Science.gov

Sample records for precision radiotherapy techniques

  1. Imaging Instrumentation and Techniques for Precision Radiotherapy

    NASA Astrophysics Data System (ADS)

    Parodi, Katia; Parodi, Katia; Thieke, Christian; Thieke, Christian

    Over the last decade, several technological advances have considerably improved the achievable precision of dose delivery in radiation therapy. Clinical exploitation of the superior tumor-dose conformality offered by modern radiotherapy techniques like intensity-modulated radiotherapy and ion beam therapy requires morphological and functional assessment of the tumor during the entire therapy chain from treatment planning to beam application and treatment response evaluation. This chapter will address the main rationale and role of imaging in state-of-the-art external beam radiotherapy. Moreover, it will present the status of novel imaging instrumentation and techniques being nowadays introduced in clinical use or still under development for image guidance and, ultimately, dose guidance of precision radiotherapy.

  2. Precision radiotherapy for cancer of the pancreas: technique and results. [Photons and electrons

    SciTech Connect

    Dobelbower, R.R. Jr.; Borgelt, B.B.; Strubler, K.A.; Kutcher, G.J.; Suntharalingam, N.

    1980-09-01

    Forty patients with locally extensive, unresectable adenocarcinoma of the pancreas received precision high dose (PHD) radiation therapy with a 45 MeV betatron. PHD radiotherapy was generally well tolerated. During treatment, only 7 patients experienced significant nausea, vomiting, diarrhea or anorexia. Late gastrointestinal radiation reactions were observed in 7 patients. Twelve patients received adjuvant chemotherapy. The projected survival of patients with unresectable pancreatic cancer treated with PHD radiotherapy is comparable to that of patients with resectable disease operated on for cure. The projected one year survival rate is 49%.

  3. High-precision dosimetry for radiotherapy using the optically stimulated luminescence technique and thin Al2O3:C dosimeters

    NASA Astrophysics Data System (ADS)

    Yukihara, E. G.; Yoshimura, E. M.; Lindstrom, T. D.; Ahmad, S.; Taylor, K. K.; Mardirossian, G.

    2005-12-01

    The potential of using the optically stimulated luminescence (OSL) technique with aluminium oxide (Al2O3:C) dosimeters for a precise and accurate estimation of absorbed doses delivered by high-energy photon beams was investigated. This study demonstrates the high reproducibility of the OSL measurements and presents a preliminary determination of the depth-dose curve in water for a 6 MV photon beam from a linear accelerator. The uncertainty of a single OSL measurement, estimated from the variance of a large sample of dosimeters irradiated with the same dose, was 0.7%. In the depth-dose curve obtained using the OSL technique, the difference between the measured and expected doses was <=0.7% for depths between 1.5 and 10 cm, and 1.1% for a depth of 15 cm. The readout procedure includes a normalization of the response of the dosimeter with respect to a reference dose in order to eliminate variations in the dosimeter mass, dosimeter sensitivity, and the reader's sensitivity. This may be relevant for quality assurance programmes, since it simplifies the requirements in terms of personnel training to achieve the precision and accuracy necessary for radiotherapy applications. We concluded that the OSL technique has the potential to be reliably incorporated in quality assurance programmes and dose verification.

  4. Cellular signalling effects in high precision radiotherapy

    NASA Astrophysics Data System (ADS)

    McMahon, Stephen J.; McGarry, Conor K.; Butterworth, Karl T.; Jain, Suneil; O'Sullivan, Joe M.; Hounsell, Alan R.; Prise, Kevin M.

    2015-06-01

    Radiotherapy is commonly planned on the basis of physical dose received by the tumour and surrounding normal tissue, with margins added to address the possibility of geometric miss. However, recent experimental evidence suggests that intercellular signalling results in a given cell’s survival also depending on the dose received by neighbouring cells. A model of radiation-induced cell killing and signalling was used to analyse how this effect depends on dose and margin choices. Effective Uniform Doses were calculated for model tumours in both idealised cases with no delivery uncertainty and more realistic cases incorporating geometric uncertainty. In highly conformal irradiation, a lack of signalling from outside the target leads to reduced target cell killing, equivalent to under-dosing by up to 10% compared to large uniform fields. This effect is significantly reduced when higher doses per fraction are considered, both increasing the level of cell killing and reducing margin sensitivity. These effects may limit the achievable biological precision of techniques such as stereotactic radiotherapy even in the absence of geometric uncertainties, although it is predicted that larger fraction sizes reduce the relative contribution of cell signalling driven effects. These observations may contribute to understanding the efficacy of hypo-fractionated radiotherapy.

  5. Radiotherapy in the Era of Precision Medicine.

    PubMed

    Yard, Brian; Chie, Eui Kyu; Adams, Drew J; Peacock, Craig; Abazeed, Mohamed E

    2015-10-01

    Current predictors of radiation response are largely limited to clinical and histopathologic parameters, and extensive systematic analyses of the correlation between radiation sensitivity and genomic parameters remain lacking. In the era of precision medicine, the lack of -omic determinants of radiation response has hindered the personalization of radiation delivery to the unique characteristics of each patient׳s cancer and impeded the discovery of new therapies that can be administered concurrently with radiation therapy. The cataloging of the -omic determinants of radiation sensitivity of cancer has great potential in enhancing efficacy and limiting toxicity in the context of a new approach to precision radiotherapy. Herein, we review concepts and data that contribute to the delineation of the radiogenomic landscape of cancer.

  6. Segmentation precision of abdominal anatomy for MRI-based radiotherapy

    SciTech Connect

    Noel, Camille E.; Zhu, Fan; Lee, Andrew Y.; Yanle, Hu; Parikh, Parag J.

    2014-10-01

    The limited soft tissue visualization provided by computed tomography, the standard imaging modality for radiotherapy treatment planning and daily localization, has motivated studies on the use of magnetic resonance imaging (MRI) for better characterization of treatment sites, such as the prostate and head and neck. However, no studies have been conducted on MRI-based segmentation for the abdomen, a site that could greatly benefit from enhanced soft tissue targeting. We investigated the interobserver and intraobserver precision in segmentation of abdominal organs on MR images for treatment planning and localization. Manual segmentation of 8 abdominal organs was performed by 3 independent observers on MR images acquired from 14 healthy subjects. Observers repeated segmentation 4 separate times for each image set. Interobserver and intraobserver contouring precision was assessed by computing 3-dimensional overlap (Dice coefficient [DC]) and distance to agreement (Hausdorff distance [HD]) of segmented organs. The mean and standard deviation of intraobserver and interobserver DC and HD values were DC{sub intraobserver} = 0.89 ± 0.12, HD{sub intraobserver} = 3.6 mm ± 1.5, DC{sub interobserver} = 0.89 ± 0.15, and HD{sub interobserver} = 3.2 mm ± 1.4. Overall, metrics indicated good interobserver/intraobserver precision (mean DC > 0.7, mean HD < 4 mm). Results suggest that MRI offers good segmentation precision for abdominal sites. These findings support the utility of MRI for abdominal planning and localization, as emerging MRI technologies, techniques, and onboard imaging devices are beginning to enable MRI-based radiotherapy.

  7. Segmentation precision of abdominal anatomy for MRI-based radiotherapy.

    PubMed

    Noel, Camille E; Zhu, Fan; Lee, Andrew Y; Yanle, Hu; Parikh, Parag J

    2014-01-01

    The limited soft tissue visualization provided by computed tomography, the standard imaging modality for radiotherapy treatment planning and daily localization, has motivated studies on the use of magnetic resonance imaging (MRI) for better characterization of treatment sites, such as the prostate and head and neck. However, no studies have been conducted on MRI-based segmentation for the abdomen, a site that could greatly benefit from enhanced soft tissue targeting. We investigated the interobserver and intraobserver precision in segmentation of abdominal organs on MR images for treatment planning and localization. Manual segmentation of 8 abdominal organs was performed by 3 independent observers on MR images acquired from 14 healthy subjects. Observers repeated segmentation 4 separate times for each image set. Interobserver and intraobserver contouring precision was assessed by computing 3-dimensional overlap (Dice coefficient [DC]) and distance to agreement (Hausdorff distance [HD]) of segmented organs. The mean and standard deviation of intraobserver and interobserver DC and HD values were DC(intraobserver) = 0.89 ± 0.12, HD(intraobserver) = 3.6mm ± 1.5, DC(interobserver) = 0.89 ± 0.15, and HD(interobserver) = 3.2mm ± 1.4. Overall, metrics indicated good interobserver/intraobserver precision (mean DC > 0.7, mean HD < 4mm). Results suggest that MRI offers good segmentation precision for abdominal sites. These findings support the utility of MRI for abdominal planning and localization, as emerging MRI technologies, techniques, and onboard imaging devices are beginning to enable MRI-based radiotherapy.

  8. Precision, high dose radiotherapy: helium ion treatment of uveal melanoma

    SciTech Connect

    Saunders, W.M.; Char, D.H.; Quivey, J.M.; Castro, J.R.; Chen, G.T.Y.; Collier, J.M.; Cartigny, A.; Blakely, E.A.; Lyman, J.T.; Zink, S.R.

    1985-02-01

    The authors report on 75 patients with uveal melanoma who were treated by placing the Bragg peak of a helium ion beam over the tumor volume. The technique localizes the high dose region very tightly around the tumor volume. This allows critical structures, such as the optic disc and the macula, to be excluded from the high dose region as long as they are 3 to 4 mm away from the edge of the tumor. Careful attention to tumor localization, treatment planning, patient immobilization and treatment verification is required. With a mean follow-up of 22 months (3 to 60 months) the authors have had only five patients with a local recurrence, all of whom were salvaged with another treatment. Pretreatment visual acuity has generally been preserved as long as the tumor edge is at least 4 mm away from the macula and optic disc. The only serious complication to date has been an 18% incidence of neovascular glaucoma in the patients treated at our highest dose level. Clinical results and details of the technique are presented to illustrate potential clinical precision in administering high dose radiotherapy with charged particles such as helium ions or protons.

  9. [New techniques and potential benefits for radiotherapy of lung cancer].

    PubMed

    Lefebvre, L; Doré, M; Giraud, P

    2014-10-01

    Radiotherapy is used for inoperable lung cancers, sometimes in association with chemotherapy. Outcomes of conventional radiotherapy are disappointing. New techniques improve adaptation to tumour volume, decrease normal tissue irradiation and lead to increasing tumour dose with the opportunity for improved survival. With intensity-modulated radiation therapy, isodoses can conform to complex volumes. It is widely used and seems to be indicated in locally advanced stages. Its dosimetric improvements have been demonstrated but outcomes are still heterogeneous. Stereotactic radiotherapy allows treatment of small volumes with many narrow beams. Dedicated devices or appropriate equipment on classical devices are needed. In early stages, its efficacy is comparable to surgery with an acceptable toxicity. Endobronchial brachytherapy could be used for early stages with specific criteria. Hadrontherapy is still experimental regarding lung cancer. Hadrons have physical properties leading to very accurate dose distribution. In the rare published studies, toxicities are roughly lower than others techniques but for early stages its effectiveness is not better than stereotactic radiotherapy. These techniques are optimized by metabolic imaging which precisely defines the target volume and assesses the therapeutic response; image-guided radiation therapy which allows a more accurate patient set up and by respiratory tracking or gating which takes account of tumour respiratory motions.

  10. Principles and techniques for designing precision machines

    SciTech Connect

    Hale, L C

    1999-02-01

    This thesis is written to advance the reader's knowledge of precision-engineering principles and their application to designing machines that achieve both sufficient precision and minimum cost. It provides the concepts and tools necessary for the engineer to create new precision machine designs. Four case studies demonstrate the principles and showcase approaches and solutions to specific problems that generally have wider applications. These come from projects at the Lawrence Livermore National Laboratory in which the author participated: the Large Optics Diamond Turning Machine, Accuracy Enhancement of High- Productivity Machine Tools, the National Ignition Facility, and Extreme Ultraviolet Lithography. Although broad in scope, the topics go into sufficient depth to be useful to practicing precision engineers and often fulfill more academic ambitions. The thesis begins with a chapter that presents significant principles and fundamental knowledge from the Precision Engineering literature. Following this is a chapter that presents engineering design techniques that are general and not specific to precision machines. All subsequent chapters cover specific aspects of precision machine design. The first of these is Structural Design, guidelines and analysis techniques for achieving independently stiff machine structures. The next chapter addresses dynamic stiffness by presenting several techniques for Deterministic Damping, damping designs that can be analyzed and optimized with predictive results. Several chapters present a main thrust of the thesis, Exact-Constraint Design. A main contribution is a generalized modeling approach developed through the course of creating several unique designs. The final chapter is the primary case study of the thesis, the Conceptual Design of a Horizontal Machining Center.

  11. Abridged Technique for Precise Implant Angulation

    PubMed Central

    Perumal, Praveen; Chander, Gopi Naveen; Reddy, Ramesh; Muthukumar, B.

    2015-01-01

    Enormous scientific knowledge with evidence and clinical dexterity impart definitive ground for success in implant dentistry. Nevertheless, the unfeasibility to access the inner bone tissue makes the situation altogether more demanding. Presently the advent of numerous imaging techniques and associated surgical guide templates are documented for evaluation of implant angulation. However, they are not cost effective and consume more time to plan and design the structure. This article describes a simple concise technique for precise implant angulation. PMID:26816997

  12. Development of three-dimensional radiotherapy techniques in breast cancer

    NASA Astrophysics Data System (ADS)

    Coles, Charlotte E.

    Radiotherapy following conservation surgery decreases local relapse and death from breast cancer. Currently, the challenge is to minimise the morbidity caused by this treatment without losing efficacy. Despite many advances in radiation techniques in other sites of the body, the majority of breast cancer patients are still planned and treated using 2-dimensional simple radiotherapy techniques. In addition, breast irradiation currently consumes 30% of the UK's radiotherapy workload. Therefore, any change to more complex treatment should be of proven benefit. The primary objective of this research is to develop and evaluate novel radiotherapy techniques to decrease irradiation of normal structures and improve localisation of the tumour bed. I have developed a forward-planned intensity modulated (IMRT) breast radiotherapy technique, which has shown improved dosimetry results compared to standard breast radiotherapy. Subsequently, I have developed and implemented a phase III randomised controlled breast IMRT trial. This National Cancer Research Network adopted trial will answer an important question regarding the clinical benefit of breast IMRT. It will provide DNA samples linked with high quality clinical outcome data, for a national translational radiogenomics study investigating variation in normal tissue toxicity. Thus, patients with significant late normal tissue side effects despite good dose homogeneity will provide the best model for finding differences due to underlying genetics. I evaluated a novel technique using high definition free-hand 3-dimensional (3D) ultrasound in a phantom study, and the results suggested that this is an accurate and reproducible method for tumour bed localisation. I then compared recognised methods of tumour bed localisation with the 3D ultrasound method in a clinical study. The 3D ultrasound technique appeared to accurately represent the shape and spatial position of the tumour cavity. This tumour bed localisation research

  13. Analysis of precision in tumor tracking based on optical positioning system during radiotherapy.

    PubMed

    Zhou, Han; Shen, Junshu; Li, Bing; Chen, Junting; Zhu, Xixu; Ge, Yun; Wang, Yongjian

    2016-03-19

    Tumor tracking is performed during patient set-up and monitoring of respiratory motion in radiotherapy. In the clinical setting, there are several types of equipment for this set-up such as the Electronic Portal imaging Device (EPID) and Cone Beam CT (CBCT). Technically, an optical positioning system tracks the difference between the infra ball reflected from body and machine isocenter. Our objective is to compare the clinical positioning error of patient setup between Cone Beam CT (CBCT) with the Optical Positioning System (OPS), and to evaluate the traditional positioning systems and OPS based on our proposed approach of patient positioning. In our experiments, a phantom was used, and we measured its setup errors in three directions. Specifically, the deviations in the left-to-right (LR), anterior-to-posterior (AP) and inferior-to-superior (IS) directions were measured by vernier caliper on a graph paper using the Varian Linear accelerator. Then, we verified the accuracy of OPS based on this experimental study. In order to verify the accuracy of phantom experiment, 40 patients were selected in our radiotherapy experiment. To illustrate the precise of optical positioning system, we designed clinical trials using EPID. From our radiotherapy procedure, we can conclude that OPS has higher precise than conventional positioning methods, and is a comparatively fast and efficient positioning method with respect to the CBCT guidance system. PMID:27257880

  14. Compensation techniques in NIRS proton beam radiotherapy

    SciTech Connect

    Akanuma, A.; Majima, H.; Furukawa, S.

    1982-09-01

    Proton beam has the dose distribution advantage in radiation therapy, although it has little advantage in biological effects. One of the best advantages is its sharp fall off of dose after the peak. With proton beam, therefore, the dose can be given just to cover a target volume and potentially no dose is delivered thereafter in the beam direction. To utilize this advantage, bolus techniques in conjunction with CT scanning are employed in NIRS proton beam radiation therapy planning. A patient receives CT scanning first so that the target volume can be clearly marked and the radiation direction and fixation method can be determined. At the same time bolus dimensions are calculated. The bolus frames are made with dental paraffin sheets according to the dimensions. The paraffin frame is replaced with dental resin. Alginate (a dental impression material with favorable physical density and skin surface contact) is now employed for the bolus material. With fixation device and bolus on, which are constructed individually, the patient receives CT scanning again prior to a proton beam treatment in order to prove the devices are suitable. Alginate has to be poured into the frame right before each treatments. Further investigations are required to find better bolus materials and easier construction methods.

  15. Dosimetric comparison of intensity modulated radiotherapy techniques and standard wedged tangents for whole breast radiotherapy.

    PubMed

    Fong, Andrew; Bromley, Regina; Beat, Mardi; Vien, Din; Dineley, Jude; Morgan, Graeme

    2009-02-01

    Prior to introducing intensity modulated radiotherapy (IMRT) for whole breast radiotherapy (WBRT) into our department we undertook a comparison of the dose parameters of several IMRT techniques and standard wedged tangents (SWT). Our aim was to improve the dose distribution to the breast and to decrease the dose to organs at risk (OAR): heart, lung and contralateral breast (Contra Br). Treatment plans for 20 women (10 right-sided and 10 left-sided) previously treated with SWT for WBRT were used to compare (a) SWT; (b) electronic compensators IMRT (E-IMRT); (c) tangential beam IMRT (T-IMRT); (d) coplanar multi-field IMRT (CP-IMRT); and (e) non-coplanar multi-field IMRT (NCP-IMRT). Plans for the breast were compared for (i) dose homogeneity (DH); (ii) conformity index (CI); (iii) mean dose; (iv) maximum dose; (v) minimum dose; and dose to OAR were calculated (vi) heart; (vii) lung and (viii) Contra Br. Compared with SWT, all plans except CP-IMRT gave improvement in at least two of the seven parameters evaluated. T-IMRT and NCP-IMRT resulted in significant improvement in all parameters except DH and both gave significant reduction in doses to OAR. As on initial evaluation NCP-IMRT is likely to be too time consuming to introduce on a large scale, T-IMRT is the preferred technique for WBRT for use in our department. PMID:19453534

  16. Prostate Radiotherapy in the Era of Advanced Imaging and Precision Medicine

    PubMed Central

    Dulaney, Caleb R.; Osula, Daniel O.; Yang, Eddy S.; Rais-Bahrami, Soroush

    2016-01-01

    Tremendous technological advancements in prostate radiotherapy have decreased treatment toxicity and improved clinical outcomes for men with prostate cancer. While these advances have allowed for significant treatment volume reduction and whole-organ dose escalation, further improvement in prostate radiotherapy has been limited by classic techniques for diagnosis and risk stratification. Developments in prostate imaging, image-guided targeted biopsy, next-generation gene expression profiling, and targeted molecular therapies now provide information to stratify patients and select treatments based on tumor biology. Image-guided targeted biopsy improves detection of clinically significant cases of prostate cancer and provides important information about the biological behavior of intraprostatic lesions which can further guide treatment decisions. We review the evolution of prostate magnetic resonance imaging (MRI) and MRI-ultrasound fusion-guided prostate biopsy. Recent advancements in radiation therapy including dose escalation, moderate and extreme hypofractionation, partial prostate radiation therapy, and finally dose escalation by simultaneous integrated boost are discussed. We also review next-generation sequencing and discuss developments in targeted molecular therapies. Last, we review ongoing clinical trials and future treatment paradigms that integrate targeted biopsy, molecular profiling and therapy, and prostate radiotherapy. PMID:27022486

  17. Integral dose: Comparison between four techniques for prostate radiotherapy

    PubMed Central

    Ślosarek, Krzysztof; Osewski, Wojciech; Grządziel, Aleksandra; Radwan, Michał; Dolla, Łukasz; Szlag, Marta; Stąpór-Fudzińska, Małgorzata

    2014-01-01

    Aim Comparisons of integral dose delivered to the treatment planning volume and to the whole patient body during stereotactic, helical and intensity modulated radiotherapy of prostate. Background Multifield techniques produce large volumes of low dose inside the patient body. Delivered dose could be the result of the cytotoxic injuries of the cells even away from the treatment field. We calculated the total dose absorbed in the patient body for four radiotherapy techniques to investigate whether some methods have a potential to reduce the exposure to the patient. Materials and methods We analyzed CyberKnife plans for 10 patients with localized prostate cancer. Five alternative plans for each patient were calculated with the VMAT, IMRT and TomoTherapy techniques. Alternative dose distributions were calculated to achieve the same coverage for PTV. Integral Dose formula was used to calculate the total dose delivered to the PTV and whole patient body. Results Analysis showed that the same amount of dose was deposited to the treated volume despite different methods of treatment delivery. The mean values of total dose delivered to the whole patient body differed significantly for each treatment technique. The highest integral dose in the patient's body was at the TomoTherapy and CyberKnife treatment session. VMAT was characterized by the lowest integral dose deposited in the patient body. Conclusions The highest total dose absorbed in normal tissue was observed with the use of a robotic radiosurgery system and TomoTherapy. These results demonstrate that the exposure of healthy tissue is a dosimetric factor which differentiates the dose delivery methods. PMID:25859398

  18. An arranged marriage for precision medicine: hypoxia and genomic assays in localized prostate cancer radiotherapy.

    PubMed

    Bristow, R G; Berlin, A; Dal Pra, A

    2014-03-01

    Prostate cancer (CaP) is the most commonly diagnosed malignancy in males in the Western world with one in six males diagnosed in their lifetime. Current clinical prognostication groupings use pathologic Gleason score, pre-treatment prostatic-specific antigen and Union for International Cancer Control-TNM staging to place patients with localized CaP into low-, intermediate- and high-risk categories. These categories represent an increasing risk of biochemical failure and CaP-specific mortality rates, they also reflect the need for increasing treatment intensity and justification for increased side effects. In this article, we point out that 30-50% of patients will still fail image-guided radiotherapy or surgery despite the judicious use of clinical risk categories owing to interpatient heterogeneity in treatment response. To improve treatment individualization, better predictors of prognosis and radiotherapy treatment response are needed to triage patients to bespoke and intensified CaP treatment protocols. These should include the use of pre-treatment genomic tests based on DNA or RNA indices and/or assays that reflect cancer metabolism, such as hypoxia assays, to define patient-specific CaP progression and aggression. More importantly, it is argued that these novel prognostic assays could be even more useful if combined together to drive forward precision cancer medicine for localized CaP.

  19. An arranged marriage for precision medicine: hypoxia and genomic assays in localized prostate cancer radiotherapy

    PubMed Central

    Berlin, A; Dal Pra, A

    2014-01-01

    Prostate cancer (CaP) is the most commonly diagnosed malignancy in males in the Western world with one in six males diagnosed in their lifetime. Current clinical prognostication groupings use pathologic Gleason score, pre-treatment prostatic-specific antigen and Union for International Cancer Control-TNM staging to place patients with localized CaP into low-, intermediate- and high-risk categories. These categories represent an increasing risk of biochemical failure and CaP-specific mortality rates, they also reflect the need for increasing treatment intensity and justification for increased side effects. In this article, we point out that 30–50% of patients will still fail image-guided radiotherapy or surgery despite the judicious use of clinical risk categories owing to interpatient heterogeneity in treatment response. To improve treatment individualization, better predictors of prognosis and radiotherapy treatment response are needed to triage patients to bespoke and intensified CaP treatment protocols. These should include the use of pre-treatment genomic tests based on DNA or RNA indices and/or assays that reflect cancer metabolism, such as hypoxia assays, to define patient-specific CaP progression and aggression. More importantly, it is argued that these novel prognostic assays could be even more useful if combined together to drive forward precision cancer medicine for localized CaP. PMID:24588670

  20. Role of Radiotherapy and Newer Techniques in the Treatment of GI Cancers.

    PubMed

    Hajj, Carla; Goodman, Karyn A

    2015-06-01

    The role of radiotherapy in multidisciplinary treatment of GI malignancies is well established. Recent advances in imaging as well as radiotherapy planning and delivery techniques have made it possible to target tumors more accurately while sparing normal tissues. Intensity-modulated radiotherapy is an advanced method of delivering radiation using cutting-edge technology to manipulate beams of radiation. The role of intensity-modulated radiotherapy is growing for many GI malignancies, such as cancers of the stomach, pancreas, esophagus, liver, and anus. Stereotactic body radiotherapy is an emerging treatment option for some GI tumors such as locally advanced pancreatic cancer and primary or metastatic tumors of the liver. Stereotactic body radiotherapy requires a high degree of confidence in tumor location and subcentimeter accuracy of the delivered dose. New image-guided techniques have been developed to overcome setup uncertainties at the time of treatment, including real-time imaging on the linear accelerator. Modern imaging techniques have also allowed for more accurate pretreatment staging and delineation of the primary tumor and involved sites. In particular, magnetic resonance imaging and positron emission tomography scans can be particularly useful in radiotherapy planning and assessing treatment response. Molecular biomarkers are being investigated as predictors of response to radiotherapy with the intent of ultimately moving toward using genomic and proteomic determinants of therapeutic strategies. The role of all of these new approaches in the radiotherapeutic management of GI cancers and the evolving role of radiotherapy in these tumor sites will be highlighted in this review. PMID:25918298

  1. Alignment techniques required by precise measurement of effective focal length

    NASA Astrophysics Data System (ADS)

    Wise, T. D.

    1980-01-01

    The characteristics of false color imagery produced by instrumentation on earth resource mapping satellites are examined. The spatial fidelity of the imagery is dependent upon the geometric accuracy (GA) and the band-to-band registration (BBR) with which the telescope instrument is assembled. BBR and GA require knowledge of telescope effective focal length (EFL) to one part in 10,000 in order that the next generation of earth mappers be able to carry out their missions. The basis for this level of precision is briefly considered, and a description is given of the means by which such precise EFL measurements have been carried out. Attention is given to accuracy requirements, the technique used to measure effective focal length, possible sources of error in the EFL measurement, approaches for eliminating errors, and the results of the efforts to control measurement errors in EFL determinations.

  2. Precision of ACL tunnel placement using traditional and robotic techniques.

    PubMed

    Burkart, A; Debski, R E; McMahon, P J; Rudy, T; Fu, F H; Musahl, V; van Scyoc, A; Woo, S L

    2001-01-01

    The objective of this study was to examine the precision of ACL tunnel placement using: (1) CASPAR (orto MAQUET GmbH Co. KG)--an active robotic system, and (2) four orthopedic surgeons with various levels of experience (between 100 and 3,500 ACL reconstructions). The robotic system and each surgeon drilled tunnels for ACL reconstruction in 10 plastic knees (total n = 50) that included a reference cube in the medial aspect of the proximal tibia and distal femur. For the robotic system, the placement of each tunnel was planned preoperatively using custom software and CT data for each femur and tibia. The robotic system then drilled the tunnels in the femur and tibia based on the preoperative plan. For the surgeons, tunnel placement was accomplished using their preferred technique, which was based on the one-incision arthroscopic technique. The distribution of intra-articular points on the tibia was contained within a sphere of radius 2.0 mm (robot system), 2.1 mm (Fellow 1), 2.4 mm (Fellow 2), 3.4 mm (Experienced Surgeon 1), or 2.0 mm (Experienced Surgeon 2). On the femur, no significant differences in the distribution of intra-articular points could be demonstrated between the robotic system (2.1 mm), Fellow 1 (4.5 mm), Fellow 2 (4.1 mm), Experienced Surgeon 1 (2.3 mm), and Experienced Surgeon 2 (3.0 mm). The direction of the tunnels drilled in the femur and tibia was different with the robotic and traditional techniques. However, the robotic system had the most consistent tunnel directions, while the surgeons' tunnels were more dispersed. Variation in surgeon precision of tunnel placement for ACL reconstruction is greater on the femur than the tibia, and this can be correlated with experience. Our data also suggest that the robotic system has the same precision as the most experienced surgeons. PMID:11892003

  3. Tumor bed boost radiotherapy in breast cancer. A review of current techniques.

    PubMed

    Bahadur, Yasir A; Constantinescu, Camelia T

    2012-04-01

    Various breast boost irradiation techniques were studied and compared. The most commonly used techniques are external beam radiation therapy (EBRT) (photons or electrons) and high dose rate (HDR) interstitial brachytherapy, but recent studies have also revealed the use of advanced radiotherapy techniques, such as intensity modulated radiation therapy (IMRT), intra-operative radiation therapy (IORT), tomotherapy, and protons. The purpose of this study is to systematically review the literature concerning breast boost radiotherapy techniques, and suggest evidence based guidelines for each. A search for literature was performed in the National Library of Medicine's (PubMed) database for English-language articles published from 1st January 1990 to 5th April 2011. The key words were `breast boost radiotherapy`, `breast boost irradiation`, and `breast boost irradiation AND techniques`. Randomized trials comparing the long-term results of boost irradiation techniques, balancing the local control, and cosmesis against logistic resources, and including cost-benefit analysis are further needed. PMID:22485229

  4. Technique for precise alignment of small diameter lasers

    SciTech Connect

    McCarthy, A.E.

    1980-01-01

    This report describes one technique used to obtain precise alignment of small diameter lasers. This procedure may be useful in the alignment of other lasers, but is especially valuable when aligning lasers that have a small diameter active medium and/or a curved mirror at one end of the laser cavity. The technique described in this report uses a He-Ne laser at one end of the laser being aligned and an autocollimator at the opposite end. These instruments are used to generate and observe the diffraction pattern and interference fringes caused by the limiting aperture of the lasing medium and the end mirrors of the cavity, respectively. These patterns and fringes are used both to establish a common optical axis between the active volume of the laser being aligned and the aligning instruments, and to set the end mirrors of the cavity normal to this axis.

  5. [Current status and perspectives of radiotherapy for esophageal cancer].

    PubMed

    Wu, S X; Wang, L H

    2016-09-23

    Esophageal cancer is one of the most common cancers in China. More than 80% of esophageal cancer patients are diagnosed at a late stage and are not eligible for surgery. Radiotherapy is one of the most important modalities in esophageal cancer treatment. Here we reviewed the advances in esophageal cancer radiotherapy and radiotherapy-based combined-modality therapy, such as optimization of radiation dose and target volume, application of precise radiotherapy technique and the integration of radiotherapy with chemotherapy and targeted therapy.

  6. Assessing the Accuracy of the Precise Point Positioning Technique

    NASA Astrophysics Data System (ADS)

    Bisnath, S. B.; Collins, P.; Seepersad, G.

    2012-12-01

    The Precise Point Positioning (PPP) GPS data processing technique has developed over the past 15 years to become a standard method for growing categories of positioning and navigation applications. The technique relies on single receiver point positioning combined with the use of precise satellite orbit and clock information and high-fidelity error modelling. The research presented here uniquely addresses the current accuracy of the technique, explains the limits of performance, and defines paths to improvements. For geodetic purposes, performance refers to daily static position accuracy. PPP processing of over 80 IGS stations over one week results in few millimetre positioning rms error in the north and east components and few centimetres in the vertical (all one sigma values). Larger error statistics for real-time and kinematic processing are also given. GPS PPP with ambiguity resolution processing is also carried out, producing slight improvements over the float solution results. These results are categorised into quality classes in order to analyse the root error causes of the resultant accuracies: "best", "worst", multipath, site displacement effects, satellite availability and geometry, etc. Also of interest in PPP performance is solution convergence period. Static, conventional solutions are slow to converge, with approximately 35 minutes required for 95% of solutions to reach the 20 cm or better horizontal accuracy. Ambiguity resolution can significantly reduce this period without biasing solutions. The definition of a PPP error budget is a complex task even with the resulting numerical assessment, as unlike the epoch-by-epoch processing in the Standard Position Service, PPP processing involving filtering. An attempt is made here to 1) define the magnitude of each error source in terms of range, 2) transform ranging error to position error via Dilution Of Precision (DOP), and 3) scale the DOP through the filtering process. The result is a deeper

  7. Precise Aircraft Guidance Techniques for NASA's Operation IceBridge

    NASA Astrophysics Data System (ADS)

    Sonntag, J. G.; Russell, R.

    2013-12-01

    We present a suite of novel aircraft guidance techniques we designed, developed and now operationally utilize to precisely guide large NASA aircraft and their sensor suites over polar science targets. Our techniques are based on real-time, non-differential Global Positioning System (GPS) data. They interact with the flight crew and the aircraft using a combination of yoke-mounted computer displays and an electronic interface to the aircraft's autopilot via the aircraft's Instrument Landing System (ILS). This ILS interface allows the crew to 'couple' the autopilot to our systems, which then guide the aircraft over science targets with considerably better accuracy than it can using its internal guidance. We regularly demonstrate errors in cross-track aircraft positioning of better than 4 m standard deviation and better than 2 m in mean offset over lengthy great-circle routes across the ice sheets. Our system also has a mode allowing for manual aircraft guidance down a predetermined path of arbitrary curvature, such as a sinuous glacier centerline. This mode is in general not as accurate as the coupled technique but is more versatile. We employ both techniques interchangeably and seamlessly during a typical Operation IceBridge science flight. Flight crews find the system sufficiently intuitive so that little or no familiarization is required prior to their accurately flying science lines. We regularly employ the system on NASA's P-3B and DC-8 aircraft, and since the interface to the aircraft's autopilot operates through the ILS, it should work well on any ILS-equipped aircraft. Finally, we recently extended the system to provide precise, three-dimensional landing approach guidance to the aircraft, thus transforming any approach into a precise ILS approach, even to a primitive runway. This was intended to provide a backup to the aircraft's internal landing systems in the event of a zero-visibility landing to a non-ILS equipped runway, such as the McMurdo sea ice runway

  8. The Effect of Adjuvant Postmastectomy Radiotherapy Bolus Technique on Local Recurrence

    SciTech Connect

    Tieu, Minh Thi; Graham, Peter; Browne, Lois; Chin, Yaw Sinn

    2011-11-01

    Purpose: Postmastectomy radiotherapy bolus is heterogenous, with little evidence to guide clinical practise. This study explores the effect of chest wall bolus technique on chest wall recurrence. Methods and Materials: This was a retrospective cohort study of 254 patients treated with adjuvant postmastectomy radiotherapy between 1993 and 2003. Patient and treatment characteristics including bolus details were extracted. Outcomes considered were treatment toxicities, treatment delivery, and local recurrence. Results: In all, 143 patients received radiotherapy with whole chest wall bolus, 88 patients with parascar bolus, and 23 with no bolus. Twenty patients did not complete radiotherapy because of acute skin toxicity: 17 in the whole chest wall bolus group, 2 in the parascar bolus group, and 1 in the group not treated with bolus. On multivariate analysis, whole chest wall bolus and chemotherapy were found to be significant predictors for early cessation of radiotherapy resulting from acute skin toxicity. There were 19 chest wall failures: 13 in the whole chest wall bolus group, 4 in the parascar bolus group, and 2 in the no-bolus group. On multivariate analysis, lymphovascular invasion and failure to complete radiotherapy because of acute skin toxicity were associated with chest wall recurrence. Conclusions: From our results, parascar bolus and no bolus performed no worse than did whole chest wall bolus with regard to chest wall recurrence. However, bolus may have an impact on early cessation of radiotherapy caused by skin toxicity, which then may influence chest wall recurrence.

  9. Broadband Lidar Technique for Precision CO2 Measurement

    NASA Technical Reports Server (NTRS)

    Heaps, William S.

    2008-01-01

    Presented are preliminary experimental results, sensitivity measurements and discuss our new CO2 lidar system under development. The system is employing an erbium-doped fiber amplifier (EDFA), superluminescent light emitting diode (SLED) as a source and our previously developed Fabry-Perot interferometer subsystem as a detector part. Global measurement of carbon dioxide column with the aim of discovering and quantifying unknown sources and sinks has been a high priority for the last decade. The goal of Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission is to significantly enhance the understanding of the role of CO2 in the global carbon cycle. The National Academy of Sciences recommended in its decadal survey that NASA put in orbit a CO2 lidar to satisfy this long standing need. Existing passive sensors suffer from two shortcomings. Their measurement precision can be compromised by the path length uncertainties arising from scattering within the atmosphere. Also passive sensors using sunlight cannot observe the column at night. Both of these difficulties can be ameliorated by lidar techniques. Lidar systems present their own set of problems however. Temperature changes in the atmosphere alter the cross section for individual CO2 absorption features while the different atmospheric pressures encountered passing through the atmosphere broaden the absorption lines. Currently proposed lidars require multiple lasers operating at multiple wavelengths simultaneously in order to untangle these effects. The current goal is to develop an ultra precise, inexpensive new lidar system for precise column measurements of CO2 changes in the lower atmosphere that uses a Fabry-Perot interferometer based system as the detector portion of the instrument and replaces the narrow band laser commonly used in lidars with the newly available high power SLED as the source. This approach reduces the number of individual lasers used in the system from three or more

  10. Radiation-Induced Cancers From Modern Radiotherapy Techniques: Intensity-Modulated Radiotherapy Versus Proton Therapy

    SciTech Connect

    Yoon, Myonggeun; Ahn, Sung Hwan; Kim, Jinsung; Shin, Dong Ho; Park, Sung Yong; Lee, Se Byeong; Shin, Kyung Hwan; Cho, Kwan Ho

    2010-08-01

    Purpose: To assess and compare secondary cancer risk resulting from intensity-modulated radiotherapy (IMRT) and proton therapy in patients with prostate and head-and-neck cancer. Methods and Materials: Intensity-modulated radiotherapy and proton therapy in the scattering mode were planned for 5 prostate caner patients and 5 head-and-neck cancer patients. The secondary doses during irradiation were measured using ion chamber and CR-39 detectors for IMRT and proton therapy, respectively. Organ-specific radiation-induced cancer risk was estimated by applying organ equivalent dose to dose distributions. Results: The average secondary doses of proton therapy for prostate cancer patients, measured 20-60cm from the isocenter, ranged from 0.4 mSv/Gy to 0.1 mSv/Gy. The average secondary doses of IMRT for prostate patients, however, ranged between 3 mSv/Gy and 1 mSv/Gy, approximately one order of magnitude higher than for proton therapy. Although the average secondary doses of IMRT were higher than those of proton therapy for head-and-neck cancers, these differences were not significant. Organ equivalent dose calculations showed that, for prostate cancer patients, the risk of secondary cancers in out-of-field organs, such as the stomach, lungs, and thyroid, was at least 5 times higher for IMRT than for proton therapy, whereas the difference was lower for head-and-neck cancer patients. Conclusions: Comparisons of organ-specific organ equivalent dose showed that the estimated secondary cancer risk using scattering mode in proton therapy is either significantly lower than the cases in IMRT treatment or, at least, does not exceed the risk induced by conventional IMRT treatment.

  11. Application of x-ray techniques in precision farming

    NASA Astrophysics Data System (ADS)

    Arslan, Selcuk; Inanc, Feyzi; Gray, Joseph N.; Colvin, Thomas S.

    2000-05-01

    The precision farming is a relatively new concept basing farming upon quantitative determination of various parameters in the farming practices. One of these parameters is accurate measurement of grain flow rates on real time basis. Although there are various techniques already available for this purpose, x-rays provide a very competitive alternative to the current state of art. In this work, the use of low energy bremsstrahlung x-ray, up to 30 keV, densitometry is demonstrated for grain flow rate measurements. Mass flow rates for corn are related to measured x-ray intensity in gray scale units with a 0.99 correlation coefficient for flow rates ranging from 2 kg/s to 6 kg/s. Higher flow rate values can be measured by using slightly more energetic x-rays or a higher tube current. Measurements were done in real time at a 30 Hz sampling rate. Flow rate measurements are independent of grain moisture due to a negligible change in the x-ray attenuation coefficients at typical moisture content values from 15% to 25%. Grain flow profile changes do not affect measurement accuracy. X-rays easily capture variations in the corn stream. Due to the low energy of the x-ray photons, biological shielding can easily be accomplished with 2 mm thick lead foil or 5 mm of steel.

  12. Hippocampal sparing radiotherapy for pediatric medulloblastoma: impact of treatment margins and treatment technique

    PubMed Central

    Brodin, N. Patrik; Munck af Rosenschöld, Per; Blomstrand, Malin; Kiil-Berthlesen, Anne; Hollensen, Christian; Vogelius, Ivan R.; Lannering, Birgitta; Bentzen, Søren M.; Björk-Eriksson, Thomas

    2014-01-01

    Background We investigated how varying the treatment margin and applying hippocampal sparing and proton therapy impact the risk of neurocognitive impairment in pediatric medulloblastoma patients compared with current standard 3D conformal radiotherapy. Methods We included 17 pediatric medulloblastoma patients to represent the variability in tumor location relative to the hippocampal region. Treatment plans were generated using 3D conformal radiotherapy, hippocampal sparing intensity-modulated radiotherapy, and spot-scanned proton therapy, using 3 different treatment margins for the conformal tumor boost. Neurocognitive impairment risk was estimated based on dose-response models from pediatric CNS malignancy survivors and compared among different margins and treatment techniques. Results Mean hippocampal dose and corresponding risk of cognitive impairment were decreased with decreasing treatment margins (P < .05). The largest risk reduction, however, was seen when applying hippocampal sparing proton therapy—the estimated risk of impaired task efficiency (95% confidence interval) was 92% (66%–98%), 81% (51%–95%), and 50% (30%–70%) for 3D conformal radiotherapy, intensity-modulated radiotherapy, and proton therapy, respectively, for the smallest boost margin and 98% (78%–100%), 90% (60%–98%), and 70% (39%–90%) if boosting the whole posterior fossa. Also, the distance between the closest point of the planning target volume and the center of the hippocampus can be used to predict mean hippocampal dose for a given treatment technique. Conclusions We estimate a considerable clinical benefit of hippocampal sparing radiotherapy. In choosing treatment margins, the tradeoff between margin size and risk of neurocognitive impairment quantified here should be considered. PMID:24327585

  13. Modified radiotherapy technique in the treatment of medulloblastoma

    SciTech Connect

    Dewit, L.; Van Dam, J.; Rijnders, A.; Van De Velde, G.; Ang, K.K.; Van Der Schueren, E.

    1984-02-01

    Craniospinal irradiation is a standard treatment technique in patients who receive surgery for medulloblastoma. In most centers megavoltage photon irradiation is used, resulting in significant irradiation exposure to critical organs. In order to overcome this difficulty, the authors recently modified the technique applied in their center, by using high energy electrons (20 MeV) for irradiation of the spinal cord. The reliability of this technique was checked by performing dosimetry in a specially constructed wax phantom. Attention was focused upon dose variations at the junction of fields. Furthermore, the influence of vertebrae on the absorbed dose distribution of high energy electrons is presented. This technique seems to be safe and reliable in selected patients (children and teenagers).

  14. Volumetric-Modulated Arc Therapy for Stereotactic Body Radiotherapy of Lung Tumors: A Comparison With Intensity-Modulated Radiotherapy Techniques

    SciTech Connect

    Holt, Andrea; Vliet-Vroegindeweij, Corine van; Mans, Anton; Belderbos, Jose S.; Damen, Eugene M.F.

    2011-12-01

    Purpose: To demonstrate the potential of volumetric-modulated arc therapy (VMAT) compared with intensity-modulated radiotherapy (IMRT) techniques with a limited number of segments for stereotactic body radiotherapy (SBRT) for early-stage lung cancer. Methods and Materials: For a random selection of 27 patients eligible for SBRT, coplanar and noncoplanar IMRT and coplanar VMAT (using SmartArc) treatment plans were generated in Pinnacle{sup 3} and compared. In addition, film measurements were performed using an anthropomorphic phantom to evaluate the skin dose for the different treatment techniques. Results: Using VMAT, the delivery times could be reduced to an average of 6.6 min compared with 23.7 min with noncoplanar IMRT. The mean dose to the healthy lung was 4.1 Gy for VMAT and noncoplanar IMRT and 4.2 Gy for coplanar IMRT. The volume of healthy lung receiving >5 Gy and >20 Gy was 18.0% and 5.4% for VMAT, 18.5% and 5.0% for noncoplanar IMRT, and 19.4% and 5.7% for coplanar IMRT, respectively. The dose conformity at 100% and 50% of the prescribed dose of 54 Gy was 1.13 and 5.17 for VMAT, 1.11 and 4.80 for noncoplanar IMRT and 1.12 and 5.31 for coplanar IMRT, respectively. The measured skin doses were comparable for VMAT and noncoplanar IMRT and slightly greater for coplanar IMRT. Conclusions: Coplanar VMAT for SBRT for early-stage lung cancer achieved plan quality and skin dose levels comparable to those using noncoplanar IMRT and slightly better than those with coplanar IMRT. In addition, the delivery time could be reduced by {<=}70% with VMAT.

  15. A Temperature-Based Gain Calibration Technique for Precision Radiometry

    NASA Astrophysics Data System (ADS)

    Parashare, Chaitali Ravindra

    Detecting extremely weak signals in radio astronomy demands high sensitivity and stability of the receivers. The gain of a typical radio astronomy receiver is extremely large, and therefore, even very small gain instabilities can dominate the received noise power and degrade the instrument sensitivity. Hence, receiver stabilization is of prime importance. Gain variations occur mainly due to ambient temperature fluctuations. We take a new approach to receiver stabilization, which makes use of active temperature monitoring and corrects for the gain fluctuations in post processing. This approach is purely passive and does not include noise injection or switching for calibration. This system is to be used for the Precision Array for Probing the Epoch of Reionization (PAPER), which is being developed to detect the extremely faint neutral hydrogen (HI) signature of the Epoch of Reionization (EoR). The epoch of reionization refers to the period in the history of the Universe when the first stars and galaxies started to form. When there are N antenna elements in the case of a large scale array, all elements may not be subjected to the same environmental conditions at a given time. Hence, we expect to mitigate the gain variations by monitoring the physical temperature of each element of the array. This stabilization approach will also benefit experiments like EDGES (Experiment to Detect the Global EoR Signature) and DARE (Dark Ages Radio Explorer), which involve a direct measurement of the global 21 cm signal using a single antenna element and hence, require an extremely stable system. This dissertation focuses on the development and evaluation of a calibration technique that compensates for the gain variations caused due to temperature fluctuations of the RF components. It carefully examines the temperature dependence of the components in the receiver chain. The results from the first-order field instrument, called a Gainometer (GoM), highlight the issue with the cable

  16. Comparison of adaptive radiotherapy techniques for external radiation therapy of canine bladder cancer.

    PubMed

    Nieset, Jessica R; Harmon, Joseph F; Johnson, Thomas E; Larue, Susan M

    2014-01-01

    Daily bladder variations make it difficult to utilize standard radiotherapy as a primary treatment option for muscle-invasive bladder cancer. Our purpose was to develop a model comparing dose distributions of image-guided and adaptive radiotherapy (ART) techniques for canine bladder cancer. Images were obtained retrospectively from cone-beam computed tomography (CBCT) scans used for daily positioning of four dogs undergoing fractionated image-guided radiotherapy (IGRT). Four different treatment plans were modeled for each dog, and dosimetric data were compared. Two plans were developed using planning target volumes based on planning computed tomography (CT) bladder volume. These plans then used bony anatomy or soft tissue anatomy for daily positioning and dosimetric modeling. The third plan type was a hybrid IGRT and ART technique utilizing a library of premade anisotropic planning target volumes using bladder wall motion data and selection of a "plan-of-the-day" determined from positioning CBCT bladder volumes. The fourth plan was an ART technique that constructed a new planning target volume each day based on daily bladder volume as determined by pretreatment CBCT. Dose volume histograms were generated for each plan type and dose distribution for the bladder and rectum were compared between plan types. Irradiated rectal volume decreased and irradiated bladder volume increased as plan conformality increased. ART provided the greatest rectal sparing, with lowest irradiated rectal volume (P < 0.001), and largest bladder volume receiving 95% of the prescription dose (P < 0.001). In our model, adaptive radiotherapy techniques for canine bladder cancer showed significant reduction in rectal volume irradiated when compared to nonadaptive techniques, while maintaining appropriate bladder coverage.

  17. Dosimetric Comparison of Intensity-Modulated Stereotactic Radiotherapy With Other Stereotactic Techniques for Locally Recurrent Nasopharyngeal Carcinoma

    SciTech Connect

    Kung, Shiris Wai Sum; Wu, Vincent Wing Cheung; Kam, Michael Koon Ming; Leung, Sing Fai; Yu, Brian Kwok Hung; Ngai, Dennis Yuen Kan; Wong, Simon Chun Fai; Chan, Anthony Tak Cheung

    2011-01-01

    Purpose: Locally recurrent nasopharyngeal carcinoma (NPC) patients can be salvaged by reirradiation with a substantial degree of radiation-related complications. Stereotactic radiotherapy (SRT) is widely used in this regard because of its rapid dose falloff and high geometric precision. The aim of this study was to examine whether the newly developed intensity-modulated stereotactic radiotherapy (IMSRT) has any dosimetric advantages over three other stereotactic techniques, including circular arc (CARC), static conformal beam (SmMLC), and dynamic conformal arc (mARC), in treating locally recurrent NPC. Methods and Materials: Computed tomography images of 32 patients with locally recurrent NPC, previously treated with SRT, were retrieved from the stereotactic planning system for contouring and computing treatment plans. Treatment planning of each patient was performed for the four treatment techniques: CARC, SmMLC, mARC, and IMSRT. The conformity index (CI) and homogeneity index (HI) of the planning target volume (PTV) and doses to the organs at risk (OARs) and normal tissue were compared. Results: All four techniques delivered adequate doses to the PTV. IMSRT, SmMLC, and mARC delivered reasonably conformal and homogenous dose to the PTV (CI <1.47, HI <0.53), but not for CARC (p < 0.05). IMSRT presented with the smallest CI (1.37) and HI (0.40). Among the four techniques, IMSRT spared the greatest number of OARs, namely brainstem, temporal lobes, optic chiasm, and optic nerve, and had the smallest normal tissue volume in the low-dose region. Conclusion: Based on the dosimetric comparison, IMSRT was optimal for locally recurrent NPC by delivering a conformal and homogenous dose to the PTV while sparing OARs.

  18. A Dosimetric Analysis of IMRT and Multistatic Fields Techniques for Left Breast Radiotherapy

    SciTech Connect

    Moon, Seong Kwon; Kim, Yeon Sil; Kim, Soo Young; Lee, Mi Jo; Keum, Hyun Sup; Kim, Seung Jin; Youn, Seon Min

    2011-10-01

    The purpose of this study was to analyze the dosimetric difference between intensity-modulated radiation therapy (IMRT) using 3 or 5 beams and multistatic field technique (MSF) in radiotherapy of the left breast. We made comparative analysis of two kinds of radiotherapy that can achieve improved dose homogeneity. First is a MSF that uses both major and small irradiation fields at the same time. The other is IMRT using 3 or 5 beams with an inverse planning system using multiple static multileaf collimators. We made treatment plans for 16 early left breast cancer patients who were randomly selected and had undergone breast conserving surgery and radiotherapy, and analyzed them in the dosimetric aspect. For the mean values of V{sub 95} and dose homogeneity index, no statistically significant difference was observed among the three therapies. Extreme hot spots receiving >110% of prescribed dose were not found in any of the three methods. Using Tukey's test, IMRT showed a significantly larger increase in exposure dose to the ipsilateral lung and the heart than MSF in the low-dose area, but in the high-dose area, MSF showed a slight increase. To improve dose homogeneity, the application of MSF, which can be easily planned and applied more widely, is considered optimal as an alternative to IMRT for radiotherapy of early left breast cancer.

  19. [A precise tooth preparation technique assisted with quantitive bur and microscope].

    PubMed

    Duanjing, Chen; Yiyuan, Li; Jun-ying, Li; Tian, Luo; Zhi, Li; Haiyang, Yu

    2016-06-01

    Although traditional tooth preparation techniques (e.g., depth-groove-guided and index-guided techniques) are designed to improve preparation precision, the results are unsatisfactory because of the lack of proper estimating tools. This study proposed a novel technique, in which relevant details for preparation of drilling holes are provided and corresponding depth is estimated using a quantitive bur under a microscope. This technique offers a viable option for precise tooth preparation. PMID:27526463

  20. A Precise Calibration Technique for Measuring High Gas Temperatures

    NASA Technical Reports Server (NTRS)

    Gokoglu, Suleyman A.; Schultz, Donald F.

    1999-01-01

    A technique was developed for direct measurement of gas temperatures in the range of 2050 K - 2700 K with improved accuracy and reproducibility. The technique utilized the low-emittance of certain fibrous Materials, and the uncertainty of the technique was limited by the uncertainty in the melting points of the materials, i.e., +/- 15 K. The materials were pure, thin, metal-oxide fibers whose diameters varied from 60 mm to 400 mm in the experiments. The sharp increase in the emittance of the fibers upon melting was utilized as indication of reaching a known gas temperature. The accuracy of the technique was confirmed by both calculated low emittance values of transparent fibers, of order 0.01, up to a few degrees below their melting point and by the fiber-diameter independence of the results. This melting-point temperature was approached by increments not larger than 4 K, which was accomplished by controlled increases of reactant flow rates in hydrogen-air and/or hydrogen- oxygen flames. As examples of the applications of the technique, the gas-temperature measurements were used (a) for assessing the uncertainty in infering gas temperatures from thermocouple measurements, and (b) for calibrating an IR camera to measure gas temperatures. The technique offers an excellent calibration reference for other gas-temperature measurement methods to improve their accuracy and reliably extending their temperature range of applicability.

  1. A Precise Calibration Technique for Measuring High Gas Temperatures

    NASA Technical Reports Server (NTRS)

    Gokoglu, Suleyman A.; Schultz, Donald F.

    2000-01-01

    A technique was developed for direct measurement of gas temperatures in the range of 2050 K 2700 K with improved accuracy and reproducibility. The technique utilized the low-emittance of certain fibrous materials, and the uncertainty of the technique was United by the uncertainty in the melting points of the materials, i.e., +/-15 K. The materials were pure, thin, metal-oxide fibers whose diameters varied from 60 microns to 400 microns in the experiments. The sharp increase in the emittance of the fibers upon melting was utilized as indication of reaching a known gas temperature. The accuracy of the technique was confirmed by both calculated low emittance values of transparent fibers, of order 0.01, up to a few degrees below their melting point and by the fiber-diameter independence of the results. This melting-point temperature was approached by increments not larger than 4 K, which was accomplished by controlled increases of reactant flow rates in hydrogen-air and/or hydrogen-oxygen flames. As examples of the applications of the technique, the gas-temperature measurements were used: (a) for assessing the uncertainty in inferring gas temperatures from thermocouple measurements, and (b) for calibrating an IR camera to measure gas temperatures. The technique offers an excellent calibration reference for other gas-temperature measurement methods to improve their accuracy and reliably extending their temperature range of applicability.

  2. Analog-to-digital conversion techniques for precision photometry

    NASA Technical Reports Server (NTRS)

    Opal, Chet B.

    1988-01-01

    Three types of analog-to-digital converters are described: parallel, successive-approximation, and integrating. The functioning of comparators and sample-and-hold amplifiers is explained. Differential and integral linearity are defined, and good and bad examples are illustrated. The applicability and relative advantages of the three types of converters for precision astronomical photometric measurements are discussed. For most measurements, integral linearity is more important than differential linearity. Successive-approximation converters should be used with multielement solid state detectors because of their high speed, but dual slope integrating converters may be superior for use with single element solid state detectors where speed of digitization is not a factor. In all cases, the input signal should be tailored so that they occupy the upper part of the converter's dynamic range; this can be achieved by providing adjustable gain, or better by varying the integration time of the observation if possible.

  3. Studying the precision of ray tracing techniques with Szekeres models

    NASA Astrophysics Data System (ADS)

    Koksbang, S. M.; Hannestad, S.

    2015-07-01

    The simplest standard ray tracing scheme employing the Born and Limber approximations and neglecting lens-lens coupling is used for computing the convergence along individual rays in mock N-body data based on Szekeres swiss cheese and onion models. The results are compared with the exact convergence computed using the exact Szekeres metric combined with the Sachs formalism. A comparison is also made with an extension of the simple ray tracing scheme which includes the Doppler convergence. The exact convergence is reproduced very precisely as the sum of the gravitational and Doppler convergences along rays in Lemaitre-Tolman-Bondi swiss cheese and single void models. This is not the case when the swiss cheese models are based on nonsymmetric Szekeres models. For such models, there is a significant deviation between the exact and ray traced paths and hence also the corresponding convergences. There is also a clear deviation between the exact and ray tracing results obtained when studying both nonsymmetric and spherically symmetric Szekeres onion models.

  4. Involved-Node Radiotherapy and Modern Radiation Treatment Techniques in Patients With Hodgkin Lymphoma

    SciTech Connect

    Paumier, Amaury; Ghalibafian, Mithra; Beaudre, Anne; Ferreira, Ivaldo; Pichenot, Charlotte; Messai, Taha; Lessard, Nathalie Athalie; Lefkopoulos, Dimitri; Girinsky, Theodore

    2011-05-01

    Purpose: To assess the clinical outcome of the involved-node radiotherapy (INRT) concept using modern radiation treatments (intensity-modulated radiotherapy [IMRT]or deep-inspiration breath-hold radiotherapy [DIBH) in patients with localized supradiaphragmatic Hodgkin lymphoma. Methods and Materials: All but 2 patients had early-stage Hodgkin lymphoma, and they were treated with chemotherapy prior to irradiation. Radiation treatments were delivered using the INRT concept according to European Organization for Research and Treatment of Cancer guidelines. IMRT was performed with the patient free-breathing. For the adapted breath-hold technique, a spirometer dedicated to DIBH radiotherapy was used. Three-dimensional conformal radiotherapy was performed with those patients. Results: Fifty patients with Hodgkin lymphoma (48 patients with primary Hodgkin lymphoma, 1 patient with recurrent disease, and 1 patient with refractory disease) entered the study from January 2003 to August 2008. Thirty-two patients were treated with IMRT, and 18 patients were treated with the DIBH technique. The median age was 28 years (range, 17-62 years). Thirty-four (68%) patients had stage I - (I-IIA) IIA disease, and 16 (32%) patients had stage I - (I-IIB) IIB disease. All but 3 patients received three to six cycles of adriamycin, bleomycin, vinblastine, and dacarbazine (ABVD). The median radiation doses to patients treated with IMRT and DIBH were, respectively, 40 Gy (range, 21.6-40 Gy) and 30.6 Gy (range, 19.8-40 Gy). Protection of various organs at risk was satisfactory. Median follow-up was 53.4 months (range, 19.1-93 months). The 5-year progression-free and overall survival rates for the whole population were 92% (95% confidence interval [CI], 80%-97%) and 94% (95% CI, 75%-98%), respectively. Recurrences occurred in 4 patients: 2 patients had in-field relapses, and 2 patients had visceral recurrences. Grade 3 acute lung toxicity (transient pneumonitis) occurred in 1 case. Conclusions

  5. A reduced-dynamic technique for precise orbit determination

    NASA Technical Reports Server (NTRS)

    Wu, S. C.; Yunck, T. P.; Thornton, C. L.

    1990-01-01

    Observations of the Global Positioning System (GPS) will enable a reduced-dynamic technique for achieving subdecimeter orbit determination of earth-orbiting satellites. With this technique, information on the transition between satellite states at different observing times is furnished by both a formal dynamic model and observed satellite positional change (which is inferred kinematically from continuous GPS carrier-phase data). The relative weighting of dynamic and kinematic information can be freely varied. Covariance studies show that in situations where observing geometry is poor and the dynamic model is good, the model dominates determination of the state transition; where the dynamic model is poor and the geometry strong, carrier phase governs the determination of the transition. When neither kinematic nor dynamic information is clearly superior, the reduced-dynamic combination of the two can substantially improve the orbit-determination solution. Guidelines are given here for selecting a near-optimal weighting for the reduced-dynamic solution, and sensitivity of solution accuracy to this weighting is examined.

  6. Evaluation of the field-in-field technique with lung blocks for breast tangential radiotherapy.

    PubMed

    Tanaka, Hidekazu; Hayashi, Shinya; Kajiura, Yuichi; Kitahara, Masashi; Matsuyama, Katsuya; Kanematsu, Masayuki; Hoshi, Hiroaki

    2015-08-01

    Several studies have reported the advantages of the field-in-field (FIF) technique in breast radiotherapy, including dose reduction in the lungs by using lung field blocks. We evaluated the FIF technique with lung blocks for breast tangential radiotherapy. Sixteen patients underwent free breathing (FB) computed tomography (CT), followed by two CT procedures performed during breath hold after light inhalation (IN) and light exhalation (EX). Three radiotherapy plans were created using the FIF technique based on the FB-CT images: one without lung blocks (LB0) and two with lung blocks whose monitor units (MUs) were 5 (LB5) and 10 (LB10), respectively. These plans were copied to the IN-CT and EX-CT images. V20Gy, V30Gy, and V40Gy of the ipsilateral lung and V100%, V95%, and the mean dose (Dmean) to the planning target volume (PTV) were analyzed. The extent of changes in these parameters on the IN-plan and EX-plan compared with the FB-plan was evaluated. V20Gy, V30Gy, and V40Gy were significantly smaller for FB-LB5 and FB-LB10 than for FB-LB0; similar results were obtained for the IN-plan and EX-plan. V100%, V95%, and Dmean were also significant smaller for FB-LB5 and FB-LB10 than for FB-LB0. The extent of changes in V20Gy, V30Gy, and V40Gy on the IN-plan and EX-plan compared with the FB-plan was not statistically significant. Lung blocks were useful for dose reduction in the lung and a simultaneous PTV decrease. This technique should not be applied in the general population.

  7. Prediction of Potato Crop Yield Using Precision Agriculture Techniques

    PubMed Central

    Al-Gaadi, Khalid A.; Hassaballa, Abdalhaleem A.; Tola, ElKamil; Kayad, Ahmed G.; Madugundu, Rangaswamy; Alblewi, Bander; Assiri, Fahad

    2016-01-01

    Crop growth and yield monitoring over agricultural fields is an essential procedure for food security and agricultural economic return prediction. The advances in remote sensing have enhanced the process of monitoring the development of agricultural crops and estimating their yields. Therefore, remote sensing and GIS techniques were employed, in this study, to predict potato tuber crop yield on three 30 ha center pivot irrigated fields in an agricultural scheme located in the Eastern Region of Saudi Arabia. Landsat-8 and Sentinel-2 satellite images were acquired during the potato growth stages and two vegetation indices (the normalized difference vegetation index (NDVI) and the soil adjusted vegetation index (SAVI)) were generated from the images. Vegetation index maps were developed and classified into zones based on vegetation health statements, where the stratified random sampling points were accordingly initiated. Potato yield samples were collected 2–3 days prior to the harvest time and were correlated to the adjacent NDVI and SAVI, where yield prediction algorithms were developed and used to generate prediction yield maps. Results of the study revealed that the difference between predicted yield values and actual ones (prediction error) ranged between 7.9 and 13.5% for Landsat-8 images and between 3.8 and 10.2% for Sentinel-2 images. The relationship between actual and predicted yield values produced R2 values ranging between 0.39 and 0.65 for Landsat-8 images and between 0.47 and 0.65 for Sentinel-2 images. Results of this study revealed a considerable variation in field productivity across the three fields, where high-yield areas produced an average yield of above 40 t ha-1; while, the low-yield areas produced, on the average, less than 21 t ha-1. Identifying such great variation in field productivity will assist farmers and decision makers in managing their practices. PMID:27611577

  8. Prediction of Potato Crop Yield Using Precision Agriculture Techniques.

    PubMed

    Al-Gaadi, Khalid A; Hassaballa, Abdalhaleem A; Tola, ElKamil; Kayad, Ahmed G; Madugundu, Rangaswamy; Alblewi, Bander; Assiri, Fahad

    2016-01-01

    Crop growth and yield monitoring over agricultural fields is an essential procedure for food security and agricultural economic return prediction. The advances in remote sensing have enhanced the process of monitoring the development of agricultural crops and estimating their yields. Therefore, remote sensing and GIS techniques were employed, in this study, to predict potato tuber crop yield on three 30 ha center pivot irrigated fields in an agricultural scheme located in the Eastern Region of Saudi Arabia. Landsat-8 and Sentinel-2 satellite images were acquired during the potato growth stages and two vegetation indices (the normalized difference vegetation index (NDVI) and the soil adjusted vegetation index (SAVI)) were generated from the images. Vegetation index maps were developed and classified into zones based on vegetation health statements, where the stratified random sampling points were accordingly initiated. Potato yield samples were collected 2-3 days prior to the harvest time and were correlated to the adjacent NDVI and SAVI, where yield prediction algorithms were developed and used to generate prediction yield maps. Results of the study revealed that the difference between predicted yield values and actual ones (prediction error) ranged between 7.9 and 13.5% for Landsat-8 images and between 3.8 and 10.2% for Sentinel-2 images. The relationship between actual and predicted yield values produced R2 values ranging between 0.39 and 0.65 for Landsat-8 images and between 0.47 and 0.65 for Sentinel-2 images. Results of this study revealed a considerable variation in field productivity across the three fields, where high-yield areas produced an average yield of above 40 t ha-1; while, the low-yield areas produced, on the average, less than 21 t ha-1. Identifying such great variation in field productivity will assist farmers and decision makers in managing their practices. PMID:27611577

  9. Prediction of Potato Crop Yield Using Precision Agriculture Techniques.

    PubMed

    Al-Gaadi, Khalid A; Hassaballa, Abdalhaleem A; Tola, ElKamil; Kayad, Ahmed G; Madugundu, Rangaswamy; Alblewi, Bander; Assiri, Fahad

    2016-01-01

    Crop growth and yield monitoring over agricultural fields is an essential procedure for food security and agricultural economic return prediction. The advances in remote sensing have enhanced the process of monitoring the development of agricultural crops and estimating their yields. Therefore, remote sensing and GIS techniques were employed, in this study, to predict potato tuber crop yield on three 30 ha center pivot irrigated fields in an agricultural scheme located in the Eastern Region of Saudi Arabia. Landsat-8 and Sentinel-2 satellite images were acquired during the potato growth stages and two vegetation indices (the normalized difference vegetation index (NDVI) and the soil adjusted vegetation index (SAVI)) were generated from the images. Vegetation index maps were developed and classified into zones based on vegetation health statements, where the stratified random sampling points were accordingly initiated. Potato yield samples were collected 2-3 days prior to the harvest time and were correlated to the adjacent NDVI and SAVI, where yield prediction algorithms were developed and used to generate prediction yield maps. Results of the study revealed that the difference between predicted yield values and actual ones (prediction error) ranged between 7.9 and 13.5% for Landsat-8 images and between 3.8 and 10.2% for Sentinel-2 images. The relationship between actual and predicted yield values produced R2 values ranging between 0.39 and 0.65 for Landsat-8 images and between 0.47 and 0.65 for Sentinel-2 images. Results of this study revealed a considerable variation in field productivity across the three fields, where high-yield areas produced an average yield of above 40 t ha-1; while, the low-yield areas produced, on the average, less than 21 t ha-1. Identifying such great variation in field productivity will assist farmers and decision makers in managing their practices.

  10. Measurement of radiation dose with BeO dosimeters using optically stimulated luminescence technique in radiotherapy applications.

    PubMed

    Şahin, Serdar; Güneş Tanır, A; Meriç, Niyazi; Aydınkarahaliloğlu, Ercan

    2015-09-01

    The radiation dose delivered to the target by using different radiotherapy applications has been measured with the help of beryllium oxide (BeO) dosimeters to be placed inside the rando phantom. Three-Dimensional Conformal Radiotherapy (3DCRT), Intensity-Modulated Radiotherapy (IMRT) and Intensity-Modulated Arc Therapy (IMAT) have been used as radiotherapy application. Individual treatment plans have been made for the three radiotherapy applications of rando phantom. The section 4 on the phantom was selected as target and 200 cGy doses were delivered. After the dosimeters placed on section 4 (target) and the sections 2 and 6 (non-target) were irradiated, the result was read through the OSL technique on the Risø TL/OSL system. This procedure was repeated three times for each radiotherapy application. The doses delivered to the target and the non-target sections as a result of the 3DCRT, IMRT and IMAT plans were analyzed. The doses received by the target were measured as 204.71 cGy, 204.76 cGy and 205.65 cGy, respectively. The dose values obtained from treatment planning system (TPS) were compared to the dose values obtained using the OSL technique. It has been concluded that, the radiation dose can be measured with the OSL technique by using BeO dosimeters in medical practices. PMID:26046521

  11. Measurement of radiation dose with BeO dosimeters using optically stimulated luminescence technique in radiotherapy applications.

    PubMed

    Şahin, Serdar; Güneş Tanır, A; Meriç, Niyazi; Aydınkarahaliloğlu, Ercan

    2015-09-01

    The radiation dose delivered to the target by using different radiotherapy applications has been measured with the help of beryllium oxide (BeO) dosimeters to be placed inside the rando phantom. Three-Dimensional Conformal Radiotherapy (3DCRT), Intensity-Modulated Radiotherapy (IMRT) and Intensity-Modulated Arc Therapy (IMAT) have been used as radiotherapy application. Individual treatment plans have been made for the three radiotherapy applications of rando phantom. The section 4 on the phantom was selected as target and 200 cGy doses were delivered. After the dosimeters placed on section 4 (target) and the sections 2 and 6 (non-target) were irradiated, the result was read through the OSL technique on the Risø TL/OSL system. This procedure was repeated three times for each radiotherapy application. The doses delivered to the target and the non-target sections as a result of the 3DCRT, IMRT and IMAT plans were analyzed. The doses received by the target were measured as 204.71 cGy, 204.76 cGy and 205.65 cGy, respectively. The dose values obtained from treatment planning system (TPS) were compared to the dose values obtained using the OSL technique. It has been concluded that, the radiation dose can be measured with the OSL technique by using BeO dosimeters in medical practices.

  12. Markerless gating for lung cancer radiotherapy based on machine learning techniques

    NASA Astrophysics Data System (ADS)

    Lin, Tong; Li, Ruijiang; Tang, Xiaoli; Dy, Jennifer G.; Jiang, Steve B.

    2009-03-01

    In lung cancer radiotherapy, radiation to a mobile target can be delivered by respiratory gating, for which we need to know whether the target is inside or outside a predefined gating window at any time point during the treatment. This can be achieved by tracking one or more fiducial markers implanted inside or near the target, either fluoroscopically or electromagnetically. However, the clinical implementation of marker tracking is limited for lung cancer radiotherapy mainly due to the risk of pneumothorax. Therefore, gating without implanted fiducial markers is a promising clinical direction. We have developed several template-matching methods for fluoroscopic marker-less gating. Recently, we have modeled the gating problem as a binary pattern classification problem, in which principal component analysis (PCA) and support vector machine (SVM) are combined to perform the classification task. Following the same framework, we investigated different combinations of dimensionality reduction techniques (PCA and four nonlinear manifold learning methods) and two machine learning classification methods (artificial neural networks—ANN and SVM). Performance was evaluated on ten fluoroscopic image sequences of nine lung cancer patients. We found that among all combinations of dimensionality reduction techniques and classification methods, PCA combined with either ANN or SVM achieved a better performance than the other nonlinear manifold learning methods. ANN when combined with PCA achieves a better performance than SVM in terms of classification accuracy and recall rate, although the target coverage is similar for the two classification methods. Furthermore, the running time for both ANN and SVM with PCA is within tolerance for real-time applications. Overall, ANN combined with PCA is a better candidate than other combinations we investigated in this work for real-time gated radiotherapy.

  13. Optimization of Stereotactic Radiotherapy Treatment Delivery Technique for Base-Of-Skull Meningiomas

    SciTech Connect

    Clark, Brenda G. Candish, Charles; Vollans, Emily; Gete, Ermias; Lee, Richard; Martin, Monty; Ma, Roy; McKenzie, Michael

    2008-10-01

    This study compares static conformal field (CF), intensity modulated radiotherapy (IMRT), and dynamic arcs (DA) for the stereotactic radiotherapy of base-of-skull meningiomas. Twenty-one cases of base-of-skull meningioma (median planning target volume [PTV] = 21.3 cm{sup 3}) previously treated with stereotactic radiotherapy were replanned with each technique. The plans were compared for Radiation Therapy Oncology Group conformity index (CI) and homogeneity index (HI), and doses to normal structures at 6 dose values from 50.4 Gy to 5.6 Gy. The mean CI was 1.75 (CF), 1.75 (DA), and 1.66 (IMRT) (p < 0.05 when comparing IMRT to either CF or DA plans). The CI (IMRT) was inversely proportional to the size of the PTV (Spearman's rho = -0.53, p = 0.01) and at PTV sizes above 25 cm{sup 3}, the CI (IMRT) was always superior to CI (DA) and CI (CF). At PTV sizes below 25 cm{sup 3}, there was no significant difference in CI between each technique. There was no significant difference in HI between plans. The total volume of normal tissue receiving 50.4, 44.8, and 5.6 Gy was significantly lower when comparing IMRT to CF and DA plans (p < 0.05). There was significantly improved dose sparing for the brain stem and ipsilateral temporal lobe with IMRT but no significant difference for the optic chiasm or pituitary gland. These results demonstrate that stereotactic IMRT should be considered to treat base-of-skull meningiomas with a PTV larger than 25 cm{sup 3}, due to improved conformity and normal tissue sparing, in particular for the brain stem and ipsilateral temporal lobe.

  14. On-Line Use of Three-Dimensional Marker Trajectory Estimation From Cone-Beam Computed Tomography Projections for Precise Setup in Radiotherapy for Targets With Respiratory Motion

    SciTech Connect

    Worm, Esben S.; Hoyer, Morten; Fledelius, Walther; Nielsen, Jens E.; Larsen, Lars P.; Poulsen, Per R.

    2012-05-01

    Purpose: To develop and evaluate accurate and objective on-line patient setup based on a novel semiautomatic technique in which three-dimensional marker trajectories were estimated from two-dimensional cone-beam computed tomography (CBCT) projections. Methods and Materials: Seven treatment courses of stereotactic body radiotherapy for liver tumors were delivered in 21 fractions in total to 6 patients by a linear accelerator. Each patient had two to three gold markers implanted close to the tumors. Before treatment, a CBCT scan with approximately 675 two-dimensional projections was acquired during a full gantry rotation. The marker positions were segmented in each projection. From this, the three-dimensional marker trajectories were estimated using a probability based method. The required couch shifts for patient setup were calculated from the mean marker positions along the trajectories. A motion phantom moving with known tumor trajectories was used to examine the accuracy of the method. Trajectory-based setup was retrospectively used off-line for the first five treatment courses (15 fractions) and on-line for the last two treatment courses (6 fractions). Automatic marker segmentation was compared with manual segmentation. The trajectory-based setup was compared with setup based on conventional CBCT guidance on the markers (first 15 fractions). Results: Phantom measurements showed that trajectory-based estimation of the mean marker position was accurate within 0.3 mm. The on-line trajectory-based patient setup was performed within approximately 5 minutes. The automatic marker segmentation agreed with manual segmentation within 0.36 {+-} 0.50 pixels (mean {+-} SD; pixel size, 0.26 mm in isocenter). The accuracy of conventional volumetric CBCT guidance was compromised by motion smearing ({<=}21 mm) that induced an absolute three-dimensional setup error of 1.6 {+-} 0.9 mm (maximum, 3.2) relative to trajectory-based setup. Conclusions: The first on-line clinical use of

  15. Radiotherapy T1 glottic carcinoma

    SciTech Connect

    Zablow, A.I.; Erba, P.S.; Sanfillippo, L.J.

    1989-11-01

    From 1970 to 1985, curative radiotherapy was administered to 63 patients with stage I carcinoma of the true vocal cords. Precision radiotherapeutic technique yields cure rates comparable to surgical results. Good voice quality was preserved in a high percentage of patients.

  16. A Dosimetric Evaluation of Conventional Helmet Field Irradiation Versus Two-Field Intensity-Modulated Radiotherapy Technique

    SciTech Connect

    Yu, James B.; Shiao, Stephen L.; Knisely, Jonathan . E-mail: jonathan.knisely@yale.edu

    2007-06-01

    Purpose: To compare dosimetric differences between conventional two-beam helmet field irradiation (external beam radiotherapy, EBRT) of the brain and a two-field intensity-modulated radiotherapy (IMRT) technique. Methods and Materials: Ten patients who received helmet field irradiation at our institution were selected for study. External beam radiotherapy portals were planned per usual practice. Intensity-modulated radiotherapy fields were created using the identical field angles as the EBRT portals. Each brain was fully contoured along with the spinal cord to the bottom of the C2 vertebral body. This volume was then expanded symmetrically by 0.5 cm to construct the planning target volume. An IMRT plan was constructed using uniform optimization constraints. For both techniques, the nominal prescribed dose was 3,000 cGy in 10 fractions of 300 cGy using 6-MV photons. Comparative dose-volume histograms were generated for each patient and analyzed. Results: Intensity-modulated radiotherapy improved dose uniformity over EBRT for whole brain radiotherapy. The mean percentage of brain receiving >105% of dose was reduced from 29.3% with EBRT to 0.03% with IMRT. The mean maximum dose was reduced from 3,378 cGy (113%) for EBRT to 3,162 cGy (105%) with IMRT. The mean percent volume receiving at least 98% of the prescribed dose was 99.5% for the conventional technique and 100% for IMRT. Conclusions: Intensity-modulated radiotherapy reduces dose inhomogeneity, particularly for the midline frontal lobe structures where hot spots occur with conventional two-field EBRT. More study needs to be done addressing the clinical implications of optimizing dose uniformity and its effect on long-term cognitive function in selected long-lived patients.

