Science.gov

Sample records for preconditioning induces neuroprotective

  1. Cell signaling in NMDA preconditioning and neuroprotection in convulsions induced by quinolinic acid.

    PubMed

    Severino, Patricia Cardoso; Muller, Gabriele do Amaral Silva; Vandresen-Filho, Samuel; Tasca, Carla Inês

    2011-10-10

    The search for novel, less invasive therapeutic strategies to treat neurodegenerative diseases has stimulated scientists to investigate the mechanisms involved in preconditioning. Preconditioning has been report to occur in many organs and tissues. In the brain, the modulation of glutamatergic transmission is an important and promising target to the use of effective neuroprotective agents. The glutamatergic excitotoxicity is a factor common to neurodegenerative diseases and acute events such as cerebral ischemia, traumatic brain injury and epilepsy. In this review we focus on the neuroprotection and preconditioning by chemical agents. Specially, chemical preconditioning models using N-methyl-d-aspartate (NMDA) pre-treatment, which has demonstrated to lead to neuroprotection against seizures and damage to neuronal tissue induced by quinolinic acid (QA). Here we attempted to gather important results obtained in the study of cellular and molecular mechanisms involved in NMDA preconditioning and neuroprotection.

  2. The dual role of prostaglandin E(2) in excitotoxicity and preconditioning-induced neuroprotection.

    PubMed

    Gendron, Tania F; Brunette, Eric; Tauskela, Joseph S; Morley, Paul

    2005-07-04

    Cyclooxygenase-2 is harmful in models of cerebral ischemia yet plays a protective role in preconditioning-induced ischemic tolerance in the heart. This study examined the mechanisms underlying cyclooxygenase-2-mediated neurotoxicity and preconditioning-induced neuroprotection in an in vitro model of cerebral ischemia. Inhibition of cyclooxygenase-2 protects cortical neuronal cultures from death induced by oxygen-glucose deprivation and reduces oxygen-glucose deprivation-induced increases in intracellular Ca(2+) ([Ca(2+)](i)). In the present study, we determined if prostaglandin E(2) (PGE(2)) is responsible for this cyclooxygenase-2-mediated effect. Rat cortical cultures expressed mRNA for the prostanoid EP(1)-EP(4) receptors. PGE(2) reversed the attenuation in [Ca(2+)](i) and the protection offered by cyclooxygenase-2 inhibition during oxygen-glucose deprivation. These effects likely occur via activation of the prostanoid EP(1) receptor since blocking this receptor during oxygen-glucose deprivation reduced [Ca(2+)](i) and neurotoxicity. Next, we considered if the moderate activation of this pathway, by preconditioning cultures with sub-lethal oxygen-glucose deprivation, influenced the development of tolerance to an otherwise lethal oxygen-glucose deprivation insult, 48 h later. Inhibition of cyclooxygenase-2 during oxygen-glucose deprivation-preconditioning abolished preconditioning-induced protection. Furthermore, cultures were rendered tolerant to oxygen-glucose deprivation by the transient exposure to exogenous PGE(2) 24 h prior to the insult, indicating that this product of the cyclooxygenase-2 pathway is sufficient to induce ischemic tolerance. This study shows that cyclooxygenase-2 and PGE(2) are involved in both oxygen-glucose deprivation-induced neurotoxicity and preconditioning-induced neuroprotection. While neurotoxic in the context of lethal oxygen-glucose deprivation, the moderate activation of this signalling pathway confers ischemic tolerance.

  3. Glutamate transporter type 3 mediates isoflurane preconditioning-induced acute phase of neuroprotection in mice.

    PubMed

    Li, Liaoliao; Deng, Jiao; Zuo, Zhiyi

    2013-09-01

    A pre-exposure to isoflurane reduces ischemic brain injury in rodents (isoflurane preconditioning). This neuroprotection has acute and delayed phases. Our previous in vitro studies suggest that the acute phase may involve excitatory amino acid transporters (EAATs). We determine whether this protection involves EAAT3, the major neuronal EAAT. Adult male EAAT3 knockout mice and their wild-type littermates were exposed or were not exposed to 1.5% isoflurane for 30 min. Sixty minutes later, they were subjected to a 90- or 60-min middle cerebral arterial occlusion (MCAO). Their neurological outcomes were evaluated 24h after the MCAO. In another experiment, cerebral cortex was harvested for Western blotting at 30 min after animals were exposed to 1.5% isoflurane for 30 min. Here, we showed that isoflurane reduced brain infarct volumes and improved neurological functions of wild-type mice after a 90-min MCAO. However, isoflurane pre-exposure did not change the neurological outcome of EAAT3 knockout mice no matter whether the MCAO was for 90 min or 60 min. Isoflurane increased phospho-Akt, a survival-promoting protein, in the wild-type mice but not in the EAAT3 knockout mice. The isoflurane-induced neuroprotection in the wild-type mice was abolished by LY294004, an Akt activation inhibitor. LY294004 alone did not affect the neurological outcome of the wild-type or EAAT3 knockout mice after focal brain ischemia. These results suggest that the isoflurane preconditioning-induced acute phase of neuroprotection involves EAAT3. The downstream event includes Akt activation.

  4. Failure and rescue of preconditioning-induced neuroprotection in severe stroke-like insults.

    PubMed

    Tauskela, Joseph S; Aylsworth, Amy; Hewitt, Melissa; Brunette, Eric; Blondeau, Nicolas

    2016-06-01

    Preconditioning is a well established neuroprotective modality. However, the mechanism and relative efficacy of neuroprotection between diverse preconditioners is poorly defined. Cultured neurons were preconditioned by 4-aminopyridine and bicuculline (4-AP/bic), rendering neurons tolerant to normally lethal (sufficient to kill most neurons) oxygen-glucose deprivation (OGD) or a chemical OGD-mimic, ouabain/TBOA, by suppression of extracellular glutamate (glutamateex) elevations. However, subjecting preconditioned neurons to longer-duration supra-lethal insults caused neurotoxic glutamateex elevations, thereby identifying a 'ceiling' to neuroprotection. Neuroprotective 'rescue' of neurons could be obtained by administration of an NMDA receptor antagonist, MK-801, just before glutamateex rose during these supra-lethal insults. Next, we evaluated if these concepts of glutamateex suppression during lethal OGD, and a neuroprotective ceiling requiring MK-801 rescue under supra-lethal OGD, extended to the preconditioning field. In screening a panel of 42 diverse putative preconditioners, neuroprotection against normally lethal OGD was observed in 12 cases, which correlated with glutamateex suppression, both of which could be reversed, either by the inclusion of a glutamate uptake inhibitor (TBOA, to increase glutamateex levels) during OGD or by exposure to supra-lethal OGD. Administrating MK-801 during the latter stages of supra-lethal OGD again rescued neurons, although to varying degrees dependent on the preconditioning agent. Thus, 'stress-testing' against the harshest ischemic-like insults yet tested identifies the most efficacious preconditioners, which dictates how early MK-801 needs to be administered during the insult in order to maintain neuroprotection. Preconditioning delays a neurotoxic rise in glutamateex levels, thereby 'buying time' for acute anti-excitotoxic pharmacologic rescue. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Hypoxic-preconditioning induces neuroprotection against hypoxia-ischemia in newborn piglet brain.

    PubMed

    Ara, Jahan; Fekete, Saskia; Frank, Melissa; Golden, Jeffrey A; Pleasure, David; Valencia, Ignacio

    2011-08-01

    Preconditioning-induced ischemic tolerance has been documented in the newborn brain, however, the signaling mechanisms of this preconditioning require further elucidation. The aims of this study were to develop a hypoxic-preconditioning (PC) model of ischemic tolerance in the newborn piglet, which emulates important clinical similarities to human situation of birth asphyxia, and to characterize some of the molecular mechanisms shown to be implicated in PC-induced neuroprotection in rodent models. One day old piglets were subjected to PC (8% O2/92% N2) for 3 h and 24 h later were exposed to hypoxia-ischemia (HI) produced by a combination of hypoxia (5% FiO2) for a period of 30 min and ischemia induced by a period of hypotension (10 min of reduced mean arterial blood pressure; ≤70% of baseline). Neuropathologic analysis and unbiased stereology, conducted at 24 h, 3 and 7 days of recovery following HI, indicated a substantial reduction in the severity of brain damage in PC piglets compared to non-PC piglets (P<0.05). PC significantly increased the mRNA expression of hypoxia-inducible factor-1α (HIF-1α) and its target gene, vascular endothelial growth factor (VEGF) at 0 h, 6h, 24 h, 3 and 7 days of recovery. Immunoblot analysis demonstrated that PC resulted in HIF-1α protein stabilization and accumulation in nuclear extracts of cerebral cortex of newborn piglet brain compared to normoxic controls. Protein levels of VEGF increased in a time-dependent manner in both cortex and hippocampus following PC. Double-immunolabeling indicated that VEGF is mainly expressed in neurons, endothelial cells and astroglia. Our study demonstrates for the first time the protective efficacy of PC against hypoxic-ischemic injury in newborn piglet model, which recapitulates many pathophysiological features of asphyxiated human neonates. Furthermore, as has been shown in rodent models of preconditioning, our results suggest that PC-induced protection in neonatal piglets may involve

  6. Ischemic Preconditioning Mediates Neuroprotection against Ischemia in Mouse Hippocampal CA1 Neurons by Inducing Autophagy.

    PubMed

    Gao, Chunlin; Cai, Ying; Zhang, Xuebin; Huang, Huiling; Wang, Jin; Wang, Yajing; Tong, Xiaoguang; Wang, Jinhuan; Wu, Jialing

    2015-01-01

    The hippocampal CA1 region is sensitive to hypoxic and ischemic injury but can be protected by ischemic preconditioning (IPC). However, the mechanism through which IPC protects hippocampal CA1 neurons is still under investigation. Additionally, the role of autophagy in determining the fate of hippocampal neurons is unclear. Here, we examined whether IPC induced autophagy to alleviate hippocampal CA1 neuronal death in vitro and in vivo with oxygen glucose deprivation (OGD) and bilateral carotid artery occlusion (BCCAO) models. Survival of hippocampal neurons increased from 51.5% ± 6.3% in the non-IPC group (55 min of OGD) to 77.3% ± 7.9% in the IPC group (15 min of OGD, followed by 55 min of OGD 24 h later). The number of hippocampal CA1 layer neurons increased from 182 ± 26 cells/mm2 in the non-IPC group (20 min of BCCAO) to 278 ± 55 cells/mm2 in the IPC group (1 min × 3 BCCAO, followed by 20 min of BCCAO 24 h later). Akt phosphorylation and microtubule-associated protein light chain 3 (LC3)-II/LC3-I expression were increased in the preconditioning group. Moreover, the protective effects of IPC were abolished only by inhibiting the activity of autophagy, but not by blocking the activation of Akt in vitro. Using in vivo experiments, we found that LC3 expression was upregulated, accompanied by an increase in neuronal survival in hippocampal CA1 neurons in the preconditioning group. The neuroprotective effects of IPC on hippocampal CA1 neurons were completely inhibited by treatment with 3-MA. In contrast, hippocampal CA3 neurons did not show changes in autophagic activity or beneficial effects of IPC. These data suggested that IPC may attenuate ischemic injury in hippocampal CA1 neurons through induction of Akt-independent autophagy.

  7. Ischemic Preconditioning Mediates Neuroprotection against Ischemia in Mouse Hippocampal CA1 Neurons by Inducing Autophagy

    PubMed Central

    Zhang, Xuebin; Huang, Huiling; Wang, Jin; Wang, Yajing; Tong, Xiaoguang; Wang, Jinhuan; Wu, Jialing

    2015-01-01

    The hippocampal CA1 region is sensitive to hypoxic and ischemic injury but can be protected by ischemic preconditioning (IPC). However, the mechanism through which IPC protects hippocampal CA1 neurons is still under investigation. Additionally, the role of autophagy in determining the fate of hippocampal neurons is unclear. Here, we examined whether IPC induced autophagy to alleviate hippocampal CA1 neuronal death in vitro and in vivo with oxygen glucose deprivation (OGD) and bilateral carotid artery occlusion (BCCAO) models. Survival of hippocampal neurons increased from 51.5% ± 6.3% in the non-IPC group (55 min of OGD) to 77.3% ± 7.9% in the IPC group (15 min of OGD, followed by 55 min of OGD 24 h later). The number of hippocampal CA1 layer neurons increased from 182 ± 26 cells/mm2 in the non-IPC group (20 min of BCCAO) to 278 ± 55 cells/mm2 in the IPC group (1 min × 3 BCCAO, followed by 20 min of BCCAO 24 h later). Akt phosphorylation and microtubule-associated protein light chain 3 (LC3)-II/LC3-I expression were increased in the preconditioning group. Moreover, the protective effects of IPC were abolished only by inhibiting the activity of autophagy, but not by blocking the activation of Akt in vitro. Using in vivo experiments, we found that LC3 expression was upregulated, accompanied by an increase in neuronal survival in hippocampal CA1 neurons in the preconditioning group. The neuroprotective effects of IPC on hippocampal CA1 neurons were completely inhibited by treatment with 3-MA. In contrast, hippocampal CA3 neurons did not show changes in autophagic activity or beneficial effects of IPC. These data suggested that IPC may attenuate ischemic injury in hippocampal CA1 neurons through induction of Akt-independent autophagy. PMID:26325184

  8. Mitochondrial preconditioning: a potential neuroprotective strategy.

    PubMed

    Correia, Sónia C; Carvalho, Cristina; Cardoso, Susana; Santos, Renato X; Santos, Maria S; Oliveira, Catarina R; Perry, George; Zhu, Xiongwei; Smith, Mark A; Moreira, Paula I

    2010-01-01

    Mitochondria have long been known as the powerhouse of the cell. However, these organelles are also pivotal players in neuronal cell death. Mitochondrial dysfunction is a prominent feature of chronic brain disorders, including Alzheimer's disease (AD) and Parkinson's disease (PD), and cerebral ischemic stroke. Data derived from morphologic, biochemical, and molecular genetic studies indicate that mitochondria constitute a convergence point for neurodegeneration. Conversely, mitochondria have also been implicated in the neuroprotective signaling processes of preconditioning. Despite the precise molecular mechanisms underlying preconditioning-induced brain tolerance are still unclear, mitochondrial reactive oxygen species generation and mitochondrial ATP-sensitive potassium channels activation have been shown to be involved in the preconditioning phenomenon. This review intends to discuss how mitochondrial malfunction contributes to the onset and progression of cerebral ischemic stroke and AD and PD, two major neurodegenerative disorders. The role of mitochondrial mechanisms involved in the preconditioning-mediated neuroprotective events will be also discussed. Mitochondrial targeted preconditioning may represent a promising therapeutic weapon to fight neurodegeneration.

  9. Remote ischemic preconditioning provides neuroprotection: impact on ketamine-induced neuroapoptosis in the developing rat brain.

    PubMed

    Ma, W; Cao, Y-Y; Qu, S; Ma, S-S; Wang, J-Z; Deng, L-Q; Yuan, W-J; Meng, J-H

    2016-12-01

    Previous studies have demonstrated that the commonly used anesthetic ketamine can acutely increase apoptosis and have long-lasting detrimental effects on cognitive function as the animal matures. Remote ischemic preconditioning (RIPC) has been confirmed to have a cerebral protective role in animal models of brain damage. The aim of this study was to investigate whether RIPC can protect the developing brain from anesthetic-induced neurotoxicity. To investigate the protective properties of RIPC, 60 new-born Sprague-Dawley (SD) rats were randomly allocated into four groups: ketamine (20 mg/kg was diluted in saline, six times at an interval of 2 hours); RIPC (left hind row ischemia 5 min, reperfusion 5 min, a total of four cycles); ketamine + RIPC: RIPC was induced at postnatal day 5 and rats underwent the same treatment with the ketamine group after 48 hours; and saline (group vehicle). Neuronal apoptosis in the frontal cortex and hippocampal CA1 region was measured 24 h after treatment using immunohistochemistry of cleaved caspase-3. Learning and memory abilities were tested at the age of 60 days by Morris water maze test. The percentage of cleaved caspase-3 immunohistochemical staining positive cells in the ketamine + RIPC group showed a more marked decline in neuronal apoptosis of the CA1 region than that in the ketamine group (p < 0.05) but not in the CA1 region (p > 0.05). The mice exposed to RIPC alone showed no difference from the saline-treated mice. Moreover, RIPC significantly reversed the learning and memory deficits observed at 60 days of age. Our data indicate that RIPC treatment provides protection against ketamine-induced neuroapoptosis in the frontal cerebral cortex but not in the hippocampal CA1 region in developing rats and attenuates long-term behavioural deficits as the animals mature, suggesting a new possible strategy for neuroprotection.

