Concepts and analysis for precision segmented reflector and feed support structures
NASA Technical Reports Server (NTRS)
Miller, Richard K.; Thomson, Mark W.; Hedgepeth, John M.
1990-01-01
Several issues surrounding the design of a large (20-meter diameter) Precision Segmented Reflector are investigated. The concerns include development of a reflector support truss geometry that will permit deployment into the required doubly-curved shape without significant member strains. For deployable and erectable reflector support trusses, the reduction of structural redundancy was analyzed to achieve reduced weight and complexity for the designs. The stiffness and accuracy of such reduced member trusses, however, were found to be affected to a degree that is unexpected. The Precision Segmented Reflector designs were developed with performance requirements that represent the Reflector application. A novel deployable sunshade concept was developed, and a detailed parametric study of various feed support structural concepts was performed. The results of the detailed study reveal what may be the most desirable feed support structure geometry for Precision Segmented Reflector/Large Deployable Reflector applications.
Precision segmented reflector, figure verification sensor
NASA Technical Reports Server (NTRS)
Manhart, Paul K.; Macenka, Steve A.
1989-01-01
The Precision Segmented Reflector (PSR) program currently under way at the Jet Propulsion Laboratory is a test bed and technology demonstration program designed to develop and study the structural and material technologies required for lightweight, precision segmented reflectors. A Figure Verification Sensor (FVS) which is designed to monitor the active control system of the segments is described, a best fit surface is defined, and an image or wavefront quality of the assembled array of reflecting panels is assessed
Preliminary design approach for large high precision segmented reflectors
NASA Technical Reports Server (NTRS)
Mikulas, Martin M., Jr.; Collins, Timothy J.; Hedgepeth, John M.
1990-01-01
A simplified preliminary design capability for erectable precision segmented reflectors is presented. This design capability permits a rapid assessment of a wide range of reflector parameters as well as new structural concepts and materials. The preliminary design approach was applied to a range of precision reflectors from 10 meters to 100 meters in diameter while considering standard design drivers. The design drivers considered were: weight, fundamental frequency, launch packaging volume, part count, and on-orbit assembly time. For the range of parameters considered, on-orbit assembly time was identified as the major design driver. A family of modular panels is introduced which can significantly reduce the number of reflector parts and the on-orbit assembly time.
A soft actuation system for segmented reflector articulation and isolation
NASA Technical Reports Server (NTRS)
Agronin, Michael L.; Jandura, Louise
1990-01-01
Segmented reflectors have been proposed for space based applications such as optical communication and large diameter telescopes. An actuation system for mirrors in a space based segmented mirror array was developed as part of NASA's Precision Segmented Reflector program. The actuation system, called the Articulated Panel Module (APM), provides 3 degrees of freedom mirror articulation, gives isolation from structural motion, and simplifies space assembly of the mirrors to the reflector backup truss. A breadboard of the APM was built and is described.
Precision segmented reflectors for space applications
NASA Technical Reports Server (NTRS)
Lehman, David H.; Pawlik, Eugene V.; Meinel, Aden B.; Fichter, W. B.
1990-01-01
A project to develop precision segmented reflectors (PSRs) which operate at submillimeter wavelengths is described. The development of a light efficient means for the construction of large-aperture segmented reflecting space-based telescopes is the primary aim of the project. The 20-m Large Deployable Reflector (LDR) telescope is being developed for a survey mission, and it will make use of the reflector panels and materials, structures, and figure control being elaborated for the PSR. The surface accuracy of a 0.9-m PSR panel is shown to be 1.74-micron RMS, the goal of 100-micron RMS positioning accuracy has been achieved for a 4-m erectable structure. A voice-coil actuator for the figure control system architecture demonstrated 1-micron panel control accuracy in a 3-axis evaluation. The PSR technology is demonstrated to be of value for several NASA projects involving optical communications and interferometers as well as missions which make use of large-diameter segmented reflectors.
Precision segmented reflectors for space applications
NASA Astrophysics Data System (ADS)
Lehman, David H.; Pawlik, Eugene V.; Meinel, Aden B.; Fichter, W. B.
1990-08-01
A project to develop precision segmented reflectors (PSRs) which operate at submillimeter wavelengths is described. The development of a light efficient means for the construction of large-aperture segmented reflecting space-based telescopes is the primary aim of the project. The 20-m Large Deployable Reflector (LDR) telescope is being developed for a survey mission, and it will make use of the reflector panels and materials, structures, and figure control being elaborated for the PSR. The surface accuracy of a 0.9-m PSR panel is shown to be 1.74-micron RMS, the goal of 100-micron RMS positioning accuracy has been achieved for a 4-m erectable structure. A voice-coil actuator for the figure control system architecture demonstrated 1-micron panel control accuracy in a 3-axis evaluation. The PSR technology is demonstrated to be of value for several NASA projects involving optical communications and interferometers as well as missions which make use of large-diameter segmented reflectors.
Telescope technology for space-borne submillimeter astronomy
NASA Technical Reports Server (NTRS)
Lehman, David H.; Helou, George
1990-01-01
The Precision Segmented Reflector (PSR) project which is developing telescope technology needed for future spaceborne submillimeter astronomy missions is described. Four major technical areas are under development. Lighweight composite mirrors and associated materials, precision structures and segmented reflector figure sensing and control are discussed. The objectives of the PSR project, approaches, and project technology status, are reported.
The development of composite materials for spacecraft precision reflector panels
NASA Technical Reports Server (NTRS)
Tompkins, Stephen S.; Bowles, David E.; Funk, Joan G.; Towell, Timothy W.; Lavoie, J. A.
1990-01-01
One of the critical technology needs for large precision reflectors required for future astrophysics and optical communications is in the area of structural materials. Therefore, a major area of the Precision Segmented Reflector Program at NASA is to develop lightweight composite reflector panels with durable, space environmentally stable materials which maintain both surface figure and required surface accuracy necessary for space telescope applications. Results from the materials research and development program at NASA Langley Research Center are discussed. Advanced materials that meet the reflector panel requirements are identified. Thermal, mechanical and durability properties of candidate materials after exposure to simulated space environments are compared to the baseline material.
Analysis and testing of a soft actuation system for segmented reflector articulation and isolation
NASA Technical Reports Server (NTRS)
Jandura, Louise; Agronin, Michael L.
1991-01-01
Segmented reflectors have been proposed for space-based applications such as optical communication and large-diameter telescopes. An actuation system for mirrors in a space-based segmented mirror array has been developed as part of the National Aeronautics and Space Administration-sponsored Precision Segmented Reflector program. The actuation system, called the Articulated Panel Module (APM), articulates a mirror panel in 3 degrees of freedom in the submicron regime, isolates the panel from structural motion, and simplifies space assembly of the mirrors to the reflector backup truss. A breadboard of the APM has been built and is described. Three-axis modeling, analysis, and testing of the breadboard is discussed.
Preliminary design considerations for 10 to 40 meter-diameter precision truss reflectors
NASA Technical Reports Server (NTRS)
Mikulas, Martin M., Jr.; Collins, Timothy J.; Hedgepeth, John M.
1990-01-01
A simplified preliminary design capability for erectable precision segmented reflectors is presented. This design capability permits a rapid assessment of a wide range of reflector parameters as well as new structural concepts and materials. The preliminary design approach was applied to a range of precision reflectors from 10 meters to 100 meters in diameter while considering standard design drivers. The design drivers considered were: weight, fundamental frequency, launch packaging volume, part count, and on-orbit assembly time. For the range of parameters considered, on-orbit assembly time was identified as the major design driver. A family of modular panels is introduced which can significantly reduce the number of reflector parts and the on-orbit assembly time.
NASA Technical Reports Server (NTRS)
Heard, Walter L., Jr.; Lake, Mark S.
1993-01-01
A procedure that enables astronauts in extravehicular activity (EVA) to perform efficient on-orbit assembly of large paraboloidal precision reflectors is presented. The procedure and associated hardware are verified in simulated Og (neutral buoyancy) assembly tests of a 14 m diameter precision reflector mockup. The test article represents a precision reflector having a reflective surface which is segmented into 37 individual panels. The panels are supported on a doubly curved tetrahedral truss consisting of 315 struts. The entire truss and seven reflector panels were assembled in three hours and seven minutes by two pressure-suited test subjects. The average time to attach a panel was two minutes and three seconds. These efficient assembly times were achieved because all hardware and assembly procedures were designed to be compatible with EVA assembly capabilities.
The precision segmented reflectors: Moderate mission figure control subsystem
NASA Technical Reports Server (NTRS)
Sevaston, G.; Redding, D.; Lau, K.; Breckenridge, W.; Levine, B.; Nerheim, N.; Sirlin, S.; Kadogawa, H.
1991-01-01
A system concept for a space based segmented reflector telescope figure control subsystem is described. The concept employs a two phase architecture in which figure initialization and figure maintenance are independent functions. Figure initialization is accomplished by image sharpening using natural reference targets. Figure maintenance is performed by monitoring the relative positions and alignments of the telescope components using an optical truss. Actuation is achieved using precision positioners. Computer simulation results of figure initialization by pairwise segment coalignment/cophasing and simulated annealing are presented along with figure maintenance results using a wavefront error regulation algorithm. Both functions are shown to perform at acceptable levels for the class of submillimeter telescopes that are serving as the focus of this technology development effort. Component breadboard work as well as plans for a system testbed are discussed.
Active wavefront control challenges of the NASA Large Deployable Reflector (LDR)
NASA Technical Reports Server (NTRS)
Meinel, Aden B.; Meinel, Marjorie P.; Manhart, Paul K.; Hochberg, Eric B.
1989-01-01
The 20-m Large Deployable Reflector will have a segmented primary mirror. Achieving diffraction-limited performance at 50 microns requires correction for the errors of tilt and piston of the primary mirror. This correction can be obtained in two ways, the use of an active primary or a correction at a demagnified pupil of the primary. A critical requirement is the means for measurement of the wavefront error and maintaining phasing during the observation of objects that may be too faint for determining the error. Absolute phasing can only be determined using a cooperative source. Maintenance of phasing can be done with an on-board source. A number of options are being explored as discussed below. The many issues concerning the assessment and control of an active segmented mirror will be addressed with an early construction of the Precision Segmented Reflector testbed.
Active wavefront control challenges of the NASA Large Deployable Reflector (LDR)
NASA Astrophysics Data System (ADS)
Meinel, Aden B.; Meinel, Marjorie P.; Manhart, Paul K.; Hochberg, Eric B.
1989-09-01
The 20-m Large Deployable Reflector will have a segmented primary mirror. Achieving diffraction-limited performance at 50 microns requires correction for the errors of tilt and piston of the primary mirror. This correction can be obtained in two ways, the use of an active primary or a correction at a demagnified pupil of the primary. A critical requirement is the means for measurement of the wavefront error and maintaining phasing during the observation of objects that may be too faint for determining the error. Absolute phasing can only be determined using a cooperative source. Maintenance of phasing can be done with an on-board source. A number of options are being explored as discussed below. The many issues concerning the assessment and control of an active segmented mirror will be addressed with an early construction of the Precision Segmented Reflector testbed.
LDR segmented mirror technology assessment study
NASA Technical Reports Server (NTRS)
Krim, M.; Russo, J.
1983-01-01
In the mid-1990s, NASA plans to orbit a giant telescope, whose aperture may be as great as 30 meters, for infrared and sub-millimeter astronomy. Its primary mirror will be deployed or assembled in orbit from a mosaic of possibly hundreds of mirror segments. Each segment must be shaped to precise curvature tolerances so that diffraction-limited performance will be achieved at 30 micron (nominal operating wavelength). All panels must lie within 1 micron on a theoretical surface described by the optical precipitation of the telescope's primary mirror. To attain diffraction-limited performance, the issues of alignment and/or position sensing, position control of micron tolerances, and structural, thermal, and mechanical considerations for stowing, deploying, and erecting the reflector must be resolved. Radius of curvature precision influences panel size, shape, material, and type of construction. Two superior material choices emerged: fused quartz (sufficiently homogeneous with respect to thermal expansivity to permit a thin shell substrate to be drape molded between graphite dies to a precise enough off-axis asphere for optical finishing on the as-received a segment) and a Pyrex or Duran (less expensive than quartz and formable at lower temperatures). The optimal reflector panel size is between 1-1/2 and 2 meters. Making one, two-meter mirror every two weeks requires new approaches to manufacturing off-axis parabolic or aspheric segments (drape molding on precision dies and subsequent finishing on a nonrotationally symmetric dependent machine). Proof-of-concept developmental programs were identified to prove the feasibility of the materials and manufacturing ideas.
Large deployable antenna program. Phase 1: Technology assessment and mission architecture
NASA Technical Reports Server (NTRS)
Rogers, Craig A.; Stutzman, Warren L.
1991-01-01
The program was initiated to investigate the availability of critical large deployable antenna technologies which would enable microwave remote sensing missions from geostationary orbits as required for Mission to Planet Earth. Program goals for the large antenna were: 40-meter diameter, offset-fed paraboloid, and surface precision of 0.1 mm rms. Phase 1 goals were: to review the state-of-the-art for large, precise, wide-scanning radiometers up to 60 GHz; to assess critical technologies necessary for selected concepts; to develop mission architecture for these concepts; and to evaluate generic technologies to support the large deployable reflectors necessary for these missions. Selected results of the study show that deployable reflectors using furlable segments are limited by surface precision goals to 12 meters in diameter, current launch vehicles can place in geostationary only a 20-meter class antenna, and conceptual designs using stiff reflectors are possible with areal densities of 2.4 deg/sq m.
Optical Metrology for the Segmented Optics on the Constellation-X Spectroscopy X-Ray Telescope
NASA Technical Reports Server (NTRS)
Content, David; Colella, David; Fleetwood, Charles; Hadjimichael, Theo; Lehan, John; McMann, Joseph; Reid, Paul; Saha, Timo; Wright, Geraldine; Zhang, William
2004-01-01
We present the metrology requirements and metrology implementation necessary to prove out the reflector technology for the Constellation X(C-X) spectroscopy X-ray telescope (SXT). This segmented, 1.6m diameter highly nested Wolter-1 telescope presents many metrology and alignment challenges. In particular, these mirrors have a stringent imaging error budget as compared to their intrinsic stiffness; This is required for Constellation-X to have sufficient effective area with the weight requirement. This has implications for the metrology that can be used. A variety of contract and noncontact optical profiling and interferometric methods are combined to test the formed glass substrates before replication and the replicated reflector segments.The reflectors are tested both stand-alone and in-situ in an alignment tower.Some of these methods have not been used on prior X-ray telescopes and some are feasible only because of the segmented approach used on the SXT. Methods discussed include high precision coordinate measurement machines using very low force or optical probe axial interferometric profiling azimuthal circularity profiling and use of advanced null optics such as conical computer generated hologram (CGHs).
Optimal actuator placement in adaptive precision trusses
NASA Technical Reports Server (NTRS)
Baycan, C. M.; Utku, S.; Das, S. K.; Wada, B. K.
1992-01-01
Actuator placement in adaptive truss structures is to cater to two needs: displacement control of precision points and preloading the elements to overcome joint slackness. Due to technological and financial considerations, the number of actuators available is much less than the degrees of freedom of precision points to be controlled and the degree of redundancy of the structure. An approach for optimal actuator location is outlined. Test cases to demonstrate the effectiveness of the scheme are applied to the Precision Segmented Reflector Truss.
Thermal-mechanical behavior of high precision composite mirrors
NASA Technical Reports Server (NTRS)
Kuo, C. P.; Lou, M. C.; Rapp, D.
1993-01-01
Composite mirror panels were designed, constructed, analyzed, and tested in the framework of a NASA precision segmented reflector task. The deformations of the reflector surface during the exposure to space enviroments were predicted using a finite element model. The composite mirror panels have graphite-epoxy or graphite-cyanate facesheets, separated by an aluminum or a composite honeycomb core. It is pointed out that in order to carry out detailed modeling of composite mirrors with high accuracy, it is necessary to have temperature dependent properties of the materials involved and the type and magnitude of manufacturing errors and material nonuniformities. The structural modeling and analysis efforts addressed the impact of key design and materials parameters on the performance of mirrors.
A wavefront compensation approach to segmented mirror figure control
NASA Technical Reports Server (NTRS)
Redding, David; Breckenridge, Bill; Sevaston, George; Lau, Ken
1991-01-01
We consider the 'figure-control' problem for a spaceborn sub-millimeter wave telescope, the Precision Segmented Reflector Project Focus Mission Telescope. We show that performance of any figure control system is subject to limits on the controllability and observability of the quality of the wavefront. We present a wavefront-compensation method for the Focus Mission Telescope which uses mirror-figure sensors and three-axis segment actuator to directly minimize wavefront errors due to segment position errors. This approach shows significantly better performance when compared with a panel-state-compensation approach.
NASA Technical Reports Server (NTRS)
Lake, Mark S.; Heard, Walter L., Jr.; Watson, Judith J.; Collins, Timothy J.
2000-01-01
A detailed procedure is presented that enables astronauts in extravehicular activity (EVA) to efficiently assemble and repair large (i.e., greater than 10m-diameter) segmented reflectors, supported by a truss, for space-based optical or radio-frequency science instruments. The procedure, estimated timelines, and reflector hardware performance are verified in simulated 0-g (neutral buoyancy) assembly tests of a 14m-diameter, offset-focus, reflector test article. The test article includes a near-flight-quality, 315-member, doubly curved support truss and 7 mockup reflector panels (roughly 2m in diameter) representing a portion of the 37 total panels needed to fully populate the reflector. Data from the tests indicate that a flight version of the design (including all reflector panels) could be assembled in less than 5 hours - less than the 6 hours normally permitted for a single EVA. This assembly rate essentially matches pre-test predictions that were based on a vast amount of historical data on EVA assembly of structures produced by NASA Langley Research Center. Furthermore, procedures and a tool for the removal and replacement of a damaged reflector panel were evaluated, and it was shown that EVA repair of this type of reflector is feasible with the use of appropriate EVA crew aids.
Active member vibration control for a 4 meter primary reflector support structure
NASA Technical Reports Server (NTRS)
Umland, J. W.; Chen, G.-S.
1992-01-01
The design and testing of a new low voltage piezoelectric active member with integrated load cell and displacement sensor is described. This active member is intended for micron level vibration and structural shape control of the Precision Segmented Reflector test-bed. The test-bed is an erectable 4 meter diameter backup support truss for a 2.4 meter focal length parabolic reflector. Active damping of the test-bed is then demonstrated using the newly developed active members. The control technique used is referred to as bridge feedback. With this technique the internal sensors are used in a local feedback loop to match the active member's input impedance to the structure's load impedance, which then maximizes vibrational energy dissipation. The active damping effectiveness is then evaluated from closed loop frequency responses.
Introduction to the report of the Asilomar 3 LDR workshop
NASA Technical Reports Server (NTRS)
1988-01-01
The Large Deployable Reflector (LDR) is a system concept for a dedicated, orbiting, submillimeter, far infrared, astronomical observatory. The purpose of the 3rd conference was to review the latest system concepts for LDR, update the science requirements, and assess the status of the technology development that was recommended at Asilomar 2. The technology development assessment included ongoing work within NASA, the DOD, and various universities. Problem areas and technologies not being adequately addressed were to be identified and prioritized. In particular, the CSTI program in Sensors and Precision Segmented Reflectors was reviewed for appropriateness and progress relative to LDR technology needs.
The versatility of a truss mounted mobile transporter for in-space construction
NASA Technical Reports Server (NTRS)
Bush, Harold G.; Lake, Mark S.; Watson, Judith J.; Heard, Walter L., Jr.
1988-01-01
The Mobile Transporter (MT) evolution from early erectable structures assembly activities is detailed. The MT operational features which are required to support astronauts performing on-orbit structure construction or spacecraft assembly functions are presented and discussed. Use of the MT to perform a variety of assembly functions is presented. Estimated EVA assembly times for a precision segmented reflector approximately 20 m in diameter are presented. The EVA/MT technique under study for construction of the reflector (and the entire spacecraft) is illustrated. Finally, the current status of development activities and test results involving the MT and Space Station structural assembly are presented.
Micron Accuracy Deployment Experiment (MADE), phase A. Volume 1
NASA Technical Reports Server (NTRS)
Peterson, Lee D.; Lake, Mark S.
1995-01-01
This report documents a Phase A In-STEP flight experiment development effort. The objective of the experiment is to deploy a portion of a segmented reflector on the Shuttle and study its micron-level mechanics. Ground test data are presented which projects that the on-orbit precision of the test article should be approximately 5 microns. Extensive hardware configuration development information is also provided.
NASA Technical Reports Server (NTRS)
Fox, T. A.
1973-01-01
An experimental reflector reactivity study was made with a compact cylindrical reactor using a uranyl fluoride - water fuel solution. The reactor was axially unreflected and radially reflected with segments of molybdenum. The reflector segments were displaced incrementally in both the axial and radial dimensions, and the shutdown of each configuration was measured by using the pulsed-neutron source technique. The reactivity effects for axial and radial displacement of reflector segments are tabulated separately and compared. The experiments provide data for control-system studies of compact-space-power-reactor concepts.
Structural and thermal testing of lightweight reflector panels
NASA Technical Reports Server (NTRS)
Mcgregor, J.; Helms, R.; Hill, T.
1992-01-01
The paper describes the test facility developed for testing large lightweight reflective panels with very accurate and stable surfaces, such as the mirror panels of composite construction developed for the NASA's Precision Segmented Reflector (PSR). Special attention is given to the panel construction and the special problems posed by the characteristics of these panels; the design of the Optical/Thermal Vacuum test facility for structural and thermal testing, developed at the U.S. AFPL; and the testing procedure. The results of the PSR panel test program to date are presented. The test data showed that the analytical approaches used for the panel design and for the prediction of the on-orbit panel behavior were adequate.
NASA Astrophysics Data System (ADS)
Valsecchi, G.; Banham, R.; Bianucci, G.; Eder, J.; Ghislanzoni, R.; Ritucci, A.; Terraneo, M.; Zocchi, F. E.; Smith, D.; Gale, D.; Hughes, D.
2016-07-01
The Large Millimeter Telescope (LMT) Alfonso Serrano is a 50 m diameter single-dish radio telescope optimized for astronomical observations at wavelengths of about a millimeter. Built and operated by the Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE) in collaboration with the University of Massachusetts (UMASS), the telescope is located at the 4600 m summit of volcano Sierra Negra, Mexico. Anticipating the completion of the main reflector, currently operating over a 32 m subaperture, INAOE has contracted Media Lario for the design and manufacturing of a new 2.63 m subreflector that will enable higher efficiency astronomical observations with the entire main reflector surface. The new subreflector manufactured by Media Lario is segmented in 9 smaller panels, one central dome and eight identical petals, assembled and precisely aligned on a steel truss structure that will be connected to the hexapod mounted on the tetrapod head. Each panel was fabricated with Media Lario's unique laminated technology consisting of front and rear Nickel skins, electroformed from precise molds and bonded to a lightweight Aluminum honeycomb core. The reflecting surface of each panel was given a thin galvanic Rhodium coating that ensures that the reflector survives the harsh environmental conditions at the summit of Sierra Negra during the 30 year lifetime of the telescope. Finally, the 2.63 m subreflector produced by Media Lario was qualified for typical cold night through hot day observation conditions with a maximum RMS error of 24.8 μm, which meets INAOE's requirements.
A figure control sensor for the Large Deployable Reflector (LDR)
NASA Technical Reports Server (NTRS)
Bartman, R.; Dubovitsky, S.
1988-01-01
A sensing and control system is required to maintain high optical figure quality in a segmented reflector. Upon detecting a deviation of the segmented surface from its ideal form, the system drives segment mounted actuators to realign the individual segments and thereby return the surface to its intended figure. When the reflector is in use, a set of figure sensors will determine positions of a number of points on the back surface of each of the reflector's segments, each sensor being assigned to a single point. By measuring the positional deviations of these points from previously established nominal values, the figure sensors provide the control system with the information required to maintain the reflector's optical figure. The optical lever, multiple wavelength interferometer, and electronic capacitive sensor, the most promising technologies for the development of the figure sensor, are illustrated. It is concluded that to select a particular implementation of the figure sensors, performance requirement will be refined and relevant technologies investigated further.
LDR structural experiment definition
NASA Technical Reports Server (NTRS)
Russell, Richard A.; Gates, Richard M.
1988-01-01
A study was performed to develop the definition of a structural flight experiment for a large precision segmented reflector that would utilize the Space Station. The objective of the study was to use the Large Deployable Reflector (LDR) baseline configuration for focusing on experiment definition activity which would identify the Space Station accommodation requirements and interface constraints. Results of the study defined three Space Station based experiments to demonstrate the technologies needed for an LDR type structure. The basic experiment configurations are the same as the JPL baseline except that the primary mirror truss is 10 meters in diameter instead of 20. The primary objectives of the first experiment are to construct the primary mirror support truss and to determine its structural and thermal characteristics. Addition of the optical bench, thermal shield and primary mirror segments and alignment of the optical components occur on the second experiment. The structure will then be moved to the payload pointing system for pointing, optical control and scientific optical measurement for the third experiment.
Deployment simulation of a deployable reflector for earth science application
NASA Astrophysics Data System (ADS)
Wang, Xiaokai; Fang, Houfei; Cai, Bei; Ma, Xiaofei
2015-10-01
A novel mission concept namely NEXRAD-In-Space (NIS) has been developed for monitoring hurricanes, cyclones and other severe storms from a geostationary orbit. It requires a space deployable 35-meter diameter Ka-band (35 GHz) reflector. NIS can measure hurricane precipitation intensity, dynamics and its life cycle. These information is necessary for predicting the track, intensity, rain rate and hurricane-induced floods. To meet the requirements of the radar system, a Membrane Shell Reflector Segment (MSRS) reflector technology has been developed and several technologies have been evaluated. However, the deployment analysis of this large size and high-precision reflector has not been investigated. For a pre-studies, a scaled tetrahedral truss reflector with spring driving deployment system has been made and tested, deployment dynamics analysis of this scaled reflector has been performed using ADAMS to understand its deployment dynamic behaviors. Eliminating the redundant constraints in the reflector system with a large number of moving parts is a challenging issue. A primitive joint and flexible struts were introduced to the analytical model and they can effectively eliminate over constraints of the model. By using a high-speed camera and a force transducer, a deployment experiment of a single-bay tetrahedral module has been conducted. With the tested results, an optimization process has been performed by using the parameter optimization module of ADAMS to obtain the parameters of the analytical model. These parameters were incorporated to the analytical model of the whole reflector. It is observed from the analysis results that the deployment process of the reflector with a fixed boundary experiences three stages. These stages are rapid deployment stage, slow deployment stage and impact stage. The insight of the force peak distributions of the reflector can help the optimization design of the structure.
Lamp bulb with integral reflector
Levin, Izrail; Shanks, Bruce; Sumner, Thomas L.
2001-01-01
An improved electrodeless discharge lamp bulb includes an integral ceramic reflector as a portion of the bulb envelope. The bulb envelope further includes two pieces, a reflector portion or segment is cast quartz ceramic and a light transmissive portion is a clear fused silica. In one embodiment, the cast quartz ceramic segment includes heat sink fins or stubs providing an increased outside surface area to dissipate internal heat. In another embodiment, the quartz ceramic segment includes an outside surface fused to eliminate gas permeation by polishing.
A new fabrication method for precision antenna reflectors for space flight and ground test
NASA Technical Reports Server (NTRS)
Sharp, G. Richard; Wanhainen, Joyce S.; Ketelsen, Dean A.
1991-01-01
Communications satellites are using increasingly higher frequencies that require increasingly precise antenna reflectors for use in space. Traditional industry fabrication methods for space antenna reflectors employ successive modeling techniques using high- and low-temperature molds for reflector face sheets and then a final fit-up of the completed honeycomb sandwich panel antenna reflector to a master pattern. However, as new missions are planned at much higher frequencies, greater accuracies will be necessary than are achievable using these present methods. A new approach for the fabrication of ground-test solid-surface antenna reflectors is to build a rigid support structure with an easy-to-machine surface. This surface is subsequently machined to the desired reflector contour and coated with a radio-frequency-reflective surface. This method was used to fabricate a 2.7-m-diameter ground-test antenna reflector to an accuracy of better than 0.013 mm (0.0005 in.) rms. A similar reflector for use on spacecraft would be constructed in a similar manner but with space-qualified materials. The design, analysis, and fabrication of the 2.7-m-diameter precision antenna reflector for antenna ground tests and the extension of this technology to precision, space-based antenna reflectors are described.
Bokeh mirror alignment for Cherenkov telescopes
NASA Astrophysics Data System (ADS)
Ahnen, M. L.; Baack, D.; Balbo, M.; Bergmann, M.; Biland, A.; Blank, M.; Bretz, T.; Bruegge, K. A.; Buss, J.; Domke, M.; Dorner, D.; Einecke, S.; Hempfling, C.; Hildebrand, D.; Hughes, G.; Lustermann, W.; Mannheim, K.; Mueller, S. A.; Neise, D.; Neronov, A.; Noethe, M.; Overkemping, A.-K.; Paravac, A.; Pauss, F.; Rhode, W.; Shukla, A.; Temme, F.; Thaele, J.; Toscano, S.; Vogler, P.; Walter, R.; Wilbert, A.
2016-09-01
Imaging Atmospheric Cherenkov Telescopes (IACTs) need imaging optics with large apertures and high image intensities to map the faint Cherenkov light emitted from cosmic ray air showers onto their image sensors. Segmented reflectors fulfill these needs, and composed from mass production mirror facets they are inexpensive and lightweight. However, as the overall image is a superposition of the individual facet images, alignment remains a challenge. Here we present a simple, yet extendable method, to align a segmented reflector using its Bokeh. Bokeh alig nment does not need a star or good weather nights but can be done even during daytime. Bokeh alignment optimizes the facet orientations by comparing the segmented reflectors Bokeh to a predefined template. The optimal Bokeh template is highly constricted by the reflector's aperture and is easy accessible. The Bokeh is observed using the out of focus image of a near by point like light source in a distance of about 10 focal lengths. We introduce Bokeh alignment on segmented reflectors and demonstrate it on the First Geiger-mode Avalanche Cherenkov Telescope (FACT) on La Palma, Spain.
LDR structural experiment definition
NASA Technical Reports Server (NTRS)
Russell, R. A.
1988-01-01
A system study to develop the definition of a structural flight experiment for a large precision segmented reflector on the Space Station was accomplished by the Boeing Aerospace Company for NASA's Langley Research Center. The objective of the study was to use a Large Deployable Reflector (LDR) baseline configuration as the basis for focusing an experiment definition, so that the resulting accommodation requirements and interface constraints could be used as part of the mission requirements data base for Space Station. The primary objectives of the first experiment are to construct the primary mirror support truss and to determine its structural and thermal characteristics. Addition of an optical bench, thermal shield and primary mirror segments, and alignment of the optical components, would occur on a second experiment. The structure would then be moved to the payload point system for pointing, optical control, and scientific optical measurement for a third experiment. Experiment 1 will deploy the primary support truss while it is attached to the instrument module structure. The ability to adjust the mirror attachment points and to attach several dummy primary mirror segments with a robotic system will also be demonstrated. Experiment 2 will be achieved by adding new components and equipment to experiment one. Experiment 3 will demonstrate advanced control strategies, active adjustment of the primary mirror alignment, and technologies associated with optical sensing.
Structural Analysis and Testing of an Erectable Truss for Precision Segmented Reflector Application
NASA Technical Reports Server (NTRS)
Collins, Timothy J.; Fichter, W. B.; Adams, Richard R.; Javeed, Mehzad
1995-01-01
This paper describes analysis and test results obtained at Langley Research Center (LaRC) on a doubly curved testbed support truss for precision reflector applications. Descriptions of test procedures and experimental results that expand upon previous investigations are presented. A brief description of the truss is given, and finite-element-analysis models are described. Static-load and vibration test procedures are discussed, and experimental results are shown to be repeatable and in generally good agreement with linear finite-element predictions. Truss structural performance (as determined by static deflection and vibration testing) is shown to be predictable and very close to linear. Vibration test results presented herein confirm that an anomalous mode observed during initial testing was due to the flexibility of the truss support system. Photogrammetric surveys with two 131-in. reference scales show that the root-mean-square (rms) truss-surface accuracy is about 0.0025 in. Photogrammetric measurements also indicate that the truss coefficient of thermal expansion (CTE) is in good agreement with that predicted by analysis. A detailed description of the photogrammetric procedures is included as an appendix.
The Use of Decentralized Control in the Design of a Large Segmented Space Reflector
NASA Technical Reports Server (NTRS)
Ryaciotaki-Boussalis, Helen; Mirmirani, Maj; Rad, Khosrow; Morales, Mauricio; Velazquez, Efrain; Chassiakos, Anastasios; Luzardo, Jose-Alberto
1997-01-01
The 3-dimensional model for a segmented reflector telescope is developed using finite element techniques. The structure is decomposed into six subsystems. System control design using neural networks is performed. Performance evaluation is demonstrated via simulation using PRO-MATLAB and SIMULINK.
Active telescope systems; Proceedings of the Meeting, Orlando, FL, Mar. 28-31, 1989
NASA Astrophysics Data System (ADS)
Roddier, Francois J.
1989-09-01
The present conference discusses topics in the fundamental limitations of adaptive optics in astronomical telescopy, integrated telescope systems designs, novel components for adaptive telescopes, active interferometry, flexible-mirror and segmented-mirror telescopes, and various aspects of the NASA Precision Segmented Reflectors Program. Attention is given to near-ground atmospheric turbulence effects, a near-IR astronomical adaptive optics system, a simplified wavefront sensor for adaptive mirror control, excimer laser guide star techniques for adaptive astronomical imaging, active systems in long-baseline interferometry, mirror figure control primitives for a 10-m primary mirror, and closed-loop active optics for large flexible mirrors subject to wind buffet deformations. Also discussed are active pupil geometry control for a phased-array telescope, extremely lightweight space telescope mirrors, segmented-mirror manufacturing tolerances, and composite deformable mirror design.
Preliminary design notes on a low F-number EMR
NASA Technical Reports Server (NTRS)
Mihora, D. J.
1982-01-01
Conceptual design studies were completed on a new Electrostatic Membrane Reflector, EMR. This new model incorporates both a preformed, curved membrane reflector and membrane control surface. This improved model is the second step toward a high precision large space antenna that could eventually exhibit a performance in terms of aperture diameter to surface quality exceeding 1,000,000. Design trades indicate that the goal of a low ratio of focal length to aperture diameter (f sub n) can be achieved while operating in a humid sea-level environment. A nominal surface quality of 1.0 mm (RMS) is possible using available off-the-shelf commercial membranes. Both the membrane reflector and control electrode surface are fabricated from 12 gore segments and attached to the available 12 sided, 4.88 m diameter rim. The preferred conceptual design has a f sub n = 1.0. The 4.88 m aperture is performed with a centerline displacement of 0.306 m. The nominal spacing between the membrane reflector and the electrode control surface is 50.8 mm. The centerline membrane displacement from its performed to its tensioned, smooth shape is about 3 mm. The membrane tensioning is achieved by application of an electrostatic pressure of 2.6 N/sq cm and a voltage of about 38 kV.
Ultralightweight Space Deployable Primary Reflector Demonstrator
NASA Technical Reports Server (NTRS)
Montgomery, Edward E., IV; Zeiders, Glenn W.; Smith, W. Scott (Technical Monitor)
2002-01-01
A concept has been developed and analyzed and several generational prototypes built for a gossamer-class deployable truss for a mirror or reflector with many smaller precisely-figured solid elements attached will, for at least the next several decades, minimize the mass of a large primary mirror assembly while still providing the high image quality essential for planet-finding and cosmological astronomical missions. Primary mirror segments are mounted in turn on ultralightweight thermally-formed plastic panels that hold clusters of mirror segments in rigid arrays whose tip/tilt and piston would be corrected over the scale of the plastic panels by the control segments. Prototype panels developed under this program are 45 cm wide and fabricated from commercially available Kaplan sheets. A three-strut octahedral tensegrity is the basis for the overall support structure. Each fundamental is composed of two such octahedrons, rotated oppositely about a common triangular face. Adjacent modules are joined at the nodes of the upper and lower triangles to form a deployable structure that could be made arbitrarily large. A seven-module dowel-and-wire prototype has been constructed. Deployment techniques based on the use of collapsing toggled struts with diagonal tensional elements allows an assembly of tensegrities to be fully collapsed and redeployed. The prototype designs will be described and results of a test program for measuring strength and deformation will be presented.
Correcting Thermal Deformations in an Active Composite Reflector
NASA Technical Reports Server (NTRS)
Bradford, Samuel C.; Agnes, Gregory S.; Wilkie, William K.
2011-01-01
Large, high-precision composite reflectors for future space missions are costly to manufacture, and heavy. An active composite reflector capable of adjusting shape in situ to maintain required tolerances can be lighter and cheaper to manufacture. An active composite reflector testbed was developed that uses an array of piezoelectric composite actuators embedded in the back face sheet of a 0.8-m reflector panel. Each individually addressable actuator can be commanded from 500 to +1,500 V, and the flatness of the panel can be controlled to tolerances of 100 nm. Measuring the surface flatness at this resolution required the use of a speckle holography interferometer system in the Precision Environmental Test Enclosure (PETE) at JPL. The existing testbed combines the PETE for test environment stability, the speckle holography system for measuring out-of-plane deformations, the active panel including an array of individually addressable actuators, a FLIR thermal camera to measure thermal profiles across the reflector, and a heat source. Use of an array of flat piezoelectric actuators to correct thermal deformations is a promising new application for these actuators, as is the use of this actuator technology for surface flatness and wavefront control. An isogrid of these actuators is moving one step closer to a fully active face sheet, with the significant advantage of ease in manufacturing. No extensive rib structure or other actuation backing structure is required, as these actuators can be applied directly to an easy-to-manufacture flat surface. Any mission with a surface flatness requirement for a panel or reflector structure could adopt this actuator array concept to create lighter structures and enable improved performance on orbit. The thermal environment on orbit tends to include variations in temperature during shadowing or changes in angle. Because of this, a purely passive system is not an effective way to maintain flatness at the scale of microns over several meters. This technology is specifically referring to correcting thermal deformations of a large, flat structure to a specified tolerance. However, the underlying concept (an array of actuators on the back face of a panel for correcting the flatness of the front face) could be extended to many applications, including energy harvesting, changing the wavefront of an optical system, and correcting the flatness of an array of segmented deployable panels.
Fabrication, Quality Assurance, and Quality Control for PROSPECT Detector Component Production
NASA Astrophysics Data System (ADS)
Gustafson, Ian; Prospect (The Precision Reactor Oscillation; Spectrum Experiment) Collaboration
2017-09-01
The Precision Reactor Oscillation and Spectrum Experiment (PROSPECT) is an electron antineutrino (νe) detector intended to make a precision measurement of the 235U neutrino spectrum and to search for the possible existence of sterile neutrinos with a mass splitting of Δm2 on the order of 1 eV2 . As a short baseline detector, PROSPECT will be located less than 10 meters from the High Flux Isotope Reactor at Oak Ridge National Laboratory. As PROSPECT intends to search for baseline-dependent oscillations, physical segmentation is needed to better measure the interaction position. PROSPECT will therefore be a segmented detector in two dimensions, thereby improving position measurements. PROSPECT will be segmented into 154 (11×14) 1.2-meter long rectangular tubes, using optical separators. Each separator will consist of a carbon fiber core, laminated with optical reflector (to increase light collection) and Teflon (to ensure compatibility with the scintillator). These optical separators will be held in place via strings of 3D printed PLA rods called `pinwheels.' This poster discusses the fabrication and quality assurance (QA) procedures used in the production of both the PROSPECT optical separators and pinwheels. For the PROSPECT collaboration.
NASA Technical Reports Server (NTRS)
Ryaciotaki-Boussalis, Helen A.; Wang, Shyh Jong
1989-01-01
The problem of vibration suppression in segmented reflector telescopes is considered. The decomposition of the structure into smaller components is discussed, and control laws for vibration suppression as well as conditions for stability at the local level are derived. These conditions and the properties of the interconnecting patterns are then utilized to obtain sufficient conditions for global stability.
Experimental study of an adaptive CFRC reflector for high order wave-front error correction
NASA Astrophysics Data System (ADS)
Lan, Lan; Fang, Houfei; Wu, Ke; Jiang, Shuidong; Zhou, Yang
2018-03-01
The recent radio frequency communication system developments are generating the need for creating space antennas with lightweight and high precision. The carbon fiber reinforced composite (CFRC) materials have been used to manufacture the high precision reflector. The wave-front errors caused by fabrication and on-orbit distortion are inevitable. The adaptive CFRC reflector has received much attention to do the wave-front error correction. Due to uneven stress distribution that is introduced by actuation force and fabrication, the high order wave-front errors such as print-through error is found on the reflector surface. However, the adaptive CFRC reflector with PZT actuators basically has no control authority over the high order wave-front errors. A new design architecture assembled secondary ribs at the weak triangular surfaces is presented in this paper. The virtual experimental study of the new adaptive CFRC reflector has conducted. The controllability of the original adaptive CFRC reflector and the new adaptive CFRC reflector with secondary ribs are investigated. The virtual experimental investigation shows that the new adaptive CFRC reflector is feasible and efficient to diminish the high order wave-front error.
Membrane Shell Reflector Segment Antenna
NASA Technical Reports Server (NTRS)
Fang, Houfei; Im, Eastwood; Lin, John; Moore, James
2012-01-01
The mesh reflector is the only type of large, in-space deployable antenna that has successfully flown in space. However, state-of-the-art large deployable mesh antenna systems are RF-frequency-limited by both global shape accuracy and local surface quality. The limitations of mesh reflectors stem from two factors. First, at higher frequencies, the porosity and surface roughness of the mesh results in loss and scattering of the signal. Second, the mesh material does not have any bending stiffness and thus cannot be formed into true parabolic (or other desired) shapes. To advance the deployable reflector technology at high RF frequencies from the current state-of-the-art, significant improvements need to be made in three major aspects: a high-stability and highprecision deployable truss; a continuously curved RF reflecting surface (the function of the surface as well as its first derivative are both continuous); and the RF reflecting surface should be made of a continuous material. To meet these three requirements, the Membrane Shell Reflector Segment (MSRS) antenna was developed.
Composite materials for precision space reflector panels
NASA Technical Reports Server (NTRS)
Tompkins, Stephen S.; Funk, Joan G.; Bowles, David E.; Towell, Timothy W.; Connell, John W.
1992-01-01
One of the critical technology needs of large precision reflectors for future astrophysical and optical communications satellites lies in the area of structural materials. Results from a materials research and development program at NASA Langley Research Center to provide materials for these reflector applications are discussed. Advanced materials that meet the reflector panel requirements are identified, and thermal, mechanical and durability properties of candidate materials after exposure to simulated space environments are compared. A parabolic, graphite-phenolic honeycomb composite panel having a surface accuracy of 70.8 microinches rms and an areal weight of 1.17 lbm/sq ft was fabricated with T50/ERL1962 facesheets, a PAEI thermoplastic surface film, and Al and SiO(x) coatings.
NASA Technical Reports Server (NTRS)
Sinha, A. K.
1989-01-01
The Wrap-Rib Antenna is a deployable lightweight shaped reflector. It consists of a central hub, parabolic ribs, and an rf reflector mesh. The wrap-rib reflector approximates the desired surface by means of pie-shaped segments of parabolic cylinders. The elements of the total system and the feasibility of the system are discussed.
Ahrens, Brandon R [Albuquerque, NM; Todd, Steven N [Rio Rancho, NM
2009-04-28
A precision laser aiming system comprises a disrupter tool, a reflector, and a laser fixture. The disrupter tool, the reflector and the laser fixture are configurable for iterative alignment and aiming toward an explosive device threat. The invention enables a disrupter to be quickly and accurately set up, aligned, and aimed in order to render safe or to disrupt a target from a standoff position.
Photogrammetry research for FAST eleven-meter reflector panel surface shape measurement
NASA Astrophysics Data System (ADS)
Zhou, Rongwei; Zhu, Lichun; Li, Weimin; Hu, Jingwen; Zhai, Xuebing
2010-10-01
In order to design and manufacture the Five-hundred-meter Aperture Spherical Radio Telescope (FAST) active reflector measuring equipment, measurement on each reflector panel surface shape was presented, static measurement of the whole neutral spherical network of nodes was performed, real-time dynamic measurement at the cable network dynamic deformation was undertaken. In the implementation process of the FAST, reflector panel surface shape detection was completed before eleven-meter reflector panel installation. Binocular vision system was constructed based on the method of binocular stereo vision in machine vision, eleven-meter reflector panel surface shape was measured with photogrammetry method. Cameras were calibrated with the feature points. Under the linearity camera model, the lighting spot array was used as calibration standard pattern, and the intrinsic and extrinsic parameters were acquired. The images were collected for digital image processing and analyzing with two cameras, feature points were extracted with the detection algorithm of characteristic points, and those characteristic points were matched based on epipolar constraint method. Three-dimensional reconstruction coordinates of feature points were analyzed and reflective panel surface shape structure was established by curve and surface fitting method. The error of reflector panel surface shape was calculated to realize automatic measurement on reflector panel surface shape. The results show that unit reflector panel surface inspection accuracy was 2.30mm, within the standard deviation error of 5.00mm. Compared with the requirement of reflector panel machining precision, photogrammetry has fine precision and operation feasibility on eleven-meter reflector panel surface shape measurement for FAST.
Extreme Precision Antenna Reflector Study Results
NASA Technical Reports Server (NTRS)
Sharp, G. R.; Gilger, L. D.; Ard, K. E.
1985-01-01
Thermal and mechanical distortion degrade the RF performance of antennas. The complexity of future communications antennas requires accurate, dimensionally stable antenna reflectors and structures built from materials other than those currently used. The advantages and disadvantages of using carbon fibers in an epoxy matrix are reviewed as well as current reflector fabrications technology and adjustment. The manufacturing sequence and coefficient of thermal expansion of carbon fiber/borosilicate glass composites is described. The construction of a parabolic reflector from this material and the assembling of both reflector and antenna are described. A 3M-aperture-diameter carbon/glass reflector that can be used as a subassembly for large reflectors is depicted. The deployment sequence for a 10.5M-aperture-diameter antenna, final reflector adjustment, and the deployment sequence for large reflectors are also illustrated.
Objective for EUV microscopy, EUV lithography, and x-ray imaging
Bitter, Manfred; Hill, Kenneth W.; Efthimion, Philip
2016-05-03
Disclosed is an imaging apparatus for EUV spectroscopy, EUV microscopy, EUV lithography, and x-ray imaging. This new imaging apparatus could, in particular, make significant contributions to EUV lithography at wavelengths in the range from 10 to 15 nm, which is presently being developed for the manufacturing of the next-generation integrated circuits. The disclosure provides a novel adjustable imaging apparatus that allows for the production of stigmatic images in x-ray imaging, EUV imaging, and EUVL. The imaging apparatus of the present invention incorporates additional properties compared to previously described objectives. The use of a pair of spherical reflectors containing a concave and convex arrangement has been applied to a EUV imaging system to allow for the image and optics to all be placed on the same side of a vacuum chamber. Additionally, the two spherical reflector segments previously described have been replaced by two full spheres or, more precisely, two spherical annuli, so that the total photon throughput is largely increased. Finally, the range of permissible Bragg angles and possible magnifications of the objective has been largely increased.
U.S. perspective on technology demonstration experiments for adaptive structures
NASA Technical Reports Server (NTRS)
Aswani, Mohan; Wada, Ben K.; Garba, John A.
1991-01-01
Evaluation of design concepts for adaptive structures is being performed in support of several focused research programs. These include programs such as Precision Segmented Reflector (PSR), Control Structure Interaction (CSI), and the Advanced Space Structures Technology Research Experiment (ASTREX). Although not specifically designed for adaptive structure technology validation, relevant experiments can be performed using the Passive and Active Control of Space Structures (PACOSS) testbed, the Space Integrated Controls Experiment (SPICE), the CSI Evolutionary Model (CEM), and the Dynamic Scale Model Test (DSMT) Hybrid Scale. In addition to the ground test experiments, several space flight experiments have been planned, including a reduced gravity experiment aboard the KC-135 aircraft, shuttle middeck experiments, and the Inexpensive Flight Experiment (INFLEX).
The time-dependent response of 3- and 5-layer sandwich beams
NASA Technical Reports Server (NTRS)
Hyer, M. W.; Oleksuk, L. S. S.; Bowles, D. E.
1992-01-01
Simple sandwich beam models have been developed to study the effect of the time-dependent constitutive properties of fiber-reinforced polymer matrix composites, considered for use in orbiting precision segmented reflectors, on the overall deformations. The 3- and 5-layer beam models include layers representing the face sheets, the core, and the adhesive. The static elastic deformation response of the sandwich beam models to a midspan point load is studied using the principle of stationary potential energy. In addition to quantitative conclusions, several assumptions are discussed which simplify the analysis for the case of more complicated material models. It is shown that the simple three-layer model is sufficient in many situations.
Flux-Feedback Magnetic-Suspension Actuator
NASA Technical Reports Server (NTRS)
Groom, Nelson J.
1990-01-01
Flux-feedback magnetic-suspension actuator provides magnetic suspension and control forces having linear transfer characteristics between force command and force output over large range of gaps. Hall-effect devices used as sensors for electronic feedback circuit controlling currents flowing in electromagnetic windings to maintain flux linking suspended element at substantially constant value independent of changes in length of gap. Technique provides effective method for maintenance of constant flux density in gap and simpler than previous methods. Applications include magnetic actuators for control of shapes and figures of antennas and of precise segmented reflectors, magnetic suspensions in devices for storage of angular momentum and/or kinetic energy, and systems for control, pointing, and isolation of instruments.
Rebuilding the space technology base
NASA Technical Reports Server (NTRS)
Povinelli, Frederick P.; Stephenson, Frank W.; Sokoloski, Martin M.; Montemerlo, Melvin D.; Venneri, Samuel L.; Mulville, Daniel R.; Hirschbein, Murray S.; Smith, Paul H.; Schnyer, A. Dan; Lum, Henry
1989-01-01
NASA's Civil Space Technology Initiative (CSTI) will not only develop novel technologies for space exploration and exploitation, but also take mature technologies into their demonstration phase in earth orbit. In the course of five years, CSTI will pay off in ground- and space-tested hardware, software, processes, methods for low-orbit transport and operation, and fundamental scientific research on the orbital environment. Attention is given to LOX/hydrogen and LOX/hydrocarbon reusable engines, liquid/solid fuel hybrid boosters, and aeroassist flight experiments for the validation of aerobraking with atmospheric friction. Also discussed are advanced scientific sensors, systems autonomy and telerobotics, control of flexible structures, precise segmented reflectors, high-rate high-capacity data handling, and advanced nuclear power systems.
System concept for a moderate cost Large Deployable Reflector (LDR)
NASA Technical Reports Server (NTRS)
Swanson, P. N.; Breckinridge, J. B.; Diner, A.; Freeland, R. E.; Irace, W. R.; Mcelroy, P. M.; Meinel, A. B.; Tolivar, A. F.
1986-01-01
A study was carried out at JPL during the first quarter of 1985 to develop a system concept for NASA's LDR. Major features of the concept are a four-mirror, two-stage optical system; a lightweight structural composite segmented primary reflector; and a deployable truss backup structure with integral thermal shield. The two-stage optics uses active figure control at the quaternary reflector located at the primary reflector exit pupil, allowing the large primary to be passive. The lightweight composite reflector panels limit the short-wavelength operation to approximately 30 microns but reduce the total primary reflector weight by a factor of 3 to 4 over competing technologies. On-orbit thermal analysis indicates a primary reflector equilibrium temperature of less than 200 K with a maximum gradient of about 5 C across the 20-m aperture. Weight and volume estimates are consistent with a single Shuttle launch, and are based on Space Station assembly and checkout.
Laser technology for high precision satellite tracking
NASA Technical Reports Server (NTRS)
Plotkin, H. H.
1974-01-01
Fixed and mobile laser ranging stations have been developed to track satellites equipped with retro-reflector arrays. These have operated consistently at data rates of once per second with range precision better than 50 cm, using Q-switched ruby lasers with pulse durations of 20 to 40 nanoseconds. Improvements are being incorporated to improve the precision to 10 cm, and to permit ranging to more distant satellites. These include improved reflector array designs, processing and analysis of the received reflection pulses, and use of sub-nanosecond pulse duration lasers.
High-Precision Shape Control of In-Space Deployable Large Membrane/Thin-Shell Reflectors
NASA Technical Reports Server (NTRS)
Watkins, Ronald; Goebel, Dan; Hofer, Richard
2010-01-01
This innovation has been developed to improve the resolutions of future spacebased active and passive microwave antennas for earth-science remote sensing missions by maintaining surface figure precisions of large membrane/thin-shell reflectors during orbiting. The intention is for these sensing instruments to be deployable at orbit altitudes one or two orders of magnitude higher than Low Earth Orbit (LEO), but still being able to acquire measurements at spatial resolution and sensitivity similar to those of LEO. Because active and passive microwave remote sensors are able to penetrate through clouds to acquire vertical profile measurements of geophysical parameters, it is desirable to elevate them to the higher orbits to obtain orbital geometries that offer large spatial coverage and more frequent observations. This capability is essential for monitoring and for detailed understanding of the life cycles of natural hazards, such as hurricanes, tropical storms, flash floods, and tsunamis. Major components of this high-precision antenna-surface-control system include a membrane/thin shell reflector, a metrology sensor, a controller, actuators, and corresponding power amplifier and signal conditioning electronics (see figure). Actuators are attached to the back of the reflector to produce contraction/ expansion forces to adjust the shape of the thin-material reflector. The wavefront-sensing metrology system continuously measures the surface figure of the reflector, converts the surface figure to digital data and feeds the data to the controller. The controller determines the control parameters and generates commands to the actuator system. The flexible, piezoelectric polymer actuators are thus activated, providing the control forces needed to correct any distortions that exist in the reflector surface. Piezoelectric polymer actuators are very thin and flexible. They can be implemented on the back of the membrane/thin-shell reflector without introducing significant amounts of mass or stiffness to the reflector. They can be rolled up or folded to accommodate the packaging needed for launch. An analytical model of the system, which includes the membrane reflector, actuator, and controller has been developed to investigate the functionality of this control system on a 35-meter-diameter membrane reflector. The performance of this system under external disturbances such as in space thermal loads and W-error due to inflation has been investigated. A subscale breadboard has been developed, and the functionality of this control concept has been demonstrated by this breadboard.
McIntire, William R.
1983-01-01
A cylindrical radiant energy collector is provided which includes a reflector spaced apart from an energy absorber. The reflector is of a particular shape which ideally eliminates gap losses. The reflector includes a plurality of adjacent facets of V shaped segments sloped so as to reflect all energy entering between said absorber and said reflector onto said absorber. The outer arms of each facet are sloped to reflect one type of extremal ray in a line substantially tangent to the lowermost extremity of the energy absorber. The inner arms of the facets are sloped to reflect onto the absorber all rays either falling directly thereon or as a result of reflection from an outer arm.
NASA Technical Reports Server (NTRS)
Carrington, Connie; Fikes, John; Gerry, Mark; Perkinson, Don
2000-01-01
New energy sources are vital for the development of emerging nations, and the growth of industry in developed economies. Also vital is the need for these energy sources to be clean and renewable. For the past several years, NASA has been taking a new look at collecting solar energy in space and transmitting it to Earth, to planetary surfaces, and to orbiting spacecraft. Several innovative concepts are being studied for the space segment component of solar power beaming. One is the Abacus/Reflector, a large sun-oriented array structure fixed to the transmitter, and a rotating RF reflector that tracks a receiving rectenna on Earth. This concept eliminates the need for power-conducting slip rings in rotating joints between the solar collectors and the transmitter. Another concept is the Integrated Symmetrical Concentrator (ISC), composed of two very large segmented reflectors which rotate to collect and reflect the incident sunlight onto two centrally-located photovoltaic arrays. Adjacent to the PV arrays is the RF transmitter, which as a unit track the receiving rectenna, again eliminating power-conducting joints, and in addition reducing the cable lengths between the arrays and transmitter. The metering structure to maintain the position of the reflectors is a long mast, oriented perpendicular to the equatorial orbit plane. This paper presents a status of ongoing systems studies and configurations for the Abacus/Reflector and the ISC concepts, and a top-level study of packaging for launch and assembly.
Shaping of parabolic cylindrical membrane reflectors for the DART precision test bed
NASA Technical Reports Server (NTRS)
White, C.; Salama, M.; Dragovan, M.; Schroeder, J.; Barber, D.; Dooley, J.
2003-01-01
The DART is a new telescope architecture consisting of two cylindrical parabolic reflectors. The system is ideally suited to using tensioned membranes for the reflective surfaces, owing to the zero Gaussian curvature of a cylindrical parabola.
Gaussian-Beam/Physical-Optics Design Of Beam Waveguide
NASA Technical Reports Server (NTRS)
Veruttipong, Watt; Chen, Jacqueline C.; Bathker, Dan A.
1993-01-01
In iterative method of designing wideband beam-waveguide feed for paraboloidal-reflector antenna, Gaussian-beam approximation alternated with more nearly exact physical-optics analysis of diffraction. Includes curved and straight reflectors guiding radiation from feed horn to subreflector. For iterative design calculations, curved mirrors mathematically modeled as thin lenses. Each distance Li is combined length of two straight-line segments intersecting at one of flat mirrors. Method useful for designing beam-waveguide reflectors or mirrors required to have diameters approximately less than 30 wavelengths at one or more intended operating frequencies.
Special test equipment and fixturing for MSAT reflector assembly alignment
NASA Technical Reports Server (NTRS)
Young, Jeffrey A.; Zinn, Michael R.; Mccarten, David R.
1994-01-01
The MSAT Reflector Assembly is a state of the art subsystem for Mobile Satellite (MSAT), a geosynchronous-based commercial mobile telecommunication satellite program serving North America. The Reflector Assembly consisted of a deployable, three-hinge, folding-segment Boom, deployable 5.7 x 5.3-meter 16-rib Wrap-Rib Reflector, and a Reflector Pointing Mechanism (RPM). The MSAT spacecraft was based on a Hughes HS601 spacecraft bus carrying two Reflector Assemblies independently dedicated for L-band transmit and receive operations. Lockheed Missiles and Space Company (LMSC) designed and built the Reflector Assembly for MSAT under contract to SPAR Aerospace Ltd. Two MSAT satellites were built jointly by SPAR Aerospace Ltd. and Hughes Space and Communications Co. for this program, the first scheduled for launch in 1994. When scaled for wavelength, the assembly and alignment requirements for the Reflector Assembly were in many instances equivalent to or exceeded that of a diffraction-limited visible light optical system. Combined with logistical constraints inherent to large, compliant, lightweight structures; 'bolt-on' alignment; and remote, indirect spacecraft access; the technical challenges were formidable. This document describes the alignment methods, the special test equipment, and fixturing for Reflector Assembly assembly and alignment.
NASA Technical Reports Server (NTRS)
Heard, Walter L., Jr.; Lake, Mark S.; Bush, Harold G.; Jensen, J. Kermit; Phelps, James E.; Wallsom, Richard E.
1992-01-01
This report presents results of tests performed in neutral buoyancy by two pressure-suited test subjects to simulate Extravehicular Activity (EVA) tasks associated with the on-orbit construction and repair of a precision reflector spacecraft. Two complete neutral buoyancy assemblies of the test article (tetrahedral truss with three attached reflector panels) were performed. Truss joint hardware, two different panel attachment hardware concepts, and a panel replacement tool were evaluated. The test subjects found the operation and size of the truss joint hardware to be acceptable. Both panel attachment concepts were found to be EVA compatible, although one concept was judged by the test subjects to be considerably easier to operate. The average time to install a panel from a position within arm's reach of the test subjects was 1 min 14 sec. The panel replacement tool was used successfully to demonstrate the removal and replacement of a damaged reflector panel in 10 min 25 sec.
Automated Solvent Seaming of Large Polyimide Membranes
NASA Technical Reports Server (NTRS)
Rood, Robert; Moore, James D.; Talley, Chris; Gierow, Paul A.
2006-01-01
A solvent-based welding process enables the joining of precise, cast polyimide membranes at their edges to form larger precise membranes. The process creates a homogeneous, optical-quality seam between abutting membranes, with no overlap and with only a very localized area of figure disturbance. The seam retains 90 percent of the strength of the parent material. The process was developed for original use in the fabrication of wide-aperture membrane optics, with areal densities of less than 1 kg/m2, for lightweight telescopes, solar concentrators, antennas, and the like to be deployed in outer space. The process is just as well applicable to the fabrication of large precise polyimide membranes for flat or inflatable solar concentrators and antenna reflectors for terrestrial applications. The process is applicable to cast membranes made of CP1 (or equivalent) polyimide. The process begins with the precise fitting together and fixturing of two membrane segments. The seam is formed by applying a metered amount of a doped solution of the same polyimide along the abutting edges of the membrane segments. After the solution has been applied, the fixtured films are allowed to dry and are then cured by convective heating. The weld material is the same as the parent material, so that what is formed is a homogeneous, strong joint that is almost indistinguishable from the parent material. The success of the process is highly dependent on formulation of the seaming solution from the correct proportion of the polyimide in a suitable solvent. In addition, the formation of reliable seams depends on the deposition of a precise amount of the seaming solution along the seam line. To ensure the required precision, deposition is performed by use of an automated apparatus comprising a modified commercially available, large-format, ink-jet print head on an automated positioning table. The printing head jets the seaming solution into the seam area at a rate controlled in coordination with the movement of the positioning table.
NASA Technical Reports Server (NTRS)
Swanson, P. N.; Gulkis, S.; Kulper, T. B. H.; Kiya, M.
1983-01-01
The history and background of the Large Deployable Reflector (LDR) are reviewed. The results of the June 1982 Asilomar (CA) workshop are incorporated into the LDR science objectives and telescope concept. The areas where the LDR may have the greatest scientific impact are in the study of star formation and planetary systems in the own and nearby galaxies and in cosmological studies of the structure and evolution of the early universe. The observational requirements for these and other scientific studies give rise to a set of telescope functional requirements. These, in turn, are satisfied by an LDR configuration which is a Cassegrain design with a 20 m diameter, actively controlled, segmented, primary reflector, diffraction limited at a wavelength of 30 to 50 microns. Technical challenges in the LDR development include construction of high tolerance mirror segments, surface figure measurement, figure control, vibration control, pointing, cryogenics, and coherent detectors. Project status and future plans for the LDR are discussed.
Highly accurate photogrammetric measurements of the Planck reflectors
NASA Astrophysics Data System (ADS)
Amiri Parian, Jafar; Gruen, Armin; Cozzani, Alessandro
2017-11-01
The Planck mission of the European Space Agency (ESA) is designed to image the anisotropies of the Cosmic Background Radiation Field over the whole sky. To achieve this aim, sophisticated reflectors are used as part of the Planck telescope receiving system. The system consists of secondary and primary reflectors which are sections of two different ellipsoids of revolution with mean diameters of 1 and 1.6 meters. Deformations of the reflectors which influence the optical parameters and the gain of receiving signals are investigated in vacuum and at very low temperatures. For this investigation, among the various high accuracy measurement techniques, photogrammetry was selected. With respect to the photogrammetric measurements, special considerations had to be taken into account in design steps, measurement arrangement and data processing to achieve very high accuracies. The determinability of additional parameters of the camera under the given network configuration, datum definition, reliability and precision issues as well as workspace limits and propagating errors from different sources are considered. We have designed an optimal photogrammetric network by heuristic simulation for the flight model of the primary and the secondary reflectors with relative precisions better than 1:1000'000 and 1:400'000 to achieve the requested accuracies. A least squares best fit ellipsoid method was developed to determine the optical parameters of the reflectors. In this paper we will report about the procedures, the network design and the results of real measurements.
NASA Technical Reports Server (NTRS)
Agnew, Donald L.; Jones, Peter A.
1989-01-01
A study was conducted to define reasonable and representative LDR system concepts for the purpose of defining a technology development program aimed at providing the requisite technological capability necessary to start LDR development by the end of 1991. This volume presents thirteen technology assessments and technology development plans, as well as an overview and summary of the LDR concepts. Twenty-two proposed augmentation projects are described (selected from more than 30 candidates). The five LDR technology areas most in need of supplementary support are: cryogenic cooling; astronaut assembly of the optically precise LDR in space; active segmented primary mirror; dynamic structural control; and primary mirror contamination control. Three broad, time-phased, five-year programs were synthesized from the 22 projects, scheduled, and funding requirements estimated.
Shaping of parabolic cylindrical membrane reflectors for the Dart Precision Test Bed
NASA Technical Reports Server (NTRS)
Morgan, R.; Agnes, Gregory S.; Dragovan, M.; Barber, D.; Marcin, M.; White, C.; Dooley, J.; Hatheway, A.
2004-01-01
The DART is a new telescope architecture consisting of a single aperture formed from two cylindrical parabolic reflectors. The system is ideally suited to using tensioned membranes for the reflective surfaces, owing to the zero Gaussian curvature of a cylindrical parabola. In this paper, we present experimental measurements for shaping the membranes by using curved boundary elements to achieve coarse shaping, and a pair of precision rails shaped by moments and forces at the ends, and lightly pushed into the surface, to provide fine shape control.
