overall noise propagation. The LIFTed Shack-Hartmann sensor however provides attractive noise properties on high orders.
Measuring Cyclic Error in Laser Heterodyne Interferometers
NASA Technical Reports Server (NTRS)
Ryan, Daniel; Abramovici, Alexander; Zhao, Feng; Dekens, Frank; An, Xin; Azizi, Alireza; Chapsky, Jacob; Halverson, Peter
2010-01-01
An improved method and apparatus have been devised for measuring cyclic errors in the readouts of laser heterodyne interferometers that are configured and operated as displacement gauges. The cyclic errors arise as a consequence of mixing of spurious optical and electrical signals in beam launchers that are subsystems of such interferometers. The conventional approach to measurement of cyclic error involves phase measurements and yields values precise to within about 10 pm over air optical paths at laser wavelengths in the visible and near infrared. The present approach, which involves amplitude measurements instead of phase measurements, yields values precise to about .0.1 microns . about 100 times the precision of the conventional approach. In a displacement gauge of the type of interest here, the laser heterodyne interferometer is used to measure any change in distance along an optical axis between two corner-cube retroreflectors. One of the corner-cube retroreflectors is mounted on a piezoelectric transducer (see figure), which is used to introduce a low-frequency periodic displacement that can be measured by the gauges. The transducer is excited at a frequency of 9 Hz by a triangular waveform to generate a 9-Hz triangular-wave displacement having an amplitude of 25 microns. The displacement gives rise to both amplitude and phase modulation of the heterodyne signals in the gauges. The modulation includes cyclic error components, and the magnitude of the cyclic-error component of the phase modulation is what one needs to measure in order to determine the magnitude of the cyclic displacement error. The precision attainable in the conventional (phase measurement) approach to measuring cyclic error is limited because the phase measurements are af-
Development Roadmap for an Adjustable X-Ray Optics Observatory
NASA Technical Reports Server (NTRS)
Schwartz, Dan; Brissenden, R.; Bookbinder, J.; Davis, W.; Forman, W.; Freeman, M.; O'Dell, S.; Ramsey, B.; Reid, P.; Romaine, S.;
2011-01-01
We are developing adjustable X-ray optics to use on a mission such as SMART-X (see posters 38.02, 38.03 and Presentation 30.03). To satisfy the science problems expected to be posed by the next decadal survey, we anticipate requiring effective area greater than 1 square meter and Chandra-like angular resolution: approximately equal to 0.5 inches. To achieve such precise resolution we are developing adjustable mirror technology for X-ray astronomy application. This uses a thin film of piezoelectric material deposited on the back surface of the mirror to correct for figure distortions, including manufacturing errors and deflections due to gravity and thermal effects. We present here a plan to raise this technology from its current Level 2, to Level 6, by 2018.
Differential Deposition Technique for Figure Corrections in Grazing Incidence X-ray Optics
NASA Technical Reports Server (NTRS)
Kilaru, Kiranmayee; Ramsey, Brian D.; Gubarev, Mikhail
2009-01-01
A differential deposition technique is being developed to correct the low- and mid-spatial-frequency deviations in the axial figure profile of Wolter type grazing incidence X-ray optics. These deviations arise due to various factors in the fabrication process and they degrade the performance of the optics by limiting the achievable angular resolution. In the differential deposition technique, material of varying thickness is selectively deposited along the length of the optic to minimize these deviations, thereby improving the overall figure. High resolution focusing optics being developed at MSFC for small animal radionuclide imaging are being coated to test the differential deposition technique. The required spatial resolution for these optics is 100 m. This base resolution is achievable with the regular electroform-nickel-replication fabrication technique used at MSFC. However, by improving the figure quality of the optics through differential deposition, we aim at significantly improving the resolution beyond this value.
Active Optical Zoom for Tracking
2008-09-01
optical system. 2. Current Setup Deformable Flat Two Deformable Flat Figure 1. Zemax lens design layout and experimental layout on the...optical bench. Figure 1 is a ZEMAX design and setup on the optical bench of two Deformable Mirrors (DMs) from OKO technologies. These mirrors have
High Density LiDAR and Orthophotography in UXO Wide Area Assessment
2008-01-01
4 Figure 2. Helicopter-Mounted LiDAR and Orthophoto Sensor Equipment...4 Figure 3. LiDAR and Orthophoto System Installed on Helicopter........................................ 6 Figure 4. Kirtland Precision...17 Figure 11. Orthophoto Data Density Results
Precision optical device of freeform defects inspection
NASA Astrophysics Data System (ADS)
Meguellati, S.
2015-09-01
This method of optical scanning presented in this paper is used for precision measurement deformation in shape or absolute forms in comparison with a reference component form, of optical or mechanical components, on reduced surfaces area that are of the order of some mm2 and more. The principle of the method is to project the image of the source grating to palpate optically surface to be inspected, after reflection; the image of the source grating is printed by the object topography and is then projected onto the plane of reference grating for generate moiré fringe for defects detection. The optical device used allows a significant dimensional surface magnification of up to 1000 times the area inspected for micro-surfaces, which allows easy processing and reaches an exceptional nanometric imprecision of measurements. According to the measurement principle, the sensitivity for displacement measurement using moiré technique depends on the frequency grating, for increase the detection resolution. This measurement technique can be used advantageously to measure the deformations generated by the production process or constraints on functional parts and the influence of these variations on the function. The optical device and optical principle, on which it is based, can be used for automated inspection of industrially produced goods. It can also be used for dimensional control when, for example, to quantify the error as to whether a piece is good or rubbish. It then suffices to compare a figure of moiré fringes with another previously recorded from a piece considered standard; which saves time, money and accuracy. The technique has found various applications in diverse fields, from biomedical to industrial and scientific applications.
Improved Advanced Actuated Hybrid Mirrors Final Report CRADA No. TC02130.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barbee, T. W.; Ealey, M. A.
2017-08-25
This was a collaborative effort to develop and demonstrate an improved Advanced Actuated Hybrid Mirrors (AAHM) for commercial or Government purposes. The AAHM consists of a nanolaminate film replicating a precision optical surface bonded to a Silicon Carbide (SiC) substrate with active figure control capability. The goal of this project was to further the development of specific AAHM technologies. The intent of the CRADA was to combine the expertise of LLNL and NG Xinetics in the manufacture and test of a very high quality AAHM, incorporating lessons learned from earlier joint efforts.
Advanced figure sensor operations and maintenance manual
NASA Technical Reports Server (NTRS)
Robertson, H. J.
1972-01-01
This manual contains procedures for installing, operating, and maintaining the optical figure sensor and its associated electronic controls. The optical figure sensor, a system of integrated components, comprises: (1) a phase measuring modified interferometer employing a single frequency 6328 A laser, and a Vidissector; (2) a two-axis automatic thermal compensation control mount; (3) a five degree of freedom manual adjustment stand; and (4) a control console. This instrument provides real time output data of optical figure errors for spherical mirrors, and is also capable of measuring aspherical mirrors if a null corrector is added.
Precise Method for Investigation of Lissajous Generalized Figures
ERIC Educational Resources Information Center
Bednarek, Stanislaw
2014-01-01
This article describes the Lissajous generalized figure and the original instrument for its investigation. Two specially prepared electrodynamic loudspeakers--a horizontal and a vertical--cause oscillations in two mirrors. It is possible to precisely control the motion of the mirrors, achieve a high frequency of oscillation and investigate…
Optical Testing of Retroreflectors for Cryogenic Applications
NASA Technical Reports Server (NTRS)
Ohl, Raymond G.; Frey, Bradley J.; Stock, Joseph M.; McMann, Joseph C.; Zukowiski, Tmitri J.
2010-01-01
A laser tracker (LT) is an important coordinate metrology tool that uses laser interferometry to determine precise distances to objects, points, or surfaces defined by an optical reference, such as a retroreflector. A retroreflector is a precision optic consisting of three orthogonal faces that returns an incident laser beam nearly exactly parallel to the incident beam. Commercial retroreflectors are designed for operation at room temperature and are specified by the divergence, or beam deviation, of the returning laser beam, usually a few arcseconds or less. When a retroreflector goes to extreme cold (.35 K), however, it could be anticipated that the precision alignment between the three faces and the surface figure of each face would be compromised, resulting in wavefront errors and beam divergence, degrading the accuracy of the LT position determination. Controlled tests must be done beforehand to determine survivability and these LT coordinate errors. Since conventional interferometer systems and laser trackers do not operate in vacuum or at cold temperatures, measurements must be done through a vacuum window, and care must be taken to ensure window-induced errors are negligible, or can be subtracted out. Retroreflector holders must be carefully designed to minimize thermally induced stresses. Changes in the path length and refractive index of the retroreflector have to be considered. Cryogenic vacuum testing was done on commercial solid glass retroreflectors for use on cryogenic metrology tasks. The capabilities to measure wavefront errors, measure beam deviations, and acquire laser tracker coordinate data were demonstrated. Measurable but relatively small increases in beam deviation were shown, and further tests are planned to make an accurate determination of coordinate errors.
A figure control sensor for the Large Deployable Reflector (LDR)
NASA Technical Reports Server (NTRS)
Bartman, R.; Dubovitsky, S.
1988-01-01
A sensing and control system is required to maintain high optical figure quality in a segmented reflector. Upon detecting a deviation of the segmented surface from its ideal form, the system drives segment mounted actuators to realign the individual segments and thereby return the surface to its intended figure. When the reflector is in use, a set of figure sensors will determine positions of a number of points on the back surface of each of the reflector's segments, each sensor being assigned to a single point. By measuring the positional deviations of these points from previously established nominal values, the figure sensors provide the control system with the information required to maintain the reflector's optical figure. The optical lever, multiple wavelength interferometer, and electronic capacitive sensor, the most promising technologies for the development of the figure sensor, are illustrated. It is concluded that to select a particular implementation of the figure sensors, performance requirement will be refined and relevant technologies investigated further.
Precision segmented reflector, figure verification sensor
NASA Technical Reports Server (NTRS)
Manhart, Paul K.; Macenka, Steve A.
1989-01-01
The Precision Segmented Reflector (PSR) program currently under way at the Jet Propulsion Laboratory is a test bed and technology demonstration program designed to develop and study the structural and material technologies required for lightweight, precision segmented reflectors. A Figure Verification Sensor (FVS) which is designed to monitor the active control system of the segments is described, a best fit surface is defined, and an image or wavefront quality of the assembled array of reflecting panels is assessed
Defining the measurand in radius of curvature measurements
NASA Astrophysics Data System (ADS)
Davies, Angela; Schmitz, Tony L.
2003-11-01
Traceable radius of curvature measurements are critical for precision optics manufacture. An optical bench measurement of radius is very repeatable and is the preferred method for low-uncertainty applications. On an optical bench, the displacement of the optic is measured as it is moved between the cat's eye and confocal positions, each identified using a figure measuring interferometer. Traceability requires connection to a basic unit (the meter, here) in addition to a defensible uncertainty analysis, and the identification and proper propagation of all uncertainty sources in this measurement is challenging. Recent work has focused on identifying all uncertainty contributions; measurement biases have been approximately taken into account and uncertainties combined in an RSS sense for a final measurement estimate and uncertainty. In this paper we report on a new mathematical definition of the radius measurand, which is a single function that depends on all uncertainty sources, such as error motions, alignment uncertainty, displacement gauge uncertainty, etc. The method is based on a homogeneous transformation matrix (HTM) formalism, and intrinsically defines an unbiased estimate for radius, providing a single mathematical expression for uncertainty propagation through a Taylor-series expansion.
Neurons forming optic glomeruli compute figure-ground discriminations in Drosophila.
Aptekar, Jacob W; Keleş, Mehmet F; Lu, Patrick M; Zolotova, Nadezhda M; Frye, Mark A
2015-05-13
Many animals rely on visual figure-ground discrimination to aid in navigation, and to draw attention to salient features like conspecifics or predators. Even figures that are similar in pattern and luminance to the visual surroundings can be distinguished by the optical disparity generated by their relative motion against the ground, and yet the neural mechanisms underlying these visual discriminations are not well understood. We show in flies that a diverse array of figure-ground stimuli containing a motion-defined edge elicit statistically similar behavioral responses to one another, and statistically distinct behavioral responses from ground motion alone. From studies in larger flies and other insect species, we hypothesized that the circuitry of the lobula--one of the four, primary neuropiles of the fly optic lobe--performs this visual discrimination. Using calcium imaging of input dendrites, we then show that information encoded in cells projecting from the lobula to discrete optic glomeruli in the central brain group these sets of figure-ground stimuli in a homologous manner to the behavior; "figure-like" stimuli are coded similar to one another and "ground-like" stimuli are encoded differently. One cell class responds to the leading edge of a figure and is suppressed by ground motion. Two other classes cluster any figure-like stimuli, including a figure moving opposite the ground, distinctly from ground alone. This evidence demonstrates that lobula outputs provide a diverse basis set encoding visual features necessary for figure detection. Copyright © 2015 the authors 0270-6474/15/357587-13$15.00/0.
Bonding Thin Mirror Segments Without Distortion for the International X-Ray Observatory
NASA Technical Reports Server (NTRS)
Evans, Tyler C.; Chan, Kai-Wing; Saha, Timo T.
2011-01-01
The International X-Ray Observatory (IXO) uses thin glass optics to maximize large effective area and precise low angular resolution. The thin glass mirror segments must be transferred from their fabricated state to a permanent structure without imparting distortion. IXO will incorporate about fourteen thousand thin mirror segments to achieve the mission goal of 3.0 square meters of effective area at 1.25 keV with an angular resolution of five arcseconds. To preserve figure and alignment, the mirror segment must be bonded with sub-micron movement at each corner. Recent advances in technology development have produced significant x-ray test results of a bonded pair of mirrors. Three specific bonding cycles will be described highlighting the improvements in procedure, temperature control, and precision bonding. This paper will highlight the recent advances in alignment and permanent bonding as well as the results they have produced.
Ultra precision and reliable bonding method
NASA Technical Reports Server (NTRS)
Gwo, Dz-Hung (Inventor)
2001-01-01
The bonding of two materials through hydroxide-catalyzed hydration/dehydration is achieved at room temperature by applying hydroxide ions to at least one of the two bonding surfaces and by placing the surfaces sufficiently close to each other to form a chemical bond between them. The surfaces may be placed sufficiently close to each other by simply placing one surface on top of the other. A silicate material may also be used as a filling material to help fill gaps between the surfaces caused by surface figure mismatches. A powder of a silica-based or silica-containing material may also be used as an additional filling material. The hydroxide-catalyzed bonding method forms bonds which are not only as precise and transparent as optical contact bonds, but also as strong and reliable as high-temperature frit bonds. The hydroxide-catalyzed bonding method is also simple and inexpensive.
Ultra-precision process of CaF2 single crystal
NASA Astrophysics Data System (ADS)
Yin, Guoju; Li, Shengyi; Xie, Xuhui; Zhou, Lin
2014-08-01
This paper proposes a new chemical mechanical polishing (CMP) process method for CaF2 single crystal to get ultraprecision surface. The CMP processes are improving polishing pad and using alkaline SiO2 polishing slurry with PH=8, PH=11 two phases to polish, respectively, and the roughness can be 0.181nm Rq (10μm×10μm). The CMP process can't get high surface figure, so we use ion beam figuring (IBF) technology to obtain high surface figure. However, IBF is difficult to improve the CaF2 surface roughness. We optimize IBF process to improve surface figure and keep good surface roughness too. Different IBF incident ion energy from 400ev to 800ev does not affect on the surface roughness obviously but the depth of material removal is reverse. CaF2 single crystal can get high precision surface figure (RMS=2.251nm) and still keep ultra-smooth surface (Rq=0.207nm) by IBF when removal depth is less than 200nm. The researches above provide important information for CaF2 single crystal to realize ultra-precision manufacture.
Vibrating Optical Fibers to Make Laser Speckle Disappear
NASA Technical Reports Server (NTRS)
McGill, Matthew; Scott, V. Stanley
2005-01-01
In optical systems in which laser illumination is delivered via multimode optical fibers, laser speckle can be rendered incoherent by a simple but highly effective technique. The need to eliminate speckle arises because speckle can make it difficult to observe edges and other sharp features, thereby making it difficult to perform precision alignment of optical components. The basic ideas of the technique is to vibrate the optical fiber(s) to cause shifting of electromagnetic modes within the fiber(s) and consequent shifting of the speckle pattern in the light emerging from the fiber(s). If the frequency of vibration is high enough, a human eye cannot follow the shifting speckle pattern, so that instead of speckle, a human observer sees a smoothed pattern of light corresponding to a mixture of many electromagnetic modes. If necessary, the optical fiber(s) could be vibrated manually. However, in a typical laboratory situation, it would be more practical to attach a vibrating mechanism to the fiber(s) for routine use as part of the fiber-optic illuminator. In experiments, a commercially available small, gentle, quiet, variable- speed vibratory device was used in this way, with the result that the appearance of speckle was eliminated, as expected. Figures 1 and 2 illustrate the difference.
Enhancing a Web Crawler with Arabic Search Capability
2010-09-01
7 Figure 2. Monolingual 11-point precision results. From [14]...........................................8 Figure 3. Lucene...libraries (prefixes dictionary , stems dictionary and suffixes dictionary ). If all the word elements (prefix, stem, suffix) are found in their...stemmer improved over 90% in average precision from raw retrieval. The authors concluded that stemming is very effective on Arabic IR. For monolingual
Desktop system for accounting, audit, and research in A&E.
Taylor, C J; Brain, S G; Bull, F; Crosby, A C; Ferguson, D G
1997-01-01
The development of a database for audit, research, and accounting in accident and emergency (A&E) is described. The system uses a desktop computer, an optical scanner, sophisticated optical mark reader software, and workload management data. The system is highly flexible, easy to use, and at a cost of around 16,000 pounds affordable for larger departments wishing to move towards accounting. For smaller departments, it may be an alternative to full computerisation. Images Figure 1 Figure 2 Figure 3 Figure 5 Figure 6 PMID:9132200
The 4-meter lunar engineering telescope
NASA Technical Reports Server (NTRS)
Peacock, Keith; Giannini, Judith A.; Kilgus, Charles C.; Bely, Pierre Y.; May, B. Scott; Cooper, Shannon A.; Schlimm, Gerard H.; Sounder, Charles; Ormond, Karen; Cheek, Eric
1991-01-01
The 16-meter diffraction limited lunar telescope incorporates a primary mirror with 312 one-meter segments; 3 nanometer active optics surface control with laser metrology and hexapod positioners; a space frame structure with one-millimeter stability; and a hexapod mount for pointing. The design data needed to limit risk in this development can be obtained by building a smaller engineering telescope on the moon with all of the features of the 16-meter design. This paper presents a 4.33-meter engineering telescope concept developed by the Summer 1990 Student Program of the NASA/JHU Space Grant Consortium Lunar Telescope Project. The primary mirror, made up of 18 one-meter hexagonal segments, is sized to provide interesting science as well as engineering data. The optics are configured as a Ritchey-Chretien with a coude relay to the focal plane beneath the surface. The optical path is continuously monitored with 3-nanometer precision interferometrically. An active optics processor and piezoelectric actuators operate to maintain the end-to-end optical configuration established by wave front sensing using a guide star. The mirror segments, consisting of a one-centimeter thick faceplate on 30-cm deep ribs, maintain the surface figure to a few nanometers under lunar gravity and thermal environment.
Additive manufacturing of reflective optics: evaluating finishing methods
NASA Astrophysics Data System (ADS)
Leuteritz, G.; Lachmayer, R.
2018-02-01
Individually shaped light distributions become more and more important in lighting technologies and thus the importance of additively manufactured reflectors increases significantly. The vast field of applications ranges from automotive lighting to medical imaging and bolsters the statement. However, the surfaces of additively manufactured reflectors suffer from insufficient optical properties even when manufactured using optimized process parameters for the Selective Laser Melting (SLM) process. Therefore post-process treatments of reflectors are necessary in order to further enhance their optical quality. This work concentrates on the effectiveness of post-process procedures for reflective optics. Based on already optimized aluminum reflectors, which are manufactured with a SLM machine, the parts are differently machined after the SLM process. Selected finishing methods like laser polishing, sputtering or sand blasting are applied and their effects quantified and compared. The post-process procedures are investigated on their impact on surface roughness and reflectance as well as geometrical precision. For each finishing method a demonstrator will be created and compared to a fully milled sample and among themselves. Ultimately, guidelines are developed in order to figure out the optimal treatment of additively manufactured reflectors regarding their optical and geometrical properties. Simulations of the light distributions will be validated with the developed demonstrators.
ZERODUR expanding capabilities and capacity for future spaceborne and ground-based telescopes
NASA Astrophysics Data System (ADS)
Westerhoff, Thomas; Werner, Thomas
2017-09-01
The glass ceramic ZERODUR is well known for its extremely low coefficient of thermal expansion making it one of the key materials for ultra-precision application such as IC and LCD Lithography, High-end Metrology, Aviation and space borne or ground based Astronomy. The steady growth of demand for more precision in those applications together with a growing number of precision systems and components is requesting the ability to on hand increase precision in manufacturing. Additionally, there is a need to increase production capacity of ZERODUR CNC machined products in parallel. This paper reports on the measures SCHOTT is realizing to feed the continuously increasing demand on high precision material and components. Next to a second melting tank additional capacity is going to be installed along the entire value stream of ZERODUR production. Features of new CNC machining capabilities in the two and four meter class will be reported allowing to provide tighter tolerance on mirror surface figure together with reduced sub surface damage in order to accelerate the polishing time. Examples are discussed such as the 4 m class secondary and tertiary mirrors for the ESO E-ELT. The new equipment will enable SCHOTT to light weight 4 m class mirror substrates for future space optics demand.
NASA Technical Reports Server (NTRS)
Gubarev, Mikhail V.; Kilaru, Kirenmayee; Ramsey, Brian D.
2009-01-01
We are investigating differential deposition as a way of correcting small figure errors inside full-shell grazing-incidence x-ray optics. The optics in our study are fabricated using the electroformed-nickel-replication technique, and the figure errors arise from fabrication errors in the mandrel, from which the shells are replicated, as well as errors induced during the electroforming process. Combined, these give sub-micron-scale figure deviations which limit the angular resolution of the optics to approx. 10 arcsec. Sub-micron figure errors can be corrected by selectively depositing (physical vapor deposition) material inside the shell. The requirements for this filler material are that it must not degrade the ultra-smooth surface finish necessary for efficient x-ray reflection (approx. 5 A rms), and must not be highly stressed. In addition, a technique must be found to produce well controlled and defined beams within highly constrained geometries, as some of our mirror shells are less than 3 cm in diameter.
Ruffner, Judith Alison
1999-01-01
A method for coating (flat or non-flat) optical substrates with high-reflectivity multi-layer coatings for use at Deep Ultra-Violet ("DUV") and Extreme Ultra-Violet ("EUV") wavelengths. The method results in a product with minimum feature sizes of less than 0.10-.mu.m for the shortest wavelength (13.4-nm). The present invention employs a computer-based modeling and deposition method to enable lateral and vertical thickness control by scanning the position of the substrate with respect to the sputter target during deposition. The thickness profile of the sputter targets is modeled before deposition and then an appropriate scanning algorithm is implemented to produce any desired, radially-symmetric thickness profile. The present invention offers the ability to predict and achieve a wide range of thickness profiles on flat or figured substrates, i.e., account for 1/R.sup.2 factor in a model, and the ability to predict and accommodate changes in deposition rate as a result of plasma geometry, i.e., over figured substrates.
Norman, J Farley; Wiesemann, Elizabeth Y
2007-01-01
Younger and older observers' ability to perceive local surface orientation from optical patterns of shading and specular highlights was investigated in two experiments. On each trial, the observers viewed a randomly generated, smoothly curved 3-D object and manipulated an adjustable gauge figure until its orientation matched that of a specific local region on the object's surface (cf. Koenderink, van Doom, & Kappers, 1992). The performance of both age groups was facilitated by the presence of binocular disparity (Experiment 1) and object rotation in depth (Experiment 2). Observers in both age groups were able to judge the surface tilt component of orientation more precisely than the slant component. Significant, but modest, effects of age were found in Experiment 1, but not in Experiment 2. The ability to perceive local surface orientation appears to be relatively well preserved with increasing age, at least through the age of 80.
Bicubic uniform B-spline wavefront fitting technology applied in computer-generated holograms
NASA Astrophysics Data System (ADS)
Cao, Hui; Sun, Jun-qiang; Chen, Guo-jie
2006-02-01
This paper presented a bicubic uniform B-spline wavefront fitting technology to figure out the analytical expression for object wavefront used in Computer-Generated Holograms (CGHs). In many cases, to decrease the difficulty of optical processing, off-axis CGHs rather than complex aspherical surface elements are used in modern advanced military optical systems. In order to design and fabricate off-axis CGH, we have to fit out the analytical expression for object wavefront. Zernike Polynomial is competent for fitting wavefront of centrosymmetric optical systems, but not for axisymmetrical optical systems. Although adopting high-degree polynomials fitting method would achieve higher fitting precision in all fitting nodes, the greatest shortcoming of this method is that any departure from the fitting nodes would result in great fitting error, which is so-called pulsation phenomenon. Furthermore, high-degree polynomials fitting method would increase the calculation time in coding computer-generated hologram and solving basic equation. Basing on the basis function of cubic uniform B-spline and the character mesh of bicubic uniform B-spline wavefront, bicubic uniform B-spline wavefront are described as the product of a series of matrices. Employing standard MATLAB routines, four kinds of different analytical expressions for object wavefront are fitted out by bicubic uniform B-spline as well as high-degree polynomials. Calculation results indicate that, compared with high-degree polynomials, bicubic uniform B-spline is a more competitive method to fit out the analytical expression for object wavefront used in off-axis CGH, for its higher fitting precision and C2 continuity.
Automated Solvent Seaming of Large Polyimide Membranes
NASA Technical Reports Server (NTRS)
Rood, Robert; Moore, James D.; Talley, Chris; Gierow, Paul A.
2006-01-01
A solvent-based welding process enables the joining of precise, cast polyimide membranes at their edges to form larger precise membranes. The process creates a homogeneous, optical-quality seam between abutting membranes, with no overlap and with only a very localized area of figure disturbance. The seam retains 90 percent of the strength of the parent material. The process was developed for original use in the fabrication of wide-aperture membrane optics, with areal densities of less than 1 kg/m2, for lightweight telescopes, solar concentrators, antennas, and the like to be deployed in outer space. The process is just as well applicable to the fabrication of large precise polyimide membranes for flat or inflatable solar concentrators and antenna reflectors for terrestrial applications. The process is applicable to cast membranes made of CP1 (or equivalent) polyimide. The process begins with the precise fitting together and fixturing of two membrane segments. The seam is formed by applying a metered amount of a doped solution of the same polyimide along the abutting edges of the membrane segments. After the solution has been applied, the fixtured films are allowed to dry and are then cured by convective heating. The weld material is the same as the parent material, so that what is formed is a homogeneous, strong joint that is almost indistinguishable from the parent material. The success of the process is highly dependent on formulation of the seaming solution from the correct proportion of the polyimide in a suitable solvent. In addition, the formation of reliable seams depends on the deposition of a precise amount of the seaming solution along the seam line. To ensure the required precision, deposition is performed by use of an automated apparatus comprising a modified commercially available, large-format, ink-jet print head on an automated positioning table. The printing head jets the seaming solution into the seam area at a rate controlled in coordination with the movement of the positioning table.
Nanolaminate Mirrors With "Piston" Figure-Control Actuators
NASA Technical Reports Server (NTRS)
Lowman, Andrew; Redding, David; Hickey, Gregory; Knight, Jennifer; Moynihan, Philip; Lih, Shyh0Shiuh; Barbee, Troy
2003-01-01
Efforts are under way to develop a special class of thin-shell curved mirrors for high-resolution imaging in visible and infrared light in a variety of terrestrial or extraterrestrial applications. These mirrors can have diameters of the order of a meter and include metallic film reflectors on nanolaminate substrates supported by multiple distributed piezoceramic gpiston h-type actuators for micron-level figure control. Whereas conventional glass mirrors of equivalent size and precision have areal mass densities between 50 and 150 kg/sq m, the nanolaminate mirrors, including not only the reflector/ shell portions but also the actuators and the backing structures needed to react the actuation forces, would have areal mass densities that may approach .5 kg/m2. Moreover, whereas fabrication of a conventional glass mirror of equivalent precision takes several years, the reflector/shell portion of a nanolaminate mirror can be fabricated in less than a week, and its actuation system can be fabricated in 1 to 2 months. The engineering of these mirrors involves a fusion of the technological heritage of multisegmented adaptive optics and deformable mirrors with more recent advances in metallic nanolaminates and in mathematical modeling of the deflections of thin, curved shells in response to displacements by multiple, distributed actuators. Because a nanolaminate shell is of the order of 10 times as strong as an otherwise identical shell made of a single, high-strength, non-nanolaminate metal suitable for mirror use, a nanolaminate mirror can be made very thin (typically between 100 and 150 m from the back of the nanolaminate substrate to the front reflecting surface). The thinness and strength of the nanolaminate are what make it possible to use distributed gpiston h-type actuators for surface figure control with minimal local concentrated distortion (called print-through in the art) at the actuation points.
Dual Optical Comb LWIR Source and Sensor
2017-10-12
Figure 39. Locking loop only controls one parameter, whereas there are two free- running parameters to control...optical frequency, along with a 12 point running average (black) equivalent to a 4 cm -1 resolution. .............................. 52 Figure 65...and processed on a single epitaxial substrate. Each OFC will be electrically driven and free- running (requiring no optical locking mechanisms). This
1998-09-01
Stenner , 1996.] Figure 2.2. Coastal Mixing and Optics central 3 m discus buoy. [From Baumgartner and Anderson, 1997 (Figure 4).] 12 2.2.2. SoNIC...Meteorology, 78, 247-290. Stenner , R., 1996: Coastal Mixing and Optics Experimental Site (http://wavelet.apl.washington.edu/CMO/CMO_bath.html). Thiermann
1979-01-22
window locations at which interferometric measurements are gathered while the window is in motion. Figure 3 is an optical schematic and Figure 4 shows...imposed in system opera- tion although they have not been subjected to the interferometric analysis as presented here. Evaluation of Mirror #2 As...aberrations present. Introduction We present a technique for evaluating optical aberrations from interferometric data; a measured wavefront is
Aspheric figure generation using feedback from an infrared phase-shifting interferometer
NASA Astrophysics Data System (ADS)
Stahl, H. P.; Ketelsen, D.
An infrared phase-shifting interferometric system has been integrated with a novel optical figure generator at the University of Arizona Optical Sciences Center. This unique generator facility can produce generalized axially symmetric surface figures in a timely and cost-effective manner. The success of this facility depends on both its ability to efficiently remove material while forming the surface figure, and its ability to monitor the surface figure during the generation process to provide feedback to the optician. The facility has been used on several occasions to custom-generate off-axis parabolic segments. Figures to within 0.30 microns rms of the desired figure have been obtained. This paper discusses the usefulness of the infrared phase-shifting interferometric system for providing figure correcting feedback to the optician during the generation of the off-axis parabolic segments, and how it is affected by the surface roughness produced by each generator tool.
Automated semantic indexing of figure captions to improve radiology image retrieval.
Kahn, Charles E; Rubin, Daniel L
2009-01-01
We explored automated concept-based indexing of unstructured figure captions to improve retrieval of images from radiology journals. The MetaMap Transfer program (MMTx) was used to map the text of 84,846 figure captions from 9,004 peer-reviewed, English-language articles to concepts in three controlled vocabularies from the UMLS Metathesaurus, version 2006AA. Sampling procedures were used to estimate the standard information-retrieval metrics of precision and recall, and to evaluate the degree to which concept-based retrieval improved image retrieval. Precision was estimated based on a sample of 250 concepts. Recall was estimated based on a sample of 40 concepts. The authors measured the impact of concept-based retrieval to improve upon keyword-based retrieval in a random sample of 10,000 search queries issued by users of a radiology image search engine. Estimated precision was 0.897 (95% confidence interval, 0.857-0.937). Estimated recall was 0.930 (95% confidence interval, 0.838-1.000). In 5,535 of 10,000 search queries (55%), concept-based retrieval found results not identified by simple keyword matching; in 2,086 searches (21%), more than 75% of the results were found by concept-based search alone. Concept-based indexing of radiology journal figure captions achieved very high precision and recall, and significantly improved image retrieval.
NASA Technical Reports Server (NTRS)
Ohl, Raymond; Slotwinski, Anthony; Eegholm, Bente; Saif, Babak
2011-01-01
The fabrication of large optics is traditionally a slow process, and fabrication capability is often limited by measurement capability. W hile techniques exist to measure mirror figure with nanometer precis ion, measurements of large-mirror prescription are typically limited to submillimeter accuracy. Using a lidar instrument enables one to measure the optical surface rough figure and prescription in virtuall y all phases of fabrication without moving the mirror from its polis hing setup. This technology improves the uncertainty of mirror presc ription measurement to the micron-regime.
Using DNA to Design Plasmonic Metamaterials with Tunable Optical Properties
2014-01-01
using both UV –vis spectroscopy for ensemble measurements and optical micro- spectrophotometry for individual superlattice electric fi elds at...lated data). The red-shift seen between the micro-spectropho- tometer measurements (Figure 3 b) and the UV –vis ensemble measurements (Figure 3 a...the measurements. Using UV –vis spectroscopy ( Figure 3 a), red- shifting of the superlattices’ bulk LSPR with decreased nano- particle spacing is
Microwave tunable laser source: A stable, precision tunable heterodyne local oscillator
NASA Technical Reports Server (NTRS)
Sachse, G. W.
1980-01-01
The development and capabilities of a tunable laser source utilizing a wideband electro-optic modulator and a CO2 laser are described. The precision tunability and high stability of the device are demonstrated with examples of laboratory spectroscopy. Heterodyne measurements are also presented to demonstrate the performance of the laser source as a heterodyne local oscillator. With the use of five CO2 isotope lasers and the 8 to 18 GHz sideband offset tunability of the modulator, calculations indicate that 50 percent spectral coverage in the 9 to 12 micron region is achievable. The wavelength accuracy and stability of this laser source is limited by the CO2 laser and is more than adequate for the measurement of narrow Doppler-broadened line profiles. The room-temperature operating capability and the programmability of the microwave tunable laser source are attractive features for its in-the-field implementation. Although heterodyne measurements indicated some S/N degradation when using the device as a local oscillator, there does not appear to be any fundamental limitation to the heterodyne efficiency of this laser source. Through the use of a lower noise-figure traveling wave tube amplifier and optical matching of the output beam with the photomixer, a substantial increase in the heterodyne S/N is expected.
Focal Plane Alignment Utilizing Optical CMM
NASA Technical Reports Server (NTRS)
Liebe, Carl Christian; Meras, Patrick L.; Clark, Gerald J.; Sedaka, Jack J.; Kaluzny, Joel V.; Hirsch, Brian; Decker, Todd A.; Scholtz, Christopher R.
2012-01-01
In many applications, an optical detector has to be located relative to mechanical reference points. One solution is to specify stringent requirements on (1) mounting the optical detector relative to the chip carrier, (2) soldering the chip carrier onto the printed circuit board (PCB), and (3) installing the PCB to the mechanical structure of the subsystem. Figure 1 shows a sketch of an optical detector mounted relative to mechanical reference with high positional accuracy. The optical detector is typically a fragile wafer that cannot be physically touched by any measurement tool. An optical coordinate measuring machine (CMM) can be used to position optical detectors relative to mechanical reference points. This approach will eliminate all requirements on positional tolerances. The only requirement is that the PCB is manufactured with oversized holes. An exaggerated sketch of this situation is shown in Figure 2. The sketch shows very loose tolerances on mounting the optical detector in the chip carrier, loose tolerance on soldering the chip carrier to the PCB, and finally large tolerance on where the mounting screws are located. The PCB is held with large screws and oversized holes. The PCB is mounted loosely so it can move freely around. The optical CMM measures the mechanical reference points. Based on these measurements, the required positions of the optical detector corners can be calculated. The optical CMM is commanded to go to the position where one detector corner is supposed to be. This is indicated with the cross-hairs in Figure 2(a). This figure is representative of the image of the optical CMM monitor. Using a suitable tapping tool, the PCB is manually tapped around until the corner of the optical detector is at the crosshairs of the optical CMM. The CMM is commanded to another corner, and the process is repeated a number of times until all corners of the optical detector are within a distance of 10 to 30 microns of the required position. The situation is sketched in Figure 2(b) (the figure also shows the tapping tool and where to tap). At this point the fasteners for the PCB are torqued slightly so the PCB can still move. The PCB location is adjusted again with the tapping tool. This process is repeated 3 to 4 times until the final torque is achieved. The oversized mounting holes are then filled with a liquid bonding agent to secure the board in position (not shown in the sketch). A 10- to 30-micron mounting accuracy has been achieved utilizing this method..
New figuring model based on surface slope profile for grazing-incidence reflective optics
Zhou, Lin; Huang, Lei; Bouet, Nathalie; ...
2016-08-09
Surface slope profile is widely used in the metrology of grazing-incidence reflective optics instead of surface height profile. Nevertheless, the theoretical and experimental model currently used in deterministic optical figuring processes is based on surface height, not on surface slope. This means that the raw slope profile data from metrology need to be converted to height profile to perform the current height-based figuring processes. The inevitable measurement noise in the raw slope data will introduce significant cumulative error in the resultant height profiles. As a consequence, this conversion will degrade the determinism of the figuring processes, and will have anmore » impact on the ultimate surface figuring results. To overcome this problem, an innovative figuring model is proposed, which directly uses the raw slope profile data instead of the usual height data as input for the deterministic process. In this article, first the influence of the measurement noise on the resultant height profile is analyzed, and then a new model is presented; finally a demonstration experiment is carried out using a one-dimensional ion beam figuring process to demonstrate the validity of our approach.« less
Analysis of edge birefringence.
Oldenbourg, R
1991-01-01
We present an experimental and theoretical study of the phenomenon of edge birefringence that appears near boundaries of transparent objects which are observed with high extinction and high resolution polarized light microscopy. As test objects, thin flakes of isotropic KCl crystals were immersed in media of various refractive indices. The measured retardation near crystal edges increased linearly with both the crystal thickness (tested between 0.3 and 1 micron), and the difference in refractive indices n between crystal (n = 1.49) and immersion liquids (n between 1.36 and 1.62). The specific edge birefringence, i.e., the retardation per thickness and per refractive index difference, is 0.029 on the high refractive index side of the boundary and -0.015 on the low refractive index side. The transition through zero birefringence specifies the position of a boundary at a much higher precision than predicted by the diffraction limit of the optical setup. The theoretical study employs a ray tracing procedure modeling the change in phase and polarization of rays passing through the specimen. We find good agreement between the model calculations and the experimental results indicating that edge birefringence can be attributed to the change in polarization of light that is refracted and reflected by dielectric interfaces. Images FIGURE 1 FIGURE 3 FIGURE 4 PMID:1932552
Research on temperature field of KDP crystal under ion beam cleaning.
Li, Furen; Xie, Xuhui; Tie, Guipeng; Hu, Hao; Zhou, Lin
2016-06-20
KH2PO4 (KDP) crystal is a kind of excellent nonlinear optical component used as a laser frequency conversion unit in a high-power laser system. However, KDP crystal has raised a huge challenge in regards to its fabrication for high precision: KDP crystal has special physical and chemical characteristics. Abrasive-free water-dissolution magnetorheological finishing is used in KDP figuring in our lab. But the iron powders of MRF fluid are easily embedded into the soft surface of KDP crystal, which will greatly decrease the laser-induced damage resistance. This paper proposes to utilize ion beam figuring (IBF) technology to figure and clean the surface of a KDP component. Although IBF has many good performances, the thermal effect control is a headachy problem for the KDP process. To solve this problem, we have established its thermal effect models, which are used to calculate a component's surface temperature and thermal gradient in the whole process. By this way, we can understand how to control a temperature map and its gradient in the IBF process. Many experiments have been done to validate and optimize this method. Finally, a KDP component with the size of 200×200×12 mm is successfully processed by this method.
Figure correction of multilayer coated optics
Chapman; Henry N. , Taylor; John S.
2010-02-16
A process is provided for producing near-perfect optical surfaces, for EUV and soft-x-ray optics. The method involves polishing or otherwise figuring the multilayer coating that has been deposited on an optical substrate, in order to correct for errors in the figure of the substrate and coating. A method such as ion-beam milling is used to remove material from the multilayer coating by an amount that varies in a specified way across the substrate. The phase of the EUV light that is reflected from the multilayer will be affected by the amount of multilayer material removed, but this effect will be reduced by a factor of 1-n as compared with height variations of the substrate, where n is the average refractive index of the multilayer.
NASA Astrophysics Data System (ADS)
Wen, Pengyue; Sanchez, Michael; Gross, Matthias; Esener, Sadik C.
2003-05-01
In this paper, the noise properties of vertical cavity semiconductor optical amplifiers (VCSOAs) operated in reflection mode are studied. Expressions for noise sources contributing to the total noise detected at amplifier output are derived, based on the photon statistics master equations. The noise figure, defined as the degradation of signal-to-noise ratio (SNR), is analyzed using the assumption that spontaneous emission-signal beat noise dominates. The analysis shows that the noise figure of reflection mode VCSOAs has the same values as that in transmission mode as long as amplifier gain is high (G>>1). Furthermore, simulations depict the dependence of noise figure on device parameters and bias conditions, as well as reveal the importance of the low reflectivity front mirror and the high reflectivity rear mirror for low noise operation. In addition, the noise figure analysis results are compared with experimental measurements, in which amplified spontaneous emission (ASE) power is measured by an optical spectrum analyzer and the noise figure is obtained from the ASE power and the amplifier gain. The measured data are in good agreement with the theoretical predictions.
tweezercalib 2.1: Faster version of MatLab package for precise calibration of optical tweezers
NASA Astrophysics Data System (ADS)
Hansen, Poul Martin; Tolic-Nørrelykke, Iva Marija; Flyvbjerg, Henrik; Berg-Sørensen, Kirstine
2006-10-01
New version program summaryTitle of program: tweezercalib Catalogue identifier:ADTV_v2_1 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADTV_v2_1 Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions:no No. of lines in distributed program, including test data, etc.: 134 188 No. of bytes in distributed program, including test data, etc.: 1 050 368 Distribution format: tar.gz Programming language: MatLab (Mathworks Inc.), standard license Computer:General computer running MatLab (Mathworks Inc.) Operating system:Windows2000, Windows-XP, Linux RAM:Of order four times the size of the data file Classification:3, 4.14, 18, 23 Catalogue identifier of previous version: ADTV_v2_0 Journal reference of previous version: Comput. Phys. Comm. 174 (2006) 518 Does the new version supersede the previous version?: yes Nature of problem:Calibrate optical tweezers with precision by fitting theory to experimental power spectrum of position of bead doing Brownian motion in incompressible fluid, possibly near microscope cover slip, while trapped in optical tweezers. Thereby determine spring constant of optical trap and conversion factor for arbitrary-units-to-nanometers for detection system. The theoretical underpinnings of the procedure may be found in Ref. [3]. Solution method:Elimination of cross-talk between quadrant photo-diodes, output channels for positions (optional). Check that distribution of recorded positions agrees with Boltzmann distribution of bead in harmonic trap. Data compression and noise reduction by blocking method applied to power spectrum. Full accounting for hydrodynamic effects; Frequency-dependent drag force and interaction with nearby cover slip (optional). Full accounting for electronic filters (optional), for "virtual filtering" caused by detection system (optional). Full accounting for aliasing caused by finite sampling rate (optional). Standard non-linear least-squares fitting with custom written routines based on Refs. [1,2]. Statistical support for fit is given, with several plots facilitating inspection of consistency and quality of data and fit. Reasons for the new version:Recent progress in the field has demonstrated a better approximation of the formula for the theoretical power spectrum with corrections due to frequency dependence of motion and distance to a surface nearby. Summary of revisions:The expression for the theoretical power spectrum when accounting for corrections to Stokes law, P(f), has been updated to agree with a better approximation of the theoretical spectrum, as discussed in Ref. [4] The units of the kinematic viscosity applied in the program is now stated in the input window. Greek letters and exponents are inserted in the input window. The graphical output has improved: The figures now bear a meaningful title and four figures that test the quality of the fit are now combined in one figure with four parts. Restrictions: Data should be positions of bead doing Brownian motion while held by optical tweezers. For high precision in final results, data should be time series measured over a long time, with sufficiently high experimental sampling rate; The sampling rate should be well above the characteristic frequency of the trap, the so-called corner frequency. Thus, the sampling frequency should typically be larger than 10 kHz. The Fast Fourier Transform used works optimally when the time series contain 2 data points, and long measurement time is obtained with n>12-15. Finally, the optics should be set to ensure a harmonic trapping potential in the range of positions visited by the bead. The fitting procedure checks for harmonic potential. Running time:seconds ReferencesJ. Nocedal, Y.x. Yuan, Combining trust region and line search techniques, Technical Report OTC 98/04, Optimization Technology Center, 1998. W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, Numerical Recipes. The Art of Scientific Computing, Cambridge University Press, Cambridge, 1986. (The theoretical underpinnings for the procedure) K. Berg-Sørensen and Henrik Flyvbjerg, Power spectrum analysis for optical tweezers, Rev. Sci. Ins. 75 (2004) 594-612. S.F. Tolic-Nørrelykke, et al., Calibration of optical tweezers with positions detection in the back-focal-plane, arXiv:physics/0603037 v2, 2006.
Surface figure control for coated optics
Ray-Chaudhuri, Avijit K.; Spence, Paul A.; Kanouff, Michael P.
2001-01-01
A pedestal optical substrate that simultaneously provides high substrate dynamic stiffness, provides low surface figure sensitivity to mechanical mounting hardware inputs, and constrains surface figure changes caused by optical coatings to be primarily spherical in nature. The pedestal optical substrate includes a disk-like optic or substrate section having a top surface that is coated, a disk-like base section that provides location at which the substrate can be mounted, and a connecting cylindrical section between the base and optics or substrate sections. The optic section has an optical section thickness.sup.2 /optical section diameter ratio of between about 5 to 10 mm, and a thickness variation between front and back surfaces of less than about 10%. The connecting cylindrical section may be attached via three spaced legs or members. However, the pedestal optical substrate can be manufactured from a solid piece of material to form a monolith, thus avoiding joints between the sections, or the disk-like base can be formed separately and connected to the connecting section. By way of example, the pedestal optical substrate may be utilized in the fabrication of optics for an extreme ultraviolet (EUV) lithography imaging system, or in any optical system requiring coated optics and substrates with reduced sensitivity to mechanical mounts.