  10. Lck activation mediates neuroprotection during ischemic preconditioning

    PubMed Central

    Bae, Ok-Nam; Rajanikant, Krishnamurthy; Min, Jiangyong; Smith, Jeremy; Baek, Seung-Hoon; Serfozo, Kelsey; Hejabian, Siamak; Lee, Ki Yong; Kassab, Mounzer; Majid, Arshad

    2012-01-01

    The molecular mechanisms underlying preconditioning (PC), a powerful endogenous neuroprotective phenomenon, remain to be fully elucidated. Once identified, these endogenous mechanisms could be manipulated for therapeutic gain. We investigated whether Lck, a member of the Src kinases family, mediates PC. We employed both in vitro primary cortical neurons and in vivo mouse cerebral focal ischemia models of preconditioning, cellular injury and neuroprotection. Genetically engineered mice deficient in LcK, gene silencing using siRNA and pharmacological approaches were used. Cortical neurons preconditioned with sub-lethal exposure to NMDA or oxygen glucose deprivation (OGD) exhibited enhanced Lck kinase activity, and were resistant to injury on subsequent exposure to lethal levels of NMDA or OGD. Lck gene silencing using siRNA abolished tolerance against both stimuli. Lck−/− mice or neurons isolated from Lck−/− mice did not exhibit PC-induced tolerance. An Lck antagonist administered to wild-type mice significantly attenuated the neuroprotective effect of PC in the mouse focal ischemia model. Using pharmacological and gene silencing strategies, we also showed that PKCε is an upstream regulator of Lck, and Fyn is a downstream target of Lck. We have discovered that Lck plays an essential role in PC in both cellular and animal models of stroke. Our data also show that the PKCε-Lck-Fyn axis is a key mediator of PC. These findings provide new opportunities for stroke therapy development. PMID:22623673

  11. Time course of neuroprotection induced by in vivo normobaric hyperoxia preconditioning and angiogenesis factors

    PubMed Central

    Shahhoseini, Meisam; Bigdeli, Mohammad Reza

    2017-01-01

    Objective(s): Every year, a large number of people lose their lives due to stroke. Stroke is the second leading cause of death worldwide. Surprisingly, recent studies have shown that preconditioning with hyperoxia (HO) increases tissue tolerance to ischemia, ultimately reducing damages caused by stroke. Addressed in this study are beneficial contributions from HO preconditioning into reduced harm to be incurred by the attack, as well as its effect on the expression levels of vascular endothelial growth factor (VEGF) and endostatin. Materials and Methods: A set of experiments was conducted where a number of rats were divided into three groups. The animals in the first group received 90% oxygen for 4 hr a day, for 6 days. The second group was housed in room air and the third group was a sham (surgical stress). After 60 min of ischemia, 24 hr blood flow, neurological deficit score (NDS) and infarct volume (IV) in the group MCAO (Middle Cerebral Artery Occlusion) were investigated. Immediately following a 48 hr HO pre-treatment, sampling was performed to measure the expression levels of VEGF and endostatin. Results: Preconditioning with alternating HO led to reduced infarct volume and NDS. Moreover, pre-treatment with HO resulted in increased VEGF expression while decreasing endostatin. Conclusion: Although further studies are deemed necessary to clarify the mechanisms of ischemic tolerance, apparently, somewhat intermittent hyperoxia can be associated with positive impacts by increasing VEGF and decreasing expression of endostatin. PMID:28133527

  12. Inhibition of PKCgamma membrane translocation mediated morphine preconditioning-induced neuroprotection against oxygen-glucose deprivation in the hippocampus slices of mice.

    PubMed

    Liu, Ya; Li, Junfa; Yang, Jing; Ji, Fang; Bu, Xiangning; Zhang, Nan; Zhang, Bingxi

    2008-10-17

    We previously reported that novel protein kinase C (nPKC) epsilon and N-methyl-d-aspartic acid (NMDA) receptors participated in morphine preconditioning (MP)-induced neuroprotection. In this study, we used Western blot analysis, 2,3,5-triphenyltetrazolium chloride (TTC) staining and lactate dehydrogenase (LDH) leakage assay to determine the involvement of conventional PKC isoforms (cPKC) in MP-induced neuroprotection against oxygen-glucose deprivation (OGD). Hippocampus slices (400-microm thickness) from healthy male BALB/c mice exposed to OGD for 5-45 min to mimic mild, moderate and severe ischemia in the presence of MP pretreatment. We found that OGD-induced damage in neuronal cell survival rate and LDH leakage could be improved by MP pretreatment (3 microM) within 20 min of OGD, which was abolished by concomitant incubation with non-selective opioid receptor antagonist naloxone (Nal, 50 microM). The results of Western blot analysis showed that only cPKCgamma membrane translocation, not alpha, betaI and betaII, increased under the condition of OGD 10 min and 2h reperfusion (OGD/2h), and this increment of cPKCgamma membrane translocation was inhibited by MP pretreatment. To further elucidate the role of cPKCgamma in MP-induced neuroprotection, we found that cPKCgamma membrane translocation inhibitor, Go6983 (6 nM) did not affect MP-induced neuroprotection while Go6983 alone exhibited a significant inhibition on OGD-induced increment in LDH leakage and decrease in cell survival rate. These phenomena were defined by the results that Go6983 could restore OGD-induced cPKCgamma membrane translocation, but had no further effect on MP-induced inhibition of cPKCgamma membrane translocation. These results demonstrated that MP can reduce OGD-induced neuronal injuries, and the down-regulation of cPKCgamma membrane translocation might be involved in the neuroprotection.

  13. Single low-dose lipopolysaccharide preconditioning: neuroprotective against axonal injury and modulates glial cells

    PubMed Central

    Turner, Ryan C.; Naser, Zachary J.; Lucke-Wold, Brandon P.; Logsdon, Aric F.; Vangilder, Reyna L.; Matsumoto, Rae R.; Huber, Jason D.; Rosen, Charles L.

    2017-01-01

    Aim Over 7 million traumatic brain injuries (TBI) are reported each year in the United States. However, treatments and neuroprotection following TBI are limited because secondary injury cascades are poorly understood. Lipopolysaccharide (LPS) administration before controlled cortical impact can contribute to neuroprotection. However, the underlying mechanisms and whether LPS preconditioning confers neuroprotection against closed-head injuries remains unclear. Methods The authors hypothesized that preconditioning with a low dose of LPS (0.2 mg/kg) would regulate glial reactivity and protect against diffuse axonal injury induced by weight drop. LPS was administered 7 days prior to TBI. LPS administration reduced locomotion, which recovered completely by time of injury. Results LPS preconditioning significantly reduced the post-injury gliosis response near the corpus callosum, possibly by downregulating the oncostatin M receptor. These novel findings demonstrate a protective role of LPS preconditioning against diffuse axonal injury. LPS preconditioning successfully prevented neurodegeneration near the corpus callosum, as measured by fluorojade B. Conclusion Further work is required to elucidate whether LPS preconditioning confers long-term protection against behavioral deficits and to elucidate the biochemical mechanisms responsible for LPS-induced neuroprotective effects. PMID:28164149

  14. Hyperbaric oxygen preconditioning: a reliable option for neuroprotection

    PubMed Central

    Hu, Qin; Manaenko, Anatol; Matei, Nathanael; Guo, Zhenni; Xu, Ting; Tang, Jiping; Zhang, John H.

    2016-01-01

    Brain injury is the leading cause of death and disability worldwide and clinically there is no effective therapy for neuroprotection. Hyperbaric oxygen preconditioning (HBO-PC) has been experimentally demonstrated to be neuroprotective in several models and has shown efficiency in patients undergoing on-pump coronary artery bypass graft (CABG) surgery. Compared with other preconditioning stimuli, HBO is benign and has clinically translational potential. In this review, we will summarize the results in experimental brain injury and clinical studies, elaborate the mechanisms of HBO-PC, and discuss regimes and opinions for future interventions in acute brain injury. PMID:27826420

  15. Clinical Application of Preconditioning and Postconditioning to Achieve Neuroprotection

    PubMed Central

    Dezfulian, Cameron; Garrett, Matthew; Gonzalez, Nestor R.

    2012-01-01

    Ischemic conditioning is a form of endogenous protection induced by transient, subcritical ischemia in a tissue. Organs with high sensitivity to ischemia, such as the heart, the brain, and spinal cord represent the most critical and potentially promising targets for potential therapeutic applications of ischemic conditioning. Numerous preclinical investigations have systematically studied the molecular pathways and potential benefits of both pre- and post-conditioning with promising results. The purpose of this review is to summarize the present knowledge on cerebral pre-and post-conditioning, with an emphasis in the clinical application of these forms of neuroprotection. Methods A systematic Medline search for the terms preconditioning and postconditioning was performed. Publications related to the nervous system and to human applications were selected and analyzed. Findings Pre-and post-conditioning appear to provide similar levels of neuroprotection. The preconditioning window of benefit can be subdivided into early and late effects, depending on whether the effect appears immediately after the sublethal stress or with a delay of days. In general early effects have been associated post-translational modification of critical proteins (membrane receptors, mitochondrial respiratory chain) while late effects are the result of gene up-or down-regulation. Transient ischemic attacks appear to represent a form of clinically relevant preconditioning by inducing ischemic tolerance in the brain and reducing the severity of subsequent strokes. Remote forms of ischemic pre- and post-conditioning have been more commonly used in clinical studies, as the remote application reduces the risk of injuring the target tissue for which protection is pursued. Limb transient ischemia is the preferred method of induction of remote conditioning with evidence supporting its safety. Clinical studies in a variety of populations at risk of central nervous damage including carotid disease

  16. Neuroprotective Effects of Peptides during Ischemic Preconditioning.

    PubMed

    Zarubina, I V; Shabanov, P D

    2016-02-01

    Experiments on rats showed that neurospecific protein preparations reduce the severity of neurological deficit, restore the structure of individual behavior of the animals with different hypoxia tolerance, and exert antioxidant action during chronic ischemic damage to the brain unfolding during the early and late phases of ischemic preconditioning.

  17. Ischemic preconditioning, retinal neuroprotection and histone deacetylase activities.

    PubMed

    Fan, Jie; Alsarraf, Oday; Chou, C James; Yates, Phillip W; Goodwin, Nicole C; Rice, Dennis S; Crosson, Craig E

    2016-05-01

    Increased histone deacetylase (HDAC) activity and the resulting dysregulation of protein acetylation is an integral event in retinal degenerations associated with ischemia and ocular hypertension. This study investigates the role of preconditioning on the process of acetylation in ischemic retinal injury. Rat eyes were unilaterally subjected to retinal injury by 45 min of acute ischemia, and retinal neuroprotection induced by 5 min of an ischemic preconditioning (IPC) event. HDAC activity was evaluated by a fluorometric enzymatic assay with selective isoform inhibitors. Retinal localization of acetylated histone-H3 was determined by immunohistochemistry on retina cross sections. Cleaved caspase-3 level was evaluated by Western blots. Electroretinogram (ERG) analyses were used to assess differences in retinal function seven days following ischemic injury. In control eyes, analysis of HDAC isoforms demonstrated that HDAC1/2 accounted for 28.4 ± 1.6%, HDAC3 for 42.4 ± 1.5% and HDAC6 activity 27.3 ± 3.5% of total activity. Following ischemia, total Class-I HDAC activity increased by 21.2 ± 6.2%, and this increase resulted solely from a rise in HDAC1/2 activity. No change in HDAC3 activity was measured. Activity of Class-II HDACs and HDAC8 was negligible. IPC stimulus prior to ischemic injury also suppressed the rise in Class-I HDAC activity, cleaved caspase-3 levels, and increased acetylated histone-H3 in the retina. In control animals 7 days post ischemia, ERG a- and b-wave amplitudes were significantly reduced by 34.9 ± 3.1% and 42.4 ± 6.3%, respectively. In rats receiving an IPC stimulus, the ischemia-induced decline in ERG a- and b-wave amplitudes was blocked. Although multiple HDACs were detected in the retina, these studies provide evidence that hypoacetylation associated with ischemic injury results from the selective rise in HDAC1/2 activity and that neuroprotection induced by IPC is mediated in part by suppressing HDAC activity. Copyright

  18. Neuroprotection of Ischemic Preconditioning is Mediated by Anti-inflammatory, Not Pro-inflammatory, Cytokines in the Gerbil Hippocampus Induced by a Subsequent Lethal Transient Cerebral Ischemia.

    PubMed

    Kim, Dong Won; Lee, Jae-Chul; Cho, Jeong-Hwi; Park, Joon Ha; Ahn, Ji Hyeon; Chen, Bai Hui; Shin, Bich-Na; Tae, Hyun-Jin; Seo, Jeong Yeol; Cho, Jun Hwi; Kang, Il Jun; Hong, Seongkweon; Kim, Young-Myeong; Won, Moo-Ho; Kim, In Hye

    2015-09-01

    Ischemic preconditioning (IPC) induced by sublethal transient cerebral ischemia could reduce neuronal damage/death following a subsequent lethal transient cerebral ischemia. We, in this study, compared expressions of interleukin (IL)-2 and tumor necrosis factor (TNF)-α as pro-inflammatory cytokines, and IL-4 and IL-13 as anti-inflammatory cytokines in the gerbil hippocampal CA1 region between animals with lethal ischemia and ones with IPC followed by lethal ischemia. In the animals with lethal ischemia, pyramidal neurons in the stratum pyramidale (SP) of the hippocampal CA1 region were dead at 5 days post-ischemia; however, IPC protected the CA1 pyramidal neurons from lethal ischemic injury. Expressions of all cytokines were significantly decreased in the SP after lethal ischemia and hardly detected in the SP at 5 days post-ischemia because the CA1 pyramidal neurons were dead. IPC increased expressions of anti-inflammatory cytokines (IL-4 and IL-13) in the stratum pyramidale of the CA1 region following no lethal ischemia (sham-operation), and the increased expressions of IL-4 and IL-13 by IPC were continuously maintained is the SP of the CA1 region after lethal ischemia. However, pro-inflammatory cytokines (IL-2 and TNF-α) in the SP of the CA1 region were similar those in the sham-operated animals with IPC, and the IL-4 and IL-13 expressions in the SP were maintained after lethal ischemia. In conclusion, this study shows that anti-inflammatory cytokines significantly increased and longer maintained by IPC and this might be closely associated with neuroprotection after lethal transient cerebral ischemia.

  19. Increased BDNF protein expression after ischemic or PKC epsilon preconditioning promotes electrophysiologic changes that lead to neuroprotection.

    PubMed

    Neumann, Jake T; Thompson, John W; Raval, Ami P; Cohan, Charles H; Koronowski, Kevin B; Perez-Pinzon, Miguel A

    2015-01-01

    Ischemic preconditioning (IPC) via protein kinase C epsilon (PKCɛ) activation induces neuroprotection against lethal ischemia. Brain-derived neurotrophic factor (BDNF) is a pro-survival signaling molecule that modulates synaptic plasticity and neurogenesis. Interestingly, BDNF mRNA expression increases after IPC. In this study, we investigated whether IPC or pharmacological preconditioning (PKCɛ activation) promoted BDNF-induced neuroprotection, if neuroprotection by IPC or PKCɛ activation altered neuronal excitability, and whether these changes were BDNF-mediated. We used both in vitro (hippocampal organotypic cultures and cortical neuronal-glial cocultures) and in vivo (acute hippocampal slices 48 hours after preconditioning) models of IPC or PKCɛ activation. BDNF protein expression increased 24 to 48 hours after preconditioning, where inhibition of the BDNF Trk receptors abolished neuroprotection against oxygen and glucose deprivation (OGD) in vitro. In addition, there was a significant decrease in neuronal firing frequency and increase in threshold potential 48 hours after preconditioning in vivo, where this threshold modulation was dependent on BDNF activation of Trk receptors in excitatory cortical neurons. In addition, 48 hours after PKCɛ activation in vivo, the onset of anoxic depolarization during OGD was significantly delayed in hippocampal slices. Overall, these results suggest that after IPC or PKCɛ activation, there are BDNF-dependent electrophysiologic modifications that lead to neuroprotection.

  20. Preconditioning Provides Neuroprotection in Models of CNS Disease: Paradigms and Clinical Significance

    PubMed Central

    Stetler, R. Anne; Leak, Rehana K.; Gan, Yu; Li, Peiying; Hu, Xiaoming; Jing, Zheng; Chen, Jun; Zigmond, Michael J.; Gao, Yanqin

    2014-01-01

    Preconditioning is a phenomenon in which brief episodes of a sublethal insult induce robust protection against subsequent lethal injuries. Preconditioning has been observed in multiple organisms and can occur in the brain as well as other tissues. Extensive animal studies suggest that the brain can be preconditioned to resist acute injuries, such as ischemic stroke, neonatal hypoxia/ischemia, trauma, and agents that are used in models of neurodegenerative diseases, such as Parkinson’s disease and Alzheimer’s disease. Effective preconditioning stimuli are numerous and diverse, ranging from transient ischemia, hypoxia, hyperbaric oxygen, hypothermia and hyperthermia, to exposure to neurotoxins and pharmacological agents. The phenomenon of “cross-tolerance,” in which a sublethal stress protects against a different type of injury, suggests that different preconditioning stimuli may confer protection against a wide range of injuries. Research conducted over the past few decades indicates that brain preconditioning is complex, involving multiple effectors such as metabolic inhibition, activation of extra- and intracellular defense mechanisms, a shift in the neuronal excitatory/inhibitory balance, and reduction in inflammatory sequelae. An improved understanding of brain preconditioning should help us identify innovative therapeutic strategies that prevent or at least reduce neuronal damage in susceptible patients. In this review, we focus on the experimental evidence of preconditioning in the brain and systematically survey the models used to develop paradigms for neuroprotection, and then discuss the clinical potential of brain preconditioning. In a subsequent components of this two-part series, we will discuss the cellular and molecular events that are likely to underlie these phenomena. PMID:24389580

  1. Strategies for Study of Neuroprotection from Cold-preconditioning

    PubMed Central

    Mitchell, Heidi M.; White, David M.; Kraig, Richard P.