Lightweight composite reflectors for space optics
NASA Astrophysics Data System (ADS)
Williams, Brian E.; McNeal, Shawn R.; Ono, Russell M.
1998-01-01
The primary goal of this work was to advance the state of the art in lightweight, high optical quality reflectors for space- and Earth-based telescopes. This was accomplished through the combination of a precision silicon carbide (SiC) reflector surface and a high specific strength, low-mass SiC structural support. Reducing the mass of components launched into space can lead to substantial cost savings, but an even greater benefit of lightweight reflectors for both space- and Earth-based optics applications is the fact that they require far less complex and less expensive positioning systems. While Ultramet is not the first company to produce SiC by chemical vapor deposition (CVD) for reflector surfaces, it is the first to propose and demonstrate a lightweight, open-cell SiC structural foam that can support a thin layer of the highly desirable polished SiC reflector material. SiC foam provides a substantial structural and mass advantage over conventional honeycomb supports and alternative finned structures. The result is a reflector component that meets or exceeds the optical properties of current high-quality glass, ceramic, and metal reflectors while maintaining a substantially lower areal density.
Shape adjustment optimization and experiment of cable-membrane reflectors
NASA Astrophysics Data System (ADS)
Du, Jingli; Gu, Yongzhen; Bao, Hong; Wang, Congsi; Chen, Xiaofeng
2018-05-01
Cable-membrane structures are widely employed for large space reflectors due to their lightweight, compact and easy package. In these structures, membranes are attached to cable net, serving as reflectors themselves or as supporting structures for other reflective surface. The cable length and membrane shape have to be carefully designed and fabricated to guarantee the desired reflector surface shape. However, due to inevitable error in cable length and membrane shape during the manufacture and assembly of cable-membrane reflectors, some cables have to be designed to be capable of length adjustment. By carefully adjusting the length of these cables, the degeneration in reflector shape precision due to this inevitable error can be effectively reduced. In the paper a shape adjustment algorithm for cable-membrane reflectors is proposed. Meanwhile, model updating is employed during shape adjustment to decrease the discrepancy of the numerical model with respect to the actual reflector. This discrepancy has to be considered because during attaching membranes to cable net, the accuracy of the membrane shape is hard to guarantee. Numerical examples and experimental results demonstrate the proposed method.
Characteristics of a dynamic holographic sensor for shape control of a large reflector
NASA Technical Reports Server (NTRS)
Welch, Sharon S.; Cox, David E.
1991-01-01
Design of a distributed holographic interferometric sensor for measuring the surface displacement of a large segmented reflector is proposed. The reflector's surface is illuminated by laser light of two wavelengths and volume holographic gratings are formed in photorefractive crystals of the wavefront returned from the surface. The sensor is based on holographic contouring with a multiple frequency source. It is shown that the most stringent requirement of temporal stability affects both the temporal resolution and the dynamic range. Principal factor which limit the sensor performance include the response time of photorefractive crystal, laser power required to write a hologram, and the size of photorefractive crystal.
Control of active reflector system for radio telescope
NASA Astrophysics Data System (ADS)
Zhou, Guo-hua; Li, Guo-ping; Zhang, Yong; Zhang, Zhen-chao
2016-10-01
According to the control requirements of the active reflector surface in the 110 m radio telescope at QiTai(QTT) Xinjiang, a new displacement actuator and a new displacement control system were designed and manufactured and then their characteristics were tested by a dual-frequency laser interferometer in the micro-displacement laboratory. The displacement actuator was designed by a scheme of high precision worm and roller screw structures, and the displacement control system was based on a ARM micro-processor. Finally, the S curve acceleration control methods were used to design the hardware platform and software algorithm for the active reflection surface of the control system. The test experiments were performed based on the laser metrology system on an active reflector close-loop antenna prototype for large radio telescope. Experimental results indicate that it achieves a 30 mm working stroke and 5 μm RMS motion resolution. The accuracy (standard deviation) is 3.67 mm, and the error between the determined and theoretical values is 0.04% when the rated load is 300 kg, the step is 2 mm and the stroke is 30mm. Furthermore, the active reflector integrated system was tested by the laser sensors with the accuracy of 0.25 μm RMS on 4-panel radio telescope prototype, the measurement results show that the integrated precision of the active reflector closed-loop control system is less than 5 μm RMS, and well satisfies the technical requirements of active reflector control system of the QTT radio telescope in 3 mm wavelength.
Method and apparatus for uniformly concentrating solar flux for photovoltaic applications
Jorgensen, Gary J.; Carasso, Meir; Wendelin, Timothy J.; Lewandowski, Allan A.
1992-01-01
A dish reflector and method for concentrating moderate solar flux uniformly on a target plane on a solar cell array, the dish having a stepped reflective surface that is characterized by a plurality of ring-like segments arranged about a common axis, and each segment having a concave spherical configuration.
Uncertainty-enabled design of electromagnetic reflectors with integrated shape control
NASA Astrophysics Data System (ADS)
Haque, Samiul; Kindrat, Laszlo P.; Zhang, Li; Mikheev, Vikenty; Kim, Daewa; Liu, Sijing; Chung, Jooyeon; Kuian, Mykhailo; Massad, Jordan E.; Smith, Ralph C.
2018-03-01
We implemented a computationally efficient model for a corner-supported, thin, rectangular, orthotropic polyvinylidene fluoride (PVDF) laminate membrane, actuated by a two-dimensional array of segmented electrodes. The laminate can be used as shape-controlled electromagnetic reflector and the model estimates the reflector's shape given an array of control voltages. In this paper, we describe a model to determine the shape of the laminate for a given distribution of control voltages. Then, we investigate the surface shape error and its sensitivity to the model parameters. Subsequently, we analyze the simulated deflection of the actuated bimorph using a Zernike polynomial decomposition. Finally, we provide a probabilistic description of reflector performance using statistical methods to quantify uncertainty. We make design recommendations for nominal parameter values and their tolerances based on optimization under uncertainty using multiple methods.
NASA Technical Reports Server (NTRS)
Farmer, Jeffrey T.; Wahls, Deborah M.; Wright, Robert L.
1990-01-01
The global change technology initiative calls for a geostationary platform for Earth science monitoring. One of the major science instruments is the high frequency microwave sounder (HFMS) which uses a large diameter, high resolution, high frequency microwave antenna. This antenna's size and required accuracy dictates the need for a segmented reflector. On-orbit disturbances may be a significant factor in its design. A study was performed to examine the effects of the geosynchronous thermal environment on the performance of the strongback structure for a proposed antenna concept for this application. The study included definition of the strongback and a corresponding numerical model to be used in the thermal and structural analyses definition of the thermal environment, determination of structural element temperature throughout potential orbits, estimation of resulting thermal distortions, and assessment of the structure's capability to meet surface accuracy requirements. Analyses show that shadows produced by the antenna reflector surface play a major role in increasing thermal distortions. Through customization of surface coating and element expansion characteristics, the segmented reflector concept can meet the tight surface accuracy requirements.
NASA Technical Reports Server (NTRS)
Agnew, Donald L.; Jones, Peter A.
1989-01-01
A study was conducted to define reasonable and representative large deployable reflector (LDR) system concepts for the purpose of defining a technology development program aimed at providing the requisite technological capability necessary to start LDR development by the end of 1991. This volume includes the executive summary for the total study, a report of thirteen system analysis and trades tasks (optical configuration, aperture size, reflector material, segmented mirror, optical subsystem, thermal, pointing and control, transportation to orbit, structures, contamination control, orbital parameters, orbital environment, and spacecraft functions), and descriptions of three selected LDR system concepts. Supporting information is contained in appendices.
Positive focal shift of gallium nitride high contrast grating focusing reflectors
NASA Astrophysics Data System (ADS)
He, Shumin; Wang, Zhenhai; Liu, Qifa
2016-09-01
We design a type of metasurfaces capable of serving as a visible-light focusing reflector based on gallium nitride (GaN) high contrast gratings (HCGs). The wavefront of the reflected light is precisely manipulated by spatial variation of the grating periods along the subwavelength ridge array to achieve light focusing. Different from conventional negative focal shift effect, a positive focal shift is observed in such focusing reflectors. Detailed investigations of the influence of device size on the focusing performance, especially the focal length, are preformed via a finite element method . The results show that all performance parameters are greatly affected by the reflector size. A more concentrated focal point, or a better focusing capability, can be achieved by larger size. With increasing reflector size, the achieved focal length decreases and gradually approaches to the design, thus the corresponding positive focal shift decreases. Our results are helpful for understanding the visible-light control of the planar HCG-based focusing reflectors.
Prominent reflector beneath around the segmentation boundary between Tonankai-Nankai earthquake area
NASA Astrophysics Data System (ADS)
Nakanishi, A.; Shimomura, N.; Fujie, G.; Kodaira, S.; Obana, K.; Takahashi, T.; Yamamoto, Y.; Yamashita, M.; Takahashi, N.; Kaneda, Y.; Mochizuki, K.; Kato, A.; Iidaka, T.; Kurashimo, E.; Shinohara, M.; Takeda, T.; Shiomi, K.
2013-12-01
In the Nankai Trough subduction seismogenic zone, the Nankai and Tonankai earthquakes had often occurred simultaneously, and caused a great event. In most cases, first break of such large events of Nankai Trough usually begins from southwest off the Kii Peninsula so far. The idea of split Philippine Sea plate between the Kii Peninsula and the Shikoku Island, which explains seismicity, tectonic background, receiver function image and historical plate motion, was previously suggested. Moreover, between the Kii Peninsula and the Shikoku Island, there is a gap of deep low-frequency events observed in the belt-like zone along the strike of the subducting Philippine Sea plate. In 2010 and 2011, we conducted the large-scale high-resolution wide-angle and reflection (MCS) seismic study, and long-term observation from off Shikoku and Kii Peninsula. Marine active source seismic data have been acquired along grid two-dimensional profiles having the total length of ~800km/year. A three-dimensional seismic tomography using active and passive seismic data observed both land and ocean bottom stations have been also performed. From those data, we found a possible prominent reflector imaged in the offshore side in the Kii channel at the depth of ~18km. The velocity just beneath the reflector cannot be determined due to the lack of ray paths. Based of the amplitude information, we interpret the reflector as the forearc Moho based on the velocity gap (from ~6.4km/s to ~7.4km/s). However, the reflector is shallower than the forearc Moho of other area along the Nankai Trough. Similar reflectors are recognized along other seismic profiles around the Kii channel. In this presentation, we will show the result of structure analysis to understand the peculiar structure including the prominent reflector around the Kii channel. Relation between the structure and the existence of the segmentation of the Nankai megathrust earthquake or seismic gap of the deep low-frequency events will be also discussed. This study is part of 'Research concerning Interaction Between the Tokai, Tonankai and Nankai Earthquakes' funded by Ministry of Education, Culture, Sports, Science and Technology, Japan.
Modeling and stability of segmented reflector telescopes - A decentralized approach
NASA Technical Reports Server (NTRS)
Ryaciotaki-Boussalis, Helen A.; Ih, Che-Hang Charles
1990-01-01
The decentralization of a segmented reflector telescope based on a finite-element model of its structure is considered. The decentralization of the system at the panel level is considered. Each panel is originally treated as an isolated subsystem so that the controller design is performed independently at the local level, and then applied to the composite system for stability analysis. The panel-level control laws were designed by means of pole placement using local output feedback. Simulation results show a better 1000:1 vibration attenuation in panel position when compared to the open-loop system. It is shown that the overall closed-loop system is exponentially stable provided that certain conditions are met. The advantage to the decentralized approach is that the design is performed in terms of the low-dimensionality subsystems, thus drastically reducing the design computational complexities.
NASA Astrophysics Data System (ADS)
Akioka, M.; Orikasa, T.; Satoh, M.; Miura, A.; Tsuji, H.; Toyoshima, M.; Fujino, Y.
2016-06-01
Satellite for next generation mobile satellite communication service with small personal terminal requires onboard antenna with very large aperture reflector larger than twenty meters diameter because small personal terminal with lower power consumption in ground base requires the large onboard reflector with high antenna gain. But, large deployable antenna will deform in orbit because the antenna is not a solid dish but the flexible structure with fine cable and mesh supported by truss. Deformation of reflector shape deteriorate the antenna performance and quality and stability of communication service. However, in case of digital beam forming antenna with phased array can modify the antenna beam performance due to adjustment of excitation amplitude and excitation phase. If we can measure the reflector shape precisely in orbit, beam pattern and antenna performance can be compensated with the updated excitation amplitude and excitation phase parameters optimized for the reflector shape measured every moment. Softbank Corporation and National Institute of Information and Communications Technology has started the project "R&D on dynamic beam control technique for next generation mobile communication satellite" as a contracted research project sponsored by Ministry of Internal Affairs and Communication of Japan. In this topic, one of the problem in vision metrology application is a strong constraints on geometry for camera arrangement on satellite bus with very limited space. On satellite in orbit, we cannot take many images from many different directions as ordinary vision metrology measurement and the available area for camera positioning is quite limited. Feasibility of vision metrology application and general methodology to apply to future mobile satellite communication satellite is to be found. Our approach is as follows: 1) Development of prototyping simulator to evaluate the expected precision for network design in zero order and first order 2) Trial measurement for large structure with similar dimension with large deployable reflector to confirm the validity of the network design and instrumentation. In this report, the overview of this R&D project and the results of feasibility study of network design based on simulations on vision metrology and beam pattern compensation of antenna with very large reflector in orbit is discussed. The feasibility of assumed network design for vision metrology and satisfaction of accuracy requirements are discussed. The feasibility of beam pattern compensation by using accurately measured reflector shape is confirmed with antenna pattern simulation for deformed parabola reflector. If reflector surface of communication satellite can be measured routinely in orbit, the antenna pattern can be compensated and maintain the high performance every moment.
Piezoelectric Polymers Actuators for Precise Shape Control of Large Scale Space Antennas
NASA Technical Reports Server (NTRS)
Chen, Qin; Natale, Don; Neese, Bret; Ren, Kailiang; Lin, Minren; Zhang, Q. M.; Pattom, Matthew; Wang, K. W.; Fang, Houfei; Im, Eastwood
2007-01-01
Extremely large, lightweight, in-space deployable active and passive microwave antennas are demanded by future space missions. This paper investigates the development of PVDF based piezopolymer actuators for controlling the surface accuracy of a membrane reflector. Uniaxially stretched PVDF films were poled using an electrodeless method which yielded high quality poled piezofilms required for this application. To further improve the piezoperformance of piezopolymers, several PVDF based copolymers were examined. It was found that one of them exhibits nearly three times improvement in the in-plane piezoresponse compared with PVDF and P(VDF-TrFE) piezopolymers. Preliminary experimental results indicate that these flexible actuators are very promising in controlling precisely the shape of the space reflectors.
Wirelessly Controllable Inflated Electroactive Polymer (EAP) Reflectors
NASA Technical Reports Server (NTRS)
Bao, Xiaoqi; Bar-Cohen, Yoseph; Chang, Zensheu; Sherrit, Stewart; Badescu, Mircea
2005-01-01
Inflatable membrane reflectors are attractive for deployable, large aperture, lightweight optical and microwave systems in micro-gravity space environment. However, any fabrication flaw or temperature variation may results in significant aberration of the surface. Even for a perfectly fabricated inflatable membrane mirror with uniform thickness, theory shows it will form a Hencky curve surface but a desired parabolic or spherical surface. Precision control of the surfaceshape of extremely flexible membrane structures is a critical challenge for the success of this technology. Wirelessly controllable inflated reflectors made of electroactive polymers (EAP) are proposed in this paper. A finite element model was configured to predict the behavior of the inflatable EAP membranes under pre-strains, pressures and distributed electric charges on the surface. To explore the controllability of the inflatable EAP reflectors, an iteration algorism was developed to find the required electric actuation for correcting the aberration of the Hencky curve to the desired parabolic curve. The correction capability of the reflectors with available EAP materials was explored numerically and is presented in this paper.
NASA Astrophysics Data System (ADS)
Bai, Chao-ying; He, Lei-yu; Li, Xing-wang; Sun, Jia-yu
2018-05-01
To conduct forward and simultaneous inversion in a complex geological model, including an irregular topography (or irregular reflector or velocity anomaly), we in this paper combined our previous multiphase arrival tracking method (referred as triangular shortest-path method, TSPM) in triangular (2D) or tetrahedral (3D) cell model and a linearized inversion solver (referred to as damped minimum norms and constrained least squares problem solved using the conjugate gradient method, DMNCLS-CG) to formulate a simultaneous travel time inversion method for updating both velocity and reflector geometry by using multiphase arrival times. In the triangular/tetrahedral cells, we deduced the partial derivative of velocity variation with respective to the depth change of reflector. The numerical simulation results show that the computational accuracy can be tuned to a high precision in forward modeling and the irregular velocity anomaly and reflector geometry can be accurately captured in the simultaneous inversion, because the triangular/tetrahedral cell can be easily used to stitch the irregular topography or subsurface interface.
NASA Astrophysics Data System (ADS)
Bai, Chao-ying; He, Lei-yu; Li, Xing-wang; Sun, Jia-yu
2017-12-01
To conduct forward and simultaneous inversion in a complex geological model, including an irregular topography (or irregular reflector or velocity anomaly), we in this paper combined our previous multiphase arrival tracking method (referred as triangular shortest-path method, TSPM) in triangular (2D) or tetrahedral (3D) cell model and a linearized inversion solver (referred to as damped minimum norms and constrained least squares problem solved using the conjugate gradient method, DMNCLS-CG) to formulate a simultaneous travel time inversion method for updating both velocity and reflector geometry by using multiphase arrival times. In the triangular/tetrahedral cells, we deduced the partial derivative of velocity variation with respective to the depth change of reflector. The numerical simulation results show that the computational accuracy can be tuned to a high precision in forward modeling and the irregular velocity anomaly and reflector geometry can be accurately captured in the simultaneous inversion, because the triangular/tetrahedral cell can be easily used to stitch the irregular topography or subsurface interface.
Test progress on the electrostatic membrane reflector
NASA Technical Reports Server (NTRS)
Mihora, D. J.
1981-01-01
An extemely lightweight type of precision reflector antenna, being developed for potential deployment from the space shuttle, uses electrostatic forces to tension a thin membrane and form it into a concave reflector surface. The typical shuttle-deployed antenna would have a diameter of 100 meters and an RMS surface smoothness of 10 to 1 mm for operation at 1 to 10 GHz. NASA Langley Research Center built and is currently testing a subscale (16 foot diameter) model of the membrane reflector portion of such an antenna. Preliminary test results and principal factors affecting surface quality are addressed. Factors included are the effect of the perimeter boundary, splicing of the membrane, the long-scale smoothness of commercial membranes, and the spatial controllability of the membrane using voltage adjustments to alter the electrostatic pressure. Only readily available commercial membranes are considered.
NASA Astrophysics Data System (ADS)
Wang, Wei; Lian, Peiyuan; Zhang, Shuxin; Xiang, Binbin; Xu, Qian
2017-05-01
Large reflector antennas are widely used in radars, satellite communication, radio astronomy, and so on. The rapid developments in these fields have created demands for development of better performance and higher surface accuracy. However, low accuracy and low efficiency are the common disadvantages for traditional panel alignment and adjustment. In order to improve the surface accuracy of large reflector antenna, a new method is presented to determinate panel adjustment values from far field pattern. Based on the method of Physical Optics (PO), the effect of panel facet displacement on radiation field value is derived. Then the linear system is constructed between panel adjustment vector and far field pattern. Using the method of Singular Value Decomposition (SVD), the adjustment value for all panel adjustors are obtained by solving the linear equations. An experiment is conducted on a 3.7 m reflector antenna with 12 segmented panels. The results of simulation and test are similar, which shows that the presented method is feasible. Moreover, the discussion about validation shows that the method can be used for many cases of reflector shape. The proposed research provides the instruction to adjust surface panels efficiently and accurately.
NASA Astrophysics Data System (ADS)
Goodman, Alvin M.; Powers, Edward J.
1993-06-01
In this dissertation, the precision of molecular-beam epitaxy (MBE) is taken advantage of in order to grow semiconductor reflectors, microcavities, and quantum wells for studies of vertical-cavity surface-emitting lasers (VCSEL's) and the coupling between reflectors and the spatially localized dipoles of semiconductor quantum wells. The design of the structures and the choice of epitaxial growth parameters used for the structures are discussed in detail. Experimental techniques and results are discussed which relate to studies that advance the optoelectronics technology and our understanding of fundamental physics. MBE is used to grow epitaxial structures in which a QW is precisely placed either in close proximity to a DBR, or near the surface of the epitaxial layer, so that a highly reflective mirror can be placed in close proximity to the QW.
NASA Technical Reports Server (NTRS)
Heard, Walter L., Jr.; Collins, Timothy J.; Dyess, James W.; Kenner, Scott; Bush, Harold G.
1993-01-01
A concept is presented for achieving a remotely deployable truss-stiffened reflector consisting of seven integrated sandwich panels that form the reflective surface, and an integrated feed boom. The concept has potential for meeting aperture size and surface precision requirements for some high-frequency microwave remote sensing applications. The packaged reflector/feed boom configuration is a self-contained unit that can be conveniently attached to a spacecraft bus. The package has a cylindrical envelope compatible with typical launch vehicle shrouds. Dynamic behavior of a deployed configuration having a 216-inch focal length and consisting of 80-inch-diameter, two-inch-thick panels is examined through finite-element analysis. Results show that the feed boom and spacecraft bus can have a large impact on the fundamental frequency of the deployed configuration. Two candidate rib-stiffened sandwich panel configurations for this application are described, and analytical results for panel mass and stiffness are presented. Results show that the addition of only a few rib stiffeners, if sufficiently deep, can efficiently improve sandwich panel stiffness.
Double Star Measurements at the Southern Sky with a 50 cm Reflector in 2016
NASA Astrophysics Data System (ADS)
Anton, Rainer
2017-10-01
A 50 cm Ritchey-Chrétien reflector was used for recordings of double stars with a CCD webcam, and measurements of 95 pairs were mostly obtained from âlucky imagesâ, and in some cases by speckle interferometry. The image scale was calibrated with reference systems from the recently published Gaia catalogue of precise position data. For several pairs, deviations from currently assumed orbits were found. Some images of noteworthy systems are also pre-sented.
Multiplexing curvature sensors using fibre segment interferometry for lateral vibration measurements
NASA Astrophysics Data System (ADS)
Kissinger, Thomas; Chehura, Edmon; James, Stephen W.; Tatam, Ralph P.
2017-04-01
Dynamic fibre-optic curvature sensing is demonstrated by interrogating chains of fibre segments, separated by broadband Bragg grating reflectors, using range-resolved interferometry (RRI). Four fibre strings, containing four fibre segments each of gauge length 20 cm, are attached to the opposing sides of a support structure and the resulting differential strain measurements allow inference of lateral displacements of a cantilever test object. Dynamic tip displacement resolutions in the micrometre range at an interferometric bandwidth of 21 kHz demonstrate the suitability of this approach for highly sensitive and cost-effective fibre-optic directional vibration measurements of smart structures.
Corner reflector SAR interferometry as an element of a landslide early warning system
NASA Astrophysics Data System (ADS)
Singer, J.; Riedmann, M.; Lang, O.; Anderssohn, J.; Thuro, K.; Wunderlich, Th.; Heunecke, O.; Minet, Ch.
2012-04-01
The development of efficient and cost-effective landslide monitoring techniques is the central aim of the alpEWAS research project (www.alpewas.de). Within the scope of the project a terrestrial geosensor network on a landslide site in the Bavarian Alps has been set up, consisting of low cost GNSS with subcentimeter precision, time domain reflectometry (TDR) and video tacheometry (VTPS). To increase the spatial sampling, 16 low-cost Radar Corner Reflectors (CRs) were installed on the site in 2011. The CRs are to reflect radar signals back to the TerraSAR-X radar satellite, allowing for precise displacement measurements. The subject of this study is the application of the CR SAR Interferometry (CRInSAR) technique, and the integration of the derived motion field into an early warning system for landslide monitoring based on terrestrial measurements. An accurate validation data set is realized independently of the monitoring network using millimeter precision GNSS and tacheometer measurements. The 12 CRs from Astrium Geo-Information Services employed over the test site were specifically designed for TerraSAR-X satellite passes. They are made of concrete with integrated metal plates weighing about 80 to 100 kg. They are of triangular trihedral shape with minimal dimensions to obtain a Radar Cross Section 100 times stronger than that of the surrounding area. The concrete guarantees stability against harsh weather conditions, and robustness with respect to vandalism or theft. In addition, the Technical University of Munich (TUM) and the German Aerospace Center (DLR) installed another four CRs made entirely out of aluminum, with the TUM reflectors being of similar minimum size than the Astrium reflectors. Three CRs were placed on assumed stable ground outside the slope area and shall act as reference reflectors. Since the installation date of most CRs (25/08/2011), TerraSAR-X HighResolution SpotLight data have been repeatedly acquired from ascending orbit over the test site with an incidence angle of 25.73°. The ascending orbit was chosen for the satellite to look on the backslope of the mountain, minimizing foreshortening effects. The datasets have a spatial resolution of about one meter and VV polarization, and have been processed with precise Scientific Orbits. In a first step, the sub-pixel position of the CR, as well as its intensity are characterized. The phase values for each image are then extracted for each CR and a differential interferometric phase with respect to a single master is calculated using a Digital Elevation Model. These phases are then unwrapped in the temporal domain and transformed to displacements. The redundant displacement results stemming from the use of three different reference reflectors are adjusted and an error is estimated. To integrate the result into the early warning system, datum corrections are necessary, as the InSAR displacement measurement is relative to the reference point(s) and reference time. In addition, the line-of-sight measurement is transformed with respect to coordinate system of the alpEWAS measurement system. Both the InSAR and terrestrial landslide movement measurements are then cross-checked with the validation high precision GNSS and tacheometer measurements.
Pujol Nadal, Ramon; Martínez Moll, Víctor
2013-10-20
Fixed-mirror solar concentrators (FMSCs) use a static reflector and a moving receiver. They are easily installable on building roofs. However, for high-concentration factors, several flat mirrors would be needed. If curved mirrors are used instead, high-concentration levels can be achieved, and such a solar concentrator is called a curved-slats fixed-mirror solar concentrator (CSFMSC), on which little information is available. Herein, a methodology is proposed to characterize the CSFMSC using 3D ray-tracing tools. The CSFMSC shows better optical characteristics than the FMSC, as it needs fewer reflector segments for achieving the same concentration and optical efficiency.
Measurement of electrostatically formed antennas using photogrammetry and theodolites
NASA Technical Reports Server (NTRS)
Goslee, J. W.; Hinson, W. F.; Kennefick, J. F.; Mihora, D. J.
1984-01-01
An antenna concept is presently being evaluated which has extremely low mass and high surface precision for potential depolyment from the Space Shuttle. This antenna concept derives its reflector surface quality from the application of electrostatic forces to tension and form a thin membrane into the desired concave reflector surface. The Shuttle-deployed antenna would have a diameter of 100 meters and an RMS surface smoothness of 10 to 1 mm for operation at 1 to 10 GHz. NASA Langley Research Center (LaRC) has built, and is currently testing, a subscale (1/20 scale) membrane reflector model of such an antenna. Several surface measurement systems were evaluated as part of the experimental surface measuring efforts. The surface measurement systems are addressed as well as some of the preliminary measurement results.
Lunar surface structural concepts and construction studies
NASA Technical Reports Server (NTRS)
Mikulas, Martin
1991-01-01
The topics are presented in viewgraph form and include the following: lunar surface structures construction research areas; lunar crane related disciplines; shortcomings of typical mobile crane in lunar base applications; candidate crane cable suspension systems; NIST six-cable suspension crane; numerical example of natural frequency; the incorporation of two new features for improved performance of the counter-balanced actively-controlled lunar crane; lunar crane pendulum mechanics; simulation results; 1/6 scale lunar crane testbed using GE robot for global manipulation; basic deployable truss approaches; bi-pantograph elevator platform; comparison of elevator platforms; perspective of bi-pantograph beam; bi-pantograph synchronously deployable tower/beam; lunar module off-loading concept; module off-loader concept packaged; starburst deployable precision reflector; 3-ring reflector deployment scheme; cross-section of packaged starburst reflector; and focal point and thickness packaging considerations.
Additive manufacturing of reflective optics: evaluating finishing methods
NASA Astrophysics Data System (ADS)
Leuteritz, G.; Lachmayer, R.
2018-02-01
Individually shaped light distributions become more and more important in lighting technologies and thus the importance of additively manufactured reflectors increases significantly. The vast field of applications ranges from automotive lighting to medical imaging and bolsters the statement. However, the surfaces of additively manufactured reflectors suffer from insufficient optical properties even when manufactured using optimized process parameters for the Selective Laser Melting (SLM) process. Therefore post-process treatments of reflectors are necessary in order to further enhance their optical quality. This work concentrates on the effectiveness of post-process procedures for reflective optics. Based on already optimized aluminum reflectors, which are manufactured with a SLM machine, the parts are differently machined after the SLM process. Selected finishing methods like laser polishing, sputtering or sand blasting are applied and their effects quantified and compared. The post-process procedures are investigated on their impact on surface roughness and reflectance as well as geometrical precision. For each finishing method a demonstrator will be created and compared to a fully milled sample and among themselves. Ultimately, guidelines are developed in order to figure out the optimal treatment of additively manufactured reflectors regarding their optical and geometrical properties. Simulations of the light distributions will be validated with the developed demonstrators.
Development of optical ground verification method for μm to sub-mm reflectors
NASA Astrophysics Data System (ADS)
Stockman, Y.; Thizy, C.; Lemaire, P.; Georges, M.; Mazy, E.; Mazzoli, A.; Houbrechts, Y.; Rochus, P.; Roose, S.; Doyle, D.; Ulbrich, G.
2017-11-01
Large reflectors and antennas for the IR to mm wavelength range are being planned for many Earth observation and astronomical space missions and for commercial communication satellites as well. Scientific observatories require large telescopes with precisely shaped reflectors for collecting the electro-magnetic radiation from faint sources. The challenging tasks of on-ground testing are to achieve the required accuracy in the measurement of the reflector shapes and antenna structures and to verify their performance under simulated space conditions (vacuum, low temperatures). Due to the specific surface characteristics of reflectors operating in these spectral regions, standard optical metrology methods employed in the visible spectrum do not provide useful measurement results. The current state-of-the-art commercial metrology systems are not able to measure these types of reflectors because they have to face the measurement of shape and waviness over relatively large areas with a large deformation dynamic range and encompassing a wide range of spatial frequencies. 3-D metrology (tactile coordinate measurement) machines are generally used during the manufacturing process. Unfortunately, these instruments cannot be used in the operational environmental conditions of the reflector. The application of standard visible wavelength interferometric methods is very limited or impossible due to the large relative surface roughnesses involved. A small number of infrared interferometers have been commercially developed over the last 10 years but their applications have also been limited due to poor dynamic range and the restricted spatial resolution of their detectors. These restrictions affect also the surface error slopes that can be captured and makes their application to surfaces manufactured using CRFP honeycomb technologies rather difficult or impossible. It has therefore been considered essential, from the viewpoint of supporting future ESA exploration missions, to develop and realise suitable verification tools based on infrared interferometry and other optical techniques for testing large reflector structures, telescope configurations and their performances under simulated space conditions. Two methods and techniques are developed at CSL. The first one is an IR-phase shifting interferometer with high spatial resolution. This interferometer shall be used specifically for the verification of high precision IR, FIR and sub-mm reflector surfaces and telescopes under both ambient and thermal vacuum conditions. The second one presented hereafter is a holographic method for relative shape measurement. The holographic solution proposed makes use of a home built vacuum compatible holographic camera that allows displacement measurements from typically 20 nanometres to 25 microns in one shot. An iterative process allows the measurement of a total of up to several mm of deformation. Uniquely the system is designed to measure both specular and diffuse surfaces.
PYROTRON WITH TRANSLATIONAL CLOSURE FIELDS
Hartwig, E.C.; Cummings, D.B.; Post, R.F.
1962-01-01
Circuit means is described for effecting inward transla- ' tory motion of the intensified terminal reflector field regions of a magnetic mirror plasma containment field with a simultaneous intensification of the over-all field configuration. The circuit includes a segmented magnetic field generating solenoid and sequentially actuated switch means to consecutively short-circuit the solenoid segments and place charged capacitor banks in shunt with the segments in an appropriate correlated sequence such that electrical energy is transferred inwardly between adjacent segments from the opposite ends of the solenoid. The resulting magnetic field is effective in both radially and axially adiabatically compressing a plasma in a reaction chamber disposed concentrically within the solenoid. In addition, one half of the circuit may be employed to unidirectionally accelerate plasma. (AEC)
LSST (Hoop/Column) Maypole Antenna Development Program, phase 1, part 1
NASA Technical Reports Server (NTRS)
Sullivan, M. R.
1982-01-01
The first of a two-phase program was performed to develop the technology necessary to evaluate, design, manufacture, package, transport and deploy the hoop/column deployable antenna reflector by means of a ground based program. The hoop/column concept consists of a cable stiffened large diameter hoop and central column structure that supports and contours a radio frequency reflective mesh surface. Mission scenarios for communications, radiometer and radio astronomy, were studied. The data to establish technology drivers that resulted in a specification of a point design was provided. The point design is a multiple beam quadaperture offset antenna system wich provides four separate offset areas of illumination on a 100 meter diameter symmetrical parent reflector. The periphery of the reflector is a hoop having 48 segments that articulate into a small stowed volume around a center extendable column. The hoop and column are structurally connected by graphite and quartz cables. The prominence of cables in the design resulted in the development of advanced cable technology. Design verification models were built of the hoop, column, and surface stowage subassemblies. Model designs were generated for a half scale sector of the surface and a 1/6 scale of the complete deployable reflector.
NASA Astrophysics Data System (ADS)
Cortés-Medellín, Germán; Herter, Terry
2006-06-01
The Cornell Caltech Atacama Telescope (CCAT) is a 25m-class sub-millimeter radio telescope capable of operating from 300GHz up to 1.5 THz. The CCAT optical design is an f/8 Ritchey-Chretien (RC) system in a dual Nasmyth focus configuration and a 20 arc-min FOV (diffraction limited imaging performance better than 0.31" at the edge of the field). The large FOV is capable to accommodate up to 1200x1200 (Nyquist Sampled) Pixels at 200 microns, with better than 96% Strehl ratio. The telescope pedestal assembly is a counterbalanced elevation over azimuth design. The main reflector surface is segmented and actively controlled to attain diffraction-limited operation up to 200 microns. A flat Mirror located behind the main reflector vertex provides the optical path relay to either of the two Nasmyth platforms and to a bent-Cassegrain focus for surface calibration. We present the imaging characteristics of the CCAT over the 20arc-min FOV at 200 microns at the Nasmyth focal plane, as well as the positioning sensitivity analysis of CCAT's 3.2m-diameter sub-reflector given in terms of the telescope optical performance, antenna pointing requirements and sub-reflector chopping characteristics.
Field Demonstrations of Active Laser Ranging with Sub-mm Precision
NASA Technical Reports Server (NTRS)
Chen, Yijiang; Birnbaum, Kevin M.; Hemmati, Hamid
2011-01-01
Precision ranging between planets will provide valuable information for scientific studies of the solar system and fundamental physics. Current passive ranging techniques using retro-reflectors are limited to the Earth-Moon distance due to the 1/R? losses. We report on a laboratory realization and field implementation of active laser ranging in real-time with two terminals, emulating interplanetary distance. Sub-millimeter accuracy is demonstrated.
NASA Astrophysics Data System (ADS)
Zhang, Xueliang; Feng, Xuezhi; Xiao, Pengfeng; He, Guangjun; Zhu, Liujun
2015-04-01
Segmentation of remote sensing images is a critical step in geographic object-based image analysis. Evaluating the performance of segmentation algorithms is essential to identify effective segmentation methods and optimize their parameters. In this study, we propose region-based precision and recall measures and use them to compare two image partitions for the purpose of evaluating segmentation quality. The two measures are calculated based on region overlapping and presented as a point or a curve in a precision-recall space, which can indicate segmentation quality in both geometric and arithmetic respects. Furthermore, the precision and recall measures are combined by using four different methods. We examine and compare the effectiveness of the combined indicators through geometric illustration, in an effort to reveal segmentation quality clearly and capture the trade-off between the two measures. In the experiments, we adopted the multiresolution segmentation (MRS) method for evaluation. The proposed measures are compared with four existing discrepancy measures to further confirm their capabilities. Finally, we suggest using a combination of the region-based precision-recall curve and the F-measure for supervised segmentation evaluation.
NASA Astrophysics Data System (ADS)
Mohammadi, Akram; Yoshida, Eiji; Nishikido, Fumihiko; Nitta, Munetaka; Shimizu, Keiji; Sakai, Toshiaki; Yamaya, Taiga
2018-01-01
Depth of interaction (DOI) information is indispensable to improving the sensitivity and spatial resolution of positron emission tomography (PET) systems, especially for small field-of-view PET such as small animal PET and human brain PET. We have already developed a series of X’tal cube detectors for isotropic spatial resolution and we obtained the best isotropic resolution of 0.77 mm for detectors with six-sided readout. However, it is still challenging to apply the detector for PET systems due to the high cost of six-sided readout electronics and carrying out segmentation of a monolithic cubic scintillator in three dimensions using the subsurface laser engraving (SSLE) technique. In this work, we propose a more practical X’tal cube with a two-sided readout detector, which is made of crystal bars segmented in the height direction only by using the SSLE technique. We developed two types of prototype detectors with a 3 mm cubic segment and a 1.5 mm cubic segment by using 3 × 3 × 20 mm3 and 1.5 × 1.5 × 20 mm3 crystal bars segmented into 7 and 13 DOI segments, respectively, using the SSLE technique. First, the performance of the detector, composed of one crystal bar with different DOI segments and two thorough silicon via (TSV) multi-pixel photon counters (MPPCs) as readout at both ends of the crystal bar, were evaluated in order to demonstrate the capability of the segmented crystal bars as a DOI detector. Then, performance evaluation was carried out for a 4 × 4 crystal array of 3 × 3 × 20 mm3 with 7 DOI segments and an 8 × 8 crystal array of 1.5 × 1.5 × 20 mm3 with 13 DOI segments. Each readout included a 4 × 4 channel of the 3 × 3 mm2 active area of the TSV MPPCs. The three-dimensional position maps of the detectors were obtained by the Anger-type calculation. All the segments in the 4 × 4 array were identified very clearly when there was air between the crystal bars, as each crystal bar was coupled to one channel of the MPPCs; however, it was necessary to optimize optical conditions between crystal bars for the 8 × 8 array because of light sharing between crystal bars coupled to one channel of the MPPCs. The optimization was performed for the 8 × 8 array by inserting reflectors fully or partially between the crystal bars and the best crystal identification performance was obtained with the partial reflectors between the crystal bars. The mean energy resolutions at the 511 keV photo peak for the 4 × 4 array with air between the crystal bars and for the 8 × 8 array with partial reflectors between the crystal bars were 10.1% ± 0.3% and 10.8% ± 0.8%, respectively. Timing resolutions of 783 ± 36 ps and 1.14 ± 0.22 ns were obtained for the detectors composed of the 4 × 4 array and the 8 × 8 array with partial reflectors, respectively. These values correspond to single photon timing resolutions. Practical X’tal cubes with 3 mm and 1.5 mm DOI resolutions and two-sided readout were developed.
Mohammadi, Akram; Yoshida, Eiji; Nishikido, Fumihiko; Nitta, Munetaka; Shimizu, Keiji; Sakai, Toshiaki; Yamaya, Taiga
2018-01-11
Depth of interaction (DOI) information is indispensable to improving the sensitivity and spatial resolution of positron emission tomography (PET) systems, especially for small field-of-view PET such as small animal PET and human brain PET. We have already developed a series of X'tal cube detectors for isotropic spatial resolution and we obtained the best isotropic resolution of 0.77 mm for detectors with six-sided readout. However, it is still challenging to apply the detector for PET systems due to the high cost of six-sided readout electronics and carrying out segmentation of a monolithic cubic scintillator in three dimensions using the subsurface laser engraving (SSLE) technique. In this work, we propose a more practical X'tal cube with a two-sided readout detector, which is made of crystal bars segmented in the height direction only by using the SSLE technique. We developed two types of prototype detectors with a 3 mm cubic segment and a 1.5 mm cubic segment by using 3 × 3 × 20 mm 3 and 1.5 × 1.5 × 20 mm 3 crystal bars segmented into 7 and 13 DOI segments, respectively, using the SSLE technique. First, the performance of the detector, composed of one crystal bar with different DOI segments and two thorough silicon via (TSV) multi-pixel photon counters (MPPCs) as readout at both ends of the crystal bar, were evaluated in order to demonstrate the capability of the segmented crystal bars as a DOI detector. Then, performance evaluation was carried out for a 4 × 4 crystal array of 3 × 3 × 20 mm 3 with 7 DOI segments and an 8 × 8 crystal array of 1.5 × 1.5 × 20 mm 3 with 13 DOI segments. Each readout included a 4 × 4 channel of the 3 × 3 mm 2 active area of the TSV MPPCs. The three-dimensional position maps of the detectors were obtained by the Anger-type calculation. All the segments in the 4 × 4 array were identified very clearly when there was air between the crystal bars, as each crystal bar was coupled to one channel of the MPPCs; however, it was necessary to optimize optical conditions between crystal bars for the 8 × 8 array because of light sharing between crystal bars coupled to one channel of the MPPCs. The optimization was performed for the 8 × 8 array by inserting reflectors fully or partially between the crystal bars and the best crystal identification performance was obtained with the partial reflectors between the crystal bars. The mean energy resolutions at the 511 keV photo peak for the 4 × 4 array with air between the crystal bars and for the 8 × 8 array with partial reflectors between the crystal bars were 10.1% ± 0.3% and 10.8% ± 0.8%, respectively. Timing resolutions of 783 ± 36 ps and 1.14 ± 0.22 ns were obtained for the detectors composed of the 4 × 4 array and the 8 × 8 array with partial reflectors, respectively. These values correspond to single photon timing resolutions. Practical X'tal cubes with 3 mm and 1.5 mm DOI resolutions and two-sided readout were developed.
Laser interferometry method for absolute measurement of the acceleration of gravity
NASA Technical Reports Server (NTRS)
Hudson, O. K.
1971-01-01
Gravimeter permits more accurate and precise absolute measurement of g without reference to Potsdam values as absolute standards. Device is basically Michelson laser beam interferometer in which one arm is mass fitted with corner cube reflector.
NASA Astrophysics Data System (ADS)
Cavanaugh, S.; Bangs, N. L.; Hornbach, M. J.; McIntosh, K. D.
2011-12-01
We use 3D seismic reflection data acquired in April - May 2011 by the R/V Marcus G. Langseth to extract heat flow information using the bottom-simulating reflector across the Costa Rica convergent margin. These data are part of the CRISP Project, which will image the Middle America subduction zone in 3D. The survey was conducted in an area approximately 55 x 11 km, to the northwest of the Osa Peninsula, Costa Rica. For the analysis presented here, 3D seismic data were processed with Paradigm Focus software through post-stack time migration. The bottom-simulating reflector (BSR)-a reverse polarity reflection indicating the base of the gas hydrate phase boundary-is imaged very clearly in two regions within the slope-cover sediments in the accretionary prism. In deep water environments, the BSR acts as a temperature gauge revealing subsurface temperatures across the margin. We predict BSR depth using a true 3D diffusive heat flow model combined with IODP drilling data and compare results with actual BSR depth observations to determine anomalies in heat flow. Uniform heat flow in the region should result in a deepening BSR downslope toward the trench, however our initial results indicate the BSR shoals near the trench to its shallowest level below sea floor of approximately 96 m below the sea floor, suggesting elevated heat flow towards the toe. Landward, the BSR deepens to about 333 m below the sea floor indicating lower heat flow. Both BSR segments display a trend of deepening landward from the trench, however the depth below the sea floor is greater overall for the landward segment than the segment near the toe. We suggest two regimes with differing heat flow exist across the margin that likely represent two separate fluid flow regimes - one from recently accreted sediments near the prism toe and the other through the older materials making up the prism.
Verifying the error bound of numerical computation implemented in computer systems
Sawada, Jun
2013-03-12
A verification tool receives a finite precision definition for an approximation of an infinite precision numerical function implemented in a processor in the form of a polynomial of bounded functions. The verification tool receives a domain for verifying outputs of segments associated with the infinite precision numerical function. The verification tool splits the domain into at least two segments, wherein each segment is non-overlapping with any other segment and converts, for each segment, a polynomial of bounded functions for the segment to a simplified formula comprising a polynomial, an inequality, and a constant for a selected segment. The verification tool calculates upper bounds of the polynomial for the at least two segments, beginning with the selected segment and reports the segments that violate a bounding condition.
Precision of radio science instrumentation for planetary exploration
NASA Technical Reports Server (NTRS)
Asmar, S. W.; Armstrong, J. W.; Iess, L.; Tortora, P.
2004-01-01
The Deep Space Network is the largest and most sensitive scientific telecommunications facility Primary function: providing two-way communication between the Earth and spacecraft exploring the solar system Instrumented with large parabolic reflectors, high-power transmitters, low-noise amplifiers & receivers.
NASA Astrophysics Data System (ADS)
Mohammadi, Akram; Inadama, Naoko; Yoshida, Eiji; Nishikido, Fumihiko; Shimizu, Keiji; Yamaya, Taiga
2017-09-01
We have developed a four-layer depth of interaction (DOI) detector with single-side photon readout, in which segmented crystals with the patterned reflector insertion are separately identified by the Anger-type calculation. Optical conditions between segmented crystals, where there is no reflector, affect crystal identification ability. Our objective of this work was to improve crystal identification performance of the four-layer DOI detector that uses crystals segmented with a recently developed laser processing technique to include laser processed boundaries (LPBs). The detector consisted of 2 × 2 × 4mm3 LYSO crystals and a 4 × 4 array multianode photomultiplier tube (PMT) with 4.5 mm anode pitch. The 2D position map of the detector was calculated by the Anger calculation method. At first, influence of optical condition on crystal identification was evaluated for a one-layer detector consisting of a 2 × 2 crystal array with three different optical conditions between the crystals: crystals stuck together using room temperature vulcanized (RTV) rubber, crystals with air coupling and segmented crystals with LPBs. The crystal array with LPBs gave the shortest distance between crystal responses in the 2D position map compared with the crystal array coupled with RTV rubber or air due to the great amount of cross-talk between segmented crystals with LPBs. These results were used to find optical conditions offering the optimum distance between crystal responses in the 2D position map for the four-layer DOI detector. Crystal identification performance for the four-layer DOI detector consisting of an 8 × 8 array of crystals segmented with LPBs was examined and it was not acceptable for the crystals in the first layer. The crystal identification was improved for the first layer by changing the optical conditions between all 2 × 2 crystal arrays of the first layer to RTV coupling. More improvement was observed by combining different optical conditions between all crystals of the first layer and some crystals of the second and the third layers of the segmented array.
Time reversal seismic imaging using laterally reflected surface waves in southern California
NASA Astrophysics Data System (ADS)
Tape, C.; Liu, Q.; Tromp, J.; Plesch, A.; Shaw, J. H.
2010-12-01
We use observed post-surface-wave seismic waveforms to image shallow (upper 10 km) lateral reflectors in southern California. Our imaging technique employs the 3D crustal model m16 of Tape et al. (2009), which is accurate for most local earthquakes over the period range 2-30 s. Model m16 captures the resonance of the major sedimentary basins in southern California, as well as some lateral surface wave reflections associated with these basins. We apply a 3D Gaussian smoothing function (12 km horizontal, 2 km vertical) to model m16. This smoothing has the effect of suppressing synthetic waveforms within the period range of interest (3-10 s) that are associated with reflections (single and multiple) from these basins. The smoothed 3D model serves as the background model within which we propagate an ``adjoint wavefield'' comprised of time-reversed windows of post-surface-wave coda waveforms that are initiated at the respective station locations. This adjoint wavefield constructively interferes with the regular wavefield in the locations of potential reflectors. The potential reflectors are revealed in an ``event kernel,'' which is the time-integrated volumetric field for each earthquake. By summing (or ``stacking'') the event kernels from 28 well-recorded earthquakes, we identify several reflectors using this imaging procedure. The most prominent lateral reflectors occur in proximity to: the southernmost San Joaquin basin, the Los Angeles basin, the San Pedro basin, the Ventura basin, the Manix basin, the San Clemente--Santa Cruz--Santa Barbara ridge, and isolated segments of the San Jacinto and San Andreas faults. The correspondence between observed coherent coda waveforms and the imaged reflectors provides a solid basis for interpreting the kernel features as material contrasts. The 3D spatial extent and amplitude of the kernel features provide constraints on the geometry and material contrast of the imaged reflectors.
NASA Technical Reports Server (NTRS)
Sutter, Thomas R.; Wu, K. Chauncey; Riutort, Kevin T.; Laufer, Joseph B.; Phelps, James E.
1992-01-01
A first-generation space crane articulated-truss joint was statically and dynamically characterized in a configuration that approximated an operational environment. The articulated-truss joint was integrated into a test-bed for structural characterization. Static characterization was performed by applying known loads and measuring the corresponding deflections to obtain load-deflection curves. Dynamic characterization was performed using modal testing to experimentally determine the first six mode shapes, frequencies, and modal damping values. Static and dynamic characteristics were also determined for a reference truss that served as a characterization baseline. Load-deflection curves and experimental frequency response functions are presented for the reference truss and the articulated-truss joint mounted in the test-bed. The static and dynamic experimental results are compared with analytical predictions obtained from finite element analyses. Load-deflection response is also presented for one of the linear actuators used in the articulated-truss joint. Finally, an assessment is presented for the predictability of the truss hardware used in the reference truss and articulated-truss joint based upon hardware stiffness properties that were previously obtained during the Precision Segmented Reflector (PSR) Technology Development Program.
Report of the Asilomar 3 LDR Workshop
NASA Technical Reports Server (NTRS)
Mahoney, M. J. (Editor)
1988-01-01
The conclusions and recommendations of the workshop held to study technology development issues critical to the Large Deployable Reflector (LDR) are summarized. LDR is to be a dedicated, orbiting, astronomical observatory, operating at wavelengths from 30 to 1000 microns, a spectral region where the Earth's atmosphere is almost completely opaque. Because it will have a large, segmented, passively cooled aperture, LDR addresses a wide range of technology areas. These include lightweight, low cost, structural composite reflector panels, primary support structures, wavefront sensing and adaptive optics, thermal background management, and integrated vibration and pointing control systems. The science objectives for LDR present instrument development challenges for coherent and direct arrayed detectors which can operate effectively at far infrared and submillimeter wavelengths, and for sub-Kelvin cryogenic systems.
A revolute joint with linear load-displacement response for a deployable lidar telescope
NASA Technical Reports Server (NTRS)
Lake, Mark S.; Warren, Peter A.; Peterson, Lee D.
1996-01-01
NASA Langley Research Center is developing concepts for an advanced spacecraft, called LidarTechSat, to demonstrate key structures and mechanisms technologies necessary to deploy a segmented telescope reflector. Achieving micron-accuracy deployment requires significant advancements in deployment mechanism design, such as the revolute joint presented herein. The joint exhibits load-cycling response that is essentially linear with less than 2% hysteresis, and the joint rotates with less than 7 mN-m (1 in-oz) of resistance. A prototype reflector metering truss incorporating the joint exhibits only a few microns of kinematic error under repected deployment and impulse loading. No other mechanically deployment structure found in the literature has been demonstrated to be this kinematically accurate.
Non-tracking solar energy collector system
NASA Technical Reports Server (NTRS)
Selcuk, M. K. (Inventor)
1978-01-01
A solar energy collector system is described characterized by an improved concentrator for directing incident rays of solar energy on parallel strip-like segments of a flatplate receiver. Individually mounted reflector modules of a common asymmetrical triangular cross-sectional configuration supported for independent orientation are asymmetric included with vee-trough concentrators for deflecting incident solar energy toward the receiver.
Precision and Fast Wavelength Tuning of a Dynamically Phase-Locked Widely-Tunable Laser
NASA Technical Reports Server (NTRS)
Numata, Kenji; Chen, Jeffrey R.; Wu, Stewart T.
2012-01-01
We report a precision and fast wavelength tuning technique demonstrated for a digital-supermode distributed Bragg reflector laser. The laser was dynamically offset-locked to a frequency-stabilized master laser using an optical phase-locked loop, enabling precision fast tuning to and from any frequencies within a 40-GHz tuning range. The offset frequency noise was suppressed to the statically offset-locked level in less than 40 s upon each frequency switch, allowing the laser to retain the absolute frequency stability of the master laser. This technique satisfies stringent requirements for gas sensing lidars and enables other applications that require such well-controlled precision fast tuning.
Wavefront control of large optical systems
NASA Technical Reports Server (NTRS)
Meinel, Aden B.; Meinel, Marjorie P.; Breckinridge, J. B.
1990-01-01
Several levels of wavefront control are necessary for the optimum performance of very large telescopes, especially segmented ones like the Large Deployable Reflector. In general, the major contributors to wavefront error are the segments of the large primary mirror. Wavefront control at the largest optical surface may not be the optimum choice because of the mass and inaccessibility of the elements of this surface that require upgrading. The concept of two-stage optics was developed to permit a poor wavefront from the large optics to be upgraded by means of a wavefront corrector at a small exit pupil of the system.
Wavefront Correction for Large, Flexible Antenna Reflector
NASA Technical Reports Server (NTRS)
Imbriale, William A.; Jammejad, Vahraz; Rajagopalan, Harish; Xu, Shenheng
2010-01-01
A wavefront-correction system has been proposed as part of an outer-space radio communication system that would include a large, somewhat flexible main reflector antenna, a smaller subreflector antenna, and a small array feed at the focal plane of these two reflector antennas. Part of the wavefront-correction system would reside in the subreflector, which would be a planar patch-element reflectarray antenna in which the phase shifts of the patch antenna elements would be controlled via microelectromechanical systems (MEMS) radio -frequency (RF) switches. The system would include the following sensing-and-computing subsystems: a) An optical photogrammetric subsystem built around two cameras would estimate geometric distortions of the main reflector; b) A second subsystem would estimate wavefront distortions from amplitudes and phases of signals received by the array feed elements; and c) A third subsystem, built around small probes on the subreflector plane, would estimate wavefront distortions from differences among phases of signals received by the probes. The distortion estimates from the three subsystems would be processed to generate control signals to be fed to the MEMS RF switches to correct for the distortions, thereby enabling collimation and aiming of the received or transmitted radio beam to the required precision.
Fabrication and Thermo-Optical Properties of the MLS Composite Primary Reflector
NASA Technical Reports Server (NTRS)
Willis, Paul B.; Dyer, Jack; Dummer, Sam
2000-01-01
The Microwave Limb Sounder (MLS) is a limb-sounding radiometer sensing emissions in the millimeter and sub-millimeter range. MLS will contribute to an understanding of atmospheric chemistry by assessing stratospheric and tropospheric ozone depletion, climate forcings and volcanic effects. The heart of the antenna is the primary reflector, constructed from graphite/cyanate composites in a facesheet/core construction. The reflector has an aperture of one square meter, a mass of 8.7 kilos and final figure accuracy of 4.37 microns rms. The surface is also modified to ensure RF reflectivity, prevent solar concentration and provide thermal balance to the spacecraft The surface is prepared by precision beadblasting, then coated with vapor deposited aluminum (VDA) and finally a layer of silicon suboxide (SiO(x)) to control the infrared emissivity. The resulting surface has a solar absorptance of 0.43 and an absorptance/emittance ratio of 1.3. BRDF analysis shows that 93% of the incident thermal energy is reflected outside a 10 degree angle of cone. For its mass and aperture, we believe this reflector to have the highest figure accuracy yet achieved in a composite antenna construction.
A perfect Fresnel acoustic reflector implemented by a Fano-resonant metascreen
NASA Astrophysics Data System (ADS)
Amin, M.; Siddiqui, O.; Farhat, M.; Khelif, A.
2018-04-01
We propose a perfectly reflecting acoustic metasurface which is designed by replacing the curved segments of the traditional Fresnel reflector by flat Fano-resonant sub-wavelength unit cells. To preserve the original Fresnel focusing mechanism, the unit cell phase follows a specific phase profile which is obtained by applying the generalized Snell's law and Fermat's principle. The reflected curved phase fronts are thus created at the air-metasurface boundary by tailoring the metasurface dispersion as dictated by Huygens' principle. Since the unit cells are implemented by sub-wavelength double slit-shaped cavity resonators, the impinging sound waves are perfectly reflected producing acoustic focusing with negligible absorption. We use plane-wave solution and full-wave simulations to demonstrate the focusing effects. The simulation results closely follow the analytical predictions.
Design of a Shape Memory Alloy deployment hinge for reflector facets
NASA Technical Reports Server (NTRS)
Anders, W. S.; Rogers, C. A.
1991-01-01
A design concept for a Shape Memory Alloy (SMA) actuated hinge mechanism for deploying segmented facet-type reflector surfaces on antenna truss structures is presented. The mechanism uses nitinol, a nickel-titanium shape memory alloy, as a displacement-force micro-actuator. An electrical current is used to resistively heat a 'plastically' elongated SMA actuator wire, causing it to contract in response to a thermally-induced phase transformation. The resulting tension creates a moment, imparting rotary motion between two adjacent panels. Mechanical stops are designed into the device to limit its range of motion and to establish positioning accuracy at the termination of deployment. The concept and its operation are discussed in detail, and an analytical dynamic simulation model is presented. The model has been used to perform nondimensionalized parametric design studies.
Precision and fast wavelength tuning of a dynamically phase-locked widely-tunable laser.
Numata, Kenji; Chen, Jeffrey R; Wu, Stewart T
2012-06-18
We report a precision and fast wavelength tuning technique demonstrated for a digital-supermode distributed Bragg reflector laser. The laser was dynamically offset-locked to a frequency-stabilized master laser using an optical phase-locked loop, enabling precision fast tuning to and from any frequencies within a ~40-GHz tuning range. The offset frequency noise was suppressed to the statically offset-locked level in less than ~40 μs upon each frequency switch, allowing the laser to retain the absolute frequency stability of the master laser. This technique satisfies stringent requirements for gas sensing lidars and enables other applications that require such well-controlled precision fast tuning.
Foil Panel Mirrors for Nonimaging Applications
NASA Technical Reports Server (NTRS)
Kuyper, D. J.; Castillo, A. A.
1984-01-01
Large durable, lightweight mirrors made by bonding thick aluminum foil to honeycomb panels or other rigid, flat backings. Mirrors suitable for use as infrared shields, telescope doors, solar-furnance doors, advertising displays, or other reflectors that require low thermal emissivity and high specularity but do not require precise surface figure necessary for imaging.
Silicon microfabricated beam expander
NASA Astrophysics Data System (ADS)
Othman, A.; Ibrahim, M. N.; Hamzah, I. H.; Sulaiman, A. A.; Ain, M. F.
2015-03-01
The feasibility design and development methods of silicon microfabricated beam expander are described. Silicon bulk micromachining fabrication technology is used in producing features of the structure. A high-precision complex 3-D shape of the expander can be formed by exploiting the predictable anisotropic wet etching characteristics of single-crystal silicon in aqueous Potassium-Hydroxide (KOH) solution. The beam-expander consist of two elements, a micromachined silicon reflector chamber and micro-Fresnel zone plate. The micro-Fresnel element is patterned using lithographic methods. The reflector chamber element has a depth of 40 µm, a diameter of 15 mm and gold-coated surfaces. The impact on the depth, diameter of the chamber and absorption for improved performance are discussed.
Yamaya, Taiga; Mitsuhashi, Takayuki; Matsumoto, Takahiro; Inadama, Naoko; Nishikido, Fumihiko; Yoshida, Eiji; Murayama, Hideo; Kawai, Hideyuki; Suga, Mikio; Watanabe, Mitsuo
2011-11-07
We are developing a novel, general purpose isotropic-3D PET detector X'tal cube which has high spatial resolution in all three dimensions. The research challenge for this detector is implementing effective detection of scintillation photons by covering six faces of a segmented crystal block with silicon photomultipliers (SiPMs). In this paper, we developed the second prototype of the X'tal cube for a proof-of-concept. We aimed at realizing an ultimate detector with 1.0 mm(3) cubic crystals, in contrast to our previous development using 3.0 mm(3) cubic crystals. The crystal block was composed of a 16 × 16 × 16 array of lutetium gadolinium oxyorthosilicate (LGSO) crystals 0.993 × 0.993 × 0.993 mm(3) in size. The crystals were optically glued together without inserting any reflector inside and 96 multi-pixel photon counters (MPPCs, S10931-50P, i.e. six faces each with a 4 × 4 array of MPPCs), each having a sensitive area of 3.0 × 3.0 mm(2), were optically coupled to the surfaces of the crystal block. Almost all 4096 crystals were identified through Anger-type calculation due to the finely adjusted reflector sheets inserted between the crystal block and light guides. The reflector sheets, which formed a belt of 0.5 mm width, were placed to cover half of the crystals of the second rows from the edges in order to improve identification performance of the crystals near the edges. Energy resolution of 12.7% was obtained at 511 keV with almost uniform light output for all crystal segments thanks to the effective detection of the scintillation photons.
Baca, A
1996-04-01
A method has been developed for the precise determination of anthropometric dimensions from the video images of four different body configurations. High precision is achieved by incorporating techniques for finding the location of object boundaries with sub-pixel accuracy, the implementation of calibration algorithms, and by taking into account the varying distances of the body segments from the recording camera. The system allows automatic segment boundary identification from the video image, if the boundaries are marked on the subject by black ribbons. In connection with the mathematical finite-mass-element segment model of Hatze, body segment parameters (volumes, masses, the three principal moments of inertia, the three local coordinates of the segmental mass centers etc.) can be computed by using the anthropometric data determined videometrically as input data. Compared to other, recently published video-based systems for the estimation of the inertial properties of body segments, the present algorithms reduce errors originating from optical distortions, inaccurate edge-detection procedures, and user-specified upper and lower segment boundaries or threshold levels for the edge-detection. The video-based estimation of human body segment parameters is especially useful in situations where ease of application and rapid availability of comparatively precise parameter values are of importance.
Rapid prototyping of reflectors for vehicle lighting using laser activated remote phosphor
NASA Astrophysics Data System (ADS)
Lachmayer, Roland; Kloppenburg, Gerolf; Wolf, Alexander
2015-03-01
Bright white light sources are of significant importance for automotive front lighting systems. Today's upper class vehicles mainly use HID or LED as light source. As a further step in this development laser diode based systems offer high luminance, efficiency and allow the realization of new styling concepts and new dynamic lighting functions. These white laser diode systems can either be realized by mixing different spectral sources or by combining diodes with specific phosphors. Based on the approach of generating light using a laser and remote phosphor, lighting modules are manufactured. Four blue laser diodes (450 nm) are used to activate a phosphor coating and thus to achieve white light. A segmented paraboloid reflector generates the desired light distribution for an additional car headlamp. We use high speed milling and selective laser melting to build the reflector system for this lighting module. We compare the spectral reflection grade of these materials. Furthermore the generated modules are analyzed regarding their efficiency and light distribution. The use of Rapid Prototyping technologies allows an early validation of the chosen concept and is supposed to reduce cost and time in the product development process significantly. Therefor we discuss costs and times of the applied manufacturing technologies.
Simulation requirements for the Large Deployable Reflector (LDR)
NASA Technical Reports Server (NTRS)
Soosaar, K.
1984-01-01
Simulation tools for the large deployable reflector (LDR) are discussed. These tools are often the transfer function variety equations. However, transfer functions are inadequate to represent time-varying systems for multiple control systems with overlapping bandwidths characterized by multi-input, multi-output features. Frequency domain approaches are the useful design tools, but a full-up simulation is needed. Because of the need for a dedicated computer for high frequency multi degree of freedom components encountered, non-real time smulation is preferred. Large numerical analysis software programs are useful only to receive inputs and provide output to the next block, and should be kept out of the direct loop of simulation. The following blocks make up the simulation. The thermal model block is a classical heat transfer program. It is a non-steady state program. The quasistatic block deals with problems associated with rigid body control of reflector segments. The steady state block assembles data into equations of motion and dynamics. A differential raytrace is obtained to establish a change in wave aberrations. The observation scene is described. The focal plane module converts the photon intensity impinging on it into electron streams or into permanent film records.
NASA Technical Reports Server (NTRS)
Klann, P. G.; Lantz, E.
1973-01-01
A zero-power critical assembly was designed, constructed, and operated for the prupose of conducting a series of benchmark experiments dealing with the physics characteristics of a UN-fueled, Li-7-cooled, Mo-reflected, drum-controlled compact fast reactor for use with a space-power conversion system. The critical assembly was modified to simulate a fast spectrum advanced thermionics reactor by: (1) using BeO as a reflector in place of some of the existing molybdenum, (2) substituting Nb-1Zr tubing for some of the existing Ta tubing, and (3) inserting four full-scale mockups of thermionic type fuel elements near the core and BeO reflector boundary. These mockups were surrounded with a buffer zone having the equivalent thermionic core composition. In addition to measuring the critical mass of this thermionic configuration, a detailed power distribution in one of the thermionic element stages in the mixed spectrum region was measured. A power peak to average ratio of two was observed for this fuel stage at the midplane of the core and adjacent to the reflector. Also, the power on the outer surface adjacent to the BeO was slightly more than a factor of two larger than the power on the inside surface of a 5.08 cm (2.0 in.) high annular fuel segment with a 2.52 cm (0.993 in. ) o.d. and a 1.86 cm (0.731 in.) i.d.