Measurement of the photon statistics and the noise figure of a fiber-optic parametric amplifier.
Voss, Paul L; Tang, Renyong; Kumar, Prem
2003-04-01
We report measurement of the noise statistics of spontaneous parametric fluorescence in a fiber parametric amplifier with single-mode, single-photon resolution. We employ optical homodyne tomography for this purpose, which also provides a self-calibrating measurement of the noise figure of the amplifier. The measured photon statistics agree with quantum-mechanical predictions, and the amplifier's noise figure is found to be almost quantum limited.
Study on surface roughness evolvement of Nd-doped phosphate glass after IBF
NASA Astrophysics Data System (ADS)
Li, Furen; Xie, Xuhui; Zhou, Lin; Tie, Guipeng; Hu, Hao
2016-10-01
Nd doped phosphate glass is widely used as gain media in high power laser system. It is traditionally polished with the annular polishing technology. The edge effect is inevitable in annular polishing process and it results in the low manufacturing efficiency. Ion Beam Figuring (IBF) is a highly deterministic, non-contact method for the ultra-precision optics fabrication. So the edge effect is avoided. Nanometer and sub-nanometer precision is realizable in IBF. In this paper, Nd doped phosphate glass was polished with IBF, and the evolvement of surface roughness was emphasized. The roughness of surface polished with ion beam at normal and oblique incidence was researched. The oblique incident angle was 45°. The surface roughness was measured with the white light interferometer. No evident change was observed. This means that the pre-finish roughness can be preserved in IBF. The results denote that IBF is a feasible method to correct the contour errors of Nd doped phosphate glass, and the roughness will not be coarsened.
Overview of the Laser Communications Relay Demonstration Project
2012-06-01
and aim the very narrow beam at the ground station on earth, despite platform vibrations, motions, and distortions. When receiving, the GEO optical ...4 Figure 1- Inertially Stablized Optical Module Each optical module, shown in Figure 1, is a 4-inch reflective telescope that...6 the GEO space terminal beam pointing direction. Turbulence effects dominate the laser power required for a ground-based beacon. Turbulence
2012-06-01
turbulence . McPhee-Shaw determined that intrusions typically formed in regions where the incident and reflected wave beams overlap on the slope...Figure 7. Optical backscatter data from the Spray glider. The saturation point for the optical backscatter is 4.096 V. The green and red profiles...plot is a cross shelf section of optical backscatter . ..........................................................................25 Figure 9
Pointing and figure control system for a space-based far-IR segmented telescope
NASA Technical Reports Server (NTRS)
Lau, Kenneth
1993-01-01
A pointing and figure control system for two space-based far-IR telescopes, the 10-20 m Large Deployable Reflector and the 3.6 m Submillimeter Intermediate Mission, is described. The figure maintenance control system is designed to counter the optical elements translational and rotational changes induced by long-term thermal drifts that the support structure may experience. The pointing system applies optical truss to telescope pointing; a laser metrology system is used to transfer pointing informaton from an external fine guidance sensor to the telescope optical boresight, defined by the primary mirror, secondary mirror, and focal plane assembly.
Deterministic figure correction of piezoelectrically adjustable slumped glass optics
NASA Astrophysics Data System (ADS)
DeRoo, Casey T.; Allured, Ryan; Cotroneo, Vincenzo; Hertz, Edward; Marquez, Vanessa; Reid, Paul B.; Schwartz, Eric D.; Vikhlinin, Alexey A.; Trolier-McKinstry, Susan; Walker, Julian; Jackson, Thomas N.; Liu, Tianning; Tendulkar, Mohit
2018-01-01
Thin x-ray optics with high angular resolution (≤ 0.5 arcsec) over a wide field of view enable the study of a number of astrophysically important topics and feature prominently in Lynx, a next-generation x-ray observatory concept currently under NASA study. In an effort to address this technology need, piezoelectrically adjustable, thin mirror segments capable of figure correction after mounting and on-orbit are under development. We report on the fabrication and characterization of an adjustable cylindrical slumped glass optic. This optic has realized 100% piezoelectric cell yield and employs lithographically patterned traces and anisotropic conductive film connections to address the piezoelectric cells. In addition, the measured responses of the piezoelectric cells are found to be in good agreement with finite-element analysis models. While the optic as manufactured is outside the range of absolute figure correction, simulated corrections using the measured responses of the piezoelectric cells are found to improve 5 to 10 arcsec mirrors to 1 to 3 arcsec [half-power diameter (HPD), single reflection at 1 keV]. Moreover, a measured relative figure change which would correct the figure of a representative slumped glass piece from 6.7 to 1.2 arcsec HPD is empirically demonstrated. We employ finite-element analysis-modeled influence functions to understand the current frequency limitations of the correction algorithm employed and identify a path toward achieving subarcsecond corrections.
Automated Semantic Indexing of Figure Captions to Improve Radiology Image Retrieval
Kahn, Charles E.; Rubin, Daniel L.
2009-01-01
Objective We explored automated concept-based indexing of unstructured figure captions to improve retrieval of images from radiology journals. Design The MetaMap Transfer program (MMTx) was used to map the text of 84,846 figure captions from 9,004 peer-reviewed, English-language articles to concepts in three controlled vocabularies from the UMLS Metathesaurus, version 2006AA. Sampling procedures were used to estimate the standard information-retrieval metrics of precision and recall, and to evaluate the degree to which concept-based retrieval improved image retrieval. Measurements Precision was estimated based on a sample of 250 concepts. Recall was estimated based on a sample of 40 concepts. The authors measured the impact of concept-based retrieval to improve upon keyword-based retrieval in a random sample of 10,000 search queries issued by users of a radiology image search engine. Results Estimated precision was 0.897 (95% confidence interval, 0.857–0.937). Estimated recall was 0.930 (95% confidence interval, 0.838–1.000). In 5,535 of 10,000 search queries (55%), concept-based retrieval found results not identified by simple keyword matching; in 2,086 searches (21%), more than 75% of the results were found by concept-based search alone. Conclusion Concept-based indexing of radiology journal figure captions achieved very high precision and recall, and significantly improved image retrieval. PMID:19261938
REVIEW OF IMPROVEMENTS IN RADIO FREQUENCY PHOTONICS
2017-09-01
control boards keep the MZM biased at quadrature. A couple of methods exist for bias control: optical power monitoring or second harmonic power... bias , referred to as low- biasing . The increased RF gain for operating at the low bias point comes from the improved optical gain of the sidebands...Figure 3: Optical Gain for an MZM at Quadrature and Low Bias Operation ............................... 3 Figure 4: RF Gain for an MZM at Different
Model-based phase-shifting interferometer
NASA Astrophysics Data System (ADS)
Liu, Dong; Zhang, Lei; Shi, Tu; Yang, Yongying; Chong, Shiyao; Miao, Liang; Huang, Wei; Shen, Yibing; Bai, Jian
2015-10-01
A model-based phase-shifting interferometer (MPI) is developed, in which a novel calculation technique is proposed instead of the traditional complicated system structure, to achieve versatile, high precision and quantitative surface tests. In the MPI, the partial null lens (PNL) is employed to implement the non-null test. With some alternative PNLs, similar as the transmission spheres in ZYGO interferometers, the MPI provides a flexible test for general spherical and aspherical surfaces. Based on modern computer modeling technique, a reverse iterative optimizing construction (ROR) method is employed for the retrace error correction of non-null test, as well as figure error reconstruction. A self-compiled ray-tracing program is set up for the accurate system modeling and reverse ray tracing. The surface figure error then can be easily extracted from the wavefront data in forms of Zernike polynomials by the ROR method. Experiments of the spherical and aspherical tests are presented to validate the flexibility and accuracy. The test results are compared with those of Zygo interferometer (null tests), which demonstrates the high accuracy of the MPI. With such accuracy and flexibility, the MPI would possess large potential in modern optical shop testing.
Ruffner, J.A.
1999-06-15
A method for coating (flat or non-flat) optical substrates with high-reflectivity multi-layer coatings for use at Deep Ultra-Violet (DUV) and Extreme Ultra-Violet (EUV) wavelengths. The method results in a product with minimum feature sizes of less than 0.10 [micro]m for the shortest wavelength (13.4 nm). The present invention employs a computer-based modeling and deposition method to enable lateral and vertical thickness control by scanning the position of the substrate with respect to the sputter target during deposition. The thickness profile of the sputter targets is modeled before deposition and then an appropriate scanning algorithm is implemented to produce any desired, radially-symmetric thickness profile. The present invention offers the ability to predict and achieve a wide range of thickness profiles on flat or figured substrates, i.e., account for 1/R[sup 2] factor in a model, and the ability to predict and accommodate changes in deposition rate as a result of plasma geometry, i.e., over figured substrates. 15 figs.
Spherical Primary Optical Telescope (SPOT) Segment Fabrication
2010-06-07
of Pyrex. One mirror (segment) was figured at GSFC and final figured at QED using Magnetorheological Finishing . Two other segments are in process...point) have been cast • Segment 1 was figured at GSFC completed at QED using magnetorheological finishing (MRF) • New GSFC figuring facility brought on
Laser figuring for the generation of analog micro-optics and kineform surfaces
NASA Technical Reports Server (NTRS)
Gratrix, Edward J.
1993-01-01
To date, there have been many techniques used to generate micro-optic structures in glass or other materials. Using methods common to the lithographic industry, the manufacturing technique known as 'binary optics,' has demonstrated the use of diffractive optics in a variety of micro-optic applications. It is well established that diffractive structures have limited capability when applied in a design more suited for a refractive element. For applications that demand fast, highly efficient, broadband designs, we have developed a technique which uses laser figuring to generate the refractive micro-optical surface. This paper describes the technique used to fabricate refractive micro-optics. Recent results of micro-optics in CdZnTe focal planes are shown.
Maniyara, Rinu Abraham; Mkhitaryan, Vahagn K.; Chen, Tong Lai; Ghosh, Dhriti Sundar; Pruneri, Valerio
2016-01-01
Transparent conductors are essential in many optoelectronic devices, such as displays, smart windows, light-emitting diodes and solar cells. Here we demonstrate a transparent conductor with optical loss of ∼1.6%, that is, even lower than that of single-layer graphene (2.3%), and transmission higher than 98% over the visible wavelength range. This was possible by an optimized antireflection design consisting in applying Al-doped ZnO and TiO2 layers with precise thicknesses to a highly conductive Ag ultrathin film. The proposed multilayer structure also possesses a low electrical resistance (5.75 Ω sq−1), a figure of merit four times larger than that of indium tin oxide, the most widely used transparent conductor today, and, contrary to it, is mechanically flexible and room temperature deposited. To assess the application potentials, transparent shielding of radiofrequency and microwave interference signals with ∼30 dB attenuation up to 18 GHz was achieved. PMID:27991517
Maniyara, Rinu Abraham; Mkhitaryan, Vahagn K; Chen, Tong Lai; Ghosh, Dhriti Sundar; Pruneri, Valerio
2016-12-19
Transparent conductors are essential in many optoelectronic devices, such as displays, smart windows, light-emitting diodes and solar cells. Here we demonstrate a transparent conductor with optical loss of ∼1.6%, that is, even lower than that of single-layer graphene (2.3%), and transmission higher than 98% over the visible wavelength range. This was possible by an optimized antireflection design consisting in applying Al-doped ZnO and TiO 2 layers with precise thicknesses to a highly conductive Ag ultrathin film. The proposed multilayer structure also possesses a low electrical resistance (5.75 Ω sq -1 ), a figure of merit four times larger than that of indium tin oxide, the most widely used transparent conductor today, and, contrary to it, is mechanically flexible and room temperature deposited. To assess the application potentials, transparent shielding of radiofrequency and microwave interference signals with ∼30 dB attenuation up to 18 GHz was achieved.
Toward Large-Area Sub-Arcsecond X-Ray Telescopes
NASA Technical Reports Server (NTRS)
ODell, Stephen L.; Aldcroft, Thomas L.; Allured, Ryan; Atkins, Carolyn; Burrows, David N.; Cao, Jian; Chalifoux, Brandon D.; Chan, Kai-Wing; Cotroneo, Vincenzo; Elsner, Ronald F.;
2014-01-01
The future of x-ray astronomy depends upon development of x-ray telescopes with larger aperture areas (approx. = 3 square meters) and fine angular resolution (approx. = 1 inch). Combined with the special requirements of nested grazing-incidence optics, the mass and envelope constraints of space-borne telescopes render such advances technologically and programmatically challenging. Achieving this goal will require precision fabrication, alignment, mounting, and assembly of large areas (approx. = 600 square meters) of lightweight (approx. = 1 kilogram/square meter areal density) high-quality mirrors at an acceptable cost (approx. = 1 million dollars/square meter of mirror surface area). This paper reviews relevant technological and programmatic issues, as well as possible approaches for addressing these issues-including active (in-space adjustable) alignment and figure correction.
Precision injection molding of freeform optics
NASA Astrophysics Data System (ADS)
Fang, Fengzhou; Zhang, Nan; Zhang, Xiaodong
2016-08-01
Precision injection molding is the most efficient mass production technology for manufacturing plastic optics. Applications of plastic optics in field of imaging, illumination, and concentration demonstrate a variety of complex surface forms, developing from conventional plano and spherical surfaces to aspheric and freeform surfaces. It requires high optical quality with high form accuracy and lower residual stresses, which challenges both optical tool inserts machining and precision injection molding process. The present paper reviews recent progress in mold tool machining and precision injection molding, with more emphasis on precision injection molding. The challenges and future development trend are also discussed.
Neurons Forming Optic Glomeruli Compute Figure–Ground Discriminations in Drosophila
Aptekar, Jacob W.; Keleş, Mehmet F.; Lu, Patrick M.; Zolotova, Nadezhda M.
2015-01-01
Many animals rely on visual figure–ground discrimination to aid in navigation, and to draw attention to salient features like conspecifics or predators. Even figures that are similar in pattern and luminance to the visual surroundings can be distinguished by the optical disparity generated by their relative motion against the ground, and yet the neural mechanisms underlying these visual discriminations are not well understood. We show in flies that a diverse array of figure–ground stimuli containing a motion-defined edge elicit statistically similar behavioral responses to one another, and statistically distinct behavioral responses from ground motion alone. From studies in larger flies and other insect species, we hypothesized that the circuitry of the lobula—one of the four, primary neuropiles of the fly optic lobe—performs this visual discrimination. Using calcium imaging of input dendrites, we then show that information encoded in cells projecting from the lobula to discrete optic glomeruli in the central brain group these sets of figure–ground stimuli in a homologous manner to the behavior; “figure-like” stimuli are coded similar to one another and “ground-like” stimuli are encoded differently. One cell class responds to the leading edge of a figure and is suppressed by ground motion. Two other classes cluster any figure-like stimuli, including a figure moving opposite the ground, distinctly from ground alone. This evidence demonstrates that lobula outputs provide a diverse basis set encoding visual features necessary for figure detection. PMID:25972183
Study on manufacturing method of optical surface with high precision in angle and surface
NASA Astrophysics Data System (ADS)
Yu, Xin; Li, Xin; Yu, Ze; Zhao, Bin; Zhang, Xuebin; Sun, Lipeng; Tong, Yi
2016-10-01
This paper studied a manufacturing processing of optical surface with high precision in angel and surface. By theoretical analysis of the relationships between the angel precision and surface, the measurement conversion of the technical indicators, optical-cement method application, the optical-cement tooling design, the experiment has been finished successfully, the processing method has been verified, which can be also used in the manufacturing of the optical surface with similar high precision in angle and surface.
2008-12-01
Figure 2. Definition of Attitude Angles and Torque Components in Spacecraft Reference Frame...Figure 5. PD controller in ideal three-axis-stabilized spacecraft ADCS. ................................16 Figure 6. Extract Position Angles function in...performance of spacecraft systems. Two categories of system architectures are discussed: recursive data management, found in feedback control systems; and
White-Light Phase-Conjugate Mirrors as Distortion Correctors
NASA Technical Reports Server (NTRS)
Frazier, Donald; Smith, W. Scott; Abdeldayem, Hossin; Banerjee, Partha
2010-01-01
White-light phase-conjugate mirrors would be incorporated into some optical systems, according to a proposal, as means of correcting for wavefront distortions caused by imperfections in large optical components. The proposal was given impetus by a recent demonstration that white, incoherent light can be made to undergo phase conjugation, whereas previously, only coherent light was known to undergo phase conjugation. This proposal, which is potentially applicable to almost any optical system, was motivated by a need to correct optical aberrations of the primary mirror of the Hubble Space telescope. It is difficult to fabricate large optical components like the Hubble primary mirror and to ensure the high precision typically required of such components. In most cases, despite best efforts, the components as fabricated have small imperfections that introduce optical aberrations that adversely affect imaging quality. Correcting for such aberrations is difficult and costly. The proposed use of white-light phase conjugate mirrors offers a relatively simple and inexpensive solution of the aberration-correction problem. Indeed, it should be possible to simplify the entire approach to making large optical components because there would be no need to fabricate those components with extremely high precision in the first place: A white-light phase-conjugate mirror could correct for all the distortions and aberrations in an optical system. The use of white-light phase-conjugate mirrors would be essential for ensuring high performance in optical systems containing lightweight membrane mirrors, which are highly deformable. As used here, "phase-conjugate mirror" signifies, more specifically, an optical component in which incident light undergoes time-reversal phase conjugation. In practice, a phase-conjugate mirror would typically be implemented by use of a suitably positioned and oriented photorefractive crystal. In the case of a telescope comprising a primary and secondary mirror (see figure) white light from a distant source would not be brought to initial focus on one or more imaging scientific instrument(s) as in customary practice. Instead, the light would be brought to initial focus on a phase-conjugate mirror. The phase-conjugate mirror would send a phase-conjugate image back, along the path of the incoming light, to the primary mirror. A transparent, highly efficient diffractive thin film deposited on the primary mirror would direct the phase-conjugate image to the imaging instrument(s).
Reconfigurable Antenna Aperture with Optically Controlled GeTe-Based RF Switches
2015-03-31
duration (~100ns) but high amplitude raises the material’s temperature above the melting point . As a liquid, the atoms are randomly distributed...100ns, there is sufficient optical energy to heat and melt a 100nm thick GeTe PCM area of approximately 3µm 2 . Figure 3. Optimum PCM area...which tracks well with previously published thin film heater model [9]. Figure 4. Validation of Melt /Quench Thermal Model Optical Control: The
Research on error control and compensation in magnetorheological finishing.
Dai, Yifan; Hu, Hao; Peng, Xiaoqiang; Wang, Jianmin; Shi, Feng
2011-07-01
Although magnetorheological finishing (MRF) is a deterministic finishing technology, the machining results always fall short of simulation precision in the actual process, and it cannot meet the precision requirements just through a single treatment but after several iterations. We investigate the reasons for this problem through simulations and experiments. Through controlling and compensating the chief errors in the manufacturing procedure, such as removal function calculation error, positioning error of the removal function, and dynamic performance limitation of the CNC machine, the residual error convergence ratio (ratio of figure error before and after processing) in a single process is obviously increased, and higher figure precision is achieved. Finally, an improved technical process is presented based on these researches, and the verification experiment is accomplished on the experimental device we developed. The part is a circular plane mirror of fused silica material, and the surface figure error is improved from the initial λ/5 [peak-to-valley (PV) λ=632.8 nm], λ/30 [root-mean-square (rms)] to the final λ/40 (PV), λ/330 (rms) just through one iteration in 4.4 min. Results show that a higher convergence ratio and processing precision can be obtained by adopting error control and compensation techniques in MRF.
MEASUREMENT AND PRECISION, EXPERIMENTAL VERSION.
ERIC Educational Resources Information Center
Harvard Univ., Cambridge, MA. Harvard Project Physics.
THIS DOCUMENT IS AN EXPERIMENTAL VERSION OF A PROGRAMED TEXT ON MEASUREMENT AND PRECISION. PART I CONTAINS 24 FRAMES DEALING WITH PRECISION AND SIGNIFICANT FIGURES ENCOUNTERED IN VARIOUS MATHEMATICAL COMPUTATIONS AND MEASUREMENTS. PART II BEGINS WITH A BRIEF SECTION ON EXPERIMENTAL DATA, COVERING SUCH POINTS AS (1) ESTABLISHING THE ZERO POINT, (2)…
Optimetrics for Precise Navigation
NASA Technical Reports Server (NTRS)
Yang, Guangning; Heckler, Gregory; Gramling, Cheryl
2017-01-01
Optimetrics for Precise Navigation will be implemented on existing optical communication links. The ranging and Doppler measurements are conducted over communication data frame and clock. The measurement accuracy is two orders of magnitude better than TDRSS. It also has other advantages of: The high optical carrier frequency enables: (1) Immunity from ionosphere and interplanetary Plasma noise floor, which is a performance limitation for RF tracking; and (2) High antenna gain reduces terminal size and volume, enables high precision tracking in Cubesat, and in deep space smallsat. High Optical Pointing Precision provides: (a) spacecraft orientation, (b) Minimal additional hardware to implement Precise Optimetrics over optical comm link; and (c) Continuous optical carrier phase measurement will enable the system presented here to accept future optical frequency standard with much higher clock accuracy.
Figures of merit for microwave photonic phase shifters based on semiconductor optical amplifiers.
Sancho, Juan; Lloret, Juan; Gasulla, Ivana; Sales, Salvador; Capmany, José
2012-05-07
We theoretically and experimentally compare the performance of two fully tunable phase shifter structures based on semiconductor optical amplifiers (SOA) by means of several figures of merit common to microwave photonic systems. A single SOA stage followed by a tailored notch filter is compared with a cascaded implementation comprising three SOA-based phase shifter stages. Attention is focused on the assessment of the RF net gain, noise figure and nonlinear distortion. Recommendations on the performance optimization of this sort of approaches are detailed.
Ion Assisted Deposition of Optical Coatings.
1986-08-01
dielectric films. They repo- ted ion-induced phase transitions and reductions in optical scatter for bombarded films. In this research program, the film...SiO 2 AR coating (20X). 7 7 145 4A I 10 wun Figure VI-6. Micrograph of fluorine damaged AIJO /SiO 2 AR coating (20X); different site than in Figure
Formation Flying of Components of a Large Space Telescope
NASA Technical Reports Server (NTRS)
Mettler, Edward; Quadrelli, Marco; Breckenridge, William
2009-01-01
A conceptual space telescope having an aperture tens of meters wide and a focal length of hundreds of meters would be implemented as a group of six separate optical modules flying in formation: a primary-membrane-mirror module, a relay-mirror module, a focal-plane-assembly module containing a fast steering mirror and secondary and tertiary optics, a primary-mirror-figure-sensing module, a scanning-electron-beam module for controlling the shape of the primary mirror, and a sunshade module. Formation flying would make it unnecessary to maintain the required precise alignments among the modules by means of an impractically massive rigid structure. Instead, a control system operating in conjunction with a metrology system comprising optical and radio subsystems would control the firing of small thrusters on the separate modules to maintain the formation, thereby acting as a virtual rigid structure. The control system would utilize a combination of centralized- and decentralized-control methods according to a leader-follower approach. The feasibility of the concept was demonstrated in computational simulations that showed that relative positions could be maintained to within a fraction of a millimeter and orientations to within several microradians.
Manufacturing plastic injection optical molds
NASA Astrophysics Data System (ADS)
Bourque, David
2008-08-01
ABCO Tool & Die, Inc. is a mold manufacturer specializing in the manufacturing of plastic injection molds for molded optical parts. The purpose of this presentation is to explain the concepts and procedures required to build a mold that produces precision optical parts. Optical molds can produce a variety of molded parts ranging from safety eyewear to sophisticated military lens parts, which must meet precise optical specifications. The manufacturing of these molds begins with the design engineering of precision optical components. The mold design and the related optical inserts are determined based upon the specific optical criteria and optical surface geometry. The mold manufacturing techniques will be based upon the optical surface geometry requirements and specific details. Manufacturing processes used will be specific to prescribed geometrical surface requirements of the molded part. The combined efforts result in a robust optical mold which can produce molded parts that meet the most precise optical specifications.
Integration Of Thin-Film Coatings Into Optical Systems
NASA Astrophysics Data System (ADS)
Matteucci, John; Baumeister, Philip
1980-09-01
These remarks are directed to professional lens designers, optical systems engineers and fabricators. You are the thoroughly capable experts who configure and construct optical systems that image superbly over vast areas. Many of the systems contain optical coatings that perform some of the functions shown in Figure 1. They serve to enhance the radiant reflectance of a surface, to reduce the Fresnel losses to low values, to alter the state of polarization of the flux, to divide beams into various channels, or to isolate some part of the electromagnetic spectrum. Figure 2 depicts a procedure that is sometimes used to select coatings. Here they are not specified until after the optical system design is frozen. In essence, coatings are allocated the same level of importance as the shade of paint on the exterior of the instrument. Not infrequently disaster lurks in this approach because the coatings are unattainable or they impact the optical system in some unexpected manner. The strategy shown in Figure 3 is safer. Here, the coating selection is integrated into the optical design. If the coatings are difficult (and, hence, costly) to produce, then compromises are investigated that lessen the overall cost of the system.
NASA Astrophysics Data System (ADS)
Tang, Renyong; Voss, Paul L.; Lasri, Jacob; Devgan, Preetpaul; Kumar, Prem
2004-10-01
Recent theoretical work predicts that the quantum-limited noise figure of a chi(3)-based fiber-optical parametric amplifier operating as a phase-insensitive in-line amplifier or as a wavelength converter exceeds the standard 3-dB limit at high gain. The degradation of the noise figure is caused by the excess noise added by the unavoidable Raman gain and loss occurring at the signal and the converted wavelengths. We present detailed experimental evidence in support of this theory through measurements of the gain and noise-figure spectra for phase-insensitive parametric amplification and wavelength conversion in a continuous-wave amplifier made from 4.4 km of dispersion-shifted fiber. The theory is also extended to include the effect of distributed linear loss on the noise figure of such a long-length parametric amplifier and wavelength converter.
Improving X-Ray Optics via Differential Deposition
NASA Technical Reports Server (NTRS)
Kilaru, Kiranmayee; Ramsey, Brian D.; Atkins, Carolyn
2017-01-01
Differential deposition, a post-fabrication figure correction technique, has the potential to significantly improve the imaging quality of grazing-incidence X-ray optics. DC magnetron sputtering is used to selectively coat the mirror in order to minimize the figure deviations. Custom vacuum chambers have been developed at NASA MSFC that will enable the implementation of the deposition on X-ray optics. A factor of two improvement has been achieved in the angular resolution of the full-shell X-ray optics with first stage correction of differential deposition. Current efforts are focused on achieving higher improvements through efficient implementation of differential deposition.
An Optical Lever For The Metrology Of Grazing Incidence Optics
NASA Astrophysics Data System (ADS)
DeCew, Alan E.; Wagner, Robert W.
1986-11-01
Research Optics & Development, Inc. is using a slope tracing profilometer to measure the figure of optical surfaces which cannot be measured conveniently by interferometric means. As a metrological tool, the technique has its greatest advantage as an in-process easurement system. An optician can easily convert from polishing to measurement in less than a minute of time. This rapid feedback allows figure correction with minimal wasted effort and setup time. The present configuration of the slope scanner provides resolutions to 1 micro-radian. By implementing minor modifications, the resolution could be improved by an order of magnitude.
2012-07-19
calculation point (z’, w) gives the size of the smallest cubature that provides w SD at the point z’ Figure F.1. The graph of the function f in (F.9...77 Figure F.2. The graph of the function g in (F.10...77 Figure F.3. The graph of the function h in (F.13
Figure mining for biomedical research.
Rodriguez-Esteban, Raul; Iossifov, Ivan
2009-08-15
Figures from biomedical articles contain valuable information difficult to reach without specialized tools. Currently, there is no search engine that can retrieve specific figure types. This study describes a retrieval method that takes advantage of principles in image understanding, text mining and optical character recognition (OCR) to retrieve figure types defined conceptually. A search engine was developed to retrieve tables and figure types to aid computational and experimental research. http://iossifovlab.cshl.edu/figurome/.
Special Technology Area Review on Micro-Opto-Electro-Mechanical-Systems (MOEMS)
1997-12-01
Optical Interference in Night Vision Systems "* DMD Assisted Intelligent Manufacturing of ................................................... SRI...CONCEPT ......................................... p. 8 FIGURE 3(a): DMD LIGHT SWITCHES...p. 9 FIGURE 3(b): SEM PHOTOMICROGRAPHS OF DMD CHIPS ........................................ p. 9 FIGURE 4: MULTI-USER MEMS PROJECTS (MUMPS
Flight Performance of a Man Portable Guided Projectile Concept
2014-02-01
include precision guided technologies. The focus of this study is maneuvering projectiles launched from man portable weapon systems . A novel guided...5 Figure 5. Body-fixed coordinate system and aerodynamic angles...20 Figure 20. Earth and body-fixed coordinate systems and Euler angles. ........................................24
Image Restoration by Spline Functions
1976-08-31
motion degradation, over- determined model. 71 Figure 4-7. Singular values for motion blur. 72 Figure 5-1. Models for film-grain noise and filtering. 85...Figure 5-2. Filtering of signal dependent noisy images. 86 Figure 5-3. Filtering of image lines degraded by film- grain noise . 87 Figure 5-4...phenomena. Fhese phenomena include such imperfect imaging cir- cumstances as defocus, motion blur, optical aberrations, and noise D1I r> . Phe pioneers
Mission Concepts for High-Resolution Solar Imaging with a Photon Sieve
NASA Astrophysics Data System (ADS)
Rabin, Douglas M.; Davila, Joseph; Daw, Adrian N.; Denis, Kevin L.; Novo-Gradac, Anne-Marie; Shah, Neerav; Widmyer, Thomas R.
2017-08-01
The best EUV coronal imagers are unable to probe the expected energy dissipation scales of the solar corona (<100 km) because conventional optics cannot be figured to near diffraction-limited accuracy at these wavelengths. Davila (2011) has proposed that a photon sieve, a diffractive imaging element similar to a Fresnel zone plate, provides a technically feasible path to the required angular resolution. We have produced photon sieves as large as 80 mm clear aperture. We discuss laboratory measurements of these devices and the path to larger apertures. The focal length of a sieve with high EUV resolution is at least 10 m. Options for solar imaging with such a sieve include a sounding rocket, a single spacecraft with a deployed boom, and two spacecraft flying in precise formation.
Electro-Optic Modulator Based on Organic Planar Waveguide Integrated with Prism Coupler
NASA Technical Reports Server (NTRS)
Sarkisov, Sergey S.
2002-01-01
The objectives of the project, as they were formulated in the proposal, are the following: (1) Design and development of novel electro-optic modulator using single crystalline film of highly efficient electro-optic organic material integrated with prism coupler; (2) Experimental characterization of the figures-of-merit of the modulator. It is expected to perform with an extinction ratio of 10 dB at a driving signal of 5 V; (3) Conclusions on feasibility of the modulator as an element of data communication systems of future generations. The accomplishments of the project are the following: (1) The design of the electro-optic modulator based on a single crystalline film of organic material NPP has been explored; (2) The evaluation of the figures-of-merit of the electro-optic modulator has been performed; (3) Based on the results of characterization of the figures-of-merit, the conclusion was made that the modulator based on a thin film of NPP is feasible and has a great potential of being used in optic communication with a modulation bandwidth of up to 100 GHz and a driving voltage of the order of 3 to 5 V.
The Development of a Deflectometer for Accurate Surface Figure Metrology
NASA Technical Reports Server (NTRS)
Gubarev, Mikhail; Eberhardt, Andrew; Ramsey, Brian; Atkins, Carolyn
2015-01-01
Marshall Space Flight Center is developing the method of direct fabrication for high resolution full-shell x-ray optics. In this technique the x-ray optics axial profiles are figured and polished using a computer-controlled ZeekoIRP600X polishing machine. Based on the Chandra optics fabrication history about one third of the manufacturing time is spent on moving a mirror between fabrication and metrology sites, reinstallation and alignment with either the metrology or fabrication instruments. Also, the accuracy of the alignment significantly affects the ultimate accuracy of the resulting mirrors. In order to achieve higher convergence rate it is highly desirable to have a metrology technique capable of in situ surface figure measurements of the optics under fabrication, so the overall fabrication costs would be greatly reduced while removing the surface errors due to the re-alignment necessary after each metrology cycle during the fabrication. The goal of this feasibility study is to demonstrate if the Phase Measuring Deflectometry can be applied for in situ metrology of full shell x-ray optics. Examples of the full-shell mirror substrates suitable for the direct fabrication
Design, fabrication, and testing of duralumin zoom mirror with variable thickness
NASA Astrophysics Data System (ADS)
Hui, Zhao; Xie, Xiaopeng; Xu, Liang; Ding, Jiaoteng; Shen, Le; Liu, Meiying; Gong, Jie
2016-10-01
Zoom mirror is a kind of active optical component that can change its curvature radius dynamically. Normally, zoom mirror is used to correct the defocus and spherical aberration caused by thermal lens effect to improve the beam quality of high power solid-state laser since that component was invented. Recently, the probable application of zoom mirror in realizing non-moving element optical zoom imaging in visible band has been paid much attention. With the help of optical leveraging effect, the slightly changed local optical power caused by curvature variation of zoom mirror could be amplified to generate a great alteration of system focal length without moving elements involved in, but in this application the shorter working wavelength and higher surface figure accuracy requirement make the design and fabrication of such a zoom mirror more difficult. Therefore, the key to realize non-moving element optical zoom imaging in visible band lies in zoom mirror which could provide a large enough saggitus variation while still maintaining a high enough surface figure. Although the annular force based actuation could deform a super-thin mirror having a constant thickness to generate curvature variation, it is quite difficult to maintain a high enough surface figure accuracy and this phenomenon becomes even worse when the diameter and the radius-thickness ratio become bigger. In this manuscript, by combing the pressurization based actuation with a variable thickness mirror design, the purpose of obtaining large saggitus variation and maintaining quite good surface figure accuracy at the same time could be achieved. A prototype zoom mirror with diameter of 120mm and central thickness of 8mm is designed, fabricated and tested. Experimental results demonstrate that the zoom mirror having an initial surface figure accuracy superior to 1/50λ could provide at least 21um saggitus variation and after finishing the curvature variation its surface figure accuracy could still be superior to 1/20λ, which proves that the effectiveness of the theoretical design.
Wavefront Sensing Analysis of Grazing Incidence Optical Systems
NASA Technical Reports Server (NTRS)
Rohrbach, Scott; Saha, Timo
2012-01-01
Wavefront sensing is a process by which optical system errors are deduced from the aberrations in the image of an ideal source. The method has been used successfully in near-normal incidence, but not for grazing incidence systems. This innovation highlights the ability to examine out-of-focus images from grazing incidence telescopes (typically operating in the x-ray wavelengths, but integrated using optical wavelengths) and determine the lower-order deformations. This is important because as a metrology tool, this method would allow the integration of high angular resolution optics without the use of normal incidence interferometry, which requires direct access to the front surface of each mirror. Measuring the surface figure of mirror segments in a highly nested x-ray telescope mirror assembly is difficult due to the tight packing of elements and blockage of all but the innermost elements to normal incidence light. While this can be done on an individual basis in a metrology mount, once the element is installed and permanently bonded into the assembly, it is impossible to verify the figure of each element and ensure that the necessary imaging quality will be maintained. By examining on-axis images of an ideal point source, one can gauge the low-order figure errors of individual elements, even when integrated into an assembly. This technique is known as wavefront sensing (WFS). By shining collimated light down the optical axis of the telescope and looking at out-of-focus images, the blur due to low-order figure errors of individual elements can be seen, and the figure error necessary to produce that blur can be calculated. The method avoids the problem of requiring normal incidence access to the surface of each mirror segment. Mirror figure errors span a wide range of spatial frequencies, from the lowest-order bending to the highest order micro-roughness. While all of these can be measured in normal incidence, only the lowest-order contributors can be determined through this WFS technique.
Pedestal substrate for coated optics
Hale, Layton C.; Malsbury, Terry N.; Patterson, Steven R.
2001-01-01
A pedestal optical substrate that simultaneously provides high substrate dynamic stiffness, provides low surface figure sensitivity to mechanical mounting hardware inputs, and constrains surface figure changes caused by optical coatings to be primarily spherical in nature. The pedestal optical substrate includes a disk-like optic or substrate section having a top surface that is coated, a disk-like base section that provides location at which the substrate can be mounted, and a connecting cylindrical section between the base and optics or substrate sections. The connecting cylindrical section may be attached via three spaced legs or members. However, the pedestal optical substrate can be manufactured from a solid piece of material to form a monolith, thus avoiding joints between the sections, or the disk-like base can be formed separately and connected to the connecting section. By way of example, the pedestal optical substrate may be utilized in the fabrication of optics for an extreme ultraviolet (EUV) lithography imaging system, or in any optical system requiring coated optics and substrates with reduced sensitivity to mechanical mounts.
NASA Astrophysics Data System (ADS)
Pongs, Guido; Bresseler, Bernd; Bergs, Thomas; Menke, Gert
2012-10-01
Today isothermal precision molding of imaging glass optics has become a widely applied and integrated production technology in the optical industry. Especially in consumer electronics (e.g. digital cameras, mobile phones, Blu-ray) a lot of optical systems contain rotationally symmetrical aspherical lenses produced by precision glass molding. But due to higher demands on complexity and miniaturization of optical elements the established process chain for precision glass molding is not sufficient enough. Wafer based molding processes for glass optics manufacturing become more and more interesting for mobile phone applications. Also cylindrical lens arrays can be used in high power laser systems. The usage of unsymmetrical free-form optics allows an increase of efficiency in optical laser systems. Aixtooling is working on different aspects in the fields of mold manufacturing technologies and molding processes for extremely high complex optical components. In terms of array molding technologies, Aixtooling has developed a manufacturing technology for the ultra-precision machining of carbide molds together with European partners. The development covers the machining of multi lens arrays as well as cylindrical lens arrays. The biggest challenge is the molding of complex free-form optics having no symmetrical axis. A comprehensive CAD/CAM data management along the entire process chain is essential to reach high accuracies on the molded lenses. Within a national funded project Aixtooling is working on a consistent data handling procedure in the process chain for precision molding of free-form optics.
A wavefront compensation approach to segmented mirror figure control
NASA Technical Reports Server (NTRS)
Redding, David; Breckenridge, Bill; Sevaston, George; Lau, Ken
1991-01-01
We consider the 'figure-control' problem for a spaceborn sub-millimeter wave telescope, the Precision Segmented Reflector Project Focus Mission Telescope. We show that performance of any figure control system is subject to limits on the controllability and observability of the quality of the wavefront. We present a wavefront-compensation method for the Focus Mission Telescope which uses mirror-figure sensors and three-axis segment actuator to directly minimize wavefront errors due to segment position errors. This approach shows significantly better performance when compared with a panel-state-compensation approach.
Fabrication and Thermo-Optical Properties of the MLS Composite Primary Reflector
NASA Technical Reports Server (NTRS)
Willis, Paul B.; Dyer, Jack; Dummer, Sam
2000-01-01
The Microwave Limb Sounder (MLS) is a limb-sounding radiometer sensing emissions in the millimeter and sub-millimeter range. MLS will contribute to an understanding of atmospheric chemistry by assessing stratospheric and tropospheric ozone depletion, climate forcings and volcanic effects. The heart of the antenna is the primary reflector, constructed from graphite/cyanate composites in a facesheet/core construction. The reflector has an aperture of one square meter, a mass of 8.7 kilos and final figure accuracy of 4.37 microns rms. The surface is also modified to ensure RF reflectivity, prevent solar concentration and provide thermal balance to the spacecraft The surface is prepared by precision beadblasting, then coated with vapor deposited aluminum (VDA) and finally a layer of silicon suboxide (SiO(x)) to control the infrared emissivity. The resulting surface has a solar absorptance of 0.43 and an absorptance/emittance ratio of 1.3. BRDF analysis shows that 93% of the incident thermal energy is reflected outside a 10 degree angle of cone. For its mass and aperture, we believe this reflector to have the highest figure accuracy yet achieved in a composite antenna construction.
Design optimization of ultra-precise elliptical mirrors for hard x-ray nanofocusing at Nanoscopium
NASA Astrophysics Data System (ADS)
Kewish, Cameron M.; Polack, François; Signorato, Riccardo; Somogyi, Andrea
2013-09-01
The design and implementation of a pair of 100 mm-long grazing-incidence total-reflection mirrors for the hard X-ray beamline Nanoscopium at Synchrotron Soleil is presented. A vertically and horizontally nanofocusing mirror pair, oriented in Kirkpatrick-Baez geometry, has been designed and fabricated with the aim of creating a diffraction-limited high-intensity 5 - 20 keV beam with a focal spot size as small as 50 nm. We describe the design considerations, including wave-optical calculations of figures-of-merit that are relevant for spectromicroscopy, such as the focal spot size, depth of field and integrated intensity. The mechanical positioning tolerance in the pitch angle that is required to avoid introducing high-intensity features in the neighborhood of the focal spot is demonstrated with simulations to be of the order of microradians, becoming tighter for shorter focal lengths and therefore directly affecting all nanoprobe mirror systems. Metrology results for the completed mirrors are presented, showing that better than 1.5 °A-rms figure error has been achieved over the full mirror lengths with respect to the designed elliptical surfaces, with less than 60 nrad-rms slope errors.
Precision Cleaning and Protection of Coated Optical Components for NIF Small Optics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phelps, Jim
The purpose of this procedure shall be to define the precision cleaning of finished, coated, small optical components for NIF at Lawrence Livermore National Laboratories. The term “small optical components” includes coated optics that are set into simple mounts, as well as coated, un-mounted optics.
Prototyping of an Open-Architecture CMG System
2012-12-01
Digital Absolute Optical Encoder .....................................................63 5. Slip Ring ...After [71]) ................64 Figure 43. Dynapar absolute encoder (replacement for the original encoder) ..................65 Figure 44. Slip ring ...location on gimbal assembly .............................................................65 Figure 45. MOOG SRA-73683–18 slip ring (From [74
NASA Astrophysics Data System (ADS)
Furlong, Cosme; Yokum, Jeffrey S.; Pryputniewicz, Ryszard J.
2002-06-01
Sensitivity, accuracy, and precision characteristics in quantitative optical metrology techniques, and specifically in optoelectronic holography based on fiber optics and high-spatial and high-digital resolution cameras, are discussed in this paper. It is shown that sensitivity, accuracy, and precision dependent on both, the effective determination of optical phase and the effective characterization of the illumination-observation conditions. Sensitivity, accuracy, and precision are investigated with the aid of National Institute of Standards and Technology (NIST) traceable gages, demonstrating the applicability of quantitative optical metrology techniques to satisfy constantly increasing needs for the study and development of emerging technologies.
Ion beam figuring of CVD silicon carbide mirrors
NASA Astrophysics Data System (ADS)
Gailly, P.; Collette, J.-P.; Fleury Frenette, K.; Jamar, C.
2017-11-01
Optical and structural elements made of silicon carbide are increasingly found in space instruments. Chemical vapor deposited silicon carbide (CVD-SiC) is used as a reflective coating on SiC optics in reason of its good behavior under polishing. The advantage of applying ion beam figuring (IBF) to CVD-SiC over other surface figure-improving techniques is discussed herein. The results of an IBF sequence performed at the Centre Spatial de Liège on a 100 mm CVD-SiC mirror are reported. The process allowed to reduce the mirror surface errors from 243 nm to 13 nm rms . Beside the surface figure, roughness is another critical feature to consider in order to preserve the optical quality of CVD-SiC . Thus, experiments focusing on the evolution of roughness were performed in various ion beam etching conditions. The roughness of samples etched at different depths down to 3 ≠m was determined with an optical profilometer. These measurements emphasize the importance of selecting the right combination of gas and beam energy to keep roughness at a low level. Kaufman-type ion sources are generally used to perform IBF but the performance of an end-Hall ion source in figuring CVD-SiC mirrors was also evaluated in this study. In order to do so, ion beam etching profiles obtained with the end-Hall source on CVD-SiC were measured and used as a basis for IBF simulations.
ERIC Educational Resources Information Center
Reid, Robert L.; And Others
This guide outlines the competency-based, two-year precision optics curriculum that the American Precision Optics Manufacturers Association has proposed to fill the void that it suggests will soon exist as many of the master opticians currently employed retire. The model, which closely resembles the old European apprenticeship model, calls for 300…
Challenges in mold manufacturing for high precision molded diffractive optical elements
NASA Astrophysics Data System (ADS)
Pongs, Guido; Bresseler, Bernd; Schweizer, Klaus; Bergs, Thomas
2016-09-01
Isothermal precision glass molding of imaging optics is the key technology for mass production of precise optical elements. Especially for numerous consumer applications (e.g. digital cameras, smart phones, …), high precision glass molding is applied for the manufacturing of aspherical lenses. The usage of diffractive optical elements (DOEs) can help to further reduce the number of lenses in the optical systems which will lead to a reduced weight of hand-held optical devices. But today the application of molded glass DOEs is limited due to the technological challenges in structuring the mold surfaces. Depending on the application submicrometer structures are required on the mold surface. Furthermore these structures have to be replicated very precisely to the glass lens surface. Especially the micro structuring of hard and brittle mold materials such as Tungsten Carbide is very difficult and not established. Thus a multitude of innovative approaches using diffractive optical elements cannot be realized. Aixtooling has investigated in different mold materials and different suitable machining technologies for the micro- and sub-micrometer structuring of mold surfaces. The focus of the work lays on ultra-precision grinding to generate the diffractive pattern on the mold surfaces. This paper presents the latest achievements in diffractive structuring of Tungsten Carbide mold surfaces by ultra-precision grinding.
Investigation of ion-beam machining methods for replicated x-ray optics
NASA Technical Reports Server (NTRS)
Drueding, Thomas W.
