DOE Office of Scientific and Technical Information (OSTI.GOV)
Bates, Robert; McConnell, Elizabeth
Machining methods across many industries generally require multiple operations to machine and process advanced materials, features with micron precision, and complex shapes. The resulting multiple machining platforms can significantly affect manufacturing cycle time and the precision of the final parts, with a resultant increase in cost and energy consumption. Ultrafast lasers represent a transformative and disruptive technology that removes material with micron precision and in a single step manufacturing process. Such precision results from athermal ablation without modification or damage to the remaining material which is the key differentiator between ultrafast laser technologies and traditional laser technologies or mechanical processes.more » Athermal ablation without modification or damage to the material eliminates post-processing or multiple manufacturing steps. Combined with the appropriate technology to control the motion of the work piece, ultrafast lasers are excellent candidates to provide breakthrough machining capability for difficult-to-machine materials. At the project onset in early 2012, the project team recognized that substantial effort was necessary to improve the application of ultrafast laser and precise motion control technologies (for micromachining difficult-to-machine materials) to further the aggregate throughput and yield improvements over conventional machining methods. The project described in this report advanced these leading-edge technologies thru the development and verification of two platforms: a hybrid enhanced laser chassis and a multi-application testbed.« less
Precision forging technology for aluminum alloy
NASA Astrophysics Data System (ADS)
Deng, Lei; Wang, Xinyun; Jin, Junsong; Xia, Juchen
2018-03-01
Aluminum alloy is a preferred metal material for lightweight part manufacturing in aerospace, automobile, and weapon industries due to its good physical properties, such as low density, high specific strength, and good corrosion resistance. However, during forging processes, underfilling, folding, broken streamline, crack, coarse grain, and other macro- or microdefects are easily generated because of the deformation characteristics of aluminum alloys, including narrow forgeable temperature region, fast heat dissipation to dies, strong adhesion, high strain rate sensitivity, and large flow resistance. Thus, it is seriously restricted for the forged part to obtain precision shape and enhanced property. In this paper, progresses in precision forging technologies of aluminum alloy parts were reviewed. Several advanced precision forging technologies have been developed, including closed die forging, isothermal die forging, local loading forging, metal flow forging with relief cavity, auxiliary force or vibration loading, casting-forging hybrid forming, and stamping-forging hybrid forming. High-precision aluminum alloy parts can be realized by controlling the forging processes and parameters or combining precision forging technologies with other forming technologies. The development of these technologies is beneficial to promote the application of aluminum alloys in manufacturing of lightweight parts.
NASA Astrophysics Data System (ADS)
Pongs, Guido; Bresseler, Bernd; Bergs, Thomas; Menke, Gert
2012-10-01
Today isothermal precision molding of imaging glass optics has become a widely applied and integrated production technology in the optical industry. Especially in consumer electronics (e.g. digital cameras, mobile phones, Blu-ray) a lot of optical systems contain rotationally symmetrical aspherical lenses produced by precision glass molding. But due to higher demands on complexity and miniaturization of optical elements the established process chain for precision glass molding is not sufficient enough. Wafer based molding processes for glass optics manufacturing become more and more interesting for mobile phone applications. Also cylindrical lens arrays can be used in high power laser systems. The usage of unsymmetrical free-form optics allows an increase of efficiency in optical laser systems. Aixtooling is working on different aspects in the fields of mold manufacturing technologies and molding processes for extremely high complex optical components. In terms of array molding technologies, Aixtooling has developed a manufacturing technology for the ultra-precision machining of carbide molds together with European partners. The development covers the machining of multi lens arrays as well as cylindrical lens arrays. The biggest challenge is the molding of complex free-form optics having no symmetrical axis. A comprehensive CAD/CAM data management along the entire process chain is essential to reach high accuracies on the molded lenses. Within a national funded project Aixtooling is working on a consistent data handling procedure in the process chain for precision molding of free-form optics.
NASA Astrophysics Data System (ADS)
Manske, E.; Froehlich, T.
2012-07-01
The 56th International Scientific Colloquium was held from 12th to 16th September 2011 at the Ilmenau University of Technology in Germany. This event was organized by the Faculty of Mechanical Engineering under the title: 'Innovation in Mechanical Engineering—Shaping the Future' and was intended to reflect the entire scope of modern mechanical engineering. In three main topics many research areas, all involving innovative mechanical engineering, were addressed, especially in the fields of Precision Engineering and Precision Measurement Technology, Mechatronics and Ambient-Assisted Living and Systems Technology. The participants were scientists from 21 countries, and 166 presentations were given. This special issue of Measurement Science and Technology presents selected contributions on 'Precision Engineering and Precision Measurement Technology'. Over three days the conference participants discussed novel scientific results in two sessions. The main topics of these sessions were: Measurement and Sensor Technology Process measurement Laser measurement Force measurement Weighing technology Temperature measurement Measurement dynamics and Nanopositioning and Nanomeasuring Technology Nanopositioning and nanomeasuring machines Nanometrology Probes and tools Mechanical design Signal processing Control and visualization in NPM devices Significant research results from the Collaborative Research Centre SFB 622 'Nanopositioning and Nanomeasuring Machines' funded by the German Research Foundation (DFG) were presented as part of this topic. As the Chairmen, our special thanks are due to the International Programme Committee, the Organization Committee and the conference speakers as well as colleagues from the Institute of Process Measurement and Sensor Technology who helped make the conference a success. We would like to thank all the authors for their contributions, the referees for their time spent reviewing the contributions and their valuable comments, and the whole Editorial Board of Measurement Science and Technology for their support.
Research on the tool holder mode in high speed machining
NASA Astrophysics Data System (ADS)
Zhenyu, Zhao; Yongquan, Zhou; Houming, Zhou; Xiaomei, Xu; Haibin, Xiao
2018-03-01
High speed machining technology can improve the processing efficiency and precision, but also reduce the processing cost. Therefore, the technology is widely regarded in the industry. With the extensive application of high-speed machining technology, high-speed tool system has higher and higher requirements on the tool chuck. At present, in high speed precision machining, several new kinds of clip heads are as long as there are heat shrinkage tool-holder, high-precision spring chuck, hydraulic tool-holder, and the three-rib deformation chuck. Among them, the heat shrinkage tool-holder has the advantages of high precision, high clamping force, high bending rigidity and dynamic balance, etc., which are widely used. Therefore, it is of great significance to research the new requirements of the machining tool system. In order to adapt to the requirement of high speed machining precision machining technology, this paper expounds the common tool holder technology of high precision machining, and proposes how to select correctly tool clamping system in practice. The characteristics and existing problems are analyzed in the tool clamping system.
1986-08-01
THE SCIENCE OF AND ADVANCED TECHNOLOGY FOR COST-EFFECTIVE MANUFACTURE Lfl OF HIGH PRECISION ENGINEERING PRODUCTS N iA6/*N ONR Contract No. 83K0385...ADVANCED TECHNOLOGY FOR1 COST-EFFECTIVE MANUFACTURE OF1’ HIGH PRECISION ENGINEERING PRODUCTS ONR Contract No. 83K0385 Final Report Vol. 5 AUTOMATIC...Ck 53N Drawing #: 03116-6233 Raw Material: Iiz’ 500mm diameter and 3000mm length Ma, rial Alloy steel. high carbon content, quenched to Min 45Rc
Precision manufacturing for clinical-quality regenerative medicines.
Williams, David J; Thomas, Robert J; Hourd, Paul C; Chandra, Amit; Ratcliffe, Elizabeth; Liu, Yang; Rayment, Erin A; Archer, J Richard
2012-08-28
Innovations in engineering applied to healthcare make a significant difference to people's lives. Market growth is guaranteed by demographics. Regulation and requirements for good manufacturing practice-extreme levels of repeatability and reliability-demand high-precision process and measurement solutions. Emerging technologies using living biological materials add complexity. This paper presents some results of work demonstrating the precision automated manufacture of living materials, particularly the expansion of populations of human stem cells for therapeutic use as regenerative medicines. The paper also describes quality engineering techniques for precision process design and improvement, and identifies the requirements for manufacturing technology and measurement systems evolution for such therapies.
High-precision processing and detection of the high-caliber off-axis aspheric mirror
NASA Astrophysics Data System (ADS)
Dai, Chen; Li, Ang; Xu, Lingdi; Zhang, Yingjie
2017-10-01
To achieve the efficient, controllable, digital processing and high-precision detection of the high-caliber off-axis aspheric mirror, meeting the high-level development needs of the modern high-resolution, large field of space optical remote sensing camera, we carried out the research on high precision machining and testing technology of off-axis aspheric mirror. First, we forming the off-axis aspheric sample with diameter of 574mm × 302mm by milling it with milling machine, and then the intelligent robot equipment was used for off-axis aspheric high precision polishing. Surface detection of the sample will be proceed with the off-axis aspheric contact contour detection technology and offaxis non-spherical surface interference detection technology after its fine polishing using ion beam equipment. The final surface accuracy RMS is 12nm.
NASA Technical Reports Server (NTRS)
1992-01-01
A heat sealing process was developed by SEBRA based on technology that originated in work with NASA's Jet Propulsion Laboratory. The project involved connecting and transferring blood and fluids between sterile plastic containers while maintaining a closed system. SEBRA markets the PIRF Process to manufacturers of medical catheters. It is a precisely controlled method of heating thermoplastic materials in a mold to form or weld catheters and other products. The process offers advantages in fast, precise welding or shape forming of catheters as well as applications in a variety of other industries.
Rapid Prototyping Technology for Manufacturing GTE Turbine Blades
NASA Astrophysics Data System (ADS)
Balyakin, A. V.; Dobryshkina, E. M.; Vdovin, R. A.; Alekseev, V. P.
2018-03-01
The conventional approach to manufacturing turbine blades by investment casting is expensive and time-consuming, as it takes a lot of time to make geometrically precise and complex wax patterns. Turbine blade manufacturing in pilot production can be sped up by accelerating the casting process while keeping the geometric precision of the final product. This paper compares the rapid prototyping method (casting the wax pattern composition into elastic silicone molds) to the conventional technology. Analysis of the size precision of blade casts shows that silicon-mold casting features sufficient geometric precision. Thus, this method for making wax patterns can be a cost-efficient solution for small-batch or pilot production of turbine blades for gas-turbine units (GTU) and gas-turbine engines (GTE). The paper demonstrates how additive technology and thermographic analysis can speed up the cooling of wax patterns in silicone molds. This is possible at an optimal temperature and solidification time, which make the process more cost-efficient while keeping the geometric quality of the final product.
Precision machining of optical surfaces with subaperture correction technologies MRF and IBF
NASA Astrophysics Data System (ADS)
Schmelzer, Olaf; Feldkamp, Roman
2015-10-01
Precision optical elements are used in a wide range of technical instrumentations. Many optical systems e.g. semiconductor inspection modules, laser heads for laser material processing or high end movie cameras, contain precision optics even aspherical or freeform surfaces. Critical parameters for such systems are wavefront error, image field curvature or scattered light. Following these demands the lens parameters are also critical concerning power and RMSi of the surface form error and micro roughness. How can we reach these requirements? The emphasis of this discussion is set on the application of subaperture correction technologies in the fabrication of high-end aspheres and free-forms. The presentation focuses on the technology chain necessary for the production of high-precision aspherical optical components and the characterization of the applied subaperture finishing tools MRF (magneto-rheological finishing) and IBF (ion beam figuring). These technologies open up the possibility of improving the performance of optical systems.
Design and control of the precise tracking bed based on complex electromechanical design theory
NASA Astrophysics Data System (ADS)
Ren, Changzhi; Liu, Zhao; Wu, Liao; Chen, Ken
2010-05-01
The precise tracking technology is wide used in astronomical instruments, satellite tracking and aeronautic test bed. However, the precise ultra low speed tracking drive system is one high integrated electromechanical system, which one complexly electromechanical design method is adopted to improve the efficiency, reliability and quality of the system during the design and manufacture circle. The precise Tracking Bed is one ultra-exact, ultra-low speed, high precision and huge inertial instrument, which some kind of mechanism and environment of the ultra low speed is different from general technology. This paper explores the design process based on complex electromechanical optimizing design theory, one non-PID with a CMAC forward feedback control method is used in the servo system of the precise tracking bed and some simulation results are discussed.
Precision medicine for psychopharmacology: a general introduction.
Shin, Cheolmin; Han, Changsu; Pae, Chi-Un; Patkar, Ashwin A
2016-07-01
Precision medicine is an emerging medical model that can provide accurate diagnoses and tailored therapeutic strategies for patients based on data pertaining to genes, microbiomes, environment, family history and lifestyle. Here, we provide basic information about precision medicine and newly introduced concepts, such as the precision medicine ecosystem and big data processing, and omics technologies including pharmacogenomics, pharamacometabolomics, pharmacoproteomics, pharmacoepigenomics, connectomics and exposomics. The authors review the current state of omics in psychiatry and the future direction of psychopharmacology as it moves towards precision medicine. Expert commentary: Advances in precision medicine have been facilitated by achievements in multiple fields, including large-scale biological databases, powerful methods for characterizing patients (such as genomics, proteomics, metabolomics, diverse cellular assays, and even social networks and mobile health technologies), and computer-based tools for analyzing large amounts of data.
Pharmaceutical spray drying: solid-dose process technology platform for the 21st century.
Snyder, Herman E
2012-07-01
Requirement for precise control of solid-dosage particle properties created with a scalable process technology are continuing to expand in the pharmaceutical industry. Alternate methods of drug delivery, limited active drug substance solubility and the need to improve drug product stability under room-temperature conditions are some of the pharmaceutical applications that can benefit from spray-drying technology. Used widely for decades in other industries with production rates up to several tons per hour, pharmaceutical uses for spray drying are expanding beyond excipient production and solvent removal from crystalline material. Creation of active pharmaceutical-ingredient particles with combinations of unique target properties are now more common. This review of spray-drying technology fundamentals provides a brief perspective on the internal process 'mechanics', which combine with both the liquid and solid properties of a formulation to enable high-throughput, continuous manufacturing of precision powder properties.
Irradiated foods: current trends and technologies
USDA-ARS?s Scientific Manuscript database
Additional demands on keeping food safe and palatable through longer distribution chains have led industry executives to reconsider irradiation and other technologies as viable processing alternatives for many foods. Other intervention technologies (precision thermal, UV, and novel sanitizer formula...
Numerical simulation of polishing U-tube based on solid-liquid two-phase
NASA Astrophysics Data System (ADS)
Li, Jun-ye; Meng, Wen-qing; Wu, Gui-ling; Hu, Jing-lei; Wang, Bao-zuo
2018-03-01
As the advanced technology to solve the ultra-precision machining of small hole structure parts and complex cavity parts, the abrasive grain flow processing technology has the characteristics of high efficiency, high quality and low cost. So this technology in many areas of precision machining has an important role. Based on the theory of solid-liquid two-phase flow coupling, a solid-liquid two-phase MIXTURE model is used to simulate the abrasive flow polishing process on the inner surface of U-tube, and the temperature, turbulent viscosity and turbulent dissipation rate in the process of abrasive flow machining of U-tube were compared and analyzed under different inlet pressure. In this paper, the influence of different inlet pressure on the surface quality of the workpiece during abrasive flow machining is studied and discussed, which provides a theoretical basis for the research of abrasive flow machining process.
A study on Aerosol jet printing technology in LED module manufacturing
NASA Astrophysics Data System (ADS)
Rudorfer, Andreas; Tscherner, Martin; Palfinger, Christian; Reil, Frank; Hartmann, Paul; Seferis, Ioannis E.; Zych, Eugeniusz; Wenzl, Franz P.
2016-09-01
State of the art fabrication of LED modules based on chip-on-board (COB) technology comprises some shortcomings both with respect to the manufacturing process itself but also with regard to potential sources of failures and manufacturing impreciseness. One promising alternative is additive manufacturing, a technology which has gained a lot of attention during the last years due to its materials and cost saving capabilities. Especially direct-write technologies like Aerosol jet printing have demonstrated advantages compared to other technological approaches when printing high precision layers or high precision electronic circuits on substrates which, as an additional advantage, also can be flexible and 3D shaped. Based on test samples and test structures manufactured by Aerosol jet printing technology, in this context we discuss the potentials of additive manufacturing in various aspects of LED module fabrication, ranging from the deposition of the die-attach material, wire bond replacement by printed electrical connects as well as aspects of high-precision phosphor layer deposition for color conversion and white light generation.
Nonisothermal glass molding for the cost-efficient production of precision freeform optics
NASA Astrophysics Data System (ADS)
Vu, Anh-Tuan; Kreilkamp, Holger; Dambon, Olaf; Klocke, Fritz
2016-07-01
Glass molding has become a key replication-based technology to satisfy intensively growing demands of complex precision optics in the today's photonic market. However, the state-of-the-art replicative technologies are still limited, mainly due to their insufficiency to meet the requirements of mass production. This paper introduces a newly developed nonisothermal glass molding in which a complex-shaped optic is produced in a very short process cycle. The innovative molding technology promises a cost-efficient production because of increased mold lifetime, less energy consumption, and high throughput from a fast process chain. At the early stage of the process development, the research focuses on an integration of finite element simulation into the process chain to reduce time and labor-intensive cost. By virtue of numerical modeling, defects including chill ripples and glass sticking in the nonisothermal molding process can be predicted and the consequent effects are avoided. In addition, the influences of process parameters and glass preforms on the surface quality, form accuracy, and residual stress are discussed. A series of experiments was carried out to validate the simulation results. The successful modeling, therefore, provides a systematic strategy for glass preform design, mold compensation, and optimization of the process parameters. In conclusion, the integration of simulation into the entire nonisothermal glass molding process chain will significantly increase the manufacturing efficiency as well as reduce the time-to-market for the mass production of complex precision yet low-cost glass optics.
Sensitivity study and parameter optimization of OCD tool for 14nm finFET process
NASA Astrophysics Data System (ADS)
Zhang, Zhensheng; Chen, Huiping; Cheng, Shiqiu; Zhan, Yunkun; Huang, Kun; Shi, Yaoming; Xu, Yiping
2016-03-01
Optical critical dimension (OCD) measurement has been widely demonstrated as an essential metrology method for monitoring advanced IC process in the technology node of 90 nm and beyond. However, the rapidly shrunk critical dimensions of the semiconductor devices and the increasing complexity of the manufacturing process bring more challenges to OCD. The measurement precision of OCD technology highly relies on the optical hardware configuration, spectral types, and inherently interactions between the incidence of light and various materials with various topological structures, therefore sensitivity analysis and parameter optimization are very critical in the OCD applications. This paper presents a method for seeking the optimum sensitive measurement configuration to enhance the metrology precision and reduce the noise impact to the greatest extent. In this work, the sensitivity of different types of spectra with a series of hardware configurations of incidence angles and azimuth angles were investigated. The optimum hardware measurement configuration and spectrum parameter can be identified. The FinFET structures in the technology node of 14 nm were constructed to validate the algorithm. This method provides guidance to estimate the measurement precision before measuring actual device features and will be beneficial for OCD hardware configuration.
The precision-processing subsystem for the Earth Resources Technology Satellite.
NASA Technical Reports Server (NTRS)
Chapelle, W. E.; Bybee, J. E.; Bedross, G. M.
1972-01-01
Description of the precision processor, a subsystem in the image-processing system for the Earth Resources Technology Satellite (ERTS). This processor is a special-purpose image-measurement and printing system, designed to process user-selected bulk images to produce 1:1,000,000-scale film outputs and digital image data, presented in a Universal-Transverse-Mercator (UTM) projection. The system will remove geometric and radiometric errors introduced by the ERTS multispectral sensors and by the bulk-processor electron-beam recorder. The geometric transformations required for each input scene are determined by resection computations based on reseau measurements and image comparisons with a special ground-control base contained within the system; the images are then printed and digitized by electronic image-transfer techniques.
NASA Astrophysics Data System (ADS)
Fagan, Mike; Dueben, Peter; Palem, Krishna; Carver, Glenn; Chantry, Matthew; Palmer, Tim; Schlacter, Jeremy
2017-04-01
It has been shown that a mixed precision approach that judiciously replaces double precision with single precision calculations can speed-up global simulations. In particular, a mixed precision variation of the Integrated Forecast System (IFS) of the European Centre for Medium-Range Weather Forecasts (ECMWF) showed virtually the same quality model results as the standard double precision version (Vana et al., Single precision in weather forecasting models: An evaluation with the IFS, Monthly Weather Review, in print). In this study, we perform detailed measurements of savings in computing time and energy using a mixed precision variation of the -OpenIFS- model. The mixed precision variation of OpenIFS is analogous to the IFS variation used in Vana et al. We (1) present results for energy measurements for simulations in single and double precision using Intel's RAPL technology, (2) conduct a -scaling- study to quantify the effects that increasing model resolution has on both energy dissipation and computing cycles, (3) analyze the differences between single core and multicore processing, and (4) compare the effects of different compiler technologies on the mixed precision OpenIFS code. In particular, we compare intel icc/ifort with gnu gcc/gfortran.
Precision Optical Coatings for Large Space Telescope Mirrors
NASA Astrophysics Data System (ADS)
Sheikh, David
This proposal “Precision Optical Coatings for Large Space Telescope Mirrors” addresses the need to develop and advance the state-of-the-art in optical coating technology. NASA is considering large monolithic mirrors 1 to 8-meters in diameter for future telescopes such as HabEx and LUVOIR. Improved large area coating processes are needed to meet the future requirements of large astronomical mirrors. In this project, we will demonstrate a broadband reflective coating process for achieving high reflectivity from 90-nm to 2500-nm over a 2.3-meter diameter coating area. The coating process is scalable to larger mirrors, 6+ meters in diameter. We will use a battery-driven coating process to make an aluminum reflector, and a motion-controlled coating technology for depositing protective layers. We will advance the state-of-the-art for coating technology and manufacturing infrastructure, to meet the reflectance and wavefront requirements of both HabEx and LUVOIR. Specifically, we will combine the broadband reflective coating designs and processes developed at GSFC and JPL with large area manufacturing technologies developed at ZeCoat Corporation. Our primary objectives are to: Demonstrate an aluminum coating process to create uniform coatings over large areas with near-theoretical aluminum reflectance Demonstrate a motion-controlled coating process to apply very precise 2-nm to 5- nm thick protective/interference layers to large areas, Demonstrate a broadband coating system (90-nm to 2500-nm) over a 2.3-meter coating area and test it against the current coating specifications for LUVOIR/HabEx. We will perform simulated space-environment testing, and we expect to advance the TRL from 3 to >5 in 3-years.
NASA Astrophysics Data System (ADS)
Li, Ping; Jin, Tan; Guo, Zongfu; Lu, Ange; Qu, Meina
2016-10-01
High efficiency machining of large precision optical surfaces is a challenging task for researchers and engineers worldwide. The higher form accuracy and lower subsurface damage helps to significantly reduce the cycle time for the following polishing process, save the cost of production, and provide a strong enabling technology to support the large telescope and laser energy fusion projects. In this paper, employing an Infeed Grinding (IG) mode with a rotary table and a cup wheel, a multi stage grinding process chain, as well as precision compensation technology, a Φ300mm diameter plano mirror is ground by the Schneider Surfacing Center SCG 600 that delivers a new level of quality and accuracy when grinding such large flats. Results show a PV form error of Pt<2 μm, the surface roughness Ra<30 nm and Rz<180 nm, with subsurface damage <20 μm, and a material removal rates of up to 383.2 mm3/s.
Precision Medicine and the Changing Landscape of Research Ethics.
Hammer, Marilyn J
2016-03-01
President Barack Obama announced the launch of the National Institutes of Health Precision Medicine Initiative® (PMI) in January 2015. Precision medicine includes the concept of individualized or personalized medicine at a more exact level through advances in science and technology, such as genetics and genomics sequencing. Although many disease processes will be investigated through the precision medicine lens for greater understanding and improved treatment responses, oncology research and translation to practice is leading the initiative's debut, referred to as the near-term focus.
Quantitative optical metrology with CMOS cameras
NASA Astrophysics Data System (ADS)
Furlong, Cosme; Kolenovic, Ervin; Ferguson, Curtis F.
2004-08-01
Recent advances in laser technology, optical sensing, and computer processing of data, have lead to the development of advanced quantitative optical metrology techniques for high accuracy measurements of absolute shapes and deformations of objects. These techniques provide noninvasive, remote, and full field of view information about the objects of interest. The information obtained relates to changes in shape and/or size of the objects, characterizes anomalies, and provides tools to enhance fabrication processes. Factors that influence selection and applicability of an optical technique include the required sensitivity, accuracy, and precision that are necessary for a particular application. In this paper, sensitivity, accuracy, and precision characteristics in quantitative optical metrology techniques, and specifically in optoelectronic holography (OEH) based on CMOS cameras, are discussed. Sensitivity, accuracy, and precision are investigated with the aid of National Institute of Standards and Technology (NIST) traceable gauges, demonstrating the applicability of CMOS cameras in quantitative optical metrology techniques. It is shown that the advanced nature of CMOS technology can be applied to challenging engineering applications, including the study of rapidly evolving phenomena occurring in MEMS and micromechatronics.
Ferrández-Pastor, Francisco Javier; García-Chamizo, Juan Manuel; Nieto-Hidalgo, Mario; Mora-Pascual, Jerónimo; Mora-Martínez, José
2016-07-22
The application of Information Technologies into Precision Agriculture methods has clear benefits. Precision Agriculture optimises production efficiency, increases quality, minimises environmental impact and reduces the use of resources (energy, water); however, there are different barriers that have delayed its wide development. Some of these main barriers are expensive equipment, the difficulty to operate and maintain and the standard for sensor networks are still under development. Nowadays, new technological development in embedded devices (hardware and communication protocols), the evolution of Internet technologies (Internet of Things) and ubiquitous computing (Ubiquitous Sensor Networks) allow developing less expensive systems, easier to control, install and maintain, using standard protocols with low-power consumption. This work develops and test a low-cost sensor/actuator network platform, based in Internet of Things, integrating machine-to-machine and human-machine-interface protocols. Edge computing uses this multi-protocol approach to develop control processes on Precision Agriculture scenarios. A greenhouse with hydroponic crop production was developed and tested using Ubiquitous Sensor Network monitoring and edge control on Internet of Things paradigm. The experimental results showed that the Internet technologies and Smart Object Communication Patterns can be combined to encourage development of Precision Agriculture. They demonstrated added benefits (cost, energy, smart developing, acceptance by agricultural specialists) when a project is launched.
Ferrández-Pastor, Francisco Javier; García-Chamizo, Juan Manuel; Nieto-Hidalgo, Mario; Mora-Pascual, Jerónimo; Mora-Martínez, José
2016-01-01
The application of Information Technologies into Precision Agriculture methods has clear benefits. Precision Agriculture optimises production efficiency, increases quality, minimises environmental impact and reduces the use of resources (energy, water); however, there are different barriers that have delayed its wide development. Some of these main barriers are expensive equipment, the difficulty to operate and maintain and the standard for sensor networks are still under development. Nowadays, new technological development in embedded devices (hardware and communication protocols), the evolution of Internet technologies (Internet of Things) and ubiquitous computing (Ubiquitous Sensor Networks) allow developing less expensive systems, easier to control, install and maintain, using standard protocols with low-power consumption. This work develops and test a low-cost sensor/actuator network platform, based in Internet of Things, integrating machine-to-machine and human-machine-interface protocols. Edge computing uses this multi-protocol approach to develop control processes on Precision Agriculture scenarios. A greenhouse with hydroponic crop production was developed and tested using Ubiquitous Sensor Network monitoring and edge control on Internet of Things paradigm. The experimental results showed that the Internet technologies and Smart Object Communication Patterns can be combined to encourage development of Precision Agriculture. They demonstrated added benefits (cost, energy, smart developing, acceptance by agricultural specialists) when a project is launched. PMID:27455265
Research on the method of precise alignment technology of atmospheric laser communication
NASA Astrophysics Data System (ADS)
Chen, Wen-jian; Gao, Wei; Duan, Yuan-yuan; Ma, Shi-wei; Chen, Jian
2016-10-01
Atmosphere laser communication takes advantage of laser as the carrier transmitting the voice, data, and image information in the atmosphere. Because of its high reliability, strong anti-interference ability, the advantages of easy installation, it has great potential and development space in the communications field. In the process of establish communication, the capture, targeting and tracking of the communication signal is the key technology. This paper introduce a method of targeting the signal spot in the process of atmosphere laser communication, which through the way of making analog signal addition and subtraction directly and normalized to obtain the target azimuth information to drive the servo system to achieve precise alignment of tracking.
NASA Astrophysics Data System (ADS)
1988-05-01
Many laboratory programs continue to need optical components of ever-increasing size and accuracy. Unfortunately, optical surfaces produced by the conventional sequence of grinding, lapping, and polishing can become prohibitively expensive. Research in the Fabrication Technology area focuses on methods of fabricating components with heretofore unrealized levels of precision. In FY87, researchers worked to determine the fundamental mechanical limits of material removal, experimented with unique material removal and deposition processes, developed servo systems for controlling the geometric position of ultraprecise machine tools, and advanced the ability to precisely measure contoured workpieces. Continued work in these areas will lead to more cost-effective processes to fabricate even higher quality optical components for advanced lasers and for visible, ultraviolet, and X-ray diagnostic systems.
Precision injection molding of freeform optics
NASA Astrophysics Data System (ADS)
Fang, Fengzhou; Zhang, Nan; Zhang, Xiaodong
2016-08-01
Precision injection molding is the most efficient mass production technology for manufacturing plastic optics. Applications of plastic optics in field of imaging, illumination, and concentration demonstrate a variety of complex surface forms, developing from conventional plano and spherical surfaces to aspheric and freeform surfaces. It requires high optical quality with high form accuracy and lower residual stresses, which challenges both optical tool inserts machining and precision injection molding process. The present paper reviews recent progress in mold tool machining and precision injection molding, with more emphasis on precision injection molding. The challenges and future development trend are also discussed.
Analysis of form deviation in non-isothermal glass molding
NASA Astrophysics Data System (ADS)
Kreilkamp, H.; Grunwald, T.; Dambon, O.; Klocke, F.
2018-02-01
Especially in the market of sensors, LED lighting and medical technologies, there is a growing demand for precise yet low-cost glass optics. This demand poses a major challenge for glass manufacturers who are confronted with the challenge arising from the trend towards ever-higher levels of precision combined with immense pressure on market prices. Since current manufacturing technologies especially grinding and polishing as well as Precision Glass Molding (PGM) are not able to achieve the desired production costs, glass manufacturers are looking for alternative technologies. Non-isothermal Glass Molding (NGM) has been shown to have a big potential for low-cost mass manufacturing of complex glass optics. However, the biggest drawback of this technology at the moment is the limited accuracy of the manufactured glass optics. This research is addressing the specific challenges of non-isothermal glass molding with respect to form deviation of molded glass optics. Based on empirical models, the influencing factors on form deviation in particular form accuracy, waviness and surface roughness will be discussed. A comparison with traditional isothermal glass molding processes (PGM) will point out the specific challenges of non-isothermal process conditions. Furthermore, the underlying physical principle leading to the formation of form deviations will be analyzed in detail with the help of numerical simulation. In this way, this research contributes to a better understanding of form deviations in non-isothermal glass molding and is an important step towards new applications demanding precise yet low-cost glass optics.
[Optimization of processing technology for semen cuscuta by uniform and regression analysis].
Li, Chun-yu; Luo, Hui-yu; Wang, Shu; Zhai, Ya-nan; Tian, Shu-hui; Zhang, Dan-shen
2011-02-01
To optimize the best preparation technology for the contains of total flavornoids, polysaccharides, the percentage of water and alcohol-soluble components in Semen Cuscuta herb processing. UV-spectrophotometry was applied to determine the contains of total flavornoids and polysaccharides, which were extracted from Semen Cuscuta. And the processing was optimized by the way of uniform design and contour map. The best preparation technology was satisfied with some conditions as follows: baking temperature 150 degrees C, baking time 140 seconds. The regression models are notable and reasonable, which can forecast results precisely.
Revilla-León, Marta; Özcan, Mutlu
2018-04-22
There are 7 categories of additive manufacturing (AM) technologies, and a wide variety of materials can be used to build a CAD 3D object. The present article reviews the main AM processes for polymers for dental applications: stereolithography (SLA), digital light processing (DLP), material jetting (MJ), and material extrusion (ME). The manufacturing process, accuracy, and precision of these methods will be reviewed, as well as their prosthodontic applications. © 2018 by the American College of Prosthodontists.
Heterodyne range imaging as an alternative to photogrammetry
NASA Astrophysics Data System (ADS)
Dorrington, Adrian; Cree, Michael; Carnegie, Dale; Payne, Andrew; Conroy, Richard
2007-01-01
Solid-state full-field range imaging technology, capable of determining the distance to objects in a scene simultaneously for every pixel in an image, has recently achieved sub-millimeter distance measurement precision. With this level of precision, it is becoming practical to use this technology for high precision three-dimensional metrology applications. Compared to photogrammetry, range imaging has the advantages of requiring only one viewing angle, a relatively short measurement time, and simplistic fast data processing. In this paper we fist review the range imaging technology, then describe an experiment comparing both photogrammetric and range imaging measurements of a calibration block with attached retro-reflective targets. The results show that the range imaging approach exhibits errors of approximately 0.5 mm in-plane and almost 5 mm out-of-plane; however, these errors appear to be mostly systematic. We then proceed to examine the physical nature and characteristics of the image ranging technology and discuss the possible causes of these systematic errors. Also discussed is the potential for further system characterization and calibration to compensate for the range determination and other errors, which could possibly lead to three-dimensional measurement precision approaching that of photogrammetry.
The HiPOx technology is an advanced oxidation process that incorporates high-precision delivery of ozone and hydrogen peroxide to chemically destroy organic contaminants with the promise of minimizing bromate formation. A MTBE-contaminated groundwater from the Ventura County Nav...
High-precision radius automatic measurement using laser differential confocal technology
NASA Astrophysics Data System (ADS)
Jiang, Hongwei; Zhao, Weiqian; Yang, Jiamiao; Guo, Yongkui; Xiao, Yang
2015-02-01
A high precision radius automatic measurement method using laser differential confocal technology is proposed. Based on the property of an axial intensity curve that the null point precisely corresponds to the focus of the objective and the bipolar property, the method uses the composite PID (proportional-integral-derivative) control to ensure the steady movement of the motor for process of quick-trigger scanning, and uses least-squares linear fitting to obtain the position of the cat-eye and confocal positions, then calculates the radius of curvature of lens. By setting the number of measure times, precision auto-repeat measurement of the radius of curvature is achieved. The experiment indicates that the method has the measurement accuracy of better than 2 ppm, and the measuring repeatability is better than 0.05 μm. In comparison with the existing manual-single measurement, this method has a high measurement precision, a strong environment anti-interference capability, a better measuring repeatability which is only tenth of former's.
Optical technologies for space sensor
NASA Astrophysics Data System (ADS)
Wang, Hu; Liu, Jie; Xue, Yaoke; Liu, Yang; Liu, Meiying; Wang, Lingguang; Yang, Shaodong; Lin, Shangmin; Chen, Su; Luo, Jianjun
2015-10-01
Space sensors are used in navigation sensor fields. The sun, the earth, the moon and other planets are used as frame of reference to obtain stellar position coordinates, and then to control the attitude of an aircraft. Being the "eyes" of the space sensors, Optical sensor system makes images of the infinite far stars and other celestial bodies. It directly affects measurement accuracy of the space sensor, indirectly affecting the data updating rate. Star sensor technology is the pilot for Space sensors. At present more and more attention is paid on all-day star sensor technology. By day and night measurements of the stars, the aircraft's attitude in the inertial coordinate system can be provided. Facing the requirements of ultra-high-precision, large field of view, wide spectral range, long life and high reliability, multi-functional optical system, we integration, integration optical sensors will be future space technology trends. In the meantime, optical technologies for space-sensitive research leads to the development of ultra-precision optical processing, optical and precision test machine alignment technology. It also promotes the development of long-life optical materials and applications. We have achieved such absolute distortion better than ±1um, Space life of at least 15years of space-sensitive optical system.
Nanoscale tailor-made membranes for precise and rapid molecular sieve separation.
Wang, Jing; Zhu, Junyong; Zhang, Yatao; Liu, Jindun; Van der Bruggen, Bart
2017-03-02
The precise and rapid separation of different molecules from aqueous, organic solutions and gas mixtures is critical to many technologies in the context of resource-saving and sustainable development. The strength of membrane-based technologies is well recognized and they are extensively applied as cost-effective, highly efficient separation techniques. Currently, empirical-based approaches, lacking an accurate nanoscale control, are used to prepare the most advanced membranes. In contrast, nanoscale control renders the membrane molecular specificity (sub-2 nm) necessary for efficient and rapid molecular separation. Therefore, as a growing trend in membrane technology, the field of nanoscale tailor-made membranes is highlighted in this review. An in-depth analysis of the latest advances in tailor-made membranes for precise and rapid molecule sieving is given, along with an outlook to future perspectives of such membranes. Special attention is paid to the established processing strategies, as well as the application of molecular dynamics (MD) simulation in nanoporous membrane design. This review will provide useful guidelines for future research in the development of nanoscale tailor-made membranes with a precise and rapid molecular sieve separation property.
Advanced optical manufacturing digital integrated system
NASA Astrophysics Data System (ADS)
Tao, Yizheng; Li, Xinglan; Li, Wei; Tang, Dingyong
2012-10-01
It is necessarily to adapt development of advanced optical manufacturing technology with modern science technology development. To solved these problems which low of ration, ratio of finished product, repetition, consistent in big size and high precision in advanced optical component manufacturing. Applied business driven and method of Rational Unified Process, this paper has researched advanced optical manufacturing process flow, requirement of Advanced Optical Manufacturing integrated System, and put forward architecture and key technology of it. Designed Optical component core and Manufacturing process driven of Advanced Optical Manufacturing Digital Integrated System. the result displayed effective well, realized dynamic planning Manufacturing process, information integration improved ratio of production manufactory.
Experimental Estimation of Entanglement at the Quantum Limit
NASA Astrophysics Data System (ADS)
Brida, Giorgio; Degiovanni, Ivo Pietro; Florio, Angela; Genovese, Marco; Giorda, Paolo; Meda, Alice; Paris, Matteo G. A.; Shurupov, Alexander
2010-03-01
Entanglement is the central resource of quantum information processing and the precise characterization of entangled states is a crucial issue for the development of quantum technologies. This leads to the necessity of a precise, experimental feasible measure of entanglement. Nevertheless, such measurements are limited both from experimental uncertainties and intrinsic quantum bounds. Here we present an experiment where the amount of entanglement of a family of two-qubit mixed photon states is estimated with the ultimate precision allowed by quantum mechanics.
Laser microprocessing technologies for automotive, flexible electronics, and solar energy sectors
NASA Astrophysics Data System (ADS)
Nikumb, Suwas; Bathe, Ravi; Knopf, George K.
2014-10-01
Laser microprocessing technologies offer an important tool to fulfill the needs of many industrial sectors. In particular, there is growing interest in applications of these processes in the manufacturing areas such as automotive parts fabrication, printable electronics and solar energy panels. The technology is primarily driven by our understanding of the fundamental laser-material interaction, process control strategies and the advancement of significant fabrication experience over the past few years. The wide-ranging operating parameters available with respect to power, pulse width variation, beam quality, higher repetition rates as well as precise control of the energy deposition through programmable pulse shaping technologies, enables pre-defined material removal, selective scribing of individual layer within a stacked multi-layer thin film structure, texturing of material surfaces as well as precise introduction of heat into the material to monitor its characteristic properties are a few examples. In this research, results in the area of laser surface texturing of metals for added hydrodynamic lubricity to reduce friction, processing of ink-jet printed graphene oxide for flexible printed electronic circuit fabrication and scribing of multi-layer thin films for the development of photovoltaic CuInGaSe2 (CIGS) interconnects for solar panel devices will be discussed.
Integrated circuit layer image segmentation
NASA Astrophysics Data System (ADS)
Masalskis, Giedrius; Petrauskas, Romas
2010-09-01
In this paper we present IC layer image segmentation techniques which are specifically created for precise metal layer feature extraction. During our research we used many samples of real-life de-processed IC metal layer images which were obtained using optical light microscope. We have created sequence of various image processing filters which provides segmentation results of good enough precision for our application. Filter sequences were fine tuned to provide best possible results depending on properties of IC manufacturing process and imaging technology. Proposed IC image segmentation filter sequences were experimentally tested and compared with conventional direct segmentation algorithms.
Process science development at the Center for Optics Manufacturing
NASA Astrophysics Data System (ADS)
Pollicove, Harvey M.; Moore, Duncan T.; Golini, Donald
1992-01-01
The Center for Optics Manufacturing (COM) has organized a volunteer Process Science Committee that will cooperate in advancing the optical manufacturing sciences. The objective is to develop technical information and processes that improve manufacturing capability, especially in grinding and polishing technology. Chaired by Donald Golini of Litton Itek Optical Systems, the committee members are volunteers from several American Precision Optics Manufacturers Association (APOMA) companies and institutions. Many of the companies are also funding project elements. The committee will accelerate industry progress by integrating the research and development activities of cooperating APOMA companies and institutions involved in both COM and independent programs. In the short term, the effort concentrates on grinding and polishing process innovation. In later phases, the effort will aid in the design future generations of machines and processes. While the developments are directly adaptable to COM's OPTICAM program, the results will influence a wide range of innovation and application in all methods of optical fabrication. Several leaders in the field are participating in the research and development effort--Boston University, Eastman Kodak Company, Hughes Leitz Optical Technologies, Lawrence Livermore National Laboratory, Litton Itek Optical Systems, Melles Griot, Optical Components Inc., Precision Optical, Rank Pneumo, Schott Glass Technologies, Solution Technology, Texas Instruments, Tropel, and the universities of Arizona and Rochester. Other APOMA member companies will participate as resource needs grow. The collaboration is unique in the industry's history.
Quantum technologies with hybrid systems
Kurizki, Gershon; Bertet, Patrice; Kubo, Yuimaru; Mølmer, Klaus; Petrosyan, David; Rabl, Peter; Schmiedmayer, Jörg
2015-01-01
An extensively pursued current direction of research in physics aims at the development of practical technologies that exploit the effects of quantum mechanics. As part of this ongoing effort, devices for quantum information processing, secure communication, and high-precision sensing are being implemented with diverse systems, ranging from photons, atoms, and spins to mesoscopic superconducting and nanomechanical structures. Their physical properties make some of these systems better suited than others for specific tasks; thus, photons are well suited for transmitting quantum information, weakly interacting spins can serve as long-lived quantum memories, and superconducting elements can rapidly process information encoded in their quantum states. A central goal of the envisaged quantum technologies is to develop devices that can simultaneously perform several of these tasks, namely, reliably store, process, and transmit quantum information. Hybrid quantum systems composed of different physical components with complementary functionalities may provide precisely such multitasking capabilities. This article reviews some of the driving theoretical ideas and first experimental realizations of hybrid quantum systems and the opportunities and challenges they present and offers a glance at the near- and long-term perspectives of this fascinating and rapidly expanding field. PMID:25737558
Quantum technologies with hybrid systems.
Kurizki, Gershon; Bertet, Patrice; Kubo, Yuimaru; Mølmer, Klaus; Petrosyan, David; Rabl, Peter; Schmiedmayer, Jörg
2015-03-31
An extensively pursued current direction of research in physics aims at the development of practical technologies that exploit the effects of quantum mechanics. As part of this ongoing effort, devices for quantum information processing, secure communication, and high-precision sensing are being implemented with diverse systems, ranging from photons, atoms, and spins to mesoscopic superconducting and nanomechanical structures. Their physical properties make some of these systems better suited than others for specific tasks; thus, photons are well suited for transmitting quantum information, weakly interacting spins can serve as long-lived quantum memories, and superconducting elements can rapidly process information encoded in their quantum states. A central goal of the envisaged quantum technologies is to develop devices that can simultaneously perform several of these tasks, namely, reliably store, process, and transmit quantum information. Hybrid quantum systems composed of different physical components with complementary functionalities may provide precisely such multitasking capabilities. This article reviews some of the driving theoretical ideas and first experimental realizations of hybrid quantum systems and the opportunities and challenges they present and offers a glance at the near- and long-term perspectives of this fascinating and rapidly expanding field.
Quantum technologies with hybrid systems
NASA Astrophysics Data System (ADS)
Kurizki, Gershon; Bertet, Patrice; Kubo, Yuimaru; Mølmer, Klaus; Petrosyan, David; Rabl, Peter; Schmiedmayer, Jörg
2015-03-01
An extensively pursued current direction of research in physics aims at the development of practical technologies that exploit the effects of quantum mechanics. As part of this ongoing effort, devices for quantum information processing, secure communication, and high-precision sensing are being implemented with diverse systems, ranging from photons, atoms, and spins to mesoscopic superconducting and nanomechanical structures. Their physical properties make some of these systems better suited than others for specific tasks; thus, photons are well suited for transmitting quantum information, weakly interacting spins can serve as long-lived quantum memories, and superconducting elements can rapidly process information encoded in their quantum states. A central goal of the envisaged quantum technologies is to develop devices that can simultaneously perform several of these tasks, namely, reliably store, process, and transmit quantum information. Hybrid quantum systems composed of different physical components with complementary functionalities may provide precisely such multitasking capabilities. This article reviews some of the driving theoretical ideas and first experimental realizations of hybrid quantum systems and the opportunities and challenges they present and offers a glance at the near- and long-term perspectives of this fascinating and rapidly expanding field.
A high precision position sensor design and its signal processing algorithm for a maglev train.
Xue, Song; Long, Zhiqiang; He, Ning; Chang, Wensen
2012-01-01
High precision positioning technology for a kind of high speed maglev train with an electromagnetic suspension (EMS) system is studied. At first, the basic structure and functions of the position sensor are introduced and some key techniques to enhance the positioning precision are designed. Then, in order to further improve the positioning signal quality and the fault-tolerant ability of the sensor, a new kind of discrete-time tracking differentiator (TD) is proposed based on nonlinear optimal control theory. This new TD has good filtering and differentiating performances and a small calculation load. It is suitable for real-time signal processing. The stability, convergence property and frequency characteristics of the TD are studied and analyzed thoroughly. The delay constant of the TD is figured out and an effective time delay compensation algorithm is proposed. Based on the TD technology, a filtering process is introduced in to improve the positioning signal waveform when the sensor is under bad working conditions, and a two-sensor switching algorithm is designed to eliminate the positioning errors caused by the joint gaps of the long stator. The effectiveness and stability of the sensor and its signal processing algorithms are proved by the experiments on a test train during a long-term test run.
A High Precision Position Sensor Design and Its Signal Processing Algorithm for a Maglev Train
Xue, Song; Long, Zhiqiang; He, Ning; Chang, Wensen
2012-01-01
High precision positioning technology for a kind of high speed maglev train with an electromagnetic suspension (EMS) system is studied. At first, the basic structure and functions of the position sensor are introduced and some key techniques to enhance the positioning precision are designed. Then, in order to further improve the positioning signal quality and the fault-tolerant ability of the sensor, a new kind of discrete-time tracking differentiator (TD) is proposed based on nonlinear optimal control theory. This new TD has good filtering and differentiating performances and a small calculation load. It is suitable for real-time signal processing. The stability, convergence property and frequency characteristics of the TD are studied and analyzed thoroughly. The delay constant of the TD is figured out and an effective time delay compensation algorithm is proposed. Based on the TD technology, a filtering process is introduced in to improve the positioning signal waveform when the sensor is under bad working conditions, and a two-sensor switching algorithm is designed to eliminate the positioning errors caused by the joint gaps of the long stator. The effectiveness and stability of the sensor and its signal processing algorithms are proved by the experiments on a test train during a long-term test run. PMID:22778582
Generation of novel resistance genes using mutation and targeted gene editing.
Gal-On, Amit; Fuchs, Marc; Gray, Stewart
2017-10-01
Classical breeding for virus resistance is a lengthy process and is restricted by the availability of resistance genes. Precise genome editing is a 'dream technology' to improve plants for virus resistance and these tools have opened new and very promising ways to generate virus resistant plants by disrupting host susceptibility genes, or by increasing the expression of viral resistance genes. However, precise targets must be identified and their roles understood to minimize potential negative effects on the plant. Nonetheless, the opportunities for genome editing are expanding, as are the technologies to generate effective and broad-spectrum resistance against plant viruses. Here we provide insights into recent progress related to gene targets and gene editing technologies. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Pierrottet, Diego; Amzajerdian, Farzin; Petway, Larry; Barnes, Bruce; Lockard, George; Hines, Glenn
2011-06-01
An all fiber Navigation Doppler Lidar (NDL) system is under development at NASA Langley Research Center (LaRC) for precision descent and landing applications on planetary bodies. The sensor produces high-resolution line of sight range, altitude above ground, ground relative attitude, and high precision velocity vector measurements. Previous helicopter flight test results demonstrated the NDL measurement concepts, including measurement precision, accuracies, and operational range. This paper discusses the results obtained from a recent campaign to test the improved sensor hardware, and various signal processing algorithms applicable to real-time processing. The NDL was mounted in an instrumentation pod aboard an Erickson Air-Crane helicopter and flown over various terrains. The sensor was one of several sensors tested in this field test by NASA's Autonomous Landing and Hazard Avoidance Technology (ALHAT) project.
NASA Technical Reports Server (NTRS)
Pierrottet, Diego F.; Lockhard, George; Amzajerdian, Farzin; Petway, Larry B.; Barnes, Bruce; Hines, Glenn D.
2011-01-01
An all fiber Navigation Doppler Lidar (NDL) system is under development at NASA Langley Research Center (LaRC) for precision descent and landing applications on planetary bodies. The sensor produces high resolution line of sight range, altitude above ground, ground relative attitude, and high precision velocity vector measurements. Previous helicopter flight test results demonstrated the NDL measurement concepts, including measurement precision, accuracies, and operational range. This paper discusses the results obtained from a recent campaign to test the improved sensor hardware, and various signal processing algorithms applicable to real-time processing. The NDL was mounted in an instrumentation pod aboard an Erickson Air-Crane helicopter and flown over vegetation free terrain. The sensor was one of several sensors tested in this field test by NASA?s Autonomous Landing and Hazard Avoidance Technology (ALHAT) project.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-08
... added as parties to this venture. Also, adapt laser systems, LLC, Kansas City, MO; Advanced Processing Technologies (AVPRO), Norman, OK; Anglicotech LLC, Alpharetta, GA; Assembly Guidance Systems, Inc., Chelmsford... Technology Corporation (PTC), Waltham, MA; PDQ Precision Inc., National City, CA; Portal Dynamics, Inc...
Subaperture metrology technologies extend capabilities in optics manufacturing
NASA Astrophysics Data System (ADS)
Tricard, Marc; Forbes, Greg; Murphy, Paul
2005-10-01
Subaperture polishing technologies have radically changed the landscape of precision optics manufacturing and enabled the production of higher precision optics with increasingly difficult figure requirements. However, metrology is a critical piece of the optics fabrication process, and the dependence on interferometry is especially acute for computer-controlled, deterministic finishing. Without accurate full-aperture metrology, figure correction using subaperture polishing technologies would not be possible. QED Technologies has developed the Subaperture Stitching Interferometer (SSI) that extends the effective aperture and dynamic range of a phase measuring interferometer. The SSI's novel developments in software and hardware improve the capacity and accuracy of traditional interferometers, overcoming many of the limitations previously faced. The SSI performs high-accuracy automated measurements of spheres, flats, and mild aspheres up to 200 mm in diameter by stitching subaperture data. The system combines a six-axis precision workstation, a commercial Fizeau interferometer of 4" or 6" aperture, and dedicated software. QED's software automates the measurement design, data acquisition, and mathematical reconstruction of the full-aperture phase map. The stitching algorithm incorporates a general framework for compensating several types of errors introduced by the interferometer and stage mechanics. These include positioning errors, viewing system distortion, the system reference wave error, etc. The SSI has been proven to deliver the accurate and flexible metrology that is vital to precision optics fabrication. This paper will briefly review the capabilities of the SSI as a production-ready, metrology system that enables costeffective manufacturing of precision optical surfaces.
Laser technology for high precision satellite tracking
NASA Technical Reports Server (NTRS)
Plotkin, H. H.
1974-01-01
Fixed and mobile laser ranging stations have been developed to track satellites equipped with retro-reflector arrays. These have operated consistently at data rates of once per second with range precision better than 50 cm, using Q-switched ruby lasers with pulse durations of 20 to 40 nanoseconds. Improvements are being incorporated to improve the precision to 10 cm, and to permit ranging to more distant satellites. These include improved reflector array designs, processing and analysis of the received reflection pulses, and use of sub-nanosecond pulse duration lasers.
Global GNSS processing based on the raw observation approach
NASA Astrophysics Data System (ADS)
Strasser, Sebastian; Zehentner, Norbert; Mayer-Gürr, Torsten
2017-04-01
Many global navigation satellite system (GNSS) applications, e.g. Precise Point Positioning (PPP), require high-quality GNSS products, such as precise GNSS satellite orbits and clocks. These products are routinely determined by analysis centers of the International GNSS Service (IGS). The current processing methods of the analysis centers make use of the ionosphere-free linear combination to reduce the ionospheric influence. Some of the analysis centers also form observation differences, in general double-differences, to eliminate several additional error sources. The raw observation approach is a new GNSS processing approach that was developed at Graz University of Technology for kinematic orbit determination of low Earth orbit (LEO) satellites and subsequently adapted to global GNSS processing in general. This new approach offers some benefits compared to well-established approaches, such as a straightforward incorporation of new observables due to the avoidance of observation differences and linear combinations. This becomes especially important in view of the changing GNSS landscape with two new systems, the European system Galileo and the Chinese system BeiDou, currently in deployment. GNSS products generated at Graz University of Technology using the raw observation approach currently comprise precise GNSS satellite orbits and clocks, station positions and clocks, code and phase biases, and Earth rotation parameters. To evaluate the new approach, products generated using the Global Positioning System (GPS) constellation and observations from the global IGS station network are compared to those of the IGS analysis centers. The comparisons show that the products generated at Graz University of Technology are on a similar level of quality to the products determined by the IGS analysis centers. This confirms that the raw observation approach is applicable to global GNSS processing. Some areas requiring further work have been identified, enabling future improvements of the method.
Research of flaw image collecting and processing technology based on multi-baseline stereo imaging
NASA Astrophysics Data System (ADS)
Yao, Yong; Zhao, Jiguang; Pang, Xiaoyan
2008-03-01
Aiming at the practical situations such as accurate optimal design, complex algorithms and precise technical demands of gun bore flaw image collecting, the design frame of a 3-D image collecting and processing system based on multi-baseline stereo imaging was presented in this paper. This system mainly including computer, electrical control box, stepping motor and CCD camera and it can realize function of image collection, stereo matching, 3-D information reconstruction and after-treatments etc. Proved by theoretical analysis and experiment results, images collected by this system were precise and it can slake efficiently the uncertainty problem produced by universally veins or repeated veins. In the same time, this system has faster measure speed and upper measure precision.
Dhawan, Atam P
2016-01-01
Recent advances in biosensors, medical instrumentation, and information processing and communication technologies (ICT) have enabled significant improvements in healthcare. However, these technologies have been mainly applied in clinical environments, such as hospitals and healthcare facilities, under managed care by well-trained and specialized individuals. The global challenge of providing quality healthcare at affordable cost leads to the proposed paradigm of P reventive, Personalized, and Precision Medicine that requires a seamless use of technology and infrastructure support for patients and healthcare providers at point-of-care (POC) locations including homes, semi or pre-clinical facilities, and hospitals. The complexity of the global healthcare challenge necessitates strong collaborative interdisciplinary synergies involving all stakeholder groups including academia, federal research institutions, industry, regulatory agencies, and clinical communities. It is critical to evolve with collaborative efforts on the translation of research to technology development toward clinical validation and potential healthcare applications. This special issue is focused on technology innovation and translational research for POC applications with potential impact in improving global healthcare in the respective areas. Some of these papers were presented at the NIH-IEEE Strategic Conference on Healthcare Innovations and POC Technologies for Precision Medicine (HI-POCT) held at the NIH on November 9-10, 2015. The papers included in the Special Issue provide a spectrum of critical issues and collaborative resources on translational research of advanced POC devices and ICT into global healthcare environment.
Present situation and trend of precision guidance technology and its intelligence
NASA Astrophysics Data System (ADS)
Shang, Zhengguo; Liu, Tiandong
2017-11-01
This paper first introduces the basic concepts of precision guidance technology and artificial intelligence technology. Then gives a brief introduction of intelligent precision guidance technology, and with the help of development of intelligent weapon based on deep learning project in foreign: LRASM missile project, TRACE project, and BLADE project, this paper gives an overview of the current foreign precision guidance technology. Finally, the future development trend of intelligent precision guidance technology is summarized, mainly concentrated in the multi objectives, intelligent classification, weak target detection and recognition, intelligent between complex environment intelligent jamming and multi-source, multi missile cooperative fighting and other aspects.
Measurement of material mechanical properties in microforming
NASA Astrophysics Data System (ADS)
Yun, Wang; Xu, Zhenying; Hui, Huang; Zhou, Jianzhong
2006-02-01
As the rapid market need of micro-electro-mechanical systems engineering gives it the wide development and application ranging from mobile phones to medical apparatus, the need of metal micro-parts is increasing gradually. Microforming technology challenges the plastic processing technology. The findings have shown that if the grain size of the specimen remains constant, the flow stress changes with the increasing miniaturization, and also the necking elongation and the uniform elongation etc. It is impossible to get the specimen material properties in conventional tensile test machine, especially in the high precision demand. Therefore, one new measurement method for getting the specimen material-mechanical property with high precision is initiated. With this method, coupled with the high speed of Charge Coupled Device (CCD) camera and high precision of Coordinate Measuring Machine (CMM), the elongation and tensile strain in the gauge length are obtained. The elongation, yield stress and other mechanical properties can be calculated from the relationship between the images and CCD camera movement. This measuring method can be extended into other experiments, such as the alignment of the tool and specimen, micro-drawing process.
Technology Base Seminar Wargame 2 (TBSWG 2). Volume 1. Summary Report
1990-11-16
nuclear, biological and chemical (NBC) and ballistic protection without reducing soldier mobility . Training and rehearsal systems will allow the...7 KNOW WHERE THE ENEMY IS ALL THE TIME SENSOR FIDEUTY INFORMATION FUSION 3 RANGE OF COMMO 4 RANGE OF FIRES S PRECISION MUNITIONS 6 RAPID MOBILITY 7...and .nfo Precision Problems and TECNOLOGIES Fusion) Fires Mobility Advanced Materials/ Material Processing 0) Advanced Propulsion Advanced Signal
Precision and Accuracy of Analysis for Boron in ITP Samples
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tovo, L.L.
'Inductively Coupled Plasma Emission Spectroscopy (ICPES) has been used by the Analytical Development Section (ADS) to measure boron in catalytic tetraphenylboron decomposition studies performed by the Waste Processing Technology (WPT) section. Analysis of these samples is complicated due to the presence of high concentrations of sodium and organic compounds. Previously, we found signal suppression in samples analyzed "as received". We suspected that the suppression was due to the high organic concentration (up to 0.01 molar organic decomposition products) in the samples. When the samples were acid digested prior to analysis, the suppression was eliminated. The precision of the reported boronmore » concentration was estimated as 10 percent based on the known precision of the inorganic boron standard used for calibration and quality control check of the ICPES analysis. However, a precision better than 10 percent was needed to evaluate ITP process operating parameters. Therefore, the purpose of this work was (1) to measure, instead of estimating, the precision of the boron measurement on ITP samples and (2) to determine the optimum precision attainable with current instrumentation.'« less
Fiore, Stephen M.; Wiltshire, Travis J.
2016-01-01
In this paper we advance team theory by describing how cognition occurs across the distribution of members and the artifacts and technology that support their efforts. We draw from complementary theorizing coming out of cognitive engineering and cognitive science that views forms of cognition as external and extended and integrate this with theorizing on macrocognition in teams. Two frameworks are described that provide the groundwork for advancing theory and aid in the development of more precise measures for understanding team cognition via focus on artifacts and the technologies supporting their development and use. This includes distinctions between teamwork and taskwork and the notion of general and specific competencies from the organizational sciences along with the concepts of offloading and scaffolding from the cognitive sciences. This paper contributes to the team cognition literature along multiple lines. First, it aids theory development by synthesizing a broad set of perspectives on the varied forms of cognition emerging in complex collaborative contexts. Second, it supports research by providing diagnostic guidelines to study how artifacts are related to team cognition. Finally, it supports information systems designers by more precisely describing how to conceptualize team-supporting technology and artifacts. As such, it provides a means to more richly understand process and performance as it occurs within sociotechnical systems. Our overarching objective is to show how team cognition can both be more clearly conceptualized and more precisely measured by integrating theory from cognitive engineering and the cognitive and organizational sciences. PMID:27774074
Fiore, Stephen M; Wiltshire, Travis J
2016-01-01
In this paper we advance team theory by describing how cognition occurs across the distribution of members and the artifacts and technology that support their efforts. We draw from complementary theorizing coming out of cognitive engineering and cognitive science that views forms of cognition as external and extended and integrate this with theorizing on macrocognition in teams. Two frameworks are described that provide the groundwork for advancing theory and aid in the development of more precise measures for understanding team cognition via focus on artifacts and the technologies supporting their development and use. This includes distinctions between teamwork and taskwork and the notion of general and specific competencies from the organizational sciences along with the concepts of offloading and scaffolding from the cognitive sciences. This paper contributes to the team cognition literature along multiple lines. First, it aids theory development by synthesizing a broad set of perspectives on the varied forms of cognition emerging in complex collaborative contexts. Second, it supports research by providing diagnostic guidelines to study how artifacts are related to team cognition. Finally, it supports information systems designers by more precisely describing how to conceptualize team-supporting technology and artifacts. As such, it provides a means to more richly understand process and performance as it occurs within sociotechnical systems. Our overarching objective is to show how team cognition can both be more clearly conceptualized and more precisely measured by integrating theory from cognitive engineering and the cognitive and organizational sciences.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blaedel, K.L.
1993-03-01
The mission of the Fabrication Technology thrust area is to have an adequate base of manufacturing technology, not necessarily resident at Lawrence Livermore National Laboratory (LLNL), to conduct the future business of LLNL. The specific goals continue to be to (1) develop an understanding of fundamental fabrication processes; (2) construct general purpose process models that will have wide applicability; (3) document findings and models in journals; (4) transfer technology to LLNL programs, industry, and colleagues; and (5) develop continuing relationships with the industrial and academic communities to advance the collective understanding of fabrication processes. The strategy to ensure success ismore » changing. For technologies in which they are expert and which will continue to be of future importance to LLNL, they can often attract outside resources both to maintain their expertise by applying it to a specific problem and to help fund further development. A popular vehicle to fund such work is the Cooperative Research and Development Agreement with industry. For technologies needing development because of their future critical importance and in which they are not expert, they use internal funding sources. These latter are the topics of the thrust area. Three FY-92 funded projects are discussed in this section. Each project clearly moves the Fabrication Technology thrust area towards the goals outlined above. They have also continued their membership in the North Carolina State University Precision Engineering Center, a multidisciplinary research and graduate program established to provide the new technologies needed by high-technology institutions in the US. As members, they have access to and use of the results of their research projects, many of which parallel the precision engineering efforts at LLNL.« less
NASA Astrophysics Data System (ADS)
Blaedel, K. L.