The optical design and simulation of the collimated solar simulator
NASA Astrophysics Data System (ADS)
Zhang, Jun; Ma, Tao
2018-01-01
The solar simulator is a lighting device that can simulate the solar radiation. It has been widely used in the testing of solar cells, satellite space environment simulation and ground experiment, test and calibration precision of solar sensor. The solar simulator mainly consisted of short—arc xenon lamp, ellipsoidal reflectors, a group of optical integrator, field stop, aspheric folding mirror and collimating reflector. In this paper, the solar simulator's optical system basic size are given by calculation. Then the system is optically modeled with the Lighttools software, and the simulation analysis on solar simulator using the Monte Carlo ray -tracing technique is conducted. Finally, the simulation results are given quantitatively by diagrammatic form. The rationality of the design is verified on the basis of theory.
Whole vertebral bone segmentation method with a statistical intensity-shape model based approach
NASA Astrophysics Data System (ADS)
Hanaoka, Shouhei; Fritscher, Karl; Schuler, Benedikt; Masutani, Yoshitaka; Hayashi, Naoto; Ohtomo, Kuni; Schubert, Rainer
2011-03-01
An automatic segmentation algorithm for the vertebrae in human body CT images is presented. Especially we focused on constructing and utilizing 4 different statistical intensity-shape combined models for the cervical, upper / lower thoracic and lumbar vertebrae, respectively. For this purpose, two previously reported methods were combined: a deformable model-based initial segmentation method and a statistical shape-intensity model-based precise segmentation method. The former is used as a pre-processing to detect the position and orientation of each vertebra, which determines the initial condition for the latter precise segmentation method. The precise segmentation method needs prior knowledge on both the intensities and the shapes of the objects. After PCA analysis of such shape-intensity expressions obtained from training image sets, vertebrae were parametrically modeled as a linear combination of the principal component vectors. The segmentation of each target vertebra was performed as fitting of this parametric model to the target image by maximum a posteriori estimation, combined with the geodesic active contour method. In the experimental result by using 10 cases, the initial segmentation was successful in 6 cases and only partially failed in 4 cases (2 in the cervical area and 2 in the lumbo-sacral). In the precise segmentation, the mean error distances were 2.078, 1.416, 0.777, 0.939 mm for cervical, upper and lower thoracic, lumbar spines, respectively. In conclusion, our automatic segmentation algorithm for the vertebrae in human body CT images showed a fair performance for cervical, thoracic and lumbar vertebrae.
The improvement of surface roughness for OAP aluminum mirrors: from terahertz to ultraviolet
NASA Astrophysics Data System (ADS)
Peng, Jilong; Yu, Qian; Shao, Yajun; Wang, Dong; Yi, Zhong; Wang, Shanshan
2018-01-01
Aluminum reflector, especially OAP (Off-Axis Parabolic) reflector, has been widely used in terahertz and infrared systems for its low cost, lightweight, good machinability, small size, simple structure, and having the same thermal expansion and contraction with the system structure which makes it have a wide temperature adaptability. Thorlabs, Daheng and other large optical components companies even have Aluminum OAP sold on shelf. Most of the precision Aluminum OAP is fabricated by SPDT (single point diamond turing). Affected by intermittent shock, the roughness of aluminum OAP mirrors through conventional single-point diamond lathes is around 7 nm which limits the scope of application for aluminum mirrors, like in the high power density terahertz/infrared systems and visible/UV optical systems. In this paper, a continuous process frock is proposed, which effectively reduces the influence of turning impact on the mirror roughness. Using this process, an off-axis parabolic aluminum reflector with an effective diameter of 50 mm, off-axis angle of 90 degree is fabricated, and the performances are validated. Measurement by VEECO NT1100 optical profiler with 20× objects, the surface roughness achieves 2.3 nm, and the surface figure error is within λ/7 RMS (λ= 632.8 nm) tested by FISB Aμ Phase laser interferometer with the help of a standard flat mirror. All these technical specifications are close to the traditional glass-based reflectors, and make it possible for using Aluminum reflectors in the higher LIDT (laser induced damage threshold) systems and even for the micro sensor of ionospheric for vacuum ultraviolet micro nano satellites.
Methodes d'optimisation des parametres 2D du reflecteur dans un reacteur a eau pressurisee
NASA Astrophysics Data System (ADS)
Clerc, Thomas
With a third of the reactors in activity, the Pressurized Water Reactor (PWR) is today the most used reactor design in the world. This technology equips all the 19 EDF power plants. PWRs fit into the category of thermal reactors, because it is mainly the thermal neutrons that contribute to the fission reaction. The pressurized light water is both used as the moderator of the reaction and as the coolant. The active part of the core is composed of uranium, slightly enriched in uranium 235. The reflector is a region surrounding the active core, and containing mostly water and stainless steel. The purpose of the reflector is to protect the vessel from radiations, and also to slow down the neutrons and reflect them into the core. Given that the neutrons participate to the reaction of fission, the study of their behavior within the core is capital to understand the general functioning of how the reactor works. The neutrons behavior is ruled by the transport equation, which is very complex to solve numerically, and requires very long calculation. This is the reason why the core codes that will be used in this study solve simplified equations to approach the neutrons behavior in the core, in an acceptable calculation time. In particular, we will focus our study on the diffusion equation and approximated transport equations, such as SPN or S N equations. The physical properties of the reflector are radically different from those of the fissile core, and this structural change causes important tilt in the neutron flux at the core/reflector interface. This is why it is very important to accurately design the reflector, in order to precisely recover the neutrons behavior over the whole core. Existing reflector calculation techniques are based on the Lefebvre-Lebigot method. This method is only valid if the energy continuum of the neutrons is discretized in two energy groups, and if the diffusion equation is used. The method leads to the calculation of a homogeneous reflector. The aim of this study is to create a computational scheme able to compute the parameters of heterogeneous, multi-group reflectors, with both diffusion and SPN/SN operators. For this purpose, two computational schemes are designed to perform such a reflector calculation. The strategy used in both schemes is to minimize the discrepancies between a power distribution computed with a core code and a reference distribution, which will be obtained with an APOLLO2 calculation based on the method Method Of Characteristics (MOC). In both computational schemes, the optimization parameters, also called control variables, are the diffusion coefficients in each zone of the reflector, for diffusion calculations, and the P-1 corrected macroscopic total cross-sections in each zone of the reflector, for SPN/SN calculations (or correction factors on these parameters). After a first validation of our computational schemes, the results are computed, always by optimizing the fast diffusion coefficient for each zone of the reflector. All the tools of the data assimilation have been used to reflect the different behavior of the solvers in the different parts of the core. Moreover, the reflector is refined in six separated zones, corresponding to the physical structure of the reflector. There will be then six control variables for the optimization algorithms. [special characters omitted]. Our computational schemes are then able to compute heterogeneous, 2-group or multi-group reflectors, using diffusion or SPN/SN operators. The optimization performed reduces the discrepancies distribution between the power computed with the core codes and the reference power. However, there are two main limitations to this study: first the homogeneous modeling of the reflector assemblies doesn't allow to properly describe its physical structure near the core/reflector interface. Moreover, the fissile assemblies are modeled in infinite medium, and this model reaches its limit at the core/reflector interface. These two problems should be tackled in future studies. (Abstract shortened by UMI.).
Segmentation precision of abdominal anatomy for MRI-based radiotherapy
Noel, Camille E.; Zhu, Fan; Lee, Andrew Y.; Yanle, Hu; Parikh, Parag J.
2014-01-01
The limited soft tissue visualization provided by computed tomography, the standard imaging modality for radiotherapy treatment planning and daily localization, has motivated studies on the use of magnetic resonance imaging (MRI) for better characterization of treatment sites, such as the prostate and head and neck. However, no studies have been conducted on MRI-based segmentation for the abdomen, a site that could greatly benefit from enhanced soft tissue targeting. We investigated the interobserver and intraobserver precision in segmentation of abdominal organs on MR images for treatment planning and localization. Manual segmentation of 8 abdominal organs was performed by 3 independent observers on MR images acquired from 14 healthy subjects. Observers repeated segmentation 4 separate times for each image set. Interobserver and intraobserver contouring precision was assessed by computing 3-dimensional overlap (Dice coefficient [DC]) and distance to agreement (Hausdorff distance [HD]) of segmented organs. The mean and standard deviation of intraobserver and interobserver DC and HD values were DCintraobserver = 0.89 ± 0.12, HDintraobserver = 3.6 mm ± 1.5, DCinterobserver = 0.89 ± 0.15, and HDinterobserver = 3.2 mm ± 1.4. Overall, metrics indicated good interobserver/intraobserver precision (mean DC > 0.7, mean HD < 4 mm). Results suggest that MRI offers good segmentation precision for abdominal sites. These findings support the utility of MRI for abdominal planning and localization, as emerging MRI technologies, techniques, and onboard imaging devices are beginning to enable MRI-based radiotherapy. PMID:24726701
Segmentation precision of abdominal anatomy for MRI-based radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noel, Camille E.; Zhu, Fan; Lee, Andrew Y.
2014-10-01
The limited soft tissue visualization provided by computed tomography, the standard imaging modality for radiotherapy treatment planning and daily localization, has motivated studies on the use of magnetic resonance imaging (MRI) for better characterization of treatment sites, such as the prostate and head and neck. However, no studies have been conducted on MRI-based segmentation for the abdomen, a site that could greatly benefit from enhanced soft tissue targeting. We investigated the interobserver and intraobserver precision in segmentation of abdominal organs on MR images for treatment planning and localization. Manual segmentation of 8 abdominal organs was performed by 3 independent observersmore » on MR images acquired from 14 healthy subjects. Observers repeated segmentation 4 separate times for each image set. Interobserver and intraobserver contouring precision was assessed by computing 3-dimensional overlap (Dice coefficient [DC]) and distance to agreement (Hausdorff distance [HD]) of segmented organs. The mean and standard deviation of intraobserver and interobserver DC and HD values were DC{sub intraobserver} = 0.89 ± 0.12, HD{sub intraobserver} = 3.6 mm ± 1.5, DC{sub interobserver} = 0.89 ± 0.15, and HD{sub interobserver} = 3.2 mm ± 1.4. Overall, metrics indicated good interobserver/intraobserver precision (mean DC > 0.7, mean HD < 4 mm). Results suggest that MRI offers good segmentation precision for abdominal sites. These findings support the utility of MRI for abdominal planning and localization, as emerging MRI technologies, techniques, and onboard imaging devices are beginning to enable MRI-based radiotherapy.« less
Contraintes sismiques sur les structures crustales de l'Abitibi et de l'Opatica
NASA Astrophysics Data System (ADS)
Bellefleur, Gilles
The objectives of the work presented in this thesis are two-fold. The first consists in determining the tri-dimensional orientation of reflective structures from seismic reflection data acquired along 2D crooked profiles, while the second, based on these orientations, consists in defining geometric constraints on the tectonic scenarios proposed for the Abitibi and Opatica subprovinces. To provide precise estimates of reflector orientations, we use three distinct approaches, which, however, require acquisition profiles that call locally provide 3D informations. In the first, we use crossdip analysis and interpretation of the seismic sections improved by applying the crossdip corrections to determine the orientations of the reflectors. In the second, the strikes and dips of reflectors are estimated in the crooked parts of seismic reflection profiles by estimating a measure of coherency along the traveltime trajectories defined by a particular azimuth, dip and depth, and a medium velocity. Finally, we also use the dip of reflections observed on intersecting profiles to establish the 3D orientation of reflective structures. In general, reflectors observed in the Abitibi greenstone belt and Opatica belt have strikes parallel to the deformation structures mapped at surface, suggesting that the reflectors are related to the tectonic processes which affected independently or simultaneously the two subprovinces. Most of the reflectors recovered in the Opatica belt strike ENE-WSW and dip shallowly to the north and to the south. Their attitudes coincide with the orientations of deformation fabrics associated with a N-S shortening event, which affected the belt between 2700 and 2680 Ma. Mantle reflections, previously interpreted as a relict suture of an Archean subduction zone, dip to the north at around 30°--45° and are also associated with this N-S event. Reflectors with NNE strikes and shallow dips toward the east are correlated with surface evidence for early west vergent thrusting in the Opatica crust. Mid-crustal reflectors in the Abitibi define two areas with distinctive geometry: reflectors beneath the southern Abitibi belt are oppositely-dipping, and convergent at depth, providing a V-shape aspect to the greenstone rocks, other reflectors beneath the northern Abitibi belt are, in general, similarly oriented, dipping at an average of 30° toward the north. These north-dipping reflectors are partly disrupted by a low-reflectivity zone located north of the Casa-Berardi tectonic zone at mid-crustal levels. The low reflectivity zone is attributed to rocks of the Opatica belt, located underneath the northern Abitibi greenstone belt during a late stage of the accretion of the two subprovinces. The geometry of the reflectors recovered in the Abitibi and Opatica is consistent with the different tectonic histories proposed for the two subprovinces, until common deformation during a N-S shortening event. Attitudes recovered in the northern Abitibi belt and Opatica are consistent with tectonic scenarios involving underthrusting of Abitibi middle and lower-crustal terranes beneath the Opatica belt, while the oppositely dipping reflectors recovered in the middle crust beneath the southern Abitibi belt could be representative of a rifted volcanic arc environment.
Precise Orbit Determination for ALOS
NASA Technical Reports Server (NTRS)
Nakamura, Ryo; Nakamura, Shinichi; Kudo, Nobuo; Katagiri, Seiji
2007-01-01
The Advanced Land Observing Satellite (ALOS) has been developed to contribute to the fields of mapping, precise regional land coverage observation, disaster monitoring, and resource surveying. Because the mounted sensors need high geometrical accuracy, precise orbit determination for ALOS is essential for satisfying the mission objectives. So ALOS mounts a GPS receiver and a Laser Reflector (LR) for Satellite Laser Ranging (SLR). This paper deals with the precise orbit determination experiments for ALOS using Global and High Accuracy Trajectory determination System (GUTS) and the evaluation of the orbit determination accuracy by SLR data. The results show that, even though the GPS receiver loses lock of GPS signals more frequently than expected, GPS-based orbit is consistent with SLR-based orbit. And considering the 1 sigma error, orbit determination accuracy of a few decimeters (peak-to-peak) was achieved.
A Ka-band radial relativistic backward wave oscillator with GW-class output power
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Jiaxin; Zhang, Xiaoping, E-mail: zhangxiaoping@nudt.edu.cn; Dang, Fangchao
A novel radial relativistic backward wave oscillator with a reflector is proposed and designed to generate GW-level high power microwaves at Ka-band. The segmented radial slow wave structure and the reflector are matched to enhance interaction efficiency. We choose the volume wave TM{sub 01} mode as the working mode due to the volume wave characteristic. The main structural parameters of the novel device are optimized by particle-in-cell simulation. High power microwaves with power of 2 GW and a frequency of 29.4 GHz are generated with 30% efficiency when the electron beam voltage is 383 kV, the beam current is 17 kA, and themore » guiding magnetic field is only 0.6 T. Simultaneously, the highest electric field in the novel Ka-band device is just about 960 kV/cm in second slow wave structure.« less
A technology program for the development of the large deployable reflector for space based astronomy
NASA Technical Reports Server (NTRS)
Kiya, M. K.; Gilbreath, W. P.; Swanson, P. N.
1982-01-01
Technologies for the development of the Large Deployable Reflector (LDR), a NASA project for the 1990's, for infrared and submillimeter astronomy are presented. The proposed LDR is a 10-30 diameter spaceborne observatory operating in the spectral region from 30 microns to one millimeter, where ground observations are nearly impossible. Scientific rationales for such a system include the study of ancient signals from galaxies at the edge of the universe, the study of star formation, and the observation of fluctuations in the cosmic background radiation. System requirements include the ability to observe faint objects at large distances and to map molecular clouds and H II regions. From these requirements, mass, photon noise, and tolerance budgets are developed. A strawman concept is established, and some alternate concepts are considered, but research is still necessary in the areas of segment, optical control, and instrument technologies.
Precision pointing compensation for DSN antennas with optical distance measuring sensors
NASA Technical Reports Server (NTRS)
Scheid, R. E.
1989-01-01
The pointing control loops of Deep Space Network (DSN) antennas do not account for unmodeled deflections of the primary and secondary reflectors. As a result, structural distortions due to unpredictable environmental loads can result in uncompensated boresight shifts which degrade pointing accuracy. The design proposed here can provide real-time bias commands to the pointing control system to compensate for environmental effects on pointing performance. The bias commands can be computed in real time from optically measured deflections at a number of points on the primary and secondary reflectors. Computer simulations with a reduced-order finite-element model of a DSN antenna validate the concept and lead to a proposed design by which a ten-to-one reduction in pointing uncertainty can be achieved under nominal uncertainty conditions.
Integrated circuit layer image segmentation
NASA Astrophysics Data System (ADS)
Masalskis, Giedrius; Petrauskas, Romas
2010-09-01
In this paper we present IC layer image segmentation techniques which are specifically created for precise metal layer feature extraction. During our research we used many samples of real-life de-processed IC metal layer images which were obtained using optical light microscope. We have created sequence of various image processing filters which provides segmentation results of good enough precision for our application. Filter sequences were fine tuned to provide best possible results depending on properties of IC manufacturing process and imaging technology. Proposed IC image segmentation filter sequences were experimentally tested and compared with conventional direct segmentation algorithms.
NASA Astrophysics Data System (ADS)
Elliott, G. M.; Parson, L. M.
2007-12-01
The Hatton Bank margin, flanking the Iceland Basin is a widely cited example of a volcanic rifted margin. Prior to this study insights into the break-up history of the margin have been limited to profiles in the north and south, yet whilst valuable, the along margin tectono-magmatic variability has not been revealed. Over 5660 line km of high quality reflection seismic profiles with supplementary multibeam bathymetry were collected to support the UK's claim to Hatton region under the United Nations Convention on Law of the Sea (UNCLOS). Integration of this new data with existing profiles, allowed the margin to be divided into three segments, each of which are flanked by oceanic crust with a smooth upper surface and internal dipping reflectors. The southernmost segment is characterised by a series of inner and outer seaward dipping reflector (SDR) packages, which are separated by an outer high feature. The outer SDR are truncated by Endymion Spur, a chain of steep sided, late stage volcanic cones linked with necks. The central sector has no inner SDR package and is characterised by the presence of a highly intruded continental block, the Hatton Bank Block (HBB). The northern sector is adjacent to Lousy Bank, with a wider region of SDR recognised than to the south and a high amount of volcanic cones imaged. The variations in the distribution of the SDR's along the margin, the presence of the HBB and Endymion Spur all suggest that the break-up process was not uniform alongstrike. The division of the margin into three sectors reveals that structural segmentation played an important role in producing the variations along the margin. Break- up initiated in the south and progressed north producing the SDR packages witnessed, when the HBB was encountered the focus of break-up moved seaward of the block. The northern sector was closer to the Iceland Hotspot and hence a greater amount of volcanism is encountered. The smooth oceanic basement also indicates a high thermal flux leading to high melt production and subsidence rates forming the dipping reflectors. Shortly after break-up the eruption of Endymion Spur occurred. The nature of the magma erupted is unknown but from the steepness of the cones, it is inferred to be viscous and considering the setting, mostly likely a tholeiitic cumulate. A possible trigger for the Endymion Spur is the passage of a pulse of hotter than normal asthenospheric material along the margin, which interacted with lower crustal material to produce melt to feed the volcanic centres. Enhanced asthenospheric heat flow has been invoked to explain the V-shaped ridges along the present day Reykjanes Ridge and it is probable that the Endymion Spur represents previous such pulses along the margin/spreading axis. The location of the enhanced volcanism is itself controlled by crustal segmentation, with the Endymion Spur limited to the southern sector. The crustal thickness in this sector is approx. 2 to 3 km thinner than that found in the central segment, in which Endymion Spur is absent. The role of the segmentation along the margin has influenced the break-up style (presence or absence of SDR) and also the location and nature of post break-up volcanism.
Composite panel development at JPL
NASA Technical Reports Server (NTRS)
Mcelroy, Paul; Helms, Rich
1988-01-01
Parametric computer studies can be use in a cost effective manner to determine optimized composite mirror panel designs. An InterDisciplinary computer Model (IDM) was created to aid in the development of high precision reflector panels for LDR. The materials properties, thermal responses, structural geometries, and radio/optical precision are synergistically analyzed for specific panel designs. Promising panels designs are fabricated and tested so that comparison with panel test results can be used to verify performance prediction models and accommodate design refinement. The iterative approach of computer design and model refinement with performance testing and materials optimization has shown good results for LDR panels.
An integral sunshade for optical reception antennas
NASA Technical Reports Server (NTRS)
Kerr, E. L.
1988-01-01
Optical reception antennas (telescopes) must be capable of receiving communications even when the deep-space laser source is located within a small angle of the Sun. Direst sunlight must not be allowed to shine on the primary reflector of an optical reception antenna, because too much light would be scattered into the signal detectors. A conventional sunshade that does not obstruct the antenna aperture would have to be about five times longer than its diameter in order to receive optical communications at a solar elongation of 12 degrees without interference. Such a long sunshade could not be accommodated within the dome of any existing large-aperture astronomical facility, and providing a new dome large enough would be prohibitively expensive. It is also desirable to reduce the amount of energy a space-based large-aperture optical reception facility would expend orienting a structure with such a sizable moment of inertia. Since a large aperture optical reception antenna will probably have a hexagonally segmented primary reflector, a sunshade consisting of hexagonal tubes can be mounted in alignment with the segmentation without producing any additional geometric obstruction. An analysis of the duration and recurrence of solar-conjunction communications outages (caused when a deep-space probe near an outer planet appears to be closer to the Sun than a given minimum solar elongation), and the design equations for the integral sunshade are appended.
Current Trends and Challenges in Satellite Laser Ranging
NASA Astrophysics Data System (ADS)
Appleby, Graham M.; Bianco, Giuseppe; Noll, Carey E.; Pavlis, Erricos C.; Pearlman, Michael R.
2016-12-01
Satellite Laser Ranging (SLR) is used to measure accurately the distance from ground stations to retro-reflectors on satellites and on the Moon. SLR is one of the fundamental space-geodetic techniques that define the International Terrestrial Reference Frame (ITRF), which is the basis upon which many aspects of global change over space, time, and evolving technology are measured; with VLBI the two techniques define the scale of the ITRF; alone the SLR technique defines its origin (geocenter). The importance of the reference frame has recently been recognized at the inter-governmental level through the United Nations, which adopted in February 2015 the Resolution "Global Geodetic Reference Frame for Sustainable Development." Laser Ranging provides precision orbit determination and instrument calibration and validation for satellite-borne altimeters for the better understanding of sea level change, ocean dynamics, ice mass-balance, and terrestrial topography. It is also a tool to study the dynamics of the Moon and fundamental constants and theories. With the exception of the currently in-orbit GPS constellation, all GNSS satellites now carry retro-reflectors for improved orbit determination, harmonization of reference frames, and in-orbit co-location and system performance validation; the next generation of GPS satellites due for launch from 2019 onwards will also carry retro-reflectors. The ILRS delivers weekly realizations that are accumulated sequentially to extend the ITRF and the Earth Orientation Parameter series with a daily resolution. SLR technology continues to evolve towards the next-generation laser ranging systems and it is expected to successfully meet the challenges of the GGOS2020 program for a future Global Space Geodetic Network. Ranging precision is improving as higher repetition rate, narrower pulse lasers, and faster detectors are implemented within the network. Automation and pass interleaving at some stations is expanding temporal coverage and greatly enhancing efficiency. Discussions are ongoing with some missions that will allow the SLR network stations to provide crucial, but energy-safe, range measurements to optically vulnerable satellites. New retro-reflector designs are improving the signal link and enable daylight ranging that is now the norm for many stations. We discuss many of these laser ranging activities and some of the tough challenges that the SLR network currently faces.
Nanolaminate Mirrors With "Piston" Figure-Control Actuators
NASA Technical Reports Server (NTRS)
Lowman, Andrew; Redding, David; Hickey, Gregory; Knight, Jennifer; Moynihan, Philip; Lih, Shyh0Shiuh; Barbee, Troy
2003-01-01
Efforts are under way to develop a special class of thin-shell curved mirrors for high-resolution imaging in visible and infrared light in a variety of terrestrial or extraterrestrial applications. These mirrors can have diameters of the order of a meter and include metallic film reflectors on nanolaminate substrates supported by multiple distributed piezoceramic gpiston h-type actuators for micron-level figure control. Whereas conventional glass mirrors of equivalent size and precision have areal mass densities between 50 and 150 kg/sq m, the nanolaminate mirrors, including not only the reflector/ shell portions but also the actuators and the backing structures needed to react the actuation forces, would have areal mass densities that may approach .5 kg/m2. Moreover, whereas fabrication of a conventional glass mirror of equivalent precision takes several years, the reflector/shell portion of a nanolaminate mirror can be fabricated in less than a week, and its actuation system can be fabricated in 1 to 2 months. The engineering of these mirrors involves a fusion of the technological heritage of multisegmented adaptive optics and deformable mirrors with more recent advances in metallic nanolaminates and in mathematical modeling of the deflections of thin, curved shells in response to displacements by multiple, distributed actuators. Because a nanolaminate shell is of the order of 10 times as strong as an otherwise identical shell made of a single, high-strength, non-nanolaminate metal suitable for mirror use, a nanolaminate mirror can be made very thin (typically between 100 and 150 m from the back of the nanolaminate substrate to the front reflecting surface). The thinness and strength of the nanolaminate are what make it possible to use distributed gpiston h-type actuators for surface figure control with minimal local concentrated distortion (called print-through in the art) at the actuation points.
Integrated modeling analysis of a novel hexapod and its application in active surface
NASA Astrophysics Data System (ADS)
Yang, Dehua; Zago, Lorenzo; Li, Hui; Lambert, Gregory; Zhou, Guohua; Li, Guoping
2011-09-01
This paper presents the concept and integrated modeling analysis of a novel mechanism, a 3-CPS/RPPS hexapod, for supporting segmented reflectors for radio telescopes and eventually segmented mirrors of optical telescopes. The concept comprises a novel type of hexapod with an original organization of actuators hence degrees of freedom, based on a swaying arm based design concept. Afterwards, with specially designed connecting joints between panels/segments, an iso-static master-slave active surface concept can be achieved for any triangular and/or hexagonal panel/segment pattern. The integrated modeling comprises all the multifold sizing and performance aspects which must be evaluated concurrently in order to optimize and validate the design and the configuration. In particular, comprehensive investigation of kinematic behavior, dynamic analysis, wave-front error and sensitivity analysis are carried out, where, frequently used tools like MATLAB/SimMechanics, CALFEM and ANSYS are used. Especially, we introduce the finite element method as a competent approach for analyses of the multi-degree of freedom mechanism. Some experimental verifications already performed validating single aspects of the integrated concept are also presented with the results obtained.
Lightweight diaphragm mirror module system for solar collectors
Butler, Barry L.
1985-01-01
A mirror module system is provided for accurately focusing solar radiation on a point or a line as defined by an array of solar collectors. Each mirror module includes a flexible membrane stretched over a frame in a manner similar to that of a drum or a trampoline and further includes a silvered glass or plastic mirror for forming an optical reflecting surface. The configuration of the optical reflecting surface is variably adjustable to provide for the accurate focusing of the solar energy on a given collector array, e.g., a point or a linear array arrangement. The flexible mirror-membrane combination is lightweight to facilitate installation and reduce system cost yet structurally strong enough to provide for the precise focusing of the incident solar radiation in a semi-rigid reflector system in which unwanted reflector displacement is minimized.
Lightweight diaphragm mirror module system for solar collectors
Butler, B.L.
1984-01-01
A mirror module system is provided for accurately focusing solar radiation on a point or a line as defined by an array of solar collectors. Each mirror module includes a flexible membrane stretched over a frame in a manner similar to that of a drum or a trampoline and further includes a silvered glass or plastic mirror for forming an optical reflecting surface. The configuration of the optical reflecting surface is variably adjustable to provide for the accurate focusing of the solar energy on a given collector array, e.g., a point or a linear array arrangement. The flexible mirror-membrane combination is lightweight to facilitate installation and reduce system cost yet structurally strong enough to provide for the precise focusing of the incident solar radiation in a semi-rigid reflector system in which unwanted reflector displacement is minimized.
Integrated multidisciplinary analysis of segmented reflector telescopes
NASA Technical Reports Server (NTRS)
Briggs, Hugh C.; Needels, Laura
1992-01-01
The present multidisciplinary telescope-analysis approach, which encompasses thermal, structural, control and optical considerations, is illustrated for the case of an IR telescope in LEO; attention is given to end-to-end evaluations of the effects of mechanical disturbances and thermal gradients in measures of optical performance. Both geometric ray-tracing and surface-to-surface diffraction approximations are used in the telescope's optical model. Also noted is the role played by NASA-JPL's Integrated Modeling of Advanced Optical Systems computation tool, in view of numerical samples.
APOD Mission Status and Observations by VLBI
NASA Astrophysics Data System (ADS)
Tang, Geshi; Sun, Jing; Li, Xie; Liu, Shushi; Chen, Guangming; Ren, Tianpeng; Wang, Guangli
2016-12-01
On September 20, 2015, 20 satellites were successfully launched from the TaiYuan Satellite Launch Center by a Chinese CZ-6 test rocket and are, since then, operated in a circular, near-polar orbit at an altitude of 520 km. Among these satellites, a set of four CubSats, named APOD (Atmospheric density detection and Precise Orbit Determination), are intended for atmospheric density in-situ detection and derivation via precise orbit. The APOD satellites, manufactured by DFH Co., carry a number of instruments including a density detector, a dual-frequency GNSS (GPS/BD) receiver, an SLR reflector, and a VLBI S/X beacon. The APOD mission aims at detecting the atmospheric density below 520 km. The ground segment is controlled by BACC (Beijing Aerospace Control Center) including payload operation as well as science data receiving, processing, archiving, and distribution. Currently, the in-orbit test of the nano-satellites and their payloads are completed, and preliminary results show that the precision of the orbit determination is about 10 cm derived from both an overlap comparison and an SLR observation validation. The in-situ detected density calibrated by orbit-derived density demonstrates that the accuracy of atmospheric mass density is approximately 4.191×10^{-14} kgm^{-3}, about 5.5% of the measurement value. Since three space-geodetic techniques (i.e., GNSS, SLR, and VLBI) are co-located on the APOD nano-satellites, the observations can be used for combination and validation in order to detect systematic differences. Furthermore, the observations of the APOD satellites by VLBI radio telescopes can be used in an ideal fashion to link the dynamical reference frames of the satellite with the terrestrial and, most importantly, with the celestial reference frame as defined by the positions of quasars. The possibility of observing the APOD satellites by IVS VLBI radio telescopes will be analyzed, considering continental-size VLBI observing networks and the small telescopes with sufficient speed.
Negrete, Lindsey M.; Middleton, Michael S.; Clark, Lisa; Wolfson, Tanya; Gamst, Anthony C.; Lam, Jessica; Changchien, Chris; Deyoung-Dominguez, Ivan M.; Hamilton, Gavin; Loomba, Rohit; Schwimmer, Jeffrey; Sirlin, Claude B.
2013-01-01
Purpose To prospectively describe magnitude-based multi-echo gradient-echo hepatic proton density fat fraction (PDFF) inter-examination precision at 3T. Materials and Methods In this prospective, IRB approved, HIPAA compliant study, written informed consent was obtained from 29 subjects (body mass indexes > 30kg/m2). Three 3T magnetic resonance imaging (MRI) examinations were obtained over 75-90 minutes. Segmental, lobar, and whole liver PDFF were estimated (using three, four, five, or six echoes) by magnitude-based multi-echo MRI in co-localized regions of interest (ROIs). For estimate (using three, four, five, or six echoes), at each anatomic level (segmental, lobar, whole liver), three inter-examination precision metrics were computed: intra-class correlation coefficient (ICC), standard deviation (SD), and range. Results Magnitude-based PDFF estimates using each reconstruction method showed excellent inter-examination precision for each segment (ICC ≥ 0.992; SD ≤ 0.66%; range ≤ 1.24%), lobe (ICC ≥ 0.998; SD ≤ 0.34%; range ≤ 0.64%), and the whole liver (ICC = 0.999; SD ≤ 0.24%; range ≤ 0.45%). Inter-examination precision was unaffected by whether PDFF was estimated using three, four, five, or six echoes. Conclusion Magnitude-based PDFF estimation shows high inter-examination precision at segmental, lobar, and whole liver anatomic levels, supporting its use in clinical care or clinical trials. The results of this study suggest that longitudinal hepatic PDFF change greater than 1.6% is likely to represent signal rather than noise. PMID:24136736
Gonté, Frédéric; Dupuy, Christophe; Luong, Bruno; Frank, Christoph; Brast, Roland; Sedghi, Baback
2009-11-10
The primary mirror of the future European Extremely Large Telescope will be equipped with 984 hexagonal segments. The alignment of the segments in piston, tip, and tilt within a few nanometers requires an optical phasing sensor. A test bench has been designed to study four different optical phasing sensor technologies. The core element of the test bench is an active segmented mirror composed of 61 flat hexagonal segments with a size of 17 mm side to side. Each of them can be controlled in piston, tip, and tilt by three piezoactuators with a precision better than 1 nm. The context of this development, the requirements, the design, and the integration of this system are explained. The first results on the final precision obtained in closed-loop control are also presented.
Dramatic colour changes in a bird of paradise caused by uniquely structured breast feather barbules.
Stavenga, Doekele G; Leertouwer, Hein L; Marshall, N Justin; Osorio, Daniel
2011-07-22
The breast-plate plumage of male Lawes' parotia (Parotia lawesii) produces dramatic colour changes when this bird of paradise displays on its forest-floor lek. We show that this effect is achieved not solely by the iridescence--that is an angular-dependent spectral shift of the reflected light--which is inherent in structural coloration, but is based on a unique anatomical modification of the breast-feather barbule. The barbules have a segmental structure, and in common with many other iridescent feathers, they contain stacked melanin rodlets surrounded by a keratin film. The unique property of the parotia barbules is their boomerang-like cross section. This allows each barbule to work as three coloured mirrors: a yellow-orange reflector in the plane of the feather, and two symmetrically positioned bluish reflectors at respective angles of about 30°. Movement during the parotia's courtship displays thereby achieves much larger and more abrupt colour changes than is possible with ordinary iridescent plumage. To our knowledge, this is the first example of multiple thin film or multi-layer reflectors incorporated in a single structure (engineered or biological). It nicely illustrates how subtle modification of the basic feather structure can achieve novel visual effects. The fact that the parotia's breast feathers seem to be specifically adapted to give much stronger colour changes than normal structural coloration implies that colour change is important in their courtship display.
NASA Astrophysics Data System (ADS)
Hu, Xiaoqian; Tao, Jinxu; Ye, Zhongfu; Qiu, Bensheng; Xu, Jinzhang
2018-05-01
In order to solve the problem of medical image segmentation, a wavelet neural network medical image segmentation algorithm based on combined maximum entropy criterion is proposed. Firstly, we use bee colony algorithm to optimize the network parameters of wavelet neural network, get the parameters of network structure, initial weights and threshold values, and so on, we can quickly converge to higher precision when training, and avoid to falling into relative extremum; then the optimal number of iterations is obtained by calculating the maximum entropy of the segmented image, so as to achieve the automatic and accurate segmentation effect. Medical image segmentation experiments show that the proposed algorithm can reduce sample training time effectively and improve convergence precision, and segmentation effect is more accurate and effective than traditional BP neural network (back propagation neural network : a multilayer feed forward neural network which trained according to the error backward propagation algorithm.
Unfurlable satellite antennas - A review
NASA Technical Reports Server (NTRS)
Roederer, Antoine G.; Rahmat-Samii, Yahia
1989-01-01
A review of unfurlable satellite antennas is presented. Typical application requirements for future space missions are first outlined. Then, U.S. and European mesh and inflatable antenna concepts are described. Precision deployables using rigid panels or petals are not included in the survey. RF modeling and performance analysis of gored or faceted mesh reflector antennas are then reviewed. Finally, both on-ground and in-orbit RF test techniques for large unfurlable antennas are discussed.
Reliability of Semi-Automated Segmentations in Glioblastoma.
Huber, T; Alber, G; Bette, S; Boeckh-Behrens, T; Gempt, J; Ringel, F; Alberts, E; Zimmer, C; Bauer, J S
2017-06-01
In glioblastoma, quantitative volumetric measurements of contrast-enhancing or fluid-attenuated inversion recovery (FLAIR) hyperintense tumor compartments are needed for an objective assessment of therapy response. The aim of this study was to evaluate the reliability of a semi-automated, region-growing segmentation tool for determining tumor volume in patients with glioblastoma among different users of the software. A total of 320 segmentations of tumor-associated FLAIR changes and contrast-enhancing tumor tissue were performed by different raters (neuroradiologists, medical students, and volunteers). All patients underwent high-resolution magnetic resonance imaging including a 3D-FLAIR and a 3D-MPRage sequence. Segmentations were done using a semi-automated, region-growing segmentation tool. Intra- and inter-rater-reliability were addressed by intra-class-correlation (ICC). Root-mean-square error (RMSE) was used to determine the precision error. Dice score was calculated to measure the overlap between segmentations. Semi-automated segmentation showed a high ICC (> 0.985) for all groups indicating an excellent intra- and inter-rater-reliability. Significant smaller precision errors and higher Dice scores were observed for FLAIR segmentations compared with segmentations of contrast-enhancement. Single rater segmentations showed the lowest RMSE for FLAIR of 3.3 % (MPRage: 8.2 %). Both, single raters and neuroradiologists had the lowest precision error for longitudinal evaluation of FLAIR changes. Semi-automated volumetry of glioblastoma was reliably performed by all groups of raters, even without neuroradiologic expertise. Interestingly, segmentations of tumor-associated FLAIR changes were more reliable than segmentations of contrast enhancement. In longitudinal evaluations, an experienced rater can detect progressive FLAIR changes of less than 15 % reliably in a quantitative way which could help to detect progressive disease earlier.
Antennas for 20/30 GHz and beyond
NASA Technical Reports Server (NTRS)
Chen, C. Harry; Wong, William C.; Hamada, S. Jim
1989-01-01
Antennas of 20/30 GHz and higher frequency, due to the small wavelength, offer capabilities for many space applications. With the government-sponsored space programs (such as ACTS) in recent years, the industry has gone through the learning curve of designing and developing high-performance, multi-function antennas in this frequency range. Design and analysis tools (such as the computer modelling used in feedhorn design and reflector surface and thermal distortion analysis) are available. The components/devices (such as BFN's, weight modules, feedhorns and etc.) are space-qualified. The manufacturing procedures (such as reflector surface control) are refined to meet the stringent tolerance accompanying high frequencies. The integration and testing facilities (such as Near-Field range) also advance to facilitate precision assembling and performance verification. These capabilities, essential to the successful design and development of high-frequency spaceborne antennas, shall find more space applications (such as ESGP) than just communications.
Joint U.S./Japan Conference on Adaptive Structures, 1st, Maui, HI, Nov. 13-15, 1990, Proceedings
NASA Technical Reports Server (NTRS)
Wada, Ben K. (Editor); Fanson, James L. (Editor); Miura, Koryo (Editor)
1991-01-01
The present volume of adaptive structures discusses the development of control laws for an orbiting tethered antenna/reflector system test scale model, the sizing of active piezoelectric struts for vibration suppression on a space-based interferometer, the control design of a space station mobile transporter with multiple constraints, and optimum configuration control of an intelligent truss structure. Attention is given to the formulation of full state feedback for infinite order structural systems, robustness issues in the design of smart structures, passive piezoelectric vibration damping, shape control experiments with a functional model for large optical reflectors, and a mathematical basis for the design optimization of adaptive trusses in precision control. Topics addressed include approaches to the optimal adaptive geometries of intelligent truss structures, the design of an automated manufacturing system for tubular smart structures, the Sandia structural control experiments, and the zero-gravity dynamics of space structures in parabolic aircraft flight.
Joint U.S./Japan Conference on Adaptive Structures, 1st, Maui, HI, Nov. 13-15, 1990, Proceedings
NASA Astrophysics Data System (ADS)
Wada, Ben K.; Fanson, James L.; Miura, Koryo
1991-11-01
The present volume of adaptive structures discusses the development of control laws for an orbiting tethered antenna/reflector system test scale model, the sizing of active piezoelectric struts for vibration suppression on a space-based interferometer, the control design of a space station mobile transporter with multiple constraints, and optimum configuration control of an intelligent truss structure. Attention is given to the formulation of full state feedback for infinite order structural systems, robustness issues in the design of smart structures, passive piezoelectric vibration damping, shape control experiments with a functional model for large optical reflectors, and a mathematical basis for the design optimization of adaptive trusses in precision control. Topics addressed include approaches to the optimal adaptive geometries of intelligent truss structures, the design of an automated manufacturing system for tubular smart structures, the Sandia structural control experiments, and the zero-gravity dynamics of space structures in parabolic aircraft flight.
Live minimal path for interactive segmentation of medical images
NASA Astrophysics Data System (ADS)
Chartrand, Gabriel; Tang, An; Chav, Ramnada; Cresson, Thierry; Chantrel, Steeve; De Guise, Jacques A.
2015-03-01
Medical image segmentation is nowadays required for medical device development and in a growing number of clinical and research applications. Since dedicated automatic segmentation methods are not always available, generic and efficient interactive tools can alleviate the burden of manual segmentation. In this paper we propose an interactive segmentation tool based on image warping and minimal path segmentation that is efficient for a wide variety of segmentation tasks. While the user roughly delineates the desired organs boundary, a narrow band along the cursors path is straightened, providing an ideal subspace for feature aligned filtering and minimal path algorithm. Once the segmentation is performed on the narrow band, the path is warped back onto the original image, precisely delineating the desired structure. This tool was found to have a highly intuitive dynamic behavior. It is especially efficient against misleading edges and required only coarse interaction from the user to achieve good precision. The proposed segmentation method was tested for 10 difficult liver segmentations on CT and MRI images, and the resulting 2D overlap Dice coefficient was 99% on average..
Brain MR image segmentation using NAMS in pseudo-color.
Li, Hua; Chen, Chuanbo; Fang, Shaohong; Zhao, Shengrong
2017-12-01
Image segmentation plays a crucial role in various biomedical applications. In general, the segmentation of brain Magnetic Resonance (MR) images is mainly used to represent the image with several homogeneous regions instead of pixels for surgical analyzing and planning. This paper proposes a new approach for segmenting MR brain images by using pseudo-color based segmentation with Non-symmetry and Anti-packing Model with Squares (NAMS). First of all, the NAMS model is presented. The model can represent the image with sub-patterns to keep the image content and largely reduce the data redundancy. Second, the key idea is proposed that convert the original gray-scale brain MR image into a pseudo-colored image and then segment the pseudo-colored image with NAMS model. The pseudo-colored image can enhance the color contrast in different tissues in brain MR images, which can improve the precision of segmentation as well as directly visual perceptional distinction. Experimental results indicate that compared with other brain MR image segmentation methods, the proposed NAMS based pseudo-color segmentation method performs more excellent in not only segmenting precisely but also saving storage.
Wang, Qiang; Liu, Yuefei; Chen, Yiqiang; Ma, Jing; Tan, Liying; Yu, Siyuan
2017-03-01
Accurate location computation for a beacon is an important factor of the reliability of satellite optical communications. However, location precision is generally limited by the resolution of CCD. How to improve the location precision of a beacon is an important and urgent issue. In this paper, we present two precise centroid computation methods for locating a beacon in satellite optical communications. First, in terms of its characteristics, the beacon is divided into several parts according to the gray gradients. Afterward, different numbers of interpolation points and different interpolation methods are applied in the interpolation area; we calculate the centroid position after interpolation and choose the best strategy according to the algorithm. The method is called a "gradient segmentation interpolation approach," or simply, a GSI (gradient segmentation interpolation) algorithm. To take full advantage of the pixels of the beacon's central portion, we also present an improved segmentation square weighting (SSW) algorithm, whose effectiveness is verified by the simulation experiment. Finally, an experiment is established to verify GSI and SSW algorithms. The results indicate that GSI and SSW algorithms can improve locating accuracy over that calculated by a traditional gray centroid method. These approaches help to greatly improve the location precision for a beacon in satellite optical communications.
NASA Astrophysics Data System (ADS)
Adams, Matthew S.; Salgaonkar, Vasant A.; Sommer, Graham; Diederich, Chris J.
2017-02-01
Endoluminal high-intensity ultrasound offers spatially-precise thermal ablation of tissues adjacent to body lumens, but is constrained in treatment volume and penetration depth by the effective aperture of integrated transducers, which are limited in size to enable delivery through anatomical passages, endoscopic instrumentation, or laparoscopic ports. This study introduced and investigated three distinct endoluminal ultrasound applicator designs that can be delivered in a compact state then deployed or expanded at the target luminal site to increase the effective therapeutic aperture. The first design incorporated an array of planar transducers which could be unfolded at specific angles of convergence between the transducers. Two alternative designs consisted of fixed transducer sources surrounded by an expandable multicompartment balloon that contained acoustic reflector and dynamically-adjustable fluid lenses compartments. Parametric studies of acoustic output were performed across device design parameters via the rectangular radiator and secondary sources methods. Biothermal models were used to simulate resulting temperature distributions in three-dimensional heterogeneous tissue models. Simulations indicate that a deployable transducer array can increase volumetric coverage and penetration depth by 80% and 20%, respectively, while permitting more conformal thermal lesion shapes based on the degree of convergence between the transducers. The applicator designs incorporating reflector and fluid lenses demonstrated enhanced focal gain and penetration depth that increased with the diameter of the expanded reflector-lens balloon. Thermal simulations of assemblies with 12 mm compact profiles and 50 mm expanded balloon diameters demonstrated generation of localized thermal lesions at depths up to 10 cm in liver tissue.
Baseline tests of an autonomous telerobotic system for assembly of space truss structures
NASA Technical Reports Server (NTRS)
Rhodes, Marvin D.; Will, Ralph W.; Quach, Coung
1994-01-01
Several proposed space missions include precision reflectors that are larger in diameter than any current or proposed launch vehicle. Most of these reflectors will require a truss structure to accurately position the reflector panels and these reflectors will likely require assembly in orbit. A research program has been conducted at the NASA Langley Research Center to develop the technology required for the robotic assembly of truss structures. The focus of this research has been on hardware concepts, computer software control systems, and operator interfaces necessary to perform supervised autonomous assembly. A special facility was developed and four assembly and disassembly tests of a 102-strut tetrahedral truss have been conducted. The test procedures were developed around traditional 'pick-and-place' robotic techniques that rely on positioning repeatability for successful operation. The data from two of the four tests were evaluated and are presented in this report. All operations in the tests were controlled by predefined sequences stored in a command file, and the operator intervened only when the system paused because of the failure of an actuator command. The tests were successful in identifying potential pitfalls in a telerobotic system, many of which would not have been readily anticipated or incurred through simulation studies. Addressing the total integrated task, instead of bench testing the component parts, forced all aspects of the task to be evaluated. Although the test results indicate that additional developments should be pursued, no problems were encountered that would preclude automated assembly in space as a viable construction method.
In-step inflatable antenna experiment
NASA Astrophysics Data System (ADS)
Freeland, R. E.; Bilyeu, G.
Large deployable space antennas are needed to accommodate a number of applications that include mobile communications, earth observation radiometry, active microwave sensing, space-orbiting very long baseline interferometry, and Department of Defense (DoD) space-based radar. The criteria for evaluating candidate structural concepts for essentially all the applications is the same; high deployment reliability, low cost, low weight, low launch volume, and high aperture precision. A new class of space structures, called inflatable deployable structures, have tremendous potential for completely satisfying the first four criteria and good potential for accommodating the longer wavelength applications. An inflatable deployable antenna under development by L'Garde Inc. of Tustin, California, represents such a concept. Its level of technology is mature enough to support a meaningful orbital technology experiment. The NASA Office of Aeronautics and Space Technology initiated the In-Space Technology Experiments Program (IN-STEP) specifically to sponsor the verification and/or validation of unique and innovative space technologies in the space environment. The potential of the L'Garde concept has been recognized and resulted in its selection for an IN-STEP experiment. The objective of the experiment is to (a) validate the deployment of a 14-meter, inflatable parabolic reflector structure, (b) measure the reflector surface accuracy, and (c) investigate structural damping characteristics under operational conditions. The experiment approach will be to use the NASA Spartan Spacecraft to carry the experiment on orbit. Reflector deployment will be monitored by two high-resolution video cameras. Reflector surface quality will be measured with a digital imaging radiometer. Structural damping will be based on measuring the decay of reflector structure amplitude. The experiment is being managed by the Jet Propulsion Laboratory. The experiment definition phase (Phase B) will be completed by the end of fiscal year (FY) 1992; hardware development (Phase C/D) is expected to start by early FY 1993; and launch is scheduled for 1995. The paper describes the accomplishments to date and the approach for the remainder of the experiment.
NASA Astrophysics Data System (ADS)
Artem'ev, V. A.; Nezvanov, A. Yu.; Nesvizhevsky, V. V.
2016-01-01
We discuss properties of the interaction of slow neutrons with nano-dispersed media and their application for neutron reflectors. In order to increase the accuracy of model simulation of the interaction of neutrons with nanopowders, we perform precise quantum mechanical calculation of potential scattering of neutrons on single nanoparticles using the method of phase functions. We compare results of precise calculations with those performed within first Born approximation for nanodiamonds with the radius of 2-5 nm and for neutron energies 3 × 10-7-10-3 eV. Born approximation overestimates the probability of scattering to large angles, while the accuracy of evaluation of integral characteristics (cross sections, albedo) is acceptable. Using Monte-Carlo method, we calculate albedo of neutrons from different layers of piled up diamond nanopowder.
Laser system using regenerative amplifier
Emmett, John L. [Pleasanton, CA
1980-03-04
High energy laser system using a regenerative amplifier, which relaxes all constraints on laser components other than the intrinsic damage level of matter, so as to enable use of available laser system components. This can be accomplished by use of segmented components, spatial filters, at least one amplifier using solid state or gaseous media, and separated reflector members providing a long round trip time through the regenerative cavity, thereby allowing slower switching and adequate time to clear the spatial filters, etc. The laser system simplifies component requirements and reduces component cost while providing high energy output.
NASA Astrophysics Data System (ADS)
You, Daekeun; Simpson, Matthew; Antani, Sameer; Demner-Fushman, Dina; Thoma, George R.
2013-01-01
Pointers (arrows and symbols) are frequently used in biomedical images to highlight specific image regions of interest (ROIs) that are mentioned in figure captions and/or text discussion. Detection of pointers is the first step toward extracting relevant visual features from ROIs and combining them with textual descriptions for a multimodal (text and image) biomedical article retrieval system. Recently we developed a pointer recognition algorithm based on an edge-based pointer segmentation method, and subsequently reported improvements made on our initial approach involving the use of Active Shape Models (ASM) for pointer recognition and region growing-based method for pointer segmentation. These methods contributed to improving the recall of pointer recognition but not much to the precision. The method discussed in this article is our recent effort to improve the precision rate. Evaluation performed on two datasets and compared with other pointer segmentation methods show significantly improved precision and the highest F1 score.
System of the optic-electronic sensors for control position of the radio telescope elements
NASA Astrophysics Data System (ADS)
Konyakhin, Igor; Stepashkin, Ivan; Petrochenko, Andrey
2016-04-01
A promising area of modern astronomy is the study of the field of millimeter waves. The use of this band is due to a large extent the spectrum characteristics of the propagation of waves in the atmosphere, short wavelength. Currently, Russia jointly with Uzbekistan is implementing a project to build a radio astronomy observatory on the Suffa plateau (Uzbekistan). The main instrument of the observatory is fully steerable radio telescope RT-70 type. Main mirror telescope is a fragment of an axisymmetric parabolic with a focal length of 21 m, consisting of 1200 reflecting panels; main mirror diameter - 70 m; diameter of counter reflector - 3 m. A feature of the radio telescope as a means of research in the millimeter wavelength range are high for the quality requirements parabolic surface of the primary mirror (standard deviation of points on the surface of the theoretical parabolic is not more than 0.05 mm), to the stability of the mutual arrangement of the primary mirror and the counter reflector (not more than 0, 07 mm) for precision guidance in the corners of the mirror system azimuth and elevation (margin of error 1.5-2"). Weight of structure, temperature changes and air shock result in significant deformation elements radio telescope construction (progressive linear displacements of points of the surface of the main mirror), reaching in the marginal zone of 30 mm; counter reflector shift of up to 60 mm; Unlike the angular position of the axis of the beam pattern of the radio telescope of the measured angle transducers can reach 10 ". Therefore, to ensure the required quality of the reflective elements RT-70 systems, as well as the implementation of precision-guided munitions needs complex measuring deformation elements telescope design. This article deals with the construction of opto-electronic system of remote optoelectronic displacement sensor control elements mirror telescope system.
Dramatic colour changes in a bird of paradise caused by uniquely structured breast feather barbules
Stavenga, Doekele G.; Leertouwer, Hein L.; Marshall, N. Justin; Osorio, Daniel
2011-01-01
The breast-plate plumage of male Lawes' parotia (Parotia lawesii) produces dramatic colour changes when this bird of paradise displays on its forest-floor lek. We show that this effect is achieved not solely by the iridescence—that is an angular-dependent spectral shift of the reflected light—which is inherent in structural coloration, but is based on a unique anatomical modification of the breast-feather barbule. The barbules have a segmental structure, and in common with many other iridescent feathers, they contain stacked melanin rodlets surrounded by a keratin film. The unique property of the parotia barbules is their boomerang-like cross section. This allows each barbule to work as three coloured mirrors: a yellow-orange reflector in the plane of the feather, and two symmetrically positioned bluish reflectors at respective angles of about 30°. Movement during the parotia's courtship displays thereby achieves much larger and more abrupt colour changes than is possible with ordinary iridescent plumage. To our knowledge, this is the first example of multiple thin film or multi-layer reflectors incorporated in a single structure (engineered or biological). It nicely illustrates how subtle modification of the basic feather structure can achieve novel visual effects. The fact that the parotia's breast feathers seem to be specifically adapted to give much stronger colour changes than normal structural coloration implies that colour change is important in their courtship display. PMID:21159676
NASA Astrophysics Data System (ADS)
Bernhardt, P.; Nicholas, A.; Thomas, L.; Davis, M.; Hoberman, C.; Davis, M.
The Naval Research Laboratory will provide an orbiting calibration sphere to be used with ground-based laser imaging telescopes and HF radio systems. The Precision Expandable Radar Calibration Sphere (PERCS) is a practical, reliable, high-performance HF calibration sphere and laser imaging target to orbit at about 600 km altitude. The sphere will be made of a spherical wire frame with aspect independent radar cross section in the 3 to 35 MHz frequency range. The necessary launch vehicle to place the PERCS in orbit will be provided by the Department of Defense Space Test Program. The expandable calibration target has a stowed diameter of 1 meter and a fully deployed diameter of 10.2 meters. A separate deployment mechanism is provided for the sphere. After deployment, the Precision Expandable Radar Calibration Sphere (PERCS) with 180 vertices will be in a high inclination orbit to scatter radio pulses from a number of ground systems, including (1) over-the-horizon (OTH) radars operated by the United States and Australia; (2) high power HF facilities such as HAARP in Alaska, EISCAT in Norway, and Arecibo in Puerto Rico; (3) the chain of high latitude SuperDARN radars used for auroral region mapping; and (4) HF direction finding for Navy ships. With the PERCS satellite, the accuracy of HF radars can be periodically checked for range, elevation, and azimuth errors. In addition, each of the 360 vertices on the PERCS sphere will support an optical retro-reflector for operations with ground laser facilities used to track satellites. The ground laser systems will be used to measure the precise location of the sphere within one cm accuracy and will provide the spatial orientation of the sphere as well as the rotation rate. The Department of Defense facilities that can use the corner-cube reflectors on the PERCS include (1) the Air Force Maui Optical Site (AMOS), (2) the Starfire Optical Range (SOR), and (3) the NRL Optical Test Facility (OTF).
Short-range/Long-range Integrated Target (SLIT) for Video Guidance Sensor Rendezvous and Docking
NASA Technical Reports Server (NTRS)
Roe, Fred D. (Inventor); Bryan, Thomas C. (Inventor)
2009-01-01
A laser target reflector assembly for mounting upon spacecraft having a long-range reflector array formed from a plurality of unfiltered light reflectors embedded in an array pattern upon a hemispherical reflector disposed upon a mounting plate. The reflector assembly also includes a short-range reflector array positioned upon the mounting body proximate to the long-range reflector array. The short-range reflector array includes three filtered light reflectors positioned upon extensions from the mounting body. The three filtered light reflectors retro-reflect substantially all incident light rays that are transmissive by their monochromatic filters and received by the three filtered light reflectors. In one embodiment the short-range reflector array is embedded within the hemispherical reflector,
A novel concentrator with zero-index metamaterial for space solar power station
NASA Astrophysics Data System (ADS)
Huang, Jin; Chu, Xue-mei; Fan, Jian-yu; Jin, Qi-bao; Duan, Zhu-zhu
2017-03-01
Space solar power station (SSPS) is a comprehensive system that continuously collects solar energy in space and transmits it to ground with a wireless power transmission (WPT) system. These systems have great potential to provide large-scale energy. To increase the efficiency and reduce the weight and cost of the photovoltaic (PV) components, a huge light-weighted concentrator was introduced in the latest SSPS concepts, such as integrated symmetrical concentrator (ISC) and arbitrarily large phased array (ALPHA). However, for typical SSPS running in Geostationary Earth Orbit (GEO), the sunlight direction varies with time, leading to a great challenge for concentrator design. In ISC, the two-dimensional mast is used to realize sun-tracking. However, a multi-thousand-ton structure is difficult to control precisely in space. For this reason, ALPHA comprises a large number of individually pointed thin-film reflectors to intercept sunlight, mounted on the non-moving structure. However, the real-time adjustment of the thousands of reflectors is still an open problem. Furthermore, the uniformity of the time of the power generation (UTPG) is another factor evaluating the system. Therefore, this paper proposes a novel concentrator based on zero-index metamaterial (ZIM) called Thin-film Energy Terminator (SSPS-TENT). This will aid the control of the massive reflectors while avoiding the rotation of the overall system, the control of the massive reflectors and the influence of the obliquity of the ecliptic. Also, an optimization design method is proposed to increase its solar energy collecting efficiency (ECE) and flux distribution (FD). The ray-tracing simulation results show that the ECE is more than 96% of the day. In terms of the FD, the uniformity varies from 0.3057 to 0.5748. Compared with ALPHA, the UTPG is more stable.
NASA Astrophysics Data System (ADS)
Selwyn, Ebenezer Juliet; Florinabel, D. Jemi
2018-04-01
Compound image segmentation plays a vital role in the compression of computer screen images. Computer screen images are images which are mixed with textual, graphical, or pictorial contents. In this paper, we present a comparison of two transform based block classification of compound images based on metrics like speed of classification, precision and recall rate. Block based classification approaches normally divide the compound images into fixed size blocks of non-overlapping in nature. Then frequency transform like Discrete Cosine Transform (DCT) and Discrete Wavelet Transform (DWT) are applied over each block. Mean and standard deviation are computed for each 8 × 8 block and are used as features set to classify the compound images into text/graphics and picture/background block. The classification accuracy of block classification based segmentation techniques are measured by evaluation metrics like precision and recall rate. Compound images of smooth background and complex background images containing text of varying size, colour and orientation are considered for testing. Experimental evidence shows that the DWT based segmentation provides significant improvement in recall rate and precision rate approximately 2.3% than DCT based segmentation with an increase in block classification time for both smooth and complex background images.
Proceedings of the 1989 Antenna Applications Symposium. Volume 1
1990-03-01
of this antenna is the absence of spillover sidelobes where energy from the feed spills past the edge of the reflector to give a 112 relatively high ... High Gain Receive Cylindrical, Array 381 Antenna WIth Ful Azimuth Coverage," J. C. Herper, A. M. bucceri ’&nd J. J. Stangel 22. "Conformal Ac-tive...Phased Array Demonstration," Jerome D. Hanfling 23 " High Precision Frequency Locking technique for Active 441 Microstrip Antenna Arrays,’ Gabriel
NASA Astrophysics Data System (ADS)
Dorizon, Sophie; Ciarletti, Valérie
2013-04-01
The Water Ice Sub-surface Deposits Observation on Mars (WISDOM) (500MHz - 3GHz) GPR is one of the instruments that have been selected as part of the Pasteur payload of ESA's 2018 ExoMars Rover mission. One of the main scientific objectives of the mission is to characterize the nature of the shallow sub-surface on Mars and WISDOM has been designed to explore the first 3 meters of the sub-surface with a vertical resolution of a few centimetres. Laboratory and field tests using the prototype developed for the ExoMars mission by LATMOS (Laboratoire Atmosphère, Milieux, Observations Spatiales) in collaboration with the AOB (Bordeaux) and the university of Dresden (Germany) are regularly performed to assess and improve the radar performances. In order to quantitatively interpret the experimental data obtained, we developed a simulation tool based on ray-tracing. This code proves to be a fast practical way even if simplified to help radargrams interpretation. The WISDOM GPR, unlike most traditional GPRs, is operated approximately 30 centimetres above the surface. This configuration implies that the propagation between the antenna and the surface cannot be neglected especially because the instrument's aim is to characterise the very shallow subsurface. As a consequence, while we can draw advantage of this specific configuration by using the surface echo's amplitude to retrieve information about the top layer's roughness and permittivity value, precise location of buried reflector becomes more complicated. Indeed, the signature distinctive of individual reflectors buried in the sub-surface is not more an exact mathematical hyperbola. When the individual reflector is buried deep enough in the subsurface, the adjustment by an hyperbolic function still allows the retrieval of the reflector's location and the permittivity value of the surrounding medium. But in case of a reflector closer to the surface, the approximation is no longer valid. We propose a robust model adjustment that can be used for any reflector's depth. The physical assumptions taken into account are presented. Finally, results for different configurations and the validation of the limit conditions for which this adjustment method is reliable are shown. Preliminary analyzes on real data show the good performance of the method developed. Other modelling techniques will be considered to complete a full data interpretation taking the best from the instrument capacities
Performance analysis of next-generation lunar laser retroreflectors
NASA Astrophysics Data System (ADS)
Ciocci, Emanuele; Martini, Manuele; Contessa, Stefania; Porcelli, Luca; Mastrofini, Marco; Currie, Douglas; Delle Monache, Giovanni; Dell'Agnello, Simone
2017-09-01
Starting from 1969, Lunar Laser Ranging (LLR) to the Apollo and Lunokhod Cube Corner Retroreflectors (CCRs) provided several tests of General Relativity (GR). When deployed, the Apollo/Lunokhod CCRs design contributed only a negligible fraction of the ranging error budget. Today the improvement over the years in the laser ground stations makes the lunar libration contribution relevant. So the libration now dominates the error budget limiting the precision of the experimental tests of gravitational theories. The MoonLIGHT-2 project (Moon Laser Instrumentation for General relativity High-accuracy Tests - Phase 2) is a next-generation LLR payload developed by the Satellite/lunar/GNSS laser ranging/altimetry and Cube/microsat Characterization Facilities Laboratory (SCF _ Lab) at the INFN-LNF in collaboration with the University of Maryland. With its unique design consisting of a single large CCR unaffected by librations, MoonLIGHT-2 can significantly reduce error contribution of the reflectors to the measurement of the lunar geodetic precession and other GR tests compared to Apollo/Lunokhod CCRs. This paper treats only this specific next-generation lunar laser retroreflector (MoonLIGHT-2) and it is by no means intended to address other contributions to the global LLR error budget. MoonLIGHT-2 is approved to be launched with the Moon Express 1(MEX-1) mission and will be deployed on the Moon surface in 2018. To validate/optimize MoonLIGHT-2, the SCF _ Lab is carrying out a unique experimental test called SCF-Test: the concurrent measurement of the optical Far Field Diffraction Pattern (FFDP) and the temperature distribution of the CCR under thermal conditions produced with a close-match solar simulator and simulated space environment. The focus of this paper is to describe the SCF _ Lab specialized characterization of the performance of our next-generation LLR payload. While this payload will improve the contribution of the error budget of the space segment (MoonLIGHT-2) to GR tests and to constraints on new gravitational theories (like non-minimally coupled gravity and spacetime torsion), the description of the associated physics analysis and global LLR error budget is outside of the chosen scope of present paper. We note that, according to Reasenberg et al. (2016), software models used for LLR physics and lunar science cannot process residuals with an accuracy better than few centimeters and that, in order to process millimeter ranging data (or better) coming from (not only) future reflectors, it is necessary to update and improve the respective models inside the software package. The work presented here on results of the SCF-test thermal and optical analysis shows that a good performance is expected by MoonLIGHT-2 after its deployment on the Moon. This in turn will stimulate improvements in LLR ground segment hardware and help refine the LLR software code and models. Without a significant improvement of the LLR space segment, the acquisition of improved ground LLR hardware and challenging LLR software refinements may languish for lack of motivation, since the librations of the old generation LLR payloads largely dominate the global LLR error budget.