1996-01-01
The final figuring step in the fabrication of an optical component involves imparting a specified contour onto the surface. This can be expensive and time consuming step. The recent development of ion beam figuring provides a method for performing the figuring process with advantages over standard mechanical methods. Ion figuring has proven effective in figuring large optical components. The process of ion beam figuring removes material by transferring kinetic energy from impinging neutral particles. The process utilizes a Kaufman type ion source, where a plasma is generated in a discharge chamber by controlled electric potentials. Charged grids extract and accelerate ions from the chamber. The accelerated ions form a directional beam. A neutralizer outside the accelerator grids supplies electrons to the positive ion beam. It is necessary to neutralize the beam to prevent charging workpieces and to avoid bending the beam with extraneous electro-magnetic fields. When the directed beam strikes the workpiece, material sputters in a predicable manner. The amount and distribution of material sputtered is a function of the energy of the beam, material of the component, distance from the workpiece, and angle of incidence of the beam. The figuring method described here assumes a constant beam removal, so that the process can be represented by a convolution operation. A fixed beam energy maintains a constant sputtering rate. This temporally and spatially stable beam is held perpendicular to the workpiece at a fixed distance. For non-constant removal, corrections would be required to model the process as a convolution operation. Specific figures (contours) are achieved by rastering the beam over the workpiece at varying velocities. A unique deconvolution is performed, using series-derivative solution developed for the system, to determine these velocities.
LIGO optics manufacture: figuring transmission core optics for best performance
NASA Astrophysics Data System (ADS)
Leistner, Achim J.; Farrant, David I.; Oreb, Bozenko F.; Pavlovic, Edita; Seckold, Jeffrey A.; Walsh, Christopher J.
1999-11-01
The Laser Interferometer Gravitational-wave Observatory (LIGO) is a long baseline Michelson interferometer, with arms of up to 4 km in length each containing a Fabry Perot cavity. CSIRO has manufactured 32 core optical components for the LIGO interferometer consisting of five different groups of optical elements. Long radii of curvature (7 km - 15 km) and tolerances in the order of plus or minus 200 m in the radius are specified. Although the components are made of hyper pure fused silica there are some residual inhomogeneities in the material. The optics used in transmission must be figured so that the influence of these material inhomogeneities on the transmitted wave front is compensated for. This was done by correcting the surface figure on side 2 of the optics. The approach we took to manufacturing the transmission optics was to calculate the quadratic component of refractive index gradient (Delta) n of the substrate from the measurements of the transmitted wavefront and the surface profile of the two substrate surfaces, determine what shape had to be produced on side two of the substrates to compensate for this gradient and then produce this by optical polishing. The surfaces were polished on rigid solid laps of Zerodur coated with a thin layer of Teflon as the polishing matrix, a technique developed by CSIRO for super-polishing very flat surfaces.
Athermal metal optics made of nickel plated AlSi40
NASA Astrophysics Data System (ADS)
Gebhardt, Andreas; Kinast, Jan; Rohloff, Ralf-Rainer; Seifert, Walter; Beier, Matthias; Scheiding, Sebastian; Peschel, Thomas
2017-11-01
Metal optics is an inherent part of space instrumentation for years. Diamond turned aluminum (Al6061) mirrors are widely used for application in the mid- and near-infrared (mid-IR and NIR, respectively) spectral range. Aluminum mirrors plated with electroless nickel (NiP) expand the field of application towards multispectral operating instruments down to the ultraviolet wavelengths. Due to the significant mismatch in the coefficient of thermal expansion (CTE) between aluminum and NiP, however, this advantage occurs at the cost of bimetallic bending. Challenging requirements can be met by using bare beryllium or aluminum beryllium composites (AlBeMet) as a CTE tailored substrate material and amorphous NiP as polishable layer. For health reasons, the use of beryllium causes complications in the process chain. Thus, the beryllium approach is subjected to specific applications only. Metal optics has proven to be advantageous in respect of using conventional CNC and ultra-precision fabrication methods to realize complex and light-weighted instrument structures. Moreover, the mirror designs can be effectively optimized for a deterministic system assembly and optimization. Limitations in terms of dimensional stability over temperature and time are mainly given by the inherent material properties (figures of merit) of the substrate material in interaction with the polishing layer. To find an optimal compromise, a thermal matched aluminum-silicon alloy (silicon contents ≍ 40 wt%) plated with NiP (AlSi40/NiP ) was investigated in a joined project of the Max Planck Institute for Astronomy MPIA and the Fraunhofer Institute for Applied Optics and Precision Engineering IOF. The main tasks of the project were the minimization of the bimetallic bending, the development of reliable stabilizing and aging procedures, and the establishment of a proven fabrication method. This paper describes fundamental results regarding the optimization of the athermal material combination. Furthermore, the developed production chain for high quality freeform mirrors made of AlSi40/NiP is pointed out.
NASA Astrophysics Data System (ADS)
Shcherbakov, Alexandre S.; Maximov, Jewgenij; Bliznetsov, Alexej M.; Sanchez Perez, Karla J.
2011-03-01
The technique under proposal for a precise spectrum analysis within an algorithm of the collinear wave heterodyning implies a two-stage integrated processing, namely, the wave heterodyning of a signal in a square-law nonlinear medium and then the optical processing in the same solid state cell. The technical advantage of this approach lies in providing a direct multichannel parallel processing of ultra-high-frequency radio-wave signals with essentially improved frequency resolution. This technique imposes specific requirements on the cell's material. We focus our attention on the solid solutions of thallium chalcogenides and take the TlBr-TlI (thallium bromine-thallium iodine) solution, which forms KRS-5 cubic-symmetry crystals with the mass-ratio 58% of TlBr to 42% of TlI. Analysis shows that the acousto-optical cell made of a KRS-5 crystal oriented along the [111]-axis and the corresponding longitudinal elastic mode for producing the dynamic diffractive grating can be exploited. With the acoustic velocity of about 1.92 × 105 cm/s and attenuation of ~10 dB/(cm GHz2), a similar cell is capable of providing an optical aperture of ~5.0 cm and one of the highest figures of acousto-optical merit in solid states in the visible range. Such a cell is rather desirable for the application to direct 5000-channel parallel spectrum analysis with an improved up to 10-5 relative frequency resolution.
Optimization of IBF parameters based on adaptive tool-path algorithm
NASA Astrophysics Data System (ADS)
Deng, Wen Hui; Chen, Xian Hua; Jin, Hui Liang; Zhong, Bo; Hou, Jin; Li, An Qi
2018-03-01
As a kind of Computer Controlled Optical Surfacing(CCOS) technology. Ion Beam Figuring(IBF) has obvious advantages in the control of surface accuracy, surface roughness and subsurface damage. The superiority and characteristics of IBF in optical component processing are analyzed from the point of view of removal mechanism. For getting more effective and automatic tool path with the information of dwell time, a novel algorithm is proposed in this thesis. Based on the removal functions made through our IBF equipment and the adaptive tool-path, optimized parameters are obtained through analysis the residual error that would be created in the polishing process. A Φ600 mm plane reflector element was used to be a simulation instance. The simulation result shows that after four combinations of processing, the surface accuracy of PV (Peak Valley) value and the RMS (Root Mean Square) value was reduced to 4.81 nm and 0.495 nm from 110.22 nm and 13.998 nm respectively in the 98% aperture. The result shows that the algorithm and optimized parameters provide a good theoretical for high precision processing of IBF.
Direct-Solve Image-Based Wavefront Sensing
NASA Technical Reports Server (NTRS)
Lyon, Richard G.
2009-01-01
A method of wavefront sensing (more precisely characterized as a method of determining the deviation of a wavefront from a nominal figure) has been invented as an improved means of assessing the performance of an optical system as affected by such imperfections as misalignments, design errors, and fabrication errors. The method is implemented by software running on a single-processor computer that is connected, via a suitable interface, to the image sensor (typically, a charge-coupled device) in the system under test. The software collects a digitized single image from the image sensor. The image is displayed on a computer monitor. The software directly solves for the wavefront in a time interval of a fraction of a second. A picture of the wavefront is displayed. The solution process involves, among other things, fast Fourier transforms. It has been reported to the effect that some measure of the wavefront is decomposed into modes of the optical system under test, but it has not been reported whether this decomposition is postprocessing of the solution or part of the solution process.
Heterogeneously Integrated Microwave Signal Generators with Narrow Linewidth Lasers
2017-03-20
the linewidth in two ways: (1) increasing the photon lifetime due to effective cavity length enhancement, and (2) providing negative optical...structures. Some devices are also labeled. Figure 1. Microscope image of the photonic microwave generator comprising of two tunable lasers, a coupler...Integrated Photodiodes on Silicon,” IEEE JQE, vol.51, no.11, pp.1-6, Nov. 2015 Figure 9. (left) Optical spectra of two lasers comprising a photonic
Individualized FAC on bottom tab subassemblies to minimize adhesive gap between emitter and optics
NASA Astrophysics Data System (ADS)
Sauer, Sebastian; Müller, Tobias; Haag, Sebastian; Beleke, Andreas; Zontar, Daniel; Baum, Christoph; Brecher, Christian
2017-02-01
High Power Diode Laser (HPDL) systems with short focal length fast-axis collimators (FAC) require submicron assembly precision. Conventional FAC-Lens assembly processes require adhesive gaps of 50 microns or more in order to compensate for component tolerances (e.g. deviation of back focal length) and previous assembly steps. In order to control volumetric shrinkage of fast-curing UV-adhesives shrinkage compensation is mandatory. The novel approach described in this paper aims to minimize the impact of volumetric shrinkage due to the adhesive gap between HPDL edge emitters and FAC-Lens. Firstly, the FAC is actively aligned to the edge emitter without adhesives or bottom tab. The relative position and orientation of FAC to emitter are measured and stored. Consecutively, an individual subassembly of FAC and bottom tab is assembled on Fraunhofer IPT's mounting station with a precision of +/-1 micron. Translational and lateral offsets can be compensated, so that a narrow and uniform glue gap for the consecutive bonding process of bottom tab to heatsink applies (Figure 4). Accordingly, FAC and bottom tab are mounted to the heatsink without major shrinkage compensation. Fraunhofer IPT's department assembly of optical systems and automation has made several publications regarding active alignment of FAC lenses [SPIE LASE 8241-12], volumetric shrinkage compensation [SPIE LASE 9730-28] and FAC on bottom tab assembly [SPIE LASE 9727-31] in automated production environments. The approach described in this paper combines these and is the logical continuation of that work towards higher quality of HPDLs.
Microcomputer Simulation of a Fourier Approach to Optical Wave Propagation
1992-06-01
and transformed input in transform domain). 44 Figure 21. SHFTOUTPUT1 ( inverse transform of product of Bessel filter and transformed input). . . . 44...Figure 22. SHFT OUTPUT2 ( inverse transform of product of ,derivative filter and transformed input).. 45 Figure 23. •tIFT OUTPUT (sum of SHFTOUTPUT1...52 Figure 33. SHFT OUTPUT1 at time slice 1 ( inverse transform of product of Bessel filter and transformed input) .... ............. ... 53
Solution algorithm of dwell time in slope-based figuring model
NASA Astrophysics Data System (ADS)
Li, Yong; Zhou, Lin
2017-10-01
Surface slope profile is commonly used to evaluate X-ray reflective optics, which is used in synchrotron radiation beam. Moreover, the measurement result of measuring instrument for X-ray reflective optics is usually the surface slope profile rather than the surface height profile. To avoid the conversion error, the slope-based figuring model is introduced introduced by processing the X-ray reflective optics based on surface height-based model. However, the pulse iteration method, which can quickly obtain the dell time solution of the traditional height-based figuring model, is not applied to the slope-based figuring model because property of the slope removal function have both positive and negative values and complex asymmetric structure. To overcome this problem, we established the optimal mathematical model for the dwell time solution, By introducing the upper and lower limits of the dwell time and the time gradient constraint. Then we used the constrained least squares algorithm to solve the dwell time in slope-based figuring model. To validate the proposed algorithm, simulations and experiments are conducted. A flat mirror with effective aperture of 80 mm is polished on the ion beam machine. After iterative polishing three times, the surface slope profile error of the workpiece is converged from RMS 5.65 μrad to RMS 1.12 μrad.
Testing of a Stacked Core Mirror for UV Applications
NASA Technical Reports Server (NTRS)
Matthews, Gary W.; Kirk, Charles S.; Maffett, Steven P.; Abplanalp, Calvin E.; Stahl, H. Philip; Eng, Ron; Arnold, William R. Sr.
2013-01-01
Advanced Ultraviolet, Optical, Near-Infrared (UVOIR) Mirror Technology Development (AMTD) Testing Summary: (1) Processing of the stacked core mirror converged very quickly using ion figuring. (2) Results show no significant PSD change due to ion figuring in spatial periods smaller than 20mm. (3) Global surface figure limited by mount repeatability
Ion beam figuring of Φ520mm convex hyperbolic secondary mirror
NASA Astrophysics Data System (ADS)
Meng, Xiaohui; Wang, Yonggang; Li, Ang; Li, Wenqing
2016-10-01
The convex hyperbolic secondary mirror is a Φ520-mm Zerodur lightweight hyperbolic convex mirror. Typically conventional methods like CCOS, stressed-lap polishing are used to manufacture this secondary mirror. Nevertheless, the required surface accuracy cannot be achieved through the use of conventional polishing methods because of the unpredictable behavior of the polishing tools, which leads to an unstable removal rate. Ion beam figuring is an optical fabrication method that provides highly controlled error of previously polished surfaces using a directed, inert and neutralized ion beam to physically sputter material from the optic surface. Several iterations with different ion beam size are selected and optimized to fit different stages of surface figure error and spatial frequency components. Before ion beam figuring, surface figure error of the secondary mirror is 2.5λ p-v, 0.23λ rms, and is improved to 0.12λ p-v, 0.014λ rms in several process iterations. The demonstration clearly shows that ion beam figuring can not only be used to the final correction of aspheric, but also be suitable for polishing the coarse surface of large, complex mirror.
Precision Engineering - SRO 154.
1986-01-01
Operation The principle of interferometric displacement measurement devices is that if two identical, coherent, monochromatic light beams are directed...laser interferometric feedback to enhance the accuracy and precision of a lead screw stage. The precision translation stage was designed to produce...and the deepest was 22 micrometers (875 microinches). Figures 5, 6 and 7 are Nomarsky photomicrographs showing the begin- ning, middle and end of a
Purely temporal figure-ground segregation.
Kandil, F I; Fahle, M
2001-05-01
Visual figure-ground segregation is achieved by exploiting differences in features such as luminance, colour, motion or presentation time between a figure and its surround. Here we determine the shortest delay times required for figure-ground segregation based on purely temporal features. Previous studies usually employed stimulus onset asynchronies between figure- and ground-containing possible artefacts based on apparent motion cues or on luminance differences. Our stimuli systematically avoid these artefacts by constantly showing 20 x 20 'colons' that flip by 90 degrees around their midpoints at constant time intervals. Colons constituting the background flip in-phase whereas those constituting the target flip with a phase delay. We tested the impact of frequency modulation and phase reduction on target detection. Younger subjects performed well above chance even at temporal delays as short as 13 ms, whilst older subjects required up to three times longer delays in some conditions. Figure-ground segregation can rely on purely temporal delays down to around 10 ms even in the absence of luminance and motion artefacts, indicating a temporal precision of cortical information processing almost an order of magnitude lower than the one required for some models of feature binding in the visual cortex [e.g. Singer, W. (1999), Curr. Opin. Neurobiol., 9, 189-194]. Hence, in our experiment, observers are unable to use temporal stimulus features with the precision required for these models.
Feedback enhances feedforward figure-ground segmentation by changing firing mode.
Supèr, Hans; Romeo, August
2011-01-01
In the visual cortex, feedback projections are conjectured to be crucial in figure-ground segregation. However, the precise function of feedback herein is unclear. Here we tested a hypothetical model of reentrant feedback. We used a previous developed 2-layered feedforward spiking network that is able to segregate figure from ground and included feedback connections. Our computer model data show that without feedback, neurons respond with regular low-frequency (∼9 Hz) bursting to a figure-ground stimulus. After including feedback the firing pattern changed into a regular (tonic) spiking pattern. In this state, we found an extra enhancement of figure responses and a further suppression of background responses resulting in a stronger figure-ground signal. Such push-pull effect was confirmed by comparing the figure-ground responses with the responses to a homogenous texture. We propose that feedback controls figure-ground segregation by influencing the neural firing patterns of feedforward projecting neurons.
Exploration of operator method digital optical computers for application to NASA
NASA Technical Reports Server (NTRS)
1990-01-01
Digital optical computer design has been focused primarily towards parallel (single point-to-point interconnection) implementation. This architecture is compared to currently developing VHSIC systems. Using demonstrated multichannel acousto-optic devices, a figure of merit can be formulated. The focus is on a figure of merit termed Gate Interconnect Bandwidth Product (GIBP). Conventional parallel optical digital computer architecture demonstrates only marginal competitiveness at best when compared to projected semiconductor implements. Global, analog global, quasi-digital, and full digital interconnects are briefly examined as alternative to parallel digital computer architecture. Digital optical computing is becoming a very tough competitor to semiconductor technology since it can support a very high degree of three dimensional interconnect density and high degrees of Fan-In without capacitive loading effects at very low power consumption levels.
Ionospheric Propagation Studies during the Precision Targeting Experiments.
1986-01-01
Figure 7 where the mission time is expanded. Figure 7 also shows the MOFF2 and MOFFI as measured directly aboard the aircraft receiving the wideband...terms of the MUF. Questions as to target amplitude and subclutter visibility must also be looked at in detail. During the entire mission MOFF2 > MOFFI
Early-Years Teachers' Concept Images and Concept Definitions: Triangles, Circles, and Cylinders
ERIC Educational Resources Information Center
Tsamir, Pessia; Tirosh, Dina; Levenson, Esther; Barkai, Ruthi; Tabach, Michal
2015-01-01
This study investigates practicing early-years teachers' concept images and concept definitions for triangles, circles, and cylinders. Teachers were requested to define each figure and then to identify various examples and non-examples of the figure. Teachers' use of correct and precise mathematical language and reference to critical and…
Design of precise assembly equipment of large aperture optics
NASA Astrophysics Data System (ADS)
Pei, Guoqing; Xu, Xu; Xiong, Zhao; Yan, Han; Qin, Tinghai; Zhou, Hai; Yuan, Xiaodong
2017-05-01
High-energy solid-state laser is an important way to achieve laser fusion research. Laser fusion facility includes thousands of various types of large aperture optics. These large aperture optics should be assembled with high precision and high efficiency. Currently, however, the assembly of large aperture optics is by man's hand which is in low level of efficiency and labor-intensive. Here, according to the characteristics of the assembly of large aperture optics, we designed three kinds of grasping devices. Using Finite Element Method, we simulated the impact of the grasping device on the PV value and the RMS value of the large aperture optics. The structural strength of the grasping device's key part was analyzed. An experiment was performed to illustrate the reliability and precision of the grasping device. We anticipate that the grasping device would complete the assembly of large aperture optics precisely and efficiently.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taubman, Matthew S.
Stabilization of lasers through locking to optical cavities, atomic transitions, and molecular transitions has enabled the field of precision optical measurement since shortly after the invention of the laser. Recent advances in the field have produced an optical clock that is orders of magnitude more stable than those of just a few years prior. Phase locking of one laser to another, or to a frequency offset from another, formed the basis for linking stable lasers across the optical spectrum, such frequency chains exhibiting progressively finer precision through the years. Phase locking between the modes within a femtosecond pulsed laser hasmore » yielded the optical frequency comb, one of the most beautiful and useful instruments of our time. This talk gives an overview of these topics, from early work through to the latest 1E-16 thermal noise-limited precision recently attained for a stable laser, and the ongoing quest for ever finer precision and accuracy. The issues of understanding and measuring line widths and shapes are also studied in some depth, highlighting implications for servo design for sub-Hz line widths.« less
Measuring large aspherics using a commercially available 3D-coordinate measuring machine
NASA Astrophysics Data System (ADS)
Otto, Wolfgang; Matthes, Axel; Schiehle, Heinz
2000-07-01
A CNC-controlled precision measuring machine is a very powerful tool in the optical shop not only to determine the surface figure, but also to qualify the radius of curvature and conic constant of aspherics. We used a commercially available 3D-coordinate measuring machine (CMM, ZEISS UPMC 850 CARAT S-ACC) to measure the shape of the GEMINI 1-m convex secondary mirrors at different lapping and polishing stages. To determine the measuring accuracy we compared the mechanical measurements with the results achieved by means of an interferometrical test setup. The data obtained in an early stage of polishing were evaluated in Zernike polynomials which show a very good agreement. The deviation concerning long wave rotational symmetrical errors was 20 nm rms, whereas the accuracy measuring of mid spatial frequency deviations was limited to about 100 nm rms.
Simplified Architecture for Precise Aiming of a Deep-Space Communication Laser Transceiver
NASA Technical Reports Server (NTRS)
Ortiz, Gerard G.; Farr, William H.; Charles, Jeffrey R.
2011-01-01
The simplified architecture is a minimal system for a deep-space optical communications transceiver. For a deepspace optical communications link the simplest form of the transceiver requires (1) an efficient modulated optical source, (2) a point-ahead mechanism (PAM) to compensate for two-way light travel, (3) an aperture to reduce the divergence of the transmit laser communication signal and also to collect the uplink communication signal, and (4) a receive detector to sense the uplink communication signal. Additional components are introduced to mitigate for spacecraft microvibrations and to improve the pointing accuracy. The Canonical Transceiver implements this simplified architecture (see figure). A single photon-counting smart focal plane sensor combines acquisition, tracking, and forward link data detection functionality. This improves optical efficiency by eliminating channel splits. A transmit laser blind sensor (e.g. silicon with 1,550-nm beam) provides transmit beam-pointing feedback via the two-photon absorption (TPA) process. This vastly improves the transmit/receive isolation because only the focused transmit beam is detected. A piezoelectric tiptilt actuator implements the required point-ahead angle. This point-ahead mechanism has been demonstrated to have near zero quiescent power and is flight qualified. This architecture also uses an innovative 100-mHz resonant frequency passive isolation platform to filter spacecraft vibrations with voice coil actuators for active tip-tilt correction below the resonant frequency. The canonical deep-space optical communications transceiver makes synergistic use of innovative technologies to reduce size, weight, power, and cost. This optical transceiver can be used to retire risks associated with deep-space optical communications on a planetary pathfinder mission and is complementary to ongoing lunar and access link developments.
Mirrors Containing Biomimetic Shape-Control Actuators
NASA Technical Reports Server (NTRS)
Bar-Cohen, Yoseph; Mouroulis, Pantazis; Bao, Xiaoqi; Sherrit, Stewart
2003-01-01
Curved mirrors of a proposed type would comprise lightweight sheets or films containing integral, biologically inspired actuators for controlling their surface figures. These mirrors could be useful in such applications as collection of solar energy, focusing of radio beams, and (provided sufficient precision could be achieved) imaging. These mirrors were originally intended for use in outer space, but it should also be possible to develop terrestrial versions. Several prior NASA Tech Briefs articles have described a variety of approaches to the design of curved, lightweight mirrors containing integral shape-control actuators. The primary distinction between the present approach and the prior approaches lies in the actuator design concept, which involves shapes and movements reminiscent of those of a variety of small, multi-armed animals. The shape and movement of an actuator of this type can also be characterized as reminiscent of that of an umbrella. This concept can be further characterized as a derivative of that of multifinger grippers, the fingers of which are bimorph bending actuators (see Figure 1). The fingers of such actuators can be strips containing any of a variety of materials that have been investigated for use as actuators, including such electroactive polymers as ionomeric polymer/metal composites (IPMCs), ferroelectric polymers, and grafted elastomers. A mirror according to this proposal would be made from a sheet of one of the actuator composites mentioned above. The design would involve many variables, including the pre-curvature and stiffness of the mirror sheet, the required precision of figure control, the required range of variation in focal length (see Figure 2), the required precision of figure control for imaging or non-imaging use, the bending and twisting moments needed to effect the required deformations, and voltage-tomoment coefficients of the actuators, and the voltages accordingly required for actuation. A typical design would call for segmentation of the electrodes on the actuators so that voltages could be applied locally to effect local bending for fine adjustment of the surface figure.
Mechanism Design Principle for Optical-Precision, Deployable Instruments
NASA Technical Reports Server (NTRS)
Lake, Mark S.; Hachkowski, M. Roman
2000-01-01
The present paper is intended to be a guide for the design of 'microdynamically quiet' deployment mechanisms for optical-precision structures, such as deployable telescope mirrors and optical benches. Many of the guidelines included herein come directly from the field of optomechanical engineering, and are neither newly developed guidelines nor are they uniquely applicable to high-precision deployment mechanisms. However, the application of these guidelines to the design of deployment mechanisms is a rather new practice, so efforts are made herein to illustrate the process through the discussion of specific examples. The present paper summarizes a more extensive set of design guidelines for optical-precision mechanisms that are under development.
Bendable X-ray Optics for High Resolution Imaging
NASA Technical Reports Server (NTRS)
Gubarev, M.; Ramsey, B.; Kilaru, K.; Atkins, C.; Broadway, D.
2014-01-01
Current state-of the-art for x-ray optics fabrication calls for either the polishing of massive substrates into high-angular-resolution mirrors or the replication of thin, lower-resolution, mirrors from perfectly figured mandrels. Future X-ray Missions will require a change in this optics fabrication paradigm in order to achieve sub-arcsecond resolution in light-weight optics. One possible approach to this is to start with perfectly flat, light-weight surface, bend it into a perfect cone, form the desired mirror figure by material deposition, and insert the resulting mirror into a telescope structure. Such an approach is currently being investigated at MSFC, and a status report will be presented detailing the results of finite element analyses, bending tests and differential deposition experiments.
Growth of Acousto-Optic Crystals for Applications in Infrared Region of Spectrum
2005-04-30
Acousto - optic (AO) modulators, deflectors, filters offer convenience, reliability, compact size and fast speed in regulation of optical beams. So far...extremely low acousto - optic figure of merit, which automatically results in high requirements on driving electric power and poor diffraction efficiency. It
Compact Packaging of Photonic Millimeter-Wave Receiver
NASA Technical Reports Server (NTRS)
Nguyen, Hung; Pouch, John; Miranda, Felix; Levi, Anthony F.
2007-01-01
A carrier structure made from a single silicon substrate is the basis of a compact, lightweight, relatively inexpensive package that holds the main optical/electronic coupling components of a photonic millimeter-wave receiver based on a lithium niobate resonator disk. The design of the package is simple and provides for precise relative placement of optical components, eliminating the need for complex, bulky positioning mechanisms like those commonly used to align optical components to optimize focus and coupling. Although a prototype of the package was fabricated as a discrete unit, the design is amenable to integration of the package into a larger photonic and/or electronic receiver system. The components (see figure) include a lithium niobate optical resonator disk of 5-mm diameter and .200- m thickness, positioned adjacent to a millimeter- wave resonator electrode. Other components include input and output coupling prisms and input and output optical fibers tipped with ball lenses for focusing and collimation, respectively. Laser light is introduced via the input optical fiber and focused into the input coupling prism. The input coupling prism is positioned near (but not in contact with) the resonator disk so that by means of evanescent-wave coupling, the input laser light in the prism gives rise to laser light propagating circumferentially in guided modes in the resonator disk. Similarly, a portion of the circumferentially propagating optical power is extracted from the disk by evanescent-wave coupling from the disk to the output coupling prism, from whence the light passes through the collimating ball lens into the output optical fiber. The lens-tipped optical fibers must be positioned at a specified focal distance from the prisms. The optical fibers and the prisms must be correctly positioned relative to the resonator disk and must be oriented to obtain the angle of incidence (55 in the prototype) required for evanescent-wave coupling of light into and out of the desired guided modes in the resonator disk. To satisfy all these requirements, precise alignment features are formed in the silicon substrate by use of a conventional wet-etching process. These features include a 5-mm-diameter, 50- m-deep cavity that holds the disk; two trapezoidal-cross-section recesses for the prisms; and two grooves that hold the optical fibers at the correct positions and angles relative to the prisms and disk. The fiber grooves contain abrupt tapers, near the prisms, that serve as hard stops for positioning the lenses at the focal distance from the prisms. There are also two grooves for prismadjusting rods. The design provides a little slack in the prism recesses for adjusting the positions of the prisms by means of these rods to optimize the optical coupling.
Feedback Enhances Feedforward Figure-Ground Segmentation by Changing Firing Mode
Supèr, Hans; Romeo, August
2011-01-01
In the visual cortex, feedback projections are conjectured to be crucial in figure-ground segregation. However, the precise function of feedback herein is unclear. Here we tested a hypothetical model of reentrant feedback. We used a previous developed 2-layered feedforwardspiking network that is able to segregate figure from ground and included feedback connections. Our computer model data show that without feedback, neurons respond with regular low-frequency (∼9 Hz) bursting to a figure-ground stimulus. After including feedback the firing pattern changed into a regular (tonic) spiking pattern. In this state, we found an extra enhancement of figure responses and a further suppression of background responses resulting in a stronger figure-ground signal. Such push-pull effect was confirmed by comparing the figure-ground responses withthe responses to a homogenous texture. We propose that feedback controlsfigure-ground segregation by influencing the neural firing patterns of feedforward projecting neurons. PMID:21738747
Precision optical slit for high heat load or ultra high vacuum
Andresen, Nord C.; DiGennaro, Richard S.; Swain, Thomas L.
1995-01-01
This invention relates generally to slits used in optics that must be precisely aligned and adjusted. The optical slits of the present invention are useful in x-ray optics, x-ray beam lines, optical systems in which the entrance slit is critical for high wavelength resolution. The invention is particularly useful in ultra high vacuum systems where lubricants are difficult to use and designs which avoid the movement of metal parts against one another are important, such as monochrometers for high wavelength resolution with ultra high vacuum systems. The invention further relates to optical systems in which temperature characteristics of the slit materials is important. The present invention yet additionally relates to precision slits wherein the opposing edges of the slit must be precisely moved relative to a center line between the edges with each edge retaining its parallel orientation with respect to the other edge and/or the center line.
Designs and Materials for Better Coronagraph Occulting Masks
NASA Technical Reports Server (NTRS)
Balasubramanian, Kunjithapatham
2010-01-01
New designs, and materials appropriate for such designs, are under investigation in an effort to develop coronagraph occulting masks having broad-band spectral characteristics superior to those currently employed. These designs and materials are applicable to all coronagraphs, both ground-based and spaceborne. This effort also offers potential benefits for the development of other optical masks and filters that are required (1) for precisely tailored spatial transmission profiles, (2) to be characterized by optical-density neutrality and phase neutrality (that is, to be characterized by constant optical density and constant phase over broad wavelength ranges), and/or (3) not to exhibit optical- density-dependent phase shifts. The need for this effort arises for the following reasons: Coronagraph occulting masks are required to impose, on beams of light transmitted through them, extremely precise control of amplitude and phase according to carefully designed transmission profiles. In the original application that gave rise to this effort, the concern has been to develop broad-band occulting masks for NASA s Terrestrial Planet Finder coronagraph. Until now, experimental samples of these masks have been made from high-energy-beam-sensitive (HEBS) glass, which becomes locally dark where irradiated with a high-energy electron beam, the amount of darkening depending on the electron-beam energy and dose. Precise mask profiles have been written on HEBS glass blanks by use of electron beams, and the masks have performed satisfactorily in monochromatic light. However, the optical-density and phase profiles of the HEBS masks vary significantly with wavelength; consequently, the HEBS masks perform unsatisfactorily in broad-band light. The key properties of materials to be used in coronagraph occulting masks are their extinction coefficients, their indices of refraction, and the variations of these parameters with wavelength. The effort thus far has included theoretical predictions of performances of masks that would be made from alternative materials chosen because the wavelength dependences of their extinction coefficients and their indices of refraction are such that that the optical-density and phase profiles of masks made from these materials can be expected to vary much less with wavelength than do those of masks made from HEBS glass. The alternative materials considered thus far include some elemental metals such as Pt and Ni, metal alloys such as Inconel, metal nitrides such as TiN, and dielectrics such as SiO2. A mask as now envisioned would include thin metal and dielectric films having stepped or smoothly varying thicknesses (see figure). The thicknesses would be chosen, taking account of the indices of refraction and extinction coefficients, to obtain an acceptably close approximation of the desired spatial transmittance profile with a flat phase profile
Defect Analysis of Roll-to-Roll SAIL Manufactured Flexible Display Backplanes
2011-01-01
tenting defect through the SAIL process Figure 5: Flexible backplane electrical tester Figure 6: R2R optical inspection system Figure 7: TEM of TFT ...Analysis of Roll-to-Roll SAIL Manufactured Flexible Display...Marcia Almanza-Workman, Robert A. Garcia, HanJun Kim, Ohseung Kwon, Frank Jeffrey HP Laboratories HPL-2011-35 SAIL, flexible displays, roll-to-roll HP
Acousto-optic interaction in alpha-BaB(2)O(4)and Li(2)B(4)O(7) crystals.
Martynyuk-Lototska, Irina; Mys, Oksana; Dudok, Taras; Adamiv, Volodymyr; Smirnov, Yevgen; Vlokh, Rostyslav
2008-07-01
Experimental studies and analysis of acousto-optic diffraction in alpha-BaB(2)O(4) and Li(2)B(4)O(7) crystals are given. Ultrasonic wave velocity, elastic compliance and stiffness coefficients, and piezo-optic and photoelastic coefficients of alpha-BaB(2)O(4) and Li(2)B(4)O(7) crystals are determined. The acousto-optic figure of merit has been estimated for different possible geometries of acousto-optic interaction. It is shown that the acousto-optic figures of merit for alpha-BaB(2)O(4) crystals reach the value M(2)=(270 +/- 70) x 10(-15) s(3)/kg for the case of interaction with the slowest ultrasonic wave. The directions of propagation and polarization of those acoustic waves are obtained on the basis of construction of acoustic slowness surfaces. The acousto-optic diffraction is experimentally studied for alpha-BaB(2)O(4) and Li(2)B(4)O(7) crystals.
NASA SBIR Subtopic S2.04 "Advanced Optical Components"
NASA Technical Reports Server (NTRS)
Stahl, H. Philip
2009-01-01
The primary purpose of this subtopic is to develop and demonstrate technologies to manufacture ultra-low-cost precision optical systems for very large x-ray, UV/optical or infrared telescopes. Potential solutions include but are not limited to direct precision machining, rapid optical fabrication, slumping or replication technologies to manufacture 1 to 2 meter (or larger) precision quality mirror or lens segments (either normal incidence for uv/optical/infrared or grazing incidence for x-ray). An additional key enabling technology for UV/optical telescopes is a broadband (from 100 nm to 2500 nm) high-reflectivity mirror coating with extremely uniform amplitude and polarization properties which can be deposited on 1 to 3 meter class mirror.
Investigation of Optically Induced Avalanching in GaAs
1989-06-01
by Bovino , et al 4 to increase the hold off voltage. The button switch design of Fig. 4c has been used by several researchers5 ’ 7 to obtain the...ul Long flashover palh Figure 3b. 434 Optical Jlatlern a. Mourou Switch b. Bovino Switch c. Button Switch Figure 4. Photoconductive Switches...Technology and Devices Laboratory, ERADCOM (by L. Bovino , et. all) 4 • The deposition recipe for the contacts is 1) 50 ANi (provides contact to GaAs
2005-10-01
increase in VEGF- A levels following PDT treatment (Figure 7) of orthotopic prostate tumors. Task 2: Design of optical monitoring tools to detect circulating...in intracellular VEGF- A (Figure 5, B) at 0,5 J/cm 2 (1.6 fold). Surprisingly we did not measure any significant increase in intracellular VEGF- A ... levels at the lower dose (0,25 J/cm 2). VEGF-A is known to be regulated at the transcriptional and post-transcriptional levels. We therefore used primers
Molecular Optics Nonlinear Optical Processes in Organic and Polymeric Crystals and Films. Part 1
1991-11-01
Cycio-Octateraene ........... .93 Figure3.3; THG Dispersion Curve for Cyclo-Octateraene .... ......... 94 Figure3.4; Bloch Vector in Pauli Matrix Space... Jung , P. and Hanggi, P, Phys. Rev. Lett. 61, 11 (1989) I [90] Guckenheimer, J. and Holmes, P., Nonlinear Oscillations, Dynamical Sys- tems, and...identity matrix and Pauli matrices. p(t) = 1(1 + fr(t)F * 5) (3.5.6) I where the 3-vector FF is the linear coefficients of the Pauli matrices and is
Nanophotonic Trapping for Precise Manipulation of Biomolecular Arrays
Soltani, Mohammad; Lin, Jun; Forties, Robert A.; Inman, James T.; Saraf, Summer N.; Fulbright, Robert M.; Lipson, Michal; Wang, Michelle D.
2014-01-01
Optical trapping is a powerful manipulation and measurement technique widely employed in the biological and materials sciences1–8. Miniaturizing optical trap instruments onto optofluidic platforms holds promise for high throughput lab-on-chip applications9–16. However, a persistent challenge with existing optofluidic devices has been controlled and precise manipulation of trapped particles. Here we report a new class of on-chip optical trapping devices. Using photonic interference functionalities, an array of stable, three-dimensional on-chip optical traps is formed at the antinodes of a standing-wave evanescent field on a nanophotonic waveguide. By employing the thermo-optic effect via integrated electric microheaters, the traps can be repositioned at high speed (~ 30 kHz) with nanometer precision. We demonstrate sorting and manipulation of individual DNA molecules. In conjunction with laminar flows and fluorescence, we also show precise control of the chemical environment of a sample with simultaneous monitoring. Such a controllable trapping device has the potential for high-throughput precision measurements on chip. PMID:24776649
Nanophotonic trapping for precise manipulation of biomolecular arrays.
Soltani, Mohammad; Lin, Jun; Forties, Robert A; Inman, James T; Saraf, Summer N; Fulbright, Robert M; Lipson, Michal; Wang, Michelle D
2014-06-01
Optical trapping is a powerful manipulation and measurement technique widely used in the biological and materials sciences. Miniaturizing optical trap instruments onto optofluidic platforms holds promise for high-throughput lab-on-a-chip applications. However, a persistent challenge with existing optofluidic devices has been achieving controlled and precise manipulation of trapped particles. Here, we report a new class of on-chip optical trapping devices. Using photonic interference functionalities, an array of stable, three-dimensional on-chip optical traps is formed at the antinodes of a standing-wave evanescent field on a nanophotonic waveguide. By employing the thermo-optic effect via integrated electric microheaters, the traps can be repositioned at high speed (∼30 kHz) with nanometre precision. We demonstrate sorting and manipulation of individual DNA molecules. In conjunction with laminar flows and fluorescence, we also show precise control of the chemical environment of a sample with simultaneous monitoring. Such a controllable trapping device has the potential to achieve high-throughput precision measurements on chip.
Satellite laser ranging to low Earth orbiters: orbit and network validation
NASA Astrophysics Data System (ADS)
Arnold, Daniel; Montenbruck, Oliver; Hackel, Stefan; Sośnica, Krzysztof
2018-04-01
Satellite laser ranging (SLR) to low Earth orbiters (LEOs) provides optical distance measurements with mm-to-cm-level precision. SLR residuals, i.e., differences between measured and modeled ranges, serve as a common figure of merit for the quality assessment of orbits derived by radiometric tracking techniques. We discuss relevant processing standards for the modeling of SLR observations and highlight the importance of line-of-sight-dependent range corrections for the various types of laser retroreflector arrays. A 1-3 cm consistency of SLR observations and GPS-based precise orbits is demonstrated for a wide range of past and present LEO missions supported by the International Laser Ranging Service (ILRS). A parameter estimation approach is presented to investigate systematic orbit errors and it is shown that SLR validation of LEO satellites is not only able to detect radial but also along-track and cross-track offsets. SLR residual statistics clearly depend on the employed precise orbit determination technique (kinematic vs. reduced-dynamic, float vs. fixed ambiguities) but also reveal pronounced differences in the ILRS station performance. Using the residual-based parameter estimation approach, corrections to ILRS station coordinates, range biases, and timing offsets are derived. As a result, root-mean-square residuals of 5-10 mm have been achieved over a 1-year data arc in 2016 using observations from a subset of high-performance stations and ambiguity-fixed orbits of four LEO missions. As a final contribution, we demonstrate that SLR can not only validate single-satellite orbit solutions but also precise baseline solutions of formation flying missions such as GRACE, TanDEM-X, and Swarm.
Edge detection based on adaptive threshold b-spline wavelet for optical sub-aperture measuring
NASA Astrophysics Data System (ADS)
Zhang, Shiqi; Hui, Mei; Liu, Ming; Zhao, Zhu; Dong, Liquan; Liu, Xiaohua; Zhao, Yuejin
2015-08-01
In the research of optical synthetic aperture imaging system, phase congruency is the main problem and it is necessary to detect sub-aperture phase. The edge of the sub-aperture system is more complex than that in the traditional optical imaging system. And with the existence of steep slope for large-aperture optical component, interference fringe may be quite dense when interference imaging. Deep phase gradient may cause a loss of phase information. Therefore, it's urgent to search for an efficient edge detection method. Wavelet analysis as a powerful tool is widely used in the fields of image processing. Based on its properties of multi-scale transform, edge region is detected with high precision in small scale. Longing with the increase of scale, noise is reduced in contrary. So it has a certain suppression effect on noise. Otherwise, adaptive threshold method which sets different thresholds in various regions can detect edge points from noise. Firstly, fringe pattern is obtained and cubic b-spline wavelet is adopted as the smoothing function. After the multi-scale wavelet decomposition of the whole image, we figure out the local modulus maxima in gradient directions. However, it also contains noise, and thus adaptive threshold method is used to select the modulus maxima. The point which greater than threshold value is boundary point. Finally, we use corrosion and expansion deal with the resulting image to get the consecutive boundary of image.
2015-01-01
Multiple-baseline detection of a geostationary satellite with the Navy Precision Optical Interferometer J. Thomas Armstronga, Ellyn K. Bainesa...observations of a geostationary satellite using the Navy Precision Optical Inter- ferometer (NPOI) during the glint season of March 2015. We succeeded in...the second night. These baseline lengths correspond to a resolution of ∼4 m at geostationary altitude. This is the first multiple-baseline
High-Accuracy Surface Figure Measurement of Silicon Mirrors at 80 K
NASA Technical Reports Server (NTRS)
Blake, Peter; Mink, Ronald G.; Chambers, John; Davila, Pamela; Robinson, F. David
2004-01-01
This report describes the equipment, experimental methods, and first results at a new facility for interferometric measurement of cryogenically-cooled spherical mirrors at the Goddard Space Flight Center Optics Branch. The procedure, using standard phase-shifting interferometry, has an standard combined uncertainty of 3.6 nm rms in its representation of the two-dimensional surface figure error at 80, and an uncertainty of plus or minus 1 nm in the rms statistic itself. The first mirror tested was a concave spherical silicon foam-core mirror, with a clear aperture of 120 mm. The optic surface was measured at room temperature using standard absolute techniques; and then the change in surface figure error from room temperature to 80 K was measured. The mirror was cooled within a cryostat. and its surface figure error measured through a fused-silica window. The facility and techniques will be used to measure the surface figure error at 20K of prototype lightweight silicon carbide and Cesic mirrors developed by Galileo Avionica (Italy) for the European Space Agency (ESA).
Multianode Photomultiplier Tube Alignment for the MINERvA Experiment at Fermilab
NASA Astrophysics Data System (ADS)
Bruno, Jorge
2006-10-01
The MINERvA experiment (Main INjector ExpeRiment vA) at FNAL will study the neutrino-nucleon and neutrino-nucleus interaction. The light collection from the detector will be done via optic fibers using Hamamatsu H8804 64-channel photomultiplier tubes (PMT). Each PMT channel needs to be precisely aligned with the corresponding optic fiber. The MINERvA PMT optical boxes contain precision machined optic ``cookies'' which capture the 8x8 array of optic fibers. Each PMT-cookie pair needs to be aligned as precisely as possible. This contribution will describe the alignment setup and procedure implemented at James Madison University.
Orion Optical Navigation Progress Toward Exploration: Mission 1
NASA Technical Reports Server (NTRS)
Holt, Greg N.; D'Souza, Christopher N.; Saley, David
2018-01-01
Optical navigation of human spacecraft was proposed on Gemini and implemented successfully on Apollo as a means of autonomously operating the vehicle in the event of lost communication with controllers on Earth. It shares a history with the "method of lunar distances" that was used in the 18th century and gained some notoriety after its use by Captain James Cook during his 1768 Pacific voyage of the HMS Endeavor. The Orion emergency return system utilizing optical navigation has matured in design over the last several years, and is currently undergoing the final implementation and test phase in preparation for Exploration Mission 1 (EM-1) in 2019. The software development is being worked as a Government Furnished Equipment (GFE) project delivered as an application within the Core Flight Software of the Orion camera controller module. The mathematical formulation behind the initial ellipse fit in the image processing is detailed in Christian. The non-linear least squares refinement then follows the technique of Mortari as an estimation process of the planetary limb using the sigmoid function. The Orion optical navigation system uses a body fixed camera, a decision that was driven by mass and mechanism constraints. The general concept of operations involves a 2-hour pass once every 24 hours, with passes specifically placed before all maneuvers to supply accurate navigation information to guidance and targeting. The pass lengths are limited by thermal constraints on the vehicle since the OpNav attitude generally deviates from the thermally stable tail-to-sun attitude maintained during the rest of the orbit coast phase. Calibration is scheduled prior to every pass due to the unknown nature of thermal effects on the lens distortion and the mounting platform deformations between the camera and star trackers. The calibration technique is described in detail by Christian, et al. and simultaneously estimates the Brown-Conrady coefficients and the Star Tracker/Camera interlock angles. Accurate attitude information is provided by the star trackers during each pass. Figure 1 shows the various phases of lunar return navigation when the vehicle is in autonomous operation with lost ground communication. The midcourse maneuvers are placed to control the entry interface conditions to the desired corridor for safe landing. The general form of optical navigation on Orion is where still images of the Moon or Earth are processed to find the apparent angular diameter and centroid in the camera focal plane. This raw data is transformed into range and bearing angle measurements using planetary data and precise star tracker inertial attitude. The measurements are then sent to the main flight computer's Kalman filter to update the onboard state vector. The images are, of course, collected over an arc to converge the state and estimate velocity. The same basic technique was used by Apollo to satisfy loss-of-comm, but Apollo used manual crew sightings with a vehicle-integral sextant instead of autonomously processing optical imagery. The software development is past its Critical Design Review, and is progressing through test and certification for human rating. In support of this, a hardware-in-the-loop test rig was developed in the Johnson Space Center Electro-Optics Lab to exercise the OpNav system prior to integrated testing on the Orion vehicle. Figure 2 shows the rig, which the test team has dubbed OCILOT (Orion Camera In the Loop Optical Testbed). Analysis performed to date shows a delivery that satisfies an allowable entry corridor as shown in Figure 3.
Symptomatic pancreatic heterotopia treated by local excision.