1993-03-01
The mission of the Fabrication Technology thrust area is to have an adequate base of manufacturing technology, not necessarily resident at Lawrence Livermore National Laboratory (LLNL), to conduct the future business of LLNL. The specific goals continue to be to do the following: (1) develop an understanding of fundamental fabrication processes; (2) construct general purpose process models that will have wide applicability; (3) document findings and models in journals; (4) transfer technology to LLNL programs, industry, and colleagues; and (5) develop continuing relationships with the industrial and academic communities to advance the collective understanding of fabrication processes. The strategy to ensure success is changing. For technologies in which they are expert and which will continue to be of future importance to LLNL, they can often attract outside resources both to maintain their expertise by applying it to a specific problem and to help fund further development. A popular vehicle to fund such work is the Cooperative Research and Development Agreement with industry. For technologies needing development because of their future critical importance and in which they are not expert, they use internal funding sources. These latter are the topics of the thrust area. Three FY-92 funded projects are discussed in this section. Each project clearly moves the Fabrication Technology thrust area towards the goals outlined above. They have also continued their membership in the North Carolina State University Precision Engineering Center, a multidisciplinary research and graduate program established to provide the new technologies needed by high-technology institutions in the U.S. As members, they have access to and use of the results of their research projects, many of which parallel the precision engineering efforts at LLNL.
Research on error control and compensation in magnetorheological finishing.
Dai, Yifan; Hu, Hao; Peng, Xiaoqiang; Wang, Jianmin; Shi, Feng
2011-07-01
Although magnetorheological finishing (MRF) is a deterministic finishing technology, the machining results always fall short of simulation precision in the actual process, and it cannot meet the precision requirements just through a single treatment but after several iterations. We investigate the reasons for this problem through simulations and experiments. Through controlling and compensating the chief errors in the manufacturing procedure, such as removal function calculation error, positioning error of the removal function, and dynamic performance limitation of the CNC machine, the residual error convergence ratio (ratio of figure error before and after processing) in a single process is obviously increased, and higher figure precision is achieved. Finally, an improved technical process is presented based on these researches, and the verification experiment is accomplished on the experimental device we developed. The part is a circular plane mirror of fused silica material, and the surface figure error is improved from the initial λ/5 [peak-to-valley (PV) λ=632.8 nm], λ/30 [root-mean-square (rms)] to the final λ/40 (PV), λ/330 (rms) just through one iteration in 4.4 min. Results show that a higher convergence ratio and processing precision can be obtained by adopting error control and compensation techniques in MRF.
NASA Technical Reports Server (NTRS)
1981-01-01
Mechanical Technology, Incorporated developed a fully automatic laser machining process that allows more precise balancing removes metal faster, eliminates excess metal removal and other operator induced inaccuracies, and provides significant reduction in balancing time. Manufacturing costs are reduced as a result.
Benschop, R; Draaisma, D
2000-01-01
A prominent feature of late nineteenth-century psychology was its intense preoccupation with precision. Precision was at once an ideal and an argument: the quest for precision helped psychology to establish its status as a mature science, sharing a characteristic concern with the natural sciences. We will analyse how psychologists set out to produce precision in 'mental chronometry', the measurement of the duration of psychological processes. In his Leipzig laboratory, Wundt inaugurated an elaborate research programme on mental chronometry. We will look at the problem of calibration of experimental apparatus and will describe the intricate material, literary, and social technologies involved in the manufacture of precision. First, we shall discuss some of the technical problems involved in the measurement of ever shorter time-spans. Next, the Cattell-Berger experiments will help us to argue against the received view that all the precision went into the hardware, and practically none into the social organization of experimentation. Experimenters made deliberate efforts to bring themselves and their subjects under a regime of control and calibration similar to that which reigned over the experimental machinery. In Leipzig psychology, the particular blend of material and social technology resulted in a specific object of study: the generalized mind. We will then show that the distribution of precision in experimental psychology outside Leipzig demanded a concerted effort of instruments, texts, and people. It will appear that the forceful attempts to produce precision and uniformity had some rather paradoxical consequences.
Atomic Precision Plasma Processing - Modeling Investigations
NASA Astrophysics Data System (ADS)
Rauf, Shahid
2016-09-01
Sub-nanometer precision is increasingly being required of many critical plasma processes in the semiconductor industry. Some of these critical processes include atomic layer etch and plasma enhanced atomic layer deposition. Accurate control over ion energy and ion / radical composition is needed during plasma processing to meet the demanding atomic-precision requirements. While improvements in mainstream inductively and capacitively coupled plasmas can help achieve some of these goals, newer plasma technologies can expand the breadth of problems addressable by plasma processing. Computational modeling is used to examine issues relevant to atomic precision plasma processing in this paper. First, a molecular dynamics model is used to investigate atomic layer etch of Si and SiO2 in Cl2 and fluorocarbon plasmas. Both planar surfaces and nanoscale structures are considered. It is shown that accurate control of ion energy in the sub-50 eV range is necessary for atomic scale precision. In particular, if the ion energy is greater than 10 eV during plasma processing, several atomic layers get damaged near the surface. Low electron temperature (Te) plasmas are particularly attractive for atomic precision plasma processing due to their low plasma potential. One of the most attractive options in this regard is energetic-electron beam generated plasma, where Te <0.5 eV has been achieved in plasmas of molecular gases. These low Te plasmas are computationally examined in this paper using a hybrid fluid-kinetic model. It is shown that such plasmas not only allow for sub-5 eV ion energies, but also enable wider range of ion / radical composition. Coauthors: Jun-Chieh Wang, Jason Kenney, Ankur Agarwal, Leonid Dorf, and Ken Collins.
Novel technologies for the lost foam casting process
NASA Astrophysics Data System (ADS)
Jiang, Wenming; Fan, Zitian
2018-03-01
Lost foam casting (LFC) is a green precision casting process categorized as a near net forming technology. Yet, despite its popularity, it still suffers from some technological problems, such as poor filling ability of the castings, coarse and non-dense microstructure, low mechanical properties for the Al and Mg LFC processes, and defective carburization for the low carbon steel LFC process. These drawbacks restrict the development and widespread application of the LFC process. To solve these problems, the present study developed several novel LFC technologies, namely, LFC technologies under vacuum and low pressure, vibration solidification, and pressure solidification conditions; expendable shell casting technology; and preparation technology of bimetallic castings based on the LFC process. The results showed that the LFC under vacuum and low pressure evidently improved the filling ability and solved the oxidization problem of the alloys, which is suitable for producing complex and thinwall castings. The vibration and pressure solidifications increased the compactness of the castings and refined the microstructure, significantly improving the mechanical properties of the castings. The expendable shell casting technology could solve the pore, carburization, and inclusion defects of the traditional LFC method, obtaining castings with acceptable surface quality. Moreover, the Al/Mg and Al/Al bimetallic castings with acceptable metallurgical bonding were successfully fabricated using the LFC process. These proposed novel LFC technologies can solve the current technological issues and promote the technological progress of the LFC process.
Laser Materials Processing Final Report CRADA No. TC-1526-98
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crane, J.; Lehane, C. J.
2017-09-08
This CRADA project was a joint effort between Lawrence Livermore National Laboratory (LLNL) and United Technologies Corporation (UTC)/Pratt & Whitney (P&W) to demonstrate process capability for drilling holes in turbine airfoils using LLNL-developed femtosecond laser machining technology. The basis for this development was the ability of femtosecond lasers to drill precision holes in variety of materials with little or no collateral damage. The ultimate objective was to develop a laser machine tool consisting of an extremely advanced femtosecond laser subsystem to be developed by LLNL on a best-effort basis and a drilling station for turbine blades and vanes to bemore » developed by P&W. In addition, P&W was responsible for commercializing the system. The goal of the so called Advanced Laser Drilling (ALD) system was to drill specified complex hole-shapes in turbine blades and vanes with a high degree precision and repeatability and simultaneously capable of very high speed processing.« less
Flight Testing ALHAT Precision Landing Technologies Integrated Onboard the Morpheus Rocket Vehicle
NASA Technical Reports Server (NTRS)
Carson, John M. III; Robertson, Edward A.; Trawny, Nikolas; Amzajerdian, Farzin
2015-01-01
A suite of prototype sensors, software, and avionics developed within the NASA Autonomous precision Landing and Hazard Avoidance Technology (ALHAT) project were terrestrially demonstrated onboard the NASA Morpheus rocket-propelled Vertical Testbed (VTB) in 2014. The sensors included a LIDAR-based Hazard Detection System (HDS), a Navigation Doppler LIDAR (NDL) velocimeter, and a long-range Laser Altimeter (LAlt) that enable autonomous and safe precision landing of robotic or human vehicles on solid solar system bodies under varying terrain lighting conditions. The flight test campaign with the Morpheus vehicle involved a detailed integration and functional verification process, followed by tether testing and six successful free flights, including one night flight. The ALHAT sensor measurements were integrated into a common navigation solution through a specialized ALHAT Navigation filter that was employed in closed-loop flight testing within the Morpheus Guidance, Navigation and Control (GN&C) subsystem. Flight testing on Morpheus utilized ALHAT for safe landing site identification and ranking, followed by precise surface-relative navigation to the selected landing site. The successful autonomous, closed-loop flight demonstrations of the prototype ALHAT system have laid the foundation for the infusion of safe, precision landing capabilities into future planetary exploration missions.
Precision Voltage Referencing Techniques in MOS Technology.
NASA Astrophysics Data System (ADS)
Song, Bang-Sup
With the increasing complexity of functions on a single MOS chip, precision analog cicuits implemented in the same technology are in great demand so as to be integrated together with digital circuits. The future development of MOS data acquisition systems will require precision on-chip MOS voltage references. This dissertation will probe two most promising configurations of on-chip voltage references both in NMOS and CMOS technologies. In NMOS, an ion-implantation effect on the temperature behavior of MOS devices is investigated to identify the fundamental limiting factors of a threshold voltage difference as an NMOS voltage source. For this kind of voltage reference, the temperature stability on the order of 20ppm/(DEGREES)C is achievable with a shallow single-threshold implant and a low-current, high-body bias operation. In CMOS, a monolithic prototype bandgap reference is designed, fabricated and tested which embodies a curvature compensation and exhibits a minimized sensitivity to the process parameter variation. Experimental results imply that an average temperature stability on the order of 10ppm/(DEGREES)C with a production spread of less than 10ppm/(DEGREES)C feasible over the commercial temperature range.
Field precision machining technology of target chamber in ICF lasers
NASA Astrophysics Data System (ADS)
Xu, Yuanli; Wu, Wenkai; Shi, Sucun; Duan, Lin; Chen, Gang; Wang, Baoxu; Song, Yugang; Liu, Huilin; Zhu, Mingzhi
2016-10-01
In ICF lasers, many independent laser beams are required to be positioned on target with a very high degree of accuracy during a shot. The target chamber provides a precision platform and datum reference for final optics assembly and target collimation and location system. The target chamber consists of shell with welded flanges, reinforced concrete pedestal, and lateral support structure. The field precision machining technology of target chamber in ICF lasers have been developed based on ShenGuangIII (SGIII). The same center of the target chamber is adopted in the process of design, fabrication, and alignment. The technologies of beam collimation and datum reference transformation are developed for the fabrication, positioning and adjustment of target chamber. A supporting and rotating mechanism and a special drilling machine are developed to bore the holes of ports. An adjustment mechanism is designed to accurately position the target chamber. In order to ensure the collimation requirements of the beam leading and focusing and the target positioning, custom-machined spacers are used to accurately correct the alignment error of the ports. Finally, this paper describes the chamber center, orientation, and centering alignment error measurements of SGIII. The measurements show the field precision machining of SGIII target chamber meet its design requirement. These information can be used on similar systems.
2016-01-01
Recent advances in biosensors, medical instrumentation, and information processing and communication technologies (ICT) have enabled significant improvements in healthcare. However, these technologies have been mainly applied in clinical environments, such as hospitals and healthcare facilities, under managed care by well-trained and specialized individuals. The global challenge of providing quality healthcare at affordable cost leads to the proposed paradigm of P reventive, Personalized, and Precision Medicine that requires a seamless use of technology and infrastructure support for patients and healthcare providers at point-of-care (POC) locations including homes, semi or pre-clinical facilities, and hospitals. The complexity of the global healthcare challenge necessitates strong collaborative interdisciplinary synergies involving all stakeholder groups including academia, federal research institutions, industry, regulatory agencies, and clinical communities. It is critical to evolve with collaborative efforts on the translation of research to technology development toward clinical validation and potential healthcare applications. This special issue is focused on technology innovation and translational research for POC applications with potential impact in improving global healthcare in the respective areas. Some of these papers were presented at the NIH-IEEE Strategic Conference on Healthcare Innovations and POC Technologies for Precision Medicine (HI-POCT) held at the NIH on November 9–10, 2015. The papers included in the Special Issue provide a spectrum of critical issues and collaborative resources on translational research of advanced POC devices and ICT into global healthcare environment. PMID:28560119
Innovative laser based solar cell scribing
NASA Astrophysics Data System (ADS)
Frei, Bruno; Schneeberger, Stefan; Witte, Reiner
2011-03-01
The solar photovoltaic market is continuously growing utilizing boths crystalline silicon (c-Si) as well as thin film technologies. This growth is directly dependant on the manufacturing costs for solar cells. Factors for cost reduction are innovative ideas for an optimization of precision and throughput. Lasers are excellent tools to provide highly efficient processes with impressive accuracy. They need to be used in combination with fast and precise motion systems for a maximum gain in the manufacturing process, yielding best cost of ownership. In this article such an innovative solution is presented for laser scribing in thin film Si modules. A combination of a new glass substrate holding system combined with a fast and precise motion system is the foundation for a cost effective scribing machine. In addition, the advantages of fiber lasers in beam delivery and beam quality guarantee not only shorter setup and down times but also high resolution and reproducibility for the scribing processes P1, P2 and P3. The precision of the whole system allows to reduce the dead zone to a minimum and therefore to improve the efficiency of the modules.
Scattering effects of machined optical surfaces
NASA Astrophysics Data System (ADS)
Thompson, Anita Kotha
1998-09-01
Optical fabrication is one of the most labor-intensive industries in existence. Lensmakers use pitch to affix glass blanks to metal chucks that hold the glass as they grind it with tools that have not changed much in fifty years. Recent demands placed on traditional optical fabrication processes in terms of surface accuracy, smoothnesses, and cost effectiveness has resulted in the exploitation of precision machining technology to develop a new generation of computer numerically controlled (CNC) optical fabrication equipment. This new kind of precision machining process is called deterministic microgrinding. The most conspicuous feature of optical surfaces manufactured by the precision machining processes (such as single-point diamond turning or deterministic microgrinding) is the presence of residual cutting tool marks. These residual tool marks exhibit a highly structured topography of periodic azimuthal or radial deterministic marks in addition to random microroughness. These distinct topographic features give rise to surface scattering effects that can significantly degrade optical performance. In this dissertation project we investigate the scattering behavior of machined optical surfaces and their imaging characteristics. In particular, we will characterize the residual optical fabrication errors and relate the resulting scattering behavior to the tool and machine parameters in order to evaluate and improve the deterministic microgrinding process. Other desired information derived from the investigation of scattering behavior is the optical fabrication tolerances necessary to satisfy specific image quality requirements. Optical fabrication tolerances are a major cost driver for any precision optical manufacturing technology. The derivation and control of the optical fabrication tolerances necessary for different applications and operating wavelength regimes will play a unique and central role in establishing deterministic microgrinding as a preferred and a cost-effective optical fabrication process. Other well understood optical fabrication processes will also be reviewed and a performance comparison with the conventional grinding and polishing technique will be made to determine any inherent advantages in the optical quality of surfaces produced by other techniques.
Current status and future trends of precision agricultural aviation technologies
USDA-ARS?s Scientific Manuscript database
Modern technologies and information tools can be used to maximize agricultural aviation productivity allowing for precision application of agrochemical products. This paper reviews and summarizes the state-of-the-art in precision agricultural aviation technology highlighting remote sensing, aerial s...
JPRS Report, Science & Technology, USSR: Materials Science
1988-02-22
on 55 a known precision flotation method of denstiy measurement. Closed porosity- was determined by measuring the density of specimens, subsequent...for producing sulphuric acid from pyrite concentrates, which are waste of various production processes and are stored in large quantities in the...Buryat ASSR as a result of centralized processing thereof. In order to do this, one should create a territorial center for processing pyrite
Review on the progress of ultra-precision machining technologies
NASA Astrophysics Data System (ADS)
Yuan, Julong; Lyu, Binghai; Hang, Wei; Deng, Qianfa
2017-06-01
Ultra-precision machining technologies are the essential methods, to obtain the highest form accuracy and surface quality. As more research findings are published, such technologies now involve complicated systems engineering and been widely used in the production of components in various aerospace, national defense, optics, mechanics, electronics, and other high-tech applications. The conception, applications and history of ultra-precision machining are introduced in this article, and the developments of ultra-precision machining technologies, especially ultra-precision grinding, ultra-precision cutting and polishing are also reviewed. The current state and problems of this field in China are analyzed. Finally, the development trends of this field and the coping strategies employed in China to keep up with the trends are discussed.
Ultra-precision process of CaF2 single crystal
NASA Astrophysics Data System (ADS)
Yin, Guoju; Li, Shengyi; Xie, Xuhui; Zhou, Lin
2014-08-01
This paper proposes a new chemical mechanical polishing (CMP) process method for CaF2 single crystal to get ultraprecision surface. The CMP processes are improving polishing pad and using alkaline SiO2 polishing slurry with PH=8, PH=11 two phases to polish, respectively, and the roughness can be 0.181nm Rq (10μm×10μm). The CMP process can't get high surface figure, so we use ion beam figuring (IBF) technology to obtain high surface figure. However, IBF is difficult to improve the CaF2 surface roughness. We optimize IBF process to improve surface figure and keep good surface roughness too. Different IBF incident ion energy from 400ev to 800ev does not affect on the surface roughness obviously but the depth of material removal is reverse. CaF2 single crystal can get high precision surface figure (RMS=2.251nm) and still keep ultra-smooth surface (Rq=0.207nm) by IBF when removal depth is less than 200nm. The researches above provide important information for CaF2 single crystal to realize ultra-precision manufacture.
Cellularized Cellular Solids via Freeze-Casting.
Christoph, Sarah; Kwiatoszynski, Julien; Coradin, Thibaud; Fernandes, Francisco M
2016-02-01
The elaboration of metabolically active cell-containing materials is a decisive step toward the successful application of cell based technologies. The present work unveils a new process allowing to simultaneously encapsulate living cells and shaping cell-containing materials into solid-state macroporous foams with precisely controlled morphology. Our strategy is based on freeze casting, an ice templating materials processing technique that has recently emerged for the structuration of colloids into macroporous materials. Our results indicate that it is possible to combine the precise structuration of the materials with cellular metabolic activity for the model organism Saccharomyces cerevisiae. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharp, J.K.
1997-11-01
This seminar describes a process and methodology that uses structured natural language to enable the construction of precise information requirements directly from users, experts, and managers. The main focus of this natural language approach is to create the precise information requirements and to do it in such a way that the business and technical experts are fully accountable for the results. These requirements can then be implemented using appropriate tools and technology. This requirement set is also a universal learning tool because it has all of the knowledge that is needed to understand a particular process (e.g., expense vouchers, projectmore » management, budget reviews, tax, laws, machine function).« less
Laible, Götz; Wei, Jingwei; Wagner, Stefan
2015-01-01
Humans have a long history in shaping the genetic makeup of livestock to optimize production and meet growing human demands for food and other animal products. Until recently, this has only been possible through traditional breeding and selection, which is a painstakingly slow process of accumulating incremental gains over a long period. The development of transgenic livestock technology offers a more direct approach with the possibility for making genetic improvements with greater impact and within a single generation. However, initially the technology was hampered by technical difficulties and limitations, which have now largely been overcome by progressive improvements over the past 30 years. Particularly, the advent of genome editing in combination with homologous recombination has added a new level of efficiency and precision that holds much promise for the genetic improvement of livestock using the increasing knowledge of the phenotypic impact of genetic sequence variants. So far not a single line of transgenic livestock has gained approval for commercialization. The step change to genome-edited livestock with precise sequence changes may accelerate the path to market, provided applications of this new technology for agriculture can deliver, in addition to economic incentives for producers, also compelling benefits for animals, consumers, and the environment. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Diffraction-based overlay measurement on dedicated mark using rigorous modeling method
NASA Astrophysics Data System (ADS)
Lu, Hailiang; Wang, Fan; Zhang, Qingyun; Chen, Yonghui; Zhou, Chang
2012-03-01
Diffraction Based Overlay (DBO) is widely evaluated by numerous authors, results show DBO can provide better performance than Imaging Based Overlay (IBO). However, DBO has its own problems. As well known, Modeling based DBO (mDBO) faces challenges of low measurement sensitivity and crosstalk between various structure parameters, which may result in poor accuracy and precision. Meanwhile, main obstacle encountered by empirical DBO (eDBO) is that a few pads must be employed to gain sufficient information on overlay-induced diffraction signature variations, which consumes more wafer space and costs more measuring time. Also, eDBO may suffer from mark profile asymmetry caused by processes. In this paper, we propose an alternative DBO technology that employs a dedicated overlay mark and takes a rigorous modeling approach. This technology needs only two or three pads for each direction, which is economic and time saving. While overlay measurement error induced by mark profile asymmetry being reduced, this technology is expected to be as accurate and precise as scatterometry technologies.
Development and simulation of microfluidic Wheatstone bridge for high-precision sensor
NASA Astrophysics Data System (ADS)
Shipulya, N. D.; Konakov, S. A.; Krzhizhanovskaya, V. V.
2016-08-01
In this work we present the results of analytical modeling and 3D computer simulation of microfluidic Wheatstone bridge, which is used for high-accuracy measurements and precision instruments. We propose and simulate a new method of a bridge balancing process by changing the microchannel geometry. This process is based on the “etching in microchannel” technology we developed earlier (doi:10.1088/1742-6596/681/1/012035). Our method ensures a precise control of the flow rate and flow direction in the bridge microchannel. The advantage of our approach is the ability to work without any control valves and other active electronic systems, which are usually used for bridge balancing. The geometrical configuration of microchannels was selected based on the analytical estimations. A detailed 3D numerical model was based on Navier-Stokes equations for a laminar fluid flow at low Reynolds numbers. We investigated the behavior of the Wheatstone bridge under different process conditions; found a relation between the channel resistance and flow rate through the bridge; and calculated the pressure drop across the system under different total flow rates and viscosities. Finally, we describe a high-precision microfluidic pressure sensor that employs the Wheatstone bridge and discuss other applications in complex precision microfluidic systems.
A Decision Support System for Optimum Use of Fertilizers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoskinson, Reed Louis; Hess, John Richard; Fink, Raymond Keith
1999-07-01
The Decision Support System for Agriculture (DSS4Ag) is an expert system being developed by the Site-Specific Technologies for Agriculture (SST4Ag) precision farming research project at the INEEL. DSS4Ag uses state-of-the-art artificial intelligence and computer science technologies to make spatially variable, site-specific, economically optimum decisions on fertilizer use. The DSS4Ag has an open architecture that allows for external input and addition of new requirements and integrates its results with existing agricultural systems’ infrastructures. The DSS4Ag reflects a paradigm shift in the information revolution in agriculture that is precision farming. We depict this information revolution in agriculture as an historic trend inmore » the agricultural decision-making process.« less
A Decision Support System for Optimum Use of Fertilizers
DOE Office of Scientific and Technical Information (OSTI.GOV)
R. L. Hoskinson; J. R. Hess; R. K. Fink
1999-07-01
The Decision Support System for Agriculture (DSS4Ag) is an expert system being developed by the Site-Specific Technologies for Agriculture (SST4Ag) precision farming research project at the INEEL. DSS4Ag uses state-of-the-art artificial intelligence and computer science technologies to make spatially variable, site-specific, economically optimum decisions on fertilizer use. The DSS4Ag has an open architecture that allows for external input and addition of new requirements and integrates its results with existing agricultural systems' infrastructures. The DSS4Ag reflects a paradigm shift in the information revolution in agriculture that is precision farming. We depict this information revolution in agriculture as an historic trend inmore » the agricultural decision-making process.« less
Precision Farming and Precision Pest Management: The Power of New Crop Production Technologies
Strickland, R. Mack; Ess, Daniel R.; Parsons, Samuel D.
1998-01-01
The use of new technologies including Geographic Information Systems (GIS), the Global Positioning System (GPS), Variable Rate Technology (VRT), and Remote Sensing (RS) is gaining acceptance in the present high-technology, precision agricultural industry. GIS provides the ability to link multiple data values for the same geo-referenced location, and provides the user with a graphical visualization of such data. When GIS is coupled with GPS and RS, management decisions can be applied in a more precise "micro-managed" manner by using VRT techniques. Such technology holds the potential to reduce agricultural crop production costs as well as crop and environmental damage. PMID:19274236
An Overview of Magnetic Bearing Technology for Gas Turbine Engines
NASA Technical Reports Server (NTRS)
Clark, Daniel J.; Jansen, Mark J.; Montague, Gerald T.
2004-01-01
The idea of the magnetic bearing and its use in exotic applications has been conceptualized for many years, over a century, in fact. Patented, passive systems using permanent magnets date back over 150 years. More recently, scientists of the 1930s began investigating active systems using electromagnets for high-speed ultracentrifuges. However, passive magnetic bearings are physically unstable and active systems only provide proper stiffness and damping through sophisticated controllers and algorithms. This is precisely why, until the last decade, magnetic bearings did not become a practical alternative to rolling element bearings. Today, magnetic bearing technology has become viable because of advances in micro-processing controllers that allow for confident and robust active control. Further advances in the following areas: rotor and stator materials and designs which maximize flux, minimize energy losses, and minimize stress limitations; wire materials and coatings for high temperature operation; high-speed micro processing for advanced controller designs and extremely robust capabilities; back-up bearing technology for providing a viable touchdown surface; and precision sensor technology; have put magnetic bearings on the forefront of advanced, lubrication free support systems. This paper will discuss a specific joint program for the advancement of gas turbine engines and how it implies the vitality of magnetic bearings, a brief comparison between magnetic bearings and other bearing technologies in both their advantages and limitations, and an examination of foreseeable solutions to historically perceived limitations to magnetic bearing.
Precision engineering: an evolutionary perspective.
Evans, Chris J
2012-08-28
Precision engineering is a relatively new name for a technology with roots going back over a thousand years; those roots span astronomy, metrology, fundamental standards, manufacturing and money-making (literally). Throughout that history, precision engineers have created links across disparate disciplines to generate innovative responses to society's needs and wants. This review combines historical and technological perspectives to illuminate precision engineering's current character and directions. It first provides us a working definition of precision engineering and then reviews the subject's roots. Examples will be given showing the contributions of the technology to society, while simultaneously showing the creative tension between the technological convergence that spurs new directions and the vertical disintegration that optimizes manufacturing economics.
Improving OCD time to solution using Signal Response Metrology
NASA Astrophysics Data System (ADS)
Fang, Fang; Zhang, Xiaoxiao; Vaid, Alok; Pandev, Stilian; Sanko, Dimitry; Ramanathan, Vidya; Venkataraman, Kartik; Haupt, Ronny
2016-03-01
In recent technology nodes, advanced process and novel integration scheme have challenged the precision limits of conventional metrology; with critical dimensions (CD) of device reduce to sub-nanometer region. Optical metrology has proved its capability to precisely detect intricate details on the complex structures, however, conventional RCWA-based (rigorous coupled wave analysis) scatterometry has the limitations of long time-to-results and lack of flexibility to adapt to wide process variations. Signal Response Metrology (SRM) is a new metrology technique targeted to alleviate the consumption of engineering and computation resources by eliminating geometric/dispersion modeling and spectral simulation from the workflow. This is achieved by directly correlating the spectra acquired from a set of wafers with known process variations encoded. In SPIE 2015, we presented the results of SRM application in lithography metrology and control [1], accomplished the mission of setting up a new measurement recipe of focus/dose monitoring in hours. This work will demonstrate our recent field exploration of SRM implementation in 20nm technology and beyond, including focus metrology for scanner control; post etch geometric profile measurement, and actual device profile metrology.
2010-10-01
diameter, length, and spacing. Fabrication Technology: Synthesis of self-organized AAO ( Anodic aluminum oxide ) templates with controlled diameter...nanowires arrayed in anodized aluminum oxide ( AAO ) templates and the diameter is precisely controlled by using atomic layer deposition (ALD) process...Jin, “Highly Self-assembled Nanotubular Aluminum Oxide by Hard Anodization ”, J. Mater. Res. (in press, December 2010). 3. J.Y. Kim, K. Noh, C. Choi
Space Technology for Palate Surgery
NASA Technical Reports Server (NTRS)
1980-01-01
University of Miami utilized NASA's spacecraft viewing technology to develop the optical profilometer provides more accurate measurements of cleft palate casts than has heretofore been possible, enabling better planning of corrective surgery. Lens like instrument electronically scans a palate cast precisely measuring its irregular contours by detecting minute differences in the intensity of a light beam reflected off the cast. Readings are computer processed and delivered to the surgeon by a teleprinter.
New concepts and materials for the manufacturing of MR-compatible guide wires.
Brecher, Christian; Emonts, Michael; Brack, Alexander; Wasiak, Christian; Schütte, Adrian; Krämer, Nils; Bruhn, Robin
2014-04-01
This paper shows the development of a new magnetic resonance imaging (MRI)-compatible guide wire made from fiber-reinforced plastics. The basic material of the developed guide wire is manufactured using a specially developed micro-pullwinding technology, which allows the adjustment of tensile, bending, and torsional stiffness independent from each other. Additionally, the micro-pullwinding technology provides the possibility to vary the stiffness along the length of the guide wire in a continuous process. With the possibilities of this technology, the mechanical properties of the guide wire were precisely adjusted for the intended usage in MRI-guided interventions. The performance of the guide wire regarding the mechanical properties was investigated. It could be shown, that the mechanical properties could be changed independently from each other by varying the process parameters. Especially, the torsional stiffness could be significantly improved with only a minor influence on bending and tensile properties. The precise influence of the variation of the winding angle on the mechanical and geometrical properties has to be further investigated. The usability of the guide wire as well as its visibility in MRI was investigated by radiologists. With the micro-pullwinding technology, a continuous manufacturing technique for highly stressable, MRI-safe profiles is available and can be the trigger for a new class of medical devices.
NASA Astrophysics Data System (ADS)
Zhong, Xianyun; Fan, Bin; Wu, Fan
2017-10-01
Single crystal calcium fluoride (CaF2) is the excellent transparent optical substance that has extremely good permeability and refractive index from 120nm wavelength ultraviolet range to 12μm wavelength infrared range and it has widely used in the applications of various advanced optical instrument, such as infrared optical systems (IR), short wavelength optical lithography systems (DUV), as well as high power UV laser systems. Nevertheless, the characteristics of CaF2 material, including low fracture toughness, low hardness, low thermal conductivity and high thermal expansion coefficient, result in that the conventional pitch polishing techniques usually expose to lots of problems, such as subsurface damage, scratches, digs and so on. Single point diamond turning (SPDT) is a prospective technology for manufacture the brittle material, but the residual surface textures or artifacts of SPDT will cause great scattering losses. Meanwhile, the roughness also falls far short from the requirement in the short wavelength optical systems. So, the advanced processing technologies for obtaining the shape accuracy, roughness, surface flaw at the same time need to put forward. In this paper, the authors investigate the Magnetorheological Finishing (MRF) technology for the high precision processing of CaF2 material. We finish the surface accuracy RMS λ/150 and roughness Rq 0.3nm on the concave aspheric from originate shape error 0.7λ and roughness 17nm by the SPDT. The studying of the MRF techniques makes a great effort to the processing level of CaF2 material for the state-of-the-art DUV lithography systems applications.
Precision Casting via Advanced Simulation and Manufacturing
NASA Technical Reports Server (NTRS)
1997-01-01
A two-year program was conducted to develop and commercially implement selected casting manufacturing technologies to enable significant reductions in the costs of castings, increase the complexity and dimensional accuracy of castings, and reduce the development times for delivery of high quality castings. The industry-led R&D project was cost shared with NASA's Aerospace Industry Technology Program (AITP). The Rocketdyne Division of Boeing North American, Inc. served as the team lead with participation from Lockheed Martin, Ford Motor Company, Howmet Corporation, PCC Airfoils, General Electric, UES, Inc., University of Alabama, Auburn University, Robinson, Inc., Aracor, and NASA-LeRC. The technical effort was organized into four distinct tasks. The accomplishments reported herein. Task 1.0 developed advanced simulation technology for core molding. Ford headed up this task. On this program, a specialized core machine was designed and built. Task 2.0 focused on intelligent process control for precision core molding. Howmet led this effort. The primary focus of these experimental efforts was to characterize the process parameters that have a strong impact on dimensional control issues of injection molded cores during their fabrication. Task 3.0 developed and applied rapid prototyping to produce near net shape castings. Rocketdyne was responsible for this task. CAD files were generated using reverse engineering, rapid prototype patterns were fabricated using SLS and SLA, and castings produced and evaluated. Task 4.0 was aimed at developing technology transfer. Rocketdyne coordinated this task. Casting related technology, explored and evaluated in the first three tasks of this program, was implemented into manufacturing processes.
Dairy farmers with larger herd sizes adopt more precision dairy technologies.
Gargiulo, J I; Eastwood, C R; Garcia, S C; Lyons, N A
2018-06-01
An increase in the average herd size on Australian dairy farms has also increased the labor and animal management pressure on farmers, thus potentially encouraging the adoption of precision technologies for enhanced management control. A survey was undertaken in 2015 in Australia to identify the relationship between herd size, current precision technology adoption, and perception of the future of precision technologies. Additionally, differences between farmers and service providers in relation to perception of future precision technology adoption were also investigated. Responses from 199 dairy farmers, and 102 service providers, were collected between May and August 2015 via an anonymous Internet-based questionnaire. Of the 199 dairy farmer responses, 10.4% corresponded to farms that had fewer than 150 cows, 37.7% had 151 to 300 cows, 35.5% had 301 to 500 cows; 6.0% had 501 to 700 cows, and 10.4% had more than 701 cows. The results showed that farmers with more than 500 cows adopted between 2 and 5 times more specific precision technologies, such as automatic cup removers, automatic milk plant wash systems, electronic cow identification systems and herd management software, when compared with smaller farms. Only minor differences were detected in perception of the future of precision technologies between either herd size or farmers and service providers. In particular, service providers expected a higher adoption of automatic milking and walk over weighing systems than farmers. Currently, the adoption of precision technology has mostly been of the type that reduces labor needs; however, respondents indicated that by 2025 adoption of data capturing technology for monitoring farm system parameters would be increased. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1978-06-01
Following a planning period during which the Lawrence Livermore Laboratory and the Department of Defense managing sponsor, the USAF Materials Laboratory, agreed on work statements, the Department of Defense Tri-Service Precision Machine-Tool Program began in February 1978. Milestones scheduled for the first quarter have been met. Tasks and manpower requirements for two basic projects, precision-machining commercialization (PMC) and a machine-tool task force (MTTF), were defined. Progress by PMC includes: (1) documentation of existing precision machine-tool technology by initiation and compilation of a bibliography containing several hundred entries: (2) identification of the problems and needs of precision turning-machine builders and ofmore » precision turning-machine users interested in developing high-precision machining capability; and (3) organization of the schedule and content of the first seminar, to be held in October 1978, which will bring together representatives from the machine-tool and optics communities to address the problems and begin the process of high-precision machining commercialization. Progress by MTTF includes: (1) planning for the organization of a team effort of approximately 60 to 80 international experts to contribute in various ways to project objectives, namely, to summarize state-of-the-art cutting-machine-tool technology and to identify areas where future R and D should prove technically and economically profitable; (2) preparation of a comprehensive plan to achieve those objectives; and (3) preliminary arrangements for a plenary session, also in October, when the task force will meet to formalize the details for implementing the plan.« less
Replacement Technologies for Precision Cleaning of Aerospace Hardware for Propellant Service
NASA Technical Reports Server (NTRS)
Beeson, Harold; Kirsch, Mike; Hornung, Steven; Biesinger, Paul
1997-01-01
The NASA White Sands Test Facility (WSTF) is developing cleaning and verification processes to replace currently used chlorofluorocarbon-l13- (CFC-113-) based processes. The processes being evaluated include both aqueous- and solvent-based techniques. Replacement technologies are being investigated for aerospace hardware and for gauges and instrumentation. This paper includes the findings of investigations of aqueous cleaning and verification of aerospace hardware using known contaminants, such as hydraulic fluid and commonly used oils. The results correlate nonvolatile residue with CFC 113. The studies also include enhancements to aqueous sampling for organic and particulate contamination. Although aqueous alternatives have been identified for several processes, a need still exists for nonaqueous solvent cleaning, such as the cleaning and cleanliness verification of gauges used for oxygen service. The cleaning effectiveness of tetrachloroethylene (PCE), trichloroethylene (TCE), ethanol, hydrochlorofluorocarbon 225 (HCFC 225), HCFC 141b, HFE 7100(R), and Vertrel MCA(R) was evaluated using aerospace gauges and precision instruments and then compared to the cleaning effectiveness of CFC 113. Solvents considered for use in oxygen systems were also tested for oxygen compatibility using high-pressure oxygen autogenous ignition and liquid oxygen mechanical impact testing.
Terrain matching image pre-process and its format transform in autonomous underwater navigation
NASA Astrophysics Data System (ADS)
Cao, Xuejun; Zhang, Feizhou; Yang, Dongkai; Yang, Bogang
2007-06-01
Underwater passive navigation technology is one of the important development orientations in the field of modern navigation. With the advantage of high self-determination, stealth at sea, anti-jamming and high precision, passive navigation is completely meet with actual navigation requirements. Therefore passive navigation has become a specific navigating method for underwater vehicles. The scientists and researchers in the navigating field paid more attention to it. The underwater passive navigation can provide accurate navigation information with main Inertial Navigation System (INS) for a long period, such as location and speed. Along with the development of micro-electronics technology, the navigation of AUV is given priority to INS assisted with other navigation methods, such as terrain matching navigation. It can provide navigation ability for a long period, correct the errors of INS and make AUV not emerge from the seabed termly. With terrain matching navigation technique, in the assistance of digital charts and ocean geographical characteristics sensors, we carry through underwater image matching assistant navigation to obtain the higher location precision, therefore it is content with the requirement of underwater, long-term, high precision and all-weather of the navigation system for Autonomous Underwater Vehicles. Tertian-assistant navigation (TAN) is directly dependent on the image information (map information) in the navigating field to assist the primary navigation system according to the path appointed in advance. In TAN, a factor coordinative important with the system operation is precision and practicability of the storable images and the database which produce the image data. If the data used for characteristics are not suitable, the system navigation precision will be low. Comparing with terrain matching assistant navigation system, image matching navigation system is a kind of high precision and low cost assistant navigation system, and its matching precision directly influences the final precision of integrated navigation system. Image matching assistant navigation is spatially matching and aiming at two underwater scenery images coming from two different sensors matriculating of the same scenery in order to confirm the relative displacement of the two images. In this way, we can obtain the vehicle's location in fiducial image known geographical relation, and the precise location information given from image matching location is transmitted to INS to eliminate its location error and greatly enhance the navigation precision of vehicle. Digital image data analysis and processing of image matching in underwater passive navigation is important. In regard to underwater geographic data analysis, we focus on the acquirement, disposal, analysis, expression and measurement of database information. These analysis items structure one of the important contents of underwater terrain matching and are propitious to know the seabed terrain configuration of navigation areas so that the best advantageous seabed terrain district and dependable navigation algorithm can be selected. In this way, we can improve the precision and reliability of terrain assistant navigation system. The pre-process and format transformation of digital image during underwater image matching are expatiated in this paper. The information of the terrain status in navigation areas need further study to provide the reliable data terrain characteristic and underwater overcast for navigation. Through realizing the choice of sea route, danger district prediction and navigating algorithm analysis, TAN can obtain more high location precision and probability, hence provide technological support for image matching of underwater passive navigation.
Bessemans, Laurent; Jully, Vanessa; de Raikem, Caroline; Albanese, Mathieu; Moniotte, Nicolas; Silversmet, Pascal; Lemoine, Dominique
2016-01-01
High-throughput screening technologies are increasingly integrated into the formulation development process of biopharmaceuticals. The performance of liquid handling systems is dependent on the ability to deliver accurate and precise volumes of specific reagents to ensure process quality. We have developed an automated gravimetric calibration procedure to adjust the accuracy and evaluate the precision of the TECAN Freedom EVO liquid handling system. Volumes from 3 to 900 µL using calibrated syringes and fixed tips were evaluated with various solutions, including aluminum hydroxide and phosphate adjuvants, β-casein, sucrose, sodium chloride, and phosphate-buffered saline. The methodology to set up liquid class pipetting parameters for each solution was to split the process in three steps: (1) screening of predefined liquid class, including different pipetting parameters; (2) adjustment of accuracy parameters based on a calibration curve; and (3) confirmation of the adjustment. The run of appropriate pipetting scripts, data acquisition, and reports until the creation of a new liquid class in EVOware was fully automated. The calibration and confirmation of the robotic system was simple, efficient, and precise and could accelerate data acquisition for a wide range of biopharmaceutical applications. PMID:26905719
Precision and manufacturing at the Lawrence Livermore National Laboratory
NASA Technical Reports Server (NTRS)
Saito, Theodore T.; Wasley, Richard J.; Stowers, Irving F.; Donaldson, Robert R.; Thompson, Daniel C.
1994-01-01
Precision Engineering is one of the Lawrence Livermore National Laboratory's core strengths. This paper discusses the past and present current technology transfer efforts of LLNL's Precision Engineering program and the Livermore Center for Advanced Manufacturing and Productivity (LCAMP). More than a year ago the Precision Machine Commercialization project embodied several successful methods of transferring high technology from the National Laboratories to industry. Currently, LCAMP has already demonstrated successful technology transfer and is involved in a broad spectrum of current programs. In addition, this paper discusses other technologies ripe for future transition including the Large Optics Diamond Turning Machine.
Innovation, productivity, and pricing: Capturing value from precision medicine technology in Canada.
Emery, J C Herbert; Zwicker, Jennifer D
2017-07-01
For new technology and innovation such as precision medicine to become part of the solution for the fiscal sustainability of Canadian Medicare, decision-makers need to change how services are priced rather than trying to restrain emerging technologies like precision medicine for short-term cost savings. If provincial public payers shift their thinking to be public purchasers, value considerations would direct reform of the reimbursement system to have prices that adjust with technologically driven productivity gains. This strategic shift in thinking is necessary if Canadians are to benefit from the promised benefits of innovations like precision medicine.
Precision and manufacturing at the Lawrence Livermore National Laboratory
NASA Astrophysics Data System (ADS)
Saito, Theodore T.; Wasley, Richard J.; Stowers, Irving F.; Donaldson, Robert R.; Thompson, Daniel C.
1994-02-01
Precision Engineering is one of the Lawrence Livermore National Laboratory's core strengths. This paper discusses the past and present current technology transfer efforts of LLNL's Precision Engineering program and the Livermore Center for Advanced Manufacturing and Productivity (LCAMP). More than a year ago the Precision Machine Commercialization project embodied several successful methods of transferring high technology from the National Laboratories to industry. Currently, LCAMP has already demonstrated successful technology transfer and is involved in a broad spectrum of current programs. In addition, this paper discusses other technologies ripe for future transition including the Large Optics Diamond Turning Machine.
NASA Astrophysics Data System (ADS)
Sun, Jin-gen; Chen, Yi; Zhang, Jia-nan
2017-01-01
Mould manufacturing is one of the most basic elements in the production chain of China. The mould manufacturing technology has become an important symbol to measure the level of a country's manufacturing industry. The die-casting mould multichannel intelligent temperature control method is studied by cooling water circulation, which uses fuzzy control to realize, aiming at solving the shortcomings of slow speed and big energy consumption during the cooling process of current die-casting mould. At present, the traditional PID control method is used to control the temperature, but it is difficult to ensure the control precision. While , the fuzzy algorithm is used to realize precise control of mould temperature in cooling process. The design is simple, fast response, strong anti-interference ability and good robustness. Simulation results show that the control method is completely feasible, which has higher control precision.
Understanding error generation in fused deposition modeling
NASA Astrophysics Data System (ADS)
Bochmann, Lennart; Bayley, Cindy; Helu, Moneer; Transchel, Robert; Wegener, Konrad; Dornfeld, David
2015-03-01
Additive manufacturing offers completely new possibilities for the manufacturing of parts. The advantages of flexibility and convenience of additive manufacturing have had a significant impact on many industries, and optimizing part quality is crucial for expanding its utilization. This research aims to determine the sources of imprecision in fused deposition modeling (FDM). Process errors in terms of surface quality, accuracy and precision are identified and quantified, and an error-budget approach is used to characterize errors of the machine tool. It was determined that accuracy and precision in the y direction (0.08-0.30 mm) are generally greater than in the x direction (0.12-0.62 mm) and the z direction (0.21-0.57 mm). Furthermore, accuracy and precision tend to decrease at increasing axis positions. The results of this work can be used to identify possible process improvements in the design and control of FDM technology.
NASA Astrophysics Data System (ADS)
Zhao, Wanqin; Yu, Zhishui
2018-06-01
Comparing with the trepanning technology, cooling hole could be processed based on the percussion drilling with higher processing efficiency. However, it is widely believed that the ablating precision of hole is lower for percussion drilling than for trepanning, wherein, the melting spatter materials around the hole surface and the recast layer inside the hole are the two main issues for reducing the ablating precision of hole, especially for the recast layer, it can't be eliminated completely even through the trepanning technology. In this paper, the self-cleaning effect which is a particular property just for percussion ablating of holes has been presented in detail. In addition, the reasons inducing the self-cleaning effect have been discussed. At last, based on the self-cleaning effect of percussion drilling, high quality cooling hole without the melting spatter materials around the hole surface and recast layer inside the hole could be ablated in nickel-based superalloy by picosecond ultra-short pulse laser.
Signal Processing for a Lunar Array: Minimizing Power Consumption
NASA Technical Reports Server (NTRS)
D'Addario, Larry; Simmons, Samuel
2011-01-01
Motivation for the study is: (1) Lunar Radio Array for low frequency, high redshift Dark Ages/Epoch of Reionization observations (z =6-50, f=30-200 MHz) (2) High precision cosmological measurements of 21 cm H I line fluctuations (3) Probe universe before first star formation and provide information about the Intergalactic Medium and evolution of large scale structures (5) Does the current cosmological model accurately describe the Universe before reionization? Lunar Radio Array is for (1) Radio interferometer based on the far side of the moon (1a) Necessary for precision measurements, (1b) Shielding from earth-based and solar RFI (12) No permanent ionosphere, (2) Minimum collecting area of approximately 1 square km and brightness sensitivity 10 mK (3)Several technologies must be developed before deployment The power needed to process signals from a large array of nonsteerable elements is not prohibitive, even for the Moon, and even in current technology. Two different concepts have been proposed: (1) Dark Ages Radio Interferometer (DALI) (2)( Lunar Array for Radio Cosmology (LARC)
Cheng, Yi-Yu; Qu, Hai-Bin; Zhang, Bo-Li
2016-01-01
A perspective analysis on the technological innovation in pharmaceutical engineering of Chinese medicine unveils a vision on "Future Factory" of Chinese medicine industry in mind. The strategy as well as the technical roadmap of "Chinese medicine industry 4.0" is proposed, with the projection of related core technology system. It is clarified that the technical development path of Chinese medicine industry from digital manufacture to intelligent manufacture. On the basis of precisely defining technical terms such as process control, on-line detection and process quality monitoring for Chinese medicine manufacture, the technical concepts and characteristics of intelligent pharmaceutical manufacture as well as digital pharmaceutical manufacture are elaborated. Promoting wide applications of digital manufacturing technology of Chinese medicine is strongly recommended. Through completely informationized manufacturing processes and multi-discipline cluster innovation, intelligent manufacturing technology of Chinese medicine should be developed, which would provide a new driving force for Chinese medicine industry in technology upgrade, product quality enhancement and efficiency improvement. Copyright© by the Chinese Pharmaceutical Association.
A Testbed to Evaluate the FIWARE-Based IoT Platform in the Domain of Precision Agriculture.
Martínez, Ramón; Pastor, Juan Ángel; Álvarez, Bárbara; Iborra, Andrés
2016-11-23
Wireless sensor networks (WSNs) represent one of the most promising technologies for precision farming. Over the next few years, a significant increase in the use of such systems on commercial farms is expected. WSNs present a number of problems, regarding scalability, interoperability, communications, connectivity with databases and data processing. Different Internet of Things middleware is appearing to overcome these challenges. This paper checks whether one of these middleware, FIWARE, is suitable for the development of agricultural applications. To the authors' knowledge, there are no works that show how to use FIWARE in precision agriculture and study its appropriateness, its scalability and its efficiency for this kind of applications. To do this, a testbed has been designed and implemented to simulate different deployments and load conditions. The testbed is a typical FIWARE application, complete, yet simple and comprehensible enough to show the main features and components of FIWARE, as well as the complexity of using this technology. Although the testbed has been deployed in a laboratory environment, its design is based on the analysis of an Internet of Things use case scenario in the domain of precision agriculture.
A Testbed to Evaluate the FIWARE-Based IoT Platform in the Domain of Precision Agriculture
Martínez, Ramón; Pastor, Juan Ángel; Álvarez, Bárbara; Iborra, Andrés
2016-01-01
Wireless sensor networks (WSNs) represent one of the most promising technologies for precision farming. Over the next few years, a significant increase in the use of such systems on commercial farms is expected. WSNs present a number of problems, regarding scalability, interoperability, communications, connectivity with databases and data processing. Different Internet of Things middleware is appearing to overcome these challenges. This paper checks whether one of these middleware, FIWARE, is suitable for the development of agricultural applications. To the authors’ knowledge, there are no works that show how to use FIWARE in precision agriculture and study its appropriateness, its scalability and its efficiency for this kind of applications. To do this, a testbed has been designed and implemented to simulate different deployments and load conditions. The testbed is a typical FIWARE application, complete, yet simple and comprehensible enough to show the main features and components of FIWARE, as well as the complexity of using this technology. Although the testbed has been deployed in a laboratory environment, its design is based on the analysis of an Internet of Things use case scenario in the domain of precision agriculture. PMID:27886091
Gravity, Magnetic and Electromagnetic Gradiometry; Strategic technologies in the 21st century
NASA Astrophysics Data System (ADS)
Veryaskin, Alexey V.
2018-02-01
Gradiometry is a multidisciplinary area that combines theoretical and applied physics, ultra-low noise electronics, precision engineering, and advanced signal processing. Applications include the search for oil, gas, and mineral resources, GPS-free navigation, defence, space missions, and medical research. This book provides readers with a comprehensive introduction, history, potential applications, and current developments in relation to some of the most advanced technologies in the 21st Century.
Wang, Shun-Yi; Chen, Xian-Xia; Li, Yi; Zhang, Yu-Ying
2016-12-20
The arrival of precision medicine plan brings new opportunities and challenges for patients undergoing precision diagnosis and treatment of malignant tumors. With the development of medical imaging, information on different modality imaging can be integrated and comprehensively analyzed by imaging fusion system. This review aimed to update the application of multimodality imaging fusion technology in the precise diagnosis and treatment of malignant tumors under the precision medicine plan. We introduced several multimodality imaging fusion technologies and their application to the diagnosis and treatment of malignant tumors in clinical practice. The data cited in this review were obtained mainly from the PubMed database from 1996 to 2016, using the keywords of "precision medicine", "fusion imaging", "multimodality", and "tumor diagnosis and treatment". Original articles, clinical practice, reviews, and other relevant literatures published in English were reviewed. Papers focusing on precision medicine, fusion imaging, multimodality, and tumor diagnosis and treatment were selected. Duplicated papers were excluded. Multimodality imaging fusion technology plays an important role in tumor diagnosis and treatment under the precision medicine plan, such as accurate location, qualitative diagnosis, tumor staging, treatment plan design, and real-time intraoperative monitoring. Multimodality imaging fusion systems could provide more imaging information of tumors from different dimensions and angles, thereby offing strong technical support for the implementation of precision oncology. Under the precision medicine plan, personalized treatment of tumors is a distinct possibility. We believe that multimodality imaging fusion technology will find an increasingly wide application in clinical practice.
Electronics manufacturing and assembly in Japan
NASA Technical Reports Server (NTRS)
Kukowski, John A.; Boulton, William R.
1995-01-01
In the consumer electronics industry, precision processing technology is the basis for enhancing product functions and for minimizing components and end products. Throughout Japan, manufacturing technology is seen as critical to the production and assembly of advanced products. While its population has increased less than 30 percent over twenty-five years, Japan's gross national product has increase thirtyfold; this growth has resulted in large part from rapid replacement of manual operations with innovative, high-speed, large-scale, continuously running, complex machines that process a growing number of miniaturized components. The JTEC panel found that introduction of next-generation electronics products in Japan goes hand-in-hand with introduction of new and improved production equipment. In the panel's judgment, Japan's advanced process technologies and equipment development and its highly automated factories are crucial elements of its domination of the consumer electronics marketplace - and Japan's expertise in manufacturing consumer electronics products gives it potentially unapproachable process expertise in all electronics markets.
Advanced Photonic Processes for Photovoltaic and Energy Storage Systems.
Sygletou, Maria; Petridis, Constantinos; Kymakis, Emmanuel; Stratakis, Emmanuel
2017-10-01
Solar-energy harvesting through photovoltaic (PV) conversion is the most promising technology for long-term renewable energy production. At the same time, significant progress has been made in the development of energy-storage (ES) systems, which are essential components within the cycle of energy generation, transmission, and usage. Toward commercial applications, the enhancement of the performance and competitiveness of PV and ES systems requires the adoption of precise, but simple and low-cost manufacturing solutions, compatible with large-scale and high-throughput production lines. Photonic processes enable cost-efficient, noncontact, highly precise, and selective engineering of materials via photothermal, photochemical, or photophysical routes. Laser-based processes, in particular, provide access to a plethora of processing parameters that can be tuned with a remarkably high degree of precision to enable innovative processing routes that cannot be attained by conventional approaches. The focus here is on the application of advanced light-driven approaches for the fabrication, as well as the synthesis, of materials and components relevant to PV and ES systems. Besides presenting recent advances on recent achievements, the existing limitations are outlined and future possibilities and emerging prospects discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Luo, D.; Cai, F.
2017-12-01
Small-scale and high-resolution marine sparker multi-channel seismic surveys using large energy sparkers are characterized by a high dominant frequency of the seismic source, wide bandwidth, and a high resolution. The technology with a high-resolution and high-detection precision was designed to improve the imaging quality of shallow sedimentary. In the study, a 20KJ sparker and 24-channel streamer cable with a 6.25m group interval were used as a seismic source and receiver system, respectively. Key factors for seismic imaging of gas hydrate are enhancement of S/N ratio, amplitude compensation and detailed velocity analysis. However, the data in this study has some characteristics below: 1. Small maximum offsets are adverse to velocity analysis and multiple attenuation. 2. Lack of low frequency information, that is, information less than 100Hz are invisible. 3. Low S/N ratio since less coverage times (only 12 times). These characteristics make it difficult to reach the targets of seismic imaging. In the study, the target processing methods are used to improve the seismic imaging quality of gas hydrate. First, some technologies of noise suppression are combined used in pre-stack seismic data to suppression of seismic noise and improve the S/N ratio. These technologies including a spectrum sharing noise elimination method, median filtering and exogenous interference suppression method. Second, the combined method of three technologies including SRME, τ-p deconvolution and high precision Radon transformation is used to remove multiples. Third, accurate velocity field are used in amplitude energy compensation to highlight the Bottom Simulating Reflector (short for BSR, the indicator of gas hydrates) and gas migration pathways (such as gas chimneys, hot spots et al.). Fourth, fine velocity analysis technology are used to improve accuracy of velocity analysis. Fifth, pre-stack deconvolution processing technology is used to compensate for low frequency energy and suppress of ghost, thus formation reflection characteristics are highlighted. The result shows that the small-scale and high resolution marine sparker multi-channel seismic surveys are very effective in improving the resolution and quality of gas hydrate imaging than the conventional seismic acquisition technology.
Disaggregating soil erosion processes within an evolving experimental landscape
USDA-ARS?s Scientific Manuscript database
Soil-mantled landscapes subjected to rainfall, runoff events, and downstream base level adjustments will erode and evolve in time and space. Yet the precise mechanisms for soil erosion also will vary, and such variations may not be adequately captured by soil erosion prediction technology. This st...
Electrostatic Microactuators for Precise Positioning of Neural Microelectrodes
Muthuswamy, Jit; Okandan, Murat; Jain, Tilak; Gilletti, Aaron
2006-01-01
Microelectrode arrays used for monitoring single and multineuronal action potentials often fail to record from the same population of neurons over a period of time likely due to micromotion of neurons away from the microelectrode, gliosis around the recording site and also brain movement due to behavior. We report here novel electrostatic microactuated microelectrodes that will enable precise repositioning of the microelectrodes within the brain tissue. Electrostatic comb-drive microactuators and associated microelectrodes are fabricated using the SUMMiT V™ (Sandia's Ultraplanar Multilevel MEMS Technology) process, a five-layer polysilicon micromachining technology of the Sandia National labs, NM. The microfabricated microactuators enable precise bidirectional positioning of the microelectrodes in the brain with accuracy in the order of 1 μm. The microactuators allow for a linear translation of the microelectrodes of up to 5 mm in either direction making it suitable for positioning microelectrodes in deep structures of a rodent brain. The overall translation was reduced to approximately 2 mm after insulation of the microelectrodes with epoxy for monitoring multiunit activity. The microactuators are capable of driving the microelectrodes in the brain tissue with forces in the order of several micro-Newtons. Single unit recordings were obtained from the somatosensory cortex of adult rats in acute experiments demonstrating the feasibility of this technology. Further optimization of the insulation, packaging and interconnect issues will be necessary before this technology can be validated in long-term experiments. PMID:16235660
Position measurement of the direct drive motor of Large Aperture Telescope
NASA Astrophysics Data System (ADS)
Li, Ying; Wang, Daxing
2010-07-01
Along with the development of space and astronomy science, production of large aperture telescope and super large aperture telescope will definitely become the trend. It's one of methods to solve precise drive of large aperture telescope using direct drive technology unified designed of electricity and magnetism structure. A direct drive precise rotary table with diameter of 2.5 meters researched and produced by us is a typical mechanical & electrical integration design. This paper mainly introduces position measurement control system of direct drive motor. In design of this motor, position measurement control system requires having high resolution, and precisely aligning the position of rotor shaft and making measurement, meanwhile transferring position information to position reversing information corresponding to needed motor pole number. This system has chosen high precision metal band coder and absolute type coder, processing information of coders, and has sent 32-bit RISC CPU making software processing, and gained high resolution composite coder. The paper gives relevant laboratory test results at the end, indicating the position measurement can apply to large aperture telescope control system. This project is subsidized by Chinese National Natural Science Funds (10833004).
US Department of Energy's Efforts in Intelligent Processing Equipment
NASA Technical Reports Server (NTRS)
Peavy, Richard D.; Mcfarland, Janet C.
1992-01-01
The Department of Energy (DOE) uses intelligent processing equipment (IPE) technologies to conduct research and development and manufacturing for energy and nuclear weapons programs. This paper highlights several significant IPE efforts underway in DOE. IPE technologies are essential to the accomplishment of DOE's missions, because of the need for small lot production, precision, and accuracy in manufacturing, hazardous waste management, and protection of the environment and the safety and health of the workforce and public. Applications of IPE technologies include environmental remediation and waste handling, advanced manufacturing, and automation of tasks carried out in hazardous areas. DOE laboratories have several key programs that integrate robotics, sensor, and control technologies. These programs embody a considerable technical capability that also may be used to enhance U.S. industrial competitiveness. DOE encourages closer cooperation with U.S. industrial partners based on mutual benefits. This paper briefly describes technology transfer mechanisms available for industrial involvement.
NASA Astrophysics Data System (ADS)
Grigoriev, S. N.; Bobrovskij, N. M.; Melnikov, P. A.; Bobrovskij, I. N.
2017-05-01
Modern vector of development of machining technologies aimed at the transition to environmentally safe technologies - “green” technologies. The concept of “green technology” includes a set of signs of knowledge intended for practical use (“technology”). One of the ways to improve the quality of production is the use of surface plastic deformation (SPD) processing methods. The advantage of the SPD is a capability to combine effects of finishing and strengthening treatment. The SPD processing can replace operations: fine turning, grinding or polishing. The SPD is a forceful contact impact of indentor on workpiece’s surface in condition of their relative motion. It is difficult to implement the core technology of the SPD (burnishing, roller burnishing, etc.) while maintaining core technological advantages without the use of lubricating and cooling technology (metalworking fluids, MWF). The “green” SPD technology was developed by the authors for dry processing and has not such shortcomings. When processing with SPD without use of MWF requirements for tool’s durability is most significant, especially in the conditions of mass production. It is important to determine the period of durability of tool at the design stage of the technological process with the purpose of wastage preventing. This paper represents the results of durability research of natural and synthetic diamonds (polycrystalline diamond - ASPK) as well as precision of polycrystalline superabrasive tools made of dense boron nitride (DBN) during SPD processing without application of MWF.
Open-Loop Flight Testing of COBALT Navigation and Sensor Technologies for Precise Soft Landing
NASA Technical Reports Server (NTRS)
Carson, John M., III; Restrepo, Caroline I.; Seubert, Carl R.; Amzajerdian, Farzin; Pierrottet, Diego F.; Collins, Steven M.; O'Neal, Travis V.; Stelling, Richard
2017-01-01
An open-loop flight test campaign of the NASA COBALT (CoOperative Blending of Autonomous Landing Technologies) payload was conducted onboard the Masten Xodiac suborbital rocket testbed. The payload integrates two complementary sensor technologies that together provide a spacecraft with knowledge during planetary descent and landing to precisely navigate and softly touchdown in close proximity to targeted surface locations. The two technologies are the Navigation Doppler Lidar (NDL), for high-precision velocity and range measurements, and the Lander Vision System (LVS) for map-relative state esti- mates. A specialized navigation filter running onboard COBALT fuses the NDL and LVS data in real time to produce a very precise Terrain Relative Navigation (TRN) solution that is suitable for future, autonomous planetary landing systems that require precise and soft landing capabilities. During the open-loop flight campaign, the COBALT payload acquired measurements and generated a precise navigation solution, but the Xodiac vehicle planned and executed its maneuvers based on an independent, GPS-based navigation solution. This minimized the risk to the vehicle during the integration and testing of the new navigation sensing technologies within the COBALT payload.
The advancement of the high precision stress polishing
NASA Astrophysics Data System (ADS)
Li, Chaoqiang; Lei, Baiping; Han, Yu
2016-10-01
The stress polishing is a kind of large-diameter aspheric machining technology with high efficiency. This paper focuses on the principle, application in the processing of large aspheric mirror, and the domestic and foreign research status of stress polishing, aimed at the problem of insufficient precision of mirror surface deformation calculated by some traditional theories and the problem that the output precision and stability of the support device in stress polishing cannot meet the requirements. The improvement methods from these three aspects are put forward, the characterization method of mirror's elastic deformation in stress polishing, the deformation theory of influence function and the calculation of correction force, the design of actuator's mechanical structure. These improve the precision of stress polishing and provide theoretical basis for the further application of stress polishing in large-diameter aspheric machining.
The role of informatics in patient-centered care and personalized medicine.