Performance of Planar-Waveguide External Cavity Laser for Precision Measurements
NASA Technical Reports Server (NTRS)
Numata, Kenji; Camp, Jordan; Krainak, Michael A.; Stolpner, Lew
2010-01-01
A 1542-nm planar-waveguide external cavity laser (PW-ECL) is shown to have a sufficiently low level of frequency and intensity noise to be suitable for precision measurement applications. The frequency noise and intensity noise of the PW-ECL was comparable or better than the nonplanar ring oscillator (NPRO) and fiber laser between 0.1 mHz to 100 kHz. Controllability of the PW-ECL was demonstrated by stabilizing its frequency to acetylene (13C2H2) at 10(exp -13) level of Allan deviation. The PW-ECL also has the advantage of the compactness of a standard butterfly package, low cost, and a simple design consisting of a semiconductor gain media coupled to a planar-waveguide Bragg reflector. These features would make the PW-ECL suitable for precision measurements, including compact optical frequency standards, space lidar, and space interferometry
A Deployable Primary Mirror for Space Telescopes
NASA Technical Reports Server (NTRS)
Lake, Mark S.; Phelps, James E.; Dyer, Jack E.; Caudle, David A.; Tam, Anthony; Escobedo, Javier; Kasl, Eldon P.
1999-01-01
NASA Langley Research Center, Composite Optics, Inc., and Nyma/ADF have developed jointly a deployable primary mirror for space telescopes that combines over five years of research on deployment of optical-precision structures and over ten years of development of fabrication techniques for optical-precision composite mirror panels and structures. The deployable mirror is directly applicable to a broad class of non-imaging "lidar" (light direction a nd ranging) telescopes whose figure-error requirements are in the range of one to ten microns RMS. Furthermore, the mirror design can be readily modified to accommodate imaging-quality reflector panels and active panel-alignment control mechanisms for application to imaging telescopes. The present paper: 1) describes the deployable mirror concept; 2) explains the status of the mirror development; and 3) provides some technical specifications for a 2.55- m-diameter, proof-of-concept mirror. Keywords: precision deployment, hinge joint, latch joint, deployable structures, fabrication, space telescopes, optical instruments, microdynamics.
Precise attitude determination of defunct satellite laser ranging tragets
NASA Astrophysics Data System (ADS)
Pittet, Jean-Noel; Schildknecht, Thomas; Silha, Jiri
2016-07-01
The Satellite Laser Ranging (SLR) technology is used to determine the dynamics of objects equipped with so-called retro-reflectors or retro-reflector arrays (RRA). This type of measurement allows to range to the spacecraft with very high precision, which leads to determination of very accurate orbits. Non-active spacecraft, which are not any more attitude controlled, tend to start to spin or tumble under influence of the external and internal torques. Such a spinning can be around one constant axis of rotation or it can be more complex, when also precession and nutation motions are present. The rotation of the RRA around the spacecraft's centre of mass can create both a oscillation pattern of laser range signal and a periodic signal interruption when the RRA is hidden behind the satellite. In our work we will demonstrate how the SLR ranging technique to cooperative targets can be used to determine precisely their attitude state. The processing of the obtained data will be discussed, as well as the attitude determination based on parameters estimation. Continuous SLR measurements to one target can allow to accurately monitor attitude change over time which can be further used for the future attitude modelling. We will show our solutions of the attitude states determined for the non-active ESA satellite ENVISAT based on measurements acquired during year 2013-2015 by Zimmerwald SLR station, Switzerland. The angular momentum shows a stable behaviour with respect to the orbital plane but is not aligned with orbital momentum. The determination of the inertial rotation over time, shows it evolving between 130 to 190 seconds within two year. Parameter estimation also bring a strong indication of a retrograde rotation. Results on other former satellites in low and medium Earth orbit such as TOPEX/Poseidon or GLONASS type will be also presented.
Development and testing of a new ray-tracing approach to GNSS carrier-phase multipath modelling
NASA Astrophysics Data System (ADS)
Lau, Lawrence; Cross, Paul
2007-11-01
Multipath is one of the most important error sources in Global Navigation Satellite System (GNSS) carrier-phase-based precise relative positioning. Its theoretical maximum is a quarter of the carrier wavelength (about 4.8 cm for the Global Positioning System (GPS) L1 carrier) and, although it rarely reaches this size, it must clearly be mitigated if millimetre-accuracy positioning is to be achieved. In most static applications, this may be accomplished by averaging over a sufficiently long period of observation, but in kinematic applications, a modelling approach must be used. This paper is concerned with one such approach: the use of ray-tracing to reconstruct the error and therefore remove it. In order to apply such an approach, it is necessary to have a detailed understanding of the signal transmitted from the satellite, the reflection process, the antenna characteristics and the way that the reflected and direct signal are processed within the receiver. This paper reviews all of these and introduces a formal ray-tracing method for multipath estimation based on precise knowledge of the satellite reflector antenna geometry and of the reflector material and antenna characteristics. It is validated experimentally using GPS signals reflected from metal, water and a brick building, and is shown to be able to model most of the main multipath characteristics. The method will have important practical applications for correcting for multipath in well-constrained environments (such as at base stations for local area GPS networks, at International GNSS Service (IGS) reference stations, and on spacecraft), and it can be used to simulate realistic multipath errors for various performance analyses in high-precision positioning.
Real-time sensing of optical alignment
NASA Technical Reports Server (NTRS)
Stier, Mark T.; Wissinger, Alan B.
1988-01-01
The Large Deployable Reflector and other future segmented optical systems may require autonomous, real-time alignment of their optical surfaces. Researchers have developed gratings located directly on a mirror surface to provide interferometric sensing of the location and figure of the mirror. The grating diffracts a small portion of the incident beam to a diffractive focus where the designed diagnostics can be performed. Mirrors with diffraction gratings were fabricated in two separate ways. The formation of a holographic grating over the entire surface of a mirror, thereby forming a Zone Plate Mirror (ZPM) is described. Researchers have also used computer-generated hologram (CGH) patches for alignment and figure sensing of mirrors. When appropriately illuminated, a grid of patches spread over a mirror segment will yield a grid of point images at a wavefront sensor, with the relative location of the points providing information on the figure and location of the mirror. A particular advantage of using the CGH approach is that the holographic patches can be computed, fabricated, and replicated on a mirror segment in a mass production 1-g clean room environment.
NASA Technical Reports Server (NTRS)
2010-01-01
Topics covered include: Instrument for Analysis of Greenland's Glacier Mills Cryogenic Moisture Apparatus; A Transportable Gravity Gradiometer Based on Atom Interferometry; Three Methods of Detection of Hydrazines; Crossed, Small-Deflection Energy Analyzer for Wind/Temperature Spectrometer; Wavefront Correction for Large, Flexible Antenna Reflector; Novel Micro Strip-to-Waveguide Feed Employing a Double-Y Junction; Thin-Film Ferro Electric-Coupled Microstripline Phase Shifters With Reduced Device Hysteresis; Two-Stage, 90-GHz, Low-Noise Amplifier; A 311-GHz Fundamental Oscillator Using InP HBT Technology; FPGA Coprocessor Design for an Onboard Multi-Angle Spectro-Polarimetric Imager; Serrating Nozzle Surfaces for Complete Transfer of Droplets; Turbomolecular Pumps for Holding Gases in Open Containers; Triaxial Swirl Injector Element for Liquid-Fueled Engines; Integrated Budget Office Toolbox; PLOT3D Export Tool for Tecplot; Math Description Engine Software Development Kit; Astronaut Office Scheduling System Software; ISS Solar Array Management; Probabilistic Structural Analysis Program; SPOT Program; Integrated Hybrid System Architecture for Risk Analysis; System for Packaging Planetary Samples for Return to Earth; Offset Compound Gear Drive; Low-Dead-Volume Inlet for Vacuum Chamber; Simple Check Valves for Microfluidic Devices; A Capillary-Based Static Phase Separator for Highly Variable Wetting Conditions; Gimballing Spacecraft Thruster; Finned Carbon-Carbon Heat Pipe with Potassium Working Fluid; Lightweight Heat Pipes Made from Magnesium; Ceramic Rail-Race Ball Bearings; Improved OTEC System for a Submarine Robot; Reflector Surface Error Compensation in Dual-Reflector Antennas; Enriched Storable Oxidizers for Rocket Engines; Planar Submillimeter-Wave Mixer Technology with Integrated Antenna; Widely Tunable Mode-Hop-Free External-Cavity Quantum Cascade Laser; Non-Geiger-Mode Single-Photon Avalanche Detector with Low Excess Noise; Using Whispering-Gallery-Mode Resonators for Refractometry; RF Device for Acquiring Images of the Human Body; Reactive Collision Avoidance Algorithm; Fast Solution in Sparse LDA for Binary Classification; Modeling Common-Sense Decisions in Artificial Intelligence; Graph-Based Path-Planning for Titan Balloons; Nanolaminate Membranes as Cylindrical Telescope Reflectors; Air-Sea Spray Airborne Radar Profiler Characterizes Energy Fluxes in Hurricanes; Large Telescope Segmented Primary Mirror Alignment; and Simplified Night Sky Display System.
NASA Astrophysics Data System (ADS)
Stab, Martin; Leroy, Sylvie; Bellahsen, Nicolas; Pik, Raphaël; Ayalew, Dereje; Yirgu, Gezahegn; Khanbari, Khaled
2017-04-01
The Afro-Arabian rift system is characterized by complex interactions between magmatism and rifting, leading to long-term segmentation of the associated continental margins. However, past studies focused on specific rift segments and no attempt has yet been made to reconcile them into a single comprehensive geodynamic model. To address this, we present interpretations of seismic profiles offshore the Eritrea-Yemeni margins in the southern Red Sea and the Yemeni margin in the Gulf of Aden and reassess the regional geodynamic evolution including the new tectonic evolution of the Central Afar Magmatic margin. We point out the role of two major transform zones in structuring the volcanism and faulting of the Red Sea-Afar-Aden margins. We show that those transform zones not only control the present-day rift organization, but were also active since the onset of rifting in Oligocene times. Early syn-rift transform zones control the emplacement and the development of seaward-dipping-reflector wedges immediately after the Continental Flood basalts (30 Ma), and are closely associated with mantle plume melts in the course of the segment extension. The margins segmentation thus appears to reflect the underlying mantle dynamics and thermal anomaly, which have directly influenced the style of rifting (wide vs. narrow rift), in controlling the development of preferential lithospheric thinning and massive transfer of magmas in the crust.
An efficient global energy optimization approach for robust 3D plane segmentation of point clouds
NASA Astrophysics Data System (ADS)
Dong, Zhen; Yang, Bisheng; Hu, Pingbo; Scherer, Sebastian
2018-03-01
Automatic 3D plane segmentation is necessary for many applications including point cloud registration, building information model (BIM) reconstruction, simultaneous localization and mapping (SLAM), and point cloud compression. However, most of the existing 3D plane segmentation methods still suffer from low precision and recall, and inaccurate and incomplete boundaries, especially for low-quality point clouds collected by RGB-D sensors. To overcome these challenges, this paper formulates the plane segmentation problem as a global energy optimization because it is robust to high levels of noise and clutter. First, the proposed method divides the raw point cloud into multiscale supervoxels, and considers planar supervoxels and individual points corresponding to nonplanar supervoxels as basic units. Then, an efficient hybrid region growing algorithm is utilized to generate initial plane set by incrementally merging adjacent basic units with similar features. Next, the initial plane set is further enriched and refined in a mutually reinforcing manner under the framework of global energy optimization. Finally, the performances of the proposed method are evaluated with respect to six metrics (i.e., plane precision, plane recall, under-segmentation rate, over-segmentation rate, boundary precision, and boundary recall) on two benchmark datasets. Comprehensive experiments demonstrate that the proposed method obtained good performances both in high-quality TLS point clouds (i.e., http://SEMANTIC3D.NET)
Multiresolution saliency map based object segmentation
NASA Astrophysics Data System (ADS)
Yang, Jian; Wang, Xin; Dai, ZhenYou
2015-11-01
Salient objects' detection and segmentation are gaining increasing research interest in recent years. A saliency map can be obtained from different models presented in previous studies. Based on this saliency map, the most salient region (MSR) in an image can be extracted. This MSR, generally a rectangle, can be used as the initial parameters for object segmentation algorithms. However, to our knowledge, all of those saliency maps are represented in a unitary resolution although some models have even introduced multiscale principles in the calculation process. Furthermore, some segmentation methods, such as the well-known GrabCut algorithm, need more iteration time or additional interactions to get more precise results without predefined pixel types. A concept of a multiresolution saliency map is introduced. This saliency map is provided in a multiresolution format, which naturally follows the principle of the human visual mechanism. Moreover, the points in this map can be utilized to initialize parameters for GrabCut segmentation by labeling the feature pixels automatically. Both the computing speed and segmentation precision are evaluated. The results imply that this multiresolution saliency map-based object segmentation method is simple and efficient.
Thermal testing results of an electroformed nickel secondary (M2) mirror
NASA Astrophysics Data System (ADS)
Smith, David R.; Gale, David M.; Cabrera Cuevas, Lizeth; Lucero Álvarez, Maribel; Castro Santos, David; Olmos Tapia, Arak
2016-07-01
To support higher-frequency operation, the Large Millimeter Telescope/Gran Telescopio Milimetrico (or LMT/GTM) is replacing its existing monolithic aluminum secondary mirror (M2). The new mirror is a segmented design based on the same electroformed nickel reflector panel technology that is already in use for the primary reflector segments. While the new M2 is lighter and has better surface accuracy than the original mirror, the electroformed panels are more sensitive to high temperatures. During the design phase, concerns were raised over the level of temperature increase that could occur at M2 during daytime observations. Although the panel surface is designed to scatter visible light, the LMT primary mirror is large enough to cause substantial solar heating, even at significant angular separation from the Sun. To address these concerns, the project conducted a series of field tests, within the constraint of having minimum impact on night time observations. The supplier sent two coupon samples of a reflector panel prepared identically to their proposed M2 surface. Temperature sensors were mounted on the samples and they were temporarily secured to the existing M2 mirror at different distances from the center. The goal was to obtain direct monitoring of the surface temperature under site thermal conditions and the concentration effects from the primary reflector. With the sensors installed, the telescope was then commanded to track the Sun with an elevation offset. Initially, elevation offsets from as far as 40 degrees to as close as 6 degrees were tested. The 6 degree separation test quickly passed the target maximum temperature and the telescope was returned to a safer separation. Based on these initial results, a second set of tests was performed using elevation separations from 30 degrees to 8 degrees. To account for the variability of site conditions, the temperature data were analyzed using multiple metrics. These metrics included maximum temperature, final time average temperature, and an curve fit for heating/ cooling. The results indicate that a solar separation angle of 20 degrees should be suitable for full performance operation of the LMT/GTM. This separation not only is sufficient to avoid high temperatures at the mirror, but also provides time to respond to any emergency conditions that could occur (e.g., switching to a generator after a power failure) for observations that are ahead of the motion of the Sun. Additionally, even approaches of 10 to 15 degrees of angular separation on the sky may be achievable for longer wavelength observations, though these would likely be limited to positions that are behind the position of the Sun along its motion.
Subharmonics, Chaos, and Beyond
NASA Technical Reports Server (NTRS)
Adler, Laszlo; Yost, William T.; Cantrell, John H.
2011-01-01
While studying finite amplitude ultrasonic wave resonance in a one dimensional liquid-filled cavity, which is formed by a narrow band transducer and a plane reflector, subharmonics of the driver's frequency were observed in addition to the expected harmonic structure. Subsequently it was realized that the system was one of the many examples where parametric resonance takes place and in which the observed subharmonics are parametrically generated. Parametric resonance occurs in any physical system which has a periodically modulated natural frequency. The generation mechanism also requires a sufficiently high threshold value of the driving amplitude so that the system becomes increasingly nonlinear in response. The nonlinear features were recently investigated and are the objective of this presentation. An ultrasonic interferometer with optical precision was built. The transducers were compressional undamped quartz and Lithium Niobate crystals ranging from 1-10 Mhz, and driven by a high power amplifier. Both an optical diffraction system and a receive transducer attached to an aligned reflector with lapped flat and parallel surfaces were used to observe the generated frequency components in the cavity.
Chaos and Beyond in a Water Filled Ultrasonic Resonance System
NASA Technical Reports Server (NTRS)
Lazlo, Adler; Yost, W.; Cantrell, John H.
2013-01-01
Finite amplitude ultrasonic wave resonances in a one-dimensional liquid-filled cavity, formed by a narrow band transducer and a plane reflector, are reported. The resonances are observed to include not only the expected harmonic and subharmonic signals (1,2) but chaotic signals as well. The generation mechanism requires attaining a threshold value of the driving amplitude that the liquid-filled cavity system becomes sufficiently nonlinear in response. The nonlinear features of the system were recently investigated via the construction of an ultrasonic interferometer having optical precision. The transducers were compressional, undamped quartz and lithium niobate crystals having the frequency range 1-10 MHz, driven by a high power amplifier. Both an optical diffraction system to characterize the diffraction pattern of laser light normally incident to the cavity and a receiving transducer attached to an aligned reflector with lapped flat and parallel surfaces were used to assess the generated resonance response in the cavity. At least 5 regions of excitation are identified.
NASA Technical Reports Server (NTRS)
Wilkie, William Keats; Williams, R. Brett; Agnes, Gregory S.; Wilcox, Brian H.
2007-01-01
This paper presents a feasibility study of robotically constructing a very large aperture optical space telescope on-orbit. Since the largest engineering challenges are likely to reside in the design and assembly of the 150-m diameter primary reflector, this preliminary study focuses on this component. The same technology developed for construction of the primary would then be readily used for the smaller optical structures (secondary, tertiary, etc.). A reasonable set of ground and on-orbit loading scenarios are compiled from the literature and used to define the structural performance requirements and size the primary reflector. A surface precision analysis shows that active adjustment of the primary structure is required in order to meet stringent optical surface requirements. Two potential actuation strategies are discussed along with potential actuation devices at the current state of the art. The finding of this research effort indicate that successful technology development combined with further analysis will likely enable such a telescope to be built in the future.
NASA Astrophysics Data System (ADS)
Marcaillou, Boris; Klingelhoefer, Frauke; Laurencin, Muriel; Biari, Youssef; Graindorge, David; Lebrun, Jean-Frederic; Laigle, Mireille; Lallemand, Serge
2017-04-01
Wide-angle, multichannel reflection seismic data and heat-flow measurements from the Lesser Antilles subduction zone depict a large patch of atypical oceanic basement in the trench and beneath the outer fore-arc offshore of the Antigua-Saint Martin active margin segment. This segment triggers a very low number of earthquakes compared to the seismicity beneath the Virgin Island Platform to the north or in the Central Antilles (Martinique-Guadeloupe) to the south. Seven along-dip and two along-strike multichannel seismic lines acquired in this region show high amplitude steep reflectors that extend downward to 15-km depth in the downgoing slab. These lines also substantiate the absence of any reflections at Moho depth. Based on the wide-angle velocity model, the oceanic basement consists of a 5-km-thick unique layer with p-wave velocities ranging from 5.2 to 7.4 km/s, which is atypical for an oceanic crust. Heat-flow measurements along a transect perpendicular to the margin indicate a "flat" heat-flow trend from the trench to the fore-arc at 40 ± 15 mW.m-2 (Biari et al., same session). This heat flow profile contrasts with the expected trench-to-forearc decreasing heat-flow and the 50% higher heat-flow values measured in the trench offshore off the central Antilles. Calculated heat-flow for an incoming oceanic plate with a depressed geothermal gradient in the trench and heat source at depth in the subduction zone corresponding with temperatures of 200-250°C fit the measurements. We propose that a large patch of exhumed and serpentinized mantle rocks solidified at the slow-spreading mid-Atlantic Ridge is currently subducting beneath the studied margin segment. The fact that the crust here consists of one single layer and comprises velocities higher than found in igneous rocks (> 7.2 km/s) are consistent with this hypothesis. The plate bending possibly triggers long and deep delamination planes that extend into the mantle beneath the serpentinization front, which has been identified as a reflector in the wide-angle seismic data. These delamination planes outcrop at the interplate contact creating weak zones that focus the tectonic deformation in the upper plate. An incoming oceanic crust made of serpentinized mantle rocks is consistent with a depressed geothermal gradient in the trench due to water alteration and heat generation at depth due to serpentinite dehydration. This fluid-rich altered and weak oceanic crust likely reduces the seismic activity along this margin segment.
Shahedi, Maysam; Cool, Derek W; Romagnoli, Cesare; Bauman, Glenn S; Bastian-Jordan, Matthew; Gibson, Eli; Rodrigues, George; Ahmad, Belal; Lock, Michael; Fenster, Aaron; Ward, Aaron D
2014-11-01
Three-dimensional (3D) prostate image segmentation is useful for cancer diagnosis and therapy guidance, but can be time-consuming to perform manually and involves varying levels of difficulty and interoperator variability within the prostatic base, midgland (MG), and apex. In this study, the authors measured accuracy and interobserver variability in the segmentation of the prostate on T2-weighted endorectal magnetic resonance (MR) imaging within the whole gland (WG), and separately within the apex, midgland, and base regions. The authors collected MR images from 42 prostate cancer patients. Prostate border delineation was performed manually by one observer on all images and by two other observers on a subset of ten images. The authors used complementary boundary-, region-, and volume-based metrics [mean absolute distance (MAD), Dice similarity coefficient (DSC), recall rate, precision rate, and volume difference (ΔV)] to elucidate the different types of segmentation errors that they observed. Evaluation for expert manual and semiautomatic segmentation approaches was carried out. Compared to manual segmentation, the authors' semiautomatic approach reduces the necessary user interaction by only requiring an indication of the anteroposterior orientation of the prostate and the selection of prostate center points on the apex, base, and midgland slices. Based on these inputs, the algorithm identifies candidate prostate boundary points using learned boundary appearance characteristics and performs regularization based on learned prostate shape information. The semiautomated algorithm required an average of 30 s of user interaction time (measured for nine operators) for each 3D prostate segmentation. The authors compared the segmentations from this method to manual segmentations in a single-operator (mean whole gland MAD = 2.0 mm, DSC = 82%, recall = 77%, precision = 88%, and ΔV = - 4.6 cm(3)) and multioperator study (mean whole gland MAD = 2.2 mm, DSC = 77%, recall = 72%, precision = 86%, and ΔV = - 4.0 cm(3)). These results compared favorably with observed differences between manual segmentations and a simultaneous truth and performance level estimation reference for this data set (whole gland differences as high as MAD = 3.1 mm, DSC = 78%, recall = 66%, precision = 77%, and ΔV = 15.5 cm(3)). The authors found that overall, midgland segmentation was more accurate and repeatable than the segmentation of the apex and base, with the base posing the greatest challenge. The main conclusions of this study were that (1) the semiautomated approach reduced interobserver segmentation variability; (2) the segmentation accuracy of the semiautomated approach, as well as the accuracies of recently published methods from other groups, were within the range of observed expert variability in manual prostate segmentation; and (3) further efforts in the development of computer-assisted segmentation would be most productive if focused on improvement of segmentation accuracy and reduction of variability within the prostatic apex and base.
Comparison of in vivo 3D cone-beam computed tomography tooth volume measurement protocols.
Forst, Darren; Nijjar, Simrit; Flores-Mir, Carlos; Carey, Jason; Secanell, Marc; Lagravere, Manuel
2014-12-23
The objective of this study is to analyze a set of previously developed and proposed image segmentation protocols for precision in both intra- and inter-rater reliability for in vivo tooth volume measurements using cone-beam computed tomography (CBCT) images. Six 3D volume segmentation procedures were proposed and tested for intra- and inter-rater reliability to quantify maxillary first molar volumes. Ten randomly selected maxillary first molars were measured in vivo in random order three times with 10 days separation between measurements. Intra- and inter-rater agreement for all segmentation procedures was attained using intra-class correlation coefficient (ICC). The highest precision was for automated thresholding with manual refinements. A tooth volume measurement protocol for CBCT images employing automated segmentation with manual human refinement on a 2D slice-by-slice basis in all three planes of space possessed excellent intra- and inter-rater reliability. Three-dimensional volume measurements of the entire tooth structure are more precise than 3D volume measurements of only the dental roots apical to the cemento-enamel junction (CEJ).
NASA Technical Reports Server (NTRS)
Stutzman, W. L.; Takamizawa, K.; Werntz, P.; Lapean, J.; Barts, R.
1991-01-01
The following subject areas are covered: General Reflector Antenna Systems Program version 7(GRASP7); Multiple Reflector Analysis Program for Cylindrical Antennas (MRAPCA); Tri-Reflector 2D Synthesis Code (TRTDS); a geometrical optics and a physical optics synthesis techniques; beam scanning reflector, the type 2 and 6 reflectors, spherical reflector, and multiple reflector imaging systems; and radiometric array design.
Laser system using regenerative amplifier
Emmett, J.L.
1980-03-04
High energy laser system is disclosed using a regenerative amplifier, which relaxes all constraints on laser components other than the intrinsic damage level of matter, so as to enable use of available laser system components. This can be accomplished by use of segmented components, spatial filters, at least one amplifier using solid state or gaseous media, and separated reflector members providing a long round trip time through the regenerative cavity, thereby allowing slower switching and adequate time to clear the spatial filters, etc. The laser system simplifies component requirements and reduces component cost while providing high energy output. 10 figs.
NASA Technical Reports Server (NTRS)
Tubbs, Eldred F.
1986-01-01
A two-step approach to wavefront sensing for the Large Deployable Reflector (LDR) was examined as part of an effort to define wavefront-sensing requirements and to determine particular areas for more detailed study. A Hartmann test for coarse alignment, particularly segment tilt, seems feasible if LDR can operate at 5 microns or less. The direct measurement of the point spread function in the diffraction limited region may be a way to determine piston error, but this can only be answered by a detailed software model of the optical system. The question of suitable astronomical sources for either test must also be addressed.
1992-10-22
The Space Shuttle Columbia (STS-52) thunders off Launch Pad 39B, embarking on a 10-day flight and carrying a crew of six who will deploy the Laser Geodynamic Satellite II (LAGEOS). LAGEOS is a spherical passive satellite covered with reflectors which are illuminated by ground-based lasers to determine precise measurements of the Earth's crustal movements. The other major payload on this mission is the United States Microgravity Payload 1 (USMP-1), where experiments will be conducted by crew members while in low earth orbit (LEO).
All-reflective optical target illumination system with high numerical aperture
Sigler, Robert D.
1978-01-01
An all-reflective optical system for providing illumination of a target focal region at high numerical aperture from a pair of co-axially, confluent collimated light beams. A target cavity is defined by a pair of opposed inner ellipsoidal reflectors having respective first focal points within a target region and second focal points at a vertex opening in the opposing reflector. Outwardly of each inner reflector is the opposed combination of a spherical reflector, and an outer generally ellipsoidal reflector having an aberrated first focal point coincident with the focus of the opposing spherical reflector and a second focal point coincident with the second focal point of the opposing inner ellipsoidal reflector through a vertex opening in the spherical reflector. The confluent collimated beams are incident through vertex openings in the outer ellipsoidal reflectors onto respective opposing spherical reflectors. Each beam is reflected by the associated spherical reflector onto the opposing outer ellipsoidal reflector and focused thereby onto the opposing inner ellipsoidal reflector, and then onto the target region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bertelson, P.C.; Francis, T.L.
1959-10-21
Studies of reflector control for the Advanced Engineering Test Reactor were made. The performance of various parts of the reflector control system model such as the safety reflector and the water jet educator, boric acid injection, and demineralizer systems is discussed. The experimental methods and results obtained are discussed. Four reflector control schemes were studied. The schemes were a single-region and three-region reflector schemes two separate reflectors, and two connected reflectors. Calculations were made of shim and safety reflector worth for a variety of parameters. Safety reflector thickness was varied from 7.75 to 0 inches, with and without boron. Boricmore » acid concentration was varied from 100 to 2% of saturation in the shim reflectors. Neutron flux plots are presented (C.J.G.)« less
Norman, Berk; Pedoia, Valentina; Majumdar, Sharmila
2018-03-27
Purpose To analyze how automatic segmentation translates in accuracy and precision to morphology and relaxometry compared with manual segmentation and increases the speed and accuracy of the work flow that uses quantitative magnetic resonance (MR) imaging to study knee degenerative diseases such as osteoarthritis (OA). Materials and Methods This retrospective study involved the analysis of 638 MR imaging volumes from two data cohorts acquired at 3.0 T: (a) spoiled gradient-recalled acquisition in the steady state T1 ρ -weighted images and (b) three-dimensional (3D) double-echo steady-state (DESS) images. A deep learning model based on the U-Net convolutional network architecture was developed to perform automatic segmentation. Cartilage and meniscus compartments were manually segmented by skilled technicians and radiologists for comparison. Performance of the automatic segmentation was evaluated on Dice coefficient overlap with the manual segmentation, as well as by the automatic segmentations' ability to quantify, in a longitudinally repeatable way, relaxometry and morphology. Results The models produced strong Dice coefficients, particularly for 3D-DESS images, ranging between 0.770 and 0.878 in the cartilage compartments to 0.809 and 0.753 for the lateral meniscus and medial meniscus, respectively. The models averaged 5 seconds to generate the automatic segmentations. Average correlations between manual and automatic quantification of T1 ρ and T2 values were 0.8233 and 0.8603, respectively, and 0.9349 and 0.9384 for volume and thickness, respectively. Longitudinal precision of the automatic method was comparable with that of the manual one. Conclusion U-Net demonstrates efficacy and precision in quickly generating accurate segmentations that can be used to extract relaxation times and morphologic characterization and values that can be used in the monitoring and diagnosis of OA. © RSNA, 2018 Online supplemental material is available for this article.
Reflector system for a lighting fixture
Siminovitch, Michael J.; Page, Erik; Gould, Carl T.
1998-01-01
Disclosed herein is a reflector system for a lighting fixture having a illumination source surrounded by an envelope. The reflector system includes a first reflector surrounding the illumination source. The reflector system also includes a second reflector which is non-contiguous with the first reflector and which surrounds the illumination source. The illumination source creates light rays which are reflected by the first and second reflectors. The first reflector directs light rays toward the center line of the fixture. However, the reflected rays despite being so reflected do not substantially intersect the envelope. The reflected light rays from the second reflector being directed so that they diverge from the center line of the fixture avoiding intersection with the semi-transparent envelope.
Reflector system for a lighting fixture
Siminovitch, Michael J.; Page, Erik; Gould, Carl T.
2001-01-01
Disclosed herein is a reflector system for a lighting fixture having a illumination source surrounded by an envelope. The reflector system includes a first reflector surrounding the illumination source. The reflector system also includes a second reflector which is non-contiguous with the first reflector and which surrounds the illumination source. The illumination source creates light rays which are reflected by the first and second reflectors. The first reflector directs light rays toward the center line of the fixture. However, the reflected rays despite being so reflected do not substantially intersect the envelope. The reflected light rays from the second reflector being directed so that they diverge from the center line of the fixture avoiding intersection with the semi-transparent envelope.
Reflector system for a lighting fixture
Siminovitch, M.J.; Page, E.; Gould, C.T.
1998-09-08
Disclosed herein is a reflector system for a lighting fixture having a illumination source surrounded by an envelope. The reflector system includes a first reflector surrounding the illumination source. The reflector system also includes a second reflector which is non-contiguous with the first reflector and which surrounds the illumination source. The illumination source creates light rays which are reflected by the first and second reflectors. The first reflector directs light rays toward the center line of the fixture. However, the reflected rays despite being so reflected do not substantially intersect the envelope. The reflected light rays from the second reflector being directed so that they diverge from the center line of the fixture avoiding intersection with the semi-transparent envelope. 5 figs.
Segmentation of fluorescence microscopy cell images using unsupervised mining.
Du, Xian; Dua, Sumeet
2010-05-28
The accurate measurement of cell and nuclei contours are critical for the sensitive and specific detection of changes in normal cells in several medical informatics disciplines. Within microscopy, this task is facilitated using fluorescence cell stains, and segmentation is often the first step in such approaches. Due to the complex nature of cell issues and problems inherent to microscopy, unsupervised mining approaches of clustering can be incorporated in the segmentation of cells. In this study, we have developed and evaluated the performance of multiple unsupervised data mining techniques in cell image segmentation. We adapt four distinctive, yet complementary, methods for unsupervised learning, including those based on k-means clustering, EM, Otsu's threshold, and GMAC. Validation measures are defined, and the performance of the techniques is evaluated both quantitatively and qualitatively using synthetic and recently published real data. Experimental results demonstrate that k-means, Otsu's threshold, and GMAC perform similarly, and have more precise segmentation results than EM. We report that EM has higher recall values and lower precision results from under-segmentation due to its Gaussian model assumption. We also demonstrate that these methods need spatial information to segment complex real cell images with a high degree of efficacy, as expected in many medical informatics applications.
NASA Astrophysics Data System (ADS)
Li, Xinji; Hui, Mei; Zhao, Zhu; Liu, Ming; Dong, Liquan; Kong, Lingqin; Zhao, Yuejin
2018-05-01
A differential computation method is presented to improve the precision of calibration for coaxial reverse Hartmann test (RHT). In the calibration, the accuracy of the distance measurement greatly influences the surface shape test, as demonstrated in the mathematical analyses. However, high-precision absolute distance measurement is difficult in the calibration. Thus, a differential computation method that only requires the relative distance was developed. In the proposed method, a liquid crystal display screen successively displayed two regular dot matrix patterns with different dot spacing. In a special case, images on the detector exhibited similar centroid distributions during the reflector translation. Thus, the critical value of the relative displacement distance and the centroid distributions of the dots on the detector were utilized to establish the relationship between the rays at certain angles and the detector coordinates. Experiments revealed the approximately linear behavior of the centroid variation with the relative displacement distance. With the differential computation method, we increased the precision of traditional calibration 10-5 rad root mean square. The precision of the RHT was increased by approximately 100 nm.
NASA Astrophysics Data System (ADS)
Häuser, Marco; Richter, Josef; Kriel, Herman; Turbyfill, Amanda; Buetow, Brent; Ward, Michael
2016-07-01
Together with the ongoing major instrument upgrade of the Hobby-Eberly Telescope (HET) we present the planned upgrade of the HET Segment Control System (SCS) to SCS2. Because HET's primary mirror is segmented into 91 individual 1-meter hexagonal mirrors, the SCS is essential to maintain the mirror alignment throughout an entire night of observations. SCS2 will complete tip, tilt and piston corrections of each mirror segment at a significantly higher rate than the original SCS. The new motion control hardware will further increase the system's reliability. The initial optical measurements of this array are performed by the Mirror Alignment Recovery System (MARS) and the HET Extra Focal Instrument (HEFI). Once the segments are optically aligned, the inductive edge sensors give sub-micron precise feedback of each segment's positions relative to its adjacent segments. These sensors are part of the Segment Alignment Maintenance System (SAMS) and are responsible for providing information about positional changes due to external influences, such as steep temperature changes and mechanical stress, and for making compensatory calculations while tracking the telescope on sky. SCS2 will use the optical alignment systems and SAMS inputs to command corrections of every segment in a closed loop. The correction period will be roughly 30 seconds, mostly due to the measurement and averaging process of the SAMS algorithm. The segment actuators will be controlled by the custom developed HET Segment MOtion COntroller (SMOCO). It is a direct descendant of University Observatory Munich's embedded, CAN-based system and instrument control tool-kit. To preserve the existing HET hardware layout, each SMOCO will control two adjacent mirror segments. Unlike the original SCS motor controllers, SMOCO is able to drive all six axes of its two segments at the same time. SCS2 will continue to allow for sub-arcsecond precision in tip and tilt as well as sub-micro meter precision in piston. These estimations are based on the current performance of the segment support mechanics. SMOCO's smart motion control allows for on-the-y correction of the move targets. Since SMOCO uses state-of-the-art motion control electronics and embedded decentralized controllers, we expect reduction in thermal emission as well as less maintenance time.
NASA Technical Reports Server (NTRS)
Hixson, M. M.; Bauer, M. E.; Davis, B. J.
1979-01-01
The effect of sampling on the accuracy (precision and bias) of crop area estimates made from classifications of LANDSAT MSS data was investigated. Full-frame classifications of wheat and non-wheat for eighty counties in Kansas were repetitively sampled to simulate alternative sampling plants. Four sampling schemes involving different numbers of samples and different size sampling units were evaluated. The precision of the wheat area estimates increased as the segment size decreased and the number of segments was increased. Although the average bias associated with the various sampling schemes was not significantly different, the maximum absolute bias was directly related to sampling unit size.
Webb, Alexis B; Lengyel, Iván M; Jörg, David J; Valentin, Guillaume; Jülicher, Frank; Morelli, Luis G; Oates, Andrew C
2016-01-01
In vertebrate development, the sequential and rhythmic segmentation of the body axis is regulated by a “segmentation clock”. This clock is comprised of a population of coordinated oscillating cells that together produce rhythmic gene expression patterns in the embryo. Whether individual cells autonomously maintain oscillations, or whether oscillations depend on signals from neighboring cells is unknown. Using a transgenic zebrafish reporter line for the cyclic transcription factor Her1, we recorded single tailbud cells in vitro. We demonstrate that individual cells can behave as autonomous cellular oscillators. We described the observed variability in cell behavior using a theory of generic oscillators with correlated noise. Single cells have longer periods and lower precision than the tissue, highlighting the role of collective processes in the segmentation clock. Our work reveals a population of cells from the zebrafish segmentation clock that behave as self-sustained, autonomous oscillators with distinctive noisy dynamics. DOI: http://dx.doi.org/10.7554/eLife.08438.001 PMID:26880542
A Recommendation on SLR Ranging to Future Global Navigation Satellite Systems
NASA Astrophysics Data System (ADS)
Labrecque, J. L.; Miller, J. J.; Pearlman, M.
2008-12-01
The multi-agency US Geodetic Requirements Working Group has recommended that Satellite Laser Retro- reflectors be installed on GPS III satellites as a principal component of the Positioning, Navigation, and Timing mandate of the Global Positioning System. The Working Group, which includes NASA, NGA, NOAA, NRL, USGS, and the USNO, echoes the Global Geodetic Observing System recommendation that SLR retro- reflectors be installed on all GNSS satellites. It is further recommended that the retro-reflectors conform to and hopefully exceed the minimum standard of the International Laser Ranging Service for retro-reflector cross sections of 100 million square meters for the HEO GNSS satellites to insure sufficiently accurate ranging by the global network of satellite laser ranging systems. The objective of this recommendation is to contribute to the improvement in the International Terrestrial Reference Frame, and its derivative the WGS84 reference frame, through continuing improvements in the characterization of the GPS orbits and clocks. Another objective is to provide an independent means of assessing the interoperability and accuracy of the GNSS systems and regional augmentation systems. The ranging to GNSS-mounted retro-reflectors will constitute a significant new means of space-based collocation to constrain the tie between the GPS and SLR networks that constitute over 50% of the data from which the ITRF is derived. The recommendation for the installation of SLR retro-reflectors aboard future GPS satellites is one of a number of efforts aimed at improving the accuracy and stability of ITRF. These steps are being coordinated with and supportive of the efforts of the GGOS and its services such at the VLBI2010 initiative, developing a next generation geodetic network, near real-time GPS positioning and EOP determination, and numerous efforts in the improvement of geodetic algorithms for GPS, SLR, VLBI, DORIS, and the determination of the ITRF. If past is prologue, the requirements of accuracy placed upon GNSS systems will continue to evolve at a factor of ten per decade for the lifetime of the GPS III, extending to 2025 and beyond. Global societal priorities such as sea level change measurement already require a factor of ten or more improvement in the accuracy and stability of the ITRF. Increasing accuracy requirements by civilian users for precision positioning and time keeping will certainly continue to grow at an exponential rate. The PNT accuracy of our GNSS systems will keep pace with these societal needs only if we equip the GNSS systems with the capability to identify and further reduce systematic errors.
Spatial instability of the rift in the St. Paul multifault transform fracture system, Atlantic Ocean
NASA Astrophysics Data System (ADS)
Sokolov, S. Yu.; Zaraiskaya, Yu. A.; Mazarovich, A. O.; Efimov, V. N.; Sokolov, N. S.
2016-05-01
The structure of the acoustic basement of the eastern part of the St. Paul multifault transform fracture system hosts rift paleovalleys and a paleonodal depression that mismatch the position of the currently active zones. This displacement zone, which is composed of five fault troughs, is unstable in terms of the position of the rift segments, which jumped according to redistribution of stresses. The St. Paul system is characterized by straightening of the transform transition between two remote segments of the Mid-Atlantic Ridge (MAR). The eastern part of the system contains anomalous bright-spot-like reflectors on the flattened basement, which is a result of atypical magmatism, that forms the standard ridge relief of the acoustic basement. Deformations of the acoustic basement have a presedimentation character. The present-day deformations with lower amplitude in comparison to the basement are accompanied by acoustic brightening of the sedimentary sequence. The axial Bouguer anomalies in the east of the system continue to the north for 120 km from the active segments of the St. Paul system. Currently seismically active segments of the spreading system are characterized by increasing amplitudes of the E-W displacement along the fault troughs. Cross-correlation of the lengths of the active structural elements of the MAR zone (segments of the ridge and transform fracture zones of displacement) indicates that, statistically, the multifault transform fracture system is a specific type of oceanic strike-slip faults.
Hosseini, Mohammad-Parsa; Nazem-Zadeh, Mohammad R.; Pompili, Dario; Soltanian-Zadeh, Hamid
2015-01-01
Hippocampus segmentation is a key step in the evaluation of mesial Temporal Lobe Epilepsy (mTLE) by MR images. Several automated segmentation methods have been introduced for medical image segmentation. Because of multiple edges, missing boundaries, and shape changing along its longitudinal axis, manual outlining still remains the benchmark for hippocampus segmentation, which however, is impractical for large datasets due to time constraints. In this study, four automatic methods, namely FreeSurfer, Hammer, Automatic Brain Structure Segmentation (ABSS), and LocalInfo segmentation, are evaluated to find the most accurate and applicable method that resembles the bench-mark of hippocampus. Results from these four methods are compared against those obtained using manual segmentation for T1-weighted images of 157 symptomatic mTLE patients. For performance evaluation of automatic segmentation, Dice coefficient, Hausdorff distance, Precision, and Root Mean Square (RMS) distance are extracted and compared. Among these four automated methods, ABSS generates the most accurate results and the reproducibility is more similar to expert manual outlining by statistical validation. By considering p-value<0.05, the results of performance measurement for ABSS reveal that, Dice is 4%, 13%, and 17% higher, Hausdorff is 23%, 87%, and 70% lower, precision is 5%, -5%, and 12% higher, and RMS is 19%, 62%, and 65% lower compared to LocalInfo, FreeSurfer, and Hammer, respectively. PMID:25571043
NASA Astrophysics Data System (ADS)
Liu, Chao; Yang, Guigeng; Zhang, Yiqun
2015-01-01
The electrostatically controlled deployable membrane reflector (ECDMR) is a promising scheme to construct large size and high precision space deployable reflector antennas. This paper presents a novel design method for the large size and small F/D ECDMR considering the coupled structure-electrostatic problem. First, the fully coupled structural-electrostatic system is described by a three field formulation, in which the structure and passive electrical field is modeled by finite element method, and the deformation of the electrostatic domain is predicted by a finite element formulation of a fictitious elastic structure. A residual formulation of the structural-electrostatic field finite element model is established and solved by Newton-Raphson method. The coupled structural-electrostatic analysis procedure is summarized. Then, with the aid of this coupled analysis procedure, an integrated optimization method of membrane shape accuracy and stress uniformity is proposed, which is divided into inner and outer iterative loops. The initial state of relatively high shape accuracy and uniform stress distribution is achieved by applying the uniform prestress on the membrane design shape and optimizing the voltages, in which the optimal voltage is computed by a sensitivity analysis. The shape accuracy is further improved by the iterative prestress modification using the reposition balance method. Finally, the results of the uncoupled and coupled methods are compared and the proposed optimization method is applied to design an ECDMR. The results validate the effectiveness of this proposed methods.
Bifocal reflector for electrohydraulic lithotripters.
Prieto, F E; Loske, A M
1999-03-01
To describe the design and construction of a bifocal reflector that could be used in electrohydraulic extracorporeal shockwave lithotripters in order to increase their efficiency. The new reflector is obtained by joining two sectors of two rotationally symmetric ellipsoidal reflectors having different distances between their foci, which results in a bifocal composite reflector with the F1 foci in coincidence and the two F2 foci separated by a certain distance. As in conventional reflectors, shockwaves are generated by the electrical breakdown of water between two electrodes, located at the focus (F1) closest to the reflector. A prototype was constructed and tested in an experimental shockwave generator of our own make, using two different types of kidney-stone models, one to test the stone fragmentation abilities, and the other to test the stone pitting abilities. Fragmentation data for the new reflector were compared with those of a conventional ellipsoidal reflector tested on the same device. The new design appeared to be more efficient in breaking up both types of kidney-stone models than the conventional reflector. Pressure measurements were obtained with both reflectors using needle hydrophones. The physical background of shockwave reflection on both reflectors is also explained. With this new reflector, it could be possible, in principle, to reduce the treatment time of extracorporeal shockwave lithotripsy.
High recall document content extraction
NASA Astrophysics Data System (ADS)
An, Chang; Baird, Henry S.
2011-01-01
We report methodologies for computing high-recall masks for document image content extraction, that is, the location and segmentation of regions containing handwriting, machine-printed text, photographs, blank space, etc. The resulting segmentation is pixel-accurate, which accommodates arbitrary zone shapes (not merely rectangles). We describe experiments showing that iterated classifiers can increase recall of all content types, with little loss of precision. We also introduce two methodological enhancements: (1) a multi-stage voting rule; and (2) a scoring policy that views blank pixels as a "don't care" class with other content classes. These enhancements improve both recall and precision, achieving at least 89% recall and at least 87% precision among three content types: machine-print, handwriting, and photo.
Bonding Thin Mirror Segments Without Distortion for the International X-Ray Observatory
NASA Technical Reports Server (NTRS)
Evans, Tyler C.; Chan, Kai-Wing; Saha, Timo T.
2011-01-01
The International X-Ray Observatory (IXO) uses thin glass optics to maximize large effective area and precise low angular resolution. The thin glass mirror segments must be transferred from their fabricated state to a permanent structure without imparting distortion. IXO will incorporate about fourteen thousand thin mirror segments to achieve the mission goal of 3.0 square meters of effective area at 1.25 keV with an angular resolution of five arcseconds. To preserve figure and alignment, the mirror segment must be bonded with sub-micron movement at each corner. Recent advances in technology development have produced significant x-ray test results of a bonded pair of mirrors. Three specific bonding cycles will be described highlighting the improvements in procedure, temperature control, and precision bonding. This paper will highlight the recent advances in alignment and permanent bonding as well as the results they have produced.
Dual annular rotating "windowed" nuclear reflector reactor control system
Jacox, Michael G.; Drexler, Robert L.; Hunt, Robert N. M.; Lake, James A.
1994-01-01
A nuclear reactor control system is provided in a nuclear reactor having a core operating in the fast neutron energy spectrum where criticality control is achieved by neutron leakage. The control system includes dual annular, rotatable reflector rings. There are two reflector rings: an inner reflector ring and an outer reflector ring. The reflectors are concentrically assembled, surround the reactor core, and each reflector ring includes a plurality of openings. The openings in each ring are capable of being aligned or non-aligned with each other. Independent driving means for each of the annular reflector rings is provided so that reactor criticality can be initiated and controlled by rotation of either reflector ring such that the extent of alignment of the openings in each ring controls the reflection of neutrons from the core.
Computer prediction of dual reflector antenna radiation properties
NASA Technical Reports Server (NTRS)
Christodoulou, C.
1981-01-01
A program for calculating radiation patterns for reflector antennas with either smooth analytic surfaces or with surfaces composed of a number of panels. Techniques based on the geometrical optics (GO) approach were used in tracing rays over the following regions: from a feed antenna to the first reflector surface (subreflector); from this reflector to a larger reflector surface (main reflector); and from the main reflector to a mathematical plane (aperture plane) in front of the main reflector. The equations of GO were also used to calculate the reflected field components for each ray making use of the feed radiation pattern and the parameters defining the surfaces of the two reflectors. These resulting fields form an aperture distribution which is integrated numerically to compute the radiation pattern for a specified set of angles.
Pointing and figure control system for a space-based far-IR segmented telescope
NASA Technical Reports Server (NTRS)
Lau, Kenneth
1993-01-01
A pointing and figure control system for two space-based far-IR telescopes, the 10-20 m Large Deployable Reflector and the 3.6 m Submillimeter Intermediate Mission, is described. The figure maintenance control system is designed to counter the optical elements translational and rotational changes induced by long-term thermal drifts that the support structure may experience. The pointing system applies optical truss to telescope pointing; a laser metrology system is used to transfer pointing informaton from an external fine guidance sensor to the telescope optical boresight, defined by the primary mirror, secondary mirror, and focal plane assembly.
Zhu, Ming; Wang, Yao-Ting; Sun, Yi-Zhi; Zhang, Lijian; Ding, Wei
2018-02-01
A convenient method using a commercially available ruled grating for precise and overall diameter measurement of optical nanofibers (ONFs) is presented. We form a composite Bragg reflector with a micronscale period by dissolving aluminum coating, slicing the grating along ruling lines, and mounting it on an ONF. The resonant wavelengths of high-order Bragg reflections possess fiber diameter dependence, enabling nondestructive measurement of the ONF diameter profile. This method provides an easy and economic diagnostic tool for wide varieties of ONF-based applications.
Development and Characterization of 6Li-doped Liquid Scintillator Detectors for PROSPECT
NASA Astrophysics Data System (ADS)
Gaison, Jeremy; Prospect Collaboration
2016-09-01
PROSPECT, the Precision Reactor Oscillation and Spectrum experiment, is a phased reactor antineutrino experiment designed to search for eV-scale sterile neutrinos via short-baseline neutrino oscillations and to make a precision measurement of the 235U reactor antineutrino spectrum. A multi-ton, optically segmented detector will be deployed at Oak Ridge National Laboratory's (ORNL) High Flux Isotope Reactor (HFIR) to measure the reactor spectrum at baselines ranging from 7-12m. A two-segment detector prototype with 50 liters of active liquid scintillator target has been built to verify the detector design and to benchmark its performance. In this presentation, we will summarize the performance of this detector prototype and describe the optical and energy calibration of the segmented PROSPECT detectors.
Apparatus and method for determining the optical power passing through an optical fiber
Toeppen, John S.
1995-01-01
An apparatus and method for determining the optical power transmitted through an optical fiber. The invention is based on measuring the intensity of the fluorescence produced by a doped segment of an optical fiber. The dopant is selected so that it emits light at a different wavelength than that responsible for producing the fluorescence. The doped segment is of sufficient length and dopant concentration to provide a detectable signal, but short enough to prevent the doped segment from serving as a gain medium, resulting in amplified spontaneous emission and excess fluorescence traveling along the optical fiber. The dopant material is excited by the optical signal carried by the fiber, causing a fluorescence. In the preferred embodiment the intensity of the fluorescence is proportional to the intensity of the propagating light. The signal power is then determined from the intensity of the fluorescence. The intensity of the fluorescent signal is measured by a photodetector placed so as to detect the light emitted through the side of the doped segment. The detector may wrap around the circumference of the fiber, or be placed to one side and used in conjunction with a reflector placed on the opposing side of the fiber. Filters may be used to shield the detector from other light sources and assist with accurately determining the optical power of the signal propagating within the fiber.
Apparatus and method for determining the optical power passing through an optical fiber
Toeppen, John S.
1995-04-04
An apparatus and method for determining the optical power transmitted through an optical fiber. The invention is based on measuring the intensity of the fluorescence produced by a doped segment of an optical fiber. The dopant is selected so that it emits light at a different wavelength than that responsible for producing the fluorescence. The doped segment is of sufficient length and dopant concentration to provide a detectable signal, but short enough to prevent the doped segment from serving as a gain medium, resulting in amplified spontaneous emission and excess fluorescence traveling along the optical fiber. The dopant material is excited by the optical signal carried by the fiber, causing a fluorescence. In the preferred embodiment the intensity of the fluorescence is proportional to the intensity of the propagating light. The signal power is then determined from the intensity of the fluorescence. The intensity of the fluorescent signal is measured by a photodetector placed so as to detect the light emitted through the side of the doped segment. The detector may wrap around the circumference of the fiber, or be placed to one side and used in conjunction with a reflector placed on the opposing side of the fiber. Filters may be used to shield the detector from other light sources and assist with accurately determining the optical power of the signal propagating within the fiber.
Dual annular rotating [open quotes]windowed[close quotes] nuclear reflector reactor control system
Jacox, M.G.; Drexler, R.L.; Hunt, R.N.M.; Lake, J.A.
1994-03-29
A nuclear reactor control system is provided in a nuclear reactor having a core operating in the fast neutron energy spectrum where criticality control is achieved by neutron leakage. The control system includes dual annular, rotatable reflector rings. There are two reflector rings: an inner reflector ring and an outer reflector ring. The reflectors are concentrically assembled, surround the reactor core, and each reflector ring includes a plurality of openings. The openings in each ring are capable of being aligned or non-aligned with each other. Independent driving means for each of the annular reflector rings is provided so that reactor criticality can be initiated and controlled by rotation of either reflector ring such that the extent of alignment of the openings in each ring controls the reflection of neutrons from the core. 4 figures.
Ultra-thin distributed Bragg reflectors via stacked single-crystal silicon nanomembranes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cho, Minkyu; Seo, Jung-Hun; Lee, Jaeseong
2015-05-04
In this paper, we report ultra-thin distributed Bragg reflectors (DBRs) via stacked single-crystal silicon (Si) nanomembranes (NMs). Mesh hole-free single-crystal Si NMs were released from a Si-on-insulator substrate and transferred to quartz and Si substrates. Thermal oxidation was applied to the transferred Si NM to form high-quality SiO{sub 2} and thus a Si/SiO{sub 2} pair with uniform and precisely controlled thicknesses. The Si/SiO{sub 2} layers, as smooth as epitaxial grown layers, minimize scattering loss at the interface and in between the layers. As a result, a reflection of 99.8% at the wavelength range from 1350 nm to 1650 nm can be measuredmore » from a 2.5-pair DBR on a quartz substrate and 3-pair DBR on a Si substrate with thickness of 0.87 μm and 1.14 μm, respectively. The high reflection, ultra-thin DBRs developed here, which can be applied to almost any devices and materials, holds potential for application in high performance optoelectronic devices and photonics applications.« less
Advanced Precipitation Radar Antenna to Measure Rainfall From Space
NASA Technical Reports Server (NTRS)
Rahmat-Samii, Yahya; Lin, John; Huang, John; Im, Eastwood; Lou, Michael; Lopez, Bernardo; Durden, Stephen
2008-01-01
To support NASA s planned 20-year mission to provide sustained global precipitation measurement (EOS-9 Global Precipitation Measurement (GPM)), a deployable antenna has been explored with an inflatable thin-membrane structure. This design uses a 5.3 5.3-m inflatable parabolic reflector with the electronically scanned, dual-frequency phased array feeds to provide improved rainfall measurements at 2.0-km horizontal resolution over a cross-track scan range of up to 37 , necessary for resolving intense, isolated storm cells and for reducing the beam-filling and spatial sampling errors. The two matched radar beams at the two frequencies (Ku and Ka bands) will allow unambiguous retrieval of the parameters in raindrop size distribution. The antenna is inflatable, using rigidizable booms, deployable chain-link supports with prescribed curvatures, a smooth, thin-membrane reflecting surface, and an offset feed technique to achieve the precision surface tolerance (0.2 mm RMS) for meeting the low-sidelobe requirement. The cylindrical parabolic offset-feed reflector augmented with two linear phased array feeds achieves dual-frequency shared-aperture with wide-angle beam scanning and very low sidelobe level of -30 dB. Very long Ku and Ka band microstrip feed arrays incorporating a combination of parallel and series power divider lines with cosine-over-pedestal distribution also augment the sidelobe level and beam scan. This design reduces antenna mass and launch vehicle stowage volume. The Ku and Ka band feed arrays are needed to achieve the required cross-track beam scanning. To demonstrate the inflatable cylindrical reflector with two linear polarizations (V and H), and two beam directions (0deg and 30deg), each frequency band has four individual microstrip array designs. The Ku-band array has a total of 166x2 elements and the Ka-band has 166x4 elements with both bands having element spacing about 0.65 lambda(sub 0). The cylindrical reflector with offset linear array feeds reduces the complexity from "NxN" transmit/receive (T/R) modules of a conventional planar-phased array to just "N" T/R modules. The antenna uses T/R modules with electronic phase-shifters for beam steering. The offset reflector does not provide poor cross-polarization like a double- curved offset reflector would, and it allows the wide scan angle in one plane required by the mission. Also, the cylindrical reflector with two linear array feeds provides dual-frequency performance with a single, shared aperture. The aperture comprises a reflective surface with a focal length of 1.89 m and is made from aluminized Kapton film. The reflective surface is of uniform thickness in the range of a few thousandths of an inch and is attached to the chain-link support structure via an adjustable suspension system. The film aperture rolls up, together with the chain-link structure, for launch and can be deployed in space by the deployment of the chain-link structure.
Antennas for mobile satellite communications
NASA Technical Reports Server (NTRS)
Huang, John
1991-01-01
A NASA sponsored program, called the Mobile Satellite (MSAT) system, has prompted the development of several innovative antennas at L-band frequencies. In the space segment of the MSAT system, an efficient, light weight, circularly polarized microstrip array that uses linearly polarized elements was developed as a multiple beam reflector feed system. In the ground segment, a low-cost, low-profile, and very efficient microstrip Yagi array was developed as a medium-gain mechanically steered vehicle antenna. Circularly shaped microstrip patches excited at higher-order modes were also developed as low-gain vehicle antennas. A more recent effort called for the development of a 20/30 GHz mobile terminal antenna for future-generation mobile satellite communications. To combat the high insertion loss encountered at 20/30 GHz, series-fed Monolithic Microwave Integrated Circuit (MMIC) microstrip array antennas are currently being developed. These MMIC arrays may lead to the development of several small but high-gain Ka-band antennas for the Personal Access Satellite Service planned for the 2000s.
NASA Astrophysics Data System (ADS)
Sundermann, S. T.; Mueller, K. J.
2001-12-01
We mapped Quaternary aquifers with water wells and 5 m DEM's from IFSAR to define rates of folding along the Puente Hills blind thrust system. A cross section across Santa Fe Springs along Carfax Ave suggests 100 and 165 m of uplift of the 330 ka Gage and 650 ka Lynwood aquifers, yielding uplift rates of 0.2 mm/yr between 330-650 ka and 0.27 mm/yr beween 0-330 ka. For a 27° thrust, this yields a slip rate of 0.44 - 0.59 mm/yr. Surface folding is discernable across the Santa Fe Springs segment in the DEM, to a point 4 km west of the San Gabriel River. Aquifers correlated with reflectors in a USGS seismic profile along Carfax suggests lower relief for the Lynwood (85 m) and the Gage (59 m). We suggest the 1 km-long USGS profile images only part of the fold limb and that additional structural relief is accommodated further north, as defined by our subsurface mapping. Correlation of a shallow reflector in the seismic profile with the 15-20 ka Gaspur aquifer suggests Holocene uplift of 1.0 mm/yr. A similar analysis undertaken for the Coyote fold near Trojan Ave. suggests 85 and 229 m of uplift for the Gage and Lynwood, yielding uplift rates of 0.26 mm/yr between 0-330 ka and 0.45 mm/yr between 330-650 ka. Correlation of the Gage with a reflector on another USGS seismic profile along Trojan suggests equivalent uplift (86 m), indicating the profile images the entire width of the Coyote forelimb at this site.
An automatic segmentation method of a parameter-adaptive PCNN for medical images.
Lian, Jing; Shi, Bin; Li, Mingcong; Nan, Ziwei; Ma, Yide
2017-09-01
Since pre-processing and initial segmentation steps in medical images directly affect the final segmentation results of the regions of interesting, an automatic segmentation method of a parameter-adaptive pulse-coupled neural network is proposed to integrate the above-mentioned two segmentation steps into one. This method has a low computational complexity for different kinds of medical images and has a high segmentation precision. The method comprises four steps. Firstly, an optimal histogram threshold is used to determine the parameter [Formula: see text] for different kinds of images. Secondly, we acquire the parameter [Formula: see text] according to a simplified pulse-coupled neural network (SPCNN). Thirdly, we redefine the parameter V of the SPCNN model by sub-intensity distribution range of firing pixels. Fourthly, we add an offset [Formula: see text] to improve initial segmentation precision. Compared with the state-of-the-art algorithms, the new method achieves a comparable performance by the experimental results from ultrasound images of the gallbladder and gallstones, magnetic resonance images of the left ventricle, and mammogram images of the left and the right breast, presenting the overall metric UM of 0.9845, CM of 0.8142, TM of 0.0726. The algorithm has a great potential to achieve the pre-processing and initial segmentation steps in various medical images. This is a premise for assisting physicians to detect and diagnose clinical cases.
Spinrad, B.I.
1960-01-12
A novel thermal reactor was designed in which a first reflector formed from a high atomic weight, nonmoderating material is disposed immediately adjacent to the reactor core. A second reflector composed of a moderating material is disposed outwardly of the first reflector. The advantage of this novel reflector arrangement is that the first reflector provides a high slow neutron flux in the second reflector, where irradiation experiments may be conducted with a small effect on reactor reactivity.
Prospects for Geostationary Doppler Weather Radar
NASA Technical Reports Server (NTRS)
Tanelli, Simone; Fang, Houfei; Durden, Stephen L.; Im, Eastwood; Rhamat-Samii, Yahya
2009-01-01
A novel mission concept, namely NEXRAD in Space (NIS), was developed for detailed monitoring of hurricanes, cyclones, and severe storms from a geostationary orbit. This mission concept requires a space deployable 35-m diameter reflector that operates at 35-GHz with a surface figure accuracy requirement of 0.21 mm RMS. This reflector is well beyond the current state-of-the-art. To implement this mission concept, several potential technologies associated with large, lightweight, spaceborne reflectors have been investigated by this study. These spaceborne reflector technologies include mesh reflector technology, inflatable membrane reflector technology and Shape Memory Polymer reflector technology.
Kasner, William H.; Racki, Daniel J.; Swenson, Clark E.
1984-01-01
A plurality of pivotal reflectors direct a high-power laser beam onto a workpiece, and a rotatable reflector is movable to a position wherein it intercepts the beam and deflects a major portion thereof away from its normal path, the remainder of the beam passing to the pivotal reflectors through an aperture in the rotating reflector. A plurality of targets are movable to positions intercepting the path of light traveling to the pivotal reflectors, and a preliminary adjustment of the latter is made by use of a low-power laser beam reflected from the rotating reflector, after which the same targets are used to make a final adjustment of the pivotal reflectors with the portion of the high-power laser beam passed through the rotating reflector.
2013-01-01
Background Color traits in animals play crucial roles in thermoregulation, photoprotection, camouflage, and visual communication, and are amenable to objective quantification and modeling. However, the extensive variation in non-melanic pigments and structural colors in squamate reptiles has been largely disregarded. Here, we used an integrated approach to investigate the morphological basis and physical mechanisms generating variation in color traits in tropical day geckos of the genus Phelsuma. Results Combining histology, optics, mass spectrometry, and UV and Raman spectroscopy, we found that the extensive variation in color patterns within and among Phelsuma species is generated by complex interactions between, on the one hand, chromatophores containing yellow/red pteridine pigments and, on the other hand, iridophores producing structural color by constructive interference of light with guanine nanocrystals. More specifically, we show that 1) the hue of the vivid dorsolateral skin is modulated both by variation in geometry of structural, highly ordered narrowband reflectors, and by the presence of yellow pigments, and 2) that the reflectivity of the white belly and of dorsolateral pigmentary red marks, is increased by underlying structural disorganized broadband reflectors. Most importantly, these interactions require precise colocalization of yellow and red chromatophores with different types of iridophores, characterized by ordered and disordered nanocrystals, respectively. We validated these results through numerical simulations combining pigmentary components with a multilayer interferential optical model. Finally, we show that melanophores form dark lateral patterns but do not significantly contribute to variation in blue/green or red coloration, and that changes in the pH or redox state of pigments provide yet another source of color variation in squamates. Conclusions Precisely colocalized interacting pigmentary and structural elements generate extensive variation in lizard color patterns. Our results indicate the need to identify the developmental mechanisms responsible for the control of the size, shape, and orientation of nanocrystals, and the superposition of specific chromatophore types. This study opens up new perspectives on Phelsuma lizards as models in evolutionary developmental biology. PMID:24099066
A Deployable Primary Mirror for Space Telescopes
NASA Technical Reports Server (NTRS)
Lake, Mark S.; Phelps, James E.; Dyer, Jack E.; Caudle, David A.; Tam, Anthony
1999-01-01
NASA Langley Research Center, Composite Optics, Inc., and Nyma/ADF have developed jointly a deployable primary mirror for space telescopes that combines over five years of research on deployment of optical-precision structures and over ten years of development of fabrication techniques for optical-precision composite mirror panels and structures. The deployable mirror is directly applicable to a broad class of non-imaging "lidar" (Light direction and ranging) telescopes whose figure-error requirements are in the range of one to ten microns RMS. Furthermore, the mirror design can be readily modified to accommodate imaging-quality reflector panels and active panel-alignment control mechanisms for application to imaging telescopes. The present paper: 1) describes the deployable mirror concept; 2) explains the status of the mirror development; and 3) provides some technical specifications for a 2.55- m-diameter, proof-of-concept mirror.