    2010-01-01

    Neurological injury is a frequent cause of morbidity and mortality from general anesthesia and related surgical procedures that could be alleviated by development of effective, easy to administer and safe preconditioning treatments. We seek to define the neural immune signaling responsible for cold-preconditioning as means to identify novel targets for therapeutics development to protect brain before injury onset. Low-level pro-inflammatory mediator signaling changes over time are essential for cold-preconditioning neuroprotection. This signaling is consistent with the basic tenets of physiological conditioning hormesis, which require that irritative stimuli reach a threshold magnitude with sufficient time for adaptation to the stimuli for protection to become evident. Accordingly, delineation of the immune signaling involved in cold-preconditioning neuroprotection requires that biological systems and experimental manipulations plus technical capacities are highly reproducible and sensitive. Our approach is to use hippocampal slice cultures as an in vitro model that closely reflects their in vivo counterparts with multi-synaptic neural networks influenced by mature and quiescent macroglia / microglia. This glial state is particularly important for microglia since they are the principal source of cytokines, which are operative in the femtomolar range. Also, slice cultures can be maintained in vitro for several weeks, which is sufficient time to evoke activating stimuli and assess adaptive responses. Finally, environmental conditions can be accurately controlled using slice cultures so that cytokine signaling of cold-preconditioning can be measured, mimicked, and modulated to dissect the critical node aspects. Cytokine signaling system analyses require the use of sensitive and reproducible multiplexed techniques. We use quantitative PCR for TNF-α to screen for microglial activation followed by quantitative real-time qPCR array screening to assess tissue

  2. Strategies for study of neuroprotection from cold-preconditioning.

    PubMed

    Mitchell, Heidi M; White, David M; Kraig, Richard P

    2010-09-02

    Neurological injury is a frequent cause of morbidity and mortality from general anesthesia and related surgical procedures that could be alleviated by development of effective, easy to administer and safe preconditioning treatments. We seek to define the neural immune signaling responsible for cold-preconditioning as means to identify novel targets for therapeutics development to protect brain before injury onset. Low-level pro-inflammatory mediator signaling changes over time are essential for cold-preconditioning neuroprotection. This signaling is consistent with the basic tenets of physiological conditioning hormesis, which require that irritative stimuli reach a threshold magnitude with sufficient time for adaptation to the stimuli for protection to become evident. Accordingly, delineation of the immune signaling involved in cold-preconditioning neuroprotection requires that biological systems and experimental manipulations plus technical capacities are highly reproducible and sensitive. Our approach is to use hippocampal slice cultures as an in vitro model that closely reflects their in vivo counterparts with multi-synaptic neural networks influenced by mature and quiescent macroglia/microglia. This glial state is particularly important for microglia since they are the principal source of cytokines, which are operative in the femtomolar range. Also, slice cultures can be maintained in vitro for several weeks, which is sufficient time to evoke activating stimuli and assess adaptive responses. Finally, environmental conditions can be accurately controlled using slice cultures so that cytokine signaling of cold-preconditioning can be measured, mimicked, and modulated to dissect the critical node aspects. Cytokine signaling system analyses require the use of sensitive and reproducible multiplexed techniques. We use quantitative PCR for TNF-α to screen for microglial activation followed by quantitative real-time qPCR array screening to assess tissue-wide cytokine

  3. Minocycline-preconditioned neural stem cells enhance neuroprotection after ischemic stroke in rats.

    PubMed

    Sakata, Hiroyuki; Niizuma, Kuniyasu; Yoshioka, Hideyuki; Kim, Gab Seok; Jung, Joo Eun; Katsu, Masataka; Narasimhan, Purnima; Maier, Carolina M; Nishiyama, Yasuhiro; Chan, Pak H

    2012-03-07

    Transplantation of neural stem cells (NSCs) offers a novel therapeutic strategy for stroke; however, massive grafted cell death following transplantation, possibly due to a hostile host brain environment, lessens the effectiveness of this approach. Here, we have investigated whether reprogramming NSCs with minocycline, a broadly used antibiotic also known to possess cytoprotective properties, enhances survival of grafted cells and promotes neuroprotection in ischemic stroke. NSCs harvested from the subventricular zone of fetal rats were preconditioned with minocycline in vitro and transplanted into rat brains 6 h after transient middle cerebral artery occlusion. Histological and behavioral tests were examined from days 0-28 after stroke. For in vitro experiments, NSCs were subjected to oxygen-glucose deprivation and reoxygenation. Cell viability and antioxidant gene expression were analyzed. Minocycline preconditioning protected the grafted NSCs from ischemic reperfusion injury via upregulation of Nrf2 and Nrf2-regulated antioxidant genes. Additionally, preconditioning with minocycline induced the NSCs to release paracrine factors, including brain-derived neurotrophic factor, nerve growth factor, glial cell-derived neurotrophic factor, and vascular endothelial growth factor. Moreover, transplantation of the minocycline-preconditioned NSCs significantly attenuated infarct size and improved neurological performance, compared with non-preconditioned NSCs. Minocycline-induced neuroprotection was abolished by transfecting the NSCs with Nrf2-small interfering RNA before transplantation. Thus, preconditioning with minocycline, which reprograms NSCs to tolerate oxidative stress after ischemic reperfusion injury and express higher levels of paracrine factors through Nrf2 up-regulation, is a simple and safe approach to enhance the effectiveness of transplantation therapy in ischemic stroke.

  4. NMDA preconditioning and neuroprotection in vivo: delayed onset of kainic acid-induced neurodegeneration and c-Fos attenuation in CA3a neurons.

    PubMed

    Mohammadi, Shirin; Pavlik, Alfred; Krajci, Dimitrolos; Al-Sarraf, Hameed

    2009-02-23

    Intraventricular (i.c.v.) kainic acid (KA) causes an acute excitotoxic lesion to the CA3 region of rodent hippocampus. Recent evidence implicated c-fos gene in regulating neuron survival and death following an excitotoxic insult. In this study we attempted to prevent KA-induced damage in CA3 neurons with NMDA preconditioning, which produced a marked expression of c-fos in the hippocampus. NMDA (0.6-6 microg, i.c.v.) was injected to anesthetized rats alone or 1 h before KA (0.15 microg, i.c.v.). Following KA injection, vibratome sections were processed for immunohistochemistry/electron microscopy. c-Fos and Nissl staining were used to estimate the extent of neuronal excitation and damage, respectively. Quantitative evaluation of c-Fos-labeled cells showed significantly less c-Fos in CA3a than in neighboring CA3b and CA2 from 1 to 4 h after KA alone. Attenuation of expressed c-Fos in CA3a was accompanied by damage of neurons with more apoptotic than necrotic signs. NMDA preconditioning elevated CA3a c-Fos expression and at 1 and 2 h exceeded markedly that after KA alone. However, at 4 h after KA, NMDA-preconditioned c-Fos induction in CA3a diminished to the same level as that seen after KA alone. The onset of neuronal degeneration was delayed in similar way. While NMDA-induced c-Fos expression in CA3a could be blocked by MK-801 completely, MK-801 and CNQX were both without significant effect on KA-induced c-Fos expression and neuronal damage. In conclusion, inhibition of c-Fos expression and onset of neuronal damage in CA3a following icv KA injection might be transiently delayed by i.c.v. NMDA preconditioning.

  5. CpG preconditioning regulates miRNA expression that modulates genomic reprogramming associated with neuroprotection against ischemic injury

    PubMed Central

    Vartanian, Keri B; Mitchell, Hugh D; Stevens, Susan L; Conrad, Valerie K; McDermott, Jason E; Stenzel-Poore, Mary P

    2015-01-01

    Cytosine-phosphate-guanine (CpG) preconditioning reprograms the genomic response to stroke to protect the brain against ischemic injury. The mechanisms underlying genomic reprogramming are incompletely understood. MicroRNAs (miRNAs) regulate gene expression; however, their role in modulating gene responses produced by CpG preconditioning is unknown. We evaluated brain miRNA expression in response to CpG preconditioning before and after stroke using microarray. Importantly, we have data from previous gene microarrays under the same conditions, which allowed integration of miRNA and gene expression data to specifically identify regulated miRNA gene targets. CpG preconditioning did not significantly alter miRNA expression before stroke, indicating that miRNA regulation is not critical for the initiation of preconditioning-induced neuroprotection. However, after stroke, differentially regulated miRNAs between CpG- and saline-treated animals associated with the upregulation of several neuroprotective genes, implicating these miRNAs in genomic reprogramming that increases neuroprotection. Statistical analysis revealed that the miRNA targets were enriched in the gene population regulated in the setting of stroke, implying that miRNAs likely orchestrate this gene expression. These data suggest that miRNAs regulate endogenous responses to stroke and that manipulation of these miRNAs may have the potential to acutely activate novel neuroprotective processes that reduce damage. PMID:25388675

  6. Sarcosine preconditioning induces ischemic tolerance against global cerebral ischemia.

    PubMed

    Pinto, M C X; Simão, F; da Costa, F L P; Rosa, D V; de Paiva, M J N; Resende, R R; Romano-Silva, M A; Gomez, M V; Gomez, R S

    2014-06-20

    Brain ischemic tolerance is an endogenous protective mechanism activated by a preconditioning stimulus that is closely related to N-methyl-d-aspartate receptor (NMDAR). Glycine transporter type 1 (GlyT-1) inhibitors potentiate NMDAR and suggest an alternative strategy for brain preconditioning. The aim of this work was to evaluate the effects of brain preconditioning induced by sarcosine, a GlyT-1 inhibitor, against global cerebral ischemia and its relation to NMDAR. Sarcosine was administered over 7 days (300 or 500 mg/kg/day, ip) before the induction of a global cerebral ischemia model in Wistar rats (male, 8-week-old). It was observed that sarcosine preconditioning reduced cell death in rat hippocampi submitted to cerebral ischemia. Hippocampal levels of glycine were decreased in sarcosine-treated animals, which was associated with a reduction of [(3)H] glycine uptake and a decrease in glycine transporter expression (GlyT-1 and GlyT-2). The expression of glycine receptors and the NR1 and NR2A subunits of NMDAR were not affected by sarcosine preconditioning. However, sarcosine preconditioning reduced the expression of the NR2B subunits of NMDAR. In conclusion, these data demonstrate that sarcosine preconditioning induces ischemic tolerance against global cerebral ischemia and this neuroprotective state is associated with changes in glycine transport and reduction of NR2B-containing NMDAR expression. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  7. Isoflurane preconditioning affords functional neuroprotection in a murine model of intracerebral hemorrhage.

    PubMed

    Gigante, Paul R; Appelboom, Geoffrey; Hwang, Brian Y; Haque, Raqeeb M; Yeh, Mason L; Ducruet, Andrew F; Kellner, Christopher P; Gorski, Justin; Keesecker, Sarah E; Connolly, E Sander

    2011-01-01

    Exposure to isoflurane gas prior to neurological injury, known as anesthetic preconditioning, has been shown to provide neuroprotective benefits in animal models of ischemic stroke. Given the common mediators of cellular injury in ischemic and hemorrhagic stroke, we hypothesize that isoflurane preconditioning will provide neurological protection in intracerebral hemorrhage (ICH). 24 h prior to intracerebral hemorrhage, C57BL/6J mice were preconditioned with a 4-h exposure to 1% isoflurane gas or room air. Intracerebral hemorrhage was performed using a double infusion of 30-μL autologous whole blood. Neurological function was evaluated at 24, 48 and 72 h using the 28-point test. Mice were sacrificed at 72 h, and brain edema was measured. Mice preconditioned with isoflurane performed better than control mice on 28-point testing at 24 h, but not at 48 or 72 h. There was no significant difference in ipsilateral hemispheric edema between mice preconditioned with isoflurane and control mice. These results demonstrate the early functional neuroprotective effects of anesthetic preconditioning in ICH and suggest that methods of preconditioning that afford protection in ischemia may also provide protection in ICH.

  8. Role of MicroRNAs in innate neuroprotection mechanisms due to preconditioning of the brain

    PubMed Central

    Jimenez-Mateos, Eva M.

    2015-01-01

    Insults to the brain that are sub-threshold for damage activate endogenous protective pathways, which can temporarily protect the brain against a subsequent harmful episode. This mechanism has been named as tolerance and its protective effects have been shown in experimental models of ischemia and epilepsy. The preconditioning-stimulus can be a short period of ischemia or mild seizures induced by low doses of convulsant drugs. Gene-array profiling has shown that both ischemic and epileptic tolerance feature large-scale gene down-regulation but the mechanism are unknown. MicroRNAs are a class of small non-coding RNAs of ~20–22 nucleotides length which regulate gene expression at a post-transcriptional level via mRNA degradation or inhibition of protein translation. MicroRNAs have been shown to be regulated after non-harmful and harmful stimuli in the brain and to contribute to neuroprotective mechanisms. This review focuses on the role of microRNAs in the development of tolerance following ischemic or epileptic preconditioning. PMID:25954143

  9. Proteomic analysis of the mice hippocampus after preconditioning induced by N-methyl-D-aspartate (NMDA).

    PubMed

    do Amaral e Silva Müller, Gabrielle; Vandresen-Filho, Samuel; Tavares, Carolina Pereira; Menegatti, Angela C O; Terenzi, Hernán; Tasca, Carla Inês; Severino, Patricia Cardoso

    2013-05-01

    Preconditioning induced by N-methyl-D-aspartate (NMDA) has been used as a therapeutic tool against later neuronal insults. NMDA preconditioning affords neuroprotection against convulsions and cellular damage induced by the NMDA receptor agonist, quinolinic acid (QA) with time-window dependence. This study aimed to evaluate the molecular alterations promoted by NMDA and to compare these alterations in different periods of time that are related to the presence or lack of neuroprotection. Putative mechanisms related to NMDA preconditioning were evaluated via a proteomic analysis by using a time-window study. After a subconvulsant and protective dose of NMDA administration mice, hippocampi were removed (1, 24 or 72 h) and total protein analyzed by 2DE gels and identified by MALDI-TOF. Differential protein expression among the time induction of NMDA preconditioning was observed. In the hippocampus of protected mice (24 h), four proteins: HSP70(B), aspartyl-tRNA synthetase, phosphatidylethanolamine binding protein and creatine kinase were found to be up-regulated. Two other proteins, HSP70(A) and V-type proton ATPase were found down-regulated. Proteomic analysis showed that the neuroprotection induced by NMDA preconditioning altered signaling pathways, cell energy maintenance and protein synthesis and processing. These events may occur in a sense to attenuate the excitotoxicity process during the activation of neuroprotection promoted by NMDA preconditioning.

  10. Autophagosome maturation mediated by Rab7 contributes to neuroprotection of hypoxic preconditioning against global cerebral ischemia in rats

    PubMed Central

    Zhan, Lixuan; Chen, Siyuan; Li, Kongping; Liang, Donghai; Zhu, Xinyong; Liu, Liu; Lu, Zhiwei; Sun, Weiwen; Xu, En

    2017-01-01

    Autophagy disruption leads to neuronal damage in hypoxic–ischemic brain injury. Rab7, a member of the Rab GTPase superfamily, has a unique role in the regulation of autophagy. Hypoxic preconditioning (HPC) provides neuroprotection against transient global cerebral ischemia (tGCI). However, the underlying mechanisms remain poorly understood. Thus, the current study explored the potential molecular mechanism of the neuroprotective effect of HPC by investigating how Rab7 mediates autophagosome (AP) maturation after tGCI in adult rats. We found that HPC attenuated AP accumulation in the hippocampal CA1 region after tGCI via restoration of autophagic flux. We also confirmed that this HPC-induced neuroprotection was not caused by the increase in lysosomes or the improvement of lysosomal function after tGCI. Electron microscopic analysis then revealed an increase in autolysosomes in CA1 neurons of HPC rats. Moreover, the inhibition of autophagosome-lysosome fusion by chloroquine significantly aggravated neuronal death in CA1, indicating that AP maturation contributes to HPC-induced neuroprotection against neuronal injury after tGCI. Furthermore, the activation of Rab7 was found to be involved in the neuroprotective effect of AP maturation after HPC. At last, the knockdown of ultraviolet radiation resistance-associated gene (UVRAG) in vivo disrupted the interaction between Vps16 and Rab7, attenuated the activation of Rab7, interrupted autophagic flux, and ultimately abrogated the HPC-induced neuroprotection against tGCI. Our results indicated that AP maturation was enhanced by the activation of Rab7 via UVRAG-Vps16 interaction, which further demonstrated the potential neuroprotective role of Rab7 in HPC against tGCI-induced neuronal injury in adult rats. PMID:28726776

  11. Autophagosome maturation mediated by Rab7 contributes to neuroprotection of hypoxic preconditioning against global cerebral ischemia in rats.

    PubMed

    Zhan, Lixuan; Chen, Siyuan; Li, Kongping; Liang, Donghai; Zhu, Xinyong; Liu, Liu; Lu, Zhiwei; Sun, Weiwen; Xu, En

    2017-07-20

    Autophagy disruption leads to neuronal damage in hypoxic-ischemic brain injury. Rab7, a member of the Rab GTPase superfamily, has a unique role in the regulation of autophagy. Hypoxic preconditioning (HPC) provides neuroprotection against transient global cerebral ischemia (tGCI). However, the underlying mechanisms remain poorly understood. Thus, the current study explored the potential molecular mechanism of the neuroprotective effect of HPC by investigating how Rab7 mediates autophagosome (AP) maturation after tGCI in adult rats. We found that HPC attenuated AP accumulation in the hippocampal CA1 region after tGCI via restoration of autophagic flux. We also confirmed that this HPC-induced neuroprotection was not caused by the increase in lysosomes or the improvement of lysosomal function after tGCI. Electron microscopic analysis then revealed an increase in autolysosomes in CA1 neurons of HPC rats. Moreover, the inhibition of autophagosome-lysosome fusion by chloroquine significantly aggravated neuronal death in CA1, indicating that AP maturation contributes to HPC-induced neuroprotection against neuronal injury after tGCI. Furthermore, the activation of Rab7 was found to be involved in the neuroprotective effect of AP maturation after HPC. At last, the knockdown of ultraviolet radiation resistance-associated gene (UVRAG) in vivo disrupted the interaction between Vps16 and Rab7, attenuated the activation of Rab7, interrupted autophagic flux, and ultimately abrogated the HPC-induced neuroprotection against tGCI. Our results indicated that AP maturation was enhanced by the activation of Rab7 via UVRAG-Vps16 interaction, which further demonstrated the potential neuroprotective role of Rab7 in HPC against tGCI-induced neuronal injury in adult rats.