  17. Radiobiological comparison of two radiotherapy treatment techniques for high-risk prostate cancer

    PubMed Central

    Hernández, Trinitat García; González, Aurora Vicedo; Peidro, Jorge Pastor; Ferrando, Juan V. Roselló; González, Luis Brualla; Cabañero, Domingo Granero; Torrecilla, José López

    2013-01-01

    Background To make a radiobiological comparison, for high risk prostate cancer (T3a, PSA > 20 ng/ml or Gleason > 7) of two radiotherapy treatment techniques. One technique consists of a treatment in three phases of the pelvic nodes, vesicles and prostate using a conventional fractionation scheme of 2 Gy/fraction (SIMRT). The other technique consists of a treatment in two phases that gives simultaneously different dose levels in each phase, 2 Gy/fraction, 2.25 Gy/fraction and 2.5 Gy/fraction to the pelvic nodes, vesicles and prostate, respectively (SIBIMRT). Materials and methods The equivalent dose at fractionation of 2 Gy (EQD2), calculated using the linear quadratic model with α/βprostate = 1.5 Gy, was the same for both treatment strategies. For comparison the parameters employed were D95, mean dose and Tumour Control Probabilities for prostate PTV and D15, D25, D35, D50, mean dose and Normal Tissue Complication Probabilities for the rectum and bladder, with physical doses converted to EQD2. Parameters were obtained for α/βprostate = 1.5, 3 and 10 Gy and for α/βoar = 1, 2, 3, 4, 6 and 8. Results For prostate PTV, both treatment strategies are equivalent for α/βprostate = 1.5 Gy but for higher α/βprostate, EQD2 and TCP, decrease for the SIBIMRT technique. For the rectum and bladder when α/βoar ≤ 2 Gy, EQD2 and NTCP are lower for the SIMRT technique or equal in both techniques. For α/βoar ≥ 2–3 Gy, EQD2 and NTCP increase for the SIMRT treatment. Conclusions A comparison between two radiotherapy techniques is presented. The SIBIMRT technique reduces EQD2 and NTCP for α/βoar from 2 to 8 Gy. PMID:24416563

  18. Development and Evaluation of Multiple Isocentric Volumetric Modulated Arc Therapy Technique for Craniospinal Axis Radiotherapy Planning

    SciTech Connect

    Lee, Young K.; Brooks, Corrinne J.; Bedford, James L.; Warrington, Alan P.; Saran, Frank H.

    2012-02-01

    Purpose: To develop and compare a volumetric modulated arc therapy (VMAT) technique with conventional radiotherapy for craniospinal irradiation with respect to improved dose conformity and homogeneity in the planning target volume (PTV) and to reduced dose to organs at risk (OAR). Methods and Materials: Conventional craniospinal axis radiotherapy plans of 5 patients were acquired. The median (range) length of the PTV was 58.9 (48.1-83.7) cm. The 6-MV VMAT plans were inversely planned with one isocenter near the base of the brain and the minimum number of isocenters required for the specified lengths of spine. The plans were optimized with high weighting for PTV coverage and low weighting for OAR sparing. Conformity and heterogeneity indices, dose-volume histograms, mean doses, and non-PTV integral doses from the two plans (prescription dose 23.4 Gy in 13 fractions) were compared. Results: The median (range) conformity index of VMAT was 1.22 (1.09-1.45), compared with 1.69 (1.44-2.67) for conventional plans (p = 0.04). The median (range) heterogeneity index was also lower for VMAT compared with conventional plans: 1.04 (1.03-1.07) vs. 1.12 (1.09-1.19), respectively (p = 0.04). A significant reduction of mean and maximum doses was observed in the heart, thyroid, esophagus, optic nerves, and eyes with VMAT when compared with conventional plans. A decrease in body V{sub 10Gy} was observed, but for 4 of 5 patients non-PTV integral dose was increased with VMAT when compared with the conventional plans. Conclusions: A VMAT technique to treat the craniospinal axis significantly reduces OAR dose, potentially leading to lower late organ toxicity. However, this is achieved at the expense of increased low-dose volumes, which is inherent to the technique, carrying a potentially increased risk of secondary malignancies.

  19. Dosimetric Evaluation of Different Intensity-Modulated Radiotherapy Techniques for Breast Cancer After Conservative Surgery.

    PubMed

    Zhang, Fuli; Wang, Yadi; Xu, Weidong; Jiang, Huayong; Liu, Qingzhi; Gao, Junmao; Yao, Bo; Hou, Jun; He, Heliang

    2015-10-01

    Intensity-modulated radiotherapy (IMRT) potentially leads to a more favorite dose distribution compared to 3-dimensional or conventional tangential radiotherapy (RT) for breast cancer after conservative surgery or mastectomy. The aim of this study was to compare dosimetric parameters of the planning target volume (PTV) and organs at risk (OARs) among helical tomotherapy (HT), inverse-planned IMRT (IP-IMRT), and forward-planned field in field (FP-FIF) IMRT techniques after breast-conserving surgery. Computed tomography scans from 20 patients (12 left sided and 8 right sided) previously treated with T1N0 carcinoma were selected for this dosimetric planning study. We designed HT, IP-IMRT, and FP-FIF plans for each patient. Plans were compared according to dose-volume histogram analysis in terms of PTV homogeneity and conformity indices (HI and CI) as well as OARs dose and volume parameters. Both HI and CI of the PTV showed statistically significant difference among IP-IMRT, FP-FIF, and HT with those of HT were best (P < .05). Compared to FP-FIF, IP-IMRT showed smaller exposed volumes of ipsilateral lung, heart, contralateral lung, and breast, while HT indicated smaller exposed volumes of ipsilateral lung but larger exposed volumes of contralateral lung and breast as well as heart. In addition, HT demonstrated an increase in exposed volume of ipsilateral lung (except for fraction of lung volume receiving >30 Gy and 20 Gy), heart, contralateral lung, and breast compared with IP-IMRT. For breast cancer radiotherapy (RT) after conservative surgery, HT provides better dose homogeneity and conformity of PTV compared to IP-IMRT and FP-FIF techniques, especially for patients with supraclavicular lymph nodes involved. Meanwhile, HT decreases the OAR volumes receiving higher doses with an increase in the volumes receiving low doses, which is known to lead to an increased rate of radiation-induced secondary malignancies. Hence, composite factors including dosimetric advantage

  20. Craniospinal Irradiation Techniques: A Dosimetric Comparison of Proton Beams With Standard and Advanced Photon Radiotherapy

    SciTech Connect

    Yoon, Myonggeun; Shin, Dong Ho; Kim, Jinsung; Kim, Jong Won; Kim, Dae Woong; Park, Sung Yong; Lee, Se Byeong; Kim, Joo Young; Park, Hyeon-Jin; Park, Byung Kiu; Shin, Sang Hoon

    2011-11-01

    Purpose: To evaluate the dosimetric benefits of advanced radiotherapy techniques for craniospinal irradiation in cancer in children. Methods and Materials: Craniospinal irradiation (CSI) using three-dimensional conformal radiotherapy (3D-CRT), tomotherapy (TOMO), and proton beam treatment (PBT) in the scattering mode was planned for each of 10 patients at our institution. Dosimetric benefits and organ-specific radiation-induced cancer risks were based on comparisons of dose-volume histograms (DVHs) and on the application of organ equivalent doses (OEDs), respectively. Results: When we analyzed the organ-at-risk volumes that received 30%, 60%, and 90% of the prescribed dose (PD), we found that PBT was superior to TOMO and 3D-CRT. On average, the doses delivered by PBT to the esophagus, stomach, liver, lung, pancreas, and kidney were 19.4 Gy, 0.6 Gy, 0.3 Gy, 2.5 Gy, 0.2 Gy, and 2.2 Gy for the PD of 36 Gy, respectively, which were significantly lower than the doses delivered by TOMO (22.9 Gy, 4.5 Gy, 6.1 Gy, 4.0 Gy, 13.3 Gy, and 4.9 Gy, respectively) and 3D-CRT (34.6 Gy, 3.6 Gy, 8.0 Gy, 4.6 Gy, 22.9 Gy, and 4.3 Gy, respectively). Although the average doses delivered by PBT to the chest and abdomen were significantly lower than those of 3D-CRT or TOMO, these differences were reduced in the head-and-neck region. OED calculations showed that the risk of secondary cancers in organs such as the stomach, lungs, thyroid, and pancreas was much higher when 3D-CRT or TOMO was used than when PBT was used. Conclusions: Compared with photon techniques, PBT showed improvements in most dosimetric parameters for CSI patients, with lower OEDs to organs at risk.

  1. Evaluation of a Single-Isocenter Technique for Axillary Radiotherapy in Breast Cancer

    SciTech Connect

    Beek, Suzanne van Jaeger, Katrien de; Mijnheer, Ben |; Vliet-Vroegindeweij, Corine van

    2008-10-01

    The aim of this study was to develop a technique for axillary radiotherapy that minimizes the risk of radiation-induced damage to the surrounding normal tissue (i.e., arm, shoulder, lung, esophagus, and spinal cord) while keeping the risk of a nodal recurrence to a minimum. A planning study was performed in 20 breast cancer patients. The target volume of the axillary treatment encompassed the periclavicular and axillary lymph node areas. The 3-dimensional (3D) computed tomography (CT) information in this study was used to outline the lymph node areas and the organs at risk (i.e., the esophagus, spinal cord, brachial plexus, and lung). A conventional AP-PA technique (with a transmission plate placed in the AP beam) was evaluated. In addition, a new single-isocenter technique consisting of AP/PA fields using a gantry rotation of {+-}20 deg. and a medial AP segment was developed. Both techniques were compared by evaluation of the calculated dose distributions and the dose-volume histograms of the target volume and surrounding organs at risk. The field borders and humeral shielding were redefined based on the 3D anatomical references. Adapting the humeral shielding reduced the irradiated volume by 19% and might contribute to a reduction of the incidence of arm edema and impairment of shoulder function. The maximum radiation dose in the esophagus and spinal cord was reduced by more than 50% using the single-isocenter technique. The difference between both techniques with respect to the mean doses in the target volume and lung, and the maximum dose in brachial plexus, was not statistically significant. Moreover, the single-isocenter technique allowed a fast and easy treatment preparation and reduced the execution time considerably (with approximately 10 minutes per fraction)

  2. Polarisation control through an optical feedback technique and its application in precise measurements

    PubMed Central

    Chen, Wenxue; Zhang, Shulian; Long, Xingwu

    2013-01-01

    We present an anisotropic optical feedback technique for controlling light polarisation. The technique is based on the principle that the effective gain of a light mode is modulated by the magnitude of the anisotropic feedback. A new physical model that integrates Lamb's semi-classical theory and a model of the equivalent cavity of a Fabry-Perot interferometer is developed to reveal the physical nature of this technique. We use this technique to measure the phase retardation, optical axis, angle, thickness and refractive index with a high precision of λ/1380, 0.01°, 0.002°, 59 nm and 0.0006, respectively. PMID:23771164

  3. Dosimetry verification on VMAT and IMRT radiotherapy techniques: In the case of prostate cancer

    NASA Astrophysics Data System (ADS)

    Maulana, A.; Pawiro, S. A.

    2016-03-01

    Radiotherapy treatment depends on the accuracy of the dose delivery to patients, the purpose of the study is to verify the dose in IMRT and VMAT technique in prostate cancer cases correspond to TPS dose using phantom base on ICRU No.50. The dose verification of the target and OAR was performed by placing the TLD Rod LiF100 and EBT2 Gafchromic film at slab hole of pelvic part of the Alderson RANDO phantom for prostate cancer simulation. The Exposed TLDs was evaluated using the TLD Reader Harshaw while EBT2 film was scanned using Epson scanner. The point dose measurements were compared between planned dose and measured dose at target volume and OAR. The result is the dose difference at target volume, bladder and rectum for IMRT and VMAT are less than 5%. On the other hand, the dose difference at the Femoral head is more than 5% for both techniques because the location of OAR already in low gradient dose. Furthermore, the difference dose of the target volume for IMRT technique tends to be smaller than VMAT either for TLD and EBT2 film detectors. From the measurement showed that the delivered dose on the phantom simulation match with ICRU No.50 criteria.

  4. An imaging evaluation of the simultaneously integrated boost breast radiotherapy technique

    SciTech Connect

    Turley, Jessica; Claridge Mackonis, Elizabeth

    2015-09-15

    To evaluate in-field megavoltage (MV) imaging of simultaneously integrated boost (SIB) breast fields to determine its feasibility in treatment verification for the SIB breast radiotherapy technique, and to assess whether the current-imaging protocol and treatment margins are sufficient. For nine patients undergoing SIB breast radiotherapy, in-field MV images of the SIB fields were acquired on days that regular treatment verification imaging was performed. The in-field images were matched offline according to the scar wire on digitally reconstructed radiographs. The offline image correction results were then applied to a margin recipe formula to calculate safe margins that account for random and systematic uncertainties in the position of the boost volume when an offline correction protocol has been applied. After offline assessment of the acquired images, 96% were within the tolerance set in the current department-imaging protocol. Retrospectively performing the maximum position deviations on the Eclipse™ treatment planning system demonstrated that the clinical target volume (CTV) boost received a minimum dose difference of 0.4% and a maximum dose difference of 1.4% less than planned. Furthermore, applying our results to the Van Herk margin formula to ensure that 90% of patients receive 95% of the prescribed dose, the calculated CTV margins were comparable to the current departmental procedure used. Based on the in-field boost images acquired and the feasible application of these results to the margin formula the current CTV-planning target volume margins used are appropriate for the accurate treatment of the SIB boost volume without additional imaging.

  5. Simple Carotid-Sparing Intensity-Modulated Radiotherapy Technique and Preliminary Experience for T1-2 Glottic Cancer

    SciTech Connect

    Rosenthal, David I.; Fuller, Clifton D.; Barker, Jerry L.; Mason, Bryan M.S.; Garcia, John A. C.; Lewin, Jan S.; Holsinger, F. Christopher; Stasney, C. Richard; Frank, Steven J.; Schwartz, David L.; Morrison, William H.; Garden, Adam S.; Ang, K. Kian

    2010-06-01

    Purpose: To investigate the dosimetry and feasibility of carotid-sparing intensity-modulated radiotherapy (IMRT) for early glottic cancer and to report preliminary clinical experience. Methods and Materials: Digital Imaging and Communications in Medicine radiotherapy (DICOM-RT) datasets from 6 T1-2 conventionally treated glottic cancer patients were used to create both conventional IMRT plans. We developed a simplified IMRT planning algorithm with three fields and limited segments. Conventional and IMRT plans were compared using generalized equivalent uniform dose and dose-volume parameters for in-field carotid arteries, target volumes, and organs at risk. We have treated 11 patients with this simplified IMRT technique. Results: Intensity-modulated radiotherapy consistently reduced radiation dose to the carotid arteries (p < 0.05) while maintaining the clinical target volume coverage. With conventional planning, median carotid V35, V50, and V63 were 100%, 100%, and 69.0%, respectively. With IMRT planning these decreased to 2%, 0%, and 0%, respectively (p < 0.01). Radiation planning and treatment times were similar for conventional radiotherapy and IMRT. Treatment results have been excellent thus far. Conclusions: Intensity-modulated radiotherapy significantly reduced unnecessary radiation dose to the carotid arteries compared with conventional lateral fields while maintaining clinical target volume coverage. Further experience and longer follow-up will be required to demonstrate outcomes for cancer control and carotid artery effects.

  6. A cosmetic evaluation of breast cancer treatment: A randomized study of radiotherapy boost technique

    SciTech Connect

    Vass, Sylvie . E-mail: sylvie.vass@ssss.gouv.qc.ca; Bairati, Isabelle

    2005-08-01

    Purpose: To compare cosmetic results of two different radiotherapy (RT) boost techniques used in the treatment of breast cancer after whole breast radiotherapy and to identify factors affecting cosmetic outcomes. Methods and Materials: Between 1996 and 1998, 142 patients with Stage I and II breast cancer were treated with breast conservative surgery and adjuvant RT. Patients were then randomly assigned to receive a boost dose of 15 Gy delivered to the tumor bed either by iridium 192, or a combination of photons and electrons. Cosmetic evaluations were done on a 6-month basis, with a final evaluation at 36 months after RT. The evaluations were done using a panel of global and specific subjective scores, a digitized scoring system using the breast retraction assessment (BRA) measurement, and a patient's self-assessment evaluation. As cosmetic results were graded according to severity, the comparison of boost techniques was done using the ordinal logistic regression model. Adjusted odds ratios (OR) and their 95% confidence intervals (CI) are presented. Results: At 36 months of follow-up, there was no significant difference between the two groups with respect to the global subjective cosmetic outcome (OR = 1.40; 95%CI = 0.69-2.85, p = 0.35). Good to excellent scores were observed in 65% of implant patients and 62% of photon/electron patients. At 24 months and beyond, telangiectasia was more severe in the implant group with an OR of 9.64 (95%CI = 4.05-22.92, p < 0.0001) at 36 months. The only variable associated with a worse global cosmetic outcome was the presence of concomitant chemotherapy (OR = 3.87; 95%CI = 1.74-8.62). The BRA value once adjusted for age, concomitant chemotherapy, and boost volume showed a positive association with the boost technique. The BRA value was significantly greater in the implant group (p 0.03). There was no difference in the patient's final self-assessment score between the two groups. Three variables were statistically associated with

  7. Indirect orthodontic bonding - a modified technique for improved efficiency and precision

    PubMed Central

    Nojima, Lincoln Issamu; Araújo, Adriele Silveira; Alves, Matheus

    2015-01-01

    INTRODUCTION: The indirect bonding technique optimizes fixed appliance installation at the orthodontic office, ensuring precise bracket positioning, among other advantages. In this laboratory clinical phase, material and methods employed in creating the transfer tray are decisive to accuracy. OBJECTIVE: This article describes a simple, efficient and reproducible indirect bonding technique that allows the procedure to be carried out successfully. Variables influencing the orthodontic bonding are analyzed and discussed in order to aid professionals wishing to adopt the indirect bonding technique routinely in their clinical practice. PMID:26154464

  8. Usefulness of image morphing techniques in cancer treatment by conformal radiotherapy

    NASA Astrophysics Data System (ADS)

    Atoui, Hussein; Sarrut, David; Miguet, Serge

    2004-05-01

    Conformal radiotherapy is a cancer treatment technique, that targets high-energy X-rays to tumors with minimal exposure to surrounding healthy tissues. Irradiation ballistics is calculated based on an initial 3D Computerized Tomography (CT) scan. At every treatment session, the random positioning of the patient, compared to the reference position defined by the initial 3D CT scan, can generate treatment inaccuracies. Positioning errors potentially predispose to dangerous exposure to healthy tissues as well as insufficient irradiation to the tumor. A proposed solution would be the use of portal images generated by Electronic Portal Imaging Devices (EPID). Portal images (PI) allow a comparison with reference images retained by physicians, namely Digitally Reconstructed Radiographs (DRRs). At present, physicians must estimate patient positional errors by visual inspection. However, this may be inaccurate and consumes time. The automation of this task has been the subject of many researches. Unfortunately, the intensive use of DRRs and the high computing time required have prevented real time implementation. We are currently investigating a new method for DRR generation that calculates intermediate DRRs by 2D deformation of previously computed DRRs. We approach this investigation with the use of a morphing-based technique named mesh warping.

  9. Does obesity hinder radiotherapy in endometrial cancer patients? The implementation of new techniques in adjuvant radiotherapy – focus on obese patients

    PubMed Central

    Moszyńska-Zielińska, Małgorzata; Chałubińska-Fendler, Justyna; Żytko, Leszek; Bigos, Ewelina; Fijuth, Jacek

    2014-01-01

    The increasing incidence of obesity in Poland and its relation to endometrioid endometrial cancer (EEC) is resulting in the increasing necessity of treating obese women. Treatment of an overweight patient with EEC may impede not only the surgical procedures but also radiotherapy, especially external beam radiotherapy (EBRT). The problems arise both during treatment planning and when delivering each fraction due to the difficulty of positioning such a patient – it implies the danger of underdosing targets and overdosing organs at risk. Willingness to use dynamic techniques in radiation oncology has increased for patients with EEC, even those who are obese. During EBRT careful daily verification is necessary for both safety and treatment accuracy. The most accurate method of verification is cone beam computed tomography (CBCT) with soft tissue assessment, although it is time consuming and often requires a radiation oncologist. In order to improve the quality of such treatment, the authors present the practical aspects of planning and treatment itself by means of dynamic techniques in EBRT. The authors indicate the advantages and disadvantages of different types of on-board imaging (OBI) verification images. Considering the scanty amount of literature in this field, it is necessary to conduct further research in order to highlight proper planning and treatment of obese endometrial cancer patients. The review of the literature shows that all centres that wish to use EBRT for gynaecological tumours should develop their own protocols on qualification, planning the treatment and methods of verifying the patients’ positioning. PMID:26327837

  10. Anatomic and Pathologic Variability During Radiotherapy for a Hybrid Active Breath-Hold Gating Technique

    SciTech Connect

    Glide-Hurst, Carri K.; Gopan, Ellen; Hugo, Geoffrey D.

    2010-07-01

    Purpose: To evaluate intra- and interfraction variability of tumor and lung volume and position using a hybrid active breath-hold gating technique. Methods and Materials: A total of 159 repeat normal inspiration active breath-hold CTs were acquired weekly during radiotherapy for 9 lung cancer patients (12-21 scans per patient). A physician delineated the gross tumor volume (GTV), lungs, and spinal cord on the first breath-hold CT, and contours were propagated semiautomatically. Intra- and interfraction variability of tumor and lung position and volume were evaluated. Tumor centroid and border variability were quantified. Results: On average, intrafraction variability of lung and GTV centroid position was <2.0 mm. Interfraction population variability was 3.6-6.7 mm (systematic) and 3.1-3.9 mm (random) for the GTV centroid and 1.0-3.3 mm (systematic) and 1.5-2.6 mm (random) for the lungs. Tumor volume regressed 44.6% {+-} 23.2%. Gross tumor volume border variability was patient specific and demonstrated anisotropic shape change in some subjects. Interfraction GTV positional variability was associated with tumor volume regression and contralateral lung volume (p < 0.05). Inter-breath-hold reproducibility was unaffected by time point in the treatment course (p > 0.1). Increases in free-breathing tidal volume were associated with increases in breath-hold ipsilateral lung volume (p < 0.05). Conclusions: The breath-hold technique was reproducible within 2 mm during each fraction. Interfraction variability of GTV position and shape was substantial because of tumor volume and breath-hold lung volume change during therapy. These results support the feasibility of a hybrid breath-hold gating technique and suggest that online image guidance would be beneficial.

  11. Hippocampal-Sparing Whole-Brain Radiotherapy: A 'How-To' Technique Using Helical Tomotherapy and Linear Accelerator-Based Intensity-Modulated Radiotherapy

    SciTech Connect

    Gondi, Vinai; Tolakanahalli, Ranjini; Mehta, Minesh P.; Tewatia, Dinesh; Rowley, Howard; Kuo, John S.; Khuntia, Deepak; Tome, Wolfgang A.

    2010-11-15

    Purpose: Sparing the hippocampus during cranial irradiation poses important technical challenges with respect to contouring and treatment planning. Herein we report our preliminary experience with whole-brain radiotherapy using hippocampal sparing for patients with brain metastases. Methods and Materials: Five anonymous patients previously treated with whole-brain radiotherapy with hippocampal sparing were reviewed. The hippocampus was contoured, and hippocampal avoidance regions were created using a 5-mm volumetric expansion around the hippocampus. Helical tomotherapy and linear accelerator (LINAC)-based intensity-modulated radiotherapy (IMRT) treatment plans were generated for a prescription dose of 30 Gy in 10 fractions. Results: On average, the hippocampal avoidance volume was 3.3 cm{sup 3}, occupying 2.1% of the whole-brain planned target volume. Helical tomotherapy spared the hippocampus, with a median dose of 5.5 Gy and maximum dose of 12.8 Gy. LINAC-based IMRT spared the hippocampus, with a median dose of 7.8 Gy and maximum dose of 15.3 Gy. On a per-fraction basis, mean dose to the hippocampus (normalized to 2-Gy fractions) was reduced by 87% to 0.49 Gy{sub 2} using helical tomotherapy and by 81% to 0.73 Gy{sub 2} using LINAC-based IMRT. Target coverage and homogeneity was acceptable with both IMRT modalities, with differences largely attributed to more rapid dose fall-off with helical tomotherapy. Conclusion: Modern IMRT techniques allow for sparing of the hippocampus with acceptable target coverage and homogeneity. Based on compelling preclinical evidence, a Phase II cooperative group trial has been developed to test the postulated neurocognitive benefit.

  12. Image data-handling techniques for precise velocity measurements of atmospheric inhomogeneities.

    PubMed

    Mitev, V A; Sokolinov, G I

    1995-04-10

    Two techniques for measuring the velocity of inhomogeneities drifting in the atmosphere by the capturing and processing of their images are suggested. Properly selected data records of imaged clouds are used for building time variations of in-plane moving dots, related to different parts of the area of measurement and also corresponding to the image-detector pixel resolution. The precision in obtaining the velocity is provided by adjustment of the time between two successive image registrations.

  13. Effect of bite tray impression technique on relocation accuracy in frameless stereotactic radiotherapy

    SciTech Connect

    Herbert, Clare E.; Ebert, Martin A.; Barclay, D.; Whittall, David S.; Joseph, David J.; Harper, Chris S.; Spry, Nigel A

    2003-03-31

    A previously developed method for achieving patient relocation in fractionated stereotactic radiotherapy (attachment of an infrared fiducial system to a bite tray) relies on the integrity of a bite tray system that incorporates moulding to the patient's upper dentition. Reproducible and accurate patient positioning requires stability of the bite tray and mould during the full treatment process, both during the time the bite tray is inserted in the patient's mouth, and between separate bite tray insertions. The optimum construction method for a stable reproducible tray has not been sufficiently investigated. We undertook a study to identify factors which might influence the integrity of the hard palate bite tray system. Reprosil Fast Set Putty was used to construct 3 impression conditions; teeth only; teeth and alveolar sulcus; and teeth, alveolar sulcus, and the hard palate. Reproducibility was assessed by volunteers inserting the impressions multiple times and recording the locations of 8 standard reference points. Our results showed the optimal impression technique (i.e., the one that led to the smallest ranges in positional and rotational errors) was that which incorporated the teeth, alveolar sulcus, and hard palate.

  14. Precise Heat Control: What Every Scientist Needs to Know About Pyrolytic Techniques to Solve Real Problems

    NASA Technical Reports Server (NTRS)

    Devivar, Rodrigo

    2014-01-01

    The performance of a material is greatly influenced by its thermal and chemical properties. Analytical pyrolysis, when coupled to a GC-MS system, is a powerful technique that can unlock the thermal and chemical properties of almost any substance and provide vital information. At NASA, we depend on precise thermal analysis instrumentation for understanding aerospace travel. Our analytical techniques allow us to test materials in the laboratory prior to an actual field test; whether the field test is miles up in the sky or miles underground, the properties of any involved material must be fully studied and understood in the laboratory.

  15. Technical advances in external radiotherapy for hepatocellular carcinoma

    PubMed Central

    Park, Shin-Hyung; Kim, Jae-Chul; Kang, Min Kyu

    2016-01-01

    Radiotherapy techniques have substantially improved in the last two decades. After the introduction of 3-dimensional conformal radiotherapy, radiotherapy has been increasingly used for the treatment of hepatocellular carcinoma (HCC). Currently, more advanced techniques, including intensity-modulated radiotherapy (IMRT), stereotactic ablative body radiotherapy (SABR), and charged particle therapy, are used for the treatment of HCC. IMRT can escalate the tumor dose while sparing the normal tissue even though the tumor is large or located near critical organs. SABR can deliver a very high radiation dose to small HCCs in a few fractions, leading to high local control rates of 84%-100%. Various advanced imaging modalities are used for radiotherapy planning and delivery to improve the precision of radiotherapy. These advanced techniques enable the delivery of high dose radiotherapy for early to advanced HCCs without increasing the radiation-induced toxicities. However, as there have been no effective tools for the prediction of the response to radiotherapy or recurrences within or outside the radiation field, future studies should focus on selecting the patients who will benefit from radiotherapy. PMID:27621577

  16. Technical advances in external radiotherapy for hepatocellular carcinoma

    PubMed Central

    Park, Shin-Hyung; Kim, Jae-Chul; Kang, Min Kyu

    2016-01-01

    Radiotherapy techniques have substantially improved in the last two decades. After the introduction of 3-dimensional conformal radiotherapy, radiotherapy has been increasingly used for the treatment of hepatocellular carcinoma (HCC). Currently, more advanced techniques, including intensity-modulated radiotherapy (IMRT), stereotactic ablative body radiotherapy (SABR), and charged particle therapy, are used for the treatment of HCC. IMRT can escalate the tumor dose while sparing the normal tissue even though the tumor is large or located near critical organs. SABR can deliver a very high radiation dose to small HCCs in a few fractions, leading to high local control rates of 84%-100%. Various advanced imaging modalities are used for radiotherapy planning and delivery to improve the precision of radiotherapy. These advanced techniques enable the delivery of high dose radiotherapy for early to advanced HCCs without increasing the radiation-induced toxicities. However, as there have been no effective tools for the prediction of the response to radiotherapy or recurrences within or outside the radiation field, future studies should focus on selecting the patients who will benefit from radiotherapy.

  17. Technical advances in external radiotherapy for hepatocellular carcinoma.

    PubMed

    Park, Shin-Hyung; Kim, Jae-Chul; Kang, Min Kyu

    2016-08-28

    Radiotherapy techniques have substantially improved in the last two decades. After the introduction of 3-dimensional conformal radiotherapy, radiotherapy has been increasingly used for the treatment of hepatocellular carcinoma (HCC). Currently, more advanced techniques, including intensity-modulated radiotherapy (IMRT), stereotactic ablative body radiotherapy (SABR), and charged particle therapy, are used for the treatment of HCC. IMRT can escalate the tumor dose while sparing the normal tissue even though the tumor is large or located near critical organs. SABR can deliver a very high radiation dose to small HCCs in a few fractions, leading to high local control rates of 84%-100%. Various advanced imaging modalities are used for radiotherapy planning and delivery to improve the precision of radiotherapy. These advanced techniques enable the delivery of high dose radiotherapy for early to advanced HCCs without increasing the radiation-induced toxicities. However, as there have been no effective tools for the prediction of the response to radiotherapy or recurrences within or outside the radiation field, future studies should focus on selecting the patients who will benefit from radiotherapy. PMID:27621577

  18. Influence of Radiotherapy Technique and Dose on Patterns of Failure for Mesothelioma Patients After Extrapleural Pneumonectomy

    SciTech Connect

    Allen, Aaron M. . E-mail: aallen@lroc.harvard.edu; Den, Robert; Wong, Julia S.; Zurakowski, David; Soto, Ricardo; Jaenne, Pasi A.; Zellos, Lambros; Bueno, Raphael; Sugarbaker, David J.; Baldini, Elizabeth H.

    2007-08-01

    Purpose: Extrapleural pneumonectomy (EPP) is an effective treatment of malignant pleural mesothelioma. We compared the outcomes after moderate-dose hemithoracic radiotherapy (MDRT) and high-dose hemithoracic RT (HDRT) after EPP for malignant pleural mesothelioma. Methods and Materials: Between July 1994 and April 2004, 39 patients underwent EPP and adjuvant RT at Dana-Farber Cancer Institute/Brigham and Women's Hospital. Between 1994 and 2002, MDRT, including 30 Gy to the hemithorax, 40 Gy to the mediastinum, and boosts to positive margins or nodes to 54 Gy, was given, generally with concurrent chemotherapy. In 2003, HDRT to 54 Gy with a matched photon/electron technique was given, with sequential chemotherapy. Results: A total of 39 patients underwent RT after EPP. The median age was 59 years (range, 44-77). The histologic type was epithelial in 25 patients (64%) and mixed or sarcomatoid in 14 patients (36%). Of the 39 patients, 24 underwent MDRT and 15 (39%) HDRT. The median follow-up was 23 months (range, 6-71). The median overall survival was 19 months (95% confidence interval, 14-24). The median time to distant failure (DF) and local failure (LF) was 20 months (95% confidence interval, 14-26) and 26 months (95% confidence interval, 16-36), respectively. On univariate and multivariate analyses, only a mixed histologic type was predictive of inferior DF (p <0.006) and overall survival (p <0.004). The RT technique was not predictive of LF, DF, or overall survival. The LF rate was 50% (12 of 24) after MDRT and 27% (4 of 15) after HDRT (p = NS). Four patients who had undergone HDRT were alive and without evidence of disease at the last follow-up. Conclusions: High-dose hemithoracic RT appears to limit in-field LF compared with MDRT. However, DF remains a significant challenge, with one-half of our patients experiencing DF.

  19. High precision calcium isotope analysis using 42Ca-48Ca double-spike TIMS technique

    NASA Astrophysics Data System (ADS)

    Feng, L.; Zhou, L.; Gao, S.; Tong, S. Y.; Zhou, M. L.

    2014-12-01

    Double spike techniques are widely used for determining calcium isotopic compositions of natural samples. The most important factor controlling precision of the double spike technique is the choice of appropriate spike isotope pair, the composition of double spikes and the ratio of spike to sample(CSp/CN). We propose an optimal 42Ca-48Ca double spike protocol which yields the best internal precision for calcium isotopic composition determinations among all kinds of spike pairs and various spike compositions and ratios of spike to sample, as predicted by linear error propagation method. It is suggested to use spike composition of 42Ca/(42Ca+48Ca) = 0.44 mol/mol and CSp/(CN+ CSp)= 0.12mol/mol because it takes both advantages of the largest mass dispersion between 42Ca and 48Ca (14%) and lowest spike cost. Spiked samples were purified by pass through homemade micro-column filled with Ca special resin. K, Ti and other interference elements were completely separated, while 100% calcium was recovered with negligible blank. Data collection includes integration time, idle time, focus and peakcenter frequency, which were all carefully designed for the highest internal precision and lowest analysis time. All beams were automatically measured in a sequence by Triton TIMS so as to eliminate difference of analytical conditions between samples and standards, and also to increase the analytical throughputs. The typical internal precision of 100 duty cycles for one beam is 0.012‒0.015 ‰ (2δSEM), which agrees well with the predicted internal precision of 0.0124 ‰ (2δSEM). Our methods improve internal precisions by a factor of 2‒10 compared to previous methods of determination of calcium isotopic compositions by double spike TIMS. We analyzed NIST SRM 915a, NIST SRM 915b and Pacific Seawater as well as interspersed geological samples during two months. The obtained average δ44/40Ca (all relative to NIST SRM 915a) is 0.02 ± 0.02 ‰ (n=28), 0.72±0.04 ‰ (n=10) and 1

  20. Forward-planning intensity-modulated radiotherapy technique for prostate cancer.

    PubMed

    Metwaly, Mohamed; Awaad, Awaad Mousa; El-Sayed, El-Sayed Mahmoud; Sallam, Abdel Sattar Mohamed

    2007-11-05

    In this study, we present an intensity-modulated radiotherapy technique based on forward planning dose calculations to provide a concave dose distribution to the prostate and seminal vesicles by means of modified dynamic arc therapy (M-DAT). Dynamic arcs (350 degrees) conforming to the beam's eye view of the prostate and seminal vesicles while shielding the rectum, combined with two lateral oblique conformal fields (15 degrees with respect to laterals) fitting the prostate only,were applied to deliver doses of 78 Gy and 61.23 Gy in 39 fractions to the prostate and seminal vesicles respectively. Dynamic wedges (45 degrees of thick end, anteriorly oriented) were used with conformal beams to adjust the dose homogeneity to the prostate, although in some cases, hard wedges (30 degrees of thick part,inferiorly oriented) were used with arcs to adjust the dose coverage to the seminal vesicles. The M-DAT was applied to 10 patients in supine and 10 patients in prone positioning to determine the proper patient positioning for optimum protection of the rectum. The M-DAT was compared with the simplified intensity-modulated arc therapy (SIMAT) technique, composed of three phases of bilateral dynamic arcs. The mean rectal dose in M-DAT for prone patients was 22.5 +/- 5.1 Gy; in M-DAT and SIMAT for supine patients, it was 30.2 +/- 5.1 Gy and 39.4 +/- 6.0 Gy respectively. The doses to 15%, 25%, 35%, and 50% of the rectum volume in M-DAT for prone patients were 44.5 +/- 10.2 Gy, 33.0 +/- 8.2 Gy, 25.3 +/- 6.4 Gy, and 16.3 +/- 5.6 Gy respectively. These values were lower than those in M-DAT and in SIMAT for supine patients by 7.7%, 18.2%, 22.4%, and 28.5% and by 25.0%, 32.1%, 34.9%, and 41.9% of the prescribed dose (78 Gy) respectively. Ion chamber measurements showed good agreement of the calculated and measured isocentric dose (maximum deviation of 3.5%). Accuracy of the dose distribution calculation was evaluated by film dosimetry using a gamma index, allowing 3% dose variation and

  1. Fast-response, high-precision carbon monoxide sensor using a tunable diode laser absorption technique

    NASA Technical Reports Server (NTRS)

    Sachse, Glen W.; Hill, Gerald F.; Wade, Larry O.; Perry, Murray G.

    1987-01-01

    A tunable diode laser instrument, denoted as DACOM (Differential Absorption CO Measurement), has been developed to meet the fast-response, high-precision CO measurement needs of the GTE (Global Tropospheric Experiment) program. Under the GTE program, DACOM participated in the three field missions of CITE 1 (Chemical Instrumentation Test and Evaluation 1), a project involving the intercomparison of trace gas measurement techniques. DACOM performance, including analyses of measurement error sources, is discussed for the ground-based mission at Wallops Island, VA (summer 1983), and two missions on the NASA CV-990 (fall 1983 and spring 1984). Examples of fast-response (about 1 s), high-precision (+ or - 1 part per billion by volume, + or - 1.5 percent of reading) airborne data are included to illustrate the capability of this instrument.

  2. A precision technique for mounting scintillating fiber ribbons for charged particle tracking

    SciTech Connect

    Carabello, S.; Gau, D.; Howell, B.; Koltick, D.; Pischalnikov, Y.; Michael, D.

    1996-06-01

    The authors have undertaken a research program to develop a Scintillating Fiber charged particle Tracking (SFT) detector for the D0 upgrade experiment at FNAL. They have developed a construction method utilizing scintillating fibers first accurately formed into ribbons, then precisely locating these ribbons on the inside and outside of a lightweight cylindrical base. A Coordinate Measuring Machine (CMM) is used to control each step of the ribbon mounting procedure. Ribbons 2m long, containing 255 fibers each have been placed on composite structures with accuracy {approximately}20 {micro}m. The technique for producing highly accurate fiber ribbons and the method of precision placement of ribbons are presented. The spatial calibration of a charged particle tracker using the CMM measurements are discussed.

  3. EDITORIAL: International Workshop on Monte Carlo Techniques in Radiotherapy Delivery and Verification

    NASA Astrophysics Data System (ADS)

    Verhaegen, Frank; Seuntjens, Jan

    2008-03-01

    Monte Carlo particle transport techniques offer exciting tools for radiotherapy research, where they play an increasingly important role. Topics of research related to clinical applications range from treatment planning, motion and registration studies, brachytherapy, verification imaging and dosimetry. The International Workshop on Monte Carlo Techniques in Radiotherapy Delivery and Verification took place in a hotel in Montreal in French Canada, from 29 May-1 June 2007, and was the third workshop to be held on a related topic, which now seems to have become a tri-annual event. About one hundred workers from many different countries participated in the four-day meeting. Seventeen experts in the field were invited to review topics and present their latest work. About half of the audience was made up by young graduate students. In a very full program, 57 papers were presented and 10 posters were on display during most of the meeting. On the evening of the third day a boat trip around the island of Montreal allowed participants to enjoy the city views, and to sample the local cuisine. The topics covered at the workshop included the latest developments in the most popular Monte Carlo transport algorithms, fast Monte Carlo, statistical issues, source modeling, MC treatment planning, modeling of imaging devices for treatment verification, registration and deformation of images and a sizeable number of contributions on brachytherapy. In this volume you will find 27 short papers resulting from the workshop on a variety of topics, some of them on very new stuff such as graphics processing units for fast computing, PET modeling, dual-energy CT, calculations in dynamic phantoms, tomotherapy devices, . . . . We acknowledge the financial support of the National Cancer Institute of Canada, the Institute of Cancer Research of the Canadian Institutes of Health Research, the Association Québécoise des Physicien(ne)s Médicaux Clinique, the Institute of Physics, and Medical

  4. Investigation of pulsed low dose rate radiotherapy using dynamic arc delivery techniques

    NASA Astrophysics Data System (ADS)

    Ma, C.-M.; Lin, M. H.; Dai, X. F.; Koren, Sion; Klayton, T.; Wang, L.; Li, J. S.; Chen, L.; Price, R. A.

    2012-07-01

    There has been no consensus standard of care to treat recurrent cancer patients who have previously been irradiated. Pulsed low dose rate (PLDR) external beam radiotherapy has the potential to reduce normal tissue toxicities while still providing significant tumor control for recurrent cancers. This work investigates the dosimetry feasibility of PLDR treatment using dynamic arc delivery techniques. Five treatment sites were investigated in this study including breast, pancreas, prostate, head and neck, and lung. Dynamic arc plans were generated using the Varian Eclipse system and the RapidArc delivery technique with 6 and 10 MV photon beams. Each RapidArc plan consisted of two full arcs and the plan was delivered five times to achieve a daily dose of 200 cGy. The dosimetry requirement was to deliver approximately 20 cGy/arc with a 3 min interval to achieve an effective dose rate of 6.7 cGy min-1. Monte Carlo simulations were performed to calculate the actual dose delivered to the planning target volume (PTV) per arc taking into account beam attenuation/scattering and intensity modulation. The maximum, minimum and mean doses to the PTV were analyzed together with the dose volume histograms and isodose distributions. The dose delivery for the five plans was validated using solid water phantoms inserted with an ionization chamber and film, and a cylindrical detector array. Two intensity-modulated arcs were used to efficiently deliver the PLDR plans that provided conformal dose distributions for treating complex recurrent cancers. For the five treatment sites, the mean PTV dose ranged from 18.9 to 22.6 cGy/arc. For breast, the minimum and maximum PTV dose was 8.3 and 35.2 cGy/arc, respectively. The PTV dose varied between 12.9 and 27.5 cGy/arc for pancreas, 12.6 and 28.3 cGy/arc for prostate, 12.1 and 30.4 cGy/arc for H&N, and 16.2 and 27.6 cGy/arc for lung. Advanced radiation therapy can provide superior target coverage and normal tissue sparing for PLDR

  5. Precise Satellite Navigation Combining Kinematic and Dynamic Techniques in Support of Remote Sensing From Space

    NASA Astrophysics Data System (ADS)

    Colombo, O. L.; Rowlands, D. D.; Chinn, D.; Poulose, S.

    2002-05-01

    A precise orbit determination method combining kinematic and dynamic techniques has been used to analyze two full days of on-board GPS receiver data from TOPEX and from a set of 20 IGS ground sites around the world. The resulting orbits agree, to better than 4 cm rms in height and a total of 10 cm rms in three-dimensions, with the corresponding Goddard Precise Orbit Estimates (POE). These POE, produced by NASA for the TOPEX Geophysical Data Records, are based only on laser and DORIS Doppler tracking data, so they can be used as a totally independent control for GPS-based results. There are two main steps:(1) A preliminary 24-hour kinematic trajectory, precise to a few meters, is obtained from double-differenced pseudo-range data. A one-day orbit is fitted to this trajectory, using the classical dynamic approach (in this case, as implemented in the Goddard SFC program GEODYN). (2) The fitted orbit is used to help correct cycle-slips in the carrier phase data. The corrected phase data, alone, are used to get a more precise kinematic trajectory. A new dynamic orbit fit is made to this trajectory to obtain the final, precise orbit. For the dynamic orbit determination, the forces acting on the satellite have been modeled, as for the POE, with a fixed box-wing model for the effect of solar radiation and drag on the satellite, and the gravitational acceleration with the JGM3 gravity field model, developed for TOPEX. In addition, a few force parameters were estimated, along with the orbit initial conditions: one drag scale factor every four hours, and one daily set of four empirical parameters representing unmodeled and mismodeled forces, for a total of 16 unknowns in each 24-hour solution. This approach combines the high precision of the dynamic method with the efficient data processing of the kinematic method, and has been implemented at Goddard using only pre-existing software. In general, this method could be used in support of remote sensing from space, when it is

  6. Tests of a Two-Photon Technique for Measuring Polarization Mode Dispersion With Subfemtosecond Precision

    PubMed Central

    Dauler, Eric; Jaeger, Gregg; Muller, Antoine; Migdall, A.; Sergienko, A.

    1999-01-01

    An investigation is made of a recently introduced quantum interferometric method capable of measuring polarization mode dispersion (PMD) on sub-femtosecond scales, without the usual interferometric stability problems associated with such small time scales. The technique makes use of the extreme temporal correlation of orthogonally polarized pairs of photons produced via type-II phase-matched spontaneous parametric down-conversion. When sent into a simple polarization interferometer these photon pairs produce a sharp interference feature seen in the coincidence rate. The PMD of a given sample is determined from the shift of that interference feature as the sample is inserted into the system. The stability and resolution of this technique is shown to be below 0.2 fs. We explore how this precision is improved by reducing the length of the down-conversion crystal and increasing the spectral band pass of the system.

  7. Dosimetric comparison between intensity-modulated radiotherapy and standard wedged tangential technique for whole-breast radiotherapy in Asian women with relatively small breast volumes.

    PubMed

    Tsuchiya, Kazuhiko; Kinoshita, Rumiko; Shimizu, Shinichi; Nishioka, Kentaro; Harada, Keiichi; Nishikawa, Noboru; Suzuki, Ryusuke; Shirato, Hiroki

    2014-01-01

    We sought to investigate whether intensity-modulated radiotherapy (IMRT) has a dosimetric advantage compared to the standard wedged tangential technique (SWT) for whole-breast radiotherapy (WBRT) in Asian women with relatively small breast volume. Computed tomography images of 25 Asian patients with early-stage breast cancer (right 15, left 10) used for WBRT planning were examined. After contouring the target volumes and bilateral lungs and, for left-side treatment, the heart, 4 plans were made for each patient: namely, SWT, tangential-field IMRT (T-IMRT), 3-field IMRT (3F-IMRT), and 4-field IMRT (4F-IMRT). The prescribed dose was 5000 cGy. The median planning target volume (PTV) for WBRT was 552.6 cc (range 288.8-1518.4 cc). Compared to SWT, (1) T-IMRT achieved significant improvement for dose homogeneity in the PTV (p < 0.001) and the dose received by 2% (D2) of the PTV (p < 0.001). T-IMRT also reduced the bilateral lung mean dose (p < 0.001) and the ipsilateral lung volume which received more than 20 Gy (V20) (p = 0.01). (2) 3F-IMRT resulted in a significant increase in the mean dose to the ipsilateral lung (p < 0.001) and to the contralateral lung (p < 0.001). (3) 4F-IMRT also resulted in a significant increase in the mean dose to the ipsilateral lung (p < 0.001) and to the contralateral lung (p < 0.001). Tangential-field IMRT provided an improved dose distribution compared with SWT for WBRT in Asian women with a relatively small breast volume.

  8. Near-real-time regional troposphere models for the GNSS precise point positioning technique

    NASA Astrophysics Data System (ADS)

    Hadas, T.; Kaplon, J.; Bosy, J.; Sierny, J.; Wilgan, K.

    2013-05-01

    The GNSS precise point positioning (PPP) technique requires high quality product (orbits and clocks) application, since their error directly affects the quality of positioning. For real-time purposes it is possible to utilize ultra-rapid precise orbits and clocks which are disseminated through the Internet. In order to eliminate as many unknown parameters as possible, one may introduce external information on zenith troposphere delay (ZTD). It is desirable that the a priori model is accurate and reliable, especially for real-time application. One of the open problems in GNSS positioning is troposphere delay modelling on the basis of ground meteorological observations. Institute of Geodesy and Geoinformatics of Wroclaw University of Environmental and Life Sciences (IGG WUELS) has developed two independent regional troposphere models for the territory of Poland. The first one is estimated in near-real-time regime using GNSS data from a Polish ground-based augmentation system named ASG-EUPOS established by Polish Head Office of Geodesy and Cartography (GUGiK) in 2008. The second one is based on meteorological parameters (temperature, pressure and humidity) gathered from various meteorological networks operating over the area of Poland and surrounding countries. This paper describes the methodology of both model calculation and verification. It also presents results of applying various ZTD models into kinematic PPP in the post-processing mode using Bernese GPS Software. Positioning results were used to assess the quality of the developed models during changing weather conditions. Finally, the impact of model application to simulated real-time PPP on precision, accuracy and convergence time is discussed.

  9. Learning-based computing techniques in geoid modeling for precise height transformation

    NASA Astrophysics Data System (ADS)

    Erol, B.; Erol, S.

    2013-03-01

    Precise determination of local geoid is of particular importance for establishing height control in geodetic GNSS applications, since the classical leveling technique is too laborious. A geoid model can be accurately obtained employing properly distributed benchmarks having GNSS and leveling observations using an appropriate computing algorithm. Besides the classical multivariable polynomial regression equations (MPRE), this study attempts an evaluation of learning based computing algorithms: artificial neural networks (ANNs), adaptive network-based fuzzy inference system (ANFIS) and especially the wavelet neural networks (WNNs) approach in geoid surface approximation. These algorithms were developed parallel to advances in computer technologies and recently have been used for solving complex nonlinear problems of many applications. However, they are rather new in dealing with precise modeling problem of the Earth gravity field. In the scope of the study, these methods were applied to Istanbul GPS Triangulation Network data. The performances of the methods were assessed considering the validation results of the geoid models at the observation points. In conclusion the ANFIS and WNN revealed higher prediction accuracies compared to ANN and MPRE methods. Beside the prediction capabilities, these methods were also compared and discussed from the practical point of view in conclusions.

  10. Precise plant breeding using new genome editing techniques: opportunities, safety and regulation in the EU.

    PubMed

    Hartung, Frank; Schiemann, Joachim

    2014-06-01

    Several new plant breeding techniques (NPBTs) have been developed during the last decade, and make it possible to precisely perform genome modifications in plants. The major problem, other than technical aspects, is the vagueness of regulation concerning these new techniques. Since the definition of eight NPBTs by a European expert group in 2007, there has been an ongoing debate on whether the resulting plants and their products are covered by GMO legislation. Obviously, cover by GMO legislation would severely hamper the use of NPBT, because genetically modified plants must pass a costly and time-consuming GMO approval procedure in the EU. In this review, we compare some of the NPBTs defined by the EU expert group with classical breeding techniques and conventional transgenic plants. The list of NPBTs may be shortened (or extended) during the international discussion process initiated by the Organization for Economic Co-operation and Development. From the scientific point of view, it may be argued that plants developed by NPBTs are often indistinguishable from classically bred plants and are not expected to possess higher risks for health and the environment. In light of the debate on the future regulation of NPBTs and the accumulated evidence on the biosafety of genetically modified plants that have been commercialized and risk-assessed worldwide, it may be suggested that plants modified by crop genetic improvement technologies, including genetic modification, NPBTs or other future techniques, should be evaluated according to the new trait and the resulting end product rather than the technique used to create the new plant variety.

  11. CRESTAL SINUS LIFT USING A FLUIDO-DYNAMIC COMPUTER GUIDED PRECISE AND ATRAUMATIC TECHNIQUE.

    PubMed

    Lopez, M A; Andreasi Bassi, M; Confalone, L; Lico, S; Carinci, F

    2015-01-01

    One of the most frequent reasons for failure during the maxillary sinus floor lift operation is connected to the possibility of a rupture of the Schneiderian membrane which, if lacerated, cannot perform the function of graft containment. In order to reduce the incidence of complications it is necessary to cut the hard tissue with extreme accuracy and as little trauma as possible, while saving the soft tissue. The precision of pre-operation measures obtained through endoral x-rays, dental-scans and cone-beam CT allows us to approach and cut with delicacy the sinus cortical floor. The recent development of computer guided surgery gives the possibility of planning the operation, which reduces the risk of failure. The cortical of the maxillary sinus is reduced through the use of calibrated burs and a profiler to obtain a hole that enables both access to the maxillary sinus and, subsequently, the lifting of the Schneiderian membrane. Each stage of the operation is monitored and all the devices used pass through a custom-made template, which acts as a surgical guide. The sinus was filled using fluid biomaterial distributed through a dispenser, which had been created specifically for this technique. Due to the reduction in trauma and the fact that the process is much less invasive, this technique could be a valid alternative to the techniques known and carried out to date. Work time is reduced to less than 3 minutes in the cortical thinning operation and percussive trauma is avoided. PMID:26511183

  12. Lung cancer. Radiotherapy in lung cancer: Actual methods and future trends.

    PubMed

    Maciejczyk, Adam; Skrzypczyńska, Iga; Janiszewska, Marzena

    2014-11-01

    This survey is performed to update knowledge about methods and trends in lung cancer radiotherapy. A significant development has been noticed in radiotherapeutic techniques, but also in the identification of clinical prognostic factors. The improvement in the therapeutic line includes: application of the four-dimensional computer tomography (4DCT), taking advantage of positron emission tomography (PET-CT), designing of new computational algorithms, allowing more precise irradiation planning, development of treatment precision verification systems and introducing IMRT techniques in chest radiotherapy. The treatment outcomes have improved with high dose radiotherapy, but other fractionation alternations have been investigated as well.

  13. Respiratory motion prediction for tumor following radiotherapy by using time-variant seasonal autoregressive techniques.

    PubMed

    Ichiji, Kei; Homma, Noriyasu; Sakai, Masao; Takai, Yoshihiro; Narita, Yuichiro; Abe, Mokoto; Sugita, Norihiro; Yoshizawa, Makoto

    2012-01-01

    We develop a new prediction method of respiratory motion for accurate dynamic radiotherapy, called tumor following radiotherapy. The method is based on a time-variant seasonal autoregressive (TVSAR) model and extended to further capture time-variant and complex nature of various respiratory patterns. The extended TVSAR can represent not only the conventional quasi-periodical nature, but also the residual components, which cannot be expressed by the quasi-periodical model. Then, the residuals are adaptively predicted by using another autoregressive model. The proposed method was tested on 105 clinical data sets of tumor motion. The average errors were 1.28 ± 0.87 mm and 1.75 ± 1.13 mm for 0.5 s and 1.0 s ahead prediction, respectively. The results demonstrate that the proposed method can outperform the state-of-the-art prediction methods. PMID:23367303

  14. Stereotactic Body Radiotherapy as Monotherapy or Post-External Beam Radiotherapy Boost for Prostate Cancer: Technique, Early Toxicity, and PSA Response

    SciTech Connect

    Jabbari, Siavash; Weinberg, Vivian K.; Kaprealian, Tania; Hsu, I-Chow; Ma Lijun; Chuang, Cynthia; Descovich, Martina; Shiao, Stephen; Shinohara, Katsuto; Roach, Mack; Gottschalk, Alexander R.

    2012-01-01

    Purpose: High dose rate (HDR) brachytherapy has been established as an excellent monotherapy or after external-beam radiotherapy (EBRT) boost treatment for prostate cancer (PCa). Recently, dosimetric studies have demonstrated the potential for achieving similar dosimetry with stereotactic body radiotherapy (SBRT) compared with HDR brachytherapy. Here, we report our technique, PSA nadir, and acute and late toxicity with SBRT as monotherapy and post-EBRT boost for PCa using HDR brachytherapy fractionation. Patients and Methods: To date, 38 patients have been treated with SBRT at University of California-San Francisco with a minimum follow-up of 12 months. Twenty of 38 patients were treated with SBRT monotherapy (9.5 Gy Multiplication-Sign 4 fractions), and 18 were treated with SBRT boost (9.5 Gy Multiplication-Sign 2 fractions) post-EBRT and androgen deprivation therapy. PSA nadir to date for 44 HDR brachytherapy boost patients with disease characteristics similar to the SBRT boost cohort was also analyzed as a descriptive comparison. Results: SBRT was well tolerated. With a median follow-up of 18.3 months (range, 12.6-43.5), 42% and 11% of patients had acute Grade 2 gastrourinary and gastrointestinal toxicity, respectively, with no Grade 3 or higher acute toxicity to date. Two patients experienced late Grade 3 GU toxicity. All patients are without evidence of biochemical or clinical progression to date, and favorably low PSA nadirs have been observed with a current median PSA nadir of 0.35 ng/mL (range, <0.01-2.1) for all patients (0.47 ng/mL, range, 0.2-2.1 for the monotherapy cohort; 0.10 ng/mL, range, 0.01-0.5 for the boost cohort). With a median follow-up of 48.6 months (range, 16.4-87.8), the comparable HDR brachytherapy boost cohort has achieved a median PSA nadir of 0.09 ng/mL (range, 0.0-3.3). Conclusions: Early results with SBRT monotherapy and post-EBRT boost for PCa demonstrate acceptable PSA response and minimal toxicity. PSA nadir with SBRT boost

  15. Technique for needle-free drop deposition: Pathway for precise characterization of superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Waghmare, Prashant R.; Das, Siddhartha; Mitra, Sushanta K.

    2013-11-01

    The most important step for characterizing the wettability of a surface is to deposit a water drop on the surface and measure the contact angle made by the drop on the surface. This innocuously simple process relies on bringing a needle holding the water drop in close proximity to the surface, with a ``desire'' that the drop would spontaneously detach from the needle and get deposited on the surface. Problem occurs when the surface is superhydrophobic, expressing an ``unwillingness'' to ``see'' the water drop in preference to a much more ``water-loving'' needle surface. There exists no solution to this problem, and surfaces are invariably characterized where the drop-needle assembly contacts the superhydrophobic surface. Such a configuration will always lead to an incorrect estimation of the contact angle, as there is no certainty of the existence of the drop-surface contact. Here we shall discuss our recently invented technique, where we solve this long-standing problem-we indeed ensure a needle-free drop in contact with the superhydrophobic surface, thereby ascertaining precise determination of the contact angle. The successful application of the technique will address a major headache of the big research community interested in science and technology of superhydrophobic surfaces.

  16. Different Techniques For Producing Precision Holes (>20 mm) In Hardened Steel—Comparative Results

    NASA Astrophysics Data System (ADS)

    Coelho, R. T.; Tanikawa, S. T.

    2009-11-01

    High speed machining (HSM), or high performance machining, has been one of the most recent technological advances. When applied to milling operations, using adequate machines, CAM programs and tooling, it allows cutting hardened steels, which was not feasible just a couple of years ago. The use of very stiff and precision machines has created the possibilities of machining holes in hardened steels, such as AISI H13 with 48-50 HRC, using helical interpolations, for example. Such process is particularly useful for holes with diameter bigger than normal solid carbide drills commercially available, around 20 mm, or higher. Such holes may need narrow tolerances, fine surface finishing, which can be obtained just by end milling operations. The present work compares some of the strategies used to obtain such holes by end milling, and also some techniques employed to finish them, by milling, boring and also by fine grinding at the same machine. Results indicate that it is possible to obtain holes with less than 0.36 m in circularity, 7.41 m in cylindricity and 0.12 m in surface roughness Ra. Additionally, there is less possibilities of obtaining heat affected layers when using such technique.

  17. Precision, high dose radiotherapy. II. Helium ion treatment of tumors adjacent to critical central nervous system structures

    SciTech Connect

    Saunders, W.M.; Chen, G.T.Y.; Austin-Seymour, M.; Castro, J.R.; Collier, J.M.; Gauger, G.; Gutin, P.; Phillips, T.L.; Pitluck, S.; Walton, R.E.

    1985-07-01

    In this paper, the authors present a technique for treating relatively small, low grade tumors located very close to critical, radiation sensitive central nervous system structures such as the spinal cord and the brain stem. A beam of helium ions is used to irradiate the tumor. The nearby normal tissues are protected by exploiting the superb dose localization properties of this beam, particularly its well defined and controllable range in tissue, the increased dose deposited near the end of this range (i.e., the Bragg peak), the sharp decrease in dose beyond the Bragg peak, and the sharp penumbra of the beam. To illustrate the technique, the authors present a group of 19 patients treated for chordomas, meningiomas and low grade chondrosarcomas in the base of the skull or spinal column. They have been able to deliver high, uniform doses to the target volumes, while keeping the doses to the nearby critical tissues below the threshold for radiation damage. Follow-up on this group of patients is short, averaging 22 months (2 to 75 months). Currently, 15 patients have local control of their tumor. Two major complications, a spinal cord transsection and optic tract damage, are discussed in detail. Their treatment policies have been modified to minimize the risk of these complications in the future, and they are continuing to use this method to treat such patients.

  18. A Novel Method of Island Blocking in Whole Abdominal Radiotherapy Using a Modified Electronic Tissue Compensation Technique

    SciTech Connect

    Goyal, Sharad

    2010-10-01

    Traditionally, large fields requiring island blocking used external beam radiation therapy (EBRT) with Cerrobend blocks to limit dose to the critical structures. It is laborious to construct blocks and use them on a daily basis. We present a novel technique for island blocking using a modified electronic tissue compensation (MECOMP) technique. Five patients treated at our institution were selected for this study. The study compared two planning techniques: a novel MECOMP and a conventional EBRT technique. Conventional fields were defined using anterior-posterior and posterior-anterior (PA) fields. The kidneys were contoured and an aperture cut-out block was fitted to the OAR with a 1-cm margin (OAR{sub CTV}) and placed in the PA field. A dynamic multileaf collimation (DMLC) plan with ECOMP was developed using identical beam and blocking strategy; this tissue compensation-based fluence map was modified to deliver a 'zero' dose to the CTV{sub OAR} from the PA field. There were no significant differences in the mean, maximum, and minimum doses to the right or left kidney between the two methods. The mean, maximum, and minimum doses to the peritoneal cavity were also not significantly different. The number of monitor units (MUs) required was increased using the MECOMP (273 vs. 1152, p < 0.01). The MECOMP is effectively able to deliver DMLC-based radiotherapy, even with island blocks present. This novel use of MECOMP for whole abdominal radiotherapy should substantially reduce the labor, daily treatment time, and treatment-related errors through the elimination of cerrobend blocks.

  19. Application of Geo-Spatial Techniques for Precise Demarcation of Village/Panchayat Boundaries

    NASA Astrophysics Data System (ADS)

    Rao, S. S.; Banu, V.; Tiwari, A.; Bahuguna, S.; Uniyal, S.; Chavan, S. B.; Murthy, M. V. R.; Arya, V. S.; Nagaraja, R.; Sharma, J. R.

    2014-11-01

    In order to achieve the overall progress of the country with active and effective participation of all sections of society, the 12th Five Year Plan (FYP) would bring Panchayats centre-stage and achieve the inclusive growth agenda through inclusive governance. The concept of 'democratic decentralization' in the form of a three-tier administration was introduced in the name of "Panchayat Raj". Horizontally, it is a network of village Panchayats. Vertically, it is an organic growth of Panchayats rising up to national level. The Ministry of Panchayati Raj has three broad agenda: Empowerment, Enablement and Accountability. Space based Information Support for Decentralized Planning (SIS-DP) is one of the initiatives taken by Govt. of India with ISRO/DOS for generation and dissemination of spatial information for planning at the grass root level. The boundary layer for villages across different states/district/block is available with line departments. Most of these data exist at a much generalized scale. These boundaries do not overlay exactly with that of ground realities and may not be suitable for accurate analysis in terms of area, shape, position, etc. To deal with this problem, a strategy is adopted, which makes use of High Resolution Satellite Imagery (HRSI) from Indian Remote sensing satellites and cadastral maps at 1:4000 scale integrated with GIS techniques to enhance the accuracy of geo-spatial depiction of Village/Panchayat boundaries. Cadastral maps are used to depict the boundaries of land parcels and other features at the village level. These maps are registered to ortho products of HRSI using Ground Control Points. The cadastral maps are precisely overlaid on ortho-rectified HRSI and each parcel vertex is tagged with the real-world geographical coordinates. Village boundaries are extracted from the geo-referenced village cadastral maps. These boundaries are fine-tuned by considering under lap and overlap of neighboring villages and a mosaic is generated at

  20. A novel two-step laser ranging technique for a precision test of the theory of gravity

    NASA Technical Reports Server (NTRS)

    Penanen, Konstantin; Chui, Talso

    2003-01-01

    All powered spacecraft experience residual systematic acceleration due to anisotropy of the thermal radiation pressure and fuel leakage. The residual acceleration limits the accuracy of any test of gravity that relies on the precise determination of the spacecraft trajectory. We describe a novel two-step laser ranging technique, which largely eliminates the effects of non-gravity acceleration sources and enables celestial mechanics checks with unprecedented precision.

  1. Experimental Technique for Producing and Recording Precise Particle Impacts on Transparent Window Materials

    NASA Technical Reports Server (NTRS)

    Gray, Perry; Guven, Ibrahim

    2016-01-01

    A new facility for making small particle impacts is being developed at NASA. Current sand/particle impact facilities are an erosion test and do not precisely measure and document the size and velocity of each of the impacting particles. In addition, evidence of individual impacts is often obscured by subsequent impacts. This facility will allow the number, size, and velocity of each particle to be measured and adjusted. It will also be possible to determine which particle produced damage at a given location on the target. The particle size and velocity will be measured by high speed imaging techniques. Information as to the extent of damage and debris from impacts will also be recorded. It will be possible to track these secondary particles, measuring size and velocity. It is anticipated that this additional degree of detail will provide input for erosion models and also help determine the impact physics of the erosion process. Particle impacts will be recorded at 90 degrees to the particle flight path and also from the top looking through the target window material.

  2. Ultra precision machining technique of off-axis optics for coastal water remote sensing

    NASA Astrophysics Data System (ADS)

    Jeon, Min-Woo; Hyun, Sang-Won; Han, Jeong-Yeol; Kim, Geon-Hee

    2015-10-01

    An off-axis optical system can effectively avoid some problems, such as aberrations, shielded area created by the secondary mirror and a narrow field of view (FOV), while an on-axis optical system has the problems. Inspired by the consideration, the off-axis optical system is generally used for hyperspectral sensors and telescopes. However, there are several obstacles limiting the productivity of the off-axis optics in fabrication and measurement processes. In this study, to overcome this weakness, we suggests a new fabrication technique using a customized jig, not separated from the work-piece. A convex aspheric mirror and the off-axis mirror are fabricated by Single Point Diamond Turning Machine (SPDTM) for comparison analysis of surface state. The mirrors are made from aluminum (Al6061-T6) and used for the reflectors of a coastal water remote sensing system. We show fast machining and simple measurement in comparison with traditional off-axis single machining and measurement, provide performance results, such as form accuracy and surface roughness measured by both contact 3D profilometer (UA3P) and non-contact 3D profiler (CCI-Optics). The customized ultra-precision machining process can be effectively used for complex off-axis mirror fabricating.

  3. Precision lifetime measurements of exotic nuclei based on Doppler-shift techniques

    SciTech Connect

    Iwasaki, Hironori

    2013-04-19

    A recent progress in precision lifetime measurements of exotic nuclei at the National Superconducting Cyclotron Laboratory (NSCL), Michigan State University is presented. The Recoil Distance Doppler-shift (RDDS) technique has been applied to nuclear reactions involving intermediate-energy rare isotope (RI) beams, to determine absolute transition strengths between nuclear states model independently from level lifetimes of interest. As such an example, recent lifetime measurements of the first 2{sup +} states in the neutron-rich {sup 62,64,66}Fe isotopes at and around N=40 are introduced. The experiment was performed at the Coupled Cyclotron Facility at NSCL using a unique combination of several experimental instruments; the Segmented Germanium Array (SeGA), the plunger device, and the S800 spectrograph. The reduced E2 transition probabilities B(E2) are determined directly from the measured lifetimes. The observed trend of B(E2) clearly demonstrates that an enhanced collectivity persists in {sup 66}Fe despite the harmonic-oscillator magic number N=40. The present results are also discussed in comparison with the large-scale shell model calculations, pointing to a possible extension of the deformation region beyond N=40.

  4. Accuracy improvement techniques in Precise Point Positioning method using multiple GNSS constellations

    NASA Astrophysics Data System (ADS)

    Vasileios Psychas, Dimitrios; Delikaraoglou, Demitris

    2016-04-01

    The future Global Navigation Satellite Systems (GNSS), including modernized GPS, GLONASS, Galileo and BeiDou, offer three or more signal carriers for civilian use and much more redundant observables. The additional frequencies can significantly improve the capabilities of the traditional geodetic techniques based on GPS signals at two frequencies, especially with regard to the availability, accuracy, interoperability and integrity of high-precision GNSS applications. Furthermore, highly redundant measurements can allow for robust simultaneous estimation of static or mobile user states including more parameters such as real-time tropospheric biases and more reliable ambiguity resolution estimates. This paper presents an investigation and analysis of accuracy improvement techniques in the Precise Point Positioning (PPP) method using signals from the fully operational (GPS and GLONASS), as well as the emerging (Galileo and BeiDou) GNSS systems. The main aim was to determine the improvement in both the positioning accuracy achieved and the time convergence it takes to achieve geodetic-level (10 cm or less) accuracy. To this end, freely available observation data from the recent Multi-GNSS Experiment (MGEX) of the International GNSS Service, as well as the open source program RTKLIB were used. Following a brief background of the PPP technique and the scope of MGEX, the paper outlines the various observational scenarios that were used in order to test various data processing aspects of PPP solutions with multi-frequency, multi-constellation GNSS systems. Results from the processing of multi-GNSS observation data from selected permanent MGEX stations are presented and useful conclusions and recommendations for further research are drawn. As shown, data fusion from GPS, GLONASS, Galileo and BeiDou systems is becoming increasingly significant nowadays resulting in a position accuracy increase (mostly in the less favorable East direction) and a large reduction of convergence

  5. [From random mutagenesis to precise genome editing: the development and evolution of genome editing techniques in Drosophila].

    PubMed

    Su, Fang; Huang, Zongliang; Guo, Yawen; Jiao, Renjie; Zi, Li; Chen, Jianming; Liu, Jiyong

    2016-01-01

    Drosophila melanogaster, an important model organism for studying life science, has contributed more to the research of genetics, developmental biology and biomedicine with the development of genome editing techniques. Drosophila genome-editing techniques have evolved from random mutagenesis to precise genome editing and from simple mutant construction to diverse genome editing methods since the 20th century. Chemical mutagenesis, using Ethyl methanesulfonate (EMS), is an important technique to study gene function in forward genetics, however, the precise knockout of Drosophila genes could not be achieved. The gene targeting technology, based on homologous recombination, has accomplished the precise editing of Drosophila genome for the first time, but with low efficiency. The CRISPR/Cas9 (Clustered regularly interspaced short palindromic repeats/CRISPR-associated protein)-mediated precise genome editing is simple, fast and highly efficient compared with the gene targeting technology in Drosophila. In this review, we focus on Drosophila gene knockout, and summarize the evolution of genome editing techniques in Drosophila, emphasizing the development and applications of gene targeting, zinc-finger nuclease (ZFN), transcription activator-like effector nuclease (TALEN) and CRISPR/Cas9 techniques. PMID:26787520

  6. Radiosensitization effect of folate-conjugated gold nanoparticles on HeLa cancer cells under orthovoltage superficial radiotherapy techniques

    NASA Astrophysics Data System (ADS)

    Khoshgard, Karim; Hashemi, Bijan; Arbabi, Azim; Javad Rasaee, Mohammad; Soleimani, Masoud

    2014-05-01

    Due to the high atomic number of gold nanoparticles (GNPs), they are known as new radiosensitizer agents for enhancing the efficiency of superficial radiotherapy techniques by increasing the dose absorbed in tumor cells wherein they can be accumulated selectively. The aim of this study was to compare the effect of various common low energy levels of orthovoltage x-rays and megavoltage γ-rays (Co-60) on enhancing the therapeutic efficiency of HeLa cancer cells in the presence of conjugated folate and non-conjugated (pegylated) GNPs. To achieve this, GNPs with an average diameter of 52 nm were synthesized and conjugated to folic acid molecules. Pegylated GNPs with an average diameter of 47 nm were also synthesized and used as non-conjugated folate GNPs. Cytotoxicity assay of the synthesized folate-conjugated and pegylated GNPs was performed using different levels of nanoparticle concentration incubated with HeLa cells for 24 h. The radiosensitizing effect of both the conjugated and pegylated GNPs on the cells at a concentration of 50 µM was compared using MTT as well as clonogenic assays after exposing them to 2 Gy ionizing radiation produced by an orthovoltage x-ray machine at four different kVps and γ-rays of a Co-60 unit. Significant differences were noted among various irradiated groups with and without the folate conjugation, with an average dose enhancement factor (DEF) of 1.64 ± 0.05 and 1.35 ± 0.05 for the folate-conjugated and pegylated GNPs, respectively. The maximum DEF was obtained with the 180 kVp x-ray beam for both of the GNPs. Folate-conjugated GNPs can significantly enhance the cell killing potential of orthovoltage x-ray energies (especially at 180 kVp) in folate receptor-expressing cancer cells, such as HeLa, in superficial radiotherapy techniques.

  7. Brain dose-sparing radiotherapy techniques for localized intracranial germinoma: Case report and literature review of modern irradiation.

    PubMed

    Leung, H W C; Chan, A L F; Chang, M B

    2016-05-01

    We examined the effects of intensity-modulated radiation therapy with dose-sparing and avoidance technique on a pediatric patient with localized intracranial germinoma. We also reviewed the literature regarding modern irradiation techniques in relation to late neurocognitive sequelae. A patient with a localized intracranial germinoma in the third ventricle anterior to the pineal gland received a dose-sparing intensity-modulated radiation therapy. The planning was compared to the radiation oncologist's guide of organs at risk and dose constraints for dosimetric analyses. The patient received radiation therapy alone. The total dose was 54Gy delivered in 2.0Gy fractions to the primary tumour and 37Gy in 1.4Gy fractions to whole ventricles using a dose-sculpting plan. Dosimetry analyses showed that dose-sparing intensity-modulated radiation therapy delivered reduced doses to the whole brain, temporal lobes, hippocampi, cochleae, and optic nerves. With a follow-up of 22 months, failure-free survival was 100% for the patient and no adverse events during radiation treatment process. Intensity-modulated radiation therapy with dose sparing and avoidance technique can spare the limbic circuit, central nervous system, and hippocampus for pineal germ cell tumours. This technique reduces the integral dose delivered to the uninvolved normal brain tissues and may reduce late neurocognitive sequelae caused by cranial radiotherapy. PMID:27080575

  8. Internal radiotherapy techniques using radiolanthanide praseodymium-142: a review of production routes, brachytherapy, unsealed source therapy.

    PubMed

    Bakht, Mohamadreza K; Sadeghi, Mahdi

    2011-10-01

    Radionuclides of rare earth elements are gaining importance as emerging therapeutic agents in nuclear medicine. β(-)-particle emitter 142Pr [T (1/2) = 19.12 h, E(-)β = 2.162 MeV (96.3%), Eγ = 1575 keV (3.7%)] is one of the praseodymium-141 (100% abundant) radioisotopes. Production routes and therapy aspects of 142Pr will be reviewed in this paper. However, 142Pr produces via 141Pr(n, γ) 142Pr reaction by irradiation in a low-fluence reactor; 142Pr cyclotron produced, could be achievable. 142Pr due to its high β(-)-emission and low specific gamma γ-emission could not only be a therapeutic radionuclide, but also a suitable radionuclide in order for biodistribution studies. Internal radiotherapy using 142Pr can be classified into two sub-categories: (1) unsealed source therapy (UST), (2) brachytherapy. UST via 142Pr-HA and 142Pr-DTPA in order for radiosynovectomy have been proposed. In addition, 142Pr Glass seeds and 142Pr microspheres have been utilized for interstitial brachytherapy of prostate cancer and intraarterial brachytherapy of arteriovenous malformation, respectively.

  9. [Conformal radiotherapy: principles and classification].

    PubMed

    Rosenwald, J C; Gaboriaud, G; Pontvert, D

    1999-01-01

    'Conformal radiotherapy' is the name fixed by usage and given to a new form of radiotherapy resulting from the technological improvements observed during, the last ten years. While this terminology is now widely used, no precise definition can be found in the literature. Conformal radiotherapy refers to an approach in which the dose distribution is more closely 'conformed' or adapted to the actual shape of the target volume. However, the achievement of a consensus on a more specific definition is hampered by various difficulties, namely in characterizing the degree of 'conformality'. We have therefore suggested a classification scheme be established on the basis of the tools and the procedures actually used for all steps of the process, i.e., from prescription to treatment completion. Our classification consists of four levels: schematically, at level 0, there is no conformation (rectangular fields); at level 1, a simple conformation takes place, on the basis of conventional 2D imaging; at level 2, a 3D reconstruction of the structures is used for a more accurate conformation; and level 3 includes research and advanced dynamic techniques. We have used our personal experience, contacts with colleagues and data from the literature to analyze all the steps of the planning process, and to define the tools and procedures relevant to a given level. The corresponding tables have been discussed and approved at the European level within the Dynarad concerted action. It is proposed that the term 'conformal radiotherapy' be restricted to procedures where all steps are at least at level 2.

  10. Dosimetric Comparison of Bone Marrow-Sparing Intensity-Modulated Radiotherapy Versus Conventional Techniques for Treatment of Cervical Cancer

    SciTech Connect

    Mell, Loren K.; Tiryaki, Hanifi; Ahn, Kang-Hyun; Mundt, Arno J.; Roeske, John C.; Aydogan, Bulent

    2008-08-01

    Purpose: To compare bone marrow-sparing intensity-modulated pelvic radiotherapy (BMS-IMRT) with conventional (four-field box and anteroposterior-posteroanterior [AP-PA]) techniques in the treatment of cervical cancer. Methods and Materials: The data from 7 cervical cancer patients treated with concurrent chemotherapy and IMRT without BMS were analyzed and compared with data using four-field box and AP-PA techniques. All plans were normalized to cover the planning target volume with the 99% isodose line. The clinical target volume consisted of the pelvic and presacral lymph nodes, uterus and cervix, upper vagina, and parametrial tissue. Normal tissues included bowel, bladder, and pelvic bone marrow (PBM), which comprised the lumbosacral spine and ilium and the ischium, pubis, and proximal femora (lower pelvis bone marrow). Dose-volume histograms for the planning target volume and normal tissues were compared for BMS-IMRT vs. four-field box and AP-PA plans. Results: BMS-IMRT was superior to the four-field box technique in reducing the dose to the PBM, small bowel, rectum, and bladder. Compared with AP-PA plans, BMS-IMRT reduced the PBM volume receiving a dose >16.4 Gy. BMS-IMRT reduced the volume of ilium, lower pelvis bone marrow, and bowel receiving a dose >27.7, >18.7, and >21.1 Gy, respectively, but increased dose below these thresholds compared with the AP-PA plans. BMS-IMRT reduced the volume of lumbosacral spine bone marrow, rectum, small bowel, and bladder at all dose levels in all 7 patients. Conclusion: BMS-IMRT reduced irradiation of PBM compared with the four-field box technique. Compared with the AP-PA technique, BMS-IMRT reduced lumbosacral spine bone marrow irradiation and reduced the volume of PBM irradiated to high doses. Therefore BMS-IMRT might reduce acute hematologic toxicity compared with conventional techniques.