Hanna, Matthew G; Pantanowitz, Liron
2017-06-01
The practice of cytopathology has dramatically changed due to advances in genomics and information technology. Cytology laboratories have accordingly become increasingly dependent on pathology informatics support to meet the emerging demands of precision medicine. Pathology informatics deals with information technology in the laboratory, and the impact of this technology on workflow processes and staff who interact with these tools. This article covers the critical role that laboratory information systems, electronic medical records, and digital imaging plays in patient-centered personalized medicine. The value of integrated diagnostic reports, clinical decision support, and the use of whole-slide imaging to better evaluate cytology samples destined for molecular testing is discussed. Image analysis that offers more precise and quantitative measurements in cytology is addressed, as well as the role of bioinformatics tools to cope with Big Data from next-generation sequencing. This article also highlights the barriers to the widespread adoption of these disruptive technologies due to regulatory obstacles, limited commercial solutions, poor interoperability, and lack of standardization. Cancer Cytopathol 2017;125(6 suppl):494-501. © 2017 American Cancer Society. © 2017 American Cancer Society.
Generation of novel resistance genes using mutation and targeted gene editing
USDA-ARS?s Scientific Manuscript database
Classical breeding for virus resistance is a lengthy process and is restricted by the availability of resistance genes. Precise genome editing is a "dream technology" to improve plants for virus resistance and these tools have opened new and very promising ways to generate virus resistant plants by ...
Injection molded polymer optics in the 21st Century
NASA Astrophysics Data System (ADS)
Beich, William S.
2005-08-01
Precision polymer optics, manufactured by injection molding techniques, has been a key enabling technology for several decades now. The technology, which can be thought of as a subset of the wider field of precision optics manufacturing, was pioneered in the United States by companies such as Eastman Kodak, US Precision Lens, and Polaroid. In addition to suppliers in the U.S. there are several companies worldwide that design and manufacture precision polymer optics, for example Philips High Tech Plastics in Europe and Fujinon in Japan. Designers who are considering using polymer optics need a fundamental understanding of exactly how the optics are created. This paper will survey the technology and processes that are employed in the successful implementation of a polymer optic solution from a manufacturer's perspective. Special emphasis will be paid to the unique relationship between the molds and the optics that they produce. We will discuss the key elements of production: molding resins, molds and molding equipment, and metrology. Finally we will offer a case study to illustrate just how the optics designer carries a design concept through to production. The underlying theme throughout the discussion of polymer optics is the need for the design team to work closely with an experienced polymer optics manufacturer with a solid track record of success in molded optics. As will be seen shortly, the complex interaction between thermoplastics, molds, and molding machines dictates the need for working closely with a supplier who has the critical knowledge needed to manage all aspects of the program.
2011-10-01
been developed. The next step is to develop a the base technology into a grid like mapping sensor, construct the excitation and detection circuits...the project involves advancing the base technology into a grid -like mapping se nsor, constructing the excitation and detection circuits, modifying and...further. In conclusion, the screen printing and etching process allows for precise repeat able production of sensing elements for grid fabrication
Assessing and modelling ecohydrologic processes at the agricultural field scale
NASA Astrophysics Data System (ADS)
Basso, Bruno
2015-04-01
One of the primary goals of agricultural management is to increase the amount of crop produced per unit of fertilizer and water used. World record corn yields demonstrated that water use efficiency can increase fourfold with improved agronomic management and cultivars able to tolerate high densities. Planting crops with higher plant density can lead to significant yield increases, and increase plant transpiration vs. soil water evaporation. Precision agriculture technologies have been adopted for the last twenty years but seldom have the data collected been converted to information that led farmers to different agronomic management. These methods are intuitively appealing, but yield maps and other spatial layers of data need to be properly analyzed and interpreted to truly become valuable. Current agro-mechanic and geospatial technologies allow us to implement a spatially variable plan for agronomic inputs including seeding rate, cultivars, pesticides, herbicides, fertilizers, and water. Crop models are valuable tools to evaluate the impact of management strategies (e.g., cover crops, tile drains, and genetically-improved cultivars) on yield, soil carbon sequestration, leaching and greenhouse gas emissions. They can help farmers identify adaptation strategies to current and future climate conditions. In this paper I illustrate the key role that precision agriculture technologies (yield mapping technologies, within season soil and crop sensing), crop modeling and weather can play in dealing with the impact of climate variability on soil ecohydrologic processes. Case studies are presented to illustrate this concept.
Cobalt: Development and Maturation of GN&C Technologies for Precision Landing
NASA Technical Reports Server (NTRS)
Carson, John M.; Restrepo, Carolina; Seubert, Carl; Amzajerdian, Farzin
2016-01-01
The CoOperative Blending of Autonomous Landing Technologies (COBALT) instrument is a terrestrial test platform for development and maturation of guidance, navigation and control (GN&C) technologies for precision landing. The project is developing a third-generation Langley Research Center (LaRC) navigation doppler lidar (NDL) for ultra-precise velocity and range measurements, which will be integrated and tested with the Jet Propulsion Laboratory (JPL) lander vision system (LVS) for terrain relative navigation (TRN) position estimates. These technologies together provide precise navigation knowledge that is critical for a controlled and precise touchdown. The COBALT hardware will be integrated in 2017 into the GN&C subsystem of the Xodiac rocket-propulsive vertical test bed (VTB) developed by Masten Space Systems, and two terrestrial flight campaigns will be conducted: one open-loop (i.e., passive) and one closed-loop (i.e., active).
Precision Medicine: Functional Advancements.
Caskey, Thomas
2018-01-29
Precision medicine was conceptualized on the strength of genomic sequence analysis. High-throughput functional metrics have enhanced sequence interpretation and clinical precision. These technologies include metabolomics, magnetic resonance imaging, and I rhythm (cardiac monitoring), among others. These technologies are discussed and placed in clinical context for the medical specialties of internal medicine, pediatrics, obstetrics, and gynecology. Publications in these fields support the concept of a higher level of precision in identifying disease risk. Precise disease risk identification has the potential to enable intervention with greater specificity, resulting in disease prevention-an important goal of precision medicine.
3D Bioprinting for Organ Regeneration
Cui, Haitao; Nowicki, Margaret; Fisher, John P.; Zhang, Lijie Grace
2017-01-01
Regenerative medicine holds the promise of engineering functional tissues or organs to heal or replace abnormal and necrotic tissues/organs, offering hope for filling the gap between organ shortage and transplantation needs. Three-dimensional (3D) bioprinting is evolving into an unparalleled bio-manufacturing technology due to its high-integration potential for patient-specific designs, precise and rapid manufacturing capabilities with high resolution, and unprecedented versatility. It enables precise control over multiple compositions, spatial distributions, and architectural accuracy/complexity, therefore achieving effective recapitulation of microstructure, architecture, mechanical properties, and biological functions of target tissues and organs. Here we provide an overview of recent advances in 3D bioprinting technology, as well as design concepts of bioinks suitable for the bioprinting process. We focus on the applications of this technology for engineering living organs, focusing more specifically on vasculature, neural networks, the heart and liver. We conclude with current challenges and the technical perspective for further development of 3D organ bioprinting. PMID:27995751
3D Bioprinting for Tissue and Organ Fabrication
Zhang, Yu Shrike; Yang, Jingzhou; Jia, Weitao; Dell’Erba, Valeria; Assawes, Pribpandao; Shin, Su Ryon; Dokmeci, Mehmet Remzi; Oklu, Rahmi; Khademhosseini, Ali
2016-01-01
The field of regenerative medicine has progressed tremendously over the past few decades in its ability to fabricate functional tissue substitutes. Conventional approaches based on scaffolding and microengineering are limited in their capacity of producing tissue constructs with precise biomimetic properties. Three-dimensional (3D) bioprinting technology, on the other hand, promises to bridge the divergence between artificially engineered tissue constructs and native tissues. In a sense, 3D bioprinting offers unprecedented versatility to co-deliver cells and biomaterials with precise control over their compositions, spatial distributions, and architectural accuracy, therefore achieving detailed or even personalized recapitulation of the fine shape, structure, and architecture of target tissues and organs. Here we briefly describe recent progresses of 3D bioprinting technology and associated bioinks suitable for the printing process. We then focus on the applications of this technology in fabrication of biomimetic constructs of several representative tissues and organs, including blood vessel, heart, liver, and cartilage. We finally conclude with future challenges in 3D bioprinting as well as potential solutions for further development. PMID:27126775
3D Bioprinting for Tissue and Organ Fabrication.
Zhang, Yu Shrike; Yue, Kan; Aleman, Julio; Moghaddam, Kamyar Mollazadeh; Bakht, Syeda Mahwish; Yang, Jingzhou; Jia, Weitao; Dell'Erba, Valeria; Assawes, Pribpandao; Shin, Su Ryon; Dokmeci, Mehmet Remzi; Oklu, Rahmi; Khademhosseini, Ali
2017-01-01
The field of regenerative medicine has progressed tremendously over the past few decades in its ability to fabricate functional tissue substitutes. Conventional approaches based on scaffolding and microengineering are limited in their capacity of producing tissue constructs with precise biomimetic properties. Three-dimensional (3D) bioprinting technology, on the other hand, promises to bridge the divergence between artificially engineered tissue constructs and native tissues. In a sense, 3D bioprinting offers unprecedented versatility to co-deliver cells and biomaterials with precise control over their compositions, spatial distributions, and architectural accuracy, therefore achieving detailed or even personalized recapitulation of the fine shape, structure, and architecture of target tissues and organs. Here we briefly describe recent progresses of 3D bioprinting technology and associated bioinks suitable for the printing process. We then focus on the applications of this technology in fabrication of biomimetic constructs of several representative tissues and organs, including blood vessel, heart, liver, and cartilage. We finally conclude with future challenges in 3D bioprinting as well as potential solutions for further development.
3D Bioprinting for Organ Regeneration.
Cui, Haitao; Nowicki, Margaret; Fisher, John P; Zhang, Lijie Grace
2017-01-01
Regenerative medicine holds the promise of engineering functional tissues or organs to heal or replace abnormal and necrotic tissues/organs, offering hope for filling the gap between organ shortage and transplantation needs. Three-dimensional (3D) bioprinting is evolving into an unparalleled biomanufacturing technology due to its high-integration potential for patient-specific designs, precise and rapid manufacturing capabilities with high resolution, and unprecedented versatility. It enables precise control over multiple compositions, spatial distributions, and architectural accuracy/complexity, therefore achieving effective recapitulation of microstructure, architecture, mechanical properties, and biological functions of target tissues and organs. Here we provide an overview of recent advances in 3D bioprinting technology, as well as design concepts of bioinks suitable for the bioprinting process. We focus on the applications of this technology for engineering living organs, focusing more specifically on vasculature, neural networks, the heart and liver. We conclude with current challenges and the technical perspective for further development of 3D organ bioprinting. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Open-Loop Performance of COBALT Precision Landing Payload on a Commercial Sub-Orbital Rocket
NASA Technical Reports Server (NTRS)
Restrepo, Carolina I.; Carson, John M., III; Amzajerdian, Farzin; Seubert, Carl R.; Lovelace, Ronney S.; McCarthy, Megan M.; Tse, Teming; Stelling, Richard; Collins, Steven M.
2018-01-01
An open-loop flight test campaign of the NASA COBALT (CoOperative Blending of Autonomous Landing Technologies) platform was conducted onboard the Masten Xodiac suborbital rocket testbed. The COBALT platform integrates NASA Guidance, Navigation and Control (GN&C) sensing technologies for autonomous, precise soft landing, including the Navigation Doppler Lidar (NDL) velocity and range sensor and the Lander Vision System (LVS) Terrain Relative Navigation (TRN) system. A specialized navigation filter running onboard COBALT fuses the NDL and LVS data in real time to produce a navigation solution that is independent of GPS and suitable for future, autonomous, planetary, landing systems. COBALT was a passive payload during the open loop tests. COBALT's sensors were actively taking data and processing it in real time, but the Xodiac rocket flew with its own GPS-navigation system as a risk reduction activity in the maturation of the technologies towards space flight. A future closed-loop test campaign is planned where the COBALT navigation solution will be used to fly its host vehicle.
NASA Astrophysics Data System (ADS)
Sobek, M.; Baier, A.; Grabowski, Ł.
2018-01-01
The use of new technologies and materials in various industries is a natural process that is directly related to the very high rate of development of these technologies. Certain industries decide to much faster introduce new technologies and materials. One of such branches is the automotive industry, whose representatives are very energetically looking for both financial savings and savings resulting from the vehicles mass reduction. An economically justified approach to construction materials is leading the search for new solutions and materials. The use of a modern material such as the two-component PDCPD composite shows hitherto unknown possibilities of producing subassemblies of many different constructions. The possibility of using a modern composite material with parameters comparable to that of metals and significantly lighter, can be an excellent alternative in the selection of materials for many parts of motor vehicles. The potentiality of precise casting of tolerated surfaces will allow to reduce the operations related to machining process, which is an indispensable part of the production process of elements that are cast of metal. This article describes the process of designing and building a test stand for precise positioning of power steering gear components at the stage of casting their housing. The article presents the principle of operation of the test stand and the process of preparation for the casting and the cast itself will be rudely described. Due to the implementation of research as part of a research project with an industrial partner, the article will only describe some operations. This is related to the confidentiality of the project.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Britten, J
WET-ETCH FIGURING (WEF) is an automated method of precisely figuring optical materials by the controlled application of aqueous etchant solution. This technology uses surface-tension-gradient-driven flow to confine and stabilize a wetted zone of an etchant solution or other aqueous processing fluid on the surface of an object. This wetted zone can be translated on the surface in a computer-controlled fashion for precise spatial control of the surface reactions occurring (e.g. chemical etching). WEF is particularly suitable for figuring very thin optical materials because it applies no thermal or mechanical stress to the material. Also, because the process is stress-free themore » workpiece can be monitored during figuring using interferometric metrology, and the measurements obtained can be used to control the figuring process in real-time--something that cannot be done with traditional figuring methods.« less
NASA Astrophysics Data System (ADS)
Sokolov, Leonid V.
2010-08-01
There is a need of measuring distributed pressure on the aircraft engine inlet with high precision within a wide operating temperature range in the severe environment to improve the efficiency of aircraft engine control. The basic solutions and principles of designing high-temperature (to 523K) microelectromechanical pressure sensors based on a membrane-type SOI heterostructure with a monolithic integral tensoframe (MEMS-SOIMT) are proposed in accordance with the developed concept, which excludes the use of electric p-n junctions in semiconductor microelectromechanical sensors. The MEMS-SOIMT technology relies on the group processes of microelectronics and micromechanics for high-precision microprofiling of a three-dimension micromechanical structure, which exclude high-temperature silicon doping processes.
Space Technology 7 : Micropropulsion and Mass Distribution
NASA Technical Reports Server (NTRS)
Carnaub, A.; Dunn, C.; Ziemer, J,; Hruby, V.; Spence, D.; Demmons, N.; Roy, T.; McCormick, R.; Gasaska, C.; Young, J.;
2007-01-01
The NASA New Millennium Program Space Technology 7 (ST7) project will validate technology for precision spacecraft control. The ST7 disturbance reduction system (DRS) will contain new micropropulsion technology to be flown as part of the European Space Agency's LISA (laser interferometer space antenna) Pathfinder project. After launch into a low Earth orbit in early 2010, the LISA Pathfinder spacecraft will be maneuvered to a halo orbit about the Earth-Sun LI Lagrange point for operations. The DRS will control the position of the spacecraft relative to a reference to an accuracy of one nanometer over time scales of several thousand seconds. To perform the control the spacecraft will use a new colloid thruster technology. The thrusters will operate over the range of 5 to 30 micro-Newtons with precision of 0.1 micro-Newton. The thrust will be generated by using a high electric field to extract charged droplets of a conducting colloid fluid and accelerating them with a precisely adjustable voltage. The control position reference will be provided by the European LISA Technology Package, which will include two nearly free-floating test masses. The test mass position and attitude will be sensed and adjusted using electrostatic capacitance bridges. The DRS will control the spacecraft position with respect to one test mass while minimizing disturbances on the second test mass. The dynamic control system will cover eighteen degrees of freedom, six for each of the test masses and six for the spacecraft. In the absence of other disturbances, the test masses will slowly gravitate toward local concentrations of spacecraft mass. The test mass acceleration must be minimized to maintain the acceleration of the enclosing drag-free spacecraft within the control authority of the micropropulsion system. Therefore, test mass acceleration must be predicted by accurate measurement of mass distribution, then offset by the placement of specially shaped balance masses near each test mass. The - acceleration is characterized by calculating the gravitational effect of over ten million modeled points of a nearly 500-kg spacecraft. This paper provides an overview of the mission technology and the process of precision mass modeling of the DRS equipment.
NASA Precision Landing Technologies Completes Initial Flight Tests on Vertical Testbed Rocket
2017-04-19
This 2-minute, 40-second video shows how over the past 5 weeks, NASA and Masten Space Systems teams have prepared for and conducted sub-orbital rocket flight tests of next-generation lander navigation technology through the CoOperative Blending of Autonomous Landing Technologies (COBALT) project. The COBALT payload was integrated onto Masten’s rocket, Xodiac. The Xodiac vehicle used the Global Positioning System (GPS) for navigation during this first campaign, which was intentional to verify and refine COBALT system performance. The joint teams conducted numerous ground verification tests, made modifications in the process, practiced and refined operations’ procedures, conducted three tether tests, and have now flown two successful free flights. This successful, collaborative campaign has provided the COBALT and Xodiac teams with the valuable performance data needed to refine the systems and prepare them for the second flight test campaign this summer when the COBALT system will navigate the Xodiac rocket to a precision landing. The technologies within COBALT provide a spacecraft with knowledge during entry, descent, and landing that enables it to precisely navigate and softly land close to surface locations that have been previously too risky to target with current capabilities. The technologies will enable future exploration destinations on Mars, the moon, Europa, and other planets and moons. The two primary navigation components within COBALT include the Langley Research Center’s Navigation Doppler Lidar, which provides ultra-precise velocity and line-of-sight range measurements, and Jet Propulsion Laboratory’s Lander Vision System (LVS), which provides navigation estimates relative to an existing surface map. The integrated system is being flight tested onboard a Masten suborbital rocket vehicle called Xodiac. The COBALT project is led by the Johnson Space Center, with funding provided through the Game Changing Development, Flight Opportunities program, and Advanced Exploration Systems programs. Based at NASA’s Armstrong Flight Research Center in Edwards, CA, the Flight Opportunities program funds technology development flight tests on commercial suborbital space providers of which Masten is a vendor. The program has previously tested the LVS on the Masten rocket and validated the technology for the Mars 2020 rover.
Alternative Solvents and Technologies for Precision Cleaning of Aerospace Components
NASA Technical Reports Server (NTRS)
Grandelli, Heather; Maloney, Phillip; DeVor, Robert; Hintze, Paul
2014-01-01
Precision cleaning solvents for aerospace components and oxygen fuel systems, including currently used Vertrel-MCA, have a negative environmental legacy, high global warming potential, and have polluted cleaning sites. Thus, alternative solvents and technologies are being investigated with the aim of achieving precision contamination levels of less than 1 mg/sq ft. The technologies being evaluated are ultrasonic bath cleaning, plasma cleaning and supercritical carbon dioxide cleaning.
Precision lens assembly with alignment turning system
NASA Astrophysics Data System (ADS)
Ho, Cheng-Fang; Huang, Chien-Yao; Lin, Yi-Hao; Kuo, Hui-Jean; Kuo, Ching-Hsiang; Hsu, Wei-Yao; Chen, Fong-Zhi
2017-10-01
The poker chip assembly with high precision lens barrels is widely applied to ultra-high performance optical system. ITRC applies the poker chip assembly technology to the high numerical aperture objective lenses and lithography projection lenses because of its high efficiency assembly process. In order to achieve high precision lens cell for poker chip assembly, an alignment turning system (ATS) is developed. The ATS includes measurement, alignment and turning modules. The measurement module is equipped with a non-contact displacement sensor (NCDS) and an autocollimator (ACM). The NCDS and ACM are used to measure centration errors of the top and the bottom surface of a lens respectively; then the amount of adjustment of displacement and tilt with respect to the rotational axis of the turning machine for the alignment module can be determined. After measurement, alignment and turning processes on the ATS, the centration error of a lens cell with 200 mm in diameter can be controlled within 10 arcsec. Furthermore, a poker chip assembly lens cell with three sub-cells is demonstrated, each sub-cells are measured and accomplished with alignment and turning processes. The lens assembly test for five times by each three technicians; the average transmission centration error of assembly lens is 12.45 arcsec. The results show that ATS can achieve high assembly efficiency for precision optical systems.
A Bevel Gear Quality Inspection System Based on Multi-Camera Vision Technology.
Liu, Ruiling; Zhong, Dexing; Lyu, Hongqiang; Han, Jiuqiang
2016-08-25
Surface defect detection and dimension measurement of automotive bevel gears by manual inspection are costly, inefficient, low speed and low accuracy. In order to solve these problems, a synthetic bevel gear quality inspection system based on multi-camera vision technology is developed. The system can detect surface defects and measure gear dimensions simultaneously. Three efficient algorithms named Neighborhood Average Difference (NAD), Circle Approximation Method (CAM) and Fast Rotation-Position (FRP) are proposed. The system can detect knock damage, cracks, scratches, dents, gibbosity or repeated cutting of the spline, etc. The smallest detectable defect is 0.4 mm × 0.4 mm and the precision of dimension measurement is about 40-50 μm. One inspection process takes no more than 1.3 s. Both precision and speed meet the requirements of real-time online inspection in bevel gear production.
Influence of Waveform Characteristics on LiDAR Ranging Accuracy and Precision
Yang, Bingwei; Xie, Xinhao; Li, Duan
2018-01-01
Time of flight (TOF) based light detection and ranging (LiDAR) is a technology for calculating distance between start/stop signals of time of flight. In lab-built LiDAR, two ranging systems for measuring flying time between start/stop signals include time-to-digital converter (TDC) that counts time between trigger signals and analog-to-digital converter (ADC) that processes the sampled start/stop pulses waveform for time estimation. We study the influence of waveform characteristics on range accuracy and precision of two kinds of ranging system. Comparing waveform based ranging (WR) with analog discrete return system based ranging (AR), a peak detection method (WR-PK) shows the best ranging performance because of less execution time, high ranging accuracy, and stable precision. Based on a novel statistic mathematical method maximal information coefficient (MIC), WR-PK precision has a high linear relationship with the received pulse width standard deviation. Thus keeping the received pulse width of measuring a constant distance as stable as possible can improve ranging precision. PMID:29642639
NASA Astrophysics Data System (ADS)
Bez'iazychnyi, V. F.
The paper is concerned with the problem of optimizing the machining of aircraft engine parts in order to satisfy certain requirements for tool wear, machining precision and surface layer characteristics, and hardening depth. A generalized multiple-objective function and its computer implementation are developed which make it possible to optimize the machining process without the use of experimental data. Alternative methods of controlling the machining process are discussed.
Precision Agriculture. Reaping the Benefits of Technological Growth. Resources in Technology.
ERIC Educational Resources Information Center
Hadley, Joel F.
1998-01-01
Technological innovations have revolutionized farming. Using precision farming techniques, farmers get an accurate picture of a field's attributes, such as soil properties, yield rates, and crop characteristics through the use of Differential Global Positioning Satellite hardware. (JOW)
-Omic and Electronic Health Records Big Data Analytics for Precision Medicine
Wu, Po-Yen; Cheng, Chih-Wen; Kaddi, Chanchala D.; Venugopalan, Janani; Hoffman, Ryan; Wang, May D.
2017-01-01
Objective Rapid advances of high-throughput technologies and wide adoption of electronic health records (EHRs) have led to fast accumulation of -omic and EHR data. These voluminous complex data contain abundant information for precision medicine, and big data analytics can extract such knowledge to improve the quality of health care. Methods In this article, we present -omic and EHR data characteristics, associated challenges, and data analytics including data pre-processing, mining, and modeling. Results To demonstrate how big data analytics enables precision medicine, we provide two case studies, including identifying disease biomarkers from multi-omic data and incorporating -omic information into EHR. Conclusion Big data analytics is able to address –omic and EHR data challenges for paradigm shift towards precision medicine. Significance Big data analytics makes sense of –omic and EHR data to improve healthcare outcome. It has long lasting societal impact. PMID:27740470
NASA Astrophysics Data System (ADS)
Kato, Kenji; Takeshita, Junji
The works of Toyota national college of technology gets excellent result on structural design competition (bridge contest) of national college design competition. This paper reports planning and making process of these works. As increase strength of the structures, it is important point the determination of structural type by numerical analysis and test, and precision of production and idea of joining. Second, it reports the curriculum of special items connection with excellent works.
Technology Development for Nickel X-Ray Optics Enhancement
NASA Technical Reports Server (NTRS)
Bubarev, Mikhail; Ramsey, Brian; Engelhaupt, Darell
2008-01-01
We are developing grazing-incidence x-ray optics for high-energy astrophysics using the electroform-nickel replication process. In this process, mirror shells are fabricated by replication off super-polished cylindrical mandrels. The mirrors fabricated using this process have a demonstrated optical performance at the level of 11-12 arc seconds resolution (HPD) for 30 keV x rays. Future missions demand ever higher angular resolutions and this places stringent requirements on the quality of the mandrels, the precision of the metrology, and the mounting and alignment of the mirror shells in their housings. A progress report on recent technology developments in all these areas will be presented along with a discussion on possible post fabrication, in-situ improvement of the x-ray mirrors quality.
Fabricating binary optics: An overview of binary optics process technology
NASA Technical Reports Server (NTRS)
Stern, Margaret B.
1993-01-01
A review of binary optics processing technology is presented. Pattern replication techniques have been optimized to generate high-quality efficient microoptics in visible and infrared materials. High resolution optical photolithography and precision alignment is used to fabricate maximally efficient fused silica diffractive microlenses at lambda = 633 nm. The degradation in optical efficiency of four-phase-level fused silica microlenses resulting from an intentional 0.35 micron translational error has been systematically measured as a function of lens speed (F/2 - F/60). Novel processes necessary for high sag refractive IR microoptics arrays, including deep anisotropic Si-etching, planarization of deep topography and multilayer resist techniques, are described. Initial results are presented for monolithic integration of photonic and microoptic systems.
All-printed capacitors with continuous solution dispensing technology
NASA Astrophysics Data System (ADS)
Ge, Yang; Plötner, Matthias; Berndt, Andreas; Kumar, Amit; Voit, Brigitte; Pospiech, Doris; Fischer, Wolf-Joachim
2017-09-01
Printed electronics have been introduced into the commercial markets in recent years. Various printing technologies have emerged aiming to process printed electronic devices with low cost, environmental friendliness, and compatibility with large areas and flexible substrates. The aim of this study is to propose a continuous solution dispensing technology for processing all-printed thin-film capacitors on glass substrates using a leading-edge printing instrument. Among all printing technologies, this study provides concrete proof of the following outstanding advantages of this technology: high tolerance to inks, high throughput, low cost, and precise pattern transfers. Ag nanoparticle ink based on glycol ethers was used to print the electrodes. To obtain dielectric ink, a copolymer powder of poly(methyl methacrylate-co-benzoylphenyl methacrylate) containing crosslinkable side groups was dissolved in anisole. Various layouts were designed to support multiple electronic applications. Scanning electron microscopy and atomic force microscopy were used to investigate the all-printed capacitor layers formed using the proposed process. Additionally, the printed capacitors were electrically characterized under direct current and alternating current. The measured electrical properties of the printed capacitors were consistent with the theoretical results.
ELECTRONIC TECHNICIAN PERSONNEL AND TRAINING NEEDS OF IOWA INDUSTRIES.
ERIC Educational Resources Information Center
WEEDE, GARY DEAN
THE PURPOSE OF THIS STUDY WAS TO PROVIDE DATA FOR USE IN DEVELOPING OR IMPROVING ELECTRONIC TECHNOLOGY PROGRAMS. A POSTAL CARD QUESTIONNAIRE WAS SENT TO 678 MANUFACTURING AND PROCESSING INDUSTRIES IN IOWA EMPLOYING MORE THAN 50 PERSONS AND ALL ELECTRICAL, ELECTRONIC, AND PRECISION INSTRUMENT MANUFACTURERS EMPLOYING FEWER THAN 50 PERSONS. DATA WERE…
NASA Technical Reports Server (NTRS)
1983-01-01
NASA-developed space shuttle technology is used in a laser wire stripper designed by Raytheon Company. Laser beams cut through insulation on a wire without damaging conductive metal, because laser radiation that melts plastic insulation is reflected by the metal. The laser process is fast, clean, precise and repeatable. It eliminates quality control problems and the expense of rejected wiring.
Precision Cleaning - Path to Premier
NASA Technical Reports Server (NTRS)
Mackler, Scott E.
2008-01-01
ITT Space Systems Division s new Precision Cleaning facility provides critical cleaning and packaging of aerospace flight hardware and optical payloads to meet customer performance requirements. The Precision Cleaning Path to Premier Project was a 2007 capital project and is a key element in the approved Premier Resource Management - Integrated Supply Chain Footprint Optimization Project. Formerly precision cleaning was located offsite in a leased building. A new facility equipped with modern precision cleaning equipment including advanced process analytical technology and improved capabilities was designed and built after outsourcing solutions were investigated and found lacking in ability to meet quality specifications and schedule needs. SSD cleans parts that can range in size from a single threaded fastener all the way up to large composite structures. Materials that can be processed include optics, composites, metals and various high performance coatings. We are required to provide verification to our customers that we have met their particulate and molecular cleanliness requirements and we have that analytical capability in this new facility. The new facility footprint is approximately half the size of the former leased operation and provides double the amount of throughput. Process improvements and new cleaning equipment are projected to increase 1st pass yield from 78% to 98% avoiding $300K+/yr in rework costs. Cost avoidance of $350K/yr will result from elimination of rent, IT services, transportation, and decreased utility costs. Savings due to reduced staff expected to net $4-500K/yr.
GTCBio's Precision Medicine Conference (July 7-8, 2016 - Boston, Massachusetts, USA).
Cole, P
2016-09-01
GTCBio's Precision Medicine Conference met this year to outline the many steps forward that precision medicine and individualized genomics has made and the challenges it still faces in technological, modeling, and standards development, interoperability and compatibility advancements, and methods of economic and societal adoption. The conference was split into four sections, 'Overcoming Challenges in the Commercialization of Precision Medicine', 'Implementation of Precision Medicine: Strategies & Technologies', 'Integrating & Interpreting Personal Genomics, Big Data, & Bioinformatics' and 'Incentivizing Precision Medicine: Regulation & Reimbursement', with this report focusing on the final two subjects. Copyright 2016 Prous Science, S.A.U. or its licensors. All rights reserved.
Investigation of CMOS pixel sensor with 0.18 μm CMOS technology for high-precision tracking detector
NASA Astrophysics Data System (ADS)
Zhang, L.; Fu, M.; Zhang, Y.; Yan, W.; Wang, M.
2017-01-01
The Circular Electron Positron Collider (CEPC) proposed by the Chinese high energy physics community is aiming to measure Higgs particles and their interactions precisely. The tracking detector including Silicon Inner Tracker (SIT) and Forward Tracking Disks (FTD) has driven stringent requirements on sensor technologies in term of spatial resolution, power consumption and readout speed. CMOS Pixel Sensor (CPS) is a promising candidate to approach these requirements. This paper presents the preliminary studies on the sensor optimization for tracking detector to achieve high collection efficiency while keeping necessary spatial resolution. Detailed studies have been performed on the charge collection using a 0.18 μm CMOS image sensor process. This process allows high resistivity epitaxial layer, leading to a significant improvement on the charge collection and therefore improving the radiation tolerance. Together with the simulation results, the first exploratory prototype has bee designed and fabricated. The prototype includes 9 different pixel arrays, which vary in terms of pixel pitch, diode size and geometry. The total area of the prototype amounts to 2 × 7.88 mm2.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wright, DA; Li, T; Yang, B
Genome editing is the practice of making predetermined and precise changes to a genome by controlling the location of DNA DSBs (double-strand breaks) and manipulating the cell's repair mechanisms. This technology results from harnessing natural processes that have taken decades and multiple lines of inquiry to understand. Through many false starts and iterative technology advances, the goal of genome editing is just now falling under the control of human hands as a routine and broadly applicable method. The present review attempts to define the technique and capture the discovery process while following its evolution from meganucleases and zinc finger nucleasesmore » to the current state of the art: TALEN (transcription-activator-like effector nuclease) technology. We also discuss factors that influence success, technical challenges, and future prospects of this quickly evolving area of study and application.« less
Membrane processes in biotechnology: an overview.
Charcosset, Catherine
2006-01-01
Membrane processes are increasingly reported for various applications in both upstream and downstream technology, such as the established ultrafiltration and microfiltration, and emerging processes as membrane bioreactors, membrane chromatography, and membrane contactors for the preparation of emulsions and particles. Membrane systems exploit the inherent properties of high selectivity, high surface-area-per-unit-volume, and their potential for controlling the level of contact and/or mixing between two phases. This review presents these various membrane processes by focusing more precisely on membrane materials, module design, operating parameters and the large range of possible applications.
NASA Astrophysics Data System (ADS)
Raeva, P. L.; Filipova, S. L.; Filipov, D. G.
2016-06-01
The following paper aims to test and evaluate the accuracy of UAV data for volumetric measurements to the conventional GNSS techniques. For this purpose, an appropriate open pit quarry has been chosen. Two sets of measurements were performed. Firstly, a stockpile was measured by GNSS technologies and later other terrestrial GNSS measurements for modelling the berms of the quarry were taken. Secondly, the area of the whole quarry including the stockpile site was mapped by a UAV flight. Having considered how dynamic our world is, new techniques and methods should be presented in numerous fields. For instance, the management of an open pit quarry requires gaining, processing and storing a large amount of information which is constantly changing with time. Fast and precise acquisition of measurements regarding the process taking place in a quarry is the key to an effective and stable maintenance. In other words, this means getting an objective evaluations of the processes, using up-to-date technologies and reliable accuracy of the results. Often legislations concerning mine engineering state that the volumetric calculations are to present ±3% accuracy of the whole amount. On one hand, extremely precise measurements could be performed by GNSS technologies, however, it could be really time consuming. On the other hand, UAV photogrammetry presents a fast, accurate method for mapping large areas and calculating stockpiles volumes. The study case was performed as a part of a master thesis.
Future of the Particle Replication in Nonwetting Templates (PRINT) Technology
Xu, Jing; Wong, Dominica H. C.; Byrne, James D.; Chen, Kai; Bowerman, Charles
2014-01-01
Particle replication in nonwetting templates (PRINT) is a continuous, roll-to-roll, high-resolution molding technology which allows the design and synthesis of precisely defined micro- and nanoparticles. This technology adapts the lithographic techniques from the microelectronics industry and marries these with the roll-to-roll processes from the photographic film industry to enable researchers to have unprecedented control over particle size, shape, chemical composition, cargo, modulus, and surface properties. In addition, PRINT is a GMP-compliant (GMP = good manufacturing practice) platform amenable for particle fabrication on a large scale. Herein, we describe some of our most recent work involving the PRINT technology for application in the biomedical and material sciences. PMID:23670869
Rebuilding the space technology base
NASA Technical Reports Server (NTRS)
Povinelli, Frederick P.; Stephenson, Frank W.; Sokoloski, Martin M.; Montemerlo, Melvin D.; Venneri, Samuel L.; Mulville, Daniel R.; Hirschbein, Murray S.; Smith, Paul H.; Schnyer, A. Dan; Lum, Henry
1989-01-01
NASA's Civil Space Technology Initiative (CSTI) will not only develop novel technologies for space exploration and exploitation, but also take mature technologies into their demonstration phase in earth orbit. In the course of five years, CSTI will pay off in ground- and space-tested hardware, software, processes, methods for low-orbit transport and operation, and fundamental scientific research on the orbital environment. Attention is given to LOX/hydrogen and LOX/hydrocarbon reusable engines, liquid/solid fuel hybrid boosters, and aeroassist flight experiments for the validation of aerobraking with atmospheric friction. Also discussed are advanced scientific sensors, systems autonomy and telerobotics, control of flexible structures, precise segmented reflectors, high-rate high-capacity data handling, and advanced nuclear power systems.
NASA Astrophysics Data System (ADS)
Boerret, Rainer; Burger, Jochen; Bich, Andreas; Gall, Christoph; Hellmuth, Thomas
2005-05-01
The Center of Optics Technology at the University of Applied Science, founded in 2003, is part of the School of Optics and Mechatronics. It completes the existing optical engineering department with a full optical fabrication and metrology chain and serves in parallel as a technology transfer center, to provide area industries with the most up-to-date technology in optical fabrication and engineering. Two examples of research work will be presented. The first example is the optimizing of the grinding process for high precision aspheres, the other is generating and polishing of a freeform optical element which is used as a phase plate.
NASA Astrophysics Data System (ADS)
Boerret, Rainer; Burger, Jochen; Bich, Andreas; Gall, Christoph; Hellmuth, Thomas
2005-05-01
The Center of Optics Technology at the University of Applied Science, founded in 2003, is part of the School of Optics & Mechatronics. It completes the existing optical engineering department with a full optical fabrication and metrology chain and serves in parallel as a technology transfer center, to provide area industries with the most up-to-date technology in optical fabrication and engineering. Two examples of research work will be presented. The first example is the optimizing of the grinding process for high precision aspheres, the other is generating and polishing of a freeform optical element which is used as a phase plate.
The 25th Annual Precise Time and Time Interval (PTTI) Applications and Planning Meeting
NASA Technical Reports Server (NTRS)
Sydnor, Richard L. (Editor)
1994-01-01
Papers in the following categories are presented: recent developments in rubidium, cesium, and hydrogen-based frequency standards, and in cryogenic and trapped-ion technology; international and transnational applications of precise time and time interval (PTTI) technology with emphasis on satellite laser tracking networks, GLONASS timing, intercomparison of national time scales and international telecommunication; applications of PTTI technology to the telecommunications, power distribution, platform positioning, and geophysical survey industries; application of PTTI technology to evolving military communications and navigation systems; and dissemination of precise time and frequency by means of GPS, GLONASS, MILSTAR, LORAN, and synchronous communications satellites.
The 26th Annual Precise Time and Time Interval (PTTI) Applications and Planning Meeting
NASA Technical Reports Server (NTRS)
Sydnor, Richard (Editor)
1995-01-01
This document is a compilation of technical papers presented at the 26th Annual PTTI Applications and Planning Meeting. Papers are in the following categories: (1) Recent developments in rubidium, cesium, and hydrogen-based frequency standards, and in cryogenic and trapped-ion technology; (2) International and transnational applications of Precise Time and Time Interval technology with emphasis on satellite laser tracking, GLONASS timing, intercomparison of national time scales and international telecommunications; (3) Applications of Precise Time and Time Interval technology to the telecommunications, power distribution, platform positioning, and geophysical survey industries; (4) Applications of PTTI technology to evolving military communications and navigation systems; and (5) Dissemination of precise time and frequency by means of GPS, GLONASS, MILSTAR, LORAN, and synchronous communications satellites.
Presentation accuracy of the web revisited: animation methods in the HTML5 era.
Garaizar, Pablo; Vadillo, Miguel A; López-de-Ipiña, Diego
2014-01-01
Using the Web to run behavioural and social experiments quickly and efficiently has become increasingly popular in recent years, but there is some controversy about the suitability of using the Web for these objectives. Several studies have analysed the accuracy and precision of different web technologies in order to determine their limitations. This paper updates the extant evidence about presentation accuracy and precision of the Web and extends the study of the accuracy and precision in the presentation of multimedia stimuli to HTML5-based solutions, which were previously untested. The accuracy and precision in the presentation of visual content in classic web technologies is acceptable for use in online experiments, although some results suggest that these technologies should be used with caution in certain circumstances. Declarative animations based on CSS are the best alternative when animation intervals are above 50 milliseconds. The performance of procedural web technologies based on the HTML5 standard is similar to that of previous web technologies. These technologies are being progressively adopted by the scientific community and have promising futures, which makes their use advisable to utilizing more obsolete technologies.
14- by 22-Foot Subsonic Tunnel Laser Velocimeter Upgrade
NASA Technical Reports Server (NTRS)
Meyers, James F.; Lee, Joseph W.; Cavone, Angelo A.; Fletcher, Mark T.
2012-01-01
A long-focal length laser velocimeter constructed in the early 1980's was upgraded using current technology to improve usability, reliability and future serviceability. The original, free-space optics were replaced with a state-of-the-art fiber-optic subsystem which allowed most of the optics, including the laser, to be remote from the harsh tunnel environment. General purpose high-speed digitizers were incorporated in a standard modular data acquisition system, along with custom signal processing software executed on a desktop computer, served as the replacement for the signal processors. The resulting system increased optical sensitivity with real-time signal/data processing that produced measurement precisions exceeding those of the original system. Monte Carlo simulations, along with laboratory and wind tunnel investigations were used to determine system characteristics and measurement precision.
The Modernization of a Long-Focal Length Fringe-Type Laser Velocimeter
NASA Technical Reports Server (NTRS)
Meyers, James F.; Lee, Joseph W.; Cavone, Angelo A.; Fletcher, Mark T.
2012-01-01
A long-focal length laser velocimeter constructed in the early 1980's was upgraded using current technology to improve usability, reliability and future serviceability. The original, free-space optics were replaced with a state-of-the-art fiber-optic subsystem which allowed most of the optics, including the laser, to be remote from the harsh tunnel environment. General purpose high-speed digitizers were incorporated in a standard modular data acquisition system, along with custom signal processing software executed on a desktop computer, served as the replacement for the signal processors. The resulting system increased optical sensitivity with real-time signal/data processing that produced measurement precisions exceeding those of the original system. Monte Carlo simulations, along with laboratory and wind tunnel investigations were used to determine system characteristics and measurement precision.
Genome editing systems in novel therapies.
Jang, Yoon-Young; Cai, Liuhong; Ye, Zhaohui
2016-01-01
Genome editing is the process in which DNA sequences at precise genomic locations are modified. In the past three decades, genome editing by homologous recombination has been successfully performed in mouse for generating genetic models. The low efficiency of this process in human cells, however, had prevented its clinical application until the recent advancements in designer endonuclease technologies. The significantly improved genome editing efficiencies aided by ZFN, TALEN, and CRISPR systems provide unprecedented opportunities not only for biomedical research, but also for developing novel therapies. Applications based on these genome editing tools to disrupt deleterious genes, correct genetic mutations, deliver functional transgenes more effectively or even modify the epigenetic landscape are being actively investigated for gene and cell therapy purposes. Encouraging results have been obtained in limited clinical trials in the past two years. While most of the applications are still in proof-of-principle or preclinical development stages, it is anticipated that the coming years will see increasing clinical success in novel therapies based on the modern genome editing technologies. It should be noted that critical issues still remain before the technologies can be translated into more reliable therapies. These key issues include off-target evaluation, establishing appropriate preclinical models and improving the currently low efficiency of homology-based precise gene replacement. In this review we discuss the preclinical and clinical studies aiming at translating the genome editing technologies as well as the issues that are important for more successful translation.
Way to nanogrinding technology
NASA Astrophysics Data System (ADS)
Miyashita, Masakazu
1990-11-01
Precision finishing process of hard and brittle material components such as single crystal silicon wafer and magnetic head consists of lapping and polishing which depend too much on skilled labor. This process is based on the traditional optical production technology and entirely different from the automated mass production technique in automobile production. Instead of traditional lapping and polishing, the nanogrinding is proposed as a new stock removal machining to generate optical surface on brittle materials. By this new technology, the damage free surface which is the same one produced by lapping and polishing can be obtained on brittle materials, and the free carvature can also be generated on brittle materials. This technology is based on the motion copying principle which is the same as in case of metal parts machining. The new nanogrinding technology is anticipated to be adapted as the machining technique suitable for automated mass production, because the stable machining on the level of optical production technique is expected to be obtained by the traditional lapping and polishing.
2011-09-01
The transfer of new technologies (e.g., evidence-based practices) into substance abuse treatment organizations often occurs long after they have been developed and shown to be effective. Transfer is slowed, in part, due to a lack of clear understanding about all that is needed to achieve full implementation of these technologies. Such misunderstanding is exacerbated by inconsistent terminology and overlapping models of an innovation, including its development and validation, dissemination to the public, and implementation or use in the field. For this reason, a workgroup of the Addiction Technology Transfer Center (ATTC) Network developed a field-driven conceptual model of the innovation process that more precisely defines relevant terms and concepts and integrates them into a comprehensive taxonomy. The proposed definitions and conceptual framework will allow for improved understanding and consensus regarding the distinct meaning and conceptual relationships between dimensions of the technology transfer process and accelerate the use of evidence-based practices. Copyright © 2011 Elsevier Inc. All rights reserved.
Sensors for process control Focus Team report
NASA Astrophysics Data System (ADS)
At the Semiconductor Technology Workshop, held in November 1992, the Semiconductor Industry Association (SIA) convened 179 semiconductor technology experts to assess the 15-year outlook for the semiconductor manufacturing industry. The output of the Workshop, a document entitled 'Semiconductor Technology: Workshop Working Group Reports,' contained an overall roadmap for the technology characteristics envisioned in integrated circuits (IC's) for the period 1992-2007. In addition, the document contained individual roadmaps for numerous key areas in IC manufacturing, such as film deposition, thermal processing, manufacturing systems, exposure technology, etc. The SIA Report did not contain a separate roadmap for contamination free manufacturing (CFM). A key component of CFM for the next 15 years is the use of sensors for (1) defect reduction, (2) improved product quality, (3) improved yield, (4) improved tool utilization through contamination reduction, and (5) real time process control in semiconductor fabrication. The objective of this Focus Team is to generate a Sensors for Process Control Roadmap. Implicit in this objective is the identification of gaps in current sensor technology so that research and development activity in the sensor industry can be stimulated to develop sensor systems capable of meeting the projected roadmap needs. Sensor performance features of interest include detection limit, specificity, sensitivity, ease of installation and maintenance, range, response time, accuracy, precision, ease and frequency of calibration, degree of automation, and adaptability to in-line process control applications.
Sub-cell turning to accomplish micron-level alignment of precision assemblies
NASA Astrophysics Data System (ADS)
Kumler, James J.; Buss, Christian
2017-08-01
Higher performance expectations for complex optical systems demand tighter alignment requirements for lens assembly alignment. In order to meet diffraction limited imaging performance over wide spectral bands across the UV and visible wavebands, new manufacturing approaches and tools must be developed if the optical systems will be produced consistently in volume production. This is especially applicable in the field of precision microscope objectives for life science, semiconductor inspection and laser material processing systems. We observe a rising need for the improvement in the optical imaging performance of objective lenses. The key challenge lies in the micron-level decentration and tilt of each lens element. One solution for the production of high quality lens systems is sub-cell assembly with alignment turning. This process relies on an automatic alignment chuck to align the optical axis of a mounted lens to the spindle axis of the machine. Subsequently, the mount is cut with diamond tools on a lathe with respect to the optical axis of the mount. Software controlled integrated measurement technology ensures highest precision. In addition to traditional production processes, further dimensions can be controlled in a very precise manner, e.g. the air gaps between the lenses. Using alignment turning simplifies further alignment steps and reduces the risk of errors. This paper describes new challenges in microscope objective design and manufacturing, and addresses difficulties with standard production processes. A new measurement and alignment technique is described, and strengths and limitations are outlined.
A Model Program for Translational Medicine in Epilepsy Genetics
Smith, Lacey A.; Ullmann, Jeremy F. P.; Olson, Heather E.; El Achkar, Christelle M.; Truglio, Gessica; Kelly, McKenna; Rosen-Sheidley, Beth; Poduri, Annapurna
2017-01-01
Recent technological advances in gene sequencing have led to a rapid increase in gene discovery in epilepsy. However, the ability to assess pathogenicity of variants, provide functional analysis, and develop targeted therapies has not kept pace with rapid advances in sequencing technology. Thus, although clinical genetic testing may lead to a specific molecular diagnosis for some patients, test results often lead to more questions than answers. As the field begins to focus on therapeutic applications of genetic diagnoses using precision medicine, developing processes that offer more than equivocal test results is essential. The success of precision medicine in epilepsy relies on establishing a correct genetic diagnosis, analyzing functional consequences of genetic variants, screening potential therapeutics in the preclinical laboratory setting, and initiating targeted therapy trials for patients. We describe the structure of a comprehensive, pediatric Epilepsy Genetics Program that can serve as a model for translational medicine in epilepsy. PMID:28056630
A Bevel Gear Quality Inspection System Based on Multi-Camera Vision Technology
Liu, Ruiling; Zhong, Dexing; Lyu, Hongqiang; Han, Jiuqiang
2016-01-01
Surface defect detection and dimension measurement of automotive bevel gears by manual inspection are costly, inefficient, low speed and low accuracy. In order to solve these problems, a synthetic bevel gear quality inspection system based on multi-camera vision technology is developed. The system can detect surface defects and measure gear dimensions simultaneously. Three efficient algorithms named Neighborhood Average Difference (NAD), Circle Approximation Method (CAM) and Fast Rotation-Position (FRP) are proposed. The system can detect knock damage, cracks, scratches, dents, gibbosity or repeated cutting of the spline, etc. The smallest detectable defect is 0.4 mm × 0.4 mm and the precision of dimension measurement is about 40–50 μm. One inspection process takes no more than 1.3 s. Both precision and speed meet the requirements of real-time online inspection in bevel gear production. PMID:27571078
NASA Technical Reports Server (NTRS)
Ohara, Tetsuo
2012-01-01
A sub-aperture stitching optical interferometer can provide a cost-effective solution for an in situ metrology tool for large optics; however, the currently available technologies are not suitable for high-speed and real-time continuous scan. NanoWave s SPPE (Scanning Probe Position Encoder) has been proven to exhibit excellent stability and sub-nanometer precision with a large dynamic range. This same technology can transform many optical interferometers into real-time subnanometer precision tools with only minor modification. The proposed field-programmable gate array (FPGA) signal processing concept, coupled with a new-generation, high-speed, mega-pixel CMOS (complementary metal-oxide semiconductor) image sensor, enables high speed (>1 m/s) and real-time continuous surface profiling that is insensitive to variation of pixel sensitivity and/or optical transmission/reflection. This is especially useful for large optics surface profiling.
Precision gravity measurement utilizing Accelerex vibrating beam accelerometer technology
NASA Astrophysics Data System (ADS)
Norling, Brian L.
Tests run using Sundstrand vibrating beam accelerometers to sense microgravity are described. Lunar-solar tidal effects were used as a highly predictable signal which varies by approximately 200 billionths of the full-scale gravitation level. Test runs of 48-h duration were used to evaluate stability, resolution, and noise. Test results on the Accelerex accelerometer show accuracies suitable for precision applications such as gravity mapping and gravity density logging. The test results indicate that Accelerex technology, even with an instrument design and signal processing approach not optimized for microgravity measurement, can achieve 48-nano-g (1 sigma) or better accuracy over a 48-h period. This value includes contributions from instrument noise and random walk, combined bias and scale factor drift, and thermal modeling errors as well as external contributions from sampling noise, test equipment inaccuracies, electrical noise, and cultural noise induced acceleration.
Technology of focus detection for 193nm projection lithographic tool
NASA Astrophysics Data System (ADS)
Di, Chengliang; Yan, Wei; Hu, Song; Xu, Feng; Li, Jinglong
2012-10-01
With the shortening printing wavelength and increasing numerical aperture of lithographic tool, the depth of focus(DOF) sees a rapidly drop down trend, reach a scale of several hundred nanometers while the repeatable accuracy of focusing and leveling must be one-tenth of DOF, approximately several dozen nanometers. For this feature, this article first introduces several focusing technology, Obtained the advantages and disadvantages of various methods by comparing. Then get the accuracy of dual-grating focusing method through theoretical calculation. And the dual-grating focusing method based on photoelastic modulation is divided into coarse focusing and precise focusing method to analyze, establishing image processing model of coarse focusing and photoelastic modulation model of accurate focusing. Finally, focusing algorithm is simulated with MATLAB. In conclusion dual-grating focusing method shows high precision, high efficiency and non-contact measurement of the focal plane, meeting the demands of focusing in 193nm projection lithography.
1999-04-01
NASA's Space Optics Manufacturing Center has been working to expand our view of the universe via sophisticated new telescopes. The Optics Center's goal is to develop low-cost, advanced space optics technologies for the NASA program in the 21st century - including the long-term goal of imaging Earth-like planets in distant solar systems. To reduce the cost of mirror fabrication, Marshall Space Flight Center (MSFC) has developed replication techniques, the machinery, and materials to replicate electro-formed nickel mirrors. The process allows fabricating precisely shaped mandrels to be used and reused as masters for replicating high-quality mirrors. MSFC's Space Optics Manufacturing Technology Center (SOMTC) has grinding and polishing equipment ranging from conventional spindles to custom-designed polishers. These capabilities allow us to grind precisely and polish a variety of optical devices, including x-ray mirror mandrels. This image shows Charlie Griffith polishing the half-meter mandrel at SOMTC.
Progress on field study with precision mobile drip irrigation technologly
USDA-ARS?s Scientific Manuscript database
Precision mobile drip irrigation (PMDI) is a technology that was developed in the 1970s that converts drop hoses on moving irrigation systems to dripline. Although this technology was developed more than 40 years ago, it was not widely implemented and few studies reported on its performance. Recentl...
NASA Astrophysics Data System (ADS)
Zibner, F.; Fornaroli, C.; Holtkamp, J.; Shachaf, Lior; Kaplan, Natan; Gillner, A.
2017-08-01
High-precision laser micro machining gains more importance in industrial applications every month. Optical systems like the helical optics offer highest quality together with controllable and adjustable drilling geometry, thus as taper angle, aspect ratio and heat effected zone. The helical optics is based on a rotating Dove-prism which is mounted in a hollow shaft engine together with other optical elements like wedge prisms and plane plates. Although the achieved quality can be interpreted as extremely high the low process efficiency is a main reason that this manufacturing technology has only limited demand within the industrial market. The objective of the research studies presented in this paper is to dramatically increase process efficiency as well as process flexibility. During the last years, the average power of commercial ultra-short pulsed laser sources has increased significantly. The efficient utilization of the high average laser power in the field of material processing requires an effective distribution of the laser power onto the work piece. One approach to increase the efficiency is the application of beam splitting devices to enable parallel processing. Multi beam processing is used to parallelize the fabrication of periodic structures as most application only require a partial amount of the emitted ultra-short pulsed laser power. In order to achieve highest flexibility while using multi beam processing the single beams are diverted and re-guided in a way that enables the opportunity to process with each partial beam on locally apart probes or semimanufactures.
ERIC Educational Resources Information Center
Mavrikis, Manolis; Gutierrez-Santos, Sergio
2010-01-01
This paper presents a methodology for the design of intelligent learning environments. We recognise that in the educational technology field, theory development and system-design should be integrated and rely on an iterative process that addresses: (a) the difficulty to elicit precise, concise, and operationalized knowledge from "experts" and (b)…
Zhang, Lin; Zhou, Wenchen; Naples, Neil J; Yi, Allen Y
2018-05-01
A novel fabrication method by combining high-speed single-point diamond milling and precision compression molding processes for fabrication of discontinuous freeform microlens arrays was proposed. Compared with slow tool servo diamond broaching, high-speed single-point diamond milling was selected for its flexibility in the fabrication of true 3D optical surfaces with discontinuous features. The advantage of single-point diamond milling is that the surface features can be constructed sequentially by spacing the axes of a virtual spindle at arbitrary positions based on the combination of rotational and translational motions of both the high-speed spindle and linear slides. By employing this method, each micro-lenslet was regarded as a microstructure cell by passing the axis of the virtual spindle through the vertex of each cell. An optimization arithmetic based on minimum-area fabrication was introduced to the machining process to further increase the machining efficiency. After the mold insert was machined, it was employed to replicate the microlens array onto chalcogenide glass. In the ensuing optical measurement, the self-built Shack-Hartmann wavefront sensor was proven to be accurate in detecting an infrared wavefront by both experiments and numerical simulation. The combined results showed that precision compression molding of chalcogenide glasses could be an economic and precision optical fabrication technology for high-volume production of infrared optics.
NASA Astrophysics Data System (ADS)
Ottoni, F.; Freddi, F.; Zerbi, A.
2017-05-01
It's well known that more and more accurate methodologies and automatic tools are now available in the field of geometric survey and image processing and they constitute a fundamental instrument for cultural heritage knowledge and preservation; on the other side, very smart and precise numerical models are continuously improved and used in order to simulate the mechanical behaviour of masonry structures: both instruments and technologies are important part of a global process of knowledge which is at the base of any conservation project of cultural heritage. Despite the high accuracy and automation level reached by both technologies and programs, the transfer of data between them is not an easy task and defining the most reliable way to translate and exchange information without data loosing is still an open issue. The goal of the present paper is to analyse the complex process of translation from the very precise (and sometimes redundant) information obtainable by the modern survey methodologies for historic buildings (as laser scanner), into the very simplified (may be too much) schemes used to understand their real structural behaviour, with the final aim to contribute to the discussion on reliable methods for cultural heritage knowledge improvement, through empiricism.
Applications of dewetting in micro and nanotechnology.
Gentili, Denis; Foschi, Giulia; Valle, Francesco; Cavallini, Massimiliano; Biscarini, Fabio
2012-06-21
Dewetting is a spontaneous phenomenon where a thin film on a surface ruptures into an ensemble of separated objects, like droplets, stripes, and pillars. Spatial correlations with characteristic distance and object size emerge spontaneously across the whole dewetted area, leading to regular motifs with long-range order. Characteristic length scales depend on film thickness, which is a convenient and robust technological parameter. Dewetting is therefore an attractive paradigm for organizing a material into structures of well-defined micro- or nanometre-size, precisely positioned on a surface, thus avoiding lithographical processes. This tutorial review introduces the reader to the physical-chemical basis of dewetting, shows how the dewetting process can be applied to different functional materials with relevance in technological applications, and highlights the possible strategies to control the length scales of the dewetting process.
The present and future role of microfluidics in biomedical research.
Sackmann, Eric K; Fulton, Anna L; Beebe, David J
2014-03-13
Microfluidics, a technology characterized by the engineered manipulation of fluids at the submillimetre scale, has shown considerable promise for improving diagnostics and biology research. Certain properties of microfluidic technologies, such as rapid sample processing and the precise control of fluids in an assay, have made them attractive candidates to replace traditional experimental approaches. Here we analyse the progress made by lab-on-a-chip microtechnologies in recent years, and discuss the clinical and research areas in which they have made the greatest impact. We also suggest directions that biologists, engineers and clinicians can take to help this technology live up to its potential.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dehoff, Ryan R.; List, III, Frederick Alyious; Carver, Keith
ORNL Manufacturing Demonstration Facility worked with ECM Technologies LLC to investigate the use of precision electro-chemical machining technology to polish the surface of parts created by Arcam electron beam melting. The goals for phase one of this project have been met. The project goal was to determine whether electro-chemical machining is a viable method to improve the surface finish of Inconel 718 parts fabricated using the Arcam EBM method. The project partner (ECM) demonstrated viability for parts of both simple and complex geometry. During the course of the project, detailed process knowledge was generated. This project has resulted in themore » expansion of United States operations for ECM Technologies.« less
Distributed MIMO chaotic radar based on wavelength-division multiplexing technology.
Yao, Tingfeng; Zhu, Dan; Ben, De; Pan, Shilong
2015-04-15
A distributed multiple-input multiple-output chaotic radar based on wavelength-division multiplexing technology (WDM) is proposed and demonstrated. The wideband quasi-orthogonal chaotic signals generated by different optoelectronic oscillators (OEOs) are emitted by separated antennas to gain spatial diversity against the fluctuation of a target's radar cross section and enhance the detection capability. The received signals collected by the receive antennas and the reference signals from the OEOs are delivered to the central station for joint processing by exploiting WDM technology. The centralized signal processing avoids precise time synchronization of the distributed system and greatly simplifies the remote units, which improves the localization accuracy of the entire system. A proof-of-concept experiment for two-dimensional localization of a metal target is demonstrated. The maximum position error is less than 6.5 cm.
Precision medicine for cancer with next-generation functional diagnostics.
Friedman, Adam A; Letai, Anthony; Fisher, David E; Flaherty, Keith T
2015-12-01
Precision medicine is about matching the right drugs to the right patients. Although this approach is technology agnostic, in cancer there is a tendency to make precision medicine synonymous with genomics. However, genome-based cancer therapeutic matching is limited by incomplete biological understanding of the relationship between phenotype and cancer genotype. This limitation can be addressed by functional testing of live patient tumour cells exposed to potential therapies. Recently, several 'next-generation' functional diagnostic technologies have been reported, including novel methods for tumour manipulation, molecularly precise assays of tumour responses and device-based in situ approaches; these address the limitations of the older generation of chemosensitivity tests. The promise of these new technologies suggests a future diagnostic strategy that integrates functional testing with next-generation sequencing and immunoprofiling to precisely match combination therapies to individual cancer patients.
Process and control systems for composites manufacturing
NASA Technical Reports Server (NTRS)
Tsiang, T. H.; Wanamaker, John L.
1992-01-01
A precise control of composite material processing would not only improve part quality, but it would also directly reduce the overall manufacturing cost. The development and incorporation of sensors will help to generate real-time information for material processing relationships and equipment characteristics. In the present work, the thermocouple, pressure transducer, and dielectrometer technologies were investigated. The monitoring sensors were integrated with the computerized control system in three non-autoclave fabrication techniques: hot-press, self contained tool (self heating and pressurizing), and pressure vessel). The sensors were implemented in the parts and tools.
Tracking radar advanced signal processing and computing for Kwajalein Atoll (KA) application
NASA Astrophysics Data System (ADS)
Cottrill, Stanley D.
1992-11-01
Two means are examined whereby the operations of KMR during mission execution may be improved through the introduction of advanced signal processing techniques. In the first approach, the addition of real time coherent signal processing technology to the FPQ-19 radar is considered. In the second approach, the incorporation of the MMW radar, with its very fine range precision, to the MMS system is considered. The former appears very attractive and a Phase 2 SBIR has been proposed. The latter does not appear promising enough to warrant further development.
Robotics in space-age manufacturing
NASA Technical Reports Server (NTRS)
Jones, Chip
1991-01-01
Robotics technologies are developed to improve manufacturing of space hardware. The following applications of robotics are covered: (1) welding for the space shuttle and space station Freedom programs; (2) manipulation of high-pressure water for shuttle solid rocket booster refurbishment; (3) automating the application of insulation materials; (4) precision application of sealants; and (5) automation of inspection procedures. Commercial robots are used for these development programs, but they are teamed with advanced sensors, process controls, and computer simulation to form highly productive manufacturing systems. Many of the technologies are also being actively pursued in private sector manufacturing operations.
Precisely tuning Ge substitution for efficient solution-processed Cu2ZnSn(S, Se)4 solar cells
NASA Astrophysics Data System (ADS)
Wang, Xinshou; Kou, Dongxing; Zhou, Wenhui; Zhou, Zhengji; Tian, Qingwen; Meng, Yuena; Wu, Sixin
2018-01-01
Not Available Project supported by the Joint Talent Cultivation Funds of NSFC-HN (Grant No. U1604138), the National Natural Science Foundation of China (Grant Nos. 21603058 and 51702085), the Innovation Research Team of Science and Technology in Henan Province, China (Grant No. 17IRTSTHN028), the Science and Technology Innovation Talents in Universities of Henan Province, China (Grant No. 18HASTIT016), and the Young Key Teacher Foundation of Universities of Henan Province, China (Grant No. 2015GGJS-022).
Apollo 16 photographic standards documentation
NASA Technical Reports Server (NTRS)
Bourque, P. F.
1972-01-01
The activities of the Photographic Technology Division, and particularly the Photo Science Office, the Precision Processing Laboratory, and the Motion Picture Laboratory, in connection with the scientific photography of the Apollo 16 manned space mission are documented. Described are the preflight activities involved in establishing a standard process for each of the flight films, the manned in which flight films were handled upon arrival at the Manned Spacecraft Center in Houston, Texas, and how the flight films were processed and duplicated. The tone reproduction method of duplication is described. The specific sensitometric and chemical process controls are not included.