  12. The neuroprotective effects of preconditioning exercise on brain damage and neurotrophic factors after focal brain ischemia in rats.

    PubMed

    Otsuka, Shotaro; Sakakima, Harutoshi; Sumizono, Megumi; Takada, Seiya; Terashi, Takuto; Yoshida, Yoshihiro

    2016-04-15

    Preconditioning exercise can exert neuroprotective effects after stroke. However, the mechanism underlying these neuroprotective effects by preconditioning exercise remains unclear. We investigated the neuroprotective effects of preconditioning exercise on brain damage and the expression levels of the midkine (MK) and brain-derived neurotrophic factor (BDNF) after brain ischemia. Animals were assigned to one of 4 groups: exercise and ischemia (Ex), no exercise and ischemia (No-Ex), exercise and no ischemia (Ex-only), and no exercise and intact (Control). Rats ran on a treadmill for 30 min once a day at a speed of 25 m/min for 5 days a week for 3 weeks. After the exercise program, stroke was induced by a 60 min left middle cerebral artery occlusion using an intraluminal filament. The infarct volume, motor function, neurological deficits, and the cellular expressions levels of MK, BDNF, GFAP, PECAM-1, caspase 3, and nitrotyrosine (NT) were evaluated 48 h after the induction of ischemia. The infarct volume, neurological deficits and motor function in the Ex group were significantly improved compared to that of the No-Ex group. The expression levels of MK, BDNF, GFAP, and PECAM-1 were enhanced in the Ex group compared to the expression levels in the No-Ex group after brain ischemia, while the expression levels of activated caspase 3 and NT were reduced in the area surrounding the necrotic lesion. Our findings suggest that preconditioning exercise reduced the infract volume and ameliorated motor function, enhanced expression levels of MK and BDNF, increased astrocyte proliferation, increased angiogenesis, and reduced neuronal apoptosis and oxidative stress.

  13. Neuroprotective Effect of Antioxidants and Moderate Hypoxia as Combined Preconditioning in Cerebral Ischemia.

    PubMed

    Levchenkova, O S; Novikov, V E; Parfenov, E A; Kulagin, K N

    2016-12-01

    We studied combined effect of moderate hypoxia and compounds pQ-4, pQ-915, pQ-1032, and pQ-1104 on neurological deficit and survival of rats after bilateral ligation of common carotid arteries. Preconditioning including moderate hypoxia and treatment with compound pQ-4 produced a neuroprotective effect and increased animal survival during the early (by 51%) and late (by 33.5%) periods of modeled ischemia and reduced neurological deficit (by 50% and 41%, respectively). Moreover, this combination of preconditioning factors prevented postischemic excessive activation of free radical oxidation in brain hemispheres and blood serum.

  14. Isoflurane preconditioning provides neuroprotection against stroke by regulating the expression of the TLR4 signalling pathway to alleviate microglial activation

    PubMed Central

    Sun, Meiyan; Deng, Bin; Zhao, Xiaoyong; Gao, Changjun; Yang, Lu; Zhao, Hui; Yu, Daihua; Zhang, Feng; Xu, Lixian; Chen, Lei; Sun, Xude

    2015-01-01

    Excessive microglial activation often contributes to inflammation-mediated neurotoxicity in the ischemic penumbra during the acute stage of ischemic stroke. Toll-like receptor 4 (TLR4) has been reported to induce microglial activation via the NF-κB pathway. Isoflurane preconditioning (IP) can provide neuroprotection and inhibit microglial activation. In this study, we investigated the roles of the TLR4 signalling pathway in IP to exert neuroprotection following ischemic stroke in vivo and in vitro. The results showed that 2% IP alleviated neurological deficits, reduced the infarct volume, attenuated apoptosis and weakened microglial activation in the ischemic penumbra. Furthermore, IP down-regulated the expression of HSP 60, TLR4 and MyD88 and up-regulated inhibitor of IκB-α expression compared with I/R group in vivo. In vitro, 2% IP and a specific inhibitor of TLR4, CLI-095, down-regulated the expression of TLR4, MyD88, IL-1β, TNF-α and Bax, and up-regulated IκB-α and Bcl-2 expression compared with OGD group. Moreover, IP and CLI-095 attenuated microglial activation-induced neuronal apoptosis, and overexpression of the TLR4 gene reversed the neuroprotective effects of IP. In conclusion, IP provided neuroprotection by regulating TLR4 expression directly, alleviating microglial activation and neuroinflammation. Thus, inhibiting the activation of microglial activation via TLR4 may be a new avenue for stroke treatment. PMID:26086415

  15. Preconditioning induces tolerance by suppressing glutamate release in neuron culture ischemia models.

    PubMed

    Tauskela, Joseph S; Aylsworth, Amy; Hewitt, Melissa; Brunette, Eric; Mealing, Geoffrey A R

    2012-07-01

    This study determined how preconditioned neurons responded to oxygen-glucose deprivation (OGD) to result in neuroprotection instead of neurotoxicity. Neurons preconditioned using chronically elevated synaptic activity displayed suppressed elevations in extracellular glutamate ([glutamateex ]) and intracellular Ca(2+) (Ca(2+) in ) during OGD. The glutamate uptake inhibitor TBOA induced neurotoxicity, but at a longer OGD duration for preconditioned cultures, suggestive of delayed up-regulation of transporter activity relative to non-preconditioned cultures. This delay was attributed to a critically attenuated release of glutamate, based on tolerance observed against insults mimicking key neurotoxic signaling during OGD (OGD-mimetics). Specifically, in the presence of TBOA, preconditioned neurons displayed potent protection to the OGD-mimetics: ouabain (a Na(+) /K(+) ATPase inhibitor), high 55 mM KCl extracellular buffer (plasma membrane depolarization), veratridine (a Na(+) ionophore), and paraquat (intracellular superoxide producer), which correlated with suppressed [glutamateex ] elevations in the former two insults. Tolerance by preconditioning was reversed by manipulations that increased [glutamateex ], such as by exposure to TBOA or GABAA receptor agonists during OGD, or by exposure to exogenous NMDA or glutamate. Pre-synaptic suppression of neuronal glutamate release by preconditioning, possibly via suppressed exocytic release, represents a key convergence point in neuroprotection during exposure to OGD and OGD-mimetics. © 2012 National Research Council Canada. Journal of Neurochemistry © 2012 International Society for Neurochemistry.

  16. Pharmacologic preconditioning with berberine attenuating ischemia-induced apoptosis and promoting autophagy in neuron

    PubMed Central

    Zhang, Qichun; Bian, Huimin; Guo, Liwei; Zhu, Huaxu

    2016-01-01

    Pharmacologic preconditioning is an intriguing and emerging approach adopted to prevent injury of ischemia/reperfusion. Neuroprotection is the cardinal effect of these pleiotropic actions of berberine. Here we investigated that whether berberine could acts as a preconditioning stimuli contributing to attenuate hypoxia-induced neurons death as well. Male Sprague-Dawley rats of middle cerebral artery occlusion (MCAO) and rat primary cortical neurons undergoing oxygen and glucose deprivation (OGD) were preconditioned with berberine (40 mg/kg, for 24 h in vivo, and 10-6 mol/L, for 2 h in vitro, respectively). The neurological deficits and cerebral water contents of MCAO rats were evaluated. The autophagy and apoptosis were further determined in primary neurons in vitro. Berberine preconditioning (BP) was then shown to ameliorate the neurological deficits, decrease cerebral water content and promote neurogenesis of MCAO rats. Decreased LDH release from OGD-treated neurons was observed via BP, which was blocked by LY294002 (20 µmol/L), GSK690693 (10 µmol/L), or YC-1 (25 µmol/L). Furthermore, BP stimulated autophagy and inhibited apoptosis via modulated the autophagy-associated proteins LC 3, Beclin-1 and p62, and apoptosis-modulating proteins caspase 3, caspase 8, caspase 9, PARP and BCL-2/Bax. In conclusion, berberine acts as a stimulus of preconditioning that exhibits neuroprotection via promoting autophagy and decreasing anoxia-induced apoptosis. PMID:27158406

  17. Helium preconditioning attenuates hypoxia/ischemia-induced injury in the developing brain.

    PubMed

    Liu, Yi; Xue, Feng; Liu, Guoke; Shi, Xin; Liu, Yun; Liu, Wenwu; Luo, Xu; Sun, Xuejun; Kang, Zhimin

    2011-02-28

    Recent studies show helium may be one kind of neuroprotective gas. This study aimed to examine the short and long-term neuroprotective effects of helium preconditioning in an established neonatal cerebral hypoxia-ischemia (HI) model. Seven-day-old rat pups were subjected to left common carotid artery ligation and then 90 min of hypoxia (8% oxygen at 37°C). The preconditioning group inhaled 70% helium-30% oxygen for 5 min three times with an interval of 5 min 24h before HI insult. Pups were decapitated 24h after HI and brain morphological injury was assessed by 2,3,5-triphenyltetrazolium chloride (TTC) staining, Nissl and TUNEL staining. Caspase-3 activity in the brain was measured. Five weeks after HI, postural reflex testing and Morris water maze testing were conducted. Our results showed that helium preconditioning reduced the infarct ratio, increased the number of survival neurons, and inhibited apoptosis at the early stage of HI insult. Furthermore, the sensorimotor function and the cognitive function were improved significantly in rats with helium preconditioning. The results indicate that helium preconditioning attenuates HI induced brain injury. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Repeated exposure to MDMA provides neuroprotection against subsequent MDMA-induced serotonin depletion in brain

    PubMed Central

    Bhide, Nirmal S.; Lipton, Jack; Cunningham, Jacobi; Yamamoto, Bryan K.; Gudelsky, Gary A.

    2009-01-01

    Repeated exposure to sub-lethal insults has been reported to result in neuroprotection against a subsequent deleterious insult. The purpose of this study was to evaluate whether repeated exposure (preconditioning) to a non-5-HT depleting dose of MDMA in adult rats provides neuroprotection against subsequent MDMA induced 5-HT depletion. Treatment of rats with MDMA (10 mg/kg, ip every 2 hrs for 4 injections) resulted in a 50-65% depletion of 5-HT in the striatum, hippocampus and cortex, and these depletions were significantly attenuated in rats that received a preconditioning regimen of MDMA (10 mg/kg, ip daily for 4 days). The 5-HT depleting regimen of MDMA also resulted in a 40-80% reduction in 5-HT transporter immunoreactivity (SERTir), and the reduction in SERTir also was completely attenuated in MDMA preconditioned animals. Preconditioning with MDMA (10 mg/kg, i.p.) daily for 4 days provided neuroprotection against methamphetamine-induced 5-HT depletion, but not DA depletion, in the striatum. Additional studies were conducted to exclude the possibility that alterations in MDMA pharmacokinetics or MDMA induced hyperthermia in rats previously exposed to MDMA contributes towards neuroprotection. During the administration of the 5-HT depleting regimen of MDMA, there was no difference in the extracellular concentration of the drug in the striatum of rats that had received 4 prior, daily injections of vehicle or MDMA. Moreover, there was no difference in the hyperthermic response to the 5-HT depleting regimen of MDMA in rats that had earlier received 4 daily injections of vehicle or MDMA. Furthermore, hyperthermia induced by MDMA during preconditioning appears not to contribute toward neuroprotection, inasmuch as preconditioning with MDMA at a low ambient temperature at which hyperthermia was absent did not alter the neuroprotection provided by the preconditioning regimen. Thus, prior exposure to MDMA affords protection against the long-term depletion of brain 5-HT

  19. Co-application of ischemic preconditioning and postconditioning provides additive neuroprotection against spinal cord ischemia in rabbits.

    PubMed

    Jiang, Xiaojing; Shi, Enyi; Li, Liwen; Nakajima, Yoshiki; Sato, Shigehito

    2008-03-12

    Postconditioning can induce cardioprotection against ischemia. However, the data on postconditioning of the spinal cord is very limited. We investigated here whether co-application of ischemic preconditioning (IPC) and postconditioning can provide additive neuroprotection against prolonged spinal cord ischemia. Spinal cord ischemia was produced in rabbits by infrarenal aortic occlusion with a balloon catheter for 30 min. The four treatment groups were control (n=10): no intervention; IPC (n=10): a 5-minute aortic occlusion was performed 20 min before the prolonged ischemia; Postcon (n=10): postconditioning comprised of four cycles of 1-minute occlusion/1-minute reperfusion was applied one minute after the start of reperfusion. IPC+postcon (n=11): both IPC and postconditioning were applied. Functional evaluation with Tarlov score was performed during a 14-day observation period. Neurologic impairment was noticeably attenuated in the IPC+postcon group (compared with the control group, P<0.01, at day 1, day 2, day 7 and day 14, respectively), but not in either the IPC or Postcon group. Plasma malondialdehyde levels after reperfusion were significantly decreased to a similar extent in the IPC, Postcon and IPC+Postcon groups (compared with the control group (P<0.01). In the IPC+Postcon group, many more large motor neurons were preserved than in the control group (P<0.05) and white matter injury was also markedly attenuated as evidenced by reduction of the vacuolation area of the white matter (P<0.01) and decreased amyloid precursor protein immunoreactivity (P<0.01). From this, we conclude that the combination of IPC and postconditioning induces additive neuroprotective effects for spinal cord against ischemia and reperfusion injuries.

  20. Glycine transporters type 1 inhibitor promotes brain preconditioning against NMDA-induced excitotoxicity.

    PubMed

    Pinto, Mauro Cunha Xavier; Lima, Isabel Vieira de Assis; da Costa, Flávia Lage Pessoa; Rosa, Daniela Valadão; Mendes-Goulart, Vânia Aparecida; Resende, Rodrigo Ribeiro; Romano-Silva, Marco Aurélio; de Oliveira, Antônio Carlos Pinheiro; Gomez, Marcus Vinícius; Gomez, Renato Santiago

    2015-02-01

    Brain preconditioning is a protective mechanism, which can be activated by sub-lethal stimulation of the NMDA receptors (NMDAR) and be used to achieve neuroprotection against stroke and neurodegenerative diseases models. Inhibitors of glycine transporters type 1 modulate glutamatergic neurotransmission through NMDAR, suggesting an alternative therapeutic strategy of brain preconditioning. The aim of this work was to evaluate the effects of brain preconditioning induced by NFPS, a GlyT1 inhibitor, against NMDA-induced excitotoxicity in mice hippocampus, as well as to study its neurochemical mechanisms. C57BL/6 mice (male, 10-weeks-old) were preconditioned by intraperitoneal injection of NFPS at doses of 1.25, 2.5 or 5.0 mg/kg, 24 h before intrahippocampal injection of NMDA. Neuronal death was evaluated by fluoro jade C staining and neurochemical parameters were evaluated by gas chromatography-mass spectrometry, scintillation spectrometry and western blot. We observed that NFPS preconditioning reduced neuronal death in CA1 region of hippocampus submitted to NMDA-induced excitotoxicity. The amino acids (glycine and glutamate) uptake and content were increased in hippocampus of animals treated with NFPS 5.0 mg/kg, which were associated to an increased expression of type-2 glycine transporter (GlyT2) and glutamate transporters (EAAT1, EAAT2 and EAAT3). The expression of GlyT1 was reduced in animals treated with NFPS. Interestingly, the preconditioning reduced expression of GluN2B subunits of NMDAR, whereas did not change the expression of GluN1 or GluN2A in all tested doses. Our study suggests that NFPS preconditioning induces resistance against excitotoxicity, which is associated with neurochemical changes and reduction of GluN2B-containing NMDAR expression.

  1. Neuroprotective effect of ischemic preconditioning via modulating the expression of adropin and oxidative markers against transient cerebral ischemia in diabetic rats.

    PubMed

    Altintas, O; Kumas, M; Altintas, M O

    2016-05-01

    Ischemic preconditioning (IPreC) can render the brain more tolerant to a subsequent potential lethal ischemic injury. Hyperglycemia has been shown to increase the size of ischemic stroke and worsen the clinical outcome following a stroke, thus exacerbating oxidative stress. Adropin has a significant association with cardiovascular disease, especially with diabetes. In this study, we aimed to evaluate the role of the IPreC due to modulating the expression of adropin and oxidative damage markers against stroke by induced transient middle cerebral artery occlusion (MCAo) in streptozotocin (STZ)-induced diabetic rats. 72 male Spraque Dawley rats were allocated to 8 groups. In order to evaluate alterations of anti/oxidative status and adropin level, we induced transient MCAo seven days after STZ-induced diabetes. Also we performed IPreC 72h before transient MCAo to assess whether IPreC could have a neuroprotective effect against ischemia-reperfusion injury. The general characteristics of STZ-treated rats (STZ) included reduced body weight and elevated blood glucose levels compared to non-diabetic ones. Ischemic preconditioning before cerebral ischemia significantly reduced infarction size compared with the other groups [IPreC+MCAo (27±11mm(3)) vs. MCAo (109±17mm(3)) p<0.001; STZ+IPreC+MCAo (38±10mm(3)) vs. STZ+MCAo (165±45mm(3)) p<0.001, respectively]. The mean total antioxidant status level in IPreC groups was higher than other groups (p≤0.05). Moreover, IPreC considerably decreased mean adropin levels compared with other groups (p≤0.05). The study results supported the neuroprotective effects of ischemic preconditioning in MCA infarcts correlated with the level of oxidative damage markers and adropin. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Helium induces preconditioning in human endothelium in vivo.