De Friend, D J; Saa-Gandi, F W; Humphrey, C S; Foster, D N
1991-01-01
Non-ulcer dyspepsia is a continuing problem and in many cases a precise cause is never identified. We present five patients with an allegedly uncommon condition--pancreatic heterotopia. They were managed by local excision of the tumour and after a mean (range) follow up of 42 (9-80) months all remain free of the original symptoms. Images Figure 1 Figure 2 PMID:2013433
Application of Relational Contracting Methods to Federal Construction Projects
2011-03-24
59 viii List of Figures Page Figure 1 Wittgenstein Model (Chan et al., 2010...a precise and comprehensive definition of the concept (Chan et al, 2010). Ludwig Wittgenstein argued that complex concepts are unable to be defined...recently, Chan et al. (2010) utilized the Wittgenstein concept and both of these previous researchers’ work to develop a model of the elements of
Advanced optical fiber communication systems
NASA Astrophysics Data System (ADS)
Kazovsky, Leonid G.
1994-03-01
Our research is focused on three major aspects of advanced optical fiber communication systems: dynamic wavelength division multiplexing (WDM) networks, fiber nonlinearities, and high dynamic range coherent analog optical links. In the area of WDM networks, we have designed and implemented two high-speed interface boards and measured their throughput and latency. Furthermore, we designed and constructed an experimental PSK/ASK transceiver that simultaneously transmits packet-switched ASK data and circuit-switched PSK data on the same optical carrier. In the area of fiber nonlinearities, we investigated the theoretical impact of modulation frequency on cross-phase modulation (XPM) in dispersive fibers. In the area of high dynamic range coherent analog optical links, we developed theoretical expressions for the RF power transfer ratio (or RF power gain) and the noise figure (NF) of angle-modulated links. We then compared the RF power gains and noise figures of these links to that of an intensity modulated direct detection (DD) link.
Advanced Technologies for Structural and Functional Optical Coherence Tomography
2015-01-07
vertical scale bar: 500 um. 9 OCT speckle noise can significantly affect polarimetry measurement and must be reduced for birefringence...shown in Figure 7. This technique enables more accurate polarimetry measurement and quantitative assessment of tissue birefringence. Figure 7
Development of replicated optics for AXAF-1 XDA testing
NASA Technical Reports Server (NTRS)
Engelhaupt, Darell; Wilson, Michele; Martin, Greg
1995-01-01
Advanced optical systems for applications such as grazing incidence Wolter I x-ray mirror assemblies require extraordinary mirror surfaces in terms of fine finish and surface figure. The impeccable mirror surface is on the inside of the rotational mirror form. One practical method of producing devices with these requirements is to first fabricate an exterior surface for the optical device then replicate that surface to have the inverse component with lightweight characteristics. The replicated optic is not better than the master or mandrel from which it is made. This task identifies methods and materials for forming these extremely low roughness optical components. The objectives of this contract were to (1) prepare replication samples of electroless nickel coated aluminum, and determine process requirements for plating XDA test optic; (2) prepare and assemble plating equipment required to process a demonstration optic; (3) characterize mandrels, replicas and test samples for residual stress, surface contamination and surface roughness and figure using equipment at MSFC and; (4) provide technical expertise in establishing the processes, procedures, supplies and equipment needed to process the XDA test optics.
Dispersed Fringe Sensing Analysis - DFSA
NASA Technical Reports Server (NTRS)
Sigrist, Norbert; Shi, Fang; Redding, David C.; Basinger, Scott A.; Ohara, Catherine M.; Seo, Byoung-Joon; Bikkannavar, Siddarayappa A.; Spechler, Joshua A.
2012-01-01
Dispersed Fringe Sensing (DFS) is a technique for measuring and phasing segmented telescope mirrors using a dispersed broadband light image. DFS is capable of breaking the monochromatic light ambiguity, measuring absolute piston errors between segments of large segmented primary mirrors to tens of nanometers accuracy over a range of 100 micrometers or more. The DFSA software tool analyzes DFS images to extract DFS encoded segment piston errors, which can be used to measure piston distances between primary mirror segments of ground and space telescopes. This information is necessary to control mirror segments to establish a smooth, continuous primary figure needed to achieve high optical quality. The DFSA tool is versatile, allowing precise piston measurements from a variety of different optical configurations. DFSA technology may be used for measuring wavefront pistons from sub-apertures defined by adjacent segments (such as Keck Telescope), or from separated sub-apertures used for testing large optical systems (such as sub-aperture wavefront testing for large primary mirrors using auto-collimating flats). An experimental demonstration of the coarse-phasing technology with verification of DFSA was performed at the Keck Telescope. DFSA includes image processing, wavelength and source spectral calibration, fringe extraction line determination, dispersed fringe analysis, and wavefront piston sign determination. The code is robust against internal optical system aberrations and against spectral variations of the source. In addition to the DFSA tool, the software package contains a simple but sophisticated MATLAB model to generate dispersed fringe images of optical system configurations in order to quickly estimate the coarse phasing performance given the optical and operational design requirements. Combining MATLAB (a high-level language and interactive environment developed by MathWorks), MACOS (JPL s software package for Modeling and Analysis for Controlled Optical Systems), and DFSA provides a unique optical development, modeling and analysis package to study current and future approaches to coarse phasing controlled segmented optical systems.
Toward Large-Area Sub-Arcsecond X-Ray Telescopes II
NASA Technical Reports Server (NTRS)
O'Dell, Stephen L.; Allured, Ryan; Ames, Andrew O.; Biskach, Michael P.; Broadway David M.; Bruni, Ricardo J.; Burrows, David; Cao, Jian; Chalifoux, Brandon D.; Chan, Kai-Wing;
2016-01-01
In order to advance significantly scientific objectives, future x-ray astronomy missions will likely call for x-ray telescopes with large aperture areas (approx. = 3 sq m) and fine angular resolution (approx. = 1"). Achieving such performance is programmatically and technologically challenging due to the mass and envelope constraints of space-borne telescopes and to the need for densely nested grazing-incidence optics. Such an x-ray telescope will require precision fabrication, alignment, mounting, and assembly of large areas (approx. = 600 sq m) of lightweight (approx. = 2 kg/sq m areal density) high-quality mirrors, at an acceptable cost (approx. = 1 M$/sq m of mirror surface area). This paper reviews relevant programmatic and technological issues, as well as possible approaches for addressing these issues-including direct fabrication of monocrystalline silicon mirrors, active (in-space adjustable) figure correction of replicated mirrors, static post-fabrication correction using ion implantation, differential erosion or deposition, and coating-stress manipulation of thin substrates.
Profit through predictability: The MRF difference at optimax
NASA Astrophysics Data System (ADS)
Light, Brandon
2007-05-01
In the manufacturing business, there is one product that matters, money. Whether making shoelaces or aircraft carriers a business that doesn't also make a profit doesn't stay around long. Being able to predict operational expenses is critical to determining a product's sale price. Priced too high a product won't sell, too low profit goes away. In the business of precision optics manufacturing, predictability has been often impossible or had large error bars. Manufacturing unpredictability made setting price a challenge. What if predictability could improve by changing the polishing process? Would a predictable, deterministic process lead to profit? Optimax Systems has experienced exactly that. Incorporating Magnetorheological Finishing (MRF) into its finishing process, Optimax saw parts categorized financially as "high risk" become a routine product of higher quality, delivered on time and within budget. Using actual production figures, this presentation will show how much incorporating MRF reduced costs, improved output and increased quality all at the same time.
NASA Technical Reports Server (NTRS)
Antonille, Scott
2004-01-01
For potential use on the SHARPI mission, Eastman Kodak has delivered a 50.8cm CA f/1.25 ultra-lightweight UV parabolic mirror with a surface figure error requirement of 6nm RMS. We address the challenges involved in verifying and mapping the surface error of this large lightweight mirror to +/-3nm using a diffractive CGH null lens. Of main concern is removal of large systematic errors resulting from surface deflections of the mirror due to gravity as well as smaller contributions from system misalignment and reference optic errors. We present our efforts to characterize these errors and remove their wavefront error contribution in post-processing as well as minimizing the uncertainty these calculations introduce. Data from Kodak and preliminary measurements from NASA Goddard will be included.
Dynamic metrology and data processing for precision freeform optics fabrication and testing
NASA Astrophysics Data System (ADS)
Aftab, Maham; Trumper, Isaac; Huang, Lei; Choi, Heejoo; Zhao, Wenchuan; Graves, Logan; Oh, Chang Jin; Kim, Dae Wook
2017-06-01
Dynamic metrology holds the key to overcoming several challenging limitations of conventional optical metrology, especially with regards to precision freeform optical elements. We present two dynamic metrology systems: 1) adaptive interferometric null testing; and 2) instantaneous phase shifting deflectometry, along with an overview of a gradient data processing and surface reconstruction technique. The adaptive null testing method, utilizing a deformable mirror, adopts a stochastic parallel gradient descent search algorithm in order to dynamically create a null testing condition for unknown freeform optics. The single-shot deflectometry system implemented on an iPhone uses a multiplexed display pattern to enable dynamic measurements of time-varying optical components or optics in vibration. Experimental data, measurement accuracy / precision, and data processing algorithms are discussed.
Approach for axisymmetrical asphere polishing with full-area tools
NASA Astrophysics Data System (ADS)
Novi, Andrea; Melozzi, Mauro
1999-09-01
Aspherics up to 500 nm diameter in optical glass or in ceramic substrates have been fabricated using area- compensated polishing tools and conventional optical shop machines. The tool forms are derived starting from the actual shape of the part under figuring. The figure error is measured using an interferometer mounted on-line with the polishing machine. Measurements are taken after each polishing step to compute the new tool form. The process speeds up the fabrication of aspheres and it improves repeatability in the manufacturing of axisymmetrical optics using moderate cost equipment's up to astronomical requirements. In the paper we present some examples of polishing results using the above mentioned approach on different aspherics for space applications.
New Alloys for Electroformed Replicated X-Ray Optics
NASA Technical Reports Server (NTRS)
Engelhaupt, D.; Ramsey, B. D.; ODell, S. L.; Jones, W. D.; Russell, J. K.
2000-01-01
The process of electroforming x-ray mirror shells off a superpolished mandrel has been widely used. The recently launched XMM mission is a good example of this, containing 174 such mirror shells of diameters ranging from 0.3-0.7 m and thicknesses of 0.47-1.07 mm. To continue to utilize this technique for the next generation of x-ray observatories, where ever-larger collecting areas will be required within the constraints of tight weight budgets, demands that new alloys be developed that can withstand the large stresses imposed on very thin shells by the replication and handling processes. Towards this end, we began a development program in late 1997 to produce a high-strength alloy suitable for electroforming very thin high-resolution x-ray optics. The requirements for this task are quite severe; not only must the electroformed deposit be very strong, it must also have extremely low residual stresses to prevent serious figure distortions in large thin-walled shells. Further, the electroforming must be performed at near room temperature, as large temperature changes will modify the figure of the mandrel, in an environment that is not corrosive for the mandrel. The figure of merit for the strength of the electroformed deposit is its Precision Elastic Limit (PEL). This is a measure of permanent strain, at the few parts per million level, under applied stress. Pure nickel is very ductile and will permanently deform, at the parts-per-million level under loads of a few x 10(exp 7) Pa. These stresses are easily exceeded when thin-walled shells (150 micron thick) are replicated. Our goal was to develop an alloy an order of magnitude stronger than this. We will present the results of our development program, showing the evolution of our plating baths through to our present 'glassy' nickel alloy that satisfies the goals above. For each we will show the electroforming characteristics of the bath and the PEL measurements for the resulting alloys. We estimate the ultimate limit on shell thickness and mass for x-ray mirrors produced in these baths.
NASA Astrophysics Data System (ADS)
Pareschi, Giovanni; Citterio, Oberto; Civitani, Marta M; Basso, Stefano; Campana, Sergio; Conconi, Paolo; Ghigo, Mauro; Mattaini, Enrico; Moretti, Alberto; Parodi, Giancarlo; Tagliaferri, Gianpiero
2014-08-01
The implementation of an X-ray mission with high imaging capabilities, similar to those achieved with Chandra (<1 arcsec Half Energy Width, HEW), but with a much larger throughput is very attractive, even if challenging. For such a mission the scientific opportunities, in particular for the study of the early Universe, would remain at the state of the art for the next decades. Initially the ESA-led XEUS mission was proposed, with an effective area of several m2 and an angular resolution better than 2 arcsec HEW. Unfortunately, this mission was not implemented, mainly due to the costs and the low level of technology readiness. Currently the most advanced proposal for such a mission is the SMART-X project, led by CfA together with other US institutes. This project is based on adjustable segments of thin foil mirrors with piezo-electric actuators, aiming to achieve an effective area >2 m2 at 1 keV and an angular resolution better than 1 arcsec HEW. Another attractive technology to realize an X-ray telescope with similar characteristics is being developed at NASA/Goddard. In this case the mirrors are based on Si substrates that are super-polished and figured starting from a bulky Si ingot, from which they are properly cut. Here we propose an alternative method based on precise direct grinding, figuring and polishing of thin (a few mm) glass shells with innovative deterministic polishing methods. This is followed by a final correction via ion figuring to obtain the desired accuracy. For this purpose, a temporary stiffening structure is used to support the shell from the polishing operations up to its integration in the telescope supporting structure. This paper deals with the technological process under development, the results achieved so far and some mission scenarios based on this kind of optics, aiming to achieve an effective area more than 10 times larger than Chandra and an angular resolution of 1 arcsec HEW on axis and of a few arcsec off-axis across a large field of view (1o in diameter).
NASA Astrophysics Data System (ADS)
Harford, Steven T.; Gutierrez, Homero; Newman, Michael; Pierce, Robert; Quakenbush, Tim; Wallace, John; Bornstein, Michael
2014-03-01
Ball Aerospace & Technologies Corp. (BATC) has developed a Risley Beam Pointer (RBP) mechanism capable of agile slewing, accurate pointing and high bandwidth. The RBP is comprised of two wedged prisms that offer a wide Field of Regard (FOR) and may be manufactured and operated with diffraction limited optical quality. The tightly packaged mechanism is capable of steering a 4 inch beam over a 60° half angle cone with better than 60 μrad precision. Absolute accuracy of the beam steering is better than 1 mrad. The conformal nature of the RBP makes it an ideal mechanism for use on low altitude aircraft and unmanned aerial vehicles. Unique aspects of the opto-mechanical design include i) thermal compliance to maintain bearing preload and optical figure over a wide temperature range; and ii) packaging of a remote infrared sensor that periodically reports the temperature of both prisms for accurate determination of the index of refraction. The pointing control system operates each prism independently and employs an inner rate loop nested within an outer position loop. Mathematics for the transformation between line-of-sight coordinates and prism rotation are hosted on a 200 MHz microcontroller with just 516 KB of RAM.
A new optical head tracing reflected light for nanoprofiler
NASA Astrophysics Data System (ADS)
Okuda, K.; Okita, K.; Tokuta, Y.; Kitayama, T.; Nakano, M.; Kudo, R.; Yamamura, K.; Endo, K.
2014-09-01
High accuracy optical elements are applied in various fields. For example, ultraprecise aspherical mirrors are necessary for developing third-generation synchrotron radiation and XFEL (X-ray Free Electron LASER) sources. In order to make such high accuracy optical elements, it is necessary to realize the measurement of aspherical mirrors with high accuracy. But there has been no measurement method which simultaneously achieves these demands yet. So, we develop the nanoprofiler that can directly measure the any surfaces figures with high accuracy. The nanoprofiler gets the normal vector and the coordinate of a measurement point with using LASER and the QPD (Quadrant Photo Diode) as a detector. And, from the normal vectors and their coordinates, the three-dimensional figure is calculated. In order to measure the figure, the nanoprofiler controls its five motion axis numerically to make the reflected light enter to the QPD's center. The control is based on the sample's design formula. We measured a concave spherical mirror with a radius of curvature of 400 mm by the deflection method which calculates the figure error from QPD's output, and compared the results with those using a Fizeau interferometer. The profile was consistent within the range of system error. The deflection method can't neglect the error caused from the QPD's spatial irregularity of sensitivity. In order to improve it, we have contrived the zero method which moves the QPD by the piezoelectric motion stage and calculates the figure error from the displacement.
A simple and effective figure caption detection system for old-style documents
NASA Astrophysics Data System (ADS)
Liu, Zongyi; Zhou, Hanning
2011-01-01
Identifying figure captions has wide applications in producing high quality e-books such as kindle books or ipad books. In this paper, we present a rule-based system to detect horizontal figure captions in old-style documents. Our algorithm consists of three steps: (i) segment images into regions of different types such as text and figures, (ii) search the best caption region candidate based on heuristic rules such as region alignments and distances, and (iii) expand caption regions identified in step (ii) with its neighboring text-regions in order to correct oversegmentation errors. We test our algorithm using 81 images collected from old-style books, with each image containing at least one figure area. We show that the approach is able to correctly detect figure captions from images with different layouts, and we also measure its performances in terms of both precision rate and recall rate.
Micro-optical fabrication by ultraprecision diamond machining and precision molding
NASA Astrophysics Data System (ADS)
Li, Hui; Li, Likai; Naples, Neil J.; Roblee, Jeffrey W.; Yi, Allen Y.
2017-06-01
Ultraprecision diamond machining and high volume molding for affordable high precision high performance optical elements are becoming a viable process in optical industry for low cost high quality microoptical component manufacturing. In this process, first high precision microoptical molds are fabricated using ultraprecision single point diamond machining followed by high volume production methods such as compression or injection molding. In the last two decades, there have been steady improvements in ultraprecision machine design and performance, particularly with the introduction of both slow tool and fast tool servo. Today optical molds, including freeform surfaces and microlens arrays, are routinely diamond machined to final finish without post machining polishing. For consumers, compression molding or injection molding provide efficient and high quality optics at extremely low cost. In this paper, first ultraprecision machine design and machining processes such as slow tool and fast too servo are described then both compression molding and injection molding of polymer optics are discussed. To implement precision optical manufacturing by molding, numerical modeling can be included in the future as a critical part of the manufacturing process to ensure high product quality.
Enhancing Space Situational Awareness using a 3U CubeSat with Optical Imager
2010-12-01
53 viii THIS PAGE INTENTIONALLY LEFT BLANK ix LIST OF FIGURES Figure 1. Miniature Imaging Spacecraft, Pumpkin Inc.(From [1...for the payload, the Miniature Imaging Spacecraft (MISC) from Pumpkin , Inc. Figure 1. Miniature Imaging Spacecraft, Pumpkin Inc.(From [1]) In...4 collisions in space also add to the amount of orbital debris. Just within the past few years, there have been three spacecraft collisions that
Spherical primary optical telescope (SPOT) segments
NASA Astrophysics Data System (ADS)
Hall, Christopher; Hagopian, John; DeMarco, Michael
2012-09-01
The spherical primary optical telescope (SPOT) project is an internal research and development program at NASA Goddard Space Flight Center. The goals of the program are to develop a robust and cost effective way to manufacture spherical mirror segments and demonstrate a new wavefront sensing approach for continuous phasing across the segmented primary. This paper focuses on the fabrication of the mirror segments. Significant cost savings were achieved through the design, since it allowed the mirror segments to be cast rather than machined from a glass blank. Casting was followed by conventional figuring at Goddard Space Flight Center. After polishing, the mirror segments were mounted to their composite assemblies. QED Technologies used magnetorheological finishing (MRF®) for the final figuring. The MRF process polished the mirrors while they were mounted to their composite assemblies. Each assembly included several magnetic invar plugs that extended to within an inch of the face of the mirror. As part of this project, the interaction between the MRF magnetic field and invar plugs was evaluated. By properly selecting the polishing conditions, MRF was able to significantly improve the figure of the mounted segments. The final MRF figuring demonstrates that mirrors, in the mounted configuration, can be polished and tested to specification. There are significant process capability advantes due to polishing and testing the optics in their final, end-use assembled state.
Development of TIF based figuring algorithm for deterministic pitch tool polishing
NASA Astrophysics Data System (ADS)
Yi, Hyun-Su; Kim, Sug-Whan; Yang, Ho-Soon; Lee, Yun-Woo
2007-12-01
Pitch is perhaps the oldest material used for optical polishing, leaving superior surface texture, and has been used widely in the optics shop floor. However, for its unpredictable controllability of removal characteristics, the pitch tool polishing has been rarely analysed quantitatively and many optics shops rely heavily on optician's "feel" even today. In order to bring a degree of process controllability to the pitch tool polishing, we added motorized tool motions to the conventional Draper type polishing machine and modelled the tool path in the absolute machine coordinate. We then produced a number of Tool Influence Function (TIF) both from an analytical model and a series of experimental polishing runs using the pitch tool. The theoretical TIFs agreed well with the experimental TIFs to the profile accuracy of 79 % in terms of its shape. The surface figuring algorithm was then developed in-house utilizing both theoretical and experimental TIFs. We are currently undertaking a series of trial figuring experiments to prove the performance of the polishing algorithm, and the early results indicate that the highly deterministic material removal control with the pitch tool can be achieved to a certain level of form error. The machine renovation, TIF theory and experimental confirmation, figuring simulation results are reported together with implications to deterministic polishing.
Optically Driven Spin Based Quantum Dots for Quantum Computing
2008-01-01
time . Figure 3. Demonstration of optical pumping. This shows the absorption as a function of bias voltage and laser energy. In region...319,076 319,079 0 2 0 2 0 2 0 2 0 2 R el at iv e ab so rp tio n (× 1 0– 4 ) Probe frequency (GHz) Time constant (ms) 1 1 3 10 30 c Figure 1 | Laser ...spectrum of the forward (or backward) scan. c, The probe absorption spectrum as a function of the laser scan rate, indicated by the lock-in time
Process influences and correction possibilities for high precision injection molded freeform optics
NASA Astrophysics Data System (ADS)
Dick, Lars; Risse, Stefan; Tünnermann, Andreas
2016-08-01
Modern injection molding processes offer a cost-efficient method for manufacturing high precision plastic optics for high volume applications. Besides form deviation of molded freeform optics, internal material stress is a relevant influencing factor for the functionality of a freeform optics in an optical system. This paper illustrates dominant influence parameters of an injection molding process relating to form deviation and internal material stress based on a freeform demonstrator geometry. Furthermore, a deterministic and efficient way for 3D mold correcting of systematic, asymmetrical shrinkage errors is shown to reach micrometer range shape accuracy at diameters up to 40 mm. In a second case, a stress-optimized parameter combination using unusual molding conditions was 3D corrected to reach high precision and low stress freeform polymer optics.
NASA Astrophysics Data System (ADS)
Gómez-Pedrero, José A.; Rodríguez-Ibañez, Diego; Alonso, José; Quirgoa, Juan A.
2015-09-01
With the advent of techniques devised for the mass production of optical components made with surfaces of arbitrary form (also known as free form surfaces) in the last years, a parallel development of measuring systems adapted for these new kind of surfaces constitutes a real necessity for the industry. Profilometry is one of the preferred methods for the assessment of the quality of a surface, and is widely employed in the optical fabrication industry for the quality control of its products. In this work, we present the design, development and assembly of a new profilometer with five axis of movement, specifically suited to the measurement of medium size (up to 150 mm of diameter) "free-form" optical surfaces with sub-micrometer accuracy and low measuring times. The apparatus is formed by three X, Y, Z linear motorized positioners plus and additional angular and a tilt positioner employed to locate accurately the surface to be measured and the probe which can be a mechanical or an optical one, being optical one a confocal sensor based on chromatic aberration. Both optical and mechanical probes guarantee an accuracy lower than the micrometer in the determination of the surface height, thus ensuring an accuracy in the surface curvatures of the order of 0.01 D or better. An original calibration procedure based on the measurement of a precision sphere has been developed in order to correct the perpendicularity error between the axes of the linear positioners. To reduce the measuring time of the profilometer, a custom electronics, based on an Arduino™ controller, have been designed and produced in order to synchronize the five motorized positioners and the optical and mechanical probes so that a medium size surface (around 10 cm of diameter) with a dynamic range in curvatures of around 10 D, can be measured in less than 300 seconds (using three axes) keeping the resolution in height and curvature in the figures mentioned above.
Telescope technology for space-borne submillimeter astronomy
NASA Technical Reports Server (NTRS)
Lehman, David H.; Helou, George
1990-01-01
The Precision Segmented Reflector (PSR) project which is developing telescope technology needed for future spaceborne submillimeter astronomy missions is described. Four major technical areas are under development. Lighweight composite mirrors and associated materials, precision structures and segmented reflector figure sensing and control are discussed. The objectives of the PSR project, approaches, and project technology status, are reported.
A Stainless-Steel Mandrel for Slumping Glass X-ray Mirrors
NASA Technical Reports Server (NTRS)
Gubarev, Mikhail V.; O'Dell, Stephen L.; Jones, William D.; Kester, Thomas J.; Griffith, Charles W.; Zhang, William W.; Saha, Timo T.; Chan, Kai-Wing
2009-01-01
We have fabricated a precision full-cylinder stainless-steel mandrel at Marshall Space Flight Center. The mandrel is figured for a 30-cm diameter primary (paraboloid) mirror of an 840-cm focal-length Wolter-1 telescope. We have developed this mandrel for experiments in slumping.thermal forming at about 600 C.of glass mirror segments at Goddard Space Flight Center, in support of NASA's participation in the International X-ray Observatory (IXO). Precision turning of stainless-steel mandrels may offer a low-cost alternative to conventional figuring of fused-silica or other glassy forming mandrels. We report on the fabrication, metrology, and performance of this first mandrel; then we discuss plans and goals for stainless-steel mandrel technology.
NASA Astrophysics Data System (ADS)
Sugawara, Jun; Maloney, Chris
2016-07-01
NEXCERATM cordierite ceramics, which have ultra-low thermal expansion properties, are perfect candidate materials to be used for light-weight satellite mirrors that are used for geostationary earth observation and for mirrors used in ground-based astronomical metrology. To manufacture the high precision aspheric shapes required, the deterministic aspherization and figure correction capabilities of Magnetorheological Finishing (MRF) are tested. First, a material compatibility test is performed to determine the best method for achieving the lowest surface roughness of RMS 0.8nm on plano surfaces made of NEXCERATM ceramics. Secondly, we will use MRF to perform high precision figure correction and to induce a hyperbolic shape into a conventionally polished 100mm diameter sphere.
A Stainless-Steel Mandrel for Slumping Glass X-Ray Mirrors
NASA Technical Reports Server (NTRS)
ODell, Stephen L.; Gubarev, Mikhail V.; Jones, William D.; Kester, Thomas J.; Griffith, Charles W.; Zhang, William W.; Saha, Timo T.; Chan, Kai-Wing
2008-01-01
We have fabricated a precision full -cylinder stainless-steel mandrel at Marshall Space Flight Center. The mandrel is figured for a 30-cm-diameter primary (paraboloid) mirror of an 840-cm focal-lengthWolter-1 telescope. We have developed this mandrel for experiments in slumping.thermal forming at about 600 C-of glass mirror segments at Goddard Space Flight Center, in support of NASA fs participation in the International X -ray Observatory (IXO). Precision turning of stainless ]steel mandrels may offer a lowcost alternative to conventional figuring of fused -silica or other glassy forming mandrels. We report on the fabrication, metrology, and performance of this first mandrel; then we discuss plans and goals for stainless-steel mandrel technology.
Automatic Locking of Laser Frequency to an Absorption Peak
NASA Technical Reports Server (NTRS)
Koch, Grady J.
2006-01-01
An electronic system adjusts the frequency of a tunable laser, eventually locking the frequency to a peak in the optical absorption spectrum of a gas (or of a Fabry-Perot cavity that has an absorption peak like that of a gas). This system was developed to enable precise locking of the frequency of a laser used in differential absorption LIDAR measurements of trace atmospheric gases. This system also has great commercial potential as a prototype of means for precise control of frequencies of lasers in future dense wavelength-division-multiplexing optical communications systems. The operation of this system is completely automatic: Unlike in the operation of some prior laser-frequency-locking systems, there is ordinarily no need for a human operator to adjust the frequency manually to an initial value close enough to the peak to enable automatic locking to take over. Instead, this system also automatically performs the initial adjustment. The system (see Figure 1) is based on a concept of (1) initially modulating the laser frequency to sweep it through a spectral range that includes the desired absorption peak, (2) determining the derivative of the absorption peak with respect to the laser frequency for use as an error signal, (3) identifying the desired frequency [at the very top (which is also the middle) of the peak] as the frequency where the derivative goes to zero, and (4) thereafter keeping the frequency within a locking range and adjusting the frequency as needed to keep the derivative (the error signal) as close as possible to zero. More specifically, the system utilizes the fact that in addition to a zero crossing at the top of the absorption peak, the error signal also closely approximates a straight line in the vicinity of the zero crossing (see Figure 2). This vicinity is the locking range because the linearity of the error signal in this range makes it useful as a source of feedback for a proportional + integral + derivative control scheme that constantly adjusts the frequency in an effort to drive the error to zero. When the laser frequency deviates from the midpeak value but remains within the locking range, the magnitude and sign of the error signal indicate the amount of detuning and the control circuitry adjusts the frequency by what it estimates to be the negative of this amount in an effort to bring the error to zero.
Injection molded polymer optics in the 21st Century
NASA Astrophysics Data System (ADS)
Beich, William S.
2005-08-01
Precision polymer optics, manufactured by injection molding techniques, has been a key enabling technology for several decades now. The technology, which can be thought of as a subset of the wider field of precision optics manufacturing, was pioneered in the United States by companies such as Eastman Kodak, US Precision Lens, and Polaroid. In addition to suppliers in the U.S. there are several companies worldwide that design and manufacture precision polymer optics, for example Philips High Tech Plastics in Europe and Fujinon in Japan. Designers who are considering using polymer optics need a fundamental understanding of exactly how the optics are created. This paper will survey the technology and processes that are employed in the successful implementation of a polymer optic solution from a manufacturer's perspective. Special emphasis will be paid to the unique relationship between the molds and the optics that they produce. We will discuss the key elements of production: molding resins, molds and molding equipment, and metrology. Finally we will offer a case study to illustrate just how the optics designer carries a design concept through to production. The underlying theme throughout the discussion of polymer optics is the need for the design team to work closely with an experienced polymer optics manufacturer with a solid track record of success in molded optics. As will be seen shortly, the complex interaction between thermoplastics, molds, and molding machines dictates the need for working closely with a supplier who has the critical knowledge needed to manage all aspects of the program.
2006-10-01
6 Figure 6. CyberStrider (Jacobus et al., 1998, page 17), contract number M67004-96-C-0027. ....7 Figure 7. Veda system...1998 and developed by Veda , Inc., uses optical tracking to locate the user within a defined volume (Lockheed Martin, 1997). The Veda System is...Figure 7. Veda system. 8 In 1993, the Naval Air Warfare Center’s Training Systems Division developed the team tactical
Precision measurement with an optical Josephson junction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ng, H. T.; Burnett, K.; Dunningham, J. A.
2007-06-15
We present a theoretical study of a type of Josephson device, the so-called 'optical Josephson junction' [Y. Shin et al. Phys. Rev. Lett. 95, 170402 (2005).]. In this device, two condensates are optically coupled through a waveguide by a pair of Bragg beams. This optical Josephson junction differs from the usual Josephson junction where condensates are weakly coupled by tunneling through a barrier. We discuss the use of this optical Josephson junction, for making precision measurements.
Threshold Differences on Figure and Ground: Gelb and Granit (1923)
Kinateder, Max
2017-01-01
In 1923, Gelb and Granit, using a method of adjustment for a small red light, reported a lower threshold for the target when presented on a ground region than on an adjacent figural region. More recent work in perceptual organization has found precisely the opposite—a processing advantage seems to go to items presented on the figure, not the ground. Although Gelb and Granit continue to be cited for their finding, it has not previously been available as an English translation. Understanding their methodology and results is important for integrating early Gestalt theory with more recent investigations. PMID:28286640
Threshold Differences on Figure and Ground: Gelb and Granit (1923).
Kinateder, Max; Nelson, Rolf
2017-01-01
In 1923, Gelb and Granit, using a method of adjustment for a small red light, reported a lower threshold for the target when presented on a ground region than on an adjacent figural region. More recent work in perceptual organization has found precisely the opposite-a processing advantage seems to go to items presented on the figure, not the ground. Although Gelb and Granit continue to be cited for their finding, it has not previously been available as an English translation. Understanding their methodology and results is important for integrating early Gestalt theory with more recent investigations.
Zhang, Qihang; Zhang, Yifei; Li, Junying; Soref, Richard; Gu, Tian; Hu, Juejun
2018-01-01
In this Letter, we propose a broadband, nonvolatile on-chip switch design in the telecommunication C-band with record low loss and crosstalk. The unprecedented device performance builds on: 1) a new optical phase change material (O-PCM) Ge 2 Sb 2 Se 4 Te 1 (GSST), which exhibits significantly reduced optical attenuation compared to traditional O-PCMs, and 2) a nonperturbative design that enables low-loss device operation beyond the classical figure-of-merit (FOM) limit. We further demonstrate that the 1-by-2 and 2-by-2 switches can serve as basic building blocks to construct nonblocking and nonvolatile on-chip switching fabric supporting arbitrary numbers of input and output ports.
A new polishing process for large-aperture and high-precision aspheric surface
NASA Astrophysics Data System (ADS)
Nie, Xuqing; Li, Shengyi; Dai, Yifan; Song, Ci
2013-07-01
The high-precision aspheric surface is hard to be achieved due to the mid-spatial frequency error in the finishing step. The influence of mid-spatial frequency error is studied through the simulations and experiments. In this paper, a new polishing process based on magnetorheological finishing (MRF), smooth polishing (SP) and ion beam figuring (IBF) is proposed. A 400mm aperture parabolic surface is polished with this new process. The smooth polishing (SP) is applied after rough machining to control the MSF error. In the middle finishing step, most of low-spatial frequency error is removed by MRF rapidly, then the mid-spatial frequency error is restricted by SP, finally ion beam figuring is used to finish the surface. The surface accuracy is improved from the initial 37.691nm (rms, 95% aperture) to the final 4.195nm. The results show that the new polishing process is effective to manufacture large-aperture and high-precision aspheric surface.
Interferometry on grazing incidence optics
NASA Astrophysics Data System (ADS)
Geary, Joseph M.; Maeda, Riki
1987-12-01
An interfeormetric procedure is described that shows potential for obtaining surface figure error maps of grazing incidence optics at normal incidence. Such optics are found in some laser resonator configurations and in Wolter-type X-ray optics. The procedure makes use of cylindrical wavefronts and error subtraction techniques over subapertures. The surface error maps obtained will provide critical information to opticians for the fabrication process.
Accuracy evaluation of intraoral optical impressions: A clinical study using a reference appliance.
Atieh, Mohammad A; Ritter, André V; Ko, Ching-Chang; Duqum, Ibrahim
2017-09-01
Trueness and precision are used to evaluate the accuracy of intraoral optical impressions. Although the in vivo precision of intraoral optical impressions has been reported, in vivo trueness has not been evaluated because of limitations in the available protocols. The purpose of this clinical study was to compare the accuracy (trueness and precision) of optical and conventional impressions by using a novel study design. Five study participants consented and were enrolled. For each participant, optical and conventional (vinylsiloxanether) impressions of a custom-made intraoral Co-Cr alloy reference appliance fitted to the mandibular arch were obtained by 1 operator. Three-dimensional (3D) digital models were created for stone casts obtained from the conventional impression group and for the reference appliances by using a validated high-accuracy reference scanner. For the optical impression group, 3D digital models were obtained directly from the intraoral scans. The total mean trueness of each impression system was calculated by averaging the mean absolute deviations of the impression replicates from their 3D reference model for each participant, followed by averaging the obtained values across all participants. The total mean precision for each impression system was calculated by averaging the mean absolute deviations between all the impression replicas for each participant (10 pairs), followed by averaging the obtained values across all participants. Data were analyzed using repeated measures ANOVA (α=.05), first to assess whether a systematic difference in trueness or precision of replicate impressions could be found among participants and second to assess whether the mean trueness and precision values differed between the 2 impression systems. Statistically significant differences were found between the 2 impression systems for both mean trueness (P=.010) and mean precision (P=.007). Conventional impressions had higher accuracy with a mean trueness of 17.0 ±6.6 μm and mean precision of 16.9 ±5.8 μm than optical impressions with a mean trueness of 46.2 ±11.4 μm and mean precision of 61.1 ±4.9 μm. Complete arch (first molar-to-first molar) optical impressions were less accurate than conventional impressions but may be adequate for quadrant impressions. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Motion Control and Coupled Oscillators
1995-01-01
eciency considerations have also been of interest (see [7] for related discussion). Apparently, c.f. Figure 2, the paramecium gets around in a uid...the paramecium , in other contexts of animal movement, dynamic in uences play an important part (e.g. in walking, trotting and galloping gaits of...precisely 2 Figure 2. Paramecium this mechanism, variously associated with geometric phases, area rules, and Lie bracket generation that has had a crucial
1983-12-01
and composition of the earth. The early Greeks, in their speculation and theorizing, ranged from the flat disc advocated by Homer to Pythagoras ...8217 spherical figure - an idea supported one hundred years later by Aristotle. Pythagoras was a mathemati- cian and to him the most perfect figure was a...One method based on Stokes’ Theorem is mentioned in the discussion of physical geodesy (Chapter V). Precise geodetic leveling is used to establish a
Velocity Plume Profiles for Hall Thrusters Using Laser Diagnostic
2010-06-01
53 Collecting LIF Using Fiber Optics .............................................................................58 Vacuum ...54 Figure 40. Etalon Issue Through Vacuum Chamber Window [25]. ................................. 55 Figure 41. Collimator with Adapter in a...Methodology Facility Set-up Vacuum Chamber Testing took place within a vacuum chamber located at the AFIT Space Propulsion Analysis and System Simulation
Novel Optical Metamaterials and Approaches for Fabrication
2012-08-01
phage display , we have also identified peptides that bind with nanoparticles and glass substrates. This is a critical step in engineering M13 ...with 2-mercaptoethanol ............................................... 12 Figure 13: DNA sequence of the three rounds of phage display selection with...corresponding amino acids ................................................................................ 13 Figure 14: M13 Phage bound to silicon
Technologies for precision manufacture of current and future windows and domes
NASA Astrophysics Data System (ADS)
Hallock, Bob; Shorey, Aric
2009-05-01
The final finish and characterization of windows and domes presents a number of challenges in achieving desired precision with acceptable cost and schedule. This becomes more difficult with advanced materials and as window and dome shapes and requirements become more complex, including acute angle corners, transmitted wavefront specifications, aspheric geometries and trending toward conformal surfaces. Magnetorheological Finishing (MRF®) and Magnetorheological Jet (MR Jet®), along with metrology provided by Sub-aperture Stitching Interferometry (SSI®) have several unique attributes that provide them advantages in enhancing fabrication of current and next generation windows and domes. The advantages that MRF brings to the precision finishing of a wide range of shapes such as flats, spheres (including hemispheres), cylinders, aspheres and even freeform optics, has been well documented. Recent advancements include the ability to finish freeform shapes up to 2-meters in size as well as progress in finishing challenging IR materials. Due to its shear-based removal mechanism in contrast to the pressure-based process of other techniques, edges are not typically rolled, in particular on parts with acute angle corners. MR Jet provides additional benefits, particularly in the finishing of the inside of steep concave domes and other irregular shapes. The ability of MR Jet to correct the figure of conformal domes deterministically and to high precision has been demonstrated. Combining these technologies with metrology techniques, such as SSI provides a solution for finishing current and future windows and domes in a reliable, deterministic and cost-effective way. The ability to use the SSI to characterize a range of shapes such as domes and aspheres, as well as progress in using MRF and MR Jet for finishing conventional and conformal windows and domes with increasing size and complexity of design will be presented.
NASA Astrophysics Data System (ADS)
Huang, Chien-Yao; Chang, Chun-Ming; Ho, Cheng-Fong; Lee, Tai-Wen; Lin, Ping-Hung; Hsu, Wei-Yao
2017-06-01
The advantage of 3D printing technique is flexible in design and fabrication. Using 3D printing technique, the traditional manufacturing limitations are not considered. The optical lens is the key component in an optical system. The traditional process to manufacture optical plastic lens is injection molding. However injection molding is only suitable for plastics lens, it cannot fabricate optical and mechanical components at same time. The assembly error of optical system can be reduced effectively with fabricating optical and mechanical components at same time. The process of printing optical and mechanical components simultaneously is proposed in previous papers, but the optical surface of printing components is not transparent. If we increase the transmittance of the optical surface, the printing components which fabricated by 3D printing process could be high transmission. Therefore, precise diamond turning technique has been used to turning the surface of 3D printing optical lens in this paper. The precise diamond turning techniques could process surfaces of components to meet the requirements of optical system. A 3D printing machine, Stratasys Connex 500, and a precise diamond turning machine, Precitech Freeform705XG, have been used in this paper, respectively. The dimension, roughness, transmission and printing types of 3D printing components have been discussed in this paper. After turning and polishing process, the roughness of 3D printing component is below 0.05 μm and the transmittance increase above 80 %. This optical module can be used in hand-held telescope and other system which need lens and special mechanical structure fabricated simultaneously.
NASA Astrophysics Data System (ADS)
Schleunitz, A.; Klein, J. J.; Krupp, A.; Stender, B.; Houbertz, R.; Gruetzner, G.
2017-02-01
The fabrication of optical interconnects has been widely investigated for the generation of optical circuit boards. Twophoton absorption (TPA) lithography (or high-precision 3D printing) as an innovative production method for direct manufacture of individual 3D photonic structures gains more and more attention when optical polymers are employed. In this regard, we have evaluated novel ORMOCER-based hybrid polymers tailored for the manufacture of optical waveguides by means of high-precision 3D printing. In order to facilitate future industrial implementation, the processability was evaluated and the optical performance of embedded waveguides was assessed. The results illustrate that hybrid polymers are not only viable consumables for industrial manufacture of polymeric micro-optics using generic processes such as UV molding. They also are potential candidates to fabricate optical waveguide systems down to the chip level where TPA-based emerging manufacturing techniques are engaged. Hence, it is shown that hybrid polymers continue to meet the increasing expectations of dynamically growing markets of micro-optics and optical interconnects due to the flexibility of the employed polymer material concept.
Real-time sensing of optical alignment
NASA Technical Reports Server (NTRS)
Stier, Mark T.; Wissinger, Alan B.
1988-01-01
The Large Deployable Reflector and other future segmented optical systems may require autonomous, real-time alignment of their optical surfaces. Researchers have developed gratings located directly on a mirror surface to provide interferometric sensing of the location and figure of the mirror. The grating diffracts a small portion of the incident beam to a diffractive focus where the designed diagnostics can be performed. Mirrors with diffraction gratings were fabricated in two separate ways. The formation of a holographic grating over the entire surface of a mirror, thereby forming a Zone Plate Mirror (ZPM) is described. Researchers have also used computer-generated hologram (CGH) patches for alignment and figure sensing of mirrors. When appropriately illuminated, a grid of patches spread over a mirror segment will yield a grid of point images at a wavefront sensor, with the relative location of the points providing information on the figure and location of the mirror. A particular advantage of using the CGH approach is that the holographic patches can be computed, fabricated, and replicated on a mirror segment in a mass production 1-g clean room environment.
Piezo-optic, photoelastic, and acousto-optic properties of SrB4O7 crystals.
Mytsyk, Bohdan; Demyanyshyn, Natalia; Martynyuk-Lototska, Irina; Vlokh, Rostyslav
2011-07-20
On the basis of studies of the piezo-optic effect, it has been shown that SrB(4)O(7) crystals can be used as efficient acousto-optic materials in the vacuum ultraviolet spectral range. The full matrices of piezo-optic and photoelastic coefficients have been experimentally obtained for these crystals. The acousto-optic figure of merit and the diffraction efficiency have been estimated for both the visible and deep ultraviolet spectral ranges. © 2011 Optical Society of America
Scintillator fiber optic long counter
McCollum, T.; Spector, G.B.
1994-03-29
A flat response position sensitive neutron detector capable of providing neutron spectroscopic data utilizing scintillator fiber optic filaments embedded in a neutron moderating housing having an open end through which neutrons enter to be detected is described. 11 figures.
Hale, Layton C.; Malsbury, Terry; Hudyma, Russell M.; Parker, John M.
2000-01-01
A projection optics box or assembly for use in an optical assembly, such as in an extreme ultraviolet lithography (EUVL) system using 10-14 nm soft x-ray photons. The projection optics box utilizes a plurality of highly reflective optics or mirrors, each mounted on a precision actuator, and which reflects an optical image, such as from a mask, in the EUVL system onto a point of use, such as a target or silicon wafer, the mask, for example, receiving an optical signal from a source assembly, such as a developed from laser system, via a series of highly reflective mirrors of the EUVL system. The plurality of highly reflective optics or mirrors are mounted in a housing assembly comprised of a series of bulkheads having wall members secured together to form a unit construction of maximum rigidity. Due to the precision actuators, the mirrors must be positioned precisely and remotely in tip, tilt, and piston (three degrees of freedom), while also providing exact constraint.
A Surface-Coupled Optical Trap with 1-bp Precision via Active Stabilization
Okoniewski, Stephen R.; Carter, Ashley R.; Perkins, Thomas T.
2017-01-01
Optical traps can measure bead motions with Å-scale precision. However, using this level of precision to infer 1-bp motion of molecular motors along DNA is difficult, since a variety of noise sources degrade instrumental stability. In this chapter, we detail how to improve instrumental stability by (i) minimizing laser pointing, mode, polarization, and intensity noise using an acousto-optical-modulator mediated feedback loop and (ii) minimizing sample motion relative to the optical trap using a 3-axis piezo-electric-stage mediated feedback loop. These active techniques play a critical role in achieving a surface stability of 1 Å in 3D over tens of seconds and a 1-bp stability and precision in a surface-coupled optical trap over a broad bandwidth (Δf = 0.03–2 Hz) at low force (6 pN). These active stabilization techniques can also aid other biophysical assays that would benefit from improved laser stability and/or Å-scale sample stability, such as atomic force microscopy and super-resolution imaging. PMID:27844426
Figure-associated text summarization and evaluation.