A Deployable Primary Mirror for Space Telescopes
NASA Technical Reports Server (NTRS)
Lake, Mark S.; Phelps, James E.; Dyer, Jack E.; Caudle, David A.; Tam, Anthony; Escobedo, Javier; Kasl, Eldon P.
1999-01-01
NASA Langley Research Center, Composite Optics, Inc., and Nyma/ADF have developed jointly a deployable primary mirror for space telescopes that combines over five years of research on deployment of optical-precision structures and over ten years of development of fabrication techniques for optical-precision composite mirror panels and structures. The deployable mirror is directly applicable to a broad class of non-imaging "lidar" (light direction and ranging) telescopes whose figure-error requirements are in the range of one to ten microns RMS. Furthermore, the mirror design can be readily modified to accommodate imaging-quality reflector panels and active panel-alignment control mechanisms for application to imaging telescopes. The present paper: 1) describes the deployable mirror concept; 2) explains the status of the mirror development; and 3) provides some technical specifications for a 2.55-m-diameter, proof-of-concept mirror.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Langechuan; Antonuk, Larry E., E-mail: antonuk@umich.edu; El-Mohri, Youcef
Purpose: In modern radiotherapy treatment rooms, megavoltage (MV) portal imaging and kilovoltage (kV) cone-beam CT (CBCT) imaging are performed using various active matrix flat-panel imager (AMFPI) designs. To expand the clinical utility of MV and kV imaging, MV AMFPIs incorporating thick, segmented scintillators and, separately, kV imaging using a beam’s eye view geometry have been investigated by a number of groups. Motivated by these previous studies, it is of interest to explore to what extent it is possible to preserve the benefits of kV and MV imaging using a single AMFPI design, given the considerably different x ray energy spectramore » used for kV and MV imaging. In this paper, considerations for the design of such a dual energy imager are explored through examination of the performance of a variety of hypothetical AMFPIs based on x ray converters employing segmented scintillators. Methods: Contrast, noise, and contrast-to-noise ratio performances were characterized through simulation modeling of CBCT imaging, while modulation transfer function, Swank factor, and signal performance were characterized through simulation modeling of planar imaging. The simulations were based on a previously reported hybrid modeling technique (accounting for both radiation and optical effects), augmented through modeling of electronic additive noise. All designs employed BGO scintillator material with thicknesses ranging from 0.25 to 4 cm and element-to-element pitches ranging from 0.508 to 1.016 mm. A series of studies were performed under both kV and MV imaging conditions to determine the most advantageous imager configuration (involving front or rear x ray illumination and use of a mirror or black reflector), converter design (pitch and thickness), and operating mode (pitch-binning combination). Results: Under the assumptions of the present study, the most advantageous imager design was found to employ rear illumination of the converter in combination with a black reflector, incorporate a BGO converter with a 0.508 mm pitch and a 2 cm thickness, and operate at full resolution for kV imaging and 2 × 2 binning mode for MV imaging. Such a dual energy imager design should provide soft tissue visualization at low, clinically practical doses under MV conditions, while helping to preserve the high spatial resolution and high contrast offered by kV imaging. Conclusions: The authors’ theoretical investigation suggests that a dual energy imager capable of largely preserving the desirable characteristics of both kV and MV imaging is feasible. Such an imager, when coupled to a dual energy radiation source, could facilitate simplification of current treatment room imaging systems (as well as their associated quality assurance), and facilitate more precise integration of kV and MV imaging information by virtue of reduced geometric uncertainties.« less
Off-axis reflective optical apparatus
NASA Technical Reports Server (NTRS)
Ames, Lawrence L. (Inventor); Leary, David F. (Inventor); Mammini, Paul V. (Inventor)
2005-01-01
Embodiments of the present invention are directed to a simple apparatus and a convenient and accurate method of mounting the components to form an off-axis reflective optical apparatus such as a collimator. In one embodiment, an off-axis reflective optical apparatus comprises a mounting block having a ferrule holder support surface and an off-axis reflector support surface which is generally perpendicular to the ferrule holder support surface. An optical reflector is mounted on the off-axis reflector support surface and has a reflected beam centerline. The optical reflector has a conic reflective surface and a conic center. A ferrule holder is mounted on the ferrule holder support surface. The ferrule holder provides a ferrule for coupling to an optical fiber and orienting a fiber tip of the optical fiber along a fiber axis toward the optical reflector. The fiber axis is nonparallel to the reflected beam centerline. Prior to mounting the optical reflector to the off-axis reflector support surface and prior to mounting the ferrule holder to the ferrule holder support surface, the optical reflector is movable on the off-axis reflector surface and the ferrule holder is movable on the ferrule holder support surface to align the conic center of the optical reflector with respect to the fiber tip of the optical fiber, and the apparatus has at least one of the following features: (1) the optical reflector is movable on the off-axis reflector support surface to adjust a focus of the fiber tip with respect to the optical reflector, and (2) the ferrule holder is movable on the ferrule holder support surface to adjust the focus of the fiber tip with respect to the optical reflector.
NASA Astrophysics Data System (ADS)
Lange, Thomas; Wörz, Stefan; Rohr, Karl; Schlag, Peter M.
2009-02-01
The qualitative and quantitative comparison of pre- and postoperative image data is an important possibility to validate surgical procedures, in particular, if computer assisted planning and/or navigation is performed. Due to deformations after surgery, partially caused by the removal of tissue, a non-rigid registration scheme is a prerequisite for a precise comparison. Interactive landmark-based schemes are a suitable approach, if high accuracy and reliability is difficult to achieve by automatic registration approaches. Incorporation of a priori knowledge about the anatomical structures to be registered may help to reduce interaction time and improve accuracy. Concerning pre- and postoperative CT data of oncological liver resections the intrahepatic vessels are suitable anatomical structures. In addition to using branching landmarks for registration, we here introduce quasi landmarks at vessel segments with high localization precision perpendicular to the vessels and low precision along the vessels. A comparison of interpolating thin-plate splines (TPS), interpolating Gaussian elastic body splines (GEBS) and approximating GEBS on landmarks at vessel branchings as well as approximating GEBS on the introduced vessel segment landmarks is performed. It turns out that the segment landmarks provide registration accuracies as good as branching landmarks and can improve accuracy if combined with branching landmarks. For a low number of landmarks segment landmarks are even superior.
van 't Hoff, Marcel; Reuter, Marcel; Dryden, David T F; Oheim, Martin
2009-09-21
Bacteriophage lambda-DNA molecules are frequently used as a scaffold to characterize the action of single proteins unwinding, translocating, digesting or repairing DNA. However, scaling up such single-DNA-molecule experiments under identical conditions to attain statistically relevant sample sizes remains challenging. Additionally the movies obtained are frequently noisy and difficult to analyse with any precision. We address these two problems here using, firstly, a novel variable-angle total internal reflection fluorescence (VA-TIRF) reflector composed of a minimal set of optical reflective elements, and secondly, using single value decomposition (SVD) to improve the signal-to-noise ratio prior to analysing time-lapse image stacks. As an example, we visualize under identical optical conditions hundreds of surface-tethered single lambda-DNA molecules, stained with the intercalating dye YOYO-1 iodide, and stretched out in a microcapillary flow. Another novelty of our approach is that we arrange on a mechanically driven stage several capillaries containing saline, calibration buffer and lambda-DNA, respectively, thus extending the approach to high-content, high-throughput screening of single molecules. Our length measurements of individual DNA molecules from noise-reduced kymograph images using SVD display a 6-fold enhanced precision compared to raw-data analysis, reaching approximately 1 kbp resolution. Combining these two methods, our approach provides a straightforward yet powerful way of collecting statistically relevant amounts of data in a semi-automated manner. We believe that our conceptually simple technique should be of interest for a broader range of single-molecule studies, well beyond the specific example of lambda-DNA shown here.
NASA Astrophysics Data System (ADS)
Pittet, Jean-Noël; Šilha, Jiří; Schildknecht, Thomas
2018-02-01
The Satellite Laser Ranging (SLR) technology is used to accurately determine the position of space objects equipped with so-called retro-reflectors or retro-reflector arrays (RRA). This type of measurement allows to measure the range to the spacecraft with high precision, which leads to determination of very accurate orbits for these targets. Non-active spacecraft, which are not attitude controlled any longer, tend to start to spin or tumble under influence of the external and internal torques and forces. If the return signal is measured for a non-spherical non-active rotating object, the signal in the range residuals with respect to the reference orbit is more complex. For rotating objects the return signal shows an oscillating pattern or patterns caused by the RRA moving around the satellite's centre of mass. This behaviour is projected onto the radial component measured by the SLR. In our work, we demonstrate how the SLR ranging technique from one sensor to a satellite equipped with a RRA can be used to precisely determine its spin motion during one passage. Multiple SLR measurements of one target over time allow to accurately monitor spin motion changes which can be further used for attitude predictions. We show our solutions of the spin motion determined for the non-active ESA satellite Envisat obtained from measurements acquired during years 2013-2015 by the Zimmerwald SLR station, Switzerland. All the necessary parameters are defined for our own so-called point-like model which describes the motion of a point in space around the satellite centre of mass.
The Position and Attitude of Sub-reflector Modeling for TM65 m Radio Telescope
NASA Astrophysics Data System (ADS)
Sun, Z. X.; Chen, L.; Wang, J. Q.
2016-01-01
In the course of astronomical observations, with changes in angle of pitch, the large radio telescope will have different degrees of deformation in the sub-reflector support, back frame, main reflector etc, which will lead to the dramatic decline of antenna efficiency in both high and low elevation. A sub-reflector system of the Tian Ma 65 m radio telescope has been installed in order to compensate for the gravitational deformations of the sub-reflector support and the main reflector. The position and attitude of the sub-reflector are variable in order to improve the pointing performance and the efficiency at different elevations. In this paper, it is studied that the changes of position and attitude of the sub-reflector have influence on the efficiency of antenna in the X band and Ku band. A model has been constructed to determine the position and attitude of the sub-reflector with elevation, as well as the point compensation model, by observing the radio source. In addition, antenna efficiency was tested with sub-reflector position adjusted and fixed. The results show that the model of sub-reflector can effectively improve the efficiency of the 65 m radio telescope. In X band, the aperture efficiency of the radio telescope reaches more than 60% over the entire elevation range.
A Wideband Corner-Reflector Antenna for 240 to 400 MHz.
1983-09-19
8217 .; ,:,:. .-.:.,.;.. - -... - .- . -.. .-- v...- ..... .-. .-.- 1,.:..- FIGURES 1. Corner Reflector with Open-Sleeve Dipole Feed ............ ...... 7 2...Open-Sleeve Dipole Feed for Corner Reflector, 240-400 MHz........ 8 3. Closeup Photo of Open-Sleeve Dpole ..................... ...... 8 4. VSWR of...4-ft Corner Reflector, Open-Sleeve Dipole Feed .......... 9 5. Gain of Corner Reflector............ .............. . ....... 9 6. Measured E- and H
NASA Technical Reports Server (NTRS)
Stutzman, W. L.; Takamizawa, K.; Werntz, P.; Lapean, J.; Barts, R.; Shen, B.; Dunn, D.
1992-01-01
The topics covered include the following: (1) performance analysis of the Gregorian tri-reflector; (2) design and performance of the type 6 reflector antenna; (3) a new spherical main reflector system design; (4) optimization of reflector configurations using physical optics; (5) radiometric array design; and (7) beam efficiency studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rueegsegger, Michael B.; Bach Cuadra, Meritxell; Pica, Alessia
Purpose: Ocular anatomy and radiation-associated toxicities provide unique challenges for external beam radiation therapy. For treatment planning, precise modeling of organs at risk and tumor volume are crucial. Development of a precise eye model and automatic adaptation of this model to patients' anatomy remain problematic because of organ shape variability. This work introduces the application of a 3-dimensional (3D) statistical shape model as a novel method for precise eye modeling for external beam radiation therapy of intraocular tumors. Methods and Materials: Manual and automatic segmentations were compared for 17 patients, based on head computed tomography (CT) volume scans. A 3Dmore » statistical shape model of the cornea, lens, and sclera as well as of the optic disc position was developed. Furthermore, an active shape model was built to enable automatic fitting of the eye model to CT slice stacks. Cross-validation was performed based on leave-one-out tests for all training shapes by measuring dice coefficients and mean segmentation errors between automatic segmentation and manual segmentation by an expert. Results: Cross-validation revealed a dice similarity of 95% {+-} 2% for the sclera and cornea and 91% {+-} 2% for the lens. Overall, mean segmentation error was found to be 0.3 {+-} 0.1 mm. Average segmentation time was 14 {+-} 2 s on a standard personal computer. Conclusions: Our results show that the solution presented outperforms state-of-the-art methods in terms of accuracy, reliability, and robustness. Moreover, the eye model shape as well as its variability is learned from a training set rather than by making shape assumptions (eg, as with the spherical or elliptical model). Therefore, the model appears to be capable of modeling nonspherically and nonelliptically shaped eyes.« less
Nagarajan, Mahesh B; Huber, Markus B; Schlossbauer, Thomas; Leinsinger, Gerda; Krol, Andrzej; Wismüller, Axel
2013-10-01
Characterizing the dignity of breast lesions as benign or malignant is specifically difficult for small lesions; they don't exhibit typical characteristics of malignancy and are harder to segment since margins are harder to visualize. Previous attempts at using dynamic or morphologic criteria to classify small lesions (mean lesion diameter of about 1 cm) have not yielded satisfactory results. The goal of this work was to improve the classification performance in such small diagnostically challenging lesions while concurrently eliminating the need for precise lesion segmentation. To this end, we introduce a method for topological characterization of lesion enhancement patterns over time. Three Minkowski Functionals were extracted from all five post-contrast images of sixty annotated lesions on dynamic breast MRI exams. For each Minkowski Functional, topological features extracted from each post-contrast image of the lesions were combined into a high-dimensional texture feature vector. These feature vectors were classified in a machine learning task with support vector regression. For comparison, conventional Haralick texture features derived from gray-level co-occurrence matrices (GLCM) were also used. A new method for extracting thresholded GLCM features was also introduced and investigated here. The best classification performance was observed with Minkowski Functionals area and perimeter , thresholded GLCM features f8 and f9, and conventional GLCM features f4 and f6. However, both Minkowski Functionals and thresholded GLCM achieved such results without lesion segmentation while the performance of GLCM features significantly deteriorated when lesions were not segmented ( p < 0.05). This suggests that such advanced spatio-temporal characterization can improve the classification performance achieved in such small lesions, while simultaneously eliminating the need for precise segmentation.
Pressure-release versus rigid reflector for extracorporeal shockwave lithotripsy.
Loske, Achim M; Prieto, Fernando E
2002-06-01
To evaluate the advantages and disadvantages of using a pressure-release reflector instead of a rigid reflector to concentrate shockwaves for extracorporeal shockwave lithotripsy (SWL). As in all electrohydraulic lithotripters, shockwaves were generated by electrical breakdown of water between two electrodes, located at the focus (F1) closest to a paraellipsoidal reflector. A pressure-release reflector, made out of polyurethane foam, was constructed and tested on a research lithotripter using kidney stone models. Fragmentation data and pressure measurements were compared with those of a conventional rigid reflector tested on the same device. The weight of stone model fragments remaining after shockwave exposure was less with the pressure-release reflector after screening through a 3.0 x 3.0-mm mesh. The residual fragment weight was less with the rigid reflector using 1.0 x 1.0- and 0.6 x 0.6-mm meshes. Pressure-release reflectors may maintain acceptable stone fragmentation while offering improved patient safety and should be considered for SWL.
Colman, Kerri L; Dobbe, Johannes G G; Stull, Kyra E; Ruijter, Jan M; Oostra, Roelof-Jan; van Rijn, Rick R; van der Merwe, Alie E; de Boer, Hans H; Streekstra, Geert J
2017-07-01
Almost all European countries lack contemporary skeletal collections for the development and validation of forensic anthropological methods. Furthermore, legal, ethical and practical considerations hinder the development of skeletal collections. A virtual skeletal database derived from clinical computed tomography (CT) scans provides a potential solution. However, clinical CT scans are typically generated with varying settings. This study investigates the effects of image segmentation and varying imaging conditions on the precision of virtual modelled pelves. An adult human cadaver was scanned using varying imaging conditions, such as scanner type and standard patient scanning protocol, slice thickness and exposure level. The pelvis was segmented from the various CT images resulting in virtually modelled pelves. The precision of the virtual modelling was determined per polygon mesh point. The fraction of mesh points resulting in point-to-point distance variations of 2 mm or less (95% confidence interval (CI)) was reported. Colour mapping was used to visualise modelling variability. At almost all (>97%) locations across the pelvis, the point-to-point distance variation is less than 2 mm (CI = 95%). In >91% of the locations, the point-to-point distance variation was less than 1 mm (CI = 95%). This indicates that the geometric variability of the virtual pelvis as a result of segmentation and imaging conditions rarely exceeds the generally accepted linear error of 2 mm. Colour mapping shows that areas with large variability are predominantly joint surfaces. Therefore, results indicate that segmented bone elements from patient-derived CT scans are a sufficiently precise source for creating a virtual skeletal database.
Effects of deterministic surface distortions on reflector antenna performance
NASA Technical Reports Server (NTRS)
Rahmat-Samii, Y.
1985-01-01
Systematic distortions of reflector antenna surfaces can cause antenna radiation patterns to be undesirably different from those of perfectly smooth reflector surfaces. In this paper, a simulation model for systematic distortions is described which permits an efficient computation of the effects of distortions in the reflector pattern. The model uses a vector diffraction physical optics analysis for the determination of both the co-polar and cross-polar fields. An interpolation scheme is also presented for the description of reflector surfaces which are prescribed by discrete points. Representative numerical results are presented for reflectors with sinusoidally and thermally distorted surfaces. Finally, comparisons are made between the measured and calculated patterns of a slowly-varying distorted offset parabolic reflector.
Demonstration of a Single-Crystal Reflector-Filter for Enhancing Slow Neutron Beams
Muhrer, Guenter; Schönfeldt, Troels; Iverson, Erik B.; ...
2016-06-14
The cold polycrystalline beryllium reflector-filter concept has been used to enhance the cold neutron emission of cryogenic hydrogen moderators, while suppressing the intermediate wavelength and fast neutron emission at the same time. While suppressing the fast neutron emission is often desired, the suppression of intermediate wavelength neutrons is often unwelcome. It has been hypothesized that replacing the polycrystalline reflector-filter concept with a single-crystal reflector-filter concept would overcome the suppression of intermediate wavelength neutrons and thereby extend the usability of the reflector-filter concept to shorter but still important wavelengths. In this paper we present the first experimental data on a single-crystalmore » reflector-filter and compare experimental results with hypothesized performance. We find that a single-crystal reflector-filter retains the long-wavelength benefit of the polycrystalline reflector-filter, without suffering the same loss of important intermediate wavelength neutrons. Ultimately, this finding extends the applicability of the reflector-filter concept to intermediate wavelengths, and furthermore indicates that the reflector-filter benefits arise from its interaction with fast (background) neutrons, not with intermediate wavelength neutrons of potential interest in many types of neutron scattering.« less
Cophasing techniques for extremely large telescopes
NASA Astrophysics Data System (ADS)
Devaney, Nicholas; Schumacher, Achim
2004-07-01
The current designs of the majority of ELTs envisage that at least the primary mirror will be segmented. Phasing of the segments is therefore a major concern, and a lot of work is underway to determine the most suitable techniques. The techniques which have been developed are either wave optics generalizations of classical geometric optics tests (e.g. Shack-Hartmann and curvature sensing) or direct interferometric measurements. We present a review of the main techniques proposed for phasing and outline their relative merits. We consider problems which are specific to ELTs, e.g. vignetting of large parts of the primary mirror by the secondary mirror spiders, and the need to disentangle phase errors arising in different segmented mirrors. We present improvements in the Shack-Hartmann and curvature sensing techniques which allow greater precision and range. Finally, we describe a piston plate which simulates segment phasing errors and show the results of laboratory experiments carried out to verify the precision of the Shack-Hartmann technique.
NASA Technical Reports Server (NTRS)
Gammell, P. M.; Wang, T. G.; Croonquist, A.; Lee, M. C.
1985-01-01
Dense materials, such as steel balls, continuously levitated with energy provided by efficient high-powered siren in combination with shaped reflector. Reflector system, consisting of curved top reflector and flat lower reflector, eliminates instability in spatial positioning of sample.
Multiclassifier fusion in human brain MR segmentation: modelling convergence.
Heckemann, Rolf A; Hajnal, Joseph V; Aljabar, Paul; Rueckert, Daniel; Hammers, Alexander
2006-01-01
Segmentations of MR images of the human brain can be generated by propagating an existing atlas label volume to the target image. By fusing multiple propagated label volumes, the segmentation can be improved. We developed a model that predicts the improvement of labelling accuracy and precision based on the number of segmentations used as input. Using a cross-validation study on brain image data as well as numerical simulations, we verified the model. Fit parameters of this model are potential indicators of the quality of a given label propagation method or the consistency of the input segmentations used.
NASA Astrophysics Data System (ADS)
Wang, Xuejuan; Wu, Shuhang; Liu, Yunpeng
2018-04-01
This paper presents a new method for wood defect detection. It can solve the over-segmentation problem existing in local threshold segmentation methods. This method effectively takes advantages of visual saliency and local threshold segmentation. Firstly, defect areas are coarsely located by using spectral residual method to calculate global visual saliency of them. Then, the threshold segmentation of maximum inter-class variance method is adopted for positioning and segmenting the wood surface defects precisely around the coarse located areas. Lastly, we use mathematical morphology to process the binary images after segmentation, which reduces the noise and small false objects. Experiments on test images of insect hole, dead knot and sound knot show that the method we proposed obtains ideal segmentation results and is superior to the existing segmentation methods based on edge detection, OSTU and threshold segmentation.
Hierarchical decomposition of burn body diagram based on cutaneous functional units and its utility.
Richard, Reg; Jones, John A; Parshley, Philip
2015-01-01
A burn body diagram (BBD) is a common feature used in the delivery of burn care for estimating the TBSA burn as well as calculating fluid resuscitation and nutritional requirements, wound healing, and rehabilitation intervention. However, little change has occurred for over seven decades in the configuration of the BBD. The purpose of this project was to develop a computerized model using hierarchical decomposition (HD) to more precisely determine the percentage burn within a BBD based on cutaneous functional units (CFUs). HD is a process by which a system is degraded into smaller parts that are more precise in their use. CFUs were previously identified fields of the skin involved in the range of motion. A standard Lund/Browder (LB) BBD template was used as the starting point to apply the CFU segments. LB body divisions were parceled down into smaller body area divisions through a HD process based on the CFU concept. A numerical pattern schema was used to label the various segments in a cephalo/caudal, anterior/posterior, medial/lateral manner. Hand/fingers were divided based on anatomical landmarks and known cutaneokinematic function. The face was considered using aesthetic units. Computer code was written to apply the numeric hierarchical schema to CFUs and applied within the context of the surface area graphic evaluation BBD program. Each segmented CFU was coded to express 100% of itself. The CFU/HD method refined the standard LB diagram from 13 body segments and 33 subdivisions into 182 isolated CFUs. Associated CFUs were reconstituted into 219 various surface area combinations totaling 401 possible surface segments. The CFU/HD schema of the body surface mapping is applicable to measuring and calculating percent wound healing in a more precise manner. It eliminates subjective assessment of the percentage wound healing and the need for additional devices such as planimetry. The development of CFU/HD body mapping schema has rendered a technologically advanced system to depict body burns. The process has led to a more precise estimation of the segmented body areas while preserving the overall TBSA information. Clinical application to date has demonstrated its worthwhile utility.
System Estimates Radius of Curvature of a Segmented Mirror
NASA Technical Reports Server (NTRS)
Rakoczy, John
2008-01-01
A system that estimates the global radius of curvature (GRoC) of a segmented telescope mirror has been developed for use as one of the subsystems of a larger system that exerts precise control over the displacements of the mirror segments. This GRoC-estimating system, when integrated into the overall control system along with a mirror-segment- actuation subsystem and edge sensors (sensors that measure displacements at selected points on the edges of the segments), makes it possible to control the GROC mirror-deformation mode, to which mode contemporary edge sensors are insufficiently sensitive. This system thus makes it possible to control the GRoC of the mirror with sufficient precision to obtain the best possible image quality and/or to impose a required wavefront correction on incoming or outgoing light. In its mathematical aspect, the system utilizes all the information available from the edge-sensor subsystem in a unique manner that yields estimates of all the states of the segmented mirror. The system does this by exploiting a special set of mirror boundary conditions and mirror influence functions in such a way as to sense displacements in degrees of freedom that would otherwise be unobservable by means of an edge-sensor subsystem, all without need to augment the edge-sensor system with additional metrological hardware. Moreover, the accuracy of the estimates increases with the number of mirror segments.
Reflectivity Spectra for Commonly Used Reflectors
NASA Astrophysics Data System (ADS)
Janecek, Martin
2012-06-01
Monte Carlo simulations play an important role in developing and evaluating the performance of radiation detection systems. To accurately model a reflector in an optical Monte Carlo simulation, the reflector's spectral response has to be known. We have measured the reflection coefficient for many commonly used reflectors for wavelengths from 250 nm to 800 nm. The reflectors were also screened for fluorescence and angular distribution changes with wavelength. The reflectors examined in this work include several polytetrafluoroethylene (PTFE) reflectors, Spectralon, GORE diffuse reflector, titanium dioxide paint, magnesium oxide, nitrocellulose filter paper, Tyvek paper, Lumirror, Melinex, ESR films, and aluminum foil. All PTFE films exhibited decreasing reflectivity with longer wavelengths due to transmission. To achieve >;0.95 reflectivity in the 380 to 500 nm range, the PTFE films have to be at least 0.5 mm thick-nitrocellulose is a good alternative if a thin diffuse reflector is needed. Several of the reflectors have sharp declines in reflectivity below a cut-off wavelength, including TiO2 (420 nm), ESR film (395 nm), nitrocellulose (330 nm), Lumirror (325 nm), and Melinex (325 nm). PTFE-like reflectors were the only examined reflectors that had reflectivity above 0.90 for wavelengths below 300 nm. Lumirror, Melinex, and ESR film exhibited fluorescence. Lumirror and Melinex are excited by wavelengths between 320 and 420 nm and have their emission peaks located at 440 nm, while ESR film is excited by wavelengths below 400 nm and the emission peak is located at 430 nm. Lumirror and Melinex also exhibited changing angular distributions with wavelength.
Deployable reflector structure
NASA Technical Reports Server (NTRS)
Mikulas, Martin, Jr. (Inventor); Hoberman, Charles (Inventor)
1993-01-01
A deployable reflector structure is presented. The structure has a number of movable reflector panels pivotably supported on rigid arms. Several such arms are pivotably connected to a central structure. The arm can move in starburst fashion from a packaged stage, where all arms are vertical, to a deployed stage, where all arms are horizontal. All of the movable reflector panels are maintained at a predetermined angle to an axis of the reflector structure when the arms are pivoted. The reflector panels are stacked tightly on top of each other in the packaged state of the reflector structure. Simple mechanisms are used for avoiding interference between panels on different arms in the packaged stage and for fitting the movable panels together like tiles in the deployed stage.
Evaluation of deer warning reflectors in Virginia.
DOT National Transportation Integrated Search
2003-01-01
A deer warning reflector consists of a red, double-sided reflector mounted on posts, similar to those used for roadside delineators along roadways. As vehicles approach and move through the road section, it is purported that the reflector reflects th...
A Nonlinear Dynamic Model and Free Vibration Analysis of Deployable Mesh Reflectors
NASA Technical Reports Server (NTRS)
Shi, H.; Yang, B.; Thomson, M.; Fang, H.
2011-01-01
This paper presents a dynamic model of deployable mesh reflectors, in which geometric and material nonlinearities of such a space structure are fully described. Then, by linearization around an equilibrium configuration of the reflector structure, a linearized model is obtained. With this linearized model, the natural frequencies and mode shapes of a reflector can be computed. The nonlinear dynamic model of deployable mesh reflectors is verified by using commercial finite element software in numerical simulation. As shall be seen, the proposed nonlinear model is useful for shape (surface) control of deployable mesh reflectors under thermal loads.
Orbit determination of the Sentinel satellites - preparations for GPS L2C-tracking
NASA Astrophysics Data System (ADS)
Peter, Heike; Fernández, Jaime; Fernández, Carlos; Féménias, Pierre
2017-04-01
The Copernicus POD (Precise Orbit Determination) Service is part of the Copernicus Processing Data Ground Segment (PDGS) of the Sentinel-1, -2 and -3 missions. A GMV-led consortium is operating the Copernicus POD Service being in charge of generating precise orbital products and auxiliary data files for their use as part of the processing chains of the respective Sentinel PDGS. Since April 2014 four Sentinel satellites have been launched (1A, 2A, 3A, and 1B). Sentinel-2B is expected to be launched in March 2017. Thus the CPOD Service will be operating five satellites simultaneously in spring 2017. The satellites of the Sentinel-1, -2, and -3 missions are all equipped with dual frequency high precision GPS receivers delivering the main observables for POD. Sentinel-3 satellites are additionally equipped with a laser retro reflector for Satellite Laser Ranging and a receiver for DORIS tracking. This allows an additional external validation of the Sentinel-3 orbit accuracy. The three missions require orbital products with various latencies from 30 minutes up to 20-30 days. The accuracy requirements are also different and partly very challenging, targeting 5 cm in 3D for Sentinel-1 and 2-3 cm in radial direction for Sentinel-3. The main quality control of the CPOD orbits is done by validating them with independent orbit solutions provided by the Copernicus POD Quality Working Group. The cross-comparison of orbit solutions from different institutions is essential to monitor and to improve the orbit accuracy. The GPS receivers on the B-satellites have the capability to track L2C signal. The option is, however, not yet activated, because if enabled the old L2 signal can no longer be tracked by the receiver. The measurements of many old GPS IIA and IIR satellites would have to be discarded because of the missing second frequency. To be prepared for the future, tests and simulations are foreseen to learn about the impact of the new observable on the POD results. This paper presents the Copernicus POD Service in terms of operations and orbital accuracy achieved by the different orbit products of the different missions. The long-term evolution and progress of the service is presented and the impact and challenges following a future switch to L2C tracking are analysed.
Mastmeyer, André; Engelke, Klaus; Fuchs, Christina; Kalender, Willi A
2006-08-01
We have developed a new hierarchical 3D technique to segment the vertebral bodies in order to measure bone mineral density (BMD) with high trueness and precision in volumetric CT datasets. The hierarchical approach starts with a coarse separation of the individual vertebrae, applies a variety of techniques to segment the vertebral bodies with increasing detail and ends with the definition of an anatomic coordinate system for each vertebral body, relative to which up to 41 trabecular and cortical volumes of interest are positioned. In a pre-segmentation step constraints consisting of Boolean combinations of simple geometric shapes are determined that enclose each individual vertebral body. Bound by these constraints viscous deformable models are used to segment the main shape of the vertebral bodies. Volume growing and morphological operations then capture the fine details of the bone-soft tissue interface. In the volumes of interest bone mineral density and content are determined. In addition, in the segmented vertebral bodies geometric parameters such as volume or the length of the main axes of inertia can be measured. Intra- and inter-operator precision errors of the segmentation procedure were analyzed using existing clinical patient datasets. Results for segmented volume, BMD, and coordinate system position were below 2.0%, 0.6%, and 0.7%, respectively. Trueness was analyzed using phantom scans. The bias of the segmented volume was below 4%; for BMD it was below 1.5%. The long-term goal of this work is improved fracture prediction and patient monitoring in the field of osteoporosis. A true 3D segmentation also enables an accurate measurement of geometrical parameters that may augment the clinical value of a pure BMD analysis.
High Precision Time Transfer in Space with a Hydrogen Maser on MIR
NASA Technical Reports Server (NTRS)
Mattison, Edward M.; Vessot, Robert F. C.
1996-01-01
An atomic hydrogen maser clock system designed for long term operation in space will be installed on the Russian space station Mir, in late 1997. The H-maser's frequency stability will be measured using pulsed laser time transfer techniques. Daily time comparisons made with a precision of better than 100 picoseconds will allow an assessment of the long term stability of the space maser at a level on the order of 1 part in 10(sup 15) or better. Laser pulse arrival times at the spacecraft will be recorded with a resolution of 10 picoseconds relative to the space clock's time scale. Cube corner reflectors will reflect the pulses back to the Earth laser station to determine the propagation delay and enable comparison with the Earth-based time scale. Data for relativistic and gravitational frequency corrections will be obtained from a Global Positioning System (GPS) receiver.
DSS-24 microwave holography measurements
NASA Technical Reports Server (NTRS)
Rochblatt, D. J.; Withington, P. M.; Jackson, H. J.
1995-01-01
The JPL DSN Microwave Antenna Holography System (MAHST) was applied to the newly constructed DSS-24 34-m beam-waveguide antenna at Goldstone, California. The application of MAHST measurements and corrections at DSS 24 provided the critical RF performance necessary to not only meet the project requirements and goals, but to surpass them. A performance increase of 0.35 dB at X-band (8.45 GHz) and 4.9 dB at Ka-band (32 GHz) was provided by MAHST, resulting in peak efficiencies of 75.25 percent at X-band and 60.6 percent at Ka-band (measured from the Cassegrain focus at f1). The MAHST enabled setting the main reflector panels of DSS 24 to 0.25-mm rms, making DSS 24 the highest precision antenna in the NASA/JPL DSN. The precision of the DSS-24 antenna (diameter/rms) is 1.36 x 10(exp 5), and its gain limit is at 95 GHz.
HY-2A altimetry satellite GPS orbits processing and performances
NASA Astrophysics Data System (ADS)
Mercier, F.; Houry, S.; Couhert, A.; Cerri, L.
2012-04-01
The Chinese HY-2A altimetry satellite is on the mission orbit since 1st october 2011. This satellite uses a Doris receiver (French cooperation), a GPS receiver and a SLR retro-reflector for the precise orbit determination. The GPS is a dual frequency semi-codeless receiver. Precise orbits are computed at CNES on the basis of 7 days arcs since the beginning of the mission (repeat cycle is 14 days). This presentation describes the current processing performed at CNES for this satellite. The GPS only orbits perform very well and are compared with the Doris only orbits (floating ambiguity resolution, as for Jason 1 and 2). SLR measurements are also available at ILRS, and allow an external validation of the actual radial orbit performance. This talk adresses the current status of POE solutions and the prospects for improvement based on the preliminary analysis of the tracking data.
NASA Astrophysics Data System (ADS)
Kong, Zhenglun; Luo, Junyi; Xu, Shengpu; Li, Ting
2018-02-01
Image segmentation plays an important role in medical science. One application is multimodality imaging, especially the fusion of structural imaging with functional imaging, which includes CT, MRI and new types of imaging technology such as optical imaging to obtain functional images. The fusion process require precisely extracted structural information, in order to register the image to it. Here we used image enhancement, morphometry methods to extract the accurate contours of different tissues such as skull, cerebrospinal fluid (CSF), grey matter (GM) and white matter (WM) on 5 fMRI head image datasets. Then we utilized convolutional neural network to realize automatic segmentation of images in deep learning way. Such approach greatly reduced the processing time compared to manual and semi-automatic segmentation and is of great importance in improving speed and accuracy as more and more samples being learned. The contours of the borders of different tissues on all images were accurately extracted and 3D visualized. This can be used in low-level light therapy and optical simulation software such as MCVM. We obtained a precise three-dimensional distribution of brain, which offered doctors and researchers quantitative volume data and detailed morphological characterization for personal precise medicine of Cerebral atrophy/expansion. We hope this technique can bring convenience to visualization medical and personalized medicine.
A new approach for shaping of dual-reflector antennas
NASA Technical Reports Server (NTRS)
Lee, Teh-Hong; Burnside, W. D.; Rudduck, Roger C.
1987-01-01
The shaping of 2-D dual-reflector antenna systems to generate a prescribed distribution with uniform phase at the aperture of the second reflector is examined. This method is based on the geometrical nature of Cassegrain and Gregorian dual-reflector antennas. The method of syntheses satisfies the principles of geometrical optics which are the foundations of dual-reflector designs. Instead of setting up differential equations or heuristically designing the subreflector, a set of algebraic equations is formulated and solved numerically to obtain the desired surfaces. The caustics of the reflected rays from the subreflector can be obtained and examined. Several examples of 2-D dual-reflector shaping are shown to validate the study. Geometrical optics and physical optics are used to calculate the scattered fields from the reflectors.
The Marriage of Two Opposing Cultures
ERIC Educational Resources Information Center
Loubriel, Luis
2007-01-01
With a heavy dominance on its technical/empirical aspects, the segmented performance, pedagogy, and assessment of Western classical music is undermining its goal of creating art with precision, style, and expressive beauty. This segmentation has its roots in the quantitative assessment processes found in music education and in the note-perfect…
16 CFR 1512.16 - Requirements for reflectors.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 1512.16 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS SUBSTANCES ACT... vehicle headlamps. The use of reflector combinations off the center plane of the bicycle (defined in...) Front reflector. The reflector or mount shall not contact the ground plane when the bicycle is resting...
Solar energy collection system
NASA Technical Reports Server (NTRS)
Miller, C. G.; Stephens, J. B. (Inventor)
1979-01-01
A fixed, linear, ground-based primary reflector having an extended curved sawtooth-contoured surface covered with a metalized polymeric reflecting material, reflects solar energy to a movably supported collector that is kept at the concentrated line focus reflector primary. The primary reflector may be constructed by a process utilizing well known freeway paving machinery. The solar energy absorber is preferably a fluid transporting pipe. Efficient utilization leading to high temperatures from the reflected solar energy is obtained by cylindrical shaped secondary reflectors that direct off-angle energy to the absorber pipe. A seriatim arrangement of cylindrical secondary reflector stages and spot-forming reflector stages produces a high temperature solar energy collection system of greater efficiency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bakry, A.; Abdulrhmann, S.; Ahmed, M., E-mail: mostafa.farghal@mu.edu.eg
2016-06-15
We theoretically model the dynamics of semiconductor lasers subject to the double-reflector feedback. The proposed model is a new modification of the time-delay rate equations of semiconductor lasers under the optical feedback to account for this type of the double-reflector feedback. We examine the influence of adding the second reflector to dynamical states induced by the single-reflector feedback: periodic oscillations, period doubling, and chaos. Regimes of both short and long external cavities are considered. The present analyses are done using the bifurcation diagram, temporal trajectory, phase portrait, and fast Fourier transform of the laser intensity. We show that adding themore » second reflector attracts the periodic and perioddoubling oscillations, and chaos induced by the first reflector to a route-to-continuous-wave operation. During this operation, the periodic-oscillation frequency increases with strengthening the optical feedback. We show that the chaos induced by the double-reflector feedback is more irregular than that induced by the single-reflector feedback. The power spectrum of this chaos state does not reflect information on the geometry of the optical system, which then has potential for use in chaotic (secure) optical data encryption.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-05
... Reflector Lamps, Products Containing Same and Components Thereof; Institution of Investigation AGENCY: U.S... fluorescent reflector lamps, products containing same and components thereof by reason of infringement of... compact fluorescent reflector lamps, products containing same and components thereof by reason of...
Solar thermal collectors using planar reflector
NASA Technical Reports Server (NTRS)
Espy, P. N.
1978-01-01
Specular reflectors have been used successfully with flat-plate collectors to achieve exceptionally high operating temperatures and high delivered energy per unit collector area. Optimal orientation of collectors and reflectors can result in even higher performance with an improved relationship between energy demand and supply. This paper reports on a study providing first order optimization of collector-reflector arrays in which single- and multiple-faceted reflectors in fixed or singly adjustable configurations provide delivered energy maxima in either summer or winter.
Fine tuning of transmission features in nanoporous anodic alumina distributed Bragg reflectors
NASA Astrophysics Data System (ADS)
Lim, Siew Yee; Law, Cheryl Suwen; Santos, Abel
2018-01-01
This study introduces an innovative apodisation strategy to tune the filtering features of distributed Bragg reflectors based on nanoporous anodic alumina (NAA-DBRs). The effective medium of NAA-DBRs, which is modulated in a stepwise fashion by a pulse-like anodisation approach, is apodised following a logarithmic negative function to engineer the transmission features of NAA-DBRs. We investigate the effect of various apodisation parameters such as apodisation amplitude difference, anodisation period, current density offset and pore widening time, to tune and optimise the optical properties of NAA-DBRs in terms of central wavelength position, full width at half maximum and quality of photonic stop band. The transmission features of NAA-DBRs are shown to be fully controllable with precision across the spectral regions by means of the apodisation parameters. Our study demonstrates that an apodisation strategy can significantly narrow the width and enhance the quality of the characteristic photonic stop band of NAA-DBRs. This rationally designed anodisation approach based on the combination of apodisation and stepwise pulse anodisation enables the development of optical filters with tuneable filtering features to be integrated into optical technologies acting as essential photonic elements in devices such as optical sensors and biosensors.
NASA Technical Reports Server (NTRS)
Kunimori, Hiroo; Takahashi, Fujinobu; Itabe, Toshikazu; Yamamoto, Atsushi
1993-01-01
Communications Research Laboratory (CRL) has been developing a laser time transfer system using a satellite laser ranging (SLR) system. We propose Japanese geodetic satellite 'AJISAI', launched in 1986 as a target satellite. The surface is covered not only with corner cube reflectors but also with mirrors. The mirrors are originally designed for observation of flushing solar light reflected by the separate mirrors while the satellite is spinning. In the experiment, synchronized laser pulses are transferred via specified mirror from one station to another while the satellite is up on the horizon to both stations. The system is based on the epoch timing ranging system with 40 ps ranging precision, connected together with UTC(CRL). Simulation study indicates that two stations at thousands of km distance from each other can be linked with signal strength of more than 10 photons and the distributed images of laser beam from AJISAI mirrors give many chances for two stations to link each other during a single AJISAI pass. Retro-reflector In Space for Advanced Earth Observation Satellite (ADEOS) and RendDezVous docking mission of Experimental Technology Satellite-7 (ETS-7) are briefly presented.
A new instrument for measuring optical transmission in the atmosphere
NASA Astrophysics Data System (ADS)
Kaurila, Timo A.
2007-04-01
It is an important task to measure optical transmission of the atmosphere when testing the performance of electro-optical systems such as thermal imagers. Only by knowing atmospheric transmission precisely enough, we will be able to eliminate effects of the atmosphere on test results. For this reason a new instrument that measures optical transmission in the atmosphere has been constructed. The transmissometer consists of a transmitter/receiver unit, a reflector and control software. The instrument measures atmospheric transmission at wavelength of 1 μm and 8-12 μm by comparing the intensity of the beam propagating through the atmosphere and the reference beam inside the transmitter/receiver unit. Calibration is carried out by the aid of a visibility meter and a special calibration algorithm. An important criterion for the design was to create an instrument which could be used flexibly in field measurements. The transmissometer was tested comprehensively in the field in March and June 2006. It can measure extinction coefficients up to 3 - 12 km -1 depending on the span between the transmitter/receiver unit and reflector with accuracy of 10 - 20 %. According to the test measurements the transmissometer also fulfills the other requirement specifications.
NASA Astrophysics Data System (ADS)
Takayama, Toru; Mochida, Atsunori; Orita, Kenji; Tamura, Satoshi; Ohnishi, Toshikazu; Yuri, Masaaki; Shimizu, Hirokazu
2002-05-01
High-power (>100mW) 820 nm-band distributed Bragg reflector (DBR) laser diodes (LDs) with stable fundamental transverse mode operation and continuous wavelength tuning characteristics have been developed. To obtain high-power LDs with a stable fundamental transverse mode in 820 nm wavelength range, an AlGaAs narrow stripe (2.0 micrometers ) real refractive-index-guided self-aligned (RISA) structure is utilized. In the RISA structure, the index step between inside and outside the stripe region ((Delta) n) can be precisely controlled in the order of 10-3). To maintain a stable fundamental transverse mode up to an output power over 100 mW, (Delta) n is designed to be 4x10-3. Higher-order transverse modes are effectively suppressed by a narrow stripe geometry. Further, to achieve continuous wavelength tuning capability, the three-section LD structure, which consists of the active (700micrometers ), phase control (300micrometers ), and DBR(500micrometers ) sections, is incorporated. Our DBR LDs show a maximum output power over 200mW with a stable fundamental transverse mode, and wavelength tuning characteristics ((Delta) (lambda) ~2nm) under 100 mW CW operation.
Robust Targeting for the Smartphone Video Guidance Sensor
NASA Technical Reports Server (NTRS)
Carter, C.
2017-01-01
The Smartphone Video Guidance Sensor (SVGS) is a miniature, self-contained autonomous rendezvous and docking sensor developed using a commercial off the shelf Android-based smartphone. It aims to provide a miniaturized solution for rendezvous and docking, enabling small satellites to conduct proximity operations and formation flying while minimizing interference with a primary payload. Previously, the sensor was limited by a slow (2 Hz) refresh rate and its use of retro-reflectors, both of which contributed to a limited operating environment. To advance the technology readiness level, a modified approach was developed, combining a multi-colored LED target with a focused target-detection algorithm. Alone, the use of an LED system was determined to be much more reliable, though slower, than the retro-reflector system. The focused target-detection system was developed in response to this problem to mitigate the speed reduction of using color. However it also improved the reliability. In combination these two methods have been demonstrated to dramatically increase sensor speed and allow the sensor to select the target even with significant noise interfering with the sensor, providing millimeter level precision at a range of two meters with a 1U target.
33 CFR 118.120 - Radar reflectors and racons.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Radar reflectors and racons. 118... BRIDGES BRIDGE LIGHTING AND OTHER SIGNALS § 118.120 Radar reflectors and racons. The District Commander may require or authorize the installation of radar reflectors and racons on bridge structures, stakes...
46 CFR 169.726 - Radar reflector.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 7 2011-10-01 2011-10-01 false Radar reflector. 169.726 Section 169.726 Shipping COAST... Control, Miscellaneous Systems, and Equipment § 169.726 Radar reflector. Each nonmetallic vessel less than 90 feet in length must exhibit a radar reflector of suitable size and design while underway. Markings ...
33 CFR 118.120 - Radar reflectors and racons.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Radar reflectors and racons. 118... BRIDGES BRIDGE LIGHTING AND OTHER SIGNALS § 118.120 Radar reflectors and racons. The District Commander may require or authorize the installation of radar reflectors and racons on bridge structures, stakes...
46 CFR 169.726 - Radar reflector.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 7 2010-10-01 2010-10-01 false Radar reflector. 169.726 Section 169.726 Shipping COAST... Control, Miscellaneous Systems, and Equipment § 169.726 Radar reflector. Each nonmetallic vessel less than 90 feet in length must exhibit a radar reflector of suitable size and design while underway. Markings ...
46 CFR 169.726 - Radar reflector.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 7 2012-10-01 2012-10-01 false Radar reflector. 169.726 Section 169.726 Shipping COAST... Control, Miscellaneous Systems, and Equipment § 169.726 Radar reflector. Each nonmetallic vessel less than 90 feet in length must exhibit a radar reflector of suitable size and design while underway. Markings ...
33 CFR 118.120 - Radar reflectors and racons.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Radar reflectors and racons. 118... BRIDGES BRIDGE LIGHTING AND OTHER SIGNALS § 118.120 Radar reflectors and racons. The District Commander may require or authorize the installation of radar reflectors and racons on bridge structures, stakes...
46 CFR 169.726 - Radar reflector.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 7 2014-10-01 2014-10-01 false Radar reflector. 169.726 Section 169.726 Shipping COAST... Control, Miscellaneous Systems, and Equipment § 169.726 Radar reflector. Each nonmetallic vessel less than 90 feet in length must exhibit a radar reflector of suitable size and design while underway. Markings ...
33 CFR 118.120 - Radar reflectors and racons.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Radar reflectors and racons. 118... BRIDGES BRIDGE LIGHTING AND OTHER SIGNALS § 118.120 Radar reflectors and racons. The District Commander may require or authorize the installation of radar reflectors and racons on bridge structures, stakes...
46 CFR 169.726 - Radar reflector.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 7 2013-10-01 2013-10-01 false Radar reflector. 169.726 Section 169.726 Shipping COAST... Control, Miscellaneous Systems, and Equipment § 169.726 Radar reflector. Each nonmetallic vessel less than 90 feet in length must exhibit a radar reflector of suitable size and design while underway. Markings ...
33 CFR 118.120 - Radar reflectors and racons.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Radar reflectors and racons. 118... BRIDGES BRIDGE LIGHTING AND OTHER SIGNALS § 118.120 Radar reflectors and racons. The District Commander may require or authorize the installation of radar reflectors and racons on bridge structures, stakes...
Interference techniques in fluorescence microscopy
NASA Astrophysics Data System (ADS)
Dogan, Mehmet
We developed a set of interference-based optical microscopy techniques to study biological structures through nanometer-scale axial localization of fluorescent biomarkers. Spectral self-interference fluorescence microscopy (SSFM) utilizes interference of direct and reflected waves emitted from fluorescent molecules in the vicinity of planar reflectors to reveal the axial position of the molecules. A comprehensive calculation algorithm based on Green's function formalism is presented to verify the validity of approximations used in a far-field approach that describes the emission of fluorescent markers near interfaces. Using the validated model, theoretical limits of axial localization were determined with emphasis given to numerical aperture (NA) dependence of localization uncertainty. SSFM was experimentally demonstrated in conformational analysis of nucleoproteins. In particular, interaction between surface-tethered 75-mer double strand DNA and integration host factor (IHF) protein was probed on Si-SiO2 substrates by determining the axial position of fluorescent labels attached to the free ends of DNA molecules. Despite its sub-nanometer precision axial localization capability, SSFM lacks high lateral resolution due to the low-NA requirement for planar reflectors. We developed a second technique, 4Pi-SSFM, which improves the lateral resolution of a conventional SSFM system by an order of magnitude while achieving nanometer-scale axial localization precision. Using two opposing high-NA objectives, fluorescence signal is interferometrically collected and spectral interference pattern is recorded. Axial position of emitters is found from analysis of the spectra. The 4Pi-SSFM technique was experimentally demonstrated by determining the surface profiles of fabricated glass surfaces and outer membranes of Shigella, a type of Gram-negative bacteria. A further discussion is presented to localize surface O antigen, which is an important oligosaccharide structure in the virulence mechanism of the Gram-negative bacteria, including E. coli and Shigella.
Automatic Organ Segmentation for CT Scans Based on Super-Pixel and Convolutional Neural Networks.
Liu, Xiaoming; Guo, Shuxu; Yang, Bingtao; Ma, Shuzhi; Zhang, Huimao; Li, Jing; Sun, Changjian; Jin, Lanyi; Li, Xueyan; Yang, Qi; Fu, Yu
2018-04-20
Accurate segmentation of specific organ from computed tomography (CT) scans is a basic and crucial task for accurate diagnosis and treatment. To avoid time-consuming manual optimization and to help physicians distinguish diseases, an automatic organ segmentation framework is presented. The framework utilized convolution neural networks (CNN) to classify pixels. To reduce the redundant inputs, the simple linear iterative clustering (SLIC) of super-pixels and the support vector machine (SVM) classifier are introduced. To establish the perfect boundary of organs in one-pixel-level, the pixels need to be classified step-by-step. First, the SLIC is used to cut an image into grids and extract respective digital signatures. Next, the signature is classified by the SVM, and the rough edges are acquired. Finally, a precise boundary is obtained by the CNN, which is based on patches around each pixel-point. The framework is applied to abdominal CT scans of livers and high-resolution computed tomography (HRCT) scans of lungs. The experimental CT scans are derived from two public datasets (Sliver 07 and a Chinese local dataset). Experimental results show that the proposed method can precisely and efficiently detect the organs. This method consumes 38 s/slice for liver segmentation. The Dice coefficient of the liver segmentation results reaches to 97.43%. For lung segmentation, the Dice coefficient is 97.93%. This finding demonstrates that the proposed framework is a favorable method for lung segmentation of HRCT scans.
Enhanced light absorption of silicon solar cells with dielectric nanostructured back reflector
NASA Astrophysics Data System (ADS)
Ren, Rui; Zhong, Zheng
2018-06-01
This paper investigates the light absorption property of nanostructured dielectric reflectors in silicon thin film solar cells using numerical simulation. Flat thin film solar cell with ZnO nanostructured back reflector can produce comparable photocurrent to the control model with Ag nanostructured back reflector. Furthermore, when it is integrated with nano-pillar surface decoration, a photocurrent density of 29.5 mA/cm2 can be achieved, demonstrating a photocurrent enhancement of 5% as compared to the model with Ag nanostructured back reflector.
SegAN: Adversarial Network with Multi-scale L1 Loss for Medical Image Segmentation.
Xue, Yuan; Xu, Tao; Zhang, Han; Long, L Rodney; Huang, Xiaolei
2018-05-03
Inspired by classic Generative Adversarial Networks (GANs), we propose a novel end-to-end adversarial neural network, called SegAN, for the task of medical image segmentation. Since image segmentation requires dense, pixel-level labeling, the single scalar real/fake output of a classic GAN's discriminator may be ineffective in producing stable and sufficient gradient feedback to the networks. Instead, we use a fully convolutional neural network as the segmentor to generate segmentation label maps, and propose a novel adversarial critic network with a multi-scale L 1 loss function to force the critic and segmentor to learn both global and local features that capture long- and short-range spatial relationships between pixels. In our SegAN framework, the segmentor and critic networks are trained in an alternating fashion in a min-max game: The critic is trained by maximizing a multi-scale loss function, while the segmentor is trained with only gradients passed along by the critic, with the aim to minimize the multi-scale loss function. We show that such a SegAN framework is more effective and stable for the segmentation task, and it leads to better performance than the state-of-the-art U-net segmentation method. We tested our SegAN method using datasets from the MICCAI BRATS brain tumor segmentation challenge. Extensive experimental results demonstrate the effectiveness of the proposed SegAN with multi-scale loss: on BRATS 2013 SegAN gives performance comparable to the state-of-the-art for whole tumor and tumor core segmentation while achieves better precision and sensitivity for Gd-enhance tumor core segmentation; on BRATS 2015 SegAN achieves better performance than the state-of-the-art in both dice score and precision.
Khandelwal, Hitesh; Loonen, Roel C G M; Hensen, Jan L M; Debije, Michael G; Schenning, Albertus P H J
2015-07-01
Electrically switchable broadband infrared reflectors that are relatively transparent in the visible region have been fabricated using polymer stabilised cholesteric liquid crystals. The IR reflectors can change their reflection/transmission properties by applying a voltage in response to changes in environmental conditions. Simulations predict that a significant amount of energy can be saved on heating, cooling and lighting of buildings in places such as Madrid by using this switchable IR reflector. We have also fabricated a switchable IR reflector which can also generate electricity. These polymer based switchable IR reflectors are of high potential as windows of automobiles and buildings to control interior temperatures and save energy.
NASA Astrophysics Data System (ADS)
Zaremba, Krzysztof
2008-06-01
Application of directional-mixed reflectors results in a luminance decrease of the apparent image of light emitting diodes (LEDs), which is advantageous as far as glare reduction is concerned. On the other hand, reflectors have a negative impact on luminous intensity curves of the luminaries. This work analyzes an impact of surfaces with directional-mixed reflection properties in a mirror reflector designed for a luminary equipped with high-power LEDs. We present an algorithm used to determine the shape of the reflector of the surface with small scattering, where the axis twist angle for a parabolic reflector varies in a predefined range and follows a power function.
Khandelwal, Hitesh; Loonen, Roel C. G. M.; Hensen, Jan L. M.; Debije, Michael G.; Schenning, Albertus P. H. J.
2015-01-01
Electrically switchable broadband infrared reflectors that are relatively transparent in the visible region have been fabricated using polymer stabilised cholesteric liquid crystals. The IR reflectors can change their reflection/transmission properties by applying a voltage in response to changes in environmental conditions. Simulations predict that a significant amount of energy can be saved on heating, cooling and lighting of buildings in places such as Madrid by using this switchable IR reflector. We have also fabricated a switchable IR reflector which can also generate electricity. These polymer based switchable IR reflectors are of high potential as windows of automobiles and buildings to control interior temperatures and save energy. PMID:26132328
Back surface reflectors for solar cells
NASA Technical Reports Server (NTRS)
Chai, A. T.
1980-01-01
Sample solar cells were fabricated to study the effects of various back surface reflectors on the device performance. They are typical 50 micrometers thick, space quality, silicon solar cells except for variations of the back contact configuration. The back surfaces of the sample cells are polished to a mirror like finish, and have either conventional full contacts or grid finger contacts. Measurements and evaluation of various metallic back surface reflectors, as well as cells with total internal reflection, are presented. Results indicate that back surface reflectors formed using a grid finger back contact are more effective reflectors than cells with full back metallization and that Au, Ag, or Cu are better back surface reflector metals than Al.
Lightweight Metal Matrix Composite Segmented for Manufacturing High-Precision Mirrors
NASA Technical Reports Server (NTRS)
Vudler, Vladimir
2012-01-01
High-precision mirrors for space applications are traditionally manufactured from one piece of material, such as lightweight glass sandwich or beryllium. The purpose of this project was to develop and test the feasibility of a manufacturing process capable of producing mirrors out of welded segments of AlBeMet(Registered Trademark) (AM162H). AlBeMet(Registered Trademark) is a HIP'd (hot isostatic pressed) material containing approximately 62% beryllium and 38% aluminum. As a result, AlBeMet shares many of the benefits of both of those materials for use in high performance mirrors, while minimizing many of their weaknesses.
Image analysis software versus direct anthropometry for breast measurements.
Quieregatto, Paulo Rogério; Hochman, Bernardo; Furtado, Fabianne; Machado, Aline Fernanda Perez; Sabino Neto, Miguel; Ferreira, Lydia Masako
2014-10-01
To compare breast measurements performed using the software packages ImageTool(r), AutoCAD(r) and Adobe Photoshop(r) with direct anthropometric measurements. Points were marked on the breasts and arms of 40 volunteer women aged between 18 and 60 years. When connecting the points, seven linear segments and one angular measurement on each half of the body, and one medial segment common to both body halves were defined. The volunteers were photographed in a standardized manner. Photogrammetric measurements were performed by three independent observers using the three software packages and compared to direct anthropometric measurements made with calipers and a protractor. Measurements obtained with AutoCAD(r) were the most reproducible and those made with ImageTool(r) were the most similar to direct anthropometry, while measurements with Adobe Photoshop(r) showed the largest differences. Except for angular measurements, significant differences were found between measurements of line segments made using the three software packages and those obtained by direct anthropometry. AutoCAD(r) provided the highest precision and intermediate accuracy; ImageTool(r) had the highest accuracy and lowest precision; and Adobe Photoshop(r) showed intermediate precision and the worst accuracy among the three software packages.
2009-01-06
enabling precise blue force tracking (BFT), enhancing joint force situational awareness, maneuverability, and command and control (C2... spacecraft , transmits the status of those systems to the control segment on the ground, and receives and processes instructions from the control segment...missions include the tracking , telemetry, and control operations of: (1) Ultrahigh frequency (UHF) follow-on satellite system and fleet
New software tools for enhanced precision in robot-assisted laser phonomicrosurgery.
Dagnino, Giulio; Mattos, Leonardo S; Caldwell, Darwin G
2012-01-01
This paper describes a new software package created to enhance precision during robot-assisted laser phonomicrosurgery procedures. The new software is composed of three tools for camera calibration, automatic tumor segmentation, and laser tracking. These were designed and developed to improve the outcome of this demanding microsurgical technique, and were tested herein to produce quantitative performance data. The experimental setup was based on the motorized laser micromanipulator created by Istituto Italiano di Tecnologia and the experimental protocols followed are fully described in this paper. The results show the new tools are robust and effective: The camera calibration tool reduced residual errors (RMSE) to 0.009 ± 0.002 mm under 40× microscope magnification; the automatic tumor segmentation tool resulted in deep lesion segmentations comparable to manual segmentations (RMSE= 0.160 ± 0.028 mm under 40× magnification); and the laser tracker tool proved to be reliable even during cutting procedures (RMSE= 0.073 ± 0.023 mm under 40× magnification). These results demonstrate the new software package can provide excellent improvements to the previous microsurgical system, leading to important enhancements in surgical outcome.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-18
... diameter, elliptical reflector (ER), and bulged reflector (BR) incandescent reflector lamps. In that... document or any other aspect of the rulemaking for certain small diameter, ER, and BR incandescent..., ER, and BR incandescent reflector lamps, and provide docket number EERE-2010- BT-STD-0005 and/or RIN...
Corrosion protection for silver reflectors
Arendt, Paul N.; Scott, Marion L.
1991-12-31
A method of protecting silver reflectors from damage caused by contact with gaseous substances which are often present in the atmosphere and a silver reflector which is so protected. The inventive method comprises at least partially coating a reflector with a metal oxide such as aluminum oxide to a thickness of 15 .ANG. or less.
Approaching conversion limit with all-dielectric solar cell reflectors.
Fu, Sze Ming; Lai, Yi-Chun; Tseng, Chi Wei; Yan, Sheng Lun; Zhong, Yan Kai; Shen, Chang-Hong; Shieh, Jia-Min; Li, Yu-Ren; Cheng, Huang-Chung; Chi, Gou-chung; Yu, Peichen; Lin, Albert
2015-02-09
Metallic back reflectors has been used for thin-film and wafer-based solar cells for very long time. Nonetheless, the metallic mirrors might not be the best choices for photovoltaics. In this work, we show that solar cells with all-dielectric reflectors can surpass the best-configured metal-backed devices. Theoretical and experimental results all show that superior large-angle light scattering capability can be achieved by the diffuse medium reflectors, and the solar cell J-V enhancement is higher for solar cells using all-dielectric reflectors. Specifically, the measured diffused scattering efficiency (D.S.E.) of a diffuse medium reflector is >0.8 for the light trapping spectral range (600nm-1000nm), and the measured reflectance of a diffuse medium can be as high as silver if the geometry of embedded titanium oxide(TiO(2)) nanoparticles is optimized. Moreover, the diffuse medium reflectors have the additional advantage of room-temperature processing, low cost, and very high throughput. We believe that using all-dielectric solar cell reflectors is a way to approach the thermodynamic conversion limit by completely excluding metallic dissipation.
Birefringence Bragg Binary (3B) grating, quasi-Bragg grating and immersion gratings
NASA Astrophysics Data System (ADS)
Ebizuka, Noboru; Morita, Shin-ya; Yamagata, Yutaka; Sasaki, Minoru; Bianco, Andorea; Tanabe, Ayano; Hashimoto, Nobuyuki; Hirahara, Yasuhiro; Aoki, Wako
2014-07-01
A volume phase holographic (VPH) grating achieves high angular dispersion and very high diffraction efficiency for the first diffraction order and for S or P polarization. However the VPH grating could not achieve high diffraction efficiency for non-polarized light at a large diffraction angle because properties of diffraction efficiencies for S and P polarizations are different. Furthermore diffraction efficiency of the VPH grating extinguishes toward a higher diffraction order. A birefringence binary Bragg (3B) grating is a thick transmission grating with optically anisotropic material such as lithium niobate or liquid crystal. The 3B grating achieves diffraction efficiency up to 100% for non-polarized light by tuning of refractive indices for S and P polarizations, even in higher diffraction orders. We fabricated 3B grating with liquid crystal and evaluated the performance of the liquid crystal grating. A quasi-Bragg (QB) grating, which consists long rectangle mirrors aligned in parallel precisely such as a window shade, also achieves high diffraction efficiency toward higher orders. We fabricated QB grating by laminating of silica glass substrates and glued by pressure fusion of gold films. A quasi-Bragg immersion (QBI) grating has smooth mirror hypotenuse and reflector array inside the hypotenuse, instead of step-like grooves of a conventional immersion grating. An incident beam of the QBI grating reflects obliquely at a reflector, then reflects vertically at the mirror surface and reflects again at the same reflector. We are going to fabricate QBI gratings by laminating of mirror plates as similar to fabrication of the QB grating. We will also fabricate silicon and germanium immersion gratings with conventional step-like grooves by means of the latest diamond machining methods. We introduce characteristics and performance of these gratings.