    PubMed

    Smit, Kirsten F; Oei, Gezina T M L; Brevoord, Daniel; Stroes, Erik S; Nieuwland, Rienk; Schlack, Wolfgang S; Hollmann, Markus W; Weber, Nina C; Preckel, Benedikt

    2013-01-01

    Helium protects myocardium by inducing preconditioning in animals. We investigated whether human endothelium is preconditioned by helium inhalation in vivo. Forearm ischemia-reperfusion (I/R) in healthy volunteers (each group n = 10) was performed by inflating a blood pressure cuff for 20 min. Endothelium-dependent and endothelium-independent responses were measured after cumulative dose-response infusion of acetylcholine and sodium nitroprusside, respectively, at baseline and after 15 min of reperfusion using strain-gauge, venous occlusion plethysmography. Helium preconditioning was applied by inhalation of helium (79% helium, 21% oxygen) either 15 min (helium early preconditioning [He-EPC]) or 24 h before I/R (helium late preconditioning). Additional measurements of He-EPC were done after blockade of endothelial nitric oxide synthase. Plasma levels of cytokines, adhesion molecules, and cell-derived microparticles were determined. Forearm I/R attenuated endothelium-dependent vasodilation (acetylcholine) with unaltered endothelium-independent response (sodium nitroprusside). Both He-EPC and helium late preconditioning attenuated I/R-induced endothelial dysfunction (max increase in forearm blood flow in response to acetylcholine after I/R was 180 ± 24% [mean ± SEM] without preconditioning, 573 ± 140% after He-EPC, and 290 ± 32% after helium late preconditioning). Protection of helium was comparable to ischemic preconditioning (max forearm blood flow 436 ± 38%) and was not abolished after endothelial nitric oxide synthase blockade. He-EPC did not affect plasma levels of cytokines, adhesion molecules, or microparticles. Helium is a nonanesthetic, nontoxic gas without hemodynamic side effects, which induces early and late preconditioning of human endothelium in vivo. Further studies have to investigate whether helium may be an instrument to induce endothelial preconditioning in patients with cardiovascular risk factors.

  3. Tsc1 (hamartin) confers neuroprotection against ischemia by inducing autophagy

    PubMed Central

    Papadakis, Michalis; Hadley, Gina; Xilouri, Maria; Hoyte, Lisa C.; Nagel, Simon; McMenamin, M Mary; Tsaknakis, Grigorios; Watt, Suzanne M.; Drakesmith, Cynthia Wright; Chen, Ruoli; Wood, Matthew J A; Zhao, Zonghang; Kessler, Benedikt; Vekrellis, Kostas; Buchan, Alastair M.

    2013-01-01

    Previous attempts to identify neuroprotective targets by studying the ischemic cascade and devising ways to suppress it have failed to translate to efficacious therapies for acute ischemic stroke1. We hypothesized that studying the molecular determinants of endogenous neuroprotection in two well-established paradigms, the resistance of CA3 hippocampal neurons to global ischemia2 and the tolerance conferred by ischemic preconditioning (IPC)3, would reveal new neuroprotective targets. We found that the product of the tuberous sclerosis complex 1 gene (TSC1), hamartin, is selectively induced by ischemia in hippocampal CA3 neurons. In CA1 neurons, hamartin was unaffected by ischemia but was upregulated by IPC preceding ischemia, which protects the otherwise vulnerable CA1 cells. Suppression of hamartin expression with TSC1 shRNA viral vectors both in vitro and in vivo increased the vulnerability of neurons to cell death following oxygen glucose deprivation (OGD) and ischemia. In vivo suppression of TSC1 expression increased locomotor activity and decreased habituation in a hippocampal-dependent task. Overexpression of hamartin increased resistance to OGD by inducing productive autophagy through an mTORC1-dependent mechanism. PMID:23435171

  4. Tsc1 (hamartin) confers neuroprotection against ischemia by inducing autophagy.

    PubMed

    Papadakis, Michalis; Hadley, Gina; Xilouri, Maria; Hoyte, Lisa C; Nagel, Simon; McMenamin, M Mary; Tsaknakis, Grigorios; Watt, Suzanne M; Drakesmith, Cynthia Wright; Chen, Ruoli; Wood, Matthew J A; Zhao, Zonghang; Kessler, Benedikt; Vekrellis, Kostas; Buchan, Alastair M

    2013-03-01

    Previous attempts to identify neuroprotective targets by studying the ischemic cascade and devising ways to suppress it have failed to translate to efficacious therapies for acute ischemic stroke. We hypothesized that studying the molecular determinants of endogenous neuroprotection in two well-established paradigms, the resistance of CA3 hippocampal neurons to global ischemia and the tolerance conferred by ischemic preconditioning (IPC), would reveal new neuroprotective targets. We found that the product of the tuberous sclerosis complex 1 gene (TSC1), hamartin, is selectively induced by ischemia in hippocampal CA3 neurons. In CA1 neurons, hamartin was unaffected by ischemia but was upregulated by IPC preceding ischemia, which protects the otherwise vulnerable CA1 cells. Suppression of hamartin expression with TSC1 shRNA viral vectors both in vitro and in vivo increased the vulnerability of neurons to cell death following oxygen glucose deprivation (OGD) and ischemia. In vivo, suppression of TSC1 expression increased locomotor activity and decreased habituation in a hippocampal-dependent task. Overexpression of hamartin increased resistance to OGD by inducing productive autophagy through an mTORC1-dependent mechanism.

  5. Up-regulation of heme oxygenase-1 by isoflurane preconditioning during tolerance against neuronal injury induced by oxygen glucose deprivation.

    PubMed

    Li, Qifang; Zhu, Yesen; Jiang, Hong; Xu, Hui; Liu, Heping

    2008-09-01

    Heme oxygenase (HO) is the rate-limiting enzyme in the degradation of heme to produce bile pigments and carbon monoxide. The HO-1 isozyme is induced by a variety of factors such as heat, heme, ischemia, and hydrogen peroxide. In recent years, mounting findings have suggested that HO-1 has a neuroprotective activity against ischemic injury. The neuroprotective role of isoflurane, a commonly used anesthetic, has been well documented, but little is known about the underlying mechanisms involved. Recently, isoflurane has been shown to up-regulate HO-1 in the liver. In this study, we show that isoflurane preconditioning promotes the survival of cultured ischemic hippocampal neurons by increasing the number of surviving neurons and their viability. Further study by reverse transcription-polymerase chain reaction and Western blot analysis showed that isoflurane preconditioning significantly increases HO-1 expression in oxygen glucose deprivation (OGD)-induced neuronal injury. Furthermore, inhibition of HO activity by tin protoporphyrin partially abolishes isoflurane preconditioning's protective effect as measured by lactate dehydrogenase release in OGD neurons. These findings indicated that the neuroprotective role of isoflurane preconditioning against OGD-induced injury might be associated with its role in up-regulating HO-1 in ischemic neurons.

  6. Rosuvastatin induces delayed preconditioning against oxygen-glucose deprivation in cultured cortical neurons.

    PubMed

    Domoki, Ferenc; Kis, Béla; Gáspár, Tamás; Snipes, James A; Parks, John S; Bari, Ferenc; Busija, David W

    2009-01-01

    We tested whether rosuvastatin (RST) protected against oxygen-glucose deprivation (OGD)-induced cell death in primary rat cortical neuronal cultures. OGD reduced neuronal viability (%naive controls, mean +/- SE, n = 24-96, P < 0.05) to 44 +/- 1%, but 3-day pretreatment with RST (5 microM) increased survival to 82 +/- 2% (P < 0.05). One-day RST treatment was not protective. RST-induced neuroprotection was abolished by mevalonate or geranylgeranyl pyrophosphate (GGPP), but not by cholesterol coapplication. Furthermore, RST-induced decreases in neuronal cholesterol levels were abolished by mevalonate but not by GGPP. Reactive oxygen species (ROS) levels were reduced in RST-preconditioned neurons after OGD, and this effect was also reversed by both mevalonate and GGPP. These data suggested that GGPP, but not cholesterol depletion, were responsible for the induction of neuroprotection. Therefore, we tested whether 3-day treatments with perillic acid, a nonspecific inhibitor of both geranylgeranyl transferase (GGT) GGT 1 and Rab GGT, and the GGT 1-specific inhibitor GGTI-286 would reproduce the effects of RST. Perillic acid, but not GGTI-286, elicited robust neuronal preconditioning against OGD. RST, GGTI-286, and perillic acid all decreased mitochondrial membrane potential and lactate dehydrogenase activity in the cultured neurons, but only RST and perillic acid reduced neuronal ATP and membrane Rab3a protein levels. In conclusion, RST preconditions cultured neurons against OGD via depletion of GGPP, leading to decreased geranylgeranylation of proteins that are probably not isoprenylated by GGT 1. Reduced neuronal ATP levels and ROS production after OGD may be directly involved in the mechanism of neuroprotection.

  7. Microglial ablation and lipopolysaccharide preconditioning affects pilocarpine-induced seizures in mice

    SciTech Connect

    Mirrione, M.M.; Mirrione, M.M.; Konomosa, D.K.; Ioradanis, G.; Dewey, S.L.; Agzzid, A.; Heppnerd, F.L.; Tsirka, St.E.

    2010-04-01

    Activated microglia have been associated with neurodegeneration in patients and in animal models of Temporal Lobe Epilepsy (TLE), however their precise functions as neurotoxic or neuroprotective is a topic of significant investigation. To explore this, we examined the effects of pilocarpine-induced seizures in transgenic mice where microglia/macrophages were conditionally ablated. We found that unilateral ablation of microglia from the dorsal hippocampus did not alter acute seizure sensitivity. However, when this procedure was coupled with lipopolysaccharide (LPS) preconditioning (1 mg/kg given 24 h prior to acute seizure), we observed a significant pro-convulsant phenomenon. This effect was associated with lower metabolic activation in the ipsilateral hippocampus during acute seizures, and could be attributed to activity in the mossy fiber pathway. These findings reveal that preconditioning with LPS 24 h prior to seizure induction may have a protective effect which is abolished by unilateral hippocampal microglia/macrophage ablation.

  8. Neuroprotective effects of erythropoietin posttreatment against kainate-induced excitotoxicity in mixed spinal cultures.

    PubMed

    Yoo, Jong Yoon; Won, You Jin; Lee, Jong Hwan; Kim, Jong Uk; Sung, In Young; Hwang, Seung Jun; Kim, Mi Jung; Hong, Hea Nam

    2009-01-01

    Although the neuroprotective effects of erythropoietin (EPO) preconditioning are well known, the potential of postapplied EPO to protect neurons against excitotoxic injury has not been clearly established. Here we show that kainate (KA)-induced excitotoxicity, which plays a key role in secondary spinal cord injury, decreased neuron survival, inhibited neurite extension, and significantly reduced the expression of erythropoietin receptors (EpoR) in cultured spinal neurons. Posttreatment with EPO for 48 hr protected neurons against KA-induced injury, opposing KA-induced apoptosis and promoting regrowth of motoneuron neurites. These neuroprotective effects were paralleled by a restoration of EpoR expression. The importance of the EpoR signaling pathway was demonstrated using an EpoR blocking antibody, which neutralized the neuroprotective action of EPO posttreatment and prevented EPO-induced increases in EpoR expression. We also found that up-regulated EpoR stimulated the Janus kinase 2 (JAK2) pathway, which is known to facilitate neuronal growth and neurite regeneration. Although EPO posttreatment modestly attenuated KA-induced reactive gliosis in mixed neuron-glial cultures, blocking EpoR activity did not alter glial fibrillary acidic protein expression or astrocyte proliferation. In conclusion, 48 hr treatment with EPO following KA exposure induced EpoR-dependent protection against excitotoxic injury, demonstrating that preconditioning is not a prerequisite for neuroprotection by EPO. The neuroprotective effects of EPO posttreatment were mediated by an EpoR-dependent signaling pathway that possibly involves JAK2. The neuroprotective effect of EPO posttreatment against KA excitotoxicity appears to reflect direct effects on neurons and not indirect effects mediated by astrocytes.

  9. Exercise preconditioning exhibits neuroprotective effects on hippocampal CA1 neuronal damage after cerebral ischemia

    PubMed Central

    Shamsaei, Nabi; Khaksari, Mehdi; Erfani, Sohaila; Rajabi, Hamid; Aboutaleb, Nahid

    2015-01-01

    Recent evidence has suggested the neuroprotective effects of physical exercise on cerebral ischemic injury. However, the role of physical exercise in cerebral ischemia-induced hippocampal damage remains controversial. The aim of the present study was to evaluate the effects of pre-ischemia treadmill training on hippocampal CA1 neuronal damage after cerebral ischemia. Male adult rats were randomly divided into control, ischemia and exercise + ischemia groups. In the exercise + ischemia group, rats were subjected to running on a treadmill in a designated time schedule (5 days per week for 4 weeks). Then rats underwent cerebral ischemia induction through occlusion of common carotids followed by reperfusion. At 4 days after cerebral ischemia, rat learning and memory abilities were evaluated using passive avoidance memory test and rat hippocampal neuronal damage was detected using Nissl and TUNEL staining. Pre-ischemic exercise significantly reduced the number of TUNEL-positive cells and necrotic cell death in the hippocampal CA1 region as compared to the ischemia group. Moreover, pre-ischemic exercise significantly prevented ischemia-induced memory dysfunction. Pre-ischemic exercise mighct prevent memory deficits after cerebral ischemia through rescuing hippocampal CA1 neurons from ischemia-induced degeneration. PMID:26487851

  10. Cortical spreading depression-induced preconditioning in the brain

    PubMed Central

    Shen, Ping-ping; Hou, Shuai; Ma, Di; Zhao, Ming-ming; Zhu, Ming-qin; Zhang, Jing-dian; Feng, Liang-shu; Cui, Li; Feng, Jia-chun

    2016-01-01

    Cortical spreading depression is a technique used to depolarize neurons. During focal or global ischemia, cortical spreading depression-induced preconditioning can enhance tolerance of further injury. However, the underlying mechanism for this phenomenon remains relatively unclear. To date, numerous issues exist regarding the experimental model used to precondition the brain with cortical spreading depression, such as the administration route, concentration of potassium chloride, induction time, duration of the protection provided by the treatment, the regional distribution of the protective effect, and the types of neurons responsible for the greater tolerance. In this review, we focus on the mechanisms underlying cortical spreading depression-induced tolerance in the brain, considering excitatory neurotransmission and metabolism, nitric oxide, genomic reprogramming, inflammation, neurotropic factors, and cellular stress response. Specifically, we clarify the procedures and detailed information regarding cortical spreading depression-induced preconditioning and build a foundation for more comprehensive investigations in the field of neural regeneration and clinical application in the future. PMID:28123433

  11. Neuroprotective effect of ischemic preconditioning via modulating the expression of cerebral miRNAs against transient cerebral ischemia in diabetic rats.

    PubMed

    Altintas, Ozge; Ozgen Altintas, Mehmet; Kumas, Meltem; Asil, Talip

    2016-11-01

    In this study, we aimed to evaluate the effect of the Ischemic preconditioning (IPreC) on the expression profile of cerebral miRNAs against stroke by induced transient middle cerebral artery occlusion (MCAo) in diabetic rats. Eighty male Spraque Dawley rats were allocated to eight groups. In order to evaluate the expression profile of miRNAs, we induced transient MCAo seven days after STZ-induced diabetes (DM). Also we performed IPreC 72 h before transient MCAo to assess whether IPreC could have a neuroprotective effect against ischemia-reperfusion injury. The general characteristics of STZ-treated rats included reduced body weight and elevated blood glucose levels compared to non-diabetic ones. We demonstrated that miRNA expression profiles, which are determined for biological functions such as aquaporin 4 formation (miR-29b-2, miR-124a-3p, miR-130a, miR-223 and miR-320a), glutamate toxicity (miR107, miR-145, miR-223), salvageable ischemic area (miR-9a, miR-19b, miR-29b-2, miR-341, miR-339-5p, miR-15-5p, miR-99b-5p), and neoangiogenesis (let-7f-5p, miR-126a and miR-322-3p), were regulated following IPreC. Ischemic preconditioning before cerebral ischemia significantly reduced infarction size compared with the other groups [IPreC + MCAo (27 ± 11 mm(3)) vs. MCAo (109 ± 15 mm(3)) p < 0.001; DM + IPreC + MCAo (38 ± 9 mm(3)) vs. DM + MCAo (165 ± 41 mm(3)) p < 0.001, respectively]. The study results revealed the neuroprotective effects of ischemic preconditioning, supported with the upregulated pro-survival miRNAs in MCA infarcts.

  12. Preconditioning of adipose tissue-derived mesenchymal stem cells with deferoxamine increases the production of pro-angiogenic, neuroprotective and anti-inflammatory factors: Potential application in the treatment of diabetic neuropathy

    PubMed Central

    Oses, Carolina; Olivares, Belén; Ezquer, Marcelo; Acosta, Cristian; Bosch, Paul; Donoso, Macarena; Léniz, Patricio

    2017-01-01

    Diabetic neuropathy (DN) is one of the most frequent and troublesome complications of diabetes mellitus. Evidence from diabetic animal models and diabetic patients suggests that reduced availability of neuroprotective and pro-angiogenic factors in the nerves in combination with a chronic pro-inflammatory microenvironment and high level of oxidative stress, contribute to the pathogenesis of DN. Mesenchymal stem cells (MSCs) are of great interest as therapeutic agents for regenerative purposes, since they can secrete a broad range of cytoprotective and anti-inflammatory factors. Therefore, the use of the MSC secretome may represent a promising approach for DN treatment. Recent data indicate that the paracrine potential of MSCs could be boosted by preconditioning these cells with an environmental or pharmacological stimulus, enhancing their therapeutic efficacy. In the present study, we observed that the preconditioning of human adipose tissue-derived MSCs (AD-MSCs) with 150μM or 400μM of the iron chelator deferoxamine (DFX) for 48 hours, increased the abundance of the hypoxia inducible factor 1 alpha (HIF-1α) in a concentration dependent manner, without affecting MSC morphology and survival. Activation of HIF-1α led to the up-regulation of the mRNA levels of pro-angiogenic factors like vascular endothelial growth factor alpha and angiopoietin 1. Furthermore this preconditioning increased the expression of potent neuroprotective factors, including nerve growth factor, glial cell-derived neurotrophic factor and neurotrophin-3, and cytokines with anti-inflammatory activity like IL4 and IL5. Additionally, we observed that these molecules, which could also be used as therapeutics, were also increased in the secretome of MSCs preconditioned with DFX compared to the secretome obtained from non-preconditioned cells. Moreover, DFX preconditioning significantly increased the total antioxidant capacity of the MSC secretome and they showed neuroprotective effects when

  13. Preconditioning of adipose tissue-derived mesenchymal stem cells with deferoxamine increases the production of pro-angiogenic, neuroprotective and anti-inflammatory factors: Potential application in the treatment of diabetic neuropathy.