Polepalli Ramesh, Balaji; Sethi, Ricky J; Yu, Hong
2015-01-01
Biomedical literature incorporates millions of figures, which are a rich and important knowledge resource for biomedical researchers. Scientists need access to the figures and the knowledge they represent in order to validate research findings and to generate new hypotheses. By themselves, these figures are nearly always incomprehensible to both humans and machines and their associated texts are therefore essential for full comprehension. The associated text of a figure, however, is scattered throughout its full-text article and contains redundant information content. In this paper, we report the continued development and evaluation of several figure summarization systems, the FigSum+ systems, that automatically identify associated texts, remove redundant information, and generate a text summary for every figure in an article. Using a set of 94 annotated figures selected from 19 different journals, we conducted an intrinsic evaluation of FigSum+. We evaluate the performance by precision, recall, F1, and ROUGE scores. The best FigSum+ system is based on an unsupervised method, achieving F1 score of 0.66 and ROUGE-1 score of 0.97. The annotated data is available at figshare.com (http://figshare.com/articles/Figure_Associated_Text_Summarization_and_Evaluation/858903).
Figure-Associated Text Summarization and Evaluation
Polepalli Ramesh, Balaji; Sethi, Ricky J.; Yu, Hong
2015-01-01
Biomedical literature incorporates millions of figures, which are a rich and important knowledge resource for biomedical researchers. Scientists need access to the figures and the knowledge they represent in order to validate research findings and to generate new hypotheses. By themselves, these figures are nearly always incomprehensible to both humans and machines and their associated texts are therefore essential for full comprehension. The associated text of a figure, however, is scattered throughout its full-text article and contains redundant information content. In this paper, we report the continued development and evaluation of several figure summarization systems, the FigSum+ systems, that automatically identify associated texts, remove redundant information, and generate a text summary for every figure in an article. Using a set of 94 annotated figures selected from 19 different journals, we conducted an intrinsic evaluation of FigSum+. We evaluate the performance by precision, recall, F1, and ROUGE scores. The best FigSum+ system is based on an unsupervised method, achieving F1 score of 0.66 and ROUGE-1 score of 0.97. The annotated data is available at figshare.com (http://figshare.com/articles/Figure_Associated_Text_Summarization_and_Evaluation/858903). PMID:25643357
Analysis of Dual-Order Backward Pumping Schemes in Distributed Raman Amplification System
NASA Astrophysics Data System (ADS)
Singh, Kulwinder; Patterh, Manjeet Singh; Bhamrah, Manjit Singh
2018-04-01
Backward pumping in fiber Raman amplifiers has been investigated in this paper in terms of on-off Raman gain, noise figure and optical signal-to-noise ratio. The results exhibit that with four first-order pumps and one second-order pump scheme can be employed to achieve 8.2 dB noise figure in 64 channel fiber optic communication system. It has also been reported that 2.65 dB gain ripple, 0.87 dB noise figure tilt and 2.02 dB OSNR tilt can be attained with the second-order pumping in fiber Raman amplifiers. The main advantage of the scheme is that only 50 mW second-order pump shows appreciable improvement in the system performance. It shows that further increase in first-order and second-order pump powers increase system noise implications.
Freeform correction polishing for optics with semi-kinematic mounting
NASA Astrophysics Data System (ADS)
Huang, Chien-Yao; Kuo, Ching-Hsiang; Peng, Wei-Jei; Yu, Zong-Ru; Ho, Cheng-Fang; Hsu, Ming-Ying; Hsu, Wei-Yao
2015-10-01
Several mounting configurations could be applied to opto-mechanical design for achieving high precise optical system. The retaining ring mounting is simple and cost effective. However, it would deform the optics due to its unpredictable over-constraint forces. The retaining ring can be modified to three small contact areas becoming a semi-kinematic mounting. The semi-kinematic mounting can give a fully constrained in lens assembly and avoid the unpredictable surface deformation. However, there would be still a deformation due to self-weight in large optics especially in vertical setup applications. The self-weight deformation with a semi-kinematic mounting is a stable, repeatable and predictable combination of power and trefoil aberrations. This predictable deformation can be pre-compensated onto the design surface and be corrected by using CNC polisher. Thus it is a freeform surface before mounting to the lens cell. In this study, the freeform correction polishing is demonstrated in a Φ150 lens with semi-kinematic mounting. The clear aperture of the lens is Φ143 mm. We utilize ANSYS simulation software to analyze the lens deformation due to selfweight deformation with semi-kinematic mounting. The simulation results of the self-weight deformation are compared with the measurement results of the assembled lens cell using QED aspheric stitching interferometer (ASI). Then, a freeform surface of a lens with semi-kinematic mounting due to self-weight deformation is verified. This deformation would be corrected by using QED Magnetorheological Finishing (MRF® ) Q-flex 300 polishing machine. The final surface form error of the assembled lens cell after MRF figuring is 0.042 λ in peak to valley (PV).
Optical signal-to-noise ratio measurement by optical homodyne tomography.
Martelli, P; Pietralunga, S M; Ranzani, L; Siano, R; Martinelli, M
2006-02-01
An all-fiber optical homodyne tomography setup is introduced that measures the optical signal-to-noise ratio through reconstruction of the photon statistics. The scheme described has been conceived for applications to optical communications. In particular, the signal-to-noise ratio has been evaluated at lambda= 1.55 microm as a function of the received power. From the experimental data, in the case of optically amplified signals, the amplifier noise figure can be estimated.
Free Space Optical Communication for Tactical Operations
2016-09-01
communications. Military communications further require secure connections for data transfer . The Free Space Optical (FSO) communication system, with its...communications. Military communications further require secure connections for data transfer . The Free Space Optical (FSO) communication system...13. Percentage of Frame Loss at Location 1A .................................... 34 Figure 14. Received Power at Location 1A
Optically Tunable Long Wavelength Infrared Quantum Cascade Laser Operated at Room Temperature
2013-01-09
optics (Figure 2(d)). QCL emission spectra were obtained using a FTIR spectrometer with resolution of 0.125 cm1 and a photovoltaic MCT detector . A...frequency modulation (FM) optical data links,1 which can have orders of magnitude higher signal-to- noise ratio compared to the amplitude-modulation (AM
NASA Astrophysics Data System (ADS)
Budak, S.; Heidary, K.; Johnson, R. B.; Colon, T.; Muntele, C.; Ila, D.
2014-08-01
The performance of thermoelectric materials and devices is characterized by a dimensionless figure of merit, ZT = S2σT/K, where, S and σ denote, respectively, the Seebeck coefficient and electrical conductivity, T is the absolute temperature in Kelvin and K represents the thermal conductivity. The figure of merit may be improved by means of raising either S or σ or by lowering K. In our laboratory, we have fabricated and characterized the performance of a large variety of thermoelectric generators (TEG). Two TEG groups comprised of 50 and 100 alternating layers of Si/Si + Ge multi-nanolayered superlattice films have been fabricated and thoroughly characterized. Ion beam assisted deposition (IBAD) was utilized to assemble the alternating sandwiched layers, resulting in total thickness of 300 nm and 317 nm for 50 and 100 layer devices, respectively. Rutherford Backscattering Spectroscopy (RBS) was employed in order to monitor the precise quantity of Si and Ge utilized in the construction of specific multilayer thin films. The material layers were subsequently impregnated with quantum dots and/or quantum clusters, in order to concurrently reduce the cross plane thermal conductivity, increase the cross plane Seebeck coefficient and raise the cross plane electrical conductivity. The quantum dots/clusters were implanted via the 5 MeV Si ion bombardment which was performed using a Pelletron high energy ion beam accelerator. We have achieved remarkable results for the thermoelectric and optical properties of the Si/Si + Ge multilayer thin film TEG systems. We have demonstrated that with optimal setting of the 5 MeV Si ion beam bombardment fluences, one can fabricate TEG systems with figures of merits substantially higher than the values previously reported.
Multilayer active shell mirrors for space telescopes
NASA Astrophysics Data System (ADS)
Steeves, John; Jackson, Kathryn; Pellegrino, Sergio; Redding, David; Wallace, J. Kent; Bradford, Samuel Case; Barbee, Troy
2016-07-01
A novel active mirror technology based on carbon fiber reinforced polymer (CFRP) substrates and replication techniques has been developed. Multiple additional layers are implemented into the design serving various functions. Nanolaminate metal films are used to provide a high quality reflective front surface. A backing layer of thin active material is implemented to provide the surface-parallel actuation scheme. Printed electronics are used to create a custom electrode pattern and flexible routing layer. Mirrors of this design are thin (< 1.0 mm), lightweight (2.7 kg/m2), and have large actuation capabilities. These capabilities, along with the associated manufacturing processes, represent a significant change in design compared to traditional optics. Such mirrors could be used as lightweight primaries for small CubeSat-based telescopes or as meter-class segments for future large aperture observatories. Multiple mirrors can be produced under identical conditions enabling a substantial reduction in manufacturing cost and complexity. An overview of the mirror design and manufacturing processes is presented. Predictions on the actuation performance have been made through finite element simulations demonstrating correctabilities on the order of 250-300× for astigmatic modes with only 41 independent actuators. A description of the custom metrology system used to characterize the active mirrors is also presented. The system is based on a Reverse Hartmann test and can accommodate extremely large deviations in mirror figure (> 100 μm PV) down to sub-micron precision. The system has been validated against several traditional techniques including photogrammetry and interferometry. The mirror performance has been characterized using this system, as well as closed-loop figure correction experiments on 150 mm dia. prototypes. The mirrors have demonstrated post-correction figure accuracies of 200 nm RMS (two dead actuators limiting performance).
Measuring a Fiber-Optic Delay Line Using a Mode-Locked Laser
NASA Technical Reports Server (NTRS)
Tu, Meirong; McKee, Michael R.; Pak, Kyung S.; Yu, Nan
2010-01-01
The figure schematically depicts a laboratory setup for determining the optical length of a fiber-optic delay line at a precision greater than that obtainable by use of optical time-domain reflectometry or of mechanical measurement of length during the delay-line-winding process. In this setup, the delay line becomes part of the resonant optical cavity that governs the frequency of oscillation of a mode-locked laser. The length can then be determined from frequency-domain measurements, as described below. The laboratory setup is basically an all-fiber ring laser in which the delay line constitutes part of the ring. Another part of the ring - the laser gain medium - is an erbium-doped fiber amplifier pumped by a diode laser at a wavelength of 980 nm. The loop also includes an optical isolator, two polarization controllers, and a polarizing beam splitter. The optical isolator enforces unidirectional lasing. The polarization beam splitter allows light in only one polarization mode to pass through the ring; light in the orthogonal polarization mode is rejected from the ring and utilized as a diagnostic output, which is fed to an optical spectrum analyzer and a photodetector. The photodetector output is fed to a radio-frequency spectrum analyzer and an oscilloscope. The fiber ring laser can generate continuous-wave radiation in non-mode-locked operation or ultrashort optical pulses in mode-locked operation. The mode-locked operation exhibited by this ring is said to be passive in the sense that no electro-optical modulator or other active optical component is used to achieve it. Passive mode locking is achieved by exploiting optical nonlinearity of passive components in such a manner as to obtain ultra-short optical pulses. In this setup, the particular nonlinear optical property exploited to achieve passive mode locking is nonlinear polarization rotation. This or any ring laser can support oscillation in multiple modes as long as sufficient gain is present to overcome losses in the ring. When mode locking is achieved, oscillation occurs in all the modes having the same phase and same polarization. The frequency interval between modes, often denoted the free spectral range (FSR), is given by c/nL, where c is the speed of light in vacuum, n is the effective index of refraction of the fiber, and L is the total length of optical path around the ring. Therefore, the length of the fiber-optic delay line, as part of the length around the ring, can be calculated from the FSRs measured with and without the delay line incorporated into the ring. For this purpose, the FSR measurements are made by use of the optical and radio-frequency spectrum analyzers. In experimentation on a 10-km-long fiber-optic delay line, it was found that this setup made it possible to measure the length to within a fractional error of about 3 10(exp -6), corresponding to a length error of 3 cm. In contrast, measurements by optical time-domain reflectometry and mechanical measurement were found to be much less precise: For optical time-domain reflectometry, the fractional error was found no less than 10(exp -4) (corresponding to a length error of 1 m) and for mechanical measurement, the fractional error was found to be about 10(exp -2) (corresponding to a length error of 100 m).
DIDMOAD syndrome with megacystis and megaureter.
Chu, P.; Staff, W. G.; Morris, J. A.; Polak, J. M.
1986-01-01
A case of DIDMOAD syndrome (diabetes insipidus, diabetes mellitus, optic atrophy and nerve deafness) is described. There was unusually severe urinary tract dilatation which led to an ileal conduit diversion. Immunohistological study of the bladder wall and ureter revealed a marked diminution in nerve fibres, which may have been primary or secondary to the muscle hypertrophy. The possible pathogenesis of the urinary tract dilatation is discussed in relation to this finding. Images Figure 1 Figure 2 Figure 3 PMID:3809079
Spectral investigations of Sm{sup 3+}-doped oxyfluorosilicate glasses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramachari, D.; Rama Moorthy, L., E-mail: lrmphysics@yahoo.co.in; Department of Physics, Chadalawada Ramanamma Engineering College, Renigunta Road, Tirupati 517506
2013-09-01
Graphical abstract: The figure shows the emission spectra of Sm{sup 3+} doped KNSZL glass for different concentrations. Among the four emission transitions {sup 4}G{sub 5/2} → {sup 6}H{sub 5/2}, {sup 4}G{sub 5/2} → {sup 6}H{sub 7/2}, {sup 4}G{sub 5/2} → {sup 6}H{sub 9/2} and {sup 4}G{sub 5/2} → {sup 6}H{sub 11/2}, the {sup 4}G{sub 5/2} → {sup 6}H{sub 7/2} transition of KNSZLSm10 glass is more intense compared with all the transitions. The insert figure shows, the color coordinates (0.59, 0.41) of KNSZLSm10 glass is located on the perimeter of the chromaticity diagram at 592 nm which appears to be closestmore » to the orange color. From these results the KNSZLSm10 glass could be useful for optical amplifiers, waveguides, telecommunications and orange LEDs. - Highlights: • From the DTA, the undoped KNSZL glass more precisely in fiberdrawing. • The XRD pattern confirmed the KNbO{sub 3} nanocrystallites of undoped KNSZL glass. • FTIR and Raman data of KNSZLSm10 glass revealed structural properties. • Judd–Ofelt analysis and decay measurements were carried out. • The optical gain parameter of the investigated glass is 18.13 × 10{sup −25} cm{sup 2} s. - Abstract: Sm{sub 2}O{sub 3}-doped oxyfluorosilicate glasses were prepared by melt-quenching method. The differential thermal analysis and X-ray diffraction were carried out to investigate the glass transition temperature and structure of precursor glass. Infrared spectroscopy, Raman, optical absorption, photoluminescence and decay measurements were carried out for Sm{sup 3+}-doped oxyfluorosilicate glasses. From the absorption spectrum, the Judd–Ofelt intensity parameters have been evaluated to predict the radiative properties for the emission levels of Sm{sup 3+} ions. The lifetimes of {sup 4}G{sub 5/2} level are found to decrease from 1.17 to 0.93 ms due to the energy transfer, when the concentration of Sm{sup 3+} ions increases from 0.1 to 2.0 mol%. The optical gain parameter (18.13 × 10{sup −25} cm{sup 2} s) of the investigated glass is found to be higher than the other Sm{sub 2}O{sub 3}-doped glass systems.« less
Precision force sensing with optically-levitated nanospheres
NASA Astrophysics Data System (ADS)
Geraci, Andrew
2017-04-01
In high vacuum, optically-trapped dielectric nanospheres achieve excellent decoupling from their environment and experience minimal friction, making them ideal for precision force sensing. We have shown that 300 nm silica spheres can be used for calibrated zeptonewton force measurements in a standing-wave optical trap. In this optical potential, the known spacing of the standing wave anti-nodes can serve as an independent calibration tool for the displacement spectrum of the trapped particle. I will describe our progress towards using these sensors for tests of the Newtonian gravitational inverse square law at micron length scales. Optically levitated dielectric objects also show promise for a variety of other precision sensing applications, including searches for gravitational waves and other experiments in quantum optomechanics. National Science Foundation PHY-1205994, PHY-1506431, PHY-1509176.
Advanced Wavefront Sensor Concepts.
1981-01-01
internal optics (a) Characteristics (see Figure 47) - Intensification with a 256 element linear self scanned diode array - Optical input; lenticular ...34 diameter - Lenticular array input to fiber optics which spread out to tubes - Photon counting for low noise fac- tor (b) Pe r fo rmance - Bialkali...problem in making the lenslet arrays in the pupil divider rectangular. The last optical elements are the lenticular lens arrays. In this group, the first
NASA Astrophysics Data System (ADS)
Shcherbakov, Alexandre S.; Maximov, Jewgemij; Sanchez Lucero, Daniel
2010-02-01
Recently proposed modern technique of a precise spectrum analysis within an algorithm of the collinear wave heterodyning implies a two-stage integrated processing, namely, the wave heterodyning of a signal in a square-law nonlinear medium and then the optical processing in the same cell. Technical advantage of this approach is in providing a direct processing of ultra-high-frequency radio-wave signals with essentially improved frequency resolution. This algorithm can be realized on a basis of various physical principles, and we consider an opportunity of involving the potentials of modern acousto-optics for these purposes. From this viewpoint, one needs a large-aperture effective acousto-optical cell, which operates in the Bragg regime and performs the ultra-high-frequency co-directional collinear acoustic wave heterodyning. The technique under consideration imposes specific requirements on the cell's material, namely, a high optical quality of large-size crystalline boules, high-efficient acousto-optical and acoustic interactions, and low group velocity of acoustic waves together with square-low dispersive acoustic losses. We focus our attention on the solid solutions of thallium chalcogenides and take the TlBr-TlI (thallium bromine - thallium iodine) solution, which forms KRS-5 cubic-symmetry crystals with the mass-ratio 58% of TlBr to 42% of TlI. Analysis shows that the acousto-optical cell made of a KRS-5 crystal oriented along the [111] -axis and the corresponding longitudinal elastic mode for producing the dynamic diffractive grating in that crystal can be exploited. With the acoustic velocity of about 1.92 mm/μs and attenuation of approximately 10 dB/(cm GHz2), similar cell is capable to provide an optical aperture of 50 mm and one of the highest figures of acousto-optical merit in solid states in the visible range. Such a cell is rather desirable for applications to direct parallel multi-channel optical spectrum analysis with substantially improved frequency resolution.
Optical Tracking Investigations into Image Information and Adaptive Guidance.
1983-04-01
of the statistical measurements. As is evident in Figure 2.1q, the 32x32 mask size does not descrimInate the narrow edge (430,312). This is a result...improves the edge 14 descrimination capability. It also shows that the SOBELSQ operation provides little improvement. Figure 2.21 indicates that an
Laser Intensity Scaling Through Stimulated Scattering in Optical Fibers
2001-12-17
Stokes beams transmitted through a 300 m multimode fiber. ..................................127 Figure 58: Circles (squares) indicate the measured size...circles) and first order Stokes (squares) beams at the fiber facet. (b,c) Pump (left) and Stokes (right) intensity distributions for a 300 m and...75 m fiber respectively. .......................................................................................130 Figure 61: Double clad fiber
NASA Astrophysics Data System (ADS)
Nomura, Shusaku; Sasaki, Shuntaro; Hirakawa, Masato; Hiwaki, Osamu
2010-11-01
We investigated the brain potential in relation with the recognition of Müller-Lyer (ML) illusionary figure, which was a famous optical illusion. Although it is frequently assumed that the ML illusionary effect could be derived from its geometrical construction, it derives the same length miss-estimation effect on the sense of touch; haptic illusion. Moreover it occurs in people who are blindfolded or congenital blind. Thus somehow higher information processing than the optical one within the brain could be expected to involve with the recognition of ML figure while few brain studies have demonstrated it. We then investigated the brain waves under subjects' perceiving ML illusionary figure. As a result the marked difference of the brain potential between ML and the control condition around the midline of parietal brain, where the multi-modal perception information was thought to associate within the brain, was observed. This result implies that the anticipatory processing on the perception of ML illusionary figures would be derived by integrating multi-sensory information.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drueding, T.W.
The final figuring step in the fabrication of an optical component involves imparting a specified contour onto the surface. This can be expensive and time consuming step. The recent development of ion beam figuring provides a method for performing the figuring process with advantages over standard mechanical methods. Ion figuring has proven effective in figuring large optical components. The process of ion beam figuring removes material by transferring kinetic energy from impinging neutral particles. The process utilizes a Kaufman type ion source, where a plasma is generated in a discharge chamber by controlled electric potentials. Charged grids extract and acceleratemore » ions from the chamber. The accelerated ions form a directional beam. A neutralizer outside the accelerator grids supplies electrons to the positive ion beam. It is necessary to neutralize the beam to prevent charging workpieces and to avoid bending the beam with extraneous electro-magnetic fields. When the directed beam strikes the workpiece, material sputters in a predicable manner. The amount and distribution of material sputtered is a function of the energy of the beam, material of the component, distance from the workpiece, and angle of incidence of the beam. The figuring method described here assumes a constant beam removal, so that the process can be represented by a convolution operation. A fixed beam energy maintains a constant sputtering rate. This temporally and spatially stable beam is held perpendicular to the workpiece at a fixed distance. For non-constant removal, corrections would be required to model the process as a convolution operation. Specific figures (contours) are achieved by rastering the beam over the workpiece at varying velocities. A unique deconvolution is performed, using series-derivative solution developed for the system, to determine these velocities.« less
Nonlinear Optics Technology. Volume 1. Solid State Laser Technology. Phase 3
1991-01-12
84 Figure 5.6 Modulator diffraction efficiency as a function of peak power for several 86 RF frequencies Figure 5.7 Thermal effects in the modulator. a...far-field profile of a beam making a 87 double pass through the modulator operating with a peak power of 80 W and average power of 1.6 W. b) same...AU three shown incorporate phase conjugation to provide good beam quality. Figure 1.1a is a standard phase conjugated master oscillator power
Radiological Protection Studies for NGLS XTOD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, Shanjie; Santana-Leitner, Mario; Rokni, Sayed
The X-ray transport, optics and diagnostic system (XTOD) starts from the end of bending magnets sending electrons to the main dump and ends at the end wall separating the accelerator tunnel from the user experimental hall (hereafter referred as EH wall), as shown in Figure 1. Figure 1.a shows the general schematic and Figure 1.b shows the initial layout with possible shielding components. This document summarizes the extensive studies on the shielding and collimator system design necessary to meet the radiation protection requirements.
Phase-Shift Interferometry with a Digital Photocamera
ERIC Educational Resources Information Center
Vannoni, Maurizio; Trivi, Marcelo; Molesini, Giuseppe
2007-01-01
A phase-shift interferometry experiment is proposed, working on a Twyman-Green optical configuration with additional polarization components. A guideline is provided to modern phase-shift interferometry, using concepts and laboratory equipment at the level of undergraduate optics courses. (Contains 5 figures.)
Ion source for high-precision mass spectrometry
Todd, P.J.; McKown, H.S.; Smith, D.H.
1982-04-26
The invention is directed to a method for increasing the precision of positive-ion relative abundance measurements conducted in a sector mass spectrometer having an ion source for directing a beam of positive ions onto a collimating slit. The method comprises incorporating in the source an electrostatic lens assembly for providing a positive-ion beam of circular cross section for collimation by the slit. 2 figures, 3 tables.
Imaging Optical Frequencies with 100 μHz Precision and 1.1 μm Resolution.
Marti, G Edward; Hutson, Ross B; Goban, Akihisa; Campbell, Sara L; Poli, Nicola; Ye, Jun
2018-03-09
We implement imaging spectroscopy of the optical clock transition of lattice-trapped degenerate fermionic Sr in the Mott-insulating regime, combining micron spatial resolution with submillihertz spectral precision. We use these tools to demonstrate atomic coherence for up to 15 s on the clock transition and reach a record frequency precision of 2.5×10^{-19}. We perform the most rapid evaluation of trapping light shifts and record a 150 mHz linewidth, the narrowest Rabi line shape observed on a coherent optical transition. The important emerging capability of combining high-resolution imaging and spectroscopy will improve the clock precision, and provide a path towards measuring many-body interactions and testing fundamental physics.
Mass Manufacturing Challenges For CPV Primary And Secondary Optics
NASA Astrophysics Data System (ADS)
Luce, Thomas; Cohen, Joel
2010-10-01
Crucial for the performance and longevity of CPV installations is the efficiency of the optics used. Low production cost and high performance are key for the economical success of a CPV concept. To be able to compete with existing energy sources, proven mass production methods as well as high performance materials have to be employed. The injection molding process is the ideal serial production process capable to deliver at the same time high part quantities, excellent part precision and repeatable part quality at low manufacturing cost. Primary and secondary optics require different materials to be applied. The Pros and Cons of these materials in terms of production properties and achievable part precision will be discussed. We will show quality results for primary Fresnel optics using PMMA and, alternatively Silicone on Glass. For secondary optics we will demonstrate the use of optical silicone lenses widely used for high power LED applications today. Optical grade silicone has an excellent environmental stability even when encountering high energy density levels. The experience of Eschenbach Optik in injection molding silicone optics shows that this material is a very cost competitive alternative for glass secondary optics providing both highest optical performance and precision.
Development of Optical System for ARGO-M
NASA Astrophysics Data System (ADS)
Nah, Jakyoung; Jang, Jung-Guen; Jang, Bi-Ho; Han, In-Woo; Han, Jeong-Yeol; Park, Kwijong; Lim, Hyung-Chul; Yu, Sung-Yeol; Park, Eunseo; Seo, Yoon-Kyung; Moon, Il-Kwon; Choi, Byung-Kyu; Na, Eunjoo; Nam, Uk-Won
2013-03-01
ARGO-M is a satellite laser ranging (SLR) system developed by the Korea Astronomy and Space Science Institute with the consideration of mobility and daytime and nighttime satellite observation. The ARGO-M optical system consists of 40 cm receiving telescope, 10 cm transmitting telescope, and detecting optics. For the development of ARGO-M optical system, the structural analysis was performed with regard to the optics and optomechanics design and the optical components. To ensure the optical performance, the quality was tested at the level of parts using the laser interferometer and ultra-high-precision measuring instruments. The assembly and alignment of ARGO-M optical system were conducted at an auto-collimation facility. As the transmission and reception are separated in the ARGO-M optical system, the pointing alignment between the transmitting telescope and receiving telescope is critical for precise target pointing. Thus, the alignment using the ground target and the radiant point observation of transmitting laser beam was carried out, and the lines of sight for the two telescopes were aligned within the required pointing precision. This paper describes the design, structural analysis, manufacture and assembly of parts, and entire process related with the alignment for the ARGO-M optical system.
All-optical patterning of Au nanoparticles on surfaces using optical traps.
Guffey, Mason J; Scherer, Norbert F
2010-11-10
The fabrication of nanoscale devices would be greatly enhanced by "nanomanipulators" that can position single and few objects rapidly with nanometer precision and without mechanical damage. Here, we demonstrate the feasibility and precision of an optical laser tweezer, or optical trap, approach to place single gold (Au) nanoparticles on surfaces with high precision (approximately 100 nm standard deviation). The error in the deposition process is rather small but is determined to be larger than the thermal fluctuations of single nanoparticles within the optical trap. Furthermore, areas of tens of square micrometers could be patterned in a matter of minutes. Since the method does not rely on lithography, scanning probes or a specialized surface, it is versatile and compatible with a variety of systems. We discuss active feedback methods to improve positioning accuracy and the potential for multiplexing and automation.
Replication of grazing incidence optics
NASA Technical Reports Server (NTRS)
Ulmer, Melville P.
1986-01-01
The replication of grazing incidence optics is reviewed. Electroform and epoxy replication are described and compared. It is concluded that for light weight and deep nesting, replication has a distinct advantage over direct production. The resolution of optics produced in this manner is however, limited to about 10 arc seconds; a typical value is 40 arc seconds. Epoxy replicated pieces tend to have better optical figures than electroformed optics, but the latter can be made thinner to make more deeply nested systems.
1980-05-05
not include noncoherent imaging optics 15 .-1 - Figure 13 shows a correlator design contained within a transparent solid. This monolithic...HARTMAN UNCLASSIFIED DRSMI/RR-SO-A-TR SBIE-AD-E950 083 N MMI LEYEL~ TECHNICAL REPORT RR-80-4 1l OPTICAL CORRELATION SEEKER Charles R. Christensen Richard L...Report RR-80-4 ! 4. TITLE (end Subtitle) S. TYPE OF REPORT & PERIOD COVERED OPTICAL CORRELATION SEEKER 6. PERFORMING ORG. REPORT NUMBER 7. AUTHOR(.) 8
Erratum: "Space Density of Optically Selected Type 2 Quasars" (2008, AJ, 136, 2373)
NASA Astrophysics Data System (ADS)
Reyes, Reinabelle; Zakamska, Nadia L.; Strauss, Michael A.; Green, Joshua; Krolik, Julian H.; Shen, Yue; Richards, Gordon T.; Anderson, Scott F.; Schneider, Donald P.
2010-03-01
Figure 12 of the paper "Space Density of Optically Selected Type 2 Quasars" compares the obscured quasar fractions derived in our work with those of other studies. Unfortunately, some of the points from these other studies were shown incorrectly. Specifically, the results from X-ray data—Hasinger (2004; open circles) and Ueda et al. (2003; open squares)—which we had taken from Figure 16 of Hopkins et al. (2006), were affected by a luminosity conversion error, in the sense that the displayed luminosities for these data were too high by ~1 dex. With this erratum, we correct this problem and update the figure. The new version (Figure 12) shows more recent results from Hasinger (2008), in lieu of the Hasinger (2004) data points. These are based on data in the redshift range z = 0.2-3.2 (open circles) in that work. The best linear fit to these data (black dashed line) is consistent with that derived for the redshift slice z = 0.4-0.8, which overlaps with the highest redshift bin in our study, and is higher than that derived for redshifts smaller than 0.4 (corresponding to a shift of ~0.7 dex in luminosity). Figure 12 also shows estimates of the obscured quasar fraction derived from the ratio of IR to bolometric luminosities of an AGN sample at redshift z ~ 1 (Treister et al. 2008; filled triangles). Because the obscured quasar fractions derived from our analysis (colored arrows) are strict lower limits, there was already a hint in the previous version of Figure 12 that at high quasar luminosities, we find higher obscured quasar fractions than X-ray surveys. The correction and updates of Figure 12 strengthen this conclusion. At face value, our derived obscured quasar fractions are consistent with those from IR data (Treister et al. 2008; filled triangles). However, we find that they are significantly higher than those derived from X-ray surveys at L_[O\\,\\mathsc {iii]}\\gtrsim 10^{9.5}\\;L_{\\odot }, especially those from the recent analysis by Hasinger (2008). This comparison strongly suggests that optical selection successfully identifies a population of luminous obscured quasars that are missed by X-ray selection.
Suratwala, Tayyab; Steele, Rusty; Feit, Michael; Dylla-Spears, Rebecca; Desjardin, Richard; Mason, Dan; Wong, Lana; Geraghty, Paul; Miller, Phil; Shen, Nan
2014-01-01
Convergent Polishing is a novel polishing system and method for finishing flat and spherical glass optics in which a workpiece, independent of its initial shape (i.e., surface figure), will converge to final surface figure with excellent surface quality under a fixed, unchanging set of polishing parameters in a single polishing iteration. In contrast, conventional full aperture polishing methods require multiple, often long, iterative cycles involving polishing, metrology and process changes to achieve the desired surface figure. The Convergent Polishing process is based on the concept of workpiece-lap height mismatch resulting in pressure differential that decreases with removal and results in the workpiece converging to the shape of the lap. The successful implementation of the Convergent Polishing process is a result of the combination of a number of technologies to remove all sources of non-uniform spatial material removal (except for workpiece-lap mismatch) for surface figure convergence and to reduce the number of rogue particles in the system for low scratch densities and low roughness. The Convergent Polishing process has been demonstrated for the fabrication of both flats and spheres of various shapes, sizes, and aspect ratios on various glass materials. The practical impact is that high quality optical components can be fabricated more rapidly, more repeatedly, with less metrology, and with less labor, resulting in lower unit costs. In this study, the Convergent Polishing protocol is specifically described for fabricating 26.5 cm square fused silica flats from a fine ground surface to a polished ~λ/2 surface figure after polishing 4 hr per surface on a 81 cm diameter polisher. PMID:25489745
Hänsch, Theodor W.
2018-05-23
For more than three decades, the quest for ever higher precision in laser spectroscopy of the simple hydrogen atom has inspired many advances in laser, optical, and spectroscopic techniques, culminating in femtosecond laser optical frequency combs as perhaps the most precise measuring tools known to man. Applications range from optical atomic clocks and tests of QED and relativity to searches for time variations of fundamental constants. Recent experiments are extending frequency comb techniques into the extreme ultraviolet. Laser frequency combs can also control the electric field of ultrashort light pulses, creating powerful new tools for the emerging field of attosecond science.
Fabrication and Assembly of High-Precision Hinge and Latch Joints for Deployable Optical Instruments
NASA Technical Reports Server (NTRS)
Phelps, James E.
1999-01-01
Descriptions are presented of high-precision hinge and latch joints that have been co-developed, for application to deployable optical instruments, by NASA Langley Research Center and Nyma/ADF. Page-sized versions of engineering drawings are included in two appendices to describe all mechanical components of both joints. Procedures for assembling the mechanical components of both joints are also presented. The information herein is intended to facilitate the fabrication and assembly of the high-precision hinge and latch joints, and enable the incorporation of these joints into the design of deployable optical instrument systems.
Precision measurement of the nuclear polarization in laser-cooled, optically pumped 37 K
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fenker, B.; Behr, J. A.; Melconian, D.
We report a measurement of the nuclear polarization of laser-cooled, optically pumped 37K atoms which will allow us to precisely measure angular correlation parameters in themore » $${\\beta }^{+}$$-decay of the same atoms. These results will be used to test the V ₋ A framework of the weak interaction at high precision. At the Triumf neutral atom trap (Trinat), a magneto-optical trap confines and cools neutral 37K atoms and optical pumping spin-polarizes them. We monitor the nuclear polarization of the same atoms that are decaying in situ by photoionizing a small fraction of the partially polarized atoms and then use the standard optical Bloch equations to model their population distribution. We obtain an average nuclear polarization of $$\\bar{P}=0.9913\\pm 0.0009$$, which is significantly more precise than previous measurements with this technique. Since our current measurement of the β-asymmetry has $$0.2 \\% $$ statistical uncertainty, the polarization measurement reported here will not limit its overall uncertainty. This result also demonstrates the capability to measure the polarization to $$\\lt 0.1 \\% $$, allowing for a measurement of angular correlation parameters to this level of precision, which would be competitive in searches for new physics.« less
Precision measurement of the nuclear polarization in laser-cooled, optically pumped 37 K
Fenker, B.; Behr, J. A.; Melconian, D.; ...
2016-07-13
We report a measurement of the nuclear polarization of laser-cooled, optically pumped 37K atoms which will allow us to precisely measure angular correlation parameters in themore » $${\\beta }^{+}$$-decay of the same atoms. These results will be used to test the V ₋ A framework of the weak interaction at high precision. At the Triumf neutral atom trap (Trinat), a magneto-optical trap confines and cools neutral 37K atoms and optical pumping spin-polarizes them. We monitor the nuclear polarization of the same atoms that are decaying in situ by photoionizing a small fraction of the partially polarized atoms and then use the standard optical Bloch equations to model their population distribution. We obtain an average nuclear polarization of $$\\bar{P}=0.9913\\pm 0.0009$$, which is significantly more precise than previous measurements with this technique. Since our current measurement of the β-asymmetry has $$0.2 \\% $$ statistical uncertainty, the polarization measurement reported here will not limit its overall uncertainty. This result also demonstrates the capability to measure the polarization to $$\\lt 0.1 \\% $$, allowing for a measurement of angular correlation parameters to this level of precision, which would be competitive in searches for new physics.« less
AOTF microscope for imaging with increased speed and spectral versatility.
Wachman, E S; Niu, W; Farkas, D L
1997-01-01
We have developed a new fluorescence microscope that addresses the spectral and speed limitations of current light microscopy instrumentation. In the present device, interference and neutral density filters normally used for fluorescence excitation and detection are replaced by acousto-optic tunable filters (AOTFs). Improvements are described, including the use of a dispersing prism in conjunction with the imaging AOTF and an oblique-illumination excitation scheme, which together enable the AOTF microscope to produce images comparable to those obtained with conventional fluorescence instruments. The superior speed and spectral versatility of the AOTF microscope are demonstrated by a ratio image pair acquired in 3.5 ms and a micro-spectral absorbance measurement of hemoglobin through a cranial window in a living mouse. Images FIGURE 1 FIGURE 2 FIGURE 4 FIGURE 5 FIGURE 6 FIGURE 7 PMID:9284289
NASA Technical Reports Server (NTRS)
Lindensmith, Chris A.; Briggs, H. Clark; Beregovski, Yuri; Feria, V. Alfonso; Goullioud, Renaud; Gursel, Yekta; Hahn, Inseob; Kinsella, Gary; Orzewalla, Matthew; Phillips, Charles
2006-01-01
SIM Planetquest (SIM) is a large optical interferometer for making microarcsecond measurements of the positions of stars, and to detect Earth-sized planets around nearby stars. To achieve this precision, SIM requires stability of optical components to tens of picometers per hour. The combination of SIM s large size (9 meter baseline) and the high stability requirement makes it difficult and costly to measure all aspects of system performance on the ground. To reduce risks, costs and to allow for a design with fewer intermediate testing stages, the SIM project is developing an integrated thermal, mechanical and optical modeling process that will allow predictions of the system performance to be made at the required high precision. This modeling process uses commercial, off-the-shelf tools and has been validated against experimental results at the precision of the SIM performance requirements. This paper presents the description of the model development, some of the models, and their validation in the Thermo-Opto-Mechanical (TOM3) testbed which includes full scale brassboard optical components and the metrology to test them at the SIM performance requirement levels.
A Surface-Coupled Optical Trap with 1-bp Precision via Active Stabilization.
Okoniewski, Stephen R; Carter, Ashley R; Perkins, Thomas T
2017-01-01
Optical traps can measure bead motions with Å-scale precision. However, using this level of precision to infer 1-bp motion of molecular motors along DNA is difficult, since a variety of noise sources degrade instrumental stability. In this chapter, we detail how to improve instrumental stability by (1) minimizing laser pointing, mode, polarization, and intensity noise using an acousto-optical-modulator mediated feedback loop and (2) minimizing sample motion relative to the optical trap using a three-axis piezo-electric-stage mediated feedback loop. These active techniques play a critical role in achieving a surface stability of 1 Å in 3D over tens of seconds and a 1-bp stability and precision in a surface-coupled optical trap over a broad bandwidth (Δf = 0.03-2 Hz) at low force (6 pN). These active stabilization techniques can also aid other biophysical assays that would benefit from improved laser stability and/or Å-scale sample stability, such as atomic force microscopy and super-resolution imaging.
Precision Airdrop Technology Conference and Demonstration (4th) 2007
2008-02-01
32 Table 13. Onyx 300 Airdrop Profile and Results...34 Table 14. Onyx UL Airdrop Profile and Results .......................................................................... 35 Table...Mosquito PI Plot......................................................................................................... 32 Figure 11. Onyx 300 PI Plot
2008-01-01
Figure 11. Screenshot of OrthoPro seam lines (pink), tiles (blue), and photos (green)................ 26 Figure 12. Calibration craters (existing...with aerial targets for the orthophotography data collection, 1 per data collection tile (1 sq km). For the Phase I data collection, 9 LiDAR ground...Orthophotography data were collected concurrently with the LiDAR data collection. Based on the LiDAR flight line spacing parameters, the orthophoto images were
Microwave Characterization of the GaAs MESFET and Development of a Low Noise Microwave Amplifier.
1979-12-01
investigation. Comparison of measured scattering parameters with those predicted by this model pro - vide a useful check for the validity of the model. B. Device...tuning co-nditions can be changed and their effects measured without changing the setup con - figuration. Gain or noise figure measurements are selected by...lines. The coaxial sections then transition to precision, sexless 7 mm (type APC-7) con - nectors, which provide highly repeatable connections, and a
Predictable Programming on a Precision Timed Architecture
2008-04-18
Application: A Video Game Figure 6: Structure of the Video Game Example Inspired by an example game sup- plied with the Hydra development board [17...we implemented a sim- ple video game in C targeted to our PRET architecture. Our example centers on rendering graphics and is otherwise fairly simple...background image. 13 Figure 10: A Screen Dump From Our Video Game Ultimately, each displayed pixel is one of only four col- ors, but the pixels in
Drainage area data for Alabama streams
Stallings, J.S.; Peirce, L.B.
1957-01-01
The drainage area of a river basin is an important parameter in many engineering equations used for hydrologic design. It is not a parameter, however, that always requires precise measurement. Factors in the hydrologic cycle such as rainfall, runoff, transpiration, and infiltration cannot be measured nearly as closely as drainage area. Largely for this reason, drainage areas are often measured to varying degrees of precision depending upon the immediate need, with little thought to some other use or some other user of the figure obtained. It can readily be appreciated that this practice, continued for long by many different agencies, will result in a heterogeneous collection of drainage area figures, often discordant and of an accuracy unknown to any but those who computed them. Figures of drainage area published by various Federal agencies are frequently discrepant or contradictory, giving rise to confusion in the use of drainage area data. Seeking to better this situation, the Federal Inter-Agency River Basin Committee (FIARBC) in November 1951 published its Bulletin No. 4, Inter-Agency Coordination of Drainage Area Data. That Bulletin recommended procedures to be followed by the interested Federal agencies “for coordinating drainage area data in the interest of promoting uniformity, reducing confusion and contradiction of published figures, and improving the ready availability of drainage area data pertaining to drainage basins of the United States and its possessions.”
Abnormal electroretinogram associated with developmental brain anomalies.
Cibis, G W; Fitzgerald, K M
1995-01-01
PURPOSE: We have encountered abnormal ERGs associated with optic nerve hypoplasia, macular, optic nerve and chorioretinal colobomata and developmental brain anomalies. Brain anomalies include cortical dysgenesis, lissencephaly, porencephaly, cerebellar and corpus callosum hypoplasia. We describe six exemplar cases. METHODS: Scotopic and photopic ERGs adherent to international standards were performed as well as photopic ERGs to long-duration stimuli. CT or MRI studies were also done. The ERGs were compared to age-matched normal control subjects. RESULTS: ERG changes include reduced amplitude b-waves to blue and red stimuli under scotopic testing conditions. Implicit times were often delayed. The photopic responses also showed reduced amplitude a- and b-waves with implicit time delays. The long-duration photopic ERG done in one case shows attenuation of both ON- and OFF-responses. CONCLUSIONS: Common underlying developmental genetic or environmental unifying casualties are speculated to be at fault in causing these cases of associated retinal and brain abnormalities. No single etiology is expected. Multiple potential causes acting early in embryogenesis effecting neuronal induction, migration and differentiation are theorized. These occur at a time when brain and retinal cells are sufficiently undifferentiated to be similarly effected. We call these cases examples of Brain Retina Neuroembryodysgenesis (BRNED). Homeobox and PAX genes with global neuronal developmental influences are gene candidates to unify the observed disruption of brain and retinal cell development. The ERG can provide a valuable clinical addition in understanding and ultimately classifying these disorders. Images FIGURE 1 FIGURE 4 FIGURE 5 FIGURE 6 FIGURE 7 FIGURE 8 PMID:8719676
Analytical model and figures of merit for filtered Microwave Photonic Links.
Gasulla, Ivana; Capmany, José
2011-09-26
The concept of filtered Microwave Photonic Links is proposed in order to provide the most general and versatile description of complex analog photonic systems. We develop a field propagation model where a global optical filter, characterized by its optical transfer function, embraces all the intermediate optical components in a linear link. We assume a non-monochromatic light source characterized by an arbitrary spectral distribution which has a finite linewidth spectrum and consider both intensity modulation and phase modulation with balanced and single detection. Expressions leading to the computation of the main figures of merit concerning the link gain, noise and intermodulation distortion are provided which, to our knowledge, are not available in the literature. The usefulness of this derivation resides in the capability to directly provide performance criteria results for complex links just by substituting in the overall closed-form formulas the numerical or measured optical transfer function characterizing the link. This theory is presented thus as a potential tool for a wide range of relevant microwave photonic application cases which is extendable to multiport radio over fiber systems. © 2011 Optical Society of America
Scattering effects of machined optical surfaces
NASA Astrophysics Data System (ADS)
Thompson, Anita Kotha
1998-09-01
Optical fabrication is one of the most labor-intensive industries in existence. Lensmakers use pitch to affix glass blanks to metal chucks that hold the glass as they grind it with tools that have not changed much in fifty years. Recent demands placed on traditional optical fabrication processes in terms of surface accuracy, smoothnesses, and cost effectiveness has resulted in the exploitation of precision machining technology to develop a new generation of computer numerically controlled (CNC) optical fabrication equipment. This new kind of precision machining process is called deterministic microgrinding. The most conspicuous feature of optical surfaces manufactured by the precision machining processes (such as single-point diamond turning or deterministic microgrinding) is the presence of residual cutting tool marks. These residual tool marks exhibit a highly structured topography of periodic azimuthal or radial deterministic marks in addition to random microroughness. These distinct topographic features give rise to surface scattering effects that can significantly degrade optical performance. In this dissertation project we investigate the scattering behavior of machined optical surfaces and their imaging characteristics. In particular, we will characterize the residual optical fabrication errors and relate the resulting scattering behavior to the tool and machine parameters in order to evaluate and improve the deterministic microgrinding process. Other desired information derived from the investigation of scattering behavior is the optical fabrication tolerances necessary to satisfy specific image quality requirements. Optical fabrication tolerances are a major cost driver for any precision optical manufacturing technology. The derivation and control of the optical fabrication tolerances necessary for different applications and operating wavelength regimes will play a unique and central role in establishing deterministic microgrinding as a preferred and a cost-effective optical fabrication process. Other well understood optical fabrication processes will also be reviewed and a performance comparison with the conventional grinding and polishing technique will be made to determine any inherent advantages in the optical quality of surfaces produced by other techniques.