The effects of stainless steel radial reflector on core reactivity for small modular reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, Jung Kil, E-mail: jkkang@email.kings.ac.kr; Hah, Chang Joo, E-mail: changhah@kings.ac.kr; Cho, Sung Ju, E-mail: sungju@knfc.co.kr
Commercial PWR core is surrounded by a radial reflector, which consists of a baffle and water. Radial reflector is designed to reflect neutron back into the core region to improve the neutron efficiency of the reactor and to protect the reactor vessels from the embrittling effects caused by irradiation during power operation. Reflector also helps to flatten the neutron flux and power distributions in the reactor core. The conceptual nuclear design for boron-free small modular reactor (SMR) under development in Korea requires to have the cycle length of 4∼5 years, rated power of 180 MWth and enrichment less than 5more » w/o. The aim of this paper is to analyze the effects of stainless steel radial reflector on the performance of the SMR using UO{sub 2} fuels. Three types of reflectors such as water, water/stainless steel 304 mixture and stainless steel 304 are selected to investigate the effect on core reactivity. Additionally, the thickness of stainless steel and double layer reflector type are also investigated. CASMO-4/SIMULATE-3 code system is used for this analysis. The results of analysis show that single layer stainless steel reflector is the most efficient reflector.« less
NASA Technical Reports Server (NTRS)
Krabill, W. B.; Hoge, F. E.; Martin, C. F.
1982-01-01
The use of aircraft laser ranging for the determination of baselines between ground based retroreflectors was investigated via simulations and with tests at Wallops Flight Center using the Airborne Oceanographic Lidar (AOL) on the Wallops C-54 aircraft ranging to a reflector array deployed around one of the Wallops runways. The aircraft altitude and reflector spacing were chosen on the basis of scaled down modeling of spacecraft tracking from 1000 km of reflectors separated by some 52 km, or of high altitude (10 km) aircraft tracking of reflectors separated by some 500 m. Aircraft altitudes flown for different passes across the runway reflector array varied from 800 m to 1350 m, with 32 reflectors deployed over an approximtely 300 m x 500 m ground pattern. The AOL transmitted 400 pulses/sec with a scan rate of 5/sec in a near circular pattern, so that the majority of the pulses were reflected by the runway surface or its environs rather than by retroreflectors. The return pulse characteristics clearly showed the high reflectivity of portions of the runway, with several returns indistinguishable in amplitude from reflector returns. For each pass across the reflector field, typically six to ten reflector hits were identified, consistent with that predicted by simulations and the observed transmitted elliptical pulse size.
Tracking reflector assembly for a skylight
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dominquez, R.L.
1984-02-07
A tracking reflector assembly for a skylight includes a ring-shaped base member rotatably supported above the skylight by a plurality of rollers which engage a channel formed within an annular wall of the ring. A reflector is pivotally coupled to the ring for reflecting light into the skylight to supplement light which strikes the skylight directly. A vertical drive motor operates in response to a pair of photosensors for raising and lowering the reflector to follow changes in the angular elevation of the sun. The ring-shaped base member includes a toothed lower surface engaged by a gear coupled to amore » horizontal drive motor for rotating the ring-shaped base member in response to a third photosensor for following east-to-west movement of the sun. Each of the aforementioned photosensors is normally shaded and actuates the associated drive motor only when being struck by direct sunlight. A vertical limit switch limits the amount by which the reflector may be pivotally raised to avoid reflecting midday summer sunlight into the skylight. Another switch is responsive to closure of the reflector over the base member for preventing the vertical drive motor from attempting to further pivot the reflector downwardly. A fourth photosensor senses darkness resulting from sunset or heavy overcast conditions for pivoting the reflector downwardly and returning the base member and reflector to an easterly direction. A limit switch senses the return of the base member to the full east position for terminating actuation of the horizontal drive motor. A user operated switch selectively enables the tracking reflector assembly to operate automatically or causes the reflector to be lowered and the base member to be returned to the full east position until the user again enables the automatic control circuitry.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chou, P
The objective of this analysis is to develop and establish the technical basis on the criticality safety controls for the storage of mixed beryllium (Be), natural uranium (Nat-U), and carbon (C)/graphite reflectors in 55-gallon waste containers and/or their equivalents in Hazardous Waste Management (HWM) facilities. Based on the criticality safety limits and controls outlined in Section 3.0, the operations involving the use of mixed-reflector drums satisfy the double-contingency principle as required by DOE Order 420.1 and are therefore criticality safe. The mixed-reflector mass limit is 120 grams for each 55-gallon drum or its equivalent. a reflector waiver of 50 gramsmore » is allowed for Be, Nat-U, or C/graphite combined. The waived reflectors may be excluded from the reflector mass calculations when determining if a drum is compliant. The mixed-reflector drums are allowed to mix with the typical 55-gallon one-reflector drums with a Pu mass limit of 120 grams. The fissile mass limit for the mixed-reflector container is 65 grams of Pu equivalent each. The corresponding reflector mass limits are 300 grams of Be, and/or 100 kilograms of Nat-U, and/or 110 kilograms of C/graphite for each container. All other unaffected control parameters for the one-reflector containers remain in effect for the mixed-reflector drums. For instance, Superior moderators, such as TrimSol, Superla white mineral oil No. 9, paraffin, and polyethylene, are allowed in unlimited quantities. Hydrogenous materials with a hydrogen density greater than 0.133 gram/cc are not allowed. Also, an isolation separation of no less than 76.2 cm (30-inch) is required between a mixed array and any other array. Waste containers in the action of being transported are exempted from this 76.2-cm (30-inch) separation requirement. All deviations from the CS controls and mass limits listed in Section 3.0 will require individual criticality safety analyses on a case-by-case basis for each of them to confirm their criticality safety prior to their deployment and implementation.« less
NASA Astrophysics Data System (ADS)
Zhong, Pei; Zhou, Yufeng
2001-12-01
To reduce the potential of vascular injury without compromising the stone comminution capability of a Dornier HM-3 lithotripter, we have devised a method to suppress intraluminal bubble expansion via in situ pulse superposition. A thin shell ellipsoidal reflector insert was designed and fabricated to fit snugly into the original reflector of an HM-3 lithotripter. The inner surface of the reflector insert shares the same first focus with the original HM-3 reflector, but has its second focus located 5 mm proximal to the generator than that of the HM-3 reflector. With this modification, the original lithotripter shock wave is partitioned into a leading lithotripter pulse (peak positive pressure of 46 MPa and positive pulse duration of 1 μs at 24 kV) and an ensuing second compressive wave of 10 MPa peak pressure and 2 μs pulse duration, separated from each other by about 4 μs. Superposition of the two waves leads to a selective truncation of the trailing tensile component of the lithotripter shock wave, and consequently, a reduction in the maximum bubble expansion up to 41% compared to that produced by the original reflector. The pulse amplitude and -6 dB beam width of the leading lithotripter shock wave from the upgraded reflector at 24 kV are comparable to that produced by the original HM-3 reflector at 20 kV. At the lithotripter focus, while only about 30 shocks are needed to cause a rupture of a blood vessel phantom made of cellulose hollow fiber (i.d.=0.2 mm) using the original HM-3 reflector at 20 kV, no rupture could be produced after 200 shocks using the upgraded reflector at 24 kV. On the other hand, after 100 shocks the upgraded reflector at 24 kV can achieve a stone comminution efficiency of 22%, which is better than the 18% efficiency produced by the original reflector at 20 kV (p=0.043). All together, it has been shown in vitro that the upgraded reflector can produce satisfactory stone comminution while significantly reducing the potential for vessel rupture in shock wave lithotripsy.
Planar shock reflection on a wedged concave reflector
NASA Astrophysics Data System (ADS)
Yu, Fan-Ming; Sheu, Kuen-Dong
2001-04-01
The investigation of shock reflection and shock diffraction phenomena upon a wedged concave reflector produced by a planar incident shock wave has been done in the shock tube facility of Institute of Aeronautics and Astronautics, National Cheng- Kung University. The experiment proceeds upon three wedged concave reflectors models the upper and lower wedge angles arrangement of them are (50 degrees, 50 degrees) - 35 degrees, 35 degrees) and (50 degrees, 35 degrees), respectively. They were tested at Mach numbers of 1.2 - 1.65 and 2.0. On the first reflector, following the regular reflection on the 50 degree-wedged surface by the incident shock wave, a Mach shock diffraction behavior has been observed as shock moves outward from the apex of the reflector. On the apex of the reflector, it behaviors as a sector of the blast shock moving on a diverging channel. On the shadowgraph pictures it has been observed there exists a pattern of gas dynamics focus upon the second reflector. The Mach reflection from the 35 degree- wedged surface as being generated by the planar incident shock wave, on which the overlapping of the two triple points from both wedged surface offers the focusing mechanism. The shock interference, which proceeds by the Mach shock reflection and the regular shock diffraction from the reflector, generates a very complicate rolling-up of slip lines system. On the third reflector, the mixed shock interference behavior has been observed of which two diffraction shocks from concave 50 degree-wedged surface and 35 degree-wedged surface interfere with each other. The measurement of the peak pressure along a ray from the model apex parallel to incident shock direction indicates that the measured maximum pressure rising is larger near the apex of the reflector. Considering the measured maximum pressure increment due to the reflection shocks indicate that the wave strength upon large apex angle reflector is greater than it is upon small apex angle reflector. However, as considering the measured maximum pressure increment following the diffraction shocks, the results show that due to the focusing process upon (35 degree, 35 degree) reflector, it is of the largest increment.
2017-10-07
polymerization to make linear polyethylenes with carboxylic acid groups at precise intervals along the polymer . Precise acid- containing polymers provide...acid polyethylene and the a polymerized ionic liquids based on cyclopropenium. The instrument is also be used to study polymer segmental dynamics...Advances in batteries, fuel cells, and permselective membranes are materials limited. New acid- and ion-containing polymers must be designed and
Precise positioning method for multi-process connecting based on binocular vision
NASA Astrophysics Data System (ADS)
Liu, Wei; Ding, Lichao; Zhao, Kai; Li, Xiao; Wang, Ling; Jia, Zhenyuan
2016-01-01
With the rapid development of aviation and aerospace, the demand for metal coating parts such as antenna reflector, eddy-current sensor and signal transmitter, etc. is more and more urgent. Such parts with varied feature dimensions, complex three-dimensional structures, and high geometric accuracy are generally fabricated by the combination of different manufacturing technology. However, it is difficult to ensure the machining precision because of the connection error between different processing methods. Therefore, a precise positioning method is proposed based on binocular micro stereo vision in this paper. Firstly, a novel and efficient camera calibration method for stereoscopic microscope is presented to solve the problems of narrow view field, small depth of focus and too many nonlinear distortions. Secondly, the extraction algorithms for law curve and free curve are given, and the spatial position relationship between the micro vision system and the machining system is determined accurately. Thirdly, a precise positioning system based on micro stereovision is set up and then embedded in a CNC machining experiment platform. Finally, the verification experiment of the positioning accuracy is conducted and the experimental results indicated that the average errors of the proposed method in the X and Y directions are 2.250 μm and 1.777 μm, respectively.
NASA Astrophysics Data System (ADS)
Levy, R.; Cody, R.; Crampton, J.; Fielding, C.; Harwood, D.; Henrys, S.; Mackay, R.; Wilson, G.; Winter, D.
2009-04-01
New age and correlation models for Late Neogene drill cores from the McMurdo Sound Region (AND-1B, CIROS-2, and DVDP-10 and 11) have been developed using constrained optimisation, a computer assisted quantitative biostratigraphic technique. These models are used to establish ties between lithostratigraphic units and hiatuses in the cores and provide a mechanism to evaluate the regional signature of climatic variability and tectonic episodes during the Plio-Pleistocene. The models also allow us to focus on key events including warm periods and periods of increased basin subsidence. In addition these high-precision models allow us to examine the glacial-interglacial signature preserved during isochronous intervals at different locations in the basin and enable us to begin to evaluate regional response of the East and West Antarctic Ice Sheets to climate change. Several regional seismic reflectors have been mapped throughout the southern portion of the Victoria Land Basin (VLB) and are tied to the McMurdo Sound drill cores. In this study we focus on a major sequence boundary (red reflector) that forms the base of a prominent interval of clinoform sets in the southern portion of the VLB. The age of the red reflector is 4.7-4.3 Ma based on a tie to AND-1B. Although the surface cannot be tied directly to coastal margin cores (CIROS-2, and DVDP-10 and 11) our correlation models provide a framework to examine the lithostratigraphic signature of the sediments that likely encase the sequence boundary at these sites. For example, a transition from marine to terrestrial sediments is preserved in DVDP-10. This transition occurred between 4.8-4.3 Ma and indicates that the red reflector is associated with relative sea-level fall resulting from ice-sheet growth and/or tectonic uplift. Age correlative sediments preserved in AND-1B indicate regional climatic warmth, which suggests that the red reflector is more likely related to a tectonic event than significant ice volume increase. Furthermore, the onset of sediment accumulation at CIROS-2 post-dates 4.5 Ma suggesting that local subsidence and creation of accommodation space began at this time. In addition to age constraint on regional seismic reflectors, correlation models for the AND-1B and CIROS-2 cores provide an opportunity to examine sedimentation patterns across a coastal-offshore transect. Current models produce results that indicate an ‘alternating' pattern of accumulation at each site. Intervals of increased sediment accumulation at the CIROS-2 site are often tied to condensed intervals at AND-1B and vice versa. These accumulation patterns may reflect glacial-interglacial dynamics, tectonic episodes, or a combination of both. Ongoing integrated studies will focus on producing models to further examine and explain these observations.
10 CFR 429.35 - Bare or covered (no reflector) medium base compact fluorescent lamps.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 3 2012-01-01 2012-01-01 false Bare or covered (no reflector) medium base compact....35 Bare or covered (no reflector) medium base compact fluorescent lamps. (a) Sampling plan for... reflector) medium base compact fluorescent lamps; and (2) For each basic model of bare or covered (no...
10 CFR 429.35 - Bare or covered (no reflector) medium base compact fluorescent lamps.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 3 2014-01-01 2014-01-01 false Bare or covered (no reflector) medium base compact....35 Bare or covered (no reflector) medium base compact fluorescent lamps. (a) Sampling plan for... reflector) medium base compact fluorescent lamps; and (2) For each basic model of bare or covered (no...
10 CFR 429.35 - Bare or covered (no reflector) medium base compact fluorescent lamps.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 3 2013-01-01 2013-01-01 false Bare or covered (no reflector) medium base compact....35 Bare or covered (no reflector) medium base compact fluorescent lamps. (a) Sampling plan for... reflector) medium base compact fluorescent lamps; and (2) For each basic model of bare or covered (no...
43 CFR 2806.43 - How does BLM calculate rent for passive reflectors and local exchange networks?
Code of Federal Regulations, 2011 CFR
2011-10-01
... reflectors and local exchange networks? 2806.43 Section 2806.43 Public Lands: Interior Regulations Relating...-Of-Way § 2806.43 How does BLM calculate rent for passive reflectors and local exchange networks? (a) BLM calculates rent for passive reflectors and local exchange networks by using the same rent...
Surface measuring technique. [using a laser to scan the surface of a reflector
NASA Technical Reports Server (NTRS)
Spiers, R. B., Jr.
1980-01-01
Measurement of the surface contour of a large electrostatically formed concave reflector using a modified Foucault or knife edge test is described. The curve of the actual electrostatically formed reflector surface is compared to a curve representing a reference sphere. Measurements of surface slope and deviation are calculated every 15 cm along the reflector's horizontal and vertical diameters. Characterization of surface roughness on a small scale compared to the laser spot size at the reflector are obtained from the increased laser spot size at a distant projection screen.
Weighted SAW reflector gratings for orthogonal frequency coded SAW tags and sensors
NASA Technical Reports Server (NTRS)
Puccio, Derek (Inventor); Malocha, Donald (Inventor)
2011-01-01
Weighted surface acoustic wave reflector gratings for coding identification tags and sensors to enable unique sensor operation and identification for a multi-sensor environment. In an embodiment, the weighted reflectors are variable while in another embodiment the reflector gratings are apodized. The weighting technique allows the designer to decrease reflectively and allows for more chips to be implemented in a device and, consequently, more coding diversity. As a result, more tags and sensors can be implemented using a given bandwidth when compared with uniform reflectors. Use of weighted reflector gratings with OFC makes various phase shifting schemes possible, such as in-phase and quadrature implementations of coded waveforms resulting in reduced device size and increased coding.
Blood vessels segmentation of hatching eggs based on fully convolutional networks
NASA Astrophysics Data System (ADS)
Geng, Lei; Qiu, Ling; Wu, Jun; Xiao, Zhitao
2018-04-01
FCN, trained end-to-end, pixels-to-pixels, predict result of each pixel. It has been widely used for semantic segmentation. In order to realize the blood vessels segmentation of hatching eggs, a method based on FCN is proposed in this paper. The training datasets are composed of patches extracted from very few images to augment data. The network combines with lower layer and deconvolution to enables precise segmentation. The proposed method frees from the problem that training deep networks need large scale samples. Experimental results on hatching eggs demonstrate that this method can yield more accurate segmentation outputs than previous researches. It provides a convenient reference for fertility detection subsequently.
Femtosecond lasers in ophthalmology: clinical applications in anterior segment surgery
NASA Astrophysics Data System (ADS)
Juhasz, Tibor; Nagy, Zoltan; Sarayba, Melvin; Kurtz, Ronald M.
2010-02-01
The human eye is a favored target for laser surgery due to its accessibility via the optically transparent ocular tissue. Femtosecond lasers with confined tissue effects and minimized collateral tissue damage are primary candidates for high precision intraocular surgery. The advent of compact diode-pumped femtosecond lasers, coupled with computer controlled beam delivery devices, enabled the development of high precision femtosecond laser for ophthalmic surgery. In this article, anterior segment femtosecond laser applications currently in clinical practice and investigation are reviewed. Corneal procedures evolved first and remain dominant due to easy targeting referenced from a contact surface, such as applanation lenses placed on the eye. Adding a high precision imaging technique, such as optical coherence tomography (OCT), can enable accurate targeting of tissue beyond the cornea, such as the crystalline lens. Initial clinical results of femtosecond laser cataract surgery are discussed in detail in the latter portion part of the article.
A perceptive method for handwritten text segmentation
NASA Astrophysics Data System (ADS)
Lemaitre, Aurélie; Camillerapp, Jean; Coüasnon, Bertrand
2011-01-01
This paper presents a new method to address the problem of handwritten text segmentation into text lines and words. Thus, we propose a method based on the cooperation among points of view that enables the localization of the text lines in a low resolution image, and then to associate the pixels at a higher level of resolution. Thanks to the combination of levels of vision, we can detect overlapping characters and re-segment the connected components during the analysis. Then, we propose a segmentation of lines into words based on the cooperation among digital data and symbolic knowledge. The digital data are obtained from distances inside a Delaunay graph, which gives a precise distance between connected components, at the pixel level. We introduce structural rules in order to take into account some generic knowledge about the organization of a text page. This cooperation among information gives a bigger power of expression and ensures the global coherence of the recognition. We validate this work using the metrics and the database proposed for the segmentation contest of ICDAR 2009. Thus, we show that our method obtains very interesting results, compared to the other methods of the literature. More precisely, we are able to deal with slope and curvature, overlapping text lines and varied kinds of writings, which are the main difficulties met by the other methods.
A diabetic retinopathy detection method using an improved pillar K-means algorithm.
Gogula, Susmitha Valli; Divakar, Ch; Satyanarayana, Ch; Rao, Allam Appa
2014-01-01
The paper presents a new approach for medical image segmentation. Exudates are a visible sign of diabetic retinopathy that is the major reason of vision loss in patients with diabetes. If the exudates extend into the macular area, blindness may occur. Automated detection of exudates will assist ophthalmologists in early diagnosis. This segmentation process includes a new mechanism for clustering the elements of high-resolution images in order to improve precision and reduce computation time. The system applies K-means clustering to the image segmentation after getting optimized by Pillar algorithm; pillars are constructed in such a way that they can withstand the pressure. Improved pillar algorithm can optimize the K-means clustering for image segmentation in aspects of precision and computation time. This evaluates the proposed approach for image segmentation by comparing with Kmeans and Fuzzy C-means in a medical image. Using this method, identification of dark spot in the retina becomes easier and the proposed algorithm is applied on diabetic retinal images of all stages to identify hard and soft exudates, where the existing pillar K-means is more appropriate for brain MRI images. This proposed system help the doctors to identify the problem in the early stage and can suggest a better drug for preventing further retinal damage.
On the estimation of brain signal entropy from sparse neuroimaging data
Grandy, Thomas H.; Garrett, Douglas D.; Schmiedek, Florian; Werkle-Bergner, Markus
2016-01-01
Multi-scale entropy (MSE) has been recently established as a promising tool for the analysis of the moment-to-moment variability of neural signals. Appealingly, MSE provides a measure of the predictability of neural operations across the multiple time scales on which the brain operates. An important limitation in the application of the MSE to some classes of neural signals is MSE’s apparent reliance on long time series. However, this sparse-data limitation in MSE computation could potentially be overcome via MSE estimation across shorter time series that are not necessarily acquired continuously (e.g., in fMRI block-designs). In the present study, using simulated, EEG, and fMRI data, we examined the dependence of the accuracy and precision of MSE estimates on the number of data points per segment and the total number of data segments. As hypothesized, MSE estimation across discontinuous segments was comparably accurate and precise, despite segment length. A key advance of our approach is that it allows the calculation of MSE scales not previously accessible from the native segment lengths. Consequently, our results may permit a far broader range of applications of MSE when gauging moment-to-moment dynamics in sparse and/or discontinuous neurophysiological data typical of many modern cognitive neuroscience study designs. PMID:27020961
NASA Astrophysics Data System (ADS)
Wagle, Sanat; Habib, Anowarul; Melandsø, Frank
2017-07-01
High-frequency transducers made from a layer-by-layer deposition method are investigated as transducers for ultrasonic imaging. Prototypes of adhesive-free transducers with four active elements were made on a high-performance poly(ether imide) substrate with precision milled spherical cavities used to produce focused ultrasonic beams. The transducer prototypes were characterized using a pulse-echo experimental setup in a water tank using a glass plate as a reflector. Then, transducer was used in a three-dimensional ultrasonic scanning tank, to produce high-resolution ultrasonic images of flexible electronic circuits with the aim to detect defects in the outermost cover layer.
Zhang, Enzheng; Chen, Benyong; Zheng, Hao; Teng, Xueying; Yan, Liping
2018-04-01
A laser heterodyne interferometer for angle measurement based on the Faraday effect is proposed. A novel optical configuration, designed by using the orthogonal return method for a linearly polarized beam based on the Faraday effect, guarantees that the measurement beam can return effectively even though an angular reflector has a large lateral displacement movement. The optical configuration and measurement principle are presented in detail. Two verification experiments were performed; the experimental results show that the proposed interferometer can achieve a large lateral displacement tolerance of 7.4 mm and also can realize high precision angle measurement with a large measurement range.
NASA Astrophysics Data System (ADS)
Zhang, Enzheng; Chen, Benyong; Zheng, Hao; Teng, Xueying; Yan, Liping
2018-04-01
A laser heterodyne interferometer for angle measurement based on the Faraday effect is proposed. A novel optical configuration, designed by using the orthogonal return method for a linearly polarized beam based on the Faraday effect, guarantees that the measurement beam can return effectively even though an angular reflector has a large lateral displacement movement. The optical configuration and measurement principle are presented in detail. Two verification experiments were performed; the experimental results show that the proposed interferometer can achieve a large lateral displacement tolerance of 7.4 mm and also can realize high precision angle measurement with a large measurement range.
Piezocomposite Actuator Arrays for Correcting and Controlling Wavefront Error in Reflectors
NASA Technical Reports Server (NTRS)
Bradford, Samuel Case; Peterson, Lee D.; Ohara, Catherine M.; Shi, Fang; Agnes, Greg S.; Hoffman, Samuel M.; Wilkie, William Keats
2012-01-01
Three reflectors have been developed and tested to assess the performance of a distributed network of piezocomposite actuators for correcting thermal deformations and total wave-front error. The primary testbed article is an active composite reflector, composed of a spherically curved panel with a graphite face sheet and aluminum honeycomb core composite, and then augmented with a network of 90 distributed piezoelectric composite actuators. The piezoelectric actuator system may be used for correcting as-built residual shape errors, and for controlling low-order, thermally-induced quasi-static distortions of the panel. In this study, thermally-induced surface deformations of 1 to 5 microns were deliberately introduced onto the reflector, then measured using a speckle holography interferometer system. The reflector surface figure was subsequently corrected to a tolerance of 50 nm using the actuators embedded in the reflector's back face sheet. Two additional test articles were constructed: a borosilicate at window at 150 mm diameter with 18 actuators bonded to the back surface; and a direct metal laser sintered reflector with spherical curvature, 230 mm diameter, and 12 actuators bonded to the back surface. In the case of the glass reflector, absolute measurements were performed with an interferometer and the absolute surface was corrected. These test articles were evaluated to determine their absolute surface control capabilities, as well as to assess a multiphysics modeling effort developed under this program for the prediction of active reflector response. This paper will describe the design, construction, and testing of active reflector systems under thermal loads, and subsequent correction of surface shape via distributed peizeoelctric actuation.
Proposed suitable electron reflector layer materials for thin-film CuIn1-xGaxSe2 solar cells
NASA Astrophysics Data System (ADS)
Sharbati, Samaneh; Gharibshahian, Iman; Orouji, Ali A.
2018-01-01
This paper investigates the electrical properties of electron reflector layer to survey materials as an electron reflector (ER) for chalcopyrite CuInGaSe solar cells. The purpose is optimizing the conduction-band and valence-band offsets at ER layer/CIGS junction that can effectively reduce the electron recombination near the back contact. In this work, an initial device model based on an experimental solar cell is established, then the properties of a solar cell with electron reflector layer are physically analyzed. The electron reflector layer numerically applied to baseline model of thin-film CIGS cell fabricated by ZSW (efficiency = 20.3%). The improvement of efficiency is achievable by electron reflector layer materials with Eg > 1.3 eV and -0.3 < Δχ < 0.7, depends on bandgap. Our simulations examine various electron reflector layer materials and conclude the most suitable electron reflector layer for this real CIGS solar cells. ZnSnP2, CdSiAs2, GaAs, CdTe, Cu2ZnSnS4, InP, CuO, Pb10Ag3Sb11S28, CuIn5S8, SnS, PbCuSbS3, Cu3AsS4 as well as CuIn1-xGaxSe (x > 0.5) are efficient electron reflector layer materials, so the potential improvement in efficiency obtained relative gain of 5%.
Choi, Chang-Hoon; Han, Jaecheon; Park, Jae-Seong; Seong, Tae-Yeon
2013-11-04
The enhanced light output power of a InGaN/AlGaN-based light-emitting diodes (LEDs) using three different types of highly reflective Sn-doped indium oxide (ITO)/Al-based p-type reflectors, namely, ITO/Al, Cu-doped indium oxide (CIO)/s-ITO(sputtered)/Al, and Ag nano-dots(n-Ag)/CIO/s-ITO/Al, is presented. The ITO/Al-based reflectors exhibit lower reflectance (76 - 84% at 365 nm) than Al only reflector (91.1%). However, unlike Al only n-type contact, the ITO/Al-based contacts to p-GaN show good ohmic characteristics. Near-UV (365 nm) InGaN/AlGaN-based LEDs with ITO/Al, CIO/s-ITO/Al, and n-Ag/CIO/s-ITO/Al reflectors exhibit forward-bias voltages of 3.55, 3.48, and 3.34 V at 20 mA, respectively. The LEDs with the ITO/Al and CIO/s-ITO/Al reflectors exhibit 9.5% and 13.5% higher light output power (at 20 mA), respectively, than the LEDs with the n-Ag/CIO/s-ITO/Al reflector. The improved performance of near UV LEDs is attributed to the high reflectance and low contact resistivity of the ITO/Al-based reflectors, which are better than those of conventional Al-based reflectors.
Conformal Membrane Reflectors for Deployable Optics
NASA Technical Reports Server (NTRS)
Hood, Patrick J.; Keys, Andrew S. (Technical Monitor)
2002-01-01
This presentation reports the Phase I results on NASA's Gossamer Spacecraft Exploratory Research and Technology Program. Cornerstone Research Group, Inc., the University of Rochester, and International Photonics Consultants collaborated to investigate the feasibility of free-standing, liquid-crystal-polymer (LCP) reflectors for integration into space-based optical systems. The goal of the program was to achieve large-diameter, broadband. reflective membranes that are resistant to the effects of space, specifically cryogenic environments and gamma-ray irradiation. Additionally, we assessed the applicability of utilizing the technology as tight sails, since, by their very nature, these films offer high-reflectivity at specified wavelengths. Previous research programs have demonstrated all-polymer, narrow-band Specular reflectors and diffuse membrane reflectors. The feasibility of fabricating an all-polymer broadband specular reflector and a narrow-band specular membrane reflector was assessed in the Phase I Gossamer program. In addition, preliminary gamma irradiation studies were conducted to determine the stability of the polymer reflectors to radiation. Materials and process technology were developed to fabricate coupon-scale reflectors of both broad- and narrow-band specular reflectors in Phase 1. This presentation will report the results of these studies, including, the performance of a narrow-band specular membrane. Gamma irradiation exposures indicate limited impact on the optical performance although additional exposure studies are warranted. Plans to scale up the membrane fabrication process will be presented.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-14
... reflector (ER) and bulged reflector (BR) bulb shapes, and with diameters of 2.75 inches or less. Therefore....25 and 2.75 inches, as well as lamps with ER, BR, bulged parabolic aluminized reflector (BPAR), or... certain reflector (R), ER and BR IRLs. DOE has concluded, for the reasons that follow, that it has the...
Primary reflector for solar energy collection systems
NASA Technical Reports Server (NTRS)
Miller, C. G. (Inventor); Stephens, J. B.
1978-01-01
A fixed, linear, ground-based primary reflector is disclosed which has an extended curved sawtooth-contoured surface covered with a metalized polymeric reflecting material. The device reflects solar energy to a movably supported collector that is kept at the concentrated line focus of the reflector primary. The primary reflector may be constructed by a process utilizing well-known freeway paving machinery.
Primary reflector for solar energy collection systems and method of making same
NASA Technical Reports Server (NTRS)
Miller, C. G.; Stephens, J. B. (Inventor)
1979-01-01
Solar energy is reflected to a movably supported collector that is kept at the concentrated line focus of the reflector primary by a fixed, linear, ground-based primary reflector having an extended curved sawtooth contoured surface covered with a metalized polymeric reflecting material. The primary reflector was constructed by a process utilizing well-known freeway paving machinery.
Electrophoretic deposited TiO 2 pigment-based back reflectors for thin film solar cells
Bills, Braden; Morris, Nathan; Dubey, Mukul; ...
2015-01-16
Highly reflective coatings with strong light scattering effect have many applications in optical components and optoelectronic devices. This paper reports titanium dioxide (TiO 2) pigment-based reflectors that have 2.5 times higher broadband diffuse reflection than commercially produced aluminum or silver based reflectors and result in efficiency enhancements of a single-junction amorphous Si solar cell. Electrophoretic deposition is used to produce pigment-based back reflectors with high pigment density, controllable film thickness and site-specific deposition. Electrical conductivity of the pigment-based back reflectors is improved by creating electrical vias throughout the pigment-based back reflector by making holes using an electrical discharge / dielectricmore » breakdown approach followed by a second electrophoretic deposition of conductive nanoparticles into the holes. While previous studies have demonstrated the use of pigment-based back reflectors, for example white paint, on glass superstrate configured thin film Si solar cells, this work presents a scheme for producing pigment-based reflectors on complex shape and flexible substrates. Finally, mechanical durability and scalability are demonstrated on a continuous electrophoretic deposition roll-to-roll system which has flexible metal substrate capability of 4 inch wide and 300 feet long.« less
Design method of LED rear fog lamp based on freeform micro-surface reflectors
NASA Astrophysics Data System (ADS)
Yu, Jindong; Wu, Heng
2017-11-01
We propose a practical method for the design of a light-emitting diode (LED) rear fog lamp based on freeform micro-surface reflectors. The lamp consists of nine LEDs and each of them has a freeform micro-surface reflector correspondingly. The micro-surface reflector design includes three steps. An initial freeform reflector is first built based on the light energy maps. The micro-surface reflector is then constructed on the bias of the initial one. Finally, a two-step method is designed to optimize the micro-surface reflector. With the proposed method, a module is designed and LCW DURIS E5 LED source whose emitting surface is 5.7 mm × 3.0 mm is adopted for simulation. A prototype is also assembled and fabricated to verify the real performance. Both the simulation and experimental results demonstrate that the luminous intensity distribution can well fulfill the requirements of ECE No.38 regulation. Furthermore, more than 79% energy can be saved when compared with the rear fog lamps using conventional sources.
Wide scanning spherical antenna
NASA Technical Reports Server (NTRS)
Shen, Bing (Inventor); Stutzman, Warren L. (Inventor)
1995-01-01
A novel method for calculating the surface shapes for subreflectors in a suboptic assembly of a tri-reflector spherical antenna system is introduced, modeled from a generalization of Galindo-Israel's method of solving partial differential equations to correct for spherical aberration and provide uniform feed to aperture mapping. In a first embodiment, the suboptic assembly moves as a single unit to achieve scan while the main reflector remains stationary. A feed horn is tilted during scan to maintain the illuminated area on the main spherical reflector fixed throughout the scan thereby eliminating the need to oversize the main spherical reflector. In an alternate embodiment, both the main spherical reflector and the suboptic assembly are fixed. A flat mirror is used to create a virtual image of the suboptic assembly. Scan is achieved by rotating the mirror about the spherical center of the main reflector. The feed horn is tilted during scan to maintain the illuminated area on the main spherical reflector fixed throughout the scan.
Kämmerle, Jim-Lino; Kröschel, Max; Hagen, Robert; Storch, Ilse; Suchant, Rudi
2017-01-01
Every year, there are millions of documented vehicle collisions involving cervids across Europe and North America. While temporal patterns in collision occurrence are relatively well described, few studies have targeted deer behaviour as a critical component of collision prevention. In this study, we investigated weekly and daily patterns in road crossing behaviour in roe deer. Using road crossing events and movement data obtained from GPS telemetry, we employed mixed-effect models to explain frequency and timing of crossings at five road segments by a number of predictors including traffic volume, deer movement activity and the presence of wildlife warning reflectors. We analysed 13,689 road crossing events by 32 study animals. Individual variation in crossing frequency was high but daily patterns in crossing events were highly consistent among animals. Variation in the intensity of movement activity on a daily and seasonal scale was the main driver of road crossing behaviour. The seasonal variation in crossing frequency reflected differences in movement activity throughout the reproductive cycle, while daily variation in the probability to cross exhibited a clear nocturnal emphasis and reflected crepuscular activity peaks. The frequency of road crossings increased as a function of road density in the home-range, while traffic volume only exerted marginal effects. Movement activity of roe deer in our study coincided with commuter traffic mainly in the early morning and late afternoon during winter and during periods of high spatial activity such as the rut. Both timing and frequency of crossing events remained unchanged in the presence of reflectors. Our results emphasise the importance of behavioural studies for understanding roe deer vehicle-collision patterns and thus provide important information for collision prevention. We suggest that mitigation of collision risk should focus on strategic seasonal measures and animal warning systems targeting drivers. PMID:28953951
Null Lens Assembly for X-Ray Mirror Segments
NASA Technical Reports Server (NTRS)
Robinson, David W.
2011-01-01
A document discusses a null lens assembly that allows laser interferometry of 60 deg. slumped glass mirror segments used in x-ray mirrors. The assembly consists of four lenses in precise alignment to each other, with incorporated piezoelectric nanometer stepping actuators to position the lenses in six degrees of freedom for positioning relative to each other.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, T; Ding, H; Torabzadeh, M
2015-06-15
Purpose: To investigate the feasibility of quantifying the cross-sectional area (CSA) of coronary arteries using integrated density in a physics-based model with a phantom study. Methods: In this technique the total integrated density of the object as compared with its local background is measured so it is possible to account for the partial volume effect. The proposed method was compared to manual segmentation using CT scans of a 10 cm diameter Lucite cylinder placed inside a chest phantom. Holes with cross-sectional areas from 1.4 to 12.3 mm{sup 2} were drilled into the Lucite and filled with iodine solution, producing amore » contrast-to-noise ratio of approximately 26. Lucite rods 1.6 mm in diameter were used to simulate plaques. The phantom was imaged with and without the Lucite rods placed in the holes to simulate diseased and normal arteries, respectively. Linear regression analysis was used, and the root-mean-square deviations (RMSD) and errors (RMSE) were computed to assess the precision and accuracy of the measurements. In the case of manual segmentation, two readers independently delineated the lumen in order to quantify the inter-reader variability. Results: The precision and accuracy for the normal vessels using the integrated density technique were 0.32 mm{sup 2} and 0.32 mm{sup 2}, respectively. The corresponding results for the manual segmentation were 0.51 mm{sup 2} and 0.56 mm{sup 2}. In the case of diseased vessels, the precision and accuracy of the integrated density technique were 0.46 mm{sup 2} and 0.55 mm{sup 2}, respectively. The corresponding results for the manual segmentation were 0.75 mm{sup 2} and 0.98 mm{sup 2}. The mean percent difference for the two readers was found to be 8.4%. Conclusion: The CSA based on integrated density had improved precision and accuracy as compared with manual segmentation in a Lucite phantom. The results indicate the potential for using integrated density to improve CSA measurements in CT angiography.« less
Feasibility Study of Graphite Epoxy Antenna for a Microwave Limb Sounder Radiometer (MLSR)
NASA Technical Reports Server (NTRS)
1979-01-01
Results are presented of a feasibility study to design graphite epoxy antenna reflectors for a jet propulsion laboratory microwave limb sounder instrument (MLSR). Two general configurations of the offset elliptic parabolic reflectors are presented that will meet the requirements on geometry and reflector accuracy. The designs consist of sandwich construction for the primary reflectors, secondary reflector support structure and cross-tie members between reflector pairs. Graphite epoxy materials of 3 and 6 plies are used in the facesheets of the sandwich. An aluminum honeycomb is used for the core. A built-in adjustment system is proposed to reduce surface distortions during assembly. The manufacturing and environmental effects are expected to result in surface distortions less than .0015 inch and pointing errors less than .002 degree.
Reflector and Protections in a Sodium-cooled Fast Reactor: Modelling and Optimization
NASA Astrophysics Data System (ADS)
Blanchet, David; Fontaine, Bruno
2017-09-01
The ASTRID project (Advanced Sodium Technological Reactor for Industrial Demonstration) is a Generation IV nuclear reactor concept under development in France [1]. In this frame, studies are underway to optimize radial reflectors and protections. Considering radial protections made in natural boron carbide, this study is conducted to assess the neutronic performances of the MgO as the reference choice for reflector material, in comparison with other possible materials including a more conventional stainless steel. The analysis is based upon a simplified 1-D and 2-D deterministic modelling of the reactor, providing simplified interfaces between core, reflector and protections. Such models allow examining detailed reaction rate distributions; they also provide physical insights into local spectral effects occurring at the Core-Reflector and at the Reflector-Protection interfaces.
Interaction of acoustic levitation field with liquid reflecting surface
NASA Astrophysics Data System (ADS)
Hong, Z. Y.; Xie, W. J.; Wei, B.
2010-01-01
Single-axis acoustic levitation of substances, such as foam, water, polymer, and aluminum, is achieved by employing various liquids as the sound reflectors. The interaction of acoustic levitation field with liquid reflecting surface is investigated theoretically by considering the deformation of the liquid surface under acoustic radiation pressure. Numerical calculations indicate that the deformation degree of the reflecting surface shows a direct proportion to the acoustic radiation power. Appropriate deformation is beneficial whereas excessive deformation is unfavorable to enhance the levitation capability. Typically, the levitation capability with water reflector is smaller than that with the concave rigid reflector but slightly larger than that with the planar rigid reflector at low emitter vibration intensity. Liquid reflectors with larger surface tension and higher density behave more closely to the planar rigid reflector.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stevenson, A.J.; Scholl, D.W.; Vallier, T.L.
1990-05-01
The central segment of the Aleutian Trench (162{degree}W to 175{degree}E) is an intraoceanic subduction zone that contains an anomalously thick sedimentary fill (4 km maximum). The fill is an arcward-thickening and slightly tilted wedge of sediment characterized acoustically by laterally continuous, closely spaced, parallel reflectors. These relations are indicative of turbidite deposition. The trench floor and reflection horizons are planar, showing no evidence of an axial channel or any transverse fan bodies. Cores of surface sediment recover turbidite layers, implying that sediment transport and deposition occur via diffuse, sheetlike, fine-grained turbidite flows that occupy the full width of the trench.more » The mineralogy of Holocene trench sediments document a mixture of island-arc (dominant) and continental source terranes. GLORIA side-scan sonar images reveal a westward-flowing axial trench channel that conducts sediment to the eastern margin of the central segment, where channelized flow cases. Much of the sediment transported in this channel is derived from glaciated drainages surrounding the Gulf of Alaska which empty into the eastern trench segment via deep-sea channel systems (Surveyor and others) and submarine canyons (Hinchinbrook and others). Insular sediment transport is more difficult to define. GLORIA images show the efficiency with which the actively growing accretionary wedge impounds sediment that manages to cross a broad fore-arc terrace. It is likely that island-arc sediment reaches the trench either directly via air fall, via recycling of the accretionary prism, or via overtopping of the accretionary ridges by the upper parts of thick turbidite flows.« less
Random fiber lasers based on artificially controlled backscattering fibers
NASA Astrophysics Data System (ADS)
Chen, Daru; Wang, Xiaoliang; She, Lijuan; Qiang, Zexuan; Yu, Zhangwei
2017-10-01
The random fiber laser (RFL) which is a milestone in laser physics and nonlinear optics, has attracted considerable attention recently. Most previous RFLs are based on distributed feedback of Rayleigh scattering amplified through stimulated Raman/Brillouin scattering effect in single mode fibers, which required long-distance (tens of kilometers) single mode fibers and high threshold up to watt-level due to the extremely small Rayleigh scattering coefficient of the fiber. We proposed and demonstrated a half-open cavity RFL based on a segment of a artificially controlled backscattering SMF(ACB-SMF) with a length of 210m, 310m or 390m. A fiber Bragg grating with the central wavelength of 1530nm and a segment of ACB-SMF forms the half-open cavity. The proposed RFL achieves the threshold of 25mW, 30mW and 30mW, respectively. Random lasing at the wavelength of 1530nm and the extinction ratio of 50dB is achieved when a segment of 5m EDF is pumped by a 980nm LD in the RFL. Another half-open cavity RFL based on a segment of a artificially controlled backscattering EDF(ACBS-EDF) is also demonstrated without an ACB-SMF. The 3m ACB-EDF is fabricated by using the femtosecond laser with pulse energy of 0.34mJ which introduces about 50 reflectors in the EDF. Random lasing at the wavelength of 1530nm is achieved with the output power of 7.5mW and the efficiency of 1.88%. Two novel RFLs with much short cavities have been achieved with low threshold and high efficiency.
Medical image segmentation using 3D MRI data
NASA Astrophysics Data System (ADS)
Voronin, V.; Marchuk, V.; Semenishchev, E.; Cen, Yigang; Agaian, S.
2017-05-01
Precise segmentation of three-dimensional (3D) magnetic resonance imaging (MRI) image can be a very useful computer aided diagnosis (CAD) tool in clinical routines. Accurate automatic extraction a 3D component from images obtained by magnetic resonance imaging (MRI) is a challenging segmentation problem due to the small size objects of interest (e.g., blood vessels, bones) in each 2D MRA slice and complex surrounding anatomical structures. Our objective is to develop a specific segmentation scheme for accurately extracting parts of bones from MRI images. In this paper, we use a segmentation algorithm to extract the parts of bones from Magnetic Resonance Imaging (MRI) data sets based on modified active contour method. As a result, the proposed method demonstrates good accuracy in a comparison between the existing segmentation approaches on real MRI data.
Evaluation of a segment-based LANDSAT full-frame approach to corp area estimation
NASA Technical Reports Server (NTRS)
Bauer, M. E. (Principal Investigator); Hixson, M. M.; Davis, S. M.
1981-01-01
As the registration of LANDSAT full frames enters the realm of current technology, sampling methods should be examined which utilize other than the segment data used for LACIE. The effect of separating the functions of sampling for training and sampling for area estimation. The frame selected for analysis was acquired over north central Iowa on August 9, 1978. A stratification of he full-frame was defined. Training data came from segments within the frame. Two classification and estimation procedures were compared: statistics developed on one segment were used to classify that segment, and pooled statistics from the segments were used to classify a systematic sample of pixels. Comparisons to USDA/ESCS estimates illustrate that the full-frame sampling approach can provide accurate and precise area estimates.
Resonant cavity enhanced multi-analyte sensing
NASA Astrophysics Data System (ADS)
Bergstein, David Alan
Biological research and medicine increasingly depend on interrogating binding interactions among small segments of DNA, RNA, protein, and bio-specific small molecules. Microarray technology, which senses the affinity for target molecules in solution for a multiplicity of capturing agents fixed to a surface, has been used in biological research for gene expression profiling and in medicine for molecular biomarker detection. Label-free affinity sensing is preferable as it avoids fluorescent labeling of the target molecules, reducing test cost and variability. The Resonant Cavity Imaging Biosensor (RCIB) is a label-free optical inference based technique introduced that scales readily to high throughput and employs an optical resonant cavity to enhance sensitivity by a factor of 100 or more. Near-infrared light centered at 1512.5 nm couples resonantly through a cavity constructed from Si/SiO2 Bragg reflectors, one of which serves as the binding surface. As the wavelength is swept 5 nm, an Indium-Gallium-Arsenide digital camera monitors cavity transmittance at each pixel with resolution 128 x 128. A wavelength shift in the local resonant response of the optical cavity indicates binding. Positioning the sensing surface with respect to the standing wave pattern of the electric field within the cavity, one can control the sensitivity of the measurement to the presence of bound molecules thereby enhancing or suppressing sensitivity where appropriate. Transmitted intensity at thousands of pixel locations are recorded simultaneously in a 10 s, 5 nm scan. An initial proof-of-principle setup was constructed. A sample was fabricated with 25, 100 mum wide square regions, each with a different density of 1 mum square depressions etched 12 nm into the S1O 2 surface. The average depth of each etched region was found with 0.05 nm RMS precision when the sample remains loaded in the setup and 0.3 nm RMS precision when the sample is removed and replaced. Selective binding of the protein avidin to biotin conjugated bovine serum albumin was demonstrated with 50 pg/mm2 sensitivity. Analysis and discussion of these results provides a path toward improved performance.
Construction of Prototype Lightweight Mirrors
NASA Technical Reports Server (NTRS)
Robinson, William G.
1997-01-01
This contract and the work described was in support of a Seven Segment Demonstrator (SSD) and demonstration of a different technology for construction of lightweight mirrors. The objectives of the SSD were to demonstrate functionality and performance of a seven segment prototype array of hexagonal mirrors and supporting electromechanical components which address design issues critical to space optics deployed in large space based telescopes for astronomy and for optics used in spaced based optical communications systems. The SSD was intended to demonstrate technologies which can support the following capabilities; Transportation in dense packaging to existing launcher payload envelopes, then deployable on orbit to form space telescope with large aperture. Provide very large (less than 10 meters) primary reflectors of low mass and cost. Demonstrate the capability to form a segmented primary or quaternary mirror into a quasi-continuous surface with individual subapertures phased so that near diffraction limited imaging in the visible wavelength region is achieved. Continuous compensation of optical wavefront due to perturbations caused by imperfections, natural disturbances, and equipment induced vibrations/deflections to provide near diffraction limited imaging performance in the visible wavelength region. Demonstrate the feasibility of fabricating such systems with reduced mass and cost compared to past approaches. While the SSD could not be expected to satisfy all of the above capabilities, the intent was to start identifying and understanding new technologies that might be applicable to these goals.
Hopkins, Ronald J.; Land, John T.; Misvel, Michael C.
1994-01-01
A nuclear reactor reflector is disclosed that comprises a stack of reflector blocks with vertical water flow passages to cool the reflector. The interface between blocks is opposite support points for reactor fuel rods. Water flows between the reflector and the reactor barrel from passages in a bottom block. The top block contains a flange to limit this flow and the flange has a slot to receive an alignment pin that is welded to the barrel. The pin is held in the slot by two removable shims. Alignment bars extend the length of the stack in slots machined in each block when the stack is assembled.
Hopkins, R.J.; Land, J.T.; Misvel, M.C.
1994-06-07
A nuclear reactor reflector is disclosed that comprises a stack of reflector blocks with vertical water flow passages to cool the reflector. The interface between blocks is opposite support points for reactor fuel rods. Water flows between the reflector and the reactor barrel from passages in a bottom block. The top block contains a flange to limit this flow and the flange has a slot to receive an alignment pin that is welded to the barrel. The pin is held in the slot by two removable shims. Alignment bars extend the length of the stack in slots machined in each block when the stack is assembled. 12 figs.
Tailored reflectors for illumination.
Jenkins, D; Winston, R
1996-04-01
We report on tailored reflector design methods that allow the placement of general illumination patterns onto a target plane. The use of a new integral design method based on the edge-ray principle of nonimaging optics gives much more compact reflector shapes by eliminating the need for a gap between the source and the reflector profile. In addition, the reflectivity of the reflector is incorporated as a design parameter. We show the performance of design for constant irradiance on a distant plane, and we show how a leading-edge-ray method may be used to achieve general illumination patterns on nearby targets.
Data appendix: F-number=1.0 EMR with a flexible back electrode
NASA Technical Reports Server (NTRS)
Mihora, D. J.
1984-01-01
A 12.5 micron Tedlar low f-number electrostatic membrane reflector was tested. The antenna reflector was designed to achieve a spherical reflector surface with a focal length to diameter ratio f(sub n) of one and a potential accuracy of 1.0 over its 4.88 m diameter. The configuration required the cutting and joining of twelve pie-shaped panels to form the reflector surface. Electrostatic forces are used to tension this preformed membrane reflector. The test data is spare-only three sets of measurements were taken due to lack of funds.
Method of Grassland Information Extraction Based on Multi-Level Segmentation and Cart Model
NASA Astrophysics Data System (ADS)
Qiao, Y.; Chen, T.; He, J.; Wen, Q.; Liu, F.; Wang, Z.
2018-04-01
It is difficult to extract grassland accurately by traditional classification methods, such as supervised method based on pixels or objects. This paper proposed a new method combing the multi-level segmentation with CART (classification and regression tree) model. The multi-level segmentation which combined the multi-resolution segmentation and the spectral difference segmentation could avoid the over and insufficient segmentation seen in the single segmentation mode. The CART model was established based on the spectral characteristics and texture feature which were excavated from training sample data. Xilinhaote City in Inner Mongolia Autonomous Region was chosen as the typical study area and the proposed method was verified by using visual interpretation results as approximate truth value. Meanwhile, the comparison with the nearest neighbor supervised classification method was obtained. The experimental results showed that the total precision of classification and the Kappa coefficient of the proposed method was 95 % and 0.9, respectively. However, the total precision of classification and the Kappa coefficient of the nearest neighbor supervised classification method was 80 % and 0.56, respectively. The result suggested that the accuracy of classification proposed in this paper was higher than the nearest neighbor supervised classification method. The experiment certificated that the proposed method was an effective extraction method of grassland information, which could enhance the boundary of grassland classification and avoid the restriction of grassland distribution scale. This method was also applicable to the extraction of grassland information in other regions with complicated spatial features, which could avoid the interference of woodland, arable land and water body effectively.
Sivakamasundari, J; Natarajan, V
2015-01-01
Diabetic Retinopathy (DR) is a disorder that affects the structure of retinal blood vessels due to long-standing diabetes mellitus. Automated segmentation of blood vessel is vital for periodic screening and timely diagnosis. An attempt has been made to generate continuous retinal vasculature for the design of Content Based Image Retrieval (CBIR) application. The typical normal and abnormal retinal images are preprocessed to improve the vessel contrast. The blood vessels are segmented using evolutionary based Harmony Search Algorithm (HSA) combined with Otsu Multilevel Thresholding (MLT) method by best objective functions. The segmentation results are validated with corresponding ground truth images using binary similarity measures. The statistical, textural and structural features are obtained from the segmented images of normal and DR affected retina and are analyzed. CBIR in medical image retrieval applications are used to assist physicians in clinical decision-support techniques and research fields. A CBIR system is developed using HSA based Otsu MLT segmentation technique and the features obtained from the segmented images. Similarity matching is carried out between the features of query and database images using Euclidean Distance measure. Similar images are ranked and retrieved. The retrieval performance of CBIR system is evaluated in terms of precision and recall. The CBIR systems developed using HSA based Otsu MLT and conventional Otsu MLT methods are compared. The retrieval performance such as precision and recall are found to be 96% and 58% for CBIR system using HSA based Otsu MLT segmentation. This automated CBIR system could be recommended for use in computer assisted diagnosis for diabetic retinopathy screening.
Peristaltic pump noise: A nemesis conquered
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burns, D.A.
1994-12-31
Continuous-flow analyzers (CFA), and especially Segmented Flow Analyzers (SFA), typically employ peristaltic pumps to generate a carrier stream and add reagents thereto. The resulting pump {open_quotes}noise{close_quotes} usually limits precision, and is generally deemed unavoidable. Although the problem is partially solved by hydraulic debubbling, most modern instruments employ bubble thru the flow-cell (BTTFC) technology and electronic debubbling. The authors have developed an algorithm that can significantly reduce this source of noise, even when the individual segments in the SFA stream are of varying volumes and/or concentrations. It does this, without any modifications to the pump, by examining each individual segment asmore » it passes thru the flowcell. The Alpkem model 304 multichannel pump, for example, can be set to produce 90 bubbles/minutes (and therefore 90 segments/minute), so one has 667 msec in which to gather sufficient information to identify a {open_quotes}bad{close_quotes} segment and modify its value. This hardware includes a Hewlett Packard model 8452A diode array spectrophotometer fitted with fiber optics leading to/from a flowcell (5 mm path length X 1mm ID). Each segment remains in the flowcell 300-500 msec. With a data sampling rate of 10/sec (100 msec integration time), the authors can acquire 3-5 intensity values for each segment and convert these to absorbance values. The software to perform all this was written in QuickBASIC 4.5 and incorporates a few routines from Hewlett Packard`s library. The program will be described in some detail so that analytical chemists who use BTTFC can obtain higher precision.« less
Semi-automatic knee cartilage segmentation
NASA Astrophysics Data System (ADS)
Dam, Erik B.; Folkesson, Jenny; Pettersen, Paola C.; Christiansen, Claus
2006-03-01
Osteo-Arthritis (OA) is a very common age-related cause of pain and reduced range of motion. A central effect of OA is wear-down of the articular cartilage that otherwise ensures smooth joint motion. Quantification of the cartilage breakdown is central in monitoring disease progression and therefore cartilage segmentation is required. Recent advances allow automatic cartilage segmentation with high accuracy in most cases. However, the automatic methods still fail in some problematic cases. For clinical studies, even if a few failing cases will be averaged out in the overall results, this reduces the mean accuracy and precision and thereby necessitates larger/longer studies. Since the severe OA cases are often most problematic for the automatic methods, there is even a risk that the quantification will introduce a bias in the results. Therefore, interactive inspection and correction of these problematic cases is desirable. For diagnosis on individuals, this is even more crucial since the diagnosis will otherwise simply fail. We introduce and evaluate a semi-automatic cartilage segmentation method combining an automatic pre-segmentation with an interactive step that allows inspection and correction. The automatic step consists of voxel classification based on supervised learning. The interactive step combines a watershed transformation of the original scan with the posterior probability map from the classification step at sub-voxel precision. We evaluate the method for the task of segmenting the tibial cartilage sheet from low-field magnetic resonance imaging (MRI) of knees. The evaluation shows that the combined method allows accurate and highly reproducible correction of the segmentation of even the worst cases in approximately ten minutes of interaction.
Overcoming Barriers to Using Precision Teaching with a Web-Based Programme
ERIC Educational Resources Information Center
Hayes, Ben; Heather, Andrew; Jones, Daniel; Clarke, Christopher
2018-01-01
Precision Teaching (PT) is an evidence-based intervention, which research indicates is frequently not implemented following training, with few teachers using it in schools after training events. The web-based programme in this research focuses on word-level reading skills and targets blending and segmenting skills rather than whole word reading.…
Gravity deformation measurements of 70m reflector surfaces
NASA Technical Reports Server (NTRS)
Brenner, Michael; Imbriale, William A.; Britcliffe, Michael K.
2001-01-01
Two of NASA's Deep Space Network (DSN) 70-meter reflectors are measured using a Leica TDM-5000 theodolite. The main reflector surface was measured at five elevation angles so that a gravity deformation model could be derived that described the main reflector distortions over the entire range of elevation angles. The report describes the measurement equipment and accuracy and the results derived from the data.
Impact of HFIR LEU Conversion on Beryllium Reflector Degradation Factors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ilas, Dan
2013-10-01
An assessment of the impact of low enriched uranium (LEU) conversion on the factors that may cause the degradation of the beryllium reflector is performed for the High Flux Isotope Reactor (HFIR). The computational methods, models, and tools, comparisons with previous work, along with the results obtained are documented and discussed in this report. The report documents the results for the gas and neutronic poison production, and the heating in the beryllium reflector for both the highly enriched uranium (HEU) and LEU HFIR configurations, and discusses the impact that the conversion to LEU may have on these quantities. A time-averagingmore » procedure was developed to calculate the isotopic (gas and poisons) production in reflector. The sensitivity of this approach to different approximations is gauged and documented. The results show that the gas is produced in the beryllium reflector at a total rate of 0.304 g/cycle for the HEU configuration; this rate increases by ~12% for the LEU case. The total tritium production rate in reflector is 0.098 g/cycle for the HEU core and approximately 11% higher for the LEU core. A significant increase (up to ~25%) in the neutronic poisons production in the reflector during the operation cycles is observed for the LEU core, compared to the HEU case, for regions close to the core s horizontal midplane. The poisoning level of the reflector may increase by more than two orders of magnitude during long periods of downtime. The heating rate in the reflector is estimated to be approximately 20% lower for the LEU core than for the HEU core. The decrease is due to a significantly lower contribution of the heating produced by the gamma radiation for the LEU core. Both the isotopic (gas and neutronic poisons) production and the heating rates are spatially non-uniform throughout the beryllium reflector volume. The maximum values typically occur in the removable reflector and close to the midplane.« less
Detection of reflector surface from near field phase measurements
NASA Technical Reports Server (NTRS)
Ida, Nathan
1991-01-01
The deviation of a reflector antenna surface from a perfect parabolic shape causes degradation of the performance of the antenna. The problem of determining the shape of the reflector surface in a reflector antenna using near field phase measurements is not a new one. A recent issue of the IEEE tansactions on Antennas and Propagation (June 1988) contained numerous descriptions of the use of these measurements: holographic reconstruction or inverse Fourier transform. Holographic reconstruction makes use of measurement of the far field of the reflector and then applies the Fourier transform relationship between the far field and the current distribution on the reflector surface. Inverse Fourier transformation uses the phase measurements to determine the far field pattern using the method of Kerns. After the far field pattern is established, an inverse Fourier transform is used to determine the phases in a plane between the reflector surface and the plane in which the near field measurements were taken. These calculations are time consuming since they involve a relatively large number of operations. A much faster method can be used to determine the position of the reflector. This method makes use of simple geometric optics to determine the path length of the ray from the feed to the reflector and from the reflector to the measurement point. For small physical objects and low frequencies, diffraction effects have a major effect on the error, and the algorithm provides incorrect results. It is believed that the effect is less noticeable for large distortions such as antenna warping, and more noticeable for small, localized distortions such as bumps and depressions such as might be caused by impact damage.
Zhou, Yufeng; Zhong, Pei
2006-06-01
A theoretical model for the propagation of shock wave from an axisymmetric reflector was developed by modifying the initial conditions for the conventional solution of a nonlinear parabolic wave equation (i.e., the Khokhlov-Zabolotskaya-Kuznestsov equation). The ellipsoidal reflector of an HM-3 lithotripter is modeled equivalently as a self-focusing spherically distributed pressure source. The pressure wave form generated by the spark discharge of the HM-3 electrode was measured by a fiber optic probe hydrophone and used as source conditions in the numerical calculation. The simulated pressure wave forms, accounting for the effects of diffraction, nonlinearity, and thermoviscous absorption in wave propagation and focusing, were compared with the measured results and a reasonably good agreement was found. Furthermore, the primary characteristics in the pressure wave forms produced by different reflector geometries, such as that produced by a reflector insert, can also be predicted by this model. It is interesting to note that when the interpulse delay time calculated by linear geometric model is less than about 1.5 micros, two pulses from the reflector insert and the uncovered bottom of the original HM-3 reflector will merge together. Coupling the simulated pressure wave form with the Gilmore model was carried out to evaluate the effect of reflector geometry on resultant bubble dynamics in a lithotripter field. Altogether, the equivalent reflector model was found to provide a useful tool for the prediction of pressure wave form generated in a lithotripter field. This model may be used to guide the design optimization of reflector geometries for improving the performance and safety of clinical lithotripters.
Zhou, Yufeng; Zhong, Pei
2007-01-01
A theoretical model for the propagation of shock wave from an axisymmetric reflector was developed by modifying the initial conditions for the conventional solution of a nonlinear parabolic wave equation (i.e., the Khokhlov–Zabolotskaya–Kuznestsov equation). The ellipsoidal reflector of an HM-3 lithotripter is modeled equivalently as a self-focusing spherically distributed pressure source. The pressure wave form generated by the spark discharge of the HM-3 electrode was measured by a fiber optic probe hydrophone and used as source conditions in the numerical calculation. The simulated pressure wave forms, accounting for the effects of diffraction, nonlinearity, and thermoviscous absorption in wave propagation and focusing, were compared with the measured results and a reasonably good agreement was found. Furthermore, the primary characteristics in the pressure wave forms produced by different reflector geometries, such as that produced by a reflector insert, can also be predicted by this model. It is interesting to note that when the interpulse delay time calculated by linear geometric model is less than about 1.5 μs, two pulses from the reflector insert and the uncovered bottom of the original HM-3 reflector will merge together. Coupling the simulated pressure wave form with the Gilmore model was carried out to evaluate the effect of reflector geometry on resultant bubble dynamics in a lithotripter field. Altogether, the equivalent reflector model was found to provide a useful tool for the prediction of pressure wave form generated in a lithotripter field. This model may be used to guide the design optimization of reflector geometries for improving the performance and safety of clinical lithotripters. PMID:16838506
Reflector for efficient coupling of a laser beam to air or other fluids
Kare, Jordin T.
1992-01-01
A reflector array is disclosed herein that provides a controlled region or regions of plasma breakdowns from a laser beam produced at a remotely-based laser source. The plasma may be applied to produce thrust to propel a spacecraft, or to diagnose a laser beam, or to produce shockwaves. The spacecraft propulsion system comprises a reflector array attached to the vehicle. The reflector array comprises a plurality of reflectors spaced apart on a reflective surface, with each reflector acting as an independent focusing mirror. The reflectors are spaced closely together to form a continuous or partially-continuous surface. The reflector array may be formed from a sheet of reflective material, such as copper or aluminum. In operation, a beam of electromagnetic energy, such as a laser beam, is directed at the reflectors which focus the reflected electromagnetic energy at a plurality of regions off the surface. The energy concentrated in the focal region causes a breakdown of the air or other fluid in the focal region, creating a plasma. Electromagnetic energy is absorbed in the plasma and it grows in volume, compressing and heating the adjacent fluid thereby providing thrust. Laser pulses may be applied repetitively. After each such thrust pulse, fresh air can be introduced next to the surface either laterally, or through a perforated surface. If air or some other gas or vapor is supplied, for example from a tank carried on board a vehicle, this invention may also be used to provide thrust in a vacuum environment.
Analysis of a generalized dual reflector antenna system using physical optics
NASA Technical Reports Server (NTRS)
Acosta, Roberto J.; Lagin, Alan R.
1992-01-01
Reflector antennas are widely used in communication satellite systems because they provide high gain at low cost. Offset-fed single paraboloids and dual reflector offset Cassegrain and Gregorian antennas with multiple focal region feeds provide a simple, blockage-free means of forming multiple, shaped, and isolated beams with low sidelobes. Such antennas are applicable to communications satellite frequency reuse systems and earth stations requiring access to several satellites. While the single offset paraboloid has been the most extensively used configuration for the satellite multiple-beam antenna, the trend toward large apertures requiring minimum scanned beam degradation over the field of view 18 degrees for full earth coverage from geostationary orbit may lead to impractically long focal length and large feed arrays. Dual reflector antennas offer packaging advantages and more degrees of design freedom to improve beam scanning and cross-polarization properties. The Cassegrain and Gregorian antennas are the most commonly used dual reflector antennas. A computer program for calculating the secondary pattern and directivity of a generalized dual reflector antenna system was developed and implemented at LeRC. The theoretical foundation for this program is based on the use of physical optics methodology for describing the induced currents on the sub-reflector and main reflector. The resulting induced currents on the main reflector are integrated to obtain the antenna far-zone electric fields. The computer program is verified with other physical optics programs and with measured antenna patterns. The comparison shows good agreement in far-field sidelobe reproduction and directivity.
A method for direct measurement of the first-order mass moments of human body segments.