    PubMed

    Oses, Carolina; Olivares, Belén; Ezquer, Marcelo; Acosta, Cristian; Bosch, Paul; Donoso, Macarena; Léniz, Patricio; Ezquer, Fernando

    2017-01-01

    Diabetic neuropathy (DN) is one of the most frequent and troublesome complications of diabetes mellitus. Evidence from diabetic animal models and diabetic patients suggests that reduced availability of neuroprotective and pro-angiogenic factors in the nerves in combination with a chronic pro-inflammatory microenvironment and high level of oxidative stress, contribute to the pathogenesis of DN. Mesenchymal stem cells (MSCs) are of great interest as therapeutic agents for regenerative purposes, since they can secrete a broad range of cytoprotective and anti-inflammatory factors. Therefore, the use of the MSC secretome may represent a promising approach for DN treatment. Recent data indicate that the paracrine potential of MSCs could be boosted by preconditioning these cells with an environmental or pharmacological stimulus, enhancing their therapeutic efficacy. In the present study, we observed that the preconditioning of human adipose tissue-derived MSCs (AD-MSCs) with 150μM or 400μM of the iron chelator deferoxamine (DFX) for 48 hours, increased the abundance of the hypoxia inducible factor 1 alpha (HIF-1α) in a concentration dependent manner, without affecting MSC morphology and survival. Activation of HIF-1α led to the up-regulation of the mRNA levels of pro-angiogenic factors like vascular endothelial growth factor alpha and angiopoietin 1. Furthermore this preconditioning increased the expression of potent neuroprotective factors, including nerve growth factor, glial cell-derived neurotrophic factor and neurotrophin-3, and cytokines with anti-inflammatory activity like IL4 and IL5. Additionally, we observed that these molecules, which could also be used as therapeutics, were also increased in the secretome of MSCs preconditioned with DFX compared to the secretome obtained from non-preconditioned cells. Moreover, DFX preconditioning significantly increased the total antioxidant capacity of the MSC secretome and they showed neuroprotective effects when

  14. Exploring the Role of TRPV and CGRP in Adenosine Preconditioning and Remote Hind Limb Preconditioning-Induced Cardioprotection in Rats.

    PubMed

    Singh, Amritpal; Randhawa, Puneet Kaur; Bali, Anjana; Singh, Nirmal; Jaggi, Amteshwar Singh

    2017-02-14

    The cardioprotective effects of remote hind limb preconditioning (RIPC) are well known, but mechanisms by which protection occurs still remain to be explored. Therefore, the present study was designed to investigate the role of TRPV and CGRP in adenosine and remote preconditioning-induced cardioprotection, using sumatriptan, a CGRP release inhibitor and ruthenium red, a TRPV inhibitor, in rats. For remote preconditioning, a pressure cuff was tied around the hind limb of the rat and was inflated with air up to 150 mmHg to produce ischemia in the hind limb and during reperfusion pressure was released. Four cycles of ischemia and reperfusion, each consisting of 5 min of inflation and 5 min of deflation of pressure cuff were used to produce remote limb preconditioning. An ex vivo Langendorff's isolated rat heart model was used to induce ischemia reperfusion injury by 30 min of global ischemia followed by 120 min of reperfusion. RIPC demonstrated a significant decrease in ischemia reperfusion-induced significant myocardial injury in terms of increase in LDH, CK, infarct size and decrease in LVDP, +dp/dtmax and -dp/dtmin. Moreover, pharmacological preconditioning with adenosine produced cardioprotective effects in a similar manner to RIPC. Pretreatment with sumatriptan, a CGRP release blocker, abolished RIPC and adenosine preconditioning-induced cardioprotective effects. Administration of ruthenium red, a TRPV inhibitor, also abolished adenosine preconditioning-induced cardioprotection. It may be proposed that the cardioprotective effects of adenosine and remote preconditioning are possibly mediated through activation of a TRPV channels and consequent, release of CGRP.

  15. Neuroprotection of Ischemic Preconditioning is Mediated by Thioredoxin 2 in the Hippocampal CA1 Region Following a Subsequent Transient Cerebral Ischemia.

    PubMed

    Lee, Jae-Chul; Park, Joon Ha; Kim, In Hye; Cho, Geum-Sil; Ahn, Ji Hyeon; Tae, Hyun-Jin; Choi, Soo Young; Cho, Jun Hwi; Kim, Dae Won; Kwon, Young-Guen; Kang, Il Jun; Won, Moo-Ho; Kim, Young-Myeong

    2016-04-26

    Preconditioning by brief ischemic episode induces tolerance to a subsequent lethal ischemic insult, and it has been suggested that reactive oxygen species are involved in this phenomenon. Thioredoxin 2 (Trx2), a small protein with redox-regulating function, shows cytoprotective roles against oxidative stress. Here, we had focused on the role of Trx2 in ischemic preconditioning (IPC)-mediated neuroprotection against oxidative stress followed by a subsequent lethal transient cerebral ischemia. Animals used in this study were randomly assigned to six groups; sham-operated group, ischemia-operated group, IPC plus (+) sham-operated group, IPC + ischemia-operated group, IPC + auranofin (a TrxR2 inhibitor) + sham-operated group and IPC + auranofin + ischemia-operated group. IPC was subjected to a 2 minutes of sublethal transient ischemia 1 day prior to a 5 minutes of lethal transient ischemia. A significant loss of neurons was found in the stratum pyramidale (SP) of the hippocampal CA1 region (CA1) in the ischemia-operated-group 5 days after ischemia-reperfusion; in the IPC + ischemia-operated-group, pyramidal neurons in the SP were well protected. In the IPC + ischemia-operated-group, Trx2 and TrxR2 immunoreactivities in the SP and its protein level in the CA1 were not significantly changed compared with those in the sham-operated-group after ischemia-reperfusion. In addition, superoxide dismutase 2 (SOD2) expression, superoxide anion radical ( O2-) production, denatured cytochrome c expression and TUNEL-positive cells in the IPC + ischemia-operated-group were similar to those in the sham-operated-group. Conversely, the treatment of auranofin to the IPC + ischemia-operated-group significantly increased cell damage/death and abolished the IPC-induced effect on Trx2 and TrxR2 expressions. Furthermore, the inhibition of Trx2R nearly cancelled the beneficial effects of IPC on SOD2 expression, O2- production, denatured cytochrome c

  16. Neuroprotection against Surgically-Induced Brain Injury

    PubMed Central

    Jadhav, Vikram; Solaroglu, Ihsan; Obenaus, Andre; Zhang, John H.

    2007-01-01

    Background Neurosurgical procedures are carried out routinely in health institutions across the world. A key issue to be considered during neurosurgical interventions is that there is always an element of inevitable brain injury that results from the procedure itself due to the unique nature of the nervous system. Brain tissue at the periphery of the operative site is at risk of injury by various means including incisions and direct trauma, electrocautery, hemorrhage, and retractor stretch. Methods/Results In the present review we will elaborate upon this surgically-induced brain injury and also present a novel animal model to study it. Additionally, we will summarize preliminary results obtained by pretreatment with PP1, a src tyrosine kinase inhibitor reported to have neuroprotective properties in in-vivo experimental studies. Any form of pretreatment to limit the damage to the susceptible functional brain tissue during neurosurgical procedures may have a significant impact on the patient recovery. Conclusion This brief review is intended to raise the question of ‘neuroprotection against surgically-induced brain injury’ in the neurosurgical scientific community and stimulate discussions. PMID:17210286

  17. Berberine Preconditioning Protects Neurons Against Ischemia via Sphingosine-1-Phosphate and Hypoxia-Inducible Factor-1[Formula: see text].

    PubMed

    Zhang, Qichun; Bian, Huimin; Guo, Liwei; Zhu, Huaxu

    2016-01-01

    Berberine exerts neuroprotective and modulates hypoxia inducible factor-1-alpha (HIF-1[Formula: see text]. Based on the role of HIF-1[Formula: see text] in hypoxia preconditioning and association between HIF-1[Formula: see text] and sphingosine-1-phosphate (S1P), we hypothesized that berberine preconditioning (BP) would ameliorate the cerebral injury induced by ischemia through activating the system of HIF-1[Formula: see text] and S1P. Adult male rats with middle cerebral artery occlusion (MCAO) and rat primary cortical neurons treated with oxygen and glucose deprivation (OGD) with BP at 24[Formula: see text]h (40[Formula: see text]mg/kg) and 2[Formula: see text]h (10[Formula: see text][Formula: see text]mol/L), respectively, were used to determine the neuroprotective effects. The HIF-1[Formula: see text] accumulation, and S1P metabolism were assayed in the berberine-preconditioned neurons, and the HIF-1[Formula: see text]-mediated transcriptional modulation of sphingosine kinases (Sphk) 1 and 2 was analyzed using chromatin immunoprecipitation and real-time polymerase chain reaction. BP significantly prevented cerebral ischemic injury in the MCAO rats at 24[Formula: see text]h and 72[Formula: see text]h following ischemia/reperfusion. In OGD-treated neurons, BP enhanced HIF-1[Formula: see text] accumulation with activation of PI3K/Akt, and induced S1P production by activating Sphk2 via the promotion of HIF-1[Formula: see text]-mediated Sphk2 transcription. In conclusion, BP activated endogenous neuroprotective mechanisms associated with the S1P/HIF-1 pathway and helped protect neuronal cells against hypoxia/ischemia.

  18. Niaspan Treatment Induces Neuroprotection After Stroke

    PubMed Central

    Shehadah, Amjad; Chen, Jieli; Zacharek, Alex; Cui, Yisheng; Ion, Madalina; Roberts, Cynthia; Kapke, Alissa; Chopp, Michael

    2010-01-01

    Outcome Was Positively Correlated With P-PI3K (R=0.7, P<0.05). Conclusions Treatment Of Stroke With Niaspan At 2 Hours After Mcao Reduces Infarct Volume And Improves Neurological Outcome And Provides Neuroprotection. The Neuroprotective Effects Of Niaspan Were Associated With Reduction Of Apoptosis And Attenuation Of TNF-Alpha Expression. VEGF And The PI3K/Akt Pathway May Contribute To The Niaspan-Induced Neuroprotection After Stroke. PMID:20554037

  19. Positive feedback induced memory effect in ischemic preconditioning.

    PubMed

    Shi, Jichen; Xu, Jian; Zhang, Xiaorong; Yang, Ling

    2012-05-07

    The memory of ischemic preconditioning remains a great mystery. Brief preconditioning (several sequential regional ischemia/reperfusion in minutes) can induce a two-phase protection that lasts up to 3 days. Thus comes the so-called memory of preconditioning. This memory effect has been attributed to a feed-forward signaling cascade. But recent experimental observations suggest that intra-mitochondrial positive feedback may be responsible for sustaining the protective effect. The link between positive feedback and memory is yet to be determined. In this study, we used a mathematical model to describe the way in which positive feedback induces memory in the first window of cardioprotection, and we derived an explicit relationship between the memory duration and the strength of the positive feedback. Our major findings are: (1) that positive feedback relying on a hysteresis response provides an effective way of prolonging protection up to any length; and (2) that the stronger the positive feedback, the longer the memory duration. Furthermore, compared with the feed-forward signaling cascade, positive feedback may be more favored by natural systems because of its robustness and high efficiency. The mechanisms described in this study have important implications for developments of experimental approaches as well as therapeutic strategies. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Noninvasive limb remote ischemic preconditioning contributes neuroprotective effects via activation of adenosine A1 receptor and redox status after transient focal cerebral ischemia in rats.

    PubMed

    Hu, Sheng; Dong, Hailong; Zhang, Haopeng; Wang, Shiquan; Hou, Lichao; Chen, Shaoyang; Zhang, Jinsong; Xiong, Lize

    2012-06-12

    To investigate whether activation of adenosine A1 receptor (A1R) through limb remote ischemic preconditioning (RIPC) by a noninvasive tourniquet contribute neuroprotective effects against rat focal cerebral ischemic injury induced by transient middle cerebral artery occlusion (MCAO). One hundred twenty-eight Sprague-Dawley (SD) rats were randomly assigned into eight groups (n=16 each): MCAO, Control, 8-cyclopentyl-1,3-dipropulxanthine (DPCPX, Adenosine A1 receptor antagonist), RIPC, DPCPX+RIPC, Vehicle+RIPC, 2-chloro-N(6)-cyclopentyladenosine (CCPA, Adenosine A1 receptor agonist) and CCPA+DPCPX groups. All animals underwent right middle cerebral artery occlusion (MCAO) for 2 h. Limb RIPC consisted of three cycles of 5-minute ischemia followed by 5-minute reperfusion in right hind-limb by tourniquet application. Neurological deficit scores were evaluated 24 h after reperfusion, and then the infarct volume was assessed with diffusion weighted imaging (DWI) and 2, 3, 5-triphenyltetrazolium chloride (TTC) staining. Inflammation was assessed by serum tumor necrosis factor α (TNF(α)) and NO; oxidative stress was estimated by malondialdehyde (MDA) and 4-hydroxyalkenals (4-HAD), superoxide dismutase (SOD) activity and GSH. Animals in the RIPC, Vehicle+RIPC and CCPA groups developed lower neurological deficit scores and smaller brain infarct volumes than the Control group (P<0.01). Animals in the DPCPX, DPCPX+RIPC and CCPA+DPCPX groups developed higher neurological deficit scores and larger brain infarct volumes than the RIPC, Vehicle+RIPC and CCPA groups (P<0.01). DPCPX abolished the protective effects of RIPC and CCPA. RIPC or CCPA induced a significant increase in brain MnSOD (manganese SOD) activity and NO generation, and this activity was abolished by DPCPX pretreatment. RIPC or CCPA induced a significant reduction (P<0.05) in the GSH and MDA+4HDA concentration and an accumulation in the GSSG concentration in both compartments (serum and tissue) as compared with the

  1. Monocarboxylate transporter 4 plays a significant role in the neuroprotective mechanism of ischemic preconditioning in transient cerebral ischemia

    PubMed Central

    Hong, Seongkweon; Ahn, Ji Yun; Cho, Geum-Sil; Kim, In Hye; Cho, Jeong Hwi; Ahn, Ji Hyeon; Park, Joon Ha; Won, Moo-Ho; Chen, Bai Hui; Shin, Bich-Na; Tae, Hyun-Jin; Park, Seung Min; Cho, Jun Hwi; Choi, Soo Young; Lee, Jae-Chul

    2015-01-01

    Monocarboxylate transporters (MCTs), which carry monocarboxylates such as lactate across biological membranes, have been associated with cerebral ischemia/reperfusion process. In this study, we studied the effect of ischemic preconditioning (IPC) on MCT4 immunoreactivity after 5 minutes of transient cerebral ischemia in the gerbil. Animals were randomly designated to four groups (sham-operated group, ischemia only group, IPC + sham-operated group and IPC + ischemia group). A serious loss of neuron was found in the stratum pyramidale of the hippocampal CA1 region (CA1), not CA2/3, of the ischemia-only group at 5 days post-ischemia; however, in the IPC + ischemia groups, neurons in the stratum pyramidale of the CA1 were well protected. Weak MCT4 immunoreactivity was found in the stratum pyramidale of the CA1 in the sham-operated group. MCT4 immunoreactivity in the stratum pyramidale began to decrease at 2 days post-ischemia and was hardly detected at 5 days post-ischemia; at this time point, MCT4 immunoreactivity was newly expressed in astrocytes. In the IPC + sham-operated group, MCT4 immunoreactivity in the stratum pyramidale of the CA1 was increased compared with the sham-operated group, and, in the IPC + ischemia group, MCT4 immunoreactivity was also increased in the stratum pyramidale compared with the ischemia only group. Briefly, present findings show that IPC apparently protected CA1 pyramidal neurons and increased or maintained MCT4 expression in the stratum pyramidale of the CA1 after transient cerebral ischemia. Our findings suggest that MCT4 appears to play a significant role in the neuroprotective mechanism of IPC in the gerbil with transient cerebral ischemia. PMID:26692857

  2. Remote ischemic preconditioning improves post resuscitation cerebral function via overexpressing neuroglobin after cardiac arrest in rats.