Medical Device for Automated Prick Test Reading.
Justo, Xabier; Diaz, Inaki; Gil, Jorge Juan; Gastaminza, Gabriel
2018-05-01
Allergy tests are routinely performed in most hospitals everyday. However, measuring the outcomes of these tests is still a very laborious manual task. Current methods and systems lack of precision and repeatability. This paper presents a novel mechatronic system that is able to scan a patient's entire arm and provide allergists with precise measures of wheals for diagnosis. The device is based on 3-D laser technology and specific algorithms have been developed to process the information gathered. This system aims to automate the reading of skin prick tests and make gains in speed, accuracy, and reliability. Several experiments have been performed to evaluate the performance of the system.
Combination of GPS and GLONASS IN PPP algorithms and its effect on site coordinates determination
NASA Astrophysics Data System (ADS)
Hefty, J.; Gerhatova, L.; Burgan, J.
2011-10-01
Precise Point Positioning (PPP) approach using the un-differenced code and phase GPS observations, precise orbits and satellite clocks is an important alternative to the analyses based on double differences. We examine the extension of the PPP method by introducing the GLONASS satellites into the processing algorithms. The procedures are demonstrated on the software package ABSOLUTE developed at the Slovak University of Technology. Partial results, like ambiguities and receiver clocks obtained from separate solutions of the two GNSS are mutually compared. Finally, the coordinate time series from combination of GPS and GLONASS observations are compared with GPS-only solutions.
Efficient Genome Editing in Induced Pluripotent Stem Cells with Engineered Nucleases In Vitro.
Termglinchan, Vittavat; Seeger, Timon; Chen, Caressa; Wu, Joseph C; Karakikes, Ioannis
2017-01-01
Precision genome engineering is rapidly advancing the application of the induced pluripotent stem cells (iPSCs) technology for in vitro disease modeling of cardiovascular diseases. Targeted genome editing using engineered nucleases is a powerful tool that allows for reverse genetics, genome engineering, and targeted transgene integration experiments to be performed in a precise and predictable manner. However, nuclease-mediated homologous recombination is an inefficient process. Herein, we describe the development of an optimized method combining site-specific nucleases and the piggyBac transposon system for "seamless" genome editing in pluripotent stem cells with high efficiency and fidelity in vitro.
Presentation Accuracy of the Web Revisited: Animation Methods in the HTML5 Era
Garaizar, Pablo; Vadillo, Miguel A.; López-de-Ipiña, Diego
2014-01-01
Using the Web to run behavioural and social experiments quickly and efficiently has become increasingly popular in recent years, but there is some controversy about the suitability of using the Web for these objectives. Several studies have analysed the accuracy and precision of different web technologies in order to determine their limitations. This paper updates the extant evidence about presentation accuracy and precision of the Web and extends the study of the accuracy and precision in the presentation of multimedia stimuli to HTML5-based solutions, which were previously untested. The accuracy and precision in the presentation of visual content in classic web technologies is acceptable for use in online experiments, although some results suggest that these technologies should be used with caution in certain circumstances. Declarative animations based on CSS are the best alternative when animation intervals are above 50 milliseconds. The performance of procedural web technologies based on the HTML5 standard is similar to that of previous web technologies. These technologies are being progressively adopted by the scientific community and have promising futures, which makes their use advisable to utilizing more obsolete technologies. PMID:25302791
3D Tree Dimensionality Assessment Using Photogrammetry and Small Unmanned Aerial Vehicles
2015-01-01
Detailed, precise, three-dimensional (3D) representations of individual trees are a prerequisite for an accurate assessment of tree competition, growth, and morphological plasticity. Until recently, our ability to measure the dimensionality, spatial arrangement, shape of trees, and shape of tree components with precision has been constrained by technological and logistical limitations and cost. Traditional methods of forest biometrics provide only partial measurements and are labor intensive. Active remote technologies such as LiDAR operated from airborne platforms provide only partial crown reconstructions. The use of terrestrial LiDAR is laborious, has portability limitations and high cost. In this work we capitalized on recent improvements in the capabilities and availability of small unmanned aerial vehicles (UAVs), light and inexpensive cameras, and developed an affordable method for obtaining precise and comprehensive 3D models of trees and small groups of trees. The method employs slow-moving UAVs that acquire images along predefined trajectories near and around targeted trees, and computer vision-based approaches that process the images to obtain detailed tree reconstructions. After we confirmed the potential of the methodology via simulation we evaluated several UAV platforms, strategies for image acquisition, and image processing algorithms. We present an original, step-by-step workflow which utilizes open source programs and original software. We anticipate that future development and applications of our method will improve our understanding of forest self-organization emerging from the competition among trees, and will lead to a refined generation of individual-tree-based forest models. PMID:26393926
3D Tree Dimensionality Assessment Using Photogrammetry and Small Unmanned Aerial Vehicles.
Gatziolis, Demetrios; Lienard, Jean F; Vogs, Andre; Strigul, Nikolay S
2015-01-01
Detailed, precise, three-dimensional (3D) representations of individual trees are a prerequisite for an accurate assessment of tree competition, growth, and morphological plasticity. Until recently, our ability to measure the dimensionality, spatial arrangement, shape of trees, and shape of tree components with precision has been constrained by technological and logistical limitations and cost. Traditional methods of forest biometrics provide only partial measurements and are labor intensive. Active remote technologies such as LiDAR operated from airborne platforms provide only partial crown reconstructions. The use of terrestrial LiDAR is laborious, has portability limitations and high cost. In this work we capitalized on recent improvements in the capabilities and availability of small unmanned aerial vehicles (UAVs), light and inexpensive cameras, and developed an affordable method for obtaining precise and comprehensive 3D models of trees and small groups of trees. The method employs slow-moving UAVs that acquire images along predefined trajectories near and around targeted trees, and computer vision-based approaches that process the images to obtain detailed tree reconstructions. After we confirmed the potential of the methodology via simulation we evaluated several UAV platforms, strategies for image acquisition, and image processing algorithms. We present an original, step-by-step workflow which utilizes open source programs and original software. We anticipate that future development and applications of our method will improve our understanding of forest self-organization emerging from the competition among trees, and will lead to a refined generation of individual-tree-based forest models.
NASA Astrophysics Data System (ADS)
Zhang, Hua; He, Zhen-Hua; Li, Ya-Lin; Li, Rui; He, Guamg-Ming; Li, Zhong
2017-06-01
Multi-wave exploration is an effective means for improving precision in the exploration and development of complex oil and gas reservoirs that are dense and have low permeability. However, converted wave data is characterized by a low signal-to-noise ratio and low resolution, because the conventional deconvolution technology is easily affected by the frequency range limits, and there is limited scope for improving its resolution. The spectral inversion techniques is used to identify λ/8 thin layers and its breakthrough regarding band range limits has greatly improved the seismic resolution. The difficulty associated with this technology is how to use the stable inversion algorithm to obtain a high-precision reflection coefficient, and then to use this reflection coefficient to reconstruct broadband data for processing. In this paper, we focus on how to improve the vertical resolution of the converted PS-wave for multi-wave data processing. Based on previous research, we propose a least squares inversion algorithm with a total variation constraint, in which we uses the total variance as a priori information to solve under-determined problems, thereby improving the accuracy and stability of the inversion. Here, we simulate the Gaussian fitting amplitude spectrum to obtain broadband wavelet data, which we then process to obtain a higher resolution converted wave. We successfully apply the proposed inversion technology in the processing of high-resolution data from the Penglai region to obtain higher resolution converted wave data, which we then verify in a theoretical test. Improving the resolution of converted PS-wave data will provide more accurate data for subsequent velocity inversion and the extraction of reservoir reflection information.
Future of the particle replication in nonwetting templates (PRINT) technology.
Xu, Jing; Wong, Dominica H C; Byrne, James D; Chen, Kai; Bowerman, Charles; DeSimone, Joseph M
2013-06-24
Particle replication in nonwetting templates (PRINT) is a continuous, roll-to-roll, high-resolution molding technology which allows the design and synthesis of precisely defined micro- and nanoparticles. This technology adapts the lithographic techniques from the microelectronics industry and marries these with the roll-to-roll processes from the photographic film industry to enable researchers to have unprecedented control over particle size, shape, chemical composition, cargo, modulus, and surface properties. In addition, PRINT is a GMP-compliant (GMP=good manufacturing practice) platform amenable for particle fabrication on a large scale. Herein, we describe some of our most recent work involving the PRINT technology for application in the biomedical and material sciences. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Development and flight test of a helicopter compact, portable, precision landing system concept
NASA Technical Reports Server (NTRS)
Clary, G. R.; Bull, J. S.; Davis, T. J.; Chisholm, J. P.
1984-01-01
An airborne, radar-based, precision approach concept is being developed and flight tested as a part of NASA's Rotorcraft All-Weather Operations Research Program. A transponder-based beacon landing system (BLS) applying state-of-the-art X-band radar technology and digital processing techniques, was built and is being flight tested to demonstrate the concept feasibility. The BLS airborne hardware consists of an add-on microprocessor, installed in conjunction with the aircraft weather/mapping radar, which analyzes the radar beacon receiver returns and determines range, localizer deviation, and glide-slope deviation. The ground station is an inexpensive, portable unit which can be quickly deployed at a landing site. Results from the flight test program show that the BLS concept has a significant potential for providing rotorcraft with low-cost, precision instrument approach capability in remote areas.
2011-10-27
public release; distribution is unlimited Dr. Keith Bowman, AFRL, Precision Airdrop ( PAD ) Program Manager Ms. Carol Ventresca, SynGenics Corporation...Presentation Outline Entrance Criteria for PAD Integrated Product Team (IPT) S&T SE Process Steps Initial Project S&T Development Strategy...Entrance Criteria for PAD Integrated Product Team (IPT) S&T SE Process Steps Initial Project S&T Development Strategy User Understanding of
A method to accelerate creation of plasma etch recipes using physics and Bayesian statistics
NASA Astrophysics Data System (ADS)
Chopra, Meghali J.; Verma, Rahul; Lane, Austin; Willson, C. G.; Bonnecaze, Roger T.
2017-03-01
Next generation semiconductor technologies like high density memory storage require precise 2D and 3D nanopatterns. Plasma etching processes are essential to achieving the nanoscale precision required for these structures. Current plasma process development methods rely primarily on iterative trial and error or factorial design of experiment (DOE) to define the plasma process space. Here we evaluate the efficacy of the software tool Recipe Optimization for Deposition and Etching (RODEo) against standard industry methods at determining the process parameters of a high density O2 plasma system with three case studies. In the first case study, we demonstrate that RODEo is able to predict etch rates more accurately than a regression model based on a full factorial design while using 40% fewer experiments. In the second case study, we demonstrate that RODEo performs significantly better than a full factorial DOE at identifying optimal process conditions to maximize anisotropy. In the third case study we experimentally show how RODEo maximizes etch rates while using half the experiments of a full factorial DOE method. With enhanced process predictions and more accurate maps of the process space, RODEo reduces the number of experiments required to develop and optimize plasma processes.
Precision laser processing for micro electronics and fiber optic manufacturing
NASA Astrophysics Data System (ADS)
Webb, Andrew; Osborne, Mike; Foster-Turner, Gideon; Dinkel, Duane W.
2008-02-01
The application of laser based materials processing for precision micro scale manufacturing in the electronics and fiber optic industry is becoming increasingly widespread and accepted. This presentation will review latest laser technologies available and discuss the issues to be considered in choosing the most appropriate laser and processing parameters. High repetition rate, short duration pulsed lasers have improved rapidly in recent years in terms of both performance and reliability enabling flexible, cost effective processing of many material types including metal, silicon, plastic, ceramic and glass. Demonstrating the relevance of laser micromachining, application examples where laser processing is in use for production will be presented, including miniaturization of surface mount capacitors by applying a laser technique for demetalization of tracks in the capacitor manufacturing process and high quality laser machining of fiber optics including stripping, cleaving and lensing, resulting in optical quality finishes without the need for traditional polishing. Applications include telecoms, biomedical and sensing. OpTek Systems was formed in 2000 and provide fully integrated systems and sub contract services for laser processes. They are headquartered in the UK and are establishing a presence in North America through a laser processing facility in South Carolina and sales office in the North East.
Design of video processing and testing system based on DSP and FPGA
NASA Astrophysics Data System (ADS)
Xu, Hong; Lv, Jun; Chen, Xi'ai; Gong, Xuexia; Yang, Chen'na
2007-12-01
Based on high speed Digital Signal Processor (DSP) and Field Programmable Gate Array (FPGA), a video capture, processing and display system is presented, which is of miniaturization and low power. In this system, a triple buffering scheme was used for the capture and display, so that the application can always get a new buffer without waiting; The Digital Signal Processor has an image process ability and it can be used to test the boundary of workpiece's image. A video graduation technology is used to aim at the position which is about to be tested, also, it can enhance the system's flexibility. The character superposition technology realized by DSP is used to display the test result on the screen in character format. This system can process image information in real time, ensure test precision, and help to enhance product quality and quality management.
Telescope technology for space-borne submillimeter astronomy
NASA Technical Reports Server (NTRS)
Lehman, David H.; Helou, George
1990-01-01
The Precision Segmented Reflector (PSR) project which is developing telescope technology needed for future spaceborne submillimeter astronomy missions is described. Four major technical areas are under development. Lighweight composite mirrors and associated materials, precision structures and segmented reflector figure sensing and control are discussed. The objectives of the PSR project, approaches, and project technology status, are reported.
Performance and stability of mask process correction for EBM-7000
NASA Astrophysics Data System (ADS)
Saito, Yasuko; Chen, George; Wang, Jen-Shiang; Bai, Shufeng; Howell, Rafael; Li, Jiangwei; Tao, Jun; VanDenBroeke, Doug; Wiley, Jim; Takigawa, Tadahiro; Ohnishi, Takayuki; Kamikubo, Takashi; Hara, Shigehiro; Anze, Hirohito; Hattori, Yoshiaki; Tamamushi, Shuichi
2010-05-01
In order to support complex optical masks today and EUV masks in the near future, it is critical to correct mask patterning errors with a magnitude of up to 20nm over a range of 2000nm at mask scale caused by short range mask process proximity effects. A new mask process correction technology, MPC+, has been developed to achieve the target requirements for the next generation node. In this paper, the accuracy and throughput performance of MPC+ technology is evaluated using the most advanced mask writing tool, the EBM-70001), and high quality mask metrology . The accuracy of MPC+ is achieved by using a new comprehensive mask model. The results of through-pitch and through-linewidth linearity curves and error statistics for multiple pattern layouts (including both 1D and 2D patterns) are demonstrated and show post-correction accuracy of 2.34nm 3σ for through-pitch/through-linewidth linearity. Implementing faster mask model simulation and more efficient correction recipes; full mask area (100cm2) processing run time is less than 7 hours for 32nm half-pitch technology node. From these results, it can be concluded that MPC+ with its higher precision and speed is a practical technology for the 32nm node and future technology generations, including EUV, when used with advance mask writing processes like the EBM-7000.
A T-Type Capacitive Sensor Capable of Measuring 5-DOF Error Motions of Precision Spindles
Xiang, Kui; Qiu, Rongbo; Mei, Deqing; Chen, Zichen
2017-01-01
The precision spindle is a core component of high-precision machine tools, and the accurate measurement of its error motions is important for improving its rotation accuracy as well as the work performance of the machine. This paper presents a T-type capacitive sensor (T-type CS) with an integrated structure. The proposed sensor can measure the 5-degree-of-freedom (5-DOF) error motions of a spindle in-situ and simultaneously by integrating electrode groups in the cylindrical bore of the stator and the outer end face of its flange, respectively. Simulation analysis and experimental results show that the sensing electrode groups with differential measurement configuration have near-linear output for the different types of rotor displacements. What’s more, the additional capacitance generated by fringe effects has been reduced about 90% with the sensing electrode groups fabricated based on flexible printed circuit board (FPCB) and related processing technologies. The improved signal processing circuit has also been increased one times in the measuring performance and makes the measured differential output capacitance up to 93% of the theoretical values. PMID:28846631
Precision aerial application for site-specific rice crop management
USDA-ARS?s Scientific Manuscript database
Precision agriculture includes different technologies that allow agricultural professional to use information management tools to optimize agriculture production. The new technologies allow aerial application applicators to improve application accuracy and efficiency, which saves time and money for...
NASA Astrophysics Data System (ADS)
Fanara, Carlo; Shore, Paul; Nicholls, John R.; Lyford, Nicholas; Sommer, Phil; Fiske, Peter
2006-06-01
The next generation of 30-100 metre diameter extremely large telescopes (ELTs) requires large numbers of hexagonal primary mirror segments. As part of the Basic Technology programme run jointly by UCL and Cranfield University, a reactive atomic plasma technology (RAP(tm)) emerged from the US Lawrence Livermore National Laboratory (LLNL), is employed for the finishing of these surfaces. Results are presented on this novel etching technology. The Inductively Coupled Plasma (ICP) operated at atmospheric pressure using argon, activates the chemical species injected through its centre and promotes the fluorine-based chemical reactions at the surface. Process assessment trials on Ultra Low Expansion (ULE(tm)) plates, previously ground at high material removal rates, have been conducted. The quality of the surfaces produced on these samples using the RAP process are discussed. Substantial volumetric material removal rates of up to 0.446(21) mm 3/s at the highest process speed (1,200 mm/min) were found to be possible without pre-heating the substrate. The influences of power transfer, process speed and gas concentration on the removal rates have been determined. The suitability of the RAP process for revealing and removing sub-surface damage induced by high removal rate grinding is discussed. The results on SiC samples are reported elsewhere in this conference.
New solutions and applications of 3D computer tomography image processing
NASA Astrophysics Data System (ADS)
Effenberger, Ira; Kroll, Julia; Verl, Alexander
2008-02-01
As nowadays the industry aims at fast and high quality product development and manufacturing processes a modern and efficient quality inspection is essential. Compared to conventional measurement technologies, industrial computer tomography (CT) is a non-destructive technology for 3D-image data acquisition which helps to overcome their disadvantages by offering the possibility to scan complex parts with all outer and inner geometric features. In this paper new and optimized methods for 3D image processing, including innovative ways of surface reconstruction and automatic geometric feature detection of complex components, are presented, especially our work of developing smart online data processing and data handling methods, with an integrated intelligent online mesh reduction. Hereby the processing of huge and high resolution data sets is guaranteed. Besides, new approaches for surface reconstruction and segmentation based on statistical methods are demonstrated. On the extracted 3D point cloud or surface triangulation automated and precise algorithms for geometric inspection are deployed. All algorithms are applied to different real data sets generated by computer tomography in order to demonstrate the capabilities of the new tools. Since CT is an emerging technology for non-destructive testing and inspection more and more industrial application fields will use and profit from this new technology.
Precise positioning method for multi-process connecting based on binocular vision
NASA Astrophysics Data System (ADS)
Liu, Wei; Ding, Lichao; Zhao, Kai; Li, Xiao; Wang, Ling; Jia, Zhenyuan
2016-01-01
With the rapid development of aviation and aerospace, the demand for metal coating parts such as antenna reflector, eddy-current sensor and signal transmitter, etc. is more and more urgent. Such parts with varied feature dimensions, complex three-dimensional structures, and high geometric accuracy are generally fabricated by the combination of different manufacturing technology. However, it is difficult to ensure the machining precision because of the connection error between different processing methods. Therefore, a precise positioning method is proposed based on binocular micro stereo vision in this paper. Firstly, a novel and efficient camera calibration method for stereoscopic microscope is presented to solve the problems of narrow view field, small depth of focus and too many nonlinear distortions. Secondly, the extraction algorithms for law curve and free curve are given, and the spatial position relationship between the micro vision system and the machining system is determined accurately. Thirdly, a precise positioning system based on micro stereovision is set up and then embedded in a CNC machining experiment platform. Finally, the verification experiment of the positioning accuracy is conducted and the experimental results indicated that the average errors of the proposed method in the X and Y directions are 2.250 μm and 1.777 μm, respectively.
Atomic precision etch using a low-electron temperature plasma
NASA Astrophysics Data System (ADS)
Dorf, L.; Wang, J.-C.; Rauf, S.; Zhang, Y.; Agarwal, A.; Kenney, J.; Ramaswamy, K.; Collins, K.
2016-03-01
Sub-nm precision is increasingly being required of many critical plasma etching processes in the semiconductor industry. Accurate control over ion energy and ion/radical composition is needed during plasma processing to meet these stringent requirements. Described in this work is a new plasma etch system which has been designed with the requirements of atomic precision plasma processing in mind. In this system, an electron sheet beam parallel to the substrate surface produces a plasma with an order of magnitude lower electron temperature Te (~ 0.3 eV) and ion energy Ei (< 3 eV without applied bias) compared to conventional radio-frequency (RF) plasma technologies. Electron beam plasmas are characterized by higher ion-to-radical fraction compared to RF plasmas, so a separate radical source is used to provide accurate control over relative ion and radical concentrations. Another important element in this plasma system is low frequency RF bias capability which allows control of ion energy in the 2-50 eV range. Presented in this work are the results of etching of a variety of materials and structures performed in this system. In addition to high selectivity and low controllable etch rate, an important requirement of atomic precision etch processes is no (or minimal) damage to the remaining material surface. It has traditionally not been possible to avoid damage in RF plasma processing systems, even during atomic layer etch. The experiments for Si etch in Cl2 based plasmas in the aforementioned etch system show that damage can be minimized if the ion energy is kept below 10 eV. Layer-by-layer etch of Si is also demonstrated in this etch system using electrical and gas pulsing.
Latest technologies on ultrasonic cleaning
NASA Astrophysics Data System (ADS)
Hofstetter, Hans U.
2007-05-01
UCM-AG manufactures Ultrasonic Cleaning Machines for highest quality requirements. The company has the know-how for cleaning and supplies cleaning systems together with the cleaning process. With a UCM of Switzerland Cleaning System, the customer gets the system itself, the cleaning process with a guarantee for the specified result but also all auxiliary equipment needed for perfect results. Therefore UCM also supplies fixtures, linkage to existing automated fabrication facilities water treatment plants etc. Thus the UCM customer gets a turnkey installation - ready to operate and including know-how. UCM of Switzerland will describe the latest technology in ultrasonic precision cleaning on the example of a recent and sophisticated installation. The installation consists of three interlinked cleaning systems which operate completely automated. The 1st system is designed for pre-cleaning to remove waxes, pitch and protection lacquers with environmentally friendly solvents which are non hazardous to the health of the operators. The 2nd system cleans the parts prior to inspection and operates with neutral or slightly alkaline detergents. The 3rd system is designed for final cleaning prior to vacuum coating and perfect results are required. It combines cleaning tanks and DI-Water rinse with lift out and vacuum dryer. The installation combines the latest technologies in ultrasonic cleaning for precision optical components. The system employs multi frequency immersed ultrasonic transducers and special rinsing technologies The complete installation will be explained in detail; the concept in its whole, the lay out, the particular setup of each cleaning system etc. will be shown and explained together with construction particulars of the complete installation.
How, precisely, can astronomy be of benefit to anyone?
NASA Astrophysics Data System (ADS)
Jones, Bernard J. T.
2011-06-01
Astronomy as an observational science is technology driven both from the point of view of data acquisition and of data processing and visualisation. Astronomy exploits a very wide base of technologies which are developed, enhanced and extended by users. Consequently, astronomy can return new and enhanced technologies to areas well outside of astronomy itself. My own hi-tech company, Astraguard, a video imaging company, is a small but significant example of that technology return. Astronomy can provide both know-how and people for a diverse variety of areas: security, industrial process control, medical and biological imaging, petrochemicals, databases, and the financial industries to name but a few. It is unfortunate that those who teach astronomy are generally not aware of these possibilities. In this lecture I hope to take a first step towards showing what is possible. I hope to convince the reader that astronomy education, at all levels, can play a significant role in career development outside of astronomy and in higher education in developing countries.
Research on the laser angle deception jamming technology of laser countermeasure
NASA Astrophysics Data System (ADS)
Ma, Shi-wei; Chen, Wen-jian; Gao, Wei; Duan, Yuan-yuan
2015-10-01
In recent years , laser guided weapons behave very well at destroying the military goals in the local wars, the single-shot probability, effective range and hitting precision getting better. And the semi-active laser guided weapons are the most widely used laser guided weapons. In order to improve the viability and protect important military goals, it's necessary to study the technology to against the semi-active guided weapons. This paper studies the working principle, the advantages and disadvantages of the semi-active guided weapons at first, and analyze the possibility of laser angle deception jamming system working. Then it analyzes the working principle and process of laser angle deception jamming technology. Finally it designs a half-real simulation system of laser angle deception jamming, which consists of semi-active laser guided weapons simulation system and laser angle deception jamming system. The simulation system demonstrates the working process of the laser angle deception jamming system. This paper provides fundamental base for the research on the countermeasure technology of semi-active laser guided weapons.
Structural optimization under overhang constraints imposed by additive manufacturing technologies
NASA Astrophysics Data System (ADS)
Allaire, G.; Dapogny, C.; Estevez, R.; Faure, A.; Michailidis, G.
2017-12-01
This article addresses one of the major constraints imposed by additive manufacturing processes on shape optimization problems - that of overhangs, i.e. large regions hanging over void without sufficient support from the lower structure. After revisiting the 'classical' geometric criteria used in the literature, based on the angle between the structural boundary and the build direction, we propose a new mechanical constraint functional, which mimics the layer by layer construction process featured by additive manufacturing technologies, and thereby appeals to the physical origin of the difficulties caused by overhangs. This constraint, as well as some variants, is precisely defined; their shape derivatives are computed in the sense of Hadamard's method, and numerical strategies are extensively discussed, in two and three space dimensions, to efficiently deal with the appearance of overhang features in the course of shape optimization processes.
2009-04-23
of Code Need for increased functionality will be a forcing function to bring the fields of software and systems engineering... of Software-Intensive Systems is Increasing 3 How Evolving Trends in Systems and Software Technologies Bode Well for Advancing the Precision of ...Engineering in Continued Partnership 4 How Evolving Trends in Systems and Software Technologies Bode Well for Advancing the
Energy efficient engine. Volume 2. Appendix A: Component development and integration program
NASA Technical Reports Server (NTRS)
Moracz, D. J.; Cook, C. R.
1981-01-01
The large size and the requirement for precise lightening cavities in a considerable portion of the titanium fan blades necessitated the development of a new manufacturing method. The approach which was selected for development incorporated several technologies including HIP diffusion bonding of titanium sheet laminates containing removable cores and isothermal forging of the blade form. The technology bases established in HIP/DB for composite blades and in isothermal forging for fan blades were applicable for development of the manufacturing process. The process techniques and parameters for producing and inspecting the cored diffusion bonded titanium laminate blade preform were established. The method was demonstrated with the production of twelve hollow simulated blade shapes for evaluation. Evaluations of the critical experiments conducted to establish procedures to produce hollow structures by a laminate/core/diffusion bonding approach are included. In addition the transfer of this technology to produce a hollow fan blade is discussed.
Field potential soil variability index to identify precision agriculture opportunity
USDA-ARS?s Scientific Manuscript database
Precision agriculture (PA) technologies used for identifying and managing within-field variability are not widely used despite decades of advancement. Technological innovations in agronomic tools, such as canopy reflectance or electrical conductivity sensors, have created opportunities to achieve a ...
NASA Technical Reports Server (NTRS)
Prevot, Thomas
2012-01-01
This paper describes the underlying principles and algorithms for computing the primary controller managed spacing (CMS) tools developed at NASA for precisely spacing aircraft along efficient descent paths. The trajectory-based CMS tools include slot markers, delay indications and speed advisories. These tools are one of three core NASA technologies integrated in NASAs ATM technology demonstration-1 (ATD-1) that will operationally demonstrate the feasibility of fuel-efficient, high throughput arrival operations using Automatic Dependent Surveillance Broadcast (ADS-B) and ground-based and airborne NASA technologies for precision scheduling and spacing.
NASA Astrophysics Data System (ADS)
Nie, Xuqing; Li, Shengyi; Song, Ci; Hu, Hao
2014-08-01
Due to the different curvature everywhere, the aspheric surface is hard to achieve high-precision accuracy by the traditional polishing process. Controlling of the mid-spatial frequency errors (MSFR), in particular, is almost unapproachable. In this paper, the combined fabrication process based on the smoothing polishing (SP) and magnetorheological finishing (MRF) is proposed. The pressure distribution of the rigid polishing lap and semi-flexible polishing lap is calculated. The shape preserving capacity and smoothing effect are compared. The feasibility of smoothing aspheric surface with the semi-flexible polishing lap is verified, and the key technologies in the SP process are discussed. Then, A K4 parabolic surface with the diameter of 500mm is fabricated based on the combined fabrication process. A Φ150 mm semi-flexible lap is used in the SP process to control the MSFR, and the deterministic MRF process is applied to figure the surface error. The root mean square (RMS) error of the aspheric surface converges from 0.083λ (λ=632.8 nm) to 0.008λ. The power spectral density (PSD) result shows that the MSFR are well restrained while the surface error has a great convergence.
Progress in ultrafast laser processing and future prospects
NASA Astrophysics Data System (ADS)
Sugioka, Koji
2017-03-01
The unique characteristics of ultrafast lasers have rapidly revolutionized materials processing after their first demonstration in 1987. The ultrashort pulse width of the laser suppresses heat diffusion to the surroundings of the processed region, which minimizes the formation of a heat-affected zone and thereby enables ultrahigh precision micro- and nanofabrication of various materials. In addition, the extremely high peak intensity can induce nonlinear multiphoton absorption, which extends the diversity of materials that can be processed to transparent materials such as glass. Nonlinear multiphoton absorption enables three-dimensional (3D) micro- and nanofabrication by irradiation with tightly focused femtosecond laser pulses inside transparent materials. Thus, ultrafast lasers are currently widely used for both fundamental research and practical applications. This review presents progress in ultrafast laser processing, including micromachining, surface micro- and nanostructuring, nanoablation, and 3D and volume processing. Advanced technologies that promise to enhance the performance of ultrafast laser processing, such as hybrid additive and subtractive processing, and shaped beam processing are discussed. Commercial and industrial applications of ultrafast laser processing are also introduced. Finally, future prospects of the technology are given with a summary.
Discovering New Diseases to Accelerate Precision Medicine.
Macrae, Calum A
2017-01-01
A rate-limiting step in multiple areas of medicine is the limited number of discrete disorders that current technologies are able to identify. Most clinical disease entities are aggregates of large numbers of discrete biological processes that simply happen to share one or two common features. We have begun to translate a wide range of new technologies to the clinic in an effort to improve the resolution and the efficiency of bedside diagnostics with a view to improving drug trials, genetic studies, and the effectiveness of the clinician in a digital environment. The general trajectory for change that new technologies will bring is outlined with some specific examples of areas where such change has already begun to occur.
Big Data and Genome Editing Technology: A New Paradigm of Cardiovascular Genomics.
Krittanawong, Chayakrit; Sun, Tao; Herzog, Eyal
2017-01-01
Opinion Statements: Cardiovascular diseases (CVDs) encompass a range of conditions extending from congenital heart disease to acute coronary syndrome most of which are heterogenous in nature and some of them are multiple genetic loci. However, the pathogenesis of most CVDs remains incompletely understood. The advance in genome-editing technologies, an engineering process of DNA sequences at precise genomic locations, has enabled a new paradigm that human genome can be precisely modified to achieve a therapeutic effect. Genome-editing includes the correction of genetic variants that cause disease, the addition of therapeutic genes to specific sites in the genomic locations, and the removal of deleterious genes or genome sequences. Site-specific genome engineering can be used as nucleases (known as molecular scissors) including zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) systems to provide remarkable opportunities for developing novel therapies in cardiovascular clinical care. Here we discuss genetic polymorphisms and mechanistic insights in CVDs with an emphasis on the impact of genome-editing technologies. The current challenges and future prospects for genomeediting technologies in cardiovascular medicine are also discussed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Present and future trends of laser materials processing in Japan
NASA Astrophysics Data System (ADS)
Matsunawa, Akira
1991-10-01
Lasers quickly penetrated into Japanese industries in the mid-80s. The paper reviews the present situation of industrial lasers and their applications in Japanese industries for materials removal, joining, and some surface modification technologies as well as their economical evaluation compared with competitive technologies. Laser cutting of metallic and nonmetallic thin sheets is widely prevalent even in small scale industries as a flexible manufacturing tool. As for the laser welding is concerned, industrial applications are rather limited in mass production lines. This mainly comes from the fact that the present laser technologies have not employed the adaptive control because of the lack of sensors, monitoring, and control systems which can tolerate the high-precision and high-speed processing. In spite of this situation, laser welding is rapidly increasing in recent years in industries such as automotive, machinery, electric/electronic, steel, heavy industries, etc. Laser surface modification technologies have attracted significant interest from industrial people, but actual application is very limited today. However, the number of R&D papers is increasing year by year. The paper also reviews these new technology trends in Japan.
Mazzarella, Luca
2018-01-01
On 8 and 9 February 2018, the IFOM-IEO campus in Milan hosted the Milan summit on Precision Medicine, which gathered clinical and translational research experts from academia, industry and regulatory bodies to discuss the state of the art of precision medicine in Europe. The meeting was pervaded by a generalised feeling of excitement for a field that is perceived to be technologically mature for the transition into clinical routine but still hampered by numerous obstacles of a methodological, ethical, regulatory and possibly cultural nature. Through lively discussions, the attendees tried to identify realistic ways to implement a technology-rich precision approach to cancer patients.
Induced Pluripotent Stem Cells: at the Heart of Cardiovascular Precision Medicine
Chen, Ian Y.; Matsa, Elena; Wu, Joseph C.
2018-01-01
The advent of human induced pluripotent stem cell (hiPSC) technology has revitalized much of the efforts within the past decade to more fully realize the potential of human embryonic stem cells (hESCs). Adding to the possibility of generating unlimited supplies of any cell types of interest, the hiPSC technology now enables the derivation of cells with patient-specific phenotypes. With the Precision Medicine Initiative, it is clear that the hiPSC technology will play a vital role in the advancement of cardiovascular research and medicine. This review summarizes the tremendous and continuing progress that has been made in the field of hiPSC technology, with particular emphasis on cardiovascular disease modeling and drug development. Wherever appropriate, the growing roles of hiPSC technology in the practice of precision medicine will be specifically discussed. PMID:27009425
NASA Astrophysics Data System (ADS)
Fantoni, Julie
2011-12-01
Several classes of integrated microelectronic circuits require highly precise and stable analog components that cannot be obtained directly through standard CMOS fabrication processes. Those components must thus be calibrated either by a modification of the fabrication process or by the application of a post-fabrication tuning procedure. Many successful post-fabrication tuning processes have been introduced in the field of resistor calibration, including resistor laser trimming which is the core subject of this thesis. In this thesis, trimmed components are standard CMOS 180nm technology polysilicon resistors, integrated in circuits specially designed to allow laser intervention on their surface. The laser used is a nanosecond pulsed laser for which the fluence is set below the melting threshold of polysilicon in order to prevent damage to the material structure. This novel low-power highly localized procedure reduces the risk of damaging sensitive surrounding circuits and requires no additional fabrication step, allowing smaller dies areas and reduced costs. Precise, reliable and reproducible devices have been tuned using this technique with a precision below 500 ppm. The main objective of this research is to study and analyze the effect of the laser parameters variation on the trimmed component properties and to optimize those parameters in regard of the desired precision and stability of the final product. Raman spectroscopic measurements are performed to observe and characterize structural modifications of the polysilicon material following laser irradiation as precise resistance measurements and standardized in-oven aging tests allow the complete characterization of the device in regard of precision and stability. It is shown that for a given precision, this novel low-power trimming technique produces devices with a stability comparable to those obtained with another trimming technology such as the pulsed current method. An electrical model is also developed to predict the resistance modification with the laser fluence, the number of pulses as well as the duration of those pulses. The model is shown to be 1 500 ppm accurate when laser fluence is set accordingly to the melting threshold of polysilicon. Concerning stability, results show that, following a 300 h, 150 °C aging procedure, laser trimmed components present a 1.2% resistance drift from their initial resistance value whereas a 0.7% drift is observed on untrimmed samples. Those results are comparable to those obtained with the pulsed current trimming technique which produces trimmed component with a 1% resistance drift following a 200 h 162 °C aging procedure. Recommendations are given in the conclusion as to which laser parameters to modify and how to modify them in order to produce the desired trimmed devices with the best performance possible.
NASA Astrophysics Data System (ADS)
Zhong, Xianyun; Hou, Xi; Yang, Jinshan
2016-09-01
Nickel is the unique material in the X-ray telescopes. And it has the typical soft material characteristics with low hardness high surface damage and low stability of thermal. The traditional fabrication techniques are exposed to lots of problems, including great surface scratches, high sub-surface damage and poor surface roughness and so on. The current fabrication technology for the nickel aspheric mainly adopt the single point diamond turning(SPDT), which has lots of advantages such as high efficiency, ultra-precision surface figure, low sub-surface damage and so on. But the residual surface texture of SPDT will cause great scattering losses and fall far short from the requirement in the X-ray applications. This paper mainly investigates the magnetorheological finishing (MRF) techniques for the super-smooth processing on the nickel optics. Through the study of the MRF polishing techniques, we obtained the ideal super-smooth polishing technique based on the self-controlled MRF-fluid NS-1, and finished the high-precision surface figure lower than RMS λ/80 (λ=632.8nm) and super-smooth roughness lower than Ra 0.3nm on the plane reflector and roughness lower than Ra 0.4nm on the convex cone. The studying of the MRF techniques makes a great effort to the state-of-the-art nickel material processing level for the X-ray optical systems applications.
Investigation of Space Interferometer Control Using Imaging Sensor Output Feedback
NASA Technical Reports Server (NTRS)
Leitner, Jesse A.; Cheng, Victor H. L.
2003-01-01
Numerous space interferometry missions are planned for the next decade to verify different enabling technologies towards very-long-baseline interferometry to achieve high-resolution imaging and high-precision measurements. These objectives will require coordinated formations of spacecraft separately carrying optical elements comprising the interferometer. High-precision sensing and control of the spacecraft and the interferometer-component payloads are necessary to deliver sub-wavelength accuracy to achieve the scientific objectives. For these missions, the primary scientific product of interferometer measurements may be the only source of data available at the precision required to maintain the spacecraft and interferometer-component formation. A concept is studied for detecting the interferometer's optical configuration errors based on information extracted from the interferometer sensor output. It enables precision control of the optical components, and, in cases of space interferometers requiring formation flight of spacecraft that comprise the elements of a distributed instrument, it enables the control of the formation-flying vehicles because independent navigation or ranging sensors cannot deliver the high-precision metrology over the entire required geometry. Since the concept can act on the quality of the interferometer output directly, it can detect errors outside the capability of traditional metrology instruments, and provide the means needed to augment the traditional instrumentation to enable enhanced performance. Specific analyses performed in this study include the application of signal-processing and image-processing techniques to solve the problems of interferometer aperture baseline control, interferometer pointing, and orientation of multiple interferometer aperture pairs.
NASA Astrophysics Data System (ADS)
Yoshida, Yasunori; Wada, Hikaru; Izumi, Konami; Tokito, Shizuo
2017-05-01
In this work, we demonstrate that highly conductive metal interconnects can be fabricated on the surface of three-dimensional objects using “omnidirectional ink jet” (OIJ) printing technology. OIJ printing technology makes it possible to perform ink jet printing in all directions by combining the motion of a 6-axis vertically articulated robot with precise positioning and a thermal drying process, which allows for the printing of stacked layers. By using OIJ technology, we were the first to successfully fabricate printed interconnect layers having a very low electrical resistance of 12 mΩ over a 10 mm length. Moreover, the results of the high-current test demonstrated that the printed interconnects can withstand high-current-flow of 5 A for 30 min or more.
Wu, Cao; Chen, Zhou; Hu, Ya; Rao, Zhiyuan; Wu, Wangping; Yang, Zhaogang
2018-05-15
Crystallization is a significant process employed to produce a wide variety of materials in pharmaceutical and food area. The control of crystal dimension, crystallinity, and shape is very important because they will affect the subsequent filtration, drying and grinding performance as well as the physical and chemical properties of the material. This review summarizes the special features of crystallization technology and the preparation methods of nanocrystals, and discusses analytical technology which is used to control crystal quality and performance. The crystallization technology applications in pharmaceutics and foods are also outlined. These illustrated examples further help us to gain a better understanding of the crystallization technology for pharmaceutics and foods. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Use of Vacuum Degreasing for Precision Cleaning
NASA Technical Reports Server (NTRS)
Fox, Eric; Edwards, Kevin; Mitchell, Mark; Boothe, Richard
2017-01-01
Increasingly strict environmental regulations and the consequent phase out of many effective cleaning solvents has necessitated the development of novel cleaning chemistries and technologies. Among these is vacuum degreasing, a fully enclosed process that eliminates fugitive solvent emissions, thereby reducing cost, environmental, and health related exposure impacts. The effectiveness of vacuum degreasing using modified alcohol for common aerospace contaminants is reported and compared to current and legacy solvents.
Kassab, Ghassan S.; An, Gary; Sander, Edward A.; Miga, Michael; Guccione, Julius M.; Ji, Songbai; Vodovotz, Yoram
2016-01-01
In this era of tremendous technological capabilities and increased focus on improving clinical outcomes, decreasing costs, and increasing precision, there is a need for a more quantitative approach to the field of surgery. Multiscale computational modeling has the potential to bridge the gap to the emerging paradigms of Precision Medicine and Translational Systems Biology, in which quantitative metrics and data guide patient care through improved stratification, diagnosis, and therapy. Achievements by multiple groups have demonstrated the potential for 1) multiscale computational modeling, at a biological level, of diseases treated with surgery and the surgical procedure process at the level of the individual and the population; along with 2) patient-specific, computationally-enabled surgical planning, delivery, and guidance and robotically-augmented manipulation. In this perspective article, we discuss these concepts, and cite emerging examples from the fields of trauma, wound healing, and cardiac surgery. PMID:27015816
Design of Measure and Control System for Precision Pesticide Deploying Dynamic Simulating Device
NASA Astrophysics Data System (ADS)
Liang, Yong; Liu, Pingzeng; Wang, Lu; Liu, Jiping; Wang, Lang; Han, Lei; Yang, Xinxin
A measure and control system for precision deploying pesticide simulating equipment is designed in order to study pesticide deployment technology. The system can simulate every state of practical pesticide deployment, and carry through precise, simultaneous measure to every factor affecting pesticide deployment effects. The hardware and software incorporates a structural design of modularization. The system is divided into many different function modules of hardware and software, and exploder corresponding modules. The modules’ interfaces are uniformly defined, which is convenient for module connection, enhancement of system’s universality, explodes efficiency and systemic reliability, and make the program’s characteristics easily extended and easy maintained. Some relevant hardware and software modules can be adapted to other measures and control systems easily. The paper introduces the design of special numeric control system, the main module of information acquisition system and the speed acquisition module in order to explain the design process of the module.
A method of undifferenced ambiguity resolution for GPS+GLONASS precise point positioning
Yi, Wenting; Song, Weiwei; Lou, Yidong; Shi, Chuang; Yao, Yibin
2016-01-01
Integer ambiguity resolution is critical for achieving positions of high precision and for shortening the convergence time of precise point positioning (PPP). However, GLONASS adopts the signal processing technology of frequency division multiple access and results in inter-frequency code biases (IFCBs), which are currently difficult to correct. This bias makes the methods proposed for GPS ambiguity fixing unsuitable for GLONASS. To realize undifferenced GLONASS ambiguity fixing, we propose an undifferenced ambiguity resolution method for GPS+GLONASS PPP, which considers the IFCBs estimation. The experimental result demonstrates that the success rate of GLONASS ambiguity fixing can reach 75% through the proposed method. Compared with the ambiguity float solutions, the positioning accuracies of ambiguity-fixed solutions of GLONASS-only PPP are increased by 12.2%, 20.9%, and 10.3%, and that of the GPS+GLONASS PPP by 13.0%, 35.2%, and 14.1% in the North, East and Up directions, respectively. PMID:27222361
A method of undifferenced ambiguity resolution for GPS+GLONASS precise point positioning.
Yi, Wenting; Song, Weiwei; Lou, Yidong; Shi, Chuang; Yao, Yibin
2016-05-25
Integer ambiguity resolution is critical for achieving positions of high precision and for shortening the convergence time of precise point positioning (PPP). However, GLONASS adopts the signal processing technology of frequency division multiple access and results in inter-frequency code biases (IFCBs), which are currently difficult to correct. This bias makes the methods proposed for GPS ambiguity fixing unsuitable for GLONASS. To realize undifferenced GLONASS ambiguity fixing, we propose an undifferenced ambiguity resolution method for GPS+GLONASS PPP, which considers the IFCBs estimation. The experimental result demonstrates that the success rate of GLONASS ambiguity fixing can reach 75% through the proposed method. Compared with the ambiguity float solutions, the positioning accuracies of ambiguity-fixed solutions of GLONASS-only PPP are increased by 12.2%, 20.9%, and 10.3%, and that of the GPS+GLONASS PPP by 13.0%, 35.2%, and 14.1% in the North, East and Up directions, respectively.
Achieving the Heisenberg limit in quantum metrology using quantum error correction.
Zhou, Sisi; Zhang, Mengzhen; Preskill, John; Jiang, Liang
2018-01-08
Quantum metrology has many important applications in science and technology, ranging from frequency spectroscopy to gravitational wave detection. Quantum mechanics imposes a fundamental limit on measurement precision, called the Heisenberg limit, which can be achieved for noiseless quantum systems, but is not achievable in general for systems subject to noise. Here we study how measurement precision can be enhanced through quantum error correction, a general method for protecting a quantum system from the damaging effects of noise. We find a necessary and sufficient condition for achieving the Heisenberg limit using quantum probes subject to Markovian noise, assuming that noiseless ancilla systems are available, and that fast, accurate quantum processing can be performed. When the sufficient condition is satisfied, a quantum error-correcting code can be constructed that suppresses the noise without obscuring the signal; the optimal code, achieving the best possible precision, can be found by solving a semidefinite program.
Advanced plasma etch technologies for nanopatterning
NASA Astrophysics Data System (ADS)
Wise, Rich
2013-10-01
Advances in patterning techniques have enabled the extension of immersion lithography from 65/45 nm through 14/10 nm device technologies. A key to this increase in patterning capability has been innovation in the subsequent dry plasma etch processing steps. Multiple exposure techniques, such as litho-etch-litho-etch, sidewall image transfer, line/cut mask, and self-aligned structures, have been implemented to solution required device scaling. Advances in dry plasma etch process control across wafer uniformity and etch selectivity to both masking materials have enabled adoption of vertical devices and thin film scaling for increased device performance at a given pitch. Plasma etch processes, such as trilayer etches, aggressive critical dimension shrink techniques, and the extension of resist trim processes, have increased the attainable device dimensions at a given imaging capability. Precise control of the plasma etch parameters affecting across-design variation, defectivity, profile stability within wafer, within lot, and across tools has been successfully implemented to provide manufacturable patterning technology solutions. IBM has addressed these patterning challenges through an integrated total patterning solutions team to provide seamless and synergistic patterning processes to device and integration internal customers. We will discuss these challenges and the innovative plasma etch solutions pioneered by IBM and our alliance partners.
Advanced plasma etch technologies for nanopatterning
NASA Astrophysics Data System (ADS)
Wise, Rich
2012-03-01
Advances in patterning techniques have enabled the extension of immersion lithography from 65/45nm through 14/10nm device technologies. A key to this increase in patterning capability has been innovation in the subsequent dry plasma etch processing steps. Multiple exposure techniques such as litho-etch-litho-etch, sidewall image transfer, line/cut mask and self-aligned structures have been implemented to solution required device scaling. Advances in dry plasma etch process control, across wafer uniformity and etch selectivity to both masking materials and have enabled adoption of vertical devices and thin film scaling for increased device performance at a given pitch. Plasma etch processes such as trilayer etches, aggressive CD shrink techniques, and the extension of resist trim processes have increased the attainable device dimensions at a given imaging capability. Precise control of the plasma etch parameters affecting across design variation, defectivity, profile stability within wafer, within lot, and across tools have been successfully implemented to provide manufacturable patterning technology solutions. IBM has addressed these patterning challenges through an integrated Total Patterning Solutions team to provide seamless and synergistic patterning processes to device and integration internal customers. This paper will discuss these challenges and the innovative plasma etch solutions pioneered by IBM and our alliance partners.
Precise individualized armature for ear reconstruction
NASA Astrophysics Data System (ADS)
Evenhouse, Raymond J.; Chen, Xiaoming
1991-04-01
The cosmetic result of an ear restored surgically or via prosthetics is dependent on the surgeon''s ability to carve a precise cartilage armature at the time of surgery or the prosthetist''s ability to sculpt in wax an exact duplicate of the patient''s " missing" ear. Introducing CAD/CAM technology into the process benefits the esthetic outcome of these procedures. By utilizing serial section information derived from CAT MRI or moulage techniques a mirrorimage of the patient''s " donor" ear is generated. The resulting earform data is then used for the design of a cartilage armature produced by multi-axis milling or to produce by stereolithography a model which serves as the basis for a prosthesis.
Precision agriculture in large-scale mechanized farming
USDA-ARS?s Scientific Manuscript database
Precision agriculture involves a great deal of technologies and requires additional investments of money and time, but it can be practiced at different levels depending on the specific field and crop conditions and the resources and technology services available to the farmer. If practiced properly,...
A historical perspective of VR water management for improved crop production
USDA-ARS?s Scientific Manuscript database
Variable-rate water management, or the combination of precision agriculture technology and irrigation, has been enabled by many of the same technologies as other precision agriculture tools. However, adding variable-rate capability to existing irrigation equipment design, or designing new equipment ...
Autonomous calibration of single spin qubit operations
NASA Astrophysics Data System (ADS)
Frank, Florian; Unden, Thomas; Zoller, Jonathan; Said, Ressa S.; Calarco, Tommaso; Montangero, Simone; Naydenov, Boris; Jelezko, Fedor
2017-12-01
Fully autonomous precise control of qubits is crucial for quantum information processing, quantum communication, and quantum sensing applications. It requires minimal human intervention on the ability to model, to predict, and to anticipate the quantum dynamics, as well as to precisely control and calibrate single qubit operations. Here, we demonstrate single qubit autonomous calibrations via closed-loop optimisations of electron spin quantum operations in diamond. The operations are examined by quantum state and process tomographic measurements at room temperature, and their performances against systematic errors are iteratively rectified by an optimal pulse engineering algorithm. We achieve an autonomous calibrated fidelity up to 1.00 on a time scale of minutes for a spin population inversion and up to 0.98 on a time scale of hours for a single qubit π/2 -rotation within the experimental error of 2%. These results manifest a full potential for versatile quantum technologies.
Data-driven gradient algorithm for high-precision quantum control
NASA Astrophysics Data System (ADS)
Wu, Re-Bing; Chu, Bing; Owens, David H.; Rabitz, Herschel
2018-04-01
In the quest to achieve scalable quantum information processing technologies, gradient-based optimal control algorithms (e.g., grape) are broadly used for implementing high-precision quantum gates, but their performance is often hindered by deterministic or random errors in the system model and the control electronics. In this paper, we show that grape can be taught to be more effective by jointly learning from the design model and the experimental data obtained from process tomography. The resulting data-driven gradient optimization algorithm (d-grape) can in principle correct all deterministic gate errors, with a mild efficiency loss. The d-grape algorithm may become more powerful with broadband controls that involve a large number of control parameters, while other algorithms usually slow down due to the increased size of the search space. These advantages are demonstrated by simulating the implementation of a two-qubit controlled-not gate.
Functional Laser Trimming Of Thin Film Resistors On Silicon ICs
NASA Astrophysics Data System (ADS)
Mueller, Michael J.; Mickanin, Wes
1986-07-01
Modern Laser Wafer Trimming (LWT) technology achieves exceptional analog circuit performance and precision while maintain-ing the advantages of high production throughput and yield. Microprocessor-driven instrumentation has both emphasized the role of data conversion circuits and demanded sophisticated signal conditioning functions. Advanced analog semiconductor circuits with bandwidths over 1 GHz, and high precision, trimmable, thin-film resistors meet many of todays emerging circuit requirements. Critical to meeting these requirements are optimum choices of laser characteristics, proper materials, trimming process control, accurate modeling of trimmed resistor performance, and appropriate circuit design. Once limited exclusively to hand-crafted, custom integrated circuits, designs are now available in semi-custom circuit configurations. These are similar to those provided for digital designs and supported by computer-aided design (CAD) tools. Integrated with fully automated measurement and trimming systems, these quality circuits can now be produced in quantity to meet the requirements of communications, instrumentation, and signal processing markets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prabhakaran, Venkateshkumar; Johnson, Grant E.; Wang, Bingbing
Molecular-level understanding of electrochemical processes occurring at electrode-electrolyte interfaces (EEI) is key to the rational development of high-performance and sustainable electrochemical technologies. This article reports the development and first application of solid-state in situ electrochemical probes to study redox and catalytic processes occurring at well-defined EEI generated using soft-landing of mass- and charge-selected cluster ions (SL). In situ electrochemical probes with excellent mass transfer properties are fabricated using carefully-designed nanoporous ionic liquid membranes. SL enables deposition of pure active species that are not obtainable with other techniques onto electrode surfaces with precise control over charge state, composition, and kinetic energy.more » SL is, therefore, a unique tool for studying fundamental processes occurring at EEI. For the first time using an aprotic electrochemical probe, the effect of charge state (PMo12O403-/2-) and the contribution of building blocks of Keggin polyoxometalate (POM) clusters to redox processes are characterized by populating EEI with novel POM anions generated by electrospray ionization and gas phase dissociation. Additionally, a proton conducting electrochemical probe has been developed to characterize the reactive electrochemistry (oxygen reduction activity) of bare Pt clusters (Pt40 ~1 nm diameter), thus demonstrating the capability of the probe for studying reactions in controlled gaseous environments. The newly developed in situ electrochemical probes combined with ion SL provide a versatile method to characterize the EEI in solid-state redox systems and reactive electrochemistry at precisely-defined conditions. This capability will advance molecular-level understanding of processes occurring at EEI that are critical to many energy-related technologies.« less
NASA Astrophysics Data System (ADS)
Zhang, Xian; Zhou, Binquan; Li, Hong; Zhao, Xinghua; Mu, Weiwei; Wu, Wenfeng
2017-10-01
Navigation technology is crucial to the national defense and military, which can realize the measurement of orientation, positioning, attitude and speed for moving object. Inertial navigation is not only autonomous, real-time, continuous, hidden, undisturbed but also no time-limited and environment-limited. The gyroscope is the core component of the inertial navigation system, whose precision and size are the bottleneck of the performance. However, nuclear magnetic resonance gyroscope is characteristic of the advantage of high precision and small size. Nuclear magnetic resonance gyroscope can meet the urgent needs of high-tech weapons and equipment development of new generation. This paper mainly designs a set of photoelectric signal processing system for nuclear magnetic resonance gyroscope based on FPGA, which process and control the information of detecting laser .The photoelectric signal with high frequency carrier is demodulated by in-phase and quadrature demodulation method. Finally, the processing system of photoelectric signal can compensate the residual magnetism of the shielding barrel and provide the information of nuclear magnetic resonance gyroscope angular velocity.
Kim, Dong-Woo; Cho, Myeong-Woo; Seo, Tae-Il; Shin, Young-Jae
2008-01-01
Recently, the magnetorheological (MR) polishing process has been examined as a new ultra-precision polishing technology for micro parts in MEMS applications. In the MR polishing process, the magnetic force plays a dominant role. This method uses MR fluids which contains micro abrasives as a polishing media. The objective of the present research is to shed light onto the material removal mechanism under various slurry conditions for polishing and to investigate surface characteristics, including shape analysis and surface roughness measurement, of spots obtained from the MR polishing process using alumina abrasives. A series of basic experiments were first performed to determine the optimum polishing conditions for BK7 glass using prepared slurries by changing the process parameters, such as wheel rotating speed and electric current. Using the obtained results, groove polishing was then performed and the results are investigated. Outstanding surface roughness of Ra=3.8nm was obtained on the BK7 glass specimen. The present results highlight the possibility of applying this polishing method to ultra-precision micro parts production, especially in MEMS applications. PMID:27879705
Lasers in Materials Processing
NASA Astrophysics Data System (ADS)
Kukreja, L. M.; Paul, C. P.; Kumar, Atul; Kaul, R.; Ganesh, P.; Rao, B. T.
Laser is undoubtedly one of the most important inventions of the twentieth century. Today, it is widely deployed for a cornucopia of applications including materials processing. Different lasers such as CO2, Nd:YAG, excimer, copper vapor, diode, fiber lasers, etc., are being used extensively for various materials processing applications like cutting, welding, brazing, surface treatment, peening, and rapid manufacturing by adopting conventional and unconventional routes with unprecedented precision. In view of its potential for providing solution to the emerging problems of the industrial materials processing and manufacturing technologies, a comprehensive program on laser materials processing and allied technologies was initiated at our laboratory. A novel feature-based design and additive manufacturing technologies facilitated the laser rapid manufacturing of complex engineering components with superior performance. This technology is being extended for the fabrication of anatomically shaped prosthetics with internal heterogeneous architectures. Laser peening of spring steels brought significant improvement in its fatigue life. Laser surface treatments resulted in enhanced intergranular corrosion resistance of AISI 316(N) and 304 stainless steel. Parametric dependence of laser welding of dissimilar materials, AISI 316M stainless steel with alloy D9, was established for avoiding cracks under optimum processing conditions. In the domain of laser cutting and piercing, the development of a power ramped pulsed mode with high pulse repetition frequency and low duty cycle scheme could produce highly circular, narrow holes with minimum spattered pierced holes. A review of these experimental and some theoretical studies is presented and discussed in this chapter. These studies have provided deeper insight of fascinating laser-based materials processing application for industrial manufacturing technologies.
Using Natural Language Processing to Extract Abnormal Results From Cancer Screening Reports.
Moore, Carlton R; Farrag, Ashraf; Ashkin, Evan
2017-09-01
Numerous studies show that follow-up of abnormal cancer screening results, such as mammography and Papanicolaou (Pap) smears, is frequently not performed in a timely manner. A contributing factor is that abnormal results may go unrecognized because they are buried in free-text documents in electronic medical records (EMRs), and, as a result, patients are lost to follow-up. By identifying abnormal results from free-text reports in EMRs and generating alerts to clinicians, natural language processing (NLP) technology has the potential for improving patient care. The goal of the current study was to evaluate the performance of NLP software for extracting abnormal results from free-text mammography and Pap smear reports stored in an EMR. A sample of 421 and 500 free-text mammography and Pap reports, respectively, were manually reviewed by a physician, and the results were categorized for each report. We tested the performance of NLP to extract results from the reports. The 2 assessments (criterion standard versus NLP) were compared to determine the precision, recall, and accuracy of NLP. When NLP was compared with manual review for mammography reports, the results were as follows: precision, 98% (96%-99%); recall, 100% (98%-100%); and accuracy, 98% (96%-99%). For Pap smear reports, the precision, recall, and accuracy of NLP were all 100%. Our study developed NLP models that accurately extract abnormal results from mammography and Pap smear reports. Plans include using NLP technology to generate real-time alerts and reminders for providers to facilitate timely follow-up of abnormal results.
Monitoring Citrus Soil Moisture and Nutrients Using an IoT Based System.
Zhang, Xueyan; Zhang, Jianwu; Li, Lin; Zhang, Yuzhu; Yang, Guocai
2017-02-23
Chongqing mountain citrus orchard is one of the main origins of Chinese citrus. Its planting terrain is complex and soil parent material is diverse. Currently, the citrus fertilization, irrigation and other management processes still have great blindness. They usually use the same pattern and the same formula rather than considering the orchard terrain features, soil differences, species characteristics and the state of tree growth. With the help of the ZigBee technology, artificial intelligence and decision support technology, this paper has developed the research on the application technology of agricultural Internet of Things for real-time monitoring of citrus soil moisture and nutrients as well as the research on the integration of fertilization and irrigation decision support system. Some achievements were obtained including single-point multi-layer citrus soil temperature and humidity detection wireless sensor nodes and citrus precision fertilization and irrigation management decision support system. They were applied in citrus base in the Three Gorges Reservoir Area. The results showed that the system could help the grower to scientifically fertilize or irrigate, improve the precision operation level of citrus production, reduce the labor cost and reduce the pollution caused by chemical fertilizer.
Direct laser writing of auxetic structures: present capabilities and challenges
NASA Astrophysics Data System (ADS)
Hengsbach, Stefan; Díaz Lantada, Andrés
2014-08-01
Auxetic materials (or metamaterials) are those with a negative Poisson ratio (NPR) and that display the unexpected property of lateral expansion when stretched, as well as an equal and opposing densification when compressed. Such geometries are being progressively employed in the development of novel products, especially in the fields of intelligent expandable actuators, shape morphing structures and minimally invasive implantable devices. Although several micromanufacturing technologies have already been applied to the development of auxetic geometries and devices, additional precision is needed to take full advantage of their special mechanical properties. In this study we present a very promising approach for the development of auxetic metamaterials and devices based on the use of direct laser writing. The process stands out for its precision and complex three-dimensional (3D) geometries attainable without the need of supporting structures. To our knowledge it represents one of the first examples of the application of this technology to the manufacture of auxetic geometries and mechanical metamaterials, with details even more remarkable than those shown in very recent studies, almost reaching the current limit of this additive manufacturing technology. We have used some special 3D auxetic designs whose remarkable NPR has been previously highlighted.
Deterministic ion beam material adding technology for high-precision optical surfaces.
Liao, Wenlin; Dai, Yifan; Xie, Xuhui; Zhou, Lin
2013-02-20
Although ion beam figuring (IBF) provides a highly deterministic method for the precision figuring of optical components, several problems still need to be addressed, such as the limited correcting capability for mid-to-high spatial frequency surface errors and low machining efficiency for pit defects on surfaces. We propose a figuring method named deterministic ion beam material adding (IBA) technology to solve those problems in IBF. The current deterministic optical figuring mechanism, which is dedicated to removing local protuberances on optical surfaces, is enriched and developed by the IBA technology. Compared with IBF, this method can realize the uniform convergence of surface errors, where the particle transferring effect generated in the IBA process can effectively correct the mid-to-high spatial frequency errors. In addition, IBA can rapidly correct the pit defects on the surface and greatly improve the machining efficiency of the figuring process. The verification experiments are accomplished on our experimental installation to validate the feasibility of the IBA method. First, a fused silica sample with a rectangular pit defect is figured by using IBA. Through two iterations within only 47.5 min, this highly steep pit is effectively corrected, and the surface error is improved from the original 24.69 nm root mean square (RMS) to the final 3.68 nm RMS. Then another experiment is carried out to demonstrate the correcting capability of IBA for mid-to-high spatial frequency surface errors, and the final results indicate that the surface accuracy and surface quality can be simultaneously improved.
Precision segmented reflector, figure verification sensor
NASA Technical Reports Server (NTRS)
Manhart, Paul K.; Macenka, Steve A.
1989-01-01
The Precision Segmented Reflector (PSR) program currently under way at the Jet Propulsion Laboratory is a test bed and technology demonstration program designed to develop and study the structural and material technologies required for lightweight, precision segmented reflectors. A Figure Verification Sensor (FVS) which is designed to monitor the active control system of the segments is described, a best fit surface is defined, and an image or wavefront quality of the assembled array of reflecting panels is assessed
Lane, John W.; Day-Lewis, Frederick D.; Johnson, Carole D.; Dawson, Cian B.; Nelms, David L.; Miller, Cheryl; Wheeler, Jerrod D.; Harvey, Charles F.; Karam, Hanan N.