  11. The Effect of Changing Technique, Dose, and PTV Margin on Therapeutic Ratio During Prostate Radiotherapy

    SciTech Connect

    Huang Shaohui; Catton, Charles; Jezioranski, John M.Math.; Bayley, Andrew; Rose, Stuart; Rosewall, Tara

    2008-07-15

    Purpose: To quantify the dosimetric and radiobiological changes seen when using intensity-modulated radiation therapy (IMRT) or planning target volume (PTV) margin reduction with consistent planning parameters in a representative sample of localized prostate cancer patients. Methods and Materials: Twenty patients were randomly selected from a cohort that received 79.8 Gy using six-field conformal radiotherapy. Using the clinical contours, PTV margin, planning system, and dose constraints, five-field IMRT plans were generated for 79.8, 83.8, and 88.0 Gy. The 88.0-Gy IMRT plan was then reoptimized with a PTV margin reduced to 3 mm. These plans were then compared using various dosimetric and radiobiological endpoints calculated for various {alpha}/{beta}. Results: Intensity-modulated RT resulted in greater conformity to the PTV (p < 0.001). No improvement in mean normal tissue complication probabilities in the rectal wall (NTCPrw) was seen, and the modified therapeutic ratio (TR{sub mod}) was largely unchanged between six-field conformal and IMRT for the majority of the patients. When IMRT was used to escalate dose, NTCPrw increased by 9% at each 5% prescription increase (p < 0.001). Reducing the posterior PTV margin from 7 mm to 3 mm for an IMRT plan reduced the mean NTCPrw by 12% (p < 0.001) and resulted in a trend toward increased TR{sub mod}(p = 0.005). Changes in TR{sub mod} between conformal and IMRT planning or PTV reduction showed large interpatient variability. Conclusions: Changing from conformal to IMRT, or from PTV{sub 10-7} to PTV{sub 3}, did not produce a uniform interpatient increase in TR{sub mod}when the CTV contained the prostate alone. Radiobiological benefits of these two methods seem to be dependent on the particular anatomy of individual patients, supporting the use of patient-specific margin, planning, and dose prescription strategies.

  12. Dosimetric difference amongst 3 techniques: TomoTherapy, sliding-window intensity-modulated radiotherapy (IMRT), and RapidArc radiotherapy in the treatment of late-stage nasopharyngeal carcinoma (NPC)

    SciTech Connect

    Lee, Francis Kar-ho Yip, Celia Wai-yi; Cheung, Frankie Chun-hung; Leung, Alex Kwok-cheung; Chau, Ricky Ming-chun; Ngan, Roger Kai-cheong

    2014-04-01

    To investigate the dosimetric difference amongst TomoTherapy, sliding-window intensity-modulated radiotherapy (IMRT), and RapidArc radiotherapy in the treatment of late-stage nasopharyngeal carcinoma (NPC). Ten patients with late-stage (Stage III or IV) NPC treated with TomoTherapy or IMRT were selected for the study. Treatment plans with these 3 techniques were devised according to departmental protocol. Dosimetric parameters for organ at risk and treatment targets were compared between TomoTherapy and IMRT, TomoTherapy and RapidArc, and IMRT and RapidArc. Comparison amongst the techniques was done by statistical tests on the dosimetric parameters, total monitor unit (MU), and expected delivery time. All 3 techniques achieved similar target dose coverage. TomoTherapy achieved significantly lower doses in lens and mandible amongst the techniques. It also achieved significantly better dose conformity to the treatment targets. RapidArc achieved significantly lower dose to the eye and normal tissue, lower total MU, and less delivery time. The dosimetric advantages of the 3 techniques were identified in the treatment of late-stage NPC. This may serve as a guideline for selection of the proper technique for different clinical cases.

  13. Segmentation of IMRT plans for radical lung radiotherapy delivery with the step-and-shoot technique.

    PubMed

    Nioutsikou, Elena; Bedford, James L; Christian, Judith A; Brada, Michael; Webb, Steve

    2004-04-01

    The purpose of this work was to determine a segmentation protocol for the treatment of localized non-small-cell lung cancer (NSCLC) with intensity-modulated radiotherapy (IMRT) that is as effective as possible while practically simple and hence robust to known practical inaccuracies. This study focused on the stratification of continuous profiles into a discrete number of intensity levels. The selection of the segmentation parameters for the delivery of the fluence profiles using multiple static fields has been considered. Five-field equispaced IMRT treatment plans of five patients with NSCLC were selected. The study comprised nine treatment plans for each patient, starting from a conformal plan, optimizing it for IMRT and then segmenting it utilizing different numbers of segments in each case and optimizing for segment weights separately. A conformal plan, optimized for beam directions, collimator and wedge angles, was also used for comparison with the IMRT plans, so as to consider the best coplanar conformal case. A dose objective for the PTV and the organs-at-risk plus a constraint for the spinal cord were set for all inverse plans. All stages were compared with the aid of dose-volume histograms, dose distributions at the plane of the isocenter, intensity maps for key beams and plots of PTV homogeneity and overall conformality versus complexity. The unsegmented IMRT plans gave the best results but cannot be realized in practice with an MLC. They were best approximated by plans that needed 106-167 segments to deliver, but did not deteriorate significantly when approximated by plans which required 26-40 segments in total. All segmented IMRT plans gave a better lung sparing than the conformal plans, indicating that the deterioration of IMRT plans following segmentation is not equivalent to that of unmodulated, conformal plans. However, optimized conformal plans have the potential to approach the lung sparing achieved by segmented IMRT plans. Among the IMRT

  14. Precise Re isotope ratio measurements by negative thermal ionization mass spectrometry (NTI-MS) using total evaporation technique

    NASA Astrophysics Data System (ADS)

    Suzuki, Katsuhiko; Miyata, Yoshiki; Kanazawa, Nobuyuki

    2004-06-01

    High precision rhenium isotope ratios, 187Re/185Re, have been determined by negative thermal ionization mass spectrometry (NTI-MS) using a total evaporation technique. The salient features of this method are evaporation of the entire sample and simultaneous integration of the signal from each isotope, which effectively eliminates isotope fractionation effects during the evaporation process. The 187Re/185Re ratio is obtained with a high reproducibility (1.6755+/-0.0014 (2[sigma]), R.S.D.=0.083%, n=28) for 50 pg-1 ng of a Re natural standard using the total evaporation with NTI-MS. This value is within analytical uncertainty of the previously reported accurate 187Re/185Re ratio (1.6740+/-0.0011) adopted by IUPAC as the Re isotopic composition, and is significantly more precise than the ratio obtained from conventional NTI-MS isotopic measurements in our laboratory (1.6772+/-0.0037 (2[sigma]), R.S.D.=0.22%, n=34). Based on these results, the total evaporation technique allows us to precisely determine Re isotope ratios, even for small sample amounts. In addition, this method is effective for highly precise Re abundance determinations using isotope dilution.

  15. [Radiotherapy for Thyroid Cancer].

    PubMed

    Jingu, Keiichi; Maruoka, Shin; Umezawa, Rei; Takahashi, Noriyoshi

    2015-06-01

    Radioactive 131I therapy for differentiated thyroid cancer has been used since the 1940s and is an established and effective treatment. In contrast, external beam radiotherapy (EBRT) was considered to be effective for achieving local control but not for prolonging survival. Although clinicians were hesitant to administer EBRT owing to the potential radiation-induced adverse effects of 2 dimensional (2D)-radiotherapy until 2000, it is expected that adverse effects will be reduced and treatment efficacy improved through the introduction of more advanced techniques for delivering radiation (eg, 3D-radiotherapy and intensity modulated radiotherapy [IMRT]). The prognosis of undifferentiated thyroid cancer is known to be extremely bad, although in very rare cases, multimodality therapy (total or subtotal resection, chemotherapy, and radiotherapy) has allowed long-term survival. Here, we report the preliminary results of using hypofractionated radiotherapy for undifferentiated thyroid cancer in our institution. PMID:26199238

  16. Holmium-loaded PLLA nanoparticles for intratumoral radiotherapy via the TMT technique: preparation, characterization, and stability evaluation after neutron irradiation.

    PubMed

    Hamoudeh, Misara; Fessi, Hatem; Salim, Hani; Barbos, Dumitru

    2008-08-01

    This article describes the preparation of biocompatible radioactive holmium-loaded particles with appropriate nanoscale size for radionuclide intratumoral administration by the targeted multitherapy (TMT) technique. For this objective, holmium acetylacetonate has been encapsulated in poly-L-lactide (PLLA)-based nanoparticles (NP) by oil-in-water emulsion-solvent evaporation method. NP sizes ranged between 100 and 1,100 m being suitable for the TMT administration method. Elemental holmium loading was found to be around 18% wt/wt and the holmium acetylacetonate trihydrate (HoAcAc) encapsulation efficacy was about 90%. Different experiments demonstrated an amorphous state of HoAcAc after incorporation in NPs. The NPs were irradiated in a nuclear reactor with a neutron flux of 1.1 x 10(13) n/cm(2)/s for 1 h, which yielded a specific activity of about 27.4 GBq/g of NPs being sufficient for our desired application. Microscopic analysis of irradiated NPs showed some alteration after neutron irradiation as some NPs looked partially coagglomerated and a few pores appeared at their surface because of the locally released heat in the irradiation vials. Furthermore, differential scanning calorimetry (DSC) results indicated a clear decrease in PLLA melting point and melting enthalpy reflecting a decrease in polymer crystallinity. This was accompanied by a clear decrease in polymer molecular weights, which can be ascribed to a radiation-induced chain scission mechanism. However, interestingly, other experiments confirmed the chemical identity retention of both HoAcAc and PLLA in irradiated NPs despite this detected decrease in the polymer crystallinity and molecular weight. Although neutron irradiation has induced some NPs damage, these NPs kept out their overall chemical composition, and their size distribution remained suitable for the TMT administration technique. Coupled with the TMT technique, these NPs may represent a novel potential radiopharmaceutical agent for

  17. Radiotherapy of inoperable lung cancer

    SciTech Connect

    Namer, M.; Lalanne, C.M.; Boublil, J.L.; Hery, M.; Chauvel, P.; Verschoore, J.; Aubanel, J.M.; Bruneton, J.N.

    1980-08-01

    Evaluation of loco-regional results obtained by radiotherapy for 31 patients with inoperable epidermoid lung cancer revealed objective remission (over 50%) in only 25% of patients. These results emphasize the limited effectiveness of radiotherapy in such cases and point out the need for increased research in radiotherapy techniques if survival rates are to be improved.

  18. Clinical Application of a Modular Genomics Technique in Systemic Lupus Erythematosus: Progress towards Precision Medicine.

    PubMed

    Zollars, Eric; Courtney, Sean M; Wolf, Bethany J; Allaire, Norm; Ranger, Ann; Hardiman, Gary; Petri, Michelle

    2016-01-01

    Monitoring disease activity in a complex, heterogeneous disease such as lupus is difficult. Both over- and undertreatment lead to damage. Current standard of care serologies are unreliable. Better measures of disease activity are necessary as we move into the era of precision medicine. We show here the use of a data-driven, modular approach to genomic biomarker development within lupus-specifically lupus nephritis. PMID:27656648

  19. Clinical Application of a Modular Genomics Technique in Systemic Lupus Erythematosus: Progress towards Precision Medicine

    PubMed Central

    Wolf, Bethany J.; Allaire, Norm; Ranger, Ann; Hardiman, Gary; Petri, Michelle

    2016-01-01

    Monitoring disease activity in a complex, heterogeneous disease such as lupus is difficult. Both over- and undertreatment lead to damage. Current standard of care serologies are unreliable. Better measures of disease activity are necessary as we move into the era of precision medicine. We show here the use of a data-driven, modular approach to genomic biomarker development within lupus—specifically lupus nephritis. PMID:27656648

  20. Clinical Application of a Modular Genomics Technique in Systemic Lupus Erythematosus: Progress towards Precision Medicine

    PubMed Central

    Wolf, Bethany J.; Allaire, Norm; Ranger, Ann; Hardiman, Gary; Petri, Michelle

    2016-01-01

    Monitoring disease activity in a complex, heterogeneous disease such as lupus is difficult. Both over- and undertreatment lead to damage. Current standard of care serologies are unreliable. Better measures of disease activity are necessary as we move into the era of precision medicine. We show here the use of a data-driven, modular approach to genomic biomarker development within lupus—specifically lupus nephritis.

  1. Intensity-modulated radiotherapy, not 3D conformal, is the preferred technique for treating locally advanced lung cancer

    PubMed Central

    Chang, Joe Y.

    2015-01-01

    When used to treat lung cancer, intensity-modulated radiotherapy (IMRT) can deliver higher dose to the targets and spare more critical organs in lung cancer than can 3D conformal radiotherapy (3DCRT). However, tumor-motion management and optimized radiotherapy planning based on four-dimensional computed tomography (4D CT) scanning are crucial to maximize the benefit of IMRT and to eliminate or minimize potential uncertainties. This article summarizes these strategies and reviews published findings supporting the safety and efficacy of IMRT for lung cancer. PMID:25771415

  2. [Prostate cancer external beam radiotherapy].

    PubMed

    de Crevoisier, R; Pommier, P; Latorzeff, I; Chapet, O; Chauvet, B; Hennequin, C

    2016-09-01

    The prostate external beam radiotherapy techniques are described, when irradiating the prostate or after prostatectomy, with and without pelvic lymph nodes. The following parts are presented: indications of radiotherapy, total dose and fractionation, planning CT image acquisition, volume of interest delineation (target volumes and organs at risk) and margins, Intensity modulated radiotherapy planning and corresponding dose-volume constraints, and finally Image guided radiotherapy. PMID:27516051

  3. Datum maintenance of the main Egyptian geodetic control networks by utilizing Precise Point Positioning "PPP" technique

    NASA Astrophysics Data System (ADS)

    Rabah, Mostafa; Elmewafey, Mahmoud; Farahan, Magda H.

    2016-06-01

    A geodetic control network is the wire-frame or the skeleton on which continuous and consistent mapping, Geographic Information Systems (GIS), and surveys are based. Traditionally, geodetic control points are established as permanent physical monuments placed in the ground and precisely marked, located, and documented. With the development of satellite surveying methods and their availability and high degree of accuracy, a geodetic control network could be established by using GNSS and referred to an international terrestrial reference frame used as a three-dimensional geocentric reference system for a country. Based on this concept, in 1992, the Egypt Survey Authority (ESA) established two networks, namely High Accuracy Reference Network (HARN) and the National Agricultural Cadastral Network (NACN). To transfer the International Terrestrial Reference Frame to the HARN, the HARN was connected with four IGS stations. The processing results were 1:10,000,000 (Order A) for HARN and 1:1,000,000 (Order B) for NACN relative network accuracy standard between stations defined in ITRF1994 Epoch1996. Since 1996, ESA did not perform any updating or maintaining works for these networks. To see how non-performing maintenance degrading the values of the HARN and NACN, the available HARN and NACN stations in the Nile Delta were observed. The Processing of the tested part was done by CSRS-PPP Service based on utilizing Precise Point Positioning "PPP" and Trimble Business Center "TBC". The study shows the feasibility of Precise Point Positioning in updating the absolute positioning of the HARN network and its role in updating the reference frame (ITRF). The study also confirmed the necessity of the absent role of datum maintenance of Egypt networks.

  4. Precision bone and muscle loss measurements by advanced, multiple projection DEXA (AMPDXA) techniques for spaceflight applications

    NASA Technical Reports Server (NTRS)

    Charles, H. K. Jr; Beck, T. J.; Feldmesser, H. S.; Magee, T. C.; Spisz, T. S.; Pisacane, V. L.

    2001-01-01

    An advanced, multiple projection, dual energy x-ray absorptiometry (AMPDXA) scanner system is under development. The AMPDXA is designed to make precision bone and muscle loss measurements necessary to determine the deleterious effects of microgravity on astronauts as well as develop countermeasures to stem their bone and muscle loss. To date, a full size test system has been developed to verify principles and the results of computer simulations. Results indicate that accurate predictions of bone mechanical properties can be determined from as few as three projections, while more projections are needed for a complete, three-dimensional reconstruction. c 2001. Elsevier Science Ltd. All rights reserved.

  5. Treatment of nasal cavity and paranasal sinus cancer with modern radiotherapy techniques in the postoperative setting-the MSKCC experience

    SciTech Connect

    Hoppe, Bradford S.; Stegman, Lauren D.; Zelefsky, Michael J.; Rosenzweig, Kenneth E.; Wolden, Suzanne L.; Patel, Snehal G.; Shah, Jatin P.; Kraus, Dennis H.; Lee, Nancy Y. . E-mail: leen2@mskcc.org

    2007-03-01

    Purpose: To perform a retrospective analysis of patients with paranasal sinus (PNS) cancer treated with postoperative radiotherapy (RT) at Memorial Sloan-Kettering Cancer Center. Methods and Materials: Between January 1987 and July 2005, 85 patients with PNS and nasal cavity cancer underwent postoperative RT. Most patients had squamous cell carcinoma (49%; n = 42), T4 tumors (52%; n = 36), and the maxillary sinus (53%; n = 45) as the primary disease site. The median radiation dose was 63 Gy. Of the 85 patients, 76 underwent CT simulation and 53 were treated with either three-dimensional conformal RT (27%; n = 23) or intensity-modulated RT (35%; n = 30). Acute and late toxicities were scored according to the Radiation Therapy Oncology Group radiation morbidity scoring criteria. Results: With a median follow-up for surviving patients of 60 months, the 5-year estimates of local progression-free, regional progression-free, distant metastasis-free, disease-free, and overall survival rates were 62%, 87%, 82%, 55%, and 67%, respectively. On multivariate analysis, squamous cell histology and cribriform plate involvement predicted for an increased likelihood of local recurrence, and squamous cell histologic features predicted for worse overall survival. None of the patients who underwent CT simulation and were treated with modern techniques developed a Grade 3-4 late complication of the eye. Conclusion: Complete surgical resection followed by adjuvant RT is an effective and safe approach in the treatment of PNS cancer. Emerging tools, such as three-dimensional conformal treatment and, in particular, intensity-modulated RT for PNS tumors, may minimize the occurrence of late complications associated with conventional RT techniques. Local recurrence remains a significant problem.

  6. Evaluation of a pencil-beam dose calculation technique for charged particle radiotherapy

    SciTech Connect

    Petti, P.L.

    1996-07-15

    The purpose of this article is to evaluate a pencil-beam dose calculation algorithm for protons and heavier charged particles in complex patient geometries defined by computed tomography (CT) data and to compare isodose distributions calculated with the new technique to those calculated with conventional algorithms in selected patients with skull-base tumors. Monte Carlo calculations were performed to evaluate the pencil-beam algorithm in patient geometries for a modulated 150-MeV proton beam. A modified version of a Monte Carlo code described in a previous publication (18) was used for these comparisons. Tissue densities were inferred from patient CT data on a voxel-by-voxel basis, and calculations were performed with and without tissue compensators. A dose calculation module using the new algorithm was written, and treatment plans using the new algorithm were compared to plans using standard ray-tracing techniques for 10 patients with clival chordoma and three patients with nasopharyngeal carcinoma were treated with helium ions at Lawrence Berkeley National Laboratory (LBL). Pencil beam calculations agreed well with Monte Carlo calculations in the patient geometries. 23 refs., 5 figs.

  7. Study of highly precise outdoor characterization technique for photovoltaic modules in terms of reproducibility

    NASA Astrophysics Data System (ADS)

    Fukabori, Akihiro; Takenouchi, Takakazu; Matsuda, Youji; Tsuno, Yuki; Hishikawa, Yoshihiro

    2015-08-01

    In this study, novel outdoor measurements were conducted for highly precise characterization of photovoltaic (PV) modules by measuring current-voltage (I-V) curves with fast sweep speeds and module’s temperature, and with a PV sensor for reference. Fast sweep speeds suppressed the irradiance variation. As a result, smooth I-V curves were obtained and the PV parameter deviation was suppressed. The module’s temperature was measured by attaching resistive temperature detector sensors on the module’s backsheet. The PV sensor was measured synchronously with the PV module. The PV parameters including Isc, Pmax, Voc, and FF were estimated after correcting the I-V curves using the IEC standards. The reproducibility of Isc, Pmax, Voc, and FF relative to the outdoor fits was evaluated as 0.43, 0.58, 0.24, and 0.23%, respectively. The results demonstrate that highly precise measurements are possible using a PV measurement system with the three above-mentioned features.

  8. Recommendations for Radiotherapy Technique and Dose in Extra-nodal Lymphoma.

    PubMed

    Hoskin, P J; Díez, P; Gallop-Evans, E; Syndikus, I; Bates, A; Bayne, M

    2016-01-01

    Extra-nodal sites may be involved in around 40% of patients with non-Hodgkin lymphoma. The general principles for target volume delineation in this setting are presented, together with specific examples. In general, the entire organ affected should be encompassed in the clinical target volume with an expansion of at least 10 mm, increased in some instances to account for patterns of potential lymphatic flow. Adjacent lymph nodes may be treated using standard techniques for nodal irradiation. Doses for extra-nodal lymphoma follow the same principles as nodal lymphoma, delivering 30 Gy in 15 fractions for Hodgkin and aggressive non-Hodgkin lymphoma and 24 Gy in 12 fractions for indolent lymphomas, with the exception of certain palliative situations, mycosis fungoides, central nervous system lymphoma and natural killer/T-cell lymphoma.

  9. Half-body radiotherapy. Evaluation of the technique in normal dogs

    SciTech Connect

    Laing, E.J.; Fitzpatrick, P.J.; Norris, A.M.; Mosseri, A.; Rider, W.D.; Binnington, A.G.; Baur, A.; Valli, V.E.

    1989-04-01

    Eight healthy mongrel dogs were treated with half-body irradiation (HBI) in a pilot study to evaluate the technique and radiotolerance of different organs. Cranial and caudal half-body fields were established using the 13th thoracic vertebra as the dividing point. Under general anesthesia, either 7 or 8 Gray (Gy) were delivered to one half of the body using opposing radiation portals. The other half of the body was similarly treated 28 days later. The dogs were monitored for 12 months. Significant radiation effects included transient bone marrow suppression and radiation sickness. There were no serious or life-threatening problems, but the 8 Gy group consistently showed more severe clinical signs and histologic changes than the 7 Gy group. Total body irradiation in two fractions of 7 or 8 Gy given 1 month apart appears to be a safe treatment that can be developed for therapy in veterinary oncology.

  10. Recommendations for Radiotherapy Technique and Dose in Extra-nodal Lymphoma.

    PubMed

    Hoskin, P J; Díez, P; Gallop-Evans, E; Syndikus, I; Bates, A; Bayne, M

    2016-01-01

    Extra-nodal sites may be involved in around 40% of patients with non-Hodgkin lymphoma. The general principles for target volume delineation in this setting are presented, together with specific examples. In general, the entire organ affected should be encompassed in the clinical target volume with an expansion of at least 10 mm, increased in some instances to account for patterns of potential lymphatic flow. Adjacent lymph nodes may be treated using standard techniques for nodal irradiation. Doses for extra-nodal lymphoma follow the same principles as nodal lymphoma, delivering 30 Gy in 15 fractions for Hodgkin and aggressive non-Hodgkin lymphoma and 24 Gy in 12 fractions for indolent lymphomas, with the exception of certain palliative situations, mycosis fungoides, central nervous system lymphoma and natural killer/T-cell lymphoma. PMID:26456507

  11. Nonlinear control design techniques for precision formation flying at Lagrange points

    NASA Astrophysics Data System (ADS)

    Luquette, Richard J.

    Precision spacecraft formation flying is an enabling technology for a variety of proposed space-based observatories, such as NASA's Terrestrial Planet Finder (TPF), the Micro-Arcsecond X-Ray Imaging Mission (MAXIM), and Stellar Imager (SI). This research specifically examines the precision formation flying control architecture, characterizing the relative performance of linear and nonlinear controllers. Controller design is based on a 6DOF control architecture, characteristic of precision formation flying control. In an effort to minimize the influence of design parameters in the comparison, analysis employs "equivalent" controller gains, and incorporates an integrator in the linear control design. Controller performance is evaluated through various simulations designed to reflect a realistic space environment. The simulation architecture includes a full gravitational model and solar pressure effects. Spacecraft model properties are based on realistic mission design parameters. Control actuators are modeled as a fixed set of thrusters for both translation and attitude control. Analysis includes impact on controller performance due to omitted dynamics in the model (gravitational sources and solar pressure) and model uncertainty (mass properties, thruster placement and thruster alignment). Linearized equations of relative motion are derived for spacecraft operating in the context of the Restricted Three Body Problem. Linearization is performed with respect to a reference spacecraft within the formation. Analysis demonstrates robust stability for the Linear Quadratic Regulator controller design based on the linearized dynamics. Nonlinear controllers are developed based on Lyapunov analysis, including both non-adaptive and adaptive designs. While the linear controller demonstrates greater robustness to model uncertainty, both nonlinear controllers exhibit superior performance. The adaptive controller provides the best performance. As a key feature, the adaptive

  12. Composite-light-pulse technique for high-precision atom interferometry.

    PubMed

    Berg, P; Abend, S; Tackmann, G; Schubert, C; Giese, E; Schleich, W P; Narducci, F A; Ertmer, W; Rasel, E M

    2015-02-13

    We realize beam splitters and mirrors for atom waves by employing a sequence of light pulses rather than individual ones. In this way we can tailor atom interferometers with improved sensitivity and accuracy. We demonstrate our method of composite pulses by creating a symmetric matter-wave interferometer which combines the advantages of conventional Bragg- and Raman-type concepts. This feature leads to an interferometer with a high immunity to technical noise allowing us to devise a large-area Sagnac gyroscope yielding a phase shift of 6.5 rad due to the Earth's rotation. With this device we achieve a rotation rate precision of 120  nrad s(-1) Hz(-1/2) and determine the Earth's rotation rate with a relative uncertainty of 1.2%. PMID:25723216

  13. High-precision optomechanical lens system for space applications assembled by a local soldering technique

    NASA Astrophysics Data System (ADS)

    Pleguezuelo, Pol Ribes; Koechlin, Charlie; Hornaff, Marcel; Kamm, Andreas; Beckert, Erik; Fiault, Guillaume; Eberhardt, Ramona; Tünnermann, Andreas

    2016-06-01

    Soldering using metallic solder alloys is an alternative to adhesive bonding. Laser-based soldering processes are especially well suited for the joining of optical components made of fragile and brittle materials such as glass, ceramics, and optical crystals. This is due to a localized and minimized input of thermal energy. Solderjet bumping technology has been used to assemble a lens mount breadboard using specifications and requirements found for the optical beam expander for the European Space Agency EarthCare Mission. The silica lens and a titanium barrel have been designed and assembled with this technology in order to withstand the stringent mission demands of handling high mechanical and thermal loads without losing the optical performance. Finally, a high-precision optomechanical lens mount has been assembled with minimal localized stress (<1 MPa) showing outstanding performance in terms of wave-front error and beam depolarization ratio before and after environmental tests.

  14. Application of dynamic Monte Carlo technique in proton beam radiotherapy using Geant4 simulation toolkit

    NASA Astrophysics Data System (ADS)

    Guan, Fada

    Monte Carlo method has been successfully applied in simulating the particles transport problems. Most of the Monte Carlo simulation tools are static and they can only be used to perform the static simulations for the problems with fixed physics and geometry settings. Proton therapy is a dynamic treatment technique in the clinical application. In this research, we developed a method to perform the dynamic Monte Carlo simulation of proton therapy using Geant4 simulation toolkit. A passive-scattering treatment nozzle equipped with a rotating range modulation wheel was modeled in this research. One important application of the Monte Carlo simulation is to predict the spatial dose distribution in the target geometry. For simplification, a mathematical model of a human body is usually used as the target, but only the average dose over the whole organ or tissue can be obtained rather than the accurate spatial dose distribution. In this research, we developed a method using MATLAB to convert the medical images of a patient from CT scanning into the patient voxel geometry. Hence, if the patient voxel geometry is used as the target in the Monte Carlo simulation, the accurate spatial dose distribution in the target can be obtained. A data analysis tool---root was used to score the simulation results during a Geant4 simulation and to analyze the data and plot results after simulation. Finally, we successfully obtained the accurate spatial dose distribution in part of a human body after treating a patient with prostate cancer using proton therapy.

  15. A simple DVH generation technique for various radiotherapy treatment planning systems for an independent information system

    NASA Astrophysics Data System (ADS)

    Min, Byung Jun; Nam, Heerim; Jeong, Il Sun; Lee, Hyebin

    2015-07-01

    In recent years, the use of a picture archiving and communication system (PACS) for radiation therapy has become the norm in hospital environments and has been suggested for collecting and managing data using Digital Imaging and Communication in Medicine (DICOM) objects from different treatment planning systems (TPSs). However, some TPSs do not provide the ability to export the dose-volume histogram (DVH) in text or other format. In addition, plan review systems for various TPSs often allow DVH recalculations with different algorithms. These algorithms result in inevitable discrepancies between the values obtained with the recalculation and those obtained with TPS itself. The purpose of this study was to develop a simple method for generating reproducible DVH values by using the TPSs. Treatment planning information, including structures and delivered dose, was exported in the DICOM format from the Eclipse v8.9 or the Pinnacle v9.6 planning systems. The supersampling and trilinear interpolation methods were employed to calculate the DVH data from 35 treatment plans. The discrepancies between the DVHs extracted from each TPS and those extracted by using the proposed calculation method were evaluated with respect to the supersampling ratio. The volume, minimum dose, maximum dose, and mean dose were compared. The variations in DVHs from multiple TPSs were compared by using the MIM software v6.1, which is a commercially available treatment planning comparison tool. The overall comparisons of the volume, minimum dose, maximum dose, and mean dose showed that the proposed method generated relatively smaller discrepancies compared with TPS than the MIM software did compare with the TPS. As the structure volume decreased, the overall percent difference increased. The largest difference was observed in small organs such as the eye ball, eye lens, and optic nerve which had volume below 10 cc. A simple and useful technique was developed to generate a DVH with an acceptable

  16. Dosimetric comparison of two arc-based stereotactic body radiotherapy techniques for early-stage lung cancer

    SciTech Connect

    Liu, Huan Ye, Jingjing; Kim, John J.; Deng, Jun; Kaur, Monica S.; Chen, Zhe

    2015-04-01

    To compare the dosimetric and delivery characteristics of two arc-based stereotactic body radiotherapy (SBRT) techniques for early-stage lung cancer treatment. SBRT treatment plans for lung tumors of different sizes and locations were designed using a single-isocenter multisegment dynamic conformal arc technique (SiMs-arc) and a volumetric modulated arc therapy technique (RapidArc) for 5 representative patients treated previously with lung SBRT. The SiMs-arc plans were generated with the isocenter located in the geometric center of patient's axial plane (which allows for collision-free gantry rotation around the patient) and 6 contiguous 60° arc segments spanning from 1° to 359°. 2 RapidArc plans, one using the same arc geometry as the SiMs-arc and the other using typical partial arcs (210°) with the isocenter inside planning target volume (PTV), were generated for each corresponding SiMs-arc plan. All plans were generated using the Varian Eclipse treatment planning system (V10.0) and were normalized with PTV V{sub 100} to 95%. PTV coverage, dose to organs at risk, and total monitor units (MUs) were then compared and analyzed. For PTV coverage, the RapidArc plans generally produced higher PTV D{sub 99} (by 1.0% to 3.3%) and higher minimum dose (by 2.7% to 12.7%), better PTV conformality index (by 1% to 8%), and less volume of 50% dose outside 2 cm from PTV (by 0 to 20.8 cm{sup 3}) than the corresponding SiMs-arc plans. For normal tissues, no significant dose differences were observed for the lungs, trachea, chest wall, and heart; RapidArc using partial arcs produced lowest maximum dose to spinal cord. For dose delivery, the RapidArc plans typically required 50% to 90% more MUs than SiMs-arc plans to deliver the same prescribed dose. The additional intensity modulation afforded by variable gantry speed and dose rate and by overlapping arcs enabled RapidArc plans to produce dosimetrically improved plans for lung SBRT, but required more MUs (by a factor > 1.5) to

  17. Preliminary analysis of the sequential simultaneous integrated boost technique for intensity-modulated radiotherapy for head and neck cancers

    PubMed Central

    Miyazaki, Masayoshi; Nishiyama, Kinji; Ueda, Yoshihiro; Ohira, Shingo; Tsujii, Katsutomo; Isono, Masaru; Masaoka, Akira; Teshima, Teruki

    2016-01-01

    The aim of this study was to compare three strategies for intensity-modulated radiotherapy (IMRT) for 20 head-and-neck cancer patients. For simultaneous integrated boost (SIB), doses were 66 and 54 Gy in 30 fractions for PTVboost and PTVelective, respectively. Two-phase IMRT delivered 50 Gy in 25 fractions to PTVelective in the First Plan, and 20 Gy in 10 fractions to PTVboost in the Second Plan. Sequential SIB (SEQ-SIB) delivered 55 Gy and 50 Gy in 25 fractions, respectively, to PTVboost and PTVelective using SIB in the First Plan and 11 Gy in 5 fractions to PTVboost in the Second Plan. Conformity indexes (CIs) (mean ± SD) for PTVboost and PTVelective were 1.09 ± 0.05 and 1.34 ± 0.12 for SIB, 1.39 ± 0.14 and 1.80 ± 0.28 for two-phase IMRT, and 1.14 ± 0.07 and 1.60 ± 0.18 for SEQ-SIB, respectively. CI was significantly highest for two-phase IMRT. Maximum doses (Dmax) to the spinal cord were 42.1 ± 1.5 Gy for SIB, 43.9 ± 1.0 Gy for two-phase IMRT and 40.3 ± 1.8 Gy for SEQ-SIB. Brainstem Dmax were 50.1 ± 2.2 Gy for SIB, 50.5 ± 4.6 Gy for two-phase IMRT and 47.4 ± 3.6 Gy for SEQ-SIB. Spinal cord Dmax for the three techniques was significantly different, and brainstem Dmax was significantly lower for SEQ-SIB. The compromised conformity of two-phase IMRT can result in higher doses to organs at risk (OARs). Lower OAR doses in SEQ-SIB made SEQ-SIB an alternative to SIB, which applies unconventional doses per fraction. PMID:26983983

  18. A technique using {sup 99m}Tc-mebrofenin SPECT for radiotherapy treatment planning for liver cancers or metastases

    SciTech Connect

    Shen, Sui; Jacob, Rojymon; Bender, Luvenia W.; Duan, Jun; Spencer, Sharon A.

    2014-04-01

    Radiotherapy or stereotactic body radiosurgery (SBRT) requires a sufficient functional liver volume to tolerate the treatment. The current study extended the work of de Graaf et al. (2010) [3] on the use of {sup 99m}Tc-mebrofenin imaging for presurgery planning to radiotherapy planning for liver cancer or metastases. Patient was immobilized and imaged in an identical position on a single-photon emission computed tomography/computed tomography (SPECT-CT) system and a radiotherapy simulation CT system. {sup 99m}Tc-mebrofenin SPECT was registered to the planning CT through image registration of noncontrast CT from SPECT-CT system to the radiotherapy planning CT. The voxels with higher uptake of {sup 99m}Tc-mebrofenin were transferred to the planning CT as an avoidance structure in optimizing a 2-arc RapidArc plan for SBRT delivery. Excellent dose coverage to the target and sparing of the healthy remnant liver volume was achieved. This report illustrated a procedure for the use of {sup 99m}Tc-mebrofenin SPECT for optimizing radiotherapy for liver cancers and metastases.

  19. Examples of Subaqueous Paleoseismological Techniques from Turkey and Iceland: With Special Emphasis on the Importance of Constructing Precise Sediment Chronologies

    NASA Astrophysics Data System (ADS)

    Avsar, U.; Hubert-Ferrari, A.; Jonsson, S.; De Batist, M. A. O.; Fagel, N.; Geirsdottir, A.; Thordarson, T.; Miller, G. H.

    2014-12-01

    Subaqueous paleoseismological techniques have proved their potential to contribute to the paleoseismological investigations. Sedimentary records of past earthquakes have been mostly represented in lacustrine environments by multi-location coeval mass-wasting deposits and/or soft-sediment deformations. More recently, records of increased sediment influx due to seismically-triggered landslides in lake catchments have been explored by several researchers as well. The most commonly used argument in subaqueous paleoseismology is the temporal correlation between observed sedimentary events and historical earthquakes in the region. This requires precise and robust sediment chronologies, especially if the target is to evaluate earthquake recurrence. Here, we present lacustrine paleoseismological examples from the North Anatolian Fault (NAF, Turkey) and the Húsavík-Flatey Fault (HFF, Iceland). The examples from Turkey illustrate the application of regional time-stratigraphic correlations between proxy records to improve sediment chronologies. The sedimentary records of the lakes along the NAF were successfully correlated with the precisely dated cave deposits and varved lake sediments, which significantly improved the sediment chronologies. On the other hand, the investigations in Iceland benefit from the well-established tephrochronology in the region. Precise sediment chronologies do not only allow us to evaluate the long-term seismic behavior in a region (i.e., earthquake recurrence), but also to improve our understanding of the consequences of earthquakes on lacustrine sedimentation.

  20. Beams, brightness, and background: Using active spectroscopy techniques for precision measurements in fusion plasma research

    SciTech Connect

    Thomas, Dan M.

    2012-05-15

    The use of an injected neutral beam-either a dedicated diagnostic beam or the main heating beams-to localize and enhance plasma spectroscopic measurements can be exploited for a number of key physics issues in magnetic confinement fusion research, yielding detailed profile information on thermal and fast ion parameters, the radial electric field, plasma current density, and turbulent transport. The ability to make these measurements has played a significant role in much of our recent progress in the scientific understanding of fusion plasmas. The measurements can utilize emission from excited state transitions either from plasma ions or from the beam atoms themselves. The primary requirement is that the beam 'probe' interacts with the plasma in a known fashion. Advantages of active spectroscopy include high spatial resolution due to the enhanced localization of the emission and the use of appropriate imaging optics, background rejection through the appropriate modulation and timing of the beam and emission collection/detection system, and the ability of the beam to populate emitter states that are either nonexistent or too dim to utilize effectively in the case of standard or passive spectroscopy. In addition, some active techniques offer the diagnostician unique information because of the specific quantum physics responsible for the emission. This paper will describe the general principles behind a successful active spectroscopic measurement, emphasize specific techniques that facilitate the measurements and include several successful examples of their implementation, briefly touching on some of the more important physics results. It concludes with a few remarks about the relevance and requirements of active spectroscopic techniques for future burning plasma experiments.

  1. SU-D-213-03: Towards An Optimized 3D Scintillation Dosimetry Tool for Quality Assurance of Dynamic Radiotherapy Techniques

    SciTech Connect

    Rilling, M; Goulet, M; Thibault, S; Archambault, L

    2015-06-15

    Purpose: The purpose of this work is to simulate a multi-focus plenoptic camera used as the measuring device in a real-time three-dimensional scintillation dosimeter. Simulating and optimizing this realistic optical system will bridge the technological gap between concept validation and a clinically viable tool that can provide highly efficient, accurate and precise measurements for dynamic radiotherapy techniques. Methods: The experimental prototype, previously developed for proof of concept purposes, uses an off-the-shelf multi-focus plenoptic camera. With an array of interleaved microlenses of different focal lengths, this camera records spatial and angular information of light emitted by a plastic scintillator volume. The three distinct microlens focal lengths were determined experimentally for use as baseline parameters by measuring image-to-object magnification for different distances in object space. A simulated plenoptic system was implemented using the non-sequential ray tracing software Zemax: this tool allows complete simulation of multiple optical paths by modeling interactions at interfaces such as scatter, diffraction, reflection and refraction. The active sensor was modeled based on the camera manufacturer specifications by a 2048×2048, 5 µm-pixel pitch sensor. Planar light sources, simulating the plastic scintillator volume, were employed for ray tracing simulations. Results: The microlens focal lengths were determined to be 384, 327 and 290 µm. A realistic multi-focus plenoptic system, with independently defined and optimizable specifications, was fully simulated. A f/2.9 and 54 mm-focal length Double Gauss objective was modeled as the system’s main lens. A three-focal length hexagonal microlens array of 250-µm thickness was designed, acting as an image-relay system between the main lens and sensor. Conclusion: Simulation of a fully modeled multi-focus plenoptic camera enables the decoupled optimization of the main lens and microlens

  2. Precise calibration of linear camera equipped with cylindrical lenses using a radial basis function-based mapping technique.

    PubMed

    Liu, Haiqing; Yang, Linghui; Guo, Yin; Guan, Ruifen; Zhu, Jigui

    2015-02-01

    The linear camera equipped with cylindrical lenses has prominent advantages in high-precision coordinate measurement and dynamic position-tracking. However, the serious distortion of the cylindrical lenses limits the application of this camera. To overcome this obstacle, a precise two-step calibration method is developed. In the first step, a radial basis function-based (RBF-based) mapping technique is employed to recover the projection mapping of the imaging system by interpolating the correspondence between incident rays and image points. For an object point in 3D space, the plane passing through the object point in camera coordinate frame can be calculated accurately by this technique. The second step is the calibration of extrinsic parameters, which realizes the coordinate transformation from the camera coordinate frame to world coordinate frame. The proposed method has three aspects of advantage. Firstly, this method (black box calibration) is still effective even if the distortion is high and asymmetric. Secondly, the coupling between extrinsic parameters and other parameters, which is normally occurred and may lead to the failure of calibration, is avoided because this method simplifies the pinhole model and only extrinsic parameters are concerned in the simplified model. Thirdly, the nonlinear optimization, which is widely used to refine camera parameters, is better conditioned since fewer parameters are needed and more accurate initial iteration value is estimated. Both simulative and real experiments have been carried out and good results have been obtained.

  3. DETERMINATION OF INTERSTITIAL CHLORIDE IN SHALES AND CONSOLIDATED ROCKS BY A PRECISION LEACHING TECHNIQUE.

    USGS Publications Warehouse

    Manheim, Frank T.; Peck, E.E.; Lane, Candice M.

    1985-01-01

    The authors have devised a technique for determining chloride in interstitial water of consolidated rocks. Samples of rocks ranging from 5 to 10 g are crushed and sieved under controlled conditions and then ground with distilled water to submicron size in a closed mechanical mill. The chloride concentrations and total pore-water concentrations, obtained earlier from the same samples by low-temperature vacuum desiccation, are used to arrive at the 'original' pore-water chloride concentrations by a simple iteration procedure. Interstitial chlorinity results obtained from Cretaceous and Jurassic strata in the Gulf of Mexico coastal areas ranged from 20 to 100 g/kg Cl with reproducibility approaching plus or minus 1%.

  4. On the importance of precise calibration techniques for an atomic force microscope.

    PubMed

    Emerson, R J; Camesano, T A

    2006-03-01

    Proper calibration of any instrument is vital to an investigator's ability to compare laboratory experiments, as well as to draw quantitative relations between experimental results and the real world. For the atomic force microscope, knowledge of quantities such as the probe spring constant, the piezoactuator voltage/height response, and the probe radius of curvature is necessary when transforming raw data into height, separation and force. These parameters are also prerequisites when applying mathematical models to the collected data. In this communication, we adapt existing techniques of quantifying these parameters to our equipment and show differences between the adjusted parameters and those provided by the manufacturer. The total statistical uncertainty attributable to these parameters was calculated as > 1500% using the manufacturers' values. After adjustment, this contribution drops to approximately 20%. The combined effect of quantifying these parameters, which had previously not been explored in concert, demonstrates the necessity of properly understanding one's equipment in order to generate reproducible and credible experimental results.

  5. The precise localization of nigral afferents in the rat as determined by a retrograde tracing technique.

    PubMed

    Bunney, B S; Aghajanian, G K

    1976-12-01

    Afferent innervation of the rat substantia nigra (SN) was studied by the retrograde horseradish peroxidase (HRP) method. High concentrations of HRP were deposited in discrete subregions of the SN by means of a microiontophoretic delivery system. Using this technique it was possible to demonstrate that the caudatonigral projection system is arranged topographically; All portions of the caudate-putamen except for a central medial core were found to contain HRP positive cells, indicative of retrograde transport. In the positive areas a much larger percentage of cells (30-50%) were found to participate in this projection than has previously been reported. Only medium size cells (12-20 mum) were found to contain the HRP reaction product. Other areas found to heavily innervate the SN were the globus pallidus, central nucleus of the amygdala and dorsal raphe nucleus. Areas containing fewer reactive cells but which also appear to innervate the SN included the prefrontal cortex and lateral habenula. These results emphasize the importance of striatonigral projections which recent studies have suggested contain a GABAergic link.

  6. Assessment of some critical factors in the freezing technique for the cryopreservation of precision-cut rat liver slices.

    PubMed

    Maas, W J; de Graaf, I A; Schoen, E D; Koster, H J; van de Sandt, J J; Groten, J P

    2000-05-01

    A number of studies on the cryopreservation of precision-cut liver slices using various techniques have been reported. However, the identification of important factors that determine cell viability following cryopreservation is difficult because of large differences between the various methods published. The aim of this study was to evaluate some important factors in the freezing process in an effort to find an optimized approach to the cryopreservation of precision-cut liver slices. A comparative study of a slow and a fast freezing technique was carried out to establish any differences in tissue viability for a number of endpoints. Both freezing techniques aim at the prevention of intracellular ice formation, which is thought to be the main cause of cell death after cryopreservation. Subsequently, critical variables in the freezing process were studied more closely in order to explain the differences in viability found in the two methods in the first study. For this purpose, a full factorial experimental design was used with 16 experimental groups, allowing a number of variables to be studied at different levels in one single experiment. It is demonstrated that ATP and K(+) content and histomorphology are sensitive parameters for evaluating slice viability after cryopreservation. Subsequently, it is shown that freezing rate and the cryopreservation medium largely determine the residual viability of liver slices after cryopreservation and subsequent culturing. It is concluded that a cryopreservation protocol with a fast freezing step and using William's Medium E as cryopreservation medium was the most promising approach to successful freezing of rat liver slices of those tested in this study.

  7. Dosimetric comparison of axilla and groin radiotherapy techniques for high-risk and locally advanced skin cancer

    PubMed Central

    Mattes, Malcolm D.; Zhou, Ying; Berry, Sean L.; Barker, Christopher A.

    2016-01-01

    Purpose: Radiation therapy targeting axilla and groin lymph nodes improves regional disease control in locally advanced and high-risk skin cancers. However, trials generally used conventional two-dimensional radiotherapy (2D-RT), contributing towards relatively high rates of side effects from treatment. The goal of this study is to determine if three-dimensional conformal radiation therapy (3D-CRT), intensity-modulated radiation therapy (IMRT), or volumetric-modulated arc therapy (VMAT) may improve radiation delivery to the target while avoiding organs at risk in the clinical context of skin cancer regional nodal irradiation. Materials and Methods: Twenty patients with locally advanced/high-risk skin cancers underwent computed tomography simulation. The relevant axilla or groin planning target volumes and organs at risk were delineated using standard definitions. Paired t-tests were used to compare the mean values of several dose-volumetric parameters for each of the 4 techniques. Results: In the axilla, the largest improvement for 3D-CRT compared to 2D-RT was for homogeneity index (13.9 vs. 54.3), at the expense of higher lung V20 (28.0% vs. 12.6%). In the groin, the largest improvements for 3D-CRT compared to 2D-RT were for anorectum Dmax (13.6 vs. 38.9 Gy), bowel D200cc (7.3 vs. 23.1 Gy), femur D50 (34.6 vs. 57.2 Gy), and genitalia Dmax (37.6 vs. 51.1 Gy). IMRT had further improvements compared to 3D-CRT for humerus Dmean (16.9 vs. 22.4 Gy), brachial plexus D5 (57.4 vs. 61.3 Gy), bladder D5 (26.8 vs. 36.5 Gy), and femur D50 (18.7 vs. 34.6 Gy). Fewer differences were observed between IMRT and VMAT. Conclusion: Compared to 2D-RT and 3D-CRT, IMRT and VMAT had dosimetric advantages in the treatment of nodal regions of skin cancer patients. PMID:27306779

  8. Evaluations of an adaptive planning technique incorporating dose feedback in image-guided radiotherapy of prostate cancer

    SciTech Connect

    Liu Han; Wu Qiuwen

    2011-12-15

    treatment course, then 11 patients fail. If the same criteria is assessed at the end of each week (every five fractions), then 14 patients fail, with three patients failing the 1st or 2nd week but passing at the end. The average dose deficit from these 14 patients was 4.4%. They improved to 2% after the weekly compensation. Out of these 14 patients who needed dose compensation, ten passed the dose criterion after weekly dose compensation, three patients failed marginally, and one patient still failed the criterion significantly (10% deficit), representing 3.6% of the patient population. A more aggressive compensation frequency (every three fractions) could successfully reduce the dose deficit to the acceptable level for this patient. The average number of required dose compensation re-planning per patient was 0.82 (0.79) per patient for schedule A (B) delivery strategy. The doses to OARs were not significantly different from the online IG only plans without dose compensation. Conclusions: We have demonstrated the effectiveness of offline dose compensation technique in image-guided radiotherapy for prostate cancer. It can effectively account for residual uncertainties which cannot be corrected through online IG. Dose compensation allows further margin reduction and critical organs sparing.

  9. Ultra-precision geometrical measurement technique based on a statistical random phase clock combined with acoustic-optical deflection

    NASA Astrophysics Data System (ADS)

    Ekberg, Peter; Stiblert, Lars; Mattsson, Lars

    2010-12-01

    Mask writers and large area measurements systems are key systems for production of large liquid crystal displays (LCD) and image devices. With position tolerances in the sub-µm range over square meter sized masks, the metrology challenges are indeed demanding. Most systems used for this type of measurement rely on a microscope camera imaging system, provided with a charge coupled device, a complementary metal-oxide-semiconductor sensor or a time delay and integration sensor to transform the optical image to a digital gray-level image. From this image, processing algorithms are used to extract information such as location of edges. The drawback of this technique is the vast amount of data captured but never used. This paper presents a new approach for ultra-high-precision lateral measurement at nm-levels of chrome/glass patterns separated by centimeters, so called registration marks, on masks used for the LCD manufacturing. Registration specifications demand a positioning accuracy <200 nm and critical dimensions, i.e. chrome line widths, which need to be accurate in the 80 nm range. This accuracy has to be achieved on glass masks of 2.4 × 1.6 m2 size. Our new measurement method is based on nm-precise lateral scanning of a focused laser beam combined with statistical random phase sampling of the reflected signal. The precise scanning is based on an extremely accurate time measuring device controlling an acousto optic deflector crystal. The method has been successfully applied in measuring the 4 µm pitch of reference gratings at standard deviations σ of 0.5 nm and registration marks separated by several cm at standard deviations of 23 nm.

  10. A technique for extending the precision and the range of temperature programmed desorption toward extremely low coverages

    NASA Astrophysics Data System (ADS)

    Haegel, Stefan; Zecho, Thomas; Wehner, Stefan

    2010-03-01

    In this paper, an improvement of the temperature programmed desorption (TPD) technique is introduced, which facilitates fully automated sampling of TPD spectra with excellent reproducibility, especially useful for extremely low coverages. By averaging many sampled TPD spectra, the range of the TPD technique can be extended toward lower coverages, as well as the quality of the spectra can be improved. This allows for easy extraction of information about the adsorbate-surface bond. A state of the art TPD apparatus with a two chamber setup and a high quality quadrupole mass spectrometer was extended by automated components. These are an automated gas dosing system, ensuring precise dosing of gas, combined with a motor driven sample manipulation unit and a liquid nitrogen cryostat with automatic refilling. In addition all components were controlled by a computer. A large number of TPD cycles could be sampled without the need of interaction of an operator. Here, it is shown for up to more than 400 TPD cycles. This opens a wide range of new interesting applications for the TPD technique, especially in the limit of zero coverage. Here, basic experiments on well known adsorbate systems are shown to view the ability and limit of this approach.

  11. Filling the gap in central shielding: three-dimensional analysis of the EQD2 dose in radiotherapy for cervical cancer with the central shielding technique

    PubMed Central

    Tamaki, Tomoaki; Ohno, Tatsuya; Noda, Shin-ei; Kato, Shingo; Nakano, Takashi

    2015-01-01

    This study aimed to provide accurate dose distribution profiles of radiotherapy for cervical cancer when treated with the central shielding technique by analysing the composite 3D EQD2 dose distribution of external beam radiotherapy (EBRT) plus intracavitary brachytherapy (ICBT). On a phantom, four patterns of the combinations of whole pelvis irradiation (WP) (4 fields), pelvis irradiation with central shielding technique (CS) [anterior–posterior/posterior–anterior (AP-PA fields), shielding width of 3 or 4 cm] and ICBT using Point-A prescription were created: 30 Gy/15 fractions + 20 Gy/10 fractions + 24 Gy/4 fractions [Plan (30 + 20 + 24)], 40 Gy/20 fractions + 10 Gy/5 fractions + 18 Gy/3 fractions [Plan (40 + 10 + 18)], 40 Gy/20 fractions + 10 Gy/5 fractions + 24 Gy/4 fractions [Plan (40 + 10 + 24)] and 45 Gy/25 fractions + 0 Gy + 28 Gy/4 fractions [Plan (45 + 0 + 28)]. The composite EQD2 dose distributions of the complete treatment were analysed. The Point-A dose of Plan (30 + 20 + 24), Plan (40 + 10 + 18), Plan (40 + 10 + 24) and Plan (45 + 0 + 28) were 78.0 Gy (CS 3 cm)/71.8 Gy (CS 4 cm), 72.1 Gy (CS 3 cm)/69.0 Gy (CS 4 cm), 80.1 Gy (CS 3 cm)/77.0 Gy (CS 4 cm) and 84.1 Gy, whereas it has been previously reported to be 62 Gy, 64 Gy, 72 Gy and 84 Gy, respectively. For all the treatment plans with CS, equivalent or wider coverage of 60 Gy (EQD2) was achieved in the right–left direction, while coverage in the anterior–posterior direction decreased in plans with CS. There were no irregularly ‘cold’ regions around the central target. The use of CS in radiotherapy for cervical cancer resulted in tumor coverage in the lateral direction with doses higher than the previously reported Point-A doses. PMID:26062811

  12. SU-C-17A-07: The Development of An MR Accelerator-Enabled Planning-To-Delivery Technique for Stereotactic Palliative Radiotherapy Treatment of Spinal Metastases

    SciTech Connect

    Hoogcarspel, S J; Kontaxis, C; Velden, J M van der; Bol, G H; Vulpen, M van; Lagendijk, J J W; Raaymakers, B W

    2014-06-01

    Purpose: To develop an MR accelerator-enabled online planning-todelivery technique for stereotactic palliative radiotherapy treatment of spinal metastases. The technical challenges include; automated stereotactic treatment planning, online MR-based dose calculation and MR guidance during treatment. Methods: Using the CT data of 20 patients previously treated at our institution, a class solution for automated treatment planning for spinal bone metastases was created. For accurate dose simulation right before treatment, we fused geometrically correct online MR data with pretreatment CT data of the target volume (TV). For target tracking during treatment, a dynamic T2-weighted TSE MR sequence was developed. An in house developed GPU based IMRT optimization and dose calculation algorithm was used for fast treatment planning and simulation. An automatically generated treatment plan developed with this treatment planning system was irradiated on a clinical 6 MV linear accelerator and evaluated using a Delta4 dosimeter. Results: The automated treatment planning method yielded clinically viable plans for all patients. The MR-CT fusion based dose calculation accuracy was within 2% as compared to calculations performed with original CT data. The dynamic T2-weighted TSE MR Sequence was able to provide an update of the anatomical location of the TV every 10 seconds. Dose calculation and optimization of the automatically generated treatment plans using only one GPU took on average 8 minutes. The Delta4 measurement of the irradiated plan agreed with the dose calculation with a 3%/3mm gamma pass rate of 86.4%. Conclusions: The development of an MR accelerator-enabled planning-todelivery technique for stereotactic palliative radiotherapy treatment of spinal metastases was presented. Future work will involve developing an intrafraction motion adaptation strategy, MR-only dose calculation, radiotherapy quality-assurance in a magnetic field, and streamlining the entire treatment

  13. WE-G-18A-07: Clinical Evaluation of Normalized Metal Artifact Reduction in KVCT Using MVCT Prior Images (MVCT-NMAR) Technique in Radiotherapy

    SciTech Connect

    Paudel, M; MacKenzie, M; Fallone, B; Rathee, S

    2014-06-15

    Purpose: To evaluate the metal artifacts in diagnostic kVCT images of patients that are corrected using a normalized metal artifact reduction method with MVCT prior images, MVCT-NMAR. Methods: An MVCTNMAR algorithm was developed and applied to five patients: three with bilateral hip prostheses, one with unilateral hip prosthesis and one with dental fillings. The corrected images were evaluated for visualization of tissue structures and their interfaces, and for radiotherapy dose calculations. They were also compared against the corresponding images corrected by a commercial metal artifact reduction technique, O-MAR, on a Phillips™ CT scanner. Results: The use of MVCT images for correcting kVCT images in the MVCT-NMAR technique greatly reduces metal artifacts, avoids secondary artifacts, and makes patient images more useful for correct dose calculation in radiotherapy. These improvements are significant over the commercial correction method, provided the MVCT and kVCT images are correctly registered. The remaining and the secondary artifacts (soft tissue blurring, eroded bones, false bones or air pockets, CT number cupping within the metal) present in O-MAR corrected images are removed in the MVCT-NMAR corrected images. Large dose reduction is possible outside the planning target volume (e.g., 59.2 Gy in comparison to 52.5 Gy in pubic bone) when these MVCT-NMAR corrected images are used in TomoTherapy™ treatment plans, as the corrected images no longer require directional blocks for prostate plans in order to avoid the image artifact regions. Conclusion: The use of MVCT-NMAR corrected images in radiotherapy treatment planning could improve the treatment plan quality for cancer patients with metallic implants. Moti Raj Paudel is supported by the Vanier Canada Graduate Scholarship, the Endowed Graduate Scholarship in Oncology and the Dissertation Fellowship at the University of Alberta. The authors acknowledge the CIHR operating grant number MOP 53254.

  14. Challenges in integrating 18FDG PET-CT into radiotherapy planning of head and neck cancer.

    PubMed

    Dandekar, P; Partridge, M; Kazi, R; Nutting, C; Harrington, K; Newbold, K

    2010-01-01

    Radiotherapy forms one of the major treatment modalities for head and neck cancers (HNC), and precision radiotherapy techniques, such as intensity-modulated radiotherapy require accurate target delineation to ensure success of the treatment. Conventionally used imaging modalities, such as X-ray computed tomography (CT) and magnetic resonance imaging are used to delineate the tumor. Imaging, such as positron emission tomography (PET)-CT, which combines the functional and anatomic modalities, is increasingly being used in the management of HNC. Currently, 18-fluorodeoxyglucose is the most commonly used radioisotope, which is accumulated in areas of high glucose uptake, such as the tumor tissue. Because most disease recurrences are within the high-dose radiotherapy volume, defining a biological target volume for radiotherapy boost is an attractive approach to improve the results. There are many challenges in employing the PET-CT for radiotherapy planning, such as patient positioning, target edge definition, and use of new PET tracers, which represent various functional properties, such as hypoxia, protein synthesis, and proliferation. The role of PET-CT for radiotherapy planning is ever expanding and more clinical data underlining the advantages and challenges in this approach are emerging. In this article, we review the current clinical evidence for the application of functional imaging to radiotherapy planning and discuss some of the current challenges and possible solutions that have been suggested to date.

  15. Clinical Applications of 3-D Conformal Radiotherapy

    NASA Astrophysics Data System (ADS)

    Miralbell, Raymond

    Although a significant improvement in cancer cure (i.e. 20% increment) has been obtained in the last 2-3 decades, 30-40% of patients still fail locally after curative radiotherapy. In order to improve local tumor control rates with radiotherapy high doses to the tumor volume are frequently necessary. Three-dimensional conformal radiation therapy (3-D CRT) is used to denote a spectrum of radiation planning and delivery techniques that rely on three-dimensional imaging to define the target (tumor) and to distinguish it from normal tissues. Modern, high-precision radiotherapy (RT) techniques are needed in order to implement the goal of optimal tumor destruction delivering minimal dose to the non-target normal tissues. A better target definition is nowadays possible with contemporary imaging (computerized tomography, magnetic resonance imaging, and positron emission tomography) and image registration technology. A highly precise dose distributions can be obtained with optimal 3-D CRT treatment delivery techniques such as stereotactic RT, intensity modulated RT (IMRT), or protontherapy (the latter allowing for in-depth conformation). Patient daily set-up repositioning and internal organ immobilization systems are necessary before considering to undertake any of the above mentioned high-precision treatment approaches. Prostate cancer, brain tumors, and base of skull malignancies are among the sites most benefitting of dose escalation approaches. Nevertheless, a significant dose reduction to the normal tissues in the vicinity of the irradiated tumor also achievable with optimal 3-D CRT may also be a major issue in the treatment of pediatric tumors in order to preserve growth, normal development, and to reduce the risk of developing radiation induced diseases such as cancer or endocrinologic disorders.

  16. Simultaneously precise frequency transfer and time synchronization using feed-forward compensation technique via 120 km fiber link.

    PubMed

    Chen, Xing; Lu, Jinlong; Cui, Yifan; Zhang, Jian; Lu, Xing; Tian, Xusheng; Ci, Cheng; Liu, Bo; Wu, Hong; Tang, Tingsong; Shi, Kebin; Zhang, Zhigang

    2015-01-01

    Precision time synchronization between two remote sites is desired in many applications such as global positioning satellite systems, long-baseline interferometry, coherent radar detection and fundamental physics constant measurements. The recently developed frequency dissemination technologies based on optical fiber link have improved the transfer instability to the level of 10(-19)/day at remote location. Therefore it is possible to keep clock oscillation at remote locations continuously corrected, or to reproduce a "virtual" clock on the remote location. However the initial alignment and the correction of 1 pps timing signal from time to time are still required, besides the highly stabilized clock frequency transfer between distant locations. Here we demonstrate a time synchronization based on an ultra-stable frequency transfer system via 120-km commercial fiber link by transferring an optical frequency comb. Both the phase noise compensation in frequency dissemination and temporal basis alignment in time synchronization were implemented by a feed-forward digital compensation (FFDC) technique. The fractional frequency instability was measured to be 6.18 × 10(-20) at 2000 s. The timing deviation of time synchronization was measured to be 0.6 ps in 1500 s. This technique also can be applied in multi-node fiber network topology. PMID:26691731

  17. Simultaneously precise frequency transfer and time synchronization using feed-forward compensation technique via 120 km fiber link

    NASA Astrophysics Data System (ADS)

    Chen, Xing; Lu, Jinlong; Cui, Yifan; Zhang, Jian; Lu, Xing; Tian, Xusheng; Ci, Cheng; Liu, Bo; Wu, Hong; Tang, Tingsong; Shi, Kebin; Zhang, Zhigang

    2015-12-01

    Precision time synchronization between two remote sites is desired in many applications such as global positioning satellite systems, long-baseline interferometry, coherent radar detection and fundamental physics constant measurements. The recently developed frequency dissemination technologies based on optical fiber link have improved the transfer instability to the level of 10-19/day at remote location. Therefore it is possible to keep clock oscillation at remote locations continuously corrected, or to reproduce a “virtual” clock on the remote location. However the initial alignment and the correction of 1 pps timing signal from time to time are still required, besides the highly stabilized clock frequency transfer between distant locations. Here we demonstrate a time synchronization based on an ultra-stable frequency transfer system via 120-km commercial fiber link by transferring an optical frequency comb. Both the phase noise compensation in frequency dissemination and temporal basis alignment in time synchronization were implemented by a feed-forward digital compensation (FFDC) technique. The fractional frequency instability was measured to be 6.18 × 10-20 at 2000 s. The timing deviation of time synchronization was measured to be 0.6 ps in 1500 s. This technique also can be applied in multi-node fiber network topology.

  18. Simultaneously precise frequency transfer and time synchronization using feed-forward compensation technique via 120 km fiber link

    PubMed Central

    Chen, Xing; Lu, Jinlong; Cui, Yifan; Zhang, Jian; Lu, Xing; Tian, Xusheng; Ci, Cheng; Liu, Bo; Wu, Hong; Tang, Tingsong; Shi, Kebin; Zhang, Zhigang

    2015-01-01

    Precision time synchronization between two remote sites is desired in many applications such as global positioning satellite systems, long-baseline interferometry, coherent radar detection and fundamental physics constant measurements. The recently developed frequency dissemination technologies based on optical fiber link have improved the transfer instability to the level of 10−19/day at remote location. Therefore it is possible to keep clock oscillation at remote locations continuously corrected, or to reproduce a “virtual” clock on the remote location. However the initial alignment and the correction of 1 pps timing signal from time to time are still required, besides the highly stabilized clock frequency transfer between distant locations. Here we demonstrate a time synchronization based on an ultra-stable frequency transfer system via 120-km commercial fiber link by transferring an optical frequency comb. Both the phase noise compensation in frequency dissemination and temporal basis alignment in time synchronization were implemented by a feed-forward digital compensation (FFDC) technique. The fractional frequency instability was measured to be 6.18 × 10−20 at 2000 s. The timing deviation of time synchronization was measured to be 0.6 ps in 1500 s. This technique also can be applied in multi-node fiber network topology. PMID:26691731

  19. Plasma microcontact patterning (PμCP): a technique for the precise control of surface patterning at small-scale.

    PubMed

    Picone, Remigio; Baum, Buzz; McKendry, Rachel

    2014-01-01

    Plasma microcontact patterning (PμCP) is a simple, efficient, and cost-effective method for the precise patterning of molecules on surfaces. It combines the use of low-pressure plasma with an elastomeric 3D mask to spatially control the removal of molecules, such as proteins, from a surface. The entire PμCP process is subdivided into three main steps: surface precoating, plasma micropatterning, and a surface postcoating step. Surfaces are first precoated with a molecular species and then placed in close contact with the 3D mask. This allows the formation of two distinct regions: an un-masked open-region which is accessible to the plasma, from which the surface layer is removed, and, a contact region which is physically protected from exposure to the plasma. In the final step, a second molecule is added to back-fill the pattern generated through plasma-treatment. The PμCP technique allows the patterning of virtually any organic molecules on different surface materials and geometries (e.g., flat, curved surfaces, and 3D microstructures). Moreover, it is a simple and robust procedure. The main advantages of this approach over traditional microcontact printing are twofold: The stability of molecule binding to plasma-treated surfaces, and the separation of the surface functionalization step from the actual micropatterning step, which enables the precise control of concentration and uniformity of patterned molecules. In conclusion, PμCP is a simple way to generate surface patterns that are highly reproducible, stable and uniform, making it a useful method for many applications. PMID:24439280

  20. SU-E-J-47: Development of a High-Precision, Image-Guided Radiotherapy, Multi- Purpose Radiation Isocenter Quality-Assurance Calibration and Checking System

    SciTech Connect

    Liu, C; Yan, G; Helmig, R; Lebron, S; Kahler, D

    2014-06-01

    Purpose: To develop a system that can define the radiation isocenter and correlate this information with couch coordinates, laser alignment, optical distance indicator (ODI) settings, optical tracking system (OTS) calibrations, and mechanical isocenter walkout. Methods: Our team developed a multi-adapter, multi-purpose quality assurance (QA) and calibration device that uses an electronic portal imaging device (EPID) and in-house image-processing software to define the radiation isocenter, thereby allowing linear accelerator (Linac) components to be verified and calibrated. Motivated by the concept that each Linac component related to patient setup for image-guided radiotherapy based on cone-beam CT should be calibrated with respect to the radiation isocenter, we designed multiple concentric adapters of various materials and shapes to meet the needs of MV and KV radiation isocenter definition, laser alignment, and OTS calibration. The phantom's ability to accurately define the radiation isocenter was validated on 4 Elekta Linacs using a commercial ball bearing (BB) phantom as a reference. Radiation isocenter walkout and the accuracy of couch coordinates, ODI, and OTS were then quantified with the device. Results: The device was able to define the radiation isocenter within 0.3 mm. Radiation isocenter walkout was within ±1 mm at 4 cardinal angles. By switching adapters, we identified that the accuracy of the couch position digital readout, ODI, OTS, and mechanical isocenter walkout was within sub-mm. Conclusion: This multi-adapter, multi-purpose isocenter phantom can be used to accurately define the radiation isocenter and represents a potential paradigm shift in Linac QA. Moreover, multiple concentric adapters allowed for sub-mm accuracy for the other relevant components. This intuitive and user-friendly design is currently patent pending.

  1. [Radiotherapy of lymphomas].

    PubMed

    Barillot, I; Mahé, M A; Antoni, D; Hennequin, C

    2016-09-01

    Radiotherapy for Hodgkin's lymphoma has evolved over time but retains a dominant position in the treatment of early stage tumours. Its indications are more limited for non-Hodgkin's lymphomas, but the techniques follow the same principles whatever the histological type. This review presents the French recommendations in terms of preparation and choice of irradiation techniques. PMID:27521031

  2. A multi-radar wireless system for respiratory gating and accurate tumor tracking in lung cancer radiotherapy.

    PubMed

    Gu, Changzhan; Li, Ruijiang; Jiang, Steve B; Li, Changzhi

    2011-01-01

    Respiratory gating and tumor tracking are two promising motion-adaptive lung cancer treatments, minimizing incidence and severity of normal tissues and precisely delivering radiation dose to the tumor. Accurate respiration measurement is important in respiratory-gated radiotherapy. Conventional gating techniques are either invasive to the body or bring insufficient accuracy and discomfort to the patients. In this paper, we present an accurate noncontact means of measuring respiration for the use in gated lung cancer radiotherapy. We also present an accurate tumor tracking technique for dynamical beam tracking radiotherapy. Two 2.4 GHz miniature radars were used to monitor the chest wall and abdominal movements simultaneously to get high resolution and enhanced parameter identification. Ray tracing technique was used to investigate the impact of antenna size in clinical practice. It is shown that our multiple radar system can reliably measure respiration signals for respiratory gating and accurate tumor tracking in motion-adaptive lung cancer radiotherapy.

  3. Intraoperative radiotherapy in colorectal cancer: Systematic review and meta-analysis of techniques, long-term outcomes, and complications

    PubMed Central

    Mirnezami, Reza; Chang, George J.; Das, Prajnan; Chandrakumaran, Kandiah; Tekkis, Paris; Darzi, Ara; Mirnezami, Alexander H.

    2015-01-01

    Background The precise contribution of IORT to the management of locally advanced and recurrent colorectal cancer (CRC) remains uncertain. We performed a systematic review and meta-analysis to assess the value of IORT in this setting. Methods Studies published between 1965 and 2011 that reported outcomes after IORT for advanced or recurrent CRC were identified by an electronic literature search. Studies were assessed for methodological quality and design, and evaluated for technique of IORT delivery, oncological outcomes, and complications following IORT. Outcomes were analysed with fixed-effect and random-effect model meta-analyses and heterogeneity and publication bias examined. Results 29 studies comprising 14 prospective and 15 retrospective studies met the inclusion criteria and were assessed, yielding a total of 3003 patients. The indication for IORT was locally advanced disease in 1792 patients and locally recurrent disease in 1211 patients. Despite heterogeneity in methodology and reporting practice, IORT is principally applied for the treatment of close or positive margins. When comparative studies were evaluated, a significant effect favouring improved local control (OR 0.22; 95% CI=0.05-0.86; p=0.03), disease free survival (HR 0.51; 95% CI=0.31-0.85; p=0.009), and overall survival (HR 0.33; 95% CI=0.2-0.54; p=0.001) was noted with no increase in total (OR 1.13; 95% CI=0.77-1.65; p=0.57), urologic (OR 1.35; 95% CI=0.84-2.82; p=0.47), or anastomotic complications (OR 0.94; 95% CI=0.42-2.1; p=0.98). Increased wound complications were noted after IORT (OR 1.86; 95% CI=1.03-3.38; p=0.049). Conclusions Despite methodological weaknesses in the studies evaluated, our results suggest that IORT may improve oncological outcomes in advanced and recurrent CRC. PMID:23270946

  4. Evaluation of Four-Dimensional Computed Tomography-Based Intensity-Modulated and Respiratory-Gated Radiotherapy Techniques for Pancreatic Carcinoma

    SciTech Connect

    Geld, Ylanga G. van der; Triest, Baukelien van; Verbakel, Wilko; Soernsen de Koste, John R. van; Senan, Suresh; Slotman, Ben J.; Lagerwaard, Frank J.

    2008-11-15

    Purpose: To compare conformal radiotherapy (CRT), intensity-modulated radiotherapy (IMRT), and respiration-gated radiotherapy (RGRT) planning techniques for pancreatic cancer. All target volumes were determined using four-dimensional computed tomography scans (4D CT). Methods and Materials: The pancreatic tumor and enlarged regional lymph nodes were contoured on all 10 phases of a planning 4D CT scan for 10 patients, and the planning target volumes (PTV{sub allphases}) were generated. Three consecutive respiratory phases for RGRT delivery in both inspiration and expiration were identified, and the corresponding PTVs (PTV{sub inspiration} and PTV{sub expiration}) and organ at risk volumes created. Treatment plans using CRT and IMRT, with and without RGRT, were created for each PTV. Results: Compared with the CRT plans, IMRT significantly reduced the mean volume of right kidney exposed to 20 Gy from 27.7% {+-} 17.7% to 16.0% {+-} 18.2% (standard deviation) (p < 0.01), but this was not achieved for the left kidney (11.1% {+-} 14.2% to 5.7% {+-} 6.5%; p = 0.1). The IMRT plans also reduced the mean gastric, hepatic, and small bowel doses (p < 0.01). No additional reductions in the dose to the kidneys or other organs at risk were seen when RGRT plans were combined with either CRT or IMRT, and the findings for RGRT in end-expiration and end-inspiration were similar. Conclusion: 4D CT-based IMRT plans for pancreatic tumors significantly reduced the radiation doses to the right kidney, liver, stomach, and small bowel compared with CRT plans. The additional dosimetric benefits from RGRT appear limited in this setting.

  5. [Radiotherapy of benign intracranial tumors].

    PubMed

    Delannes, M; Latorzeff, I; Chand, M E; Huchet, A; Dupin, C; Colin, P

    2016-09-01

    Most of the benign intracranial tumors are meningiomas, vestibular schwannomas, pituitary adenomas, craniopharyngiomas, and glomus tumors. Some of them grow very slowly, and can be observed without specific treatment, especially if they are asymptomatic. Symptomatic or growing tumors are treated by surgery, which is the reference treatment. When surgery is not possible, due to the location of the lesion, or general conditions, radiotherapy can be applied, as it is if there is a postoperative growing residual tumor, or a local relapse. Indications have to be discussed in polydisciplinary meetings, with precise evaluation of the benefit and risks of the treatments. The techniques to be used are the most modern ones, as multimodal imaging and image-guided radiation therapy. Stereotactic treatments, using fractionated or single doses depending on the size or the location of the tumors, are commonly realized, to avoid as much a possible the occurrence of late side effects. PMID:27523417

  6. Image Guidance in Radiation Therapy: Techniques and Applications

    PubMed Central

    Kataria, Tejinder

    2014-01-01

    In modern day radiotherapy, the emphasis on reduction on volume exposed to high radiotherapy doses, improving treatment precision as well as reducing radiation-related normal tissue toxicity has increased, and thus there is greater importance given to accurate position verification and correction before delivering radiotherapy. At present, several techniques that accomplish these goals impeccably have been developed, though all of them have their limitations. There is no single method available that eliminates treatment-related uncertainties without considerably adding to the cost. However, delivering “high precision radiotherapy” without periodic image guidance would do more harm than treating large volumes to compensate for setup errors. In the present review, we discuss the concept of image guidance in radiotherapy, the current techniques available, and their expected benefits and pitfalls. PMID:25587445

  7. Precise oxygen and hydrogen isotope determination in nanoliter quantities of speleothem inclusion water by cavity ring-down spectroscopic techniques

    NASA Astrophysics Data System (ADS)

    Uemura, Ryu; Nakamoto, Masashi; Asami, Ryuji; Mishima, Satoru; Gibo, Masakazu; Masaka, Kosuke; Jin-Ping, Chen; Wu, Chung-Che; Chang, Yu-Wei; Shen, Chuan-Chou

    2016-01-01

    Speleothem inclusion-water isotope compositions are a promising new climatic proxy, but their applicability is limited by their low content in water and by analytical challenges. We have developed a precise and accurate isotopic technique that is based on cavity ring-down spectroscopy (CRDS). This method features a newly developed crushing apparatus, a refined sample extraction line, careful evaluation of the water/carbonate adsorption effect. After crushing chipped speleothem in a newly-developed crushing device, released inclusion water is purified and mixed with a limited amount of nitrogen gas in the extraction line for CRDS measurement. We have measured 50-260 nL of inclusion water from 77 to 286 mg of stalagmite deposits sampled from Gyokusen Cave, Okinawa Island, Japan. The small sample size requirement demonstrates that our analytical technique can offer high-resolution inclusion water-based paleoclimate reconstructions. The 1σ reproducibility for different stalagmites ranges from ±0.05 to 0.61‰ for δ18O and ±0.0 to 2.9‰ for δD. The δD vs. δ18O plot for inclusion water from modern stalagmites is consistent with the local meteoric water line. The 1000 ln α values based on calcite and fluid inclusion measurements from decades-old stalagmites are in agreement with the data from present-day farmed calcite experiment. Combination of coeval carbonate and fluid inclusion data suggests that past temperatures at 9-10 thousand years ago (ka) and 26 ka were 3.4 ± 0.7 °C and 8.2 ± 2.4 °C colder than at present, respectively.

  8. SU-E-P-56: Dosimetric Comparison of Three Post Modified Radical Mastectomy Radiotherapy Techniques for Locally Advanced Left-Sided Breast Cancer and Beyond

    SciTech Connect

    Ma, C; Zhang, W; Lu, J; Wu, L; Wu, F; Huang, B; Li, D

    2015-06-15

    Purpose: To compare the dosimetry of post modified radical mastectomy radiotherapy (PMRMRT) for left-sided breast cancer using 3-dimensional conformal radiotherapy (3DCRT), intensity-modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT). Methods: We created ten sets of PMRMRT plans for ten consecutive patients and utilized two tangential and one or two supraclavicular beams in 3DCRT, a total of 5 beams in IMRT and two optimized partial arcs in VMAT. The difference in results between any two of the three new plans, between new and previous 3DCRT plans were compared and analyzed by ANOVA (α =0.05) and paired-sample t-test respectively. P values less than 0.05 were considered statistically significant. Results: Both IMRT and VMAT plans had similar PTV coverage, hotspot area and conformity (all p>0.05), and significantly higher PTV coverage compared with new 3DCRT (both p<0.001). IMRT plans had significantly less heart and left lung radiation exposure compared with VMAT (all p<0.05). The 3DCRT plans with larger estimated CTV displacement had better target coverage but worse OARs sparing compared to those with smaller one. Conclusion: IMRT has dosimetrical advantages over the other two techniques in PMRMRT for left-sided breast cancer. Individually quantifying and minimizing CTV displacement can significantly improve dosage distribution. This work was supported by the Medical Scientific Research Foundation of Guangdong Procvince (A2014455 to Changchun Ma)

  9. Radiotherapy for craniopharyngioma.

    PubMed

    Aggarwal, Ajay; Fersht, Naomi; Brada, Michael

    2013-03-01

    Radiotherapy remains the mainstay of multidisciplinary management of patients with incompletely resected and recurrent craniopharyngioma. Advances in imaging and radiotherapy technology offer new alternatives with the principal aim of improving the accuracy of treatment and reducing the volume of normal brain receiving significant radiation doses. We review the available technologies, their technical advantages and disadvantages and the published clinical results. Fractionated high precision conformal radiotherapy with image guidance remains the gold standard; the results of single fraction treatment are disappointing and hypofractionation should be used with caution as long term results are not available. There is insufficient data on the use of protons to assess the comparative efficacy and toxicity. The precision of treatment delivery needs to be coupled with experienced infrastructure and more intensive quality assurance to ensure best treatment outcome and this should be carried out within multidisciplinary teams experienced in the management of craniopharyngioma. The advantages of the combined skills and expertise of the team members may outweigh the largely undefined clinical gain from novel radiotherapy technologies.