Fujii, Yusaku; Shimada, Kazuhito; Maru, Koichi; Ozawa, Junichi; Lu, Rong-Sheng
2010-01-01
We propose a simple and direct method for measuring the first-order mass moment of a human body segment. With the proposed method, the first-order mass moment of the body segment can be directly measured by using only one precision scale and one digital camera. In the dummy mass experiment, the relative standard uncertainty of a single set of measurements of the first-order mass moment is estimated to be 1.7%. The measured value will be useful as a reference for evaluating the uncertainty of the body segment inertial parameters (BSPs) estimated using an indirect method.
2015-09-01
ARL-TR-7473 ● SEP 2015 US Army Research Laboratory Bragg Reflector-Induced Increased Nonradiative Lifetime in Gallium Arsenide...return it to the originator. ARL-TR-7473 ● SEP 2015 US Army Research Laboratory Bragg Reflector-Induced Increased Nonradiative ...3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Bragg Reflector-Induced Increased Nonradiative Lifetime in Gallium Arsenide (GaAs)/Aluminum
The DART Cylindrical, Infrared, 1 Meter Membrane Reflector
NASA Technical Reports Server (NTRS)
Morgan, Rhonda M.; Agnes, Greg S.; Barber, Dan; Dooley, Jennifer; Dragovan, Mark; Hatheway, Al E.; Marcin, Marty
2004-01-01
The Dual Anamorphic Reflector Telescopes (DART) is an architecture for large aperture space telescopes that enables the use of membranes. A membrane can be readily shaped in one direction of curvature using a combination of boundary control and tensioning, yielding a cylindrical reflector. Two cylindrical reflectors (orthogonal and confocal) comprise the 'primary mirror' of the telescope system. The aperture is completely unobstructed and ideal for infrared and high contrast observations.
Coaxial Virtual Cathode Enhancement
2004-10-20
need more solid evidence to clarify them. Table 2. Frequency list for geometries without reflectors, showing the microwave frequencies based on their...frequency. V. The Functions of the Reflectors Table 3 is a frequency list with the donut reflector at different positions. From Table 3, we can see that...both cases. We do observe that the microwave power generally is decreased by the donut reflector. Table 3. Frequency list for geometries with a donut
Fabrication of Spherical Reflectors in Outer Space
NASA Technical Reports Server (NTRS)
Wang, Yu; Dooley, Jennifer; Dragovan, Mark; Serivens, Wally
2005-01-01
A process is proposed for fabrication of lightweight spherical reflectors in outer space for telescopes, radio antennas, and light collectors that would be operated there. The process would obviate the relatively massive substrates and frames needed to support such reflectors in normal Earth gravitation. According to the proposal, fabrication of a reflector would begin with blowing of a bubble to the specified reflector radius. Taking advantage of the outer-space vacuum as a suitable environment for evaporative deposition of metal, a metal-evaporation source would be turned on and moved around the bubble to deposit a reflective metal film over the specified reflector area to a thickness of several microns. Then the source would be moved and aimed to deposit more metal around the edge of the reflector area, increasing the thickness there to approximately equal to 100 micron to form a frame. Then the bubble would be deflated and peeled off the metal, leaving a thin-film spherical mirror having an integral frame. The mirror would then be mounted for use. The feasibility of this technology has been proved by fabricating a prototype at JPL. As shown in the figure, a 2-in. (.5-cm) diameter hemispherical prototype reflector was made from a polymer bubble coated with silver, forming a very smooth surface.
Iterative deep convolutional encoder-decoder network for medical image segmentation.
Jung Uk Kim; Hak Gu Kim; Yong Man Ro
2017-07-01
In this paper, we propose a novel medical image segmentation using iterative deep learning framework. We have combined an iterative learning approach and an encoder-decoder network to improve segmentation results, which enables to precisely localize the regions of interest (ROIs) including complex shapes or detailed textures of medical images in an iterative manner. The proposed iterative deep convolutional encoder-decoder network consists of two main paths: convolutional encoder path and convolutional decoder path with iterative learning. Experimental results show that the proposed iterative deep learning framework is able to yield excellent medical image segmentation performances for various medical images. The effectiveness of the proposed method has been proved by comparing with other state-of-the-art medical image segmentation methods.
A Review of Algorithms for Segmentation of Optical Coherence Tomography from Retina
Kafieh, Raheleh; Rabbani, Hossein; Kermani, Saeed
2013-01-01
Optical coherence tomography (OCT) is a recently established imaging technique to describe different information about the internal structures of an object and to image various aspects of biological tissues. OCT image segmentation is mostly introduced on retinal OCT to localize the intra-retinal boundaries. Here, we review some of the important image segmentation methods for processing retinal OCT images. We may classify the OCT segmentation approaches into five distinct groups according to the image domain subjected to the segmentation algorithm. Current researches in OCT segmentation are mostly based on improving the accuracy and precision, and on reducing the required processing time. There is no doubt that current 3-D imaging modalities are now moving the research projects toward volume segmentation along with 3-D rendering and visualization. It is also important to develop robust methods capable of dealing with pathologic cases in OCT imaging. PMID:24083137
NASA Astrophysics Data System (ADS)
de Siqueira, A. F.; Cabrera, F. C.; Pagamisse, A.; Job, A. E.
2014-12-01
This study consolidates multi-level starlet segmentation (MLSS) and multi-level starlet optimal segmentation (MLSOS) techniques for photomicrograph segmentation, based on starlet wavelet detail levels to separate areas of interest in an input image. Several segmentation levels can be obtained using MLSS; after that, Matthews correlation coefficient is used to choose an optimal segmentation level, giving rise to MLSOS. In this paper, MLSOS is employed to estimate the concentration of gold nanoparticles with diameter around 47 nm, reduced on natural rubber membranes. These samples were used for the construction of SERS/SERRS substrates and in the study of the influence of natural rubber membranes with incorporated gold nanoparticles on the physiology of Leishmania braziliensis. Precision, recall, and accuracy are used to evaluate the segmentation performance, and MLSOS presents an accuracy greater than 88 % for this application.
A level set method for multiple sclerosis lesion segmentation.
Zhao, Yue; Guo, Shuxu; Luo, Min; Shi, Xue; Bilello, Michel; Zhang, Shaoxiang; Li, Chunming
2018-06-01
In this paper, we present a level set method for multiple sclerosis (MS) lesion segmentation from FLAIR images in the presence of intensity inhomogeneities. We use a three-phase level set formulation of segmentation and bias field estimation to segment MS lesions and normal tissue region (including GM and WM) and CSF and the background from FLAIR images. To save computational load, we derive a two-phase formulation from the original multi-phase level set formulation to segment the MS lesions and normal tissue regions. The derived method inherits the desirable ability to precisely locate object boundaries of the original level set method, which simultaneously performs segmentation and estimation of the bias field to deal with intensity inhomogeneity. Experimental results demonstrate the advantages of our method over other state-of-the-art methods in terms of segmentation accuracy. Copyright © 2017 Elsevier Inc. All rights reserved.
A method to design blended rolled edges for compact range reflectors
NASA Technical Reports Server (NTRS)
Gupta, Inder J.; Burnside, Walter D.
1989-01-01
A method to design blended rolled edges for arbitrary rim shape compact range reflectors is presented. The reflectors may be center-fed or offset-fed. The method leads to rolled edges with minimal surface discontinuities. It is shown that the reflectors designed using the prescribed method can be defined analytically using simple expressions. A procedure to obtain optimum rolled edges parameter is also presented. The procedure leads to blended rolled edges that minimize the diffracted fields emanating from the junction between the paraboloid and the rolled edge surface while satisfying certain constraints regarding the reflector size and the minimum operating frequency of the system.
NASA Technical Reports Server (NTRS)
Cherrette, A. R.; Lee, S. W.; Acosta, R. J.
1988-01-01
Eliminating the corporate feed network in shaped contour beam antennas will reduce the expense, weight, and RF loss of the antenna system. One way of producing a shaped contour beam without using a feed network is to use a single shaped reflector with a single feed element. For a prescribed contour beam and feed, an optimization method for designing the reflector shape is given. As a design example, a shaped reflector is designed to produce a continental U.S. coverage (CONUS) beam. The RF performance of the shaped reflector is then verified by physical optics.
A method to design blended rolled edges for compact range reflectors
NASA Technical Reports Server (NTRS)
Gupta, Inder J.; Ericksen, Kurt P.; Burnside, Walter D.
1990-01-01
A method to design blended rolled edges for arbitrary rim shape compact range reflectors is presented. The reflectors may be center-fed or offset-fed. The method leads to rolled edges with minimal surface discontinuities. It is shown that the reflectors designed using the prescribed method can be defined analytically using simple expressions. A procedure to obtain optimum rolled edges parameters is also presented. The procedure leads to blended rolled edges that minimize the diffracted fields emanating from the junction between the paraboloid and the rolled edge surface while satisfying certain constraints regarding the reflector size and the minimum operating frequency of the system.
Hypatia: a 4m active space telescope concept and capabilities
NASA Astrophysics Data System (ADS)
Devaney, Nicholas; Goncharov, A.; Goy, M.; Reinlein, C.; Lange, N.
2017-09-01
While ambitious plans are being developed for giant, segmented telescopes in space, we feel that a large monolithic mirror telescope would have several advantages in the near term. In particular, the risk involved in deploying the optics will be significantly reduced, and the telescope can provide excellent image quality without the need for precise segment alignment and phasing.
A three stage sampling model for remote sensing applications
NASA Technical Reports Server (NTRS)
Eisgruber, L. M.
1972-01-01
A conceptual model and an empirical application of the relationship between the manner of selecting observations and its effect on the precision of estimates from remote sensing are reported. This three stage sampling scheme considers flightlines, segments within flightlines, and units within these segments. The error of estimate is dependent on the number of observations in each of the stages.
The novel support structure design of high stability for space borne primary reflector
NASA Astrophysics Data System (ADS)
Yu, Fei; Ding, Lin; Tan, Ting; Pei, Jing-yang.; Zhao, Xue-min; Bai, Shao-jun
2018-01-01
The novel support structure design of high stability for space borne primary mirror is presented. The structure is supported by a ball head support rod, for statically determinate support of reflector. The ball head assembly includes the supporting rod, nesting, bushing and other important parts. The liner bushing of the resistant material is used to fit for ball head approximated with the reflector material, and then the bad impact of thermal mismatch could be minimized to minimum. In order to ensure that the structure of the support will not be damaged, the glue spots for limitation is added around the reflector, for position stability of reflector. Through analysis and calculation, it can be seen that the novel support structure would not transfer the external stresses to the reflector, and the external stresses usually result from thermal mismatch and assembly misalignment. The novel method is useful for solving the problem of the bad influence form thermal stress and assembly force. In this paper, the supporting structure is introduced and analyzed in detail. The simulation results show that the ball head support reflector works more stably.
Analytical approximation of a distorted reflector surface defined by a discrete set of points
NASA Technical Reports Server (NTRS)
Acosta, Roberto J.; Zaman, Afroz A.
1988-01-01
Reflector antennas on Earth orbiting spacecrafts generally cannot be described analytically. The reflector surface is subjected to a large temperature fluctuation and gradients, and is thus warped from its true geometrical shape. Aside from distortion by thermal stresses, reflector surfaces are often purposely shaped to minimize phase aberrations and scanning losses. To analyze distorted reflector antennas defined by discrete surface points, a numerical technique must be applied to compute an interpolatory surface passing through a grid of discrete points. In this paper, the distorted reflector surface points are approximated by two analytical components: an undistorted surface component and a surface error component. The undistorted surface component is a best fit paraboloid polynomial for the given set of points and the surface error component is a Fourier series expansion of the deviation of the actual surface points, from the best fit paraboloid. By applying the numerical technique to approximate the surface normals of the distorted reflector surface, the induced surface current can be obtained using physical optics technique. These surface currents are integrated to find the far field radiation pattern.
Scanning properties of large dual-shaped offset and symmetric reflector antennas
NASA Astrophysics Data System (ADS)
Galindo-Israel, Victor; Veruttipong, Watt; Norrod, Roger D.; Imbriale, William A.
1992-04-01
Several characteristics of dual offset (DOSR) and symmetric shaped reflectors are examined. Among these is the amelioration of the added cost of manufacturing a shaped reflector antenna, particularly a doubly curved surface for the DOSR, if adjustable panels, which may be necessary for correction of gravity and wind distortions, are also used for improving gain by shaping. The scanning properties of shaped reflectors, both offset and circularly symmetric, are examined and compared to conic section scanning characteristics. Scanning of the pencil beam is obtained by lateral and axial translation of a single point-source feed. The feed is kept pointed toward the center of the subreflector. The effects of power spillover and aperture phase error as a function of beam scanning is examined for several different types of large reflector designs including DOSR, circularly symmetric large f/D and smaller f/D dual reflector antenna systems. It is graphically illustrated that the Abbe-sine condition for improving scanning of an optical system cannot, inherently, be satisfied in a dual-shaped reflector system shaped for high gain and low feed spillover.
NASA Astrophysics Data System (ADS)
Lenkiewicz, Przemyslaw; Pereira, Manuela; Freire, Mário M.; Fernandes, José
2013-12-01
In this article, we propose a novel image segmentation method called the whole mesh deformation (WMD) model, which aims at addressing the problems of modern medical imaging. Such problems have raised from the combination of several factors: (1) significant growth of medical image volumes sizes due to increasing capabilities of medical acquisition devices; (2) the will to increase the complexity of image processing algorithms in order to explore new functionality; (3) change in processor development and turn towards multi processing units instead of growing bus speeds and the number of operations per second of a single processing unit. Our solution is based on the concept of deformable models and is characterized by a very effective and precise segmentation capability. The proposed WMD model uses a volumetric mesh instead of a contour or a surface to represent the segmented shapes of interest, which allows exploiting more information in the image and obtaining results in shorter times, independently of image contents. The model also offers a good ability for topology changes and allows effective parallelization of workflow, which makes it a very good choice for large datasets. We present a precise model description, followed by experiments on artificial images and real medical data.
Bednarkiewicz, Artur; Whelan, Maurice P
2008-01-01
Fluorescence lifetime imaging (FLIM) is very demanding from a technical and computational perspective, and the output is usually a compromise between acquisition/processing time and data accuracy and precision. We present a new approach to acquisition, analysis, and reconstruction of microscopic FLIM images by employing a digital micromirror device (DMD) as a spatial illuminator. In the first step, the whole field fluorescence image is collected by a color charge-coupled device (CCD) camera. Further qualitative spectral analysis and sample segmentation are performed to spatially distinguish between spectrally different regions on the sample. Next, the fluorescence of the sample is excited segment by segment, and fluorescence lifetimes are acquired with a photon counting technique. FLIM image reconstruction is performed by either raster scanning the sample or by directly accessing specific regions of interest. The unique features of the DMD illuminator allow the rapid on-line measurement of global good initial parameters (GIP), which are supplied to the first iteration of the fitting algorithm. As a consequence, a decrease of the computation time required to obtain a satisfactory quality-of-fit is achieved without compromising the accuracy and precision of the lifetime measurements.
Precise Orbit Determination Of Low Earth Satellites At AIUB Using GPS And SLR Data
NASA Astrophysics Data System (ADS)
Jaggi, A.; Bock, H.; Thaller, D.; Sosnica, K.; Meyer, U.; Baumann, C.; Dach, R.
2013-12-01
An ever increasing number of low Earth orbiting (LEO) satellites is, or will be, equipped with retro-reflectors for Satellite Laser Ranging (SLR) and on-board receivers to collect observations from Global Navigation Satellite Systems (GNSS) such as the Global Positioning System (GPS) and the Russian GLONASS and the European Galileo systems in the future. At the Astronomical Institute of the University of Bern (AIUB) LEO precise orbit determination (POD) using either GPS or SLR data is performed for a wide range of applications for satellites at different altitudes. For this purpose the classical numerical integration techniques, as also used for dynamic orbit determination of satellites at high altitudes, are extended by pseudo-stochastic orbit modeling techniques to efficiently cope with potential force model deficiencies for satellites at low altitudes. Accuracies of better than 2 cm may be achieved by pseudo-stochastic orbit modeling for satellites at very low altitudes such as for the GPS-based POD of the Gravity field and steady-state Ocean Circulation Explorer (GOCE).
Comparison of Three Wind Measuring Systems for Flight Test
NASA Technical Reports Server (NTRS)
Teets, Edward H., Jr.; Harvey, Philip O.
2000-01-01
A preliminary field test of the accuracy of wind velocity measurements obtained using global positioning system-tracked rawinsonde balloons has been performed. Wind comparisons have been conducted using global positioning system (GPS) and radio automatic theodolite sounder (RATS) rawinsondes and a high-precision range instrumentation radar-tracked reflector. Wind velocity differences between the GPS rawinsondes and the radar were significantly less than between the RATS rawinsondes and the radar. These limited test results indicate a root-mean-square wind velocity difference from 4.98 kn (2.56 m/sec) for the radar and RATS to 1.09 kn (0.56 m/sec) for the radar and GPS. Differences are influenced by user reporting requirements, data processing techniques, and the inherent tracking accuracies of the system. This brief field test indicates that the GPS sounding system tracking data are more precise than the RATS system. When high-resolution wind data are needed, use of GPS rawinsonde systems can reduce the burden on range radar operations.
Materials and process optimization for dual-shell satellite antenna reflectors
NASA Astrophysics Data System (ADS)
Balaski, Darcy R.; van Oyen, Hans J.; Nissan, Sorin J.
A comprehensive, design-optimization test program was conducted for satellite antenna reflectors composed of two offset paraboloidal Kevlar-reinforced sandwich shells separated by a circular sandwich structure. In addition to standard mechanical properties testing, coefficient of thermal expansion and hygroscopic tests were conducted to predict reflector surface accuracy in the thermal cycling environment of orbital space. Attention was given to the relative placement of components during assembly, in view of reflector surface measurements.
Lamp with a truncated reflector cup
Li, Ming; Allen, Steven C.; Bazydola, Sarah; Ghiu, Camil-Daniel
2013-10-15
A lamp assembly, and method for making same. The lamp assembly includes first and second truncated reflector cups. The lamp assembly also includes at least one base plate disposed between the first and second truncated reflector cups, and a light engine disposed on a top surface of the at least one base plate. The light engine is configured to emit light to be reflected by one of the first and second truncated reflector cups.
Wideband QAMC reflector's antenna for low profile applications
NASA Astrophysics Data System (ADS)
Grelier, M.; Jousset, M.; Mallégol, S.; Lepage, A. C.; Begaud, X.; LeMener, J. M.
2011-06-01
A wideband reflector's antenna based on quasi-artificial magnetic conductor is proposed. To validate the design, an Archimedean spiral has been backed to this new reflector. In comparison to classical solution using absorbent material, the prototype presents a very low thickness of λ/15 at the lowest operating frequency and an improved gain over a 2.4:1 bandwidth. The whole methodology to design this reflector can be applied to other wideband antennas.
Holst, Christoph; Schunck, David; Nothnagel, Axel; Haas, Rüdiger; Wennerbäck, Lars; Olofsson, Henrik; Hammargren, Roger; Kuhlmann, Heiner
2017-08-09
For accurate astronomic and geodetic observations based on radio telescopes, the elevation-dependent deformation of the radio telescopes' main reflectors should be known. Terrestrial laser scanning has been used for determining the corresponding changes of focal lengths and areal reflector deformations at several occasions before. New in this publication is the situation in which we minimize systematic measurement errors by an improved measurement and data-processing concept: Sampling the main reflector in both faces of the laser scanner and calibrating the laser scanner in situ in a bundle adjustment. This concept is applied to the Onsala Space Observatory 20-m radio telescope: The focal length of the main reflector decreases by 9.6 mm from 85 ∘ to 5 ∘ elevation angle. Further local deformations of the main reflector are not detected.
Graphical method to design multilayer phase retarders.
Apfel, J H
1981-03-15
When multilayer reflectors are used at nonnormal incidence, the two planes of polarization generally have different phase shifts. This difference, known as phase retardance, depends on the multilayer design, the incidence angle, and the wavelength. Heretofore, the design of reflectors with specific phase retardance has been carried out by computer optimization except for the case of a single layer on a metal substrate. A graph of phase retardance D vs the average phase shift A as a function of layer thickness provides a means for visualization that is useful in reflector designs. A D-A graph predicts the phase properties of a reflector as a function of the index and thickness of an added layer. Graphs of phase retardance vs average phase for two different materials can be superposed to predict the composite performance of a multilayer reflector. This graphical technique is employed to design and analyze reflectors with specified phase retardance.
Main-Reflector Manufacturing Technology for the Deep Space Optical Communications Ground Station
NASA Technical Reports Server (NTRS)
Britcliffe, M. J.; Hoppe, D. J.
2001-01-01
The Deep Space Network (DSN) has plans to develop a 10-m-diameter optical communications receiving station. The system uses the direct detection technique, which has much different requirements from a typical astronomical telescope. The receiver must operate in daylight and nighttime conditions. This imposes special requirements on the optical system to reject stray light from the Sun and other sources. One of the biggest challenges is designing a main-reflector surface that meets these requirements and can be produced at a reasonable cost. The requirements for the performance of the reflector are presented. To date, an aspherical primary reflector has been assumed. A reflector with a spherical reflector has a major cost advantage over an aspherical design, with no sacrifice in performance. A survey of current manufacturing techniques for optical mirrors of this type was performed. Techniques including solid glass, lightweight glass, diamond-turned aluminum, and composite mirrors were investigated.
State-of-the-art low-cost solar reflector materials
NASA Astrophysics Data System (ADS)
Kennedy, C.; Jorgensen, G.
1994-11-01
Solar thermal technologies generate power by concentrating sunlight with large mirrors. The National Renewable Energy Laboratory (NREL) is working with industrial partners to develop the optical reflector materials needed for the successful deployment of this technology. The reflector materials must be low in cost and maintain high specular reflectance for extended lifetimes in severe outdoor environments. Currently, the best candidate materials for solar mirrors are silver-coated low-iron glass and silvered polymer films. Polymer reflectors are lighter in weight, offer greater flexibility in system design, and have the potential for lower cost than glass mirrors. In parallel with collaborative activities, several innovative candidate reflector-material constructions were investigated at NREL. The low-cost material requirement necessitates manufacturing compatible with mass-production techniques. Future cooperative efforts with the web-coating industry offers the promise of exciting new alternative materials and the potential for dramatic cost savings in developing advanced solar reflector materials.
Flat Engineered Multichannel Reflectors
NASA Astrophysics Data System (ADS)
Asadchy, V. S.; Díaz-Rubio, A.; Tcvetkova, S. N.; Kwon, D.-H.; Elsakka, A.; Albooyeh, M.; Tretyakov, S. A.
2017-07-01
Recent advances in engineered gradient metasurfaces have enabled unprecedented opportunities for light manipulation using optically thin sheets, such as anomalous refraction, reflection, or focusing of an incident beam. Here, we introduce a concept of multichannel functional metasurfaces, which are able to control incoming and outgoing waves in a number of propagation directions simultaneously. In particular, we reveal a possibility to engineer multichannel reflectors. Under the assumption of reciprocity and energy conservation, we find that there exist three basic functionalities of such reflectors: specular, anomalous, and retroreflections. Multichannel response of a general flat reflector can be described by a combination of these functionalities. To demonstrate the potential of the introduced concept, we design and experimentally test three different multichannel reflectors: three- and five-channel retroreflectors and a three-channel power splitter. Furthermore, by extending the concept to reflectors supporting higher-order Floquet harmonics, we forecast the emergence of other multichannel flat devices, such as isolating mirrors, complex splitters, and multi-functional gratings.
Interferometric Polarization Control
NASA Technical Reports Server (NTRS)
Wollack, Edward J. (Inventor); Moseley, Samuel H. (Inventor); Chuss, David T. (Inventor); Novak, Giles A. (Inventor)
2008-01-01
A signal conditioning module provides a polarimeter capability in a photometric system. The module may include multiple variable delay polarization modulators. Each modulator may include an input port, and a first arm formed to include a first reflector and first rooftop mirror arranged in opposed relationship. The first reflector may direct an input radiation signal to the first rooftop mirror. Each modulator also may include an output port and a second arm formed to include a second reflector and second rooftop mirror arranged in opposed relationship. The second reflector can guide a signal from the second rooftop mirror towards the output port to provide an output radiation signal. A beamsplitting grid may be placed between the first reflector and the first rooftop mirror, and also between the second reflector and the second rooftop mirror. A translation apparatus can provide adjustment relative to optical path length vis-a-vis the first arm, the second arm and the grid.
Interferometric polarization control
NASA Technical Reports Server (NTRS)
Wollack, Edward J. (Inventor); Novak, Giles A. (Inventor); Moseley, Samuel H. (Inventor); Chuss, David T. (Inventor)
2009-01-01
A signal conditioning module provides a polarimeter capability in a photometric system. The module may include multiple variable delay polarization modulators. Each modulator may include an input port, and a first arm formed to include a first reflector and first rooftop mirror arranged in opposed relationship. The first reflector may direct an input radiation signal to the first rooftop mirror. Each modulator also may include an output port and a second arm formed to include a second reflector and second rooftop mirror arranged in opposed relationship. The second reflector can guide a signal from the second rooftop mirror towards the output port to provide an output radiation signal. A beamsplitting grid may be placed between the first reflector and the first rooftop mirror, and also between the second reflector and the second rooftop mirror. A translation apparatus can provide adjustment relative to optical path length vis-a-vis the first arm, the second arm and the grid.
Schunck, David; Nothnagel, Axel; Haas, Rüdiger; Wennerbäck, Lars; Olofsson, Henrik; Hammargren, Roger; Kuhlmann, Heiner
2017-01-01
For accurate astronomic and geodetic observations based on radio telescopes, the elevation-dependent deformation of the radio telescopes’ main reflectors should be known. Terrestrial laser scanning has been used for determining the corresponding changes of focal lengths and areal reflector deformations at several occasions before. New in this publication is the situation in which we minimize systematic measurement errors by an improved measurement and data-processing concept: Sampling the main reflector in both faces of the laser scanner and calibrating the laser scanner in situ in a bundle adjustment. This concept is applied to the Onsala Space Observatory 20-m radio telescope: The focal length of the main reflector decreases by 9.6 mm from 85∘ to 5∘ elevation angle. Further local deformations of the main reflector are not detected. PMID:28792449
Finite grade pheromone ant colony optimization for image segmentation
NASA Astrophysics Data System (ADS)
Yuanjing, F.; Li, Y.; Liangjun, K.
2008-06-01
By combining the decision process of ant colony optimization (ACO) with the multistage decision process of image segmentation based on active contour model (ACM), an algorithm called finite grade ACO (FACO) for image segmentation is proposed. This algorithm classifies pheromone into finite grades and updating of the pheromone is achieved by changing the grades and the updated quantity of pheromone is independent from the objective function. The algorithm that provides a new approach to obtain precise contour is proved to converge to the global optimal solutions linearly by means of finite Markov chains. The segmentation experiments with ultrasound heart image show the effectiveness of the algorithm. Comparing the results for segmentation of left ventricle images shows that the ACO for image segmentation is more effective than the GA approach and the new pheromone updating strategy appears good time performance in optimization process.
Localization of lung fields in HRCT images using a deep convolution neural network
NASA Astrophysics Data System (ADS)
Kumar, Abhishek; Agarwala, Sunita; Dhara, Ashis Kumar; Mukhopadhyay, Sudipta; Nandi, Debashis; Garg, Mandeep; Khandelwal, Niranjan; Kalra, Naveen
2018-02-01
Lung field segmentation is a prerequisite step for the development of a computer-aided diagnosis system for interstitial lung diseases observed in chest HRCT images. Conventional methods of lung field segmentation rely on a large gray value contrast between lung fields and surrounding tissues. These methods fail on lung HRCT images with dense and diffused pathology. An efficient prepro- cessing could improve the accuracy of segmentation of pathological lung field in HRCT images. In this paper, a convolution neural network is used for localization of lung fields in HRCT images. The proposed method provides an optimal bounding box enclosing the lung fields irrespective of the presence of diffuse pathology. The performance of the proposed algorithm is validated on 330 lung HRCT images obtained from MedGift database on ZF and VGG networks. The model achieves a mean average precision of 0.94 with ZF net and a slightly better performance giving a mean average precision of 0.95 in case of VGG net.
Beyond Wires and Seeds: Reflector-guided Breast Lesion Localization and Excision.
Mango, Victoria L; Wynn, Ralph T; Feldman, Sheldon; Friedlander, Lauren; Desperito, Elise; Patel, Sejal N; Gomberawalla, Ameer; Ha, Richard
2017-08-01
Purpose To evaluate outcomes of Savi Scout (Cianna Medical, Aliso Viejo, Calif) reflector-guided localization and excision of breast lesions by analyzing reflector placement, localization, and removal, along with target excision and rates of repeat excision (referred to as re-excision). Materials and Methods A single-institution retrospective review of 100 women who underwent breast lesion localization and excision by using the Savi Scout surgical guidance system from June 2015 to May 2016 was performed. By using image guidance 0-8 days before surgery, 123 nonradioactive, infrared-activated, electromagnetic wave reflectors were percutaneously inserted adjacent to or within 111 breast targets. Twenty patients had two or three reflectors placed for bracketing or for localizing multiple lesions, and when ipsilateral, they were placed as close as 2.6 cm apart. Target and reflector were localized intraoperatively by one of two breast surgeons who used a handpiece that emitted infrared light and electromagnetic waves. Radiographs of the specimen and pathologic analysis helped verify target and reflector removal. Target to reflector distance was measured on the mammogram and radiograph of the specimen, and reflector depth was measured on the mammogram. Pathologic analysis was reviewed. Re-excision rates and complications were recorded. By using statistics software, descriptive statistics were generated with 95% confidence intervals (CIs) calculated. Results By using sonographic (40 of 123; 32.5%; 95% CI: 24.9%, 41.2%) or mammographic (83 of 123; 67.5%; 95% CI: 58.8% 75.1%) guidance, 123 (100%; 95% CI: 96.4%, 100%) reflectors were placed. Mean mammographic target to reflector distance was 0.3 cm. All 123 (100%; 95% CI: 96.4%, 100%) targets and reflectors were excised. Pathologic analysis yielded 54 of 110 malignancies (49.1%; 95% CI: 39.9%, 58.3%; average, 1.0 cm; range, 0.1-5 cm), 32 high-risk lesions (29.1%; 95% CI: 21.4%, 38.2%), and 24 benign lesions (21.8%; 95% CI: 115.1%, 30.4%). Four of 54 malignant cases (7.4%; 95% CI: 2.4%, 18.1%) demonstrated margins positive for cancer that required re-excision. Five of 110 radiographs of the specimen (4.5%; 95% CI: 1.7%, 10.4%) demonstrated increased distance between the target and reflector distance of greater than 1.0 cm (range, 1.1-2.6 cm) compared with postprocedure mammogram the day of placement, three of five were associated with hematomas, two of five migrated without identifiable cause. No related postoperative complications were identified. Conclusion Savi Scout is an accurate, reliable method to localize and excise breast lesions with acceptable margin positivity and re-excision rates. Bracketing is possible with reflectors as close as 2.6 cm. Savi Scout overcomes many limitations of other localization methods, which warrants further study. © RSNA, 2017.
Subharmonics, chaos and beyond
NASA Astrophysics Data System (ADS)
Adler, Laszlo; Yost, William T.; Cantrell, John H.
2012-05-01
While studying finite amplitude ultrasonic wave resonance in a one dimensional liquid-filled cavity formed by a narrow band transducer and a plane reflector, subharmonics of the driver's frequency were observed (1,2) in addition to the expected harmonic structure. Subsequently, it was realized that the system was one of the many examples of parametric resonance in which the observed subharmonics are parametrically generated. The generation mechanism also requires a sufficiently high threshold value of the driving amplitude so that the system becomes increasingly nonlinear in response. The nonlinear features were recently investigated and are the focus of this paper. An ultrasonic interferometer with optical precision was built. The transducers were compressional, undamped quartz and Lithium Niobate crystals ranging from 1-10 MHz, driven by a high power amplifier. Both an optical diffraction system and a receiver transducer attached to an aligned reflector were used to observe the generated frequency components in the cavity. There are at least 5 regions of excitation that were identified. It is shown that from a region of oscillation stability into an unstable region leads to a cascade of bifurcations (subharmonics) culminating in chaotic oscillations. A further increase in the amplitude results in a reversion of the chaos into a second region of stability. A first-principle based explanation of the experimental findings is presented.
WISDOM, a polarimetric GPR for the shallow subsurface characterization
NASA Astrophysics Data System (ADS)
Ciarletti, V.; Plettemeier, D.; Hassen-Kodja, R.; Clifford, S. M.; Wisdom Team
2011-12-01
WISDOM (Water Ice and Subsurface Deposit Observations on Mars) is a polarimetric Ground Penetrating Radar (GPR) that has been selected to be part of the Pasteur payload onboard the Rover of the 2018 ExoMars mission. It will perform large-scale scientific investigations of the sub-surface of the landing site and provide precise information about the subsurface structure prior to drilling. WISDOM has been designed to provide accurate information on the sub-surface structure down to a depth in excess to 2 meters (commensurate to the drill capacities) with a vertical resolution of a several centimetres. It will give access to the geological structure, electromagnetic nature, and, possibly, to the hydrological state of the shallow subsurface by retrieving the layering and properties of the layers and buried reflectors. The data will also be used to determine the most promising locations to collect underground samples with the drilling system mounted on board the rover. Polarimetric measurements have been recently acquired on perfectly known targets as well as in natural environments. They demonstrated the ability to provide a better understanding of sub-surface structure and significantly reduce the ambiguity associated with identifying the location of off-nadir reflectors, relative to the rover path. This work describes the instrument and its operating modes with particular emphasis on its polarimetric capacities.
BVRcIc Study of the Short Period Solar Type, Near Contact Binary, NSVS 10083189
NASA Astrophysics Data System (ADS)
Samec, R. G.; Olsen, A.; Caton, D. B.; Faulkner, D. R.; Hill, R. L.
2017-12-01
The first precision BVRcIc light curves of NSVS 10083189 were taken on eight nights in 2015 at Dark Sky Observatory in North Carolina with the 0.81-m reflector of Appalachian State University and on one night on the SARA 1-m reflector at Kitt Peak National Observatory in remote mode. It is an F8V eclipsing binary with a short period of 0.4542238 (2) d. Seven times of minimum light were calculated. In addition, seven observations at minima were determined from archived NSVS Data. A statistically significant negative quadratic ephemeris was calculated. A light curve analysis with the Wilson-Devinney program led to a semidetached-near contact configuration (larger component filling its critical lobe and the secondary just under filing). This may indicate that NSVS 10083189 is near the end of its Detached to Contact Binary Channel. Our synthetic light curve solution gave a mass ratio of 0.58, with component temperatures of 6250 and 4573 K. A 15° radius cool spot with a T-factor of 0.85 was determined on the primary star. Thus, magnetic braking may be its main process acting in the orbital evolution. The fill-out of the secondary star has apparently reached 99%.
Thermo-optical vacuum testing of Galileo In-Orbit Validation laser retroreflectors
NASA Astrophysics Data System (ADS)
Dell'Agnello, S.; Boni, A.; Cantone, C.; Ciocci, E.; Contessa, S.; Delle Monache, G.; Lops, C.; Martini, M.; Patrizi, G.; Porcelli, L.; Salvatori, L.; Tibuzzi, M.; Intaglietta, N.; Tuscano, P.; Mondaini, C.; Maiello, M.; Doyle, D.; García-Prieto, R.; Navarro-Reyes, D.
2016-06-01
The Galileo constellation is a space research and development program of the European Union to help navigate users all over the world. The Galileo IOV (In-Orbit Validation) are the first test satellites of the Galileo constellation and carry satellite laser retroreflectors as part of their payload systems for precision orbit determination and performance assessment. INFN-LNF SCF_Lab (Satellite/lunar/GNSS laser ranging/altimetry and Cube/microsat Characterization Facilities Laboratory) has been performing tests on a sample of the laser array segment under the Thermo-optical vacuum testing of Galileo IOV laser retro-reflectors of Galileo IOV LRA project, as defined in ESA-INFN Contract No. 4000108617/13/NL/PA. We will present the results of FFDP (Far Field Diffraction Pattern) and thermal relaxation times measurements in relevant space conditions of Galileo IOV CCRs (Cube Corner Retroreflectors) provided by ESA-ESTEC. A reference for the performance of laser ranging on Galileo satellites is the FFDP of a retroreflector in its design specifications and a Galileo retroreflector, in air and isothermal conditions, should have a minimum return intensity within the range [ 0.55 ×106m2- 2.14 ×106m2 ] (ESA-INFN, 2013). Measurements, performed in SCF_Lab facility, demonstrated that the 7 Galileo IOV laser retroreflectors under test were compliant with design performance expectations (Porcelli et al., 2015). The kind of tests carried out for this activity are the first performed on spare Galileo IOV hardware, made available after the launch of the four Galileo IOV satellites (2011 and 2012), which were the operational core of the constellation. The characterisation of the retroreflectors against their design requirements is important because LRAs (Laser Retroreflector Arrays) will be flown on all Galileo satellites.
Design of a radio telescope surface segment actuator based on a form-closed eccentric cam
NASA Astrophysics Data System (ADS)
Smith, David R.
2014-07-01
As radio telescopes have reached larger diameters and higher frequencies, it is typically not possible to meet their surface accuracy specifications using passive homology-based designs. The most common solution to this problem in the current generation of large, high-frequency radio telescopes is to employ a system of linear actuators to correct the surface shape of the primary reflector. The exact specifications of active surface actuators vary with the telescope. However, they have many common features, some of which drive their design. In general, these actuators must provide precise and repeatable positioning under significant loads during operation and they must withstand even higher loads for survival conditions. For general safety, they typically must hold position in the event of a power failure and must incorporate position limits, whether electrical, mechanical, or both. Because the number of actuators is generally high for large active surfaces (hundreds or even thousands of actuators), they must also be reliable and of reasonable individual cost. Finally, for maximum flexibility in their installation, they must be compact. This paper presents a concept for an active surface actuator based on a form-closed eccentric cam (kinematically, a Scotch Yoke mechanism). Such a design is limited in stroke, but offers potential advantages in terms of manufacture, compactness, measurement, and survival loading. The paper demonstrates that some of the expected advantages cannot be practically realized, due to dimensions that are driven by survival loading conditions. As a result, this concept is likely to offer an advantage over conventional screw-type actuators only for cases where actuator runaway and stall are the driving considerations.
Designing for time-dependent material response in spacecraft structures
NASA Technical Reports Server (NTRS)
Hyer, M. W.; Oleksuk, Lynda L. S.; Bowles, D. E.
1992-01-01
To study the influence on overall deformations of the time-dependent constitutive properties of fiber-reinforced polymeric matrix composite materials being considered for use in orbiting precision segmented reflectors, simple sandwich beam models are developed. The beam models include layers representing the face sheets, the core, and the adhesive bonding of the face sheets to the core. A three-layer model lumps the adhesive layers with the face sheets or core, while a five-layer model considers the adhesive layers explicitly. The deformation response of the three-layer and five-layer sandwich beam models to a midspan point load is studied. This elementary loading leads to a simple analysis, and it is easy to create this loading in the laboratory. Using the correspondence principle of viscoelasticity, the models representing the elastic behavior of the two beams are transformed into time-dependent models. Representative cases of time-dependent material behavior for the facesheet material, the core material, and the adhesive are used to evaluate the influence of these constituents being time-dependent on the deformations of the beam. As an example of the results presented, if it assumed that, as a worst case, the polymer-dominated shear properties of the core behave as a Maxwell fluid such that under constant shear stress the shear strain increases by a factor of 10 in 20 years, then it is shown that the beam deflection increases by a factor of 1.4 during that time. In addition to quantitative conclusions, several assumptions are discussed which simplify the analyses for use with more complicated material models. Finally, it is shown that the simpler three-layer model suffices in many situations.
Reflector for efficient coupling of a laser beam to air or other fluids
Kare, J.T.
1992-10-06
A reflector array is disclosed herein that provides a controlled region or regions of plasma breakdowns from a laser beam produced at a remotely-based laser source. The plasma may be applied to produce thrust to propel a spacecraft, or to diagnose a laser beam, or to produce shock waves. The spacecraft propulsion system comprises a reflector array attached to the vehicle. The reflector array comprises a plurality of reflectors spaced apart on a reflective surface, with each reflector acting as an independent focusing mirror. The reflectors are spaced closely together to form a continuous or partially-continuous surface. The reflector array may be formed from a sheet of reflective material, such as copper or aluminum. In operation, a beam of electromagnetic energy, such as a laser beam, is directed at the reflectors which focus the reflected electromagnetic energy at a plurality of regions off the surface. The energy concentrated in the focal region causes a breakdown of the air or other fluid in the focal region, creating a plasma. Electromagnetic energy is absorbed in the plasma and it grows in volume, compressing and heating the adjacent fluid thereby providing thrust. Laser pulses may be applied repetitively. After each such thrust pulse, fresh air can be introduced next to the surface either laterally, or through a perforated surface. If air or some other gas or vapor is supplied, for example from a tank carried on board a vehicle, this invention may also be used to provide thrust in a vacuum environment. 10 figs.
Absolute measurements of large mirrors
NASA Astrophysics Data System (ADS)
Su, Peng
The ability to produce mirrors for large astronomical telescopes is limited by the accuracy of the systems used to test the surfaces of such mirrors. Typically the mirror surfaces are measured by comparing their actual shapes to a precision master, which may be created using combinations of mirrors, lenses, and holograms. The work presented here develops several optical testing techniques that do not rely on a large or expensive precision, master reference surface. In a sense these techniques provide absolute optical testing. The Giant Magellan Telescope (GMT) has been designed with a 350 m 2 collecting area provided by a 25 m diameter primary mirror made out from seven circular independent mirror segments. These segments create an equivalent f/0.7 paraboloidal primary mirror consisting of a central segment and six outer segments. Each of the outer segments is 8.4 m in diameter and has an off-axis aspheric shape departing 14.5 mm from the best-fitting sphere. Much of the work in this dissertation is motivated by the need to measure the surfaces or such large mirrors accurately, without relying on a large or expensive precision reference surface. One method for absolute testing describing in this dissertation uses multiple measurements relative to a reference surface that is located in different positions with respect to the test surface of interest. The test measurements are performed with an algorithm that is based on the maximum likelihood (ML) method. Some methodologies for measuring large flat surfaces in the 2 m diameter range and for measuring the GMT primary mirror segments were specifically developed. For example, the optical figure of a 1.6-m flat mirror was determined to 2 nm rms accuracy using multiple 1-meter sub-aperture measurements. The optical figure of the reference surface used in the 1-meter sub-aperture measurements was also determined to the 2 nm level. The optical test methodology for a 1.7-m off axis parabola was evaluated by moving several times the mirror under test in relation to the test system. The result was a separation of errors in the optical test system to those errors from the mirror under test. This method proved to be accurate to 12nm rms. Another absolute measurement technique discussed in this dissertation utilizes the property of a paraboloidal surface of reflecting rays parallel to its optical axis, to its focal point. We have developed a scanning pentaprism technique that exploits this geometry to measure off-axis paraboloidal mirrors such as the GMT segments. This technique was demonstrated on a 1.7 m diameter prototype and proved to have a precision of about 50 nm rms.
Optical properties of nonimaging concentrators with corrugated reflectors
NASA Astrophysics Data System (ADS)
Roennelid, Mats; Perers, Bengt; Karlsson, Bjorn
1994-09-01
A ray tracing study has been performed on the optical properties of cylindrical nonimaging concentrators with linear corrugated reflectors. The corrugations are assumed to be V-formed and to have an extension parallel to the meridian plane of the concentrators. It is shown that the acceptance angle for radiation incident in the meridian plane can be increased for moderate corrugations. This increased acceptance is balanced by a decreased acceptance of radiation from other directions. Calculations of angular acceptance for a 2X compound parabolic concentrator is presented. It is shown that the annual irradiation on a solar collector with booster reflector can be increased if corrugated reflectors are used instead of smooth reflectors.
SELF-REGULATING BOILING-WATER NUCLEAR REACTORS
Ransohoff, J.A.; Plawchan, J.D.
1960-08-16
A boiling-water reactor was designed which comprises a pressure vessel containing a mass of water, a reactor core submerged within the water, a reflector tank disposed within the reactor, the reflector tank being open at the top to the interior of the pressure vessel, and a surge tank connected to the reflector tank. In operation the reflector level changes as a function of the pressure witoin the reactor so that the reactivity of the reactor is automatically controlled.
Integrated reflector antenna design and analysis
NASA Technical Reports Server (NTRS)
Zimmerman, M. L.; Lee, S. W.; Ni, S.; Christensen, M.; Wang, Y. M.
1993-01-01
Reflector antenna design is a mature field and most aspects were studied. However, of that most previous work is distinguished by the fact that it is narrow in scope, analyzing only a particular problem under certain conditions. Methods of analysis of this type are not useful for working on real-life problems since they can not handle the many and various types of perturbations of basic antenna design. The idea of an integrated design and analysis is proposed. By broadening the scope of the analysis, it becomes possible to deal with the intricacies attendant with modem reflector antenna design problems. The concept of integrated reflector antenna design is put forward. A number of electromagnetic problems related to reflector antenna design are investigated. Some of these show how tools for reflector antenna design are created. In particular, a method for estimating spillover loss for open-ended waveguide feeds is examined. The problem of calculating and optimizing beam efficiency (an important figure of merit in radiometry applications) is also solved. Other chapters deal with applications of this general analysis. The wide angle scan abilities of reflector antennas is examined and a design is proposed for the ATDRSS triband reflector antenna. The development of a general phased-array pattern computation program is discussed and how the concept of integrated design can be extended to other types of antennas is shown. The conclusions are contained in the final chapter.
Hu, Jinyong; Wang, Hong
2014-01-01
Three-dimensional (3D) backside reflector, compared with flat reflectors, can improve the probability of finding the escape cone for reflecting lights and thus enhance the light-extraction efficiency (LEE) for GaN-based light-emitting diode (LED) chips. A triangle-lattice of microscale SiO2 cone array followed by a 16-pair Ti3O5/SiO2 distributed Bragg reflector (16-DBR) was proposed to be attached on the backside of sapphire substrate, and the light-output enhancement was demonstrated by numerical simulation and experiments. The LED chips with flat reflectors or 3D reflectors were simulated using Monte Carlo ray tracing method. It is shown that the LEE increases as the reflectivity of backside reflector increases, and the light-output can be significantly improved by 3D reflectors compared to flat counterparts. It can also be observed that the LEE decreases as the refractive index of the cone material increases. The 3D 16-DBR patterned by microscale SiO2 cone array benefits large enhancement of LEE. This microscale pattern was prepared by standard photolithography and wet-etching technique. Measurement results show that the 3D 16-DBR can provide 12.1% enhancement of wall-plug efficiency, which is consistent with the simulated value of 11.73% for the enhancement of LEE. PMID:25133262
Hannibal, Roberta L; Patel, Nipam H
2013-12-17
Animals have been described as segmented for more than 2,000 years, yet a precise definition of segmentation remains elusive. Here we give the history of the definition of segmentation, followed by a discussion on current controversies in defining a segment. While there is a general consensus that segmentation involves the repetition of units along the anterior-posterior (a-p) axis, long-running debates exist over whether a segment can be composed of only one tissue layer, whether the most anterior region of the arthropod head is considered segmented, and whether and how the vertebrate head is segmented. Additionally, we discuss whether a segment can be composed of a single cell in a column of cells, or a single row of cells within a grid of cells. We suggest that 'segmentation' be used in its more general sense, the repetition of units with a-p polarity along the a-p axis, to prevent artificial classification of animals. We further suggest that this general definition be combined with an exact description of what is being studied, as well as a clearly stated hypothesis concerning the specific nature of the potential homology of structures. These suggestions should facilitate dialogue among scientists who study vastly differing segmental structures.
New core-reflector boundary conditions for transient nodal reactor calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, E.K.; Kim, C.H.; Joo, H.K.
1995-09-01
New core-reflector boundary conditions designed for the exclusion of the reflector region in transient nodal reactor calculations are formulated. Spatially flat frequency approximations for the temporal neutron behavior and two types of transverse leakage approximations in the reflector region are introduced to solve the transverse-integrated time-dependent one-dimensional diffusion equation and then to obtain relationships between net current and flux at the core-reflector interfaces. To examine the effectiveness of new core-reflector boundary conditions in transient nodal reactor computations, nodal expansion method (NEM) computations with and without explicit representation of the reflector are performed for Laboratorium fuer Reaktorregelung und Anlagen (LRA) boilingmore » water reactor (BWR) and Nuclear Energy Agency Committee on Reactor Physics (NEACRP) pressurized water reactor (PWR) rod ejection kinetics benchmark problems. Good agreement between two NEM computations is demonstrated in all the important transient parameters of two benchmark problems. A significant amount of CPU time saving is also demonstrated with the boundary condition model with transverse leakage (BCMTL) approximations in the reflector region. In the three-dimensional LRA BWR, the BCMTL and the explicit reflector model computations differ by {approximately}4% in transient peak power density while the BCMTL results in >40% of CPU time saving by excluding both the axial and the radial reflector regions from explicit computational nodes. In the NEACRP PWR problem, which includes six different transient cases, the largest difference is 24.4% in the transient maximum power in the one-node-per-assembly B1 transient results. This difference in the transient maximum power of the B1 case is shown to reduce to 11.7% in the four-node-per-assembly computations. As for the computing time, BCMTL is shown to reduce the CPU time >20% in all six transient cases of the NEACRP PWR.« less
Offset truss hex solar concentrator
NASA Technical Reports Server (NTRS)
White, John E. (Inventor); Sturgis, James D. (Inventor); Erikson, Raymond J. (Inventor); Waligroski, Gregg A. (Inventor); Scott, Michael A. (Inventor)
1991-01-01
A solar energy concentrator system comprises an offset reflector structure made up of a plurality of solar energy reflector panel sections interconnected with one another to form a piecewise approximation of a portion of a (parabolic) surface of revolution rotated about a prescribed focal axis. Each panel section is comprised of a plurality of reflector facets whose reflective surfaces effectively focus reflected light to preselected surface portions of the interior sidewall of a cylindrically shaped solar energy receiver. The longitudinal axis of the receiver is tilted at an acute angle with respect to the optical axis such that the distribution of focussed solar energy over the interior surface of the solar engine is optimized for dynamic solar energy conversion. Each reflector panel section comprises a flat, hexagonally shaped truss support framework and a plurality of beam members interconnecting diametrically opposed corners of the hexagonal framework recessed within which a plurality of (spherically) contoured reflector facets is disposed. The depth of the framework and the beam members is greater than the thickness of a reflector facet such that a reflector facet may be tilted (for controlling the effective focus of its reflected light through the receiver aperture) without protruding from the panel section.
Structural-electromagnetic bidirectional coupling analysis of space large film reflector antennas
NASA Astrophysics Data System (ADS)
Zhang, Xinghua; Zhang, Shuxin; Cheng, ZhengAi; Duan, Baoyan; Yang, Chen; Li, Meng; Hou, Xinbin; Li, Xun
2017-10-01
As used for energy transmission, a space large film reflector antenna (SLFRA) is characterized by large size and enduring high power density. The structural flexibility and the microwave radiation pressure (MRP) will lead to the phenomenon of structural-electromagnetic bidirectional coupling (SEBC). In this paper, the SEBC model of SLFRA is presented, then the deformation induced by the MRP and the corresponding far field pattern deterioration are simulated. Results show that, the direction of the MRP is identical to the normal of the reflector surface, and the magnitude is proportional to the power density and the square of cosine incident angle. For a typical cosine function distributed electric field, the MRP is a square of cosine distributed across the diameter. The maximum deflections of SLFRA linearly increase with the increasing microwave power densities and the square of the reflector diameters, and vary inversely with the film thicknesses. When the reflector diameter becomes 100 m large and the microwave power density exceeds 102 W/cm2, the gain loss of the 6.3 μm-thick reflector goes beyond 0.75 dB. When the MRP-induced deflection degrades the reflector performance, the SEBC should be taken into account.
NASA Astrophysics Data System (ADS)
Spencer, Domina E.
2001-11-01
Traditionally reflector design has been confined to the use of surfaces defined in terms of conic sections, assuming that all light sources can be considered to be point sources. In the middle of the twentieth century, it was recognized that major improvements could be made if the shape of the reflector was designed to produce a desired distribution of light form an actual light source. Cylindrical reflectors were created which illuminated airport runways using fluorescent lamps in such a way that pilots could make visual landings safely even in fog. These reflector contours were called macrofocal parabolic cylinders. Other new reflector contours introduced were macrofocal elliptic cylinders which confined the light to long rectangles. Surfaces of revolution the fourth degree were also developed which made possible uniform floodlighting of a circular region. These were called horned and peaked quartics. The optimum solution of the automotive head lighting problem has not yet been found. The paper concludes with a discussion of the possibility of developing reflectors which are neither cylindrical nor rotational but will produce the optimum field of view for the automobile driver both in clear weather and in fog.
Disordered animal multilayer reflectors and the localization of light
Jordan, T. M.; Partridge, J. C.; Roberts, N. W.
2014-01-01
Multilayer optical reflectors constructed from ‘stacks’ of alternating layers of high and low refractive index dielectric materials are present in many animals. For example, stacks of guanine crystals with cytoplasm gaps occur within the skin and scales of fish, and stacks of protein platelets with cytoplasm gaps occur within the iridophores of cephalopods. Common to all these animal multilayer reflectors are different degrees of random variation in the thicknesses of the individual layers in the stack, ranging from highly periodic structures to strongly disordered systems. However, previous discussions of the optical effects of such thickness disorder have been made without quantitative reference to the propagation of light within the reflector. Here, we demonstrate that Anderson localization provides a general theoretical framework to explain the common coherent interference and optical properties of these biological reflectors. Firstly, we illustrate how the localization length enables the spectral properties of the reflections from more weakly disordered ‘coloured’ and more strongly disordered ‘silvery’ reflectors to be explained by the same physical process. Secondly, we show how the polarization properties of reflection can be controlled within guanine–cytoplasm reflectors, with an interplay of birefringence and thickness disorder explaining the origin of broadband polarization-insensitive reflectivity. PMID:25339688
NASA Astrophysics Data System (ADS)
Gui, Luying; He, Jian; Qiu, Yudong; Yang, Xiaoping
2017-01-01
This paper presents a variational level set approach to segment lesions with compact shapes on medical images. In this study, we investigate to address the problem of segmentation for hepatocellular carcinoma which are usually of various shapes, variable intensities, and weak boundaries. An efficient constraint which is called the isoperimetric constraint to describe the compactness of shapes is applied in this method. In addition, in order to ensure the precise segmentation and stable movement of the level set, a distance regularization is also implemented in the proposed variational framework. Our method is applied to segment various hepatocellular carcinoma regions on Computed Tomography images with promising results. Comparison results also prove that the proposed method is more accurate than other two approaches.
Improvement of infrared single-photon detectors absorptance by integrated plasmonic structures
Csete, Mária; Sipos, Áron; Szalai, Anikó; Najafi, Faraz; Szabó, Gábor; Berggren, Karl K.
2013-01-01
Plasmonic structures open novel avenues in photodetector development. Optimized illumination configurations are reported to improve p-polarized light absorptance in superconducting-nanowire single-photon detectors (SNSPDs) comprising short- and long-periodic niobium-nitride (NbN) stripe-patterns. In OC-SNSPDs consisting of ~quarter-wavelength dielectric layer closed by a gold reflector the highest absorptance is attainable at perpendicular incidence onto NbN patterns in P-orientation due to E-field concentration at the bottom of nano-cavities. In NCAI-SNSPDs integrated with nano-cavity-arrays consisting of vertical and horizontal gold segments off-axis illumination in S-orientation results in polar-angle-independent perfect absorptance via collective resonances in short-periodic design, while in long-periodic NCAI-SNSPDs grating-coupled surface waves promote EM-field transportation to the NbN stripes and result in local absorptance maxima. In NCDAI-SNSPDs integrated with nano-cavity-deflector-array consisting of longer vertical gold segments large absorptance maxima appear in 3p-periodic designs due to E-field enhancement via grating-coupled surface waves synchronized with the NbN stripes in S-orientation, which enable to compensate fill-factor-related retrogression. PMID:23934331
A Revolute Joint With Linear Load-Displacement Response for Precision Deployable Structures
NASA Technical Reports Server (NTRS)
Lake, Mark S.; Warren, Peter A.; Peterson, Lee D.
1996-01-01
NASA Langley Research center is developing key structures and mechanisms technologies for micron-accuracy, in-space deployment of future space instruments. Achieving micron-accuracy deployment requires significant advancements in deployment mechanism design such as the revolute joint presented herein. The joint presented herein exhibits a load-cycling response that is essentially linear with less than two percent hysteresis, and the joint rotates with less than one in.-oz. of resistance. A prototype reflector metering truss incorporating the joint exhibits only a few microns of kinematic error under repeated deployment and impulse loading. No other mechanically deployable structure found in literature has been demonstrated to be this kinematically accurate.
Inverting Image Data For Optical Testing And Alignment
NASA Technical Reports Server (NTRS)
Shao, Michael; Redding, David; Yu, Jeffrey W.; Dumont, Philip J.
1993-01-01
Data from images produced by slightly incorrectly figured concave primary mirror in telescope processed into estimate of spherical aberration of mirror, by use of algorithm finding nonlinear least-squares best fit between actual images and synthetic images produced by multiparameter mathematical model of telescope optical system. Estimated spherical aberration, in turn, converted into estimate of deviation of reflector surface from nominal precise shape. Algorithm devised as part of effort to determine error in surface figure of primary mirror of Hubble space telescope, so corrective lens designed. Modified versions of algorithm also used to find optical errors in other components of telescope or of other optical systems, for purposes of testing, alignment, and/or correction.
Bandwidth Study of the Microwave Reflectors with Rectangular Corrugations
NASA Astrophysics Data System (ADS)
Zhang, Liang; He, Wenlong; Donaldson, Craig R.; Cross, Adrian W.
2016-09-01
The mode-selective microwave reflector with periodic rectangular corrugations in the inner surface of a circular metallic waveguide is studied in this paper. The relations between the bandwidth and reflection coefficient for different numbers of corrugation sections were studied through a global optimization method. Two types of reflectors were investigated. One does not consider the phase response and the other does. Both types of broadband reflectors operating at W-band were machined and measured to verify the numerical simulations.
Distributed Bragg Reflectors With Reduced Optical Absorption
Klem, John F.
2005-08-16
A new class of distributed Bragg reflectors has been developed. These distributed Bragg reflectors comprise interlayers positioned between sets of high-index and low-index quarter-wave plates. The presence of these interlayers is to reduce photon absorption resulting from spatially indirect photon-assisted electronic transitions between the high-index and low-index quarter wave plates. The distributed Bragg reflectors have applications for use in vertical-cavity surface-emitting lasers for use at 1.55 .mu.m and at other wavelengths of interest.
Durability of reflector materials in the space environment
NASA Technical Reports Server (NTRS)
Whitaker, Ann F.; Finckenor, Miria M.; Edwards, David; Kamenetzky, Rachel R.; Linton, Roger C.
1995-01-01
Various reflector configurations were flown as part of the Long Duration Exposure Facility (LDEF) A0171 experiment. These reflectors consisted of nickel substrates with aluminum, enhanced aluminum (multiple layers of aluminum and silver), silver, and silver alloy coatings with glassy ceramic overcoatings. These samples have been evaluated for changes in reflectance due to 5.8 years in the space environment. The reflector materials have also been evaluated using angstrometer, Rutherford backscattering (RBS), and electron spectroscopy for chemical analysis (ESCA) techniques.
Bifacial PV cell with reflector for stand-alone mast for sensor powering purposes
NASA Astrophysics Data System (ADS)
Jakobsen, Michael L.; Thorsteinsson, Sune; Poulsen, Peter B.; Riedel, N.; Rødder, Peter M.; Rødder, Kristin
2017-09-01
Reflectors to bifacial PV-cells are simulated and prototyped in this work. The aim is to optimize the reflector to specific latitudes, and particularly northern latitudes. Specifically, by using minimum semiconductor area the reflector must be able to deliver the electrical power required at the condition of minimum solar travel above the horizon, worst weather condition etc. We will test a bifacial PV-module with a retroreflector, and compare the output with simulations combined with local solar data.
Wavelength-controlled external-cavity laser with a silicon photonic crystal resonant reflector
NASA Astrophysics Data System (ADS)
Gonzalez-Fernandez, A. A.; Liles, Alexandros A.; Persheyev, Saydulla; Debnath, Kapil; O'Faolain, Liam
2016-03-01
We report the experimental demonstration of an alternative design of external-cavity hybrid lasers consisting of a III-V Semiconductor Optical Amplifier with fiber reflector and a Photonic Crystal (PhC) based resonant reflector on SOI. The Silicon reflector comprises a polymer (SU8) bus waveguide vertically coupled to a PhC cavity and provides a wavelength-selective optical feedback to the laser cavity. This device exhibits milliwatt-level output power and sidemode suppression ratio of more than 25 dB.
Projections of limiting states for load-bearing structures of reflectors made of polymer composites
NASA Astrophysics Data System (ADS)
Doronin, S. V.
2017-12-01
This paper deals with limiting states typical for reflector antennas for terrestrial satellite communication systems. Reflectors made of polymer composites are studied. These limiting states are projected by results of the numerical analysis of the stress and strain states. The analysis is executed for reflectors under conditions of static and dynamic loading. It takes into account both overshoot of the state variables of allowed level and the processes of long-term structural material degradation.
NASA Astrophysics Data System (ADS)
Bruns, S.; Stipp, S. L. S.; Sørensen, H. O.
2017-09-01
Digital rock physics carries the dogmatic concept of having to segment volume images for quantitative analysis but segmentation rejects huge amounts of signal information. Information that is essential for the analysis of difficult and marginally resolved samples, such as materials with very small features, is lost during segmentation. In X-ray nanotomography reconstructions of Hod chalk we observed partial volume voxels with an abundance that limits segmentation based analysis. Therefore, we investigated the suitability of greyscale analysis for establishing statistical representative elementary volumes (sREV) for the important petrophysical parameters of this type of chalk, namely porosity, specific surface area and diffusive tortuosity, by using volume images without segmenting the datasets. Instead, grey level intensities were transformed to a voxel level porosity estimate using a Gaussian mixture model. A simple model assumption was made that allowed formulating a two point correlation function for surface area estimates using Bayes' theory. The same assumption enables random walk simulations in the presence of severe partial volume effects. The established sREVs illustrate that in compacted chalk, these simulations cannot be performed in binary representations without increasing the resolution of the imaging system to a point where the spatial restrictions of the represented sample volume render the precision of the measurement unacceptable. We illustrate this by analyzing the origins of variance in the quantitative analysis of volume images, i.e. resolution dependence and intersample and intrasample variance. Although we cannot make any claims on the accuracy of the approach, eliminating the segmentation step from the analysis enables comparative studies with higher precision and repeatability.
Method for grinding precision components
Ramanath, Srinivasan; Kuo, Shih Yee; Williston, William H.; Buljan, Sergej-Tomislav
2000-01-01
A method for precision cylindrical grinding of hard brittle materials, such as ceramics or glass and composites comprising ceramics or glass, provides material removal rates as high as 19-380 cm.sup.3 /min/cm. The abrasive tools used in the method comprise a strong, light weight wheel core bonded to a continuous rim of abrasive segments containing superabrasive grain in a dense metal bond matrix.
Automated estimation of leaf distribution for individual trees based on TLS point clouds
NASA Astrophysics Data System (ADS)
Koma, Zsófia; Rutzinger, Martin; Bremer, Magnus
2017-04-01
Light Detection and Ranging (LiDAR) especially the ground based LiDAR (Terrestrial Laser Scanning - TLS) is an operational used and widely available measurement tool supporting forest inventory updating and research in forest ecology. High resolution point clouds from TLS already represent single leaves which can be used for a more precise estimation of Leaf Area Index (LAI) and for higher accurate biomass estimation. However, currently the methodology for extracting single leafs from the unclassified point clouds for individual trees is still missing. The aim of this study is to present a novel segmentation approach in order to extract single leaves and derive features related to leaf morphology (such as area, slope, length and width) of each single leaf from TLS point cloud data. For the study two exemplary single trees were scanned in leaf-on condition on the university campus of Innsbruck during calm wind conditions. A northern red oak (Quercus rubra) was scanned by a discrete return recording Optech ILRIS-3D TLS scanner and a tulip tree (Liliodendron tulpifera) with Riegl VZ-6000 scanner. During the scanning campaign a reference dataset was measured parallel to scanning. In this case 230 leaves were randomly collected around the lower branches of the tree and photos were taken. The developed workflow steps were the following: in the first step normal vectors and eigenvalues were calculated based on the user specified neighborhood. Then using the direction of the largest eigenvalue outliers i.e. ghost points were removed. After that region growing segmentation based on the curvature and angles between normal vectors was applied on the filtered point cloud. On each segment a RANSAC plane fitting algorithm was applied in order to extract the segment based normal vectors. Using the related features of the calculated segments the stem and branches were labeled as non-leaf and other segments were classified as leaf. The validation of the different segmentation parameters was evaluated as the following: i) the sum area of the collected leaves and the point cloud, ii) the segmented leaf length-width ratio iii) the distribution of the leaf area for the segmented and the reference-ones were compared and the ideal parameter-set was found. The results show that the leaves can be captured with the developed workflow and the slope can be determined robustly for the segmented leaves. However, area, length and width values are systematically depending on the angle and the distance from the scanner. For correction of the systematic underestimation, more systematic measurement or LiDAR simulation is required for further detailed analysis. The results of leaf segmentation algorithm show high potential in generating more precise tree models with correctly located leaves in order to extract more precise input model for biological modeling of LAI or atmospheric corrections studies. The presented workflow also can be used in monitoring the change of angle of the leaves due to sun irradiation, water balance, and day-night rhythm.