    PubMed

    Fan, Ran; Yu, Tao; Lin, Jia-Li; Ren, Guang-Dong; Li, Yi; Liao, Xiao-Xing; Huang, Zi-Tong; Jiang, Chong-Hui

    2016-10-01

    In this study, we investigated the effects of remote ischemic preconditioning on post resuscitation cerebral function in a rat model of cardiac arrest and resuscitation. The animals were randomized into six groups: 1) sham operation, 2) lateral ventricle injection and sham operation, 3) cardiac arrest induced by ventricular fibrillation, 4) lateral ventricle injection and cardiac arrest, 5) remote ischemic preconditioning initiated 90min before induction of ventricular fibrillation, and 6) lateral ventricle injection and remote ischemic preconditioning before cardiac arrest. Reagent of Lateral ventricle injection is neuroglobin antisense oligodeoxynucleotides which initiated 24h before sham operation, cardiac arrest or remote ischemic preconditioning. Remote ischemic preconditioning was induced by four cycles of 5min of limb ischemia, followed by 5min of reperfusion. Ventricular fibrillation was induced by current and lasted for 6min. Defibrillation was attempted after 6min of cardiopulmonary resuscitation. The animals were then monitored for 2h and observed for an additionally maximum 70h. Post resuscitation cerebral function was evaluated by neurologic deficit score at 72h after return of spontaneous circulation. Results showed that remote ischemic preconditioning increased neurologic deficit scores. To investigate the neuroprotective effects of remote ischemic preconditioning, we observed neuronal injury at 48 and 72h after return of spontaneous circulation and found that remote ischemic preconditioning significantly decreased the occurrence of neuronal apoptosis and necrosis. To further comprehend mechanism of neuroprotection induced by remote ischemic preconditioning, we found expression of neuroglobin at 24h after return of spontaneous circulation was enhanced. Furthermore, administration of neuroglobin antisense oligodeoxynucleotides before induction of remote ischemic preconditioning showed that the level of neuroglobin was decreased then partly abrogated

  3. Decreased Extracellular Adenosine Levels Lead to Loss of Hypoxia-Induced Neuroprotection after Repeated Episodes of Exposure to Hypoxia

    PubMed Central

    Li, Tianfu; Chen, Fangzhe; Dong, Qiang; Zhao, Yanxin; Liu, Xueyuan

    2013-01-01

    Achieving a prolonged neuroprotective state following transient ischemic attacks (TIAs) is likely to effectively reduce the brain damage and neurological dysfunction associated with recurrent stroke. HPC is a phenomenon in which advanced exposure to mild hypoxia reduces the stroke volume produced by a subsequent TIA. However, this neuroprotection is not long-lasting, with the effects reaching a peak after 3 days. Therefore, in this study, we investigated the use of multiple episodes of hypoxic exposure at different time intervals to induce longer-term protection in a mouse stroke model. C57BL/6 mice were subjected to different hypoxic preconditioning protocols: a single episode of HPC or five identical episodes at intervals of 3 days (E3d HPC) or 6 days (E6d HPC). Three days after the last hypoxic exposure, temporary middle cerebral artery occlusion (MCAO) was induced. The effects of these HPC protocols on hypoxia-inducible factor (HIF) regulated gene mRNA expression were measured by quantitative PCR. Changes in extracellular adenosine concentrations, known to exert neuroprotective effects, were also measured using in vivo microdialysis and high pressure liquid chromatography (HPLC). Neuroprotection was provided by E6d HPC but not E3d HPC. HIF-regulated target gene expression increased significantly following all HPC protocols. However, E3d HPC significantly decreased extracellular adenosine and reduced cerebral blood flow in the ischemic region with upregulated expression of the adenosine transporter, equilibrative nucleoside transporter 1 (ENT1). An ENT1 inhibitor, propentofylline increased the cerebral blood flow and re-established neuroprotection in E3d HPC. Adenosine receptor specific antagonists showed that adenosine mainly through A1 receptor mediates HPC induced neuroprotection. Our data indicate that cooperation of HIF-regulated genes and extracellular adenosine is necessary for HPC-induced neuroprotection. PMID:23437309

  4. Remote Ischemic Preconditioning Protects Retinal Photoreceptors: Evidence From a Rat Model of Light-Induced Photoreceptor Degeneration.

    PubMed

    Brandli, Alice; Johnstone, Daniel M; Stone, Jonathan

    2016-10-01

    To test whether remote ischemic preconditioning (RIP) is protective to photoreceptors, in a light damage model, and to identify mechanisms involved. A pressure cuff was used to induce ischemia (2 × 5 minutes) in one hind limb of 4- to 6-month-old albino Sprague-Dawley rats raised in dim, cyclic light (12 hours 5 lux, 12 hours dark). Immediately following the ischemia, rats were exposed to bright continuous light (1000 lux) for 24 hours. After 7-day survival in dim, cyclic light conditions, retinal function was assessed using the flash electroretinogram (ERG) and retinal structure was examined for photoreceptor survival and death, as well as for stress. Messenger RNA and protein expression of growth factors and brain-derived neurotrophic factor (BDNF) receptors was also assessed at 7-day survival. Bright light exposure reduced the amplitude of the a- and b-waves of the ERG, upregulated the expression of glial fibrillary acidic protein (GFAP) by Müller cells, increased the number of dying (TUNEL+) photoreceptors, and reduced the number of surviving photoreceptors. Remote ischemic preconditioning mitigated all of these bright light-induced effects. Remote ischemic preconditioning-induced protection was associated with increased retinal expression of BDNF and its low-affinity receptor NGFR. The present study provides evidence, for the first time, that RIP protects photoreceptors against bright light-induced photoreceptor degeneration. This observation is consistent with previous reports of RIP-induced protection of the inner retina and of other vital organs. Brain-derived neurotrophic factor may play a role in mediating the RIP-induced neuroprotection through activation of NGFR.

  5. Roles of thioredoxin in nitric oxide-dependent preconditioning-induced tolerance against MPTP neurotoxin

    SciTech Connect

    Chiueh, C.C. . E-mail: chiueh@tmu.edu.tw; Andoh, Tsugunobu; Chock, P. Boon

    2005-09-01

    Hormesis, a stress tolerance, can be induced by ischemic preconditioning stress. In addition to preconditioning, it may be induced by other means, such as gas anesthetics. Preconditioning mechanisms, which may be mediated by reprogramming survival genes and proteins, are obscure. A known neurotoxicant, 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), causes less neurotoxicity in the mice that are preconditioned. Pharmacological evidences suggest that the signaling pathway of {center_dot}NO-cGMP-PKG (protein kinase G) may mediate preconditioning phenomenon. We developed a human SH-SY5Y cell model for investigating {sup {center_dot}}NO-mediated signaling pathway, gene regulation, and protein expression following a sublethal preconditioning stress caused by a brief 2-h serum deprivation. Preconditioned human SH-SY5Y cells are more resistant against severe oxidative stress and apoptosis caused by lethal serum deprivation and 1-mehtyl-4-phenylpyridinium (MPP{sup +}). Both sublethal and lethal oxidative stress caused by serum withdrawal increased neuronal nitric oxide synthase (nNOS/NOS1) expression and {sup {center_dot}}NO levels to a similar extent. In addition to free radical scavengers, inhibition of nNOS, guanylyl cyclase, and PKG blocks hormesis induced by preconditioning. S-nitrosothiols and 6-Br-cGMP produce a cytoprotection mimicking the action of preconditioning tolerance. There are two distinct cGMP-mediated survival pathways: (i) the up-regulation of a redox protein thioredoxin (Trx) for elevating mitochondrial levels of antioxidant protein Mn superoxide dismutase (MnSOD) and antiapoptotic protein Bcl-2, and (ii) the activation of mitochondrial ATP-sensitive potassium channels [K(ATP)]. Preconditioning induction of Trx increased tolerance against MPP{sup +}, which was blocked by Trx mRNA antisense oligonucleotide and Trx reductase inhibitor. It is concluded that Trx plays a pivotal role in {sup {center_dot}}NO-dependent preconditioning hormesis against

  6. Effect of ozone oxidative preconditioning in preventing early radiation-induced lung injury in rats.

    PubMed

    Bakkal, B H; Gultekin, F A; Guven, B; Turkcu, U O; Bektas, S; Can, M

    2013-09-01

    Ionizing radiation causes its biological effects mainly through oxidative damage induced by reactive oxygen species. Previous studies showed that ozone oxidative preconditioning attenuated pathophysiological events mediated by reactive oxygen species. As inhalation of ozone induces lung injury, the aim of this study was to examine whether ozone oxidative preconditioning potentiates or attenuates the effects of irradiation on the lung. Rats were subjected to total body irradiation, with or without treatment with ozone oxidative preconditioning (0.72 mg/kg). Serum proinflammatory cytokine levels, oxidative damage markers, and histopathological analysis were compared at 6 and 72 h after total body irradiation. Irradiation significantly increased lung malondialdehyde levels as an end-product of lipoperoxidation. Irradiation also significantly decreased lung superoxide dismutase activity, which is an indicator of the generation of oxidative stress and an early protective response to oxidative damage. Ozone oxidative preconditioning plus irradiation significantly decreased malondialdehyde levels and increased the activity of superoxide dismutase, which might indicate protection of the lung from radiation-induced lung injury. Serum tumor necrosis factor alpha and interleukin-1 beta levels, which increased significantly following total body irradiation, were decreased with ozone oxidative preconditioning. Moreover, ozone oxidative preconditioning was able to ameliorate radiation-induced lung injury assessed by histopathological evaluation. In conclusion, ozone oxidative preconditioning, repeated low-dose intraperitoneal administration of ozone, did not exacerbate radiation-induced lung injury, and, on the contrary, it provided protection against radiation-induced lung damage.

  7. Involvement of volume-activated chloride channels in H2O 2 preconditioning against oxidant-induced injury through modulating cell volume regulation mechanisms and membrane permeability in PC12 cells.

    PubMed

    Zhu, Linyan; Zuo, Wanhong; Yang, Haifeng; Zhang, Haifeng; Luo, Hai; Ye, Dong; Lin, Xi; Mao, Jianwen; Feng, Jianqiang; Chen, Lixin; Wang, Liwei

    2013-08-01

    The functions of chloride channels in preconditioning-induced cell protection remain unclear. In this report, we show that the volume-activated chloride channels play a key role in hydrogen peroxide (H2O2) preconditioning-induced cell protection in pheochromocytoma PC12 cells. The preconditioning with 100 μM H2O2 for 90 min protected the cells from injury induced by long period exposure to 300 μM H2O2. The protective effect was attenuated by pretreatment with the chloride channel blockers, 5-nitro-2-3-phenylpropylamino benzoic acid (NPPB) and tamoxifen. H2O2 preconditioning directly activated a chloride current, which was moderately outward-rectified and sensitive to the chloride channel blockers and hypertonicity-induced cell shrinkage. H2O2 preconditioning functionally up-regulated the activities of volume-activated chloride channels and enhanced the regulatory volume decrease when exposure to extracellular hypotonic challenges. In addition, acute application of H2O2 showed distinctive actions on cell volume and membrane permeability in H2O2 preconditioned cells. In H2O2 preconditioned cells, acute application of 300 μM H2O2 first promptly induced a decrease of cell volume and enhancement of cell membrane permeability, and then, cell volume was maintained at a relatively stable level and the facilitation of membrane permeability was reduced. Conversely, in control cells, 300 μM H2O2 induced a slow but persistent apoptotic volume decrease (AVD) and facilitation of membrane permeability. H2O2 preconditioning also significantly up-regulated the expression of ClC-3 protein, the molecular candidate of the volume-activated chloride channel. These results suggest that H2O2 preconditioning can enhance the expression and functional activities of volume-activated chloride channels, thereby modulate cell volume and cell membrane permeability, which may contribute to neuroprotection against oxidant-induced injury.

  8. Argon Induces Protective Effects in Cardiomyocytes during the Second Window of Preconditioning.

    PubMed

    Mayer, Britta; Soppert, Josefin; Kraemer, Sandra; Schemmel, Sabrina; Beckers, Christian; Bleilevens, Christian; Rossaint, Rolf; Coburn, Mark; Goetzenich, Andreas; Stoppe, Christian

    2016-07-19

    Increasing evidence indicates that argon has organoprotective properties. So far, the underlying mechanisms remain poorly understood. Therefore, we investigated the effect of argon preconditioning in cardiomyocytes within the first and second window of preconditioning. Primary isolated cardiomyocytes from neonatal rats were subjected to 50% argon for 1 h, and subsequently exposed to a sublethal dosage of hypoxia (<1% O₂) for 5 h either within the first (0-3 h) or second window (24-48 h) of preconditioning. Subsequently, the cell viability and proliferation was measured. The argon-induced effects were assessed by evaluation of mRNA and protein expression after preconditioning. Argon preconditioning did not show any cardioprotective effects in the early window of preconditioning, whereas it leads to a significant increase of cell viability 24 h after preconditioning compared to untreated cells (p = 0.015) independent of proliferation. Argon-preconditioning significantly increased the mRNA expression of heat shock protein (HSP) B1 (HSP27) (p = 0.048), superoxide dismutase 2 (SOD2) (p = 0.001), vascular endothelial growth factor (VEGF) (p < 0.001) and inducible nitric oxide synthase (iNOS) (p = 0.001). No difference was found with respect to activation of pro-survival kinases in the early and late window of preconditioning. The findings provide the first evidence of argon-induced effects on the survival of cardiomyocytes during the second window of preconditioning, which may be mediated through the induction of HSP27, SOD2, VEGF and iNOS.

  9. Electroacupuncture preconditioning and postconditioning inhibit apoptosis and neuroinflammation induced by spinal cord ischemia reperfusion injury through enhancing autophagy in rats.

    PubMed

    Fang, Bo; Qin, Meiman; Li, Yun; Li, Xiaoqian; Tan, Wenfei; Zhang, Ying; Ma, Hong

    2017-03-06

    Electroacupuncture (EA) has beneficial effects on spinal cord ischemia reperfusion (I/R) injury, but the underlying mechanisms are not fully understood. This study aimed to investigate the role of autophagy in the protection of EA preconditioning and postconditioning against spinal cord I/R injury. For this, spinal cord I/R injury was induced by 14min occlusion of the aortic arch, and rats were treated with EA for 20min before or after the surgery. The expression of autophagy components, light chain 3 and Beclin 1, was assessed by Western blot. The hind-limb motor function was assessed using the Basso-Beattie-Bresnahan (BBB) criteria, and motor neurons in the ventral gray matter were counted by histological examination. The apoptosis of neurocyte was assessed by the terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) assay. The expression of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and matrix metalloproteinase-9 (MMP-9) was also measured using Western blot or enzyme-linked immunosorbent assay (ELISA). Either EA preconditioning or postconditioning enhanced autophagy, and minimized the neuromotor dysfunction and histopathological deficits after spinal cord I/R injury. In addition, EA suppressed I/R-induced apoptosis and increased in the expression of TNF-α, IL-1β, and MMP-9. In contrast, the autophagic inhibitor (3-methyladenine, 3-MA) inhibited the neuroprotective effects of EA. Moreover, 3-MA increased the apoptosis and the expression of TNF-α, IL-1β, and MMP-9. In summary, these findings suggested that EA preconditioning and postconditioning could alleviate spinal cord I/R injury, which was partly mediated by autophagy upregulation-induced inhibition of apoptosis and neuroinflammation.

  10. Neuroprotective Treatment of Laser-Induced Retinal Injuries

    DTIC Science & Technology

    2001-10-01

    to evaluate the neuroprotective effect of dextromethorphan , memantine and brimonidine in our rat model of laser- induced retinal-lesions Methods: Argon... dextromethorphan , memantine or brimonidine. The control groups (18 rats for each compound) received the solvent at the same volume and schedule as...size and the magnitude of photoreceptor nuclei loss within the lesions. Conclusions: Systemic treatments with dextromethorphan , memantine or brimonidine

  11. Preconditioning-induced CXCL12 upregulation minimizes leukocyte infiltration after stroke in ischemia-tolerant mice.

    PubMed

    Selvaraj, Uma Maheswari; Ortega, Sterling B; Hu, Ruilong; Gilchrist, Robert; Kong, Xiangmei; Partin, Alexander; Plautz, Erik J; Klein, Robyn S; Gidday, Jeffrey M; Stowe, Ann M

    2017-03-01

    Repetitive hypoxic preconditioning creates long-lasting, endogenous protection in a mouse model of stroke, characterized by reductions in leukocyte-endothelial adherence, inflammation, and infarct volumes. The constitutively expressed chemokine CXCL12 can be upregulated by hypoxia and limits leukocyte entry into brain parenchyma during central nervous system inflammatory autoimmune disease. We therefore hypothesized that the sustained tolerance to stroke induced by repetitive hypoxic preconditioning is mediated, in part, by long-term CXCL12 upregulation at the blood-brain barrier (BBB). In male Swiss Webster mice, repetitive hypoxic preconditioning elevated cortical CXCL12 protein levels, and the number of cortical CXCL12+ microvessels, for at least two weeks after the last hypoxic exposure. Repetitive hypoxic preconditioning-treated mice maintained more CXCL12-positive vessels than untreated controls following transient focal stroke, despite cortical decreases in CXCL12 mRNA and protein. Continuous administration of the CXCL12 receptor (CXCR4) antagonist AMD3100 for two weeks following repetitive hypoxic preconditioning countered the increase in CXCL12-positive microvessels, both prior to and following stroke. AMD3100 blocked the protective post-stroke reductions in leukocyte diapedesis, including macrophages and NK cells, and blocked the protective effect of repetitive hypoxic preconditioning on lesion volume, but had no effect on blood-brain barrier dysfunction. These data suggest that CXCL12 upregulation prior to stroke onset, and its actions following stroke, contribute to the endogenous, anti-inflammatory phenotype induced by repetitive hypoxic preconditioning.