  10. Genomic and Histopathological Tissue Biomarkers That Predict Radiotherapy Response in Localised Prostate Cancer

    PubMed Central

    Wilkins, Anna; Dearnaley, David; Somaiah, Navita

    2015-01-01

    Localised prostate cancer, in particular, intermediate risk disease, has varied survival outcomes that cannot be predicted accurately using current clinical risk factors. External beam radiotherapy (EBRT) is one of the standard curative treatment options for localised disease and its efficacy is related to wide ranging aspects of tumour biology. Histopathological techniques including immunohistochemistry and a variety of genomic assays have been used to identify biomarkers of tumour proliferation, cell cycle checkpoints, hypoxia, DNA repair, apoptosis, and androgen synthesis, which predict response to radiotherapy. Global measures of genomic instability also show exciting capacity to predict survival outcomes following EBRT. There is also an urgent clinical need for biomarkers to predict the radiotherapy fraction sensitivity of different prostate tumours and preclinical studies point to possible candidates. Finally, the increased resolution of next generation sequencing (NGS) is likely to enable yet more precise molecular predictions of radiotherapy response and fraction sensitivity. PMID:26504789

  11. Precise determination of full matrix of piezo-optic coefficients with a four-point bending technique: the example of lithium niobate crystals.

    PubMed

    Krupych, Oleg; Savaryn, Viktoriya; Vlokh, Rostyslav

    2014-04-01

    A recently proposed technique representing a combination of digital imaging laser interferometry with a classical four-point bending method is applied to a canonical nonlinear optical crystal, LiNbO₃, to precisely determine a full matrix of its piezo-optic coefficients (POCs). The contribution of a secondary piezo-optic effect to the POCs is investigated experimentally and analyzed theoretically. Based on the POCs thus obtained, a full matrix of strain-optic coefficients (SOCs) is calculated and the appropriate errors are estimated. A comparison of our experimental errors for the POCs and SOCs with the known reference data allows us to claim the present technique as the most precise.

  12. From technological advances to biological understanding: The main steps toward high-precision RT in breast cancer.

    PubMed

    Leonardi, Maria Cristina; Ricotti, Rosalinda; Dicuonzo, Samantha; Cattani, Federica; Morra, Anna; Dell'Acqua, Veronica; Orecchia, Roberto; Jereczek-Fossa, Barbara Alicja

    2016-10-01

    Radiotherapy improves local control in breast cancer (BC) patients which increases overall survival in the long term. Improvements in treatment planning and delivery and a greater understanding of BC behaviour have laid the groundwork for high-precision radiotherapy, which is bound to further improve the therapeutic index. Precise identification of target volumes, better coverage and dose homogeneity have had a positive impact on toxicity and local control. The conformity of treatment dose due to three-dimensional radiotherapy and new techniques such as intensity modulated radiotherapy makes it possible to spare surrounding normal tissue. The widespread use of dose-volume constraints and histograms have increased awareness of toxicity. Real time image guidance has improved geometric precision and accuracy, together with the implementation of quality assurance programs. Advances in the precision of radiotherapy is also based on the choice of the appropriate fractionation and approach. Adaptive radiotherapy is not only a technical concept, but is also a biological concept based on the knowledge that different types of BC have distinctive patterns of locoregional spread. A greater understanding of cancer biology helps in choosing the treatment best suited to a particular situation. Biomarkers predictive of response play a crucial role. The combination of radiotherapy with molecular targeted therapies may enhance radiosensitivity, thus increasing the cytotoxic effects and improving treatment response. The appropriateness of an alternative fractionation, partial breast irradiation, dose escalating/de-escalating approaches, the extent of nodal irradiation have been examined for all the BC subtypes. The broadened concept of adaptive radiotherapy is vital to high-precision treatments.

  13. From technological advances to biological understanding: The main steps toward high-precision RT in breast cancer.

    PubMed

    Leonardi, Maria Cristina; Ricotti, Rosalinda; Dicuonzo, Samantha; Cattani, Federica; Morra, Anna; Dell'Acqua, Veronica; Orecchia, Roberto; Jereczek-Fossa, Barbara Alicja

    2016-10-01

    Radiotherapy improves local control in breast cancer (BC) patients which increases overall survival in the long term. Improvements in treatment planning and delivery and a greater understanding of BC behaviour have laid the groundwork for high-precision radiotherapy, which is bound to further improve the therapeutic index. Precise identification of target volumes, better coverage and dose homogeneity have had a positive impact on toxicity and local control. The conformity of treatment dose due to three-dimensional radiotherapy and new techniques such as intensity modulated radiotherapy makes it possible to spare surrounding normal tissue. The widespread use of dose-volume constraints and histograms have increased awareness of toxicity. Real time image guidance has improved geometric precision and accuracy, together with the implementation of quality assurance programs. Advances in the precision of radiotherapy is also based on the choice of the appropriate fractionation and approach. Adaptive radiotherapy is not only a technical concept, but is also a biological concept based on the knowledge that different types of BC have distinctive patterns of locoregional spread. A greater understanding of cancer biology helps in choosing the treatment best suited to a particular situation. Biomarkers predictive of response play a crucial role. The combination of radiotherapy with molecular targeted therapies may enhance radiosensitivity, thus increasing the cytotoxic effects and improving treatment response. The appropriateness of an alternative fractionation, partial breast irradiation, dose escalating/de-escalating approaches, the extent of nodal irradiation have been examined for all the BC subtypes. The broadened concept of adaptive radiotherapy is vital to high-precision treatments. PMID:27542556

  14. Dosimetric study of the protection level of the bone marrow in patients with cervical or endometrial cancer for three radiotherapy techniques - 3D CRT, IMRT and VMAT. Study protocol.

    NASA Astrophysics Data System (ADS)

    Jodda, Agata; Urbański, Bartosz; Piotrowski, Tomasz; Malicki, Julian

    2016-03-01

    Background: The paper shows the methodology of an in-phantom study of the protection level of the bone marrow in patients with cervical or endometrial cancer for three radiotherapy techniques: three-dimensional conformal radiotherapy, intensity modulated radiotherapy, and volumetric modulated arc therapy, preceded by the procedures of image guidance. Methods/Design: The dosimetric evaluation of the doses will be performed in an in-house multi-element anthropomorphic phantom of the female pelvic area created by three-dimensional printing technology. The volume and position of the structures will be regulated according to the guidelines from the Bayesian network. The input data for the learning procedure of the model will be obtained from the retrospective analysis of imaging data obtained for 96 patients with endometrial cancer or cervical cancer treated with radiotherapy in our centre in 2008-2013. Three anatomical representations of the phantom simulating three independent clinical cases will be chosen. Five alternative treatment plans (1 × three-dimensional conformal radiotherapy, 2 × intensity modulated radiotherapy and 2 × volumetric modulated arc therapy) will be created for each representation. To simulate image-guided radiotherapy, ten specific recombinations will be designated, for each anatomical representation separately, reflecting possible changes in the volume and position of the phantom components. Discussion: The comparative analysis of planned measurements will identify discrepancies between calculated doses and doses that were measured in the phantom. Finally, differences between the doses cumulated in the hip plates performed by different techniques simulating the gynaecological patients' irradiation of dose delivery will be established. The results of this study will form the basis of the prospective clinical trial that will be designed for the assessment of hematologic toxicity and its correlation with the doses cumulated in the hip plates

  15. Dosimetric and radiobiologic comparison of 3D conformal versus intensity modulated planning techniques for prostate bed radiotherapy.

    PubMed

    Koontz, Bridget F; Das, Shiva; Temple, Kathy; Bynum, Sigrun; Catalano, Suzanne; Koontz, Jason I; Montana, Gustavo S; Oleson, James R

    2009-01-01

    Adjuvant radiotherapy for locally advanced prostate cancer improves biochemical and clinical disease-free survival. While comparisons in intact prostate cancer show a benefit for intensity modulated radiation therapy (IMRT) over 3D conformal planning, this has not been studied for post-prostatectomy radiotherapy (RT). This study compares normal tissue and target dosimetry and radiobiological modeling of IMRT vs. 3D conformal planning in the postoperative setting. 3D conformal plans were designed for 15 patients who had been treated with IMRT planning for salvage post-prostatectomy RT. The same computed tomography (CT) and target/normal structure contours, as well as prescription dose, was used for both IMRT and 3D plans. Normal tissue complication probabilities (NTCPs) were calculated based on the dose given to the bladder and rectum by both plans. Dose-volume histogram and NTCP data were compared by paired t-test. Bladder and rectal sparing were improved with IMRT planning compared to 3D conformal planning. The volume of the bladder receiving at least 75% (V75) and 50% (V50) of the dose was significantly reduced by 28% and 17%, respectively (p = 0.002 and 0.037). Rectal dose was similarly reduced, V75 by 33% and V50 by 17% (p = 0.001 and 0.004). While there was no difference in the volume of rectum receiving at least 65 Gy (V65), IMRT planning significant reduced the volume receiving 40 Gy or more (V40, p = 0.009). Bladder V40 and V65 were not significantly different between planning modalities. Despite these dosimetric differences, there was no significant difference in the NTCP for either bladder or rectal injury. IMRT planning reduces the volume of bladder and rectum receiving high doses during post-prostatectomy RT. Because of relatively low doses given to the bladder and rectum, there was no statistically significant improvement in NTCP between the 3D conformal and IMRT plans.

  16. [Which rules apply to hypofractionated radiotherapy?].

    PubMed

    Supiot, S; Clément-Colmou, K; Paris, F; Corre, I; Chiavassa, S; Delpon, G

    2015-10-01

    Hypofractionated radiotherapy is now more widely prescribed due to improved targeting techniques (intensity modulated radiotherapy, image-guided radiotherapy and stereotactic radiotherapy). Low dose hypofractionated radiotherapy is routinely administered mostly for palliative purposes. High or very high dose hypofractionated irradiation must be delivered according to very strict procedures since every minor deviation can lead to major changes in dose delivery to the tumor volume and organs at risk. Thus, each stage of the processing must be carefully monitored starting from the limitations and the choice of the hypofractionation technique, tumour contouring and dose constraints prescription, planning and finally dose calculation and patient positioning verification.

  17. Application of Phase Smoothing Pseudo Range PPP/INS Tightly Coupled Technique in Improving the Results of Low Precision MEMS

    NASA Astrophysics Data System (ADS)

    Luo, X.

    2015-12-01

    In land surveying and engineering surveying, we need to obtain high precision navigation results. However, due to the inertial device costs less than a introduction, commonly used low precision inertial navigation equipment with tightly coupled GPS / INS integrated to get high precision navigation results. Many studies have improved the accuracy of error by using the UKF and CKF filtering algorithm, but it is still using the traditional pseudo code directly, the improvement effect is not obvious, and the disturbance is large. In this study, the PPP /INSmodel is improved by using the carrier phase smoothing pseudo range algorithm. Experimental results show that based on phase smoothing pseudo range PPP/INS tight coupled method, the position precision and the velocity precision for of the measured data of higher accuracy of MEMS and GPS receiver can get to a decimeter level and centimeter level. This coupling method has higher accuracy, stronger anti disturbance and Have a better convergence than the traditional C/A code. Based on different phase smoothing epoch number combination the accuracy and smoothing effect is also different, the larger smooth epoch number is, the better treatment effect it has and The higher precision it has. For high precision measurement, the equipment cost is saved. It has a practical significance meaning in the measurement of outdoor ground.

  18. In situ precision electrospinning as an effective delivery technique for cyanoacrylate medical glue with high efficiency and low toxicity

    NASA Astrophysics Data System (ADS)

    Dong, R. H.; Qin, C. C.; Qiu, X.; Yan, X.; Yu, M.; Cui, L.; Zhou, Y.; Zhang, H. D.; Jiang, X. Y.; Long, Y. Z.

    2015-11-01

    The side effects or toxicity of cyanoacrylate used in vivo have been argued since its first application in wound closure. We propose an airflow-assisted in situ precision electrospinning apparatus as an applicator and make a detailed comparison with traditional spraying via in vitro and in vivo experiments. This novel method can not only improve operational performance and safety by precisely depositing cyanoacrylate fibers onto a wound, but significantly reduce the dosage of cyanoacrylate by almost 80%. A white blood cell count, liver function test and histological analysis prove that the in situ precision electrospinning applicator produces a better postoperative outcome, e.g., minor hepatocyte injury, moderate inflammation and the significant ability for liver regeneration. This in situ precision electrospinning method may thus dramatically broaden both civilian and military applications of cyanoacrylates.

  19. [Radiotherapy for brain metastases].

    PubMed

    Latorzeff, I; Antoni, D; Gaudaire-Josset, S; Feuvret, L; Tallet-Richard, A; Truc, G; Noël, G

    2016-09-01

    Radiotherapy for brain metastases has become more multifaceted. Indeed, with the improvement of the patient's life expectancy, side effects must be undeniably avoided and the retreatments or multiple treatments are common. The cognitive side effects should be warned and the most modern techniques of radiation therapy are used regularly to reach this goal. The new classifications of patients with brain metastases help guiding treatment more appropriately. Stereotactic radiotherapy has supplanted whole brain radiation therapy both for patients with metastases in place and for those who underwent surgery. Hippocampus protection is possible with intensity-modulated radiotherapy. Its relevance in terms of cognitive functioning should be more clearly demonstrated but the requirement, for using it, is increasingly strong. While addressing patients in palliative phase, the treatment of brain metastases is one of the localisations where technical thinking is the most challenging. PMID:27523410

  20. Wide-capture-range, high-precision wavelength stabilization within ±50 MHz for flexible-grid wavelength division multiplexing by photomixing technique

    NASA Astrophysics Data System (ADS)

    Tsuboi, Jun; Kuboki, Takeshi; Kato, Kazutoshi

    2016-08-01

    The lasers for the flexible-grid wavelength division multiplexing (WDM) system are required to have high precision of wavelength stability. Previously, we proposed the wavelength-controlling system of the distributed feedback laser diode (DFB-LD) with the photomixing technique and a microwave filter to precisely measure the optical frequency error from the target value. To enlarge the wavelength-capture range, we improve the system to detect the wavelength error with two different microwave filters in parallel. Experimental results show that the wavelength-capture range is extended up to 4 GHz while the wavelength error is still kept within ±50 MHz.

  1. A technique to re-establish dose distributions for previously treated brain cancer patients in external beam radiotherapy

    SciTech Connect

    Yue, Ning J.; Knisely, Jonathan; Studholme, Colin; Chen Zhe; Bond, James E.; Nath, Ravinder

    2004-03-31

    Tumor recurrences or new tumors may develop after irradiation of local lesion(s) in the brain, and additional radiotherapy treatments are often needed for previously treated patients. It is critical to re-establish the dose distributions delivered during the previous treatment in the current patient geometry, so that the previous dose distributions can be accurately taken into consideration in the design of the current treatment plan. The difficulty in re-establishing the previous treatment dose distributions in the current patient geometry arises from the fact that the patient position at the time of reirradiation is different from that at the previous treatment session. Simple re-entry of the previous isocenter coordinates, gantry, and couch and collimator angles into the new treatment plan would result in incorrect beam orientations relative to the new patient anatomy, and therefore incorrect display of the previous dose distributions on the current patient anatomy. To address this issue, a method has been developed so that the previous dose distributions can be accurately re-established in the framework of the current brain treatment. The method involves 3 matrix transformations: (1) transformation of beams from machine coordinate system to patient coordinate system in the previous treatment; (2) transformation of beams from patient coordinate system in the previous treatment to patient coordinate system in the current treatment; and (3) transformation of beams from patient coordinate system in the current treatment to machine coordinate system. The transformation matrices used in the second transformation are determined by registration using a mutual information-based algorithm with which the old and new computed tomography (CT) scan sets are registered automatically without human interpretation. A series of transformation matrices are derived to calculate the isocenter coordinates, the gantry, couch, and collimator angles of the beams for the previous

  2. Online planning and delivery technique for radiotherapy of spinal metastases using cone-beam CT: Image quality and system performance

    SciTech Connect

    Letourneau, Daniel . E-mail: daniel.letourneau@rmp.uhn.on.ca; Wong, Rebecca; Moseley, Douglas; Sharpe, Michael B.; Ansell, Stephen B.Sc.; Gospodarowicz, Mary; Jaffray, David A.

    2007-03-15

    Purpose: To assess the feasibility of an online strategy for palliative radiotherapy (RT) of spinal bone metastasis, which integrates imaging, planning, and treatment delivery in a single step at the treatment unit. The technical challenges of this approach include cone-beam CT (CBCT) image quality for target definition, online planning, and efficient process integration. Methods and Materials: An integrated imaging, planning, and delivery system was constructed and tested with phantoms. The magnitude of CBCT image artifacts following the use of an antiscatter grid and a nonlinear scatter correction was quantified using phantom data and images of patients receiving conventional palliative RT of the spine. The efficacy of online planning was then assessed using corrected CBCT images. Testing of the complete process was performed on phantoms with assessment of timing and dosimetric accuracy. Results: The use of image corrections reduced the cupping artifact from 30% to 4.5% on CBCT images of a body phantom and improved the accuracy of CBCT numbers (water: {+-} 20 Hounsfield unit [HU], and lung and bone: to within {+-} 130 HU). Bony anatomy was clearly visible and was deemed sufficient for target definition. The mean total time (n = 5) for application of the online approach was 23.1 min. Image-guided dose placement was assessed using radiochromic film measurements with good agreement (within 5% of dose difference and 2 mm of distance to agreement). Conclusions: The technical feasibility of CBCT-guided online planning and delivery for palliative single treatment has been demonstrated. The process was performed in one session equivalent to an initial treatment slot (<30 min) with dosimetric accuracy satisfying accepted RT standards.

  3. A Dosimetric Comparison of Accelerated Partial Breast Irradiation Techniques: Multicatheter Interstitial Brachytherapy, Three-Dimensional Conformal Radiotherapy, and Supine Versus Prone Helical Tomotherapy

    SciTech Connect

    Patel, Rakesh R. . E-mail: patel@humonc.wisc.edu; Becker, Stewart J.; Das, Rupak K.; Mackie, Thomas R.

    2007-07-01

    Purpose: To compare dosimetrically four different techniques of accelerated partial breast irradiation (APBI) in the same patient. Methods and Materials: Thirteen post-lumpectomy interstitial brachytherapy (IB) patients underwent imaging with preimplant computed tomography (CT) in the prone and supine position. These CT scans were then used to generate three-dimensional conformal radiotherapy (3D-CRT) and prone and supine helical tomotherapy (PT and ST, respectively) APBI plans and compared with the treated IB plans. Dose-volume histogram analysis and the mean dose (NTD{sub mean}) values were compared. Results: Planning target volume coverage was excellent for all methods. Statistical significance was considered to be a p value <0.05. The mean V100 was significantly lower for IB (12% vs. 15% for PT, 18% for ST, and 26% for 3D-CRT). A greater significant differential was seen when comparing V50 with mean values of 24%, 43%, 47%, and 52% for IB, PT, ST, and 3D-CRT, respectively. The IB and PT were similar and delivered an average lung NTD{sub mean} dose of 1.3 Gy{sub 3} and 1.2 Gy{sub 3}, respectively. Both of these methods were statistically significantly lower than the supine external beam techniques. Overall, all four methods yielded similar low doses to the heart. Conclusions: The use of IB and PT resulted in greater normal tissue sparing (especially ipsilateral breast and lung) than the use of supine external beam techniques of 3D-CRT or ST. However, the choice of APBI technique must be tailored to the patient's anatomy, lumpectomy cavity location, and overall treatment goals.

  4. Dosimetric Benefits of Intensity-Modulated Radiotherapy Combined With the Deep-Inspiration Breath-Hold Technique in Patients With Mediastinal Hodgkin's Lymphoma

    SciTech Connect

    Paumier, Amaury; Ghalibafian, Mithra; Gilmore, Jennifer; Beaudre, Anne; Blanchard, Pierre; El Nemr, Mohammed; Azoury, Farez; Al Hamokles, Hweej; Lefkopoulos, Dimitri; Girinsky, Theodore

    2012-03-15

    Purpose: To assess the additional benefits of using the deep-inspiration breath-hold (DIBH) technique with intensity-modulated radiotherapy (IMRT) in terms of the protection of organs at risk for patients with mediastinal Hodgkin's disease. Methods and Materials: Patients with early-stage Hodgkin's lymphoma with mediastinal involvement were entered into the study. Two simulation computed tomography scans were performed for each patient: one using the free-breathing (FB) technique and the other using the DIBH technique with a dedicated spirometer. The clinical target volume, planning target volume (PTV), and organs at risk were determined on both computed tomography scans according to the guidelines of the European Organization for Research and Treatment of Cancer. In both cases, 30 Gy in 15 fractions was prescribed. The dosimetric parameters retrieved for the statistical analysis were PTV coverage, mean heart dose, mean coronary artery dose, mean lung dose, and lung V20. Results: There were no significant differences in PTV coverage between the two techniques (FB vs. DIBH). The mean doses delivered to the coronary arteries, heart, and lungs were significantly reduced by 15% to 20% using DIBH compared with FB, and the lung V20 was reduced by almost one third. The dose reduction to organs at risk was greater for masses in the upper part of the mediastinum. IMRT with DIBH was partially implemented in 1 patient. This combination will be extended to other patients in the near future. Conclusions: Radiation exposure of the coronary arteries, heart, and lungs in patients with mediastinal Hodgkin's lymphoma was greatly reduced using DIBH with IMRT. The greatest benefit was obtained for tumors in the upper part of the mediastinum. The possibility of a wider use in clinical practice is currently under investigation in our department.

  5. Bowel sparing in pediatric cranio-spinal radiotherapy: a comparison of combined electron and photon and helical TomoTherapy techniques to a standard photon method

    SciTech Connect

    Harron, Elizabeth; Lewis, Joanne

    2012-07-01

    The aim of this study was to compare the dose to organs at risk (OARs) from different craniospinal radiotherapy treatment approaches available at the Northern Centre for Cancer Care (NCCC), with a particular emphasis on sparing the bowel. Method: Treatment plans were produced for a pediatric medulloblastoma patient with inflammatory bowel disease using 3D conformal 6-MV photons (3DCP), combined 3D 6-MV photons and 18-MeV electrons (3DPE), and helical photon TomoTherapy (HT). The 3DPE plan was a modification of the standard 3DCP technique, using electrons to treat the spine inferior to the level of the diaphragm. The plans were compared in terms of the dose-volume data to OARs and the nontumor integral dose. Results: The 3DPE plan was found to give the lowest dose to the bowel and the lowest nontumor integral dose of the 3 techniques. However, the coverage of the spine planning target volume (PTV) was least homogeneous using this technique, with only 74.6% of the PTV covered by 95% of the prescribed dose. HT was able to achieve the best coverage of the PTVs (99.0% of the whole-brain PTV and 93.1% of the spine PTV received 95% of the prescribed dose), but delivered a significantly higher integral dose. HT was able to spare the heart, thyroid, and eyes better than the linac-based techniques, but other OARs received a higher dose. Conclusions: Use of electrons was the best method for reducing the dose to the bowel and the integral dose, at the expense of compromised spine PTV coverage. For some patients, HT may be a viable method of improving dose homogeneity and reducing selected OAR doses.

  6. Dose Distribution Analysis of Axillary Lymph Nodes for Three-Dimensional Conformal Radiotherapy With a Field-in-Field Technique for Breast Cancer

    SciTech Connect

    Ohashi, Toshio Takeda, Atsuya; Shigematsu, Naoyuki; Fukada, Junichi; Sanuki, Naoko; Amemiya, Atsushi; Kubo, Atsushi

    2009-01-01

    Purpose: We previously reported that most of axillary regions could be irradiated by the modified tangential irradiation technique (MTIT). The purpose of this study was to determine whether the three-dimensional conformal radiotherapy (3D-CRT) with a field-in-field technique improves dosimetry for the breast and axillary nodes. Methods and Materials: Fifty patients with left-sided breast cancer were enrolled. With MTIT, we planned the radiation field to be wider in the cranial direction than the standard tangential fields to include the axillary regions. With 3D-CRT, a field-in-field technique was used to spare the heart and contralateral breast to the extent possible by applying the multileaf collimator manually. Dose-volume histograms were compared for the breast, axillary region, heart, lung, and other normal tissues. Results: There were no significant differences in the percent volume of the breast receiving >90% of the prescribed dose (V90) between MTIT and 3D-CRT. The mean V90 of the level I to III axillary regions were increased from 93.7%, 48.2%, and 41.3% with MTIT to 97.6%, 85.8%, and 82.8% with 3D-CRT. 3D-CRT significantly reduced the volume of the heart receiving >30 Gy (mean, 7.6 vs. 15.9 mL), the percent volume of the bilateral lung receiving >20 Gy (7.4% vs. 8.9%), and the volume of other normal tissues receiving >107% of the prescribed dose (0.1 vs. 2.9 mL). Conclusion: The use of 3D-CRT with a field-in-field technique improves axillary node coverage, while decreasing doses to the heart, lungs, and the other normal tissues, compared with MTIT.

  7. Liver-Directed Radiotherapy for Hepatocellular Carcinoma

    PubMed Central

    Keane, Florence K.; Wo, Jennifer Y.; Zhu, Andrew X.; Hong, Theodore S.

    2016-01-01

    Background The incidence of hepatocellular carcinoma (HCC) continues to increase world-wide. Many patients present with advanced disease with extensive local tumor or vascular invasion and are not candidates for traditionally curative therapies such as orthotopic liver transplantation (OLT) or resection. Radiotherapy (RT) was historically limited by its inability to deliver a tumoricidal dose; however, modern RT techniques have prompted renewed interest in the use of liver-directed RT to treat patients with primary hepatic malignancies. Summary The aim of this review was to discuss the use of external beam RT in the treatment of HCC, with particular focus on the use of stereotactic body radiotherapy (SBRT). We review the intricacies of SBRT treatment planning and delivery. Liver-directed RT involves accurate target identification, precise and reproducible patient immobilization, and assessment of target and organ motion. We also summarize the published data on liver-directed RT, and demonstrate that it is associated with excellent local control and survival rates, particularly in patients who are not candidates for OLT or resection. Key Messages Modern liver-directed RT is safe and effective for the treatment of HCC, particularly in patients who are not candidates for OLT or resection. Liver-directed RT, including SBRT, depends on accurate target identification, precise and reproducible patient immobilization, and assessment of target and organ motion. Further prospective studies are needed to fully delineate the role of liver-directed RT in the treatment of HCC. PMID:27493895

  8. [External radiotherapy for hepatocellular carcinoma].

    PubMed

    Girard, N; Mornex, F

    2011-02-01

    For a long time radiotherapy has been excluded from the therapeutic strategy for hepatocellular carcinoma, given its significant toxicity on the non-tumoral liver parenchyma. Conformal radiation is a recent advance in the field of radiotherapy, allowing dose escalation and combination with other therapeutic options for hepatocellular carcinoma, including trans-arterial chemo-embolization. Conformal radiotherapy is associated with interesting features, especially in cirrhotic patients: wide availability, non-invasiveness, possibility to target multiple localizations anywhere within the liver parenchyma, and favorable tolerance profile even in patients with cirrhosis and/or in a poor medical condition. Recently, radiation delivery has been optimized through several technical developments: respiratory gating and intensity-modulated radiotherapy, which allow a better focalization of the ballistics, stereotactic techniques and proton-beam radiotherapy, whose availability is currently limited in Europe. Given the high response rates of hepatocellular carcinoma to radiation, conformal radiotherapy may be regarded as a curative-intent treatment for hepatocellular carcinoma, similar to surgery and per-cutaneous techniques. Yet the impact of radiotherapy has to be evaluated in randomized trials to better integrate in the complex therapeutic algorithm of hepatocellular carcinoma.

  9. Craniospinal irradiation techniques

    SciTech Connect

    Scarlatescu, Ioana Avram, Calin N.; Virag, Vasile

    2015-12-07

    In this paper we present one treatment plan for irradiation cases which involve a complex technique with multiple beams, using the 3D conformational technique. As the main purpose of radiotherapy is to administrate a precise dose into the tumor volume and protect as much as possible all the healthy tissues around it, for a case diagnosed with a primitive neuro ectoderm tumor, we have developed a new treatment plan, by controlling one of the two adjacent fields used at spinal field, in a way that avoids the fields superposition. Therefore, the risk of overdose is reduced by eliminating the field divergence.

  10. Craniospinal irradiation techniques

    NASA Astrophysics Data System (ADS)

    Scarlatescu, Ioana; Virag, Vasile; Avram, Calin N.

    2015-12-01

    In this paper we present one treatment plan for irradiation cases which involve a complex technique with multiple beams, using the 3D conformational technique. As the main purpose of radiotherapy is to administrate a precise dose into the tumor volume and protect as much as possible all the healthy tissues around it, for a case diagnosed with a primitive neuro ectoderm tumor, we have developed a new treatment plan, by controlling one of the two adjacent fields used at spinal field, in a way that avoids the fields superposition. Therefore, the risk of overdose is reduced by eliminating the field divergence.

  11. Development of targeted radiotherapy systems

    NASA Astrophysics Data System (ADS)

    Ferro, Guillermina; Murphy, Consuelo A.; Villarreal, José E.; Pedraza, Martha; García, Laura; Tendilla, José I.; Paredes, Lydia

    2001-10-01

    Conventional or external beam radiotherapy, has been a viable alternative for cancer treatment. Although this technique is effective, its use is limited if the patient has multiple malignant lesions (metastases). An alternative approach is based on the design of radiopharmaceuticals that, to be administered in the patient, are directed specifically toward the target cell producing a selective radiation delivery. This treatment is known as targeted radiotherapy. We have summarized and discussed some results related to our investigations on the development of targeted radiotherapy systems, including aspects of internal dosimetry.

  12. A precise radiographic method to determine the location of the inferior alveolar canal in the posterior edentulous mandible: implications for dental implants. Part 1: Technique.

    PubMed

    Stella, J P; Tharanon, W

    1990-01-01

    In severely atrophic or osteoporotic mandibles, the location of the inferior alveolar nerve may vary considerably, both superoinferiorly and mediolaterally. A clinician's ability to reliably locate this nerve within the mandible would permit the surgical planning of implant placement in the posterior edentulous mandible. Eight edentulous cadaver mandibles were studied. A technique that precisely locates the inferior alveolar nerve within the mandible is described. The technique will aid the surgeon in planning a surgical approach to the posterior mandible with reduced risk of injury to the inferior alveolar nerve. PMID:2391135

  13. Radiotherapy Accidents

    NASA Astrophysics Data System (ADS)

    Mckenzie, Alan

    A major benefit of a Quality Assurance system in a radiotherapy centre is that it reduces the likelihood of an accident. For over 20 years I have been the interface in the UK between the Institute of Physics and Engineering in Medicine and the media — newspapers, radio and TV — and so I have learned about radiotherapy accidents from personal experience. In some cases, these accidents did not become public and so the hospital cannot be identified. Nevertheless, lessons are still being learned.

  14. Estimation of virus density in sewage effluents by two counting techniques: comparison of precisions as a function of inoculum volume.

    PubMed

    Hugues, B; Pietri, C; Andre, M

    1985-12-01

    Two titration methods for the quantification of viruses present in the environment are compared--plaque counting and determination of the most probable number with a large number of inocula at each dilution. Titration of virus suspensions and of sewage samples showed that, for a given volume of inoculum, in most cases there was no statistically significant difference between the virus titres given by the two methods. The precision of the results was the same for the two methods. When the volume of inoculum used at each dilution differed from one method to another, the width of the confidence interval increased as the volume of inoculum decreased.

  15. First case of 18F-FACBC PET/CT-guided salvage radiotherapy for local relapse after radical prostatectomy with negative 11C-Choline PET/CT and multiparametric MRI: New imaging techniques may improve patient selection.

    PubMed

    Brunocilla, Eugenio; Schiavina, Riccardo; Nanni, Cristina; Borghesi, Marco; Cevenini, Matteo; Molinaroli, Enrico; Vagnoni, Valerio; Castellucci, Paolo; Ceci, Francesco; Fanti, Stefano; Gaudiano, Caterina; Golfieri, Rita; Martorana, Giuseppe

    2014-09-30

    We present the first case of salvage radiotherapy based on the results of 18F-FACBC PET/CT performed for a PSA relapse after radical prostatectomy. The patients underwent 11CCholine PET/CT and multiparametric MRI that were negative while 18F-FACBC PET/CT visualized a suspected local relapse confirmed by transrectal ultrasound-guided biopsy. No distant relapse was detected. Thus the patient was submitted to salvage radiotherapy in the prostatic fossa. After 20 months of follow-up, the PSA was undetectable and 18F-FACBC PET/CT was negative. Salvage radiotherapy after surgery, provided that it is administered at the earliest evidence of the biochemical relapse, may improve cancer control and favourably influence the course of disease as well as the adjuvant approach. New imaging techniques may increase the efficacy of the salvage radiotherapy thus helping in the selection of the patients. Preliminary clinical reports showed an improvement in the detection rate of 20-40% of 18F-FACBC in comparison with 11C-Choline for the detection of disease relapse after radical prostatecomy, rendering the 18F-FACBC the potential radiotracer of the future for prostate cancer.

  16. High precision micro-impulse measurements for micro-thrusters based on torsional pendulum and sympathetic resonance techniques.

    PubMed

    Zhang, Daixian; Wu, Jianjun; Zhang, Rui; Zhang, Hua; He, Zhen

    2013-12-01

    A sympathetic resonance theory is analyzed and applied in a newly developed torsional pendulum to measure the micro-impulse produced by a μN s-class ablative pulsed plasma thruster. According to theoretical analysis on the dynamical behaviors of a torsional pendulum, the resonance amplification effect of micro-signals is presented. In addition, a new micro-impulse measurement method based on sympathetic resonance theory is proposed as an improvement of the original single pulse measurement method. In contrast with the single pulse measurement method, the advantages of sympathetic resonance method are significant. First, because of the magnification of vibration signals due to resonance processes, measurement precision for the sympathetic resonance method becomes higher especially in reducing reading error. With an increase in peak number, the relative errors induced by readout of voltage signals decrease to approximately ±1.9% for the sympathetic resonance mode, whereas the relative error in single pulse mode is estimated as ±13.4%. Besides, by using the resonance amplification effect the sympathetic resonance method makes it possible to measure an extremely low-impulse beyond the resolution of a thrust stand without redesigning or purchasing a new one. Moreover, because of the simple operational principle and structure the sympathetic resonance method is much more convenient and inexpensive to be implemented than other high-precision methods. Finally, the sympathetic resonance measurement method can also be applied in other thrust stands to improve further the ability to measure the low-impulse bits.

  17. High precision micro-impulse measurements for micro-thrusters based on torsional pendulum and sympathetic resonance techniques

    NASA Astrophysics Data System (ADS)

    Zhang, Daixian; Wu, Jianjun; Zhang, Rui; Zhang, Hua; He, Zhen

    2013-12-01

    A sympathetic resonance theory is analyzed and applied in a newly developed torsional pendulum to measure the micro-impulse produced by a μN s-class ablative pulsed plasma thruster. According to theoretical analysis on the dynamical behaviors of a torsional pendulum, the resonance amplification effect of micro-signals is presented. In addition, a new micro-impulse measurement method based on sympathetic resonance theory is proposed as an improvement of the original single pulse measurement method. In contrast with the single pulse measurement method, the advantages of sympathetic resonance method are significant. First, because of the magnification of vibration signals due to resonance processes, measurement precision for the sympathetic resonance method becomes higher especially in reducing reading error. With an increase in peak number, the relative errors induced by readout of voltage signals decrease to approximately ±1.9% for the sympathetic resonance mode, whereas the relative error in single pulse mode is estimated as ±13.4%. Besides, by using the resonance amplification effect the sympathetic resonance method makes it possible to measure an extremely low-impulse beyond the resolution of a thrust stand without redesigning or purchasing a new one. Moreover, because of the simple operational principle and structure the sympathetic resonance method is much more convenient and inexpensive to be implemented than other high-precision methods. Finally, the sympathetic resonance measurement method can also be applied in other thrust stands to improve further the ability to measure the low-impulse bits.

  18. An Investigation on the Reliability of Deformation Analysis at Simulated Network Depending on the Precise Point Position Technique

    NASA Astrophysics Data System (ADS)

    Durdag, U. M.; Erdogan, B.; Hekimoglu, S.

    2014-12-01

    Deformation analysis plays an important role for human life safety; hence investigating the reliability of the obtained results from deformation analysis is crucial. The deformation monitoring network is established and the observations are analyzed periodically. The main problem in the deformation analysis is that if there is more than one displaced point in the monitoring network, the analysis methods smear the disturbing effects of the displaced points over all other points which are not displaced. Therefore, only one displaced point can be detected successfully. The Precise Point Positioning (PPP) gives opportunity to prevent smearing effect of the displaced points. In this study, we have simulated a monitoring network that consisting four object points and generated six different scenarios. The displacements were added to the points by using a device that the GPS antenna was easily moved horizontally and the seven hours static GPS measurements were carried out. The measurements were analyzed by using online Automatic Precise Positioning Service (APPS) to obtain the coordinates and covariance matrices. The results of the APPS were used in the deformation analysis. The detected points and true displaced points were compared with each other to obtain reliability of the method. According to the results, the analysis still detect stable points as displaced points. For the next step, we are going to search the reason of the wrong results and deal with acquiring more reliable results.

  19. Impact of radiotherapy technique on the outcome of early breast cancer treated with conservative surgery: A multicenter observational study on 1,176 patients

    SciTech Connect

    Palazzi, Mauro . E-mail: mauro.palazzi@istitutotumori.mi.it; Tomatis, Stefano; Valli, Maria Carla; Guzzetti, Renata; Tonoli, Sandro; Bertoni, Filippo; Magrini, Stefano Maria; Meregalli, Sofia; Asnaghi, Diego; Arienti, Virginia; Pradella, Renato; Cafaro, Ines

    2006-08-01

    Purpose: To quantify the impact of radiotherapy technique on cosmetic outcome and on 5-year local control rate of early breast cancer treated with conservative surgery and adjuvant radiation. Methods and MaterialsPurpose: A total of 1,176 patients irradiated to the breast in 1997 were entered by eight centers into a prospective, observational study. Surgical procedure was quadrantectomy in 97% of patients, with axillary dissection performed in 96%; pT-stage was T1 in 81% and T2 in 19% of cases; pN-stage was N0 in 71%, N + (1-3) in 21%, and N + (>3) in 8% of cases. An immobilization device was used in 17% of patients; external contour-based and computed tomography-based treatment planning were performed in 20% and 72% of cases, respectively; 37% of patients were treated with a telecobalt unit and 63% with a linear accelerator; portal verification was used in 55% of patients; a boost dose to the tumor bed was delivered in 60% of cases. Results: With a median follow-up of 6.2 years, local, regional, and distant control rates at 5 years are 98%, 99%, and 92%, respectively. Use of less sophisticated treatment technique was associated with a less favorable cosmetic outcome. Local control was comparable between centers despite substantial technical differences. In a multivariate analysis including clinical and technical factors, only older age and prescription of medical adjuvant treatment significantly predicted for better local control, whereas use of portal verification was of borderline significance. Conclusions: Radiation technical factors impacted negatively on cosmetic outcome, but had relatively small effects on local control compared with other clinical factors.

  20. SU-C-BRD-05: Implementation of Incident Learning in the Safety and Quality Management of Radiotherapy: The Primary Experience in a New Established Program with Advanced Techniques

    SciTech Connect

    Yang, R; Wang, J

    2014-06-15

    Purpose: To explore the implementation and effectiveness of incident learning for the safety and quality of radiotherapy in a new established radiotherapy program with advanced technology. Methods: Reference to the consensus recommendations by American Association of Physicist in Medicine, an incident learning system was specifically designed for reporting, investigating, and learning of individual radiotherapy incidents in a new established radiotherapy program, with 4D CBCT, Ultrasound guided radiotherapy, VMAT, gated treatment delivered on two new installed linacs. The incidents occurring in external beam radiotherapy from February, 2012 to January, 2014 were reported. Results: A total of 33 reports were analyzed, including 28 near misses and 5 incidents. Among them, 5 originated in imaging for planning, 25 in planning, 1 in plan transfer, 1 in commissioning and 1 in treatment delivery. Among them, three near misses originated in the safety barrier of the radiotherapy process. In terms of error type, 1 incident was classified as wrong patient, 7 near misses/incidents as wrong site, 6 as wrong laterality, 5 as wrong dose, 7 as wrong prescription, and 7 as suboptimal plan quality. 5 incidents were all classified as grade 1/2 of dosimetric severity, 1 as grade 0, and the other 4 as grade 1 of medical severity. For the causes/contributory factors, negligence, policy not followed, inadequate training, failure to develop an effective plan, and communication contributed to 19, 15, 12, 5 and 3 near misses/incidents, respectively. The average incident rate per 100 patients treated was 0.4; this rate fell to 0.28% in the second year from 0.56% in the first year. The rate of near miss fell to 1.24% from 2.22%. Conclusion: Effective incident learning can reduce the occurrence of near miss/incidents, enhance the culture of safety. Incident learning is an effective proactive method for improving the quality and safety of radiotherapy.

  1. Lateral high abdominal ovariopexy: an original surgical technique for protection of the ovaries during curative radiotherapy for Hodgkin's disease

    SciTech Connect

    Gaetini, A.; De Simone, M.; Urgesi, A.; Levis, A.; Resegotti, A.; Ragona, R.; Anglesio, S.

    1988-09-01

    An original surgical method for gonadal protection in young women given pelvic radiation for Hodgkin's disease is presented. Lateral high ovarian transposition (LHAO) consists of the transposition of the ovaries into the paracolic gutter during staging laparotomy, after disconnecting the gonads from the fallopian tubes by dividing the tubo-ovarian vessels. The technique's effectiveness was assessed by a study using clinical investigation, radioimmunoassay (RIA) determination of sex hormones, and dosimetry; of 18 patients treated, 10 participated in the study. All but one have normal menses and hormone values, and one pregnancy occurred. We also calculated the doses absorbed by the ovaries and proved that, during inverted Y irradiation following LHAO, the ovaries are exposed to nearly one-half the dose they receive after traditional medial transposition. During subtotal nodal irradiation after LHAO, the irradiation dose is higher than after medialisation, but absolute values are minimal and castration is not induced.

  2. High-precision opto-mechanical lens system for space applications assembled by innovative local soldering technique

    NASA Astrophysics Data System (ADS)

    Ribes, P.; Koechlin, C.; Burkhardt, T.; Hornaff, M.; Burkhardt, D.; Kamm, A.; Gramens, S.; Beckert, E.; Fiault, G.; Eberhardt, R.; Tünnermann, A.

    2016-02-01

    Solder joining using metallic solder alloys is an alternative to adhesive bonding. Laser-based soldering processes are especially well suited for the joining of optical components made of fragile and brittle materials such as glasses, ceramics and optical crystals. This is due to a localized and minimized input of thermal energy. Solderjet bumping technology has been used to assemble a lens mount breadboard taking as input specifications the requirements found for the optical beam expander for the European Space Agency (ESA) EarthCare Mission. The silica lens and a titanium barrel have been designed and assembled with this technology in order to withstand the stringent mission demands; handling high mechanical and thermal loads without losing its optical performances. Finally a high-precision opto-mechanical lens mount has been assembled with a minimal localized stress (<1 MPa) showing outstanding performances in terms of wave-front error measurements and beam depolarization ratio before and after environmental tests.

  3. [Radiotherapy of breast cancer].

    PubMed

    Hennequin, C; Barillot, I; Azria, D; Belkacémi, Y; Bollet, M; Chauvet, B; Cowen, D; Cutuli, B; Fourquet, A; Hannoun-Lévi, J M; Leblanc, M; Mahé, M A

    2016-09-01

    In breast cancer, radiotherapy is an essential component of the treatment. After conservative surgery for an infiltrating carcinoma, radiotherapy must be systematically performed, regardless of the characteristics of the disease, because it decreases the rate of local recurrence and by this way, specific mortality. Partial breast irradiation could not be proposed routinely but only in very selected and informed patients. For ductal carcinoma in situ, adjuvant radiotherapy must be also systematically performed after lumpectomy. After mastectomy, chest wall irradiation is required for pT3-T4 tumours and if there is an axillary nodal involvement, whatever the number of involved lymph nodes. After neo-adjuvant chemotherapy and mastectomy, in case of pN0 disease, chest wall irradiation is recommended if there is a clinically or radiologically T3-T4 or node positive disease before chemotherapy. Axillary irradiation is recommended only if there is no axillary surgical dissection and a positive sentinel lymph node. Supra and infra-clavicular irradiation is advised in case of positive axillary nodes. Internal mammary irradiation must be discussed case by case, according to the benefit/risk ratio (cardiac toxicity). Dose to the chest wall or the breast must be between 45-50Gy with a conventional fractionation. A boost dose over the tumour bed is required if the patient is younger than 60 years old. Hypofractionation (42.5 Gy in 16 fractions, or 41.6 Gy en 13 or 40 Gy en 15) is possible after tumorectomy and if a nodal irradiation is not mandatory. Delineation of the breast, the chest wall and the nodal areas are based on clinical and radiological evaluations. 3D-conformal irradiation is the recommended technique, intensity-modulated radiotherapy must be proposed only in case of specific clinical situations. Respiratory gating could be useful to decrease the cardiac dose. Concomitant administration of chemotherapy in unadvised, but hormonal treatment could be start with

  4. A study on ultra-precision machining technique for Al6061-T6 to fabricate space infrared optics

    NASA Astrophysics Data System (ADS)

    Ryu, Geun-man; Lee, Gil-jae; Hyun, Sang-won; Sung, Ha-yeong; Chung, Euisik; Kim, Geon-hee

    2014-08-01

    In this paper, analysis of variance on designed experiments with full factorial design was applied to determine the optimized machining parameters for ultra-precision fabrication of the secondary aspheric mirror, which is one of the key elements of the space cryogenic infrared optics. A single point diamond turning machine (SPDTM, Nanotech 4μpL Moore) was adopted to fabricate the material, AL6061-T6, and the three machining parameters of cutting speed, feed rate and depth of cut were selected. With several randomly assigned experimental conditions, surface roughness of each condition was measured by a non-contact optical profiler (NT2000; Vecco). As a result of analysis using Minitab, the optimum cutting condition was determined as following; cutting speed: 122 m/min, feed rate: 3 mm/min and depth of cut: 1 μm. Finally, a 120 mm diameter aspheric secondary mirror was attached to a particularly designed jig by using mixture of paraffin and wax and successfully fabricated under the optimum machining parameters. The profile of machined surface was measured by a high-accuracy 3-D profilometer(UA3P; Panasonic) and we obtained the geometrical errors of 30.6 nm(RMS) and 262.4 nm(PV), which satisfy the requirements of the space cryogenic infrared optics.

  5. Transitioning from conventional radiotherapy to intensity-modulated radiotherapy for localized prostate cancer: changing focus from rectal bleeding to detailed quality of life analysis.

    PubMed

    Yamazaki, Hideya; Nakamura, Satoaki; Nishimura, Takuya; Yoshida, Ken; Yoshioka, Yasuo; Koizumi, Masahiko; Ogawa, Kazuhiko

    2014-11-01

    With the advent of modern radiation techniques, we have been able to deliver a higher prescribed radiotherapy dose for localized prostate cancer without severe adverse reactions. We reviewed and analyzed the change of toxicity profiles of external beam radiation therapy (EBRT) from the literature. Late rectal bleeding is the main adverse effect, and an incidence of >20% of Grade ≥2 adverse events was reported for 2D conventional radiotherapy of up to 70 Gy. 3D conformal radiation therapy (3D-CRT) was found to reduce the incidence to ∼10%. Furthermore, intensity-modulated radiation therapy (IMRT) reduced it further to a few percentage points. However, simultaneously, urological toxicities were enhanced by dose escalation using highly precise external radiotherapy. We should pay more attention to detailed quality of life (QOL) analysis, not only with respect to rectal bleeding but also other specific symptoms (such as urinary incontinence and impotence), for two reasons: (i) because of the increasing number of patients aged >80 years, and (ii) because of improved survival with elevated doses of radiotherapy and/or hormonal therapy; age is an important prognostic factor not only for prostate-specific antigen (PSA) control but also for adverse reactions. Those factors shift the main focus of treatment purpose from survival and avoidance of PSA failure to maintaining good QOL, particularly in older patients. In conclusion, the focus of toxicity analysis after radiotherapy for prostate cancer patients is changing from rectal bleeding to total elaborate quality of life assessment. PMID:25204643

  6. Transitioning from conventional radiotherapy to intensity-modulated radiotherapy for localized prostate cancer: changing focus from rectal bleeding to detailed quality of life analysis

    PubMed Central

    Yamazaki, Hideya; Nakamura, Satoaki; Nishimura, Takuya; Yoshida, Ken; Yoshioka, Yasuo; Koizumi, Masahiko; Ogawa, Kazuhiko

    2014-01-01

    With the advent of modern radiation techniques, we have been able to deliver a higher prescribed radiotherapy dose for localized prostate cancer without severe adverse reactions. We reviewed and analyzed the change of toxicity profiles of external beam radiation therapy (EBRT) from the literature. Late rectal bleeding is the main adverse effect, and an incidence of >20% of Grade ≥2 adverse events was reported for 2D conventional radiotherapy of up to 70 Gy. 3D conformal radiation therapy (3D-CRT) was found to reduce the incidence to ∼10%. Furthermore, intensity-modulated radiation therapy (IMRT) reduced it further to a few percentage points. However, simultaneously, urological toxicities were enhanced by dose escalation using highly precise external radiotherapy. We should pay more attention to detailed quality of life (QOL) analysis, not only with respect to rectal bleeding but also other specific symptoms (such as urinary incontinence and impotence), for two reasons: (i) because of the increasing number of patients aged >80 years, and (ii) because of improved survival with elevated doses of radiotherapy and/or hormonal therapy; age is an important prognostic factor not only for prostate-specific antigen (PSA) control but also for adverse reactions. Those factors shift the main focus of treatment purpose from survival and avoidance of PSA failure to maintaining good QOL, particularly in older patients. In conclusion, the focus of toxicity analysis after radiotherapy for prostate cancer patients is changing from rectal bleeding to total elaborate quality of life assessment. PMID:25204643

  7. Radiological and Clinical Pneumonitis After Stereotactic Lung Radiotherapy: A Matched Analysis of Three-Dimensional Conformal and Volumetric-modulated Arc Therapy Techniques

    SciTech Connect

    Palma, David A.; Senan, Suresh; Haasbeek, Cornelis J.A.; Verbakel, Wilko F.A.R.; Vincent, Andrew; Lagerwaard, Frank

    2011-06-01

    Purpose: Lung fibrosis is common after stereotactic body radiotherapy (SBRT) for lung tumors, but the influence of treatment technique on rates of clinical and radiological pneumonitis is not well described. After implementing volumetric modulated arc therapy (RapidArc [RA]; Varian Medical Systems, Palo Alto, CA) for SBRT, we scored the early pulmonary changes seen with arc and conventional three-dimensional SBRT (3D-CRT). Methods and Materials: Twenty-five SBRT patients treated with RA were matched 1:2 with 50 SBRT patients treated with 3D-CRT. Dose fractionations were based on a risk-adapted strategy. Clinical pneumonitis was scored using Common Terminology Criteria for Adverse Events version 3.0. Acute radiological changes 3 months posttreatment were scored by three blinded observers. Relationships among treatment type, baseline factors, and outcomes were assessed using Spearman's correlation, Cochran-Mantel-Haenszel tests, and logistic regression. Results: The RA and 3D-CRT groups were well matched. Forty-three patients (57%) had radiological pneumonitis 3 months after treatment. Twenty-eight patients (37%) had computed tomography (CT) findings of patchy or diffuse consolidation, and 15 patients (20%) had ground-glass opacities only. Clinical pneumonitis was uncommon, and no differences were seen between 3D-CRT vs. RA patients in rates of grade 2/3 clinical pneumonitis (6% vs. 4%, respectively; p = 0.99), moderate/severe radiological changes (24% vs. 36%, respectively, p = 0.28), or patterns of CT changes (p = 0.47). Radiological severity scores were associated with larger planning target volumes (p = 0.09) and extended fractionation (p = 0.03). Conclusions: Radiological changes after lung SBRT are common with both approaches, but no differences in early clinical or radiological findings were observed after RA. Longer follow-up will be required to exclude late changes.

  8. Optimizing the accuracy and precision of the single-pulse Laue technique for synchrotron photo-crystallography

    PubMed Central

    Kamiński, Radosław; Graber, Timothy; Benedict, Jason B.; Henning, Robert; Chen, Yu-Sheng; Scheins, Stephan; Messerschmidt, Marc; Coppens, Philip

    2010-01-01

    The accuracy that can be achieved in single-pulse pump-probe Laue experiments is discussed. It is shown that with careful tuning of the experimental conditions a reproducibility of the intensity ratios of equivalent intensities obtained in different measurements of 3–4% can be achieved. The single-pulse experiments maximize the time resolution that can be achieved and, unlike stroboscopic techniques in which the pump-probe cycle is rapidly repeated, minimize the temperature increase due to the laser exposure of the sample. PMID:20567080

  9. Functional Testing of an Inhalable Nanoparticle Based Influenza Vaccine Using a Human Precision Cut Lung Slice Technique

    PubMed Central

    Neuhaus, Vanessa; Schwarz, Katharina; Klee, Anna; Seehase, Sophie; Förster, Christine; Pfennig, Olaf; Jonigk, Danny; Fieguth, Hans-Gerd; Koch, Wolfgang; Warnecke, Gregor; Yusibov, Vidadi; Sewald, Katherina; Braun, Armin

    2013-01-01

    Annual outbreaks of influenza infections, caused by new influenza virus subtypes and high incidences of zoonosis, make seasonal influenza one of the most unpredictable and serious health threats worldwide. Currently available vaccines, though the main prevention strategy, can neither efficiently be adapted to new circulating virus subtypes nor provide high amounts to meet the global demand fast enough. New influenza vaccines quickly adapted to current virus strains are needed. In the present study we investigated the local toxicity and capacity of a new inhalable influenza vaccine to induce an antigen-specific recall response at the site of virus entry in human precision-cut lung slices (PCLS). This new vaccine combines recombinant H1N1 influenza hemagglutinin (HAC1), produced in tobacco plants, and a silica nanoparticle (NP)-based drug delivery system. We found no local cellular toxicity of the vaccine within applicable concentrations. However higher concentrations of NP (≥103 µg/ml) dose-dependently decreased viability of human PCLS. Furthermore NP, not the protein, provoked a dose-dependent induction of TNF-α and IL-1β, indicating adjuvant properties of silica. In contrast, we found an antigen-specific induction of the T cell proliferation and differentiation cytokine, IL-2, compared to baseline level (152±49 pg/mg vs. 22±5 pg/mg), which could not be seen for the NP alone. Additionally, treatment with 10 µg/ml HAC1 caused a 6-times higher secretion of IFN-γ compared to baseline (602±307 pg/mg vs. 97±51 pg/mg). This antigen-induced IFN-γ secretion was further boosted by the adjuvant effect of silica NP for the formulated vaccine to a 12-fold increase (97±51 pg/mg vs. 1226±535 pg/mg). Thus we were able to show that the plant-produced vaccine induced an adequate innate immune response and re-activated an established antigen-specific T cell response within a non-toxic range in human PCLS at the site of virus entry. PMID:23967238

  10. Functional testing of an inhalable nanoparticle based influenza vaccine using a human precision cut lung slice technique.

    PubMed

    Neuhaus, Vanessa; Schwarz, Katharina; Klee, Anna; Seehase, Sophie; Förster, Christine; Pfennig, Olaf; Jonigk, Danny; Fieguth, Hans-Gerd; Koch, Wolfgang; Warnecke, Gregor; Yusibov, Vidadi; Sewald, Katherina; Braun, Armin

    2013-01-01

    Annual outbreaks of influenza infections, caused by new influenza virus subtypes and high incidences of zoonosis, make seasonal influenza one of the most unpredictable and serious health threats worldwide. Currently available vaccines, though the main prevention strategy, can neither efficiently be adapted to new circulating virus subtypes nor provide high amounts to meet the global demand fast enough. New influenza vaccines quickly adapted to current virus strains are needed. In the present study we investigated the local toxicity and capacity of a new inhalable influenza vaccine to induce an antigen-specific recall response at the site of virus entry in human precision-cut lung slices (PCLS). This new vaccine combines recombinant H1N1 influenza hemagglutinin (HAC1), produced in tobacco plants, and a silica nanoparticle (NP)-based drug delivery system. We found no local cellular toxicity of the vaccine within applicable concentrations. However higher concentrations of NP (≥10(3) µg/ml) dose-dependently decreased viability of human PCLS. Furthermore NP, not the protein, provoked a dose-dependent induction of TNF-α and IL-1β, indicating adjuvant properties of silica. In contrast, we found an antigen-specific induction of the T cell proliferation and differentiation cytokine, IL-2, compared to baseline level (152±49 pg/mg vs. 22±5 pg/mg), which could not be seen for the NP alone. Additionally, treatment with 10 µg/ml HAC1 caused a 6-times higher secretion of IFN-γ compared to baseline (602±307 pg/mg vs. 97±51 pg/mg). This antigen-induced IFN-γ secretion was further boosted by the adjuvant effect of silica NP for the formulated vaccine to a 12-fold increase (97±51 pg/mg vs. 1226±535 pg/mg). Thus we were able to show that the plant-produced vaccine induced an adequate innate immune response and re-activated an established antigen-specific T cell response within a non-toxic range in human PCLS at the site of virus entry. PMID:23967238

  11. Accuracy and precision of polyurethane dental arch models fabricated using a three-dimensional subtractive rapid prototyping method with an intraoral scanning technique

    PubMed Central

    Kim, Jae-Hong; Kim, Ki-Baek; Kim, Woong-Chul; Kim, Ji-Hwan

    2014-01-01

    Objective This study aimed to evaluate the accuracy and precision of polyurethane (PUT) dental arch models fabricated using a three-dimensional (3D) subtractive rapid prototyping (RP) method with an intraoral scanning technique by comparing linear measurements obtained from PUT models and conventional plaster models. Methods Ten plaster models were duplicated using a selected standard master model and conventional impression, and 10 PUT models were duplicated using the 3D subtractive RP technique with an oral scanner. Six linear measurements were evaluated in terms of x, y, and z-axes using a non-contact white light scanner. Accuracy was assessed using mean differences between two measurements, and precision was examined using four quantitative methods and the Bland-Altman graphical method. Repeatability was evaluated in terms of intra-examiner variability, and reproducibility was assessed in terms of inter-examiner and inter-method variability. Results The mean difference between plaster models and PUT models ranged from 0.07 mm to 0.33 mm. Relative measurement errors ranged from 2.2% to 7.6% and intraclass correlation coefficients ranged from 0.93 to 0.96, when comparing plaster models and PUT models. The Bland-Altman plot showed good agreement. Conclusions The accuracy and precision of PUT dental models for evaluating the performance of oral scanner and subtractive RP technology was acceptable. Because of the recent improvements in block material and computerized numeric control milling machines, the subtractive RP method may be a good choice for dental arch models. PMID:24696823

  12. A Treatment Planning and Acute Toxicity Comparison of Two Pelvic Nodal Volume Delineation Techniques and Delivery Comparison of Intensity-Modulated Radiotherapy Versus Volumetric Modulated Arc Therapy for Hypofractionated High-Risk Prostate Cancer Radiotherapy

    SciTech Connect

    Myrehaug, Sten; Chan, Gordon; Craig, Tim; Weinberg, Vivian; Cheng, Chun; Roach, Mack; Cheung, Patrick; Sahgal, Arjun

    2012-03-15

    Purpose: To perform a comparison of two pelvic lymph node volume delineation strategies used in intensity-modulated radiotherapy (IMRT) for high risk prostate cancer and to determine the role of volumetric modulated arc therapy (VMAT). Methods and Materials: Eighteen consecutive patients accrued to an ongoing clinical trial were identified according to either the nodal contouring strategy as described based on lymphotropic nanoparticle-enhanced magnetic resonance imaging technology (9 patients) or the current Radiation Therapy Oncology Group (RTOG) consensus guidelines (9 patients). Radiation consisted of 45 Gy to prostate, seminal vesicles, and lymph nodes, with a simultaneous integrated boost to the prostate alone, to a total dose of 67.5 Gy delivered in 25 fractions. Prospective acute genitourinary and gastrointestinal toxicities were compared at baseline, during radiotherapy, and 3 months after radiotherapy. Each patient was retrospectively replanned using the opposite method of nodal contouring, and plans were normalized for dosimetric comparison. VMAT plans were also generated according to the RTOG method for comparison. Results: RTOG plans resulted in a significantly lower rate of genitourinary frequency 3 months after treatment. The dosimetric comparison showed that the RTOG plans resulted in both favorable planning target volume (PTV) coverage and lower organs at risk (OARs) and integral (ID) doses. VMAT required two to three arcs to achieve adequate treatment plans, we did not observe consistent dosimetric benefits to either the PTV or the OARs, and a higher ID was observed. However, treatment times were significantly shorter with VMAT. Conclusion: The RTOG guidelines for pelvic nodal volume delineation results in favorable dosimetry and acceptable acute toxicities for both the target and OARs. We are unable to conclude that VMAT provides a benefit compared with IMRT.

  13. Developments in radiotherapy.

    PubMed

    Svensson, Hans; Möller, Torgil R

    2003-01-01

    A systematic assessment of radiotherapy for cancer was conducted by The Swedish Council on Technology Assessment in Health Care (SBU) in 2001. The assessment included a review of future developments in radiotherapy and an estimate of the potential benefits of improved radiotherapy in Sweden. The conclusions reached from this review can be summarized as: Successively better knowledge is available on dose-response relationships for tumours and normal tissues at different fractionation schedules and treated volumes. Optimization of dose levels and fractionation schedules should improve the treatment outcome. Improved treatment results may be expected with even more optimized fractionation schedules. The radiosensitivity of the tumour is dependent on the availability of free oxygen in the cells. The oxygen effect has been studied for a long time and new knowledge has emerged, but there is still no consensus on the best way to minimize its negative effect in the treatment of hypoxic tumours. Development in imaging techniques is rapid, improving accuracy in outlining targets and organs at risk. This is a prerequisite for advanced treatment planning. More accurate treatment can be obtained using all the computer techniques that are successively made available for calculating dose distributions, controlling the accelerator and multileaf collimator (MLC) and checking patient set-up. Optimized treatment plans can be achieved using inverse dose planning and intensity modulation radiation therapy (IMRT). Optimization algorithms based on biological data from clinical trials could be a part of future dose planning. New genetic markers might be developed that give a measure of the radiation responsiveness of tumours and normal tissue. This could lead to more individualized treatments. New types of radiation sources may be expected: protons, light ions, and improved beams (and compounds) for boron neutron capture therapy (BNCT). Proton accelerators with scanned-beam systems and

  14. Accuracy and Precision of an IGRT Solution

    SciTech Connect

    Webster, Gareth J. Rowbottom, Carl G.; Mackay, Ranald I.

    2009-07-01

    Image-guided radiotherapy (IGRT) can potentially improve the accuracy of delivery of radiotherapy treatments by providing high-quality images of patient anatomy in the treatment position that can be incorporated into the treatment setup. The achievable accuracy and precision of delivery of highly complex head-and-neck intensity modulated radiotherapy (IMRT) plans with an IGRT technique using an Elekta Synergy linear accelerator and the Pinnacle Treatment Planning System (TPS) was investigated. Four head-and-neck IMRT plans were delivered to a semi-anthropomorphic head-and-neck phantom and the dose distribution was measured simultaneously by up to 20 microMOSFET (metal oxide semiconductor field-effect transmitter) detectors. A volumetric kilovoltage (kV) x-ray image was then acquired in the treatment position, fused with the phantom scan within the TPS using Syntegra software, and used to recalculate the dose with the precise delivery isocenter at the actual position of each detector within the phantom. Three repeat measurements were made over a period of 2 months to reduce the effect of random errors in measurement or delivery. To ensure that the noise remained below 1.5% (1 SD), minimum doses of 85 cGy were delivered to each detector. The average measured dose was systematically 1.4% lower than predicted and was consistent between repeats. Over the 4 delivered plans, 10/76 measurements showed a systematic error > 3% (3/76 > 5%), for which several potential sources of error were investigated. The error was ultimately attributable to measurements made in beam penumbrae, where submillimeter positional errors result in large discrepancies in dose. The implementation of an image-guided technique improves the accuracy of dose verification, particularly within high-dose gradients. The achievable accuracy of complex IMRT dose delivery incorporating image-guidance is within {+-} 3% in dose over the range of sample points. For some points in high-dose gradients

  15. Improving the precision of our ecosystem calipers: a modified morphometric technique for estimating marine mammal mass and body composition.

    PubMed

    Shero, Michelle R; Pearson, Linnea E; Costa, Daniel P; Burns, Jennifer M

    2014-01-01

    Mass and body composition are indices of overall animal health and energetic balance and are often used as indicators of resource availability in the environment. This study used morphometric models and isotopic dilution techniques, two commonly used methods in the marine mammal field, to assess body composition of Weddell seals (Leptonychotes weddellii, N = 111). Findings indicated that traditional morphometric models that use a series of circular, truncated cones to calculate marine mammal blubber volume and mass overestimated the animal's measured body mass by 26.9±1.5% SE. However, we developed a new morphometric model that uses elliptical truncated cones, and estimates mass with only -2.8±1.7% error (N = 10). Because this elliptical truncated cone model can estimate body mass without the need for additional correction factors, it has the potential to be a broadly applicable method in marine mammal species. While using elliptical truncated cones yielded significantly smaller blubber mass estimates than circular cones (10.2±0.8% difference; or 3.5±0.3% total body mass), both truncated cone models significantly underestimated total body lipid content as compared to isotopic dilution results, suggesting that animals have substantial internal lipid stores (N = 76). Multiple linear regressions were used to determine the minimum number of morphometric measurements needed to reliably estimate animal mass and body composition so that future animal handling times could be reduced. Reduced models estimated body mass and lipid mass with reasonable accuracy using fewer than five morphometric measurements (root-mean-square-error: 4.91% for body mass, 10.90% for lipid mass, and 10.43% for % lipid). This indicates that when test datasets are available to create calibration coefficients, regression models also offer a way to improve body mass and condition estimates in situations where animal handling times must be short and efficient.

  16. Improving the Precision of Our Ecosystem Calipers: A Modified Morphometric Technique for Estimating Marine Mammal Mass and Body Composition

    PubMed Central

    Shero, Michelle R.; Pearson, Linnea E.; Costa, Daniel P.; Burns, Jennifer M.

    2014-01-01

    Mass and body composition are indices of overall animal health and energetic balance and are often used as indicators of resource availability in the environment. This study used morphometric models and isotopic dilution techniques, two commonly used methods in the marine mammal field, to assess body composition of Weddell seals (Leptonychotes weddellii, N = 111). Findings indicated that traditional morphometric models that use a series of circular, truncated cones to calculate marine mammal blubber volume and mass overestimated the animal’s measured body mass by 26.9±1.5% SE. However, we developed a new morphometric model that uses elliptical truncated cones, and estimates mass with only −2.8±1.7% error (N = 10). Because this elliptical truncated cone model can estimate body mass without the need for additional correction factors, it has the potential to be a broadly applicable method in marine mammal species. While using elliptical truncated cones yielded significantly smaller blubber mass estimates than circular cones (10.2±0.8% difference; or 3.5±0.3% total body mass), both truncated cone models significantly underestimated total body lipid content as compared to isotopic dilution results, suggesting that animals have substantial internal lipid stores (N = 76). Multiple linear regressions were used to determine the minimum number of morphometric measurements needed to reliably estimate animal mass and body composition so that future animal handling times could be reduced. Reduced models estimated body mass and lipid mass with reasonable accuracy using fewer than five morphometric measurements (root-mean-square-error: 4.91% for body mass, 10.90% for lipid mass, and 10.43% for % lipid). This indicates that when test datasets are available to create calibration coefficients, regression models also offer a way to improve body mass and condition estimates in situations where animal handling times must be short and efficient. PMID:24614685

  17. Advanced Fabrication Techniques for Precisely Controlled Micro and Nano Scale Environments for Complex Tissue Regeneration and Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Holmes, Benjamin

    As modern medicine advances, it is still very challenging to cure joint defects due to their poor inherent regenerative capacity, complex stratified architecture, and disparate biomechanical properties. The current clinical standard for catastrophic or late stage joint degradation is a total joint implant, where the damaged joint is completely excised and replaced with a metallic or artificial joint. However, these procedures still only lasts for 10-15 years, and there are hosts of recovery complications which can occur. Thus, these studies have sought to employ advanced biomaterials and scaffold fabricated techniques to effectively regrow joint tissue, instead of merely replacing it with artificial materials. We can hypothesize here that the inclusion of biomimetic and bioactive nanomaterials with highly functional electrospun and 3D printed scaffold can improve physical characteristics (mechanical strength, surface interactions and nanotexture) enhance cellular growth and direct stem cell differentiation for bone, cartilage and vascular growth as well as cancer metastasis modeling. Nanomaterial inclusion and controlled 3D printed features effectively increased nano surface roughness, Young's Modulus and provided effective flow paths for simulated arterial blood. All of the approaches explored proved highly effective for increasing cell growth, as a result of increasing micro-complexity and nanomaterial incorporation. Additionally, chondrogenic and osteogenic differentiation, cell migration, cell to cell interaction and vascular formation were enhanced. Finally, growth-factor(gf)-loaded polymer nanospheres greatly improved vascular cell behavior, and provided a highly bioactive scaffold for mesenchymal stem cell (MSC) and human umbilical vein endothelial cell (HUVEC) co-culture and bone formation. In conclusion, electrospinning and 3D printing when combined effectively with biomimetic and bioactive nanomaterials (i.e. carbon nanomaterials, collagen, nHA, polymer

  18. Does a too risk-averse approach to the implementation of new radiotherapy technologies delay their clinical use?

    PubMed Central

    Nyström, H; Fiorino, C; Thwaites, D

    2015-01-01

    Radiotherapy is a generally safe treatment modality in practice; nevertheless, recent well-reported accidents also confirm its potential risks. However, this may obstruct or delay the introduction of new technologies and treatment strategies/techniques into clinical practice. Risks must be addressed and judged in a realistic context: risks must be assessed realistically. Introducing new technology may introduce new possibilities of errors. However, delaying the introduction of such new technology therefore means that patients are denied the potentially better treatment opportunities. Despite the difficulty in quantitatively assessing the risks on both sides of the possible choice of actions, including the “lost opportunity”, the best estimates should be included in the overall risk–benefit and cost–benefit analysis. Radiotherapy requires a sufficiently high level of support for the safety, precision and accuracy required: radiotherapy development and implementation is exciting. However, it has been anxious with a constant awareness of the consequences of mistakes or misunderstandings. Recent history can be used to show that for introduction of advanced radiotherapy, the risk-averse medical physicist can act as an electrical fuse in a complex circuit. The lack of sufficient medical physics resource or expertise can short out this fuse and leave systems unsafe. Future technological developments will continue to present further safety and risk challenges. The important evolution of radiotherapy brings different management opinions and strategies. Advanced radiotherapy technologies can and should be safely implemented in as timely a manner as possible for the patient groups where clinical benefit is indicated. PMID:25993488

  19. SU-E-T-272: Radiation Damage Comparison Between Intensity Modulated Radiotherapy and Field-In-Field Technique in Breast Cancer Treatments

    SciTech Connect

    Ai, H; Zhang, H

    2014-06-01

    Purpose: To compare normal tissue complications between IMRT and FIF treatment in breast cancer. Methods: 16 patients treated with IMRT plan and 20 patients treated with FIF plan were evaluated in this study. Both kinds of plans were generated using Eclipse treatment planning system by dosimetrist following clinical radiotherapy treatment guidelines. The plans were reviewed and approved by radiation oncologist. The average survival fraction (SF) for three different normal tissue cells of each concerned structure can be calculated from differential dose volume histogram (DVH) using linear quadratic model. The three types of normal tissues include radiosensitive, moderately radiosensitive and radio-resistant that represents 70%, 50% and 30% survival fractions, respectively, for a 2-Gy open field. Equivalent uniform doses (EUD) for corresponding normal tissues of each structure were calculated. Results: The EUDs of the lungs, heart, healthy breast and spinal cord with both IMRT and FIF treatments were calculated. Considering the average value of all IMRT plans, the lung of treated side absorbed 16.0% of dosage prescribed to the tumor if the radiosensitivity of the lung is similar to the radiosensitive cell line. For moderately radiosensitive and radio-resistant lung tissue, the average EUDs can be 18.9% and 22.4% of prescription. In contrast, patients treated with FIF plans were delivered 6.0%, 7.5% and 10.3% of prescribed dose for radiosensitive, moderately radiosensitive and radio-resistant lung tissue, respectively. Comparing heart EUDs between IMRT and FIF plans, average absorbed doses in IMRT treatment were 7.7%, 8.7% and 9.7% of prescription for three types of heart normal tissue cell lines while FIF treatments delivered only 1.3%, 1.5% and 1.6% of prescription dose. For the other organs, the results were similar. Conclusion: The results indicated that breast cancer treatment using IMRT technique had more normal tissue damage than FIF treatment. FIF demonstrated

  20. Metallicity of M dwarfs. IV. A high-precision [Fe/H] and Teff technique from high-resolution optical spectra for M dwarfs

    NASA Astrophysics Data System (ADS)

    Neves, V.; Bonfils, X.; Santos, N. C.; Delfosse, X.; Forveille, T.; Allard, F.; Udry, S.

    2014-08-01

    Aims: In this work we develop a technique to obtain high precision determinations of both metallicity and effective temperature of M dwarfs in the optical. Methods: A new method is presented that makes use of the information of 4104 lines in the 530-690 nm spectral region. It consists in the measurement of pseudo equivalent widths and their correlation with established scales of [Fe/H] and Teff. Results: Our technique achieves a rms of 0.08 ± 0.01 for [Fe/H], 91 ± 13 K for Teff, and is valid in the (-0.85,0.26 dex), (2800, 4100 K), and (M0.0, M5.0) intervals for [Fe/H], Teff and spectral type respectively. We also calculated the RMSEV which estimates uncertainties of the order of 0.12 dex for the metallicity and of 293 K for the effective temperature. The technique has an activity limit and should only be used for stars with log LHα/Lbol< - 4.0. Based on observations made with the HARPS instrument on the ESO 3.6 m telescope at La Silla Observatory under programme ID 072.C-0488(E)Our method is available online at http://www.astro.up.pt/resources/mcalTables 1, 2, 4, 8 are available in electronic form at http://www.aanda.org

  1. Adaption of a fragment analysis technique to an automated high-throughput multicapillary electrophoresis device for the precise qualitative and quantitative characterization of microbial communities.

    PubMed

    Trotha, René; Reichl, Udo; Thies, Frank L; Sperling, Danuta; König, Wolfgang; König, Brigitte

    2002-04-01

    The analysis of microbial communities is of increasing importance in life sciences and bioengineering. Traditional techniques of investigations like culture or cloning methods suffer from many disadvantages. They are unable to give a complete qualitative and quantitative view of the total amount of microorganisms themselves, their interactions among each other and with their environment. Obviously, the determination of static or dynamic balances among microorganisms is of fast growing interest. The generation of species specific and fluorescently labeled 16S ribosomal DNA (rDNA) fragments by the terminal restriction fragment length polymorphism (T-RFLP) technique is a suitable tool to overcome the problems other methods have. For the separation of these fragments polyacrylamide gel sequencers are preferred as compared to capillary sequencers using linear polymers until now because of their higher electrophoretic resolution and therefore sizing accuracy. But modern capillary sequencers, especially multicapillary sequencers, offer an advanced grade of automation and an increased throughput necessary for the investigation of complex communities in long-time studies. Therefore, we adapted a T-RFLP technique to an automated high-throughput multicapillary electrophoresis device (ABI 3100 Genetic Analysis) with regard to a precise qualitative and quantitative characterization of microbial communities. PMID:11981854

  2. A Three Corner Hat-based analysis of station position time series for the assessment of inter-technique precision at ITRF co-located sites

    NASA Astrophysics Data System (ADS)

    Abbondanza, C.; Chin, T. M.; Gross, R. S.; Heflin, M. B.; Hurst, K. J.; Parker, J. W.; Wu, X.; Altamimi, Z.

    2012-12-01

    Assessing the uncertainty in geodetic positioning is a crucial factor when combining independent space-geodetic solutions for the computation of the International Terrestrial Reference Frame (ITRF). ITRF is a combined product based on the stacking of VLBI, GPS, SLR and DORIS solutions and merging the single technique reference frames with terrestrial local tie measurements at co-located sites. In current ITRF realizations, the uncertainty evaluation of the four techniques relies on the analysis of the post-fit residuals, which are a by-product of the combination process. An alternative approach to the assessment of the inter-technique precision can be offered by a Three Corner Hat (TCH) analysis of the non-linear residual time series obtained at ITRF co-location sites as a by-product of the stacking procedure. Non-linear residuals of station position time series stemming from global networks of the four techniques can be modeled as a composition of periodic signals (commonly annual and semi-annual) and stochastic noise, typically characterized as a combination of flicker and white noise. Pair-wise differences of station position time series of at least three co-located instruments can be formed with the aim of removing the common geophysical signal and characterizing the inter-technique precision. The application of TCH relies on the hypothesis of absence of correlation between the error processes of the four techniques and assumes the stochastic noise to be Gaussian. If the hypothesis of statistical independence between the space-geodetic technique errors is amply verified, the assumption of pure white noise of the stochastic error processes appears to be more questionable. In fact, previous studies focused on geodetic positioning consistently showed that flicker noise generally prevails over white noise in the analysis of global network GPS time series, whereas in VLBI, SLR and DORIS time series Gaussian noise is predominant. In this investigation, TCH is applied

  3. [Needs and financing of radiotherapy in France and Europe].

    PubMed

    Defourny, N; Lievens, Y

    2016-10-01

    Access to high-quality and safe radiotherapy is a prerequisite to assure optimal oncology care in a multidisciplinary environment. In view of supporting long-term radiotherapy planning, actual and predicted radiotherapy needs should be put in context of the nowadays' available resources. The present article reviews the existing data on radiotherapy resources and needs, along with the prevailing reimbursement systems in the different European countries, with a specific emphasis on France. It describes potential incentives of different financing systems on clinical practice and highlights how knowledge of the cost of radiotherapy treatments, by indication and technique, is essential to support correct reimbursement, hence access to radiotherapy. It is expected that such data will help national professional and scientific radiotherapy societies across Europe in their negotiations with policy makers, with the ultimate aim to make radiotherapy accessible to all cancer patients who need it, now and in the decades to come.