Orbital radar evidence for lunar subsurface layering in Maria Serenitatis and Crisium
NASA Technical Reports Server (NTRS)
Peeples, W. J.; Sill, W. R.; May, T. W.; Ward, S. H.; Phillips, R. J.; Jordan, R. L.; Abbott, E. A.; Killpack, T. J.
1978-01-01
Data from the lunar-orbiting Apollo 17 radar sounding experiment (60-m wavelength) have been examined in both digital and holographic formats, and it is concluded that there are two subsurface radar reflectors below the surface in Mare Serenitatis and one reflector below the surface in Mare Crisium. The mean apparent depths of the reflectors below the surface of the former Mare are 0.9 and 1.6 km, while the reflector below the surface of the latter Mare has a mean depth of 1.4 km. These reflectors represent basin-wide subsurface interfaces. Techniques for reducing surface backscatter (clutter) in the data are described, and reasons for thinking that the distinct alignments in radar returns represent subsurface reflecting horizons are explained
Two-way reflector based on two-dimensional sub-wavelength high-index contrast grating on SOI
NASA Astrophysics Data System (ADS)
Kaur, Harpinder; Kumar, Mukesh
2016-05-01
A two-dimensional (2D) high-index contrast grating (HCG) is proposed as a two-way reflector on Silicon-on-insulator (SOI). The proposed reflector provides high reflectivity over two (practically important) sets of angles of incidence- normal (θ = 0 °) and oblique/grazing (θ = 80 ° - 85 ° / 90 °). Analytical model of 2D HCG is presented using improved Fourier modal method. The vertical incidence is useful for application in VCSEL while oblique/grazing incidence can be utilized in high confinement (HCG mirrors based) hollow waveguides and Bragg reflectors. The proposed two-way reflector also exhibits a large reflection bandwidth (around telecom wavelength) which is an advantage for broadband photonic devices.
Strategy for reflector pattern calculation - Let the computer do the work
NASA Technical Reports Server (NTRS)
Lam, P. T.; Lee, S.-W.; Hung, C. C.; Acosta, R.
1986-01-01
Using high frequency approximations, the secondary pattern of a reflector antenna can be calculated by numerically evaluating a radiation integral I(u,v). In recent years, tremendous effort has been expended to reducing I(u,v) to Fourier integrals. These reduction schemes are invariably reflector geometry dependent. Hence, different analyses/computer software development must be carried out for different reflector shapes/boundaries. It is pointed out, that, as the computer power improves, these reduction schemes are no longer necessary. Comparable accuracy and computation time can be achieved by evaluating I(u,v) by a brute force FFT described in this note. Furthermore, there is virtually no restriction on the reflector geometry by using the brute force FFT.
NASA Technical Reports Server (NTRS)
Lee, M. C.; Wang, T. G. (Inventor)
1983-01-01
An acoustic levitation system is described, with single acoustic source and a small reflector to stably levitate a small object while the object is processed as by coating or heating it. The system includes a concave acoustic source which has locations on opposite sides of its axis that vibrate towards and away from a focal point to generate a converging acoustic field. A small reflector is located near the focal point, and preferably slightly beyond it, to create an intense acoustic field that stably supports a small object near the reflector. The reflector is located about one-half wavelength from the focal point and is concavely curved to a radius of curvature (L) of about one-half the wavelength, to stably support an object one-quarter wavelength (N) from the reflector.
Strategy for reflector pattern calculation: Let the computer do the work
NASA Technical Reports Server (NTRS)
Lam, P. T.; Lee, S. W.; Hung, C. C.; Acousta, R.
1985-01-01
Using high frequency approximations, the secondary pattern of a reflector antenna can be calculated by numerically evaluating a radiation integral I(u,v). In recent years, tremendous effort has been expended to reducing I(u,v) to Fourier integrals. These reduction schemes are invariably reflector geometry dependent. Hence, different analyses/computer software development must be carried out for different reflector shapes/boundaries. it is pointed out, that, as the computer power improves, these reduction schemes are no longer necessary. Comparable accuracy and computation time can be achieved by evaluating I(u,v) by a brute force FFT described in this note. Furthermore, there is virtually no restriction on the reflector geometry by using the brute force FFT.
Image segmentation on adaptive edge-preserving smoothing
NASA Astrophysics Data System (ADS)
He, Kun; Wang, Dan; Zheng, Xiuqing
2016-09-01
Nowadays, typical active contour models are widely applied in image segmentation. However, they perform badly on real images with inhomogeneous subregions. In order to overcome the drawback, this paper proposes an edge-preserving smoothing image segmentation algorithm. At first, this paper analyzes the edge-preserving smoothing conditions for image segmentation and constructs an edge-preserving smoothing model inspired by total variation. The proposed model has the ability to smooth inhomogeneous subregions and preserve edges. Then, a kind of clustering algorithm, which reasonably trades off edge-preserving and subregion-smoothing according to the local information, is employed to learn the edge-preserving parameter adaptively. At last, according to the confidence level of segmentation subregions, this paper constructs a smoothing convergence condition to avoid oversmoothing. Experiments indicate that the proposed algorithm has superior performance in precision, recall, and F-measure compared with other segmentation algorithms, and it is insensitive to noise and inhomogeneous-regions.
Adaptive segmentation of nuclei in H&S stained tendon microscopy
NASA Astrophysics Data System (ADS)
Chuang, Bo-I.; Wu, Po-Ting; Hsu, Jian-Han; Jou, I.-Ming; Su, Fong-Chin; Sun, Yung-Nien
2015-12-01
Tendiopathy is a popular clinical issue in recent years. In most cases like trigger finger or tennis elbow, the pathology change can be observed under H and E stained tendon microscopy. However, the qualitative analysis is too subjective and thus the results heavily depend on the observers. We develop an automatic segmentation procedure which segments and counts the nuclei in H and E stained tendon microscopy fast and precisely. This procedure first determines the complexity of images and then segments the nuclei from the image. For the complex images, the proposed method adopts sampling-based thresholding to segment the nuclei. While for the simple images, the Laplacian-based thresholding is employed to re-segment the nuclei more accurately. In the experiments, the proposed method is compared with the experts outlined results. The nuclei number of proposed method is closed to the experts counted, and the processing time of proposed method is much faster than the experts'.
Adaptive Nulling in Hybrid Reflector Antennas
1992-09-01
correction of reflector distortion and vernier beamsteering, MEEE Trans. Antennas Propagat, 36:1351-1358. 4 Cherrette , A.R., et al (1989) Compensation of...Propagat, 36:1351-1358. 4. Cherrette , A.R., et al (1989) Compensation of reflector antenna surface distortion using an array feed,IEEE Trans. Antennas
A comparison of reflector antenna designs for wide-angle scanning
NASA Technical Reports Server (NTRS)
Zimmerman, M.; Lee, S. W.; Houshmand, B.; Rahmatsamii, Y.; Acosta, R. J.
1989-01-01
Conventional reflector antennas are typically designed for up to + or - 20 beamwidths scan. An attempt was made to stretch this scan range to some + or - 300 beamwidths. Six single and dual reflector antennas were compared. It is found that a symmetrical parabolic reflector with f/D = 2 and a single circular waveguide feed has the minimum scan loss (only 0.6 dB at Theta sub 0 = 8 deg, or a 114 beamwidths scan). The scan is achieved by tilting the parabolic reflector by an angle equal to the half-scan angle. The f/D may be shortened if a cluster 7 to 19 elements instead of one element is used for the feed. The cluster excitation is adjusted for each new beam scan direction to compensate for the imperfect field distribution over the reflector aperture. The antenna can be folded into a Cassegrain configuration except that, due to spillover and blockage considerations, the amount of folding achievable is small.
NASA Technical Reports Server (NTRS)
Acosta, Roberto J.
1988-01-01
The feasibility of electromagnetic compensation for reflector antenna surface distortions is investigated. The performance characteristics of large satellite communication reflector antenna systems degrade as the reflector surface distorts, mainly due to thermal effects from solar radiation. The technique developed can be used to maintain the antenna boresight directivity and sidelobe level independent of thermal effects on the reflector surface. With the advent of monolithic microwave integrated circuits (MMIC), a greater flexibility in array fed reflector antenna systems can be achieved. MMIC arrays provide independent control of amplitude and phase for each of the many radiating elements in the feed array. By assuming a known surface distortion profile, a simulation study is carried out to examine the antenna performance as a function of feed array size and number of elements. Results indicate that the compensation technique can effectively control boresight directivity and sidelobe level under peak surface distortion in the order of tenth of a wavelength.
Photogrammetrically Measured Distortions of Composite Structure Microwave Reflectors at -90K
NASA Technical Reports Server (NTRS)
Mule, Peter; Hill, Michael D.; Sampler, Henry P.
2000-01-01
The Microwave Anisotropy Probe (MAP) Observatory, scheduled for a late 2000 launch, is designed to measure temperature fluctuations (anisotropy) and produce a high sensitivity and high spatial resolution (better than 0.3 deg. at 90 GHz.) map of the Cosmic Microwave Background (CMB) radiation over the entire sky between 22 and 90 GHz. MAP utilizes back-to-back composite Gregorian telescopes supported on a composite truss structure to focus the microwave signals into 10 differential microwave receivers. Proper position and shape of the telescope reflectors at the operating temperature of -90 K is a critical element to ensure mission success. We describe the methods and analysis used to validate the in-flight position and shape predictions for the reflectors based on photogrammetric metrology data taken under vacuum with the reflectors at -90 K. Contour maps showing reflector distortion were generated. The resulting reflector distortion data are shown to be crucial to the analytical assessment of the MAP instrument's microwave system in-flight performance.
NASA Technical Reports Server (NTRS)
Mule, Peter; Hill, Michael D.; Sampler, Henry P.
2000-01-01
The Microwave Anisotropy Probe (MAP) Observatory, scheduled for a fall 2000 launch, is designed to measure temperature fluctuations (anisotropy) and produce a high sensitivity and high spatial resolution (better than 0.3 deg.) map of the cosmic microwave background (CMB) radiation over the entire sky between 22 and 90 GHz. MAP utilizes back-to-back composite Gregorian telescopes supported on a composite truss structure to focus the microwave signals into 10 differential microwave receivers. Proper position and shape of the telescope reflectors at the operating temperature of approximately 90 K is a critical element to ensuring mission success. We describe the methods and analysis used to validate the in-flight position and shape predictions for the reflectors based on photogrammetric (PG) metrology data taken under vacuum with the reflectors at approximately 90 K. Contour maps showing reflector distortion analytical extrapolations were generated. The resulting reflector distortion data are shown to be crucial to the analytical assessment of the MAP instrument's microwave system in-flight performance.
Numerical form-finding method for large mesh reflectors with elastic rim trusses
NASA Astrophysics Data System (ADS)
Yang, Dongwu; Zhang, Yiqun; Li, Peng; Du, Jingli
2018-06-01
Traditional methods for designing a mesh reflector usually treat the rim truss as rigid. Due to large aperture, light weight and high accuracy requirements on spaceborne reflectors, the rim truss deformation is indeed not negligible. In order to design a cable net with asymmetric boundaries for the front and rear nets, a cable-net form-finding method is firstly introduced. Then, the form-finding method is embedded into an iterative approach for designing a mesh reflector considering the elasticity of the supporting rim truss. By iterations on form-findings of the cable-net based on the updated boundary conditions due to the rim truss deformation, a mesh reflector with a fairly uniform tension distribution in its equilibrium state could be finally designed. Applications on offset mesh reflectors with both circular and elliptical rim trusses are illustrated. The numerical results show the effectiveness of the proposed approach and that a circular rim truss is more stable than an elliptical rim truss.
Computer prediction of large reflector antenna radiation properties
NASA Technical Reports Server (NTRS)
Botula, A.
1980-01-01
A FORTRAN program for calculating reflector antenna radiation patterns was rewritten and extended to include reflectors composed of a number of panels. These individual panels must be analytic surfaces. The theoretical foundation for the program is as follows: Geometrical optics techniques are used to trace rays from a feed antenna to the reflector surface and back to a mathematical plane just in front of the reflector. The resulting tangential electric field distribution, assumed to be the only source of forward radiation, is integrated numerically to calculate the radiation pattern for a desired set of angles. When the reflector is composed of more than one panel, each panel is treated as a separated antenna, the ray-tracing procedure and integration being repeated for each panel. The results of the individual aperture plane integrations are stored and summed to yield the relative electric field strength over the angles of interest. An example and several test cases are included to demonstrate the use of the program and verify the new method of computation.
InGaAs multiple quantum well modulating retro-reflector for free-space optical communications
NASA Astrophysics Data System (ADS)
Rabinovich, William S.; Gilbreath, G. Charmaine; Goetz, Peter G.; Mahon, Rita; Katzer, D. Scott; Ikossi-Anastasiou, Kiki; Binari, Steven C.; Meehan, Timothy J.; Stell, Mena F.; Sokolsky, Ilene; Vasquez, John A.; Vilcheck, Michael J.
2002-01-01
Modulating retro-reflectors provide means for free space optical communication without the need for a laser, telescope or pointer tracker on one end of the link. These systems work by coupling a retro-reflector with an electro- optic shutter. The modulating retro-reflector is then interrogated by a cw laser beam from a conventional optical communications system and returns a modulated signal beam to the interrogator. Over the last few years the Naval Research Laboratory has developed modulating retro-reflector based on corner cubes and large area Transmissive InGaAs multiple quantum well modulators. These devices can allow optical links at speeds up to about 10 Mbps. We will discuss the critical performance characteristics of such systems including modulating rate, power consumption, optical contrast ratio and operating wavelength. In addition a new modulating retro-reflector architecture based upon cat s eye retroreflectors will be discussed. This architecture has the possibility for data rates of hundreds of megabits per second at power consumptions below 100 mW.
NASA Astrophysics Data System (ADS)
Iwasaki, Takaya; Adachi, Keiji; Moriya, Takeo; Miyamachi, Hiroki; Matsushima, Takeshi; Miyashita, Kaoru; Takeda, Testsuya; Taira, Takaaki; Yamada, Tomoaki; Ohtake, Kazuo
2004-09-01
The Hidaka Collision Zone (HCZ), central Hokkaido, Japan, is a good target for studies of crustal evolution and deformation processes associated with an arc-arc collision. The collision of the Kuril Arc (KA) with the Northeast Japan Arc (NJA), which started in the middle Miocene, is considered to be a controlling factor for the formation of the Hidaka Mountains, the westward obduction of middle/lower crustal rocks of the KA (the Hidaka Metamorphic Belt (HMB)) and the development of the foreland fold-and-thrust belt on the NJA side. The "Hokkaido Transect" project undertaken from 1998 to 2000 was a multidisciplinary effort intended to reveal structural heterogeneity across this collision zone by integrated geophysical/geological research including seismic refraction/reflection surveys and earthquake observations. An E-W trending 227 km-long refraction/wide-angle reflection profile found a complicated structural variation from the KA to the NJA across the HCZ. In the east of the HCZ, the hinterland region is covered with 4-4.5 km thick highly undulated Neogene sedimentary layers, beneath which two eastward dipping reflectors were imaged in a depth range of 10-25 km, probably representing the layer boundaries of the obducting middle/lower crust of the KA. The HMB crops out on the westward extension of these reflectors with relatively high Vp (>6.0 km/s) and Vp/Vs (>1.80) consistent with middle/lower crustal rocks. Beneath these reflectors, more flat and westward dipping reflector sequences are situated at the 25-27 km depth, forming a wedge-like geometry. This distribution pattern indicates that the KA crust has been delaminated into more than two segments under our profile. In the western part of the transect, the structure of the fold-and-thrust belt is characterized by a very thick (5-8 km) sedimentary package with a velocity of 2.5-4.8 km/s. This package exhibits one or two velocity reversals in Paleogene sedimentary layers, probably formed by imbrication associated with the collision process. From the horizontal distribution of these velocity reversals and other geophysical/geological data, the rate of crustal shortening in this area is estimated to be greater than 3-4 mm/year, which corresponds to 40-50% of the total convergence rate between the NJA and the Eurasian Plate. This means that the fold-and-thrust belt west of the HCZ is absorbing a large amount of crustal deformation associated with plate interaction across Hokkaido Island.
2013-01-01
Animals have been described as segmented for more than 2,000 years, yet a precise definition of segmentation remains elusive. Here we give the history of the definition of segmentation, followed by a discussion on current controversies in defining a segment. While there is a general consensus that segmentation involves the repetition of units along the anterior-posterior (a-p) axis, long-running debates exist over whether a segment can be composed of only one tissue layer, whether the most anterior region of the arthropod head is considered segmented, and whether and how the vertebrate head is segmented. Additionally, we discuss whether a segment can be composed of a single cell in a column of cells, or a single row of cells within a grid of cells. We suggest that ‘segmentation’ be used in its more general sense, the repetition of units with a-p polarity along the a-p axis, to prevent artificial classification of animals. We further suggest that this general definition be combined with an exact description of what is being studied, as well as a clearly stated hypothesis concerning the specific nature of the potential homology of structures. These suggestions should facilitate dialogue among scientists who study vastly differing segmental structures. PMID:24345042
NASA Astrophysics Data System (ADS)
Wu, Jing; Gerendas, Bianca S.; Waldstein, Sebastian M.; Simader, Christian; Schmidt-Erfurth, Ursula
2014-03-01
Spectral-domain Optical Coherence Tomography (SD-OCT) is a non-invasive modality for acquiring high reso- lution, three-dimensional (3D) cross sectional volumetric images of the retina and the subretinal layers. SD-OCT also allows the detailed imaging of retinal pathology, aiding clinicians in the diagnosis of sight degrading diseases such as age-related macular degeneration (AMD) and glaucoma.1 Disease diagnosis, assessment, and treatment requires a patient to undergo multiple OCT scans, possibly using different scanning devices, to accurately and precisely gauge disease activity, progression and treatment success. However, the use of OCT imaging devices from different vendors, combined with patient movement may result in poor scan spatial correlation, potentially leading to incorrect patient diagnosis or treatment analysis. Image registration can be used to precisely compare disease states by registering differing 3D scans to one another. In order to align 3D scans from different time- points and vendors using registration, landmarks are required, the most obvious being the retinal vasculature. Presented here is a fully automated cross-vendor method to acquire retina vessel locations for OCT registration from fovea centred 3D SD-OCT scans based on vessel shadows. Noise filtered OCT scans are flattened based on vendor retinal layer segmentation, to extract the retinal pigment epithelium (RPE) layer of the retina. Voxel based layer profile analysis and k-means clustering is used to extract candidate vessel shadow regions from the RPE layer. In conjunction, the extracted RPE layers are combined to generate a projection image featuring all candidate vessel shadows. Image processing methods for vessel segmentation of the OCT constructed projection image are then applied to optimize the accuracy of OCT vessel shadow segmentation through the removal of false positive shadow regions such as those caused by exudates and cysts. Validation of segmented vessel shadows uses ground truth vessel shadow regions identified by expert graders at the Vienna Reading Center (VRC). The results presented here are intended to show the feasibility of this method for the accurate and precise extraction of suitable retinal vessel shadows from multiple vendor 3D SD-OCT scans for use in intra-vendor and cross-vendor 3D OCT registration, 2D fundus registration and actual retinal vessel segmentation. The resulting percentage of true vessel shadow segments to false positive segments identified by the proposed system compared to mean grader ground truth is 95%.
Convergence studies of deterministic methods for LWR explicit reflector methodology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Canepa, S.; Hursin, M.; Ferroukhi, H.
2013-07-01
The standard approach in modem 3-D core simulators, employed either for steady-state or transient simulations, is to use Albedo coefficients or explicit reflectors at the core axial and radial boundaries. In the latter approach, few-group homogenized nuclear data are a priori produced with lattice transport codes using 2-D reflector models. Recently, the explicit reflector methodology of the deterministic CASMO-4/SIMULATE-3 code system was identified to potentially constitute one of the main sources of errors for core analyses of the Swiss operating LWRs, which are all belonging to GII design. Considering that some of the new GIII designs will rely on verymore » different reflector concepts, a review and assessment of the reflector methodology for various LWR designs appeared as relevant. Therefore, the purpose of this paper is to first recall the concepts of the explicit reflector modelling approach as employed by CASMO/SIMULATE. Then, for selected reflector configurations representative of both GII and GUI designs, a benchmarking of the few-group nuclear data produced with the deterministic lattice code CASMO-4 and its successor CASMO-5, is conducted. On this basis, a convergence study with regards to geometrical requirements when using deterministic methods with 2-D homogenous models is conducted and the effect on the downstream 3-D core analysis accuracy is evaluated for a typical GII deflector design in order to assess the results against available plant measurements. (authors)« less
NASA Astrophysics Data System (ADS)
Azuma, R.; Hino, R.; Machida, Y.; Murai, Y.; Takanami, T.; Mochizuki, K.; Yamada, T.; Shinohara, M.; Kanazawa, T.; Sato, T.
2007-12-01
The seismogenic zone in the southern Kuril Trench can be divided into two segments by the Kushiro Canyon, the Nemuro segment to the east and the Tokachi segment to the west. Except for the giant compound earthquake in 17th century, [e.g. Sawai et al., 2002], M8 class earthquakes have occurred repeatedly within each of these segments. The 1952 and 2003 Tokachi earthquakes are considered to be repeated rupture of the asperity of the Tokachi-oki segment. In order to reveal the seismic velocity structure related to the rupture propagation or suspension along the plate boundary, we made a seismic survey across the segment boundary between the Nemuro and Tokachi segments. In the experiment, we deployed 16 OBSs along a seismic line with about 180 km length and shot 75 liter airgun to correct wide-angle seismic data, and MCS survey was also made simultaneously. The profile ran through the focal areas of the 2003 Tokachi and the 1973 Nemuro earthquakes along the strike of the Kuril Trench. The first arrival times observed by the OBSs are inverted for 2-D P-wave velocity distribution and locations of major reflectors are imaged by using traveltime mapping method (TMM) [Fujie et al., 2005]. In the obtained crustal velocity model, sedimentary layers with Vp < 4.8 km/s shows significant variation along the profile. In the rupture area of the 2003 Tokachi earthquake, their total thickness is about 8 km, it decrease to about 4 km in the segment boundary zone around the Kushiro Canyon. In the Vp model obtained by Nakanishi et al [2004], the layer with Vp of about 5~6 km/s was interpreted as the upper crustal layer of the Kuril arc. But the present result of the TMM shows that there is a distinct reflective boundary within the layer, which separating the layer into upper and lower units. Judging from its large vertical velocity gradient, the upper unit may be old sedimentary unit. Wells et al [2003] pointed out the correlation between the low gravity anomaly (LGA) zones and areas of large coseismic slip. Based on this relation, they discussed that sedimentary basins are developed above locked portions of the plate boundaries due to basal erosion, including the Tokachi segment. Our structure model demonstrates that a thick sedimentary pond is actually developed in the LGA corresponding to the asperity of the Tokachi segment.
Code of Federal Regulations, 2013 CFR
2013-10-01
... reflector. When non-reflector or non-circular aperture antennas are employed, an equivalent diameter can be.... Earth Station on Vessel (“ESV”). An ESV is an earth station onboard a craft designed for traveling on... Internet or World Wide Web on-line filing forms. Equivalent diameter. When circular aperture reflector...
Jha, Abhinav K.; Mena, Esther; Caffo, Brian; Ashrafinia, Saeed; Rahmim, Arman; Frey, Eric; Subramaniam, Rathan M.
2017-01-01
Abstract. Recently, a class of no-gold-standard (NGS) techniques have been proposed to evaluate quantitative imaging methods using patient data. These techniques provide figures of merit (FoMs) quantifying the precision of the estimated quantitative value without requiring repeated measurements and without requiring a gold standard. However, applying these techniques to patient data presents several practical difficulties including assessing the underlying assumptions, accounting for patient-sampling-related uncertainty, and assessing the reliability of the estimated FoMs. To address these issues, we propose statistical tests that provide confidence in the underlying assumptions and in the reliability of the estimated FoMs. Furthermore, the NGS technique is integrated within a bootstrap-based methodology to account for patient-sampling-related uncertainty. The developed NGS framework was applied to evaluate four methods for segmenting lesions from F-Fluoro-2-deoxyglucose positron emission tomography images of patients with head-and-neck cancer on the task of precisely measuring the metabolic tumor volume. The NGS technique consistently predicted the same segmentation method as the most precise method. The proposed framework provided confidence in these results, even when gold-standard data were not available. The bootstrap-based methodology indicated improved performance of the NGS technique with larger numbers of patient studies, as was expected, and yielded consistent results as long as data from more than 80 lesions were available for the analysis. PMID:28331883
Molloi, Sabee; Ding, Huanjun; Feig, Stephen
2015-01-01
Purpose The purpose of this study was to compare the precision of mammographic breast density measurement using radiologist reader assessment, histogram threshold segmentation, fuzzy C-mean segmentation and spectral material decomposition. Materials and Methods Spectral mammography images from a total of 92 consecutive asymptomatic women (50–69 years old) who presented for annual screening mammography were retrospectively analyzed for this study. Breast density was estimated using 10 radiologist reader assessment, standard histogram thresholding, fuzzy C-mean algorithm and spectral material decomposition. The breast density correlation between left and right breasts was used to assess the precision of these techniques to measure breast composition relative to dual-energy material decomposition. Results In comparison to the other techniques, the results of breast density measurements using dual-energy material decomposition showed the highest correlation. The relative standard error of estimate for breast density measurements from left and right breasts using radiologist reader assessment, standard histogram thresholding, fuzzy C-mean algorithm and dual-energy material decomposition was calculated to be 1.95, 2.87, 2.07 and 1.00, respectively. Conclusion The results indicate that the precision of dual-energy material decomposition was approximately factor of two higher than the other techniques with regard to better correlation of breast density measurements from right and left breasts. PMID:26031229
Xu, Yupeng; Yan, Ke; Kim, Jinman; Wang, Xiuying; Li, Changyang; Su, Li; Yu, Suqin; Xu, Xun; Feng, Dagan David
2017-01-01
Worldwide, polypoidal choroidal vasculopathy (PCV) is a common vision-threatening exudative maculopathy, and pigment epithelium detachment (PED) is an important clinical characteristic. Thus, precise and efficient PED segmentation is necessary for PCV clinical diagnosis and treatment. We propose a dual-stage learning framework via deep neural networks (DNN) for automated PED segmentation in PCV patients to avoid issues associated with manual PED segmentation (subjectivity, manual segmentation errors, and high time consumption).The optical coherence tomography scans of fifty patients were quantitatively evaluated with different algorithms and clinicians. Dual-stage DNN outperformed existing PED segmentation methods for all segmentation accuracy parameters, including true positive volume fraction (85.74 ± 8.69%), dice similarity coefficient (85.69 ± 8.08%), positive predictive value (86.02 ± 8.99%) and false positive volume fraction (0.38 ± 0.18%). Dual-stage DNN achieves accurate PED quantitative information, works with multiple types of PEDs and agrees well with manual delineation, suggesting that it is a potential automated assistant for PCV management. PMID:28966847
Xu, Yupeng; Yan, Ke; Kim, Jinman; Wang, Xiuying; Li, Changyang; Su, Li; Yu, Suqin; Xu, Xun; Feng, Dagan David
2017-09-01
Worldwide, polypoidal choroidal vasculopathy (PCV) is a common vision-threatening exudative maculopathy, and pigment epithelium detachment (PED) is an important clinical characteristic. Thus, precise and efficient PED segmentation is necessary for PCV clinical diagnosis and treatment. We propose a dual-stage learning framework via deep neural networks (DNN) for automated PED segmentation in PCV patients to avoid issues associated with manual PED segmentation (subjectivity, manual segmentation errors, and high time consumption).The optical coherence tomography scans of fifty patients were quantitatively evaluated with different algorithms and clinicians. Dual-stage DNN outperformed existing PED segmentation methods for all segmentation accuracy parameters, including true positive volume fraction (85.74 ± 8.69%), dice similarity coefficient (85.69 ± 8.08%), positive predictive value (86.02 ± 8.99%) and false positive volume fraction (0.38 ± 0.18%). Dual-stage DNN achieves accurate PED quantitative information, works with multiple types of PEDs and agrees well with manual delineation, suggesting that it is a potential automated assistant for PCV management.
An accurate real-time model of maglev planar motor based on compound Simpson numerical integration
NASA Astrophysics Data System (ADS)
Kou, Baoquan; Xing, Feng; Zhang, Lu; Zhou, Yiheng; Liu, Jiaqi
2017-05-01
To realize the high-speed and precise control of the maglev planar motor, a more accurate real-time electromagnetic model, which considers the influence of the coil corners, is proposed in this paper. Three coordinate systems for the stator, mover and corner coil are established. The coil is divided into two segments, the straight coil segment and the corner coil segment, in order to obtain a complete electromagnetic model. When only take the first harmonic of the flux density distribution of a Halbach magnet array into account, the integration method can be carried out towards the two segments according to Lorenz force law. The force and torque analysis formula of the straight coil segment can be derived directly from Newton-Leibniz formula, however, this is not applicable to the corner coil segment. Therefore, Compound Simpson numerical integration method is proposed in this paper to solve the corner segment. With the validation of simulation and experiment, the proposed model has high accuracy and can realize practical application easily.
On a methodology for robust segmentation of nonideal iris images.
Schmid, Natalia A; Zuo, Jinyu
2010-06-01
Iris biometric is one of the most reliable biometrics with respect to performance. However, this reliability is a function of the ideality of the data. One of the most important steps in processing nonideal data is reliable and precise segmentation of the iris pattern from remaining background. In this paper, a segmentation methodology that aims at compensating various nonidealities contained in iris images during segmentation is proposed. The virtue of this methodology lies in its capability to reliably segment nonideal imagery that is simultaneously affected with such factors as specular reflection, blur, lighting variation, occlusion, and off-angle images. We demonstrate the robustness of our segmentation methodology by evaluating ideal and nonideal data sets, namely, the Chinese Academy of Sciences iris data version 3 interval subdirectory, the iris challenge evaluation data, the West Virginia University (WVU) data, and the WVU off-angle data. Furthermore, we compare our performance to that of our implementation of Camus and Wildes's algorithm and Masek's algorithm. We demonstrate considerable improvement in segmentation performance over the formerly mentioned algorithms.
Causal Video Object Segmentation From Persistence of Occlusions
2015-05-01
Precision, recall, and F-measure are reported on the ground truth anno - tations converted to binary masks. Note we cannot evaluate “number of...to lack of occlusions. References [1] P. Arbelaez, M. Maire, C. Fowlkes, and J . Malik. Con- tour detection and hierarchical image segmentation. TPAMI...X. Bai, J . Wang, D. Simons, and G. Sapiro. Video snapcut: robust video object cutout using localized classifiers. In ACM Transactions on Graphics
Automatic seed selection for segmentation of liver cirrhosis in laparoscopic sequences
NASA Astrophysics Data System (ADS)
Sinha, Rahul; Marcinczak, Jan Marek; Grigat, Rolf-Rainer
2014-03-01
For computer aided diagnosis based on laparoscopic sequences, image segmentation is one of the basic steps which define the success of all further processing. However, many image segmentation algorithms require prior knowledge which is given by interaction with the clinician. We propose an automatic seed selection algorithm for segmentation of liver cirrhosis in laparoscopic sequences which assigns each pixel a probability of being cirrhotic liver tissue or background tissue. Our approach is based on a trained classifier using SIFT and RGB features with PCA. Due to the unique illumination conditions in laparoscopic sequences of the liver, a very low dimensional feature space can be used for classification via logistic regression. The methodology is evaluated on 718 cirrhotic liver and background patches that are taken from laparoscopic sequences of 7 patients. Using a linear classifier we achieve a precision of 91% in a leave-one-patient-out cross-validation. Furthermore, we demonstrate that with logistic probability estimates, seeds with high certainty of being cirrhotic liver tissue can be obtained. For example, our precision of liver seeds increases to 98.5% if only seeds with more than 95% probability of being liver are used. Finally, these automatically selected seeds can be used as priors in Graph Cuts which is demonstrated in this paper.
16 CFR 1512.16 - Requirements for reflectors.
Code of Federal Regulations, 2011 CFR
2011-01-01
..., preferred assembly method that shall insure that the reflector meets the optical requirements of this...(m)(2). The reflectors and/or mounts shall incorporate a distinct, preferred assembly method that... on the rim. (2) If the retroreflective material is applied to the rim in the form of a self-adhesive...
49 CFR Appendix B to Part 224 - Reflectorization Implementation Compliance Report
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 4 2012-10-01 2012-10-01 false Reflectorization Implementation Compliance Report B Appendix B to Part 224 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION REFLECTORIZATION OF RAIL FREIGHT ROLLING STOCK Pt. 224, App. B Appendix B to Part 224...
Concentrating Solar Power Projects - Puerto Errado 2 Thermosolar Power
linear Fresnel reflector system. Status Date: April 26, 2013 Project Overview Project Name: Puerto Errado . (Novatec Biosol AG) (15%) Technology: Linear Fresnel reflector Turbine Capacity: Net: 30.0 MW Gross: 30.0 ? Background Technology: Linear Fresnel reflector Status: Operational Country: Spain City: Calasparra Region
Analysis and test of a 16-foot radial rib reflector developmental model
NASA Technical Reports Server (NTRS)
Birchenough, Shawn A.
1989-01-01
Analytical and experimental modal tests were performed to determine the vibrational characteristics of a 16-foot diameter radial rib reflector model. Single rib analyses and experimental tests provided preliminary information relating to the reflector. A finite element model predicted mode shapes and frequencies of the reflector. The analyses correlated well with the experimental tests, verifying the modeling method used. The results indicate that five related, characteristic mode shapes form a group. The frequencies of the modes are determined by the relative phase of the radial ribs.
REFLECTOR CONTROL OF A BOILING-WATER REACTOR
Treshow, M.
1962-05-22
A line connecting the reactor with a spent steam condenser contains a valve set to open when the pressure in the reactor exceeds a predetermined value and an orifice on the upstream side of the valve. Another line connects the reflector with this line between the orifice and the valve. An excess steam pressure causes the valve to open and the flow of steam through the line draws water out of the reflector. Provision is also made for adding water to the reflector when the steam pressure drops. (AEC)
A high-powered siren for stable acoustic levitation of dense materials in the earth's gravity
NASA Technical Reports Server (NTRS)
Gammel, Paul M.; Croonquist, Arvid P.; Wang, Taylor G.
1988-01-01
Levitation of large dense samples (e.g., 1-cm diameter steel balls) has been performed in a 1-g environment. A siren was used to study the effects of reflector geometry and variable-frequency operation in order to attain stable acoustic positioning. The harmonic content and spatial distribution of the acoustic field have been investigated. The best stability was obtained with an open reflector system, using a flat lower reflector and a slightly concave upper reflector while operating at a frequency slightly below resonance.
Liles, Alexandros A; Debnath, Kapil; O'Faolain, Liam
2016-03-01
We report the experimental demonstration of a new design for external cavity hybrid lasers consisting of a III-V semiconductor optical amplifier (SOA) with fiber reflector and a photonic crystal (PhC)-based resonant reflector on SOI. The silicon reflector is composed of an SU8 polymer bus waveguide vertically coupled to a PhC cavity and provides a wavelength-selective optical feedback to the laser cavity. This device exhibits milliwatt-level output power and side-mode suppression ratios of more than 25 dB.
Sampling for area estimation: A comparison of full-frame sampling with the sample segment approach
NASA Technical Reports Server (NTRS)
Hixson, M.; Bauer, M. E.; Davis, B. J. (Principal Investigator)
1979-01-01
The author has identified the following significant results. Full-frame classifications of wheat and non-wheat for eighty counties in Kansas were repetitively sampled to simulate alternative sampling plans. Evaluation of four sampling schemes involving different numbers of samples and different size sampling units shows that the precision of the wheat estimates increased as the segment size decreased and the number of segments was increased. Although the average bias associated with the various sampling schemes was not significantly different, the maximum absolute bias was directly related to sampling size unit.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neilson, Jeffrey M.
A cylindrical waveguide with a mode converter transforms a whispering gallery mode from a gyrotron cylindrical waveguide with a helical cut launch edge to a quasi-Gaussian beam suitable for conveyance through a corrugated waveguide. This quasi-Gaussian beam is radiated away from the waveguide using a spiral cut launch edge, which is in close proximity to a first mode converting reflector. The first mode converting reflector is coupled to a second mode converting reflector which provides an output free-space HE11 mode wave suitable for direct coupling into a corrugated waveguide. The radiated beam produced at the output of the second modemore » converting reflector is substantially circular.« less
New adaptive method to optimize the secondary reflector of linear Fresnel collectors
Zhu, Guangdong
2017-01-16
Performance of linear Fresnel collectors may largely depend on the secondary-reflector profile design when small-aperture absorbers are used. Optimization of the secondary-reflector profile is an extremely challenging task because there is no established theory to ensure superior performance of derived profiles. In this work, an innovative optimization method is proposed to optimize the secondary-reflector profile of a generic linear Fresnel configuration. The method correctly and accurately captures impacts of both geometric and optical aspects of a linear Fresnel collector to secondary-reflector design. The proposed method is an adaptive approach that does not assume a secondary shape of any particular form,more » but rather, starts at a single edge point and adaptively constructs the next surface point to maximize the reflected power to be reflected to absorber(s). As a test case, the proposed optimization method is applied to an industrial linear Fresnel configuration, and the results show that the derived optimal secondary reflector is able to redirect more than 90% of the power to the absorber in a wide range of incidence angles. Here, the proposed method can be naturally extended to other types of solar collectors as well, and it will be a valuable tool for solar-collector designs with a secondary reflector.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Percher, C. M.; Heinrichs, D. P.; Kim, S. K.
2016-07-18
This report documents the results of final design (CED-2) for IER 203, BERP Ball Composite Reflection, and focuses on critical configurations with a 4.5 kg α-phase plutonium sphere reflected by a combination of thin high-density polyethylene (HDPE) backed by a thick nickel reflector. The Lawrence Livermore National Laboratory’s (LLNL’s) Nuclear Criticality Safety Division, in support of fissile material operations, calculated surprisingly reactive configurations when a fissile core was surrounded by a thin, moderating reflector backed by a thick metal reflector. These composite reflector configurations were much more reactive than either of the single reflector materials separately. The calculated findings havemore » resulted in a stricter-than-anticipated criticality control set, impacting programmatic work. IER 203 was requested in response to these seemingly anomalous calculations to see if the composite reflection effect could be shown experimentally. This report focuses on the Beryllium Reflected Plutonium (BERP) ball as a fissile material core reflected by polyethylene and nickel. A total of four critical configurations were designed as part of CED-2. Fabrication costs are estimated to be $98,500, largely due to the cost of the large nickel reflectors. The IER 203 experiments could reasonably be expected to begin in early FY2017.« less
Solar central receiver heliostat reflector assembly
Horton, Richard H.; Zdeb, John J.
1980-01-01
A heliostat reflector assembly for a solar central receiver system comprises a light-weight, readily assemblable frame which supports a sheet of stretchable reflective material and includes mechanism for selectively applying tension to and positioning the sheet to stretch it to optical flatness. The frame is mounted on and supported by a pipe pedestal assembly that, in turn, is installed in the ground. The frame is controllably driven in a predetermined way by a light-weight drive system so as to be angularly adjustable in both elevation and azimuth to track the sun and efficiently continuously reflect the sun's rays to a focal zone, i.e. central receiver, which forms part of a solar energy utilization system, such as a solar energy fueled electrical power generation system. The frame may include a built-in system for testing for optical flatness of the reflector. The preferable geometric configuration of the reflector is octagonal; however, it may be other shapes, such as hexagonal, pentagonal or square. Several different embodiments of means for tensioning and positioning the reflector to achieve optical flatness are disclosed. The reflector assembly is based on the stretch frame concept which provides an extremely light-weight, simple, low-cost reflector assembly that may be driven for positioning and tracking by a light-weight, inexpensive drive system.
New adaptive method to optimize the secondary reflector of linear Fresnel collectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Guangdong
Performance of linear Fresnel collectors may largely depend on the secondary-reflector profile design when small-aperture absorbers are used. Optimization of the secondary-reflector profile is an extremely challenging task because there is no established theory to ensure superior performance of derived profiles. In this work, an innovative optimization method is proposed to optimize the secondary-reflector profile of a generic linear Fresnel configuration. The method correctly and accurately captures impacts of both geometric and optical aspects of a linear Fresnel collector to secondary-reflector design. The proposed method is an adaptive approach that does not assume a secondary shape of any particular form,more » but rather, starts at a single edge point and adaptively constructs the next surface point to maximize the reflected power to be reflected to absorber(s). As a test case, the proposed optimization method is applied to an industrial linear Fresnel configuration, and the results show that the derived optimal secondary reflector is able to redirect more than 90% of the power to the absorber in a wide range of incidence angles. Here, the proposed method can be naturally extended to other types of solar collectors as well, and it will be a valuable tool for solar-collector designs with a secondary reflector.« less
NASA Technical Reports Server (NTRS)
Hunt, W. D.; Brennan, K. F.; Summers, C. J.; Cameron, Thomas P.
1996-01-01
This thesis addresses the acoustoelectric issues concerning the amplification of surface acoustic waves (SAWs) and the reflection of SAWs from slanted reflector gratings on GaAs, with application to a novel acoustic charge transport (ACT) device architecture. First a simple model of the SAWAMP was developed, which was subsequently used to define the epitaxially grown material structure necessary to provide simultaneously high resistance and high electron mobility. In addition, a segmented SAWAMP structure was explored with line widths on the order of an acoustic wavelength. This resulted in the demonstration of SAWAMPS with an order of magnitude less voltage and power requirements than previously reported devices. A two-dimensional model was developed to explain the performance of devices with charge confinement layers less then 0.5 mm, which was experimentally verified. This model was extended to predict a greatly increased gain from the addition of a ZnO overlay. These overlays were experimentally attempted, but no working devices were reported due to process incompatibilities. In addition to the SAWAMP research, the reflection of SAWs from slanted gratings on GaAs was also studied and experimentally determined reflection coefficients for both 45 deg grooves and Al stripes on GaAs have been reported for the first time. The SAWAMp and reflector gratings were combined to investigate the integrated ring oscillator for application to the proposed ACT device and design parameters for this device have been provided.
NASA Astrophysics Data System (ADS)
Dangi, Shusil; Linte, Cristian A.
2017-03-01
Segmentation of right ventricle from cardiac MRI images can be used to build pre-operative anatomical heart models to precisely identify regions of interest during minimally invasive therapy. Furthermore, many functional parameters of right heart such as right ventricular volume, ejection fraction, myocardial mass and thickness can also be assessed from the segmented images. To obtain an accurate and computationally efficient segmentation of right ventricle from cardiac cine MRI, we propose a segmentation algorithm formulated as an energy minimization problem in a graph. Shape prior obtained by propagating label from an average atlas using affine registration is incorporated into the graph framework to overcome problems in ill-defined image regions. The optimal segmentation corresponding to the labeling with minimum energy configuration of the graph is obtained via graph-cuts and is iteratively refined to produce the final right ventricle blood pool segmentation. We quantitatively compare the segmentation results obtained from our algorithm to the provided gold-standard expert manual segmentation for 16 cine-MRI datasets available through the MICCAI 2012 Cardiac MR Right Ventricle Segmentation Challenge according to several similarity metrics, including Dice coefficient, Jaccard coefficient, Hausdorff distance, and Mean absolute distance error.
A new user-assisted segmentation and tracking technique for an object-based video editing system
NASA Astrophysics Data System (ADS)
Yu, Hong Y.; Hong, Sung-Hoon; Lee, Mike M.; Choi, Jae-Gark
2004-03-01
This paper presents a semi-automatic segmentation method which can be used to generate video object plane (VOP) for object based coding scheme and multimedia authoring environment. Semi-automatic segmentation can be considered as a user-assisted segmentation technique. A user can initially mark objects of interest around the object boundaries and then the user-guided and selected objects are continuously separated from the unselected areas through time evolution in the image sequences. The proposed segmentation method consists of two processing steps: partially manual intra-frame segmentation and fully automatic inter-frame segmentation. The intra-frame segmentation incorporates user-assistance to define the meaningful complete visual object of interest to be segmentation and decides precise object boundary. The inter-frame segmentation involves boundary and region tracking to obtain temporal coherence of moving object based on the object boundary information of previous frame. The proposed method shows stable efficient results that could be suitable for many digital video applications such as multimedia contents authoring, content based coding and indexing. Based on these results, we have developed objects based video editing system with several convenient editing functions.
Modification to area navigation equipment for instrument two-segment approaches
NASA Technical Reports Server (NTRS)
1975-01-01
A two-segment aircraft landing approach concept utilizing an area random navigation (RNAV) system to execute the two-segment approach and eliminate the requirements for co-located distance measuring equipment (DME) was investigated. This concept permits non-precision approaches to be made to runways not equipped with ILS systems, down to appropriate minima. A hardware and software retrofit kit for the concept was designed, built, and tested on a DC-8-61 aircraft for flight evaluation. A two-segment approach profile and piloting procedure for that aircraft that will provide adequate safety margin under adverse weather, in the presence of system failures, and with the occurrence of an abused approach, was also developed. The two-segment approach procedure and equipment was demonstrated to line pilots under conditions which are representative of those encountered in air carrier service.
Inline microring reflector for photonic applications
NASA Astrophysics Data System (ADS)
Kang, Young Mo
The microring is a compact resonator that is used as a versatile building block in photonic circuits ranging from filters, modulators, logic gates, sensors, switches, multiplexers, and laser cavities. The Bragg grating is a periodic structure that allows the selection of a narrow bandwidth of spectrum for stable lasing operation. In this dissertation, we study analysis and simulations of a compact microring based reflector assembled by forming a Bragg grating into a loop. With the appropriate design, the microring resonance can precisely align with the reflection peak of the grating while all other peaks are suppressed by reflection nulls of the grating. The field buildup at the resonance effectively amplifies small reflection of the grating, thereby producing significant overall reflection from the ring, and it is possible to achieve a stable narrow linewidth compact laser by forming a single mode laser cavity. The device operation principle is studied from two distinct perspectives; the first looks at coupling of two contra-directional traveling waves within the ring whereas the second aspect investigates relative excitation of the two competing microring resonant modes. In the former method, we relate the steady state amplitudes of the two traveling waves to the reflection spectrum of the grating and solve for the reflection and transmission response for each wavelength of interest. In the latter approach, we expand the field in terms of the resonant modes of the ring cavity and derive transfer functions for reflection and transmission from the nearby mode frequencies. The angular periodicity of the reflective microring geometry allows us to effectively simulate the resonant modes from a computational domain of a single period grating when the continuity boundary condition is applied. We successfully predict the reflection and transmission response of a Si3N 4/SiO2 microring reflector using this method---otherwise too large to carry out full-wave simulation---and show that the prediction agrees very well with the measurement result.
Highlight summarization in golf videos using audio signals
NASA Astrophysics Data System (ADS)
Kim, Hyoung-Gook; Kim, Jin Young
2008-01-01
In this paper, we present an automatic summarization of highlights in golf videos based on audio information alone without video information. The proposed highlight summarization system is carried out based on semantic audio segmentation and detection on action units from audio signals. Studio speech, field speech, music, and applause are segmented by means of sound classification. Swing is detected by the methods of impulse onset detection. Sounds like swing and applause form a complete action unit, while studio speech and music parts are used to anchor the program structure. With the advantage of highly precise detection of applause, highlights are extracted effectively. Our experimental results obtain high classification precision on 18 golf games. It proves that the proposed system is very effective and computationally efficient to apply the technology to embedded consumer electronic devices.
Jha, Abhinav K.; Kupinski, Matthew A.; Rodríguez, Jeffrey J.; Stephen, Renu M.; Stopeck, Alison T.
2012-01-01
In many studies, the estimation of the apparent diffusion coefficient (ADC) of lesions in visceral organs in diffusion-weighted (DW) magnetic resonance images requires an accurate lesion-segmentation algorithm. To evaluate these lesion-segmentation algorithms, region-overlap measures are used currently. However, the end task from the DW images is accurate ADC estimation, and the region-overlap measures do not evaluate the segmentation algorithms on this task. Moreover, these measures rely on the existence of gold-standard segmentation of the lesion, which is typically unavailable. In this paper, we study the problem of task-based evaluation of segmentation algorithms in DW imaging in the absence of a gold standard. We first show that using manual segmentations instead of gold-standard segmentations for this task-based evaluation is unreliable. We then propose a method to compare the segmentation algorithms that does not require gold-standard or manual segmentation results. The no-gold-standard method estimates the bias and the variance of the error between the true ADC values and the ADC values estimated using the automated segmentation algorithm. The method can be used to rank the segmentation algorithms on the basis of both accuracy and precision. We also propose consistency checks for this evaluation technique. PMID:22713231
NASA Astrophysics Data System (ADS)
Bellefleur, G.; Calvert, A. J.; Chouteau, M. C.
1997-07-01
True three-dimensional reflector orientations can be derived from prestack seismic reflection data where a seismic profile is particularly crooked. This is accomplished by estimating a measure of coherency along travel time trajectories defined by the azimuth, dip, and depth of a reflector and the medium velocity. Results from Lithoprobe line 48, located in the Opatica belt of the Archean Superior Province, differentiate reflectors with two distinct orientations, which coincide with the attitudes of two deformational fabrics mapped at surface. Assuming a connection between reflectivity and strain induced by tectonic processes, the reflectors with NNE strikes and shallow dips toward the east are correlated with surface evidence for early west vergent thrusting in the Opatica belt. Other reflectors, which strike ENE-WSW and dip shallowly to the north and to the south, indicate that most of the reflectors in the southern Opatica and beneath the Abitibi greenstone belt at middle and lower crustal levels formed during a later, approximately N-S shortening event. Mantle reflections previously interpreted as a relict suture of an Archean subduction zone dip to the north at around 30°-45° and are also associated with this N-S event. The distribution of reflector orientations estimated at the crooked parts of line 48 indicates that much of the Opatica crust was reworked during the N-S shortening event, although a region of the middle and lower crust, characterized by the earlier D1 reflectors, is preserved in the central part of the belt.
NASA Astrophysics Data System (ADS)
Zhang, Chao; Zhang, Qian; Zheng, Chi; Qiu, Guoping
2018-04-01
Video foreground segmentation is one of the key problems in video processing. In this paper, we proposed a novel and fully unsupervised approach for foreground object co-localization and segmentation of unconstrained videos. We firstly compute both the actual edges and motion boundaries of the video frames, and then align them by their HOG feature maps. Then, by filling the occlusions generated by the aligned edges, we obtained more precise masks about the foreground object. Such motion-based masks could be derived as the motion-based likelihood. Moreover, the color-base likelihood is adopted for the segmentation process. Experimental Results show that our approach outperforms most of the State-of-the-art algorithms.
Kéchichian, Razmig; Valette, Sébastien; Desvignes, Michel; Prost, Rémy
2013-11-01
We derive shortest-path constraints from graph models of structure adjacency relations and introduce them in a joint centroidal Voronoi image clustering and Graph Cut multiobject semiautomatic segmentation framework. The vicinity prior model thus defined is a piecewise-constant model incurring multiple levels of penalization capturing the spatial configuration of structures in multiobject segmentation. Qualitative and quantitative analyses and comparison with a Potts prior-based approach and our previous contribution on synthetic, simulated, and real medical images show that the vicinity prior allows for the correct segmentation of distinct structures having identical intensity profiles and improves the precision of segmentation boundary placement while being fairly robust to clustering resolution. The clustering approach we take to simplify images prior to segmentation strikes a good balance between boundary adaptivity and cluster compactness criteria furthermore allowing to control the trade-off. Compared with a direct application of segmentation on voxels, the clustering step improves the overall runtime and memory footprint of the segmentation process up to an order of magnitude without compromising the quality of the result.
A power function profile of a ski jumping in-run hill.
Zanevskyy, Ihor
2011-01-01
The aim of the research was to find a function of the curvilinear segment profile which could make possible to avoid an instantaneous increasing of a curvature and to replace a circle arc segment on the in-run of a ski jump without any correction of the angles of inclination and the length of the straight-line segments. The methods of analytical geometry and trigonometry were used to calculate an optimal in-run hill profile. There were two fundamental conditions of the model: smooth borders between a curvilinear segment and straight-line segments of an in-run hill and concave of the curvilinear segment. Within the framework of this model, the problem has been solved with a reasonable precision. Four functions of a curvilinear segment profile of the in-run hill were investigated: circle arc, inclined quadratic parabola, inclined cubic parabola, and power function. The application of a power function to the in-run profile satisfies equal conditions for replacing a circle arc segment. Geometrical parameters of 38 modern ski jumps were investigated using the methods proposed.
Yannouleas, Constantine; Romanovsky, Igor; Landman, Uzi
2015-01-20
Graphene's isolation launched explorations of fundamental relativistic physics originating from the planar honeycomb lattice arrangement of the carbon atoms, and of potential technological applications in nanoscale electronics. Bottom-up fabricated atomically-precise segmented graphene nanoribbons, SGNRs, open avenues for studies of electrical transport, coherence, and interference effects in metallic, semiconducting, and mixed GNRs, with different edge terminations. Conceptual and practical understanding of electric transport through SGNRs is gained through nonequilibrium Green's function (NEGF) conductance calculations and a Dirac continuum model that absorbs the valence-to-conductance energy gaps as position-dependent masses, including topological-in-origin mass-barriers at the contacts between segments. The continuum model reproduces themore » NEGF results, including optical Dirac Fabry-Pérot (FP) equidistant oscillations for massless relativistic carriers in metallic armchair SGNRs, and an unequally-spaced FP pattern for mixed armchair-zigzag SGNRs where carriers transit from a relativistic (armchair) to a nonrelativistic (zigzag) regime. This provides a unifying framework for analysis of coherent transport phenomena and interpretation of forthcoming experiments in SGNRs.« less
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 4 2011-10-01 2011-10-01 false Guidelines for Electronic Submission of Reflectorization Implementation Compliance Reports C Appendix C to Part 224 Transportation Other Regulations... REFLECTORIZATION OF RAIL FREIGHT ROLLING STOCK Pt. 224, App. C Appendix C to Part 224—Guidelines for Electronic...
Shaping off-axis metallic membrane reflectors using optimal boundary shapes and inelastic strains
NASA Technical Reports Server (NTRS)
White, C. V.; Dragovan, M.
2004-01-01
This paper will describe a novel concept for constructing off-axis membrane reflector surfaces. Membrane reflectors have been extensively studied, including investigations into inflated lenticular architectures, shaping by spin casting, shaping using electrostatic forces, and shaping by evacuating behind a membrane surface stretched between circular or annular-shaped supports.
49 CFR 393.26 - Requirements for reflectors.
Code of Federal Regulations, 2010 CFR
2010-10-01
... case of motor vehicles so constructed that requirement for a 381 mm (15-inch) minimum height above the... used in lieu of reflex reflectors if the material as used on the vehicle, meets the performance... motor vehicle. (3) Such surfaces shall be at least 3 inches from any required lamp or reflector unless...
Phased-array-fed antenna configuration study. Volume 1: Technology assessment
NASA Technical Reports Server (NTRS)
Sorbello, R. M.; Zaghloul, A. I.; Lee, B. S.; Siddiqi, S.; Geller, B. D.; Gerson, H. I.; Srinivas, D. N.
1983-01-01
The status of the technologies for phased-array-fed dual reflector systems is reviewed. The different aspects of these technologies, including optical performances, phased array systems, problems encountered in phased array design, beamforming networks, MMIC design and its incorporation into waveguide systems, reflector antenna structures, and reflector deployment mechanisms are addressed.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 4 2014-10-01 2014-10-01 false Guidelines for Electronic Submission of Reflectorization Implementation Compliance Reports C Appendix C to Part 224 Transportation Other Regulations... REFLECTORIZATION OF RAIL FREIGHT ROLLING STOCK Pt. 224, App. C Appendix C to Part 224—Guidelines for Electronic...
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 4 2013-10-01 2013-10-01 false Guidelines for Electronic Submission of Reflectorization Implementation Compliance Reports C Appendix C to Part 224 Transportation Other Regulations... REFLECTORIZATION OF RAIL FREIGHT ROLLING STOCK Pt. 224, App. C Appendix C to Part 224—Guidelines for Electronic...
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 4 2012-10-01 2012-10-01 false Guidelines for Electronic Submission of Reflectorization Implementation Compliance Reports C Appendix C to Part 224 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION REFLECTORIZATION OF RAIL FREIGHT ROLLING STOCK Pt...
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Guidelines for Electronic Submission of Reflectorization Implementation Compliance Reports C Appendix C to Part 224 Transportation Other Regulations... REFLECTORIZATION OF RAIL FREIGHT ROLLING STOCK Pt. 224, App. C Appendix C to Part 224—Guidelines for Electronic...
Slope Error Measurement Tool for Solar Parabolic Trough Collectors: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stynes, J. K.; Ihas, B.
2012-04-01
The National Renewable Energy Laboratory (NREL) has developed an optical measurement tool for parabolic solar collectors that measures the combined errors due to absorber misalignment and reflector slope error. The combined absorber alignment and reflector slope errors are measured using a digital camera to photograph the reflected image of the absorber in the collector. Previous work using the image of the reflection of the absorber finds the reflector slope errors from the reflection of the absorber and an independent measurement of the absorber location. The accuracy of the reflector slope error measurement is thus dependent on the accuracy of themore » absorber location measurement. By measuring the combined reflector-absorber errors, the uncertainty in the absorber location measurement is eliminated. The related performance merit, the intercept factor, depends on the combined effects of the absorber alignment and reflector slope errors. Measuring the combined effect provides a simpler measurement and a more accurate input to the intercept factor estimate. The minimal equipment and setup required for this measurement technique make it ideal for field measurements.« less
Low-loss off-axis feeds for symmetric dual-reflector antennas
NASA Technical Reports Server (NTRS)
Veruttipong, T.; Galindo-Israel, V.; Imbriale, W.
1986-01-01
Circularly symmetric, dual reflector, high gain antenna systems often require feeds placed off the system's axis because of the need for multiple feeds to use the reflector antenna. Also, the constraint requiring the hyperboloid or shaped subreflector to remain circularly symmetric is sometimes added. In a Cassegrainian system, the subreflector and feed may be rotated off axis around the paraboloid focus and retain main reflector focusing. However, substantial spillover results in considerable noise with a high gain/low noise temperature system. In a shaped system, the tilt of the shaped subreflector and feed together results in substantial defocusing as well as spillover noise. If the subreflector is tilted approximately one-half the angle of the feed tilt in either the Cassegrainian or the dual shaped reflector antenna, it is found that spillover and noise are substantially reduced with tolerable defocusing. An extensive numerical analysis of these effects was conducted to determine the characteristics of a planned 70-meter, dual shaped reflector versus Cassegrainian antenna and to gain some understanding of the cause of the observed effects.
NASA Technical Reports Server (NTRS)
Stutzman, W. L.; Smith, W. T.
1990-01-01
Surface errors on parabolic reflector antennas degrade the overall performance of the antenna. Space antenna structures are difficult to build, deploy and control. They must maintain a nearly perfect parabolic shape in a harsh environment and must be lightweight. Electromagnetic compensation for surface errors in large space reflector antennas can be used to supplement mechanical compensation. Electromagnetic compensation for surface errors in large space reflector antennas has been the topic of several research studies. Most of these studies try to correct the focal plane fields of the reflector near the focal point and, hence, compensate for the distortions over the whole radiation pattern. An alternative approach to electromagnetic compensation is presented. The proposed technique uses pattern synthesis to compensate for the surface errors. The pattern synthesis approach uses a localized algorithm in which pattern corrections are directed specifically towards portions of the pattern requiring improvement. The pattern synthesis technique does not require knowledge of the reflector surface. It uses radiation pattern data to perform the compensation.
Discharge lamp with reflective jacket
MacLennan, Donald A.; Turner, Brian P.; Kipling, Kent
2001-01-01
A discharge lamp includes an envelope, a fill which emits light when excited disposed in the envelope, a source of excitation power coupled to the fill to excite the fill and cause the fill to emit light, and a reflector disposed around the envelope and defining an opening, the reflector being configured to reflect some of the light emitted by the fill back into the fill while allowing some light to exit through the opening. The reflector may be made from a material having a similar thermal index of expansion as compared to the envelope and which is closely spaced to the envelope. The envelope material may be quartz and the reflector material may be either silica or alumina. The reflector may be formed as a jacket having a rigid structure which does not adhere to the envelope. The lamp may further include an optical clement spaced from the envelope and configured to reflect an unwanted component of light which exited the envelope back into the envelope through the opening in the reflector. Light which can be beneficially recaptured includes selected wavelength regions, a selected polarization, and selected angular components.
Zheng, Jie; Ge, Chun; Wagner, Clark J; Lu, Meng; Cunningham, Brian T; Hewitt, J Darby; Eden, J Gary
2012-06-18
Continuous tuning over a 1.6 THz region in the near-infrared (842.5-848.6 nm) has been achieved with a hybrid ring/external cavity laser having a single, optically-driven grating reflector and gain provided by an injection-seeded semiconductor amplifier. Driven at 532 nm and incorporating a photonic crystal with an azobenzene overlayer, the reflector has a peak reflectivity of ~80% and tunes at the rate of 0.024 nm per mW of incident green power. In a departure from conventional ring or external cavity lasers, the frequency selectivity for this system is provided by the passband of the tunable photonic crystal reflector and line narrowing in a high gain amplifier. Sub - 0.1 nm linewidths and amplifier extraction efficiencies above 97% are observed with the reflector tuned to 842.5 nm.
Ury, M.; Sowers, F.; Harper, C.; Love, W.
1998-11-24
A microwave powered electrodeless lamp includes an improved screen unit having mesh and solid sections with an internal reflector secured at the juncture of the two sections to reflect light into a light-transmitting chamber defined in the lamp microwave cavity by the reflector and the mesh section. A discharge envelope of a bulb is disposed in the light-transmitting chamber. Light emitted from the envelope is prevented by the reflector from entering the cavity portion bounded by the solid section of the screen. The reflector is mounted in the cavity by tabs formed in the screen unit and bendable into the cavity to define support planes abutting respective surfaces of the reflector. The mesh section and tabs are preferably formed by etching a thin metal sheet. 7 figs.
Ury, Michael; Sowers, Frank; Harper, Curt; Love, Wayne
1998-01-01
A microwave powered electrodeless lamp includes an improved screen unit having mesh and solid sections with an internal reflector secured at the juncture of the two sections to reflect light into a light-transmitting chamber defined in the lamp microwave cavity by the reflector and the mesh section. A discharge envelope of a bulb is disposed in the light-transmitting chamber. Light emitted from the envelope is prevented by the reflector from entering the cavity portion bounded by the solid section of the screen. The reflector is mounted in the cavity by tabs formed in the screen unit and bendable into the cavity to define support planes abutting respective surfaces of the reflector. The mesh section and tabs are preferably formed by etching a thin metal sheet.
Acoustic levitation with self-adaptive flexible reflectors.
Hong, Z Y; Xie, W J; Wei, B
2011-07-01
Two kinds of flexible reflectors are proposed and examined in this paper to improve the stability of single-axis acoustic levitator, especially in the case of levitating high-density and high-temperature samples. One kind is those with a deformable reflecting surface, and the other kind is those with an elastic support, both of which are self-adaptive to the change of acoustic radiation pressure. High-density materials such as iridium (density 22.6 gcm(-3)) are stably levitated at room temperature with a soft reflector made of colloid as well as a rigid reflector supported by a spring. In addition, the containerless melting and solidification of binary In-Bi eutectic alloy (melting point 345.8 K) and ternary Ag-Cu-Ge eutectic alloy (melting point 812 K) are successfully achieved by applying the elastically supported reflector with the assistance of a laser beam.
Acoustic levitation with self-adaptive flexible reflectors
NASA Astrophysics Data System (ADS)
Hong, Z. Y.; Xie, W. J.; Wei, B.
2011-07-01
Two kinds of flexible reflectors are proposed and examined in this paper to improve the stability of single-axis acoustic levitator, especially in the case of levitating high-density and high-temperature samples. One kind is those with a deformable reflecting surface, and the other kind is those with an elastic support, both of which are self-adaptive to the change of acoustic radiation pressure. High-density materials such as iridium (density 22.6 gcm-3) are stably levitated at room temperature with a soft reflector made of colloid as well as a rigid reflector supported by a spring. In addition, the containerless melting and solidification of binary In-Bi eutectic alloy (melting point 345.8 K) and ternary Ag-Cu-Ge eutectic alloy (melting point 812 K) are successfully achieved by applying the elastically supported reflector with the assistance of a laser beam.