Optical technologies for space sensor
NASA Astrophysics Data System (ADS)
Wang, Hu; Liu, Jie; Xue, Yaoke; Liu, Yang; Liu, Meiying; Wang, Lingguang; Yang, Shaodong; Lin, Shangmin; Chen, Su; Luo, Jianjun
2015-10-01
Space sensors are used in navigation sensor fields. The sun, the earth, the moon and other planets are used as frame of reference to obtain stellar position coordinates, and then to control the attitude of an aircraft. Being the "eyes" of the space sensors, Optical sensor system makes images of the infinite far stars and other celestial bodies. It directly affects measurement accuracy of the space sensor, indirectly affecting the data updating rate. Star sensor technology is the pilot for Space sensors. At present more and more attention is paid on all-day star sensor technology. By day and night measurements of the stars, the aircraft's attitude in the inertial coordinate system can be provided. Facing the requirements of ultra-high-precision, large field of view, wide spectral range, long life and high reliability, multi-functional optical system, we integration, integration optical sensors will be future space technology trends. In the meantime, optical technologies for space-sensitive research leads to the development of ultra-precision optical processing, optical and precision test machine alignment technology. It also promotes the development of long-life optical materials and applications. We have achieved such absolute distortion better than ±1um, Space life of at least 15years of space-sensitive optical system.
Large space telescope, phase A. Volume 3: Optical telescope assembly
NASA Technical Reports Server (NTRS)
1972-01-01
The development and characteristics of the optical telescope assembly for the Large Space Telescope are discussed. The systems considerations are based on mission-related parameters and optical equipment requirements. Information is included on: (1) structural design and analysis, (2) thermal design, (3) stabilization and control, (4) alignment, focus, and figure control, (5) electronic subsystem, and (6) scientific instrument design.
Lacquer polishing of X-ray optics
NASA Technical Reports Server (NTRS)
Catura, R. C.; Joki, E. G.; Roethig, D. T.; Brookover, W. J.
1987-01-01
Techniques for polishing figured X-ray optics by a lacquer-coating process are described. This acrylic lacquer coating has been applied with an optical quality of an eighth-wave in red light and very effectively covers surface roughness with spatial wavelengths less than about 0.2 mm. Tungsten films have been deposited on the lacquer coatings to provide highly efficient X-ray reflectivity.
Interferometry On Grazing Incidence Optics
NASA Astrophysics Data System (ADS)
Geary, Joseph; Maeda, Riki
1988-08-01
A preliminary interferometric procedure is described showing potential for obtaining surface figure error maps of grazing incidence optics at normal incidence. The latter are found in some laser resonator configurations, and in Wolter type X-ray optics. The procedure makes use of cylindrical wavefronts and error subtraction techniques over subapertures. The surface error maps obtained will provide critical information to opticians in the fabrication process.
Development of Adaptive Tilt Tracker that Utilizes QUAD-cell Detector to Track Extended Objects
2014-03-17
telescopes. When incident light encounters the atmosphere , it experiences a turbulent medium that distorts optical wavefronts. Without the AO...fluctuations which randomize optical path lengths. Figure 2 - The temporal and spatial aspects of atmospheric turbulence [6] Consider...the PTS are determined by atmospheric turbulence , optical set-up, and object characteristics such as size, shape, motion, and intensity
Refractive optics to compensate x-ray mirror shape-errors
NASA Astrophysics Data System (ADS)
Laundy, David; Sawhney, Kawal; Dhamgaye, Vishal; Pape, Ian
2017-08-01
Elliptically profiled mirrors operating at glancing angle are frequently used at X-ray synchrotron sources to focus X-rays into sub-micrometer sized spots. Mirror figure error, defined as the height difference function between the actual mirror surface and the ideal elliptical profile, causes a perturbation of the X-ray wavefront for X- rays reflecting from the mirror. This perturbation, when propagated to the focal plane results in an increase in the size of the focused beam. At Diamond Light Source we are developing refractive optics that can be used to locally cancel out the wavefront distortion caused by figure error from nano-focusing elliptical mirrors. These optics could be used to correct existing optical components on synchrotron radiation beamlines in order to give focused X-ray beam sizes approaching the theoretical diffraction limit. We present our latest results showing measurement of the X-ray wavefront error after reflection from X-ray mirrors and the translation of the measured wavefront into a design for refractive optical elements for correction of the X-ray wavefront. We show measurement of the focused beam with and without the corrective optics inserted showing reduction in the size of the focus resulting from the correction to the wavefront.
Tight real-time synchronization of a microwave clock to an optical clock across a turbulent air path
Bergeron, Hugo; Sinclair, Laura C.; Swann, William C.; Nelson, Craig W.; Deschênes, Jean-Daniel; Baumann, Esther; Giorgetta, Fabrizio R.; Coddington, Ian; Newbury, Nathan R.
2018-01-01
The ability to distribute the precise time and frequency from an optical clock to remote platforms could enable future precise navigation and sensing systems. Here we demonstrate tight, real-time synchronization of a remote microwave clock to a master optical clock over a turbulent 4-km open air path via optical two-way time-frequency transfer. Once synchronized, the 10-GHz frequency signals generated at each site agree to 10−14 at one second and below 10−17 at 1000 seconds. In addition, the two clock times are synchronized to ±13 fs over an 8-hour period. The ability to phase-synchronize 10-GHz signals across platforms supports future distributed coherent sensing, while the ability to time-synchronize multiple microwave-based clocks to a high-performance master optical clock supports future precision navigation/timing systems. PMID:29607352
Bergeron, Hugo; Sinclair, Laura C; Swann, William C; Nelson, Craig W; Deschênes, Jean-Daniel; Baumann, Esther; Giorgetta, Fabrizio R; Coddington, Ian; Newbury, Nathan R
2016-04-01
The ability to distribute the precise time and frequency from an optical clock to remote platforms could enable future precise navigation and sensing systems. Here we demonstrate tight, real-time synchronization of a remote microwave clock to a master optical clock over a turbulent 4-km open air path via optical two-way time-frequency transfer. Once synchronized, the 10-GHz frequency signals generated at each site agree to 10 -14 at one second and below 10 -17 at 1000 seconds. In addition, the two clock times are synchronized to ±13 fs over an 8-hour period. The ability to phase-synchronize 10-GHz signals across platforms supports future distributed coherent sensing, while the ability to time-synchronize multiple microwave-based clocks to a high-performance master optical clock supports future precision navigation/timing systems.
Arc Second Alignment of International X-Ray Observatory Mirror Segments in a Fixed Structure
NASA Technical Reports Server (NTRS)
Evans, Tyler C.; Chan, Kai-Wing
2009-01-01
The optics for the International X-Ray Observatory (IXO) require alignment and integration of about fourteen thousand thin mirror segments to achieve the mission goal of 3.0 square meters of effective area at 1.25 keV with an angular resolution of five arc seconds. These mirror segments are 0.4mm thick, and 200 to 400mm in size, which makes it hard not to impart distortion at the subarc second level. This paper outlines the precise alignment, verification testing, and permanent bonding techniques developed at NASA's Goddard Space Flight Center (GSFC). These techniques are used to overcome the challenge of transferring thin mirror segments from a temporary mount to a fixed structure with arc second alignment and minimal figure distortion. Recent advances in technology development in addition to the automation of several processes have produced significant results. This paper will highlight the recent advances in alignment, testing, and permanent bonding techniques as well as the results they have produced.
Pan, Meiyan; Liang, Zhaoxing; Wang, Yu; Chen, Yihang
2016-01-01
We propose a novel mechanism to construct a tunable and ultracompact refractive index sensor by using the Fano resonance in metal-graphene hybrid nanostructure. Plasmon modes in graphene nanoribbons and waveguide resonance modes in the slits of metal strip array coexist in this system. Strong interference between the two different modes occurs when they are spectrally overlapped, resulting in a Fano-type asymmetrically spectral lineshape which can be used for detecting the variations of ambient refractive index. The proposed sensor has a relatively high figure of merit (FOM) over 20 and its sensing performance shows a good tolerance to roughness. In addition to the wide range measurement enabled by the electrical tuning of graphene plasmon modes, such ultracompact system also provides an angle-independent operation and therefore, it can efficiently work for the detection of gas, liquid, or solids. Such optical nanostructure may also be applied to diverse fields such as temperature/pressure metering, medical detection, and mechanical precision measurement. PMID:27439964
Arc-Second Alignment of International X-Ray Observatory Mirror Segments in a Fixed Structure
NASA Technical Reports Server (NTRS)
Evans, Tyler C.; Chan, Kai-Wing; Saha, Timo T.
2010-01-01
The optics for the International X-Ray Observatory (IXO) require alignment and integration of about fourteen thousand thin mirror segments to achieve the mission goal of 3.0 square meters of effective area at 1.25 keV with an angular resolution of five arc-seconds. These mirror segments are 0.4 mm thick, and 200 to 400 mm in size, which makes it hard not to impart distortion at the subare- second level. This paper outlines the precise alignment, verification testing, and permanent bonding techniques developed at NASA's Goddard Space Flight Center (GSFC). These techniques are used to overcome the challenge of transferring thin mirror segments from a temporary mount to a fixed structure with arc-second alignment and minimal figure distortion. Recent advances in technology development in addition to the automation of several processes have produced significant results. This paper will highlight the recent advances in alignment, testing, and permanent bonding techniques as well as the results they have produced.
Pico-Kelvin thermometry and temperature stabilization using a resonant optical cavity.
Tan, Si; Wang, Suwen; Saraf, Shailendhar; Lipa, John A
2017-02-20
Ultra-high sensitivity temperature sensing and stable thermal control are crucial for many science experiments testing fundamental theories to high precision. Here we report the first pico-kevin scale thermometer operating at room temperature with an exceptionally low theoretical noise figure of ~70pK/Hz at 1 Hz and a high dynamic range of ~500 K. We have experimentally demonstrated a temperature sensitivity of <3.8nK/Hz at 1 Hz near room temperature, which is an order of magnitude improvement over the state of the art. We have also demonstrated an ultra-high stability thermal control system using this thermometer, achieving 3.7 nK stability at 1 s and ∼ 120 pK at 104 s, which is 10-100 times more stable than the state of the art. With some upgrades to this proof-of-principle device, we can expect it to be used for very high resolution tests of special relativity and in critical point phenomena.
Pan, Meiyan; Liang, Zhaoxing; Wang, Yu; Chen, Yihang
2016-07-21
We propose a novel mechanism to construct a tunable and ultracompact refractive index sensor by using the Fano resonance in metal-graphene hybrid nanostructure. Plasmon modes in graphene nanoribbons and waveguide resonance modes in the slits of metal strip array coexist in this system. Strong interference between the two different modes occurs when they are spectrally overlapped, resulting in a Fano-type asymmetrically spectral lineshape which can be used for detecting the variations of ambient refractive index. The proposed sensor has a relatively high figure of merit (FOM) over 20 and its sensing performance shows a good tolerance to roughness. In addition to the wide range measurement enabled by the electrical tuning of graphene plasmon modes, such ultracompact system also provides an angle-independent operation and therefore, it can efficiently work for the detection of gas, liquid, or solids. Such optical nanostructure may also be applied to diverse fields such as temperature/pressure metering, medical detection, and mechanical precision measurement.
Folded Fabry-Perot quasi-optical ring resonator diplexer Theory and experiment
NASA Technical Reports Server (NTRS)
Pickett, H. M.; Chiou, A. E. T.
1983-01-01
Performance of folded Fabry-Perot quasi-optical ring resonator diplexers with different geometries of reflecting surfaces is investigated both theoretically and experimentally. Design of optimum surface geometry for minimum diffraction, together with the figure of merit indicating improvement in performance, are given.
Mach-Zehnder atom interferometer inside an optical fiber
NASA Astrophysics Data System (ADS)
Xin, Mingjie; Leong, Wuiseng; Chen, Zilong; Lan, Shau-Yu
2017-04-01
Precision measurement with light-pulse grating atom interferometry in free space have been used in the study of fundamental physics and applications in inertial sensing. Recent development of photonic band-gap fibers allows light for traveling in hollow region while preserving its fundamental Gaussian mode. The fibers could provide a very promising platform to transfer cold atoms. Optically guided matter waves inside a hollow-core photonic band-gap fiber can mitigate diffraction limit problem and has the potential to bring research in the field of atomic sensing and precision measurement to the next level of compactness and accuracy. Here, we will show our experimental progress towards an atom interferometer in optical fibers. We designed an atom trapping scheme inside a hollow-core photonic band-gap fiber to create an optical guided matter waves system, and studied the coherence properties of Rubidium atoms in this optical guided system. We also demonstrate a Mach-Zehnder atom interferometer in the optical waveguide. This interferometer is promising for precision measurements and designs of mobile atomic sensors.
Roles of Thin Film Stress in Making Extremely Lightweight X-Ray Optics
NASA Technical Reports Server (NTRS)
Zhang, William W.
2010-01-01
X-ray optics typically must be coated with one of the noble metals, gold, platinum, or iridium, to enhance their photon collection area. In general, iridium is preferred to the other two because it generates the highest X-ray reflectivity in the I to 10 keV band. Unfortunately, iridium films typically have also the highest stress that can severely degrade the optical figure of the mirror substrate, resulting in a poorer image quality. In this paper we will report our work in understanding this stress and our method to counterbalance it. In particular we will also report on potential ways of using this stress to improve the substrate's optical figure, turning a bug into a desirable feature. This work is done in the context of developing an enabling technology for the International X-ray Observatory which is a collaborative mission of NASA, ESA, and JAXA, and expected to be launched into an L2 orbit in 2021.
Precision Spectroscopy, Diode Lasers, and Optical Frequency Measurement Technology
NASA Technical Reports Server (NTRS)
Hollberg, Leo (Editor); Fox, Richard (Editor); Waltman, Steve (Editor); Robinson, Hugh
1998-01-01
This compilation is a selected set of reprints from the Optical Frequency Measurement Group of the Time and Frequency Division of the National Institute of Standards and Technology, and consists of work published between 1987 and 1997. The two main programs represented here are (1) development of tunable diode-laser technology for scientific applications and precision measurements, and (2) research toward the goal of realizing optical-frequency measurements and synthesis. The papers are organized chronologically in five, somewhat arbitrarily chosen categories: Diode Laser Technology, Tunable Laser Systems, Laser Spectroscopy, Optical Synthesis and Extended Wavelength Coverage, and Multi-Photon Interactions and Optical Coherences.
Enhanced radiation resistant fiber optics
Lyons, P.B.; Looney, L.D.
1993-11-30
A process for producing an optical fiber having enhanced radiation resistance is provided, the process including maintaining an optical fiber within a hydrogen-containing atmosphere for sufficient time to yield a hydrogen-permeated optical fiber having an elevated internal hydrogen concentration, and irradiating the hydrogen-permeated optical fiber at a time while the optical fiber has an elevated internal hydrogen concentration with a source of ionizing radiation. The radiation source is typically a cobalt-60 source and the fiber is pre-irradiated with a dose level up to about 1000 kilorads of radiation. 4 figures.
NASA Astrophysics Data System (ADS)
Citterio, O.; Civitani, M. M.; Pareschi, G.; Basso, S.; Campana, S.; Conconi, P.; Ghigo, M.; Mattaini, E.; Moretti, A.; Parodi, G.; Tagliaferri, G.
2013-09-01
The implementation of a X-ray mission with high imaging capabilities, similar to those achieved with Chandra (< 1 arcsec Half Energy Width, HEW), but with a much larger throughput is a very attractive perspective, even if challenging. For such a mission the scientific opportunities, in particular for the study of the early Universe, would remain at the state of the art for the next decades. At the beginning of the new millennium the XEUS mission has been proposed, with an effective area of several m2 and an angular resolution better than 2 arcsec HEW. Unfortunately, after the initial study, this mission was not implemented, mainly due to the costs and the low level of technology readiness. Currently the most advanced proposal for such a kind of mission is the SMART-X project, led by CfA and involving several other US Institutes. This project is based on adjustable segments of thin foil mirrors with piezo-electric actuators, aiming to achieve an effective area < 2 m2 at 1 keV and an angular resolution better than 1 arcsec HEW. Another attractive technology to realize an X-ray telescope with similar characteristics is being developed at NASA/Goddard. In this case the mirrors are based on Si substrates that are super-polished and figured starting from a bulky Si ingot, from which they are properly cut. Here we propose an alternative method based on precise direct grinding, figuring and polishing of thin (a few mm) glass shells with innovative deterministic polishing methods. This is followed by a final correction via ion figuring to obtain the desired accuracy in order to achieve the 1 arc sec HEW requirement. For this purpose, a temporary stiffening structure is used to support the shell from the polishing operations up to its integration in the telescope supporting structure. We will present the technological process under development, the results achieved so far and some mission scenarios based on this kind of optics, aiming to achieve an effective area more than 10 times larger than Chandra and an angular resolution of 1 arcsec HEW on axis and of a few arcsec off-axis across a large field of view (1 deg in diameter).
NASA Astrophysics Data System (ADS)
Zhang, Yunfei; Huang, Wen; Zheng, Yongcheng; Ji, Fang; Xu, Min; Duan, Zhixin; Luo, Qing; Liu, Qian; Xiao, Hong
2016-03-01
Zinc sulfide is a kind of typical infrared optical material, commonly produced using single point diamond turning (SPDT). SPDT can efficiently produce zinc sulfide aspheric surfaces with micro-roughness and acceptable figure error. However the tool marks left by the diamond turning process cause high micro-roughness that degrades the optical performance when used in the visible region of the spectrum. Magnetorheological finishing (MRF) is a deterministic, sub-aperture polishing technology that is very helpful in improving both surface micro-roughness and surface figure.This paper mainly investigates the MRF technology of large aperture off-axis aspheric optical surfaces for zinc sulfide. The topological structure and coordinate transformation of a MRF machine tool PKC1200Q2 are analyzed and its kinematics is calculated, then the post-processing algorithm model of MRF for an optical lens is established. By taking the post-processing of off-axis aspheric surfacefor example, a post-processing algorithm that can be used for a raster tool path is deduced and the errors produced by the approximate treatment are analyzed. A polishing algorithm of trajectory planning and dwell time based on matrix equation and optimization theory is presented in this paper. Adopting this algorithm an experiment is performed to machining a large-aperture off-axis aspheric surface on the MRF machine developed by ourselves. After several times' polishing, the figure accuracy PV is proved from 3.3λ to 2.0λ and RMS from 0.451λ to 0.327λ. This algorithm is used to polish the other shapes including spheres, aspheres and prisms.
Precision tip-tilt-piston actuator that provides exact constraint
Hale, Layton C.
1999-01-01
A precision device which can precisely actuate three degrees of freedom of an optic mount, commonly referred to as tip, tilt, and piston. The device consists of three identical flexure mechanisms, an optic mount to be supported and positioned, a structure that supports the flexure mechanisms, and three commercially available linear actuators. The advantages of the precision device is in the arrangement of the constraints offered by the flexure mechanism and not in the particular design of the flexure mechanisms, as other types of mechanisms could be substituted. Each flexure mechanism constrains two degrees of freedom in the plane of the mechanisms and one direction is actuated. All other degrees of freedom are free to move within the range of flexure mechanisms. Typically, three flexure mechanisms are equally spaced in angle about to optic mount and arranged so that each actuated degree of freedom is perpendicular to the plane formed by the optic mount. This arrangement exactly constrains the optic mount and allows arbitrary actuated movement of the plane within the range of the flexure mechanisms. Each flexure mechanism provides a mechanical advantage, typically on the order of 5:1, between the commercially available actuator and the functional point on the optic mount. This improves resolution by the same ratio and stiffness by the square of the ratio.
Ion current as a precise measure of the loading rate of a magneto-optical trap
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, W.; Bailey, K.; Lu, Z. -T.
2014-01-01
We have demonstrated that the ion current resulting from collisions between metastable krypton atoms in a magneto-optical trap can be used to precisely measure the trap loading rate. We measured both the ion current of the abundant isotope Kr-83 (isotopic abundance = 11%) and the single-atom counting rate of the rare isotope Kr-85 (isotopic abundance similar to 1 x 10(-11)), and found the two quantities to be proportional at a precision level of 0.9%. This work results in a significant improvement in using the magneto-optical trap as an analytical tool for noble-gas isotope ratio measurements, and will benefit both atomicmore » physics studies and applications in the earth sciences. (C) 2014 Optical Society of America« less
Binocular optical axis parallelism detection precision analysis based on Monte Carlo method
NASA Astrophysics Data System (ADS)
Ying, Jiaju; Liu, Bingqi
2018-02-01
According to the working principle of the binocular photoelectric instrument optical axis parallelism digital calibration instrument, and in view of all components of the instrument, the various factors affect the system precision is analyzed, and then precision analysis model is established. Based on the error distribution, Monte Carlo method is used to analyze the relationship between the comprehensive error and the change of the center coordinate of the circle target image. The method can further guide the error distribution, optimize control the factors which have greater influence on the comprehensive error, and improve the measurement accuracy of the optical axis parallelism digital calibration instrument.
NASA Astrophysics Data System (ADS)
Liu, Lulu; Woolf, Alex
2015-03-01
By observing the motion of an optically trapped microscopic colloid, sub-piconewton static and dynamical forces have been measured using a technique called photonic force microscopy. This technique, though potentially powerful, has in the past struggled to make precise measurements in the vicinity of a reflective or metallic interface, due to distortions of the optical field. We introduce a new in-situ, contact-free calibration method for particle tracking using an evanescent wave, and demonstrate its expanded capability by the precise measurement of forces of interaction between a single colloid and the optical field generated by a propagating surface plasmon polariton on gold.
Microfabricated X-Ray Optics Technology Development for the Constellation-X Mission
NASA Technical Reports Server (NTRS)
Schattenburg, Mark L.
2003-01-01
During the period of this Cooperative Agreement, MIT developed advanced methods for applying silicon micro-stuctures for the precision assembly of foil x-ray optics in support of the Constellution-X Spectroscopy X-ray Telescope (SXT) development effort at Goddard Space Flight Center (GSFC). MIT developed improved methods for fabricating and characterizing the precision silicon micro-combs. MIT also developed and characterized assembly tools and several types of metrology tools in order to characterize and reduce the errors associated with precision assembly of foil optics. Results of this effort were published and presented to the scientific community and the GSFC SXT team.
Lightweight deformable mirrors for future space telescopes
NASA Astrophysics Data System (ADS)
Patterson, Keith
This thesis presents a concept for ultra-lightweight deformable mirrors based on a thin substrate of optical surface quality coated with continuous active piezopolymer layers that provide modes of actuation and shape correction. This concept eliminates any kind of stiff backing structure for the mirror surface and exploits micro-fabrication technologies to provide a tight integration of the active materials into the mirror structure, to avoid actuator print-through effects. Proof-of-concept, 10-cm-diameter mirrors with a low areal density of about 0.5 kg/m2 have been designed, built and tested to measure their shape-correction performance and verify the models used for design. The low cost manufacturing scheme uses replication techniques, and strives for minimizing residual stresses that deviate the optical figure from the master mandrel. It does not require precision tolerancing, is lightweight, and is therefore potentially scalable to larger diameters for use in large, modular space telescopes. Other potential applications for such a laminate could include ground-based mirrors for solar energy collection, adaptive optics for atmospheric turbulence, laser communications, and other shape control applications. The immediate application for these mirrors is for the Autonomous Assembly and Reconfiguration of a Space Telescope (AAReST) mission, which is a university mission under development by Caltech, the University of Surrey, and JPL. The design concept, fabrication methodology, material behaviors and measurements, mirror modeling, mounting and control electronics design, shape control experiments, predictive performance analysis, and remaining challenges are presented herein. The experiments have validated numerical models of the mirror, and the mirror models have been used within a model of the telescope in order to predict the optical performance. A demonstration of this mirror concept, along with other new telescope technologies, is planned to take place during the AAReST mission.
2011-06-01
to build a membership fact. The atom definition also defines the precise order of the pieces. Each argument has a label (D) and a type ( E ). The...list of ato argument). Figure 2 shows the inference rule editor. B. Name E . Rule Premises F. Rule Conclusions Figure 2. Inference rule editor One...created using this specific rule. one premise in the rule premises list ( E ), which represents a list of fact conditions that need to be found in the fact
A Workstation for Interactive Display and Quantitative Analysis of 3-D and 4-D Biomedical Images
Robb, R.A.; Heffeman, P.B.; Camp, J.J.; Hanson, D.P.
1986-01-01
The capability to extract objective and quantitatively accurate information from 3-D radiographic biomedical images has not kept pace with the capabilities to produce the images themselves. This is rather an ironic paradox, since on the one hand the new 3-D and 4-D imaging capabilities promise significant potential for providing greater specificity and sensitivity (i.e., precise objective discrimination and accurate quantitative measurement of body tissue characteristics and function) in clinical diagnostic and basic investigative imaging procedures than ever possible before, but on the other hand, the momentous advances in computer and associated electronic imaging technology which have made these 3-D imaging capabilities possible have not been concomitantly developed for full exploitation of these capabilities. Therefore, we have developed a powerful new microcomputer-based system which permits detailed investigations and evaluation of 3-D and 4-D (dynamic 3-D) biomedical images. The system comprises a special workstation to which all the information in a large 3-D image data base is accessible for rapid display, manipulation, and measurement. The system provides important capabilities for simultaneously representing and analyzing both structural and functional data and their relationships in various organs of the body. This paper provides a detailed description of this system, as well as some of the rationale, background, theoretical concepts, and practical considerations related to system implementation. ImagesFigure 5Figure 7Figure 8Figure 9Figure 10Figure 11Figure 12Figure 13Figure 14Figure 15Figure 16
2016-09-01
1 II. MODEL DESIGN ...Figure 10. Experimental Optical Layout for the Boston DM Characterization ..........13 Figure 11. Side View Showing the Curved Surface on a DM...of different methods for deposition, patterning, and etching until the desired design of the device is achieved. While a large number of devices
Factors Affecting SOS (Silicon-on-Sapphire) Yield and Reliability.
1984-07-01
Figure 47. Nomarski differential interference contrast micrographs at 2000 X. 104 Figure 48. Schematic illustrating procedure for preparing cross...8217When the rotation angle dependence of UV scattering was discovered, additional surface texture characterizations by Nomarski differential-interference...model 9000 f wafer flatness analyzer, an optical interferometric instrument of - adjustable sensitivity. Wafers were mounted on a 2-inch diameter Perkin
Lilge, L.; Olivo, M. C.; Schatz, S. W.; MaGuire, J. A.; Patterson, M. S.; Wilson, B. C.
1996-01-01
The applicability and limitations of a photodynamic threshold model, used to describe quantitatively the in vivo response of tissues to photodynamic therapy, are currently being investigated in a variety of normal and malignant tumour tissues. The model states that tissue necrosis occurs when the number of photons absorbed by the photosensitiser per unit tissue volume exceeds a threshold. New Zealand White rabbits were sensitised with porphyrin-based photosensitisers. Normal brain or intracranially implanted VX2 tumours were illuminated via an optical fibre placed into the tissue at craniotomy. The light fluence distribution in the tissue was measured by multiple interstitial optical fibre detectors. The tissue concentration of the photosensitiser was determined post mortem by absorption spectroscopy. The derived photodynamic threshold values for normal brain are significantly lower than for VX2 tumour for all photosensitisers examined. Neuronal damage is evident beyond the zone of frank necrosis. For Photofrin the threshold decreases with time delay between photosensitiser administration and light treatment. No significant difference in threshold is found between Photofrin and haematoporphyrin derivative. The threshold in normal brain (grey matter) is lowest for sensitisation by 5 delta-aminolaevulinic acid. The results confirm the very high sensitivity of normal brain to porphyrin photodynamic therapy and show the importance of in situ light fluence monitoring during photodynamic irradiation. Images Figure 1 Figure 4 Figure 5 Figure 6 Figure 7 PMID:8562339
Development of a 0.5m clear aperture Cassegrain type collimator telescope
NASA Astrophysics Data System (ADS)
Ekinci, Mustafa; Selimoǧlu, Özgür
2016-07-01
Collimator is an optical instrument used to evaluate performance of high precision instruments, especially space-born high resolution telescopes. Optical quality of the collimator telescope needs to be better than the instrument to be measured. This requirement leads collimator telescope to be a very precise instrument with high quality mirrors and a stable structure to keep it operational under specified conditions. In order to achieve precision requirements and to ensure repeatability of the mounts for polishing and metrology, opto-mechanical principles are applied to mirror mounts. Finite Element Method is utilized to simulate gravity effects, integration errors and temperature variations. Finite element analyses results of deformed optical surfaces are imported to optical domain by using Zernike polynomials to evaluate the design against specified WFE requirements. Both mirrors are aspheric and made from Zerodur for its stability and near zero CTE, M1 is further light-weighted. Optical quality measurements of the mirrors are achieved by using custom made CGHs on an interferometric test setup. Spider of the Cassegrain collimator telescope has a flexural adjustment mechanism driven by precise micrometers to overcome tilt errors originating from finite stiffness of the structure and integration errors. Collimator telescope is assembled and alignment methods are proposed.
Guest Editorial Precision Surface Metrology
NASA Astrophysics Data System (ADS)
Wyant, James C.
1984-08-01
During the past two decades there have been many changes in precision surface metrology. The introduction of the laser and the large computer during the 1960s and 1970s produced many changes in testing capabilities and requirements. Several commercial interferometers became available in the 1970s, enabling people who were not necessarily experts in interferometry to use interferometers to produce better optics. Since both buyers and sellers could test optics, the quality of the optics manufactured and sold improved greatly. If a person ordered 1/10 wave optics, he would probably get 1/10 wave or better optics; if he got optics of lower quality, he would know it, and he could prove it and return it.
Femtosecond Photon-Counting Receiver
NASA Technical Reports Server (NTRS)
Krainak, Michael A.; Rambo, Timothy M.; Yang, Guangning; Lu, Wei; Numata, Kenji
2016-01-01
An optical correlation receiver is described that provides ultra-precise distance and/or time/pulse-width measurements even for weak (single photons) and short (femtosecond) optical signals. A new type of optical correlation receiver uses a fourth-order (intensity) interferometer to provide micron distance measurements even for weak (single photons) and short (femtosecond) optical signals. The optical correlator uses a low-noise-integrating detector that can resolve photon number. The correlation (range as a function of path delay) is calculated from the variance of the photon number of the difference of the optical signals on the two detectors. Our preliminary proof-of principle data (using a short-pulse diode laser transmitter) demonstrates tens of microns precision.
Femtosecond Photon-Counting Receiver
NASA Technical Reports Server (NTRS)
Krainak, Michael A.; Rambo, Timothy M.; Yang, Guangning; Lu, Wei; Numata, Kenji
2016-01-01
An optical correlation receiver is described that provides ultra-precise distance and/or time-pulse-width measurements even for weak (single photons) and short (femtosecond) optical signals. A new type of optical correlation receiver uses a fourth-order (intensity) interferometer to provide micron distance measurements even for weak (single photons) and short (femtosecond) optical signals. The optical correlator uses a low-noise-integrating detector that can resolve photon number. The correlation (range as a function of path delay) is calculated from the variance of the photon number of the difference of the optical signals on the two detectors. Our preliminary proof-of principle data (using a short-pulse diode laser transmitter) demonstrates tens of microns precision.
Optical Digital Image Storage System
1991-03-18
figures courtesy of Sony Corporation x LIST OF TABLES Indexing Workstation - Ease of Learning ................................... 99 Indexing Workstation...retaining a master negative copy of the microfilm. 121 The Sony Corporation, the supplier of the optical disk media used in the ODISS projeLt, claims...disk." During the ODISS project, several CMSR files-stored on the Sony optical disks were read several thousand times with no -loss of information
Pulsed Submillimeter Laser Program.
1979-05-15
number of interrelated subsystems required for a heterodyning FIR radar were investigated. The work focused on optically pumped FIR lasers which... laser pressure. Figure 9 illustrates the effect on optical shape of raising laser pressure. It can be seen that considerable pulse shortening occurs as...range in which single transverse mode operation of a TE CO2 laser has been achieved. For the purposes of this program the optical cavity was
An In Vitro Model for Retinal Laser Damage
2007-01-01
Approved for public release, distribution unlimited This paper is part of the following report: TITLE: Conference on Optical Interactions with Tissue...necessarily endorsed by the United States Air Force. Optical Interactions with Tissue and Cells XVIII, edited by Steven L. Jacques, William P. Roach, Proc...used for the 532-nm exposures. Verification of laser wavelength was performed with a spectrometer (Ocean Optics ). Figure 4 provides a schematic
Efficient optical injection locking of electronic oscillators
NASA Astrophysics Data System (ADS)
Cochran, S. R.; Wang, S. Y.
1989-05-01
The paper presents techniques for direct optical injection locking of electronic oscillators and analyzes the problem of direct optical injection locking of a common-source FET oscillator using a high impedance optoelectronic transducer. A figure-of-merit for optically injection locked oscillators is defined, and an experimental oscillator based on the design criteria was fabricated. The oscillator achieved efficient, high power operation and moderate locking bandwidth with small locking signal magnitude. The experimental results are consistent with the theoretical model.
Noda, Naoki; Kamimura, Shinji
2008-02-01
With conventional light microscopy, precision in the measurement of the displacement of a specimen depends on the signal-to-noise ratio when we measure the light intensity of magnified images. This implies that, for the improvement of precision, getting brighter images and reducing background light noise are both inevitably required. For this purpose, we developed a new optics for laser dark-field illumination. For the microscopy, we used a laser beam and a pair of axicons (conical lenses) to get an optimal condition for dark-field observations. The optics was applied to measuring two dimensional microbead displacements with subnanometer precision. The bandwidth of our detection system overall was 10 kHz. Over most of this bandwidth, the observed noise level was as small as 0.1 nm/radicalHz.
Highly efficient acousto-optic diffraction in Sn2P2S6 crystals.
Martynyuk-Lototska, I Yu; Mys, O G; Grabar, A A; Stoika, I M; Vysochanskii, Yu M; Vlokh, R O
2008-01-01
We have studied the acousto-optic (AO) diffraction in Sn2P2S6 crystals and found that they manifest high values of an AO figure of merit. The above crystals may therefore be used as highly efficient materials in different AO applications.
Aethalometer™ Instrument Handbook
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sedlacek, Arthur J.
2016-04-01
The Aethalometer is an instrument that provides a real-time readout of the concentration of “Black” or “Elemental” carbon aerosol particles (BC or E) in an air stream (see Figure 1 and Figure 2). It is a self-contained instrument that measures the rate of change of optical transmission through a spot on a filter where aerosol is being continuously collected and uses the information to calculate the concentration of optically absorbing material in the sampled air stream. The instrument measures the transmitted light intensities through the “sensing” portion of the filter, on which the aerosol spot is being collected, and amore » “reference” portion of the filter as a check on the stability of the optical source. A mass flowmeter monitors the sample air flow rate. The data from these three measurements is used to determine the mean BC content of the air stream.« less
Ultima Replicated Optics Research
NASA Technical Reports Server (NTRS)
Hadaway, James; Engelhaupt, Darell
1997-01-01
Designs are reviewed incorporating processes suitable for replication of precision spherical segments of very large (greater than 20 meter diameter) telescopes combining ultra-lightweight and high precision. These designs must be amenable to assembly and alignment after deployment . The methods considered lie outside the present scope of fabrication, deployment and alignment considered to date. Design guidelines for reducing the weight and low frequency resonance in low G environment were given by The Serius Group, Dr. Glenn Zeiders, and are considered baseline for this activity. The goal of a rigid design of 10 Kg/sq M is being persued for the Next Generation Space Telescope (NGST) and is not likely adequate for advanced efforts. Flexures have been considered for maintaining the figure of many lightweight structures by control loop processes. This adds to the complexity and weight to the extent that it becomes difficult to recover the benefits. Two fabrication guidelines lead to a stiffer and concurrently lighter structure. First the use of thin vertical wall triangular structural reinforcements to increase the resistance to bending is preferred over hexagonal or square similar sections. Secondly, the incorporation of a similar back sheet on a cellular structure markedly improves the geometric stiffness. Neither improves the short range stiffness. Also often overlooked is that selected material properties must include high microyield and low hysteresis in addition to high elastic modulus to weight (stiffness). The fabrication steps can easily exceed the strain requirement.
Campanile Near-Field Probes Fabricated by Nanoimprint Lithography on the Facet of an Optical Fiber
Calafiore, Giuseppe; Koshelev, Alexander; Darlington, Thomas P.; ...
2017-05-10
One of the major challenges to the widespread adoption of plasmonic and nano-optical devices in real-life applications is the difficulty to mass-fabricate nano-optical antennas in parallel and reproducible fashion, and the capability to precisely place nanoantennas into devices with nanometer-scale precision. In this study, we present a solution to this challenge using the state-of-the-art ultraviolet nanoimprint lithography (UV-NIL) to fabricate functional optical transformers onto the core of an optical fiber in a single step, mimicking the 'campanile' near-field probes. Imprinted probes were fabricated using a custom-built imprinter tool with co-axial alignment capability with sub < 100 nm position accuracy, followedmore » by a metallization step. Scanning electron micrographs confirm high imprint fidelity and precision with a thin residual layer to facilitate efficient optical coupling between the fiber and the imprinted optical transformer. The imprinted optical transformer probe was used in an actual NSOM measurement performing hyperspectral photoluminescence mapping of standard fluorescent beads. The calibration scans confirmed that imprinted probes enable sub-diffraction limited imaging with a spatial resolution consistent with the gap size. This novel nano-fabrication approach promises a low-cost, high-throughput, and reproducible manufacturing of advanced nano-optical devices.« less
Campanile Near-Field Probes Fabricated by Nanoimprint Lithography on the Facet of an Optical Fiber
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calafiore, Giuseppe; Koshelev, Alexander; Darlington, Thomas P.
One of the major challenges to the widespread adoption of plasmonic and nano-optical devices in real-life applications is the difficulty to mass-fabricate nano-optical antennas in parallel and reproducible fashion, and the capability to precisely place nanoantennas into devices with nanometer-scale precision. In this study, we present a solution to this challenge using the state-of-the-art ultraviolet nanoimprint lithography (UV-NIL) to fabricate functional optical transformers onto the core of an optical fiber in a single step, mimicking the 'campanile' near-field probes. Imprinted probes were fabricated using a custom-built imprinter tool with co-axial alignment capability with sub < 100 nm position accuracy, followedmore » by a metallization step. Scanning electron micrographs confirm high imprint fidelity and precision with a thin residual layer to facilitate efficient optical coupling between the fiber and the imprinted optical transformer. The imprinted optical transformer probe was used in an actual NSOM measurement performing hyperspectral photoluminescence mapping of standard fluorescent beads. The calibration scans confirmed that imprinted probes enable sub-diffraction limited imaging with a spatial resolution consistent with the gap size. This novel nano-fabrication approach promises a low-cost, high-throughput, and reproducible manufacturing of advanced nano-optical devices.« less
NASA Astrophysics Data System (ADS)
Fulmek, P. L.; Haumer, P.; Wenzl, F. P.; Nemitz, W.; Nicolics, J.
2017-03-01
Estimating the junction temperature and its dynamic behavior in dependence of various operating conditions is an important issue, since these properties influence the optical characteristics as well as the aging processes of a light-emitting diode (LED). Particularly for high-power LEDs and pulsed operation, the dynamic behavior and the resulting thermal cycles are of interest. The forward voltage method relies on the existence of a time-independent unique triple of forward-voltage, forward-current, and junction temperature. These three figures should as well uniquely define the optical output power and spectrum, as well as the loss power of the LED, which is responsible for an increase of the junction temperature. From transient FEM-simulations one may expect an increase of the temperature of the active semiconductor layer of some 1/10 K within the first 10 μs. Most of the well-established techniques for junction temperature measurement via forward voltage method evaluate the measurement data several dozens of microseconds after switching on or switching off and estimate the junction temperature by extrapolation towards the time of switching. In contrast, the authors developed a measurement procedure with the focus on the first microseconds after switching. Besides a fast data acquisition system, a precise control of the switching process is required, i.e. a precisely defined current pulse amplitude with fast rise-time and negligible transient by-effects. We start with a short description of the measurement setup and the newly developed control algorithm for the generation of short current pulses. The thermal characterization of the LED chip during the measurement procedures is accomplished by an IR thermography system and transient finite element simulations. The same experimental setup is used to investigate the optical properties of the LED in an Ulbricht-sphere. Our experiments are performed on InGaN LED chips mounted on an Al based insulated metal substrate (IMS), giving a comprehensive picture of the transient behavior of the forward voltage of this type of high power LED.
Fabrication and testing of Wolter type-I mirrors for soft x-ray microscopes
NASA Astrophysics Data System (ADS)
Hoshino, Masato; Aoki, Sadao; Watanabe, Norio; Hirai, Shinichiro
2004-10-01
Development of a small Wolter type-I mirror that is mainly used as an objective for the X-ray microscope is described. Small Wolter mirrors for X-ray microscopes are fabricated by the vacuum replication method because of their long aspherical shape. Master mandrel is ground and polished by an ultra-precision NC lathe. Tungsten carbide was selected as a material because its thermal expansion coefficient is a little larger than the replica glass. It was ground by ELID (Electrolytic In-process Dressing) grinding technique that is appropriate for the efficient mirror surface grinding. After ultra-precision grinding, the figure error of master mandrel was better than 0.5μm except the boundary between the hyperboloid and the ellipsoid. Before vacuum replication, the mandrel was coated with Au (thickness 50nm) as the parting layer. Pyrex glass was empirically selected as mirror material. The master mandrel was inserted into the Pyrex glass tube and heated up to 675°C in the electric furnace. Although vacuum replication is a proper technique in terms of its high replication accuracy, the surface roughness characterized by the high spatial frequency of the mandrel was replicated less accurate than the figure error characterized by the low spatial frequency. This indicates that the surface roughness and the figure error depend on the glass surface and the figure error of the master mandrel, respectively. A fabricated mirror was evaluated by the imaging performance with a laser plasma X-ray source (λ=3.2nm).
NASA Astrophysics Data System (ADS)
Leclerc, Melanie R.; Côté, Patrice; Duchesne, François; Bastien, Pierre; Hernandez, Olivier; Colonna d'Istria, Pierre; Demers, Mathieu; Girard, Marc; Savard, Maxime; Lemieux, Dany; Thibault, Simon; Brousseau, Denis
2014-08-01
A polarimeter, to observe exoplanets in the visible and infrared, was built for the "Observatoire du Mont Mégantic" (OMM) to replace an existing instrument and reach 10-6 precision, a factor 100 improvement. The optical and mechanical designs are presented, with techniques used to precisely align the optical components and rotation axes to achieve the targeted precision. A photo-elastic modulator (PEM) and a lock-in amplifier are used to measure the polarization. The typical signal is a high DC superimposed to a very faint sinusoidal oscillation. Custom electronics was developed to measure the AC and DC amplitudes, and characterization results are presented.
NASA Astrophysics Data System (ADS)
Wang, Juan; Wang, Jian; Li, Lijuan; Zhou, Kun
2014-08-01
In order to solve the information fusion, process integration, collaborative design and manufacturing for ultra-precision optical elements within life-cycle management, this paper presents a digital management platform which is based on product data and business processes by adopting the modern manufacturing technique, information technique and modern management technique. The architecture and system integration of the digital management platform are discussed in this paper. The digital management platform can realize information sharing and interaction for information-flow, control-flow and value-stream from user's needs to offline in life-cycle, and it can also enhance process control, collaborative research and service ability of ultra-precision optical elements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2010-05-19
For more than three decades, the quest for ever higher precision in laser spectroscopy of the simple hydrogen atom has inspired many advances in laser, optical, and spectroscopic techniques, culminating in femtosecond laser optical frequency combs as perhaps the most precise measuring tools known to man. Applications range from optical atomic clocks and tests of QED and relativity to searches for time variations of fundamental constants. Recent experiments are extending frequency comb techniques into the extreme ultraviolet. Laser frequency combs can also control the electric field of ultrashort light pulses, creating powerful new tools for the emerging field of attosecondmore » science.Organiser(s): L. Alvarez-Gaume / PH-THNote: * Tea & coffee will be served at 16:00.« less
Methods of making composite optical devices employing polymer liquid crystal
Jacobs, S.D.; Marshall, K.L.; Cerqua, K.A.
1991-10-08
Composite optical devices are disclosed using polymer liquid crystal materials both as optical and adhesive elements. The devices are made by assembling a heated polymer liquid crystal compound, while in a low viscosity form between optically transparent substrates. The molecules of the polymer are oriented, while in the liquid crystalline state and while above the glass transition temperature (T[sub g]) of the polymer, to provide the desired optical effects, such as polarization, and selective reflection. The liquid crystal polymer cements the substrates together to form an assembly providing the composite optical device. 7 figures.
Grazing Incidence Optics Technology
NASA Technical Reports Server (NTRS)
Ramsey, Brian; Smith, W. Scott; Gubarev, Mikhail; McCracken, Jeff
2015-01-01
This project is to demonstrate the capability to directly fabricate lightweight, high-resolution, grazing-incidence x-ray optics using a commercially available robotic polishing machine. Typical x-ray optics production at NASA Marshall Space Flight Center (MSFC) uses a replication process in which metal mirrors are electroformed on to figured and polished mandrels from which they are later removed. The attraction of this process is that multiple copies can be made from a single master. The drawback is that the replication process limits the angular resolution that can be attained. By directly fabricating each shell, errors inherent in the replication process are removed. The principal challenge now becomes how to support the mirror shell during all aspects of fabrication, including the necessary metrology to converge on the required mirror performance specifications. This program makes use of a Zeeko seven-axis computer-controlled polishing machine (see fig. 1) and supporting fabrication, metrology, and test equipment at MSFC. The overall development plan calls for proof-of-concept demonstration with relatively thick mirror shells (5-6 mm, fig. 2) which are straightforward to support and then a transition to much thinner shells (2-3 mm), which are an order of magnitude thinner than those used for Chandra. Both glass and metal substrates are being investigated. Currently, a thick glass shell is being figured. This has enabled experience to be gained with programming and operating the polishing machine without worrying about shell distortions or breakage. It has also allowed time for more complex support mechanisms for figuring/ polishing and metrology to be designed for the more challenging thinner shells. These are now in fabrication. Figure 1: Zeeko polishing machine.
Quantitative optical metrology with CMOS cameras
NASA Astrophysics Data System (ADS)
Furlong, Cosme; Kolenovic, Ervin; Ferguson, Curtis F.
2004-08-01
Recent advances in laser technology, optical sensing, and computer processing of data, have lead to the development of advanced quantitative optical metrology techniques for high accuracy measurements of absolute shapes and deformations of objects. These techniques provide noninvasive, remote, and full field of view information about the objects of interest. The information obtained relates to changes in shape and/or size of the objects, characterizes anomalies, and provides tools to enhance fabrication processes. Factors that influence selection and applicability of an optical technique include the required sensitivity, accuracy, and precision that are necessary for a particular application. In this paper, sensitivity, accuracy, and precision characteristics in quantitative optical metrology techniques, and specifically in optoelectronic holography (OEH) based on CMOS cameras, are discussed. Sensitivity, accuracy, and precision are investigated with the aid of National Institute of Standards and Technology (NIST) traceable gauges, demonstrating the applicability of CMOS cameras in quantitative optical metrology techniques. It is shown that the advanced nature of CMOS technology can be applied to challenging engineering applications, including the study of rapidly evolving phenomena occurring in MEMS and micromechatronics.