2008-01-01
Fiber‐optic distributed temperature sensing (FO DTS) is an emerging technology for characterizing and monitoring a wide range of important earth processes. FO DTS utilizes laser light to measure temperature along the entire length of standard telecommunications optical fibers. The technology can measure temperature every meter over FO cables up to 30 kilometers (km) long. Commercially available systems can measure fiber temperature as often as 4 times per minute, with thermal precision ranging from 0.1 to 0.01 °C depending on measurement integration time. In 2006, the U.S. Geological Survey initiated a project to demonstrate and evaluate DTS as a technology to support hydrologic studies. This paper demonstrates the potential of the technology to assess and monitor hydrologic processes through case‐study examples of FO DTS monitoring of stream‐aquifer interaction on the Shenandoah River near Locke's Mill, Virginia, and on Fish Creek, near Jackson Hole, Wyoming, and estuary‐aquifer interaction on Waquoit Bay, Falmouth, Massachusetts. The ability to continuously observe temperature over large spatial scales with high spatial and temporal resolution provides a new opportunity to observe and monitor a wide range of hydrologic processes with application to other disciplines including hazards, climate‐change, and ecosystem monitoring.
[Standardization and modeling of surgical processes].
Strauss, G; Schmitz, P
2016-12-01
Due to the technological developments around the operating room, surgery in the twenty-first century is undergoing a paradigm shift. Which technologies have already been integrated into the surgical routine? How can a favorable cost-benefit balance be achieved by the implementation of new software-based assistance systems? This article presents the state of the art technology as exemplified by a semi-automated operation system for otorhinolaryngology surgery. The main focus is on systems for implementation of digital handbooks and navigational functions in situ. On the basis of continuous development in digital imaging, decisions may by facilitated by individual patient models thus allowing procedures to be optimized. The ongoing digitization and linking of all relevant information enable a high level of standardization in terms of operating procedures. This may be used by assistance systems as a basis for complete documentation and high process reliability. Automation of processes in the operating room results in an increase in quality, precision and standardization so that the effectiveness and efficiency of treatment can be improved; however, care must be taken that detrimental consequences, such as loss of skills and placing too much faith in technology must be avoided by adapted training concepts.
Freeze Technology for Nuclear Applications - 13590
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rostmark, Susanne C.; Knutsson, Sven; Lindberg, Maria
2013-07-01
Freezing of soil materials is a complicated process of a number of physical processes: - freezing of pore water in a thermal gradient, - cryogenic suction causing water migration and - ice formation expanding pores inducing frost heave. Structural changes due to increase of effective stress during freezing also take place. The over consolidation gives a powerful dewatering/drying effect and the freeze process causes separation of contaminates. Artificial ground freezing (AGF is a well established technique first practiced in south Wales, as early as 1862. AGF is mostly used to stabilize tunnels and excavations. During the last ten years underwatermore » applications of freeze technologies based on the AGF have been explored in Sweden. The technology can, and has been, used in many different steps in a remediation action. Freeze Sampling where undisturbed samples are removed in both soft and hard sediment/sludge, Freeze Dredging; retrieval of sediment with good precision and minimal redistribution, and Freeze Drying; volume reduction of contaminated sludge/sediment. The application of these technologies in a nuclear or radioactive environment provides several advantages. Sampling by freezing gives for example an advantage of an undisturbed sample taken at a specified depth, salvaging objects by freezing or removal of sludges is other applications of this, for the nuclear industry, novel technology. (authors)« less
Inverter-based GTA welding machines improve fabrication
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sammons, M.
2000-05-01
While known as precision process, many fabricators using the gas tungsten arc welding (GTAW) process fight several common problems that hinder quality, slow production, frustrate the operator and otherwise prevent the process from achieving its full potential. These include a limited ability to tailor the weld bead profile, poor control of the arc direction and arc wandering, poor arc starting, unstable or inconsistent arcs in the AC mode, high-frequency interference with electronics and tungsten contamination. Fortunately, new GTA welding technology--made possible by advances with inverter-based power sources and micro-processor controls--can eliminate common productivity gremlins. Further, new AC/DC inverter-based GTA powermore » sources provide advanced arc shaping capabilities. As a result, many fabricators adopting this new technology have experienced phenomenal production increases, taken on new types of projects and reduced costs. Most importantly, the operators enjoy welding more.« less
Tunable laser techniques for improving the precision of observational astronomy
NASA Astrophysics Data System (ADS)
Cramer, Claire E.; Brown, Steven W.; Lykke, Keith R.; Woodward, John T.; Bailey, Stephen; Schlegel, David J.; Bolton, Adam S.; Brownstein, Joel; Doherty, Peter E.; Stubbs, Christopher W.; Vaz, Amali; Szentgyorgyi, Andrew
2012-09-01
Improving the precision of observational astronomy requires not only new telescopes and instrumentation, but also advances in observing protocols, calibrations and data analysis. The Laser Applications Group at the National Institute of Standards and Technology in Gaithersburg, Maryland has been applying advances in detector metrology and tunable laser calibrations to problems in astronomy since 2007. Using similar measurement techniques, we have addressed a number of seemingly disparate issues: precision flux calibration for broad-band imaging, precision wavelength calibration for high-resolution spectroscopy, and precision PSF mapping for fiber spectrographs of any resolution. In each case, we rely on robust, commercially-available laboratory technology that is readily adapted to use at an observatory. In this paper, we give an overview of these techniques.
Challenges in mold manufacturing for high precision molded diffractive optical elements
NASA Astrophysics Data System (ADS)
Pongs, Guido; Bresseler, Bernd; Schweizer, Klaus; Bergs, Thomas
2016-09-01
Isothermal precision glass molding of imaging optics is the key technology for mass production of precise optical elements. Especially for numerous consumer applications (e.g. digital cameras, smart phones, …), high precision glass molding is applied for the manufacturing of aspherical lenses. The usage of diffractive optical elements (DOEs) can help to further reduce the number of lenses in the optical systems which will lead to a reduced weight of hand-held optical devices. But today the application of molded glass DOEs is limited due to the technological challenges in structuring the mold surfaces. Depending on the application submicrometer structures are required on the mold surface. Furthermore these structures have to be replicated very precisely to the glass lens surface. Especially the micro structuring of hard and brittle mold materials such as Tungsten Carbide is very difficult and not established. Thus a multitude of innovative approaches using diffractive optical elements cannot be realized. Aixtooling has investigated in different mold materials and different suitable machining technologies for the micro- and sub-micrometer structuring of mold surfaces. The focus of the work lays on ultra-precision grinding to generate the diffractive pattern on the mold surfaces. This paper presents the latest achievements in diffractive structuring of Tungsten Carbide mold surfaces by ultra-precision grinding.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sciarrino, Fabio; De Martini, Francesco
In several quantum information (QI) phenomena of large technological importance the information is carried by the phase of the quantum superposition states, or qubits. The phase-covariant cloning machine (PQCM) addresses precisely the problem of optimally copying these qubits with the largest attainable 'fidelity'. We present a general scheme which realizes the 1{yields}3 phase covariant cloning process by a combination of three different QI processes: the universal cloning, the NOT gate, and the projection over the symmetric subspace of the output qubits. The experimental implementation of a PQCM for polarization encoded qubits, the first ever realized with photons, is reported.
[An experimental research on the fabrication of the fused porcelain to CAD/CAM molar crown].
Dai, Ning; Zhou, Yongyao; Liao, Wenhe; Yu, Qing; An, Tao; Jiao, Yiqun
2007-02-01
This paper introduced the fabrication process of the fused porcelain to molar crown with CAD/CAM technology. Firstly, preparation teeth data was retrieved by the 3D-optical measuring system. Then, we have reconstructed the inner surface designed the outer surface shape with the computer aided design software. Finally, the mini high-speed NC milling machine was used to produce the fused porcelain to CAD/CAM molar crown. The result has proved that the fabrication process is reliable and efficient. The dental restoration quality is steady and precise.
Use of adaptive walls in 2D tests
NASA Technical Reports Server (NTRS)
Archambaud, J. P.; Chevallier, J. P.
1984-01-01
A new method for computing the wall effects gives precise answers to some questions arising in adaptive wall concept applications: length of adapted regions, fairings with up and downstream regions, residual misadjustments effects, reference conditions. The acceleration of the iterative process convergence and the development of an efficient technology used in CERT T2 wind tunnels give in a single run the required test conditions. Samples taken from CAST 7 tests demonstrate the efficiency of the whole process to obtain significant results with considerations of tridimensional case extension.
A special vegetation index for the weed detection in sensor based precision agriculture.
Langner, Hans-R; Böttger, Hartmut; Schmidt, Helmut
2006-06-01
Many technologies in precision agriculture (PA) require image analysis and image- processing with weed and background differentiations. The detection of weeds on mulched cropland is one important image-processing task for sensor based precision herbicide applications. The article introduces a special vegetation index, the Difference Index with Red Threshold (DIRT), for the weed detection on mulched croplands. Experimental investigations in weed detection on mulched areas point out that the DIRT performs better than the Normalized Difference Vegetation Index (NDVI). The result of the evaluation with four different decision criteria indicate, that the new DIRT gives the highest reliability in weed/background differentiation on mulched areas. While using the same spectral bands (infrared and red) as the NDVI, the new DIRT is more suitable for weed detection than the other vegetation indices and requires only a small amount of additional calculation power. The new vegetation index DIRT was tested on mulched areas during automatic ratings with a special weed camera system. The test results compare the new DIRT and three other decision criteria: the difference between infrared and red intensity (Diff), the soil-adjusted quotient between infrared and red intensity (Quotient) and the NDVI. The decision criteria were compared with the definition of a worse case decision quality parameter Q, suitable for mulched croplands. Although this new index DIRT needs further testing, the index seems to be a good decision criterion for the weed detection on mulched areas and should also be useful for other image processing applications in precision agriculture. The weed detection hardware and the PC program for the weed image processing were developed with funds from the German Federal Ministry of Education and Research (BMBF).
Xu, Jianfeng; Zhang, Ningning
2014-12-01
Plant cell culture is emerging as an alternative bioproduction system for recombinant pharmaceuticals. Growing plant cells in vitro under controlled environmental conditions allows for precise control over cell growth and protein production, batch-to-batch product consistency and a production process aligned with current good manufacturing practices. With the recent US FDA approval and commercialization of the world's first plant cell-based recombinant pharmaceutical for human use, β-glucocerebrosidase for treatment of Gaucher's disease, a new era has come in which plant cell culture shows high potential to displace some established platform technologies in niche markets. This review updates the progress in plant cell culture processing technology, highlights recent commercial successes and discusses the challenges that must be overcome to make this platform commercially viable.
Precision genome engineering in lactic acid bacteria
2014-01-01
Innovative new genome engineering technologies for manipulating chromosomes have appeared in the last decade. One of these technologies, recombination mediated genetic engineering (recombineering) allows for precision DNA engineering of chromosomes and plasmids in Escherichia coli. Single-stranded DNA recombineering (SSDR) allows for the generation of subtle mutations without the need for selection and without leaving behind any foreign DNA. In this review we discuss the application of SSDR technology in lactic acid bacteria, with an emphasis on key factors that were critical to move this technology from E. coli into Lactobacillus reuteri and Lactococcus lactis. We also provide a blueprint for how to proceed if one is attempting to establish SSDR technology in a lactic acid bacterium. The emergence of CRISPR-Cas technology in genome engineering and its potential application to enhancing SSDR in lactic acid bacteria is discussed. The ability to perform precision genome engineering in medically and industrially important lactic acid bacteria will allow for the genetic improvement of strains without compromising safety. PMID:25185700
An investigation of the potential of rapid prototyping technology for image‐guided surgery
Rajon, Didier A.; Bova, Frank J.; Bhasin, R. Rick; Friedman, William A.
2006-01-01
Image‐guided surgery can be broken down into two broad categories: frame‐based guidance and frameless guidance. In order to reduce both the invasive nature of stereotactic guidance and the cost in equipment and time, we have developed a new guidance technique based on rapid prototyping (RP) technology. This new system first builds a computer model of the patient anatomy and then fabricates a physical reference frame that provides a precise and unique fit to the patient anatomy. This frame incorporates a means of guiding the surgeon along a preplanned surgical trajectory. This process involves (1) obtaining a high‐resolution CT or MR scan, (2) building a computer model of the region of interest, (3) developing a surgical plan and physical guide, (4) designing a frame with a unique fit to the patient's anatomy with a physical linkage to the surgical guide, and (5) fabricating the frame using an RP unit. Software was developed to support these processes. To test the accuracy of this process, we first scanned and reproduced a plastic phantom fabricated to validate the system's ability to build an accurate virtual model. A target on the phantom was then identified, a surgical approach planned, a surgical guide designed, and the accuracy and precision of guiding a probe to that target were determined. Steps 1 through 5 were also evaluated using a head phantom. The results show that the RP technology can replicate an object from CT scans with submillimeter resolution. The fabricated reference frames, when positioned on the surface of the phantom and used to guide a surgical probe, can position the probe tip with an accuracy of 1.7 mm at the probe tip. These results demonstrate that the RP technology can be used for the fabrication of customized positioning frames for use in image‐guided surgery. PACS number: 87.57.Gg PMID:17533357
Precision Machining Technology. Curriculum Guide.
ERIC Educational Resources Information Center
Idaho State Dept. of Education, Boise. Div. of Vocational Education.
This curriculum guide was developed from a Technical Committee Report prepared with the assistance of industry personnel and containing a Task List which is the basis of the guide. It presents competency-based program standards for courses in precision machining technology and is part of the Idaho Vocational Curriculum Guide Project, a cooperative…
Repurposing mainstream CNC machine tools for laser-based additive manufacturing
NASA Astrophysics Data System (ADS)
Jones, Jason B.
2016-04-01
The advent of laser technology has been a key enabler for industrial 3D printing, known as Additive Manufacturing (AM). Despite its commercial success and unique technical capabilities, laser-based AM systems are not yet able to produce parts with the same accuracy and surface finish as CNC machining. To enable the geometry and material freedoms afforded by AM, yet achieve the precision and productivity of CNC machining, hybrid combinations of these two processes have started to gain traction. To achieve the benefits of combined processing, laser technology has been integrated into mainstream CNC machines - effectively repurposing them as hybrid manufacturing platforms. This paper reviews how this engineering challenge has prompted beam delivery innovations to allow automated changeover between laser processing and machining, using standard CNC tool changers. Handling laser-processing heads using the tool changer also enables automated change over between different types of laser processing heads, further expanding the breadth of laser processing flexibility in a hybrid CNC. This paper highlights the development, challenges and future impact of hybrid CNCs on laser processing.
Multiplexed protein measurement: technologies and applications of protein and antibody arrays
Kingsmore, Stephen F.
2006-01-01
The ability to measure the abundance of many proteins precisely and simultaneously in experimental samples is an important, recent advance for static and dynamic, as well as descriptive and predictive, biological research. The value of multiplexed protein measurement is being established in applications such as comprehensive proteomic surveys, studies of protein networks and pathways, validation of genomic discoveries and clinical biomarker development. As standards do not yet exist that bridge all of these applications, the current recommended best practice for validation of results is to approach study design in an iterative process and to integrate data from several measurement technologies. This review describes current and emerging multiplexed protein measurement technologies and their applications, and discusses the remaining challenges in this field. PMID:16582876
NASA Technical Reports Server (NTRS)
1975-01-01
The Proceedings contain the papers presented at the Seventh Annual Precise Time and Time Interval (PTTI) Applications and Planning Meeting and the edited record of the discussion period following each paper. This meeting provided a forum to promote more effective, efficient, economical and skillful applications of PTTI technology to the many problem areas to which PTTI offers solutions. Specifically the purpose of the meeting is to: disseminate, coordinate, and exchange practical information associated with precise time and frequency; acquaint systems engineers, technicians and managers with precise time and frequency technology and its applications; and review present and future requirements for PTTI.
NASA Astrophysics Data System (ADS)
Furlong, Cosme; Yokum, Jeffrey S.; Pryputniewicz, Ryszard J.
2002-06-01
Sensitivity, accuracy, and precision characteristics in quantitative optical metrology techniques, and specifically in optoelectronic holography based on fiber optics and high-spatial and high-digital resolution cameras, are discussed in this paper. It is shown that sensitivity, accuracy, and precision dependent on both, the effective determination of optical phase and the effective characterization of the illumination-observation conditions. Sensitivity, accuracy, and precision are investigated with the aid of National Institute of Standards and Technology (NIST) traceable gages, demonstrating the applicability of quantitative optical metrology techniques to satisfy constantly increasing needs for the study and development of emerging technologies.
Research on the high-precision non-contact optical detection technology for banknotes
NASA Astrophysics Data System (ADS)
Jin, Xiaofeng; Liang, Tiancai; Luo, Pengfeng; Sun, Jianfeng
2015-09-01
The technology of high-precision laser interferometry was introduced for optical measurement of the banknotes in this paper. Taking advantage of laser short wavelength and high sensitivity, information of adhesive tape and cavity about the banknotes could be checked efficiently. Compared with current measurement devices, including mechanical wheel measurement device, Infrared measurement device, ultrasonic measurement device, the laser interferometry measurement has higher precision and reliability. This will improve the ability of banknotes feature information in financial electronic equipment.
Morgan, Gilberto; Aftimos, Philippe; Awada, Ahmad
2016-09-01
Precision oncology has been a strategy of prevention, screening, and treatment. Although much has been invested, have the results fallen so far short of the promise? The advancement of technology and research has opened new doors, yet a variety of pitfalls are present. This review presents the successes, failures, and opportunities of precision oncology in the current landscape. The use of targeted gene sequencing and the overwhelming results of superresponders have generated much excitement and support for precision oncology from the medical community. Despite notable successes, many challenges still pave the way of precision oncology: intratumoral heterogeneity, the need for serial biopsies, availability of treatments, target prioritization, ethical issues with germline incidental findings, medical education, clinical trial design, and costs. Precision oncology shows much potential through the use of next-generation sequencing and molecular advances, but does this potential warrant the investment? There are many obstacles on the way of this technology that should make us question if the investment (both monetary and man-hours) will live up to the promise. The review aims to not criticize this technology, but to give a realistic view of where we are, especially regarding cancer treatment and prevention.
Modular magazine for suitable handling of microparts in industry
NASA Astrophysics Data System (ADS)
Grimme, Ralf; Schmutz, Wolfgang; Schlenker, Dirk; Schuenemann, Matthias; Stock, Achim; Schaefer, Wolfgang
1998-01-01
Microassembly and microadjustment techniques are key technologies in the industrial production of hybrid microelectromechanical systems. One focal point in current microproduction research and engineering is the design and development of high-precision microassembly and microadjustment equipment capable of operating within the framework of flexible automated industrial production. As well as these developments, suitable microassembly tools for industrial use also need to be equipped with interfaces for the supply and delivery of microcomponents. The microassembly process necessitates the supply of microparts in a geometrically defined manner. In order to reduce processing steps and production costs, there is a demand for magazines capable of providing free accessibility to the fixed microcomponents. Commonly used at present are feeding techniques, which originate from the field of semiconductor production. However none of these techniques fully meets the requirements of industrial microassembly technology. A novel modular magazine set, developed and tested in a joint project, is presented here. The magazines are able to hold microcomponents during cleaning, inspection and assembly without nay additional handling steps. The modularity of their design allows for maximum technical flexibility. The modular magazine fits into currently practiced SEMI standards. The design and concept of the magazine enables industrial manufacturers to promote a cost-efficient and flexible precision assembly of microelectromechanical systems.
Stripping and splicing polyimide-coated fibers
NASA Astrophysics Data System (ADS)
Duke, Douglas; Kanda, Yoshiharu; Tobita, Kenyo; Yamauchi, Ryozo
2011-05-01
Polyimide is often used as a coating material for optical fibers used in high temperature environments such as aerospace or oil and gas sensor applications. Unfortunately, polyimide coating is very difficult to strip by conventional mechanical stripping methods. The glass fiber is easily damaged if the stripping process is not extremely well controlled. Stripping the polyimide coating by heating with a flame or arc typically results in a significant reduction in fiber strength. Strength may be maintained by using hot acid stripping, however the use of the strong hot acid presents safety hazards and also requires controlled and safe waste disposal. Another issue with polyimide coating is variability of the coating diameter from various manufacturers or due to different polyimide coating processes. This not only complicates the polyimide stripping issue, but also presents problems with precise clamping and alignment during splicing, especially when it is necessary to splice with a short cleave length. In this paper, we present new polyimide coating stripping technology. The significant feature of this stripping technology is achievement of good strength while avoiding the use of hot acid or heating. We also developed a new specialty fiber fusion splicer that enables precise alignment and splicing regardless of the variability of polyimide coating diameter, even when clamping on the coating.
Oil defect detection of electrowetting display
NASA Astrophysics Data System (ADS)
Chiang, Hou-Chi; Tsai, Yu-Hsiang; Yan, Yung-Jhe; Huang, Ting-Wei; Mang, Ou-Yang
2015-08-01
In recent years, transparent display is an emerging topic in display technologies. Apply in many fields just like mobile device, shopping or advertising window, and etc. Electrowetting Display (EWD) is one kind of potential transparent display technology advantages of high transmittance, fast response time, high contrast and rich color with pigment based oil system. In mass production process of Electrowetting Display, oil defects should be found by Automated Optical Inspection (AOI) detection system. It is useful in determination of panel defects for quality control. According to the research of our group, we proposed a mechanism of AOI detection system detecting the different kinds of oil defects. This mechanism can detect different kinds of oil defect caused by oil overflow or material deteriorated after oil coating or driving. We had experiment our mechanism with a 6-inch Electrowetting Display panel from ITRI, using an Epson V750 scanner with 1200 dpi resolution. Two AOI algorithms were developed, which were high speed method and high precision method. In high precision method, oil jumping or non-recovered can be detected successfully. This mechanism of AOI detection system can be used to evaluate the oil uniformity in EWD panel process. In the future, our AOI detection system can be used in quality control of panel manufacturing for mass production.
All-passive pixel super-resolution of time-stretch imaging
Chan, Antony C. S.; Ng, Ho-Cheung; Bogaraju, Sharat C. V.; So, Hayden K. H.; Lam, Edmund Y.; Tsia, Kevin K.
2017-01-01
Based on image encoding in a serial-temporal format, optical time-stretch imaging entails a stringent requirement of state-of-the-art fast data acquisition unit in order to preserve high image resolution at an ultrahigh frame rate — hampering the widespread utilities of such technology. Here, we propose a pixel super-resolution (pixel-SR) technique tailored for time-stretch imaging that preserves pixel resolution at a relaxed sampling rate. It harnesses the subpixel shifts between image frames inherently introduced by asynchronous digital sampling of the continuous time-stretch imaging process. Precise pixel registration is thus accomplished without any active opto-mechanical subpixel-shift control or other additional hardware. Here, we present the experimental pixel-SR image reconstruction pipeline that restores high-resolution time-stretch images of microparticles and biological cells (phytoplankton) at a relaxed sampling rate (≈2–5 GSa/s)—more than four times lower than the originally required readout rate (20 GSa/s) — is thus effective for high-throughput label-free, morphology-based cellular classification down to single-cell precision. Upon integration with the high-throughput image processing technology, this pixel-SR time-stretch imaging technique represents a cost-effective and practical solution for large scale cell-based phenotypic screening in biomedical diagnosis and machine vision for quality control in manufacturing. PMID:28303936
NASA Astrophysics Data System (ADS)
Liu, Yahui; Fan, Xiaoqian; Lv, Chen; Wu, Jian; Li, Liang; Ding, Dawei
2018-02-01
Information fusion method of INS/GPS navigation system based on filtering technology is a research focus at present. In order to improve the precision of navigation information, a navigation technology based on Adaptive Kalman Filter with attenuation factor is proposed to restrain noise in this paper. The algorithm continuously updates the measurement noise variance and processes noise variance of the system by collecting the estimated and measured values, and this method can suppress white noise. Because a measured value closer to the current time would more accurately reflect the characteristics of the noise, an attenuation factor is introduced to increase the weight of the current value, in order to deal with the noise variance caused by environment disturbance. To validate the effectiveness of the proposed algorithm, a series of road tests are carried out in urban environment. The GPS and IMU data of the experiments were collected and processed by dSPACE and MATLAB/Simulink. Based on the test results, the accuracy of the proposed algorithm is 20% higher than that of a traditional Adaptive Kalman Filter. It also shows that the precision of the integrated navigation can be improved due to the reduction of the influence of environment noise.
NASA Astrophysics Data System (ADS)
Mertus, Lou; Symmons, Alan
2012-10-01
In recent years, the trend within the molded optics community has been an overall advancement in the capability to diamond grind molds using a variety of grinding techniques. Improvements in grinding equipment, materials and tooling have enabled higher quality ceramic and carbide molds and thereby lenses. Diamond turned molds from ductile metals are still used prevalently throughout the molding industry. Each technology presents a unique set of advantages and disadvantages whether used for precision injection molding of plastic optics or precision glass molding. This paper reviews the manufacturing techniques for each approach and applicable molding process. The advantages and disadvantages of each are compared and analyzed. The subtle differences that exist in optics molded from each technique and the impact they have on the performance in various applications is reviewed. Differences stemming from tooling material properties, material-specific minor defects, as well as cutting and grinding process-induced artifacts are described in detail as well as their influence on the roughness, waviness, and form errors present on the molded surface. A comparison with results between similar surfaces for both diamond grinding and diamond turning is presented.
A Method for Assessing the Accuracy of a Photogrammetry System for Precision Deployable Structures
NASA Technical Reports Server (NTRS)
Moore, Ashley
2005-01-01
The measurement techniques used to validate analytical models of large deployable structures are an integral Part of the technology development process and must be precise and accurate. Photogrammetry and videogrammetry are viable, accurate, and unobtrusive methods for measuring such large Structures. Photogrammetry uses Software to determine the three-dimensional position of a target using camera images. Videogrammetry is based on the same principle, except a series of timed images are analyzed. This work addresses the accuracy of a digital photogrammetry system used for measurement of large, deployable space structures at JPL. First, photogrammetry tests are performed on a precision space truss test article, and the images are processed using Photomodeler software. The accuracy of the Photomodeler results is determined through, comparison with measurements of the test article taken by an external testing group using the VSTARS photogrammetry system. These two measurements are then compared with Australis photogrammetry software that simulates a measurement test to predict its accuracy. The software is then used to study how particular factors, such as camera resolution and placement, affect the system accuracy to help design the setup for the videogrammetry system that will offer the highest level of accuracy for measurement of deploying structures.
NASA Technical Reports Server (NTRS)
2002-01-01
Glenn Research Center sponsored an SBIR contract with ENTECH, in which the company worked to mold its successful terrestrial concentrator technology into applications that would generate solar power for space missions. ENTECH's first application made use of small, dome-shaped Fresnel lenses to direct sunlight onto high- efficiency photovoltaic cells. After some key adjustments, the mini- dome lens array was flown as part of the U.S. Air Force/NASA Photovoltaic Array Space Power Plus Diagnostics (PASP Plus) flight experiment in 1994. Due to their three-dimensional shape, the mini- dome lenses entailed construction by a batch molding process, which is naturally more costly than a continuous process. To overcome this disadvantage and meet the requirement for precise solar pointing in two axes, ENTECH started developing solar concentrator arrays for space using a line-focus lens that can be mass-produced by a continuous process. This new technology, named Solar Concentrator Array with Refractive Linear Element Technology (SCARLET), was created with support from Glenn and the Ballistic Missile Defense Organization, and was used to power the NASA/Jet Propulsion Laboratory Deep Space 1 spacecraft.
NASA SBIR Subtopic S2.04 "Advanced Optical Components"
NASA Technical Reports Server (NTRS)
Stahl, H. Philip
2009-01-01
The primary purpose of this subtopic is to develop and demonstrate technologies to manufacture ultra-low-cost precision optical systems for very large x-ray, UV/optical or infrared telescopes. Potential solutions include but are not limited to direct precision machining, rapid optical fabrication, slumping or replication technologies to manufacture 1 to 2 meter (or larger) precision quality mirror or lens segments (either normal incidence for uv/optical/infrared or grazing incidence for x-ray). An additional key enabling technology for UV/optical telescopes is a broadband (from 100 nm to 2500 nm) high-reflectivity mirror coating with extremely uniform amplitude and polarization properties which can be deposited on 1 to 3 meter class mirror.
27th Annual Precise Time and Time Interval (PTTI) Applications and Planning Meeting
NASA Technical Reports Server (NTRS)
Sydnor, Richard L. (Editor)
1996-01-01
This document is a compilation of technical papers presented at the 27th Annual Precise Time and Time Interval (PTTI) Applications and Planning Meeting, held November 29 - December 1, 1995 at San Diego, CA. Papers are in the following categories: Recent developments in rubidium, cesium, and hydrogen-based frequency standards; and in cryogenic and trapped-ion technology; International and transnational applications of PTTI technology with emphasis on satellite laser tracking, GLONASS timing, intercomparison of national time scales and international telecommunications; Applications of PTTI technology to the telecommunications, power distribution, platform positioning, and geophysical survey industries; Applications of PTTI technology to evolving military communications and navigation systems; and Dissemination of precise time and frequency by means of Global Positioning System (GPS), Global Satellite Navigation System (GLONASS), MILSTAR, LORAN, and synchronous communications satellites.
Precision Machining Technology. Technical Committee Report.
ERIC Educational Resources Information Center
Idaho State Dept. of Education, Boise. Div. of Vocational Education.
This Technical Committee Report prepared by industry representatives in Idaho lists the skills currently necessary for an employee in that state to obtain a job in precision machining technology, retain a job once hired, and advance in that occupational field. (Task lists are grouped according to duty areas generally used in industry settings, and…
NASA Astrophysics Data System (ADS)
Ilev, Ilko K.; Walker, Bennett; Calhoun, William; Hassan, Moinuddin
2016-03-01
Biophotonics is an emerging field in modern biomedical technology that has opened up new horizons for transfer of state-of-the-art techniques from the areas of lasers, fiber optics and biomedical optics to the life sciences and medicine. This field continues to vastly expand with advanced developments across the entire spectrum of biomedical applications ranging from fundamental "bench" laboratory studies to clinical patient "bedside" diagnostics and therapeutics. However, in order to translate these technologies to clinical device applications, the scientific and industrial community, and FDA are facing the requirement for a thorough evaluation and review of laser radiation safety and efficacy concerns. In many cases, however, the review process is complicated due the lack of effective means and standard test methods to precisely analyze safety and effectiveness of some of the newly developed biophotonics techniques and devices. There is, therefore, an immediate public health need for new test protocols, guidance documents and standard test methods to precisely evaluate fundamental characteristics, performance quality and safety of these technologies and devices. Here, we will overview our recent developments of novel test methodologies for safety and efficacy evaluation of some emerging biophotonics technologies and medical devices. These methodologies are based on integrating the advanced features of state-of-the-art optical sensor technologies and approaches such as high-resolution fiber-optic sensing, confocal and optical coherence tomography imaging, and infrared spectroscopy. The presentation will also illustrate some methodologies developed and implemented for testing intraocular lens implants, biochemical contaminations of medical devices, ultrahigh-resolution nanoscopy, and femtosecond laser therapeutics.
Management of laser welding based on analysis informative signals
NASA Astrophysics Data System (ADS)
Zvezdin, V. V.; Rakhimov, R. R.; Saubanov, Ruz R.; Israfilov, I. H.; Akhtiamov, R. F.
2017-09-01
Features of formation precision weld of metal were presented. It has been shown that the quality of the welding process depends not only on the energy characteristics of the laser processing facility, the temperature of the surface layer, but also on the accuracy of positioning laser focus relative to seam and the workpiece surface. So the laser focus positioning accuracy is an estimate of the quality of the welding process. This approach allows to build a system automated control of the laser technological complex with the stabilization of the setpoint accuracy of of positioning of the laser beam relative to the workpiece surface.
NASA Astrophysics Data System (ADS)
Lösel, P.
2017-06-01
Large area Micromegas detectors will be employed for the first time in high-energy physics experiments. To cope with increasing background rates, associated with the steadily increasing luminosity of LHC to 10 times design luminosity, the present detector technology in the current innermost stations of the muon endcap system of the ATLAS experiment (the Small Wheel), will be replaced in 2019/2020 by resistive strip Micromegas and small strip TGC detectors. Both technologies will provide tracking and trigger information. In the "New Small Wheel" the Micromegas will be arranged in eight detection layers built of trapezoidally shaped quadruplets of four different sizes covering in total about 1200 m2 of detection plane. In order to achieve 15 % transverse momentum resolution for 1 TeV muons, a challenging mechanical precision is required in the construction of each active plane, with an alignment of the readout strips at the level of 30 μm RMS along the precision coordinate and 80 μm RMS perpendicular to the plane. Each individual Micromegas plane must achieve a spatial resolution better than 100 μm at background rates up to 15 kHz/cm2 while being operated in an inhomogeneous magnetic field (B <= 0.3 T). The required mechanical precision for the production of the components and their assembly, on such large area detectors, is a key point and must be controlled during construction and integration. Particularly the alignment of the readout strips within a quadruplet appears to be demanding. The readout strips are etched on PCB boards using photolithographic processes. Depending on the type of the module, 3 or 5 PCB boards need to be joined and precisely aligned to form a full readout plane. The precision in the alignment is reached either by use of precision mechanical holes or by optical masks, both referenced to the strip patterns. Assembly procedures have been developed to build the single panels with the required mechanical precision and to assemble them in a module including the four metallic micro-meshes. Methods to confirm the precision of components and assembly are based on precise optical devices and X-ray or cosmic muon investigations. We will report on the construction procedures for the Micromegas quadruplets, on the quality control procedures and results, and on the assembly and calibration methods.
Fabrication of high precision metallic freeform mirrors with magnetorheological finishing (MRF)
NASA Astrophysics Data System (ADS)
Beier, Matthias; Scheiding, Sebastian; Gebhardt, Andreas; Loose, Roman; Risse, Stefan; Eberhardt, Ramona; Tünnermann, Andreas
2013-09-01
The fabrication of complex shaped metal mirrors for optical imaging is a classical application area of diamond machining techniques. Aspherical and freeform shaped optical components up to several 100 mm in diameter can be manufactured with high precision in an acceptable amount of time. However, applications are naturally limited to the infrared spectral region due to scatter losses for shorter wavelengths as a result of the remaining periodic diamond turning structure. Achieving diffraction limited performance in the visible spectrum demands for the application of additional polishing steps. Magnetorheological Finishing (MRF) is a powerful tool to improve figure and finish of complex shaped optics at the same time in a single processing step. The application of MRF as a figuring tool for precise metal mirrors is a nontrivial task since the technology was primarily developed for figuring and finishing a variety of other optical materials, such as glasses or glass ceramics. In the presented work, MRF is used as a figuring tool for diamond turned aluminum lightweight mirrors with electroless nickel plating. It is applied as a direct follow-up process after diamond machining of the mirrors. A high precision measurement setup, composed of an interferometer and an advanced Computer Generated Hologram with additional alignment features, allows for precise metrology of the freeform shaped optics in short measuring cycles. Shape deviations less than 150 nm PV / 20 nm rms are achieved reliably for freeform mirrors with apertures of more than 300 mm. Characterization of removable and induced spatial frequencies is carried out by investigating the Power Spectral Density.
NASA Astrophysics Data System (ADS)
Zhou, Yu; Wang, Tianyi; Dai, Bing; Li, Wenjun; Wang, Wei; You, Chengwu; Wang, Kejia; Liu, Jinsong; Wang, Shenglie; Yang, Zhengang
2018-02-01
Inspired by the extensive application of terahertz (THz) imaging technologies in the field of aerospace, we exploit a THz frequency modulated continuous-wave imaging method with continuous wavelet transform (CWT) algorithm to detect a multilayer heat shield made of special materials. This method uses the frequency modulation continuous-wave system to catch the reflected THz signal and then process the image data by the CWT with different basis functions. By calculating the sizes of the defects area in the final images and then comparing the results with real samples, a practical high-precision THz imaging method is demonstrated. Our method can be an effective tool for the THz nondestructive testing of composites, drugs, and some cultural heritages.
Overcoming gaps and bottlenecks to advance precision agriculture
USDA-ARS?s Scientific Manuscript database
Maintaining a clear understanding of the technology gaps, knowledge needs, and training bottlenecks is required for improving adoption of precision agriculture. As an industry, precision agriculture embraces tools, methods, and practices that are constantly changing, requiring industry, education, a...
In-line monitoring of granule moisture in fluidized-bed dryers using microwave resonance technology.
Buschmüller, Caroline; Wiedey, Wolfgang; Döscher, Claas; Dressler, Jochen; Breitkreutz, Jörg
2008-05-01
This is the first report on in-line moisture measurement of pharmaceutical products by microwave resonance technology. In order to meet the FDA's PAT approach, a microwave resonance sensor appropriate for pharmaceutical use was developed and implemented into two different fluidized-bed dryers. The novel sensor enables a continuous moisture measurement independent from the product density. Hence, for the first time precise real time determination of the moisture in pharmaceutical granules becomes possible. The qualification of the newly developed sensor was performed by drying placebo granules under experimental conditions and the validation using drug loaded granules under real process conditions. The results of the investigations show good correlations between water content of the granules determined by the microwave resonance sensor and both reference methods, loss on drying by infrared light exposure and Karl Fischer titration. Furthermore, a considerable time saving in the drying process was achieved through monitoring the residual water content continuously by microwave resonance technology instead of the formerly used discontinuous methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prabhakaran, Venkateshkumar; Johnson, Grant E.; Wang, Bingbing
2016-11-07
Molecular-level understanding of electrochemical processes occurring at electrode-electrolyte interfaces (EEI) is key to the rational development of high-performance and sustainable electrochemical technologies. This article reports the development and first application of solid-state in situ electrochemical probes to study redox and catalytic processes occurring at well-defined EEI generated using soft-landing of mass- and charge-selected cluster ions (SL). In situ electrochemical probes with excellent mass transfer properties are fabricated using carefully-designed nanoporous ionic liquid membranes. SL enables deposition of pure active species that are not obtainable with other techniques onto electrode surfaces with precise control over charge state, composition, and kinetic energy.more » SL is, therefore, a unique tool for studying fundamental processes occurring at EEI. For the first time using an aprotic electrochemical probe, the effect of charge state (PMo12O403-/2-) and the contribution of building blocks of Keggin polyoxometalate (POM) clusters to redox processes are characterized by populating EEI with novel POM anions generated by electrospray ionization and gas phase dissociation. Additionally, a proton conducting electrochemical probe has been developed to characterize the reactive electrochemistry (oxygen reduction activity) of bare Pt clusters (Pt40 ~1 nm diameter), thus demonstrating the capability of the probe for studying reactions in controlled gaseous environments. The newly developed in situ electrochemical probes combined with ion SL provide a versatile method to characterize the EEI in solid-state redox systems and reactive electrochemistry at precisely-defined conditions. This capability will advance molecular-level understanding of processes occurring at EEI that are critical to many energy-related technologies.« less
Tang, Rui; Ma, Long-Fei; Rong, Zhi-Xia; Li, Mo-Dan; Zeng, Jian-Ping; Wang, Xue-Dong; Liao, Hong-En; Dong, Jia-Hong
2018-04-01
Augmented reality (AR) technology is used to reconstruct three-dimensional (3D) images of hepatic and biliary structures from computed tomography and magnetic resonance imaging data, and to superimpose the virtual images onto a view of the surgical field. In liver surgery, these superimposed virtual images help the surgeon to visualize intrahepatic structures and therefore, to operate precisely and to improve clinical outcomes. The keywords "augmented reality", "liver", "laparoscopic" and "hepatectomy" were used for searching publications in the PubMed database. The primary source of literatures was from peer-reviewed journals up to December 2016. Additional articles were identified by manual search of references found in the key articles. In general, AR technology mainly includes 3D reconstruction, display, registration as well as tracking techniques and has recently been adopted gradually for liver surgeries including laparoscopy and laparotomy with video-based AR assisted laparoscopic resection as the main technical application. By applying AR technology, blood vessels and tumor structures in the liver can be displayed during surgery, which permits precise navigation during complex surgical procedures. Liver transformation and registration errors during surgery were the main factors that limit the application of AR technology. With recent advances, AR technologies have the potential to improve hepatobiliary surgical procedures. However, additional clinical studies will be required to evaluate AR as a tool for reducing postoperative morbidity and mortality and for the improvement of long-term clinical outcomes. Future research is needed in the fusion of multiple imaging modalities, improving biomechanical liver modeling, and enhancing image data processing and tracking technologies to increase the accuracy of current AR methods. Copyright © 2018 First Affiliated Hospital, Zhejiang University School of Medicine in China. Published by Elsevier B.V. All rights reserved.
Precise time technology for selected Air Force systems: Present status and future requirements
NASA Technical Reports Server (NTRS)
Yannoni, N. F.
1981-01-01
Precise time and time interval (PTTI) technology is becoming increasingly significant to Air Force operations as digital techniques find expanded utility in military missions. Timing has a key role in the function as well as in navigation. A survey of the PTTI needs of several Air Force systems is presented. Current technology supporting these needs was reviewed and new requirements are emphasized for systems as they transfer from initial development to final operational deployment.
Advancing Precision Nuclear Medicine and Molecular Imaging for Lymphoma.
Wright, Chadwick L; Maly, Joseph J; Zhang, Jun; Knopp, Michael V
2017-01-01
PET with fluorodeoxyglucose F 18 ( 18 F FDG-PET) is a meaningful biomarker for the detection, targeted biopsy, and treatment of lymphoma. This article reviews the evolution of 18 F FDG-PET as a putative biomarker for lymphoma and addresses the current capabilities, challenges, and opportunities to enable precision medicine practices for lymphoma. Precision nuclear medicine is driven by new imaging technologies and methodologies to more accurately detect malignant disease. Although quantitative assessment of response is limited, such technologies will enable a more precise metabolic mapping with much higher definition image detail and thus may make it a robust and valid quantitative response assessment methodology. Copyright © 2016 Elsevier Inc. All rights reserved.
[Medical imaging in tumor precision medicine: opportunities and challenges].
Xu, Jingjing; Tan, Yanbin; Zhang, Minming
2017-05-25
Tumor precision medicine is an emerging approach for tumor diagnosis, treatment and prevention, which takes account of individual variability of environment, lifestyle and genetic information. Tumor precision medicine is built up on the medical imaging innovations developed during the past decades, including the new hardware, new imaging agents, standardized protocols, image analysis and multimodal imaging fusion technology. Also the development of automated and reproducible analysis algorithm has extracted large amount of information from image-based features. With the continuous development and mining of tumor clinical and imaging databases, the radiogenomics, radiomics and artificial intelligence have been flourishing. Therefore, these new technological advances bring new opportunities and challenges to the application of imaging in tumor precision medicine.
NASA Astrophysics Data System (ADS)
Kong, Zhenglun; Luo, Junyi; Xu, Shengpu; Li, Ting
2018-02-01
Image segmentation plays an important role in medical science. One application is multimodality imaging, especially the fusion of structural imaging with functional imaging, which includes CT, MRI and new types of imaging technology such as optical imaging to obtain functional images. The fusion process require precisely extracted structural information, in order to register the image to it. Here we used image enhancement, morphometry methods to extract the accurate contours of different tissues such as skull, cerebrospinal fluid (CSF), grey matter (GM) and white matter (WM) on 5 fMRI head image datasets. Then we utilized convolutional neural network to realize automatic segmentation of images in deep learning way. Such approach greatly reduced the processing time compared to manual and semi-automatic segmentation and is of great importance in improving speed and accuracy as more and more samples being learned. The contours of the borders of different tissues on all images were accurately extracted and 3D visualized. This can be used in low-level light therapy and optical simulation software such as MCVM. We obtained a precise three-dimensional distribution of brain, which offered doctors and researchers quantitative volume data and detailed morphological characterization for personal precise medicine of Cerebral atrophy/expansion. We hope this technique can bring convenience to visualization medical and personalized medicine.
Progress on glass ceramic ZERODUR enabling nanometer precision
NASA Astrophysics Data System (ADS)
Jedamzik, Ralf; Kunisch, Clemens; Nieder, Johannes; Weber, Peter; Westerhoff, Thomas
2016-03-01
The Semiconductor Industry is making continuous progress in shrinking feature size developing technologies and process to achieve < 10 nm feature size. The required Overlay specification for successful production is in the range one nanometer or even smaller. Consequently, materials designed into metrology systems of exposure or inspection tools need to fulfill ever tighter specification on the coefficient of thermal expansion (CTE). The glass ceramic ZERODUR® is a well-established material in critical components of microlithography wafer stepper and offered with an extremely low coefficient of thermal expansion, the tightest tolerance available on market. SCHOTT is continuously improving manufacturing processes and it's method to measure and characterize the CTE behavior of ZERODUR®. This paper is focusing on the "Advanced Dilatometer" for determination of the CTE developed at SCHOTT in the recent years and introduced into production in Q1 2015. The achievement for improving the absolute CTE measurement accuracy and the reproducibility are described in detail. Those achievements are compared to the CTE measurement accuracy reported by the Physikalische Technische Bundesanstalt (PTB), the National Metrology Institute of Germany. The CTE homogeneity is of highest importance to achieve nanometer precision on larger scales. Additionally, the paper presents data on the short scale CTE homogeneity and its improvement in the last two years. The data presented in this paper will explain the capability of ZERODUR® to enable the extreme precision required for future generation of lithography equipment and processes.
Study of multi-functional precision optical measuring system for large scale equipment
NASA Astrophysics Data System (ADS)
Jiang, Wei; Lao, Dabao; Zhou, Weihu; Zhang, Wenying; Jiang, Xingjian; Wang, Yongxi
2017-10-01
The effective application of high performance measurement technology can greatly improve the large-scale equipment manufacturing ability. Therefore, the geometric parameters measurement, such as size, attitude and position, requires the measurement system with high precision, multi-function, portability and other characteristics. However, the existing measuring instruments, such as laser tracker, total station, photogrammetry system, mostly has single function, station moving and other shortcomings. Laser tracker needs to work with cooperative target, but it can hardly meet the requirement of measurement in extreme environment. Total station is mainly used for outdoor surveying and mapping, it is hard to achieve the demand of accuracy in industrial measurement. Photogrammetry system can achieve a wide range of multi-point measurement, but the measuring range is limited and need to repeatedly move station. The paper presents a non-contact opto-electronic measuring instrument, not only it can work by scanning the measurement path but also measuring the cooperative target by tracking measurement. The system is based on some key technologies, such as absolute distance measurement, two-dimensional angle measurement, automatically target recognition and accurate aiming, precision control, assembly of complex mechanical system and multi-functional 3D visualization software. Among them, the absolute distance measurement module ensures measurement with high accuracy, and the twodimensional angle measuring module provides precision angle measurement. The system is suitable for the case of noncontact measurement of large-scale equipment, it can ensure the quality and performance of large-scale equipment throughout the process of manufacturing and improve the manufacturing ability of large-scale and high-end equipment.
Use of Terrestrial Laser Scanning Technology for Long Term High Precision Deformation Monitoring
Vezočnik, Rok; Ambrožič, Tomaž; Sterle, Oskar; Bilban, Gregor; Pfeifer, Norbert; Stopar, Bojan
2009-01-01
The paper presents a new methodology for high precision monitoring of deformations with a long term perspective using terrestrial laser scanning technology. In order to solve the problem of a stable reference system and to assure the high quality of possible position changes of point clouds, scanning is integrated with two complementary surveying techniques, i.e., high quality static GNSS positioning and precise tacheometry. The case study object where the proposed methodology was tested is a high pressure underground pipeline situated in an area which is geologically unstable. PMID:22303152
Detailed study of scratch drive actuator characteristics using high-speed imaging
NASA Astrophysics Data System (ADS)
Li, Lijie; Brown, James G.; Uttamchandani, Deepak G.
2001-10-01
Microactuators are one of the key components in MEMS and Microsystems technology, and various designs have been realized through different fabrication processes. One type of microactuator commonly used is the scratch drive actuator (SDA) that is frequently fabricated by surface micromachining processes. An experimental investigation has been conducted on the characteristics of SDAs fabricated using the Cronos Microsystems MUMPs process. The motivation is to compare the response of SDAs located on the same die, and SDAs located on the different dies from the same fabrication batch. A high-speed imaging camera has been used to precisely determine important SDA characteristics such as step size, velocity, maximum velocity, and acceleration over long travel distance. These measurements are important from a repeatability point of view, and in order to fully exploit the potential of the SDA as a precise positioning mechanism. 2- and 3-stage SDAs have been designed and fabricated for these experiments. Typical step sizes varying from 7 nm at a driving voltage of 60 V to 23 nm at 290 V have been obtained.
Precision Therapy of Head and Neck Squamous Cell Carcinoma.
Polverini, P J; D'Silva, N J; Lei, Y L
2018-06-01
Precision medicine is an approach to disease prevention and treatment that takes into account genetic variability and environmental and lifestyle influences that are unique to each patient. It facilitates stratification of patient populations that vary in their susceptibility to disease and response to therapy. Shared databases and the implementation of new technology systems designed to advance the integration of this information will enable health care providers to more accurately predict and customize prevention and treatment strategies for patients. Although precision medicine has had a limited impact in most areas of medicine, it has been shown to be an increasingly successful approach to cancer therapy. Despite early promising results targeting aberrant signaling pathways or inhibitors designed to block tumor-driven processes such as angiogenesis, limited success emphasizes the need to discover new biomarkers and treatment targets that are more reliable in predicting response to therapy and result in better health outcomes. Recent successes in the use of immunity-inducing antibodies have stimulated increased interest in the use of precision immunotherapy of head and neck squamous cell carcinoma. Using next-generation sequencing, the precise profiling of tumor-infiltrating lymphocytes has great promise to identify hypoimmunogenic cancer that would benefit from a rationally designed combinatorial approach. Continued interrogation of tumors will reveal new actionable targets with increasing therapeutic efficacy and fulfill the promise of precision therapy of head and neck cancer.
USDA-ARS?s Scientific Manuscript database
Plant Transformation Technologies is a comprehensive, authoritative book focusing on cutting-edge plant biotechnologies, offering in-depth, forward-looking information on methods for controlled and accurate genetic engineering. In response to ever-increasing pressure for precise and efficient integr...
2001-07-01
hardware - in - loop (HWL) simulation is also developed...Firings / Engine Tests Structure Test Hardware In - Loop Simulation Subsystem Test Lab Tests Seeker Actuators Sensors Electronics Propulsion Model Aero Model...Structure Test Hardware In - Loop Simulation Subsystem Test Lab Tests Seeker Actuators Sensors Electronics Propulsion Model Aero Model Model
ERIC Educational Resources Information Center
Derntl, Michael; Parrish, Patrick; Botturi, Luca
2010-01-01
Instructional design and technology products result from many options and constraints. On the one hand, solutions should be creative, effective and flexible; on the other hand, developers and instructors need precise guidance and details on what to do during development and implementation. Communication of and about designs is supported by design…
Photovoltaic Cells Mppt Algorithm and Design of Controller Monitoring System
NASA Astrophysics Data System (ADS)
Meng, X. Z.; Feng, H. B.
2017-10-01
This paper combined the advantages of each maximum power point tracking (MPPT) algorithm, put forward a kind of algorithm with higher speed and higher precision, based on this algorithm designed a maximum power point tracking controller with ARM. The controller, communication technology and PC software formed a control system. Results of the simulation and experiment showed that the process of maximum power tracking was effective, and the system was stable.
COBALT CoOperative Blending of Autonomous Landing Technology
NASA Technical Reports Server (NTRS)
Carson, John M. III; Restrepo, Carolina I.; Robertson, Edward A.; Seubert, Carl R.; Amzajerdian, Farzin
2016-01-01
COBALT is a terrestrial test platform for development and maturation of GN&C (Guidance, Navigation and Control) technologies for PL&HA (Precision Landing and Hazard Avoidance). The project is developing a third generation, Langley Navigation Doppler Lidar (NDL) for ultra-precise velocity and range measurements, which will be integrated and tested with the JPL Lander Vision System (LVS) for Terrain Relative Navigation (TRN) position estimates. These technologies together provide navigation that enables controlled precision landing. The COBALT hardware will be integrated in 2017 into the GN&C subsystem of the Xodiac rocket-propulsive Vertical Test Bed (VTB) developed by Masten Space Systems (MSS), and two terrestrial flight campaigns will be conducted: one open-loop (i.e., passive) and one closed-loop (i.e., active).
Active porous transition towards spatiotemporal control of molecular flow in a crystal membrane
NASA Astrophysics Data System (ADS)
Takasaki, Yuichi; Takamizawa, Satoshi
2015-11-01
Fluidic control is an essential technology widely found in processes such as flood control in land irrigation and cell metabolism in biological tissues. In any fluidic control system, valve function is the key mechanism used to actively regulate flow and miniaturization of fluidic regulation with precise workability will be particularly vital in the development of microfluidic control. The concept of crystal engineering is alternative to processing technology in microstructure construction, as the ultimate microfluidic devices must provide molecular level control. Consequently, microporous crystals can instantly be converted to microfluidic devices if introduced in an active transformability of porous structure and geometry. Here we show that the introduction of a stress-induced martensitic transition mechanism converts a microporous molecular crystal into an active fluidic device with spatiotemporal molecular flow controllability through mechanical reorientation of subnanometre channels.
Xu, Jianfeng; Zhang, Ningning
2014-01-01
Plant cell culture is emerging as an alternative bioproduction system for recombinant pharmaceuticals. Growing plant cells in vitro under controlled environmental conditions allows for precise control over cell growth and protein production, batch-to-batch product consistency and a production process aligned with current good manufacturing practices. With the recent US FDA approval and commercialization of the world’s first plant cell-based recombinant pharmaceutical for human use, β-glucocerebrosidase for treatment of Gaucher’s disease, a new era has come in which plant cell culture shows high potential to displace some established platform technologies in niche markets. This review updates the progress in plant cell culture processing technology, highlights recent commercial successes and discusses the challenges that must be overcome to make this platform commercially viable. PMID:25621170
Technological advances in precision medicine and drug development.
Maggi, Elaine; Patterson, Nicole E; Montagna, Cristina
New technologies are rapidly becoming available to expand the arsenal of tools accessible for precision medicine and to support the development of new therapeutics. Advances in liquid biopsies, which analyze cells, DNA, RNA, proteins, or vesicles isolated from the blood, have gained particular interest for their uses in acquiring information reflecting the biology of tumors and metastatic tissues. Through advancements in DNA sequencing that have merged unprecedented accuracy with affordable cost, personalized treatments based on genetic variations are becoming a real possibility. Extraordinary progress has been achieved in the development of biological therapies aimed to even further advance personalized treatments. We provide a summary of current and future applications of blood based liquid biopsies and how new technologies are utilized for the development of biological therapeutic treatments. We discuss current and future sequencing methods with an emphasis on how technological advances will support the progress in the field of precision medicine.
Large deployable antenna program. Phase 1: Technology assessment and mission architecture
NASA Technical Reports Server (NTRS)
Rogers, Craig A.; Stutzman, Warren L.
1991-01-01
The program was initiated to investigate the availability of critical large deployable antenna technologies which would enable microwave remote sensing missions from geostationary orbits as required for Mission to Planet Earth. Program goals for the large antenna were: 40-meter diameter, offset-fed paraboloid, and surface precision of 0.1 mm rms. Phase 1 goals were: to review the state-of-the-art for large, precise, wide-scanning radiometers up to 60 GHz; to assess critical technologies necessary for selected concepts; to develop mission architecture for these concepts; and to evaluate generic technologies to support the large deployable reflectors necessary for these missions. Selected results of the study show that deployable reflectors using furlable segments are limited by surface precision goals to 12 meters in diameter, current launch vehicles can place in geostationary only a 20-meter class antenna, and conceptual designs using stiff reflectors are possible with areal densities of 2.4 deg/sq m.
Alternative, Green Processes for the Precision Cleaning of Aerospace Hardware
NASA Technical Reports Server (NTRS)
Maloney, Phillip R.; Grandelli, Heather Eilenfield; Devor, Robert; Hintze, Paul E.; Loftin, Kathleen B.; Tomlin, Douglas J.
2014-01-01
Precision cleaning is necessary to ensure the proper functioning of aerospace hardware, particularly those systems that come in contact with liquid oxygen or hypergolic fuels. Components that have not been cleaned to the appropriate levels may experience problems ranging from impaired performance to catastrophic failure. Traditionally, this has been achieved using various halogenated solvents. However, as information on the toxicological and/or environmental impacts of each came to light, they were subsequently regulated out of use. The solvent currently used in Kennedy Space Center (KSC) precision cleaning operations is Vertrel MCA. Environmental sampling at KSC indicates that continued use of this or similar solvents may lead to high remediation costs that must be borne by the Program for years to come. In response to this problem, the Green Solvents Project seeks to develop state-of-the-art, green technologies designed to meet KSCs precision cleaning needs.Initially, 23 solvents were identified as potential replacements for the current Vertrel MCA-based process. Highly halogenated solvents were deliberately omitted since historical precedents indicate that as the long-term consequences of these solvents become known, they will eventually be regulated out of practical use, often with significant financial burdens for the user. Three solvent-less cleaning processes (plasma, supercritical carbon dioxide, and carbon dioxide snow) were also chosen since they produce essentially no waste stream. Next, experimental and analytical procedures were developed to compare the relative effectiveness of these solvents and technologies to the current KSC standard of Vertrel MCA. Individually numbered Swagelok fittings were used to represent the hardware in the cleaning process. First, the fittings were cleaned using Vertrel MCA in order to determine their true cleaned mass. Next, the fittings were dipped into stock solutions of five commonly encountered contaminants and were weighed again showing typical contaminant deposition levels of approximately 0.00300g per part. They were then cleaned by the solvent or process being tested and then weighed a third time which allowed for the calculation of the cleaning efficiency of the test solvent or process.Based on preliminary experiments, five solvents (ethanol, isopropanol, acetone, ethyl acetate, and tert-butyl acetate) were down selected for further testing. When coupled with ultrasonic agitation, these solvents removed hydrocarbon contaminants as well as Vertrel MCA and showed improved removal of perfluorinated greases. Supercritical carbon dioxide did an excellent job dissolving each of the five contaminants but did a poor job of removing Teflon particles found in the perfluorinated greases. Plasma cleaning efficiency was found to be dependent on which supply gas was used, exposure time, and gas pressure. Under optimized conditions it was found that breathing air, energized to the plasma phase, was able to remove nearly 100% of the contamination.These findings indicate that alternative cleaning methods are indeed able to achieve precision levels of cleanliness. Currently, our team is working with a commercial cleaning company to get independent verification of our results. We are also evaluating the technical and financial aspects of scaling these processes to a size capable of supporting the future cleaning needs of KSC.
Design principles and realization of electro-optical circuit boards
NASA Astrophysics Data System (ADS)
Betschon, Felix; Lamprecht, Tobias; Halter, Markus; Beyer, Stefan; Peterson, Harry
2013-02-01
The manufacturing of electro-optical circuit boards (EOCB) is based to a large extent on established technologies. First products with embedded polymer waveguides are currently produced in series. The range of applications within the sensor and data communication markets is growing with the increasing maturity level. EOCBs require design flows, processes and techniques similar to existing printed circuit board (PCB) manufacturing and appropriate for optical signal transmission. A key aspect is the precise and automated assembly of active and passive optical components to the optical waveguides which has to be supported by the technology. The design flow is described after a short introduction into the build-up of EOCBs and the motivation for the usage of this technology within the different application fields. Basis for the design of EOCBs are the required optical signal transmission properties. Thereafter, the devices for the electro-optical conversion are chosen and the optical coupling approach is defined. Then, the planar optical elements (waveguides, splitters, couplers) are designed and simulated. This phase already requires co-design of the optical and electrical domain using novel design flows. The actual integration of an optical system into a PCB is shown in the last part. The optical layer is thereby laminated to the purely electrical PCB using a conventional PCB-lamination process to form the EOCB. The precise alignment of the various electrical and optical layers is thereby essential. Electrical vias are then generated, penetrating also the optical layer, to connect the individual electrical layers. Finally, the board has to be tested electrically and optically.
NASA Astrophysics Data System (ADS)
Van Erps, Jürgen; Vervaeke, Michael; Thienpont, Hugo
2012-01-01
One of the important challenges for the deployment of the emerging breed of nanotechnology components is interfacing them with the external world, preferably accomplished with low-cost micro-optical devices. For the fabrication of this kind of micro-optical components, we make use of deep proton writing (DPW) as a generic rapid prototyping technology. DPW consists of bombarding polymer samples with swift protons, which results after chemical processing steps in high quality micro-optical components. The strength of the DPW micro-machining technology is the ability to fabricate monolithic building blocks that include micro-optical and mechanical functionalities which can be precisely integrated into more complex photonic systems. In this paper we give an overview of the process steps of the technology and we present several examples of micro-optical and micro-mechanical components, fabricated through DPW, targeting applications in printed circuit baordlevel optical interconnections. These include: high-precision 2-D fiber connectors, discrete out-of-plane coupling structures featuring high-quality 45° and curved micro-mirrors, arrays of high aspect ratio micro-pillars and backplane connectors. While DPW is clearly not a mass fabrication technique as such, one of its assets is that once the master component has been prototyped, a metal mould can be generated from the DPW master by applying electroplating. After removal of the plastic master, this metal mould can be used as a shim in a final microinjection moulding or hot embossing step. This way, the master component can be mass-produced at low cost in a wide variety of high-tech plastics.
NASA Astrophysics Data System (ADS)
Barasinski, Anaïs; Tertrais, Hermine; Bechtel, Stéphane; Chinesta, Francisco
2018-05-01
Welding primary structure thermoplastic composites parts is still an issue today, many technologies have been extensively studied: induction, ultrasonic, resistive welding, none is today entirely viable for this application due to various implementation reasons. On the other hand, microwave solutions are not very common in composites forming process, although being widespread in homes. Microwave (MW) technology relies on volumetric heating. Thermal energy is transferred from an electromagnetic field to materials that can absorb it at specific frequencies. Volumetric heating enables better process temperature control and less overall energy losses, which can results in shorter processing cycles and higher process efficiency. Nowadays, the main drawback of this technology is that the complex physics involved in the conversion of electromagnetic energy in thermal energy (heating) is not entirely understood and controlled for complex materials. In that work, the authors propose to look deeper in that way, first proposing a simulation tool, based on a coupling between a commercial code and a home made one, allowing the following of the electromagnetic field very precisely in the thickness of a laminate composite part, the last consisting of a stack of layers with different orientations, each layer made of a resin matrix and carbon fibers. Thermal fields are then computed and validated by experimental measurements. In a second part, the authors propose to look at a common welding case of a stringer, on a skin.
Razi, Aida; Britton, Robert A.
2017-01-01
Abstract Cryo-electron microscopy (cryo-EM) had played a central role in the study of ribosome structure and the process of translation in bacteria since the development of this technique in the mid 1980s. Until recently cryo-EM structures were limited to ∼10 Å in the best cases. However, the recent advent of direct electron detectors has greatly improved the resolution of cryo-EM structures to the point where atomic resolution is now achievable. This improved resolution will allow cryo-EM to make groundbreaking contributions in essential aspects of ribosome biology, including the assembly process. In this review, we summarize important insights that cryo-EM, in combination with chemical and genetic approaches, has already brought to our current understanding of the ribosomal assembly process in bacteria using previous detector technology. More importantly, we discuss how the higher resolution structures now attainable with direct electron detectors can be leveraged to propose precise testable models regarding this process. These structures will provide an effective platform to develop new antibiotics that target this fundamental cellular process. PMID:28180306
NASA Technical Reports Server (NTRS)
1981-01-01
The Space Transportation System (STS) is discussed, including the launch processing system, the thermal protection subsystem, meteorological research, sound supression water system, rotating service structure, improved hypergol or removal systems, fiber optics research, precision positioning, remote controlled solid rocket booster nozzle plugs, ground operations for Centaur orbital transfer vehicle, parachute drying, STS hazardous waste disposal and recycle, toxic waste technology and control concepts, fast analytical densitometry study, shuttle inventory management system, operational intercommunications system improvement, and protective garment ensemble. Terrestrial applications are also covered, including LANDSAT applications to water resources, satellite freeze forecast system, application of ground penetrating radar to soil survey, turtle tracking, evaluating computer drawn ground cover maps, sparkless load pulsar, and coupling a microcomputer and computing integrator with a gas chromatograph.