  4. [Needs and financing of radiotherapy in France and Europe].

    PubMed

    Defourny, N; Lievens, Y

    2016-10-01

    Access to high-quality and safe radiotherapy is a prerequisite to assure optimal oncology care in a multidisciplinary environment. In view of supporting long-term radiotherapy planning, actual and predicted radiotherapy needs should be put in context of the nowadays' available resources. The present article reviews the existing data on radiotherapy resources and needs, along with the prevailing reimbursement systems in the different European countries, with a specific emphasis on France. It describes potential incentives of different financing systems on clinical practice and highlights how knowledge of the cost of radiotherapy treatments, by indication and technique, is essential to support correct reimbursement, hence access to radiotherapy. It is expected that such data will help national professional and scientific radiotherapy societies across Europe in their negotiations with policy makers, with the ultimate aim to make radiotherapy accessible to all cancer patients who need it, now and in the decades to come. PMID:27599682

  5. [Radiotherapy of carcinoma of the salivary glands].

    PubMed

    Servagi-Vernat, S; Tochet, F

    2016-09-01

    Indication, doses, and technique of radiotherapy for salivary glands carcinoma are presented, and the contribution of neutrons and carbon ions. The recommendations for delineation of the target volumes and organs at risk are detailed. PMID:27521038

  6. Treatment Plan Technique and Quality for Single-Isocenter Stereotactic Ablative Radiotherapy of Multiple Lung Lesions with Volumetric-Modulated Arc Therapy or Intensity-Modulated Radiosurgery

    PubMed Central

    Quan, Kimmen; Xu, Karen M.; Lalonde, Ron; Horne, Zachary D.; Bernard, Mark E.; McCoy, Chuck; Clump, David A.; Burton, Steven A.; Heron, Dwight E.

    2015-01-01

    The aim of this study is to provide a practical approach to the planning technique and evaluation of plan quality for the multi-lesion, single-isocenter stereotactic ablative radiotherapy (SABR) of the lung. Eleven patients with two or more lung lesions underwent single-isocenter volumetric-modulated arc therapy (VMAT) radiosurgery or IMRS. All plans were normalized to the target maximum dose. For each plan, all targets were treated to the same dose. Plan conformity and dose gradient were maximized with dose-control tuning structures surrounding targets. For comparison, multi-isocenter plans were retrospectively created for four patients. Conformity index (CI), homogeneity index (HI), gradient index (GI), and gradient distance (GD) were calculated for each plan. V5, V10, and V20 of the lung and organs at risk (OARs) were collected. Treatment time and total monitor units (MUs) were also recorded. One patient had four lesions and the remainder had two lesions. Six patients received VMAT and five patients received intensity-modulated radiosurgery (IMRS). For those treated with VMAT, two patients received 3-arc VMAT and four received 2-arc VMAT. For those treated with IMRS, two patients were treated with 10 and 11 beams, respectively, and the rest received 12 beams. Prescription doses ranged from 30 to 54 Gy in three to five fractions. The median prescribed isodose line was 84% (range: 80–86%). The median maximum dose was 57.1 Gy (range: 35.7–65.1 Gy). The mean combined PTV was 49.57 cm3 (range: 14.90–87.38 cm3). For single-isocenter plans, the median CI was 1.15 (range: 0.97–1.53). The median HI was 1.19 (range: 1.16–1.28). The median GI was 4.60 (range: 4.16–7.37). The median maximum radiation dose (Dmax) to total lung was 55.6 Gy (range: 35.7–62.0 Gy). The median mean radiation dose to the lung (Dmean) was 4.2 Gy (range: 1.1–9.3 Gy). The median lung V5 was 18.7% (range: 3.8–41.3%). There was no significant difference in CI, HI, GI

  7. Medical Applications: Proton Radiotherapy

    NASA Astrophysics Data System (ADS)

    Keppel, Cynthia

    2009-05-01

    Proton therapy is a highly advanced and precise form of radiation treatment for cancer. Due to the characteristic Bragg peak associated with ion energy deposition, proton therapy provides the radiation oncologist with an improved method of treatment localization within a patient, as compared with conventional radiation therapy using X-rays or electrons. Controlling disease and minimizing side effects are the twin aims of radiation treatment. Proton beams enhance the opportunity for both by facilitating maximal dose to tumor and minimal dose to surrounding tissue. In the United States, five proton radiotherapy centers currently treat cancer patients, with more in the construction phase. New facilities and enabling technologies abound. An overview of the treatment modality generally, as well as of the capabilities and research planned for the field and for the Hampton University Proton Therapy Institute in particular, will be presented.

  8. Risk-adaptive radiotherapy

    NASA Astrophysics Data System (ADS)

    Kim, Yusung

    Currently, there is great interest in integrating biological information into intensity-modulated radiotherapy (IMRT) treatment planning with the aim of boosting high-risk tumor subvolumes. Selective boosting of tumor subvolumes can be accomplished without violating normal tissue complication constraints using information from functional imaging. In this work we have developed a risk-adaptive optimization-framework that utilizes a nonlinear biological objective function. Employing risk-adaptive radiotherapy for prostate cancer, it is possible to increase the equivalent uniform dose (EUD) by up to 35.4 Gy in tumor subvolumes having the highest risk classification without increasing normal tissue complications. Subsequently, we have studied the impact of functional imaging accuracy, and found on the one hand that loss in sensitivity had a large impact on expected local tumor control, which was maximal when a low-risk classification for the remaining low risk PTV was chosen. While on the other hand loss in specificity appeared to have a minimal impact on normal tissue sparing. Therefore, it appears that in order to improve the therapeutic ratio a functional imaging technique with a high sensitivity, rather than specificity, is needed. Last but not least a comparison study between selective boosting IMRT strategies and uniform-boosting IMRT strategies yielding the same EUD to the overall PTV was carried out, and found that selective boosting IMRT considerably improves expected TCP compared to uniform-boosting IMRT, especially when lack of control of the high-risk tumor subvolumes is the cause of expected therapy failure. Furthermore, while selective boosting IMRT, using physical dose-volume objectives, did yield similar rectal and bladder sparing when compared its equivalent uniform-boosting IMRT plan, risk-adaptive radiotherapy, utilizing biological objective functions, did yield a 5.3% reduction in NTCP for the rectum. Hence, in risk-adaptive radiotherapy the

  9. The impact of feeding growing-finishing pigs with daily tailored diets using precision feeding techniques on animal performance, nutrient utilization, and body and carcass composition.

    PubMed

    Andretta, I; Pomar, C; Rivest, J; Pomar, J; Lovatto, P A; Radünz Neto, J

    2014-09-01

    The impact of moving from conventional to precision feeding systems in growing-finishing pig operations on animal performance, nutrient utilization, and body and carcass composition was studied. Fifteen animals per treatment for a total of 60 pigs of 41.2 (SE = 0.5) kg of BW were used in a performance trial (84 d) with 4 treatments: a 3-phase (3P) feeding program obtained by blending fixed proportions of feeds A (high nutrient density) and B (low nutrient density); a 3-phase commercial (COM) feeding program; and 2 daily-phase feeding programs in which the blended proportions of feeds A and B were adjusted daily to meet the estimated nutritional requirements of the group (multiphase-group feeding, MPG) or of each pig individually (multiphase-individual feeding, MPI). Daily feed intake was recorded each day and pigs were weighed weekly during the trial. Body composition was assessed at the beginning of the trial and every 28 d by dual-energy X-ray densitometry. Nitrogen and phosphorus excretion was estimated as the difference between retention and intake. Organ, carcass, and primal cut measurements were taken after slaughter. The COM feeding program reduced (P < 0.05) ADFI and improved G:F rate in relation to other treatments. The MPG and MPI programs showed values for ADFI, ADG, G:F, final BW, and nitrogen and phosphorus retention that were similar to those obtained for the 3P feeding program. However, compared with the 3P treatment, the MPI feeding program reduced the standardized ileal digestible lysine intake by 27%, the estimated nitrogen excretion by 22%, and the estimated phosphorus excretion by 27% (P < 0.05). Organs, carcass, and primal cut weights did not differ among treatments. Feeding growing-finishing pigs with daily tailored diets using precision feeding techniques is an effective approach to reduce nutrient excretion without compromising pig performance or carcass composition.

  10. Prone Hypofractionated Whole-Breast Radiotherapy Without a Boost to the Tumor Bed: Comparable Toxicity of IMRT Versus a 3D Conformal Technique

    SciTech Connect

    Hardee, Matthew E.; Raza, Shahzad; Becker, Stewart J.; Jozsef, Gabor; Lymberis, Stella C.; Hochman, Tsivia; Goldberg, Judith D.; DeWyngaert, Keith J.; Formenti, Silvia C.

    2012-03-01

    Purpose: We report a comparison of the dosimetry and toxicity of three-dimensional conformal radiotherapy (3D-CRT) vs. intensity-modulated radiotherapy (IMRT) among patients treated in the prone position with the same fractionation and target of the hypofractionation arm of the Canadian/Whelan trial. Methods and Materials: An institutional review board-approved protocol identified a consecutive series of early-stage breast cancer patients treated according to the Canadian hypofractionation regimen but in the prone position. Patients underwent IMRT treatment planning and treatment if the insurance carrier approved reimbursement for IMRT; in case of refusal, a 3D-CRT plan was used. A comparison of the dosimetric and toxicity outcomes during the acute, subacute, and long-term follow-up of the two treatment groups is reported. Results: We included 97 consecutive patients with 100 treatment plans in this study (3 patients with bilateral breast cancer); 40 patients were treated with 3D-CRT and 57 with IMRT. IMRT significantly reduced the maximum dose (Dmax median, 109.96% for 3D-CRT vs. 107.28% for IMRT; p < 0.0001, Wilcoxon test) and improved median dose homogeneity (median, 1.15 for 3D-CRT vs. 1.05 for IMRT; p < 0.0001, Wilcoxon test) when compared with 3D-CRT. Acute toxicity consisted primarily of Grade 1 to 2 dermatitis and occurred in 92% of patients. Grade 2 dermatitis occurred in 13% of patients in the 3D-CRT group and 2% in the IMRT group. IMRT moderately decreased rates of acute pruritus (p = 0.03, chi-square test) and Grade 2 to 3 subacute hyperpigmentation (p = 0.01, Fisher exact test). With a minimum of 6 months' follow-up, the treatment was similarly well tolerated in either group, including among women with large breast volumes. Conclusion: Hypofractionated breast radiotherapy is well tolerated when treating patients in the prone position, even among those with large breast volumes. Breast IMRT significantly improves dosimetry but yields only a modest but

  11. The accuracy and precision of a micro computer tomography volumetric measurement technique for the analysis of in-vitro tested total disc replacements.

    PubMed

    Vicars, R; Fisher, J; Hall, R M

    2009-04-01

    Total disc replacements (TDRs) in the spine have been clinically successful in the short term, but there are concerns over long-term failure due to wear, as seen in other joint replacements. Simulators have been used to investigate the wear of TDRs, but only gravimetric measurements have been used to assess material loss. Micro computer tomography (microCT) has been used for volumetric measurement of explanted components but has yet to be used for in-vitro studies with the wear typically less than < 20 mm3 per 10(6) cycles. The aim of this study was to compare microCT volume measurements with gravimetric measurements and to assess whether microCT can quantify wear volumes of in-vitro tested TDRs. microCT measurements of TDR polyethylene cores were undertaken and the results compared with gravimetric assessments. The effects of repositioning, integration time, and scan resolution were investigated. The best volume measurement resolution was found to be +/- 3 mm3, at least three orders of magnitude greater than those determined for gravimetric measurements. In conclusion, the microCT measurement technique is suitable for quantifying in-vitro TDR polyethylene wear volumes and can provide qualitative data (e.g. wear location), and also further quantitative data (e.g. height loss), assisting comparisons with in-vivo and ex-vivo data. It is best used alongside gravimetric measurements to maintain the high level of precision that these measurements provide.

  12. A double-spike method for K-Ar measurement: A technique for high precision in situ dating on Mars and other planetary surfaces

    NASA Astrophysics Data System (ADS)

    Farley, K. A.; Hurowitz, J. A.; Asimow, P. D.; Jacobson, N. S.; Cartwright, J. A.

    2013-06-01

    A new method for K-Ar dating using a double isotope dilution technique is proposed and demonstrated. The method is designed to eliminate known difficulties facing in situ dating on planetary surfaces, especially instrument complexity and power availability. It may also have applicability in some terrestrial dating applications. Key to the method is the use of a solid tracer spike enriched in both 39Ar and 41K. When mixed with lithium borate flux in a Knudsen effusion cell, this tracer spike and a sample to be dated can be successfully fused and degassed of Ar at <1000 °C. The evolved 40Ar∗/39Ar ratio can be measured to high precision using noble gas mass spectrometry. After argon measurement the sample melt is heated to a slightly higher temperature (˜1030 °C) to volatilize potassium, and the evolved 39K/41K ratio measured by Knudsen effusion mass spectrometry. Combined with the known composition of the tracer spike, these two ratios define the K-Ar age using a single sample aliquot and without the need for extreme temperature or a mass determination. In principle the method can be implemented using a single mass spectrometer. Experiments indicate that quantitative extraction of argon from a basalt sample occurs at a sufficiently low temperature that potassium loss in this step is unimportant. Similarly, potassium isotope ratios measured in the Knudsen apparatus indicate good sample-spike equilibration and acceptably small isotopic fractionation. When applied to a flood basalt from the Viluy Traps, Siberia, a K-Ar age of 351 ± 19 Ma was obtained, a result within 1% of the independently known age. For practical reasons this measurement was made on two separate mass spectrometers, but a scheme for combining the measurements in a single analytical instrument is described. Because both parent and daughter are determined by isotope dilution, the precision on K-Ar ages obtained by the double isotope dilution method should routinely approach that of a pair of

  13. [Epoetin alfa in radiotherapy].

    PubMed

    Trodella, L; Balducci, M; Gambacorta, M A; Mantini, G

    1998-01-01

    Sixty per cent of oncologic patients need radiation therapy for cure or palliation. In fact, in most neoplastic diseases, a better local control positively impacts on disease-free survival and overall survival. The efficacy of radiotherapy depends on several factors: while some are tumor-related, others are host-related. Radiobiological phenomena are also important: ionizing radiation is responsible for cell damage (double rupture of DNA chains), mostly an indirect mechanism with the formation of free radicals. Their toxic action is enhanced by the oxygen partial pressure at the cellular level. A number of studies have confirmed that good tissue oxygenation is a function of a high hemoglobin level in the peripheral blood (Hb > or = 13 g/dL). Unfortunately, these values are rarely present in oncologic patients due to the disease-related toxicosis as well as to the therapy induced hematologic toxicity. The treatment of anemia is free of risk for the recent developments in technology which with gene cloning and the technique of recombinant DNA has allowed the production of human recombinant erythropoietin. Erythropoietin is produced by the interstitial cells of renal tubules in response to hypoxia. It prevents apoptosis and promotes erythroid proliferation and differentiation with consequent reticulocyte release and hemoglobin synthesis. It is not completely understood whether the efficacy of radiotherapy depends on hemoglobin values present at the start of irradiation (often less than 12-13 g/dL) or on the higher ones observed during and at the end of radiotherapy. Therefore, preventive systemic erythropoietin therapy in non anemic patients in terms of costs/benefits is at present non sustainable. To the contrary, in patients undergoing radiotherapy to extended fields or aggressive multimodal treatments, for the higher risk of anemia, the early use of this treatment can be hypothesized in case of initial anemia to improve therapy compliance and prevent negative

  14. Quality Assurance and Commissioning of an Infrared Marker-Based Patient Positioning System for Frameless Extracranial Stereotactic Radiotherapy

    PubMed Central

    Gupta, Tejpal; Phurailatpam, Reena; Ajay, Mishra; Rajeshri, Pai; Pranshu, Mohindra; Supriya, Chopra

    2007-01-01

    Rapid advancements in imaging technology have led to remarkable improvements in identification and localization of tumors, ushering the era of high-precision techniques in contemporary radiotherapy practice. However, uncertainties in patient set-up and organ motion during a course of fractionated radiotherapy can compromise precision of radiation therapy. Excellent accuracy has been achieved with invasive and non-invasive fixation systems for stereotactic radiotherapy. This report describes the commissioning procedure and Quality Assurance studies done to evaluate the accuracy of isocenter localization by an infrared marker-based positioning system (ExacTrac). The ExacTrac has two infrared cameras that emit and detect infrared rays from reflective markers and construct three-dimensional coordinates of each marker. It detects the difference of the actual isocenter position from the planned isocenter coordinates in three translational (lateral, longitudinal, vertical, or x,y,z axes) and three rotational axes (six degree of freedom). This study performed on a flat and static phantom shows excellent accuracy achieved by the ExacTrac system. The positioning accuracy of ExacTrac (± 1 mm translational displacement and ± 1° rotational errors) can be a valuable tool in implementing frameless extracranial stereotactic radiotherapy. Nevertheless, it needs to be further evaluated on patients with inherent motion and greater positional uncertainty before being adopted in clinical practice. PMID:23675057

  15. Intraoperative radiotherapy for breast cancer

    PubMed Central

    Williams, Norman R.; Pigott, Katharine H.; Brew-Graves, Chris

    2014-01-01

    Intra-operative radiotherapy (IORT) as a treatment for breast cancer is a relatively new technique that is designed to be a replacement for whole breast external beam radiotherapy (EBRT) in selected women suitable for breast-conserving therapy. This article reviews twelve reasons for the use of the technique, with a particular emphasis on targeted intra-operative radiotherapy (TARGIT) which uses X-rays generated from a portable device within the operating theatre immediately after the breast tumour (and surrounding margin of healthy tissue) has been removed. The delivery of a single fraction of radiotherapy directly to the tumour bed at the time of surgery, with the capability of adding EBRT at a later date if required (risk-adaptive technique) is discussed in light of recent results from a large multinational randomised controlled trial comparing TARGIT with EBRT. The technique avoids irradiation of normal tissues such as skin, heart, lungs, ribs and spine, and has been shown to improve cosmetic outcome when compared with EBRT. Beneficial aspects to both institutional and societal economics are discussed, together with evidence demonstrating excellent patient satisfaction and quality of life. There is a discussion of the published evidence regarding the use of IORT twice in the same breast (for new primary cancers) and in patients who would never be considered for EBRT because of their special circumstances (such as the frail, the elderly, or those with collagen vascular disease). Finally, there is a discussion of the role of the TARGIT Academy in developing and sustaining high standards in the use of the technique. PMID:25083504

  16. A new high-precision technique for measurement of N2O concentration in polar ice cores with small amount of samples

    NASA Astrophysics Data System (ADS)

    Ryu, Yeongjun; Yang, Ji-Woong; Ahn, Jinho

    2016-04-01

    Nitrous oxide, one of the major greenhouse gases, has about 300 times higher GWP for 100 years, although its mixing ratio is a thousand time less than that of CO2. Since N2O has important roles in biogeochemical nitrogen cycles, atmospheric ozone destruction, and long term scale climate feedback, it is crucial to comprehend the underlying mechanisms that lead changes in global inventories of greenhouse gases in the past. Because previous data from ice core studies have large uncertainty of 5 ppbv with relatively low temporal resolutions, they are not sufficient for interpreting centennial to multi-centennial variations. Here we present a new high-precision technique for measuring N2O concentration of ancient air occluded in ice cores. We use a wet extraction method (melting-refreezing method) to extract gas from the ice core, and GC-ECD to determine N2O concentration. The optimized setting for GC-ECD permits high sensitivity for N2O, and minimizes volume of ice core sample that is requisite to get reliable results. Here we present preliminary results that we obtained from 15 ~ 20 g of ice core samples. The values for solubility correction is measured by an additional melting-refreezing process. The amount of correction is about 3 ppbv for 329.88 ppbv N2O standard gas air (calibrated from NOAA) with an uncertainty of < 1 ppbv. We also compare the results with those from a dry extraction method for validation, and present preliminary results from Styx ice core, Antarctica. The updated results will be presented at the meeting.

  17. An image guided small animal stereotactic radiotherapy system.

    PubMed

    Sha, Hao; Udayakumar, Thirupandiyur S; Johnson, Perry B; Dogan, Nesrin; Pollack, Alan; Yang, Yidong

    2016-04-01

    Small animal radiotherapy studies should be performed preferably on irradiators capable of focal tumor irradiation and healthy tissue sparing. In this study, an image guided small animal arc radiation treatment system (iSMAART) was developed which can achieve highly precise radiation targeting through the utilization of onboard cone beam computed tomography (CBCT) guidance. The iSMAART employs a unique imaging and radiation geometry where animals are positioned upright. It consists of a stationary x-ray tube, a stationary flat panel detector, and a rotatable and translational animal stage. System performance was evaluated in regards to imaging, image guidance, animal positioning, and radiation targeting using phantoms and tumor bearing animals. The onboard CBCT achieved good signal, contrast, and sub-millimeter spatial resolution. The iodine contrast CBCT accurately delineated orthotopic prostate tumors. Animal positioning was evaluated with ~0.3 mm vertical displacement along superior-inferior direction. The overall targeting precision was within 0.4 mm. Stereotactic radiation beams conformal to tumor targets can be precisely delivered from multiple angles surrounding the animal. The iSMAART allows radiobiology labs to utilize an image guided precision radiation technique that can focally irradiate tumors while sparing healthy tissues at an affordable cost. PMID:26958942

  18. An image guided small animal stereotactic radiotherapy system

    PubMed Central

    Sha, Hao; Udayakumar, Thirupandiyur S.; Johnson, Perry B.; Dogan, Nesrin; Pollack, Alan; Yang, Yidong

    2016-01-01

    Small animal radiotherapy studies should be performed preferably on irradiators capable of focal tumor irradiation and healthy tissue sparing. In this study, an image guided small animal arc radiation treatment system (iSMAART) was developed which can achieve highly precise radiation targeting through the utilization of onboard cone beam computed tomography (CBCT) guidance. The iSMAART employs a unique imaging and radiation geometry where animals are positioned upright. It consists of a stationary x-ray tube, a stationary flat panel detector, and a rotatable and translational animal stage. System performance was evaluated in regards to imaging, image guidance, animal positioning, and radiation targeting using phantoms and tumor bearing animals. The onboard CBCT achieved good signal, contrast, and sub-millimeter spatial resolution. The iodine contrast CBCT accurately delineated orthotopic prostate tumors. Animal positioning was evaluated with ∼0.3 mm vertical displacement along superior-inferior direction. The overall targeting precision was within 0.4 mm. Stereotactic radiation beams conformal to tumor targets can be precisely delivered from multiple angles surrounding the animal. The iSMAART allows radiobiology labs to utilize an image guided precision radiation technique that can focally irradiate tumors while sparing healthy tissues at an affordable cost. PMID:26958942

  19. An image guided small animal stereotactic radiotherapy system.

    PubMed

    Sha, Hao; Udayakumar, Thirupandiyur S; Johnson, Perry B; Dogan, Nesrin; Pollack, Alan; Yang, Yidong

    2016-04-01

    Small animal radiotherapy studies should be performed preferably on irradiators capable of focal tumor irradiation and healthy tissue sparing. In this study, an image guided small animal arc radiation treatment system (iSMAART) was developed which can achieve highly precise radiation targeting through the utilization of onboard cone beam computed tomography (CBCT) guidance. The iSMAART employs a unique imaging and radiation geometry where animals are positioned upright. It consists of a stationary x-ray tube, a stationary flat panel detector, and a rotatable and translational animal stage. System performance was evaluated in regards to imaging, image guidance, animal positioning, and radiation targeting using phantoms and tumor bearing animals. The onboard CBCT achieved good signal, contrast, and sub-millimeter spatial resolution. The iodine contrast CBCT accurately delineated orthotopic prostate tumors. Animal positioning was evaluated with ~0.3 mm vertical displacement along superior-inferior direction. The overall targeting precision was within 0.4 mm. Stereotactic radiation beams conformal to tumor targets can be precisely delivered from multiple angles surrounding the animal. The iSMAART allows radiobiology labs to utilize an image guided precision radiation technique that can focally irradiate tumors while sparing healthy tissues at an affordable cost.

  20. Techniques and equipment required for precise stream gaging in tide-affected fresh-water reaches of the Sacramento River, California

    USGS Publications Warehouse

    Smith, Winchell

    1971-01-01

    Current-meter measurements of high accuracy will be required for calibration of an acoustic flow-metering system proposed for installation in the Sacramento River at Chipps Island in California. This report presents an analysis of the problem of making continuous accurate current-meter measurements in this channel where the flow regime is changing constantly in response to tidal action. Gaging-system requirements are delineated, and a brief description is given of the several applicable techniques that have been developed by others. None of these techniques provides the accuracies required for the flowmeter calibration. A new system is described--one which has been assembled and tested in prototype and which will provide the matrix of data needed for accurate continuous current-meter measurements. Analysis of a large quantity of data on the velocity distribution in the channel of the Sacramento River at Chipps Island shows that adequate definition of the velocity can be made during the dominant flow periods--that is, at times other than slack-water periods--by use of current meters suspended at elevations 0.2 and 0.8 of the depth below the water surface. However, additional velocity surveys will be necessary to determine whether or not small systematic corrections need be applied during periods of rapidly changing flow. In the proposed system all gaged parameters, including velocities, depths, position in the stream, and related times, are monitored continuously as a boat moves across the river on the selected cross section. Data are recorded photographically and transferred later onto punchcards for computer processing. Computer programs have been written to permit computation of instantaneous discharges at any selected time interval throughout the period of the current meter measurement program. It is anticipated that current-meter traverses will be made at intervals of about one-half hour over periods of several days. Capability of performance for protracted

  1. The use of fiducial markers in image-guided radiotherapy for gastric cancer.

    PubMed

    Sia, Joseph; Glance, Simon; Chandran, Sujievvan; Vaughan, Rhys; Hamilton, Chris

    2013-10-01

    The use of fiducial markers (FM) in image-guided radiotherapy (IGRT) to increase treatment precision is emerging for upper gastrointestinal malignancies. To our knowledge there is no data beyond technical reports for the use of FMs in IGRT for gastric cancers in the current literature. We report a case of an 89-year old gentleman with localised gastric cancer who was deemed unfit for surgery and chemotherapy. He had FMs inserted endoscopically around the tumour via ultrasound guidance and received radiotherapy with a high-dose palliative intent via a two-phase technique to 54 Gy in 30 fractions with IGRT. The use of FMs allowed confidence in tumour delineation and together with IGRT enabled precise and safe delivery of a higher dose. The patient tolerated the treatment without significant toxicity and had no evidence of residual or recurrent tumour 12 months following radiotherapy. The use of FMs with IGRT in upper gastrointestinal malignancies warrants further collaborative studies.

  2. Dosimetric Study of Current Treatment Options for Radiotherapy in Retinoblastoma

    SciTech Connect

    Eldebawy, Eman; Parker, William; Abdel Rahman, Wamied; Freeman, Carolyn R.

    2012-03-01

    Purpose: To determine the best treatment technique for patients with retinoblastoma requiring radiotherapy to the whole eye. Methods and Materials: Treatment plans for 3 patients with retinoblastoma were developed using 10 radiotherapy techniques including electron beams, photon beam wedge pair (WP), photon beam three-dimensional conformal radiotherapy (3D-CRT), fixed gantry intensity-modulated radiotherapy (IMRT), photon volumetric arc therapy (VMAT), fractionated stereotactic radiotherapy, and helical tomotherapy (HT). Dose-volume analyses were carried out for each technique. Results: All techniques provided similar target coverage; conformity was highest for VMAT, nine-field (9F) IMRT, and HT (conformity index [CI] = 1.3) and lowest for the WP and two electron techniques (CI = 1.8). The electron techniques had the highest planning target volume dose gradient (131% of maximum dose received [D{sub max}]), and the CRT techniques had the lowest (103% D{sub max}) gradient. The volume receiving at least 20 Gy (V{sub 20Gy}) for the ipsilateral bony orbit was lowest for the VMAT and HT techniques (56%) and highest for the CRT techniques (90%). Generally, the electron beam techniques were superior in terms of brain sparing and delivered approximately one-third of the integral dose of the photon techniques. Conclusions: Inverse planned image-guided radiotherapy delivered using HT or VMAT gives better conformity index, improved orbital bone and brain sparing, and a lower integral dose than other techniques.

  3. [Image-guided radiotherapy and partial delegation to radiotherapy technicians: Clermont-Ferrand experience].

    PubMed

    Loos, G; Moreau, J; Miroir, J; Benhaïm, C; Biau, J; Caillé, C; Bellière, A; Lapeyre, M

    2013-10-01

    The various image-guided radiotherapy techniques raise the question of how to achieve the control of patient positioning before irradiation session and sharing of tasks between radiation oncologists and radiotherapy technicians. We have put in place procedures and operating methods to make a partial delegation of tasks to radiotherapy technicians and secure the process in three situations: control by orthogonal kV imaging (kV-kV) of bony landmarks, control by kV-kV imaging of intraprostatic fiducial goldmarkers and control by cone beam CT (CBCT) imaging for prostate cancer. Significant medical overtime is required to control these three IGRT techniques. Because of their competence in imaging, these daily controls can be delegated to radiotherapy technicians. However, to secure the process, initial training and regular evaluation are essential. The analysis of the comparison of the use of kV/kV on bone structures allowed us to achieve a partial delegation of control to radiotherapy technicians. Controlling the positioning of the prostate through the use and automatic registration of fiducial goldmarkers allows better tracking of the prostate and can be easily delegated to radiotherapy technicians. The analysis of the use of daily cone beam CT for patients treated with intensity modulated irradiation is underway, and a comparison of practices between radiotherapy technicians and radiation oncologists is ongoing to know if a partial delegation of this control is possible. PMID:24011600

  4. An in-line micro-pyrolysis system to remove contaminating organic species for precise and accurate water isotope analysis by spectroscopic techniques

    NASA Astrophysics Data System (ADS)

    Panetta, R. J.; Hsiao, G.

    2011-12-01

    Trace levels of organic contaminants such as short alcohols and terpenoids have been shown to cause spectral interference in water isotope analysis by spectroscopic techniques. The result is degraded precision and accuracy in both δD and δ18O for samples such as beverages, plant extracts or slightly contaminated waters. An initial approach offered by manufacturers is post-processing software that analyzes spectral features to identify and flag contaminated samples. However, it is impossible for this software to accurately reconstruct the water isotope signature, thus it is primarily a metric for data quality. Here, we describe a novel in-line pyrolysis system (Micro-Pyrolysis Technology, MPT) placed just prior to the inlet of a cavity ring-down spectroscopy (CRDS) analyzer that effectively removes interfering organic molecules without altering the isotope values of the water. Following injection of the water sample, N2 carrier gas passes the sample through a micro-pyrolysis tube heated with multiple high temperature elements in an oxygen-free environment. The temperature is maintained above the thermal decomposition threshold of most organic compounds (≤ 900 oC), but well below that of water (~2000 oC). The main products of the pyrolysis reaction are non-interfering species such as elemental carbon and H2 gas. To test the efficacy and applicability of the system, waters of known isotopic composition were spiked with varying amounts of common interfering alcohols (methanol, ethanol, propanol, hexanol, trans-2-hexenol, cis-3-hexanol up to 5 % v/v) and common soluble plant terpenoids (carveol, linalool, geraniol, prenol). Spiked samples with no treatment to remove the organics show strong interfering absorption peaks that adversely affect the δD and δ18O values. However, with the MPT in place, all interfering absorption peaks are removed and the water absorption spectrum is fully restored. As a consequence, the δD and δ18O values also return to their original

  5. KELT-8b: A Highly Inflated Transiting Hot Jupiter and a New Technique for Extracting High-precision Radial Velocities from Noisy Spectra

    NASA Astrophysics Data System (ADS)

    Fulton, Benjamin J.; Collins, Karen A.; Gaudi, B. Scott; Stassun, Keivan G.; Pepper, Joshua; Beatty, Thomas G.; Siverd, Robert J.; Penev, Kaloyan; Howard, Andrew W.; Baranec, Christoph; Corfini, Giorgio; Eastman, Jason D.; Gregorio, Joao; Law, Nicholas M.; Lund, Michael B.; Oberst, Thomas E.; Penny, Matthew T.; Riddle, Reed; Rodriguez, Joseph E.; Stevens, Daniel J.; Zambelli, Roberto; Ziegler, Carl; Bieryla, Allyson; D'Ago, Giuseppe; DePoy, Darren L.; Jensen, Eric L. N.; Kielkopf, John F.; Latham, David W.; Manner, Mark; Marshall, Jennifer; McLeod, Kim K.; Reed, Phillip A.

    2015-09-01

    We announce the discovery of a highly inflated transiting hot Jupiter by the KELT-North survey. A global analysis including constraints from isochrones indicates that the V = 10.8 host star (HD 343246) is a mildly evolved, G dwarf with {T}{eff}={5754}-55+54 K, {log} g={4.078}-0.054+0.049, [{Fe}/{{H}}]=0.272+/- 0.038, an inferred mass {M}*={1.211}-0.066+0.078 {M}⊙ , and radius {R}*={1.67}-0.12+0.14 {R}⊙ . The planetary companion has a mass {M}{{P}}={0.867}-0.061+0.065 MJ, radius {R}{{P}}={1.86}-0.16+0.18 RJ, surface gravity {log} {g}{{P}}={2.793}-0.075+0.072, and density {ρ }{{P}}={0.167}-0.038+0.047 g cm-3. The planet is on a roughly circular orbit with semimajor axis a={0.04571}-0.00084+0.00096 AU and eccentricity e={0.035}-0.025+0.050. The best-fit linear ephemeris is {T}0=2456883.4803+/- 0.0007 {{BJD}}{TDB} and P=3.24406+/- 0.00016 days. This planet is one of the most inflated of all known transiting exoplanets, making it one of the few members of a class of extremely low density, highly irradiated gas giants. The low stellar {log} g and large implied radius are supported by stellar density constraints from follow-up light curves, as well as an evolutionary and space motion analysis. We also develop a new technique to extract high-precision radial velocities from noisy spectra that reduces the observing time needed to confirm transiting planet candidates. This planet boasts deep transits of a bright star, a large inferred atmospheric scale height, and a high equilibrium temperature of {T}{eq}={1675}-55+61 K, assuming zero albedo and perfect heat redistribution, making it one of the best targets for future atmospheric characterization studies.

  6. SU-E-T-306: Study of the Reduction Technique for the Secondary Cancer Risk Due to Cone Beam CT in Image Guided Radiotherapy

    SciTech Connect

    Sung, J; Kim, D; Kim, D; Chung, W; Baek, T; Lee, H; Yoon, M

    2014-06-01

    Purpose: This study evaluated the effectiveness of a thin lead sheet based simple shielding method for imaging doses from cone beam computed tomography (CBCT) in image-guided radiotherapy (IGRT). Methods: The entire body, except for the region scanned by CBCT, was shielded by wrapping in a 2 mm lead sheet. Reduction of secondary doses from CBCT was measured using a radio-photoluminescence glass dosimeter (RPLGD) placed inside an anthropomorphic phantom and changes in secondary cancer risk due to the shielding effect were estimated using BEIR VII model. Results: Doses to out-of-field organs for head-and-neck, chest, and pelvis scans were decreased 15∼100 %, 23∼90 %, and 23∼98 %, respectively, and the average reductions in lifetime secondary cancer risk due to the 2 mm lead shielding were 1.61, 10.4, and 12.8 persons per 100,000, respectively. Conclusion: This study suggests that a simple thin lead sheet based shielding method results in a non-negligible reduction of secondary doses to out-of-field regions for CBCT.

  7. Precision translator

    DOEpatents

    Reedy, R.P.; Crawford, D.W.

    1982-03-09

    A precision translator for focusing a beam of light on the end of a glass fiber which includes two turning fork-like members rigidly connected to each other. These members have two prongs each with its separation adjusted by a screw, thereby adjusting the orthogonal positioning of a glass fiber attached to one of the members. This translator is made of simple parts with capability to keep adjustment even in condition of rough handling.

  8. Precision translator

    DOEpatents

    Reedy, Robert P.; Crawford, Daniel W.

    1984-01-01

    A precision translator for focusing a beam of light on the end of a glass fiber which includes two turning fork-like members rigidly connected to each other. These members have two prongs each with its separation adjusted by a screw, thereby adjusting the orthogonal positioning of a glass fiber attached to one of the members. This translator is made of simple parts with capability to keep adjustment even in condition of rough handling.

  9. Evidence-based estimates of the demand for radiotherapy.

    PubMed

    Delaney, G P; Barton, M B

    2015-02-01

    There are different methods that may be used to estimate the future demand for radiotherapy services in a population ranging from expert opinion through to complex modelling techniques. This manuscript describes the use of evidence-based treatment guidelines to determine indications for radiotherapy. It also uses epidemiological data to estimate the proportion of the population who have attributes that suggest a benefit from radiotherapy in order to calculate the overall proportion of a population of new cases of cancer who appropriately could be recommended to undergo radiotherapy. Evidence-based methods are transparent and adaptable to different populations but require extensive information about the indications for radiotherapy and the proportion of cancer cases with those indications in the population. In 2003 this method produced an estimate that 52.4% of patients with a registered cancer-type had an indication for radiotherapy. The model was updated in 2012 because of changes in cancer incidence, stage distributions and indications for radiotherapy. The new estimate of the optimal radiotherapy utilisation rate was 48.3%. The decrease was due to changes in the relative frequency of cancer types and some changes in indications for radiotherapy. Actual rates of radiotherapy utilisation in most populations still fall well below this benchmark. PMID:25455408

  10. Dose reconstruction technique using non-rigid registration to evaluate spatial correspondence between high-dose region and late radiation toxicity: a case of tracheobronchial stenosis after external beam radiotherapy combined with endotracheal brachytherapy for tracheal cancer

    PubMed Central

    Murakami, Naoya; Inaba, Koji; Wakita, Akihisa; Nakamura, Satoshi; Okamoto, Hiroyuki; Sato, Jun; Umezawa, Rei; Takahashi, Kana; Igaki, Hiroshi; Ito, Yoshinori; Shigematsu, Naoyuki; Itami, Jun

    2016-01-01

    Purpose Small organ subvolume irradiated by a high-dose has been emphasized to be associated with late complication after radiotherapy. Here, we demonstrate a potential use of surface-based, non-rigid registration to investigate how high-dose volume topographically correlates with the location of late radiation morbidity in a case of tracheobronchial radiation stenosis. Material and methods An algorithm of point set registration was implemented to handle non-rigid registration between contour points on the organ surfaces. The framework estimated the global correspondence between the dose distribution and the varying anatomical structure. We applied it to an 80-year-old man who developed tracheobronchial stenosis 2 years after high-dose-rate endobronchial brachytherapy (HDR-EBT) (24 Gy in 6 Gy fractions) and external beam radiotherapy (EBRT) (40 Gy in 2 Gy fractions) for early-stage tracheal cancer. Results and conclusions Based on the transformation function computed by the non-rigid registration, irradiated dose distribution was reconstructed on the surface of post-treatment tracheobronchial stenosis. For expressing the equivalent dose in a fractional dose of 2 Gy in HDR-EBT, α/β of linear quadratic model was assumed as 3 Gy for the tracheal bronchus. The tracheobronchial surface irradiated by more than 100 Gyαβ3 tended to develop severe stenosis, which attributed to a more than 50% decrease in the luminal area. The proposed dose reconstruction technique can be a powerful tool to predict late radiation toxicity with spatial consideration. PMID:27257421

  11. Dynamic electron arc radiotherapy (DEAR): a feasibility study.

    PubMed

    Rodrigues, Anna; Yin, Fang-Fang; Wu, Qiuwen

    2014-01-20

    Compared to other radiation therapy modalities, clinical electron beam therapy has remained practically unchanged for the past few decades even though electron beams with multiple energies are widely available on most linacs. In this paper, we present the concept of dynamic electron arc radiotherapy (DEAR), a new conformal electron therapy technique with synchronized couch motion. DEAR utilizes combination of gantry rotation, couch motion, and dose rate modulation to achieve desirable dose distributions in patient. The electron applicator is kept to minimize scatter and maintain narrow penumbra. The couch motion is synchronized with the gantry rotation to avoid collision between patient and the electron cone. In this study, we investigate the feasibility of DEAR delivery and demonstrate the potential of DEAR to improve dose distributions on simple cylindrical phantoms. DEAR was delivered on Varian's TrueBeam linac in Research Mode. In conjunction with the recorded trajectory log files, mechanical motion accuracies and dose rate modulation precision were analyzed. Experimental and calculated dose distributions were investigated for different energies (6 and 9 MeV) and cut-out sizes (1×10 cm(2) and 3×10 cm(2) for a 15×15 cm(2) applicator). Our findings show that DEAR delivery is feasible and has the potential to deliver radiation dose with high accuracy (root mean square error, or RMSE of <0.1 MU, <0.1° gantry, and <0.1 cm couch positions) and good dose rate precision (1.6 MU min(-1)). Dose homogeneity within ±2% in large and curved targets can be achieved while maintaining penumbra comparable to a standard electron beam on a flat surface. Further, DEAR does not require fabrication of patient-specific shields. These benefits make DEAR a promising technique for conformal radiotherapy of superficial tumors.

  12. Radiotherapy of Cervical Cancer.

    PubMed

    Vordermark, Dirk

    2016-01-01

    Curative-intent radical radiotherapy of cervical cancer consists of external-beam radiotherapy, brachytherapy, and concomitant chemotherapy with cisplatin. For each element, new developments aim to improve tumor control rates or treatment tolerance. Intensity-modulated radiotherapy (IMRT) has been shown to reduce gastrointestinal toxicity and can be used to selectively increase the radiotherapy dose. Individualized, image-guided brachytherapy enables better adaptation of high-dose volumes to the tumor extension. Intensification of concomitant or sequential systemic therapy is under evaluation. PMID:27614991

  13. Standard and Nonstandard Craniospinal Radiotherapy Using Helical TomoTherapy

    SciTech Connect

    Parker, William; Brodeur, Marylene; Roberge, David; Freeman, Carolyn

    2010-07-01

    Purpose: To show the advantages of planning and delivering craniospinal radiotherapy with helical TomoTherapy (TomoTherapy Inc., Madison, WI) by presenting 4 cases treated at our institution. Methods and Materials: We first present a standard case of craniospinal irradiation in a patient with recurrent myxopapillary ependymoma (MPE) and follow this with 2 cases requiring differential dosing to multiple target volumes. One of these, a patient with recurrent medulloblastoma, required a lower dose to be delivered to the posterior fossa because the patient had been previously irradiated to the full dose, and the other required concurrent boosts to leptomeningeal metastases as part of his treatment for newly diagnosed MPE. The final case presented is a patient with pronounced scoliosis who required spinal irradiation for recurrent MPE. Results: The four cases presented were planned and treated successfully with Helical Tomotherapy. Conclusions: Helical TomoTherapy delivers continuous arc-based intensity-modulated radiotherapy that gives high conformality and excellent dose homogeneity for the target volumes. Increased healthy tissue sparing is achieved at higher doses albeit at the expense of larger volumes of tissue receiving lower doses. Helical TomoTherapy allows for differential dosing of multiple targets, resulting in very elegant dose distributions. Daily megavoltage computed tomography imaging allows for precision of patient positioning, permitting a reduction in planning margins and increased healthy tissue sparing in comparison with standard techniques.

  14. MRI-guided prostate adaptive radiotherapy - A systematic review.

    PubMed

    McPartlin, A J; Li, X A; Kershaw, L E; Heide, U; Kerkmeijer, L; Lawton, C; Mahmood, U; Pos, F; van As, N; van Herk, M; Vesprini, D; van der Voort van Zyp, J; Tree, A; Choudhury, A

    2016-06-01

    Dose escalated radiotherapy improves outcomes for men with prostate cancer. A plateau for benefit from dose escalation using EBRT may not have been reached for some patients with higher risk disease. The use of increasingly conformal techniques, such as step and shoot IMRT or more recently VMAT, has allowed treatment intensification to be achieved whilst minimising associated increases in toxicity to surrounding normal structures. To support further safe dose escalation, the uncertainties in the treatment target position will need be minimised using optimal planning and image-guided radiotherapy (IGRT). In particular the increasing usage of profoundly hypo-fractionated stereotactic therapy is predicated on the ability to confidently direct treatment precisely to the intended target for the duration of each treatment. This article reviews published studies on the influences of varies types of motion on daily prostate position and how these may be mitigated to improve IGRT in future. In particular the role that MRI has played in the generation of data is discussed and the potential role of the MR-Linac in next-generation IGRT is discussed. PMID:27162159

  15. Spatio-Temporal Dynamics of Hypoxia during Radiotherapy

    PubMed Central

    Kempf, Harald; Bleicher, Marcus; Meyer-Hermann, Michael

    2015-01-01

    Tumour hypoxia plays a pivotal role in cancer therapy for most therapeutic approaches from radiotherapy to immunotherapy. The detailed and accurate knowledge of the oxygen distribution in a tumour is necessary in order to determine the right treatment strategy. Still, due to the limited spatial and temporal resolution of imaging methods as well as lacking fundamental understanding of internal oxygenation dynamics in tumours, the precise oxygen distribution map is rarely available for treatment planing. We employ an agent-based in silico tumour spheroid model in order to study the complex, localized and fast oxygen dynamics in tumour micro-regions which are induced by radiotherapy. A lattice-free, 3D, agent-based approach for cell representation is coupled with a high-resolution diffusion solver that includes a tissue density-dependent diffusion coefficient. This allows us to assess the space- and time-resolved reoxygenation response of a small subvolume of tumour tissue in response to radiotherapy. In response to irradiation the tumour nodule exhibits characteristic reoxygenation and re-depletion dynamics which we resolve with high spatio-temporal resolution. The reoxygenation follows specific timings, which should be respected in treatment in order to maximise the use of the oxygen enhancement effects. Oxygen dynamics within the tumour create windows of opportunity for the use of adjuvant chemotherapeutica and hypoxia-activated drugs. Overall, we show that by using modelling it is possible to follow the oxygenation dynamics beyond common resolution limits and predict beneficial strategies for therapy and in vitro verification. Models of cell cycle and oxygen dynamics in tumours should in the future be combined with imaging techniques, to allow for a systematic experimental study of possible improved schedules and to ultimately extend the reach of oxygenation monitoring available in clinical treatment. PMID:26273841

  16. Efficacy and workload analysis of a fixed vertical couch position technique and a fixed-action-level protocol in whole-breast radiotherapy.

    PubMed

    Petillion, Saskia; Verhoeven, Karolien; Weltens, Caroline; Van den Heuvel, Frank

    2015-03-08

    Quantification of the setup errors is vital to define appropriate setup margins preventing geographical misses. The no-action-level (NAL) correction protocol reduces the systematic setup errors and, hence, the setup margins. The manual entry of the setup corrections in the record-and-verify software, however, increases the susceptibility of the NAL protocol to human errors. Moreover, the impact of the skin mobility on the anteroposterior patient setup reproducibility in whole-breast radiotherapy (WBRT) is unknown. In this study, we therefore investigated the potential of fixed vertical couch position-based patient setup in WBRT. The possibility to introduce a threshold for correction of the systematic setup errors was also explored. We measured the anteroposterior, mediolateral, and superior-inferior setup errors during fractions 1-12 and weekly thereafter with tangential angled single modality paired imaging. These setup data were used to simulate the residual setup errors of the NAL protocol, the fixed vertical couch position protocol, and the fixed-action-level protocol with different correction thresholds. Population statistics of the setup errors of 20 breast cancer patients and 20 breast cancer patients with additional regional lymph node (LN) irradiation were calculated to determine the setup margins of each off-line correction protocol. Our data showed the potential of the fixed vertical couch position protocol to restrict the systematic and random anteroposterior residual setup errors to 1.8 mm and 2.2 mm, respectively. Compared to the NAL protocol, a correction threshold of 2.5mm reduced the frequency of mediolateral and superior-inferior setup corrections with 40% and 63%, respectively. The implementation of the correction threshold did not deteriorate the accuracy of the off-line setup correction compared to the NAL protocol. The combination of the fixed vertical couch position protocol, for correction of the anteroposterior setup error, and the fixed

  17. [Radiotherapy of skin cancers].

    PubMed

    Hennequin, C; Rio, E; Mahé, M-A

    2016-09-01

    The indications of radiotherapy for skin cancers are not clearly defined because of the lack of randomised trials or prospective studies. For basal cell carcinomas, radiotherapy frequently offers a good local control, but a randomized trial showed that surgery is more efficient and less toxic. Indications of radiotherapy are contra-indications of surgery for patients older than 60, non-sclerodermiform histology and occurring in non-sensitive areas. Adjuvant radiotherapy could be proposed to squamous cell carcinomas, in case of poor prognostic factors. Dose of 60 to 70Gy are usually required, and must be modulated to the size of the lesions. Adjuvant radiotherapy seems beneficial for desmoplastic melanomas but not for the other histological types. Prophylactic nodal irradiation (45 to 50Gy), for locally advanced tumours (massive nodal involvement), decreases the locoregional failure rate but do not increase survival. Adjuvant radiotherapy (50 to 56Gy) for Merckel cell carcinomas increases also the local control rate, as demonstrated by meta-analysis and a large epidemiological study. Nodal areas must be included, if there is no surgical exploration (sentinel lymph node dissection). Kaposi sarcomas are radiosensitive and could be treated with relatively low doses (24 to 30Gy). Also, cutaneous lymphomas are good indications for radiotherapy: B lymphomas are electively treated with limited fields. The role of total skin electron therapy for T-lymphomas is still discussed; but palliative radiotherapy is very efficient in case of cutaneous nodules. PMID:27522189

  18. Planning National Radiotherapy Services

    PubMed Central

    Rosenblatt, Eduardo

    2014-01-01

    Countries, states, and island nations often need forward planning of their radiotherapy services driven by different motives. Countries without radiotherapy services sponsor patients to receive radiotherapy abroad. They often engage professionals for a feasibility study in order to establish whether it would be more cost-beneficial to establish a radiotherapy facility. Countries where radiotherapy services have developed without any central planning, find themselves in situations where many of the available centers are private and thus inaccessible for a majority of patients with limited resources. Government may decide to plan ahead when a significant exodus of cancer patients travel to another country for treatment, thus exposing the failure of the country to provide this medical service for its citizens. In developed countries, the trigger has been the existence of highly visible waiting lists for radiotherapy revealing a shortage of radiotherapy equipment. This paper suggests that there should be a systematic and comprehensive process of long-term planning of radiotherapy services at the national level, taking into account the regulatory infrastructure for radiation protection, planning of centers, equipment, staff, education programs, quality assurance, and sustainability aspects. Realistic budgetary and cost considerations must also be part of the project proposal or business plan. PMID:25505730

  19. SU-E-J-39: Comparison of PTV Margins Determined by In-Room Stereoscopic Image Guidance and by On-Board Cone Beam Computed Tomography Technique for Brain Radiotherapy Patients

    SciTech Connect

    Ganesh, T; Paul, S; Munshi, A; Sarkar, B; Krishnankutty, S; Sathya, J; George, S; Jassal, K; Roy, S; Mohanti, B

    2014-06-01

    Purpose: Stereoscopic in room kV image guidance is a faster tool in daily monitoring of patient positioning. Our centre, for the first time in the world, has integrated such a solution from BrainLAB (ExacTrac) with Elekta's volumetric cone beam computed tomography (XVI). Using van Herk's formula, we compared the planning target volume (PTV) margins calculated by both these systems for patients treated with brain radiotherapy. Methods: For a total of 24 patients who received partial or whole brain radiotherapy, verification images were acquired for 524 treatment sessions by XVI and for 334 sessions by ExacTrac out of the total 547 sessions. Systematic and random errors were calculated in cranio-caudal, lateral and antero-posterior directions for both techniques. PTV margins were then determined using van Herk formula. Results: In the cranio-caudal direction, systematic error, random error and the calculated PTV margin were found to be 0.13 cm, 0.12 cm and 0.41 cm with XVI and 0.14 cm, 0.13 cm and 0.44 cm with ExacTrac. The corresponding values in lateral direction were 0.13 cm 0.1 cm and 0.4 cm with XVI and 0.13 cm, 0.12 cm and 0.42 cm with ExacTrac imaging. The same parameters for antero-posterior were for 0.1 cm, 0.11 cm and 0.34 cm with XVI and 0.13 cm, 0.16 cm and 0.43 cm with ExacTrac imaging. The margins estimated with the two imaging modalities were comparable within ± 1 mm limit. Conclusion: Verification of setup errors in the major axes by two independent imaging systems showed the results are comparable and within ± 1 mm. This implies that planar imaging based ExacTrac can yield equal accuracy in setup error determination as the time consuming volumetric imaging which is considered as the gold standard. Accordingly PTV margins estimated by this faster imaging technique can be confidently used in clinical setup.

  20. Impact of the radiotherapy technique on the correlation between dose-volume histograms of the bladder wall defined on MRI imaging and dose-volume/surface histograms in prostate cancer patients

    NASA Astrophysics Data System (ADS)

    Maggio, Angelo; Carillo, Viviana; Cozzarini, Cesare; Perna, Lucia; Rancati, Tiziana; Valdagni, Riccardo; Gabriele, Pietro; Fiorino, Claudio

    2013-04-01

    The aim of this study was to evaluate the correlation between the ‘true’ absolute and relative dose-volume histograms (DVHs) of the bladder wall, dose-wall histogram (DWH) defined on MRI imaging and other surrogates of bladder dosimetry in prostate cancer patients, planned both with 3D-conformal and intensity-modulated radiation therapy (IMRT) techniques. For 17 prostate cancer patients, previously treated with radical intent, CT and MRI scans were acquired and matched. The contours of bladder walls were drawn by using MRI images. External bladder surfaces were then used to generate artificial bladder walls by performing automatic contractions of 5, 7 and 10 mm. For each patient a 3D conformal radiotherapy (3DCRT) and an IMRT treatment plan was generated with a prescription dose of 77.4 Gy (1.8 Gy/fr) and DVH of the whole bladder of the artificial walls (DVH-5/10) and dose-surface histograms (DSHs) were calculated and compared against the DWH in absolute and relative value, for both treatment planning techniques. A specific software (VODCA v. 4.4.0, MSS Inc.) was used for calculating the dose-volume/surface histogram. Correlation was quantified for selected dose-volume/surface parameters by the Spearman correlation coefficient. The agreement between %DWH and DVH5, DVH7 and DVH10 was found to be very good (maximum average deviations below 2%, SD < 5%): DVH5 showed the best agreement. The correlation was slightly better for absolute (R = 0.80-0.94) compared to relative (R = 0.66-0.92) histograms. The DSH was also found to be highly correlated with the DWH, although slightly higher deviations were generally found. The DVH was not a good surrogate of the DWH (R < 0.7 for most of parameters). When comparing the two treatment techniques, more pronounced differences between relative histograms were seen for IMRT with respect to 3DCRT (p < 0.0001).

  1. Estimating sparse precision matrices

    NASA Astrophysics Data System (ADS)

    Padmanabhan, Nikhil; White, Martin; Zhou, Harrison H.; O'Connell, Ross

    2016-08-01

    We apply a method recently introduced to the statistical literature to directly estimate the precision matrix from an ensemble of samples drawn from a corresponding Gaussian distribution. Motivated by the observation that cosmological precision matrices are often approximately sparse, the method allows one to exploit this sparsity of the precision matrix to more quickly converge to an asymptotic 1/sqrt{N_sim} rate while simultaneously providing an error model for all of the terms. Such an estimate can be used as the starting point for further regularization efforts which can improve upon the 1/sqrt{N_sim} limit above, and incorporating such additional steps is straightforward within this framework. We demonstrate the technique with toy models and with an example motivated by large-scale structure two-point analysis, showing significant improvements in the rate of convergence. For the large-scale structure example, we find errors on the precision matrix which are factors of 5 smaller than for the sample precision matrix for thousands of simulations or, alternatively, convergence to the same error level with more than an order of magnitude fewer simulations.

  2. Dosimetric comparison between intra-cavitary breast brachytherapy techniques for accelerated partial breast irradiation and a novel stereotactic radiotherapy device for breast cancer: GammaPod™

    NASA Astrophysics Data System (ADS)

    Ödén, Jakob; Toma-Dasu, Iuliana; Yu, Cedric X.; Feigenberg, Steven J.; Regine, William F.; Mutaf, Yildirim D.

    2013-07-01

    The GammaPod™ device, manufactured by Xcision Medical Systems, is a novel stereotactic breast irradiation device. It consists of a hemispherical source carrier containing 36 Cobalt-60 sources, a tungsten collimator with two built-in collimation sizes, a dynamically controlled patient support table and a breast immobilization cup also functioning as the stereotactic frame for the patient. The dosimetric output of the GammaPod™ was modelled using a Monte Carlo based treatment planning system. For the comparison, three-dimensional (3D) models of commonly used intra-cavitary breast brachytherapy techniques utilizing single lumen and multi-lumen balloon as well as peripheral catheter multi-lumen implant devices were created and corresponding 3D dose calculations were performed using the American Association of Physicists in Medicine Task Group-43 formalism. Dose distributions for clinically relevant target volumes were optimized using dosimetric goals set forth in the National Surgical Adjuvant Breast and Bowel Project Protocol B-39. For clinical scenarios assuming similar target sizes and proximity to critical organs, dose coverage, dose fall-off profiles beyond the target and skin doses at given distances beyond the target were calculated for GammaPod™ and compared with the doses achievable by the brachytherapy techniques. The dosimetric goals within the protocol guidelines were fulfilled for all target sizes and irradiation techniques. For central targets, at small distances from the target edge (up to approximately 1 cm) the brachytherapy techniques generally have a steeper dose fall-off gradient compared to GammaPod™ and at longer distances (more than about 1 cm) the relation is generally observed to be opposite. For targets close to the skin, the relative skin doses were considerably lower for GammaPod™ than for any of the brachytherapy techniques. In conclusion, GammaPod™ allows adequate and more uniform dose coverage to centrally and peripherally

  3. Dosimetric comparison between intra-cavitary breast brachytherapy techniques for accelerated partial breast irradiation and a novel stereotactic radiotherapy device for breast cancer: GammaPod™.

    PubMed

    Ödén, Jakob; Toma-Dasu, Iuliana; Yu, Cedric X; Feigenberg, Steven J; Regine, William F; Mutaf, Yildirim D

    2013-07-01

    The GammaPod™ device, manufactured by Xcision Medical Systems, is a novel stereotactic breast irradiation device. It consists of a hemispherical source carrier containing 36 Cobalt-60 sources, a tungsten collimator with two built-in collimation sizes, a dynamically controlled patient support table and a breast immobilization cup also functioning as the stereotactic frame for the patient. The dosimetric output of the GammaPod™ was modelled using a Monte Carlo based treatment planning system. For the comparison, three-dimensional (3D) models of commonly used intra-cavitary breast brachytherapy techniques utilizing single lumen and multi-lumen balloon as well as peripheral catheter multi-lumen implant devices were created and corresponding 3D dose calculations were performed using the American Association of Physicists in Medicine Task Group-43 formalism. Dose distributions for clinically relevant target volumes were optimized using dosimetric goals set forth in the National Surgical Adjuvant Breast and Bowel Project Protocol B-39. For clinical scenarios assuming similar target sizes and proximity to critical organs, dose coverage, dose fall-off profiles beyond the target and skin doses at given distances beyond the target were calculated for GammaPod™ and compared with the doses achievable by the brachytherapy techniques. The dosimetric goals within the protocol guidelines were fulfilled for all target sizes and irradiation techniques. For central targets, at small distances from the target edge (up to approximately 1 cm) the brachytherapy techniques generally have a steeper dose fall-off gradient compared to GammaPod™ and at longer distances (more than about 1 cm) the relation is generally observed to be opposite. For targets close to the skin, the relative skin doses were considerably lower for GammaPod™ than for any of the brachytherapy techniques. In conclusion, GammaPod™ allows adequate and more uniform dose coverage to centrally and peripherally

  4. A passion for precision

    ScienceCinema

    None

    2016-07-12

    For more than three decades, the quest for ever higher precision in laser spectroscopy of the simple hydrogen atom has inspired many advances in laser, optical, and spectroscopic techniques, culminating in femtosecond laser optical frequency combs  as perhaps the most precise measuring tools known to man. Applications range from optical atomic clocks and tests of QED and relativity to searches for time variations of fundamental constants. Recent experiments are extending frequency comb techniques into the extreme ultraviolet. Laser frequency combs can also control the electric field of ultrashort light pulses, creating powerful new tools for the emerging field of attosecond science.Organiser(s): L. Alvarez-Gaume / PH-THNote: * Tea & coffee will be served at 16:00.

  5. A passion for precision

    SciTech Connect

    2010-05-19

    For more than three decades, the quest for ever higher precision in laser spectroscopy of the simple hydrogen atom has inspired many advances in laser, optical, and spectroscopic techniques, culminating in femtosecond laser optical frequency combs  as perhaps the most precise measuring tools known to man. Applications range from optical atomic clocks and tests of QED and relativity to searches for time variations of fundamental constants. Recent experiments are extending frequency comb techniques into the extreme ultraviolet. Laser frequency combs can also control the electric field of ultrashort light pulses, creating powerful new tools for the emerging field of attosecond science.Organiser(s): L. Alvarez-Gaume / PH-THNote: * Tea & coffee will be served at 16:00.

  6. Complications from radiotherapy.

    PubMed

    Dhermain, Frédéric; Barani, Igor J

    2016-01-01

    Radiotherapy (RT) of the brain is associated with significant stigma in the neuro-oncology community. This is primarily because of the potentially severe complications with which it may be associated. These complications, especially in subacute and latent settings, are often unpredictable, potentially progressive, and irreversible. The onset of complications may start from the first fraction of 2 Gy, continuing over several months after end of RT with persistent drowsiness and apathy. It may also extend over many years with progressive onset of neurocognitive impairments such as memory decline, and diminished focus/attention. For long-term survivors, such as young patients irradiated for a favorable low-grade glioma, quality of life can be seriously impacted by RT. It is essential, as in the pediatric field, to propose patient-specific regimens from the very outset of therapy. The use of molecular biomarkers to better predict survival, control of comorbidities along with judicious use of medications such as steroids and antiepileptics, improved targeting with the help of modern imaging and RT techniques, modulation of the dose, and fractionation aimed at limiting integral dose to the healthy brain all have the potential to minimize treatment-related complications while maintaining the therapeutic efficacy for which RT is known. Sparing "radiosensitive" areas such as hippocampi could have a modest but measurable impact with regard to cognitive preservation, an effect that can possibly be enhanced when used in conjunction with memantine and/or donepezil. PMID:26948357

  7. Stereotactic body radiotherapy in lung cancer: an update *

    PubMed Central

    Abreu, Carlos Eduardo Cintra Vita; Ferreira, Paula Pratti Rodrigues; de Moraes, Fabio Ynoe; Neves, Wellington Furtado Pimenta; Gadia, Rafael; Carvalho, Heloisa de Andrade

    2015-01-01

    Abstract For early-stage lung cancer, the treatment of choice is surgery. In patients who are not surgical candidates or are unwilling to undergo surgery, radiotherapy is the principal treatment option. Here, we review stereotactic body radiotherapy, a technique that has produced quite promising results in such patients and should be the treatment of choice, if available. We also present the major indications, technical aspects, results, and special situations related to the technique. PMID:26398758

  8. Radiotherapy Treatment Planning for Testicular Seminoma

    SciTech Connect

    Wilder, Richard B.; Buyyounouski, Mark K.; Efstathiou, Jason A.; Beard, Clair J.

    2012-07-15

    Virtually all patients with Stage I testicular seminoma are cured regardless of postorchiectomy management. For patients treated with adjuvant radiotherapy, late toxicity is a major concern. However, toxicity may be limited by radiotherapy techniques that minimize radiation exposure of healthy normal tissues. This article is an evidence-based review that provides radiotherapy treatment planning recommendations for testicular seminoma. The minority of Stage I patients who choose adjuvant treatment over surveillance may be considered for (1) para-aortic irradiation to 20 Gy in 10 fractions, or (2) carboplatin chemotherapy consisting of area under the curve, AUC = 7 Multiplication-Sign 1-2 cycles. Two-dimensional radiotherapy based on bony anatomy is a simple and effective treatment for Stage IIA or IIB testicular seminoma. Centers with expertise in vascular and nodal anatomy may consider use of anteroposterior-posteroanterior fields based on three-dimensional conformal radiotherapy instead. For modified dog-leg fields delivering 20 Gy in 10 fractions, clinical studies support placement of the inferior border at the top of the acetabulum. Clinical and nodal mapping studies support placement of the superior border of all radiotherapy fields at the top of the T12 vertebral body. For Stage IIA and IIB patients, an anteroposterior-posteroanterior boost is then delivered to the adenopathy with a 2-cm margin to the block edge. The boost dose consists of 10 Gy in 5 fractions for Stage IIA and 16 Gy in 8 fractions for Stage IIB. Alternatively, bleomycin, etoposide, and cisplatin chemotherapy for 3 cycles or etoposide and cisplatin chemotherapy for 4 cycles may be delivered to Stage IIA or IIB patients (e.g., if they have a horseshoe kidney, inflammatory bowel disease, or a history of radiotherapy).

  9. [Conformal radiotherapy of brain tumors].

    PubMed

    Haie-Meder, C; Beaudré, A; Breton, C; Biron, B; Cordova, A; Dubray, B; Mazeron, J J

    1999-01-01

    Conformal irradiation of brain tumours is based on the three-dimensional reconstruction of the targeted volumes and at-risk organ images, the three-dimensional calculation of the dose distribution and a treatment device (immobilisation, beam energy, collimation, etc.) adapted to the high precision required by the procedure. Each step requires an appropriate methodology and a quality insurance program. Specific difficulties in brain tumour management are related to GTV and CTV definition depending upon the histological type, the quality of the surgical resection and the medical team. Clinical studies have reported dose escalation trials, mostly in high-grade gliomas and tumours at the base of the skull. Clinical data are now providing a better knowledge of the tolerance of normal tissues. As for small tumours, the implementation of beam intensity modulation is likely to narrow the gap between conformal and stereotaxic radiotherapy. PMID:10572510

  10. WE-G-18C-07: Accelerated Water/fat Separation in MRI for Radiotherapy Planning Using Multi-Band Imaging Techniques

    SciTech Connect

    Crijns, S; Stemkens, B; Sbrizzi, A; Lagendijk, J; Berg, C van den; Andreychenko, A

    2014-06-15

    Purpose: Dixon sequences are used to characterize disease processes, obtain good fat or water separation in cases where fat suppression fails and to obtain pseudo-CT datasets. Dixon's method uses at least two images acquired with different echo times and thus requires prolonged acquisition times. To overcome associated problems (e.g., for DCE/cine-MRI), we propose to use a method for water/fat separation based on spectrally selective RF pulses. Methods: Two alternating RF pulses were used, that imposes a fat selective phase cycling over the phase encoding lines, which results in a spatial shift for fat in the reconstructed image, identical to that in CAIPIRINHA. Associated aliasing artefacts were resolved using the encoding power of a multi-element receiver array, analogous to SENSE. In vivo measurements were performed on a 1.5T clinical MR-scanner in a healthy volunteer's legs, using a four channel receiver coil. Gradient echo images were acquired with TE/TR = 2.3/4.7ms, flip angle 20°, FOV 45×22.5cm{sup 2}, matrix 480×216, slice thickness 5mm. Dixon images were acquired with TE,1/TE,2/TR=2.2/4.6/7ms. All image reconstructions were done in Matlab using the ReconFrame toolbox (Gyrotools, Zurich, CH). Results: RF pulse alternation yields a fat image offset from the water image. Hence the water and fat images fold over, which is resolved using in-plane SENSE reconstruction. Using the proposed technique, we achieved excellent water/fat separation comparable to Dixon images, while acquiring images at only one echo time. Conclusion: The proposed technique yields both inphase water and fat images at arbitrary echo times and requires only one measurement, thereby shortening the acquisition time by a factor 2. In future work the technique may be extended to a multi-band water/fat separation sequence that is able to achieve single point water/fat separation in multiple slices at once and hence yields higher speed-up factors.

  11. Operations experience at the Bevalac radiotherapy facility

    SciTech Connect

    Alonso, J.R.; Criswell, T.L.; Howard, J.; Chu, W.T.; Singh, R.P.; Geller, D.; Nyman, M.

    1981-03-01

    During the first years of Bevalac operation the biomedical effort concentrated on radiobiology work, laying the foundation for patient radiotherapy. A dedicated radiotherapy area was created in 1978, and in 1979 full-scale patient treatment was begun. As of now over 500 treatments with carbon, neon and argon beams have been delivered to about 50 patients, some as boosts from other modalities and some as complete heavy ion treatments. Up to 12 patients per day have been treated in this facility. Continuing efforts in refining techniques and operating procedures are increasing efficiency and accuracy of treatments, and are contributing to the alleviation of scheduling difficulties caused by the unique requirements of radiotherapy with human patients.

  12. A fast, precise and low-cost replication technique for nano- and high-aspect-ratio structures of biological and artificial surfaces.

    PubMed

    Koch, Kerstin; Schulte, Anna Julia; Fischer, Angelika; Gorb, Stanislav N; Barthlott, Wilhelm

    2008-12-01

    Biological surfaces are multifunctional interfaces between the organisms and their environment. Properties such as the wettability and adhesion of particles are linked to the micro- and nanostructures of their surfaces. In this study, we used plant and artificial surfaces covered with wax crystals to develop a low-cost replication technique with high resolution. The technique is applicable for fragile surface structures, as demonstrated for three-dimensional wax crystals, and is fast to prevent shrinking of the biological material by water loss during the molding process. Thermal evaporation of octacosan-1-ol has been used to create microstructured surfaces with small platelets as templates for molding. Epoxy resin as filling material provided the smallest deviations from the original surface structures and can be used for replication of nanostructures as small as 4.5 nm. Contact angle measurements of leaves and their replicas show that this technique can be used to develop biomimetic surfaces with similar wettability as in the plant surfaces.

  13. Recruitment in Radiotherapy

    ERIC Educational Resources Information Center

    Deeley, T. J.; And Others

    1976-01-01

    The Faculty Board of Radiotherapy and Oncology of the Royal College of Radiobiologists surveyed the factors thought to influence recruitment into the specialty. Possible factors listed in replies of 36 questionnaires are offered. (LBH)

  14. SU-E-T-587: Optimal Volumetric Modulated Arc Radiotherapy Treatment Planning Technique for Multiple Brain Metastases with Increasing Number of Arcs

    SciTech Connect

    Keeling, V; Hossain, S; Hildebrand, K; Ahmad, S; Larson, D; Ma, L; Sahgal, A

    2015-06-15

    Purpose: To show improvements in dose conformity and normal brain tissue sparing using an optimal planning technique (OPT) against clinically acceptable planning technique (CAP) in the treatment of multiple brain metastases. Methods: A standardized international benchmark case with12 intracranial tumors was planned using two different VMAT optimization methods. Plans were split into four groups with 3, 6, 9, and 12 targets each planned with 3, 5, and 7 arcs using Eclipse TPS. The beam geometries were 1 full coplanar and half non-coplanar arcs. A prescription dose of 20Gy was used for all targets. The following optimization criteria was used (OPT vs. CAP): (No upper limit vs.108% upper limit for target volume), (priority 140–150 vs. 75–85 for normal-brain-tissue), and (selection of automatic sparing Normal-Tissue-Objective (NTO) vs. Manual NTO). Both had priority 50 to critical structures such as brainstem and optic-chiasm, and both had an NTO priority 150. Normal-brain-tissue doses along with Paddick Conformity Index (PCI) were evaluated. Results: In all cases PCI was higher for OPT plans. The average PCI (OPT,CAP) for all targets was (0.81,0.64), (0.81,0.63), (0.79,0.57), and (0.72,0.55) for 3, 6, 9, and 12 target plans respectively. The percent decrease in normal brain tissue volume (OPT/CAP*100) achieved by OPT plans was (reported as follows: V4, V8, V12, V16, V20) (184, 343, 350, 294, 371%), (192, 417, 380, 299, 360%), and (235, 390, 299, 281, 502%) for the 3, 5, 7 arc 12 target plans, respectively. The maximum brainstem dose decreased for the OPT plan by 4.93, 4.89, and 5.30 Gy for 3, 5, 7 arc 12 target plans, respectively. Conclusion: Substantial increases in PCI, critical structure sparing, and decreases in normal brain tissue dose were achieved by eliminating upper limits from optimization, using automatic sparing of normal tissue function with high priority, and a high priority to normal brain tissue.

  15. Ion-induced nuclear radiotherapy

    DOEpatents

    Horn, Kevin M.; Doyle, Barney L.

    1996-01-01

    Ion-induced Nuclear Radiotherapy (INRT) is a technique for conducting radiosurgery and radiotherapy with a very high degree of control over the spatial extent of the irradiated volume and the delivered dose. Based upon the concept that low energy, ion induced atomic and nuclear reactions can be used to produce highly energetic reaction products at the site of a tumor, the INRT technique is implemented through the use of a conduit-needle or tube which conducts a low energy ion beam to a position above or within the intended treatment area. At the end of the conduit-needle or tube is a specially fabricated target which, only when struck by the ion beam, acts as a source of energetic radiation products. The inherent limitations in the energy, and therefore range, of the resulting reaction products limits the spatial extent of irradiation to a pre-defined volume about the point of reaction. Furthermore, since no damage is done to tissue outside this irradiated volume, the delivered dose may be made arbitrarily large. INRT may be used both as a point-source of radiation at the site of a small tumor, or as a topical bath of radiation to broad areas of diseased tissue.

  16. Ion-induced nuclear radiotherapy

    DOEpatents

    Horn, K.M.; Doyle, B.L.

    1996-08-20

    Ion-induced Nuclear Radiotherapy (INRT) is a technique for conducting radiosurgery and radiotherapy with a very high degree of control over the spatial extent of the irradiated volume and the delivered dose. Based upon the concept that low energy, ion induced atomic and nuclear reactions can be used to produce highly energetic reaction products at the site of a tumor, the INRT technique is implemented through the use of a conduit-needle or tube which conducts a low energy ion beam to a position above or within the intended treatment area. At the end of the conduit-needle or tube is a specially fabricated target which, only when struck by the ion beam, acts as a source of energetic radiation products. The inherent limitations in the energy, and therefore range, of the resulting reaction products limits the spatial extent of irradiation to a pre-defined volume about the point of reaction. Furthermore, since no damage is done to tissue outside this irradiated volume, the delivered dose may be made arbitrarily large. INRT may be used both as a point-source of radiation at the site of a small tumor, or as a topical bath of radiation to broad areas of diseased tissue. 25 figs.

  17. Novel live imaging techniques of cellular functions and in vivo tumors based on precise design of small molecule-based 'activatable' fluorescence probes.

    PubMed

    Urano, Yasuteru

    2012-12-01

    Recently established rational design strategies for novel fluorescence probes, especially those based on photoinduced electron transfer and spirocyclization were reviewed. Based on these design strategies, various novel fluorescence probes were successfully developed including those for reactive oxygen species, reporter enzymes. Furthermore, in vivo cancer imaging techniques based on rationally designed activatable probes such as cancer-specific antibodies tagged with acidic-pH activatable fluorescence probes and peptidase activatable fluorescence probes were also discussed.

  18. Ultra precision machining

    NASA Astrophysics Data System (ADS)

    Debra, Daniel B.; Hesselink, Lambertus; Binford, Thomas

    1990-05-01

    There are a number of fields that require or can use to advantage very high precision in machining. For example, further development of high energy lasers and x ray astronomy depend critically on the manufacture of light weight reflecting metal optical components. To fabricate these optical components with machine tools they will be made of metal with mirror quality surface finish. By mirror quality surface finish, it is meant that the dimensions tolerances on the order of 0.02 microns and surface roughness of 0.07. These accuracy targets fall in the category of ultra precision machining. They cannot be achieved by a simple extension of conventional machining processes and techniques. They require single crystal diamond tools, special attention to vibration isolation, special isolation of machine metrology, and on line correction of imperfection in the motion of the machine carriages on their way.

  19. Calculation of dose profiles in stereotactic synchrotron microplanar beam radiotherapy in a tissue-lung phantom.

    PubMed

    Company, F Z

    2007-03-01

    Synchrotron x-ray beams with high fluence rate and highly collimated may be used in stereotactic radiotherapy of lung tumours. A bundle of converging monochromatic x-ray beams having uniform microscopic thickness i.e. (microplanar beams) are directed to the center of the tumour, delivering lethal dose to the target volume while sparing normal cells. The proposed technique takes advantage of the hypothesised repair mechanism of capillary cells between alternate microbeam zones, which regenerate the lethally irradiated endothelial cells. The sharply dropping lateral dose of a microbeam provides low scattered dose to the off-target interbeam volume. In the target volume the converging bundle of beams are closely spaced, and relatively high primary and secondary electron doses overlap and produce a high dose region between the beams. This higher and lower dose margins in the target volume allows precise targeting. The advantages of stereotactic microbeam radiotherapy will be lost as the dose between microbeams exceeds the tolerance dose of the dose limiting tissues. Therefore, it is essential to optimize the interbeam doses in off-target volume. The lateral and depth doses of 100 keV microplanar beams are investigated for a single beam and an array of converging microplanar beams in a tissue, lung and tissue-lung phantoms. The EGS5 Monte Carlo code is used to calculate dose profiles at different depths and bundles of beams. The maximum dose on the beam axis (peak) and the minimum interbeam dose (valley) are compared at different energies, depths, bundle sizes, heights, widths and beam spacings. The interbeam dose is calculated at different depths and an isodose map of the phantom is obtained. An acceptable energy region is found for tissue and lung microbeam radiotherapy and a stereotactic microbeam radiotherapy model is proposed for a 4 cm diameter and 1 cm thick tumour on the lung phantom.

  20. A practical guide for the design and implementation of the double-spike technique for precise determination of molybdenum isotope compositions of environmental samples.

    PubMed

    Skierszkan, E K; Amini, M; Weis, D

    2015-03-01

    The isotopic double-spike method allows for the determination of stable isotope ratios by multi-collector inductively coupled plasma-mass spectrometry (MC-ICP-MS) with accuracy and precision in the range of ∼0.02 ‰ amu(-1), but its adoption has been hindered by the perceived difficulties in double-spike calibration and implementation. To facilitate the implementation of the double-spike approach, an explanation of the calibration and validation of a (97)Mo-(100)Mo double-spike protocol is given in more detail than has been presented elsewhere. The long-term external standard reproducibility is 0.05 ‰ on δ(98/95)Mo measurements of standards. δ(98/95)Mo values for seawater and U.S. Geological Survey (USGS) reference materials SDO-1 and BCR-2 measured in this study are 2.13 ± 0.04 ‰ (2 SD, n = 3), 0.79 ± 0.05 ‰ (2 SD, n = 11), and -0.04 ± 0.10 ‰ (2 SD, n = 3) relative to the NIST-SRM-3134. The double-spike method corrects for laboratory and instrumental fractionation which are not accounted for using other mass bias correction methods. Spike/sample molar ratios between 0.4 and 0.8 provide accurate isotope measurements; outside of this range, isotope measurements are inaccurate but corrections are possible when standards and samples are spiked at a similar ratio.