Optical Materials Characterization, Final Technical Report February 1, 1978-September 30, 1978
1979-02-01
FIGURES PAGE Figure 1. (a) Schematic of spectrometer used for visible region refractometry . (b) Schematic of spectrometer used for non-,visible...region refractometry . Symbols: A = source, B = divided circle, C = prism table, D = collimator, E = telescope, F = collimating mirror, G = movable... refractometry . (b) Schematic of spectrometer used for non- visible region refractometry . Symbols: A = source, B = divided circle, C = prism table
Linear Combination of Heuristics Approach to Spatial Sampling Hyperspectral Data for Target Tracking
2010-12-01
Figure 37 - Illustration of the tunable spectral polarimeter. ........................................... 154 Figure 38 - Illustration of micromirrors ...polarimeter. 9.2 Multiobject Tracking Spectrometer The idea of combining an array of MEMS micromirrors with an imager and a spectrometer array is the... micromirror array is located at an intermediate focal plane of the optical system. If all the individual mirrors are turned in the same direction
Temperature Insensitive and Radiation Hard Photonics
2014-03-19
M. COOK , Lt Col, USAF Deputy Chief, Spacecraft Technology Division Space Vehicles Directorate This report is published in the interest of...Approved for Public Release; distribution is unlimited. ii LIST OF FIGURES Figure 1. OTDM Pulse Multiplexer for Increasing the Output Repetition Rate...QDMLL) for use in extreme environments where ionizing radiation is a substantial threat. Mode-Locked lasers generate a train of optical pulses that have
2015-11-03
scale optical projection system powered by spatial light modulators, such as digital micro-mirror device ( DMD ). Figure 4 shows the parallel lithography ...1Scientific RepoRts | 5:16192 | DOi: 10.1038/srep16192 www.nature.com/scientificreports High throughput optical lithography by scanning a massive...array of bowtie aperture antennas at near-field X. Wen1,2,3,*, A. Datta1,*, L. M. Traverso1, L. Pan1, X. Xu1 & E. E. Moon4 Optical lithography , the
NASA Technical Reports Server (NTRS)
Fielhauer, Karl, B.; Boone, Bradley, G.; Raible, Daniel, E.
2012-01-01
This paper describes a system engineering approach to examining the potential for combining elements of a deep-space RF and optical communications payload, for the purpose of reducing the size, weight and power burden on the spacecraft and the mission. Figures of merit and analytical methodologies are discussed to conduct trade studies, and several potential technology integration strategies are presented. Finally, the NASA Integrated Radio and Optical Communications (iROC) project is described, which directly addresses the combined RF and optical approach.
Breakthroughs in photonics 2013: X-ray optics
Soufli, Regina
2014-04-01
Here, this review discusses the latest advances in extreme ultraviolet/X-ray optics development, which are motivated by the availability and demands of new X-ray sources and scientific and industrial applications. Among the breakthroughs highlighted are the following: i) fabrication, metrology, and mounting technologies for large-area optical substrates with improved figure, roughness, and focusing properties; ii) multilayer coatings with especially optimized layer properties, achieving improved reflectance, stability, and out-of-band suppression; and iii) nanodiffractive optics with improved efficiency and resolution.
Manufacturing Science of Improved Molded Optics
2013-12-05
Forrer, “Interaction of N-FK5 and L- BAL35 optical glass with various carbide and other precision glass mold tooling”, SPIE Optifab 2013 Conference...Richardson, S. Mourad, M. Huber, A. Kunz, M. Forrer. Interaction of N-FK5 and L-BAL35 optical glass with various carbide and other precision glass mold...stoichiometric compounds. As an example, if silicon and oxygen are present in a material, then it was assumed that they are present in the form of
Research on the high-precision non-contact optical detection technology for banknotes
NASA Astrophysics Data System (ADS)
Jin, Xiaofeng; Liang, Tiancai; Luo, Pengfeng; Sun, Jianfeng
2015-09-01
The technology of high-precision laser interferometry was introduced for optical measurement of the banknotes in this paper. Taking advantage of laser short wavelength and high sensitivity, information of adhesive tape and cavity about the banknotes could be checked efficiently. Compared with current measurement devices, including mechanical wheel measurement device, Infrared measurement device, ultrasonic measurement device, the laser interferometry measurement has higher precision and reliability. This will improve the ability of banknotes feature information in financial electronic equipment.
The concentration of light in the human lens.
Merriam, J C
1996-01-01
PURPOSE: This thesis explores the idea that light energy, especially ultraviolet light, contributes to the unequal distribution of cataract around the world and to the development of cortical opacities. METHODS: In the first section, the thesis reviews historical concepts of the function of the lens and the nature of cataract, epidemiologic data on the global distribution of cataract, and clinical observations of the predominant location of cortical opacification. Second, computer ray tracings and geometric optics demonstrate the passage of light of varying angle of incidence within the lens. Third, two models of the human eye are used to study the refraction of light by the cornea and lens and illustrate the concentration of energy at the equatorial plane of the lens. RESULTS: Cataract prevalence increases with proximity to the earth's equator, and cortical cataract is most common in the inferior and inferonasal lens. Theoretical studies and the eye models both demonstrate that the concentration of light within the lens increases with angle of incidence, and the eye models suggest that the inferior and inferonasal lens receives significantly more energy than other sections of the lens. CONCLUSION: The prevalence of cataract and exposure to ultraviolet energy both increase with decreasing latitude. The most common location of cortical cataract in the inferonasal lens is consistent with the greater dose of light energy received by this portion of the lens. These studies suggest that the global distribution of cataract and the development of cortical cataract are at least in part dependent on the dose of ultraviolet light received by the lens. Images FIGURE 1 FIGURE 2 FIGURE 27 FIGURE 28 FIGURE 29 FIGURE 31 FIGURE 32 FIGURE 33 FIGURE 34 FIGURE 36 FIGURE 37 FIGURE 38 FIGURE 50 FIGURE 51 FIGURE 52 FIGURE 53 FIGURE 54 FIGURE 56 FIGURE 60 FIGURE 61 FIGURE 63 FIGURE 64 FIGURE 65 FIGURE 68 FIGURE 69 FIGURE 70 FIGURE 71 PMID:8981716
NASA Astrophysics Data System (ADS)
Liu, Kaizhan; Ye, Yunming; Li, Xutao; Li, Yan
2018-04-01
In recent years Convolutional Neural Network (CNN) has been widely used in computer vision field and makes great progress in lots of contents like object detection and classification. Even so, combining Convolutional Neural Network, which means making multiple CNN frameworks working synchronously and sharing their output information, could figure out useful message that each of them cannot provide singly. Here we introduce a method to real-time estimate speed of object by combining two CNN: YOLOv2 and FlowNet. In every frame, YOLOv2 provides object size; object location and object type while FlowNet providing the optical flow of whole image. On one hand, object size and object location help to select out the object part of optical flow image thus calculating out the average optical flow of every object. On the other hand, object type and object size help to figure out the relationship between optical flow and true speed by means of optics theory and priori knowledge. Therefore, with these two key information, speed of object can be estimated. This method manages to estimate multiple objects at real-time speed by only using a normal camera even in moving status, whose error is acceptable in most application fields like manless driving or robot vision.
Optical fiber stripper positioning apparatus
Fyfe, Richard W.; Sanchez, Jr., Amadeo
1990-01-01
An optical fiber positioning apparatus for an optical fiber stripping device is disclosed which is capable of providing precise axial alignment between an optical fiber to be stripped of its outer jacket and the cutting blades of a stripping device. The apparatus includes a first bore having a width approximately equal to the diameter of an unstripped optical fiber and a counter bore axially aligned with the first bore and dimensioned to precisely receive a portion of the stripping device in axial alignment with notched cutting blades within the stripping device to thereby axially align the notched cutting blades of the stripping device with the axis of the optical fiber to permit the notched cutting blades to sever the jacket on the optical fiber without damaging the cladding on the optical fiber. In a preferred embodiment, the apparatus further includes a fiber stop which permits determination of the length of jacket to be removed from the optical fiber.
Zhang, Shuangyou; Wu, Jiutao; Leng, Jianxiao; Lai, Shunnan; Zhao, Jianye
2014-11-15
In this Letter, we demonstrate a fully stabilized Er:fiber frequency comb by using a fiber-based, high-precision optical-microwave phase detector. To achieve high-precision and long-term phase locking of the repetition rate to a microwave reference, frequency control techniques (tuning pump power and cavity length) are combined together as its feedback. Since the pump power has been used for stabilization of the repetition rate, we introduce a pair of intracavity prisms as a regulator for carrier-envelope offset frequency, thereby phase locking one mode of the comb to the rubidium saturated absorption transition line. The stabilized comb performs the same high stability as the reference for the repetition rate and provides a residual frequency instability of 3.6×10(-13) for each comb mode. The demonstrated stabilization scheme could provide a high-precision comb for optical communication, direct frequency comb spectroscopy.
Research in millimeter wave techniques
NASA Technical Reports Server (NTRS)
Forsythe, R. E.; King, J. L.
1979-01-01
The following technical developments are described: (1) a reliable 183 GHz subharmonic mixer, (2) a precision noise figure test setup, (3) the successful deposition of SiO2 on a noncontacting backshort, and (4) sturdier whisker points used for diode contacting.
Adjoint-Based Implicit Uncertainty Analysis for Figures of Merit in a Laser Inertial Fusion Engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seifried, J E; Fratoni, M; Kramer, K J
A primary purpose of computational models is to inform design decisions and, in order to make those decisions reliably, the confidence in the results of such models must be estimated. Monte Carlo neutron transport models are common tools for reactor designers. These types of models contain several sources of uncertainty that propagate onto the model predictions. Two uncertainties worthy of note are (1) experimental and evaluation uncertainties of nuclear data that inform all neutron transport models and (2) statistical counting precision, which all results of a Monte Carlo codes contain. Adjoint-based implicit uncertainty analyses allow for the consideration of anymore » number of uncertain input quantities and their effects upon the confidence of figures of merit with only a handful of forward and adjoint transport calculations. When considering a rich set of uncertain inputs, adjoint-based methods remain hundreds of times more computationally efficient than Direct Monte-Carlo methods. The LIFE (Laser Inertial Fusion Energy) engine is a concept being developed at Lawrence Livermore National Laboratory. Various options exist for the LIFE blanket, depending on the mission of the design. The depleted uranium hybrid LIFE blanket design strives to close the fission fuel cycle without enrichment or reprocessing, while simultaneously achieving high discharge burnups with reduced proliferation concerns. Neutron transport results that are central to the operation of the design are tritium production for fusion fuel, fission of fissile isotopes for energy multiplication, and production of fissile isotopes for sustained power. In previous work, explicit cross-sectional uncertainty analyses were performed for reaction rates related to the figures of merit for the depleted uranium hybrid LIFE blanket. Counting precision was also quantified for both the figures of merit themselves and the cross-sectional uncertainty estimates to gauge the validity of the analysis. All cross-sectional uncertainties were small (0.1-0.8%), bounded counting uncertainties, and were precise with regard to counting precision. Adjoint/importance distributions were generated for the same reaction rates. The current work leverages those adjoint distributions to transition from explicit sensitivities, in which the neutron flux is constrained, to implicit sensitivities, in which the neutron flux responds to input perturbations. This treatment vastly expands the set of data that contribute to uncertainties to produce larger, more physically accurate uncertainty estimates.« less
Wang, Qiang; Liu, Yuefei; Chen, Yiqiang; Ma, Jing; Tan, Liying; Yu, Siyuan
2017-03-01
Accurate location computation for a beacon is an important factor of the reliability of satellite optical communications. However, location precision is generally limited by the resolution of CCD. How to improve the location precision of a beacon is an important and urgent issue. In this paper, we present two precise centroid computation methods for locating a beacon in satellite optical communications. First, in terms of its characteristics, the beacon is divided into several parts according to the gray gradients. Afterward, different numbers of interpolation points and different interpolation methods are applied in the interpolation area; we calculate the centroid position after interpolation and choose the best strategy according to the algorithm. The method is called a "gradient segmentation interpolation approach," or simply, a GSI (gradient segmentation interpolation) algorithm. To take full advantage of the pixels of the beacon's central portion, we also present an improved segmentation square weighting (SSW) algorithm, whose effectiveness is verified by the simulation experiment. Finally, an experiment is established to verify GSI and SSW algorithms. The results indicate that GSI and SSW algorithms can improve locating accuracy over that calculated by a traditional gray centroid method. These approaches help to greatly improve the location precision for a beacon in satellite optical communications.
Figure-ground segregation can rely on differences in motion direction.
Kandil, Farid I; Fahle, Manfred
2004-12-01
If the elements within a figure move synchronously while those in the surround move at a different time, the figure is easily segregated from the surround and thus perceived. Lee and Blake (1999) [Visual form created solely from temporal structure. Science, 284, 1165-1168] demonstrated that this figure-ground separation may be based not only on time differences between motion onsets, but also on the differences between reversals of motion direction. However, Farid and Adelson (2001) [Synchrony does not promote grouping in temporally structured displays. Nature Neuroscience, 4, 875-876] argued that figure-ground segregation in the motion-reversal experiment might have been based on a contrast artefact and concluded that (a)synchrony as such was 'not responsible for the perception of form in these or earlier displays'. Here, we present experiments that avoid contrast artefacts but still produce figure-ground segregation based on purely temporal cues. Our results show that subjects can segregate figure from ground even though being unable to use motion reversals as such. Subjects detect the figure when either (i) motion stops (leading to contrast artefacts), or (ii) motion directions differ between figure and ground. Segregation requires minimum delays of about 15 ms. We argue that whatever the underlying cues and mechanisms, a second stage beyond motion detection is required to globally compare the outputs of local motion detectors and to segregate figure from ground. Since analogous changes take place in both figure and ground in rapid succession, this second stage has to detect the asynchrony with high temporal precision.
The improvement of surface roughness for OAP aluminum mirrors: from terahertz to ultraviolet
NASA Astrophysics Data System (ADS)
Peng, Jilong; Yu, Qian; Shao, Yajun; Wang, Dong; Yi, Zhong; Wang, Shanshan
2018-01-01
Aluminum reflector, especially OAP (Off-Axis Parabolic) reflector, has been widely used in terahertz and infrared systems for its low cost, lightweight, good machinability, small size, simple structure, and having the same thermal expansion and contraction with the system structure which makes it have a wide temperature adaptability. Thorlabs, Daheng and other large optical components companies even have Aluminum OAP sold on shelf. Most of the precision Aluminum OAP is fabricated by SPDT (single point diamond turing). Affected by intermittent shock, the roughness of aluminum OAP mirrors through conventional single-point diamond lathes is around 7 nm which limits the scope of application for aluminum mirrors, like in the high power density terahertz/infrared systems and visible/UV optical systems. In this paper, a continuous process frock is proposed, which effectively reduces the influence of turning impact on the mirror roughness. Using this process, an off-axis parabolic aluminum reflector with an effective diameter of 50 mm, off-axis angle of 90 degree is fabricated, and the performances are validated. Measurement by VEECO NT1100 optical profiler with 20× objects, the surface roughness achieves 2.3 nm, and the surface figure error is within λ/7 RMS (λ= 632.8 nm) tested by FISB Aμ Phase laser interferometer with the help of a standard flat mirror. All these technical specifications are close to the traditional glass-based reflectors, and make it possible for using Aluminum reflectors in the higher LIDT (laser induced damage threshold) systems and even for the micro sensor of ionospheric for vacuum ultraviolet micro nano satellites.
Magneto-Optical Thin Films for On-Chip Monolithic Integration of Non-Reciprocal Photonic Devices
Bi, Lei; Hu, Juejun; Jiang, Peng; Kim, Hyun Suk; Kim, Dong Hun; Onbasli, Mehmet Cengiz; Dionne, Gerald F.; Ross, Caroline A.
2013-01-01
Achieving monolithic integration of nonreciprocal photonic devices on semiconductor substrates has been long sought by the photonics research society. One way to achieve this goal is to deposit high quality magneto-optical oxide thin films on a semiconductor substrate. In this paper, we review our recent research activity on magneto-optical oxide thin films toward the goal of monolithic integration of nonreciprocal photonic devices on silicon. We demonstrate high Faraday rotation at telecommunication wavelengths in several novel magnetooptical oxide thin films including Co substituted CeO2−δ, Co- or Fe-substituted SrTiO3−δ, as well as polycrystalline garnets on silicon. Figures of merit of 3~4 deg/dB and 21 deg/dB are achieved in epitaxial Sr(Ti0.2Ga0.4Fe0.4)O3−δ and polycrystalline (CeY2)Fe5O12 films, respectively. We also demonstrate an optical isolator on silicon, based on a racetrack resonator using polycrystalline (CeY2)Fe5O12/silicon strip-loaded waveguides. Our work demonstrates that physical vapor deposited magneto-optical oxide thin films on silicon can achieve high Faraday rotation, low optical loss and high magneto-optical figure of merit, therefore enabling novel high-performance non-reciprocal photonic devices monolithically integrated on semiconductor substrates. PMID:28788379
Active Mirror Predictive and Requirements Verification Software (AMP-ReVS)
NASA Technical Reports Server (NTRS)
Basinger, Scott A.
2012-01-01
This software is designed to predict large active mirror performance at various stages in the fabrication lifecycle of the mirror. It was developed for 1-meter class powered mirrors for astronomical purposes, but is extensible to other geometries. The package accepts finite element model (FEM) inputs and laboratory measured data for large optical-quality mirrors with active figure control. It computes phenomenological contributions to the surface figure error using several built-in optimization techniques. These phenomena include stresses induced in the mirror by the manufacturing process and the support structure, the test procedure, high spatial frequency errors introduced by the polishing process, and other process-dependent deleterious effects due to light-weighting of the mirror. Then, depending on the maturity of the mirror, it either predicts the best surface figure error that the mirror will attain, or it verifies that the requirements for the error sources have been met once the best surface figure error has been measured. The unique feature of this software is that it ties together physical phenomenology with wavefront sensing and control techniques and various optimization methods including convex optimization, Kalman filtering, and quadratic programming to both generate predictive models and to do requirements verification. This software combines three distinct disciplines: wavefront control, predictive models based on FEM, and requirements verification using measured data in a robust, reusable code that is applicable to any large optics for ground and space telescopes. The software also includes state-of-the-art wavefront control algorithms that allow closed-loop performance to be computed. It allows for quantitative trade studies to be performed for optical systems engineering, including computing the best surface figure error under various testing and operating conditions. After the mirror manufacturing process and testing have been completed, the software package can be used to verify that the underlying requirements have been met.
Wavefront Sensing With Switched Lenses for Defocus Diversity
NASA Technical Reports Server (NTRS)
Dean, Bruce H.
2007-01-01
In an alternative hardware design for an apparatus used in image-based wavefront sensing, defocus diversity is introduced by means of fixed lenses that are mounted in a filter wheel (see figure) so that they can be alternately switched into a position in front of the focal plane of an electronic camera recording the image formed by the optical system under test. [The terms image-based, wavefront sensing, and defocus diversity are defined in the first of the three immediately preceding articles, Broadband Phase Retrieval for Image-Based Wavefront Sensing (GSC-14899-1).] Each lens in the filter wheel is designed so that the optical effect of placing it at the assigned position is equivalent to the optical effect of translating the camera a specified defocus distance along the optical axis. Heretofore, defocus diversity has been obtained by translating the imaging camera along the optical axis to various defocus positions. Because data must be taken at multiple, accurately measured defocus positions, it is necessary to mount the camera on a precise translation stage that must be calibrated for each defocus position and/or to use an optical encoder for measurement and feedback control of the defocus positions. Additional latency is introduced into the wavefront sensing process as the camera is translated to the various defocus positions. Moreover, if the optical system under test has a large focal length, the required defocus values are large, making it necessary to use a correspondingly bulky translation stage. By eliminating the need for translation of the camera, the alternative design simplifies and accelerates the wavefront-sensing process. This design is cost-effective in that the filterwheel/lens mechanism can be built from commercial catalog components. After initial calibration of the defocus value of each lens, a selected defocus value is introduced by simply rotating the filter wheel to place the corresponding lens in front of the camera. The rotation of the wheel can be automated by use of a motor drive, and further calibration is not necessary. Because a camera-translation stage is no longer needed, the size of the overall apparatus can be correspondingly reduced.
Strategic and Tactical Technology and Methodologies for Electro-Optical Sensor Testing
1997-02-01
Performance of Ground Quartz and Flashed Opal 21... structural rigidity, inertial stability, optical fidelity, etc., should consider the later requirements for modeling and simulations which will...individual pixels. Figure 6 is the magnified section, and Fig. 7 illustrates the results of using fractal interpolation to artifi - cially increase the
Method for radiation detection and measurement
Miller, S.D.
1993-12-21
Dose of radiation to which a body of crystalline material has been exposed is measured by exposing the body to optical radiation at a first wavelength, which is greater than about 540 nm, and measuring optical energy emitted from the body by luminescence at a second wavelength, which is longer than the first wavelength. 9 figures.
Cryogenic optical testing results of JWST aspheric test plate lens
NASA Astrophysics Data System (ADS)
Smith, Koby Z.; Towell, Timothy C.
2011-09-01
The James Webb Space Telescope (JWST) Secondary Mirror Assembly (SMA) is a circular 740mm diameter beryllium convex hyperboloid that has a 23.5nm-RMS (λ/27 RMS) on-orbit surface figure error requirement. The radius of curvature of the SMA is 1778.913mm+/-0.45mm and has a conic constant of -1.6598+/-0.0005. The on-orbit operating temperature of the JWST SMA is 22.5K. Ball Aerospace & Technologies Corp. (BATC) is under contract to Northrop Grumman Aerospace Systems (NGAS) to fabricate, assemble, and test the JWST SMA to its on-orbit requirements including the optical testing of the SMA at its cryogenic operating temperature. BATC has fabricated and tested an Aspheric Test Plate Lens (ATPL) that is an 870mm diameter fused silica lens used as the Fizeau optical reference in the ambient and cryogenic optical testing of the JWST Secondary Mirror Assembly (SMA). As the optical reference for the SMA optical test, the concave optical surface of the ATPL is required to be verified at the same 20K temperature range required for the SMA. In order to meet this objective, a state-of-the-art helium cryogenic testing facility was developed to support the optical testing requirements of a number of the JWST optical testing needs, including the ATPL and SMA. With the implementation of this cryogenic testing facility, the ATPL was successfully cryogenically tested and performed to less than 10nm-RMS (λ/63 RMS) surface figure uncertainty levels for proper reference backout during the SMA optical testing program.
High-Temperature Optical Sensor
NASA Technical Reports Server (NTRS)
Adamovsky, Grigory; Juergens, Jeffrey R.; Varga, Donald J.; Floyd, Bertram M.
2010-01-01
A high-temperature optical sensor (see Figure 1) has been developed that can operate at temperatures up to 1,000 C. The sensor development process consists of two parts: packaging of a fiber Bragg grating into a housing that allows a more sturdy thermally stable device, and a technological process to which the device is subjected to in order to meet environmental requirements of several hundred C. This technology uses a newly discovered phenomenon of the formation of thermally stable secondary Bragg gratings in communication-grade fibers at high temperatures to construct robust, optical, high-temperature sensors. Testing and performance evaluation (see Figure 2) of packaged sensors demonstrated operability of the devices at 1,000 C for several hundred hours, and during numerous thermal cycling from 400 to 800 C with different heating rates. The technology significantly extends applicability of optical sensors to high-temperature environments including ground testing of engines, flight propulsion control, thermal protection monitoring of launch vehicles, etc. It may also find applications in such non-aerospace arenas as monitoring of nuclear reactors, furnaces, chemical processes, and other hightemperature environments where other measurement techniques are either unreliable, dangerous, undesirable, or unavailable.
Fully stabilized mid-infrared frequency comb for high-precision molecular spectroscopy.
Vainio, Markku; Karhu, Juho
2017-02-20
A fully stabilized mid-infrared optical frequency comb spanning from 2.9 to 3.4 µm is described in this article. The comb is based on half-harmonic generation in a femtosecond optical parametric oscillator, which transfers the high phase coherence of a fully stabilized near-infrared Er-doped fiber laser comb to the mid-infrared region. The method is simple, as no phase-locked loops or reference lasers are needed. Precise locking of optical frequencies of the mid-infrared comb to the pump comb is experimentally verified at sub-20 mHz level, which corresponds to a fractional statistical uncertainty of 2 × 10-16 at the center frequency of the mid-infrared comb. The fully stabilized mid-infrared comb is an ideal tool for high-precision molecular spectroscopy, as well as for optical frequency metrology in the mid-infrared region, which is difficult to access with other stabilized frequency comb techniques.
High-Precision Distribution of Highly Stable Optical Pulse Trains with 8.8 × 10−19 instability
Ning, B.; Zhang, S. Y.; Hou, D.; Wu, J. T.; Li, Z. B.; Zhao, J. Y.
2014-01-01
The high-precision distribution of optical pulse trains via fibre links has had a considerable impact in many fields. In most published work, the accuracy is still fundamentally limited by unavoidable noise sources, such as thermal and shot noise from conventional photodiodes and thermal noise from mixers. Here, we demonstrate a new high-precision timing distribution system that uses a highly precise phase detector to obviously reduce the effect of these limitations. Instead of using photodiodes and microwave mixers, we use several fibre Sagnac-loop-based optical-microwave phase detectors (OM-PDs) to achieve optical-electrical conversion and phase measurements, thereby suppressing the sources of noise and achieving ultra-high accuracy. The results of a distribution experiment using a 10-km fibre link indicate that our system exhibits a residual instability of 2.0 × 10−15 at1 s and8.8 × 10−19 at 40,000 s and an integrated timing jitter as low as 3.8 fs in a bandwidth of 1 Hz to 100 kHz. This low instability and timing jitter make it possible for our system to be used in the distribution of optical-clock signals or in applications that require extremely accurate frequency/time synchronisation. PMID:24870442
NASA Technical Reports Server (NTRS)
Gordon, T. E.
1995-01-01
The mirror assembly of the AXAF observatory consists of four concentric, confocal, Wolter type 1 telescopes. Each telescope includes two conical grazing incidence mirrors, a paraboloid followed by a hyperboloid. Fabrication of these state-or-the-art optics is now complete, with predicted performance that surpasses the goals of the program. The fabrication of these optics, whose size and requirements exceed those of any previous x-ray mirrors, presented a challenging task requiring the use of precision engineering in many different forms. Virtually all of the equipment used for this effort required precision engineering. Accurate metrology required deterministic support of the mirrors in order to model the gravity distortions which will not be present on orbit. The primary axial instrument, known as the Precision Metrology Station (PMS), was a unique scanning Fizeau interferometer. After metrology was complete, the optics were placed in specially designed Glass Support Fixtures (GSF's) for installation on the Automated Cylindrical Grinder/Polishers (ACG/P's). The GSF's were custom molded for each mirror element to match the shape of the outer surface to minimize distortions of the inner surface. The final performance of the telescope is expected to far exceed the original goals and expectations of the program.
Radio Science from an Optical Communications Signal
NASA Technical Reports Server (NTRS)
Moision, Bruce; Asmar, Sami; Oudrhiri, Kamal
2013-01-01
NASA is currently developing the capability to deploy deep space optical communications links. This creates the opportunity to utilize the optical link to obtain range, doppler, and signal intensity estimates. These may, in turn, be used to complement or extend the capabilities of current radio science. In this paper we illustrate the achievable precision in estimating range, doppler, and received signal intensity of an non-coherent optical link (the current state-of-the-art for a deep-space link). We provide a joint estimation algorithm with performance close to the bound. We draw comparisons to estimates based on a coherent radio frequency signal, illustrating that large gains in either precision or observation time are possible with an optical link.
2005-03-01
images the light onto the detector at the focal plane (FP). 32 FP L5 HG L4 SH SL L3 NF L2 Figure 10. Spectrograph Stage of Raman Base Unit...the precise intensity at any given time. There was a small red light on the front of the instrument, as indicated in Figure 13, which would glow...Force Base , Ohio APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. The views expressed in this thesis are those of the author and do not
Space optics with silicon wafers and slumped glass
NASA Astrophysics Data System (ADS)
Hudec, R.; Semencova, V.; Inneman, A.; Skulinova, M.; Sveda, L.; Míka, M.; Sik, J.; Lorenc, M.
2017-11-01
The future space X-ray astronomy imaging missions require very large collecting areas at still fine angular resolution and reasonable weight. The novel substrates for X-ray mirrors such as Silicon wafers and thin thermally formed glass enable wide applications of precise and very light weight (volume densities 2.3 to 2.5 gcm-3) optics. The recent status of novel technologies as well as developed test samples with emphasis on precise optical surfaces based on novel materials and their space applications is presented and discussed.
Dooley, J.B.; Muhs, J.D.; Tobin, K.W.
1995-01-10
A fiber optic vibration sensor utilizes two single mode optical fibers supported by a housing with one optical fiber fixedly secured to the housing and providing a reference signal and the other optical fiber having a free span length subject to vibrational displacement thereof with respect to the housing and the first optical fiber for providing a signal indicative of a measurement of any perturbation of the sensor. Damping or tailoring of the sensor to be responsive to selected levels of perturbation is provided by altering the diameter of optical fibers or by immersing at least a portion of the free span length of the vibration sensing optical fiber into a liquid of a selected viscosity. 2 figures.
Contextual modulation revealed by optical imaging exhibits figural asymmetry in macaque V1 and V2.
Zarella, Mark D; Ts'o, Daniel Y
2017-01-01
Neurons in early visual cortical areas are influenced by stimuli presented well beyond the confines of their classical receptive fields, endowing them with the ability to encode fine-scale features while also having access to the global context of the visual scene. This property can potentially define a role for the early visual cortex to contribute to a number of important visual functions, such as surface segmentation and figure-ground segregation. It is unknown how extraclassical response properties conform to the functional architecture of the visual cortex, given the high degree of functional specialization in areas V1 and V2. We examined the spatial relationships of contextual activations in macaque V1 and V2 with intrinsic signal optical imaging. Using figure-ground stimulus configurations defined by orientation or motion, we found that extraclassical modulation is restricted to the cortical representations of the figural component of the stimulus. These modulations were positive in sign, suggesting a relative enhancement in neuronal activity that may reflect an excitatory influence. Orientation and motion cues produced similar patterns of activation that traversed the functional subdivisions of V2. The asymmetrical nature of the enhancement demonstrated the capacity for visual cortical areas as early as V1 to contribute to figure-ground segregation, and the results suggest that this information can be extracted from the population activity constrained only by retinotopy, and not the underlying functional organization.
OptiCentric lathe centering machine
NASA Astrophysics Data System (ADS)
Buß, C.; Heinisch, J.
2013-09-01
High precision optics depend on precisely aligned lenses. The shift and tilt of individual lenses as well as the air gap between elements require accuracies in the single micron regime. These accuracies are hard to meet with traditional assembly methods. Instead, lathe centering can be used to machine the mount with respect to the optical axis. Using a diamond turning process, all relevant errors of single mounted lenses can be corrected in one post-machining step. Building on the OptiCentric® and OptiSurf® measurement systems, Trioptics has developed their first lathe centering machines. The machine and specific design elements of the setup will be shown. For example, the machine can be used to turn optics for i-line steppers with highest precision.
Synchrotron Radiation Lithography for Manufacturing Integrated Circuits Beyond 100 nm.
Kinoshita, H; Watanabe, T; Niibe, M
1998-05-01
Extreme ultraviolet lithography is a powerful tool for printing features of 0.1 micro m and below; in Japan and the USA there is a growing tendency to view it as the wave of the future. With Schwarzschild optics, replication of a 0.05 micro m pattern has been demonstrated in a 25 micro m square area. With a two-aspherical-mirror system, a 0.15 micro m pattern has been replicated in a ring slit area of 20 mm x 0.4 mm; a combination of this system with illumination optics and synchronized mask and wafer stages has enabled the replication of a 0.15 micro m pattern in an area of 10 mm x 12.5 mm. Furthermore, in the USA, the Sandia National Laboratory has succeeded in fabricating a fully operational NMOS transistor with a gate length of 0.1 micro m. The most challenging problem is the fabrication of mirrors with the required figure error of 0.28 nm. However, owing to advances in measurement technology, mirrors can now be made to a precision that almost satisfies this requirement. Therefore, it is time to move into a rapid development phase in order to obtain a system ready for practical use by the year 2004. In this paper the status of individual technologies is discussed in light of this situation, and future requirements for developing a practical system are considered.
Enhanced Performance & Functionality of Tunable Delay Lines
2012-08-01
Figure 6. Experimental setup. Transmitter is capable of generating 80-Gb/s RZ-DQPSK, 40-Gb/s RZ-DPSK and 40-Gb/s RZ-OOK modulation formats. Phase...Power penalty with respect to B2B of each channel for 2-, 4-, 8-fold multicasting. (c) Pulsewidth as a function of DGD along with eye diagrams of 2...63 Figure 99. Concept. (a) A distributed optical network ; (b) NOLMs for
Effectiveness of a Littoral Combat Ship as a Major Node in a Wireless Mesh Network
2017-03-01
17 Figure 6. Cloud Relay Groups . Source: Persistent Systems (2014a). .......................18 Figure 7. SolarWinds Network Performance Monitor...CIG Commander’s Initiative Group CLI Command Line Interface CN Core Network CODA Common Optical Digital Architecture CPS Cyber-Physical Systems...CSBA Center for Strategic and Budgetary CSG Carrier Strike Group DAMA Demand Assigned Multiple Access DDG Guided Missile Destroyer DL Distributed
Automating Nearshore Bathymetry Extraction from Wave Motion in Satellite Optical Imagery
2012-03-01
positions and overlap in the electromagnetic spectrum (From DigitalGlobe, 2011b). ..............................18 Figure 9. STK snap shot of...to-Noise Ratio STK Satellite Tool Kit UTM Universal Transverse Mercator WKB Wave Kinematics Bathymetry xviii THIS PAGE INTENTIONALLY LEFT...planned over the coming months. 21 Figure 9. STK snap shot of WorldView-2 collection pass. C. METHOD The imagery was collected at about 2200Z
Long range self-assembly of polythiophene breath figures: Optical and morphological characterization
Routh, Prahlad K.; Nykypanchuk, Dmytro; Venkatesh, T. A.; ...
2015-09-01
Large area, device relevant sized microporous thin films are formed with commercially available polythiophenes by the breath figure technique, a water-assisted micro patterning method, with such semitransparent thin films exhibiting periodicity and uniformity dictated by the length of the polymer side chain. Compared to drop casted thin films, the microporous thin films exhibit increased crystallinity due to stronger packing of the polymer inside the honeycomb frame.
Polarimetric Enhancements to Electro-Optical Aided Navigation Techniques
2011-03-01
encouraging me in every step of the way. I give a sincere thanks to the folks in AFRL/RYJT that started me working with polaremetry. Especially Bab Mack ...57 3.14 Polarization Products Examples . . . . . . . . . . . . . . . . . 60 ix Figure Page 3.15 Hue, Intensity, Saturation Pseudo- color ...Figure 3.6: Example output image from the DIRSIG software. This image shows the intensity of three glossy black objects being illuminated by the sun
Instrumentation for Linear and Nonlinear Optical Device Characterization
2018-01-31
1998. 4. TITLE. Enter title and subtitle with volume number and part number, if applicable. On classified documents, enter the title classification...with security classification regulations, e.g. U, C, S, etc. If this form contains classified information, stamp classification level on the top...hundreds of picoseconds. Figure 3 illustrates example data taken from the oscilloscope. 0 5 10 15 Time (ns) 20 25 30 Figure 3. (a) A screen shot
Measurement of laser spot quality
NASA Technical Reports Server (NTRS)
Milster, T. D.; Treptau, J. P.
1991-01-01
Several ways of measuring spot quality are compared. We examine in detail various figures of merit such as full width at half maximum (FWHM), full width at 1/(e exp 2) maximum, Strehl ratio, and encircled energy. Our application is optical data storage, but results can be applied to other areas like space communications and high energy lasers. We found that the optimum figure of merit in many cases is Strehl ratio.
Novel MRF fluid for ultra-low roughness optical surfaces
NASA Astrophysics Data System (ADS)
Dumas, Paul; McFee, Charles
2014-08-01
Over the past few years there have been an increasing number of applications calling for ultra-low roughness (ULR) surfaces. A critical demand has been driven by EUV optics, EUV photomasks, X-Ray, and high energy laser applications. Achieving ULR results on complex shapes like aspheres and X-Ray mirrors is extremely challenging with conventional polishing techniques. To achieve both tight figure and roughness specifications, substrates typically undergo iterative global and local polishing processes. Typically the local polishing process corrects the figure or flatness but cannot achieve the required surface roughness, whereas the global polishing process produces the required roughness but degrades the figure. Magnetorheological Finishing (MRF) is a local polishing technique based on a magnetically-sensitive fluid that removes material through a shearing mechanism with minimal normal load, thus removing sub-surface damage. The lowest surface roughness produced by current MRF is close to 3 Å RMS. A new ULR MR fluid uses a nano-based cerium as the abrasive in a proprietary aqueous solution, the combination of which reliably produces under 1.5Å RMS roughness on Fused Silica as measured by atomic force microscopy. In addition to the highly convergent figure correction achieved with MRF, we show results of our novel MR fluid achieving <1.5Å RMS roughness on fused silica and other materials.
Rapid Field-Usable Cyanide Sensor Development for Blood and Saliva
2013-12-01
fluorescent readings were measured using an Ocean Optics USB2000+ Spectrometer. The spiked plasma gave a signal of approximately 18% of an aqueous...fluorescent readings were measured using an Ocean Optics USB2000+ Spectrometer. The optimization data can be seen in Figure 1.1.1-3. For aqueous...measured using an Ocean Optics USB2000+ Spectrometer. The identification of interferents is important to assess the possibility of false positives for
Plasmonic Refractive Index Sensor with High Figure of Merit Based on Concentric-Rings Resonator
Zhang, Zhaojian; Yang, Junbo; He, Xin; Zhang, Jingjing; Huang, Jie; Chen, Dingbo; Han, Yunxin
2018-01-01
A plasmonic refractive index (RI) sensor based on metal-insulator-metal (MIM) waveguide coupled with concentric double rings resonator (CDRR) is proposed and investigated numerically. Utilizing the novel supermodes of the CDRR, the FWHM of the resonant wavelength can be modulated, and a sensitivity of 1060 nm/RIU with high figure of merit (FOM) 203.8 is realized in the near-infrared region. The unordinary modes, as well as the influence of structure parameters on the sensing performance, are also discussed. Such plasmonic sensor with simple framework and high optical resolution could be applied to on-chip sensing systems and integrated optical circuits. Besides, the special cases of bio-sensing and triple rings are also discussed. PMID:29300331
NASA Astrophysics Data System (ADS)
Mills, M. W.; Hutchinson, Matthew J.
2005-05-01
A variety of consumer applications, eg cellphone camera lenses, optical storage devices, digital cameras, etc, are driving the demand for small, high aspheric departure rotationally-symmetric moulded optics, manufactured both in polymer and glass materials. The mould tools for such components are manufactured by ultra-high precision techniques such as single point diamond turning and ultra-precision grinding, and must be accurate to <1/10μm levels for form, and exhibit nanometric surface finish quality. The aspheric forms of such components' optical surfaces exhibit high departure from best-fit sphere towards their outer edge, which renders this outer region especially critical for optical performance. The high slope of these components at the clear aperture has caused some restrictions on the use of profilometry in the measurement of form across their full diameter. Taylor Hobson designs and manufactures a range of ultra-precision profilometers for use in such industries as aspheric optics fabrication. In order to address the issues described, a new measurement system, Taylor Hobson Form Talysurf PGI 1250, has been developed, which contains new Aspheric Data Fusion Software, as well as Asphero-Diffractive Analysis Software, allowing the entire diametric profile to be analysed to the desired level of accuracy. This development removes the previous limitation of maximum slope for this type of measurement, thus enabling better quality control of high slope, high aspheric departure optics. Measurement data from the Form Talysurf PGI 1250 can be fed back directly to the machine tool, in order to optimize the form of the optical mould.
NASA Astrophysics Data System (ADS)
Mills, M. W.; Hutchinson, Matthew J.
2005-05-01
A variety of consumer applications, eg cellphone camera lenses, optical storage devices, digital cameras, etc, are driving the demand for small, high aspheric departure rotationally-symmetric moulded optics, manufactured both in polymer and glass materials. The mould tools for such components are manufactured by ultra-high precision techniques such as single point diamond turning and ultra-precision grinding, and must be accurate to <1/10μm levels for form, and exhibit nanometric surface finish quality. The aspheric forms of such components" optical surfaces exhibit high departure from best-fit sphere towards their outer edge, which renders this outer region especially critical for optical performance. The high slope of these components at the clear aperture has caused some restrictions on the use of profilometry in the measurement of form across their full diameter. Taylor Hobson designs and manufactures a range of ultra-precision profilometers for use in such industries as aspheric optics fabrication. In order to address the issues described, a new measurement system, Taylor Hobson Form Talysurf PGI 1250, has been developed, which contains new Aspheric Data Fusion Software, as well as Asphero-Diffractive Analysis Software, allowing the entire diametric profile to be analysed to the desired level of accuracy. This development removes the previous limitation of maximum slope for this type of measurement, thus enabling better quality control of high slope, high aspheric departure optics. Measurement data from the Form Talysurf PGI 1250 can be fed back directly to the machine tool, in order to optimize the form of the optical mould.
Improved Scanners for Microscopic Hyperspectral Imaging
NASA Technical Reports Server (NTRS)
Mao, Chengye
2009-01-01
Improved scanners to be incorporated into hyperspectral microscope-based imaging systems have been invented. Heretofore, in microscopic imaging, including spectral imaging, it has been customary to either move the specimen relative to the optical assembly that includes the microscope or else move the entire assembly relative to the specimen. It becomes extremely difficult to control such scanning when submicron translation increments are required, because the high magnification of the microscope enlarges all movements in the specimen image on the focal plane. To overcome this difficulty, in a system based on this invention, no attempt would be made to move either the specimen or the optical assembly. Instead, an objective lens would be moved within the assembly so as to cause translation of the image at the focal plane: the effect would be equivalent to scanning in the focal plane. The upper part of the figure depicts a generic proposed microscope-based hyperspectral imaging system incorporating the invention. The optical assembly of this system would include an objective lens (normally, a microscope objective lens) and a charge-coupled-device (CCD) camera. The objective lens would be mounted on a servomotor-driven translation stage, which would be capable of moving the lens in precisely controlled increments, relative to the camera, parallel to the focal-plane scan axis. The output of the CCD camera would be digitized and fed to a frame grabber in a computer. The computer would store the frame-grabber output for subsequent viewing and/or processing of images. The computer would contain a position-control interface board, through which it would control the servomotor. There are several versions of the invention. An essential feature common to all versions is that the stationary optical subassembly containing the camera would also contain a spatial window, at the focal plane of the objective lens, that would pass only a selected portion of the image. In one version, the window would be a slit, the CCD would contain a one-dimensional array of pixels, and the objective lens would be moved along an axis perpendicular to the slit to spatially scan the image of the specimen in pushbroom fashion. The image built up by scanning in this case would be an ordinary (non-spectral) image. In another version, the optics of which are depicted in the lower part of the figure, the spatial window would be a slit, the CCD would contain a two-dimensional array of pixels, the slit image would be refocused onto the CCD by a relay-lens pair consisting of a collimating and a focusing lens, and a prism-gratingprism optical spectrometer would be placed between the collimating and focusing lenses. Consequently, the image on the CCD would be spatially resolved along the slit axis and spectrally resolved along the axis perpendicular to the slit. As in the first-mentioned version, the objective lens would be moved along an axis perpendicular to the slit to spatially scan the image of the specimen in pushbroom fashion.
Highest Resolution Image of Dust and Sand Yet Acquired on Mars
NASA Technical Reports Server (NTRS)
2008-01-01
[figure removed for brevity, see original site] [figure removed for brevity, see original site] [figure removed for brevity, see original site] Click on image for Figure 1Click on image for Figure 2Click on image for Figure 3 This mosaic of four side-by-side microscope images (one a color composite) was acquired by the Optical Microscope, a part of the Microscopy, Electrochemistry, and Conductivity Analyzer (MECA) instrument suite on NASA's Phoenix Mars Lander. Taken on the ninth Martian day of the mission, or Sol 9 (June 3, 2008), the image shows a 3 millimeter (0.12 inch) diameter silicone target after it has been exposed to dust kicked up by the landing. It is the highest resolution image of dust and sand ever acquired on Mars. The silicone substrate provides a sticky surface for holding the particles to be examined by the microscope. Martian Particles on Microscope's Silicone Substrate In figure 1, the particles are on a silcone substrate target 3 millimeters (0.12 inch) in diameter, which provides a sticky surface for holding the particles while the microscope images them. Blow-ups of four of the larger particles are shown in the center. These particles range in size from about 30 microns to 150 microns (from about one one-thousandth of an inch to six one-thousandths of an inch). Possible Nature of Particles Viewed by Mars Lander's Optical Microscope In figure 2, the color composite on the right was acquired to examine dust that had fallen onto an exposed surface. The translucent particle highlighted at bottom center is of comparable size to white particles in a Martian soil sample (upper pictures) seen two sols earlier inside the scoop of Phoenix's Robotic Arm as imaged by the lander's Robotic Arm Camera. The white particles may be examples of the abundant salts that have been found in the Martian soil by previous missions. Further investigations will be needed to determine the white material's composition and whether translucent particles like the one in this microscopic image are found in Martian soil samples. Scale of Phoenix Optical Microscope Images This set of pictures in figure 3 gives context for the size of individual images from the Optical Microscope on NASA's Mars Phoenix Lander. The picture in the upper left was taken on Mars by the Surface Stereo Imager on Phoenix. It shows a portion of the microscope's sample stage exposed to accept a sample. In this case, the sample was of dust kicked up by the spacecraft thrusters during landers. Later samples will include soil delivered by the Robotic Arm. The other pictures were taken on Earth. They show close-ups of circular substrates on which the microscopic samples rest when the microscope images them. Each circular substrate target is 3 millimeters (about one-tenth of an inch) in diameter. Each image taken by the microscope covers and area 2 millimeters by 1 millimeter (0.08 inch by 0.04 inch), the size of a large grain of sand. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.Fiber optic diffraction grating maker
Deason, V.A.; Ward, M.B.