Recent Cooperative Research Activities of HDD and Flexible Media Transport Technologies in Japan
NASA Astrophysics Data System (ADS)
Ono, Kyosuke
This paper presents the recent status of industry-university cooperative research activities in Japan on the mechatronics of information storage and input/output equipment. There are three research committees for promoting information exchange on technical problems and research topics of head-disk interface in hard disk drives (HDD), flexible media transport and image printing processes which are supported by the Japan Society of Mechanical Engineering (JSME), the Japanese Society of Tribologists (JAST) and the Japan Society of Precision Engineering (JSPE). For hard disk drive technology, the Storage Research Consortium (SRC) is supporting more than 40 research groups in various different universities to perform basic research for future HDD technology. The past and present statuses of these activities are introduced, particularly focusing on HDD and flexible media transport mechanisms.
Modelling Single Tree Structure with Terrestrial Laser Scanner
NASA Astrophysics Data System (ADS)
Yurtseven, H.; Akgül, M.; Gülci, S.
2017-11-01
Recent technological developments, which has reliable accuracy and quality for all engineering works, such as remote sensing tools have wide range use in forestry applications. Last decade, sustainable use and management opportunities of forest resources are favorite topics. Thus, precision of obtained data plays an important role in evaluation of current status of forests' value. The use of aerial and terrestrial laser technology has more reliable and effective models to advance the appropriate natural resource management. This study investigates the use of terrestrial laser scanner (TLS) technology in forestry, and also the methodological data processing stages for tree volume extraction is explained. Z+F Imager 5010C TLS system was used for measure single tree information such as tree height, diameter of breast height, branch volume and canopy closure. In this context more detailed and accurate data can be obtained than conventional inventory sampling in forestry by using TLS systems. However the accuracy of obtained data is up to the experiences of TLS operator in the field. Number of scan stations and its positions are other important factors to reduce noise effect and accurate 3D modelling. The results indicated that the use of point cloud data to extract tree information for forestry applications are promising methodology for precision forestry.
Delivery of Formulated Industrial Enzymes with Acoustic Technology.
Hwang, Jennifer Dorcas; Ortiz-Maldonado, Mariliz; Paramonov, Sergey
2016-02-01
Industrial enzymes are instrumental in many applications, including carbohydrate processing, fabric and household care, biofuels, food, and animal nutrition, among others. Enzymes have to be active and stable not only in harsh application conditions, but also during shipment and storage. In protein stability studies, formulated concentrated enzyme solutions are frequently diluted gravimetrically prior to enzyme activity measurements, making it challenging to move toward more high-throughput techniques using conventional robotic equipment. Current assay methods pose difficulties when measuring highly concentrated proteins. For example, plastic pipette tips can introduce error because proteins adsorb to the tip surface, despite the presence of detergents, decreasing precision and overall efficiency of protein activity assays. Acoustic liquid handling technology, frequently used for various dilute small-molecule assays, may overcome such problems. Originally shown to effectively deliver dilute solutions of small molecules, this technology is used here as an effective alternative to the aforementioned challenge with viscous concentrated protein solutions. Because the acoustic liquid handler transfers nanoliter quantities of liquids without using pipette tips and without sample loss, it rapidly and uniformly prepares assay plates for enzyme activity measurements within minutes. This increased efficiency transforms the nature of enzyme stability studies toward high precision and throughput. © 2015 Society for Laboratory Automation and Screening.
MEMS packaging: state of the art and future trends
NASA Astrophysics Data System (ADS)
Bossche, Andre; Cotofana, Carmen V. B.; Mollinger, Jeff R.
1998-07-01
Now that the technology for Integrated sensor and MEMS devices has become sufficiently mature to allow mass production, it is expected that the prices of bare chips will drop dramatically. This means that the package prices will become a limiting factor in market penetration, unless low cost packaging solutions become available. This paper will discuss the developments in packaging technology. Both single-chip and multi-chip packaging solutions will be addressed. It first starts with a discussion on the different requirements that have to be met; both from a device point of view (open access paths to the environment, vacuum cavities, etc.) and from the application point of view (e.g. environmental hostility). Subsequently current technologies are judged on their applicability for MEMS and sensor packaging and a forecast is given for future trends. It is expected that the large majority of sensing devices will be applied in relative friendly environments for which plastic packages would suffice. Therefore, on the short term an important role is foreseen for recently developed plastic packaging techniques such as precision molding and precision dispensing. Just like in standard electronic packaging, complete wafer level packaging methods for sensing devices still have a long way to go before they can compete with the highly optimized and automated plastic packaging processes.
Precision Spectroscopy, Diode Lasers, and Optical Frequency Measurement Technology
NASA Technical Reports Server (NTRS)
Hollberg, Leo (Editor); Fox, Richard (Editor); Waltman, Steve (Editor); Robinson, Hugh
1998-01-01
This compilation is a selected set of reprints from the Optical Frequency Measurement Group of the Time and Frequency Division of the National Institute of Standards and Technology, and consists of work published between 1987 and 1997. The two main programs represented here are (1) development of tunable diode-laser technology for scientific applications and precision measurements, and (2) research toward the goal of realizing optical-frequency measurements and synthesis. The papers are organized chronologically in five, somewhat arbitrarily chosen categories: Diode Laser Technology, Tunable Laser Systems, Laser Spectroscopy, Optical Synthesis and Extended Wavelength Coverage, and Multi-Photon Interactions and Optical Coherences.
HALO--a Java framework for precise transcript half-life determination.
Friedel, Caroline C; Kaufmann, Stefanie; Dölken, Lars; Zimmer, Ralf
2010-05-01
Recent improvements in experimental technologies now allow measurements of de novo transcription and/or RNA decay at whole transcriptome level and determination of precise transcript half-lives. Such transcript half-lives provide important insights into the regulation of biological processes and the relative contributions of RNA decay and de novo transcription to differential gene expression. In this article, we present HALO (Half-life Organizer), the first software for the precise determination of transcript half-lives from measurements of RNA de novo transcription or decay determined with microarrays or RNA-seq. In addition, methods for quality control, filtering and normalization are supplied. HALO provides a graphical user interface, command-line tools and a well-documented Java application programming interface (API). Thus, it can be used both by biologists to determine transcript half-lives fast and reliably with the provided user interfaces as well as software developers integrating transcript half-life analysis into other gene expression profiling pipelines. Source code, executables and documentation are available at http://www.bio.ifi.lmu.de/software/halo.
Practice innovation: the need for nimble data platforms to implement precision oncology care.
Elfiky, Aymen; Zhang, Dongyang; Krishnan Nair, Hari K
2015-01-01
Given the drive toward personalized, value-based, and coordinated cancer care delivery, modern knowledge-based practice is being shaped within the context of an increasingly technology-driven healthcare landscape. The ultimate promise of 'precision medicine' is predicated on taking advantage of the range of new capabilities for integrating disease- and individual-specific data to define new taxonomies as part of a systems-based knowledge network. Specifically, with cancer being a constantly evolving complex disease process, proper care of an individual will require the ability to seamlessly integrate multi-dimensional 'omic' and clinical data. Importantly, however, the challenges of curating knowledge from multiple dynamic data sources and translating to practice at the point-of-care highlight parallel needs. As patients, caregivers, and their environments become more proactive in clinical care and management, practical success of precision medicine is equally dependent on the development of proper infrastructures for evolving data integration, platforms for knowledge representation in a clinically-relevant context, and implementation within a provider's work-life and workflow.
Energy-Efficient Wireless Sensor Networks for Precision Agriculture: A Review.
Jawad, Haider Mahmood; Nordin, Rosdiadee; Gharghan, Sadik Kamel; Jawad, Aqeel Mahmood; Ismail, Mahamod
2017-08-03
Wireless sensor networks (WSNs) can be used in agriculture to provide farmers with a large amount of information. Precision agriculture (PA) is a management strategy that employs information technology to improve quality and production. Utilizing wireless sensor technologies and management tools can lead to a highly effective, green agriculture. Based on PA management, the same routine to a crop regardless of site environments can be avoided. From several perspectives, field management can improve PA, including the provision of adequate nutrients for crops and the wastage of pesticides for the effective control of weeds, pests, and diseases. This review outlines the recent applications of WSNs in agriculture research as well as classifies and compares various wireless communication protocols, the taxonomy of energy-efficient and energy harvesting techniques for WSNs that can be used in agricultural monitoring systems, and comparison between early research works on agriculture-based WSNs. The challenges and limitations of WSNs in the agricultural domain are explored, and several power reduction and agricultural management techniques for long-term monitoring are highlighted. These approaches may also increase the number of opportunities for processing Internet of Things (IoT) data.
Messenger RNA Delivery for Tissue Engineering and Regenerative Medicine Applications.
Patel, Siddharth; Athirasala, Avathamsa; Menezes, Paula P; Ashwanikumar, N; Zou, Ting; Sahay, Gaurav; Bertassoni, Luiz E
2018-06-07
The ability to control cellular processes and precisely direct cellular reprogramming has revolutionized regenerative medicine. Recent advances in in vitro transcribed (IVT) mRNA technology with chemical modifications have led to development of methods that control spatiotemporal gene expression. Additionally, there is a current thrust toward the development of safe, integration-free approaches to gene therapy for translational purposes. In this review, we describe strategies of synthetic IVT mRNA modifications and nonviral technologies for intracellular delivery. We provide insights into the current tissue engineering approaches that use a hydrogel scaffold with genetic material. Furthermore, we discuss the transformative potential of novel mRNA formulations that when embedded in hydrogels can trigger controlled genetic manipulation to regenerate tissues and organs in vitro and in vivo. The role of mRNA delivery in vascularization, cytoprotection, and Cas9-mediated xenotransplantation is additionally highlighted. Harmonizing mRNA delivery vehicle interactions with polymeric scaffolds can be used to present genetic cues that lead to precise command over cellular reprogramming, differentiation, and secretome activity of stem cells-an ultimate goal for tissue engineering.
Pros and Cons: A Balanced View of Robotics in Knee Arthroplasty.
Lonner, Jess H; Fillingham, Yale A
2018-07-01
In both unicompartmental knee arthroplasty (UKA) and total knee arthroplasty (TKA), compared with conventional techniques robotic technology has been shown to optimize the precision of bone preparation and component alignment, reducing outliers and increasing the percentage of components aligned within 2° or 3° of the target goal. In addition, soft tissue balance can be quantified through a range of motion in UKA and TKA using the various robotic technologies available. Although the presumption has been that the improved alignment associated with robotics will improve function and implant durability, there are limited data to support that notion. Based on recent and emerging data, it may be unreasonable to presume that robotics is necessary for both UKA and TKA. In fact, despite improvements in various proxy measures, the precision of robotics may be more important for UKA than TKA, although if system costs and surgical efficiencies continue to improve, streamlining perioperative processes, reducing instrument inventory, and achieving comparable outcomes in TKA may be a reasonable goal of robotic surgery. Copyright © 2018 Elsevier Inc. All rights reserved.
A Miniaturized Colorimeter with a Novel Design and High Precision for Photometric Detection.
Yan, Jun-Chao; Chen, Yan; Pang, Yu; Slavik, Jan; Zhao, Yun-Fei; Wu, Xiao-Ming; Yang, Yi; Yang, Si-Fan; Ren, Tian-Ling
2018-03-08
Water quality detection plays an increasingly important role in environmental protection. In this work, a novel colorimeter based on the Beer-Lambert law was designed for chemical element detection in water with high precision and miniaturized structure. As an example, the colorimeter can detect phosphorus, which was accomplished in this article to evaluate the performance. Simultaneously, a modified algorithm was applied to extend the linear measurable range. The colorimeter encompassed a near infrared laser source, a microflow cell based on microfluidic technology and a light-sensitive detector, then Micro-Electro-Mechanical System (MEMS) processing technology was used to form a stable integrated structure. Experiments were performed based on the ammonium molybdate spectrophotometric method, including the preparation of phosphorus standard solution, reducing agent, chromogenic agent and color reaction. The device can obtain a wide linear response range (0.05 mg/L up to 7.60 mg/L), a wide reliable measuring range up to 10.16 mg/L after using a novel algorithm, and a low limit of detection (0.02 mg/L). The size of flow cell in this design is 18 mm × 2.0 mm × 800 μm, obtaining a low reagent consumption of 0.004 mg ascorbic acid and 0.011 mg ammonium molybdate per determination. Achieving these advantages of miniaturized volume, high precision and low cost, the design can also be used in automated in situ detection.
A Miniaturized Colorimeter with a Novel Design and High Precision for Photometric Detection
Chen, Yan; Pang, Yu; Slavik, Jan; Zhao, Yun-Fei; Wu, Xiao-Ming; Yang, Yi; Yang, Si-Fan; Ren, Tian-Ling
2018-01-01
Water quality detection plays an increasingly important role in environmental protection. In this work, a novel colorimeter based on the Beer-Lambert law was designed for chemical element detection in water with high precision and miniaturized structure. As an example, the colorimeter can detect phosphorus, which was accomplished in this article to evaluate the performance. Simultaneously, a modified algorithm was applied to extend the linear measurable range. The colorimeter encompassed a near infrared laser source, a microflow cell based on microfluidic technology and a light-sensitive detector, then Micro-Electro-Mechanical System (MEMS) processing technology was used to form a stable integrated structure. Experiments were performed based on the ammonium molybdate spectrophotometric method, including the preparation of phosphorus standard solution, reducing agent, chromogenic agent and color reaction. The device can obtain a wide linear response range (0.05 mg/L up to 7.60 mg/L), a wide reliable measuring range up to 10.16 mg/L after using a novel algorithm, and a low limit of detection (0.02 mg/L). The size of flow cell in this design is 18 mm × 2.0 mm × 800 μm, obtaining a low reagent consumption of 0.004 mg ascorbic acid and 0.011 mg ammonium molybdate per determination. Achieving these advantages of miniaturized volume, high precision and low cost, the design can also be used in automated in situ detection. PMID:29518059
Haptics – Touchfeedback Technology Widening the Horizon of Medicine
Kapoor, Shalini; Arora, Pallak; Kapoor, Vikas; Jayachandran, Mahesh; Tiwari, Manish
2014-01-01
Haptics, or touchsense haptic technology is a major breakthrough in medical and dental interventions. Haptic perception is the process of recognizing objects through touch. Haptic sensations are created by actuators or motors which generate vibrations to the users and are controlled by embedded software which is integrated into the device. It takes the advantage of a combination of somatosensory pattern of skin and proprioception of hand position. Anatomical and diagnostic knowledge, when it is combined with this touch sense technology, has revolutionized medical education. This amalgamation of the worlds of diagnosis and surgical intervention adds precise robotic touch to the skill of the surgeon. A systematic literature review was done by using MEDLINE, GOOGLE SEARCH AND PubMed. The aim of this article was to introduce the fundamentals of haptic technology, its current applications in medical training and robotic surgeries, limitations of haptics and future aspects of haptics in medicine. PMID:24783164
The development and application of CFD technology in mechanical engineering
NASA Astrophysics Data System (ADS)
Wei, Yufeng
2017-12-01
Computational Fluid Dynamics (CFD) is an analysis of the physical phenomena involved in fluid flow and heat conduction by computer numerical calculation and graphical display. The numerical method simulates the complexity of the physical problem and the precision of the numerical solution, which is directly related to the hardware speed of the computer and the hardware such as memory. With the continuous improvement of computer performance and CFD technology, it has been widely applied to the field of water conservancy engineering, environmental engineering and industrial engineering. This paper summarizes the development process of CFD, the theoretical basis, the governing equations of fluid mechanics, and introduces the various methods of numerical calculation and the related development of CFD technology. Finally, CFD technology in the mechanical engineering related applications are summarized. It is hoped that this review will help researchers in the field of mechanical engineering.
Versatile design and synthesis platform for visualizing genomes with Oligopaint FISH probes
Beliveau, Brian J.; Joyce, Eric F.; Apostolopoulos, Nicholas; Yilmaz, Feyza; Fonseka, Chamith Y.; McCole, Ruth B.; Chang, Yiming; Li, Jin Billy; Senaratne, Tharanga Niroshini; Williams, Benjamin R.; Rouillard, Jean-Marie; Wu, Chao-ting
2012-01-01
A host of observations demonstrating the relationship between nuclear architecture and processes such as gene expression have led to a number of new technologies for interrogating chromosome positioning. Whereas some of these technologies reconstruct intermolecular interactions, others have enhanced our ability to visualize chromosomes in situ. Here, we describe an oligonucleotide- and PCR-based strategy for fluorescence in situ hybridization (FISH) and a bioinformatic platform that enables this technology to be extended to any organism whose genome has been sequenced. The oligonucleotide probes are renewable, highly efficient, and able to robustly label chromosomes in cell culture, fixed tissues, and metaphase spreads. Our method gives researchers precise control over the sequences they target and allows for single and multicolor imaging of regions ranging from tens of kilobases to megabases with the same basic protocol. We anticipate this technology will lead to an enhanced ability to visualize interphase and metaphase chromosomes. PMID:23236188
Revitalized militarily critical technologies program
NASA Astrophysics Data System (ADS)
Wick, Raymond V.
2005-04-01
The Department of Defense (DoD) Militarily Critical Technologies Program (MCTP) provides a systematic, ongoing assessment and analysis of goods and technologies to determine those that would permit significant advances in the development, production and use of military capabilities of potential adversaries and those that are being developed worldwide that have the potential to significantly enhance or degrade US military capabilities in the future. The program's objective is to characterize the technologies, including quantitative values and parameters, and assess worldwide technology capabilities. The MCTP is composed of two sets of documents, the well known and often referenced one, the MCTL, and a second one, a more recently added list called the Developing Science and Technologies List (DSTL). Both are products of the MCTP process, however, the later is primarily used by DDR&E and other government organizations and agencies to aid in the prioritization and understanding of new technologies being developed worldwide. Technologies are selected for the MCTL and the DSTL through the deliberation and consensus of Technology Working Groups (TWGs). TWGs continually screen technologies and nominate items to be added or removed from the MCTL and the DSTL as appropriate. Working within an informal structure, TWG members are composed of government, industry and academia subject matter experts, who strive to produce precise and objective analyses across each technology areas. This process and details of the current MCTP are outlined in this poster paper. This paper focuses on the solid state laser technology area, using it as an example of the MCTP's product of assessing, identifying, and quantifying militarily critical technology parameters.
A unified architecture for biomedical search engines based on semantic web technologies.
Jalali, Vahid; Matash Borujerdi, Mohammad Reza
2011-04-01
There is a huge growth in the volume of published biomedical research in recent years. Many medical search engines are designed and developed to address the over growing information needs of biomedical experts and curators. Significant progress has been made in utilizing the knowledge embedded in medical ontologies and controlled vocabularies to assist these engines. However, the lack of common architecture for utilized ontologies and overall retrieval process, hampers evaluating different search engines and interoperability between them under unified conditions. In this paper, a unified architecture for medical search engines is introduced. Proposed model contains standard schemas declared in semantic web languages for ontologies and documents used by search engines. Unified models for annotation and retrieval processes are other parts of introduced architecture. A sample search engine is also designed and implemented based on the proposed architecture in this paper. The search engine is evaluated using two test collections and results are reported in terms of precision vs. recall and mean average precision for different approaches used by this search engine.
Chapter 10: Precision Agriculture for Sustainability and Environmental Protection
USDA-ARS?s Scientific Manuscript database
Available supplies of water for irrigation and other uses are becoming more limited around the world, and this trend is accelerating. Emerging computerized precision irrigation technologies will enable growers to apply water and agrochemicals more precisely and site-specifically to match the status...
Use of genome editing tools in human stem cell-based disease modeling and precision medicine.
Wei, Yu-da; Li, Shuang; Liu, Gai-gai; Zhang, Yong-xian; Ding, Qiu-rong
2015-10-01
Precision medicine emerges as a new approach that takes into account individual variability. The successful conduct of precision medicine requires the use of precise disease models. Human pluripotent stem cells (hPSCs), as well as adult stem cells, can be differentiated into a variety of human somatic cell types that can be used for research and drug screening. The development of genome editing technology over the past few years, especially the CRISPR/Cas system, has made it feasible to precisely and efficiently edit the genetic background. Therefore, disease modeling by using a combination of human stem cells and genome editing technology has offered a new platform to generate " personalized " disease models, which allow the study of the contribution of individual genetic variabilities to disease progression and the development of precise treatments. In this review, recent advances in the use of genome editing in human stem cells and the generation of stem cell models for rare diseases and cancers are discussed.
Internet MEMS design tools based on component technology
NASA Astrophysics Data System (ADS)
Brueck, Rainer; Schumer, Christian
1999-03-01
The micro electromechanical systems (MEMS) industry in Europe is characterized by small and medium sized enterprises specialized on products to solve problems in specific domains like medicine, automotive sensor technology, etc. In this field of business the technology driven design approach known from micro electronics is not appropriate. Instead each design problem aims at its own, specific technology to be used for the solution. The variety of technologies at hand, like Si-surface, Si-bulk, LIGA, laser, precision engineering requires a huge set of different design tools to be available. No single SME can afford to hold licenses for all these tools. This calls for a new and flexible way of designing, implementing and distributing design software. The Internet provides a flexible manner of offering software access along with methodologies of flexible licensing e.g. on a pay-per-use basis. New communication technologies like ADSL, TV cable of satellites as carriers promise to offer a bandwidth sufficient even for interactive tools with graphical interfaces in the near future. INTERLIDO is an experimental tool suite for process specification and layout verification for lithography based MEMS technologies to be accessed via the Internet. The first version provides a Java implementation even including a graphical editor for process specification. Currently, a new version is brought into operation that is based on JavaBeans component technology. JavaBeans offers the possibility to realize independent interactive design assistants, like a design rule checking assistants, a process consistency checking assistants, a technology definition assistants, a graphical editor assistants, etc. that may reside distributed over the Internet, communicating via Internet protocols. Each potential user thus is able to configure his own dedicated version of a design tool set dedicated to the requirements of the current problem to be solved.
High-rate RTK and PPP multi-GNSS positioning for small-scale dynamic displacements monitoring
NASA Astrophysics Data System (ADS)
Paziewski, Jacek; Sieradzki, Rafał; Baryła, Radosław; Wielgosz, Pawel
2017-04-01
The monitoring of dynamic displacements and deformations of engineering structures such as buildings, towers and bridges is of great interest due to several practical and theoretical reasons. The most important is to provide information required for safe maintenance of the constructions. High temporal resolution and precision of GNSS observations predestine this technology to be applied to most demanding application in terms of accuracy, availability and reliability. GNSS technique supported by appropriate processing methodology may meet the specific demands and requirements of ground and structures monitoring. Thus, high-rate multi-GNSS signals may be used as reliable source of information on dynamic displacements of ground and engineering structures, also in real time applications. In this study we present initial results of application of precise relative GNSS positioning for detection of small scale (cm level) high temporal resolution dynamic displacements. Methodology and algorithms applied in self-developed software allowing for relative positioning using high-rate dual-frequency phase and pseudorange GPS+Galileo observations are also given. Additionally, an approach was also made to use the Precise Point Positioning technique to such application. In the experiment were used the observations obtained from high-rate (20 Hz) geodetic receivers. The dynamic displacements were simulated using specially constructed device moving GNSS antenna with dedicated amplitude and frequency. The obtained results indicate on possibility of detection of dynamic displacements of the GNSS antenna even at the level of few millimetres using both relative and Precise Point Positioning techniques after suitable signals processing.
NASA Astrophysics Data System (ADS)
Lukianova-Hleb, Ekaterina Y.; Huye, Leslie E.; Brenner, Malcolm K.; Lapotko, Dmitri O.
2014-03-01
Cell and gene cancer therapies require ex vivo cell processing of human grafts. Such processing requires at least three steps - cell enrichment, cell separation (destruction), and gene transfer - each of which requires the use of a separate technology. While these technologies may be satisfactory for research use, they are of limited usefulness in the clinical treatment setting because they have a low processing rate, as well as a low transfection and separation efficacy and specificity in heterogeneous human grafts. Most problematic, because current technologies are administered in multiple steps - rather than in a single, multifunctional, and simultaneous procedure - they lengthen treatment process and introduce an unnecessary level of complexity, labor, and resources into clinical treatment; all these limitations result in high losses of valuable cells. We report a universal, high-throughput, and multifunctional technology that simultaneously (1) inject free external cargo in target cells, (2) destroys unwanted cells, and (3) preserve valuable non-target cells in heterogeneous grafts. Each of these functions has single target cell specificity in heterogeneous cell system, processing rate > 45 mln cell/min, injection efficacy 90% under 96% viability of the injected cells, target cell destruction efficacy > 99%, viability of not-target cells >99% The developed technology employs novel cellular agents, called plasmonic nanobubbles (PNBs). PNBs are not particles, but transient, intracellular events, a vapor nanobubbles that expand and collapse in mere nanoseconds under optical excitation of gold nanoparticles with short picosecond laser pulses. PNBs of different, cell-specific, size (1) inject free external cargo with small PNBs, (2) Destroy other target cells mechanically with large PNBs and (3) Preserve non-target cells. The multi-functionality, precision, and high throughput of all-in-one PNB technology will tremendously impact cell and gene therapies and other clinical applications that depend on ex vivo processing of heterogeneous cell systems.
The Autonomous Precision Landing and Hazard Detection and Avoidance Technology (ALHAT)
NASA Technical Reports Server (NTRS)
Epp, Chirold D.; Smith, Thomas B.
2007-01-01
As NASA plans to send humans back to the Moon and develop a lunar outpost, technologies must be developed to place humans and cargo safely, precisely, repeatedly, on the lunar surface with the capability to avoid surface hazards. Exploration Space Architecture Study requirements include the need for global lunar surface access with safe, precise landing without lighting constraints on terrain that may have landing hazards for human scale landing vehicles. Landing accuracies of perhaps 1,000 meters for sortie crew missions to 10 s of meters for Outpost class missions are required. The Autonomous precision Landing Hazard Avoidance Technology (ALHAT) project will develop the new and unique descent and landing Guidance, Navigation and Control (GNC) hardware and software technologies necessary for these capabilities. The ALHAT project will qualify a lunar descent and landing GNC system to a Technology Readiness Level (TRL) of 6 capable of supporting lunar crewed, cargo, and robotic missions. The (ALHAT) development project was chartered by NASA Headquarters in October 2006. The initial effort to write a project plan and define an ALHAT Team was followed by a fairly aggressive research and analysis effort to determine what technologies existed that could be developed and applied to the lunar landing problems indicated above. This paper describes the project development, research, analysis and concept evolution that has occurred since the assignment of the project. This includes the areas of systems engineering, GNC, sensors, sensor algorithms, simulations, fielding testing, laboratory testing, Hardware-In-The-Loop testing, system avionics and system certification concepts.
NASA Technical Reports Server (NTRS)
Breakiron, Lee A. (Editor)
1999-01-01
This document is a compilation of technical papers presented at the 30th Annual Precise Time and Time Interval (PTTI) Systems and Applications Meeting held 1-3 December 1998 at the Hyatt Regency Hotel at Reston Town Center, Reston, Virginia. Papers are in the following categories: 1) Recent developments in rubidium, cesium, and hydrogen-based atomic frequency standards, and in trapped-ion and space clock technology; 2) National and international applications of PTTI technology with emphasis on GPS and GLONASS timing, atomic time scales, and telecommunications; 3) Applications of PTTI technology to evolving military navigation and communication systems; geodesy; aviation; and pulsars; and 4) Dissemination of precise time and frequency by means of GPS, geosynchronous communication satellites, computer networks, WAAS, and LORAN.
Design of control system for optical fiber drawing machine driven by double motor
NASA Astrophysics Data System (ADS)
Yu, Yue Chen; Bo, Yu Ming; Wang, Jun
2018-01-01
Micro channel Plate (MCP) is a kind of large-area array electron multiplier with high two-dimensional spatial resolution, used as high-performance night vision intensifier. The high precision control of the fiber is the key technology of the micro channel plate manufacturing process, and it was achieved by the control of optical fiber drawing machine driven by dual-motor in this paper. First of all, utilizing STM32 chip, the servo motor drive and control circuit was designed to realize the dual motor synchronization. Secondly, neural network PID control algorithm was designed for controlling the fiber diameter fabricated in high precision; Finally, the hexagonal fiber was manufactured by this system and it shows that multifilament diameter accuracy of the fiber is +/- 1.5μm.
A 72 × 60 Angle-Sensitive SPAD Imaging Array for Lens-less FLIM.
Lee, Changhyuk; Johnson, Ben; Jung, TaeSung; Molnar, Alyosha
2016-09-02
We present a 72 × 60, angle-sensitive single photon avalanche diode (A-SPAD) array for lens-less 3D fluorescence lifetime imaging. An A-SPAD pixel consists of (1) a SPAD to provide precise photon arrival time where a time-resolved operation is utilized to avoid stimulus-induced saturation, and (2) integrated diffraction gratings on top of the SPAD to extract incident angles of the incoming light. The combination enables mapping of fluorescent sources with different lifetimes in 3D space down to micrometer scale. Futhermore, the chip presented herein integrates pixel-level counters to reduce output data-rate and to enable a precise timing control. The array is implemented in standard 180 nm complementary metal-oxide-semiconductor (CMOS) technology and characterized without any post-processing.
Wang, Shuang; Liu, Tiegen; Jiang, Junfeng; Liu, Kun; Yin, Jinde; Qin, Zunqi; Zou, Shengliang
2014-04-01
We present a high precision and fast speed demodulation method for a polarized low-coherence interferometer with location-dependent birefringence dispersion. Based on the characteristics of location-dependent birefringence dispersion and five-step phase-shifting technology, the method accurately retrieves the peak position of zero-fringe at the central wavelength, which avoids the fringe order ambiguity. The method processes data only in the spatial domain and reduces the computational load greatly. We successfully demonstrated the effectiveness of the proposed method in an optical fiber Fabry-Perot barometric pressure sensing experiment system. Measurement precision of 0.091 kPa was realized in the pressure range of 160 kPa, and computation time was improved by 10 times compared to the traditional phase-based method that requires Fourier transform operation.
Precision Departure Release Capability (PDRC) Overview and Results: NASA to FAA Research Transition
NASA Technical Reports Server (NTRS)
Engelland, Shawn; Davis, Tom.
2013-01-01
NASA researchers developed the Precision Departure Release Capability (PDRC) concept to improve the tactical departure scheduling process. The PDRC system is comprised of: 1) a surface automation system that computes ready time predictions and departure runway assignments, 2) an en route scheduling automation tool that uses this information to estimate ascent trajectories to the merge point and computes release times and, 3) an interface that provides two-way communication between the two systems. To minimize technology transfer issues and facilitate its adoption by TMCs and Frontline Managers (FLM), NASA developed the PDRC prototype using the Surface Decision Support System (SDSS) for the Tower surface automation tool, a research version of the FAA TMA (RTMA) for en route automation tool and a digital interface between the two DSTs to facilitate coordination.
A 72 × 60 Angle-Sensitive SPAD Imaging Array for Lens-less FLIM
Lee, Changhyuk; Johnson, Ben; Jung, TaeSung; Molnar, Alyosha
2016-01-01
We present a 72 × 60, angle-sensitive single photon avalanche diode (A-SPAD) array for lens-less 3D fluorescence lifetime imaging. An A-SPAD pixel consists of (1) a SPAD to provide precise photon arrival time where a time-resolved operation is utilized to avoid stimulus-induced saturation, and (2) integrated diffraction gratings on top of the SPAD to extract incident angles of the incoming light. The combination enables mapping of fluorescent sources with different lifetimes in 3D space down to micrometer scale. Futhermore, the chip presented herein integrates pixel-level counters to reduce output data-rate and to enable a precise timing control. The array is implemented in standard 180 nm complementary metal-oxide-semiconductor (CMOS) technology and characterized without any post-processing. PMID:27598170
Dynamic comparisons of piezoelectric ejecta diagnostics
NASA Astrophysics Data System (ADS)
Buttler, W. T.; Zellner, M. B.; Olson, R. T.; Rigg, P. A.; Hixson, R. S.; Hammerberg, J. E.; Obst, A. W.; Payton, J. R.; Iverson, A.; Young, J.
2007-03-01
We investigate the quantitative reliability and precision of three different piezoelectric technologies for measuring ejected areal mass from shocked surfaces. Specifically we performed ejecta measurements on Sn shocked at two pressures, P ≈215 and 235 kbar. The shock in the Sn was created by launching a impactor with a powder gun. We self-compare and cross-compare these measurements to assess the ability of these probes to precisely determine the areal mass ejected from a shocked surface. We demonstrate the precision of each technology to be good, with variabilities on the order of ±10%. We also discuss their relative accuracy.
Using laser technological unit ALTI "Karavella" for precision components of IEP production
NASA Astrophysics Data System (ADS)
Labin, N. A.; Chursin, A. D.; Paramonov, V. S.; Klimenko, V. I.; Paramonova, G. M.; Kolokolov, I. S.; Vinogradov, K. Y.; Betina, L. L.; Bulychev, N. A.; Dyakov, Yu. A.; Zakharyan, R. A.; Kazaryan, M. A.; Koshelev, K. K.; Kosheleva, O. K.; Grigoryants, A. G.; Shiganov, I. N.; Krasovskii, V. I.; Sachkov, V. I.; Plyaka, P. S.; Feofanov, I. N.; Chen, C.
2015-12-01
The paper revealed the using of industrial production equipment ALTI "Karavella-1", "Karavella-1M", "Karavella-2" and "Karavella-2M" precision components of IEP production [1-4]. The basis for the ALTI using in the IEP have become the positive results of research and development of technologies of foil (0.01-0.2 mm) and thin sheets (0.3-1 mm) materials micromachining by pulsed radiation CVL [5, 6]. To assess the micromachining quality and precision the measuring optical microscope (UHL VMM200), projection microscope (Mitutoyo PV5100) and Carl Zeiss microscope were used.
High-precision and high-speed laser microjoining for electronics and microsystems
NASA Astrophysics Data System (ADS)
Gillner, Arnold; Olowinsky, Alexander; Klages, Kilian; Gedicke, Jens; Sari, Fahri
2006-02-01
The joining processes in electronic device manufacturing are today still dominated by conventional joining techniques like press fitting, crimping and resistance welding. Laser beam joining techniques have been under intensive investigations and subsequently new processes for mass manufacturing and high accuracy assembling were established. With the newly developed SHADOW (R) welding technology technical aspects such as tensile strength, geometry and precision of the weld could be improved. This technology provides highest flexibility in weld geometry with a minimum welding time as well as new possibilities in using application adapted materials. Different parts and even different metals can be joined by a non-contact process. The application of a relative movement between the laser beam and the part to be joined at feed rates of up to 60 m/min produces weld seams with a length from 0.6 mm to 15.7 mm using a pulsed Nd:YAG laser with a pulse duration of up to 50 ms. Due to the low energy input, typically 1 J to 6 J, a weld width as small as 50 μm and a weld depth as small as 20 pm have been attained. This results in low distortion of the joined watch components. Within this paper this new welding process will be explained and several examples of joined components will be presented with respect to fundamentals and the sustainable implementation of the SHADOW (R) welding technique into watch manufacturing and electronic industry. For microsystem applications the laser joining technology is modified to join even silicon and glass parts without any melting based on the formation of a thermally induced oxygen bond. New fields of applications for joining different materials such as steel to brass or steel to copper for electrical interconnects will be discussed. Here the SHADOW (R) welding technique offers new possibilities for the combination of good electrical properties of copper with high mechanical stiffness of steel. The paper will give a closer look to microjoining applications especially using the SHADOW (R) welding technique. Basics of the process as well as its application on dedicated examples will be shown for small parts such as axis-wheel combinations and electrical connectors.
In flight image processing on multi-rotor aircraft for autonomous landing
NASA Astrophysics Data System (ADS)
Henry, Richard, Jr.
An estimated $6.4 billion was spent during the year 2013 on developing drone technology around the world and is expected to double in the next decade. However, drone applications typically require strong pilot skills, safety, responsibilities and adherence to regulations during flight. If the flight control process could be safer and more reliable in terms of landing, it would be possible to further develop a wider range of applications. The objective of this research effort is to describe the design and evaluation of a fully autonomous Unmanned Aerial system (UAS), specifically a four rotor aircraft, commonly known as quad copter for precise landing applications. The full landing autonomy is achieved by image processing capabilities during flight for target recognition by employing the open source library OpenCV. In addition, all imaging data is processed by a single embedded computer that estimates a relative position with respect to the target landing pad. Results shows a reduction on the average offset error by 67.88% in comparison to the current return to lunch (RTL) method which only relies on GPS positioning. The present work validates the need for relying on image processing for precise landing applications instead of the inexact method of a commercial low cost GPS dependency.
Ghasemi, Mojtaba; Nabipour, Iraj; Omrani, Abdolmajid; Alipour, Zeinab; Assadi, Majid
2016-01-01
This paper presents a review of the importance and role of precision medicine and molecular imaging technologies in cancer diagnosis with therapeutics and diagnostics purposes. Precision medicine is progressively becoming a hot topic in all disciplines related to biomedical investigation and has the capacity to become the paradigm for clinical practice. The future of medicine lies in early diagnosis and individually appropriate treatments, a concept that has been named precision medicine, i.e. delivering the right treatment to the right patient at the right time. Molecular imaging is quickly being recognized as a tool with the potential to ameliorate every aspect of cancer treatment. On the other hand, emerging high-throughput technologies such as omics techniques and systems approaches have generated a paradigm shift for biological systems in advanced life science research. In this review, we describe the precision medicine, difference between precision medicine and personalized medicine, precision medicine initiative, systems biology/medicine approaches (such as genomics, radiogenomics, transcriptomics, proteomics, and metabolomics), P4 medicine, relationship between systems biology/medicine approaches and precision medicine, and molecular imaging modalities and their utility in cancer treatment and diagnosis. Accordingly, the precision medicine and molecular imaging will enable us to accelerate and improve cancer management in future medicine.
Ghasemi, Mojtaba; Nabipour, Iraj; Omrani, Abdolmajid; Alipour, Zeinab; Assadi, Majid
2016-01-01
This paper presents a review of the importance and role of precision medicine and molecular imaging technologies in cancer diagnosis with therapeutics and diagnostics purposes. Precision medicine is progressively becoming a hot topic in all disciplines related to biomedical investigation and has the capacity to become the paradigm for clinical practice. The future of medicine lies in early diagnosis and individually appropriate treatments, a concept that has been named precision medicine, i.e. delivering the right treatment to the right patient at the right time. Molecular imaging is quickly being recognized as a tool with the potential to ameliorate every aspect of cancer treatment. On the other hand, emerging high-throughput technologies such as omics techniques and systems approaches have generated a paradigm shift for biological systems in advanced life science research. In this review, we describe the precision medicine, difference between precision medicine and personalized medicine, precision medicine initiative, systems biology/medicine approaches (such as genomics, radiogenomics, transcriptomics, proteomics, and metabolomics), P4 medicine, relationship between systems biology/medicine approaches and precision medicine, and molecular imaging modalities and their utility in cancer treatment and diagnosis. Accordingly, the precision medicine and molecular imaging will enable us to accelerate and improve cancer management in future medicine. PMID:28078184
Precision medicine: In need of guidance and surveillance.
Lin, Jian-Zhen; Long, Jun-Yu; Wang, An-Qiang; Zheng, Ying; Zhao, Hai-Tao
2017-07-28
Precision medicine, currently a hotspot in mainstream medicine, has been strongly promoted in recent years. With rapid technological development, such as next-generation sequencing, and fierce competition in molecular targeted drug exploitation, precision medicine represents an advance in science and technology; it also fulfills needs in public health care. The clinical translation and application of precision medicine - especially in the prevention and treatment of tumors - is far from satisfactory; however, the aims of precision medicine deserve approval. Thus, this medical approach is currently in its infancy; it has promising prospects, but it needs to overcome numbers of problems and deficiencies. It is expected that in addition to conventional symptoms and signs, precision medicine will define disease in terms of the underlying molecular characteristics and other environmental susceptibility factors. Those expectations should be realized by constructing a novel data network, integrating clinical data from individual patients and personal genomic background with existing research on the molecular makeup of diseases. In addition, multi-omics analysis and multi-discipline collaboration will become crucial elements in precision medicine. Precision medicine deserves strong support, and its development demands directed momentum. We propose three kinds of impetus (research, application and collaboration impetus) for such directed momentum toward promoting precision medicine and accelerating its clinical translation and application.
Precision medicine: In need of guidance and surveillance
Lin, Jian-Zhen; Long, Jun-Yu; Wang, An-Qiang; Zheng, Ying; Zhao, Hai-Tao
2017-01-01
Precision medicine, currently a hotspot in mainstream medicine, has been strongly promoted in recent years. With rapid technological development, such as next-generation sequencing, and fierce competition in molecular targeted drug exploitation, precision medicine represents an advance in science and technology; it also fulfills needs in public health care. The clinical translation and application of precision medicine - especially in the prevention and treatment of tumors - is far from satisfactory; however, the aims of precision medicine deserve approval. Thus, this medical approach is currently in its infancy; it has promising prospects, but it needs to overcome numbers of problems and deficiencies. It is expected that in addition to conventional symptoms and signs, precision medicine will define disease in terms of the underlying molecular characteristics and other environmental susceptibility factors. Those expectations should be realized by constructing a novel data network, integrating clinical data from individual patients and personal genomic background with existing research on the molecular makeup of diseases. In addition, multi-omics analysis and multi-discipline collaboration will become crucial elements in precision medicine. Precision medicine deserves strong support, and its development demands directed momentum. We propose three kinds of impetus (research, application and collaboration impetus) for such directed momentum toward promoting precision medicine and accelerating its clinical translation and application. PMID:28811702
NASA Astrophysics Data System (ADS)
Song, Z.; Wang, Y.; Kuang, J.
2018-05-01
Field Programmable Gate Arrays (FPGAs) made with 28 nm and more advanced process technology have great potentials for implementation of high precision time-to-digital convertors (TDC), because the delay cells in the tapped delay line (TDL) used for time interpolation are getting smaller and smaller. However, the bubble problems in the TDL status are becoming more complicated, which make it difficult to achieve TDCs on these chips with a high time precision. In this paper, we are proposing a novel decomposition encoding scheme, which not only can solve the bubble problem easily, but also has a high encoding efficiency. The potential of these chips to realize TDC can be fully released with the scheme. In a Xilinx Kintex-7 FPGA chip, we implemented a TDC system with 256 TDC channels, which doubles the number of TDC channels that our previous technique could achieve. Performances of all these TDC channels are evaluated. The average RMS time precision among them is 10.23 ps in the time-interval measurement range of (0–10 ns), and their measurement throughput reaches 277 M measures per second.
Moire measuring technology for three-dimensional profile of the object
NASA Astrophysics Data System (ADS)
Fu, Yanjun; Yang, Kuntao
2006-02-01
An optical system is designed to get projection of the transmission grating, the deformed grating is obtained on surface of the object. The image of the deformed grating is given by the lens, the reference grating is put on the place of the image, and then the moire fringe is obtained. The amplify principle of the moire fringe is used to measure the profile of the object. The optical principle of the projection is analyzed. And the relation between the phase and the height of object is deduced. From the different point of geometry optics and the physics opticsl, the optical system is analyzed, the factors that influence the image equality and the measuring result are obtained. So the betterment of improving the measuring precision is brought forward, and in the later information processing, because of the diffuse reflection, the image equality is not very well. In order to get a good image, the digital filter is used to filter the noise and smooth the image firstly. Then in order to improve the measure precision, the subdivision technology is applied. The Fourier transform profilometry and phase shifting technology is used in the calculation. A detail analyses is done both in time field and frequency field. And the method of improving the measuring precision is put forward. A good digital filter algorithm is brought forward in the Fourier transform profilometry. In the phase shifting technology, the detail formula of three-step and four-step is given. At last the phase that is relational with the high information of the object is get, but the phase is disconnected phase, after the unwrapping algorithm,the disconnected phase is changed to be the continuous phase. Taking use of the relation between the phase and height, the height is obtained. Then the three-dimensional profile of the measured object can be reconstructed. The system is very convenient for non-contact measure of profile of some objects.
Study on electroplating technology of diamond tools for machining hard and brittle materials
NASA Astrophysics Data System (ADS)
Cui, Ying; Chen, Jian Hua; Sun, Li Peng; Wang, Yue
2016-10-01
With the development of the high speed cutting, the ultra-precision machining and ultrasonic vibration technique in processing hard and brittle material , the requirement of cutting tools is becoming higher and higher. As electroplated diamond tools have distinct advantages, such as high adaptability, high durability, long service life and good dimensional stability, the cutting tools are effective and extensive used in grinding hard and brittle materials. In this paper, the coating structure of electroplating diamond tool is described. The electroplating process flow is presented, and the influence of pretreatment on the machining quality is analyzed. Through the experimental research and summary, the reasonable formula of the electrolyte, the electroplating technologic parameters and the suitable sanding method were determined. Meanwhile, the drilling experiment on glass-ceramic shows that the electroplating process can effectively improve the cutting performance of diamond tools. It has laid a good foundation for further improving the quality and efficiency of the machining of hard and brittle materials.
NASA Astrophysics Data System (ADS)
Wood, M.
2009-04-01
The increased focus on the possibility of technological accidents caused by natural events (Natech) is foreseen to continue for years to come. In this case, experts in prevention, mitigation and preparation activities associated with natural events will increasingly need to borrow data and expertise traditionally associated with the technological fields to carry out the work. An important question is how useful is the data for understanding consequences from such natech events. Data and case studies provided on major industrial accidents tend to focus on lessons learned for re-engineering the process. While consequence data are reported at least nominally in most reports, their precision, quality and completeness is often lacking. Consequences that are often or sometimes available but not provided can include severity and type of injuries, distance of victims from the source, exposure measurements, volume of the release, population in potentially affected zones, and weather conditions. Yet these are precisely the type of data that will aid natural hazard experts in land-use planning and emergency response activities when a Natech event may be foreseen. This work discusses the results of a study of consequence data from accidents involving toxic releases reported in the EU's MARS accident database. The study analysed the precision, quality and completeness of three categories of consequence data reported: the description of health effects, consequence assessment and chemical risk assessment factors, and emergency response information. This work reports on the findings from this study and discusses how natural hazards experts might interact with industrial accident experts to promote more consistent and accurate reporting of the data that will be useful in consequence-based activities.
Calibration of gyro G-sensitivity coefficients with FOG monitoring on precision centrifuge
NASA Astrophysics Data System (ADS)
Lu, Jiazhen; Yang, Yanqiang; Li, Baoguo; Liu, Ming
2017-07-01
The advantages of mechanical gyros, such as high precision, endurance and reliability, make them widely used as the core parts of inertial navigation systems (INS) utilized in the fields of aeronautics, astronautics and underground exploration. In a high-g environment, the accuracy of gyros is degraded. Therefore, the calibration and compensation of the gyro G-sensitivity coefficients is essential when the INS operates in a high-g environment. A precision centrifuge with a counter-rotating platform is the typical equipment for calibrating the gyro, as it can generate large centripetal acceleration and keep the angular rate close to zero; however, its performance is seriously restricted by the angular perturbation in the high-speed rotating process. To reduce the dependence on the precision of the centrifuge and counter-rotating platform, an effective calibration method for the gyro g-sensitivity coefficients under fiber-optic gyroscope (FOG) monitoring is proposed herein. The FOG can efficiently compensate spindle error and improve the anti-interference ability. Harmonic analysis is performed for data processing. Simulations show that the gyro G-sensitivity coefficients can be efficiently estimated to up to 99% of the true value and compensated using a lookup table or fitting method. Repeated tests indicate that the G-sensitivity coefficients can be correctly calibrated when the angular rate accuracy of the precision centrifuge is as low as 0.01%. Verification tests are performed to demonstrate that the attitude errors can be decreased from 0.36° to 0.08° in 200 s. The proposed measuring technology is generally applicable in engineering, as it can reduce the accuracy requirements for the centrifuge and the environment.
Towards fast, reliable, and manufacturable DEAs: miniaturized motor and Rupert the rolling robot
NASA Astrophysics Data System (ADS)
Rosset, Samuel; Shea, Herbert
2015-04-01
Dielectric elastomer transducers (DETs) are known for their large strains, low mass and high compliance, making them very attractive for a broad range of applications, from soft robotics to tuneable optics, or energy harvesting. However, 15 years after the first major paper in the field, commercial applications of the technology are still scarce, owing to high driving voltages, short lifetimes, slow response speed, viscoelastic drift, and no optimal solution for the compliant electrodes. At the EPFL's Microsystems for Space Technologies laboratory, we have been working on the miniaturization and manufacturability of DETs for the past 10 years. In the frame of this talk, we present our fabrication processes for high quality thin-_lm silicone membranes, and for patterning compliant electrodes on the sub mm-scale. We use either implantation of gold nano-clusters through a mask, or pad-printing of conductive rubber to precisely shape the electrodes on the dielectric membrane. Our electrodes are compliant, time stable and present strong adhesion to the membrane. The combination of low mechanical- loss elastomers with robust and precisely-defined electrodes allows for the fabrication of very fast actuators that exhibit a long lifetime. We present different applications of our DET fabrication process, such as a soft tuneable lens with a settling time smaller than 175 microseconds, a motor spinning at 1500 rpm, and a self-commutating rolling robot.
[Contribution and challenges of Big Data in oncology].
Saintigny, Pierre; Foy, Jean-Philippe; Ferrari, Anthony; Cassier, Philippe; Viari, Alain; Puisieux, Alain
2017-03-01
Since the first draft of the human genome sequence published in 2001, the cost of sequencing has dramatically decreased. The development of new technologies such as next generation sequencing led to a comprehensive characterization of a large number of tumors of various types as well as to significant advances in precision medicine. Despite the valuable information this technological revolution has allowed to produce, the vast amount of data generated resulted in the emergence of new challenges for the biomedical community, such as data storage, processing and mining. Here, we describe the contribution and challenges of Big Data in oncology. Copyright © 2016 Société Française du Cancer. Published by Elsevier Masson SAS. All rights reserved.
Coherent Lidar Activities at NASA Langley Research Center
NASA Technical Reports Server (NTRS)
Kavaya, Michael J.; Amzajerdian, Farzin; Koch, Grady J.; Singh, Upendra N.; Yu, Jirong
2007-01-01
NASA Langley Research Center has been developing and using coherent lidar systems for many years. The current projects at LaRC are the Global Wind Observing Sounder (GWOS) mission preparation, the Laser Risk Reduction Program (LRRP), the Instrument Incubator Program (IIP) compact, rugged Doppler wind lidar project, the Autonomous precision Landing and Hazard detection and Avoidance Technology (ALHAT) project for lunar landing, and the Skywalker project to find and use thermals to extend UAV flight time. These five projects encompass coherent lidar technology development; characterization, validation, and calibration facilities; compact, rugged packaging; computer simulation; trade studies; data acquisition, processing, and display development; system demonstration; and space mission design. This paper will further discuss these activities at LaRC.
NASA Astrophysics Data System (ADS)
Zhang, Weiping; Chen, Wenyuan; Zhao, Xiaolin; Li, Shengyong; Jiang, Yong
2005-08-01
In a novel safety device based on MEMS technology for high consequence systems, the discriminator consists of two groups of metal counter meshing gears and two pawl/ratchet wheel mechanisms. Each group of counter meshing gears is onepiece and driven directly by an axial flux permanent magnet micromotor respectively. The energy-coupling element is an optical shutter with two collimators and a coupler wheel. The safety device's probability is less than 1/106. It is fabricated by combination of an LiGA-like process and precision mechanical engineering. The device has simple structure, few dynamic problems, high strength and strong reliability.
A new way of measuring wiggling pattern in SADP for 3D NAND technology
NASA Astrophysics Data System (ADS)
Mi, Jian; Chen, Ziqi; Tu, Li Ming; Mao, Xiaoming; Liu, Gong Cai; Kawada, Hiroki
2018-03-01
A new metrology method of quantitatively measuring wiggling patterns in a Self-Aligned Double Patterning (SADP) process for 2D NAND technology has been developed with a CD-SEM metrology program on images from a Review-SEM system. The metrology program provided accurate modeling of various wiggling patterns. The Review-SEM system provided a-few-micrometer-wide Field of View (FOV), which exceeds precision-guaranteed FOV of a conventional CD-SEM. The result has been effectively verified by visual inspection on vertically compressed images compared with Wiggling Index from this new method. A best-known method (BKM) system has been developed with connected HW and SW to automatically measure wiggling patterns.
Design and simulation of the direct drive servo system
NASA Astrophysics Data System (ADS)
Ren, Changzhi; Liu, Zhao; Song, Libin; Yi, Qiang; Chen, Ken; Zhang, Zhenchao
2010-07-01
As direct drive technology is finding their way into telescope drive designs for its many advantages, it would push to more reliable and cheaper solutions for future telescope complex motion system. However, the telescope drive system based on the direct drive technology is one high integrated electromechanical system, which one complex electromechanical design method is adopted to improve the efficiency, reliability and quality of the system during the design and manufacture circle. The telescope is one ultra-exact, ultra-speed, high precision and huge inertial instrument, which the direct torque motor adopted by the telescope drive system is different from traditional motor. This paper explores the design process and some simulation results are discussed.
Canyval-x: Cubesat Astronomy by NASA and Yonsei Using Virtual Telescope Alignment Experiment
NASA Technical Reports Server (NTRS)
Shah, Neerav
2016-01-01
CANYVAL-X is a technology demonstration CubeSat mission with a primary objective of validating technologies that allow two spacecraft to fly in formation along an inertial line-of-sight (i.e., align two spacecraft to an inertial source). Demonstration of precision dual-spacecraft alignment achieving fine angular precision enables a variety of cutting-edge heliophysics and astrophysics science.
Guidance and Control Aspects of Tactical Air-Launched Missiles
1980-10-01
information; - Continuously stimulating advances in the aerospace sciences relevant to strengthening the common defence pusture; -- Improving the co...Symposium on Precision Delivery Systems was held at Eglin Air Force Base , Florida. USA. Many important advances in guidance sensor technology, control system...paper concentrates primarily or the US Army Missile Command’s technology base for development of the precision pointing and tracking or fire control
NASA Technical Reports Server (NTRS)
Brady, Tye; Bailey, Erik; Crain, Timothy; Paschall, Stephen
2011-01-01
NASA has embarked on a multiyear technology development effort to develop a safe and precise lunar landing capability. The Autonomous Landing and Hazard Avoidance Technology (ALHAT) Project is investigating a range of landing hazard detection methods while developing a hazard avoidance capability to best field test the proper set of relevant autonomous GNC technologies. Ultimately, the advancement of these technologies through the ALHAT Project will provide an ALHAT System capable of enabling next generation lunar lander vehicles to globally land precisely and safely regardless of lighting condition. This paper provides an overview of the ALHAT System and describes recent validation experiments that have advanced the highly capable GNC architecture.
Thermoelectric microdevice fabricated by a MEMS-like electrochemical process
NASA Technical Reports Server (NTRS)
Snyder, G. Jeffrey; Lim, James R.; Huang, Chen-Kuo; Fleurial, Jean-Pierre
2003-01-01
Microelectromechanical systems (MEMS) are the basis of many rapidly growing technologies, because they combine miniature sensors and actuators with communications and electronics at low cost. Commercial MEMS fabrication processes are limited to silicon-based materials or two-dimensional structures. Here we show an inexpensive, electrochemical technique to build MEMS-like structures that contain several different metals and semiconductors with three-dimensional bridging structures. We demonstrate this technique by building a working microthermoelectric device. Using repeated exposure and development of multiple photoresist layers, several different metals and thermoelectric materials are fabricated in a three-dimensional structure. A device containing 126 n-type and p-type (Bi, Sb)2Te3 thermoelectric elements, 20 microm tall and 60 microm in diameter with bridging metal interconnects, was fabricated and cooling demonstrated. Such a device should be of technological importance for precise thermal control when operating as a cooler, and for portable power when operating as a micro power generator.
HPT: A High Spatial Resolution Multispectral Sensor for Microsatellite Remote Sensing
Takahashi, Yukihiro; Sakamoto, Yuji; Kuwahara, Toshinori
2018-01-01
Although nano/microsatellites have great potential as remote sensing platforms, the spatial and spectral resolutions of an optical payload instrument are limited. In this study, a high spatial resolution multispectral sensor, the High-Precision Telescope (HPT), was developed for the RISING-2 microsatellite. The HPT has four image sensors: three in the visible region of the spectrum used for the composition of true color images, and a fourth in the near-infrared region, which employs liquid crystal tunable filter (LCTF) technology for wavelength scanning. Band-to-band image registration methods have also been developed for the HPT and implemented in the image processing procedure. The processed images were compared with other satellite images, and proven to be useful in various remote sensing applications. Thus, LCTF technology can be considered an innovative tool that is suitable for future multi/hyperspectral remote sensing by nano/microsatellites. PMID:29463022
3D laser scanning in civil engineering - measurements of volume of earth masses
NASA Astrophysics Data System (ADS)
Pawłowicz, J. A.; Szafranko, E.; Harasymiuk, J.
2018-03-01
Considering the constant drive to improve and accelerate building processes as well as possible applications of the latest technological achievements in civil engineering practice, the author has proposed to use 3D laser scanning in the construction industry. For example, data achieved through a 3D laser scanning process will facilitate making inventories of parameters of buildings in a very short time, will enable one to check irregularly shaped masses of earth, heavy and practically impossible to calculate precisely using traditional techniques. The other part of the research, performed in the laboratory, consisted of measurements of a model mound of earth. All the measurements were made with a 3D SkanStation C10 laser scanner manufactured by Leica. The data were analyzed. The results suggest that there are great opportunities for using the laser scanning technology in civil engineering
A queueing theory based model for business continuity in hospitals.
Miniati, R; Cecconi, G; Dori, F; Frosini, F; Iadanza, E; Biffi Gentili, G; Niccolini, F; Gusinu, R
2013-01-01
Clinical activities can be seen as results of precise and defined events' succession where every single phase is characterized by a waiting time which includes working duration and possible delay. Technology makes part of this process. For a proper business continuity management, planning the minimum number of devices according to the working load only is not enough. A risk analysis on the whole process should be carried out in order to define which interventions and extra purchase have to be made. Markov models and reliability engineering approaches can be used for evaluating the possible interventions and to protect the whole system from technology failures. The following paper reports a case study on the application of the proposed integrated model, including risk analysis approach and queuing theory model, for defining the proper number of device which are essential to guarantee medical activity and comply the business continuity management requirements in hospitals.
Digital microfluidics: A promising technique for biochemical applications
NASA Astrophysics Data System (ADS)
Wang, He; Chen, Liguo; Sun, Lining
2017-12-01
Digital microfluidics (DMF) is a versatile microfluidics technology that has significant application potential in the areas of automation and miniaturization. In DMF, discrete droplets containing samples and reagents are controlled to implement a series of operations via electrowetting-on-dielectric. This process works by applying electrical potentials to an array of electrodes coated with a hydrophobic dielectric layer. Unlike microchannels, DMF facilitates precise control over multiple reaction processes without using complex pump, microvalve, and tubing networks. DMF also presents other distinct features, such as portability, less sample consumption, shorter chemical reaction time, flexibility, and easier combination with other technology types. Due to its unique advantages, DMF has been applied to a broad range of fields (e.g., chemistry, biology, medicine, and environment). This study reviews the basic principles of droplet actuation, configuration design, and fabrication of the DMF device, as well as discusses the latest progress in DMF from the biochemistry perspective.
NASA Astrophysics Data System (ADS)
Liao, Wenlin; Dai, Yi-Fan; Nie, Xutao; Nie, Xuqing; Xu, Mingjin
2017-12-01
Ion beam sputtering (IBS) possesses strong surface nanostructuring behaviors, where dual microscopic phenomenon can be aroused to induce the formation of ultrasmooth surfaces or regular nanostructures. Low-energy IBS of fused silica surfaces is investigated to discuss the formation mechanism and the regulation of the IBS-induced nanostructures. The research results indicate that these microscopic phenomena can be attributed to the interaction of the IBS-induced surface roughening and smoothing effects, and the interaction process strongly depends on the sputtering conditions. Alternatively, ultrasmooth surface or regular nanostructure can be selectively generated through the regulation of the nanostructuring process, and the features of the generated nanostructures, such as amplitude and period, also can be regulated. Consequently, two different technology aims of nanofabrication, including nanometer-scale and nanometer-precision fabrication, can be realized, respectively. These dual microscopic mechanisms distinguish IBS as a promising nanometer manufacturing technology for the optical surfaces.
A new milling machine for computer-aided, in-office restorations.
Kurbad, Andreas
Chairside computer-aided design/computer-aided manufacturing (CAD/CAM) technology requires an effective technical basis to obtain dental restorations with optimal marginal accuracy, esthetics, and longevity in as short a timeframe as possible. This article describes a compact, 5-axis milling machine based on an innovative milling technology (5XT - five-axis turn-milling technique), which is capable of achieving high-precision milling results within a very short processing time. Furthermore, the device's compact dimensioning and state-of-the-art mode of operation facilitate its use in the dental office. This model is also an option to be considered for use in smaller dental laboratories, especially as the open input format enables it to be quickly and simply integrated into digital processing systems already in use. The possibility of using ceramic and polymer materials with varying properties enables the manufacture of restorations covering all conceivable indications in the field of fixed dental prosthetics.
A Review of Optical NDT Technologies
Zhu, Yong-Kai; Tian, Gui-Yun; Lu, Rong-Sheng; Zhang, Hong
2011-01-01
Optical non-destructive testing (NDT) has gained more and more attention in recent years, mainly because of its non-destructive imaging characteristics with high precision and sensitivity. This paper provides a review of the main optical NDT technologies, including fibre optics, electronic speckle, infrared thermography, endoscopic and terahertz technology. Among them, fibre optics features easy integration and embedding, electronic speckle focuses on whole-field high precision detection, infrared thermography has unique advantages for tests of combined materials, endoscopic technology provides images of the internal surface of the object directly, and terahertz technology opens a new direction of internal NDT because of its excellent penetration capability to most of non-metallic materials. Typical engineering applications of these technologies are illustrated, with a brief introduction of the history and discussion of recent progress. PMID:22164045
All-in-one processing of heterogeneous human cell grafts for gene and cell therapy.
Lukianova-Hleb, Ekaterina Y; Yvon, Eric S; Shpall, Elizabeth J; Lapotko, Dmitri O
2016-01-01
Current cell processing technologies for gene and cell therapies are often slow, expensive, labor intensive and are compromised by high cell losses and poor selectivity thus limiting the efficacy and availability of clinical cell therapies. We employ cell-specific on-demand mechanical intracellular impact from laser pulse-activated plasmonic nanobubbles (PNB) to process heterogeneous human cell grafts ex vivo with dual simultaneous functionality, the high cell type specificity, efficacy and processing rate for transfection of target CD3+ cells and elimination of subsets of unwanted CD25+ cells. The developed bulk flow PNB system selectively processed human cells at a rate of up to 100 million cell/minute, providing simultaneous transfection of CD3+ cells with the therapeutic gene (FKBP12(V36)-p30Caspase9) with the efficacy of 77% and viability 95% (versus 12 and 60%, respectively, for standard electroporation) and elimination of CD25+ cells with 99% efficacy. PNB flow technology can unite and replace several methodologies in an all-in-one universal ex vivo simultaneous procedure to precisely and rapidly prepare a cell graft for therapy. PNB's can process various cell systems including cord blood, stem cells, and bone marrow.