  1. Second cancers following radiotherapy for cancer

    SciTech Connect

    Curtis, R.E.

    1997-03-01

    The study of second cancer risk after radiotherapy provides a unique opportunity to study carcinogenesis since large groups of humans are deliberately exposed to substantial doses of radiation in order to cure disease. Detailed radiotherapy records for cancer patients allow precise quantification of organ dose, and population-based cancer registries are frequently available to provide access to large groups of patients who are closely followed for long periods. Moreover, cancer patients treated with surgery alone (no radiation) are frequently available to serve as a non-irradiated comparison group. New information can be provided on relatively insensitive organs, and low dose exposures in the range of scientific interest are received by organs outside the radiation treatment fields. This paper will review several recently completed studies that characterize the risk of radiation-induced second cancers. Emphasis will be given to studies providing new information on the dose-response relationship of radiation-induced leukemia, breast cancer and lung cancer.

  2. Recent advancements in toxicity prediction following prostate cancer radiotherapy.

    PubMed

    Ospina, J D; Fargeas, A; Dréan, G; Simon, A; Acosta, O; de Crevoisier, R

    2015-01-01

    In external beam radiotherapy for prostate cancer limiting toxicities for dose escalation are bladder and rectum toxicities. Normal tissue complication probability models aim at quantifying the risk of developping adverse events following radiotherapy. These models, originally proposed in the context of uniform irradiation, have evolved to implementations based on the state-of-the-art classification methods which are trained using empirical data. Recently, the use of image processing techniques combined with population analysis methods has led to a new generation of models to understand the risk of normal tissue complications following radiotherapy. This paper overviews those methods in the case of prostate cancer radiation therapy and propose some lines of future research.

  3. [Radiotherapy of larynx cancers].

    PubMed

    Pointreau, Y; Lafond, C; Legouté, F; Trémolières, P; Servagi-Vernat, S; Giraud, P; Maingon, P; Calais, G; Lapeyre, M

    2016-09-01

    Intensity-modulated radiotherapy is the gold standard in the treatment of larynx cancers (except T1 glottic tumour). Early T1 and T2 tumours may be treated by exclusive radiation or surgery. For tumours requiring total laryngectomy (T2 or T3), induction chemotherapy followed by exclusive radiotherapy or concurrent chemoradiotherapy is possible. For T4 tumour, surgery must be proposed. The treatment of lymph nodes is based on the initial treatment of the primary tumour. In non-surgical procedure, in case of sequential radiotherapy, the curative dose is 70Gy and the prophylactic dose is 50Gy. An integrated simultaneous boost radiotherapy is allowed (70Gy in 2Gy per fraction and 56Gy in 1.8Gy per fraction or 70Gy in 2.12Gy per fraction). Postoperatively, radiotherapy is used in locally advanced cancer with dose levels based on pathologic criteria (66Gy for R1 resection, 50 to 54Gy for complete resection). Volume delineation was based on guidelines. PMID:27521037

  4. Postoperative irradiation of carcinoma of the head of the pancreas area: Short-time tolerance and results to precision high-dose technique in 18 patients

    SciTech Connect

    Nguyen, T.D.; Bugat, R.; Combes, P.F.

    1982-07-01

    During the period from January 1977-August 1979, 18 patients with biopsy-proven pancreas duct or ampullary adenocarcinoma with no distant or liver metastases underwent external beam radiation therapy following laparotomy. With the use of a 25 MEV photon beam and a four field ''box'' technique, the dose delivered to the target volume identified with radio-opaque clips at laparotomy was 6000 rad in six weeks, while largely sparing the spinal cord, kidney, liver and gut. All patients subjected to low fat, gluten free diet completed treatment as planned without any acute reaction. Three patients developed delayed pancreatic insufficiency. According to actuarial survival analysis and low morbidity such an approach may lead to increased survival in patients with pancreatic cancer.

  5. Fast Monte Carlo Electron-Photon Transport Method and Application in Accurate Radiotherapy

    NASA Astrophysics Data System (ADS)

    Hao, Lijuan; Sun, Guangyao; Zheng, Huaqing; Song, Jing; Chen, Zhenping; Li, Gui

    2014-06-01

    Monte Carlo (MC) method is the most accurate computational method for dose calculation, but its wide application on clinical accurate radiotherapy is hindered due to its poor speed of converging and long computation time. In the MC dose calculation research, the main task is to speed up computation while high precision is maintained. The purpose of this paper is to enhance the calculation speed of MC method for electron-photon transport with high precision and ultimately to reduce the accurate radiotherapy dose calculation time based on normal computer to the level of several hours, which meets the requirement of clinical dose verification. Based on the existing Super Monte Carlo Simulation Program (SuperMC), developed by FDS Team, a fast MC method for electron-photon coupled transport was presented with focus on two aspects: firstly, through simplifying and optimizing the physical model of the electron-photon transport, the calculation speed was increased with slightly reduction of calculation accuracy; secondly, using a variety of MC calculation acceleration methods, for example, taking use of obtained information in previous calculations to avoid repeat simulation of particles with identical history; applying proper variance reduction techniques to accelerate MC method convergence rate, etc. The fast MC method was tested by a lot of simple physical models and clinical cases included nasopharyngeal carcinoma, peripheral lung tumor, cervical carcinoma, etc. The result shows that the fast MC method for electron-photon transport was fast enough to meet the requirement of clinical accurate radiotherapy dose verification. Later, the method will be applied to the Accurate/Advanced Radiation Therapy System ARTS as a MC dose verification module.

  6. EDITORIAL: Precision proteins Precision proteins

    NASA Astrophysics Data System (ADS)

    Demming, Anna

    2010-06-01

    Since the birth of modern day medicine, during the times of Hippocrates in ancient Greece, the profession has developed from the rudimentary classification of disease into a rigorous science with an inspiring capability to treat and cure. Scientific methodology has distilled clinical diagnostic tools from the early arts of prognosis, which used to rely as much on revelation and prophecy, as intuition and judgement [1]. Over the past decade, research into the interactions between proteins and nanosystems has provided some ingenious and apt techniques for delving into the intricacies of anatomical systems. In vivo biosensing has emerged as a vibrant field of research, as much of medical diagnosis relies on the detection of substances or an imbalance in the chemicals in the body. The inherent properties of nanoscale structures, such as cantilevers, make them well suited to biosensing applications that demand the detection of molecules at very low concentrations. Measurable deflections in cantilevers functionalised with antibodies provide quantitative indicators of the presence of specific antigens when the two react. Such developments have roused mounting interest in the interactions of proteins with nanostructures, such as carbon nanotubes [3], which have demonstrated great potential as generic biomarkers. Plasmonic properties are also being exploited in sensing applications, such as the molecular sentinel recently devised by researchers in the US. The device uses the plasmonic properties of a silver nanoparticle linked to a Raman labelled hairpin DNA probe to signal changes in the probe geometry resulting from interactions with substances in the environment. Success stories so far include the detection of two specific genes associated with breast cancer [4]. A greater understanding of how RNA interference regulates gene expression has highlighted the potential of using this natural process as another agent for combating disease in personalized medicine. However, the

  7. EDITORIAL: Precision proteins Precision proteins

    NASA Astrophysics Data System (ADS)

    Demming, Anna

    2010-06-01

    Since the birth of modern day medicine, during the times of Hippocrates in ancient Greece, the profession has developed from the rudimentary classification of disease into a rigorous science with an inspiring capability to treat and cure. Scientific methodology has distilled clinical diagnostic tools from the early arts of prognosis, which used to rely as much on revelation and prophecy, as intuition and judgement [1]. Over the past decade, research into the interactions between proteins and nanosystems has provided some ingenious and apt techniques for delving into the intricacies of anatomical systems. In vivo biosensing has emerged as a vibrant field of research, as much of medical diagnosis relies on the detection of substances or an imbalance in the chemicals in the body. The inherent properties of nanoscale structures, such as cantilevers, make them well suited to biosensing applications that demand the detection of molecules at very low concentrations. Measurable deflections in cantilevers functionalised with antibodies provide quantitative indicators of the presence of specific antigens when the two react. Such developments have roused mounting interest in the interactions of proteins with nanostructures, such as carbon nanotubes [3], which have demonstrated great potential as generic biomarkers. Plasmonic properties are also being exploited in sensing applications, such as the molecular sentinel recently devised by researchers in the US. The device uses the plasmonic properties of a silver nanoparticle linked to a Raman labelled hairpin DNA probe to signal changes in the probe geometry resulting from interactions with substances in the environment. Success stories so far include the detection of two specific genes associated with breast cancer [4]. A greater understanding of how RNA interference regulates gene expression has highlighted the potential of using this natural process as another agent for combating disease in personalized medicine. However, the

  8. Developing and implementing a high precision setup system

    NASA Astrophysics Data System (ADS)

    Peng, Lee-Cheng

    The demand for high-precision radiotherapy (HPRT) was first implemented in stereotactic radiosurgery using a rigid, invasive stereotactic head frame. Fractionated stereotactic radiotherapy (SRT) with a frameless device was developed along a growing interest in sophisticated treatment with a tight margin and high-dose gradient. This dissertation establishes the complete management for HPRT in the process of frameless SRT, including image-guided localization, immobilization, and dose evaluation. The most ideal and precise positioning system can allow for ease of relocation, real-time patient movement assessment, high accuracy, and no additional dose in daily use. A new image-guided stereotactic positioning system (IGSPS), the Align RT3C 3D surface camera system (ART, VisionRT), which combines 3D surface images and uses a real-time tracking technique, was developed to ensure accurate positioning at the first place. The uncertainties of current optical tracking system, which causes patient discomfort due to additional bite plates using the dental impression technique and external markers, are found. The accuracy and feasibility of ART is validated by comparisons with the optical tracking and cone-beam computed tomography (CBCT) systems. Additionally, an effective daily quality assurance (QA) program for the linear accelerator and multiple IGSPSs is the most important factor to ensure system performance in daily use. Currently, systematic errors from the phantom variety and long measurement time caused by switching phantoms were discovered. We investigated the use of a commercially available daily QA device to improve the efficiency and thoroughness. Reasonable action level has been established by considering dosimetric relevance and clinic flow. As for intricate treatments, the effect of dose deviation caused by setup errors remains uncertain on tumor coverage and toxicity on OARs. The lack of adequate dosimetric simulations based on the true treatment coordinates from

  9. [Radiotherapy in Europe].

    PubMed

    Verheij, M; Slotman, B J

    2016-01-01

    Radiotherapy plays an important part in the curing of cancer patients and is an effective treatment for tumour-related symptoms. However, in many countries the level of access to this treatment modality is unacceptably low due to shortage of infrastructure, modern apparatus and trained staff. In Europe it is mainly the Eastern European countries that are behind in the provision of and accessibility to radiotherapy. Worldwide investment to narrow the gap would put an end to these undesirable differences. In addition, these investments would deliver economic benefits, especially in low-to-middle income countries. In this article, on the basis of a number of recently published reports, we discuss the differences that exist in the geographical spread of radiotherapy departments and the availability of apparatus within Europe. In conclusion we also take a short look at the Dutch situation. PMID:27334085

  10. Precision grinding process development for brittle materials

    SciTech Connect

    Blaedel, K L; Davis, P J; Piscotty, M A

    1999-04-01

    High performance, brittle materials are the materials of choice for many of today's engineering applications. This paper describes three separate precision grinding processes developed at Lawrence Liver-more National Laboratory to machine precision ceramic components. Included in the discussion of the precision processes is a variety of grinding wheel dressing, truing and profiling techniques.

  11. Big Data Analytics for Prostate Radiotherapy.

    PubMed

    Coates, James; Souhami, Luis; El Naqa, Issam

    2016-01-01

    Radiation therapy is a first-line treatment option for localized prostate cancer and radiation-induced normal tissue damage are often the main limiting factor for modern radiotherapy regimens. Conversely, under-dosing of target volumes in an attempt to spare adjacent healthy tissues limits the likelihood of achieving local, long-term control. Thus, the ability to generate personalized data-driven risk profiles for radiotherapy outcomes would provide valuable prognostic information to help guide both clinicians and patients alike. Big data applied to radiation oncology promises to deliver better understanding of outcomes by harvesting and integrating heterogeneous data types, including patient-specific clinical parameters, treatment-related dose-volume metrics, and biological risk factors. When taken together, such variables make up the basis for a multi-dimensional space (the "RadoncSpace") in which the presented modeling techniques search in order to identify significant predictors. Herein, we review outcome modeling and big data-mining techniques for both tumor control and radiotherapy-induced normal tissue effects. We apply many of the presented modeling approaches onto a cohort of hypofractionated prostate cancer patients taking into account different data types and a large heterogeneous mix of physical and biological parameters. Cross-validation techniques are also reviewed for the refinement of the proposed framework architecture and checking individual model performance. We conclude by considering advanced modeling techniques that borrow concepts from big data analytics, such as machine learning and artificial intelligence, before discussing the potential future impact of systems radiobiology approaches.

  12. Surgical management of combined intramedullary arteriovenous malformation and perimedullary arteriovenous fistula within the hybrid operating room after five years of performing focus fractionated radiotherapy: case report.

    PubMed

    Gekka, Masayuki; Seki, Toshitaka; Hida, Kazutoshi; Osanai, Toshiya; Houkin, Kiyohiro

    2014-01-01

    Perimedullary arteriovenous fistula (AVF) shunts occur on the spinal cord surface and can be treated surgically or by endovascular embolization. In contrast, the nidus of an intramedullary arteriovenous malformation (AVM) is located in the spinal cord and is difficult to treat surgically or by endovascular techniques. The benefits of radiotherapy for treating intramedullary AVM have been published, but are anecdotal and consist largely of case reports. We present a case of combined cervical intramedullary AVM and perimedullary AVF which received surgical treatment within a hybrid operating room (OR) after 5 years of focus fractionated radiotherapy. A 37-year-old male presented with stepwise worsening myelopathy. Magnetic resonance imaging and spinal angiography revealed intramedullary AVM and perimedullary AVF at the C3 to C5 levels. In order to reduce nidus size and blood flow, we first performed focal fractionated radiotherapy. Five years later, the lesion volume was reduced. Following this, direct surgery was performed by an anterior approach using corpectomy in the hybrid OR. The spinal cord was monitored by motor-evoked potential throughout the surgery. Complete obliteration of the fistulous connection was confirmed by intraoperative indocyanine green video-angiography and intraoperative angiography, preserving the anterior spinal artery. We conclude that surgical treatment following focal fractionated radiotherapy may become one strategy for patients who are initially deemed ineligible for endovascular embolization and surgical treatment. Furthermore, the hybrid OR enables safe and precise treatment for spinal vascular disorders in the fields of endovascular treatment and neurosurgery.

  13. Improvements in the radiotherapy of medulloblastoma, 1946 to 1975

    SciTech Connect

    Landberg, T.G.; Lindgren, M.L.; Cavallin-Staehl, E.K.; Svahn-Taper, G.O.; Sundbaerg, G.; Garwicz, S.; Lagergren, J.A.; Gunnesson, V.L.; Brun, A.E.; Cronqvist, S.E.

    1980-02-01

    The prognosis in medulloblastoma has often been reported to be gloomy, and five-year survival rates of approximately 25% are often reported. In recent years, however, some centers have published results that indicate a possible cure rate of 60% or even more. During the years 1946 to 1975, 50 children received radiotherapy for medulloblastoma at the University Hospital, Lund, Sweden. During this period the target volume had been defined in three different ways, whereas the target-absorbed doses had not differed. When only the demonstrated tumor was treated, the ten-year survival rate was 5%. If the spinal subdural space also was included, it rose to 25%, and when the whole subdural space was treated in addition to the demonstrated tumor, the projected ten-year survival rate was 53%. It is apparent that the target volume in the radiotherapy of medulloblastoma should include not only the demonstrated tumor but also the whole subdural space from the tip of the frontal lobes down to and including the second sacral segment. The size of the target-absorbed dose to be aimed at is not settled, but should consider not only the cure rate but also the performance status of the survivors. It seems from the present series that an absorbed dose of 45 Gy in not more than 30 fractions over six weeks to the demonstrated tumor and 30 Gy in 20 fractions over four weeks to the subdural space resulted in a fair frequency of tumor healing and minimal side effects. The delivery of this complicated treatment demands a high degree of precision in the technique. In this material the performance status of the children was not affected by the radiation treatment.

  14. Optimizing nitrogen management for soft red winter wheat yield, grain protein, and grain quality using precision agriculture and remote sensing techniques

    NASA Astrophysics Data System (ADS)

    Farrer, Dianne Carter

    The purpose of this research was to improve the management of soft red winter wheat (Triticum aestivum L.) in North Carolina. There were three issues addressed; the quality of the grain as affected by delayed harvest, explaining grain protein variability through nitrogen (N) management, and developing N recommendations at growth stage (GS) 30 using aerial color infrared (CIR) photography. The impact of delayed harvest on grain yield, test weight, grain protein, and 20 milling and baking quality parameters was studied in three trials in 2002 and three trials in 2003. Yield was significantly reduced in three out of five trials due to dry, warm environments, possibly indicating shattering. Test weights were significantly reduced in five out of six trials and were positively correlated to the number of precipitation events and to the number of days between harvests, indicating the negative effects of wetting and drying cycles. Grain protein was not affected by delayed harvest. Of the 20 quality parameters investigated, flour falling number, clear flour, and farinograph breakdown times were significantly reduced due to delayed harvest, while grain deoxynivalenol (DON) levels increased with a delayed harvest. Grain protein content in soft red winter wheat is highly variable across years and environments. A second study examined the effects of different nitrogen (N) fertilizer rates and times of application on grain protein variability. Seven different environments were utilized in this study. Though environment contributed about 23% of grain protein variability, the majority of that variability (52%) was attributed to N management. It was found that as grain protein levels increased at higher N rates, so did overall protein variability as indicated by the three stability indexes employed. In addition, applying the majority of total N at growth stage (GS) 30 decreased grain protein stability. Site-specific N management systems using remote sensing techniques can

  15. Errors in Radiotherapy: Motivation for Development of New Radiotherapy Quality Assurance Paradigms

    SciTech Connect

    Fraass, Benedick A.

    2008-05-01

    Modern radiotherapy practice has rapidly evolved during the past decade, making use of many highly complex and/or automated processes for planning and delivery, including new techniques, like intensity-modulated radiotherapy driven by inverse planning optimization methods, or near real-time image-guided adaptive therapy based on fluoroscopic or tomographic imaging on the treatment machine. In spite of the modern technology, or potentially because of it in some instances, errors and other problems continue to have a significant impact on the field. This report reviews example errors and problems, discusses some of the quality assurance issues that these types of problems raise, and motivates the development of more modern and sophisticated approaches to assure quality for our clinical radiotherapy treatment methods.

  16. Precision Joining Center

    SciTech Connect

    Powell, J.W.; Westphal, D.A.

    1991-08-01

    A workshop to obtain input from industry on the establishment of the Precision Joining Center (PJC) was held on July 10--12, 1991. The PJC is a center for training Joining Technologists in advanced joining techniques and concepts in order to promote the competitiveness of US industry. The center will be established as part of the DOE Defense Programs Technology Commercialization Initiative, and operated by EG G Rocky Flats in cooperation with the American Welding Society and the Colorado School of Mines Center for Welding and Joining Research. The overall objectives of the workshop were to validate the need for a Joining Technologists to fill the gap between the welding operator and the welding engineer, and to assure that the PJC will train individuals to satisfy that need. The consensus of the workshop participants was that the Joining Technologist is a necessary position in industry, and is currently used, with some variation, by many companies. It was agreed that the PJC core curriculum, as presented, would produce a Joining Technologist of value to industries that use precision joining techniques. The advantage of the PJC would be to train the Joining Technologist much more quickly and more completely. The proposed emphasis of the PJC curriculum on equipment intensive and hands-on training was judged to be essential.

  17. Clinical Applications for Diffusion MRI in Radiotherapy

    PubMed Central

    Tsien, Christina; Cao, Yue; Chenevert, Thomas

    2014-01-01

    In this article, we review the clinical applications of diffusion MR imaging in the radiotherapy treatment of several key clinical sites, including those of the CNS, the head and neck, the prostate and cervix. Diffusion-weighted MRI (DWI) is an imaging technique that is rapidly gaining widespread acceptance due to its ease and wide availability. DWI measures the mobility of water within tissue at the cellular level without the need of any exogenous contrast agent. For radiotherapy treatment planning, DWI improves upon conventional imaging techniques, by better characterization of tumor tissue properties required for tumor grading, diagnosis and target volume delineation. Because diffusion weighted MRI is also a sensitive marker for alterations in tumor cellularity, it has potential clinical applications in the early assessment of treatment response following radiation therapy. PMID:24931097

  18. Ultrasound-guided implantation techniques in treatment of prostate cancer

    SciTech Connect

    Carter, S.S.; Torp-Pedersen, S.T.; Holm, H.H. )

    1989-11-01

    Percutaneous ultrasound-guided interstitial radiotherapy is an attractive and elegant technique for the administration of high-dose local radiotherapy to the prostate. The complications of seed implantation are those associated with the radiation rather than with the technique of implantation. However, radiotherapy has not provided impressive local control of the disease or prolonged survival. The poor disease control was not attributed to poor seed placement, but rather to the inadequacy of {sup 125}I in controlling the cancer. The essence of nonsurgical treatment for prostate cancer is the use of effective imaging. Experience in the field of minimally invasive surgery has shown that ultrasound is the ideal imaging system for targeting treatments because of its ease of use and the absence of adverse effects. As the newer techniques of implantation come to be accepted, it is hoped that the complications of rectal and bladder radiation injury will decrease and the therapeutic benefits increase. The clinical trials required to define the precise role of each of the modalities of treatment must take nodal staging into account and must be compared with the gold standard of radical prostatectomy in the treatment of early confined disease.

  19. Quality Assurance of 4D-CT Scan Techniques in Multicenter Phase III Trial of Surgery Versus Stereotactic Radiotherapy (Radiosurgery or Surgery for Operable Early Stage (Stage 1A) Non-Small-Cell Lung Cancer [ROSEL] Study)

    SciTech Connect

    Hurkmans, Coen W.; Lieshout, Maarten van; Schuring, Danny; Heumen, Marielle J.T. van; Cuijpers, Johan P.; Lagerwaard, Frank J.; Widder, Joachim; Heide, Uulke A. van der; Senan, Suresh

    2011-07-01

    Purpose: To determine the accuracy of four-dimensional computed tomography (4D-CT) scanning techniques in institutions participating in a Phase III trial of surgery vs. stereotactic radiotherapy (SBRT) for lung cancer. Methods and Materials: All 9 centers performed a 4D-CT scan of a motion phantom (Quasar, Modus Medical Devices) in accordance with their in-house imaging protocol for SBRT. A cylindrical cedar wood insert with plastic spheres of 15 mm (o15) and 30 mm (o30) diameter was moved in a cosine-based pattern, with an extended period in the exhale position to mimic the actual breathing motion. A range of motion of R = 15 and R = 25 mm and breathing period of T = 3 and T = 6 s were used. Positional and volumetric imaging accuracy was analyzed using Pinnacle version 8.1x at various breathing phases, including the mid-ventilation phase and maximal intensity projections of the spheres. Results: Imaging using eight CT scanners (Philips, Siemens, GE) and one positron emission tomography-CT scanner (Institution 3, Siemens) was investigated. The imaging protocols varied widely among the institutions. No strong correlation was found between the specific scan protocol parameters and the observed results. Deviations in the maximal intensity projection volumes averaged 1.9% (starting phase of the breathing cycle [o]15, R = 15), 12.3% (o15, R = 25), and -0.9% (o30, R = 15). The end-expiration volume deviations (13.4%, o15 and 2.5%, o30), were, on average, smaller than the end-inspiration deviations (20.7%, o15 and 4.5%, o30), which, in turn, were smaller than the mid-ventilation deviations (32.6%, o15 and 8.0%, o30). A slightly larger variation in the mid-ventilation origin position was observed (mean, -0.2 mm; range, -3.6-4.2) than in the maximal intensity projection origin position (mean, -0.1 mm; range, -2.5-2.5). The range of motion was generally underestimated (mean, -1.5 mm; range, -5.5-1). Conclusions: Notable differences were seen in the 4D-CT imaging protocols

  20. Precision powder feeder

    DOEpatents

    Schlienger, M. Eric; Schmale, David T.; Oliver, Michael S.

    2001-07-10

    A new class of precision powder feeders is disclosed. These feeders provide a precision flow of a wide range of powdered materials, while remaining robust against jamming or damage. These feeders can be precisely controlled by feedback mechanisms.

  1. [Radiotherapy of cerebral metastases].

    PubMed

    Soffietti, R

    1984-05-31

    Radiotherapy of brain metastases is almost always palliative, as histologically documented cures are exceptional. Radiotherapy alone improves neurological symptoms in two-thirds of cases, but median survivals do not generally exceed 6 months. Whole brain radiation is mandatory as the lesions are often multiple, even when they escape clinical demonstration. There is no definite difference in prognosis after conventional rather than concentrated treatments. The role of steroids in the prevention and/or control of the acute effects of radiotherapy is controversial. Favorable prognostic factors are a good neurological and performance status, a solitary brain metastasis of a primary tumor under control, some histological types (i.e.: metastases from "oat" cell carcinomas, breast carcinomas, non-Hodgkin lymphomas are more responsive). Surgical excision before radiotherapy improves survival (6-12 months), especially in solitary metastases from melanomas, colon and renal tumors. Reirradiation can be useful, but the risk of delayed damage to the normal tissue in patients with longer survival (solitary operated and irradiated metastases) must be considered. The search for new radiotherapeutic modalities must be based on a deeper understanding of the biological factors involved in the response to radiation through controlled anatomo-clinical studies and biological research on experimental models.

  2. Accuracy requirements in radiotherapy treatment planning.

    PubMed

    Buzdar, Saeed Ahmad; Afzal, Muhammad; Nazir, Aalia; Gadhi, Muhammad Asghar

    2013-06-01

    Radiation therapy attempts to deliver ionizing radiation to the tumour and can improve the survival chances and/or quality of life of patients. There are chances of errors and uncertainties in the entire process of radiotherapy that may affect the accuracy and precision of treatment management and decrease degree of conformation. All expected inaccuracies, like radiation dose determination, volume calculation, complete evaluation of the full extent of the tumour, biological behaviour of specific tumour types, organ motion during radiotherapy, imaging, biological/molecular uncertainties, sub-clinical diseases, microscopic spread of the disease, uncertainty in normal tissue responses and radiation morbidity need sound appreciation. Conformity can be increased by reduction of such inaccuracies. With the yearly increase in computing speed and advancement in other technologies the future will provide the opportunity to optimize a greater number of variables and reduce the errors in the treatment planning process. In multi-disciplined task of radiotherapy, efforts are needed to overcome the errors and uncertainty, not only by the physicists but also by radiologists, pathologists and oncologists to reduce molecular and biological uncertainties. The radiation therapy physics is advancing towards an optimal goal that is definitely to improve accuracy where necessary and to reduce uncertainty where possible.

  3. A review of stereotactic body radiotherapy – is volumetric modulated arc therapy the answer?

    SciTech Connect

    Sapkaroski, Daniel Osborne, Catherine; Knight, Kellie A

    2015-06-15

    Stereotactic body radiotherapy (SBRT) is a high precision radiotherapy technique used for the treatment of small to moderate extra-cranial tumours. Early studies utilising SBRT have shown favourable outcomes. However, major disadvantages of static field SBRT include long treatment times and toxicity complications. Volumetric modulated arc therapy (VMAT) and intensity modulated radiotherapy (IMRT) may potentially mitigate these disadvantages. This review aims to assess the feasibility of emerging VMAT and IMRT-based SBRT treatment techniques and qualify which offers the best outcome for patients, whilst identifying any emerging and advantageous SBRT planning trends. A review and synthesis of data from current literature up to September 2013 was conducted on EMBASE, Medline, PubMed, Science Direct, Proquest central, Google Scholar and the Cochrane Database of Systematic reviews. Only full text papers comparing VMAT and or IMRT and or Static SBRT were included. Ten papers were identified that evaluated the results of VMAT/IMRT SBRT. Five related to medically inoperable stage 1 and 2 non-small-cell lung cancer (NSCLC), three to spinal metastasis, one related to abdominal lymph node malignancies, with the final one looking at pancreatic adenocarcinoma. Overall treatment times with VMAT were reduced by 66–70% for lung, 46–58% for spine, 42% and 21% for lymph node and pancreatic metastasis respectively, planning constraints were met with several studies showing improved organs at risk sparing with IMRT/VMAT to static SBRT. Both IMRT and VMAT were able to meet all planning constraints in the studies reviewed, with VMAT offering the greatest treatment efficiency. Early clinical outcomes with VMAT and IMRT SBRT have demonstrated excellent local control and favourable survival outcomes.

  4. Bioluminescent imaging of HPV-positive oral tumor growth and its response to image-guided radiotherapy.

    PubMed

    Zhong, Rong; Pytynia, Matt; Pelizzari, Charles; Spiotto, Michael

    2014-04-01

    The treatment paradigms for head and neck squamous cell cancer (HNSCC) are changing due to the emergence of human papillomavirus (HPV)-associated tumors possessing distinct molecular profiles and responses to therapy. Although patients with HNSCCs are often treated with radiotherapy, preclinical models are limited by the ability to deliver precise radiation to orthotopic tumors and to monitor treatment responses accordingly. To better model this clinical scenario, we developed a novel autochthonous HPV-positive oral tumor model to track responses to small molecules and image-guided radiation. We used a tamoxifen-regulated Cre recombinase system to conditionally express the HPV oncogenes E6 and E7 as well as a luciferase reporter (iHPV-Luc) in the epithelial cells of transgenic mice. In the presence of activated Cre recombinase, luciferase activity, and by proxy, HPV oncogenes were induced to 11-fold higher levels. In triple transgenic mice containing the iHPV-Luc, K14-CreER(tam), and LSL-Kras transgenes, tamoxifen treatment resulted in oral tumor development with increased bioluminescent activity within 6 days that reached a maximum of 74.8-fold higher bioluminescence compared with uninduced mice. Oral tumors expressed p16 and MCM7, two biomarkers associated with HPV-positive tumors. After treatment with rapamycin or image-guided radiotherapy, tumors regressed and possessed decreased bioluminescence. Thus, this novel system enables us to rapidly visualize HPV-positive tumor growth to model existing and new interventions using clinically relevant drugs and radiotherapy techniques.

  5. Adjuvant Chemoradiation for Gastric Cancer Using Epirubicin, Cisplatin, and 5-Fluorouracil Before and After Three-Dimensional Conformal Radiotherapy With Concurrent Infusional 5-Fluorouracil: A Multicenter Study of the Trans-Tasman Radiation Oncology Group

    SciTech Connect

    Leong, Trevor; Joon, Daryl Lim; Willis, David; Jayamoham, Jayasingham; Spry, Nigel; Harvey, Jennifer; Di Iulio, Juliana; Milner, Alvin; Mann, G. Bruce; Michael, Michael

    2011-03-01

    Purpose: The INT0116 study has established postoperative chemoradiotherapy as the standard of care for completely resected gastric adenocarcinoma. However, the optimal chemoradiation regimen remains to be defined. We conducted a prospective, multicenter study to evaluate an alternative chemoradiation regimen that combines more current systemic treatment with modern techniques of radiotherapy delivery. Methods and Materials: Patients with adenocarcinoma of the stomach who had undergone an R0 resection were eligible. Adjuvant therapy consisted of one cycle of epirubicin, cisplatin, and 5-FU (ECF), followed by radiotherapy with concurrent infusional 5-FU, and then two additional cycles of ECF. Radiotherapy was delivered using precisely defined, multiple-field, three-dimensional conformal techniques. Results: A total of 54 assessable patients were enrolled from 19 institutions. The proportion of patients commencing Cycles 1, 2, and 3 of ECF chemotherapy were 100%, 81%, and 67% respectively. In all, 94% of patients who received radiotherapy completed treatment as planned. Grade 3/4 neutropenia occurred in 66% of patients with 7.4% developing febrile neutropenia. Most neutropenic episodes (83%) occurred in the post-radiotherapy period during cycles 2 and 3 of ECF. Grade 3/4 gastrointestinal toxicity occurred in 28% of patients. In all, 35% of radiotherapy treatment plans contained protocol deviations that were satisfactorily amended before commencement of treatment. At median follow-up of 36 months, the 3-year overall survival rate was estimated at 61.6%. Conclusions: This adjuvant regimen using ECF before and after three-dimensional conformal chemoradiation is feasible and can be safely delivered in a cooperative group setting. A regimen similar to this is currently being compared with the INT0116 regimen in a National Cancer Institute-sponsored, randomized Phase III trial.

  6. [Clinical to planning target volume margins in prostate cancer radiotherapy].

    PubMed

    Ramiandrisoa, F; Duvergé, L; Castelli, J; Nguyen, T D; Servagi-Vernat, S; de Crevoisier, R

    2016-10-01

    The knowledge of inter- and intrafraction motion and deformations of the intrapelvic target volumes (prostate, seminal vesicles, prostatectomy bed and lymph nodes) as well as the main organs at risk (bladder and rectum) allow to define rational clinical to planning target volume margins, depending on the different radiotherapy techniques and their uncertainties. In case of image-guided radiotherapy, prostate margins and seminal vesicles margins can be between 5 and 10mm. The margins around the prostatectomy bed vary from 10 to 15mm and those around the lymph node clinical target volume between 7 and 10mm. Stereotactic body radiotherapy allows lower margins, which are 3 to 5mm around the prostate. Image-guided and stereotactic body radiotherapy with adequate margins allow finally moderate or extreme hypofractionation. PMID:27614515

  7. [Metabolic tailoring in radiotherapy for head and neck cancer].

    PubMed

    Servagi-Vernat, S; Giraud, P

    2014-10-01

    Radiotherapy based on functional imaging consists to deliver a heterogeneity dose based on biological proprieties. This approach is termed biologically conformal radiotherapy or dose painting with biological target volume inside the gross tumor volume. Diffusion-weighted magnetic resonance imaging (MRI) and dynamic contrast-enhanced MRI can also be used to define a specific biological target volume. Three main tracers are used: ((18)F)-fluorodeoxyglucose to target the hypermetabolism, ((18)F)-fluoromizonidazole and ((18)F)- fluoroazomycin arabinoside to target areas of hypoxia. In this review, we give a practical approach to achieving a treatment-guided radiotherapy molecular and the main issues raised by this imaging technique. Despite the provision of all the technological tools to the radiotherapist, this new therapeutic approach is still evaluated in clinical studies to demonstrate a real clinical benefit compared to radiotherapy based on anatomic imaging.

  8. High Precision Metal Thin Film Liftoff Technique

    NASA Technical Reports Server (NTRS)

    Brown, Ari D. (Inventor); Patel, Amil A. (Inventor)

    2015-01-01

    A metal film liftoff process includes applying a polymer layer onto a silicon substrate, applying a germanium layer over the polymer layer to create a bilayer lift off mask, applying a patterned photoresist layer over the germanium layer, removing an exposed portion of the germanium layer, removing the photoresist layer and a portion of the polymer layer to expose a portion of the substrate and create an overhanging structure of the germanium layer, depositing a metal film over the exposed portion of the substrate and the germanium layer, and removing the polymer and germanium layers along with the overlaying metal film.

  9. Role of additional radiotherapy in advanced stages of Hodgkin's disease.

    PubMed

    Meerwaldt, J H; Coleman, C N; Fischer, R I; Lister, T A; Diehl, V

    1992-09-01

    Although radiotherapy is widely used as additional treatment following chemotherapy, its precise role has never been clearly proven. Relapses tend to occur in previously involved bulky sites. Non-randomized studies may suggest a positive effect of the addition of radiotherapy. This effect however, might also be caused by selection. Randomized studies have not resulted in a survival advantage for the patients treated with additional radiotherapy compared to no further treatment or additional chemotherapy. The SWOG study 7808 suggest a 20% benefit in remission duration for the nodular sclerosis histology subgroup. Definitive conclusions have to wait for more mature results of randomized studies including the ongoing EORTC study and the possibility to perform an overview of all studies. PMID:1280464

  10. Role of additional radiotherapy in advanced stages of Hodgkin's disease.

    PubMed

    Meerwaldt, J H; Coleman, C N; Fischer, R I; Lister, T A; Diehl, V

    1992-09-01

    Although radiotherapy is widely used as additional treatment following chemotherapy, its precise role has never been clearly proven. Relapses tend to occur in previously involved bulky sites. Non-randomized studies may suggest a positive effect of the addition of radiotherapy. This effect however, might also be caused by selection. Randomized studies have not resulted in a survival advantage for the patients treated with additional radiotherapy compared to no further treatment or additional chemotherapy. The SWOG study 7808 suggest a 20% benefit in remission duration for the nodular sclerosis histology subgroup. Definitive conclusions have to wait for more mature results of randomized studies including the ongoing EORTC study and the possibility to perform an overview of all studies.

  11. Precision oncology: origins, optimism, and potential.

    PubMed

    Prasad, Vinay; Fojo, Tito; Brada, Michael

    2016-02-01

    Imatinib, the first and arguably the best targeted therapy, became the springboard for developing drugs aimed at molecular targets deemed crucial to tumours. As this development unfolded, a revolution in the speed and cost of genetic sequencing occurred. The result--an armamentarium of drugs and an array of molecular targets--set the stage for precision oncology, a hypothesis that cancer treatment could be markedly improved if therapies were guided by a tumour's genomic alterations. Drawing lessons from the biological basis of cancer and recent empirical investigations, we take a more measured view of precision oncology's promise. Ultimately, the promise is not our concern, but the threshold at which we declare success. We review reports of precision oncology alongside those of precision diagnostics and novel radiotherapy approaches. Although confirmatory evidence is scarce, these interventions have been widely endorsed. We conclude that the current path will probably not be successful or, at a minimum, will have to undergo substantive adjustments before it can be successful. For the sake of patients with cancer, we hope one form of precision oncology will deliver on its promise. However, until confirmatory studies are completed, precision oncology remains unproven, and as such, a hypothesis in need of rigorous testing.

  12. Clinical utility of RapidArc™ radiotherapy technology

    PubMed Central

    Infusino, Erminia

    2015-01-01

    RapidArc™ is a radiation technique that delivers highly conformal dose distributions through the complete rotation (360°) and speed variation of the linear accelerator gantry. This technique, called volumetric modulated arc therapy (VMAT), compared with conventional radiotherapy techniques, can achieve high-target volume coverage and sparing damage to normal tissues. RapidArc delivers precise dose distribution and conformity similar to or greater than intensity-modulated radiation therapy in a short time, generally a few minutes, to which image-guided radiation therapy is added. RapidArc has become a currently used technology in many centers, which use RapidArc technology to treat a large number of patients. Large and small hospitals use it to treat the most challenging cases, but more and more frequently for the most common cancers. The clinical use of RapidArc and VMAT technology is constantly growing. At present, a limited number of clinical data are published, mostly concerning planning and feasibility studies. Clinical outcome data are increasing for a few tumor sites, even if only a little. The purpose of this work is to discuss the current status of VMAT techniques in clinical use through a review of the published data of planning systems and clinical outcomes in several tumor sites. The study consisted of a systematic review based on analysis of manuscripts retrieved from the PubMed, BioMed Central, and Scopus databases by searching for the keywords “RapidArc”, “Volumetric modulated arc radiotherapy”, and “Intensity-modulated radiotherapy”. PMID:26648755

  13. Image-guided radiotherapy and motion management in lung cancer

    PubMed Central

    2015-01-01

    In this review, image guidance and motion management in radiotherapy for lung cancer is discussed. Motion characteristics of lung tumours and image guidance techniques to obtain motion information are elaborated. Possibilities for management of image guidance and motion in the various steps of the treatment chain are explained, including imaging techniques and beam delivery techniques. Clinical studies using different motion management techniques are reviewed, and finally future directions for image guidance and motion management are outlined. PMID:25955231

  14. Radiotherapy of early glottic cancer.

    PubMed

    Harwood, A R; Hawkins, N V; Keane, T; Cummings, B; Beale, F A; Rider, W D; Bryce, D P

    1980-03-01

    Patients (383) with stage Tis, Tla and Tlb NoMo glottic cancer are reviewed. Radiotherapy cured 93% of Tis patients and 86% of Tla and Tlb cases. Of all recurrences, 63% were cured. No patient with stage Tis died as a result of tumor and only 5% of stage Tla and Tlb died from tumor. Involvement of the anterior commissure or both vocal cords did not influence control rates by radiotherapy. Mobility of the vocal cord and size of radiotherapy field were significant factors influencing control by radiotherapy. Late recurrences and/or second primaries in the larynx following radiotherapy are rare. Second primaries in the respiratory tract (especially lung) are common and are as important a cause of death as laryngeal cancer in T1 cases. It is concluded that moderate dose radiotherapy with surgery for salvage is a highly effective method of management for early glottic cancer. PMID:7359967

  15. Precision cosmological parameter estimation

    NASA Astrophysics Data System (ADS)

    Fendt, William Ashton, Jr.

    2009-09-01

    Experimental efforts of the last few decades have brought. a golden age to mankind's endeavor to understand tine physical properties of the Universe throughout its history. Recent measurements of the cosmic microwave background (CMB) provide strong confirmation of the standard big bang paradigm, as well as introducing new mysteries, to unexplained by current physical models. In the following decades. even more ambitious scientific endeavours will begin to shed light on the new physics by looking at the detailed structure of the Universe both at very early and recent times. Modern data has allowed us to begins to test inflationary models of the early Universe, and the near future will bring higher precision data and much stronger tests. Cracking the codes hidden in these cosmological observables is a difficult and computationally intensive problem. The challenges will continue to increase as future experiments bring larger and more precise data sets. Because of the complexity of the problem, we are forced to use approximate techniques and make simplifying assumptions to ease the computational workload. While this has been reasonably sufficient until now, hints of the limitations of our techniques have begun to come to light. For example, the likelihood approximation used for analysis of CMB data from the Wilkinson Microwave Anistropy Probe (WMAP) satellite was shown to have short falls, leading to pre-emptive conclusions drawn about current cosmological theories. Also it can he shown that an approximate method used by all current analysis codes to describe the recombination history of the Universe will not be sufficiently accurate for future experiments. With a new CMB satellite scheduled for launch in the coming months, it is vital that we develop techniques to improve the analysis of cosmological data. This work develops a novel technique of both avoiding the use of approximate computational codes as well as allowing the application of new, more precise analysis

  16. Multimedia educational services in stereotactic radiotherapy.

    PubMed

    Bazioglou, M; Theodorou, K; Kappas, C

    1999-01-01

    The computer-based learning methods in medicine have been well established as stand-alone learning systems. Recently, these systems were enriched with the use of telematics technology to provide distance learning capabilities. Stereotactic radiotherapy is one of the most representative advanced radiotherapy techniques. Due to the multidisciplinary character of the technique and the rapid evolution of technology implemented, the demands in training have increased. The potential of interactive multimedia and Internet technologies for the achievement of distance learning capabilities in this domain are investigated. The realization of a computer-based educational program in stereotactic radiotherapy in a multimedia format is a new application in the computer-aided distance learning field. The system is built according to a client and server architecture, based on the Internet infrastructure, and composed of server nodes. The impact of the system may be described in terms of: time and transportation costs saving, flexibility in training (scheduling, rate and subject selection), online communication and interaction with experts, cost effective access to material (delivery or access by a large number of users and revision of the material by avoiding high costs of computer-based training systems and database development). PMID:10394345

  17. [How to maximize skin care during radiotherapy?].

    PubMed

    Fromantin, I; Lesport, G; Le Mée, M

    2015-10-01

    No consensual guidelines exist regarding the management of early effects of radiotherapy. But preventive and curative care strategies could be adapted in the aim to delay erythema, limit complications and improve patients' comfort. Prevention involves encouraging patients to take care of their skin, avoid moisture, frictions, sun exposition and dry soap. When these rules seem insufficient, products (dressings, solution, or cream) could be prescribed, according to the individual risk of each patient. Preventive measures are accentuated when radiodermatitis appears and/or topics indicated for wound healing could be applied. Care (education, dressing, observation) needs a multidisciplinary approach. Improvements of radiotherapy treatments (methods, techniques) have been the most effective evolution on radiodermatitis. PMID:26344433

  18. Complications of surgery for radiotherapy skin damage

    SciTech Connect

    Rudolph, R.

    1982-08-01

    Complications of modern surgery for radiotherapy skin damage reviewed in 28 patients who had 42 operations. Thin split-thickness skin grafts for ulcer treatment had a 100 percent complication rate, defined as the need for further surgery. Local flaps, whether delayed or not, also had a high rate of complications. Myocutaneous flaps for ulcers had a 43 percent complication rate, with viable flaps lifting off radiated wound beds. Only myocutaneous flaps for breast reconstruction and omental flaps with skin grafts and Marlex mesh had no complications. The deeper tissue penetration of modern radiotherapy techniques may make skin grafts and flaps less useful. In reconstruction of radiation ulcers, omental flaps and myocutaneous flaps are especially useful, particularly if the radiation damage can be fully excised. The pull of gravity appears detrimental to myocutaneous flap healing and, if possible, should be avoided by flap design.

  19. Radiotherapy of nonfunctioning and gonadotroph adenomas.

    PubMed

    Kanner, Andrew A; Corn, Benjamin W; Greenman, Yona

    2009-01-01

    Transsphenoidal surgery is the treatment of choice for NFPA but is seldom curative. The management of patients in whom residual tumor is detected after surgery is not clear-cut. Radiation therapy is effective in controlling tumor mass in the majority of patients, but is associated with long term complications that call for restriction of its use to patients at high risk for tumor growth. New radiation techniques may prove to be safer while retaining the effectiveness of conventional radiotherapy, however longer follow-up is necessary to confirm this assumption. For now, it appears to be safe to withhold radiation and carefully follow patients with small tumor remnants, whereas large remnants from invasive tumors should be considered for radiotherapy. Nevertheless, there are no prospective controlled studies that support this empirical approach. PMID:18286373

  20. Complete response of myeloid sarcoma with cardiac involvement to radiotherapy

    PubMed Central

    Yang, Wen-Chi; Yao, Ming; Chen, Yu-Hsuan

    2016-01-01

    We present a rare case of intracardiac myeloid sarcoma (MS) of acute myeloid leukemia (AML) and who responds completely well to low-dose radiotherapy. This 19-year-old young man initially presented with AML and received standard chemotherapy followed by allogeneic hematopoietic stem cell transplantation (HSCT). However, he developed intracardiac isolated MS relapse with the presentation of exertional dyspnea and superior vena cava (SVC) syndrome 3 years later. He then received radiotherapy with 24 Gy at a 12 daily fractions using forward “field in field” intensity modulated radiotherapy technique. He dramatically had improved clinical symptoms, and complete remission was achieved one month after completing radiotherapy. Our result is in line with anecdotal case reports showed that radiotherapy with 15 Gy in 10 fractions or with 24 Gy in 12 fractions resulted in good response and less toxicity of 2 cases of MS with cardiac involvement. These results indicate that a modest radiotherapy dose, 24 Gy, achieves good local control of MS with cardiac involvement. PMID:27293853

  1. Radiation-induced heart disease in lung cancer radiotherapy

    PubMed Central

    Ming, Xin; Feng, Yuanming; Yang, Chengwen; Wang, Wei; Wang, Ping; Deng, Jun

    2016-01-01

    Abstract Background: Radiation-induced heart disease (RIHD), which affects the patients’ prognosis with both acute and late side effects, has been published extensively in the radiotherapy of breast cancer, lymphoma and other benign diseases. Studies on RIHD in lung cancer radiotherapy, however, are less extensive and clear even though the patients with lung cancer are delivered with higher doses to the heart during radiation treatment. Methods: In this article, after extensive literature search and analysis, we reviewed the current evidence on RIHD in lung cancer patients after their radiation treatments and investigated the potential risk factors for RIHD as compared to other types of cancers. Result: Cardiac toxicity has been found highly relevant in lung cancer radiotherapy. So far, the crude incidence of cardiac complications in the lung cancer patients after radiotherapy has been up to 33%. Conclusion: The dose to the heart, the lobar location of tumor, the treatment modality, the history of heart and pulmonary disease and smoking were considered as potential risk factors for RIHD in lung cancer radiotherapy. As treatment techniques improve over the time with better prognosis for lung cancer survivors, an improved prediction model can be established to further reduce the cardiac toxicity in lung cancer radiotherapy. PMID:27741117

  2. Monte Carlo role in radiobiological modelling of radiotherapy outcomes

    NASA Astrophysics Data System (ADS)

    El Naqa, Issam; Pater, Piotr; Seuntjens, Jan

    2012-06-01

    Radiobiological models are essential components of modern radiotherapy. They are increasingly applied to optimize and evaluate the quality of different treatment planning modalities. They are frequently used in designing new radiotherapy clinical trials by estimating the expected therapeutic ratio of new protocols. In radiobiology, the therapeutic ratio is estimated from the expected gain in tumour control probability (TCP) to the risk of normal tissue complication probability (NTCP). However, estimates of TCP/NTCP are currently based on the deterministic and simplistic linear-quadratic formalism with limited prediction power when applied prospectively. Given the complex and stochastic nature of the physical, chemical and biological interactions associated with spatial and temporal radiation induced effects in living tissues, it is conjectured that methods based on Monte Carlo (MC) analysis may provide better estimates of TCP/NTCP for radiotherapy treatment planning and trial design. Indeed, over the past few decades, methods based on MC have demonstrated superior performance for accurate simulation of radiation transport, tumour growth and particle track structures; however, successful application of modelling radiobiological response and outcomes in radiotherapy is still hampered with several challenges. In this review, we provide an overview of some of the main techniques used in radiobiological modelling for radiotherapy, with focus on the MC role as a promising computational vehicle. We highlight the current challenges, issues and future potentials of the MC approach towards a comprehensive systems-based framework in radiobiological modelling for radiotherapy.

  3. Complete response of myeloid sarcoma with cardiac involvement to radiotherapy.

    PubMed

    Yang, Wen-Chi; Yao, Ming; Chen, Yu-Hsuan; Kuo, Sung-Hsin

    2016-06-01

    We present a rare case of intracardiac myeloid sarcoma (MS) of acute myeloid leukemia (AML) and who responds completely well to low-dose radiotherapy. This 19-year-old young man initially presented with AML and received standard chemotherapy followed by allogeneic hematopoietic stem cell transplantation (HSCT). However, he developed intracardiac isolated MS relapse with the presentation of exertional dyspnea and superior vena cava (SVC) syndrome 3 years later. He then received radiotherapy with 24 Gy at a 12 daily fractions using forward "field in field" intensity modulated radiotherapy technique. He dramatically had improved clinical symptoms, and complete remission was achieved one month after completing radiotherapy. Our result is in line with anecdotal case reports showed that radiotherapy with 15 Gy in 10 fractions or with 24 Gy in 12 fractions resulted in good response and less toxicity of 2 cases of MS with cardiac involvement. These results indicate that a modest radiotherapy dose, 24 Gy, achieves good local control of MS with cardiac involvement. PMID:27293853

  4. [Motion analysis of target in stereotactic radiotherapy of lung tumors using 320-row multidetector CT].

    PubMed

    Imae, Toshikazu; Haga, Akihiro; Nakagawa, Keiichi; Ino, Kenji; Tanaka, Kenichirou; Okano, Yukari; Sasaki, Katsutake; Saegusa, Shigeki; Shiraki, Takashi; Oritate, Takashi; Yano, Keiichi; Shinohara, Hiroyuki

    2011-01-01

    Multi-detector computed tomography (MDCT) has rapidly evolved and is increasingly used for treatment simulation of thoracic and abdominal radiotherapy. A 320-detector row CT scanner has recently become available that allows axial volumetric scanning of a 16-cm-long range in a patient without table movement. Current radiotherapy techniques require a generous margin around the presumed gross tumor volume (GTV) to account for uncertainties such as tumor motion and set up error. Motion analysis is useful to evaluate the internal margin of a moving target due to respiration and to improve therapeutic precision. The purpose of this study is to propose a method using phase-only correlation to automatically detect the target and to assess the motion of the target in numerical phantoms and patients. Free-breathing scans using 320-detector row CT were acquired for 4 patients with lung tumor(s). The proposed method was feasible for motion analysis of all numerical phantoms and patients. The results reproduced the facts that the motion of tumors in the patients varied in orbits during the respiratory cycle and exhibited hysteresis. The maximum distance between peak exhalation and inhalation increased as the tumors approached the diaphragm. The proposed method detected the three-dimensional position of the targets automatically and analyzed the trajectories. The tumor motion due to respiration differed by region and was greatest for the lower lobe. PMID:21471676

  5. PRECISION RADIAL VELOCITIES WITH CSHELL

    SciTech Connect

    Crockett, Christopher J.; Prato, L.; Mahmud, Naved I.; Johns-Krull, Christopher M.; Jaffe, Daniel T.; Beichman, Charles A. E-mail: lprato@lowell.edu E-mail: cmj@rice.edu

    2011-07-10

    Radial velocity (RV) identification of extrasolar planets has historically been dominated by optical surveys. Interest in expanding exoplanet searches to M dwarfs and young stars, however, has motivated a push to improve the precision of near-infrared RV techniques. We present our methodology for achieving 58 m s{sup -1} precision in the K band on the M0 dwarf GJ 281 using the CSHELL spectrograph at the 3 m NASA Infrared Telescope Facility. We also demonstrate our ability to recover the known 4 M{sub JUP} exoplanet Gl 86 b and discuss the implications for success in detecting planets around 1-3 Myr old T Tauri stars.

  6. Deformable Dose Reconstruction to Optimize the Planning and Delivery of Liver Cancer Radiotherapy

    NASA Astrophysics Data System (ADS)

    Velec, Michael

    The precise delivery of radiation to liver cancer patients results in improved control with higher tumor doses and minimized normal tissues doses. A margin of normal tissue around the tumor requires irradiation however to account for treatment delivery uncertainties. Daily image-guidance allows targeting of the liver, a surrogate for the tumor, to reduce geometric errors. However poor direct tumor visualization, anatomical deformation and breathing motion introduce uncertainties between the planned dose, calculated on a single pre-treatment computed tomography image, and the dose that is delivered. A novel deformable image registration algorithm based on tissue biomechanics was applied to previous liver cancer patients to track targets and surrounding organs during radiotherapy. Modeling these daily anatomic variations permitted dose accumulation, thereby improving calculations of the delivered doses. The accuracy of the algorithm to track dose was validated using imaging from a deformable, 3-dimensional dosimeter able to optically track absorbed dose. Reconstructing the delivered dose revealed that 70% of patients had substantial deviations from the initial planned dose. An alternative image-guidance technique using respiratory-correlated imaging was simulated, which reduced both the residual tumor targeting errors and the magnitude of the delivered dose deviations. A planning and delivery strategy for liver radiotherapy was then developed that minimizes the impact of breathing motion, and applied a margin to account for the impact of liver deformation during treatment. This margin is 38% smaller on average than the margin used clinically, and permitted an average dose-escalation to liver tumors of 9% for the same risk of toxicity. Simulating the delivered dose with deformable dose reconstruction demonstrated the plans with smaller margins were robust as 90% of patients' tumors received the intended dose. This strategy can be readily implemented with widely

  7. [Radiotherapy in cancers of the oesophagus, the gastric cardia and the stomach].

    PubMed

    Créhange, G; Huguet, F; Quero, L; N'Guyen, T V; Mirabel, X; Lacornerie, T

    2016-09-01

    Localized oesophageal and gastric cancers have a poor prognosis. In oesophageal cancer, external radiotherapy combined with concomitant chemotherapy is accepted as part of the therapeutic armamentarium in a curative intent in the preoperative setting for resectable tumours; or without surgery in inoperable patients or non-resectable tumours due to wide local and/or regional extension. Data from the literature show conflicting results with no clinical evidence in favour of either a unique dose protocol or consensual target volume definition in the setting of exclusive chemoradiation. In the preoperative setting, chemoradiotherapy has become the standard in oesophageal cancer, even though there is no evidence that surgery may be beneficial in locally advanced tumours that respond to radiotherapy and chemotherapy. The main cause of failure after exclusive chemoradiotherapy in oesophageal cancer is locoregional relapse suggesting that doses and volumes usually considered may be inadequate. In gastric cancer, radiotherapy may be indicated postoperatively in patients with resected tumours that include less than D2 lymph node dissection or in the absence of perioperative chemotherapy. Preoperative chemoradiotherapy in gastric cancers is still under investigation. The evolving techniques of external radiotherapy, such as image-guided radiotherapy (IMRT) and volumetric modulated arctherapy (VMAT) have reduced the volume of lung and heart exposed to radiation, which seems to have diminished radiotherapy-related morbi-mortality rates. Given this, quality assurance for radiotherapy and protocols for radiotherapy delivery must be better standardized. This article on the indications for radiotherapy and the techniques used in oesophageal and gastric cancers is included in a special issue dedicated to national recommendations from the French society of radiation oncology (SFRO) on radiotherapy indications, planning, dose prescription, and techniques of radiotherapy delivery. PMID

  8. [Radiotherapy in cancers of the oesophagus, the gastric cardia and the stomach].

    PubMed

    Créhange, G; Huguet, F; Quero, L; N'Guyen, T V; Mirabel, X; Lacornerie, T

    2016-09-01

    Localized oesophageal and gastric cancers have a poor prognosis. In oesophageal cancer, external radiotherapy combined with concomitant chemotherapy is accepted as part of the therapeutic armamentarium in a curative intent in the preoperative setting for resectable tumours; or without surgery in inoperable patients or non-resectable tumours due to wide local and/or regional extension. Data from the literature show conflicting results with no clinical evidence in favour of either a unique dose protocol or consensual target volume definition in the setting of exclusive chemoradiation. In the preoperative setting, chemoradiotherapy has become the standard in oesophageal cancer, even though there is no evidence that surgery may be beneficial in locally advanced tumours that respond to radiotherapy and chemotherapy. The main cause of failure after exclusive chemoradiotherapy in oesophageal cancer is locoregional relapse suggesting that doses and volumes usually considered may be inadequate. In gastric cancer, radiotherapy may be indicated postoperatively in patients with resected tumours that include less than D2 lymph node dissection or in the absence of perioperative chemotherapy. Preoperative chemoradiotherapy in gastric cancers is still under investigation. The evolving techniques of external radiotherapy, such as image-guided radiotherapy (IMRT) and volumetric modulated arctherapy (VMAT) have reduced the volume of lung and heart exposed to radiation, which seems to have diminished radiotherapy-related morbi-mortality rates. Given this, quality assurance for radiotherapy and protocols for radiotherapy delivery must be better standardized. This article on the indications for radiotherapy and the techniques used in oesophageal and gastric cancers is included in a special issue dedicated to national recommendations from the French society of radiation oncology (SFRO) on radiotherapy indications, planning, dose prescription, and techniques of radiotherapy delivery.

  9. Improvement in toxicity in high risk prostate cancer patients treated with image-guided intensity-modulated radiotherapy compared to 3D conformal radiotherapy without daily image guidance

    PubMed Central

    2014-01-01

    Background Image-guided radiotherapy (IGRT) facilitates the delivery of a very precise radiation dose. In this study we compare the toxicity and biochemical progression-free survival between patients treated with daily image-guided intensity-modulated radiotherapy (IG-IMRT) and 3D conformal radiotherapy (3DCRT) without daily image guidance for high risk prostate cancer (PCa). Methods A total of 503 high risk PCa patients treated with radiotherapy (RT) and endocrine treatment between 2000 and 2010 were retrospectively reviewed. 115 patients were treated with 3DCRT, and 388 patients were treated with IG-IMRT. 3DCRT patients were treated to 76 Gy and without daily image guidance and with 1–2 cm PTV margins. IG-IMRT patients were treated to 78 Gy based on daily image guidance of fiducial markers, and the PTV margins were 5–7 mm. Furthermore, the dose-volume constraints to both the rectum and bladder were changed with the introduction of IG-IMRT. Results The 2-year actuarial likelihood of developing grade > = 2 GI toxicity following RT was 57.3% in 3DCRT patients and 5.8% in IG-IMRT patients (p < 0.001). For GU toxicity the numbers were 41.8% and 29.7%, respectively (p = 0.011). On multivariate analysis, 3DCRT was associated with a significantly increased risk of developing grade > = 2 GI toxicity compared to IG-IMRT (p < 0.001, HR = 11.59 [CI: 6.67-20.14]). 3DCRT was also associated with an increased risk of developing GU toxicity compared to IG-IMRT. The 3-year actuarial biochemical progression-free survival probability was 86.0% for 3DCRT and 90.3% for IG-IMRT (p = 0.386). On multivariate analysis there was no difference in biochemical progression-free survival between 3DCRT and IG-IMRT. Conclusion The difference in toxicity can be attributed to the combination of the IMRT technique with reduced dose to organs-at-risk, daily image guidance and margin reduction. PMID:24495815

  10. [Juvenile angiofibroma. Results of radiotherapy].

    PubMed

    Rosset, A; Korzeniowski, S

    1990-01-01

    8 patients with the nasofibromata were treated by radiotherapy in Oncologic Center in Kraków. In most part of these patients tumors exceeded the nasopharynx or gave the massive postoperational recurrencies. Complete regression was obtained in 6 out of 8 cases. The radiation changes are described. The radiotherapy is effective in more advanced and recurrent stages of the juvenile nasofibroma.

  11. Big Data Analytics for Prostate Radiotherapy

    PubMed Central

    Coates, James; Souhami, Luis; El Naqa, Issam

    2016-01-01

    Radiation therapy is a first-line treatment option for localized prostate cancer and radiation-induced normal tissue damage are often the main limiting factor for modern radiotherapy regimens. Conversely, under-dosing of target volumes in an attempt to spare adjacent healthy tissues limits the likelihood of achieving local, long-term control. Thus, the ability to generate personalized data-driven risk profiles for radiotherapy outcomes would provide valuable prognostic information to help guide both clinicians and patients alike. Big data applied to radiation oncology promises to deliver better understanding of outcomes by harvesting and integrating heterogeneous data types, including patient-specific clinical parameters, treatment-related dose–volume metrics, and biological risk factors. When taken together, such variables make up the basis for a multi-dimensional space (the “RadoncSpace”) in which the presented modeling techniques search in order to identify significant predictors. Herein, we review outcome modeling and big data-mining techniques for both tumor control and radiotherapy-induced normal tissue effects. We apply many of the presented modeling approaches onto a cohort of hypofractionated prostate cancer patients taking into account different data types and a large heterogeneous mix of physical and biological parameters. Cross-validation techniques are also reviewed for the refinement of the proposed framework architecture and checking individual model performance. We conclude by considering advanced modeling techniques that borrow concepts from big data analytics, such as machine learning and artificial intelligence, before discussing the potential future impact of systems radiobiology approaches. PMID:27379211

  12. Big Data Analytics for Prostate Radiotherapy.

    PubMed

    Coates, James; Souhami, Luis; El Naqa, Issam

    2016-01-01

    Radiation therapy is a first-line treatment option for localized prostate cancer and radiation-induced normal tissue damage are often the main limiting factor for modern radiotherapy regimens. Conversely, under-dosing of target volumes in an attempt to spare adjacent healthy tissues limits the likelihood of achieving local, long-term control. Thus, the ability to generate personalized data-driven risk profiles for radiotherapy outcomes would provide valuable prognostic information to help guide both clinicians and patients alike. Big data applied to radiation oncology promises to deliver better understanding of outcomes by harvesting and integrating heterogeneous data types, including patient-specific clinical parameters, treatment-related dose-volume metrics, and biological risk factors. When taken together, such variables make up the basis for a multi-dimensional space (the "RadoncSpace") in which the presented modeling techniques search in order to identify significant predictors. Herein, we review outcome modeling and big data-mining techniques for both tumor control and radiotherapy-induced normal tissue effects. We apply many of the presented modeling approaches onto a cohort of hypofractionated prostate cancer patients taking into account different data types and a large heterogeneous mix of physical and biological parameters. Cross-validation techniques are also reviewed for the refinement of the proposed framework architecture and checking individual model performance. We conclude by considering advanced modeling techniques that borrow concepts from big data analytics, such as machine learning and artificial intelligence, before discussing the potential future impact of systems radiobiology approaches. PMID:27379211

  13. [3D reconstructions in radiotherapy planning].

    PubMed

    Schlegel, W

    1991-10-01

    3D Reconstructions from tomographic images are used in the planning of radiation therapy to study important anatomical structures such as the body surface, target volumes, and organs at risk. The reconstructed anatomical models are used to define the geometry of the radiation beams. In addition, 3D voxel models are used for the calculation of the 3D dose distributions with an accuracy, previously impossible to achieve. Further uses of 3D reconstructions are in the display and evaluation of 3D therapy plans, and in the transfer of treatment planning parameters to the irradiation situation with the help of digitally reconstructed radiographs. 3D tomographic imaging with subsequent 3D reconstruction must be regarded as a completely new basis for the planning of radiation therapy, enabling tumor-tailored radiation therapy of localized target volumes with increased radiation doses and improved sparing of organs at risk. 3D treatment planning is currently being evaluated in clinical trials in connection with the new treatment techniques of conformation radiotherapy. Early experience with 3D treatment planning shows that its clinical importance in radiotherapy is growing, but will only become a standard radiotherapy tool when volumetric CT scanning, reliable and user-friendly treatment planning software, and faster and cheaper PACS-integrated medical work stations are accessible to radiotherapists.

  14. Hypothyroidism After Radiotherapy for Nasopharyngeal Cancer Patients

    SciTech Connect

    Wu, Y.-H.; Wang, H-M.; Chen, Hellen Hi-Wen; Lin, C.-Y.; Chen, Eric Yen-Chao; Fan, K.-H.; Huang, S.-F.; Chen, I-How; Liao, C.-T.; Cheng, Ann-Joy; Chang, Joseph Tung-Chieh

    2010-03-15

    Purpose: The aim of this study was to determine the long-term incidence and possible predictive factors for posttreatment hypothyroidism in nasopharyngeal carcinoma (NPC) patients after radiotherapy. Methods and Materials: Four hundred and eight sequential NPC patients who had received regular annual thyroid hormone surveys prospectively after radiotherapy were included in this study. Median patient age was 47.3 years, and 286 patients were male. Thyroid function was prospectively evaluated by measuring thyroid-stimulating hormone (TSH) and serum free thyroxine (FT4) levels. Low FT4 levels indicated clinical hypothyroidism in this study. Results: With a median follow-up of 4.3 years (range, 0.54-19.7 years), the incidence of low FT4 level was 5.3%, 9.0%, and 19.1% at 3, 5, and 10 years after radiotherapy, respectively. Hypothyroidism was more common with early T stage (p = 0.044), female sex (p = 0.037), and three-dimensional conformal therapy with the altered fractionation technique (p = 0.005) after univariate analysis. N stage, chemotherapy, reirradiation, and neck electron boost did not affect the incidence of hypothyroidism. Younger age and conformal therapy were significant factors that determined clinical hypothyroidism after multivariate analysis. Overall, patients presented with a low FT4 level about 1 year after presenting with an elevated TSH level. Conclusion: Among our study group of NPC patients, 19.1% experienced clinical hypothyroidism by 10 years after treatment. Younger age and conformal therapy increased the risk of hypothyroidism. We suggest routine evaluation of thyroid function in NPC patients after radiotherapy. The impact of pituitary injury should be also considered.

  15. Fertility impairment in radiotherapy

    PubMed Central

    Kuźba-Kryszak, Tamara; Nowikiewicz, Tomasz; Żyromska, Agnieszka

    2016-01-01

    Infertility as a result of antineoplastic therapy is becoming a very important issue due to the growing incidence of neoplastic diseases. Routinely applied antineoplastic treatments and the illness itself lead to fertility disorders. Therapeutic methods used in antineoplastic treatment may cause fertility impairment or sterilization due to permanent damage to reproductive cells. The risk of sterilization depends on the patient's sex, age during therapy, type of neoplasm, radiation dose and treatment area. It is known that chemotherapy and radiotherapy can lead to fertility impairment and the combination of these two gives an additive effect. The aim of this article is to raise the issue of infertility in these patients. It is of growing importance due to the increase in the number of children and young adults who underwent radiotherapy in the past. The progress in antineoplastic therapy improves treatment results, but at the same time requires a deeper look at existential needs of the patient. Reproductive function is an integral element of self-esteem and should be taken into account during therapy planning. PMID:27647982

  16. Imaging in radiotherapy

    NASA Astrophysics Data System (ADS)

    Calandrino, R.; Del Maschio, A.; Cattaneo, G. M.; Castiglioni, I.

    2009-09-01

    The diagnostic methodologies used for the radiotherapy planning have undergone great developments in the last 30 years. Since the 1980s, after the introduction of the CT scanner, the modality for the planning moved beyond the planar 2D assessment to approach a real and more realistic volumetric 3D definition. Consequently the dose distribution, previously obtained by means of an overly simple approximation, became increasingly complex, better tailoring the true shape of the tumour. The final therapeutic improvement has been obtained by a parallel increase in the complexity of the irradiating units: the Linacs for therapy have, in fact, been equipped with a full accessory set capable to modulate the fluence (IMRT) and to check the correct target position continuously during the therapy session (IMRT-IGRT). The multimodal diagnostic approach, which integrates diagnostic information, from images of the patient taken with CT, NMR, PET and US, further improves the data for a biological and topological optimization of the radiotherapy plan and consequently of the dose distribution in the Planning Target Volume. Proteomic and genomic analysis will be the next step in tumour diagnosis. These methods will provide the planners with further information, for a true personalization of the treatment regimen and the assessment of the predictive essays for each tumour and each patient.

  17. Fertility impairment in radiotherapy

    PubMed Central

    Kuźba-Kryszak, Tamara; Nowikiewicz, Tomasz; Żyromska, Agnieszka

    2016-01-01

    Infertility as a result of antineoplastic therapy is becoming a very important issue due to the growing incidence of neoplastic diseases. Routinely applied antineoplastic treatments and the illness itself lead to fertility disorders. Therapeutic methods used in antineoplastic treatment may cause fertility impairment or sterilization due to permanent damage to reproductive cells. The risk of sterilization depends on the patient's sex, age during therapy, type of neoplasm, radiation dose and treatment area. It is known that chemotherapy and radiotherapy can lead to fertility impairment and the combination of these two gives an additive effect. The aim of this article is to raise the issue of infertility in these patients. It is of growing importance due to the increase in the number of children and young adults who underwent radiotherapy in the past. The progress in antineoplastic therapy improves treatment results, but at the same time requires a deeper look at existential needs of the patient. Reproductive function is an integral element of self-esteem and should be taken into account during therapy planning.

  18. Fertility impairment in radiotherapy.

    PubMed

    Biedka, Marta; Kuźba-Kryszak, Tamara; Nowikiewicz, Tomasz; Żyromska, Agnieszka

    2016-01-01

    Infertility as a result of antineoplastic therapy is becoming a very important issue due to the growing incidence of neoplastic diseases. Routinely applied antineoplastic treatments and the illness itself lead to fertility disorders. Therapeutic methods used in antineoplastic treatment may cause fertility impairment or sterilization due to permanent damage to reproductive cells. The risk of sterilization depends on the patient's sex, age during therapy, type of neoplasm, radiation dose and treatment area. It is known that chemotherapy and radiotherapy can lead to fertility impairment and the combination of these two gives an additive effect. The aim of this article is to raise the issue of infertility in these patients. It is of growing importance due to the increase in the number of children and young adults who underwent radiotherapy in the past. The progress in antineoplastic therapy improves treatment results, but at the same time requires a deeper look at existential needs of the patient. Reproductive function is an integral element of self-esteem and should be taken into account during therapy planning. PMID:27647982

  19. Precision performance lamp technology

    NASA Astrophysics Data System (ADS)

    Bell, Dean A.; Kiesa, James E.; Dean, Raymond A.

    1997-09-01

    A principal function of a lamp is to produce light output with designated spectra, intensity, and/or geometric radiation patterns. The function of a precision performance lamp is to go beyond these parameters and into the precision repeatability of performance. All lamps are not equal. There are a variety of incandescent lamps, from the vacuum incandescent indictor lamp to the precision lamp of a blood analyzer. In the past the definition of a precision lamp was described in terms of wattage, light center length (LCL), filament position, and/or spot alignment. This paper presents a new view of precision lamps through the discussion of a new segment of lamp design, which we term precision performance lamps. The definition of precision performance lamps will include (must include) the factors of a precision lamp. But what makes a precision lamp a precision performance lamp is the manner in which the design factors of amperage, mscp (mean spherical candlepower), efficacy (lumens/watt), life, not considered individually but rather considered collectively. There is a statistical bias in a precision performance lamp for each of these factors; taken individually and as a whole. When properly considered the results can be dramatic to the system design engineer, system production manage and the system end-user. It can be shown that for the lamp user, the use of precision performance lamps can translate to: (1) ease of system design, (2) simplification of electronics, (3) superior signal to noise ratios, (4) higher manufacturing yields, (5) lower system costs, (6) better product performance. The factors mentioned above are described along with their interdependent relationships. It is statistically shown how the benefits listed above are achievable. Examples are provided to illustrate how proper attention to precision performance lamp characteristics actually aid in system product design and manufacturing to build and market more, market acceptable product products in the

  20. Environment Assisted Precision Magnetometry

    NASA Astrophysics Data System (ADS)

    Cappellaro, P.; Goldstein, G.; Maze, J. R.; Jiang, L.; Hodges, J. S.; Sorensen, A. S.; Lukin, M. D.

    2010-03-01

    We describe a method to enhance the sensitivity of magnetometry and achieve nearly Heisenberg-limited precision measurement using a novel class of entangled states. An individual qubit is used to sense the dynamics of surrounding ancillary qubits, which are in turn affected by the external field to be measured. The resulting sensitivity enhancement is determined by the number of ancillas strongly coupled to the sensor qubit, it does not depend on the exact values of the couplings (allowing to use disordered systems), and is resilient to decoherence. As a specific example we consider electronic spins in the solid-state, where the ancillary system is associated with the surrounding spin bath. The conventional approach has been to consider these spins only as a source of decoherence and to adopt decoupling scheme to mitigate their effects. Here we describe novel control techniques that transform the environment spins into a resource used to amplify the sensor spin response to weak external perturbations, while maintaining the beneficial effects of dynamical decoupling sequences. We discuss specific applications to improve magnetic sensing with diamond nano-crystals, using one Nitrogen-Vacancy center spin coupled to Nitrogen electronic spins.

  1. Breast Molecular Profiling and Radiotherapy Considerations.

    PubMed

    Mahmoud, Omar; Haffty, Bruce G

    2016-01-01

    The last decade has seen major changes in the management of breast cancer. Heterogeneity regarding histology, therapeutic response, dissemination patterns, and patient outcome is evident. Molecular profiling provides an accurate tool to predict treatment outcome compared with classical clinicopathologic features. The genomic profiling unveiled the heterogeneity of breast cancer and identified distinct biologic subtypes. These advanced techniques were integrated into the clinical management; predicting systemic therapy benefit and overall survival. Utilizing genotyping to guide locoregional management decisions needs further characterization. In this chapter we will review available data on molecular classification of breast cancer, their association with locoregional outcome, their radiobiological properties and radiotherapy considerations. PMID:26987532

  2. External beam radiotherapy for prostate cancer.

    PubMed

    Budiharto, Tom; Haustermans, Karin; Kovacs, Gyoergy

    2010-05-01

    External beam radiotherapy (EBRT) constitutes an important management option for prostate cancer (PCa). Radiation doses >or=74 Gy are warranted. Dose escalation of EBRT using three-dimensional-conformal radiotherapy (RT) or intensity-modulated RT improves the therapeutic index by minimizing normal tissue complication probability and increasing tumor control probability. Although higher doses are associated with better biochemical disease-free survival, no impact on local recurrence or overall survival has been demonstrated. Hypofractionation for PCa may be an attractive therapeutic option, but toxicity data need to be confirmed in randomized phase III trials. Advances in RT technology, such as volumetric modulated arc therapy and image-guided RT, could facilitate the introduction of dose escalation and hypofractionation into clinical practice. Particle beam irradiation and more specific carbon ion RT are also very promising new techniques that are under investigation. Ultimately, these techniques may lead to focal dose escalation by selective boosting of dominant intraprostatic lesions, which is currently under investigation as a solution to overcome increased toxicity of homogenous dose escalation. This review will give a comprehensive overview of all the recent advances in these new radiation therapy techniques.

  3. [Task sharing with radiotherapy technicians in image-guided radiotherapy].

    PubMed

    Diaz, O; Lorchel, F; Revault, C; Mornex, F

    2013-10-01

    The development of accelerators with on-board imaging systems now allows better target volumes reset at the time of irradiation (image-guided radiotherapy [IGRT]). However, these technological advances in the control of repositioning led to a multiplication of tasks for each actor in radiotherapy and increase the time available for the treatment, whether for radiotherapy technicians or radiation oncologists. As there is currently no explicit regulatory framework governing the use of IGRT, some institutional experiments show that a transfer is possible between radiation oncologists and radiotherapy technicians for on-line verification of image positioning. Initial training for every technical and drafting procedures within institutions will improve audit quality by reducing interindividual variability. PMID:24007955

  4. Precision volume measuring system

    SciTech Connect

    Klevgard, P.A.

    1984-11-01

    An engineering study was undertaken to calibrate and certify a precision volume measurement system that uses the ideal gas law and precise pressure measurements (of low-pressure helium) to ratio a known to an unknown volume. The constant-temperature, computer-controlled system was tested for thermodynamic instabilities, for precision (0.01%), and for bias (0.01%). Ratio scaling was used to optimize the quartz crystal pressure transducer calibration.

  5. Biologically Optimized Treatments for Hadron Radiotherapy

    NASA Astrophysics Data System (ADS)

    Nazaryan, Vahagn; Keppel, Cynthia; Britten, Richard; George, Jerry; Nie, Xiliang

    2008-10-01

    Near future advances in proton radiotherapy technology will increasingly require complex, conformal treatment planning. However, the current state of knowledge of the biological efficiency of proton beams may be inadequate to facilitate precision, and reduced margins. A new project at the Hampton University Proton Therapy Institute and the Eastern Virginia Medical School aims to facilitate the expected benefits of increasingly conformal treatment capabilities. Specifically, we seek to establish with measurements the biological depth dose profile of protons with incident energies in the range 62-210 MeV, and to utilize these also to provide vastly improved model algorithms for patient treatment planning based on biological, rather than simply physical, depth dose profiles. A progress report on a model for proton biological efficiency calculations as an input algorithm for treatment planning with protons will be presented. The planned measurements will be discussed.

  6. Precision positioning device

    DOEpatents

    McInroy, John E.

    2005-01-18

    A precision positioning device is provided. The precision positioning device comprises a precision measuring/vibration isolation mechanism. A first plate is provided with the precision measuring mean secured to the first plate. A second plate is secured to the first plate. A third plate is secured to the second plate with the first plate being positioned between the second plate and the third plate. A fourth plate is secured to the third plate with the second plate being positioned between the third plate and the fourth plate. An adjusting mechanism for adjusting the position of the first plate, the second plate, the third plate, and the fourth plate relative to each other.

  7. [Hepatic tumors and radiotherapy].