1991-05-21
A compact and portable diffraction grating maker is comprised of a laser beam, optical and fiber optics devices coupling the beam to one or more evanescent beam splitters, and collimating lenses or mirrors directing the split beam at an appropriate photosensitive material. The collimating optics, the output ends of the fiber optic coupler and the photosensitive plate holder are all mounted on an articulated framework so that the angle of intersection of the beams can be altered at will without disturbing the spatial filter, collimation or beam quality, and assuring that the beams will always intersect at the position of the plate. 4 figures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goeke, R.; Farnsworth, A.V.; Neumann, C.C.
1996-06-01
This report discusses a novel fabrication process to produce nearly perfect optics. The process utilizes vacuum deposition techniques to optimally modify polished optical substrate surfaces. The surface figure, i.e. contour of a polished optical element, is improved by differentially filling in the low spots on the surface using flux from a physical vapor deposition source through an appropriate mask. The process is expected to enable the manufacture of diffraction-limited optical systems for the UV, extreme UV, and soft X-ray spectral regions, which would have great impact on photolithography and astronomy. This same technique may also reduce the fabrication cost ofmore » visible region optics with aspheric surfaces.« less
Distributed Fiber Optic Sensors for Earthquake Detection and Early Warning
NASA Astrophysics Data System (ADS)
Karrenbach, M. H.; Cole, S.
2016-12-01
Fiber optic cables placed along pipelines, roads or other infrastructure provide dense sampling of passing seismic wavefields. Laser interrogation units illuminate the fiber over its entire length, and strain at desired points along the fiber can be determined from the reflected signal. Single-mode optical fibers up to 50 km in length can provide a distributed acoustic sensing system (DAS) where the acoustic bandwidth of each channel is limited only by the round-trip time over the length of the cable (0.0005 s for a 50 km cable). Using a 10 m spatial resolution results in 4000 channels sampled at 2.5 kHz spanning a 40 km-long fiber deployed along a pipeline. The inline strain field is averaged along the fiber over a 10 m section of the cable at each desired spatial sample, creating a virtual sensor location. Typically, a dynamic strain sensitivity of sub-nanometers within each gauge along the entire length of the fiber can be achieved. This sensitivity corresponds to a particle displacement figure of approximately -90 dB ms-2Hz-½. Such a fiber optic sensor is not as sensitive as long-period seismometers used in earthquake networks, but given the large number of channels, small to medium-sized earthquakes can be detected, depending on distance from the array, and can be located with precision through arrival time inversions. We show several examples of earthquake recordings using distributed fiber optic arrays that were deployed originally for other purposes. A 480 km long section of a pipeline in Turkey was actively monitored with a DAS fiber optic system for activities in the immediate vicinity of the pipeline. The densely spaced sensor array along the pipeline detected earthquakes of 3.6 - 7.2 magnitude range, centered near Van, Turkey. Secondly, a fiber optic system located along a rail line near the Salton Sea in California was used to create a smaller scale fiber optic sensor array, on which earthquakes with magnitudes 2.2 - 2.7 were recorded from epicenters up to 65 km away. Our analysis shows that existing fiber optic installations along infrastructure could be combined to form a large aperture array with tens of thousands of channels for epicenter estimation and for early warning purposes, augmenting existing earthquake sensor networks.
Stellar 'Incubators' Seen Cooking up Stars
NASA Technical Reports Server (NTRS)
2005-01-01
[figure removed for brevity, see original site] Figure 1 [figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 2Figure 3Figure 4Figure 5 This image composite compares visible-light and infrared views from NASA's Spitzer Space Telescope of the glowing Trifid Nebula, a giant star-forming cloud of gas and dust located 5,400 light-years away in the constellation Sagittarius. Visible-light images of the Trifid taken with NASA's Hubble Space Telescope, Baltimore, Md. (inside left, figure 1) and the National Optical Astronomy Observatory, Tucson, Ariz., (outside left, figure 1) show a murky cloud lined with dark trails of dust. Data of this same region from the Institute for Radioastronomy millimeter telescope in Spain revealed four dense knots, or cores, of dust (outlined by yellow circles), which are 'incubators' for embryonic stars. Astronomers thought these cores were not yet ripe for stars, until Spitzer spotted the warmth of rapidly growing massive embryos tucked inside. These embryos are indicated with arrows in the false-color Spitzer picture (right, figure 1), taken by the telescope's infrared array camera. The same embryos cannot be seen in the visible-light pictures (left, figure 1). Spitzer found clusters of embryos in two of the cores and only single embryos in the other two. This is one of the first times that multiple embryos have been observed in individual cores at this early stage of stellar development.Precision spectral manipulation of optical pulses using a coherent photon echo memory.
Buchler, B C; Hosseini, M; Hétet, G; Sparkes, B M; Lam, P K
2010-04-01
Photon echo schemes are excellent candidates for high efficiency coherent optical memory. They are capable of high-bandwidth multipulse storage, pulse resequencing and have been shown theoretically to be compatible with quantum information applications. One particular photon echo scheme is the gradient echo memory (GEM). In this system, an atomic frequency gradient is induced in the direction of light propagation leading to a Fourier decomposition of the optical spectrum along the length of the storage medium. This Fourier encoding allows precision spectral manipulation of the stored light. In this Letter, we show frequency shifting, spectral compression, spectral splitting, and fine dispersion control of optical pulses using GEM.
Smart and precise alignment of optical systems
NASA Astrophysics Data System (ADS)
Langehanenberg, Patrik; Heinisch, Josef; Stickler, Daniel
2013-09-01
For the assembly of any kind of optical systems the precise centration of every single element is of particular importance. Classically the precise alignment of optical components is based on the precise centering of all components to an external axis (usually a high-precision rotary spindle axis). Main drawback of this timeconsuming process is that it is significantly sensitive to misalignments of the reference (e.g. the housing) axis. In order to facilitate process in this contribution we present a novel alignment strategy for the TRIOPTICS OptiCentric® instrument family that directly aligns two elements with respect to each other by measuring the first element's axis and using this axis as alignment reference without the detour of considering an external reference. According to the optical design any axis in the system can be chosen as target axis. In case of the alignment to a barrel this axis is measured by using a distance sensor (e.g., the classically used dial indicator). Instead of fine alignment the obtained data is used for the calculation of its orientation within the setup. Alternatively, the axis of an optical element (single lens or group of lenses) whose orientation is measured with the standard OptiCentric MultiLens concept can be used as a reference. In the instrument's software the decentering of the adjusting element to the calculated axis is displayed in realtime and indicated by a target mark that can be used for the manual alignment. In addition, the obtained information can also be applied for active and fully automated alignment of lens assemblies with the help of motorized actuators.
Forces Acting on a Ball in an Air Jet
ERIC Educational Resources Information Center
Lopez-Arias, T.; Gratton, L. M.; Zendri, G.; Oss, S.
2011-01-01
The forces acting on a ball in an air jet have been measured using simple equipment. Such measurements allow quite a precise, non-ambiguous description and understanding of the physical mechanism which explains the famous levitating ball experiment. (Contains 7 figures.)
Sol-Gel Processing Science Using a Sol-Gel Optics Research Facility (SGORF)
1989-09-10
Malaysia , Hong-Kong) where labor rates are perhaps one-tenth those of the U.S.. Figure 1 presents the trends of imports and exports of all optical... ACerS Annual Meeting, Washington, DC, May 1972. 2. W. A. Plummer, "Differential Dilatometry--A Powerful Tool," Corning Gla 33 Works, Corning, NY 14830
Alignment of a vector magnetometer to an optical prism
NASA Astrophysics Data System (ADS)
Dietrich, M. R.; Bailey, K. G.; O'Connor, T. P.
2017-05-01
A method for alignment of a vector magnetometer to a rigidly attached prism is presented. This enables optical comparison of the magnetometer axes to physical surfaces in the apparatus, and thus an absolute determination of the magnetic field direction in space. This is in contrast with more common techniques, which focus on precise determination of the relative angles between magnetometer axes, and so are more suited to measuring differences in the direction of magnetic fields. Here we demonstrate precision better than 500 μrad on a fluxgate magnetometer, which also gives the coil orthogonality errors to a similar precision. The relative sensitivity of the three axes is also determined, with a precision of about 5 ×10 -4 .
Fabrication and Metrology of High-Precision Foil Mirror Mounting Elements
NASA Technical Reports Server (NTRS)
Schattenburg, Mark L.
2002-01-01
During the period of this Cooperative Agreement, MIT (Massachusetts Institute of Technology) developed advanced methods for applying silicon microstructures for the precision assembly of foil x-ray optics in support of the Constellation-X Spectroscopy X-ray Telescope (SXT) development effort at Goddard Space Flight Center (GSFC). MIT developed improved methods for fabricating and characterizing the precision silicon micro-combs. MIT also developed and characterized assembly tools and several types of metrology tools in order to characterize and reduce the errors associated with precision assembly of foil optics. Results of this effort were published and presented to the scientific community and the GSFC SXT team. A bibliography of papers and presentations is offered.
Ślachciński, Mariusz
2016-12-01
The Flow Focusing Pneumatic Nebulizer (FFPN) working at low liquid flow rates was evaluated for the elemental analysis in slurried samples by argon-helium microwave induced plasma optical emission spectrometry (MIP-OES). The obtained results achieved were compared with commercially available V-groove Babington type nebulizer (VBPN). A univariate approach and the simplex optimization procedure were used to achieve optimized conditions and derive analytical figures of merit. Analytical performance of the micro nebulization system was characterized by a determination of the limits of detection (LODs), the precision (RSDs) and the wash-out times for Ba, Ca, Cd, Cu, Fe, Mg, Mn, Pb and Sr. The experimental concentration detection limits for simultaneous determination, calculated as the concentration giving a signal equal to three times of the standard deviation of the blank (LOD, 3σ blank criterion, peak height) were 0.9, 0.2, 0.3, 0.2, 0.3, 0.1, 0.2, 0.4, 0.4 and 0.3ngmL -1 for Ba, Ca, Cd, Cu, Fe, Mg, Mn, Pb and Sr, respectively. The method offers relatively good precision (RSD ranged from 5% to 8%) for micro-slurry sampling analysis. Analyses of the certified reference materials (NRCC DOLT-2, GBW 07302 and SRM 2710) were performed in order to determine the accuracy available with the presented nebulization systems. The measured contents of elements in the reference materials were in satisfactory agreement with the certified values. In addition, these elements were determined in two real samples. Slurry concentration up to 3% m/v (particles <20μm), prepared in 10% m/v HCl through the application of ultrasonic agitation, was used with calibration by the standard addition technique. An ultrasonic probe was used to homogenize the slurry in the polypropylene bottle just before its introduction into the nebulizer. The nebulizers exhibited no clogging problems. Copyright © 2016 Elsevier B.V. All rights reserved.
Gręda, Krzysztof; Jamróz, Piotr; Pohl, Paweł
2013-04-15
A low power direct current atmospheric glow discharge sustained in the open to air atmosphere in contact with a small-sized flowing liquid cathode was used as an excitation source in optical emission spectrometry. The composition of electrolyte solutions served as the liquid cathode was modified by the addition of non-ionic surfactants, namely Triton x-45, Triton x-100, Triton x-405 and Triton x-705. The effect of the concentration of each surfactant was thoroughly studied on the emission characteristic of molecular bands identified in spectra, atomic emission lines of 16 metals studied and the background level. It was found that the presence of both heavy surfactants results in a significant increase in the net intensity of analytical lines of metals and a notable reduction of the intensity of bands of diatomic molecules and the background. In conditions considered to be a compromise for all metals, selected figures of merit for this excitation source combined with the optical emission spectrometry detection were determined. Limits of detection for all metals were within the range of 0.0003-0.05 mg L(-1), the precision was better than 6%, while calibration curves were linear over 2 orders of the magnitude of the concentration or more, e.g., for K, Li, Mg, Na and Rb. The discharge system with the liquid cathode modified by the addition of the surfactant found its application in the determination of Ca, Cu, Fe, K, Mg, Mn, Na and Zn in selected environmental samples, i.e., waters, soils and spruce needles, with the quite good precision and the accuracy comparable to that for measurements with flame atomic absorption spectrometry (FAAS) and flame atomic emission spectrometry (FAES). Copyright © 2013 Elsevier B.V. All rights reserved.
The Acousto-Optic Interaction in an Infinite Slab of Isotropic Material,
1980-04-01
AD-A097 202 HARRY DIAMOND LABS ADELPHI MD F/S 17/1 THE ACOUSTO - OPTIC INTERACTION IN AN INFINITE SLAB OF ISOTROPIC -- ETC(U) APR 80 S D SCHARF...611101.91A0011 .A1.A1 HOL Project: A10935 1S. KEY WONS (Cf ft "W reweee eld. It neceseeM md Io.t.Itl by block nm er) Acousto - optics Diffraction Mathieu... Acousto - Optic Interaction for Bragg Angles ...................... 13 FIGURES 1. Incident wave is split by acoustic wave into discrete diffracted orders
Low-cost Large Aperture Telescopes for Optical Communications
NASA Technical Reports Server (NTRS)
Hemmati, Hamid
2006-01-01
Low-cost, large-aperture optical receivers are required to form an affordable optical ground receiver network for laser communications. Among the ground receiver station's multiple subsystems, here, we only discuss the ongoing research activities aimed at reducing the cost of the large-size optics on the receiver. Experimental results of two different approaches for fabricating low-cost mirrors of wavefront quality on the order of 100-200X the diffraction limit are described. Laboratory-level effort are underway to improve the surface figure to better than 20X the diffraction limit.
Index change of chalcogenide materials from precision glass molding processes
NASA Astrophysics Data System (ADS)
Deegan, J.; Walsh, K.; Lindberg, G.; Benson, R.; Gibson, D.; Bayya, S.; Sanghera, J.; Stover, E.
2015-05-01
With the increase in demand for infrared optics for thermal applications and the use of glass molding of chalcogenide materials to support these higher volume optical designs, an investigation of changes to the optical properties of these materials is required. Typical precision glass molding requires specific thermal conditions for proper lens molding of any type of optical glass. With these conditions a change (reduction) of optical index occurs after molding of all oxide glass types and it is presumed that a similar behavior will happen with chalcogenide based materials. We will discuss the effects of a typical molding thermal cycle for use with commercially and newly developed chalcogenide materials and show results of index variation from nominally established material data.
Optical track width measurements below 100 nm using artificial neural networks
NASA Astrophysics Data System (ADS)
Smith, R. J.; See, C. W.; Somekh, M. G.; Yacoot, A.; Choi, E.
2005-12-01
This paper discusses the feasibility of using artificial neural networks (ANNs), together with a high precision scanning optical profiler, to measure very fine track widths that are considerably below the conventional diffraction limit of a conventional optical microscope. The ANN is trained using optical profiles obtained from tracks of known widths, the network is then assessed by applying it to test profiles. The optical profiler is an ultra-stable common path scanning interferometer, which provides extremely precise surface measurements. Preliminary results, obtained with a 0.3 NA objective lens and a laser wavelength of 633 nm, show that the system is capable of measuring a 50 nm track width, with a standard deviation less than 4 nm.
NASA Astrophysics Data System (ADS)
Bechtold, Michael; Mohring, David; Fess, Edward
2007-05-01
OptiPro Systems has developed a new finishing process for the manufacturing of precision optical components. UltraForm Finishing (UFF) has evolved from a tire shaped tool with polishing material on its periphery, to its newest design, which incorporates a precision rubber wheel wrapped with a band of polishing material passing over it. Through our research we have developed a user friendly graphical interface giving the optician a deterministic path for finishing precision optical components. Complex UFF Algorithms combine the removal function and desired depth of removal into a motion controlled tool path which minimizes surface roughness and form errors. The UFF process includes 5 axes of computer controlled motion, (3 linear and 2 rotary) which provide the flexibility for finishing a variety of shapes including spheres, aspheres, and freeform optics. The long arm extension, along with a range of diameters for the "UltraWheel" provides a unique solution for the finishing of steep concave shapes such as ogives and domes. The UltraForm process utilizes, fixed and loose abrasives, in combination with our proprietary "UltraBelts" made of a range of materials such as polyurethane, felt, resin, diamond and others.
Optics measurement algorithms and error analysis for the proton energy frontier
NASA Astrophysics Data System (ADS)
Langner, A.; Tomás, R.
2015-03-01
Optics measurement algorithms have been improved in preparation for the commissioning of the LHC at higher energy, i.e., with an increased damage potential. Due to machine protection considerations the higher energy sets tighter limits in the maximum excitation amplitude and the total beam charge, reducing the signal to noise ratio of optics measurements. Furthermore the precision in 2012 (4 TeV) was insufficient to understand beam size measurements and determine interaction point (IP) β -functions (β*). A new, more sophisticated algorithm has been developed which takes into account both the statistical and systematic errors involved in this measurement. This makes it possible to combine more beam position monitor measurements for deriving the optical parameters and demonstrates to significantly improve the accuracy and precision. Measurements from the 2012 run have been reanalyzed which, due to the improved algorithms, result in a significantly higher precision of the derived optical parameters and decreased the average error bars by a factor of three to four. This allowed the calculation of β* values and demonstrated to be fundamental in the understanding of emittance evolution during the energy ramp.
Nano-stepper-driven optical shutter for applications in free-space micro-optics
NASA Astrophysics Data System (ADS)
Zawadzka, Justyna; Li, Lijie; Unamuno, Anartz; Uttamchandani, Deepak G.
2002-09-01
In this paper we report a simple design of a micro-optical shutter/attenuator. The standard MUMPS process was used to fabricate the device. A vertically erected, gold-coated, 200x300 mm side length micro-mirror was precisely placed between the end faces of two closely spaced optical fibers. The position of the micro-mirror with respect to the optical fiber end face was controlled by a nano-stepping motor array. Optical and mechanical tests were performed on the device. A 1.55 mm laser beam was sent along the optical fiber. When the micro-mirror was removed from the front of the fiber, the coupling efficiency between two fibers was -10 dBm. Once the micro-mirror was placed in the optical path the coupling efficiency dropped to -51.5 dBm. The best attenuation was obtained when the micro-mirror blocked the whole cross-section of the laser beam diameter. It is evident that the device can operate as a high precision fiber optic attenuator or shutter.
NASA Technical Reports Server (NTRS)
Peters, W. N.
1973-01-01
A compilation of analytical and experimental data is presented concerning the stellar figure sensor. The sensor is an interferometric device which is located in the focal plane of an orbiting large space telescope (LST). The device was designed to perform interferometry on the optical wavefront of a single star after it has propagated through the LST. An analytical model of the device was developed and its accuracy was verified by an operating laboratory breadboard. A series of linear independent control equations were derived which define the operations required for utilizing a focal plane figure sensor in the control loop for the secondary mirror position and for active control of the primary mirror.
Optical Processing for Adaptive Phased Array Radar.
1981-06-01
cells. 24 Figure 2.5 TeO2 resporse (f and bandwidth) versus wavelengthc (X) of the input light used [29]. 25 Figure 2.6 AO cell frequency response (n...since BW - nV-. TeO2 offers an M = 13.1 versus MI = 1.0 for quartz. Other materials such as As 2Se 3 have higher M] 204 but are not available...3 6.il- F Strl( tlr( r th \\M eT 1s oh, 25 . Oes[ VE0 ’P J | +L I I I I 45 ]z C 20 30 40 50 00 SIFREOUENCI IN MHz ’r Figure 2.5 TeO2 response
Steering optical comb frequencies by rotating the polarization state
NASA Astrophysics Data System (ADS)
Zhang, Yanyan; Zhang, Xiaofei; Yan, Lulu; Zhang, Pan; Rao, Bingjie; Han, Wei; Guo, Wenge; Zhang, Shougang; Jiang, Haifeng
2017-12-01
Optical frequency combs, with precise control of repetition rate and carrier-envelope-offset frequency, have revolutionized many fields, such as fine optical spectroscopy, optical frequency standards, ultra-fast science research, ultra-stable microwave generation and precise ranging measurement. However, existing high bandwidth frequency control methods have small dynamic range, requiring complex hybrid control techniques. To overcome this limitation, we develop a new approach, where a home-made intra-cavity electro-optic modulator tunes polarization state of laser signal rather than only optical length of the cavity, to steer frequencies of a nonlinear-polarization-rotation mode-locked laser. By taking advantage of birefringence of the whole cavity, this approach results in not only broadband but also relative large-dynamic frequency control. Experimental results show that frequency control dynamic range increase at least one order in comparison with the traditional intra-cavity electro-optic modulator technique. In additional, this technique exhibits less side-effect than traditional frequency control methods.
Wen, Sy-Bor; Sundaram, Vijay M; McBride, Daniel; Yang, Yu
2016-04-15
A new type of micro-lensed optical fiber through stacking appropriate high-refractive microspheres at designed locations with respect to the cleaved end of an optical fiber is numerically and experimentally demonstrated. This new type of micro-lensed optical fiber can be precisely constructed with low cost and high speed. Deep micrometer-scale and submicrometer-scale far-field light spots can be achieved when the optical fibers are multimode and single mode, respectively. By placing an appropriate teardrop dielectric nanoscale scatterer at the far-field spot of this new type of micro-lensed optical fiber, a deep-nanometer near-field spot can also be generated with high intensity and minimum joule heating, which is valuable in high-speed, high-resolution, and high-power nanoscale detection compared with traditional near-field optical fibers containing a significant portion of metallic material.
Lessons Learned During Cryogenic Optical Testing of the Advanced Mirror System Demonstrators (AMSDs)
NASA Technical Reports Server (NTRS)
Hadaway, James; Reardon, Patrick; Geary, Joseph; Robinson, Brian; Stahl, Philip; Eng, Ron; Kegley, Jeff
2004-01-01
Optical testing in a cryogenic environment presents a host of challenges above and beyond those encountered during room temperature testing. The Advanced Mirror System Demonstrators (AMSDs) are 1.4 m diameter, ultra light-weight (<20 kg/mA2), off-axis parabolic segments. They are required to have 250 nm PV & 50 nm RMS surface figure error or less at 35 K. An optical testing system, consisting of an Instantaneous Phase Interferometer (PI), a diffractive null corrector (DNC), and an Absolute Distance Meter (ADM), was used to measure the surface figure & radius-of-curvature of these mirrors at the operational temperature within the X-Ray Calibration Facility (XRCF) at Marshall Space Flight Center (MSFC). The Ah4SD program was designed to improve the technology related to the design, fabrication, & testing of such mirrors in support of NASA s James Webb Space Telescope (JWST). This paper will describe the lessons learned during preparation & cryogenic testing of the AMSDs.
Statistical analysis of the surface figure of the James Webb Space Telescope
NASA Astrophysics Data System (ADS)
Lightsey, Paul A.; Chaney, David; Gallagher, Benjamin B.; Brown, Bob J.; Smith, Koby; Schwenker, John
2012-09-01
The performance of an optical system is best characterized by either the point spread function (PSF) or the optical transfer function (OTF). However, for system budgeting purposes, it is convenient to use a single scalar metric, or a combination of a few scalar metrics to track performance. For the James Webb Space Telescope, the Observatory level requirements were expressed in metrics of Strehl Ratio, and Encircled Energy. These in turn were converted to the metrics of total rms WFE and rms WFE within spatial frequency domains. The 18 individual mirror segments for the primary mirror segment assemblies (PMSA), the secondary mirror (SM), tertiary mirror (TM), and Fine Steering Mirror have all been fabricated. They are polished beryllium mirrors with a protected gold reflective coating. The statistical analysis of the resulting Surface Figure Error of these mirrors has been analyzed. The average spatial frequency distribution and the mirror-to-mirror consistency of the spatial frequency distribution are reported. The results provide insight to system budgeting processes for similar optical systems.
Development Status of Adjustable Grazing Incidence Optics for 0.5 Arcsecond X-Ray Imaging
NASA Technical Reports Server (NTRS)
Reid, Paul B.; Aldcroft, Thomas L.; Allured, Ryan; Cotroneo, Vincenzo; Johnson-Wilke, Raegan L.; Marquez, Vanessa; McMuldroch, Stuart; O'Dell, Stephen L.; Ramsey, Brian D.; Schwartz, Daniel A.;
2014-01-01
We describe progress in the development of adjustable grazing incidence X-ray optics for 0.5 arcsec resolution cosmic X-ray imaging. To date, no optics technology is available to blend high resolution imaging like the Chandra X-ray Observatory, with square meter collecting area. Our approach to achieve these goals simultaneously is to directly deposit thin film piezoelectric actuators on the back surface of thin, lightweight Wolter-I or Wolter- Schwarschild mirror segments. The actuators are used to correct mirror figure errors due to fabrication, mounting and alignment, using calibration and a one-time figure adjustment on the ground. If necessary, it will also be possible to correct for residual gravity release and thermal effects on-orbit. In this paper we discuss our most recent results measuring influence functions of the piezoelectric actuators using a Shack-Hartmann wavefront sensor. We describe accelerated and real-time lifetime testing of the piezoelectric material, and we also discuss changes to, and recent results of, our simulations of mirror correction.
Night Vision and Electro-Optics Technology Transfer, 1972-1981
1981-09-15
Lixiscope offers potential applications as: a handheld instrument for dental radiography giving real-time ,1servation in orthodontic procedures; a portable...laboratory are described below. There are however, no hard and fast rules. The laboratory’s experimentation with different films, brackets , cameras and...good single lens reflex camera; an exvosure meter; a tripod; and a custom-built bracket to mate the camera and intensifier (Figure 2-1). Figure 2-1
Stable Research Platform Workshop
1988-04-01
autonomous or manned submersibles, by providing them with a deep underwater garage for launch and recovery. A track system for bringing the vehicle...s;. 10- f(H2) Figure 5 SIO Reference 87-2.0 69 STEREO - PHOTOGRAPHY Figure 6 70 Appendix E -15 0 31 62 93 124 155 DISTANCE, x...WAVE FOLLOWER WITH MULTI-BEAM LASER OPTICAL SENSOR • STEREO -PHOTOQRAPHY • MULTI-FREQUENCY RADAR: 10-100 GHz • SURFACE TENSION SENSORS • LONG WAVE
Dynamic Characterization of Thin Deformable PVDF Mirror
2005-03-01
2 2. Example Lenticular Optics System . . . . . . . . . . . . . . . . . . . . . . . . 8 3. Example Inflatable Optical System...the structure would have to be kept to very tight tolerances [4]. Figure 2: Lenticular Optics System [4] Another design approach is to use a deformable...Zpoly(i,j,4) = r^2*cos(2*t); %(0 Astigmatism ) Zpoly(i,j,5) = r^2*sin(2*t); %(45 Astigmatism ) Zpoly(i,j,6) = (3*r^2-2)*r*cos(t); %(X Coma) Zpoly(i,j,7
Harnessing the Power of Light to See and Treat Breast Cancer
2013-10-01
Figure 3.4: Effect of breathing hypoxic gas on vascular oxygenation and glucose uptake of 4T1 and 4T07 tumors. A and B. Representative intravital images ...therapeutic agents in vivo. 14. ABSTRACT optical spectroscopy, imaging , fiber-optic, molecular, screening, breast cancer 15. SUBJECT TERMS 16...tumor biology and assay the effect of novel therapeutic agents in vivo. a. Original Statement of Work for 5 Years Aim 1: Optical imaging of margin
2007-11-01
TX 78228 Optical Radiation Branch 2624 Louis Bauer Dr. Brooks City-Base, TX 78235-5128 8. PERFORMING ORGANIZATION REPORT NUMBER AFRL 711...Effectiveness Directorate Directed Energy Bioeffects Division Optical Radiation Branch 2624 Louis Bauer Dr. Brooks City-Base, TX 78235-5128 711 HPW...K, Coherent) was used for its 413-nm line. Verification of laser wavelength was performed with a spectrometer (Ocean Optics ). Figure 1 provides a
Optical control of the Advanced Technology Solar Telescope.
Upton, Robert
2006-08-10
The Advanced Technology Solar Telescope (ATST) is an off-axis Gregorian astronomical telescope design. The ATST is expected to be subject to thermal and gravitational effects that result in misalignments of its mirrors and warping of its primary mirror. These effects require active, closed-loop correction to maintain its as-designed diffraction-limited optical performance. The simulation and modeling of the ATST with a closed-loop correction strategy are presented. The correction strategy is derived from the linear mathematical properties of two Jacobian, or influence, matrices that map the ATST rigid-body (RB) misalignments and primary mirror figure errors to wavefront sensor (WFS) measurements. The two Jacobian matrices also quantify the sensitivities of the ATST to RB and primary mirror figure perturbations. The modeled active correction strategy results in a decrease of the rms wavefront error averaged over the field of view (FOV) from 500 to 19 nm, subject to 10 nm rms WFS noise. This result is obtained utilizing nine WFSs distributed in the FOV with a 300 nm rms astigmatism figure error on the primary mirror. Correction of the ATST RB perturbations is demonstrated for an optimum subset of three WFSs with corrections improving the ATST rms wavefront error from 340 to 17.8 nm. In addition to the active correction of the ATST, an analytically robust sensitivity analysis that can be generally extended to a wider class of optical systems is presented.
NASA Astrophysics Data System (ADS)
Zamani, Mehdi; Hocini, Abdesselam
2018-03-01
In this work, we report on the theoretical study of one-dimensional magnetophotonic crystals (MPC) comprising of periodic dielectric structure Si/SiO and of silica matrix doped with cobalt-ferrite (CoFe2O4) magnetic nanoparticles as the only magnetic defect layer. Such structure can be prepared by sol-gel dip coating method that controls the thickness of each layer with nanometer level, hence, can overcome the problem of integration of the magneto-optical (MO) devices. We have studied the influence of the volume fraction (concentration of magnetic nanoparticles VF%) on the optical (reflectance, transmittance and absorption) and MO (Kerr rotation) responses in reflection-type one-dimensional MPCs. During investigation of the influence of magnetic nanoparticle's concentration, we found that giant Kerr rotations (even ≈135° for VF = 39%) can be obtained accompanied by large reflectance and low amounts for transmittance and absorption. We report on the demonstration of large MO quality factor and figure of merit in cobalt-ferrite magnetic nanoparticles in the infrared regime. Given the large Kerr rotation, high reflectance accompanied by low absorption and nearly zero transmittance of the 1D MPC containing cobalt-ferrite magnetic nanoparticles, large MO Q factor and figure of merit are obtained.
Radius of Curvature Measurement of Large Optics Using Interferometry and Laser Tracker
NASA Technical Reports Server (NTRS)
Hagopian, John; Connelly, Joseph
2011-01-01
The determination of radius of curvature (ROC) of optics typically uses either a phase measuring interferometer on an adjustable stage to determine the position of the ROC and the optics surface under test. Alternatively, a spherometer or a profilometer are used for this measurement. The difficulty of this approach is that for large optics, translation of the interferometer or optic under test is problematic because of the distance of translation required and the mass of the optic. Profilometry and spherometry are alternative techniques that can work, but require a profilometer or a measurement of subapertures of the optic. The proposed approach allows a measurement of the optic figure simultaneous with the full aperture radius of curvature.
Fine pointing control for free-space optical communication
NASA Technical Reports Server (NTRS)
Portillo, A. A.; Ortiz, G. G.; Racho, C.
2000-01-01
Free-Space Optical Communications requires precise, stable laser pointing to maintain operating conditions. This paper also describes the software and hardware implementation of Fine Pointing Control based on the Optical Communications Demonstrator architecture.
Kleindienst, Roman; Kampmann, Ronald; Stoebenau, Sebastian; Sinzinger, Stefan
2011-07-01
The performance of optical systems is typically improved by increasing the number of conventionally fabricated optical components (spheres, aspheres, and gratings). This approach is automatically connected to a system enlargement, as well as potentially higher assembly and maintenance costs. Hybrid optical freeform components can help to overcome this trade-off. They merge several optical functions within fewer but more complex optical surfaces, e.g., elements comprising shallow refractive/reflective and high-frequency diffractive structures. However, providing the flexibility and precision essential for their realization is one of the major challenges in the field of optical component fabrication. In this article we present tailored integrated machining techniques suitable for rapid prototyping as well as the fabrication of molding tools for low-cost mass replication of hybrid optical freeform components. To produce the different feature sizes with optical surface quality, we successively combine mechanical machining modes (ultraprecision micromilling and fly cutting) with precisely aligned direct picosecond laser ablation in an integrated fabrication approach. The fabrication accuracy and surface quality achieved by our integrated fabrication approach are demonstrated with profilometric measurements and experimental investigations of the optical performance.
NASA Astrophysics Data System (ADS)
1993-01-01
This meeting, organized by the Paul Scherrer Institute's Department of Applied Solid State Physics, will be held from 27 30 March 1994 at the Hotel Regina-Titlis, Engelberg, Switzerland. The aim is to bring together scientists from two important fields of current research and increasing industrial relevance. Optical metrology is a traditional discipline of applied optics which reached the nanometre scale a long time ago. Nanotechnology is setting new limits and represents a major challenge to metrology, as well as offering new opportunities to optics. The meeting is intended to help define a common future for optical metrology and nanotechnology. Topics to be covered include: nanometre position control and measuring techniques ultrahigh precision interferometry scanning probe microscopy (AFM, SNOM, etc.) surface modification by scanning probe methods precision surface fabrication and characterization nanolithography micro-optics, diffractive optics components, including systems and applications subwavelength optical structures synthetic optical materials structures and technologies for X-ray optics. For further information please contact: Jens Gobrecht (Secretary), Paul Scherrer Institute, CH-5232 Villigen-PSI, Switzerland.Tel. (41)56992529; Fax (41) 5698 2635.
NASA Technical Reports Server (NTRS)
1976-01-01
The six themes identified by the Workshop have many common navigation guidance and control needs. All the earth orbit themes have a strong requirement for attitude, figure and stabilization control of large space structures, a requirement not currently being supported. All but the space transportation theme have need for precision pointing of spacecraft and instruments. In addition all the themes have requirements for increasing autonomous operations for such activities as spacecraft and experiment operations, onboard mission modification, rendezvous and docking, spacecraft assembly and maintenance, navigation and guidance, and self-checkout, test and repair. Major new efforts are required to conceptualize new approaches to large space antennas and arrays that are lightweight, readily deployable, and capable of precise attitude and figure control. Conventional approaches offer little hope of meeting these requirements. Functions that can benefit from increasing automation or autonomous operations are listed.
Measuring atmospheric visibility cavity attenuated phase shift spectroscopy
NASA Astrophysics Data System (ADS)
Jie, Guo; Ye, Shan-Shan; Yang, Xiao; Han, Ye-Xing; Tang, Huai-Wu; Yu, Zhi-Wei
2016-10-01
In the paper, an accurate and sensitive cavity attenuated phase shift spectroscopy (CAPS) system was used to monitor the atmospheric visibility coefficient in urban areas. The CAPS system, which detects the atmospheric visibility within a 10 nm bandpass centered at 532 nm, comprises a green LED with center wavelength in 532nm, a resonant optical cavity (36 cm length), a Photo Multiplier Tube detector and a lock in amplifier. The performance of the CAPS system was evaluated by measuring of the stability and response of the system. The minima ( 0.06 Mm-1) in the Allan plots show the optimum average time( 80s) for optimum detection performance of the CAPS system. The 2L/min flow rate, the CAPS system rise and fall response time is about 15 s, so as to realize the fast measurement of visibility. By comparing the forward scatter visibility meter measurement results, the CAPS system measurement results are verified reliably, and have high precision measurement. These figures indicate that this method has the potential to become one of the most sensitive on-line analytical techniques for atmospheric visibility detection.
Enhancing energy transport in conjugated polymers
NASA Astrophysics Data System (ADS)
Holmes, Russell J.
2018-05-01
The conversion of light into usable chemical energy by plants is enabled by the precise spatial arrangement of light-absorbing photosynthetic systems and associated molecular complexes (1). In organic solar cells, there is also the need to control intermolecular spacing and molecular orientation, as well as thin-film crystallinity and morphology, so as to enable efficient energy migration and photoconversion (2). In an organic solar cell, light absorption creates excitons, tightly bound electron-hole pairs that must be efficiently dissociated into their component charge carriers in order to create an electrical current. Thus, long-range exciton migration must occur from the point of photogeneration to a dissociating site. On page 897 of this issue, Jin et al. (3) report on a conjugated polymer nanofiber system that yields exciton diffusion lengths greater than 200 nm. In comparison, organic solar cells are typically constructed with materials having exciton diffusion lengths one order of magnitude smaller than this value, which limits device thickness and optical absorption. Their approach exploits a sequential synthesis method that enables measurement of this long exciton diffusion length (see the figure).
MSFC Optical Metrology: A National Resource
NASA Technical Reports Server (NTRS)
Burdine, Robert
1998-01-01
A national need exists for Large Diameter Optical Metrology Services. These services include the manufacture, testing, and assurance of precision and control necessary to assure the success of large optical projects. "Best Practices" are often relied on for manufacture and quality controls while optical projects are increasingly more demanding and complex. Marshall Space Flight Center (MSFC) has acquired unique optical measurement, testing and metrology capabilities through active participation in a wide variety of NASA optical programs. An overview of existing optical facilities and metrology capabilities is given with emphasis on use by other optical projects. Cost avoidance and project success is stressed through use of existing MSFC facilities and capabilities for measurement and metrology controls. Current issues in large diameter optical metrology are briefly reviewed. The need for a consistent and long duration Large Diameter Optical Metrology Service Group is presented with emphasis on the establishment of a National Large Diameter Optical Standards Laboratory. Proposals are made to develop MSFC optical standards and metrology capabilities as the primary national standards resource, providing access to MSFC Optical Core Competencies for manufacturers and researchers. Plans are presented for the development of a national lending library of precision optical standards with emphasis on cost avoidance while improving measurement assurance.
SU-E-J-161: Inverse Problems for Optical Parameters in Laser Induced Thermal Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fahrenholtz, SJ; Stafford, RJ; Fuentes, DT
Purpose: Magnetic resonance-guided laser-induced thermal therapy (MRgLITT) is investigated as a neurosurgical intervention for oncological applications throughout the body by active post market studies. Real-time MR temperature imaging is used to monitor ablative thermal delivery in the clinic. Additionally, brain MRgLITT could improve through effective planning for laser fiber's placement. Mathematical bioheat models have been extensively investigated but require reliable patient specific physical parameter data, e.g. optical parameters. This abstract applies an inverse problem algorithm to characterize optical parameter data obtained from previous MRgLITT interventions. Methods: The implemented inverse problem has three primary components: a parameter-space search algorithm, a physicsmore » model, and training data. First, the parameter-space search algorithm uses a gradient-based quasi-Newton method to optimize the effective optical attenuation coefficient, μ-eff. A parameter reduction reduces the amount of optical parameter-space the algorithm must search. Second, the physics model is a simplified bioheat model for homogeneous tissue where closed-form Green's functions represent the exact solution. Third, the training data was temperature imaging data from 23 MRgLITT oncological brain ablations (980 nm wavelength) from seven different patients. Results: To three significant figures, the descriptive statistics for μ-eff were 1470 m{sup −1} mean, 1360 m{sup −1} median, 369 m{sup −1} standard deviation, 933 m{sup −1} minimum and 2260 m{sup −1} maximum. The standard deviation normalized by the mean was 25.0%. The inverse problem took <30 minutes to optimize all 23 datasets. Conclusion: As expected, the inferred average is biased by underlying physics model. However, the standard deviation normalized by the mean is smaller than literature values and indicates an increased precision in the characterization of the optical parameters needed to plan MRgLITT procedures. This investigation demonstrates the potential for the optimization and validation of more sophisticated bioheat models that incorporate the uncertainty of the data into the predictions, e.g. stochastic finite element methods.« less
In-Situ Focusing Inside a Thermal Vacuum Chamber
NASA Technical Reports Server (NTRS)
Liebe, Carl Christian; Hannah, Brett; Bartman, Randall; Radulescu, Costin; Rud, Mayer; Sarkissian, Edwin; Ho, Timothy; {p; Esposito, Joseph; Sutin, Brian;
2010-01-01
Traditionally, infrared (IR) space instruments have been focused by iterating with a number of different thickness shim rings in a thermal vacuum chamber until the focus meets requirements. This has required a number of thermal cycles that are very expensive as they tie up many integration and test (I&T)/ environmental technicians/engi neers work ing three shifts for weeks. Rather than creating a test shim for each iteration, this innovation replaces the test shim and can focus the instrument while in the thermal vacuum chamber. The focus tool consists of three small, piezo-actuated motors that drive two sets of mechanical interface flanges between the instrument optics and the focal- plane assembly, and three optical-displacement metrology sensors that can be read from outside the thermal vacuum chamber. The motors are used to drive the focal planes to different focal distances and acquire images, from which it is possible to determine the best focus. At the best focus position, the three optical displacement metrology sensors are used to determine the shim thickness needed. After the instrument leaves the thermal vacuum chamber, the focus tool is replaced with the precision-ground shim ring. The focus tool consists of two sets of collars, one that mounts to the backside of the interface flange of the instrument optics, and one that mounts to the backside of the interface flange of the focal plane modules. The collars on the instrument optics side have the three small piezo-actuated motors and the three optical displacement metrology systems. Before the instrument is focused, there is no shim ring in place and, therefore, no fasteners holding the focal plane modules to the cameras. Two focus tooling collars are held together by three strong springs. The Orbiting Carbon Observatory (OCO) mission spectrometer was focused this way (see figure). The motor described here had to be moved five times to reach an acceptable focus, all during the same thermal cycle, which was verified using pupil slicing techniques. A focus accuracy of .20.100 microns was achieved.
Highly sensitive lidar with a thumb-sized sensor-head built using an optical fiber preamplifier
NASA Astrophysics Data System (ADS)
Inoue, Daisuke; Ichikawa, Tadashi; Matsubara, Hiroyuki; Mao, Xueon; Maeda, Mitsutoshi; Nagashima, Chie; Kagami, Manabu
2011-06-01
We developed a LIDAR system with a sensor head as small as 22 cc, in spite of the inclusion of a scanning mechanism. This LIDAR system not only has a small body, but is also highly sensitive. Our LIDAR system is based on time-of-flight measurements, and it incorporates an optical fiber. The main feature of our system is the utilization of optical amplifiers for both the transmitter and the receiver, and the optical amplifiers enabled us to exceed the detection limit of thermal noise. In conventional LIDAR systems the detection limit is determined by thermal noise, because the avalanche photo-diodes (APD) and trans-impedance amplifiers (TIA) that they use detect the received signals directly. In the case of our LIDAR system, received signal is amplified by an optical fiber amplifier in front of the photo diode and the TIA. Therefore, our LIDAR system can boost the signal level before the weak incoming signal is depleted by thermal noise. There are conditions under which the noise figure for the combination of an optical fiber amplifier and a photo diode is superior to the noise figure for an avalanche photo diode. We optimized the gain of the optical fiber amplifier and TIA in our LIDAR system such that it is capable of detecting a single photon. As a result, the detection limit of our LIDAR system is determined by shot noise. This small and highly sensitive measurement technology shows great potential for use in LIDAR with an optical preamplifier.
Demonstration of a Monolithic Micro-Spectrometer System
NASA Technical Reports Server (NTRS)
Rajic, S.; Egert, C. M.
1995-01-01
The starting design of a spectrometer based on a modified Czerny-Turner configuration containing five precision surfaces encapsulated in a monolithic structure is described. Since the purpose at the early stages of the development was to demonstrate the feasibility of the technology and not an attempt to address a specific sensing problem, the first substrate material chosen was optical quality polymethyl methacrylate (PMMA). The final system design decision was narrowed down to two possible configurations containing five and six precision surfaces. The five surface design was chosen since it contained one less precision optical surface, yet included multiple off-axis spheres. In this particular design and material system, the mass was kept below 7 g. The wavelength range (bandpass) design goal was 1 micrometer (0.6 - 1.6 micrometers). The PMMA is particularly transparent in this wavelength region and there are interesting effects to monitor within this band. The optical system was designed and optimized using the ZEMAX optical design software program to be entirely alignment free (self aligning).
Improved Controller for a Three-Axis Piezoelectric Stage
NASA Technical Reports Server (NTRS)
Rao, Shanti; Palmer, Dean
2009-01-01
An improved closed-loop controller has been built for a three-axis piezoelectric positioning stage. The stage can be any of a number of commercially available or custom-made units that are used for precise three-axis positioning of optics in astronomical instruments and could be used for precise positioning in diverse fields of endeavor that include adaptive optics, fabrication of semiconductors, and nanotechnology.
NASA Astrophysics Data System (ADS)
Ibrahim, Dahi Ghareab Abdelsalam; Yasui, Takeshi
2018-04-01
Two-wavelength phase-shift interferometry guided by optical frequency combs is presented. We demonstrate the operation of the setup with a large step sample simultaneously with a resolution test target with a negative pattern. The technique can investigate multi-objects simultaneously with high precision. Using this technique, several important applications in metrology that require high speed and precision are demonstrated.
Nondimensional parameter for conformal grinding: combining machine and process parameters
NASA Astrophysics Data System (ADS)
Funkenbusch, Paul D.; Takahashi, Toshio; Gracewski, Sheryl M.; Ruckman, Jeffrey L.
1999-11-01
Conformal grinding of optical materials with CNC (Computer Numerical Control) machining equipment can be used to achieve precise control over complex part configurations. However complications can arise due to the need to fabricate complex geometrical shapes at reasonable production rates. For example high machine stiffness is essential, but the need to grind 'inside' small or highly concave surfaces may require use of tooling with less than ideal stiffness characteristics. If grinding generates loads sufficient for significant tool deflection, the programmed removal depth will not be achieved. Moreover since grinding load is a function of the volumetric removal rate the amount of load deflection can vary with location on the part, potentially producing complex figure errors. In addition to machine/tool stiffness and removal rate, load generation is a function of the process parameters. For example by reducing the feed rate of the tool into the part, both the load and resultant deflection/removal error can be decreased. However this must be balanced against the need for part through put. In this paper a simple model which permits combination of machine stiffness and process parameters into a single non-dimensional parameter is adapted for a conformal grinding geometry. Errors in removal can be minimized by maintaining this parameter above a critical value. Moreover, since the value of this parameter depends on the local part geometry, it can be used to optimize process settings during grinding. For example it may be used to guide adjustment of the feed rate as a function of location on the part to eliminate figure errors while minimizing the total grinding time required.