Technologies for precision manufacture of current and future windows and domes
NASA Astrophysics Data System (ADS)
Hallock, Bob; Shorey, Aric
2009-05-01
The final finish and characterization of windows and domes presents a number of challenges in achieving desired precision with acceptable cost and schedule. This becomes more difficult with advanced materials and as window and dome shapes and requirements become more complex, including acute angle corners, transmitted wavefront specifications, aspheric geometries and trending toward conformal surfaces. Magnetorheological Finishing (MRF®) and Magnetorheological Jet (MR Jet®), along with metrology provided by Sub-aperture Stitching Interferometry (SSI®) have several unique attributes that provide them advantages in enhancing fabrication of current and next generation windows and domes. The advantages that MRF brings to the precision finishing of a wide range of shapes such as flats, spheres (including hemispheres), cylinders, aspheres and even freeform optics, has been well documented. Recent advancements include the ability to finish freeform shapes up to 2-meters in size as well as progress in finishing challenging IR materials. Due to its shear-based removal mechanism in contrast to the pressure-based process of other techniques, edges are not typically rolled, in particular on parts with acute angle corners. MR Jet provides additional benefits, particularly in the finishing of the inside of steep concave domes and other irregular shapes. The ability of MR Jet to correct the figure of conformal domes deterministically and to high precision has been demonstrated. Combining these technologies with metrology techniques, such as SSI provides a solution for finishing current and future windows and domes in a reliable, deterministic and cost-effective way. The ability to use the SSI to characterize a range of shapes such as domes and aspheres, as well as progress in using MRF and MR Jet for finishing conventional and conformal windows and domes with increasing size and complexity of design will be presented.
Investigation into Generation of Micro Features by Localised Electrochemical Deposition
NASA Astrophysics Data System (ADS)
Debnath, Subhrajit; Laskar, Hanimur Rahaman; Bhattacharyya, B.
2017-11-01
With the fast advancement of technology, localised electrochemical deposition (LECD) is becoming very advantageous in generating high aspect ratio micro features to meet the steep demand in modern precision industries of the present world. Except many other advantages, this technology is highly uncomplicated and economical for fabricating metal micro-parts with in micron ranges. In the present study, copper micro-columns have been fabricated utilizing LECD process. Different process parameters such as voltage, frequency, duty ratio and electrolyte concentration, which affect the deposition performance have been identified and their effects on deposition performances such as deposition rate, height and diameter of the micro-columns have been experimentally investigated. Taguchi's methodology has been used to study the effects as well as to obtain the optimum values of process parameters so that localised deposition with best performance can be achieved. Moreover, the generated micro-columns were carefully observed under optical and scanning electron microscope from where the surface quality of the deposited micro-columns has been studied qualitatively. Also, an array of copper micro-columns has been fabricated on stainless steel (SS-304) substrate for further exploration of LECD process capability.
Assurance Technology Challenges of Advanced Space Systems
NASA Technical Reports Server (NTRS)
Chern, E. James
2004-01-01
The initiative to explore space and extend a human presence across our solar system to revisit the moon and Mars post enormous technological challenges to the nation's space agency and aerospace industry. Key areas of technology development needs to enable the endeavor include advanced materials, structures and mechanisms; micro/nano sensors and detectors; power generation, storage and management; advanced thermal and cryogenic control; guidance, navigation and control; command and data handling; advanced propulsion; advanced communication; on-board processing; advanced information technology systems; modular and reconfigurable systems; precision formation flying; solar sails; distributed observing systems; space robotics; and etc. Quality assurance concerns such as functional performance, structural integrity, radiation tolerance, health monitoring, diagnosis, maintenance, calibration, and initialization can affect the performance of systems and subsystems. It is thus imperative to employ innovative nondestructive evaluation methodologies to ensure quality and integrity of advanced space systems. Advancements in integrated multi-functional sensor systems, autonomous inspection approaches, distributed embedded sensors, roaming inspectors, and shape adaptive sensors are sought. Concepts in computational models for signal processing and data interpretation to establish quantitative characterization and event determination are also of interest. Prospective evaluation technologies include ultrasonics, laser ultrasonics, optics and fiber optics, shearography, video optics and metrology, thermography, electromagnetics, acoustic emission, x-ray, data management, biomimetics, and nano-scale sensing approaches for structural health monitoring.
NASA Astrophysics Data System (ADS)
Wang, Yonggang; Liu, Chong
2016-10-01
Field programmable gate arrays (FPGAs) manufactured with more advanced processing technology have faster carry chains and smaller delay elements, which are favorable for the design of tapped delay line (TDL)-style time-to-digital converters (TDCs) in FPGA. However, new challenges are posed in using them to implement TDCs with a high time precision. In this paper, we propose a bin realignment method and a dual-sampling method for TDC implementation in a Xilinx UltraScale FPGA. The former realigns the disordered time delay taps so that the TDC precision can approach the limit of its delay granularity, while the latter doubles the number of taps in the delay line so that the TDC precision beyond the cell delay limitation can be expected. Two TDC channels were implemented in a Kintex UltraScale FPGA, and the effectiveness of the new methods was evaluated. For fixed time intervals in the range from 0 to 440 ns, the average RMS precision measured by the two TDC channels reaches 5.8 ps using the bin realignment, and it further improves to 3.9 ps by using the dual-sampling method. The time precision has a 5.6% variation in the measured temperature range. Every part of the TDC, including dual-sampling, encoding, and on-line calibration, could run at a 500 MHz clock frequency. The system measurement dead time is only 4 ns.
Sorensen, Mathew D; Teichman, Joel M H; Bailey, Michael R
2009-07-01
Proof-of-principle in vitro experiments evaluated a prototype ultrasound technology to size kidney stone fragments. Nineteen human stones were measured using manual calipers. A 10-MHz, 1/8'' (10F) ultrasound transducer probe pinged each stone on a kidney tissue phantom submerged in water using two methods. In Method 1, the instrument was aligned such that the ultrasound pulse traveled through the stone. In Method 2, the instrument was aligned partially over the stone such that the ultrasound pulse traveled through water. For Method 1, the correlation between caliper- and ultrasound-determined stone size was r(2) = 0.71 (P < 0.0001). All but two stone measurements were accurate and precise to within 1 mm. For Method 2, the correlation was r(2) = 0.99 (P < 0.0001), and measurements were accurate and precise to within 0.25 mm. The prototype technology and either method measured stone size with good accuracy and precision. This technology may be possible to incorporate into ureteroscopy.
Technology demonstration of starshade manufacturing for NASA's Exoplanet mission program
NASA Astrophysics Data System (ADS)
Kasdin, N. J.; Lisman, D.; Shaklan, S.; Thomson, M.; Cady, E.; Martin, S.; Marchen, L.; Vanderbei, R. J.; Macintosh, B.; Rudd, R. E.; Savransky, D.; Mikula, J.; Lynch, D.
2012-09-01
It is likely that the coming decade will see the development of a large visible light telescope with enabling technology for imaging exosolar Earthlike planets in the habitable zone of nearby stars. One such technology utilizes an external occulter, a satellite flying far from the telescope and employing a large screen, or starshade, to suppress the incoming starlight suffciently for detecting and characterizing exoplanets. This trades the added complexity of building the precisely shaped starshade and flying it in formation against simplifications in the telescope since extremely precise wavefront control is no longer necessary. In this paper we present the results of our project to design, manufacture, and measure a prototype occulter petal as part of NASA's first Technology Development for Exoplanet Missions program. We describe the mechanical design of the starshade and petal, the precision manufacturing tolerances, and the metrology approach. We demonstrate that the prototype petal meets the requirements and is consistent with a full-size occulter achieving better than 10-10 contrast.
Ultrasonic grinding of optical materials
NASA Astrophysics Data System (ADS)
Cahill, Michael; Bechtold, Michael; Fess, Edward; Stephan, Thomas; Bechtold, Rob
2017-10-01
Hard ceramic optical materials such as sapphire, ALON, Spinel, PCA, or Silicon Carbide can present a significant challenge in manufacturing precision optical components due to their tough mechanical properties. These are also the same mechanical properties that make them desirable materials when used in harsh environments. Slow processing speeds, premature tool wear, and poor surface quality are common results of the tough mechanical properties of these materials. Often, as a preparatory stage for polishing, the finish of the ground surface greatly influences the polishing process and the resulting finished product. To overcome these challenges, OptiPro Systems has developed an ultrasonic assisted grinding technology, OptiSonic, which has been designed for the precision optics and ceramics industry. OptiSonic utilizes a custom tool holder designed to produce oscillations, in microns of amplitude, in line with the rotating spindle. A software package, IntelliSonic, is integral to the function of this platform. IntelliSonic can automatically characterize tooling during setup to identify and select the ideal resonant peak which to operate at. Then, while grinding, IntelliSonic continuously adjusts the output frequency for optimal grinding efficiency while in contact with the part. This helps maintain a highly consistent process under changing load conditions for a more precise surface. Utilizing a variety of instruments, tests have proven to show a reduction in force between tool and part by up to 50%, while increasing the surface quality and reducing tool wear. This paper will present the challenges associated with these materials and solutions created to overcome them.
Wireless sleep monitoring headband to identify sleep and track fatigue
NASA Astrophysics Data System (ADS)
Ramasamy, Mouli; Oh, Sechang; Varadan, Vijay K.
2014-04-01
Detection of sleepiness and drowsiness in human beings has been a daunting task for both engineering and medical technologies. Accuracy, precision and promptness of detection have always been an issue that has to be dealt by technologists. Commonly, the rudimentary bio potential signals - ECG, EOG, EEG and EMG are used to classify and discriminate sleep from being awake. However, the potential drawbacks may be high false detections, low precision, obtrusiveness, aftermath analysis, etc. To overcome the disadvantages, this paper proposes the design of a wireless and a real time monitoring system to track sleep and detect fatigue. This concept involves the use of EOG and EEG to measure the blink rate and asses the person's condition. In this user friendly and intuitive approach, EOG and EEG signals are obtained by the dry gold wire nano-sensors fabricated on the inner side of a flexible headband. The acquired signals are then electrically transmitted to the data processing and transmission unit, which transmits the processed data to the receiver/monitoring module through WCDMA/GSM communication. This module is equipped with a software program to process, feature extract, analyze, display and store the information. Thereby, immediate detection of a person falling asleep is made feasible and, tracking the sleep cycle continuously provides an insight about the experienced fatigue level. The novel approach of using a wireless, real time, dry sensor on a flexible substrate reduces the obtrusiveness, and techniques adopted in the electronics and software facilitates and substantial increase in efficiency, accuracy and precision.
A new patent-based approach for technology mapping in the pharmaceutical domain.
Russo, Davide; Montecchi, Tiziano; Carrara, Paolo
2013-09-01
The key factor in decision-making is the quality of information collected and processed in the problem analysis. In most cases, patents represent a very important source of information. The main problem is how to extract such information from the huge corpus of documents with a high recall and precision, and in a short time. This article demonstrates a patent search and classification method, called Knowledge Organizing Module, which consists of creating, almost automatically, a pool of patents based on polysemy expansion and homonymy disambiguation. Since the pool is done, an automatic patent technology landscaping is provided for fixing the state of the art of our product, and exploring competing alternative treatments and/or possible technological opportunities. An exemplary case study is provided, it deals with a patent analysis in the field of verruca treatments.
Shi, Yulin; Veidenbaum, Alexander V; Nicolau, Alex; Xu, Xiangmin
2015-01-15
Modern neuroscience research demands computing power. Neural circuit mapping studies such as those using laser scanning photostimulation (LSPS) produce large amounts of data and require intensive computation for post hoc processing and analysis. Here we report on the design and implementation of a cost-effective desktop computer system for accelerated experimental data processing with recent GPU computing technology. A new version of Matlab software with GPU enabled functions is used to develop programs that run on Nvidia GPUs to harness their parallel computing power. We evaluated both the central processing unit (CPU) and GPU-enabled computational performance of our system in benchmark testing and practical applications. The experimental results show that the GPU-CPU co-processing of simulated data and actual LSPS experimental data clearly outperformed the multi-core CPU with up to a 22× speedup, depending on computational tasks. Further, we present a comparison of numerical accuracy between GPU and CPU computation to verify the precision of GPU computation. In addition, we show how GPUs can be effectively adapted to improve the performance of commercial image processing software such as Adobe Photoshop. To our best knowledge, this is the first demonstration of GPU application in neural circuit mapping and electrophysiology-based data processing. Together, GPU enabled computation enhances our ability to process large-scale data sets derived from neural circuit mapping studies, allowing for increased processing speeds while retaining data precision. Copyright © 2014 Elsevier B.V. All rights reserved.
Shi, Yulin; Veidenbaum, Alexander V.; Nicolau, Alex; Xu, Xiangmin
2014-01-01
Background Modern neuroscience research demands computing power. Neural circuit mapping studies such as those using laser scanning photostimulation (LSPS) produce large amounts of data and require intensive computation for post-hoc processing and analysis. New Method Here we report on the design and implementation of a cost-effective desktop computer system for accelerated experimental data processing with recent GPU computing technology. A new version of Matlab software with GPU enabled functions is used to develop programs that run on Nvidia GPUs to harness their parallel computing power. Results We evaluated both the central processing unit (CPU) and GPU-enabled computational performance of our system in benchmark testing and practical applications. The experimental results show that the GPU-CPU co-processing of simulated data and actual LSPS experimental data clearly outperformed the multi-core CPU with up to a 22x speedup, depending on computational tasks. Further, we present a comparison of numerical accuracy between GPU and CPU computation to verify the precision of GPU computation. In addition, we show how GPUs can be effectively adapted to improve the performance of commercial image processing software such as Adobe Photoshop. Comparison with Existing Method(s) To our best knowledge, this is the first demonstration of GPU application in neural circuit mapping and electrophysiology-based data processing. Conclusions Together, GPU enabled computation enhances our ability to process large-scale data sets derived from neural circuit mapping studies, allowing for increased processing speeds while retaining data precision. PMID:25277633
What Is Trust? Ethics and Risk Governance in Precision Medicine and Predictive Analytics
Adjekum, Afua; Ienca, Marcello
2017-01-01
Abstract Trust is a ubiquitous term used in emerging technology (e.g., Big Data, precision medicine), innovation policy, and governance literatures in particular. But what exactly is trust? Even though trust is considered a critical requirement for the successful deployment of precision medicine initiatives, nonetheless, there is a need for further conceptualization with regard to what qualifies as trust, and what factors might establish and sustain trust in precision medicine, predictive analytics, and large-scale biology. These new fields of 21st century medicine and health often deal with the “futures” and hence, trust gains a temporal and ever-present quality for both the present and the futures anticipated by new technologies and predictive analytics. We address these conceptual gaps that have important practical implications in the way we govern risk and unknowns associated with emerging technologies in biology, medicine, and health broadly. We provide an in-depth conceptual analysis and an operative definition of trust dynamics in precision medicine. In addition, we identify three main types of “trust facilitators”: (1) technical, (2) ethical, and (3) institutional. This three-dimensional framework on trust is necessary to building and maintaining trust in 21st century knowledge-based innovations that governments and publics invest for progressive societal change, development, and sustainable prosperity. Importantly, we analyze, identify, and deliberate on the dimensions of precision medicine and large-scale biology that have carved out trust as a pertinent tool to its success. Moving forward, we propose a “points to consider” on how best to enhance trust in precision medicine and predictive analytics. PMID:29257733
What Is Trust? Ethics and Risk Governance in Precision Medicine and Predictive Analytics.
Adjekum, Afua; Ienca, Marcello; Vayena, Effy
2017-12-01
Trust is a ubiquitous term used in emerging technology (e.g., Big Data, precision medicine), innovation policy, and governance literatures in particular. But what exactly is trust? Even though trust is considered a critical requirement for the successful deployment of precision medicine initiatives, nonetheless, there is a need for further conceptualization with regard to what qualifies as trust, and what factors might establish and sustain trust in precision medicine, predictive analytics, and large-scale biology. These new fields of 21st century medicine and health often deal with the "futures" and hence, trust gains a temporal and ever-present quality for both the present and the futures anticipated by new technologies and predictive analytics. We address these conceptual gaps that have important practical implications in the way we govern risk and unknowns associated with emerging technologies in biology, medicine, and health broadly. We provide an in-depth conceptual analysis and an operative definition of trust dynamics in precision medicine. In addition, we identify three main types of "trust facilitators": (1) technical, (2) ethical, and (3) institutional. This three-dimensional framework on trust is necessary to building and maintaining trust in 21st century knowledge-based innovations that governments and publics invest for progressive societal change, development, and sustainable prosperity. Importantly, we analyze, identify, and deliberate on the dimensions of precision medicine and large-scale biology that have carved out trust as a pertinent tool to its success. Moving forward, we propose a "points to consider" on how best to enhance trust in precision medicine and predictive analytics.
Technology-enabled Airborne Spacing and Merging
NASA Technical Reports Server (NTRS)
Hull, James; Barmore, Bryan; Abbott, Tetence
2005-01-01
Over the last several decades, advances in airborne and groundside technologies have allowed the Air Traffic Service Provider (ATSP) to give safer and more efficient service, reduce workload and frequency congestion, and help accommodate a critically escalating traffic volume. These new technologies have included advanced radar displays, and data and communication automation to name a few. In step with such advances, NASA Langley is developing a precision spacing concept designed to increase runway throughput by enabling the flight crews to manage their inter-arrival spacing from TRACON entry to the runway threshold. This concept is being developed as part of NASA s Distributed Air/Ground Traffic Management (DAG-TM) project under the Advanced Air Transportation Technologies Program. Precision spacing is enabled by Automatic Dependent Surveillance-Broadcast (ADS-B), which provides air-to-air data exchange including position and velocity reports; real-time wind information and other necessary data. On the flight deck, a research prototype system called Airborne Merging and Spacing for Terminal Arrivals (AMSTAR) processes this information and provides speed guidance to the flight crew to achieve the desired inter-arrival spacing. AMSTAR is designed to support current ATC operations, provide operationally acceptable system-wide increases in approach spacing performance and increase runway throughput through system stability, predictability and precision spacing. This paper describes problems and costs associated with an imprecise arrival flow. It also discusses methods by which Air Traffic Controllers achieve and maintain an optimum interarrival interval, and explores means by which AMSTAR can assist in this pursuit. AMSTAR is an extension of NASA s previous work on in-trail spacing that was successfully demonstrated in a flight evaluation at Chicago O Hare International Airport in September 2002. In addition to providing for precision inter-arrival spacing, AMSTAR provides speed guidance for aircraft on converging routes to safely and smoothly merge onto a common approach. Much consideration has been given to working with operational conditions such as imperfect ADS-B data, wind prediction errors, changing winds, differing aircraft types and wake vortex separation requirements. A series of Monte Carlo simulations are planned for the spring and summer of 2004 at NASA Langley to further study the system behavior and performance under more operationally extreme and varying conditions. This will coincide with a human-in-the-loop study to investigate the flight crew interface, workload and acceptability.
Location Technologies for Apparel Assembly
1991-09-01
ADDRESS (Stry, State, and ZIP Code) School of Textile & Fiber Engineering Georgia Institute of Technology Atlanta, Georgia 30332-0295 206 O’Keefe...at a cost of less than $500. A review is also given of state-of-the- art vision systems. These systems have the nccessry- accuracy and precision for...of state-of-the- art vision systems. These systems have the necessary accuracy and precision for apparel manufacturing applications and could
Precision genome editing in the CRISPR era.
Salsman, Jayme; Dellaire, Graham
2017-04-01
With the introduction of precision genome editing using CRISPR-Cas9 technology, we have entered a new era of genetic engineering and gene therapy. With RNA-guided endonucleases, such as Cas9, it is possible to engineer DNA double strand breaks (DSB) at specific genomic loci. DSB repair by the error-prone non-homologous end-joining (NHEJ) pathway can disrupt a target gene by generating insertions and deletions. Alternatively, Cas9-mediated DSBs can be repaired by homology-directed repair (HDR) using an homologous DNA repair template, thus allowing precise gene editing by incorporating genetic changes into the repair template. HDR can introduce gene sequences for protein epitope tags, delete genes, make point mutations, or alter enhancer and promoter activities. In anticipation of adapting this technology for gene therapy in human somatic cells, much focus has been placed on increasing the fidelity of CRISPR-Cas9 and increasing HDR efficiency to improve precision genome editing. In this review, we will discuss applications of CRISPR technology for gene inactivation and genome editing with a focus on approaches to enhancing CRISPR-Cas9-mediated HDR for the generation of cell and animal models, and conclude with a discussion of recent advances and challenges towards the application of this technology for gene therapy in humans.
Application of high speed machining technology in aviation
NASA Astrophysics Data System (ADS)
Bałon, Paweł; Szostak, Janusz; Kiełbasa, Bartłomiej; Rejman, Edward; Smusz, Robert
2018-05-01
Aircraft structures are exposed to many loads during their working lifespan. Every particular action made during a flight is composed of a series of air movements which generate various aircraft loads. The most rigorous requirement which modern aircraft structures must fulfill is to maintain their high durability and reliability. This requirement involves taking many restrictions into account during the aircraft design process. The most important factor is the structure's overall mass, which has a crucial impact on both utility properties and cost-effectiveness. This makes aircraft one of the most complex results of modern technology. Additionally, there is currently an increasing utilization of high strength aluminum alloys, which requires the implementation of new manufacturing processes. High Speed Machining technology (HSM) is currently one of the most important machining technologies used in the aviation industry, especially in the machining of aluminium alloys. The primary difference between HSM and other milling techniques is the ability to select cutting parameters - depth of the cut layer, feed rate, and cutting speed in order to simultaneously ensure high quality, precision of the machined surface, and high machining efficiency, all of which shorten the manufacturing process of the integral components. In this paper, the authors explain the implementation of the HSM method in integral aircraft constructions. It presents the method of the airframe manufacturing method, and the final results. The HSM method is compared to the previous method where all subcomponents were manufactured by bending and forming processes, and then, they were joined by riveting.
[Medical big data and precision medicine: prospects of epidemiology].
Song, J; Hu, Y H
2016-08-10
Since the development of high-throughput technology, electronic medical record system and big data technology, the value of medical data has caused more attention. On the other hand, the proposal of Precision Medicine Initiative opens up the prospect for medical big data. As a Tool-related Discipline, Epidemiology is, focusing on exploitation the resources of existing big data and promoting the integration of translational research and knowledge to completely unlocking the "black box" of exposure-disease continuum. It also tries to accelerating the realization of the ultimate goal on precision medicine. The overall purpose, however is to translate the evidence from scientific research to improve the health of the people.
Precise FIA plot registration using field and dense LIDAR data
Demetrios Gatziolis
2009-01-01
Precise registration of forest inventory and analysis (FIA) plots is a prerequisite for an effective fusion of field data with ancillary spatial information, which is an approach commonly employed in the mapping of various forest parameters. Although the adoption of Global Positioning System technology has improved the precision of plot coordinates obtained during...
Delidding and resealing hybrid microelectronic packages
NASA Astrophysics Data System (ADS)
Luce, W. F.
1982-05-01
The objective of this single phase MM and T contract was to develop the manufacturing technology necessary for the precision removal (delidding) and replacement (resealing) of covers on hermetically sealed hybrid microelectronic packages. The equipment and processes developed provide a rework technique which does not degrade the reliability of the package of the enclosed circuitry. A qualification test was conducted on 88 functional hybrid packages, with excellent results. A petition will be filed, accompanied by this report, requesting Mil-M-38510 be amended to allow this rework method.
[Artificial intelligence in psychiatry-an overview].
Meyer-Lindenberg, A
2018-06-18
Artificial intelligence and the underlying methods of machine learning and neuronal networks (NN) have made dramatic progress in recent years and have allowed computers to reach superhuman performance in domains that used to be thought of as uniquely human. In this overview, the underlying methodological developments that made this possible are briefly delineated and then the applications to psychiatry in three domains are discussed: precision medicine and biomarkers, natural language processing and artificial intelligence-based psychotherapeutic interventions. In conclusion, some of the risks of this new technology are mentioned.
1989-09-25
Orders and test specifications. Some mandatory replacement of high failure items are directed by Technical Orders to extend MTBF. Precision bearing and...Experience is very high but natural attrition is reducing the numbers faster than training is furnishing younger mechanics. Surge conditions would be...model validation run output revealed that utilization of equipment is very low and manpower is high . Based on this analysis and the brainstorming
Measuring the earth's rotation and orientation with GPS
NASA Technical Reports Server (NTRS)
Freedman, Adam P.
1992-01-01
The possibilities for providing precise and frequent measurements of earth's orientation in space by using GPS technology are reviewed. In particular, attention is given to the concepts as polar motion and Universal Time, definition of reference frames for unambiguous measurements of earth's rotations, and data processing strategies. Some of the results achieved to date are examined, and it is shown that Universal Time changes can be measured using GPS with an accuracy of better than 100 microseconds over a few hours. Finally, future plans are discussed.
NASA Astrophysics Data System (ADS)
Sych, O. V.; Khlusova, E. I.; Yashin, E. A.
2017-12-01
The paper presents the results of quantitative analysis of C, Mn, Ni and Cu content on strength and cold-resistance of rolled plates. Relations between the ferritic-bainitic structure morphology and anisotropy and steel performance characteristics have been established. Influence of thermal and deformation rolling patterns on steel structure has been studied. The steel chemical composition has been improved and precision thermomechanical processing conditions for production of cold-resistant Arc-steel plates have been developed.
United States Air Force Graduate Student Summer Support Program (1985). Technical Report. Volume 2.
1985-12-01
C. , "A Thermodynamic and Continuum Approach to the Design and Control of Precision Forging Processes," Master’s Thesis , Wright State University, Aug...on mobile platforms, space will usually be a design consideration. This consideration will 48-4 •.J o,-. " limit the size of the laser used with the...Dichromated Gelatin Emulsions for Recording Phase Holograms," Master’s Thesis USAF Institute of Technology, December 1975, AD-A019320- 7. Graube, A
NASA Astrophysics Data System (ADS)
Kim-Hak, David; Leuenberger, Markus; Berhanu, Tesfaye; Nyfeler, Peter; Hoffnagle, John; Sun, Minghua
2017-04-01
Oxygen (O2) is a major and vital component of the Earth atmosphere representing about 21% of its composition. It is consumed or produced through biochemical processes such as combustion, respiration, and photosynthesis and can be used as a top-down constraint on the carbon cycle. The observed variations of oxygen in the atmosphere are relatively small, in the order of a few ppm's. This presents the main technical challenge for the measurement since a very high level of precision on a large background is required. Only few analytical methods including mass spectrometry, fuel, ultraviolet[1] and paramagnetic cells are capable of achieving it. Here we present new developments of a high-precision gas analyzer that utilizes the technique of Cavity Ring-Down Spectroscopy to measure oxygen concentration and its oxygen isotope ratio 18O/16O. Its compact and ruggedness design combined with high precision and long-term stability allows the user to deploy the instrument in the field for continuous monitoring of atmospheric oxygen level. Measurements have a 1-σ 5-minute averaging precision of 1-2 ppm for O2 over a dynamic range of 0-50%. We will present comparative test results of this instrument against the incumbent technologies such as the mass spectrometer and the paramagnetic cell. In addition, we will demonstrate its long-term stability from a field deployment in Switzerland.
Defining precision: The precision medicine initiative trials NCI-MPACT and NCI-MATCH.
Coyne, Geraldine O'Sullivan; Takebe, Naoko; Chen, Alice P
"Precision" trials, using rationally incorporated biomarker targets and molecularly selective anticancer agents, have become of great interest to both patients and their physicians. In the endeavor to test the cornerstone premise of precision oncotherapy, that is, determining if modulating a specific molecular aberration in a patient's tumor with a correspondingly specific therapeutic agent improves clinical outcomes, the design of clinical trials with embedded genomic characterization platforms which guide therapy are an increasing challenge. The National Cancer Institute Precision Medicine Initiative is an unprecedented large interdisciplinary collaborative effort to conceptualize and test the feasibility of trials incorporating sequencing platforms and large-scale bioinformatics processing that are not currently uniformly available to patients. National Cancer Institute-Molecular Profiling-based Assignment of Cancer Therapy and National Cancer Institute-Molecular Analysis for Therapy Choice are 2 genomic to phenotypic trials under this National Cancer Institute initiative, where treatment is selected according to predetermined genetic alterations detected using next-generation sequencing technology across a broad range of tumor types. In this article, we discuss the objectives and trial designs that have enabled the public-private partnerships required to complete the scale of both trials, as well as interim trial updates and strategic considerations that have driven data analysis and targeted therapy assignment, with the intent of elucidating further the benefits of this treatment approach for patients. Copyright © 2017. Published by Elsevier Inc.
Next Generation X-Ray Optics: High-Resolution, Light-Weight, and Low-Cost
NASA Technical Reports Server (NTRS)
Zhang, William W.
2012-01-01
X-ray telescopes are essential to the future of x-ray astronomy. In this talk I will describe a comprehensive program to advance the technology for x-ray telescopes well beyond the state of the art represented by the three currently operating missions: Chandra, XMM-Newton, and Suzaku. This program will address the three key issues in making an x-ray telescope: (1) angular resolution, (2) effective area per unit mass, and (3) cost per unit effective area. The objectives of this technology program are (1) in the near term, to enable Explorer-class x-ray missions and an IXO-type mission, and (2) in the long term, to enable a flagship x-ray mission with sub-arcsecond angular resolution and multi-square-meter effective area, at an affordable cost. We pursue two approaches concurrently, emphasizing the first approach in the near term (2-5 years) and the second in the long term (4-10 years). The first approach is precision slumping of borosilicate glass sheets. By design and choice at the outset, this technique makes lightweight and low-cost mirrors. The development program will continue to improve angular resolution, to enable the production of 5-arcsecond x-ray telescopes, to support Explorer-class missions and one or more missions to supersede the original IXO mission. The second approach is precision polishing and light-weighting of single-crystal silicon mirrors. This approach benefits from two recent commercial developments: (1) the inexpensive and abundant availability of large blocks of monocrystalline silicon, and (2) revolutionary advances in deterministic, precision polishing of mirrors. By design and choice at the outset, this technique is capable of producing lightweight mirrors with sub-arcsecond angular resolution. The development program will increase the efficiency and reduce the cost of the polishing and the light-weighting processes, to enable the production of lightweight sub-arcsecond x-ray telescopes. Concurrent with the fabrication of lightweight mirror segments is the continued development and perfection of alignment and integration techniques, for incorporating individual mirror segments into a precision mirror assembly. Recently, we have been developing a technique called edge-bonding, which has achieved an accuracy to enable 10-arcsecond x-ray telescopes. Currently, we are investigating and improving the long-term alignment stability of so-bonded mirrors. Next, we shall refine this process to enable 5-arsecond x-ray telescopes. This technology development program includes all elements to demonstrate progress toward TRL-6: metrology; x-ray performance tests; coupled structural, thermal, and optical performance analysis, and environmental testing.
Next Generation X-Ray Optics: High-Resolution, Light-Weight, and Low-Cost
NASA Technical Reports Server (NTRS)
Zhang, William W.
2011-01-01
X-ray telescopes are essential to the future of x-ray astronomy. This paper describes a comprehensive program to advance the technology for x-ray telescopes well beyond the state of the art represented by the three currently operating missions: Chandra, XMM-Newton , and Suzaku . This program will address the three key issues in making an x-ray telescope: (I) angular resolution, (2) effective area per unit mass, and (3) cost per unit effective area. The objectives of this technology program are (1) in the near term, to enable Explorer-class x-ray missions and an IXO type mission, and (2) in the long term, to enable a flagship x-ray mission with sub-arcsecond angular resolution and multi-square-meter effective area, at an affordable cost. We pursue two approaches concurrently, emphasizing the first approach in the near term (2-5 years) and the second in the long term (4-10 years). The first approach is precision slumping of borosilicate glass sheets. By design and choice at the outset, this technique makes lightweight and low-cost mirrors. The development program will continue to improve angular resolution, to enable the production of 5-arcsecond x-ray telescopes, to support Explorer-class missions and one or more missions to supersede the original IXO mission. The second approach is precision polishing and light-weighting of single-crystal silicon mirrors. This approach benefits from two recent commercial developments: (1) the inexpensive and abundant availability of large blocks of mono crystalline silicon, and (2) revolutionary advances in deterministic, precision polishing of mirrors. By design and choice at the outset, this technique is capable of producing lightweight mirrors with sub-arcsecond angular resolution. The development program will increase the efficiency and reduce the cost of the polishing and the lightweighting processes, to enable the production of lightweight sub-arcsecond x-ray telescopes. Concurrent with the fabrication of lightweight mirror segments is the continued development and perfection of alignment and integration techniques, for incorporating individual mirror segments into a precision mirror assembly. Recently, we have been developing a technique called edge-bonding, which has achieved an accuracy to enable 10- arcsecond x-ray telescopes. Currently, we are investigating and improving the long-term alignment stability of so-bonded mirrors. Next, we shall refine this process to enable 5-arsecond x-ray telescopes. This technology development program includes all elements to demonstrate progress toward TRL-6: metrology; x-ray performance tests; coupled structural, thermal, and optical performance analysis, and environmental testing.
NASA Astrophysics Data System (ADS)
Micheletti, Natan; Chandler, Jim; Lane, Stuart
2013-04-01
Whilst high-resolution topographic and terrain data is essential in many geoscience applications, its acquisition has traditionally required either specific expertise (e.g. applications of photogrammetry) or expensive equipment (e.g. ground-based laser altimetric systems). Recent work in geomorphology (e.g. James and Robson, 2012; Carbonneau et al., 2012) has demonstrated the potential of Structure-from-Motion photogrammetry as a low cost, low expertise alternative for Digital Elevation Model (DEM) generation. These methods have geomorphological appeal because the more sophisticated image matching approaches remove many of the geometrical constraints associated with image acquisition: traditionally, vertical and "normal" image pairs acquired with a metric camera. This increases both the number of potential applications and the efficacy of image acquisition in the field. It also allows for genuine 3D (where the same (x,y) can have multiple z values) rather than 2.5D (where each (x,y) must have a unique z value) representation of the terrain surface. In this paper, we progress this technology further, by testing what can be acquired using hand-held smartphone technology, where the acquired images can be uploaded in the field to Open Source technology freely available to the research community. This is achieved by evaluating the quality of DEMs generated with a fully automated, open-source, Structure-from-Motion package and a smartphone (Apple Iphone 4) integrated camera (5 megapixels) using terrestrial laser scanning (TLS) data as benchmark. To allow a more objective assessment, it is necessary to compare both device and package with traditional approaches. Accordingly, we compare the error in the smartphone DEMs with the errors associated with data derived using a 16.2 megapixel digital camera and processed using the more traditional, commercial, close-range and semi-automated software PhotoModeler. Results demonstrate that centimeter precision DTMs can be achieved at close range, using a smartphone camera and a fully automated package, here illustrated for river bank survey. Results improve to sub-centimeter precision with either higher resolution images or by applying specific post-processing techniques to the smartphone DEMs. Extension to the survey of an entire Alpine alluvial fan system shows that the degradation of precision scales linearly with image scale, but that the quality: maintains a good level of precision; and is influenced equally with the difficulties of separating vegetation and sediment cover, typical of laser scanning systems.
Membrane Lipid Oscillation: An Emerging System of Molecular Dynamics in the Plant Membrane.
Nakamura, Yuki
2018-03-01
Biological rhythm represents a major biological process of living organisms. However, rhythmic oscillation of membrane lipid content is poorly described in plants. The development of lipidomic technology has led to the illustration of precise molecular profiles of membrane lipids under various growth conditions. Compared with conventional lipid signaling, which produces unpredictable lipid changes in response to ever-changing environmental conditions, lipid oscillation generates a fairly predictable lipid profile, adding a new layer of biological function to the membrane system and possible cross-talk with the other chronobiological processes. This mini review covers recent studies elucidating membrane lipid oscillation in plants.
Critical aspects of substrate nanopatterning for the ordered growth of GaN nanocolumns.
Barbagini, Francesca; Bengoechea-Encabo, Ana; Albert, Steven; Martinez, Javier; Sanchez García, Miguel Angel; Trampert, Achim; Calleja, Enrique
2011-12-14
Precise and reproducible surface nanopatterning is the key for a successful ordered growth of GaN nanocolumns. In this work, we point out the main technological issues related to the patterning process, mainly surface roughness and cleaning, and mask adhesion to the substrate. We found that each of these factors, process-related, has a dramatic impact on the subsequent selective growth of the columns inside the patterned holes. We compare the performance of e-beam lithography, colloidal lithography, and focused ion beam in the fabrication of hole-patterned masks for ordered columnar growth. These results are applicable to the ordered growth of nanocolumns of different materials.
Diffraction-based overlay metrology for double patterning technologies
NASA Astrophysics Data System (ADS)
Dasari, Prasad; Korlahalli, Rahul; Li, Jie; Smith, Nigel; Kritsun, Oleg; Volkman, Cathy
2009-03-01
The extension of optical lithography to 32nm and beyond is made possible by Double Patterning Techniques (DPT) at critical levels of the process flow. The ease of DPT implementation is hindered by increased significance of critical dimension uniformity and overlay errors. Diffraction-based overlay (DBO) has shown to be an effective metrology solution for accurate determination of the overlay errors associated with double patterning [1, 2] processes. In this paper we will report its use in litho-freeze-litho-etch (LFLE) and spacer double patterning technology (SDPT), which are pitch splitting solutions that reduce the significance of overlay errors. Since the control of overlay between various mask/level combinations is critical for fabrication, precise and accurate assessment of errors by advanced metrology techniques such as spectroscopic diffraction based overlay (DBO) and traditional image-based overlay (IBO) using advanced target designs will be reported. A comparison between DBO, IBO and CD-SEM measurements will be reported. . A discussion of TMU requirements for 32nm technology and TMU performance data of LFLE and SDPT targets by different overlay approaches will be presented.
Applications of Three-Dimensional Printing in Surgery.
Li, Chi; Cheung, Tsz Fung; Fan, Vei Chen; Sin, Kin Man; Wong, Chrisity Wai Yan; Leung, Gilberto Ka Kit
2017-02-01
Three-dimensional (3D) printing is a rapidly advancing technology in the field of surgery. This article reviews its contemporary applications in 3 aspects of surgery, namely, surgical planning, implants and prostheses, and education and training. Three-dimensional printing technology can contribute to surgical planning by depicting precise personalized anatomy and thus a potential improvement in surgical outcome. For implants and prosthesis, the technology might overcome the limitations of conventional methods such as visual discrepancy from the recipient's body and unmatching anatomy. In addition, 3D printing technology could be integrated into medical school curriculum, supplementing the conventional cadaver-based education and training in anatomy and surgery. Future potential applications of 3D printing in surgery, mainly in the areas of skin, nerve, and vascular graft preparation as well as ear reconstruction, are also discussed. Numerous trials and studies are still ongoing. However, scientists and clinicians are still encountering some limitations of the technology including high cost, long processing time, unsatisfactory mechanical properties, and suboptimal accuracy. These limitations might potentially hamper the applications of this technology in daily clinical practice.
An open-source and low-cost monitoring system for precision enology.
Di Gennaro, Salvatore Filippo; Matese, Alessandro; Mancin, Mirko; Primicerio, Jacopo; Palliotti, Alberto
2014-12-05
Winemaking is a dynamic process, where microbiological and chemical effects may strongly differentiate products from the same vineyard and even between wine vats. This high variability means an increase in work in terms of control and process management. The winemaking process therefore requires a site-specific approach in order to optimize cellar practices and quality management, suggesting a new concept of winemaking, identified as Precision Enology. The Institute of Biometeorology of the Italian National Research Council has developed a wireless monitoring system, consisting of a series of nodes integrated in barrel bungs with sensors for the measurement of wine physical and chemical parameters in the barrel. This paper describes an open-source evolution of the preliminary prototype, using Arduino-based technology. Results have shown good performance in terms of data transmission and accuracy, minimal size and power consumption. The system has been designed to create a low-cost product, which allows a remote and real-time control of wine evolution in each barrel, minimizing costs and time for sampling and laboratory analysis. The possibility of integrating any kind of sensors makes the system a flexible tool that can satisfy various monitoring needs.
Applications of picosecond lasers and pulse-bursts in precision manufacturing
NASA Astrophysics Data System (ADS)
Knappe, Ralf
2012-03-01
Just as CW and quasi-CW lasers have revolutionized the materials processing world, picosecond lasers are poised to change the world of micromachining, where lasers outperform mechanical tools due to their flexibility, reliability, reproducibility, ease of programming, and lack of mechanical force or contamination to the part. Picosecond lasers are established as powerful tools for micromachining. Industrial processes like micro drilling, surface structuring and thin film ablation benefit from a process, which provides highest precision and minimal thermal impact for all materials. Applications such as microelectronics, semiconductor, and photovoltaic industries use picosecond lasers for maximum quality, flexibility, and cost efficiency. The range of parts, manufactured with ps lasers spans from microscopic diamond tools over large printing cylinders with square feet of structured surface. Cutting glass for display and PV is a large application, as well. With a smart distribution of energy into groups of ps-pulses at ns-scale separation (known as burst mode) ablation rates can be increased by one order of magnitude or more for some materials, also providing a better surface quality under certain conditions. The paper reports on the latest results of the laser technology, scaling of ablation rates, and various applications in ps-laser micromachining.
Fibre laser cutting of polycaprolactone sheet for stents manufacturing: A feasibility study
NASA Astrophysics Data System (ADS)
Guerra, Antonio J.; Farjas, Jordi; Ciurana, Joaquim
2017-10-01
The role of the stent is temporary and it is limited to the intervention and shortly thereafter. Bioresorbable polymer stents were introduced to overcome this problem, making the stent manufacturing process rather difficult considering the complexity of the material. The stent forecast sale makes constant technology development necessary on this field. The adaptation of the laser manufacturing industry to these new materials is costly, thus further studies employing different sorts of lasers are necessary. This paper aims to explore the feasibility of 1.08 μm wavelength fibre laser to cut polycaprolactone sheet, which is especially interesting for long-term implantable devices, such as stents. The laser cut samples were analysed by Differential Scanning Calorimetry (DSC), Tensile Stress Test, and Optical Microscopy in order to study the effects of the laser process over the workpiece. The parameters measured were: taper angle, dimensional precision, material structure changes and mechanical properties changes. Results showed a dimensional precision above 95.75% with a taper angle lower than 0.033°. The laser ablation process has exhibited a minor influence upon material properties. Results exhibit the feasibility of fibre laser to cut polycaprolactone, making the fibre laser an alternative to manufacture stents.
Surface Control of Cold Hibernated Elastic Memory Self-Deployable Structure
NASA Technical Reports Server (NTRS)
Sokolowski, Witold M.; Ghaffarian, Reza
2006-01-01
A new class of simple, reliable, lightweight, low packaging volume and cost, self-deployable structures has been developed for use in space and commercial applications. This technology called 'cold hibernated elastic memory' (CHEM) utilizes shape memory polymers (SMP)in open cellular (foam) structure or sandwich structures made of shape memory polymer foam cores and polymeric composite skins. Some of many potential CHEM space applications require a high precision deployment and surface accuracy during operation. However, a CHEM structure could be slightly distorted by the thermo-mechanical processing as well as by thermal space environment Therefore, the sensor system is desirable to monitor and correct the potential surface imperfection. During these studies, the surface control of CHEM smart structures was demonstrated using a Macro-Fiber Composite (MFC) actuator developed by the NASA LaRC and US Army ARL. The test results indicate that the MFC actuator performed well before and after processing cycles. It reduced some residue compressive strain that in turn corrected very small shape distortion after each processing cycle. The integrated precision strain gages were detecting only a small flat shape imperfection indicating a good recoverability of original shape of the CHEM test structure.
Initiating the 2002 Mars Science Laboratory (MSL) Focused Technology Program
NASA Technical Reports Server (NTRS)
Caffrey, Robert T.; Udomkesmalee, Gabriel; Hayati, Samad A.
2004-01-01
The Mars Science Laboratory (MSL) Project is an aggressive mission launching in 2009 to deliver a new generation of rover safely to the surface of Mars and conduct comprehensive in situ investigations using a new generation of instruments. This system will be designed to land with precision and be capable of operating over a large percentage on the surface of Mars. It will have capabilities that will support NASA's scientific goals into the next decade of exphation. The MSL Technology program is developing a wide-range of technologies needed for this Mission and potentially other space missions. The MSL Technology Program reports to both the MSL Project and the Mars Technology Program (MTP). The dual reporting process creates a challenging management situation, but ensures the new technology meets both the specific MSL requirements and the broader Mars Program requirements. MTP is a NASA-wide technology development program managed by the Jet Propulsion Laboratory (JPL) and is divided into a Focused Program and a Base Program. The Focused Technology Program addresses technologies that are specific and critical to near-term missions, while the Base Technology Program addresses those technologies that are applicable to multiple missions and which can be characterized as longer term, higher risk, and high payoff technologies. The MSL Technology Program is under the Focused Program and is tightly coupled to MSL's mission milestones and deliverables. The technology budget is separate from the flight Project budget, but the technology s requirements and the development process are tightly coordinated with the Project. The Technology Program combines proven management techniques of flight projects with commercial and academic technology management strategies, to create a technology management program that meets the near-term requirements of MSL and the long-term requirements of MTP. This paper examines the initiation of 2002 MSL Technology program. Some of the areas discussed in this paper include technology definition, task selection, technology management, and technology assessment.
Space Technology 7 Disturbance Reduction System - precision control flight Validation
NASA Technical Reports Server (NTRS)
Carmain, Andrew J.; Dunn, Charles; Folkner, William; Hruby, Vlad; Spence, Doug; O'Donnell, James; Markley, Landis; Maghami, Peiman; Hsu, Oscar; Demmons, N.;
2005-01-01
The NASA New Millennium Program Space Technology 7 (ST7) project will validate technology for precision spacecraft control. The Disturbance Reduction System (DRS) will be part of the European Space Agency's LISA Pathfinder project. The DRS will control the position of the spacecraft relative to a reference to an accuracy of one nanometer over time scales of several thousand seconds. To perform the control, the spacecraft will use a new colloid thruster technology. The thrusters will operate over the range of 5 to 30 micro-Newtons with precision of 0.1 micro- Newton. The thrust will be generated by using a high electric field to extract charged droplets of a conducting colloid fluid and accelerating them with a precisely adjustable voltage. The control reference will be provided by the European LISA Technology Package, which will include two nearly freefloating test masses. The test mass positions and orientations will be measured using a capacitance bridge. The test mass position and attitude will be adjustable using electrostatically applied forces and torques. The DRS will control the spacecraft position with respect to one test mass while minimizing disturbances on the second test mass. The dynamic control system will cover eighteen degrees of freedom: six for each of the test masses and six for the spacecraft. After launch in late 2009 to a low Earth orbit, the LISA Pathfinder spacecraft will be maneuvered to a halo orbit about the Earth-Sun L1 Lagrange point for operations.
Shaping the spectrum of random-phase radar waveforms
Doerry, Armin W.; Marquette, Brandeis
2017-05-09
The various technologies presented herein relate to generation of a desired waveform profile in the form of a spectrum of apparently random noise (e.g., white noise or colored noise), but with precise spectral characteristics. Hence, a waveform profile that could be readily determined (e.g., by a spoofing system) is effectively obscured. Obscuration is achieved by dividing the waveform into a series of chips, each with an assigned frequency, wherein the sequence of chips are subsequently randomized. Randomization can be a function of the application of a key to the chip sequence. During processing of the echo pulse, a copy of the randomized transmitted pulse is recovered or regenerated against which the received echo is correlated. Hence, with the echo energy range-compressed in this manner, it is possible to generate a radar image with precise impulse response.
Influence of forces acting on side of machine on precision machining of large diameter holes
NASA Astrophysics Data System (ADS)
Fedorenko, M. A.; Bondarenko, J. A.; Sanina, T. M.
2018-03-01
One of the most important factors that increase efficiency, durability and reliability of rotating units is precision installation, preventive maintenance work, timely replacing of a failed or worn components and assemblies. These works should be carried out in the operation of the equipment, as the downtime in many cases leads to large financial losses. Stop of one unit of an industrial enterprise can interrupt the technological chain of production, resulting in a possible stop of the entire equipment. Improving the efficiency and optimization of the repair process increases accuracy of installation work when installing equipment, conducting restoration under operating conditions relevant for enterprises of different industries because it eliminates dismantling the equipment, sending it to maintenance, the expectation of equipment return, the new installation with the required quality and accuracy of repair.
Use of big data in drug development for precision medicine
Kim, Rosa S.; Goossens, Nicolas; Hoshida, Yujin
2016-01-01
Summary Drug development has been a costly and lengthy process with an extremely low success rate and lack of consideration of individual diversity in drug response and toxicity. Over the past decade, an alternative “big data” approach has been expanding at an unprecedented pace based on the development of electronic databases of chemical substances, disease gene/protein targets, functional readouts, and clinical information covering inter-individual genetic variations and toxicities. This paradigm shift has enabled systematic, high-throughput, and accelerated identification of novel drugs or repurposed indications of existing drugs for pathogenic molecular aberrations specifically present in each individual patient. The exploding interest from the information technology and direct-to-consumer genetic testing industries has been further facilitating the use of big data to achieve personalized Precision Medicine. Here we overview currently available resources and discuss future prospects. PMID:27430024
NASA Astrophysics Data System (ADS)
Yu, Siyuan; Wu, Feng; Wang, Qiang; Tan, Liying; Ma, Jing
2017-11-01
Acquisition and recognition for the beacon is the core technology of establishing the satellite optical link. In order to acquire the beacon correctly, the beacon image should be recognized firstly, excluding the influence of the background light. In this processing, many factors will influence the recognition precision of the beacon. This paper studies the constraint boundary conditions for acquiring the beacon from the perspective of theory and experiment, and as satellite-ground laser communications, an approach for obtaining the adaptive segmentation method is also proposed. Finally, the long distance laser communication experiment (11.16 km) verifies the validity of this method and the tracking error with the method is the least compared with the traditional approaches. The method helps to greatly improve the tracking precision in the satellite-ground laser communications.
Finding and accessing diagrams in biomedical publications.
Kuhn, Tobias; Luong, ThaiBinh; Krauthammer, Michael
2012-01-01
Complex relationships in biomedical publications are often communicated by diagrams such as bar and line charts, which are a very effective way of summarizing and communicating multi-faceted data sets. Given the ever-increasing amount of published data, we argue that the precise retrieval of such diagrams is of great value for answering specific and otherwise hard-to-meet information needs. To this end, we demonstrate the use of advanced image processing and classification for identifying bar and line charts by the shape and relative location of the different image elements that make up the charts. With recall and precisions of close to 90% for the detection of relevant figures, we discuss the use of this technology in an existing biomedical image search engine, and outline how it enables new forms of literature queries over biomedical relationships that are represented in these charts.
Process development for high-resolution 3D-printing of bioresorbable vascular stents
NASA Astrophysics Data System (ADS)
Ware, Henry Oliver T.; Farsheed, Adam C.; van Lith, Robert; Baker, Evan; Ameer, Guillermo; Sun, Cheng
2017-02-01
The recent development of "continuous projection microstereolithography" also known as CLIP technology has successfully alleviated the main obstacles surrounding 3D printing technologies: production speed and part quality. Following the same working principle, we further developed the μCLIP process to address the needs for high-resolution 3D printing of biomedical devices with micron-scale precision. Compared to standard stereolithography (SLA) process, μCLIP fabrication can reduce fabrication time from several hours to as little as a few minutes. μCLIP can also produce better surface finish and more uniform mechanical properties than conventional SLA, as each individual "fabrication layer" continuously polymerizes into the subsequent layer. In this study, we report the process development in manufacturing high-resolution bioresorbable stents using our own μCLIP system. The bioresorbable photopolymerizable biomaterial (B-ink) used in this study is methacrylated poly(1, 12 dodecamethylene citrate) (mPDC). Through optimization of our μCLIP process and concentration of B-ink components, we have created a customizable bioresorbable stent with similar mechanical properties exhibited by nitinol stents. Upon optimization, fabricating a 2 cm tall vascular stent that comprises 4000 layers was accomplished in 26.5 minutes.
Nanofabrication on unconventional substrates using transferred hard masks
Li, Luozhou; Bayn, Igal; Lu, Ming; ...
2015-01-15
Here, a major challenge in nanofabrication is to pattern unconventional substrates that cannot be processed for a variety of reasons, such as incompatibility with spin coating, electron beam lithography, optical lithography, or wet chemical steps. Here, we present a versatile nanofabrication method based on re-usable silicon membrane hard masks, patterned using standard lithography and mature silicon processing technology. These masks, transferred precisely onto targeted regions, can be in the millimetre scale. They allow for fabrication on a wide range of substrates, including rough, soft, and non-conductive materials, enabling feature linewidths down to 10 nm. Plasma etching, lift-off, and ion implantationmore » are realized without the need for scanning electron/ion beam processing, UV exposure, or wet etching on target substrates.« less
Technology Advancements Enhance Aircraft Support of Experiment Campaigns
NASA Technical Reports Server (NTRS)
Vachon, Jacques J.
2009-01-01
For over 30 years, the NASA Airborne Science Program has provided airborne platforms for space bound instrument development, for calibrating new and existing satellite systems, and for making in situ and remote sensing measurements that can only be made from aircraft. New technologies have expanded the capabilities of aircraft that are operated for these missions. Over the last several years a new technology investment portfolio has yielded improvements that produce better measurements for the airborne science communities. These new technologies include unmanned vehicles, precision trajectory control and advanced telecommunications capabilities. We will discuss some of the benefits of these new technologies and systems which aim to provide users with more precision, lower operational costs, quicker access to data, and better management of multi aircraft and multi sensor campaigns.
Picosecond and femtosecond lasers for industrial material processing
NASA Astrophysics Data System (ADS)
Mayerhofer, R.; Serbin, J.; Deeg, F. W.
2016-03-01
Cold laser materials processing using ultra short pulsed lasers has become one of the most promising new technologies for high-precision cutting, ablation, drilling and marking of almost all types of material, without causing unwanted thermal damage to the part. These characteristics have opened up new application areas and materials for laser processing, allowing previously impossible features to be created and also reducing the amount of post-processing required to an absolute minimum, saving time and cost. However, short pulse widths are only one part of thee story for industrial manufacturing processes which focus on total costs and maximum productivity and production yield. Like every other production tool, ultra-short pulse lasers have too provide high quality results with maximum reliability. Robustness and global on-site support are vital factors, as well ass easy system integration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albert, F.; Hartemann, F. V.; Anderson, S. G.
Tunable, high precision gamma-ray sources are under development to enable nuclear photonics, an emerging field of research. This paper focuses on the technological and theoretical challenges related to precision Compton scattering gamma-ray sources. In this scheme, incident laser photons are scattered and Doppler upshifted by a high brightness electron beam to generate tunable and highly collimated gamma-ray pulses. The electron and laser beam parameters can be optimized to achieve the spectral brightness and narrow bandwidth required by nuclear photonics applications. A description of the design of the next generation precision gamma-ray source currently under construction at Lawrence Livermore National Laboratorymore » is presented, along with the underlying motivations. Within this context, high-gradient X-band technology, used in conjunction with fiber-based photocathode drive laser and diode pumped solid-state interaction laser technologies, will be shown to offer optimal performance for high gamma-ray spectral flux, narrow bandwidth applications.« less
Tebani, Abdellah; Afonso, Carlos; Marret, Stéphane; Bekri, Soumeya
2016-01-01
The rise of technologies that simultaneously measure thousands of data points represents the heart of systems biology. These technologies have had a huge impact on the discovery of next-generation diagnostics, biomarkers, and drugs in the precision medicine era. Systems biology aims to achieve systemic exploration of complex interactions in biological systems. Driven by high-throughput omics technologies and the computational surge, it enables multi-scale and insightful overviews of cells, organisms, and populations. Precision medicine capitalizes on these conceptual and technological advancements and stands on two main pillars: data generation and data modeling. High-throughput omics technologies allow the retrieval of comprehensive and holistic biological information, whereas computational capabilities enable high-dimensional data modeling and, therefore, accessible and user-friendly visualization. Furthermore, bioinformatics has enabled comprehensive multi-omics and clinical data integration for insightful interpretation. Despite their promise, the translation of these technologies into clinically actionable tools has been slow. In this review, we present state-of-the-art multi-omics data analysis strategies in a clinical context. The challenges of omics-based biomarker translation are discussed. Perspectives regarding the use of multi-omics approaches for inborn errors of metabolism (IEM) are presented by introducing a new paradigm shift in addressing IEM investigations in the post-genomic era. PMID:27649151
Tebani, Abdellah; Afonso, Carlos; Marret, Stéphane; Bekri, Soumeya
2016-09-14
The rise of technologies that simultaneously measure thousands of data points represents the heart of systems biology. These technologies have had a huge impact on the discovery of next-generation diagnostics, biomarkers, and drugs in the precision medicine era. Systems biology aims to achieve systemic exploration of complex interactions in biological systems. Driven by high-throughput omics technologies and the computational surge, it enables multi-scale and insightful overviews of cells, organisms, and populations. Precision medicine capitalizes on these conceptual and technological advancements and stands on two main pillars: data generation and data modeling. High-throughput omics technologies allow the retrieval of comprehensive and holistic biological information, whereas computational capabilities enable high-dimensional data modeling and, therefore, accessible and user-friendly visualization. Furthermore, bioinformatics has enabled comprehensive multi-omics and clinical data integration for insightful interpretation. Despite their promise, the translation of these technologies into clinically actionable tools has been slow. In this review, we present state-of-the-art multi-omics data analysis strategies in a clinical context. The challenges of omics-based biomarker translation are discussed. Perspectives regarding the use of multi-omics approaches for inborn errors of metabolism (IEM) are presented by introducing a new paradigm shift in addressing IEM investigations in the post-genomic era.
2010-01-01
Background Cell motility is a critical parameter in many physiological as well as pathophysiological processes. In time-lapse video microscopy, manual cell tracking remains the most common method of analyzing migratory behavior of cell populations. In addition to being labor-intensive, this method is susceptible to user-dependent errors regarding the selection of "representative" subsets of cells and manual determination of precise cell positions. Results We have quantitatively analyzed these error sources, demonstrating that manual cell tracking of pancreatic cancer cells lead to mis-calculation of migration rates of up to 410%. In order to provide for objective measurements of cell migration rates, we have employed multi-target tracking technologies commonly used in radar applications to develop fully automated cell identification and tracking system suitable for high throughput screening of video sequences of unstained living cells. Conclusion We demonstrate that our automatic multi target tracking system identifies cell objects, follows individual cells and computes migration rates with high precision, clearly outperforming manual procedures. PMID:20377897
Precision engineering center. 1988 Annual report, Volume VI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dow, T.; Fornaro, R.; Keltie, R.
To reverse the downward trend in the balance of trade, American companies must concentrate on increasing research into new products, boosting productivity, and improving manufacturing processes. The Precision Engineering Center at North Carolina State University is a multidisciplinary research and graduate education program dedicated to providing the new technology necessary to respond to this challenge. One extremely demanding manufacturing area is the fabrication and assembly of optical systems. These systems are at the heart of such consumer products as cameras, lenses, copy machines, laser bar-code scanners, VCRs, and compact audio discs - products that the Japanese and other East Asianmore » countries are building dominance. A second critical area is the fabrication of VLSI and ULSI circuits. The tolerances required to produce the next generation of components for such systems have created the need for new approaches - approaches that could either make or break America`s competitive position. This report contains individual reports on research projects grouped into three broad areas: measurement and actuation; real-time control; precision fabrication. Separate abstracts for these articles have been indexed into the energy database.« less
Analytics-Driven Lossless Data Compression for Rapid In-situ Indexing, Storing, and Querying
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jenkins, John; Arkatkar, Isha; Lakshminarasimhan, Sriram
2013-01-01
The analysis of scientific simulations is highly data-intensive and is becoming an increasingly important challenge. Peta-scale data sets require the use of light-weight query-driven analysis methods, as opposed to heavy-weight schemes that optimize for speed at the expense of size. This paper is an attempt in the direction of query processing over losslessly compressed scientific data. We propose a co-designed double-precision compression and indexing methodology for range queries by performing unique-value-based binning on the most significant bytes of double precision data (sign, exponent, and most significant mantissa bits), and inverting the resulting metadata to produce an inverted index over amore » reduced data representation. Without the inverted index, our method matches or improves compression ratios over both general-purpose and floating-point compression utilities. The inverted index is light-weight, and the overall storage requirement for both reduced column and index is less than 135%, whereas existing DBMS technologies can require 200-400%. As a proof-of-concept, we evaluate univariate range queries that additionally return column values, a critical component of data analytics, against state-of-the-art bitmap indexing technology, showing multi-fold query performance improvements.« less
Optima XE Single Wafer High Energy Ion Implanter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Satoh, Shu; Ferrara, Joseph; Bell, Edward
2008-11-03
The Optima XE is the first production worthy single wafer high energy implanter. The new system combines a state-of-art single wafer endstation capable of throughputs in excess of 400 wafers/hour with a production-proven RF linear accelerator technology. Axcelis has been evolving and refining RF Linac technology since the introduction of the NV1000 in 1986. The Optima XE provides production worthy beam currents up to energies of 1.2 MeV for P{sup +}, 2.9 MeV for P{sup ++}, and 1.5 MeV for B{sup +}. Energies as low as 10 keV and tilt angles as high as 45 degrees are also available., allowingmore » the implanter to be used for a wide variety of traditional medium current implants to ensure high equipment utilization. The single wafer endstation provides precise implant angle control across wafer and wafer to wafer. In addition, Optima XE's unique dose control system allows compensation of photoresist outgassing effects without relying on traditional pressure-based methods. We describe the specific features, angle control and dosimetry of the Optima XE and their applications in addressing the ever-tightening demands for more precise process controls and higher productivity.« less
Energy-Efficient Wireless Sensor Networks for Precision Agriculture: A Review
Jawad, Haider Mahmood; Nordin, Rosdiadee; Gharghan, Sadik Kamel; Jawad, Aqeel Mahmood
2017-01-01
Wireless sensor networks (WSNs) can be used in agriculture to provide farmers with a large amount of information. Precision agriculture (PA) is a management strategy that employs information technology to improve quality and production. Utilizing wireless sensor technologies and management tools can lead to a highly effective, green agriculture. Based on PA management, the same routine to a crop regardless of site environments can be avoided. From several perspectives, field management can improve PA, including the provision of adequate nutrients for crops and the wastage of pesticides for the effective control of weeds, pests, and diseases. This review outlines the recent applications of WSNs in agriculture research as well as classifies and compares various wireless communication protocols, the taxonomy of energy-efficient and energy harvesting techniques for WSNs that can be used in agricultural monitoring systems, and comparison between early research works on agriculture-based WSNs. The challenges and limitations of WSNs in the agricultural domain are explored, and several power reduction and agricultural management techniques for long-term monitoring are highlighted. These approaches may also increase the number of opportunities for processing Internet of Things (IoT) data. PMID:28771214
Additive manufactured x-ray optics for astronomy
NASA Astrophysics Data System (ADS)
Atkins, Carolyn; Feldman, Charlotte; Brooks, David; Watson, Stephen; Cochrane, William; Roulet, Melanie; Doel, Peter; Willingale, Richard; Hugot, Emmanuel
2017-08-01
Additive manufacturing, more commonly known as 3D printing, has become a commercially established technology for rapid prototyping and the fabrication of bespoke intricate parts. Optical components, such as mirrors and lenses, are now being fabricated via additive manufacturing, where the printed substrate is polished in a post-processing step. One application of additively manufactured optics could be within the astronomical X-ray community, where there is a growing need to demonstrate thin, lightweight, high precision optics for a beyond Chandra style mission. This paper will follow a proof-of-concept investigation, sponsored by the UK Space Agency's National Space Technology Programme, into the feasibility of applying additive manufacturing in the production of thin, lightweight, precision X-ray optics for astronomy. One of the benefits of additive manufacturing is the ability to construct intricate lightweighting, which can be optimised to minimise weight while ensuring rigidity. This concept of optimised lightweighting will be applied to a series of polished additively manufactured test samples and experimental data from these samples, including an assessment of the optical quality and the magnitude of any print-through, will be presented. In addition, the finite element analysis optimisations of the lightweighting development will be discussed.