    PubMed

    Rio, E; Mornex, F; Peiffert, D; Huertas, A

    2016-09-01

    Recent technological developments led to develop the concept of focused liver radiation therapy. We must distinguish primary and secondary tumors as the indications are restricted and must be discussed as an alternative to surgical or medical treatments. For hepatocellular carcinoma 5 to 10cm (or more), a conformational radiation with or without intensity modulation is performed. Stereotactic body radiotherapy (SBRT) is being evaluated and is increasingly proposed as an alternative to radiofrequency ablative treatment for primary or secondary tumors (typically less than 5cm). Tumor (and liver) movements induced by respiratory motions must be taken into account. Strict dosimetric criteria must be met with particular attention to the dose-volume histograms to liver and the hollow organs, including cases of SBRT. PMID:27521035

  8. New radiation techniques for treatment of locally advanced non-small cell lung cancer (NSCLC).

    PubMed

    Silvano, G

    2006-03-01

    Local control is a main step to cure NSCLC because at least 30-40% of patients die for local or regional progression of their disease. Surgery is still the more efficient approach to increase survival but radiation therapy is the only treatment that can cure patients with T1-T2 lesions if they are not suitable for surgery or refuse it. However, doses higher than 60-66 Gy must be given to improve tumor control but doses to the organs at risk (OAR) are the main limit to deliver more than 70 Gy to the planning treatment volume (PTV). The optimal solution would be to 'paint' the dose to the PTV avoiding as possible OARs, but this ballistic precision was not possible till some years ago because of both technology and respiratory movement control. In last ten years many new techniques have been made available for treating NSCLC with radiation more accurately. Some techniques like Intensity Modulated Radiotherapy (IMRT), Image Guided Radiotherapy (IGRT), Stereotactic Radiotherapy can be carried out also with a traditional linear accelerator (LINAC) updated with the new software and hardware, using or not radiopaque markers inside the tumor. On the other hand, a new generation of machines like Cyberknife or Tomotherapy have been especially projected to optimize stereotactic technique and IMRT, respectively, and respiratory gating systems are now disposable from several manufactures. PMID:16608978

  9. Dosimetric comparison of three-dimensional conformal radiotherapy, intensity modulated radiotherapy, and helical tomotherapy for lung stereotactic body radiotherapy

    PubMed Central

    Kinhikar, Rajesh Ashok; Ghadi, Yogesh G.; Sahoo, Priyadarshini; Laskar, Sarbani Ghosh; Deshpande, Deepak D.; Shrivastava, Shyam K.; Agarwal, Jaiprakash

    2015-01-01

    To compare the treatment plans generated with three-dimensional conformal radiation therapy (3DCRT), intensity modulated radiotherapy (IMRT), and helical tomotherapy (HT) for stereotactic body radiotherapy of lung, twenty patients with medically inoperable (early nonsmall cell lung cancer) were retrospectively reviewed for dosimetric evaluation of treatment delivery techniques (3DCRT, IMRT, and HT). A dose of 6 Gy per fraction in 8 fractions was prescribed to deliver 95% of the prescription dose to 95% volume of planning target volume (PTV). Plan quality was assessed using conformity index (CI) and homogeneity index (HI). Doses to critical organs were assessed. Mean CI with 3DCRT, IMRT, and HT was 1.19 (standard deviation [SD] 0.13), 1.18 (SD 0.11), and 1.08 (SD 0.04), respectively. Mean HI with 3DCRT, IMRT, and HT was 1.14 (SD 0.05), 1.08 (SD 0.02), and 1.07 (SD 0.04), respectively. Mean R50% values for 3DCRT, IMRT, and HT was 8.5 (SD 0.35), 7.04 (SD 0.45), and 5.43 (SD 0.29), respectively. D2cm was found superior with IMRT and HT. Significant sparing of critical organs can be achieved with highly conformal techniques (IMRT and HT) without compromising the PTV conformity and homogeneity. PMID:26865754

  10. Precision Teaching: An Introduction.

    ERIC Educational Resources Information Center

    West, Richard P.; And Others

    1990-01-01

    Precision teaching is introduced as a method of helping students develop fluency or automaticity in the performance of academic skills. Precision teaching involves being aware of the relationship between teaching and learning, measuring student performance regularly and frequently, and analyzing the measurements to develop instructional and…

  11. Precision Optics Curriculum.

    ERIC Educational Resources Information Center

    Reid, Robert L.; And Others

    This guide outlines the competency-based, two-year precision optics curriculum that the American Precision Optics Manufacturers Association has proposed to fill the void that it suggests will soon exist as many of the master opticians currently employed retire. The model, which closely resembles the old European apprenticeship model, calls for 300…

  12. Unilateral Radiotherapy for the Treatment of Tonsil Cancer

    SciTech Connect

    Chronowski, Gregory M.; Garden, Adam S.; Morrison, William H.; Frank, Steven J.; Schwartz, David L.; Shah, Shalin J.; Beadle, Beth M.; Gunn, G. Brandon; Kupferman, Michael E.; Ang, Kian K.; Rosenthal, David I.

    2012-05-01

    Purpose: To assess, through a retrospective review, clinical outcomes of patients with squamous cell carcinoma of the tonsil treated at the M. D. Anderson Cancer Center with unilateral radiotherapy techniques that irradiate the involved tonsil region and ipsilateral neck only. Methods and Materials: Of 901 patients with newly diagnosed squamous cell carcinoma of the tonsil treated with radiotherapy at our institution, we identified 102 that were treated using unilateral radiotherapy techniques. All patients had their primary site of disease restricted to the tonsillar fossa or anterior pillar, with <1 cm involvement of the soft palate. Patients had TX (n = 17 patients), T1 (n = 52), or T2 (n = 33) disease, with Nx (n = 3), N0 (n = 33), N1 (n = 23), N2a (n = 21), or N2b (n = 22) neck disease. Results: Sixty-one patients (60%) underwent diagnostic tonsillectomy before radiotherapy. Twenty-seven patients (26%) underwent excision of a cervical lymph node or neck dissection before radiotherapy. Median follow-up for surviving patients was 38 months. Locoregional control at the primary site and ipsilateral neck was 100%. Two patients experienced contralateral nodal recurrence (2%). The 5-year overall survival and disease-free survival rates were 95% and 96%, respectively. The 5-year freedom from contralateral nodal recurrence rate was 96%. Nine patients required feeding tubes during therapy. Of the 2 patients with contralateral recurrence, 1 experienced an isolated neck recurrence and was salvaged with contralateral neck dissection only and remains alive and free of disease. The other patient presented with a contralateral base of tongue tumor and involved cervical lymph node, which may have represented a second primary tumor, and died of disease. Conclusions: Unilateral radiotherapy for patients with TX-T2, N0-N2b primary tonsil carcinoma results in high rates of disease control, with low rates of contralateral nodal failure and a low incidence of acute toxicity

  13. NOTE: A feasibility study of markerless fluoroscopic gating for lung cancer radiotherapy using 4DCT templates

    NASA Astrophysics Data System (ADS)

    Li, Ruijiang; Lewis, John H.; Cerviño, Laura I.; Jiang, Steve B.

    2009-10-01

    A major difficulty in conformal lung cancer radiotherapy is respiratory organ motion, which may cause clinically significant targeting errors. Respiratory-gated radiotherapy allows for more precise delivery of prescribed radiation dose to the tumor, while minimizing normal tissue complications. Gating based on external surrogates is limited by its lack of accuracy, while gating based on implanted fiducial markers is limited primarily by the risk of pneumothorax due to marker implantation. Techniques for fluoroscopic gating without implanted fiducial markers (markerless gating) have been developed. These techniques usually require a training fluoroscopic image dataset with marked tumor positions in the images, which limits their clinical implementation. To remove this requirement, this study presents a markerless fluoroscopic gating algorithm based on 4DCT templates. To generate gating signals, we explored the application of three similarity measures or scores between fluoroscopic images and the reference 4DCT template: un-normalized cross-correlation (CC), normalized cross-correlation (NCC) and normalized mutual information (NMI), as well as average intensity (AI) of the region of interest (ROI) in the fluoroscopic images. Performance was evaluated using fluoroscopic and 4DCT data from three lung cancer patients. On average, gating based on CC achieves the highest treatment accuracy given the same efficiency, with a high target coverage (average between 91.9% and 98.6%) for a wide range of nominal duty cycles (20-50%). AI works well for two patients out of three, but failed for the third patient due to interference from the heart. Gating based on NCC and NMI usually failed below 50% nominal duty cycle. Based on this preliminary study with three patients, we found that the proposed CC-based gating algorithm can generate accurate and robust gating signals when using 4DCT reference template. However, this observation is based on results obtained from a very limited

  14. Rationale and development of image-guided intensity-modulated radiotherapy post-prostatectomy: the present standard of care?

    PubMed Central

    Murray, Julia R; McNair, Helen A; Dearnaley, David P

    2015-01-01

    The indications for post-prostatectomy radiotherapy have evolved over the last decade, although the optimal timing, dose, and target volume remain to be well defined. The target volume is susceptible to anatomical variations with its borders interfacing with the rectum and bladder. Image-guided intensity-modulated radiotherapy has become the gold standard for radical prostate radiotherapy. Here we review the current evidence for image-guided techniques with intensity-modulated radiotherapy to the prostate bed and describe current strategies to reduce or account for interfraction and intrafraction motion. PMID:26635484

  15. Stereotactic Image-Guided Intensity Modulated Radiotherapy Using the HI-ART II Helical Tomotherapy System

    SciTech Connect

    Holmes, Timothy W. Hudes, Richard; Dziuba, Sylwester; Kazi, Abdul; Hall, Mark; Dawson, Dana

    2008-07-01

    The highly integrated adaptive radiation therapy (HI-ART II) helical tomotherapy unit is a new radiotherapy machine designed to achieve highly precise and accurate treatments at all body sites. The precision and accuracy of the HI-ART II is similar to that provided by stereotactic radiosurgery systems, hence the historical distinction between external beam radiotherapy and stereotactic procedures based on differing precision requirements is removed for this device. The objectives of this work are: (1) to describe stereotactic helical tomotherapy processes (SRS, SBRT); (2) to show that the precision and accuracy of the HI-ART meet the requirements defined for SRS and SBRT; and (3) to describe the clinical implementation of a stereotactic image-guided intensity modulated radiation therapy (IG-IMRT) system that incorporates optical motion management.

  16. Real-time 3D-surface-guided head refixation useful for fractionated stereotactic radiotherapy

    SciTech Connect

    Li Shidong; Liu Dezhi; Yin Gongjie; Zhuang Ping; Geng, Jason

    2006-02-15

    Accurate and precise head refixation in fractionated stereotactic radiotherapy has been achieved through alignment of real-time 3D-surface images with a reference surface image. The reference surface image is either a 3D optical surface image taken at simulation with the desired treatment position, or a CT/MRI-surface rendering in the treatment plan with corrections for patient motion during CT/MRI scans and partial volume effects. The real-time 3D surface images are rapidly captured by using a 3D video camera mounted on the ceiling of the treatment vault. Any facial expression such as mouth opening that affects surface shape and location can be avoided using a new facial monitoring technique. The image artifacts on the real-time surface can generally be removed by setting a threshold of jumps at the neighboring points while preserving detailed features of the surface of interest. Such a real-time surface image, registered in the treatment machine coordinate system, provides a reliable representation of the patient head position during the treatment. A fast automatic alignment between the real-time surface and the reference surface using a modified iterative-closest-point method leads to an efficient and robust surface-guided target refixation. Experimental and clinical results demonstrate the excellent efficacy of <2 min set-up time, the desired accuracy and precision of <1 mm in isocenter shifts, and <1 deg. in rotation.

  17. Precise Sealing of Fused-Quartz Ampoules

    NASA Technical Reports Server (NTRS)

    Debnan, W. J. J.; Clark, I. O.

    1982-01-01

    New technique rapidly evacuates and seals fused-quartz ampoule with precise clearance over contents without appreciably thinning ampoule walls. Quartz plug is lowered into working section of ampoule after ampoule has been evacuated. Plug is then fused to ampoule walls, forming vacuum seal. New technique maintains wall strength and pumping speed.

  18. Precision volume measurement system.

    SciTech Connect

    Fischer, Erin E.; Shugard, Andrew D.

    2004-11-01

    A new precision volume measurement system based on a Kansas City Plant (KCP) design was built to support the volume measurement needs of the Gas Transfer Systems (GTS) department at Sandia National Labs (SNL) in California. An engineering study was undertaken to verify or refute KCP's claims of 0.5% accuracy. The study assesses the accuracy and precision of the system. The system uses the ideal gas law and precise pressure measurements (of low-pressure helium) in a temperature and computer controlled environment to ratio a known volume to an unknown volume.

  19. TOPICAL REVIEW: Anatomical imaging for radiotherapy

    NASA Astrophysics Data System (ADS)

    Evans, Philip M.

    2008-06-01

    The goal of radiation therapy is to achieve maximal therapeutic benefit expressed in terms of a high probability of local control of disease with minimal side effects. Physically this often equates to the delivery of a high dose of radiation to the tumour or target region whilst maintaining an acceptably low dose to other tissues, particularly those adjacent to the target. Techniques such as intensity modulated radiotherapy (IMRT), stereotactic radiosurgery and computer planned brachytherapy provide the means to calculate the radiation dose delivery to achieve the desired dose distribution. Imaging is an essential tool in all state of the art planning and delivery techniques: (i) to enable planning of the desired treatment, (ii) to verify the treatment is delivered as planned and (iii) to follow-up treatment outcome to monitor that the treatment has had the desired effect. Clinical imaging techniques can be loosely classified into anatomic methods which measure the basic physical characteristics of tissue such as their density and biological imaging techniques which measure functional characteristics such as metabolism. In this review we consider anatomical imaging techniques. Biological imaging is considered in another article. Anatomical imaging is generally used for goals (i) and (ii) above. Computed tomography (CT) has been the mainstay of anatomical treatment planning for many years, enabling some delineation of soft tissue as well as radiation attenuation estimation for dose prediction. Magnetic resonance imaging is fast becoming widespread alongside CT, enabling superior soft-tissue visualization. Traditionally scanning for treatment planning has relied on the use of a single snapshot scan. Recent years have seen the development of techniques such as 4D CT and adaptive radiotherapy (ART). In 4D CT raw data are encoded with phase information and reconstructed to yield a set of scans detailing motion through the breathing, or cardiac, cycle. In ART a set of

  20. Precision liquid level sensor

    DOEpatents

    Field, M.E.; Sullivan, W.H.

    A precision liquid level sensor utilizes a balanced bridge, each arm including an air dielectric line. Changes in liquid level along one air dielectric line imbalance the bridge and create a voltage which is directly measurable across the bridge.

  1. Precision Measurement in Biology

    NASA Astrophysics Data System (ADS)

    Quake, Stephen

    Is biology a quantitative science like physics? I will discuss the role of precision measurement in both physics and biology, and argue that in fact both fields can be tied together by the use and consequences of precision measurement. The elementary quanta of biology are twofold: the macromolecule and the cell. Cells are the fundamental unit of life, and macromolecules are the fundamental elements of the cell. I will describe how precision measurements have been used to explore the basic properties of these quanta, and more generally how the quest for higher precision almost inevitably leads to the development of new technologies, which in turn catalyze further scientific discovery. In the 21st century, there are no remaining experimental barriers to biology becoming a truly quantitative and mathematical science.

  2. Time delays in gated radiotherapy.

    PubMed

    Smith, Wendy L; Becker, Nathan

    2009-07-28

    In gated radiotherapy, the accuracy of treatment delivery is determined by the accuracy with which both the imaging and treatment beams are gated. If the time delays (the time between the target entering/leaving the gated region and the first/last image acquired or treatment beam on/off) for the imaging and treatment systems are in the opposite directions, they may increase the required internal target volume (ITV) margin, above that indicated by the tolerance for either system measured individually. We measured a gating system's time delay on 3 fluoroscopy systems, and 3 linear accelerator treatment beams, using a motion phantom of known geometry, varying gating type (amplitude vs. phase), beam energy, dose rate, and period. The average beam on imaging time delays were -0.04 +/- 0.05 s (amplitude, 1 SD), -0.11 +/- 0.04 s (phase); while the average beam off imaging time delays were -0.18 +/- 0.08 s (amplitude) and -0.15 +/- 0.04 s (phase). The average beam on treatment time delays were 0.09 +/- 0.02 s (amplitude, 1 SD), 0.10 +/- 0.03 s (phase); while the average beam off time delays for treatment beams were 0.08 +/- 0.02 s (amplitude) and 0.07 +/- 0.02 s (phase). The negative value indicates the images were acquired early, and the positive values show the treatment beam was triggered late. We present a technique for calculating the margin necessary to account for time delays and found that the difference between the imaging and treatment time delays required a significant increase in the ITV margin in the direction of tumor motion at the gated level.

  3. Precision displacement reference system

    DOEpatents

    Bieg, Lothar F.; Dubois, Robert R.; Strother, Jerry D.

    2000-02-22

    A precision displacement reference system is described, which enables real time accountability over the applied displacement feedback system to precision machine tools, positioning mechanisms, motion devices, and related operations. As independent measurements of tool location is taken by a displacement feedback system, a rotating reference disk compares feedback counts with performed motion. These measurements are compared to characterize and analyze real time mechanical and control performance during operation.

  4. [Adaptative radiotherapy: The case for MRI-guided radiotherapy].

    PubMed

    Maingon, P

    2016-10-01

    The concept of image-guided radiotherapy benefits from the development of magnetic resonance imaging (MRI) associated with different capacities of tissue analyses such as spectroscopy or diffusion analysis. The production of devices allowing the repositioning of patients through MRI represents a strong added value without delivering any additional dose to the patient while the optimization of the adaptative strategies are facilitated by a better contrast of the soft tissues compared to the scanner. The advantages of MRI are well demonstrated for brain tumours, head and neck carcinomas, pelvic tumors, mediastinal malignancies, gastrointestinal tract diseases. Adaptative radiotherapy inaugurates a new area of radiotherapy with different modalities. Several technological solutions are provided or discussed allowing the patients to benefit from thses new technologies as soon as possible.

  5. [Adaptative radiotherapy: The case for MRI-guided radiotherapy].

    PubMed

    Maingon, P

    2016-10-01

    The concept of image-guided radiotherapy benefits from the development of magnetic resonance imaging (MRI) associated with different capacities of tissue analyses such as spectroscopy or diffusion analysis. The production of devices allowing the repositioning of patients through MRI represents a strong added value without delivering any additional dose to the patient while the optimization of the adaptative strategies are facilitated by a better contrast of the soft tissues compared to the scanner. The advantages of MRI are well demonstrated for brain tumours, head and neck carcinomas, pelvic tumors, mediastinal malignancies, gastrointestinal tract diseases. Adaptative radiotherapy inaugurates a new area of radiotherapy with different modalities. Several technological solutions are provided or discussed allowing the patients to benefit from thses new technologies as soon as possible. PMID:27599686

  6. Synchronous bilateral squamous cell carcinoma of the lung successfully treated using intensity-modulated radiotherapy

    PubMed Central

    Loo, S W; Smith, S; Promnitz, D A; Van Tornout, F

    2012-01-01

    We present a case of synchronous bilateral inoperable lung cancer which required treatment with external beam radiotherapy to a radical dose. Intensity-modulated radiotherapy (IMRT) was used. More conformal dose distribution within the planning target volume was obtained using IMRT than the conventional technique. Dose–volume constraints defined for the lungs were met. Treatment was subsequently delivered using a seven-field IMRT plan. The patient remains alive and disease-free 48 months after the completion of radiotherapy. IMRT can be considered an effective treatment for synchronous bilateral lung cancer. PMID:21937610

  7. A Resource Manual for the Development and Evaluation of Special Programs for Exceptional Students. Volume V-D: Techniques of Precision Teaching. Part 1: Training Manual, Part 2: Math Basic Skills Curriculum, Part 3: Reading Basic Skills Curriculum.

    ERIC Educational Resources Information Center

    Diviaio, Linda G.; Hefferan, Marilyn P.

    This document contains a training manual and reading and math basic skills curricula for use in specific learning disability programs and/or with educably mentally handicapped and emotionally handicapped students. The training manual is intended to help special education teachers understand and use precision teaching. A brief history of the…

  8. Accuracy and precision of manual baseline determination.

    PubMed

    Jirasek, A; Schulze, G; Yu, M M L; Blades, M W; Turner, R F B

    2004-12-01

    Vibrational spectra often require baseline removal before further data analysis can be performed. Manual (i.e., user) baseline determination and removal is a common technique used to perform this operation. Currently, little data exists that details the accuracy and precision that can be expected with manual baseline removal techniques. This study addresses this current lack of data. One hundred spectra of varying signal-to-noise ratio (SNR), signal-to-baseline ratio (SBR), baseline slope, and spectral congestion were constructed and baselines were subtracted by 16 volunteers who were categorized as being either experienced or inexperienced in baseline determination. In total, 285 baseline determinations were performed. The general level of accuracy and precision that can be expected for manually determined baselines from spectra of varying SNR, SBR, baseline slope, and spectral congestion is established. Furthermore, the effects of user experience on the accuracy and precision of baseline determination is estimated. The interactions between the above factors in affecting the accuracy and precision of baseline determination is highlighted. Where possible, the functional relationships between accuracy, precision, and the given spectral characteristic are detailed. The results provide users of manual baseline determination useful guidelines in establishing limits of accuracy and precision when performing manual baseline determination, as well as highlighting conditions that confound the accuracy and precision of manual baseline determination.

  9. Uses of megavoltage digital tomosynthesis in radiotherapy

    NASA Astrophysics Data System (ADS)

    Sarkar, Vikren

    With the advent of intensity modulated radiotherapy, radiation treatment plans are becoming more conformal to the tumor with the decreasing margins. It is therefore of prime importance that the patient be positioned correctly prior to treatment. Therefore, image guided treatment is necessary for intensity modulated radiotherapy plans to be implemented successfully. Current advanced imaging devices require costly hardware and software upgrade, and radiation imaging solutions, such as cone beam computed tomography, may introduce extra radiation dose to the patient in order to acquire better quality images. Thus, there is a need to extend current existing imaging device ability and functions while reducing cost and radiation dose. Existing electronic portal imaging devices can be used to generate computed tomography-like tomograms through projection images acquired over a small angle using the technique of cone-beam digital tomosynthesis. Since it uses a fraction of the images required for computed tomography reconstruction, use of this technique correspondingly delivers only a fraction of the imaging dose to the patient. Furthermore, cone-beam digital tomosynthesis can be offered as a software-only solution as long as a portal imaging device is available. In this study, the feasibility of performing digital tomosynthesis using individually-acquired megavoltage images from a charge coupled device-based electronic portal imaging device was investigated. Three digital tomosynthesis reconstruction algorithms, the shift-and-add, filtered back-projection, and simultaneous algebraic reconstruction technique, were compared considering the final image quality and radiation dose during imaging. A software platform, DART, was created using a combination of the Matlab and C++ languages. The platform allows for the registration of a reference Cone Beam Digital Tomosynthesis (CBDT) image against a daily acquired set to determine how to shift the patient prior to treatment. Finally

  10. Voice following radiotherapy.

    PubMed

    Stoicheff, M L

    1975-04-01

    This study was undertaken to provide information on the voice of patients following radiotherapy for glottic cancer. Part I presents findings from questionnaires returned by 227 of 235 patients successfully irradiated for glottic cancer from 1960 through 1971. Part II presents preliminary findings on the speaking fundamental frequencies of 22 irradiated patients. Normal to near-normal voice was reported by 83 percent of the 227 patients; however, 80 percent did indicate persisting vocal difficulties such as fatiguing of voice with much usage, inability to sing, reduced loudness, hoarse voice quality and inability to shout. Amount of talking during treatments appeared to affect length of time for voice to recover following treatments in those cases where it took from nine to 26 weeks; also, with increasing years since treatment, patients rated their voices more favorably. Smoking habits following treatments improved significantly with only 27 percent smoking heavily as compared with 65 percent prior to radiation therapy. No correlation was found between smoking (during or after treatments) and vocal ratings or between smoking and length of time for voice to recover. There was no relationship found between reported vocal ratings and stage of the disease. Data on mean speaking fundamental frequency seem to indicate a trend toward lower frequencies in irradiated patients as compared with normals. A trend was also noted in both irradidated and control groups for lower speaking fundamental frequencies in heavy smokers compared with non-smokers or previous smokers. These trends would indicate some vocal cord thickening or edema in irradiated patients and in heavy smokers. It is suggested that the study of irradiated patients' voices before, during and following treatments by means of audio, aerodynamic and acoustic instrumentation would yield additional information of diagnostic value on recovery of laryngeal function. It is also suggested that the voice pathologist could

  11. Introduction to suspension levels: radiotherapy.

    PubMed

    Horton, P; Lillicrap, S; Lamm, I-L; Lehmann, W

    2013-02-01

    In 2007, the European Commission (EC) commissioned a group of experts to undertake the revision of Report Radiation Protection (RP 91) 'Criteria for acceptability of radiological (including radiotherapy) and nuclear medicine installations' written in 1997. The revised draft report was submitted to the EC in 2010, who issued it for public consultation. The EC has commissioned the same group of experts to consider the comments of the public consultation for further improvement of the revised report. The EC intends to publish the final report under its Radiation Report Series as RP 162. This paper describes the background to the selection of the key performance parameters for radiotherapy equipment and sets out the sources of their criteria of acceptability including suspension levels for a wide range of radiotherapy equipment.

  12. Expanding global access to radiotherapy.

    PubMed

    Atun, Rifat; Jaffray, David A; Barton, Michael B; Bray, Freddie; Baumann, Michael; Vikram, Bhadrasain; Hanna, Timothy P; Knaul, Felicia M; Lievens, Yolande; Lui, Tracey Y M; Milosevic, Michael; O'Sullivan, Brian; Rodin, Danielle L; Rosenblatt, Eduardo; Van Dyk, Jacob; Yap, Mei Ling; Zubizarreta, Eduardo; Gospodarowicz, Mary

    2015-09-01

    Radiotherapy is a critical and inseparable component of comprehensive cancer treatment and care. For many of the most common cancers in low-income and middle-income countries, radiotherapy is essential for effective treatment. In high-income countries, radiotherapy is used in more than half of all cases of cancer to cure localised disease, palliate symptoms, and control disease in incurable cancers. Yet, in planning and building treatment capacity for cancer, radiotherapy is frequently the last resource to be considered. Consequently, worldwide access to radiotherapy is unacceptably low. We present a new body of evidence that quantifies the worldwide coverage of radiotherapy services by country. We show the shortfall in access to radiotherapy by country and globally for 2015-35 based on current and projected need, and show substantial health and economic benefits to investing in radiotherapy. The cost of scaling up radiotherapy in the nominal model in 2015-35 is US$26·6 billion in low-income countries, $62·6 billion in lower-middle-income countries, and $94·8 billion in upper-middle-income countries, which amounts to $184·0 billion across all low-income and middle-income countries. In the efficiency model the costs were lower: $14·1 billion in low-income, $33·3 billion in lower-middle-income, and $49·4 billion in upper-middle-income countries-a total of $96·8 billion. Scale-up of radiotherapy capacity in 2015-35 from current levels could lead to saving of 26·9 million life-years in low-income and middle-income countries over the lifetime of the patients who received treatment. The economic benefits of investment in radiotherapy are very substantial. Using the nominal cost model could produce a net benefit of $278·1 billion in 2015-35 ($265·2 million in low-income countries, $38·5 billion in lower-middle-income countries, and $239·3 billion in upper-middle-income countries). Investment in the efficiency model would produce in the same period an even

  13. Expanding global access to radiotherapy.

    PubMed

    Atun, Rifat; Jaffray, David A; Barton, Michael B; Bray, Freddie; Baumann, Michael; Vikram, Bhadrasain; Hanna, Timothy P; Knaul, Felicia M; Lievens, Yolande; Lui, Tracey Y M; Milosevic, Michael; O'Sullivan, Brian; Rodin, Danielle L; Rosenblatt, Eduardo; Van Dyk, Jacob; Yap, Mei Ling; Zubizarreta, Eduardo; Gospodarowicz, Mary

    2015-09-01

    Radiotherapy is a critical and inseparable component of comprehensive cancer treatment and care. For many of the most common cancers in low-income and middle-income countries, radiotherapy is essential for effective treatment. In high-income countries, radiotherapy is used in more than half of all cases of cancer to cure localised disease, palliate symptoms, and control disease in incurable cancers. Yet, in planning and building treatment capacity for cancer, radiotherapy is frequently the last resource to be considered. Consequently, worldwide access to radiotherapy is unacceptably low. We present a new body of evidence that quantifies the worldwide coverage of radiotherapy services by country. We show the shortfall in access to radiotherapy by country and globally for 2015-35 based on current and projected need, and show substantial health and economic benefits to investing in radiotherapy. The cost of scaling up radiotherapy in the nominal model in 2015-35 is US$26·6 billion in low-income countries, $62·6 billion in lower-middle-income countries, and $94·8 billion in upper-middle-income countries, which amounts to $184·0 billion across all low-income and middle-income countries. In the efficiency model the costs were lower: $14·1 billion in low-income, $33·3 billion in lower-middle-income, and $49·4 billion in upper-middle-income countries-a total of $96·8 billion. Scale-up of radiotherapy capacity in 2015-35 from current levels could lead to saving of 26·9 million life-years in low-income and middle-income countries over the lifetime of the patients who received treatment. The economic benefits of investment in radiotherapy are very substantial. Using the nominal cost model could produce a net benefit of $278·1 billion in 2015-35 ($265·2 million in low-income countries, $38·5 billion in lower-middle-income countries, and $239·3 billion in upper-middle-income countries). Investment in the efficiency model would produce in the same period an even

  14. [Head and neck adaptive radiotherapy].

    PubMed

    Graff, P; Huger, S; Kirby, N; Pouliot, J

    2013-10-01

    Onboard volumetric imaging systems can provide accurate data of the patient's anatomy during a course of head and neck radiotherapy making it possible to assess the actual delivered dose and to evaluate the dosimetric impact of complex daily positioning variations and gradual anatomic changes such as geometric variations of tumors and normal tissues or shrinkage of external contours. Adaptive radiotherapy is defined as the correction of a patient's treatment planning to adapt for individual variations observed during treatment. Strategies are developed to selectively identify patients that require replanning because of an intolerable dosimetric drift. Automated tools are designed to limit time consumption. Deformable image registration algorithms are the cornerstones of these strategies, but a better understanding of their limits of validity is required before adaptive radiotherapy can be safely introduced to daily practice. Moreover, strict evaluation of the clinical benefits is yet to be proven.

  15. In vivo dosimetry in external beam radiotherapy

    SciTech Connect

    Mijnheer, Ben; Beddar, Sam; Izewska, Joanna; Reft, Chester

    2013-07-15

    In vivo dosimetry (IVD) is in use in external beam radiotherapy (EBRT) to detect major errors, to assess clinically relevant differences between planned and delivered dose, to record dose received by individual patients, and to fulfill legal requirements. After discussing briefly the main characteristics of the most commonly applied IVD systems, the clinical experience of IVD during EBRT will be summarized. Advancement of the traditional aspects of in vivo dosimetry as well as the development of currently available and newly emerging noninterventional technologies are required for large-scale implementation of IVD in EBRT. These new technologies include the development of electronic portal imaging devices for 2D and 3D patient dosimetry during advanced treatment techniques, such as IMRT and VMAT, and the use of IVD in proton and ion radiotherapy by measuring the decay of radiation-induced radionuclides. In the final analysis, we will show in this Vision 20/20 paper that in addition to regulatory compliance and reimbursement issues, the rationale for in vivo measurements is to provide an accurate and independent verification of the overall treatment procedure. It will enable the identification of potential errors in dose calculation, data transfer, dose delivery, patient setup, and changes in patient anatomy. It is the authors' opinion that all treatments with curative intent should be verified through in vivo dose measurements in combination with pretreatment checks.

  16. Clinical quality standards for radiotherapy

    PubMed Central

    2012-01-01

    Aim of the study The technological progress that is currently being witnessed in the areas of diagnostic imaging, treatment planning systems and therapeutic equipment has caused radiotherapy to become a high-tech and interdisciplinary domain involving staff of various backgrounds. This allows steady improvement in therapy results, but at the same time makes the diagnostic, imaging and therapeutic processes more complex and complicated, requiring every stage of those processes to be planned, organized, controlled and improved so as to assure high quality of services provided. The aim of this paper is to present clinical quality standards for radiotherapy as developed by the author. Material and methods In order to develop the quality standards, a comparative analysis was performed between European and Polish legal acts adopted in the period of 1980-2006 and the universal industrial ISO 9001:2008 standard, defining requirements for quality management systems, and relevant articles published in 1984-2009 were reviewed, including applicable guidelines and recommendations of American, international, European and Polish bodies, such as the American Association of Physicists in Medicine (AAPM), the European Society for Radiotherapy & Oncology (ESTRO), the International Atomic Energy Agency (IAEA), and the Organisation of European Cancer Institutes (OECI) on quality assurance and management in radiotherapy. Results As a result, 352 quality standards for radiotherapy were developed and categorized into the following three groups: 1 – organizational standards; 2 – physico-technical standards and 3 – clinical standards. Conclusion Proposed clinical quality standards for radiotherapy can be used by any institution using ionizing radiation for medical purposes. However, standards are of value only if they are implemented, reviewed, audited and improved, and if there is a clear mechanism in place to monitor and address failure to meet agreed standards. PMID:23788854

  17. Magnetic Resonance Imaging in Postprostatectomy Radiotherapy Planning

    SciTech Connect

    Sefrova, Jana; Odrazka, Karel; Paluska, Petr; Belobradek, Zdenek; Brodak, Milos; Dolezel, Martin; Prosvic, Petr; Macingova, Zuzana; Vosmik, Milan; Hoffmann, Petr; Louda, Miroslav; Nejedla, Anna

    2012-02-01

    Purpose: To investigate whether the use of magnetic resonance imaging (MRI) in prostate bed treatment planning could influence definition of the clinical target volume (CTV) and organs at risk. Methods and Materials: A total of 21 consecutive patients referred for prostate bed radiotherapy were included in the present retrospective study. The CTV was delineated according to the European Organization for Research and Treatment of Cancer recommendations on computed tomography (CT) and T{sub 1}-weighted (T{sub 1}w) and T{sub 2}-weighted (T{sub 2}w) MRI. The CTV magnitude, agreement, and spatial differences were evaluated on the planning CT scan after registration with the MRI scans. Results: The CTV was significantly reduced on the T{sub 1}w and T{sub 2}w MRI scans (13% and 9%, respectively) compared with the CT scans. The urinary bladder was drawn smaller on the CT scans and the rectum was smaller on the MRI scans. On T{sub 1}w MRI, the rectum and urinary bladder were delineated larger than on T{sub 2}w MRI. Minimal agreement was observed between the CT and T{sub 2}w images. The main spatial differences were measured in the superior and superolateral directions in which the CTV on the MRI scans was 1.8-2.9 mm smaller. In the posterior and inferior border, no difference was seen between the CT and T{sub 1}w MRI scans. On the T{sub 2}w MRI scans, the CTV was larger in these directions (by 1.3 and 1.7 mm, respectively). Conclusions: The use of MRI in postprostatectomy radiotherapy planning resulted in a reduction of the CTV. The main differences were found in the superior part of the prostate bed. We believe T{sub 2}w MRI enables more precise definition of prostate bed CTV than conventional planning CT.

  18. Second Malignant Neoplasms Following Radiotherapy

    PubMed Central

    Kumar, Sanath

    2012-01-01

    More than half of all cancer patients receive radiotherapy as a part of their treatment. With the increasing number of long-term cancer survivors, there is a growing concern about the risk of radiation induced second malignant neoplasm [SMN]. This risk appears to be highest for survivors of childhood cancers. The exact mechanism and dose-response relationship for radiation induced malignancy is not well understood, however, there have been growing efforts to develop strategies for the prevention and mitigation of radiation induced cancers. This review article focuses on the incidence, etiology, and risk factors for SMN in various organs after radiotherapy. PMID:23249860

  19. Precision gap particle separator

    DOEpatents

    Benett, William J.; Miles, Robin; Jones, II., Leslie M.; Stockton, Cheryl

    2004-06-08

    A system for separating particles entrained in a fluid includes a base with a first channel and a second channel. A precision gap connects the first channel and the second channel. The precision gap is of a size that allows small particles to pass from the first channel into the second channel and prevents large particles from the first channel into the second channel. A cover is positioned over the base unit, the first channel, the precision gap, and the second channel. An port directs the fluid containing the entrained particles into the first channel. An output port directs the large particles out of the first channel. A port connected to the second channel directs the small particles out of the second channel.

  20. How Physics Got Precise

    SciTech Connect

    Kleppner, Daniel

    2005-01-19

    Although the ancients knew the length of the year to about ten parts per million, it was not until the end of the 19th century that precision measurements came to play a defining role in physics. Eventually such measurements made it possible to replace human-made artifacts for the standards of length and time with natural standards. For a new generation of atomic clocks, time keeping could be so precise that the effects of the local gravitational potentials on the clock rates would be important. This would force us to re-introduce an artifact into the definition of the second - the location of the primary clock. I will describe some of the events in the history of precision measurements that have led us to this pleasing conundrum, and some of the unexpected uses of atomic clocks today.

  1. Precision Muonium Spectroscopy

    NASA Astrophysics Data System (ADS)

    Jungmann, Klaus P.

    2016-09-01

    The muonium atom is the purely leptonic bound state of a positive muon and an electron. It has a lifetime of 2.2 µs. The absence of any known internal structure provides for precision experiments to test fundamental physics theories and to determine accurate values of fundamental constants. In particular ground state hyperfine structure transitions can be measured by microwave spectroscopy to deliver the muon magnetic moment. The frequency of the 1s-2s transition in the hydrogen-like atom can be determined with laser spectroscopy to obtain the muon mass. With such measurements fundamental physical interactions, in particular quantum electrodynamics, can also be tested at highest precision. The results are important input parameters for experiments on the muon magnetic anomaly. The simplicity of the atom enables further precise experiments, such as a search for muonium-antimuonium conversion for testing charged lepton number conservation and searches for possible antigravity of muons and dark matter.

  2. Phase I/II Trial Evaluating Carbon Ion Radiotherapy for Salvaging Treatment of Locally Recurrent Nasopharyngeal Carcinoma

    PubMed Central

    Kong, Lin; Hu, Jiyi; Guan, Xiyin; Gao, Jing; Lu, Rong; Lu, Jiade J.

    2016-01-01

    Background: Radiation therapy is the mainstay strategy for the treatment of nasopharyngeal cancer (NPC). Intensity-modulated X-ray therapy (IMXT) alone is the current standard for stage I and II NPC. For stage III and IV A/B diseases, concurrent chemotherapy should be provided in addition to IMXT. However, optimal treatment for locally recurrent NPC after previous definitive dose of radiotherapy is lacking. Various techniques including brachytherapy, IMXT, stereotactic radiosurgery or radiotherapy (SRS or SBRT) have been used in the management of locally recurrent NPC. Due to the inherent limitation of these techniques, i.e., limited range of irradiation or over-irradiation to surrounding normal tissues, moderate efficacy has been observed at the cost of severe toxicities. Carbon ion radiotherapy (CIRT) offers potential physical and biological advantages over photon and proton radiotherapy. Due to the inverted dose profile of particle beams and their greater energy deposition within the Bragg peak, precise dose delivery to the target volume(s) without exposing the surrounding organs at risk to extra doses is possible. In addition, CIRT provides an increased relative biological effectiveness (RBE) as compared to photon and proton radiotherapy. Such advantages may translate to improved outcomes after irradiation in terms of disease control in radio-resistant and previously treated, recurrent malignancies. It is therefore reasonable to postulate that recurrent NPC after high-dose radiotherapy could be more resistant to re-irradiation using photons. Reports on the treatment of radio-resistant malignancies in the head and neck region such as melanoma, sarcoma, and adenoid cystic carcinoma (ACC) have demonstrated superior local control rates from CIRT as compared to photon irradiation. Thus patients with recurrent NPC are likely to benefit from the enhanced biological effectiveness of carbon ions. As effective retreatment strategy is lacking for locally recurrent NPC

  3. Definitive radiotherapy for head and neck squamous cell carcinoma: update and perspectives on the basis of EBM.

    PubMed

    Kodaira, Takeshi; Nishimura, Yasumasa; Kagami, Yoshikazu; Ito, Yoshinori; Shikama, Naoto; Ishikura, Satoshi; Hiraoka, Masahiro

    2015-03-01

    Radiotherapy plays an essential role in the management of head and neck squamous cell carcinoma. Radiotherapy has a distinct advantage over surgical procedures in that it could achieve organ and function preservation with an efficacy similar to that of surgical series. To improve the clinical outcomes achievable by radiotherapy, altered fractionated radiotherapy has been prospectively tested for early and intermediate risk diseases, and was previously shown to be beneficial for local control and survival. Radiotherapy alone is insufficient for locally advanced disease; therefore, concurrent chemoradiotherapy is typically performed and plays an important role. A meta-analysis (Level Ia) revealed that the concurrent use of platinum agents appeared to improve tumor control and survival; however, this was accompanied by increases in the rates of both acute and late toxicities. Regarding radiation techniques, intensity modulated radiotherapy evolved in the 1990s, and has been globally used to treat head and neck squamous cell carcinoma patients. Intensity modulated radiotherapy reduces the exposure of normal tissue to radiation while preserving excellent dose coverage to the target volume; therefore, the rate of late toxicities especially xerostomia is minimized. Small size randomized studies and a meta-analysis have provided evidence to support the benefits of intensity modulated radiotherapy over two-dimensional or three-dimensional radiation therapy. Intensity modulated radiotherapy can also preserve quality of life following definitive chemoradiotherapy. Further improvements using intensity modulated proton therapy are warranted.

  4. Precision Heating Process

    NASA Technical Reports Server (NTRS)

    1992-01-01

    A heat sealing process was developed by SEBRA based on technology that originated in work with NASA's Jet Propulsion Laboratory. The project involved connecting and transferring blood and fluids between sterile plastic containers while maintaining a closed system. SEBRA markets the PIRF Process to manufacturers of medical catheters. It is a precisely controlled method of heating thermoplastic materials in a mold to form or weld catheters and other products. The process offers advantages in fast, precise welding or shape forming of catheters as well as applications in a variety of other industries.

  5. Precision manometer gauge

    DOEpatents

    McPherson, Malcolm J.; Bellman, Robert A.

    1984-01-01

    A precision manometer gauge which locates a zero height and a measured height of liquid using an open tube in communication with a reservoir adapted to receive the pressure to be measured. The open tube has a reference section carried on a positioning plate which is moved vertically with machine tool precision. Double scales are provided to read the height of the positioning plate accurately, the reference section being inclined for accurate meniscus adjustment, and means being provided to accurately locate a zero or reference position.

  6. Precision manometer gauge

    DOEpatents

    McPherson, M.J.; Bellman, R.A.

    1982-09-27

    A precision manometer gauge which locates a zero height and a measured height of liquid using an open tube in communication with a reservoir adapted to receive the pressure to be measured. The open tube has a reference section carried on a positioning plate which is moved vertically with machine tool precision. Double scales are provided to read the height of the positioning plate accurately, the reference section being inclined for accurate meniscus adjustment, and means being provided to accurately locate a zero or reference position.

  7. Precision electron polarimetry

    SciTech Connect

    Chudakov, Eugene A.

    2013-11-01

    A new generation of precise Parity-Violating experiments will require a sub-percent accuracy of electron beam polarimetry. Compton polarimetry can provide such accuracy at high energies, but at a few hundred MeV the small analyzing power limits the sensitivity. M{\\o}ller polarimetry provides a high analyzing power independent on the beam energy, but is limited by the properties of the polarized targets commonly used. Options for precision polarimetry at ~300 MeV will be discussed, in particular a proposal to use ultra-cold atomic hydrogen traps to provide a 100\\%-polarized electron target for M{\\o}ller polarimetry.

  8. Precision Nova operations

    SciTech Connect

    Ehrlich, R.B.; Miller, J.L.; Saunders, R.L.; Thompson, C.E.; Weiland, T.L.; Laumann, C.W.

    1995-09-01

    To improve the symmetry of x-ray drive on indirectly driven ICF capsules, we have increased the accuracy of operating procedures and diagnostics on the Nova laser. Precision Nova operations includes routine precision power balance to within 10% rms in the ``foot`` and 5% nns in the peak of shaped pulses, beam synchronization to within 10 ps rms, and pointing of the beams onto targets to within 35 {mu}m rms. We have also added a ``fail-safe chirp`` system to avoid Stimulated Brillouin Scattering (SBS) in optical components during high energy shots.

  9. Precision electron polarimetry

    NASA Astrophysics Data System (ADS)

    Chudakov, E.

    2013-11-01

    A new generation of precise Parity-Violating experiments will require a sub-percent accuracy of electron beam polarimetry. Compton polarimetry can provide such accuracy at high energies, but at a few hundred MeV the small analyzing power limits the sensitivity. Mo/ller polarimetry provides a high analyzing power independent on the beam energy, but is limited by the properties of the polarized targets commonly used. Options for precision polarimetry at 300 MeV will be discussed, in particular a proposal to use ultra-cold atomic hydrogen traps to provide a 100%-polarized electron target for Mo/ller polarimetry.

  10. The role of tumor volume in radiotherapy of patients with head and neck cancer.

    PubMed

    Rutkowski, Tomasz

    2014-01-01

    The assumption that the larger tumor contains a higher number of clonogenic cells what may deteriorate prognosis of patients treated with RT has been confirmed in many clinical studies. Significant prognostic influence of tumor volume (TV) on radiotherapy (RT) outcome has been found for tumors of different localizations including patients with head and neck cancer (HNC). Although TV usually is a stronger prognostic factor than T stage, commonly used TNM classification system dose not incorporate TV data. The aim of the paper is to refresh clinical data regarding the role of TV in RT of patients with HNC. At present somehow new meaning of TV could be employed in the aspect of modern RT techniques and combined treatment strategies. For larger TV more aggressive treatment options may be considered. In modern RT techniques escalated dose could be provided highly conformal or RT can be combined with systemic treatment increasing therapeutic ratio. In the study several reports estimating prognostic value of TV for patients with HNC treated with RT has been reviewed.Due to substantially various reported groups of patients as to tumor site, stage of disease or treatment strategies, precise cut-off value could not be establish in general, but the significant association between TV and treatment outcome had been found in almost all studies. There is a strong suggestion that TV should supplement clinical decision in the choice of optimal treatment strategy for patients with HNC. PMID:24423415

  11. Intraoperative radiotherapy: the Japanese experience. [Betatron

    SciTech Connect

    Abe, M.; Takahashi, M.

    1981-07-01

    Clinical results of intraoperative radiotherapy (IOR) which have been obtained since 1964 in Japan were reviewed. In this radiotherapy a cancerocidal dose can be delivered safely to the lesions, since critical organs are shifted from the field so that the lesions may be exposed directly to radiation. Intraoperative radiotherapy has spread in Japan and the number of institutions in which this radiotherapy is performed has continued to increase to a total of 26 in 1979. The total number of patients treated was 717. It has been demonstrated that intraoperative radiotherapy has definite effects on locally advanced abdominal neoplasms and unresectable radioresistant tumors.

  12. Comparative performance study of different sample introduction techniques for rapid and precise selenium isotope ratio determination using multi-collector inductively coupled plasma mass spectrometry (MC-ICP/MS).

    PubMed

    Elwaer, Nagmeddin; Hintelmann, Holger

    2007-11-01

    The analytical performance of five sample introduction systems, a cross flow nebulizer spray chamber, two different solvent desolvation systems, a multi-mode sample introduction system (MSIS), and a hydride generation (LI2) system were compared for the determination of Se isotope ratio measurements using multi-collector inductively coupled plasma mass spectrometry (MC-ICP/MS). The optimal operating parameters for obtaining the highest Se signal-to-noise (S/N) ratios and isotope ratio precision for each sample introduction were determined. The hydride generation (LI2) system was identified as the most suitable sample introduction method yielding maximum sensitivity and precision for Se isotope ratio measurement. It provided five times higher S/N ratios for all Se isotopes compared to the MSIS, 20 times the S/N ratios of both desolvation units, and 100 times the S/N ratios produced by the conventional spray chamber sample introduction method. The internal precision achieved for the (78)Se/(82)Se ratio at 100 ng mL(-1) Se with the spray chamber, two desolvation, MSIS, and the LI2 systems coupled to MC-ICP/MS was 150, 125, 114, 13, and 7 ppm, respectively. Instrument mass bias factors (K) were calculated using an exponential law correction function. Among the five studied sample introduction systems the LI2 showed the lowest mass bias of -0.0265 and the desolvation system showed the largest bias with -0.0321. PMID:17726602

  13. Current Concepts in Osteoradionecrosis after Head and Neck Radiotherapy.

    PubMed

    Dhanda, J; Pasquier, D; Newman, L; Shaw, R

    2016-07-01

    Osteoradionecrosis (ORN) of the jaws is a feared complication of head and neck radiotherapy. ORN causes significant morbidity for patients and controversy among clinicians. This overview considers the variations in definition and classification of the condition that affect estimates of incidence and also the interpretation of evidence. The influence of newer radiotherapy techniques in reducing ORN through reduced dose and xerostomia is balanced against a probable increase in a vulnerable population through a rising head and neck cancer incidence. Theories of pathophysiology of ORN include radiation-induced osteomyelitis, hypoxic and hypovascular theory and fibroatrophic theory. Prevention strategies include restorative dentistry and radiation planning techniques. Treatments range from conservative 'watch and wait' through to more radical surgical strategies. Newer medical management strategies are available with a limited evidence base. The use of hyperbaric oxygen therapy remains controversial and the background and need for newer hyperbaric oxygen trials is discussed. PMID:27038708

  14. Radiotherapy Monte Carlo simulation using cloud computing technology.

    PubMed

    Poole, C M; Cornelius, I; Trapp, J V; Langton, C M

    2012-12-01

    Cloud computing allows for vast computational resources to be leveraged quickly and easily in bursts as and when required. Here we describe a technique that allows for Monte Carlo radiotherapy dose calculations to be performed using GEANT4 and executed in the cloud, with relative simulation cost and completion time evaluated as a function of machine count. As expected, simulation completion time decreases as 1/n for n parallel machines, and relative simulation cost is found to be optimal where n is a factor of the total simulation time in hours. Using the technique, we demonstrate the potential usefulness of cloud computing as a solution for rapid Monte Carlo simulation for radiotherapy dose calculation without the need for dedicated local computer hardware as a proof of principal.

  15. Changes in biophysical properties of the skin following radiotherapy for breast cancer.

    PubMed

    Hu, Stephen Chu-Sung; Hou, Ming-Feng; Luo, Kuei-Hau; Chuang, Hung-Yi; Wei, Shu-Yi; Chen, Gwo-Shing; Chiang, Wenchang; Huang, Chih-Jen

    2014-12-01

    Acute radiation dermatitis is a common adverse effect in patients undergoing radiotherapy for breast cancer. However, the effects of radiotherapy on biophysical properties of the skin have rarely been investigated. In this prospective cohort study, we seek to determine the effects of radiotherapy for breast cancer on skin biophysical parameters. We measured various skin biophysical parameters (skin hydration, pH, sebum level, pigmentation, and blood flow) in 144 breast cancer patients by non-invasive techniques before and after radiotherapy. The measurements were simultaneously performed on the irradiated breast and the corresponding contralateral unirradiated breast for comparison. Following radiotherapy, the irradiated breast showed a significant decrease in skin hydration, increase in skin pH, increase in pigmentation, and increase in cutaneous blood flow. The contralateral unirradiated breast showed a slight increase in pigmentation but no significant changes in any of the other biophysical parameters after radiotherapy. No significant associations were found between patient characteristics (diabetes mellitus, hypertension, type of surgery, chemotherapy, hormone therapy) and changes in skin biophysical parameters following radiotherapy. In conclusion, radiation therapy for breast cancer induces measurable and significant changes in biophysical properties of the skin including hydration, pH, pigmentation, and blood flow. These findings give us a greater understanding of the effects of ionizing radiation on skin physiology, and provide non-invasive and objective methods to assess radiation dermatitis.

  16. SU-E-T-249: Neutron Model Upgrade for Radiotherapy Patients Monitoring Using a New Online Detector

    SciTech Connect

    Irazola, L; Sanchez Doblado, F.; Lorenzoli, M; Pola, A.; Terron, J.A.; Bedogni, R.; Sanchez Nieto, B.; Romero-Exposito, M.

    2014-06-01

    Purpose: The purpose of this work is to improve the existing methodology to estimate neutron equivalent dose in organs during radiotherapy treatments, based on a Static Random Access Memory neutron detector (SRAMnd) [1]. This is possible thanks to the introduction of a new digital detector with improved characteristics, which is able to measure online the neutron fluence rate in the presence of an intense photon background [2]. Its reduced size, allows the direct estimation of doses in specific points inside an anthropomorphic phantom (NORMA) without using passive detectors as TLD or CR-39. This versatility will allow not only to improve the existing models (generic abdomen and H and N [1]) but to generate more specific ones for any technique. Methods: The new Thermal Neutron Rate Detector (TNRD), based on a diode device sensitized to thermal neutrons, have been inserted in 16 points of the phantom. These points are distributed to infer doses to specific organs. Simultaneous measurements of these devices and a reference one, located in front of the gantry, have been performed for the mentioned generic treatments, in order to improve the existing model. Results: These new devices have shown more precise since they agree better with Monte Carlo simulations. The comparison of the thermal neutron fluence, measured with TNRD, and the existing models, converted from events to fluence, shows an average improvement of (3.90±3.37) % for H and N and (12.61±9.43) % for abdomen, normalized to the maximum value. Conclusion: This work indicates the potential of these new devices for more precise neutron equivalent dose estimation in organs, as a consequence of radiotherapy treatments. The simplicity of the process makes possible to establish more specific models that will provide a better dose estimation. References[1] Phys Med Biol 2012; 57:6167–6191.[2] A new active thermal neutron detector. Radiat. Prot. Dosim. (in press)

  17. Precision bolometer bridge

    NASA Technical Reports Server (NTRS)

    White, D. R.

    1968-01-01

    Prototype precision bolometer calibration bridge is manually balanced device for indicating dc bias and balance with either dc or ac power. An external galvanometer is used with the bridge for null indication, and the circuitry monitors voltage and current simultaneously without adapters in testing 100 and 200 ohm thin film bolometers.

  18. Precision liquid level sensor

    DOEpatents

    Field, M.E.; Sullivan, W.H.

    1985-01-29

    A precision liquid level sensor utilizes a balanced R. F. bridge, each arm including an air dielectric line. Changes in liquid level along one air dielectric line imbalance the bridge and create a voltage which is directly measurable across the bridge. 2 figs.

  19. Precision physics at LHC

    SciTech Connect

    Hinchliffe, I.

    1997-05-01

    In this talk the author gives a brief survey of some physics topics that will be addressed by the Large Hadron Collider currently under construction at CERN. Instead of discussing the reach of this machine for new physics, the author gives examples of the types of precision measurements that might be made if new physics is discovered.

  20. Precision in Stereochemical Terminology

    ERIC Educational Resources Information Center

    Wade, Leroy G., Jr.

    2006-01-01

    An analysis of relatively new terminology that has given multiple definitions often resulting in students learning principles that are actually false is presented with an example of the new term stereogenic atom introduced by Mislow and Siegel. The Mislow terminology would be useful in some cases if it were used precisely and correctly, but it is…

  1. High Precision Astrometry

    NASA Astrophysics Data System (ADS)

    Riess, Adam

    2012-10-01

    This |*|program |*|uses |*|the |*|enhanced |*|astrometric |*|precision |*|enabled |*|by |*|spatial |*|scanning |*|to |*|calibrate |*|remaining |*|obstacles |*|toreaching |*|<<40 |*|microarc|*|second |*|astrometry |*|{<1 |*|millipixel} |*|with |*|WFC3/UVIS |*|by |*|1} |*|improving |*|geometric |*|distor-on |*|2} |*|calibratingthe |*|e|*|ect |*|of |*|breathing |*|on |*|astrometry|*|3} |*|calibrating |*|the |*|e|*|ect |*|of |*|CTE |*|on |*|astrometry, |*|4} |*|characterizing |*|the |*|boundaries |*|andorientations |*|of |*|the |*|WFC3 |*|lithograph |*|cells.

  2. Precision liquid level sensor

    DOEpatents

    Field, Michael E.; Sullivan, William H.

    1985-01-01

    A precision liquid level sensor utilizes a balanced R. F. bridge, each arm including an air dielectric line. Changes in liquid level along one air dielectric line imbalance the bridge and create a voltage which is directly measurable across the bridge.

  3. [A positioning error measurement method in radiotherapy based on 3D visualization].

    PubMed

    An, Ji-Ye; Li, Yue-Xi; Lu, Xu-Dong; Duan, Hui-Long

    2007-09-01

    The positioning error in radiotherapy is one of the most important factors that influence the location precision of the tumor. Based on the CT-on-rails technology, this paper describes the research on measuring the positioning error in radiotherapy by comparing the planning CT images with the treatment CT images using 3-dimension (3D) methods. It can help doctors to measure positioning errors more accurately than 2D methods. It also supports the powerful 3D interaction such as drag-dropping, rotating and picking-up the object, so that doctors can visualize and measure the positioning errors intuitively.

  4. Radiotherapy of chondrosarcoma of bone

    SciTech Connect

    Harwood, A.R.; Krajbich, J.I.; Fornasier, V.L.

    1980-06-01

    A retrospective analysis of 31 cases of chondrosarcoma of bone treated by radiotherapy is presented. In comparison with other large series, our group of patients were found to have been unfavourably selected with respect to the known prognostic factors: histology site, adequacy of operative treatment, and presenting symptoms. Twelve patients with primary chondrosarcoma were radically irradiated; 6 of these 12 have been alive and well without tumor for periods ranging from three and a half to 16 years and 3 of these are alive and well for 15 years or more following radiotherapy. The other 6 patients responded or desease stabilized following radiotherapy for periods ranging from 16 months to eight years. One poorly differentiated tumor was radically irradiated and did not respond. Eleven patients were irradiated palliatively, generally with low doses of irradiation, and only 4 responded transiently for periods ranging from three to 12 months. Seven patients with mesenchymal and dedifferentiated tumors were radically irradiated. Four responded or disease stabilized, and 1 of these patients was alive and well at 3 years; 3 did not respond. Six died with distant metastasis. It is concluded that chondrosarcoma of bone is a radioresponsive tumor and the place of radiotherapy in the treatment of this disease and the reason for its being labelled a radioresistant tumor are discussed. The problems of assessing response of chondrosarcoma to therapy are also discussed. It is suggested that chemotherapy may have a role in the management of mesenchymal and dedifferentiated chondrosarcoma.

  5. Pancreatic cancer: chemotherapy and radiotherapy

    PubMed Central

    Andrén-Sandberg, Åke

    2011-01-01

    Pancreatic cancer in many cases appears in a non-curatively resectable stage when the diagnosis is made. Palliative treatment become an option in the patients with advanced stage. The present article reviewed chemotherapy and radiotherapy in various advanced stage of pancreatic cancer. PMID:22540056

  6. Delivery validation of VMAT stereotactic ablative body radiotherapy at commissioning

    NASA Astrophysics Data System (ADS)

    Olding, T.; Alexander, K. M.; Jechel, C.; Nasr, A. T.; Joshi, C.

    2015-01-01

    Dosimetric validation of two volumetric modulated arc therapy (VMAT) stereotactic ablative radiotherapy (SABR) plans was completed as part of the commissioning process of this technique in our clinic. Static and dynamic ion chamber, EBT3 film and leuco crystal violet (LCV) micelle gel measurements were acquired using a motion phantom with appropriate inserts for each dosimeter. The results show good agreement between measured and calculated plan dose.

  7. Improving external beam radiotherapy by combination with internal irradiation.

    PubMed

    Dietrich, A; Koi, L; Zöphel, K; Sihver, W; Kotzerke, J; Baumann, M; Krause, M

    2015-07-01

    The efficacy of external beam radiotherapy (EBRT) is dose dependent, but the dose that can be applied to solid tumour lesions is limited by the sensitivity of the surrounding tissue. The combination of EBRT with systemically applied radioimmunotherapy (RIT) is a promising approach to increase efficacy of radiotherapy. Toxicities of both treatment modalities of this combination of internal and external radiotherapy (CIERT) are not additive, as different organs at risk are in target. However, advantages of both single treatments are combined, for example, precise high dose delivery to the bulk tumour via standard EBRT, which can be increased by addition of RIT, and potential targeting of micrometastases by RIT. Eventually, theragnostic radionuclide pairs can be used to predict uptake of the radiotherapeutic drug prior to and during therapy and find individual patients who may benefit from this treatment. This review aims to highlight the outcome of pre-clinical studies on CIERT and resultant questions for translation into the clinic. Few clinical data are available until now and reasons as well as challenges for clinical implementation are discussed.

  8. Improving external beam radiotherapy by combination with internal irradiation

    PubMed Central

    Koi, L; Zöphel, K; Sihver, W; Kotzerke, J; Baumann, M; Krause, M

    2015-01-01

    The efficacy of external beam radiotherapy (EBRT) is dose dependent, but the dose that can be applied to solid tumour lesions is limited by the sensitivity of the surrounding tissue. The combination of EBRT with systemically applied radioimmunotherapy (RIT) is a promising approach to increase efficacy of radiotherapy. Toxicities of both treatment modalities of this combination of internal and external radiotherapy (CIERT) are not additive, as different organs at risk are in target. However, advantages of both single treatments are combined, for example, precise high dose delivery to the bulk tumour via standard EBRT, which can be increased by addition of RIT, and potential targeting of micrometastases by RIT. Eventually, theragnostic radionuclide pairs can be used to predict uptake of the radiotherapeutic drug prior to and during therapy and find individual patients who may benefit from this treatment. This review aims to highlight the outcome of pre-clinical studies on CIERT and resultant questions for translation into the clinic. Few clinical data are available until now and reasons as well as challenges for clinical implementation are discussed. PMID:25782328

  9. Clinical Experience With Image-Guided Radiotherapy in an Accelerated Partial Breast Intensity-Modulated Radiotherapy Protocol

    SciTech Connect

    Leonard, Charles E.; Tallhamer, Michael M.S.; Johnson, Tim; Hunter, Kari C.M.D.; Howell, Kathryn; Kercher, Jane; Widener, Jodi; Kaske, Terese; Paul, Devchand; Sedlacek, Scot; Carter, Dennis L.

    2010-02-01

    Purpose: To explore the feasibility of fiducial markers for the use of image-guided radiotherapy (IGRT) in an accelerated partial breast intensity modulated radiotherapy protocol. Methods and Materials: Nineteen patients consented to an institutional review board approved protocol of accelerated partial breast intensity-modulated radiotherapy with fiducial marker placement and treatment with IGRT. Patients (1 patient with bilateral breast cancer; 20 total breasts) underwent ultrasound guided implantation of three 1.2- x 3-mm gold markers placed around the surgical cavity. For each patient, table shifts (inferior/superior, right/left lateral, and anterior/posterior) and minimum, maximum, mean error with standard deviation were recorded for each of the 10 BID treatments. The dose contribution of daily orthogonal films was also examined. Results: All IGRT patients underwent successful marker placement. In all, 200 IGRT treatment sessions were performed. The average vector displacement was 4 mm (range, 2-7 mm). The average superior/inferior shift was 2 mm (range, 0-5 mm), the average lateral shift was 2 mm (range, 1-4 mm), and the average anterior/posterior shift was 3 mm (range, 1 5 mm). Conclusions: This study shows that the use of IGRT can be successfully used in an accelerated partial breast intensity-modulated radiotherapy protocol. The authors believe that this technique has increased daily treatment accuracy and permitted reduction in the margin added to the clinical target volume to form the planning target volume.

  10. Optical spectroscopy of radiotherapy and photodynamic therapy responses in normal rat skin shows vascular breakdown products

    NASA Astrophysics Data System (ADS)

    Teles de Andrade, Cintia; Nogueira, Marcelo S.; Kanick, Stephen C.; Marra, Kayla; Gunn, Jason; Andreozzi, Jacqueline; Samkoe, Kimberley S.; Kurachi, Cristina; Pogue, Brian W.

    2016-03-01

    Photodynamic therapy (PDT) and radiotherapy are non-systemic cancer treatment options with different mechanisms of damage. So combining these techniques has been shown to have some synergy, and can mitigate their limitations such as low PDT light penetration or radiotherapy side effects. The present study monitored the induced tissue changes after PDT, radiotherapy, and a combination protocol in normal rat skin, using an optical spectroscopy system to track the observed biophysical changes. The Wistar rats were treated with one of the protocols: PDT followed by radiotherapy, PDT, radiotherapy and radiotherapy followed by PDT. Reflectance spectra were collected in order to observe the effects of these combined therapies, especially targeting vascular response. From the reflectance, information about oxygen saturation, met-hemoglobin and bilirubin concentration, blood volume fraction (BVF) and vessel radius were extracted from model fitting of the spectra. The rats were monitored for 24 hours after treatment. Results showed that there was no significant variation in the vessel size or BVF after the treatments. However, the PDT caused a significant increase in the met-hemoglobin and bilirubin concentrations, indicating an important blood breakdown. These results may provide an important clue on how the damage establishment takes place, helping to understand the effect of the combination of those techniques in order to verify the existence of a known synergistic effect.

  11. Precision synchrotron radiation detectors

    SciTech Connect

    Levi, M.; Rouse, F.; Butler, J.; Jung, C.K.; Lateur, M.; Nash, J.; Tinsman, J.; Wormser, G.; Gomez, J.J.; Kent, J.

    1989-03-01

    Precision detectors to measure synchrotron radiation beam positions have been designed and installed as part of beam energy spectrometers at the Stanford Linear Collider (SLC). The distance between pairs of synchrotron radiation beams is measured absolutely to better than 28 /mu/m on a pulse-to-pulse basis. This contributes less than 5 MeV to the error in the measurement of SLC beam energies (approximately 50 GeV). A system of high-resolution video cameras viewing precisely-aligned fiducial wire arrays overlaying phosphorescent screens has achieved this accuracy. Also, detectors of synchrotron radiation using the charge developed by the ejection of Compton-recoil electrons from an array of fine wires are being developed. 4 refs., 5 figs., 1 tab.

  12. Towards precision medicine.

    PubMed

    Ashley, Euan A

    2016-08-16

    There is great potential for genome sequencing to enhance patient care through improved diagnostic sensitivity and more precise therapeutic targeting. To maximize this potential, genomics strategies that have been developed for genetic discovery - including DNA-sequencing technologies and analysis algorithms - need to be adapted to fit clinical needs. This will require the optimization of alignment algorithms, attention to quality-coverage metrics, tailored solutions for paralogous or low-complexity areas of the genome, and the adoption of consensus standards for variant calling and interpretation. Global sharing of this more accurate genotypic and phenotypic data will accelerate the determination of causality for novel genes or variants. Thus, a deeper understanding of disease will be realized that will allow its targeting with much greater therapeutic precision. PMID:27528417

  13. Ultra-Precision Optics

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Under a Joint Sponsored Research Agreement with Goddard Space Flight Center, SEMATECH, Inc., the Silicon Valley Group, Inc. and Tinsley Laboratories, known as SVG-Tinsley, developed an Ultra-Precision Optics Manufacturing System for space and microlithographic applications. Continuing improvements in optics manufacture will be able to meet unique NASA requirements and the production needs of the lithography industry for many years to come.

  14. Precise clock synchronization protocol

    NASA Astrophysics Data System (ADS)

    Luit, E. J.; Martin, J. M. M.

    1993-12-01

    A distributed clock synchronization protocol is presented which achieves a very high precision without the need for very frequent resynchronizations. The protocol tolerates failures of the clocks: clocks may be too slow or too fast, exhibit omission failures and report inconsistent values. Synchronization takes place in synchronization rounds as in many other synchronization protocols. At the end of each round, clock times are exchanged between the clocks. Each clock applies a convergence function (CF) to the values obtained. This function estimates the difference between its clock and an average clock and corrects its clock accordingly. Clocks are corrected for drift relative to this average clock during the next synchronization round. The protocol is based on the assumption that clock reading errors are small with respect to the required precision of synchronization. It is shown that the CF resynchronizes the clocks with high precision even when relatively large clock drifts are possible. It is also shown that the drift-corrected clocks remain synchronized until the end of the next synchronization round. The stability of the protocol is proven.

  15. Precision Experiments at LEP

    NASA Astrophysics Data System (ADS)

    de Boer, W.

    2015-07-01

    The Large Electron-Positron Collider (LEP) established the Standard Model (SM) of particle physics with unprecedented precision, including all its radiative corrections. These led to predictions for the masses of the top quark and Higgs boson, which were beautifully confirmed later on. After these precision measurements the Nobel Prize in Physics was awarded in 1999 jointly to 't Hooft and Veltman "for elucidating the quantum structure of electroweak interactions in physics". Another hallmark of the LEP results were the precise measurements of the gauge coupling constants, which excluded unification of the forces within the SM, but allowed unification within the supersymmetric extension of the SM. This increased the interest in Supersymmetry (SUSY) and Grand Unified Theories, especially since the SM has no candidate for the elusive dark matter, while SUSY provides an excellent candidate for dark matter. In addition, SUSY removes the quadratic divergencies of the SM and predicts the Higgs mechanism from radiative electroweak symmetry breaking with a SM-like Higgs boson having a mass below 130 GeV in agreement with the Higgs boson discovery at the LHC. However, the predicted SUSY particles have not been found either because they are too heavy for the present LHC energy and luminosity or Nature has found alternative ways to circumvent the shortcomings of the SM.

  16. Precision Experiments at LEP

    NASA Astrophysics Data System (ADS)

    de Boer, W.

    2015-09-01

    The Large Electron Positron Collider (LEP) established the Standard Model (SM) of particle physics with unprecedented precision, including all its radiative corrections. These led to predictions for the masses of the top quark and Higgs boson, which were beautifully confirmed later on. After these precision measurements the Nobel Prize in Physics was awarded in 1999 jointly to 't Hooft and Veltman "for elucidating the quantum structure of electroweak interactions in physics". Another hallmark of the LEP results were the precise measurements of the gauge coupling constants, which excluded unification of the forces within the SM, but allowed unification within the supersymmetric extension of the SM. This increased the interest in Supersymmetry (SUSY) and Grand Unified Theories, especially since the SM has no candidate for the elusive dark matter, while Supersymmetry provides an excellent candidate for dark matter. In addition, Supersymmetry removes the quadratic divergencies of the SM and {\\it predicts} the Higgs mechanism from radiative electroweak symmetry breaking with a SM-like Higgs boson having a mass below 130 GeV in agreement with the Higgs boson discovery at the LHC. However, the predicted SUSY particles have not been found either because they are too heavy for the present LHC energy and luminosity or Nature has found alternative ways to circumvent the shortcomings of the SM.

  17. The Development and Evaluation of a Virtual Radiotherapy Treatment Machine Using an Immersive Visualisation Environment

    ERIC Educational Resources Information Center

    Bridge, P.; Appleyard, R. M.; Ward, J. W.; Philips, R.; Beavis, A. W.

    2007-01-01

    Due to the lengthy learning process associated with complicated clinical techniques, undergraduate radiotherapy students can struggle to access sufficient time or patients to gain the level of expertise they require. By developing a hybrid virtual environment with real controls, it was hoped that group learning of these techniques could take place…

  18. Precision Environmental Radiation Monitoring System

    SciTech Connect

    Vladimir Popov, Pavel Degtiarenko

    2010-07-01

    A new precision low-level environmental radiation monitoring system has been developed and tested at Jefferson Lab. This system provides environmental radiation measurements with accuracy and stability of the order of 1 nGy/h in an hour, roughly corresponding to approximately 1% of the natural cosmic background at the sea level. Advanced electronic front-end has been designed and produced for use with the industry-standard High Pressure Ionization Chamber detector hardware. A new highly sensitive readout electronic circuit was designed to measure charge from the virtually suspended ionization chamber ion collecting electrode. New signal processing technique and dedicated data acquisition were tested together with the new readout. The designed system enabled data collection in a remote Linux-operated computer workstation, which was connected to the detectors using a standard telephone cable line. The data acquisition system algorithm is built around the continuously running 24-bit resolution 192 kHz data sampling analog to digital convertor. The major features of the design include: extremely low leakage current in the input circuit, true charge integrating mode operation, and relatively fast response to the intermediate radiation change. These features allow operating of the device as an environmental radiation monitor, at the perimeters of the radiation-generating installations in densely populated areas, like in other monitoring and security applications requiring high precision and long-term stability. Initial system evaluation results are presented.

  19. Hadron accelerators for radiotherapy

    NASA Astrophysics Data System (ADS)

    Owen, Hywel; MacKay, Ranald; Peach, Ken; Smith, Susan

    2014-04-01

    Over the last twenty years the treatment of cancer with protons and light nuclei such as carbon ions has moved from being the preserve of research laboratories into widespread clinical use. A number of choices now exist for the creation and delivery of these particles, key amongst these being the adoption of pencil beam scanning using a rotating gantry; attention is now being given to what technologies will enable cheaper and more effective treatment in the future. In this article the physics and engineering used in these hadron therapy facilities is presented, and the research areas likely to lead to substantive improvements. The wider use of superconducting magnets is an emerging trend, whilst further ahead novel high-gradient acceleration techniques may enable much smaller treatment systems. Imaging techniques to improve the accuracy of treatment plans must also be developed hand-in-hand with future sources of particles, a notable example of which is proton computed tomography.

  20. Precision moisture generation and measurement.

    SciTech Connect

    Thornberg, Steven Michael; White, Michael I.; Irwin, Adriane Nadine

    2010-03-01

    In many industrial processes, gaseous moisture is undesirable as it can lead to metal corrosion, polymer degradation, and other materials aging processes. However, generating and measuring precise moisture concentrations is challenging due to the need to cover a broad concentration range (parts-per-billion to percent) and the affinity of moisture to a wide range surfaces and materials. This document will discuss the techniques employed by the Mass Spectrometry Laboratory of the Materials Reliability Department at Sandia National Laboratories to generate and measure known gaseous moisture concentrations. This document highlights the use of a chilled mirror and primary standard humidity generator for the characterization of aluminum oxide moisture sensors. The data presented shows an excellent correlation in frost point measured between the two instruments, and thus provides an accurate and reliable platform for characterizing moisture sensors and performing other moisture related experiments.

  1. The Effect of Registration Surrogate and Patient Factors on the Interobserver Variability of Electronic Portal Image Guidance During Prostate Radiotherapy

    SciTech Connect

    Kong, Vickie Lockwood, Gina; Yan Jing; Catton, Charles; Chung, Peter; Bayley, Andrew; Rosewall, Tara

    2011-01-01

    Intraprostatic fiducial markers (IPM) and electronic portal imaging (EPI) are commonly used to identify and correct for prostate motion during radiotherapy. However, little data is available on the precision of this image-guidance technique. This study quantified impact of different registration surrogates and patient factors on the interobserver variability of manual EPI alignment during prostate radiotherapy. For 50 prostate radiotherapy patients previously implanted with 3 IPM, five observers manually aligned 150 pairs of orthogonal EPI to the reference digital reconstructed radiograph using Varian Vision EPI analysis software. Images were aligned using: Bony anatomy (BA), single mid-prostate IPM (SM); and 2 strategies using 3 IPM: center of mass (COM) and rotate and translate (R and T). Intraclass correlation coefficients (ICCs) were calculated to quantify interobserver variability. The absolute displacements measured using SM and R and T were compared with those using COM. The impact of patients' pelvic diameter and adjuvant hormone therapy on interobserver variability were also evaluated. Twelve thousand displacement values were collected for analysis. The maximum discrepancy between the 5 observers was >2 mm in 47% of measurements using BA, 5% using SM, 4% using R and T, and 3% using COM. Both of the 3 IPM alignment strategies demonstrated lower interobserver variability than the single IPM strategy (ICC 0.94-0.97 vs. 0.82-0.94). BA had the highest interobserver variability (ICC = 0.43-0.90). Pelvic diameter and hormone therapy had no discernible impact on interobserver variability. Compared with COM, the absolute displacements measured using the other IPM strategies were statistically different (p < 0.001), but 95% of the absolute magnitude of differences between the strategies were {<=}1 mm. The high reproducibility among the observers demonstrated the precision of prostate localization using multiple IPM and EPI, which was not influenced by the patient

  2. Long-Term Breast Cancer Patient Outcomes After Adjuvant Radiotherapy Using Intensity-Modulated Radiotherapy or Conventional Tangential Radiotherapy

    PubMed Central

    Yang, Jen-Fu; Lee, Meei-Shyuan; Lin, Chun-Shu; Chao, Hsing-Lung; Chen, Chang-Ming; Lo, Cheng-Hsiang; Fan, Chao-Yueh; Tsao, Chih-Cheng; Huang, Wen-Yen

    2016-01-01

    Abstract The aim of the article is to analyze breast cancer patient clinical outcomes after long-term follow-up using intensity-modulated radiotherapy (IMRT) or conventional tangential radiotherapy (cRT). We retrospectively reviewed patients with stage 0–III breast cancer who received breast conserving therapy between April 2004 and December 2007. Of the 234 patients, 103 (44%) were treated with IMRT and 131 (56%) were treated with cRT. A total prescription dose of 45 to 50 Gy (1.8–2 Gy per fraction) was delivered to the whole breast. A 14 Gy boost dose was delivered in 7 fractions. The median follow-up was 8.2 years. Five of 131 (3.8%) cRT-treated patients and 2 of 103 (1.9%) IMRT-treated patients had loco-regional failure. The 8-year loco-regional failure-free survival rates were 96.7% and 97.6% (P = 0.393) in the cRT and IMRT groups, respectively, whereas the 8-year disease-free survival (DFS) rates were 91.2% and 93.1%, respectively (P = 0.243). Patients treated with IMRT developed ≥ grade 2 acute dermatitis less frequently than patients treated with cRT (40.8% vs 56.5%; P = 0.017). There were no differences in late toxicity. IMRT reduces ≥ grade 2 acute skin toxicity. Local control, DFS, and overall survival were equivalent with IMRT and cRT. IMRT can be considered a standard technique for breast cancer treatment. PMID:26986158

  3. Long-term phase-locking technique for locking the repetition rate of an optical frequency comb laser with 1.67 × 10-19 precision.