Bundle Block Adjustment of Airborne Three-Line Array Imagery Based on Rotation Angles
Zhang, Yongjun; Zheng, Maoteng; Huang, Xu; Xiong, Jinxin
2014-01-01
In the midst of the rapid developments in electronic instruments and remote sensing technologies, airborne three-line array sensors and their applications are being widely promoted and plentiful research related to data processing and high precision geo-referencing technologies is under way. The exterior orientation parameters (EOPs), which are measured by the integrated positioning and orientation system (POS) of airborne three-line sensors, however, have inevitable systematic errors, so the level of precision of direct geo-referencing is not sufficiently accurate for surveying and mapping applications. Consequently, a few ground control points are necessary to refine the exterior orientation parameters, and this paper will discuss bundle block adjustment models based on the systematic error compensation and the orientation image, considering the principle of an image sensor and the characteristics of the integrated POS. Unlike the models available in the literature, which mainly use a quaternion to represent the rotation matrix of exterior orientation, three rotation angles are directly used in order to effectively model and eliminate the systematic errors of the POS observations. Very good experimental results have been achieved with several real datasets that verify the correctness and effectiveness of the proposed adjustment models. PMID:24811075
Bundle block adjustment of airborne three-line array imagery based on rotation angles.
Zhang, Yongjun; Zheng, Maoteng; Huang, Xu; Xiong, Jinxin
2014-05-07
In the midst of the rapid developments in electronic instruments and remote sensing technologies, airborne three-line array sensors and their applications are being widely promoted and plentiful research related to data processing and high precision geo-referencing technologies is under way. The exterior orientation parameters (EOPs), which are measured by the integrated positioning and orientation system (POS) of airborne three-line sensors, however, have inevitable systematic errors, so the level of precision of direct geo-referencing is not sufficiently accurate for surveying and mapping applications. Consequently, a few ground control points are necessary to refine the exterior orientation parameters, and this paper will discuss bundle block adjustment models based on the systematic error compensation and the orientation image, considering the principle of an image sensor and the characteristics of the integrated POS. Unlike the models available in the literature, which mainly use a quaternion to represent the rotation matrix of exterior orientation, three rotation angles are directly used in order to effectively model and eliminate the systematic errors of the POS observations. Very good experimental results have been achieved with several real datasets that verify the correctness and effectiveness of the proposed adjustment models.
Bian, Shengtai; Cheng, Yinuo; Shi, Guanya; Liu, Peng; Ye, Xiongying
2017-01-01
Single cell analysis has received increasing attention recently in both academia and clinics, and there is an urgent need for effective upstream cell sample preparation. Two extremely challenging tasks in cell sample preparation—high-efficiency cell enrichment and precise single cell capture—have now entered into an era full of exciting technological advances, which are mostly enabled by microfluidics. In this review, we summarize the category of technologies that provide new solutions and creative insights into the two tasks of cell manipulation, with a focus on the latest development in the recent five years by highlighting the representative works. By doing so, we aim both to outline the framework and to showcase example applications of each task. In most cases for cell enrichment, we take circulating tumor cells (CTCs) as the target cells because of their research and clinical importance in cancer. For single cell capture, we review related technologies for many kinds of target cells because the technologies are supposed to be more universal to all cells rather than CTCs. Most of the mentioned technologies can be used for both cell enrichment and precise single cell capture. Each technology has its own advantages and specific challenges, which provide opportunities for researchers in their own area. Overall, these technologies have shown great promise and now evolve into real clinical applications. PMID:28217240
Natural photoreceptors and their application to synthetic biology.
Schmidt, Daniel; Cho, Yong Ku
2015-02-01
The ability to perturb living systems is essential to understand how cells sense, integrate, and exchange information, to comprehend how pathologic changes in these processes relate to disease, and to provide insights into therapeutic points of intervention. Several molecular technologies based on natural photoreceptor systems have been pioneered that allow distinct cellular signaling pathways to be modulated with light in a temporally and spatially precise manner. In this review, we describe and discuss the underlying design principles of natural photoreceptors that have emerged as fundamental for the rational design and implementation of synthetic light-controlled signaling systems. Furthermore, we examine the unique challenges that synthetic protein technologies face when applied to the study of neural dynamics at the cellular and network level. Published by Elsevier Ltd.
1999-04-01
NASA's Space Optics Manufacturing Center has been working to expand our view of the universe via sophisticated new telescopes. The Optics Center's goal is to develop low-cost, advanced space optics technologies for the NASA program in the 21st century - including the long-term goal of imaging Earth-like planets in distant solar systems. To reduce the cost of mirror fabrication, Marshall Space Flight Center (MSFC) has developed replication techniques, the machinery, and materials to replicate electro-formed nickel mirrors. The process allows fabricating precisely shaped mandrels to be used and reused as masters for replicating high-quality mirrors. Image shows Dr. Alan Shapiro cleaning mirror mandrel to be applied with highly reflective and high-density coating in the Large Aperture Coating Chamber, MFSC Space Optics Manufacturing Technology Center (SOMTC).
Ogden R. Lindsley and the historical development of precision teaching
Potts, Lisa; Eshleman, John W.; Cooper, John O.
1993-01-01
This paper presents the historical developments of precision teaching, a technological offshoot of radical behaviorism and free-operant conditioning. The sequence progresses from the scientific precursors of precision teaching and the beginnings of precision teaching to principal developments since 1965. Information about the persons, events, and accomplishments presented in this chronology was compiled in several ways. Journals, books, and conference presentations provided the essential information. The most important source for this account was Ogden Lindsley himself, because Lindsley and his students established the basic practices that define precision teaching. PMID:22478145
Holloway, Andrew J; Oshlack, Alicia; Diyagama, Dileepa S; Bowtell, David DL; Smyth, Gordon K
2006-01-01
Background Concerns are often raised about the accuracy of microarray technologies and the degree of cross-platform agreement, but there are yet no methods which can unambiguously evaluate precision and sensitivity for these technologies on a whole-array basis. Results A methodology is described for evaluating the precision and sensitivity of whole-genome gene expression technologies such as microarrays. The method consists of an easy-to-construct titration series of RNA samples and an associated statistical analysis using non-linear regression. The method evaluates the precision and responsiveness of each microarray platform on a whole-array basis, i.e., using all the probes, without the need to match probes across platforms. An experiment is conducted to assess and compare four widely used microarray platforms. All four platforms are shown to have satisfactory precision but the commercial platforms are superior for resolving differential expression for genes at lower expression levels. The effective precision of the two-color platforms is improved by allowing for probe-specific dye-effects in the statistical model. The methodology is used to compare three data extraction algorithms for the Affymetrix platforms, demonstrating poor performance for the commonly used proprietary algorithm relative to the other algorithms. For probes which can be matched across platforms, the cross-platform variability is decomposed into within-platform and between-platform components, showing that platform disagreement is almost entirely systematic rather than due to measurement variability. Conclusion The results demonstrate good precision and sensitivity for all the platforms, but highlight the need for improved probe annotation. They quantify the extent to which cross-platform measures can be expected to be less accurate than within-platform comparisons for predicting disease progression or outcome. PMID:17118209
Zhang, Lin; Zhou, Wenchen; Yi, Allen Y
2017-04-01
In compression molding of polymer optical components with micro/nanoscale surface features, rapid heating of the mold surface is critical for the implementation of this technology for large-scale applications. In this Letter, a novel method of a localized rapid heating process is reported. This process is based on induction heating of a thin conductive coating deposited on a silicon mold. Since the graphene coating is very thin (∼45 nm), a high heating rate of 10∼20°C/s can be achieved by employing a 1200 W 30 kHz electrical power unit. Under this condition, the graphene-coated surface and the polymer substrate can be heated above the polymer's glass transition temperature within 30 s and subsequently cooled down to room temperature within several tens of seconds after molding, resulting in an overall thermal cycle of about 3 min or shorter. The feasibility of this process was validated by fabrication of optical gratings, micropillar matrices, and microlens arrays on polymethylmethacrylate (PMMA) substrates with very high precision. The uniformity and surface geometries of the replicated optical elements are evaluated using an optical profilometer, a diffraction test setup, and a Shack-Hartmann wavefront sensor built with a molded PMMA microlens array. Compared with the conventional bulk heating molding process, this novel rapid localized induction heating process could improve replication efficiency with better geometrical fidelity.
Rapid prototyping for biomedical engineering: current capabilities and challenges.
Lantada, Andrés Díaz; Morgado, Pilar Lafont
2012-01-01
A new set of manufacturing technologies has emerged in the past decades to address market requirements in a customized way and to provide support for research tasks that require prototypes. These new techniques and technologies are usually referred to as rapid prototyping and manufacturing technologies, and they allow prototypes to be produced in a wide range of materials with remarkable precision in a couple of hours. Although they have been rapidly incorporated into product development methodologies, they are still under development, and their applications in bioengineering are continuously evolving. Rapid prototyping and manufacturing technologies can be of assistance in every stage of the development process of novel biodevices, to address various problems that can arise in the devices' interactions with biological systems and the fact that the design decisions must be tested carefully. This review focuses on the main fields of application for rapid prototyping in biomedical engineering and health sciences, as well as on the most remarkable challenges and research trends.
EDITORIAL: Advances in Measurement Technology and Intelligent Instruments for Production Engineering
NASA Astrophysics Data System (ADS)
Gao, Wei; Takaya, Yasuhiro; Gao, Yongsheng; Krystek, Michael
2008-08-01
Measurement and instrumentation have long played an important role in Production Engineering, through supporting both the traditional field of manufacturing and the new field of micro/nano-technology. Papers published in this special feature were selected and updated from those presented at The 8th International Symposium on Measurement Technology and Intelligent Instruments (ISMTII 2007) held at Tohoku University, Sendai, Japan, on 24-27 September 2007. ISMTII 2007 was organized by ICMI (The International Committee on Measurements and Instrumentation), Japan Society for Precision Engineering (JSPE, Technical Committee of Intelligent Measurement with Nanoscale), Korean Society for Precision Engineering (KSPE), Chinese Society for Measurement (CSM) and Tohoku University. The conference was also supported by Center for Precision Metrology of UNC Charlotte and Singapore Institute of Manufacturing Technology. A total of 220 papers, including four keynote papers, were presented at ISMTII 2007, covering a wide range of topics, including micro/nano-metrology, precision measurement, online & in-process measurement, surface metrology, optical metrology & image processing, biomeasurement, sensor technology, intelligent measurement & instrumentation, uncertainty, traceability & calibration, and signal processing algorithms. The guest editors recommended publication of updated versions of some of the best ISMTII 2007 papers in this special feature of Measurement Science and Technology. The first two papers were presented in ISMTII 2007 as keynote papers. Takamasu et al from The University of Tokyo report uncertainty estimation for coordinate metrology, in which methods of estimating uncertainties using the coordinate measuring system after calibration are formulated. Haitjema, from Mitutoyo Research Center Europe, treats the most often used interferometric measurement techniques (displacement interferometry and surface interferometry) and their major sources of errors. Among the other papers, two are related to length measurement, which forms the basis of dimensional measurement. Schödel et al from Physikalisch Technische Bundesanstalt (PTB) describe the recent state of thermal expansion measurements with PTB's Precision Interferometer, which are based on the observation of the absolute length of samples by using phase stepping interferometry. Meiners-Hagen et al, also from PTB, investigate an improved method for compensation of the refractive index of air in length measurements by optical interferometry where the air pressure and the humidity are measured. Three papers concern surface metrology. Song et al from NIST (National Institutes of Standards and Technology) report topography measurement for determining the decay factors in surface replication of Standard Casing to support ballistics measurements in the US. Takahashi et al from the University of Tokyo present a lateral resolution improvement for a total internal reflection fluorescence microscope that employs the combined use of standing evanescent light and a scattering distribution retrieval algorithm with successive approximation. X Liu et al from Warwick University report on a new investigation into how surface topography and friction affect the touch-feel perception, with the results showing that both the measured roughness and friction coefficient have a strong correlation with rough-smooth and grippy-slippery feelings. Measurement algorithms and calibration are described in the following three papers. Hessling from SP Technical Research Institute of Sweden presents a general unprecedented framework for dynamic evaluation of measurement systems, which separates physical experiments, analysis and signal processing methods into succeeding steps of evaluations. Wübbeler et al from PTB illustrate the Monte Carlo method required for the numerical calculations of the probability density function approach, which has been proposed for evaluation of measurement uncertainty. Neuschaefer-Rube et al, also from PTB, present procedures and standards to test tactile and optical microsensors and micro-computed tomography systems, which are similar to the established tests for classical coordinate measuring machines and assess local and global sensor characteristics. The last three papers are related to micro/nano-metrology and intelligent instrumentation. Jiang et al from Tohoku University describe the fabrication of piezoresistive nanocantilevers for ultra-sensitive force detection by using spin-out diffusion, EB lithography and FAB etching, respectively. Y-C Liu et al from National Taiwan University develop an economical and highly sensitive optical accelerometer using a commercial optical pickup head. Michihata et al from Osaka University experimentally investigate the positioning sensing property and accuracy of a laser trapping probe for a nano-coordinate measuring machine. As guest editors, we believe that this special feature presents the newest information on advances in measurement technology and intelligent instruments from basic research to applied systems for Production Engineering. We would like to thank all the authors for their great contributions to this special feature and the referees for their careful reviews of the papers. We would also like to express our thanks and appreciation to Professor P Hauptmann, Editor-in-Chief of MST, for his kind offer to publish selected ISMTII 2007 papers in MST, and to the publishing staff of MST for their dedicated efforts that have made this special feature possible.
Lunar Landing Trajectory Design for Onboard Hazard Detection and Avoidance
NASA Technical Reports Server (NTRS)
Paschall, Steve; Brady, Tye; Sostaric, Ron
2009-01-01
The Autonomous Landing and Hazard Avoidance Technology (ALHAT) Project is developing the software and hardware technology needed to support a safe and precise landing for the next generation of lunar missions. ALHAT provides this capability through terrain-relative navigation measurements to enhance global-scale precision, an onboard hazard detection system to select safe landing locations, and an Autonomous Guidance, Navigation, and Control (AGNC) capability to process these measurements and safely direct the vehicle to a landing location. This paper focuses on the key trajectory design issues relevant to providing an onboard Hazard Detection and Avoidance (HDA) capability for the lander. Hazard detection can be accomplished by the crew visually scanning the terrain through a window, a sensor system imaging the terrain, or some combination of both. For ALHAT, this hazard detection activity is provided by a sensor system, which either augments the crew s perception or entirely replaces the crew in the case of a robotic landing. Detecting hazards influences the trajectory design by requiring the proper perspective, range to the landing site, and sufficient time to view the terrain. Following this, the trajectory design must provide additional time to process this information and make a decision about where to safely land. During the final part of the HDA process, the trajectory design must provide sufficient margin to enable a hazard avoidance maneuver. In order to demonstrate the effects of these constraints on the landing trajectory, a tradespace of trajectory designs was created for the initial ALHAT Design Analysis Cycle (ALDAC-1) and each case evaluated with these HDA constraints active. The ALHAT analysis process, described in this paper, narrows down this tradespace and subsequently better defines the trajectory design needed to support onboard HDA. Future ALDACs will enhance this trajectory design by balancing these issues and others in an overall system design process.
Krujatz, Felix; Lode, Anja; Seidel, Julia; Bley, Thomas; Gelinsky, Michael; Steingroewer, Juliane
2017-10-25
The diversity and complexity of biotechnological applications are constantly increasing, with ever expanding ranges of production hosts, cultivation conditions and measurement tasks. Consequently, many analytical and cultivation systems for biotechnology and bioprocess engineering, such as microfluidic devices or bioreactors, are tailor-made to precisely satisfy the requirements of specific measurements or cultivation tasks. Additive manufacturing (AM) technologies offer the possibility of fabricating tailor-made 3D laboratory equipment directly from CAD designs with previously inaccessible levels of freedom in terms of structural complexity. This review discusses the historical background of these technologies, their most promising current implementations and the associated workflows, fabrication processes and material specifications, together with some of the major challenges associated with using AM in biotechnology/bioprocess engineering. To illustrate the great potential of AM, selected examples in microfluidic devices, 3D-bioprinting/biofabrication and bioprocess engineering are highlighted. Copyright © 2017 Elsevier B.V. All rights reserved.
Problems of Technology of Energy-Saving Buildings and Their Impact on Energy Efficiency in Buildings
NASA Astrophysics Data System (ADS)
Kwasnowski, Pawel; Fedorczak-Cisak, Malgorzata; Knap, Katarzyna
2017-10-01
Introduction of EPBD in legislation of the EU member states caused that buildings must meet very stringent requirements of thermal protection and energy efficiency. On the basis of EPBD provisions, EU Member States introduce standard of NZEB (Nearly Zero-Energy Buildings). Such activities cause a need for new, innovative materials and technologies, and new approaches to design, construction and retrofitting of buildings. Indispensable is the precise coordination of the design of structure and technical installations of building, which may be provided in an integrated design process in the system BIM. Good coordination and cooperation of all contractors during the construction phase is also necessary. The article presents the problems and the new methodology for the design, construction and use of energy efficient buildings in terms of energy saving technologies, including discussion of the significant impact of the automation of technical installations on the building energy efficiency.
Airborne Remote Sensing (ARS) for Agricultural Research and Commercialization Applications
NASA Technical Reports Server (NTRS)
Narayanan, Ram; Bowen, Brent D.; Nickerson, Jocelyn S.
2002-01-01
Tremendous advances in remote sensing technology and computing power over the last few decades are now providing scientists with the opportunity to investigate, measure, and model environmental patterns and processes with increasing confidence. Such advances are being pursued by the Nebraska Remote Sensing Facility, which consists of approximately 30 faculty members and is very competitive with other institutions in the depth of the work that is accomplished. The development of this facility targeted at applications, commercialization, and education programs in the area of precision agriculture provides a unique opportunity. This critical area is within the scope of NASA goals and objectives of NASA s Applications, Technology Transfer, Commercialization, and Education Division and the Earth Science Enterprise. This innovative integration of Aerospace (Aeronautics) Technology Enterprise applications with other NASA enterprises serves as a model of cross-enterprise transfer of science with specific commercial applications.
Aspects concerning verification methods and rigidity increment of complex technological systems
NASA Astrophysics Data System (ADS)
Casian, M.
2016-11-01
Any technological process and technology aims a quality and precise product, something almost impossible without high rigidity machine tools, equipment and components. Therefore, from the design phase, it is very important to create structures and machines with high stiffness characteristics. At the same time, increasing the stiffness should not raise the material costs. Searching this midpoint between high rigidity and minimum expenses leads to investigations and checks in structural components through various methods and techniques and sometimes quite advanced methods. In order to highlight some aspects concerning the significance of the mechanical equipment rigidity, the finite element method and an analytical method based on the use Mathcad software were used, by taking into consideration a subassembly of a grinding machine. Graphical representations were elaborated, offering a more complete image about the stresses and deformations able to affect the considered mechanical subassembly.
Neven, Sylvie
2016-01-01
In the Middle Ages and the premodern period knowledge of alchemical practices and materials was transmitted via collections of recipes often grouped concomitantly with art-technological instructions. In both alchemy and chemical technology particular importance is placed on artisanal and craft practices. Both are concerned with the description of colours. Both require procedures involving precise and specifically defined actions, prescriptions and ingredients. Assuming that alchemical and artistic texts have the same textual format, this raises the question: were they produced, diffused and read by the same people? This paper investigates the authorship and the context of production behind a sample of German alchemical manuscripts dating from the fourteenth to the sixteenth century. It scrutinizes their process of production, compilation and dissemination. This paper also sheds light on the various types of marginalia, and correlates them with their diverse functions. It thus delivers significant information about the readers and users of these manuscripts.
Quantum-classical boundary for precision optical phase estimation
NASA Astrophysics Data System (ADS)
Birchall, Patrick M.; O'Brien, Jeremy L.; Matthews, Jonathan C. F.; Cable, Hugo
2017-12-01
Understanding the fundamental limits on the precision to which an optical phase can be estimated is of key interest for many investigative techniques utilized across science and technology. We study the estimation of a fixed optical phase shift due to a sample which has an associated optical loss, and compare phase estimation strategies using classical and nonclassical probe states. These comparisons are based on the attainable (quantum) Fisher information calculated per number of photons absorbed or scattered by the sample throughout the sensing process. We find that for a given number of incident photons upon the unknown phase, nonclassical techniques in principle provide less than a 20 % reduction in root-mean-square error (RMSE) in comparison with ideal classical techniques in multipass optical setups. Using classical techniques in a different optical setup that we analyze, which incorporates additional stages of interference during the sensing process, the achievable reduction in RMSE afforded by nonclassical techniques falls to only ≃4 % . We explain how these conclusions change when nonclassical techniques are compared to classical probe states in nonideal multipass optical setups, with additional photon losses due to the measurement apparatus.
A novel microfluidic system for the mass production of Inertial Fusion Energy shells
NASA Astrophysics Data System (ADS)
Inoue, N. T.
2016-04-01
A system which can mass produce millimetre sized spherical polymer shells economically and with high precision will be a great step towards the Inertial Fusion Energy goal. Microfluidics has shown itself to be a disruptive technology, where a rapid and continuous production of compound emulsions can be processed into such shells. Planar emulsion generators co-flow-focus in one step (COFON) and cascaded co-flow- focus (COFUS) enable millimetre compound emulsions to be produced using a one or two step formation process respectively. The co-flow-focus geometry uses symmetric and curved carrier fluid entrance walls to create a focusing orifice-minima and a carrier flow which aids movement and shaping of the dispersed fluid(s) towards the outlet, whilst maintaining operation in the dripping regime. Precision concentric alignment of these compound emulsions remains one of the greatest challenges. However steps to solve this passively using curved channel modulation to perturbate the emulsion have shown that rapid alignment can be achieved. Issues with satellite droplet formation, repeatability of the emulsion generation and cost are also addressed.
Martínez-Calderon, M; Manso-Silván, M; Rodríguez, A; Gómez-Aranzadi, M; García-Ruiz, J P; Olaizola, S M; Martín-Palma, R J
2016-11-02
The precise control over the interaction between cells and the surface of materials plays a crucial role in optimizing the integration of implanted biomaterials. In this regard, material surface with controlled topographic features at the micro- and nano-scales has been proved to affect the overall cell behavior and therefore the final osseointegration of implants. Within this context, femtosecond (fs) laser micro/nano machining technology was used in this work to modify the surface structure of stainless steel aiming at controlling cell adhesion and migration. The experimental results show that cells tend to attach and preferentially align to the laser-induced nanopatterns oriented in a specific direction. Accordingly, the laser-based fabrication method here described constitutes a simple, clean, and scalable technique which allows a precise control of the surface nano-patterning process and, subsequently, enables the control of cell adhesion, migration, and polarization. Moreover, since our surface-patterning approach does not involve any chemical treatments and is performed in a single step process, it could in principle be applied to most metallic materials.
History of functional neurosurgery.
Iskandar, B J; Nashold, B S
1995-01-01
Whereas in the early days of evil spirits, electric catfish, and phrenology, functional neurosurgery was based on crude observations and dogma, the progress made in neurophysiology at the turn of the century gave the field a strong scientific foundation. Subsequently, the advent of stereotaxis allowed access to deep brain regions and contributed an element of precision. Future directions include the development of frameless stereotaxy; the use of MRI-generated anatomic data, which would circumvent the serious problem of individual variations seen with standard brain atlases; the introduction of various chemicals into brain structures, in an attempt to influence neurochemically mediated disease processes; and finally, the use of the promising techniques of neural transplantation. On hearing of Penfield's intraoperative brain stimulations, Sherrington commented: "It must be great fun to have the physiological preparation speak to you." The idea of therapeutic neurophysiologic interventions is appealing, especially because many disorders show no obvious treatable pathologic cause (e.g., tumor, vascular malformation). As stereotactic technology becomes less cumbersome and more precise, more sophisticated in vivo neurophysiologic preparations become possible. In turn, as our understanding of nervous system physiology grows, our ability to understand pathophysiology and treat disease processes increases.
Martínez-Calderon, M.; Manso-Silván, M.; Rodríguez, A.; Gómez-Aranzadi, M.; García-Ruiz, J. P.; Olaizola, S. M.; Martín-Palma, R. J.
2016-01-01
The precise control over the interaction between cells and the surface of materials plays a crucial role in optimizing the integration of implanted biomaterials. In this regard, material surface with controlled topographic features at the micro- and nano-scales has been proved to affect the overall cell behavior and therefore the final osseointegration of implants. Within this context, femtosecond (fs) laser micro/nano machining technology was used in this work to modify the surface structure of stainless steel aiming at controlling cell adhesion and migration. The experimental results show that cells tend to attach and preferentially align to the laser-induced nanopatterns oriented in a specific direction. Accordingly, the laser-based fabrication method here described constitutes a simple, clean, and scalable technique which allows a precise control of the surface nano-patterning process and, subsequently, enables the control of cell adhesion, migration, and polarization. Moreover, since our surface-patterning approach does not involve any chemical treatments and is performed in a single step process, it could in principle be applied to most metallic materials. PMID:27805063
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas Settersten
2011-08-19
The vast majority of the world's energy needs are met by combustion of fossil fuels. Optimum utilization of limited resources and control of emissions of pollutants and greenhouse gases demand sustained improvement of combustion technology. This task can be satisfied only by detailed knowledge of the underlying physical and chemical processes. Non-intrusive laser diagnostics continuously contribute to our growing understanding of these complex and coupled multi-scale processes. The GRC on Laser Diagnostics in Combustion focuses on the most recent scientific advances and brings together scientists and engineers working at the leading edge of combustion research. Major tasks of the communitymore » are developing and applying methods for precise and accurate measurements of fluid motion and temperatures; chemical compositions; multi-phase phenomena appearing near walls, in spray and sooting combustion; improving sensitivities, precision, spatial resolution and tracking transients in their spatio-temporal development. The properties and behaviour of novel laser sources, detectors, optical systems that lead to new diagnostic capabilities are also part of the conference program.« less
Action Research on Development and Application of Internet of Things Services in Hospital.
Park, Arum; Chang, Hyejung; Lee, Kyoung Jun
2017-01-01
Services based on the Internet of Things (IoT) technologies have emerged in various business environments. To enhance health service quality and maximize benefits, this study applied an IoT technology based on NFC and iBeacon as an omni-channel service for patient care in hospitals. Application of the IoT technology based on NFC and iBeacon was conducted in a general hospital during August 2015 through June 2016, and the development and evaluation results were aligned to an action research framework. The five phases in the action research included diagnosing, planning action, taking action, evaluating action, and specifying learning phases. During the first two phases, problems of functional operations in a hospital were diagnosed and eight service models were designed by using iBeacon and NFC to solve the problems. Service models were applied to the hospital by installing beacons, wearable beacons, beacon scanners, and NFC tags during the third phase. During the fourth and fifth phases, the roles and benefits of stakeholders participating in the service models were evaluated, and issues and knowledge of the whole application process were derived and summarized from technological, economic, social and legal perspectives, respectively. From an action research perspective, IoT-based healthcare services were developed and verified. IoT-based services enable the hospital to acquire lifelog data for precision medicine and ultimately be able to go one step closer to precision medical care. The derived service models could provide patients more enhanced healthcare services and improve the work efficiency and effectiveness of the hospital.
Action Research on Development and Application of Internet of Things Services in Hospital
Park, Arum; Chang, Hyejung
2017-01-01
Objectives Services based on the Internet of Things (IoT) technologies have emerged in various business environments. To enhance health service quality and maximize benefits, this study applied an IoT technology based on NFC and iBeacon as an omni-channel service for patient care in hospitals. Methods Application of the IoT technology based on NFC and iBeacon was conducted in a general hospital during August 2015 through June 2016, and the development and evaluation results were aligned to an action research framework. The five phases in the action research included diagnosing, planning action, taking action, evaluating action, and specifying learning phases. Results During the first two phases, problems of functional operations in a hospital were diagnosed and eight service models were designed by using iBeacon and NFC to solve the problems. Service models were applied to the hospital by installing beacons, wearable beacons, beacon scanners, and NFC tags during the third phase. During the fourth and fifth phases, the roles and benefits of stakeholders participating in the service models were evaluated, and issues and knowledge of the whole application process were derived and summarized from technological, economic, social and legal perspectives, respectively. Conclusions From an action research perspective, IoT-based healthcare services were developed and verified. IoT-based services enable the hospital to acquire lifelog data for precision medicine and ultimately be able to go one step closer to precision medical care. The derived service models could provide patients more enhanced healthcare services and improve the work efficiency and effectiveness of the hospital. PMID:28261528
An open-source framework for large-scale, flexible evaluation of biomedical text mining systems.
Baumgartner, William A; Cohen, K Bretonnel; Hunter, Lawrence
2008-01-29
Improved evaluation methodologies have been identified as a necessary prerequisite to the improvement of text mining theory and practice. This paper presents a publicly available framework that facilitates thorough, structured, and large-scale evaluations of text mining technologies. The extensibility of this framework and its ability to uncover system-wide characteristics by analyzing component parts as well as its usefulness for facilitating third-party application integration are demonstrated through examples in the biomedical domain. Our evaluation framework was assembled using the Unstructured Information Management Architecture. It was used to analyze a set of gene mention identification systems involving 225 combinations of system, evaluation corpus, and correctness measure. Interactions between all three were found to affect the relative rankings of the systems. A second experiment evaluated gene normalization system performance using as input 4,097 combinations of gene mention systems and gene mention system-combining strategies. Gene mention system recall is shown to affect gene normalization system performance much more than does gene mention system precision, and high gene normalization performance is shown to be achievable with remarkably low levels of gene mention system precision. The software presented in this paper demonstrates the potential for novel discovery resulting from the structured evaluation of biomedical language processing systems, as well as the usefulness of such an evaluation framework for promoting collaboration between developers of biomedical language processing technologies. The code base is available as part of the BioNLP UIMA Component Repository on SourceForge.net.
An open-source framework for large-scale, flexible evaluation of biomedical text mining systems
Baumgartner, William A; Cohen, K Bretonnel; Hunter, Lawrence
2008-01-01
Background Improved evaluation methodologies have been identified as a necessary prerequisite to the improvement of text mining theory and practice. This paper presents a publicly available framework that facilitates thorough, structured, and large-scale evaluations of text mining technologies. The extensibility of this framework and its ability to uncover system-wide characteristics by analyzing component parts as well as its usefulness for facilitating third-party application integration are demonstrated through examples in the biomedical domain. Results Our evaluation framework was assembled using the Unstructured Information Management Architecture. It was used to analyze a set of gene mention identification systems involving 225 combinations of system, evaluation corpus, and correctness measure. Interactions between all three were found to affect the relative rankings of the systems. A second experiment evaluated gene normalization system performance using as input 4,097 combinations of gene mention systems and gene mention system-combining strategies. Gene mention system recall is shown to affect gene normalization system performance much more than does gene mention system precision, and high gene normalization performance is shown to be achievable with remarkably low levels of gene mention system precision. Conclusion The software presented in this paper demonstrates the potential for novel discovery resulting from the structured evaluation of biomedical language processing systems, as well as the usefulness of such an evaluation framework for promoting collaboration between developers of biomedical language processing technologies. The code base is available as part of the BioNLP UIMA Component Repository on SourceForge.net. PMID:18230184
The use of 3D-printed titanium mesh tray in treating complex comminuted mandibular fractures
Ma, Junli; Ma, Limin; Wang, Zhifa; Zhu, Xiongjie; Wang, Weijian
2017-01-01
Abstract Rationale: Precise bony reduction and reconstruction of optimal contour in treating comminuted mandibular fractures is very difficult using traditional techniques and devices. The aim of this report is to introduce our experiences in using virtual surgery and three-dimensional (3D) printing technique in treating this clinical challenge. Patient concerns: A 26-year-old man presented with severe trauma in the maxillofacial area due to fall from height. Diagnosis: Computed tomography images revealed middle face fractures and comminuted mandibular fracture including bilateral condyles. Interventions and outcomes: The computed tomography data was used to construct the 3D cranio-maxillofacial models; then the displaced bone fragments were virtually reduced. On the basis of the finalized model, a customized titanium mesh tray was designed and fabricated using selective laser melting technology. During the surgery, a submandibular approach was adopted to repair the mandibular fracture. The reduction and fixation were performed according to preoperative plan, the bone defects in the mental area were reconstructed with iliac bone graft. The 3D-printed mesh tray served as an intraoperative template and carrier of bone graft. The healing process was uneventful, and the patient was satisfied with the mandible contour. Lessons: Virtual surgical planning combined with 3D printing technology enables surgeon to visualize the reduction process preoperatively and guide intraoperative reduction, making the reduction less time consuming and more precise. 3D-printed titanium mesh tray can provide more satisfactory esthetic outcomes in treating complex comminuted mandibular fractures. PMID:28682875
NASA Astrophysics Data System (ADS)
Tran, Minh
Metallic nanostructures are of great interest due to their applicability in various modern technologies, such as catalysis, sensing, and optoelectronics. In this work, we employed three solution-based methods, including colloidal suspension synthesis, modified galvanic displacement, and electrodeposition, to synthesize nanostructured metals and transition metals, including gold (Au), copper (Cu), platinum (Pt), palladium (Pd), nickel (Ni), and cobalt (Co). Our focus was to establish process-structure-property relationship and explore their applicability in the field of sensing and clean energy generation. More precisely we established relationships between experimental parameters, such as temperature, applied potential, electrolyte pH, reactant concentration, additive, and the number of deposition cycles, and the characteristics of the nanostructures, such as morphology, density, size, and size distribution. Our results indicated that the nanostructures were tunable by adjusting the process parameters. This provided insight into the growth mechanisms of the metallic nanostructures. Since properties of the nanostructures are tunable by controlling the structure, our results provided researchers with additional tools to obtain nanomaterials with desired properties for specific applications. The materials synthesized by our methods were utilized to as substrates for surface enhanced Raman spectroscopy (SERS) and as photocathodes for photoelectrochemical production of hydrogen. The results showed that the performances of our materials were either promising or compatible with those reported in the literature, thus bringing new opportunities to the development of low-cost, high-performance, and flexible nanomaterials for the current and future technologies.
Design of a Single-Cell Positioning Controller Using Electroosmotic Flow and Image Processing
Ay, Chyung; Young, Chao-Wang; Chen, Jhong-Yin
2013-01-01
The objective of the current research was not only to provide a fast and automatic positioning platform for single cells, but also improved biomolecular manipulation techniques. In this study, an automatic platform for cell positioning using electroosmotic flow and image processing technology was designed. The platform was developed using a PCI image acquisition interface card for capturing images from a microscope and then transferring them to a computer using human-machine interface software. This software was designed by the Laboratory Virtual Instrument Engineering Workbench, a graphical language for finding cell positions and viewing the driving trace, and the fuzzy logic method for controlling the voltage or time of an electric field. After experiments on real human leukemic cells (U-937), the success of the cell positioning rate achieved by controlling the voltage factor reaches 100% within 5 s. A greater precision is obtained when controlling the time factor, whereby the success rate reaches 100% within 28 s. Advantages in both high speed and high precision are attained if these two voltage and time control methods are combined. The control speed with the combined method is about 5.18 times greater than that achieved by the time method, and the control precision with the combined method is more than five times greater than that achieved by the voltage method. PMID:23698272
Demonstration of pharmaceutical tablet coating process by injection molding technology.
Puri, Vibha; Brancazio, David; Harinath, Eranda; Martinez, Alexander R; Desai, Parind M; Jensen, Keith D; Chun, Jung-Hoon; Braatz, Richard D; Myerson, Allan S; Trout, Bernhardt L
2018-01-15
We demonstrate the coating of tablets using an injection molding (IM) process that has advantage of being solvent free and can provide precision coat features. The selected core tablets comprising 10% w/w griseofulvin were prepared by an integrated hot melt extrusion-injection molding (HME-IM) process. Coating trials were conducted on a vertical injection mold machine. Polyethylene glycol and polyethylene oxide based hot melt extruded coat compositions were used. Tablet coating process feasibility was successfully demonstrated using different coating mold designs (with both overlapping and non-overlapping coatings at the weld) and coat thicknesses of 150 and 300 μm. The resultant coated tablets had acceptable appearance, seal at the weld, and immediate drug release profile (with an acceptable lag time). Since IM is a continuous process, this study opens opportunities to develop HME-IM continuous processes for transforming powder to coated tablets. Copyright © 2017 Elsevier B.V. All rights reserved.
Precision Machining Application and Technology: An Overview and Perspective.
1983-08-24
diamond turning lathes are being used to produce computer discs. Bryant Symons, an English firm, has reported diamond turning an aluminum computer disk at...34 Precision Engineering, Vol. 5(2), Guildford, Engl nd, July 1983. Watt, G., " Lathe for Generation of Spherical -arfaces of Revolution," given to Optical...Precision CNC Diamond Turning Machine," Annuals of the CIRP, Vol. 31/1, p 409, 1982. 8. Bryant Simmons Product Brochur-, "Ultra Precision Oiamond Turning
NASA Astrophysics Data System (ADS)
Brecher, Christian; Baum, Christoph; Bastuck, Thomas
2015-03-01
Economically advantageous microfabrication technologies for lab-on-a-chip diagnostic devices substituting commonly used glass etching or injection molding processes are one of the key enablers for the emerging market of microfluidic devices. On-site detection in fields of life sciences, point of care diagnostics and environmental analysis requires compact, disposable and highly functionalized systems. Roll-to-roll production as a high volume process has become the emerging fabrication technology for integrated, complex high technology products within recent years (e.g. fuel cells). Differently functionalized polymer films enable researchers to create a new generation of lab-on-a-chip devices by combining electronic, microfluidic and optical functions in multilayer architecture. For replication of microfluidic and optical functions via roll-to-roll production process competitive approaches are available. One of them is to imprint fluidic channels and optical structures of micro- or nanometer scale from embossing rollers into ultraviolet (UV) curable lacquers on polymer substrates. Depending on dimension, shape and quantity of those structures there are alternative manufacturing technologies for the embossing roller. Ultra-precise diamond turning, electroforming or casting polymer materials are used either for direct structuring or manufacturing of roller sleeves. Mastering methods are selected for application considering replication quality required and structure complexity. Criteria for the replication quality are surface roughness and contour accuracy. Structure complexity is evaluated by shapes producible (e.g. linear, circular) and aspect ratio. Costs for the mastering process and structure lifetime are major cost factors. The alternative replication approaches are introduced and analyzed corresponding to the criteria presented. Advantages and drawbacks of each technology are discussed and exemplary applications are presented.
A review on waste heat recovery from exhaust in the ceramics industry
NASA Astrophysics Data System (ADS)
Delpech, Bertrand; Axcell, Brian; Jouhara, Hussam
2017-11-01
Following the energy crisis in 1980, many saving technologies have been investigated with attempts to implement them into various industries, one of them is the field of ceramic production. In order to comply with energy saving trends and environmental issues, the European ceramic industry sector has developed energy efficient systems which reduced significantly production time and costs and reduced total energy consumption. The last achievement is of great importance as the energy consumption of the ceramic process accounts for a significant percentage of the total production costs. More precisely, the firing stage consumes the highest amount of energy during the whole ceramic production process. The use of roller kilns, fired by natural gas, involves a loss of 50% of the input energy via the flue gas and the cooling gas exhausts. This review paper briefly describes the production process of the different ceramic products, with a focus on the ceramic sector in Europe. Due to the limited on waste heat recovery in the ceramic industry, other high temperature waste heat recovery applications are considered in the paper, such as in concrete and steel production, which could have a potential use in the ceramic industry. The state of the art technologies used in the ceramics industry are reviewed with a special interest in waste heat recovery from the ceramic process exhaust stacks and energy saving technologies.
Wei, Liping.; Doughan, Samer.; Han, Yi.; DaCosta, Matthew V.; Krull, Ulrich J.; Ho, Derek.
2014-01-01
Organic fluorophores and quantum dots are ubiquitous as contrast agents for bio-imaging and as labels in bioassays to enable the detection of biological targets and processes. Upconversion nanoparticles (UCNPs) offer a different set of opportunities as labels in bioassays and for bioimaging. UCNPs are excited at near-infrared (NIR) wavelengths where biological molecules are optically transparent, and their luminesce in the visible and ultraviolet (UV) wavelength range is suitable for detection using complementary metal-oxide-semiconductor (CMOS) technology. These nanoparticles provide multiple sharp emission bands, long lifetimes, tunable emission, high photostability, and low cytotoxicity, which render them particularly useful for bio-imaging applications and multiplexed bioassays. This paper surveys several key concepts surrounding upconversion nanoparticles and the systems that detect and process the corresponding luminescence signals. The principle of photon upconversion, tuning of emission wavelengths, UCNP bioassays, and UCNP time-resolved techniques are described. Electronic readout systems for signal detection and processing suitable for UCNP luminescence using CMOS technology are discussed. This includes recent progress in miniaturized detectors, integrated spectral sensing, and high-precision time-domain circuits. Emphasis is placed on the physical attributes of UCNPs that map strongly to the technical features that CMOS devices excel in delivering, exploring the interoperability between the two technologies. PMID:25211198
Precise Clinical Imaging of Tumors | Center for Cancer Research
Precisely locating and killing tumors in the body without harming surrounding cells is a major challenge in cancer treatment. CCR researchers have helped design breakthrough imaging technologies to better understand where and how tumors grow.
Lane-Level Vehicle Positioning : Integrating Diverse Systems for Precision and Reliability
DOT National Transportation Integrated Search
2013-05-13
Integrated global positioning system/inertial navigation system (GPS/INS) technology, the backbone of vehicle positioning systems, cannot provide the precision and reliability needed for vehicle-based, lane-level positioning in all driving environmen...
A spaceborne optical interferometer: The JPL CSI mission focus
NASA Astrophysics Data System (ADS)
Laskin, R. A.
1989-08-01
The JPL Control Structure Interaction (CSI) program is part of the larger NASA-wide CSI program. Within this larger context, the JPL CSI program will emphasize technology for systems that demand micron or sub-micron level control, so-called Micro-Precision Controlled Structures (u-PCS). The development of such technology will make it practical to fly missions with large optical or large precision antenna systems. In keeping with the focused nature of the desired technology, the JPL approach is to identify a focus mission, develop the focus mission CSI system design to a preliminary level, and then use this design to drive out requirements for CSI technology development in the design and analysis, ground test bed, and flight experiment areas.
76 FR 69595 - Application of Third Party Testing Requirements; Reducing Third Party Testing Burdens
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-08
... subject to a third party testing requirement. Please identify specific technologies, except for those that... evaluate testing or screening technologies for consumer products (e.g., accuracy, precision, repeatability... than testing technologies? Should screening technologies be allowed only for third party conformity...
Characterization of integrated optical CD for process control
NASA Astrophysics Data System (ADS)
Yu, Jackie; Uchida, Junichi; van Dommelen, Youri; Carpaij, Rene; Cheng, Shaunee; Pollentier, Ivan; Viswanathan, Anita; Lane, Lawrence; Barry, Kelly A.; Jakatdar, Nickhil
2004-05-01
The accurate measurement of CD (critical dimension) and its application to inline process control are key challenges for high yield and OEE (overall equipment efficiency) in semiconductor production. CD-SEM metrology, although providing the resolution necessary for CD evaluation, suffers from the well-known effect of resist shrinkage, making accuracy and stability of the measurements an issue. For sub-100 nm in-line process control, where accuracy and stability as well as speed are required, CD-SEM metrology faces serious limitations. In contrast, scatterometry, using broadband optical spectra taken from grating structures, does not suffer from such limitations. This technology is non-destructive and, in addition to CD, provides profile information and film thickness in a single measurement. Using Timbre's Optical Digital Profililometry (ODP) technology, we characterized the Process Window, using a iODP101 integrated optical CD metrology into a TEL Clean Track at IMEC. We demonstrate the Optical CD's high sensitivity to process change and its insensitivity to measurement noise. We demonstrate the validity of ODP modeling by showing its accurate response to known process changes built into the evaluation and its excellent correlation to CD-SEM. We will further discuss the intrinsic Optical CD metrology factors that affect the tool precision, accuracy and its correlation to CD-SEM.
NASA Astrophysics Data System (ADS)
Ren, Xia; Yang, Yuanxi; Zhu, Jun; Xu, Tianhe
2017-11-01
Intersatellite Link (ISL) technology helps to realize the auto update of broadcast ephemeris and clock error parameters for Global Navigation Satellite System (GNSS). ISL constitutes an important approach with which to both improve the observation geometry and extend the tracking coverage of China's Beidou Navigation Satellite System (BDS). However, ISL-only orbit determination might lead to the constellation drift, rotation, and even lead to the divergence in orbit determination. Fortunately, predicted orbits with good precision can be used as a priori information with which to constrain the estimated satellite orbit parameters. Therefore, the precision of satellite autonomous orbit determination can be improved by consideration of a priori orbit information, and vice versa. However, the errors of rotation and translation in a priori orbit will remain in the ultimate result. This paper proposes a constrained precise orbit determination (POD) method for a sub-constellation of the new Beidou satellite constellation with only a few ISLs. The observation model of dual one-way measurements eliminating satellite clock errors is presented, and the orbit determination precision is analyzed with different data processing backgrounds. The conclusions are as follows. (1) With ISLs, the estimated parameters are strongly correlated, especially the positions and velocities of satellites. (2) The performance of determined BDS orbits will be improved by the constraints with more precise priori orbits. The POD precision is better than 45 m with a priori orbit constrain of 100 m precision (e.g., predicted orbits by telemetry tracking and control system), and is better than 6 m with precise priori orbit constraints of 10 m precision (e.g., predicted orbits by international GNSS monitoring & Assessment System (iGMAS)). (3) The POD precision is improved by additional ISLs. Constrained by a priori iGMAS orbits, the POD precision with two, three, and four ISLs is better than 6, 3, and 2 m, respectively. (4) The in-plane link and out-of-plane link have different contributions to observation configuration and system observability. The POD with weak observation configuration (e.g., one in-plane link and one out-of-plane link) should be tightly constrained with a priori orbits.
Borchers, M R; Bewley, J M
2015-06-01
An online survey to identify producer precision dairy farming technology perception was distributed in March 2013 through web links sent to dairy producers through written publications and e-mail. Responses were collected in May 2013 and 109 surveys were used in statistical analysis. Producers were asked to select parameters monitored by technologies on their farm from a predetermined list and 68.8% of respondents indicated technology use on their dairies (31.2% of producers not using technologies). Daily milk yield (52.3%), cow activity (41.3%), and mastitis (25.7%) were selected most frequently. Producers were also asked to score the same list of parameters on usefulness using a 5-point scale (1=not useful and 5=useful). Producers indicated (mean ± SE) mastitis (4.77±0.47), standing estrus (4.75±0.55), and daily milk yield (4.72±0.62) to be most useful. Producers were asked to score considerations taken before deciding to purchase a precision dairy farming technology from a predetermined list (1=not important and 5=important). Producers indicated benefit-to-cost ratio (4.57±0.66), total investment cost (4.28±0.83), and simplicity and ease of use (4.26±0.75) to be most important when deciding whether to implement a technology. Producers were categorized based on technology use (using technology vs. not using technology) and differed significantly across technology usefulness scores, daily milk yield (using technologies: 4.83±0.07 vs. not using technologies: 4.50±0.10), and standing estrus (using technologies: 4.68±0.06 vs. not using technologies: 4.91±0.09). The same categories were used to evaluate technology use effect on prepurchase technology selection criteria and availability of local support (using technologies: 4.25±0.11 vs. not using technologies: 3.82±0.16) differed significantly. Producer perception of technology remains relatively unknown to manufacturers. Using this data, technology manufacturers may better design and market technologies to producer need. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Optimal actuator placement in adaptive precision trusses
NASA Technical Reports Server (NTRS)
Baycan, C. M.; Utku, S.; Das, S. K.; Wada, B. K.
1992-01-01
Actuator placement in adaptive truss structures is to cater to two needs: displacement control of precision points and preloading the elements to overcome joint slackness. Due to technological and financial considerations, the number of actuators available is much less than the degrees of freedom of precision points to be controlled and the degree of redundancy of the structure. An approach for optimal actuator location is outlined. Test cases to demonstrate the effectiveness of the scheme are applied to the Precision Segmented Reflector Truss.
Critical aspects of substrate nanopatterning for the ordered growth of GaN nanocolumns
2011-01-01
Precise and reproducible surface nanopatterning is the key for a successful ordered growth of GaN nanocolumns. In this work, we point out the main technological issues related to the patterning process, mainly surface roughness and cleaning, and mask adhesion to the substrate. We found that each of these factors, process-related, has a dramatic impact on the subsequent selective growth of the columns inside the patterned holes. We compare the performance of e-beam lithography, colloidal lithography, and focused ion beam in the fabrication of hole-patterned masks for ordered columnar growth. These results are applicable to the ordered growth of nanocolumns of different materials. PMID:22168918
Study on the key alignment technology of the catadioptric optical system
NASA Astrophysics Data System (ADS)
Song, Chong; Fu, Xing; Fu, Xi-hong; Kang, Xiao-peng; Liu, Kai
2017-02-01
Optical system alignment has a great influence on the whole system accuracy. In this paper, the processing of optical system alignment was mainly studied, the processing method of optics on the primary and secondary mirrors, front correction lens group and behind correction lens group with high precision centering lathe and internal focusing telescope. Then using the height indicator complete the system alignment of the primary mirror, secondary mirror, front correction group and behind correction group. Finally, based on the zygo interferometer detect the wavefront information. Using this alignment program for catadioptric optical system, the wavefront aberration of optical system, focal length, modulation transfer function (MTF) and other technical indicators have reached the requirements.
Landslide Phenomena in Sevan National Park-Armenia
NASA Astrophysics Data System (ADS)
Lazarov, Dimitrov; Minchev, Dimitar; Aleksanyan, Gurgen; Ilieva, Maya
2010-12-01
Based on data from master and slave complex images obtained on 30 August 2008 and 4 October 2008 by satellite ENVISAT with ASAR sensor,all processing chain is performed to evaluate landslides phenomena in Sevan National park - Republic of Armenia. For this purpose Identification Deformation Inspection and Observation Tool developed by Berlin University of Technology is applied. This software package uses a freely available DEM of the Shuttle Radar Topography Mission (SRTM) and performs a fully automatic generation of differential SAR interferograms from ENVISAT single look complex SAR data. All interferometric processing steps are implemented with maximum quality and precision. The results illustrate almost calm Earth surface in the area of Sevan Lake.
NASA Technical Reports Server (NTRS)
Mehle, Greg; Stahl, Phil (Technical Monitor)
2002-01-01
This presentation provides an overview of the development of the 1.6 meter hybrid mirror demonstrator for the NGST Mirror System Demonstrator (NMSD) program. The COI design approach for the NGST program combines the optical performance of glass, with the high specific stiffness capabilities of composite materials The foundation technologies being exploited in the development of the hybrid mirror focus upon precision Composite Materials for cryogenic operation, and non-contact optical processing (ion figuring) of the lightweight mirror surface. The NGST Mirror System Demonstrator (NMSD) has been designed and built by Composite Optics, Inc. (COI) with optical processing performed by SAGEM (REOSC). The sponsors of these efforts are the NASA Marshall and Goddard Space Flight Centers.
Paper Towers: Building Students' Understandings of Technological Design
ERIC Educational Resources Information Center
Minogue, James; Guentensberger, Todd
2006-01-01
One set of ideas at the core of the National Science Education Standards (NSES) Science and Technology Standards is that of engaging middle school students in activities that help them develop their understandings of technological design. More precisely, students should be able to identify appropriate problems for technological design, design a…
NASA Astrophysics Data System (ADS)
Peyton, David; Kinoshita, Hiroyuki; Lo, G. Q.; Kwong, Dim-Lee
1991-04-01
Rapid Thermal Processing (RTP) is becoming a popular approach for future ULSI manufacturing due to its unique low thermal budget and process flexibility. Furthermore when RTP is combined with Chemical Vapor Deposition (CVD) the so-called RTP-CVD technology it can be used to deposit ultrathin films with extremely sharp interfaces and excellent material qualities. One major consequence of this type of processing however is the need for extremely tight control of wafer temperature both to obtain reproducible results for process control and to minimize slip and warpage arising from nonuniformities in temperature. Specifically temperature measurement systems suitable for RiP must have both high precision--within 1-2 degrees--and a short response time--to output an accurate reading on the order of milliseconds for closedloop control. Any such in-situ measurement technique must be non-contact since thermocouples cannot meet the response time requirements and have problems with conductive heat flow in the wafer. To date optical pyrometry has been the most widely used technique for RiP systems although a number of other techniques are being considered and researched. This article examines several such techniques from a systems perspective: optical pyrometry both conventional and a new approach using ellipsometric techniques for concurrent emissivity measurement Raman scattering infrared laser thermometry optical diffraction thermometry and photoacoustic thermometry. Each approach is evaluated in terms of its actual or estimated manufacturing cost remote sensing capability precision repeatability dependence on processing history range
Low Cost Precision Lander for Lunar Exploration
NASA Astrophysics Data System (ADS)
Hoppa, G. V.; Head, J. N.; Gardner, T. G.; Seybold, K. G.
2004-12-01
For 60 years the US Defense Department has invested heavily in producing small, low mass, precision-guided vehicles. The technologies matured under these programs include terrain-aided navigation, closed loop terminal guidance algorithms, robust autopilots, high thrust-to-weight propulsion, autonomous mission management software, sensors, and data fusion. These technologies will aid NASA in addressing New Millennium Science and Technology goals as well as the requirements flowing from the Moon to Mars vision articulated in January 2004. Establishing and resupplying a long-term lunar presence will require automated landing precision not yet demonstrated. Precision landing will increase safety and assure mission success. In our lander design, science instruments amount to 10 kg, 16% of the lander vehicle mass. This compares favorably with 7% for Mars Pathfinder and less than 15% for Surveyor. The mission design relies on a cruise stage for navigation and TCMs for the lander's flight to the moon. The landing sequence begins with a solid motor burn to reduce the vehicle speed to 300-450 m/s. At this point the lander is about 2 minutes from touchdown and has 600 to 700 m/s delta-v capability. This allows for about 10 km of vehicle divert during terminal descent. This concept of operations closely mimics missile operational protocol used for decades: the vehicle remains inert, then must execute its mission flawlessly on a moment's notice. The vehicle design uses a propulsion system derived from heritage MDA programs. A redesigned truss provides hard points for landing gear, electronics, power supply, and science instruments. A radar altimeter and a Digital Scene Matching Area Correlator (DSMAC) provide data for the terminal guidance algorithms. This approach leverages the billions of dollars DoD has invested in these technologies, to land useful science payloads precisely on the lunar surface at relatively low cost.
Gentile, T. R.; Nacher, P. J.; Saam, B.; Walker, T. G.
2018-01-01
This article reviews the physics and technology of producing large quantities of highly spin-polarized 3He nuclei using spin-exchange (SEOP) and metastability-exchange (MEOP) optical pumping. Both technical developments and deeper understanding of the physical processes involved have led to substantial improvements in the capabilities of both methods. For SEOP, the use of spectrally narrowed lasers and K-Rb mixtures has substantially increased the achievable polarization and polarizing rate. For MEOP nearly lossless compression allows for rapid production of polarized 3He and operation in high magnetic fields has likewise significantly increased the pressure at which this method can be performed, and revealed new phenomena. Both methods have benefitted from development of storage methods that allow for spin-relaxation times of hundreds of hours, and specialized precision methods for polarimetry. SEOP and MEOP are now widely applied for spin-polarized targets, neutron spin filters, magnetic resonance imaging, and precision measurements. PMID:29503479
Gil-Santos, Eduardo; Baker, Christopher; Lemaître, Aristide; Gomez, Carmen; Leo, Giuseppe; Favero, Ivan
2017-01-01
Photonic lattices of mutually interacting indistinguishable cavities represent a cornerstone of collective phenomena in optics and could become important in advanced sensing or communication devices. The disorder induced by fabrication technologies has so far hindered the development of such resonant cavity architectures, while post-fabrication tuning methods have been limited by complexity and poor scalability. Here we present a new simple and scalable tuning method for ensembles of microphotonic and nanophotonic resonators, which enables their permanent collective spectral alignment. The method introduces an approach of cavity-enhanced photoelectrochemical etching in a fluid, a resonant process triggered by sub-bandgap light that allows for high selectivity and precision. The technique is presented on a gallium arsenide nanophotonic platform and illustrated by finely tuning one, two and up to five resonators. It opens the way to applications requiring large networks of identical resonators and their spectral referencing to external etalons. PMID:28117394
Hydrogel microfluidics for the patterning of pluripotent stem cells
NASA Astrophysics Data System (ADS)
Cosson, S.; Lutolf, M. P.
2014-03-01
Biomolecular signaling is of utmost importance in governing many biological processes such as the patterning of the developing embryo where biomolecules regulate key cell-fate decisions. In vivo, these factors are presented in a spatiotemporally tightly controlled fashion. Although state-of-the-art microfluidic technologies allow precise biomolecule delivery in time and space, long-term (stem) cell culture at the micro-scale is often far from ideal due to medium evaporation, limited space for cell growth or shear stress. To overcome these challenges, we here introduce a concept based on hydrogel microfluidics for decoupling conventional, macro-scale cell culture from precise biomolecule delivery through a gel layer. We demonstrate the spatiotemporally controlled neuronal commitment of mouse embryonic stem cells via delivery of retinoic acid gradients. This technique should be useful for testing the effect of dose and timing of biomolecules, singly or in combination, on stem cell fate.
Finding and Accessing Diagrams in Biomedical Publications
Kuhn, Tobias; Luong, ThaiBinh; Krauthammer, Michael
2012-01-01
Complex relationships in biomedical publications are often communicated by diagrams such as bar and line charts, which are a very effective way of summarizing and communicating multi-faceted data sets. Given the ever-increasing amount of published data, we argue that the precise retrieval of such diagrams is of great value for answering specific and otherwise hard-to-meet information needs. To this end, we demonstrate the use of advanced image processing and classification for identifying bar and line charts by the shape and relative location of the different image elements that make up the charts. With recall and precisions of close to 90% for the detection of relevant figures, we discuss the use of this technology in an existing biomedical image search engine, and outline how it enables new forms of literature queries over biomedical relationships that are represented in these charts. PMID:23304318
Dissipative quantum error correction and application to quantum sensing with trapped ions.
Reiter, F; Sørensen, A S; Zoller, P; Muschik, C A
2017-11-28
Quantum-enhanced measurements hold the promise to improve high-precision sensing ranging from the definition of time standards to the determination of fundamental constants of nature. However, quantum sensors lose their sensitivity in the presence of noise. To protect them, the use of quantum error-correcting codes has been proposed. Trapped ions are an excellent technological platform for both quantum sensing and quantum error correction. Here we present a quantum error correction scheme that harnesses dissipation to stabilize a trapped-ion qubit. In our approach, always-on couplings to an engineered environment protect the qubit against spin-flips or phase-flips. Our dissipative error correction scheme operates in a continuous manner without the need to perform measurements or feedback operations. We show that the resulting enhanced coherence time translates into a significantly enhanced precision for quantum measurements. Our work constitutes a stepping stone towards the paradigm of self-correcting quantum information processing.
Gentile, T R; Nacher, P J; Saam, B; Walker, T G
2017-01-01
This article reviews the physics and technology of producing large quantities of highly spin-polarized 3 He nuclei using spin-exchange (SEOP) and metastability-exchange (MEOP) optical pumping. Both technical developments and deeper understanding of the physical processes involved have led to substantial improvements in the capabilities of both methods. For SEOP, the use of spectrally narrowed lasers and K-Rb mixtures has substantially increased the achievable polarization and polarizing rate. For MEOP nearly lossless compression allows for rapid production of polarized 3 He and operation in high magnetic fields has likewise significantly increased the pressure at which this method can be performed, and revealed new phenomena. Both methods have benefitted from development of storage methods that allow for spin-relaxation times of hundreds of hours, and specialized precision methods for polarimetry. SEOP and MEOP are now widely applied for spin-polarized targets, neutron spin filters, magnetic resonance imaging, and precision measurements.
NASA Astrophysics Data System (ADS)
Gentile, T. R.; Nacher, P. J.; Saam, B.; Walker, T. G.
2017-10-01
This article reviews the physics and technology of producing large quantities of highly spin-polarized 3He nuclei using spin-exchange (SEOP) and metastability-exchange (MEOP) optical pumping. Both technical developments and deeper understanding of the physical processes involved have led to substantial improvements in the capabilities of both methods. For SEOP, the use of spectrally narrowed lasers and K-Rb mixtures has substantially increased the achievable polarization and polarizing rate. For MEOP nearly lossless compression allows for rapid production of polarized 3He and operation in high magnetic fields has likewise significantly increased the pressure at which this method can be performed, and revealed new phenomena. Both methods have benefitted from development of storage methods that allow for spin-relaxation times of hundreds of hours, and specialized precision methods for polarimetry. SEOP and MEOP are now widely applied for spin-polarized targets, neutron spin filters, magnetic resonance imaging, and precision measurements.
[Landscape classification: research progress and development trend].
Liang, Fa-Chao; Liu, Li-Ming
2011-06-01
Landscape classification is the basis of the researches on landscape structure, process, and function, and also, the prerequisite for landscape evaluation, planning, protection, and management, directly affecting the precision and practicability of landscape research. This paper reviewed the research progress on the landscape classification system, theory, and methodology, and summarized the key problems and deficiencies of current researches. Some major landscape classification systems, e. g. , LANMAP and MUFIC, were introduced and discussed. It was suggested that a qualitative and quantitative comprehensive classification based on the ideology of functional structure shape and on the integral consideration of landscape classification utility, landscape function, landscape structure, physiogeographical factors, and human disturbance intensity should be the major research directions in the future. The integration of mapping, 3S technology, quantitative mathematics modeling, computer artificial intelligence, and professional knowledge to enhance the precision of landscape classification would be the key issues and the development trend in the researches of landscape classification.
Precision laser range finder system design for Advanced Technology Laboratory applications
NASA Technical Reports Server (NTRS)
Golden, K. E.; Kohn, R. L.; Seib, D. H.
1974-01-01
Preliminary system design of a pulsed precision ruby laser rangefinder system is presented which has a potential range resolution of 0.4 cm when atmospheric effects are negligible. The system being proposed for flight testing on the advanced technology laboratory (ATL) consists of a modelocked ruby laser transmitter, course and vernier rangefinder receivers, optical beacon retroreflector tracking system, and a network of ATL tracking retroreflectors. Performance calculations indicate that spacecraft to ground ranging accuracies of 1 to 2 cm are possible.
ERIC Educational Resources Information Center
Texas State Technical Coll., Waco.
This volume developed by the Machine Tool Advanced Skill Technology (MAST) program contains key administrative documents and provides additional sources for machine tool and precision manufacturing information and important points of contact in the industry. The document contains the following sections: a foreword; grant award letter; timeline for…