    PubMed

    Ci, Cheng; Zhang, Xuesong; Li, Xinran; Chen, Xing; Cui, Yifan; Zhao, Yingxin; Liu, Bo; Wu, Hong

    2016-08-20

    An ultrahigh stable phase-locked loop system for synchronization of an optical frequency comb to a hydrogen maser has been proposed and experimentally demonstrated. A mathematical model has been set up to investigate the feasibility and steady state of the phase-locking system. The fractional frequency instability is evaluated by measuring the mixed-phase signal of an improved experimental system. Experimental results show that the fractional frequency instability of the phase-locked loop system lies from 8.83×10-16 at 1 s to 1.67×10-19 at 1000 s, which indicates our proposed phase-locking system possesses ultrahigh measurement precision with good long-term stabilization performance. PMID:27556998

  4. Manufacturing Precise, Lightweight Paraboloidal Mirrors

    NASA Technical Reports Server (NTRS)

    Hermann, Frederick Thomas

    2006-01-01

    A process for fabricating a precise, diffraction- limited, ultra-lightweight, composite- material (matrix/fiber) paraboloidal telescope mirror has been devised. Unlike the traditional process of fabrication of heavier glass-based mirrors, this process involves a minimum of manual steps and subjective judgment. Instead, this process involves objectively controllable, repeatable steps; hence, this process is better suited for mass production. Other processes that have been investigated for fabrication of precise composite-material lightweight mirrors have resulted in print-through of fiber patterns onto reflecting surfaces, and have not provided adequate structural support for maintenance of stable, diffraction-limited surface figures. In contrast, this process does not result in print-through of the fiber pattern onto the reflecting surface and does provide a lightweight, rigid structure capable of maintaining a diffraction-limited surface figure in the face of changing temperature, humidity, and air pressure. The process consists mainly of the following steps: 1. A precise glass mandrel is fabricated by conventional optical grinding and polishing. 2. The mandrel is coated with a release agent and covered with layers of a carbon- fiber composite material. 3. The outer surface of the outer layer of the carbon-fiber composite material is coated with a surfactant chosen to provide for the proper flow of an epoxy resin to be applied subsequently. 4. The mandrel as thus covered is mounted on a temperature-controlled spin table. 5. The table is heated to a suitable temperature and spun at a suitable speed as the epoxy resin is poured onto the coated carbon-fiber composite material. 6. The surface figure of the optic is monitored and adjusted by use of traditional Ronchi, Focault, and interferometric optical measurement techniques while the speed of rotation and the temperature are adjusted to obtain the desired figure. The proper selection of surfactant, speed or rotation

  5. Precision electroweak measurements

    SciTech Connect

    Demarteau, M.

    1996-11-01

    Recent electroweak precision measurements fro {ital e}{sup +}{ital e}{sup -} and {ital p{anti p}} colliders are presented. Some emphasis is placed on the recent developments in the heavy flavor sector. The measurements are compared to predictions from the Standard Model of electroweak interactions. All results are found to be consistent with the Standard Model. The indirect constraint on the top quark mass from all measurements is in excellent agreement with the direct {ital m{sub t}} measurements. Using the world`s electroweak data in conjunction with the current measurement of the top quark mass, the constraints on the Higgs` mass are discussed.

  6. Precision Robotic Assembly Machine

    ScienceCinema

    None

    2016-07-12

    The world's largest laser system is the National Ignition Facility (NIF), located at Lawrence Livermore National Laboratory. NIF's 192 laser beams are amplified to extremely high energy, and then focused onto a tiny target about the size of a BB, containing frozen hydrogen gas. The target must be perfectly machined to incredibly demanding specifications. The Laboratory's scientists and engineers have developed a device called the "Precision Robotic Assembly Machine" for this purpose. Its unique design won a prestigious R&D-100 award from R&D Magazine.

  7. Instrument Attitude Precision Control

    NASA Technical Reports Server (NTRS)

    Juang, Jer-Nan

    2004-01-01

    A novel approach is presented in this paper to analyze attitude precision and control for an instrument gimbaled to a spacecraft subject to an internal disturbance caused by a moving component inside the instrument. Nonlinear differential equations of motion for some sample cases are derived and solved analytically to gain insight into the influence of the disturbance on the attitude pointing error. A simple control law is developed to eliminate the instrument pointing error caused by the internal disturbance. Several cases are presented to demonstrate and verify the concept presented in this paper.

  8. Precision Robotic Assembly Machine

    SciTech Connect

    2009-08-14

    The world's largest laser system is the National Ignition Facility (NIF), located at Lawrence Livermore National Laboratory. NIF's 192 laser beams are amplified to extremely high energy, and then focused onto a tiny target about the size of a BB, containing frozen hydrogen gas. The target must be perfectly machined to incredibly demanding specifications. The Laboratory's scientists and engineers have developed a device called the "Precision Robotic Assembly Machine" for this purpose. Its unique design won a prestigious R&D-100 award from R&D Magazine.

  9. Precision Pointing System Development

    SciTech Connect

    BUGOS, ROBERT M.

    2003-03-01

    The development of precision pointing systems has been underway in Sandia's Electronic Systems Center for over thirty years. Important areas of emphasis are synthetic aperture radars and optical reconnaissance systems. Most applications are in the aerospace arena, with host vehicles including rockets, satellites, and manned and unmanned aircraft. Systems have been used on defense-related missions throughout the world. Presently in development are pointing systems with accuracy goals in the nanoradian regime. Future activity will include efforts to dramatically reduce system size and weight through measures such as the incorporation of advanced materials and MEMS inertial sensors.

  10. Precision mass measurements

    NASA Astrophysics Data System (ADS)

    Gläser, M.; Borys, M.

    2009-12-01

    Mass as a physical quantity and its measurement are described. After some historical remarks, a short summary of the concept of mass in classical and modern physics is given. Principles and methods of mass measurements, for example as energy measurement or as measurement of weight forces and forces caused by acceleration, are discussed. Precision mass measurement by comparing mass standards using balances is described in detail. Measurement of atomic masses related to 12C is briefly reviewed as well as experiments and recent discussions for a future new definition of the kilogram, the SI unit of mass.

  11. NOTE: Fluoroscopic gating without implanted fiducial markers for lung cancer radiotherapy based on support vector machines

    NASA Astrophysics Data System (ADS)

    Cui, Ying; Dy, Jennifer G.; Alexander, Brian; Jiang, Steve B.

    2008-08-01

    Various problems with the current state-of-the-art techniques for gated radiotherapy have prevented this new treatment modality from being widely implemented in clinical routine. These problems are caused mainly by applying various external respiratory surrogates. There might be large uncertainties in deriving the tumor position from external respiratory surrogates. While tracking implanted fiducial markers has sufficient accuracy, this procedure may not be widely accepted due to the risk of pneumothorax. Previously, we have developed a technique to generate gating signals from fluoroscopic images without implanted fiducial markers using template matching methods (Berbeco et al 2005 Phys. Med. Biol. 50 4481-90, Cui et al 2007b Phys. Med. Biol. 52 741-55). In this note, our main contribution is to provide a totally different new view of the gating problem by recasting it as a classification problem. Then, we solve this classification problem by a well-studied powerful classification method called a support vector machine (SVM). Note that the goal of an automated gating tool is to decide when to turn the beam ON or OFF. We treat ON and OFF as the two classes in our classification problem. We create our labeled training data during the patient setup session by utilizing the reference gating signal, manually determined by a radiation oncologist. We then pre-process these labeled training images and build our SVM prediction model. During treatment delivery, fluoroscopic images are continuously acquired, pre-processed and sent as an input to the SVM. Finally, our SVM model will output the predicted labels as gating signals. We test the proposed technique on five sequences of fluoroscopic images from five lung cancer patients against the reference gating signal as ground truth. We compare the performance of the SVM to our previous template matching method (Cui et al 2007b Phys. Med. Biol. 52 741-55). We find that the SVM is slightly more accurate on average (1-3%) than

  12. Platform Precision Autopilot Overview and Mission Performance

    NASA Technical Reports Server (NTRS)

    Strovers, Brian K.; Lee, James A.

    2009-01-01

    The Platform Precision Autopilot is an instrument landing system-interfaced autopilot system, developed to enable an aircraft to repeatedly fly nearly the same trajectory hours, days, or weeks later. The Platform Precision Autopilot uses a novel design to interface with a NASA Gulfstream III jet by imitating the output of an instrument landing system approach. This technique minimizes, as much as possible, modifications to the baseline Gulfstream III jet and retains the safety features of the aircraft autopilot. The Platform Precision Autopilot requirement is to fly within a 5-m (16.4-ft) radius tube for distances to 200 km (108 nmi) in the presence of light turbulence for at least 90 percent of the time. This capability allows precise repeat-pass interferometry for the Unmanned Aerial Vehicle Synthetic Aperture Radar program, whose primary objective is to develop a miniaturized, polarimetric, L-band synthetic aperture radar. Precise navigation is achieved using an accurate differential global positioning system developed by the Jet Propulsion Laboratory. Flight-testing has demonstrated the ability of the Platform Precision Autopilot to control the aircraft within the specified tolerance greater than 90 percent of the time in the presence of aircraft system noise and nonlinearities, constant pilot throttle adjustments, and light turbulence.

  13. Stereotactic body radiotherapy: current strategies and future development

    PubMed Central

    2016-01-01

    Stereotactic body radiotherapy (SBRT) has emerged as the standard treatment for medically inoperable early-staged non-small cell lung cancer (NSCLC). The local control rate after SBRT is over 90%. Some forms of tumour motion management and image-guided radiation delivery techniques are the prerequisites for fulfilment of its goal to deliver a high radiation dose to the tumour target without overdosing surrounding normal tissues. In this review, the current strategies of tumour motion management will be discussed, followed by an overview of various image-guided radiotherapy (RT) systems and devices available for clinical practice. Besides medically inoperable stage I NSCLC, SBRT has also been widely adopted for treatment of oligometastasis involving the lungs. Its possible applications in various other cancer illnesses are under extensive exploration. The progress of SBRT is critically technology-dependent. With advancement of technology, the ideal of personalised, effective and yet safe SBRT is already on the horizon. PMID:27606082

  14. Stereotactic body radiotherapy: current strategies and future development

    PubMed Central

    2016-01-01

    Stereotactic body radiotherapy (SBRT) has emerged as the standard treatment for medically inoperable early-staged non-small cell lung cancer (NSCLC). The local control rate after SBRT is over 90%. Some forms of tumour motion management and image-guided radiation delivery techniques are the prerequisites for fulfilment of its goal to deliver a high radiation dose to the tumour target without overdosing surrounding normal tissues. In this review, the current strategies of tumour motion management will be discussed, followed by an overview of various image-guided radiotherapy (RT) systems and devices available for clinical practice. Besides medically inoperable stage I NSCLC, SBRT has also been widely adopted for treatment of oligometastasis involving the lungs. Its possible applications in various other cancer illnesses are under extensive exploration. The progress of SBRT is critically technology-dependent. With advancement of technology, the ideal of personalised, effective and yet safe SBRT is already on the horizon.

  15. Stereotactic body radiotherapy: current strategies and future development.

    PubMed

    Tsang, Maverick W K

    2016-07-01

    Stereotactic body radiotherapy (SBRT) has emerged as the standard treatment for medically inoperable early-staged non-small cell lung cancer (NSCLC). The local control rate after SBRT is over 90%. Some forms of tumour motion management and image-guided radiation delivery techniques are the prerequisites for fulfilment of its goal to deliver a high radiation dose to the tumour target without overdosing surrounding normal tissues. In this review, the current strategies of tumour motion management will be discussed, followed by an overview of various image-guided radiotherapy (RT) systems and devices available for clinical practice. Besides medically inoperable stage I NSCLC, SBRT has also been widely adopted for treatment of oligometastasis involving the lungs. Its possible applications in various other cancer illnesses are under extensive exploration. The progress of SBRT is critically technology-dependent. With advancement of technology, the ideal of personalised, effective and yet safe SBRT is already on the horizon. PMID:27606082

  16. [Indications for radiotherapy of rectal cancer].

    PubMed

    Winkler, R; Franke, H D; Dörner, A

    1990-01-01

    Surgery and radiotherapy complete each other in local control of suffering from rectal carcinoma. A radiotherapeutic effect on tumor is secured often. The adjuvant radiotherapy is the most interesting indication, though the most controversial as present too. Analysing all data and with experiences of an own irradiation study we have not any doubt that the indication is qualified for a combined therapy, if the therapeutic aim with priority is to prevent a local relapse as the most frequent and complained of form of therapeutic failure. In this problem, radical irradiation forms, as pre- and accumulating irradiation (sandwich-technique) and after-irradiation, render superior to an exclusive pre irradiation. In result of this study we practise a preirradiation of 25 Gy with immediately following operation and an accumulating irradiation to 50 Gy in proved high-risk-stage (T greater than or equal to 3 NoMo,Tx N1-3 Mo). If there is a primary local incurability by tumor invasion into the neighbourhood a pre-irradiation is done with 50 Gy and following explorative laparatomy within 4-6 weeks. Nearly 60% of these tumors become operable after that. Likewise we practise in unirradiated patients with locoregional tumor recurrence. Also here the extirpation quota of patients with general or systemic incurability, that a stoma construction is required in, we carry out a transanal tumor reduction and irradiate with 50 Gy after that. Especially this therapeutic principle has proved its worth in patients that are past eighty. Here with acceptable living quality and avoiding a stoma construction a survival can be reached that corresponds to the statistical survival of this stage of life. PMID:2101452

  17. SU-E-T-558: An Exploratory RF Pulse Sequence Technique Used to Induce Differential Heating in Tissues Containing Iron Oxide Nanoparticles for a Possible Hyperthermic Adjuvant Effect to Radiotherapy

    SciTech Connect

    Yee, S; Ionascu, D; Wilson, G; Thapa, R

    2014-06-01

    Purpose: In pre-clinical trials of cancer thermotherapy, hyperthermia can be induced by exposing localized super-paramagnetic iron oxide nanoparticles (SPION) to external alternating magnetic fields generated by a solenoid electrical circuit (Zhao et al., Theranostics 2012). Alternatively, an RF pulse technique implemented in a regular MRI system is explored as a possible hyperthermia induction technique . Methods: A new thermal RF pulse sequence was developed using the Philips pulse programming tool for the 3T Ingenia MRI system to provide a sinusoidal magnetic field alternating at the frequency of 1.43 kHz (multiples of sine waves of 0.7 ms period) before each excitation RF pulse for imaging. The duration of each thermal RF pulse routine was approximately 3 min, and the thermal pulse was applied multiple times to a phantom that contains different concentrations (high, medium and low) of SPION samples. After applying the thermal pulse each time, the temperature change was estimated by measuring the phase changes in the T1-weighted inversion-prepared multi-shot turbo field echo (TFE) sequence (TR=5.5 ms, TE=2.7 ms, inversion time=200 ms). Results: The phase values and relative differences among them changed as the number of applied thermal RF pulses increased. After the 5th application of the thermal RF pulse, the relative phase differences increased significantly, suggesting the thermal activation of the SPION. The increase of the phase difference was approximately linear with the SPION concentration. Conclusion: A sinusoidal RF pulse from the MRI system may be utilized to selectively thermally activate tissues containing super-paramagnetic iron oxide nanoparticles.

  18. Adjuvant and Definitive Radiotherapy for Adrenocortical Carcinoma

    SciTech Connect

    Sabolch, Aaron; Feng, Mary; Griffith, Kent; Hammer, Gary; Doherty, Gerard; Ben-Josef, Edgar

    2011-08-01

    Purpose: To evaluate the impact of both adjuvant and definitive radiotherapy on local control of adrenocortical carcinoma. Methods and Materials: Outcomes were analyzed from 58 patients with 64 instances of treatment for adrenocortical carcinoma at the University of Michigan's Multidisciplinary Adrenal Cancer Clinic. Thirty-seven of these instances were for primary disease, whereas the remaining 27 were for recurrent disease. Thirty-eight of the treatment regimens involved surgery alone, 10 surgery plus adjuvant radiotherapy, and 16 definitive radiotherapy for unresectable disease. The effects of patient, tumor, and treatment factors were modeled simultaneously using multiple variable Cox proportional hazards regression for associations with local recurrence, distant recurrence, and overall survival. Results: Local failure occurred in 16 of the 38 instances that involved surgery alone, in 2 of the 10 that consisted of surgery plus adjuvant radiotherapy, and in 1 instance of definitive radiotherapy. Lack of radiotherapy use was associated with 4.7 times the risk of local failure compared with treatment regimens that involved radiotherapy (95% confidence interval, 1.2-19.0; p = 0.030). Conclusions: Radiotherapy seems to significantly lower the risk of local recurrence/progression in patients with adrenocortical carcinoma. Adjuvant radiotherapy should be strongly considered after surgical resection.

  19. Precision flyer initiator

    DOEpatents

    Frank, Alan M.; Lee, Ronald S.

    1998-01-01

    A precision flyer initiator forms a substantially spherical detonation wave in a high explosive (HE) pellet. An explosive driver, such as a detonating cord, a wire bridge circuit or a small explosive, is detonated. A flyer material is sandwiched between the explosive driver and an end of a barrel that contains an inner channel. A projectile or "flyer" is sheared from the flyer material by the force of the explosive driver and projected through the inner channel. The flyer than strikes the HE pellet, which is supported above a second end of the barrel by a spacer ring. A gap or shock decoupling material delays the shock wave in the barrel from predetonating the HE pellet before the flyer. A spherical detonation wave is formed in the HE pellet. Thus, a shock wave traveling through the barrel fails to reach the HE pellet before the flyer strikes the HE pellet. The precision flyer initiator can be used in mining devices, well-drilling devices and anti-tank devices.

  20. Precision flyer initiator

    DOEpatents

    Frank, A.M.; Lee, R.S.

    1998-05-26

    A precision flyer initiator forms a substantially spherical detonation wave in a high explosive (HE) pellet. An explosive driver, such as a detonating cord, a wire bridge circuit or a small explosive, is detonated. A flyer material is sandwiched between the explosive driver and an end of a barrel that contains an inner channel. A projectile or ``flyer`` is sheared from the flyer material by the force of the explosive driver and projected through the inner channel. The flyer than strikes the HE pellet, which is supported above a second end of the barrel by a spacer ring. A gap or shock decoupling material delays the shock wave in the barrel from predetonating the HE pellet before the flyer. A spherical detonation wave is formed in the HE pellet. Thus, a shock wave traveling through the barrel fails to reach the HE pellet before the flyer strikes the HE pellet. The precision flyer initiator can be used in mining devices, well-drilling devices and anti-tank devices. 10 figs.

  1. Precision measurements in supersymmetry

    SciTech Connect

    Feng, J.L.

    1995-05-01

    Supersymmetry is a promising framework in which to explore extensions of the standard model. If candidates for supersymmetric particles are found, precision measurements of their properties will then be of paramount importance. The prospects for such measurements and their implications are the subject of this thesis. If charginos are produced at the LEP II collider, they are likely to be one of the few available supersymmetric signals for many years. The author considers the possibility of determining fundamental supersymmetry parameters in such a scenario. The study is complicated by the dependence of observables on a large number of these parameters. He proposes a straightforward procedure for disentangling these dependences and demonstrate its effectiveness by presenting a number of case studies at representative points in parameter space. In addition to determining the properties of supersymmetric particles, precision measurements may also be used to establish that newly-discovered particles are, in fact, supersymmetric. Supersymmetry predicts quantitative relations among the couplings and masses of superparticles. The author discusses tests of such relations at a future e{sup +}e{sup {minus}} linear collider, using measurements that exploit the availability of polarizable beams. Stringent tests of supersymmetry from chargino production are demonstrated in two representative cases, and fermion and neutralino processes are also discussed.

  2. Precision pointing mechanism for intersatellite optical communication

    NASA Astrophysics Data System (ADS)

    Hicks, T.; O'Sullivan, B.; Russell, J.; Scholl, L.

    1989-09-01

    The SILEX project is an experimental communication system aimed at demonstrating, in orbit, the feasibility of intersatellite optical communications using semiconductor lasers. As part of this project, a precision mechanism has been developed to point the transmitted beam ahead of the current receiving satellite position. This is necessary due to the relative motion of the satellites, the narrow beam, and the finite velocity of light. The design and construction of a prototype of this device is discussed along with measurements of performance. The technique as described can be used in many applications requiring precision beam steering or rotation control.

  3. Data management and radiotherapy.

    PubMed

    Ragan, D P

    1978-12-01

    The realization by radiation therapists that computerized patient information is a valuable resource is slowly evolving. The uses of this data include business, quality control, and research applications. Computer applications in these areas have been limited due to the small numbers of patients and the complexity of radiation therapy problems. Reductions in costs and improved programming techniques over the last decade have made information processing computer systems feasible. Measureable progress has been made in the areas of billing and scheduling systems, improved department data handling systems, and increased participation in cooperative groups with increased data handling capability. A review of costs in terms of dollars, time, and effort supports the use of information processing systems in therapy.

  4. Experience of radioactive needle implants in the Institute of Radiotherapy Hospital Kuala Lumpur.

    PubMed

    Lim, G C; Azhar, M T

    1997-03-01

    This retrospective study of radioactive needle implants at the Institute of Radiotherapy and Oncology, Kuala Lumpur Hospital serves as an audit of our practice as well as a demonstration of the usefulness of this technique of brachytherapy. A variety of tumour sites were implanted, of which over two-thirds involved the tongue and buccal mucosa. Although most of the implants were carried out with radical intent, one-tenth of these implants were performed for palliation. Radiotherapy techniques employed are described. The crude survival ranged from 1 month to 109 months while the disease free interval ranged from 0 months to 102 months.

  5. Radiotherapy dosimetry audit: three decades of improving standards and accuracy in UK clinical practice and trials

    PubMed Central

    Aird, Edwin GA; Bolton, Steve; Miles, Elizabeth A; Nisbet, Andrew; Snaith, Julia AD; Thomas, Russell AS; Venables, Karen; Thwaites, David I

    2015-01-01

    Dosimetry audit plays an important role in the development and safety of radiotherapy. National and large scale audits are able to set, maintain and improve standards, as well as having the potential to identify issues which may cause harm to patients. They can support implementation of complex techniques and can facilitate awareness and understanding of any issues which may exist by benchmarking centres with similar equipment. This review examines the development of dosimetry audit in the UK over the past 30 years, including the involvement of the UK in international audits. A summary of audit results is given, with an overview of methodologies employed and lessons learnt. Recent and forthcoming more complex audits are considered, with a focus on future needs including the arrival of proton therapy in the UK and other advanced techniques such as four-dimensional radiotherapy delivery and verification, stereotactic radiotherapy and MR linear accelerators. The work of the main quality assurance and auditing bodies is discussed, including how they are working together to streamline audit and to ensure that all radiotherapy centres are involved. Undertaking regular external audit motivates centres to modernize and develop techniques and provides assurance, not only that radiotherapy is planned and delivered accurately but also that the patient dose delivered is as prescribed. PMID:26329469

  6. A Kindler syndrome-associated squamous cell carcinoma treated with radiotherapy.

    PubMed

    Caldeira, Ademar; Trinca, William Correia; Flores, Thais Pires; Costa, Andrea Barleze; Brito, Claudio de Sá; Weigert, Karen Loureiro; Matos, Maryana Schwartzhaupt; Nicolini, Carmela; Obst, Fernando Mariano

    2016-01-01

    Kindler syndrome1, 2 is a genetic disorder mainly characterized by increased skin fragility and photosensitivity,3, 4 making the use of treatments based on radiation difficult or even prohibited. Thus, cases reporting Kindler syndrome patients treated with radiotherapy are rare. In this study, we report clinical outcomes and care provided for a rare case of a Kindler syndrome patient submitted to radiotherapy. Diagnosed with squamous cell carcinoma involving the buccal mucosa, the patient was exclusively treated with radiotherapy, with 70 Gy delivered on the PTV with the Volumetric Modulated Arc technique. The patient's reaction regarding control of the lesion is relevant compared to patients not affected by the syndrome. We noticed acute reactions of the skin and buccal mucosa after few radiotherapy sessions, followed by a fast reduction in the tumor volume. The efficacy of radiotherapy along with multidisciplinary actions allowed treatment continuity, leading to a complete control of the lesion and life quality improvement and showed that the use of radiotherapy on Kindler syndrome patients is possible. PMID:27660560

  7. Neurocognitive function after (chemo)-radiotherapy for head and neck cancer.

    PubMed

    Welsh, L C; Dunlop, A W; McGovern, T; McQuaid, D; Dean, J A; Gulliford, S L; Bhide, S A; Harrington, K J; Nutting, C M; Newbold, K L

    2014-12-01

    Radical radiotherapy has a pivotal role in the treatment of head and neck cancer (HNC) and cures a significant proportion of patients while simultaneously sparing critical normal organs. Some patients treated with radical radiotherapy for HNC receive significant radiation doses to large volumes of brain tissue. In fact, intensity-modulated radiotherapy techniques for HNC have been associated with a net increase in irradiated brain volumes. The increasing use of chemoradiotherapy for HNC has additionally exposed this patient population to potential neurotoxicity due to cytotoxic drugs. Patients with HNC may be particularly at risk for adverse late brain effects after (chemo)-radiotherapy, such as impaired neurocognitive function (NCF), as risk factors for the development of HNC, such as smoking, excess alcohol consumption and poor diet, are also associated with impaired NCF. The relatively good survival rates with modern treatment for HNC, and exposure to multiple potentially neurotoxic factors, means that it is important to understand the impact of (chemo)-radiotherapy for HNC on NCF, and to consider what measures can be taken to minimise treatment-related neurotoxicity. Here, we review evidence relating to the late neurotoxicity of radical (chemo)-radiotherapy for HNC, with a focus on studies of NCF in this patient population.

  8. A critical review of recent developments in radiotherapy for non-small cell lung cancer.

    PubMed

    Baker, Sarah; Dahele, Max; Lagerwaard, Frank J; Senan, Suresh

    2016-01-01

    Lung cancer is the leading cause of cancer mortality, and radiotherapy plays a key role in both curative and palliative treatments for this disease. Recent advances include stereotactic ablative radiotherapy (SABR), which is now established as a curative-intent treatment option for patients with peripheral early-stage NSCLC who are medically inoperable, or at high risk for surgical complications. Improved delivery techniques have facilitated studies evaluating the role of SABR in oligometastatic NSCLC, and encouraged the use of high-technology radiotherapy in some palliative settings. Although outcomes in locally advanced NSCLC remain disappointing for many patients, future progress may come about from an improved understanding of disease biology and the development of radiotherapy approaches that further reduce normal tissue irradiation. At the moment, the benefits, if any, of radiotherapy technologies such as proton beam therapy remain unproven. This paper provides a critical review of selected aspects of modern radiotherapy for lung cancer, highlights the current limitations in our understanding and treatment approaches, and discuss future treatment strategies for NSCLC. PMID:27600665

  9. VERO® radiotherapy for low burden cancer: 789 patients with 957 lesions

    PubMed Central

    Orecchia, R; Surgo, A; Muto, M; Ferrari, A; Piperno, G; Gerardi, MA; Comi, S; Garibaldi, C; Ciardo, D; Bazani, A; Golino, F; Pansini, F; Fodor, C; Romanelli, P; Maestri, D; Scroffi, V; Mazza, S; Jereczek-Fossa, BA

    2016-01-01

    Purpose The aim of this retrospective study is to evaluate patient profile, feasibility, and acute toxicity of RadioTherapy (RT) delivered by VERO® in the first 20 months of clinical activity. Methods Inclusion criteria: 1) adult patients; 2) limited volume cancer (M0 or oligometastatic); 3) small extracranial lesions; 4) treatment between April 2012 and December 2013 and 5) written informed consent. Two techniques were employed: intensity modulated radiotherapy (IMRT) and stereotactic body radiotherapy (SBRT). Toxicity was evaluated using Radiation Therapy Oncology Group/European Organisation for Research and Treatment of Cancer (RTOG/EORTC) criteria. Results Between April 2012 and December 2013, 789 consecutive patients (957 lesions) were treated. In 84% of them one lesion was treated and in 16% more than one lesion were treated synchronously/metachronously; first radiotherapy course in 85%, re-irradiation in 13%, and boost in 2% of cases. The treated region included pelvis 46%, thorax 38%, upper abdomen 15%, and neck 1%. Radiotherapy schedules included <5 and >5 fractions in 75% and 25% respectively. All patients completed the planned treatment and an acceptable acute toxicity was observed. Conclusions RT delivered by VERO® was administrated predominantly to thoracic and pelvic lesions (lung and urologic tumours) using hypofractionation. It is a feasible approach for limited burden cancer offering short and well accepted treatment with favourable acute toxicity profile. Further investigation including dose escalation and other available VERO® functionalities such as real-time dynamic tumour tracking is warranted in order to fully evaluate this innovative radiotherapy system. PMID:27729942

  10. [Application of precision medicine in the field of surgery].

    PubMed

    Deng, Aiwen; Xiong, Ribo; Zeng, Canjun

    2015-11-01

    Precision medicine, based on personalized medicine, is to provide personalized and precise treatment. The emergence of 3D printing technique as well as genome sequencing provides an effective way to realize precise and personalized treatment. The application of 3D printing technique in the field of surgery is listed as following: optimize operation plan to achieve precise and personalized surgery; design personalized navigation template; personalized prosthesis production; design of personalized tissue and organ. With the development of tissue engineering, new material technology and genome sequencing and the improvement in related polices and regulations, precision medicine will step on a higher level in the field of surgery. This review introduces the application of precision medicine in the field of surgery.

  11. [Application of precision medicine in the field of surgery].

    PubMed

    Deng, Aiwen; Xiong, Ribo; Zeng, Canjun

    2015-11-01

    Precision medicine, based on personalized medicine, is to provide personalized and precise treatment. The emergence of 3D printing technique as well as genome sequencing provides an effective way to realize precise and personalized treatment. The application of 3D printing technique in the field of surgery is listed as following: optimize operation plan to achieve precise and personalized surgery; design personalized navigation template; personalized prosthesis production; design of personalized tissue and organ. With the development of tissue engineering, new material technology and genome sequencing and the improvement in related polices and regulations, precision medicine will step on a higher level in the field of surgery. This review introduces the application of precision medicine in the field of surgery. PMID:26607096

  12. Precision Joining Center

    NASA Technical Reports Server (NTRS)

    Powell, John W.

    1991-01-01

    The establishment of a Precision Joining Center (PJC) is proposed. The PJC will be a cooperatively operated center with participation from U.S. private industry, the Colorado School of Mines, and various government agencies, including the Department of Energy's Nuclear Weapons Complex (NWC). The PJC's primary mission will be as a training center for advanced joining technologies. This will accomplish the following objectives: (1) it will provide an effective mechanism to transfer joining technology from the NWC to private industry; (2) it will provide a center for testing new joining processes for the NWC and private industry; and (3) it will provide highly trained personnel to support advance joining processes for the NWC and private industry.

  13. Precision spectroscopy of Helium

    SciTech Connect

    Cancio, P.; Giusfredi, G.; Mazzotti, D.; De Natale, P.; De Mauro, C.; Krachmalnicoff, V.; Inguscio, M.

    2005-05-05

    Accurate Quantum-Electrodynamics (QED) tests of the simplest bound three body atomic system are performed by precise laser spectroscopic measurements in atomic Helium. In this paper, we present a review of measurements between triplet states at 1083 nm (23S-23P) and at 389 nm (23S-33P). In 4He, such data have been used to measure the fine structure of the triplet P levels and, then, to determine the fine structure constant when compared with equally accurate theoretical calculations. Moreover, the absolute frequencies of the optical transitions have been used for Lamb-shift determinations of the levels involved with unprecedented accuracy. Finally, determination of the He isotopes nuclear structure and, in particular, a measurement of the nuclear charge radius, are performed by using hyperfine structure and isotope-shift measurements.

  14. Precision laser cutting

    SciTech Connect

    Kautz, D.D.; Anglin, C.D.; Ramos, T.J.

    1990-01-19

    Many materials that are otherwise difficult to fabricate can be cut precisely with lasers. This presentation discusses the advantages and limitations of laser cutting for refractory metals, ceramics, and composites. Cutting in these materials was performed with a 400-W, pulsed Nd:YAG laser. Important cutting parameters such as beam power, pulse waveforms, cutting gases, travel speed, and laser coupling are outlined. The effects of process parameters on cut quality are evaluated. Three variables are used to determine the cut quality: kerf width, slag adherence, and metallurgical characteristics of recast layers and heat-affected zones around the cuts. Results indicate that ductile materials with good coupling characteristics (such as stainless steel alloys and tantalum) cut well. Materials lacking one or both of these properties (such as tungsten and ceramics) are difficult to cut without proper part design, stress relief, or coupling aids. 3 refs., 2 figs., 1 tab.

  15. Precision Spectroscopy of Tellurium

    NASA Astrophysics Data System (ADS)

    Coker, J.; Furneaux, J. E.

    2013-06-01

    Tellurium (Te_2) is widely used as a frequency reference, largely due to the fact that it has an optical transition roughly every 2-3 GHz throughout a large portion of the visible spectrum. Although a standard atlas encompassing over 5200 cm^{-1} already exists [1], Doppler broadening present in that work buries a significant portion of the features [2]. More recent studies of Te_2 exist which do not exhibit Doppler broadening, such as Refs. [3-5], and each covers different parts of the spectrum. This work adds to that knowledge a few hundred transitions in the vicinity of 444 nm, measured with high precision in order to improve measurement of the spectroscopic constants of Te_2's excited states. Using a Fabry Perot cavity in a shock-absorbing, temperature and pressure regulated chamber, locked to a Zeeman stabilized HeNe laser, we measure changes in frequency of our diode laser to ˜1 MHz precision. This diode laser is scanned over 1000 GHz for use in a saturated-absorption spectroscopy cell filled with Te_2 vapor. Details of the cavity and its short and long-term stability are discussed, as well as spectroscopic properties of Te_2. References: J. Cariou, and P. Luc, Atlas du spectre d'absorption de la molecule de tellure, Laboratoire Aime-Cotton (1980). J. Coker et al., J. Opt. Soc. Am. B {28}, 2934 (2011). J. Verges et al., Physica Scripta {25}, 338 (1982). Ph. Courteille et al., Appl. Phys. B {59}, 187 (1994) T.J. Scholl et al., J. Opt. Soc. Am. B {22}, 1128 (2005).

  16. New methods for precision Møller polarimetry

    SciTech Connect

    D. Gaskell; D.G. Meekins; C. Yan

    2007-07-01

    Precision electron beam polarimetry is becoming increasingly important as parity violation experiments attempt to probe the frontiers of the standard model. In the few GeV regime, Møller polarimetry is well suited to high-precision measurements, however is generally limited to use at relatively low beam currents (< 10 μA). We present a novel technique that will enable precision Møller polarimetry at very large currents, up to 100μA.

  17. High bandwidth control of precision motion instrumentation

    NASA Astrophysics Data System (ADS)

    Bristow, Douglas A.; Dong, Jingyan; Alleyne, Andrew G.; Ferreira, Placid; Salapaka, Srinivas

    2008-10-01

    This article presents a high-bandwidth control design suitable for precision motion instrumentation. Iterative learning control (ILC), a feedforward technique that uses previous iterations of the desired trajectory, is used to leverage the repetition that occurs in many tasks, such as raster scanning in microscopy. Two ILC designs are presented. The first design uses the motion system dynamic model to maximize bandwidth. The second design uses a time-varying bandwidth that is particularly useful for nonsmooth trajectories such as raster scanning. Both designs are applied to a multiaxis piezoelectric-actuated flexure system and evaluated on a nonsmooth trajectory. The ILC designs demonstrate significant bandwidth and precision improvements over the feedback controller, and the ability to achieve precision motion control at frequencies higher than multiple system resonances.

  18. High-Precision Computation and Mathematical Physics

    SciTech Connect

    Bailey, David H.; Borwein, Jonathan M.

    2008-11-03

    At the present time, IEEE 64-bit floating-point arithmetic is sufficiently accurate for most scientific applications. However, for a rapidly growing body of important scientific computing applications, a higher level of numeric precision is required. Such calculations are facilitated by high-precision software packages that include high-level language translation modules to minimize the conversion effort. This paper presents a survey of recent applications of these techniques and provides some analysis of their numerical requirements. These applications include supernova simulations, climate modeling, planetary orbit calculations, Coulomb n-body atomic systems, scattering amplitudes of quarks, gluons and bosons, nonlinear oscillator theory, Ising theory, quantum field theory and experimental mathematics. We conclude that high-precision arithmetic facilities are now an indispensable component of a modern large-scale scientific computing environment.

  19. Success Guaranteed: Precision Teaching in the Foreign Language Classroom.

    ERIC Educational Resources Information Center

    Wakefield, Sandra; And Others

    Precision teaching is a useful tool for individualizing drills on a wide variety of foreign language skills. In 5 to 10 minutes per day, students can systematically practice specific skills in need of improvement. The technique has four major components: (1) a precise means of measuring performance continuously, (2) detailed records on behavior…

  20. Precision of a radial basis function neural network tracking method

    NASA Technical Reports Server (NTRS)

    Hanan, J.; Zhou, H.; Chao, T. H.

    2003-01-01

    The precision of a radial basis function (RBF) neural network based tracking method has been assessed against real targets. Precision was assessed against traditionally measured frame-by-frame measurements from the recorded data set. The results show the potential limit for the technique and reveal intricacies associated with empirical data not necessarily observed in simulations.

  1. Radiotherapy in patients with connective tissue diseases.

    PubMed

    Giaj-Levra, Niccolò; Sciascia, Savino; Fiorentino, Alba; Fersino, Sergio; Mazzola, Rosario; Ricchetti, Francesco; Roccatello, Dario; Alongi, Filippo

    2016-03-01

    The decision to offer radiotherapy in patients with connective tissue diseases continues to be challenging. Radiotherapy might trigger the onset of connective tissue diseases by increasing the expression of self-antigens, diminishing regulatory T-cell activity, and activating effectors of innate immunity (dendritic cells) through Toll-like receptor-dependent mechanisms, all of which could potentially lead to breaks of immune tolerance. This potential risk has raised some debate among radiation oncologists about whether patients with connective tissue diseases can tolerate radiation as well as people without connective tissue diseases. Because the number of patients with cancer and connective tissue diseases needing radiotherapy will probably increase due to improvements in medical treatment and longer life expectancy, the issue of interactions between radiotherapy and connective tissue diseases needs to be clearer. In this Review, we discuss available data and evidence for patients with connective tissue diseases treated with radiotherapy.

  2. Management of radiotherapy-induced skin reactions.

    PubMed

    Trueman, Ellen

    2015-04-01

    Radiotherapy is a highly effective cancer treatment that not only offers cure but also excellent palliation of disease related symptoms and complications. Although radiotherapy is primarily an outpatient treatment, delivered within specialist centres, a diverse range of health professionals may be involved in the treatment pathway before, during and after treatment. Radiotherapy can, and does, make a significant contribution to improving a patient's wellbeing through effective symptom management. However, treatment-related side-effects do occur, with an acute skin reaction being one of the most common. It is imperative that radiotherapy-induced skin reactions are correctly assessed and appropriately managed in promoting patient comfort, treatment compliance and enhanced quality of life. This article describes how the use of a recognised assessment tool and evidence-based guidelines can facilitate consistent, high-quality care in the management of radiotherapy-induced skin reactions.

  3. Energy Modulated Photon Radiotherapy: A Monte Carlo Feasibility Study

    PubMed Central

    Zhang, Ying; Feng, Yuanming; Ming, Xin

    2016-01-01

    A novel treatment modality termed energy modulated photon radiotherapy (EMXRT) was investigated. The first step of EMXRT was to determine beam energy for each gantry angle/anatomy configuration from a pool of photon energy beams (2 to 10 MV) with a newly developed energy selector. An inverse planning system using gradient search algorithm was then employed to optimize photon beam intensity of various beam energies based on presimulated Monte Carlo pencil beam dose distributions in patient anatomy. Finally, 3D dose distributions in six patients of different tumor sites were simulated with Monte Carlo method and compared between EMXRT plans and clinical IMRT plans. Compared to current IMRT technique, the proposed EMXRT method could offer a better paradigm for the radiotherapy of lung cancers and pediatric brain tumors in terms of normal tissue sparing and integral dose. For prostate, head and neck, spine, and thyroid lesions, the EMXRT plans were generally comparable to the IMRT plans. Our feasibility study indicated that lower energy (<6 MV) photon beams could be considered in modern radiotherapy treatment planning to achieve a more personalized care for individual patient with dosimetric gains. PMID:26977413

  4. Radioiodine and radiotherapy in the management of thyroid cancers

    SciTech Connect

    Simpson, W.J. )

    1990-06-01

    Radioiodine is an important adjuvant treatment in the management of resectable papillary and follicular thyroid cancers in all patients except those with the best prognostic features. External radiation is also an important adjuvant therapy in these patients, especially those with tumors that extend beyond the thyroid gland and invade the trachea, esophagus, nerves, and blood vessels; it is especially important in treating patients whose tumors do not concentrate radioiodine. Radioiodine may be curative in patients with microscopic distant metastases demonstrated by radioiodine scanning. Even unresectable primary papillary and follicular cancers may be eradicated by combined therapy with radioiodine and radiotherapy. Radioiodine plays no significant role in the treatment of medullary or anaplastic thyroid cancers, but external radiation may eradicate microscopic thyroid bed or nodal disease when persistent disease is indicated by elevated calcitonin levels in medullary thyroid cancer patients. Anaplastic thyroid cancers are usually unresectable and are not eradicated by conventional radiotherapy or by any of the novel radiation techniques, with or without chemotherapy. In all types of thyroid cancer, external radiotherapy may produce beneficial palliative results in patients with distant metastases, but the use of radioiodine should always be explored in papillary and follicular thyroid cancer patients. 30 references.

  5. Stability precision dynamic testing system on artillery

    NASA Astrophysics Data System (ADS)

    Wang, Chunyan; Li, Bo

    2014-12-01

    Dynamic feature of Weapon equipments is one of important performance index for evaluating the performance of the whole weapon system. The construction of target range in our country in fire control dynamic testing is relatively backward; therefore, it has greatly influenced the evaluation on the fire control system. In order to solve this problem, it's urgent to develop a new testing instrument so as to adjust to the armament research process and promote weapon system working more efficiently and thereby meeting the needs of modernization in national defense. This paper proposes a new measure which is used to test the stability precision of the fire control system, and it is installed on the moving base. Using the method, we develop a testing system which can test the stability precision of the fire control system and achieve a high precision results after testing. The innovation of the system is we can receive the image not only by CCD, but our eyes. It also adopts digital image-forming and image processing technique for real-time measurement and storing of the target information; it simultaneously adopts the method adjusting the platform and the corresponding fixture mounted on a sample to measure the stable precision and the precision of corner of stabilizator. In this paper, we make a description on the construction of the system and the idea of the designing of the optical system. Finally, we introduce the actual application of the system and testing results.

  6. Changes in Pulmonary Function After Three-Dimensional Conformal Radiotherapy, Intensity-Modulated Radiotherapy, or Proton Beam Therapy for Non-Small-Cell Lung Cancer

    SciTech Connect

    Lopez Guerra, Jose L.; Gomez, Daniel R.; Zhuang Yan; Levy, Lawrence B.; Eapen, George; Liu, Hongmei; Mohan, Radhe; Komaki, Ritsuko; Cox, James D.; Liao Zhongxing

    2012-07-15

    Purpose: To investigate the extent of change in pulmonary function over time after definitive radiotherapy for non-small-cell lung cancer (NSCLC) with modern techniques and to identify predictors of changes in pulmonary function according to patient, tumor, and treatment characteristics. Patients and Methods: We analyzed 250 patients who had received {>=}60 Gy radio(chemo)therapy for primary NSCLC in 1998-2010 and had undergone pulmonary function tests before and within 1 year after treatment. Ninety-three patients were treated with three-dimensional conformal radiotherapy, 97 with intensity-modulated radiotherapy, and 60 with proton beam therapy. Postradiation pulmonary function test values were evaluated among individual patients compared with the same patient's preradiation value at the following time intervals: 0-4 (T1), 5-8 (T2), and 9-12 (T3) months. Results: Lung diffusing capacity for carbon monoxide (DLCO) was reduced in the majority of patients along the three time periods after radiation, whereas the forced expiratory volume in 1 s per unit of vital capacity (FEV1/VC) showed an increase and decrease after radiation in a similar percentage of patients. There were baseline differences (stage, radiotherapy dose, concurrent chemotherapy) among the radiation technology groups. On multivariate analysis, the following features were associated with larger posttreatment declines in DLCO: pretreatment DLCO, gross tumor volume, lung and heart dosimetric data, and total radiation dose. Only pretreatment DLCO was associated with larger posttreatment declines in FEV1/VC. Conclusions: Lung diffusing capacity for carbon monoxide is reduced in the majority of patients after radiotherapy with modern techniques. Multiple factors, including gross tumor volume, preradiation lung function, and dosimetric parameters, are associated with the DLCO decline. Prospective studies are needed to better understand whether new radiation technology, such as proton beam therapy or

  7. Arrival Metering Precision Study

    NASA Technical Reports Server (NTRS)

    Prevot, Thomas; Mercer, Joey; Homola, Jeffrey; Hunt, Sarah; Gomez, Ashley; Bienert, Nancy; Omar, Faisal; Kraut, Joshua; Brasil, Connie; Wu, Minghong, G.

    2015-01-01

    This paper describes the background, method and results of the Arrival Metering Precision Study (AMPS) conducted in the Airspace Operations Laboratory at NASA Ames Research Center in May 2014. The simulation study measured delivery accuracy, flight efficiency, controller workload, and acceptability of time-based metering operations to a meter fix at the terminal area boundary for different resolution levels of metering delay times displayed to the air traffic controllers and different levels of airspeed information made available to the Time-Based Flow Management (TBFM) system computing the delay. The results show that the resolution of the delay countdown timer (DCT) on the controllers display has a significant impact on the delivery accuracy at the meter fix. Using the 10 seconds rounded and 1 minute rounded DCT resolutions resulted in more accurate delivery than 1 minute truncated and were preferred by the controllers. Using the speeds the controllers entered into the fourth line of the data tag to update the delay computation in TBFM in high and low altitude sectors increased air traffic control efficiency and reduced fuel burn for arriving aircraft during time based metering.

  8. Prompt and Precise Prototyping

    NASA Technical Reports Server (NTRS)

    2003-01-01

    For Sanders Design International, Inc., of Wilton, New Hampshire, every passing second between the concept and realization of a product is essential to succeed in the rapid prototyping industry where amongst heavy competition, faster time-to-market means more business. To separate itself from its rivals, Sanders Design aligned with NASA's Marshall Space Flight Center to develop what it considers to be the most accurate rapid prototyping machine for fabrication of extremely precise tooling prototypes. The company's Rapid ToolMaker System has revolutionized production of high quality, small-to-medium sized prototype patterns and tooling molds with an exactness that surpasses that of computer numerically-controlled (CNC) machining devices. Created with funding and support from Marshall under a Small Business Innovation Research (SBIR) contract, the Rapid ToolMaker is a dual-use technology with applications in both commercial and military aerospace fields. The advanced technology provides cost savings in the design and manufacturing of automotive, electronic, and medical parts, as well as in other areas of consumer interest, such as jewelry and toys. For aerospace applications, the Rapid ToolMaker enables fabrication of high-quality turbine and compressor blades for jet engines on unmanned air vehicles, aircraft, and missiles.

  9. The place of radiotherapy in the management of rectal adenocarcinoma

    SciTech Connect

    Sischy, B.

    1982-12-01

    Surgery remains the mainstay in the management of carcinoma of the rectum. However, in spite of many improvements in techniques and anesthesia over the last fifty years, progress as regards increasing survival has been slow. Local recurrence and systemic disease remain the challenge. It appears that radiation therapy has a very definite role in the reduction of local recurrence. The part of radiation therapy presurgically and postsurgically and the incorporation of both in the 'sandwich technique' is reviewed. The use of chemotherapeutic agents for radiosensitization in an effort to improve the results of radiation therapy is described. Consideration is given to management of rectal carcinoma by radiation alone, in particular the endocavitary technique as a viable option to surgery in selected cases. Additional newer techniques such as intraoperative therapy are explained and the role that cooperative studies may take in answering some of the questions concerning the optimum sequence of radiotherapy and surgery are discussed.

  10. Intensity-modulated radiotherapy in the treatment of gynaecological cancers.

    PubMed

    D'Souza, D P; Rumble, R B; Fyles, A; Yaremko, B; Warde, P

    2012-09-01

    Intensity-modulated radiotherapy (IMRT) is a newer method of radiotherapy that uses intensity-modulated beams that can provide multiple intensity levels for any single beam direction and any single source position allowing concave dose distributions and dose gradients with narrower margins than those possible using conventional methods. IMRT is ideal for treating complex treatment volumes and avoiding close proximity organs at risk that may be dose limiting and provides increased tumour control through an escalated dose and reduces normal tissue complications through organ at risk sparing. Given the potential advantages of IMRT and the availability of IMRT-enabled treatment planning systems and linear accelerators, IMRT has been introduced in a number of disease sites. This systematic review examined the evidence for IMRT in the treatment of gynaecological cancers to quantify the potential benefits of this new technology and to make recommendations for radiation treatment programmes considering adopting this technique. Findings were based on a review of four cohort studies, one of which was prospective, including a total of 619 patients. If reducing acute and chronic toxicity are the main outcomes of interest, then IMRT may be considered over three-dimensional conformal radiotherapy for women with gynaecological cancers; if disease-related outcomes are the main outcomes of interest, there are insufficient data to recommend IMRT over three-dimensional conformal radiotherapy. Future research should focus on prospective multicentre studies reporting on both acute and chronic toxicity as well as survival and recurrence. Dose escalation studies should be carried out to investigate the effect of higher doses on disease.

  11. Intensity-modulated radiotherapy in the treatment of prostate cancer.

    PubMed

    Bauman, G; Rumble, R B; Chen, J; Loblaw, A; Warde, P

    2012-09-01

    Three-dimensional conformal radiotherapy (3DCRT) as the primary treatment for prostate cancer has improved outcomes compared with conventional radiotherapy, but with an associated increase in toxicity due to radiation effects on the bladder and rectum. Intensity-modulated radiotherapy (IMRT) is a newer method of radiotherapy that uses intensity-modulated beams that can provide multiple intensity levels for any single beam direction and any single source position allowing concave dose distributions and dose gradients with narrower margins than those possible using conventional methods. IMRT is ideal for treating complex treatment volumes and avoiding close proximity organs at risk that may be dose limiting and provides increased tumour control through an escalated dose and reduces normal tissue complications through organ at risk sparing. Given the potential advantages of IMRT and the availability of IMRT-enabled treatment planning systems and linear accelerators, IMRT has been introduced in a number of disease sites, including prostate cancer. This systematic review examined the evidence for IMRT in the treatment of prostate cancer in order to quantify the potential benefits of this new technology and to make recommendations for radiation treatment programmes considering adopting this technique. The findings were in favour of recommending IMRT over 3DCRT in the radical treatment of localised prostate cancer where doses greater than 70 Gy are required, based on a review of 11 published reports including 4559 patients. There were insufficient data to recommend IMRT over 3DCRT in the postoperative setting. Future research should examine image-guided IMRT in the post-prostatectomy setting, with altered fractionation, and in combination with hormone and chemotherapy.

  12. Atomically Precise Surface Engineering for Producing Imagers

    NASA Technical Reports Server (NTRS)

    Greer, Frank (Inventor); Jones, Todd J. (Inventor); Nikzad, Shouleh (Inventor); Hoenk, Michael E. (Inventor)

    2015-01-01

    High-quality surface coatings, and techniques combining the atomic precision of molecular beam epitaxy and atomic layer deposition, to fabricate such high-quality surface coatings are provided. The coatings made in accordance with the techniques set forth by the invention are shown to be capable of forming silicon CCD detectors that demonstrate world record detector quantum efficiency (>50%) in the near and far ultraviolet (155 nm-300 nm). The surface engineering approaches used demonstrate the robustness of detector performance that is obtained by achieving atomic level precision at all steps in the coating fabrication process. As proof of concept, the characterization, materials, and exemplary devices produced are presented along with a comparison to other approaches.

  13. Precision medicine in myasthenia graves: begin from the data precision

    PubMed Central

    Hong, Yu; Xie, Yanchen; Hao, Hong-Jun; Sun, Ren-Cheng

    2016-01-01

    Myasthenia gravis (MG) is a prototypic autoimmune disease with overt clinical and immunological heterogeneity. The data of MG is far from individually precise now, partially due to the rarity and heterogeneity of this disease. In this review, we provide the basic insights of MG data precision, including onset age, presenting symptoms, generalization, thymus status, pathogenic autoantibodies, muscle involvement, severity and response to treatment based on references and our previous studies. Subgroups and quantitative traits of MG are discussed in the sense of data precision. The role of disease registries and scientific bases of precise analysis are also discussed to ensure better collection and analysis of MG data. PMID:27127759

  14. Precise Truss Assembly using Commodity Parts and Low Precision Welding

    NASA Technical Reports Server (NTRS)

    Komendera, Erik; Reishus, Dustin; Dorsey, John T.; Doggett, William R.; Correll, Nikolaus

    2013-01-01

    We describe an Intelligent Precision Jigging Robot (IPJR), which allows high precision assembly of commodity parts with low-precision bonding. We present preliminary experiments in 2D that are motivated by the problem of assembling a space telescope optical bench on orbit using inexpensive, stock hardware and low-precision welding. An IPJR is a robot that acts as the precise "jigging", holding parts of a local assembly site in place while an external low precision assembly agent cuts and welds members. The prototype presented in this paper allows an assembly agent (in this case, a human using only low precision tools), to assemble a 2D truss made of wooden dowels to a precision on the order of millimeters over a span on the order of meters. We report the challenges of designing the IPJR hardware and software, analyze the error in assembly, document the test results over several experiments including a large-scale ring structure, and describe future work to implement the IPJR in 3D and with micron precision.

  15. Precise Truss Assembly Using Commodity Parts and Low Precision Welding

    NASA Technical Reports Server (NTRS)

    Komendera, Erik; Reishus, Dustin; Dorsey, John T.; Doggett, W. R.; Correll, Nikolaus

    2014-01-01

    Hardware and software design and system integration for an intelligent precision jigging robot (IPJR), which allows high precision assembly using commodity parts and low-precision bonding, is described. Preliminary 2D experiments that are motivated by the problem of assembling space telescope optical benches and very large manipulators on orbit using inexpensive, stock hardware and low-precision welding are also described. An IPJR is a robot that acts as the precise "jigging", holding parts of a local structure assembly site in place, while an external low precision assembly agent cuts and welds members. The prototype presented in this paper allows an assembly agent (for this prototype, a human using only low precision tools), to assemble a 2D truss made of wooden dowels to a precision on the order of millimeters over a span on the order of meters. The analysis of the assembly error and the results of building a square structure and a ring structure are discussed. Options for future work, to extend the IPJR paradigm to building in 3D structures at micron precision are also summarized.

  16. The predicted relative risk of premature ovarian failure for three radiotherapy modalities in a girl receiving craniospinal irradiation

    NASA Astrophysics Data System (ADS)

    Pérez-Andújar, A.; Newhauser, W. D.; Taddei, P. J.; Mahajan, A.; Howell, R. M.

    2013-05-01

    In girls and young women, irradiation of the ovaries can reduce the number of viable ovarian primordial follicles, which may lead to premature ovarian failure (POF) and subsequently to sterility. One strategy to minimize this late effect is to reduce the radiation dose to the ovaries. A primary means of reducing dose is to choose a radiotherapy technique that avoids irradiating nearby normal tissue; however, the relative risk of POF (RRPOF) due to the various therapeutic options has not been assessed. This study compared the predicted RRPOF after craniospinal proton radiotherapy, conventional photon radiotherapy (CRT) and intensity-modulated photon radiotherapy (IMRT). We calculated the equivalent dose delivered to the ovaries of an 11-year-old girl from therapeutic and stray radiation. We then predicted the percentage of ovarian primordial follicles killed by radiation and used this as a measure of the RRPOF; we also calculated the ratio of the relative risk of POF (RRRPOF) among the three radiotherapies. Proton radiotherapy had a lower RRPOF than either of the other two types. We also tested the sensitivity of the RRRPOF between photon and proton therapies to the anatomic position of the ovaries, i.e., proximity to the treatment field (2 ≤ RRRPOF ≤ 10). We found that CRT and IMRT have higher risks of POF than passive-scattering proton radiotherapy (PRT) does, regardless of uncertainties in the ovarian location. Overall, PRT represents a lower RRPOF over the two other modalities.

  17. Optimal Placement of Irradiation Sources in the Planning of Radiotherapy: Mathematical Models and Methods of Solving.

    PubMed

    Blyuss, Oleg; Koriashkina, Larysa; Kiseleva, Elena; Molchanov, Robert

    2015-01-01

    This paper proposes and analyses a mathematical model for the problem of distribution of a finite number of irradiation sources during radiotherapy in continuous environments to maximize the minimal cumulative effects. A new algorithm based on nondifferentiable optimization techniques has been developed to solve this problem.

  18. Optimal Placement of Irradiation Sources in the Planning of Radiotherapy: Mathematical Models and Methods of Solving

    PubMed Central

    Blyuss, Oleg; Koriashkina, Larysa; Kiseleva, Elena; Molchanov, Robert

    2015-01-01

    This paper proposes and analyses a mathematical model for the problem of distribution of a finite number of irradiation sources during radiotherapy in continuous environments to maximize the minimal cumulative effects. A new algorithm based on nondifferentiable optimization techniques has been developed to solve this problem. PMID:26543492

  19. A set of fortran subroutines for optimizing radiotherapy plans.

    PubMed

    Redpath, A T; Vickery, B L; Wright, D H

    1975-12-01

    Quadratic Programming techniques have been applied to the optimization of radiation field weighting in Radiotherapy planning. Wedge selection has also been included by means of an exhaustive search. The radiation dose at any point in the patient may be constrained to be less than a stated percentage of the tumour dose. The routines have been successfully interfaced into a small computer interactive planning system, but they could represent an even more powerful tool in batch and time sharing systems. Minimum operator intervention is required in their use.

  20. Note: High precision measurements using high frequency gigahertz signals

    NASA Astrophysics Data System (ADS)

    Jin, Aohan; Fu, Siyuan; Sakurai, Atsunori; Liu, Liang; Edman, Fredrik; Pullerits, Tõnu; Öwall, Viktor; Karki, Khadga Jung

    2014-12-01

    Generalized lock-in amplifiers use digital cavities with Q-factors as high as 5 × 108 to measure signals with very high precision. In this Note, we show that generalized lock-in amplifiers can be used to analyze microwave (giga-hertz) signals with a precision of few tens of hertz. We propose that the physical changes in the medium of propagation can be measured precisely by the ultra-high precision measurement of the signal. We provide evidence to our proposition by verifying the Newton's law of cooling by measuring the effect of change in temperature on the phase and amplitude of the signals propagating through two calibrated cables. The technique could be used to precisely measure different physical properties of the propagation medium, for example, the change in length, resistance, etc. Real time implementation of the technique can open up new methodologies of in situ virtual metrology in material design.

  1. Note: High precision measurements using high frequency gigahertz signals.

    PubMed

    Jin, Aohan; Fu, Siyuan; Sakurai, Atsunori; Liu, Liang; Edman, Fredrik; Pullerits, Tõnu; Öwall, Viktor; Karki, Khadga Jung

    2014-12-01

    Generalized lock-in amplifiers use digital cavities with Q-factors as high as 5 × 10(8) to measure signals with very high precision. In this Note, we show that generalized lock-in amplifiers can be used to analyze microwave (giga-hertz) signals with a precision of few tens of hertz. We propose that the physical changes in the medium of propagation can be measured precisely by the ultra-high precision measurement of the signal. We provide evidence to our proposition by verifying the Newton's law of cooling by measuring the effect of change in temperature on the phase and amplitude of the signals propagating through two calibrated cables. The technique could be used to precisely measure different physical properties of the propagation medium, for example, the change in length, resistance, etc. Real time implementation of the technique can open up new methodologies of in situ virtual metrology in material design.

  2. Whole pelvic radiotherapy for prostate cancer using 3D conformal and intensity-modulated radiotherapy

    SciTech Connect

    Ashman, Jonathan B.; Zelefsky, Michael J. . E-mail: zelefskm@mskcc.org; Hunt, Margie S.; Leibel, Steven A.; Fuks, Zvi

    2005-11-01

    Purpose: To investigate the correlations between observed clinical morbidity and dosimetric parameters for whole pelvic radiotherapy (WPRT) for prostate cancer using either three-dimensional conformal radiotherapy (3D-CRT) or intensity-modulated radiotherapy (IMRT). Methods and Materials: Between December 1996 and January 2002, 27 patients with prostate adenocarcinoma were treated with conformal WPRT as part of their definitive treatment. WPRT was delivered with 3D-CRT in 14 patients and with IMRT in 13 patients. For each of the patients treated with IMRT, optimized conventional two-dimensional (2D) and 3D-CRT plans were retrospectively generated for the whole pelvic phase of the treatment. Dose-volume histograms for the bowel, bladder, and rectum were compared for the three techniques. Acute toxicities were evaluated for all 27 patients, and late toxicities were evaluated for 25 patients with sufficient follow-up. Toxicities were scored according to the Radiation Therapy Oncology Group morbidity grading scales. Median follow-up was 30 months. Results: Three-dimensional-CRT resulted in a 40% relative reduction (p < 0.001) in the volume of bowel receiving 45 Gy compared with 2D, and IMRT provided a further 60% reduction relative to 3D-CRT (p < 0.001). Compared with either 2D or 3D-CRT, IMRT reduced the volume of rectum receiving 45 Gy by 90% (p < 0.001). Overall, 9 patients (33%) experienced acute Grade 2 gastrointestinal (GI) toxicity, and only 1 of these patients was treated with IMRT. Antidiarrhea medication was required for 6 patients (22%). However, 5 of these 6 patients also received chemotherapy, and none were treated with IMRT. No Grade 3 or higher acute or late GI toxicities were observed. No cases of late radiation enteritis were observed. Acute and late genitourinary toxicity did not appear significantly increased by the addition of conformal WPRT. Conclusions: Compared to conventional 2D planning, conformal planning for WPRT resulted in significant

  3. Online Adaptive Replanning Method for Prostate Radiotherapy

    SciTech Connect

    Ahunbay, Ergun E.; Peng Cheng; Holmes, Shannon; Godley, Andrew; Lawton, Colleen; Li, X. Allen

    2010-08-01

    Purpose: To report the application of an adaptive replanning technique for prostate cancer radiotherapy (RT), consisting of two steps: (1) segment aperture morphing (SAM), and (2) segment weight optimization (SWO), to account for interfraction variations. Methods and Materials: The new 'SAM+SWO' scheme was retroactively applied to the daily CT images acquired for 10 prostate cancer patients on a linear accelerator and CT-on-Rails combination during the course of RT. Doses generated by the SAM+SWO scheme based on the daily CT images were compared with doses generated after patient repositioning using the current planning target volume (PTV) margin (5 mm, 3 mm toward rectum) and a reduced margin (2 mm), along with full reoptimization scans based on the daily CT images to evaluate dosimetry benefits. Results: For all cases studied, the online replanning method provided significantly better target coverage when compared with repositioning with reduced PTV (13% increase in minimum prostate dose) and improved organ sparing when compared with repositioning with regular PTV (13% decrease in the generalized equivalent uniform dose of rectum). The time required to complete the online replanning process was 6 {+-} 2 minutes. Conclusion: The proposed online replanning method can be used to account for interfraction variations for prostate RT with a practically acceptable time frame (5-10 min) and with significant dosimetric benefits. On the basis of this study, the developed online replanning scheme is being implemented in the clinic for prostate RT.

  4. Automated radiotherapy treatment plan integrity verification

    SciTech Connect

    Yang Deshan; Moore, Kevin L.

    2012-03-15

    Purpose: In our clinic, physicists spend from 15 to 60 min to verify the physical and dosimetric integrity of radiotherapy plans before presentation to radiation oncology physicians for approval. The purpose of this study was to design and implement a framework to automate as many elements of this quality control (QC) step as possible. Methods: A comprehensive computer application was developed to carry out a majority of these verification tasks in the Philips PINNACLE treatment planning system (TPS). This QC tool functions based on both PINNACLE scripting elements and PERL sub-routines. The core of this technique is the method of dynamic scripting, which involves a PERL programming module that is flexible and powerful for treatment plan data handling. Run-time plan data are collected, saved into temporary files, and analyzed against standard values and predefined logical rules. The results were summarized in a hypertext markup language (HTML) report that is displayed to the user. Results: This tool has been in clinical use for over a year. The occurrence frequency of technical problems, which would cause delays and suboptimal plans, has been reduced since clinical implementation. Conclusions: In addition to drastically reducing the set of human-driven logical comparisons, this QC tool also accomplished some tasks that are otherwise either quite laborious or impractical for humans to verify, e.g., identifying conflicts amongst IMRT optimization objectives.

  5. Precision tropopause turbulence measurements

    NASA Astrophysics Data System (ADS)

    Otten, Leonard John, III; Jones, Al; Black, Don G.; Lane, Joshua; Hugo, Ron; Beyer, Jeffery; Roggemann, Michael C.

    2000-11-01

    Limited samples of the turbulence structure in the tropopause suggest that conventional models for atmospheric turbulence may not apply through this portion of the atmosphere. This paper discusses the instrumentation requirements, design and calibration of a balloon borne sensor suite designed to accurately measure the distribution and spectral spatial character of the index of refraction fluctuations through the tropopause. The basis for the data system is a 16 bit dynamic range, high data rate sample and hold instrumentation package. Calibration and characterization of the constant current anemometers used in the measurements show them to have a frequency response greater than 170 Hz at the -3 Db point and sufficient resolution to measure a Cn2 of 1 x 10-19 cm-2/3. A novel technique was developed that integrates the over 20 signals into two time correlated telemetry streams. The entire system has been assembled for a flight in the late summer of 2000.

  6. Estimating the costs of intensity-modulated and 3-dimensional conformal radiotherapy in Ontario

    PubMed Central

    Yong, J.H.E.; McGowan, T.; Redmond-Misner, R.; Beca, J.; Warde, P.; Gutierrez, E.; Hoch, J.S.

    2016-01-01

    Background Radiotherapy is a common treatment for many cancers, but up-to-date estimates of the costs of radiotherapy are lacking. In the present study, we estimated the unit costs of intensity-modulated radiotherapy (imrt) and 3-dimensional conformal radiotherapy (3D-crt) in Ontario. Methods An activity-based costing model was developed to estimate the costs of imrt and 3D-crt in prostate cancer. It included the costs of equipment, staff, and supporting infrastructure. The framework was subsequently adapted to estimate the costs of radiotherapy in breast cancer and head-and-neck cancer. We also tested various scenarios by varying the program maturity and the use of volumetric modulated arc therapy (vmat) alongside imrt. Results From the perspective of the health care system, treating prostate cancer with imrt and 3D-crt respectively cost $12,834 and $12,453 per patient. The cost of radiotherapy ranged from $5,270 to $14,155 and was sensitive to analytic perspective, radiation technique, and disease site. Cases of head-and-neck cancer were the most costly, being driven by treatment complexity and fractions per treatment. Although imrt was more costly than 3D-crt, its cost will likely decline over time as programs mature and vmat is incorporated. Conclusions Our costing model can be modified to estimate the costs of 3D-crt and imrt for various disease sites and settings. The results demonstrate the important role of capital costs in studies of radiotherapy cost from a health system perspective, which our model can accommodate. In addition, our study established the need for future analyses of imrt cost to consider how vmat affects time consumption. PMID:27330359

  7. The Confluence of Stereotactic Ablative Radiotherapy and Tumor Immunology

    PubMed Central

    Finkelstein, Steven Eric; Timmerman, Robert; McBride, William H.; Schaue, Dörthe; Hoffe, Sarah E.; Mantz, Constantine A.; Wilson, George D.

    2011-01-01

    Stereotactic radiation approaches are gaining more popularity for the treatment of intracranial as well as extracranial tumors in organs such as the liver and lung. Technology, rather than biology, is driving the rapid adoption of stereotactic body radiation therapy (SBRT), also known as stereotactic ablative radiotherapy (SABR), in the clinic due to advances in precise positioning and targeting. Dramatic improvements in tumor control have been demonstrated; however, our knowledge of normal tissue biology response mechanisms to large fraction sizes is lacking. Herein, we will discuss how SABR can induce cellular expression of MHC I, adhesion molecules, costimulatory molecules, heat shock proteins, inflammatory mediators, immunomodulatory cytokines, and death receptors to enhance antitumor immune responses. PMID:22162711

  8. Adaptive prediction of respiratory motion for motion compensation radiotherapy

    NASA Astrophysics Data System (ADS)

    Ren, Qing; Nishioka, Seiko; Shirato, Hiroki; Berbeco, Ross I.

    2007-11-01

    One potential application of image-guided radiotherapy is to track the target motion in real time, then deliver adaptive treatment to a dynamic target by dMLC tracking or respiratory gating. However, the existence of a finite time delay (or a system latency) between the image acquisition and the response of the treatment system to a change in tumour position implies that some kind of predictive ability should be included in the real-time dynamic target treatment. If diagnostic x-ray imaging is used for the tracking, the dose given over a whole image-guided radiotherapy course can be significant. Therefore, the x-ray beam used for motion tracking should be triggered at a relatively slow pulse frequency, and an interpolation between predictions can be used to provide a fast tracking rate. This study evaluates the performance of an autoregressive-moving average (ARMA) model based prediction algorithm for reducing tumour localization error due to system latency and slow imaging rate. For this study, we use 3D motion data from ten lung tumour cases where the peak-to-peak motion is greater than 8 mm. Some strongly irregular traces with variation in amplitude and phase were included. To evaluate the prediction accuracy, the standard deviations between predicted and actual motion position are computed for three system latencies (0.1, 0.2 and 0.4 s) at several imaging rates (1.25-10 Hz), and compared against the situation of no prediction. The simulation results indicate that the implementation of the prediction algorithm in real-time target tracking can improve the localization precision for all latencies and imaging rates evaluated. From a common initial setting of model parameters, the predictor can quickly provide an accurate prediction of the position after collecting 20 initial data points. In this retrospective analysis, we calculate the standard deviation of the predicted position from the twentieth position data to the end of the session at 0.1 s interval. For both

  9. Water-equivalent dosimeter array for small-field external beam radiotherapy

    SciTech Connect

    Archambault, Louis; Beddar, A. Sam; Gingras, Luc; Lacroix, Frederic; Roy, Rene; Beaulieu, Luc

    2007-05-15

    With the increasing complexity of dose patterns external beam radiotherapy, there is a great need for new types of dosimeters. We studied the first prototype of a new dosimeter array consisting of water-equivalent plastic scintillating fibers for dose measurement in external beam radiotherapy. We found that this array allows precise, rapid dose evaluation of small photon fields. Starting with a dosimeter system constructed with a single scintillating fiber coupled to a clear optical fiber and read using a charge coupled device camera, we looked at the dosimeter's spatial resolution under small radiation fields and angular dependence. Afterward, we analyzed the camera's light collection to determine the maximum array size that could be built. Finally, we developed a prototype made of ten scintillating fiber detectors to study the behavior and precision of this system in simple dosimetric situations. The scintillation detector showed no measurable angular dependence. Comparison of the scintillation detector and a small-volume ion chamber showed agreement except for 1x1 and 0.5x5.0 cm{sup 2} fields where the output factor measured by the scintillator was higher. The actual field of view of the camera could accept more than 4000 scintillating fiber detectors simultaneously. Evaluation of the dose profile and depth dose curve using a prototype with ten scintillating fiber detectors showed precise, rapid dose evaluation even with placement of more than 75 optical fibers in the field to simulate what would happen in a larger array. We concluded that this scintillating fiber dosimeter array is a valuable tool for dose measurement in external beam radiotherapy. It possesses the qualities necessary to evaluate small and irregular fields with various incident angles such as those encountered in intensity-modulated radiotherapy, radiosurgery, and tomotherapy.

  10. Stereotactic radiosurgery of prostate cancer - dose distribution for VMAT and CyberKnife techniques

    NASA Astrophysics Data System (ADS)

    Ślosarek, Krzysztof; Osewski, Wojciech; Grządziel, Aleksandra; Stąpór-Fudzińska, Małgorzata; Szlag, Marta

    2016-06-01

    New capabilities of biomedical accelerators allow for very precise depositing of the radiation dose and imaging verification during the therapy. In addition, computer algorithms calculating dose distributions are taking into account the increasing number of physical effects. Therefore, administration of high dose fractionation, which is consistent with radiobiology used in oncology, becomes safer and safer. Stereotactic radiosurgery (SRS), which is very precise irradiation with high dose fractionation is increasingly widespread use in radiotherapy of prostate cancer. For this purpose different biomedical accelerators are used. The aim of this study is to compare dose distributions for two techniques: VMAT and CyberKnife. Statistical analysis was performed for the two groups of patients treated by VMAT technique (25 patients), and CyberKnife technique (15 patients). The analysis shows that the dose distributions are comparable, both in the treated area (prostate) and in the critical organs (rectum, urinary bladder, femoral heads). The results show that stereotactic radiosurgery of prostate cancer can be carried out on CyberKnife accelerator as well as on the classical accelerator with the use of VMAT technique.

  11. Radiotherapy systems using proton and carbon beams.

    PubMed

    Jongen, Y

    2008-01-01

    Radiotherapy using proton beams (proton therapy) is rapidly taking an important role among the techniques used in cancer therapy. At the end of 2007, 65.000 patients had been treated for cancer by proton beams in one of the 34 proton therapy facilities operating in the world. When compared to the now classical IMRT, and for a similar dose to the tumor, proton therapy provides a lower integral dose to the healthy organs surrounding the tumor. It is generally accepted that any reduction of the dose to healthy organs reduces the probability of radiation induced complications and of secondary malignancies. Proton therapy equipment can be obtained today from well established medical equipment companies such as Varian, Hitachi or Mitsubishi. But it is a Belgian company, Ion Beam Applications of Louvain-la-Neuve that is the undisputed leader in this market, with more than 55% of the world installed base. In addition to the now classical proton therapy equipments, using synchrotrons or cyclotrons as accelerators, new solutions have been proposed, claiming to be more compact and less expensive. A small startup company from Boston (Still Rivers) is proposing a very high magnetic field, gantry mounted superconducting synchrocyclotron. The us Company Tomotherapy is working to develop a new accelerator concept invented at Lawrence Livermore National Laboratory: the Dielectric Wall Accelerator. Besides proton beam therapy, which is progressively becoming an accepted part of radiation therapy, interest is growing for another form of radiotherapy using ions heavier than protons. Carbon ions have, even to a higher degree, the ballistic selectivity of protons. In addition, carbon ions stopping in the body exhibit a very high Linear Energy Transfer (LET). From this high LET results a very high Relative Biological Efficiency (RBE). This high RBE allows carbon ions to treat efficiently tumors who are radio-resistant and which are difficult to treat with photons or protons. The largest

  12. Volumetric modulated arc therapy for hippocampal-sparing radiotherapy in transformed low-grade glioma: A treatment planning case report.

    PubMed

    Kazda, T; Pospisil, P; Vrzal, M; Sevela, O; Prochazka, T; Jancalek, R; Slampa, P; Laack, N N

    2015-05-01

    Timing of radiotherapy for low-grade gliomas is still controversial due to concerns of possible adverse late effects. Prevention of possible late cognitive sequelae by hippocampal avoidance has shown promise in phase II trials. A patient with progressive low-grade glioma with gradual dedifferentiation into anaplastic astrocytoma is presented along with description of radiotherapy planning process attempting to spare the hippocampus. To our knowledge, this is the first described case using volumetric modulated arc technique to spare hippocampus during transformed low-grade glioma radiotherapy. Using modern intensity-modulated radiotherapy systems it is possible to selectively spare hippocampus together with other standard organs at risk. For selected patients, an attempt to spare hippocampus can be considered as long as other dose characteristics are not significantly compromised compared to standard treatment plan created without any effort to avoid hippocampus. PMID:25835374

  13. Challenges of Using High-Dose Fractionation Radiotherapy in Combination Therapy

    PubMed Central

    Yang, Ying-Chieh; Chiang, Chi-Shiun

    2016-01-01

    Radiotherapy is crucial and substantially contributes to multimodal cancer treatment. The combination of conventional fractionation radiotherapy (CFRT) and systemic therapy has been established as the standard treatment for many cancer types. With advances in linear accelerators and image-guided techniques, high-dose fractionation radiotherapy (HFRT) is increasingly introduced in cancer centers. Clinicians are currently integrating HFRT into multimodality treatment. The shift from CFRT to HFRT reveals different effects on the tumor microenvironment and responses, particularly the immune response. Furthermore, the combination of HFRT and drugs yields different results in different types of tumors or using different treatment schemes. We have reviewed clinical trials and preclinical evidence on the combination of HFRT with drugs, such as chemotherapy, targeted therapy, and immune therapy. Notably, HFRT apparently enhances tumor cell killing and antigen presentation, thus providing opportunities and challenges in treating cancer. PMID:27446811

  14. Photon, light ion, and heavy ion cancer radiotherapy: paths from physics and biology to clinical practice

    PubMed Central

    2015-01-01

    External beam radiotherapy has proven highly effective against a wide range of cancers, and in recent decades there have been rapid advances with traditional photon-based (X-ray) radiotherapy and the development of two particle-based techniques, proton and carbon ion radiotherapy (CIRT). There are major cost differences and both physical and biological differences among these modalities that raise important questions about relative treatment efficacy and cost-effectiveness. Randomized clinical trials (RCTs) represent the gold standard for comparing treatments, but there are significant cost and ethical barriers to their wide-spread use. Meta-analysis of non-coordinated clinical trials data is another tool that can be used to compare treatments, and while this approach has recognized limitations, it is argued that meta-analysis represents an early stage of investigation that can help inform the design of future RCTs. PMID:26734646

  15. Challenges of Using High-Dose Fractionation Radiotherapy in Combination Therapy.

    PubMed

    Yang, Ying-Chieh; Chiang, Chi-Shiun

    2016-01-01

    Radiotherapy is crucial and substantially contributes to multimodal cancer treatment. The combination of conventional fractionation radiotherapy (CFRT) and systemic therapy has been established as the standard treatment for many cancer types. With advances in linear accelerators and image-guided techniques, high-dose fractionation radiotherapy (HFRT) is increasingly introduced in cancer centers. Clinicians are currently integrating HFRT into multimodality treatment. The shift from CFRT to HFRT reveals different effects on the tumor microenvironment and responses, particularly the immune response. Furthermore, the combination of HFRT and drugs yields different results in different types of tumors or using different treatment schemes. We have reviewed clinical trials and preclinical evidence on the combination of HFRT with drugs, such as chemotherapy, targeted therapy, and immune therapy. Notably, HFRT apparently enhances tumor cell killing and antigen presentation, thus providing opportunities and challenges in treating cancer. PMID:27446811

  16. MEASUREMENT AND PRECISION, EXPERIMENTAL VERSION.

    ERIC Educational Resources Information Center

    Harvard Univ., Cambridge, MA. Harvard Project Physics.

    THIS DOCUMENT IS AN EXPERIMENTAL VERSION OF A PROGRAMED TEXT ON MEASUREMENT AND PRECISION. PART I CONTAINS 24 FRAMES DEALING WITH PRECISION AND SIGNIFICANT FIGURES ENCOUNTERED IN VARIOUS MATHEMATICAL COMPUTATIONS AND MEASUREMENTS. PART II BEGINS WITH A BRIEF SECTION ON EXPERIMENTAL DATA, COVERING SUCH POINTS AS (1) ESTABLISHING THE ZERO POINT, (2)…

  17. More Questions on Precision Teaching.

    ERIC Educational Resources Information Center

    Raybould, E. C.; Solity, J. E.

    1988-01-01