  12. Nrf2 Activation in Astrocytes Contributes to Spinal Cord Ischemic Tolerance Induced by Hyperbaric Oxygen Preconditioning

    PubMed Central

    Xu, Jiajun; Huang, Guoyang; Zhang, Kun; Sun, Jinchuan; Xu, Tao; Li, Runping

    2014-01-01

    Abstract In this study, we investigated whether nuclear factor erythroid 2-related factor 2 (Nrf2) activation in astrocytes contributes to the neuroprotection induced by a single hyperbaric oxygen preconditioning (HBO-PC) against spinal cord ischemia/reperfusion (SCIR) injury. In vivo: At 24 h after a single HBO-PC at 2.5 atmospheres absolute for 90 min, the male ICR mice underwent SCIR injury by aortic cross-clamping surgery and observed for 48 h. HBO-PC significantly improved hindlimb motor function, reduced secondary spinal cord edema, ameliorated the reactivity of spinal motor-evoked potentials, and slowed down the process of apoptosis to exert neuroprotective effects against SCIR injury. At 12 h or 24 h after HBO-PC without aortic cross-clamping surgery, Western blot, enzyme-linked immunosorbent assay, realtime-polymerase chain reaction and double-immunofluorescence staining were used to detect the Nrf2 activity of spinal cord tissue, such as mRNA level, protein content, DNA binding activity, and the expression of downstream gene, such as glutamate-cysteine ligase, γ-glutamyltransferase, multidrug resistance protein 1, which are key proteins for intracellular glutathione synthesis and transit. The Nrf2 activity and downstream genes expression were all enhanced in normal spinal cord with HBO-PC. Glutathione content of spinal cord tissue with HBO-PC significantly increased at all time points after SCIR injury. Moreover, Nrf2 overexpression mainly occurs in astrocytes. In vitro: At 24 h after HBO-PC, the primary spinal astrocyte-neuron co-cultures from ICR mouse pups were subjected to oxygen-glucose deprivation (OGD) for 90 min to simulate the ischemia-reperfusion injury. HBO-PC significantly increased the survival rate of neurons and the glutathione content in culture medium, which was mainly released from asctrocytes. Moreover, the Nrf2 activity and downstream genes expression induced by HBO-PC were mainly enhanced in astrocytes, but not in

  13. Exercise preconditioning attenuates pressure overload-induced pathological cardiac hypertrophy

    PubMed Central

    Xu, Tongyi; Tang, Hao; Zhang, Ben; Cai, Chengliang; Liu, Xiaohong; Han, Qingqi; Zou, Liangjian

    2015-01-01

    Pathological cardiac hypertrophy, a common response of the heart to a variety of cardiovascular diseases, is typically associated with myocytes remodeling and fibrotic replacement, cardiac dysfunction. Exercise preconditioning (EP) increases the myocardial mechanical load and enhances tolerance of cardiac ischemia-reperfusion injury (IRI), however, is less reported in pathological cardiac hypertrophy. To determine the effect of EP in pathological cardiac hypertrophy, Male 10-wk-old Sprague-Dawley rats (n=30) were subjected to 4 weeks of EP followed by 4-8 weeks of pressure overload (transverse aortic constriction, TAC) to induce pathological remodeling. TAC in untrained controls (n=30) led to pathological cardiac hypertrophy, depressed systolic function. We observed that left ventricular wall thickness in end diastole, heart size, heart weight-to-body weight ratio, heart weight-to-tibia length ratio, cross-sectional area of cardiomyocytes and the reactivation of fetal genes (atrial natriuretic peptide and brain natriuretic peptide) were markedly increased, meanwhile left ventricular internal dimension at end-diastole, systolic function were significantly decreased by TAC at 4 wks after operation (P < 0.01), all of which were effectively inhibited by EP treatment (P < 0.05), but the differences of these parameters were decreased at 8 wks after operation. Furthermore, EP treatment inhibited degradation of IκBα, and decreased NF-κB p65 subunit levels in the nuclear fraction, and then reduced IL2 levels in the myocardium of rats subject to TAC. EP can effectively attenuate pathological cardiac hypertrophic responses induced by TAC possibly through inhibition of degradation of IκB and blockade of the NF-κB signaling pathway in the early stage of pathological cardiac hypertrophy. PMID:25755743

  14. Low-Dose Ethanol Preconditioning Protects Against Oxygen-Glucose Deprivation/Reoxygenation-Induced Neuronal Injury By Activating Large Conductance, Ca(2+)-Activated K(+) Channels In Vitro.

    PubMed

    Su, Fang; Guo, An-Chen; Li, Wei-Wei; Zhao, Yi-Long; Qu, Zheng-Yi; Wang, Yong-Jun; Wang, Qun; Zhu, Yu-Lan

    2017-02-01

    Increasing evidence suggests that low to moderate ethanol ingestion protects against the deleterious effects of subsequent ischemia/reperfusion; however, the underlying mechanism has not been elucidated. In the present study, we showed that expression of the neuronal large-conductance, Ca(2+)-activated K(+) channel (BKCa) α-subunit was upregulated in cultured neurons exposed to oxygen-glucose deprivation/reoxygenation (OGD/R) compared with controls. Preconditioning with low-dose ethanol (10 mmol/L) increased cell survival rate in neurons subjected to OGD/R, attenuated the OGD/R-induced elevation of cytosolic Ca(2+) levels, and reduced the number of apoptotic neurons. Western blots revealed that ethanol preconditioning upregulated expression of the anti-apoptotic protein Bcl-2 and downregulated the pro-apoptotic protein Bax. The protective effect of ethanol preconditioning was antagonized by a BKCa channel inhibitor, paxilline. Inside-out patches in primary neurons also demonstrated the direct activation of the BKCa channel by 10 mmol/L ethanol. The above results indicated that low-dose ethanol preconditioning exerts its neuroprotective effects by attenuating the elevation of cytosolic Ca(2+) and preventing neuronal apoptosis, and this is mediated by BKCa channel activation.

  15. Ischemic Preconditioning Blunts Muscle Damage Responses Induced by Eccentric Exercise.

    PubMed

    Franz, Alexander; Behringer, Michael; Harmsen, Jan-Frieder; Mayer, Constantin; Krauspe, Rüdiger; Zilkens, Christoph; Schumann, Moritz

    2017-08-22

    Ischemic preconditioning (IPC) is known to reduce muscle damage induced by ischemia and reperfusion-injury (I/R-Injury) during surgery. Due to similarities between the pathophysiological formation of I/R-injury and eccentric exercise-induced muscle damage (EIMD), as characterized by an intracellular accumulation of Ca, an increased production of reactive oxygen species and increased pro-inflammatory signaling, the purpose of the present study was to investigate whether IPC performed prior to eccentric exercise may also protect against EIMD. Nineteen healthy men were matched to an eccentric only (ECC) (n=9) or eccentric proceeded by IPC group (IPC+ECC) (n=10). The exercise protocol consisted of bilateral biceps curls (3x10 repetitions at 80% of the concentric 1RM). In IPC+ECC, IPC was applied bilaterally at the upper arms by a tourniquet (200 mmHg) immediately prior to the exercise (3x5 minutes of occlusion, separated by 5 minutes of reperfusion). Creatine Kinase (CK), arm circumference, subjective pain (VAS score) and radial displacement (Tensiomyography, Dm) were assessed before IPC, pre-exercise, post-exercise, 20 minutes-, 2 hours-, 24 hours-, 48 hours- and 72 hours post-exercise. CK differed from baseline only in ECC at 48h (p<0.001) and 72h (p<0.001) post-exercise. After 24h, 48h and 72h, CK was increased in ECC compared to IPC+ECC (between groups: 24h: p=0.004, 48h: p<0.001, 72h: p<0.001). VAS was significantly higher in ECC at 24-72 h post-exercise, when compared to IPC+ECC (between groups: all p<0.001). Dm was decreased on all post-exercise days in ECC (all p<0.001) but remained statistically unchanged in IPC+ECC (between-groups p<0.01). These findings indicate that IPC performed prior to a bout of eccentric exercise of the elbow flexors blunts EIMD and exercise-induced pain, while maintaining the contractile properties of the muscle.

  16. Neurogenic pathways in remote ischemic preconditioning induced cardioprotection: Evidences and possible mechanisms

    PubMed Central

    Aulakh, Amritpal Singh; Randhawa, Puneet Kaur; Singh, Nirmal

    2017-01-01

    Remote ischemic preconditioning (RIPC) is an intrinsic phenomenon whereby 3~4 consecutive ischemia-reperfusion cycles to a remote tissue (noncardiac) increases the tolerance of the myocardium to sustained ischemiareperfusion induced injury. Remote ischemic preconditioning induces the local release of chemical mediators which activate the sensory nerve endings to convey signals to the brain. The latter consequently stimulates the efferent nerve endings innervating the myocardium to induce cardioprotection. Indeed, RIPC-induced cardioprotective effects are reliant on the presence of intact neuronal pathways, which has been confirmed using nerve resection of nerves including femoral nerve, vagus nerve, and sciatic nerve. The involvement of neurogenic signaling has been further substantiated using various pharmacological modulators including hexamethonium and trimetaphan. The present review focuses on the potential involvement of neurogenic pathways in mediating remote ischemic preconditioning-induced cardioprotection. PMID:28280407

  17. Oxygen-glucose deprivation preconditioning protects neurons against oxygen-glucose deprivation/reperfusion induced injury via bone morphogenetic protein-7 mediated ERK, p38 and Smad signalling pathways.

    PubMed

    Guan, Junhong; Du, Shaonan; Lv, Tao; Qu, Shengtao; Fu, Qiang; Yuan, Ye

    2016-01-01

    Bone morphogenetic protein (BMP)-7 mediated neuroprotective effect of cerebral ischemic preconditioning (IPC) has been studied in an ischemic animal model, but the underlying cellular mechanisms have not been clearly clarified. In this study, primary cortical neurons and the SH-SY5Y cell line were used to investigate the role of BMP-7 and its downstream signals in the neuroprotective effects of oxygen-glucose deprivation preconditioning (OGDPC). Immunocytochemistry was used to detect the expression of neurofilament in neurons. MTT and lactate dehydrogenase activity assays were used to measure the cytotoxicity. Western blot was used to detect the protein expression of BMP-7 and downstream signals. BMP inhibitor, mitogen-activated protein kinase inhibitors, Smad inhibitor and siRNA of Smad 1 were used to investigate the role of corresponding signalling pathways in the OGDPC. Results showed that OGDPC-induced overexpression of BMP-7 in primary cortical neurons and SH-SY5Y cells. Both of endogenous and exogenous BMP-7 could replicate the neuroprotective effects seen in OGDPC pretreatment. In addition, extracellular regulated protein kinases, p38 and Smad signalling pathway were found to be involved in the neuroprotective effects mediated by OGDPC via BMP-7. This study primarily reveals the cellular mechanisms of the neuroprotection mediated by OGDPC, and provides evidence for better understanding of this intrinsic factor against ischemia.

  18. Superior neuroprotective effects of cerebrolysin in nanoparticle-induced exacerbation of hyperthermia-induced brain pathology.

    PubMed

    Sharma, Aruna; Muresanu, Dafin Fior; Mössler, Herbert; Sharma, Hari Shanker

    2012-02-01

    In recent years, the incidence of heat stroke and associated brain pathology are increasing Worldwide. More than half of the world's population are living in areas associated with high environmental heat especially during the summer seasons. Thus, new research is needed using novel drug targets to achieve neuroprotection in heat-induced brain pathology. Previous research from our laboratory showed that the pathophysiology of brain injuries following heat stroke are exacerbated by chronic intoxication of engineered nanoparticles of small sizes (50-60 nm) following identical heat exposure in rats. Interestingly, in nanoparticle-intoxicated animals the known neuroprotective agents in standard doses failed to induce effective neuroprotection. This suggests that the dose-response of the drugs either requires modification or new therapeutic agents are needed to provide better neuroprotection in nanoparticle-intoxicated animals after heat stroke. This review is focused on the use of cerebrolysin, a mixture of several neurotrophic factors and active peptide fragments, in relation to other neuroprotective agents normally used to treat ischemic stroke in clinics in nanoparticle-induced exacerbation of brain damage in heat stroke. It appears that cerebrolysin exerts the most superior neuroprotective effects in heat stress as compared to other neuroprotective agents on brain pathology in normal rats. Interestingly, to induce effective neuroprotection in nanoparticle-induced exacerbation of brain pathology a double dose of cerebrolysin is needed. On the other hand, double doses of the other drugs were quite ineffective in reducing brain damage. These observations suggest that the drug type and doses are important factors in attenuating nanoparticle-induced exacerbation of brain pathology in heat stroke. The functional significance and possible mechanisms of drug-induced neuroprotection in nanoparticle-treated, heat-stressed rats are discussed.

  19. Prothymosin-alpha preconditioning activates TLR4-TRIF signaling to induce protection of ischemic retina.

    PubMed

    Halder, Sebok Kumar; Matsunaga, Hayato; Ishii, Ken J; Ueda, Hiroshi

    2015-12-01

    Prothymosin-alpha protects the brain and retina from ischemic damage. Although prothymosin-alpha contributes to toll-like receptor (TLR4)-mediated immnunopotentiation against viral infection, the beneficial effects of prothymosin-alpha-TLR4 signaling in protecting against ischemia remain to be elucidated. In this study, intravitreal administration of prothymosin-alpha 48 h before induction of retinal ischemia prevented retinal cellular damage as evaluated by histology, and retinal functional deficits as evaluated by electroretinography. Prothymosin-alpha preconditioning completely prevented the ischemia-induced loss of ganglion cells with partial survival of bipolar and photoreceptor cells, but not amacrine cells, in immunohistochemistry experiments. Prothymosin-alpha treatment in the absence of ischemia caused mild activation, proliferation, and migration of retinal microglia, whereas the ischemia-induced microglial activation was inhibited by prothymosin-alpha preconditioning. All these preventive effects of prothymosin-alpha preconditioning were abolished in TLR4 knock-out mice and by pre-treatments with anti-TLR4 antibodies or minocycline, a microglial inhibitor. Prothymosin-alpha preconditioning inhibited the retinal ischemia-induced up-regulation of TLR4-related injury genes, and increased expression of TLR4-related protective genes. Furthermore, the prothymosin-alpha preconditioning-induced prevention of retinal ischemic damage was abolished in TIR-domain-containing adapter-inducing interferon-β knock-out mice, but not in myeloid differentiation primary response gene 88 knock-out mice. Taken together, the results of this study suggest that prothymosin-alpha preconditioning selectively drives TLR4-TIR-domain-containing adapter-inducing interferon-β signaling and microglia in the prevention of retinal ischemic damage. We propose the following mechanism for prothymosin-alpha (ProTα) preconditioning-induced retinal prevention against ischemia: Pro

  20. Inhalational Anesthetics as Preconditioning Agents in Ischemic Brain

    PubMed Central

    Wang, Lan; Traystman, Richard J.; Murphy, Stephanie J.

    2008-01-01

    SUMMARY While many pharmacological agents have been shown to protect the brain from cerebral ischemia in animal models, none have translated successfully to human patients. One potential clinical neuroprotective strategy in humans may involve increasing the brain’s tolerance to ischemia by pre-ischemic conditioning (preconditioning). There are many methods to induce tolerance via preconditioning such as: ischemia itself, pharmacological, hypoxia, endotoxin, and others. Inhalational anesthetic agents have also been shown to result in brain preconditioning. Mechanisms responsible for brain preconditioning are many, complex, and unclear and may involve Akt activation, ATP-sensitive potassium channels, and nitric oxide, amongst many others. Anesthetics, however, may play an important and unique role as preconditioning agents, particularly during the perioperative period. PMID:17962069

  1. Neuroprotective effect of thalidomide on MPTP-induced toxicity.

    PubMed

    Palencia, Guadalupe; Garcia, Esperanza; Osorio-Rico, Laura; Trejo-Solís, Cristina; Escamilla-Ramírez, Angel; Sotelo, Julio

    2015-03-01

    Thalidomide is a sedative with unique pharmacological properties; studies on epilepsy and brain ischemia have shown intense neuroprotective effects. We analyzed the effect of thalidomide treatment on the neurotoxicity caused by the administration of 1-methyl-4-phenyl-1,2,3,6-tetrahidropyridine (MPTP) in mice. Thalidomide was administered at two times; before and after the exposure to MPTP. In both circumstances thalidomide improved the neurotoxicity induced by MPTP as seen by a significant raise of the striatal contents of dopamine and simultaneous decrease of monoamine-oxidase-B (MAO-B). These results indicate that in the experimental model of Parkinson's disease the administration of thalidomide improves the functional damage on the nigrostriatal cell substratum as seen by the production of dopamine. This neuroprotective effect seems to be mediated by inhibition of excitotoxicity. Our results suggest that thalidomide could be investigated as potential adjuvant therapy for Parkinson's disease.

  2. Ethoxyquin provides neuroprotection against cisplatin-induced neurotoxicity

    PubMed Central

    Zhu, Jing; Carozzi, Valentina Alda; Reed, Nicole; Mi, Ruifa; Marmiroli, Paola; Cavaletti, Guido; Hoke, Ahmet

    2016-01-01

    Ethoxyquin was recently identified as a neuroprotective compound against toxic neuropathies and efficacy was demonstrated against paclitaxel-induced neurotoxicity in vivo. In this study we examined the efficacy of ethoxyquin in preventing neurotoxicity of cisplatin in rodent models of chemotherapy-induced peripheral neuropathy and explored its mechanism of action. Ethoxyquin prevented neurotoxicity of cisplatin in vitro in a sensory neuronal cell line and primary rat dorsal root ganglion neurons. In vivo, chronic co-administration of ethoxyquin partially abrogated cisplatin-induced behavioral, electrophysiological and morphological abnormalities. Furthermore, ethoxyquin did not interfere with cisplatin’s ability to induce tumor cell death in ovarian cancer cell line in vitro and in vivo. Finally, ethoxyquin reduced the levels of two client proteins (SF3B2 and ataxin-2) of a chaperone protein, heat shock protein 90 (Hsp90) when co-administered with cisplatin in vitro. These results implied that the neuroprotective effect of ethoxyquin is mediated through these two client proteins of Hsp90. In fact, reducing levels of SF3B2 in tissue-cultured neurons was effective against neurotoxicity of cisplatin. These findings suggest that ethoxyquin or other compounds that inhibit chaperone activity of Hsp90 and reduce levels of its client protein, SF3B2 may be developed as an adjuvant therapy to prevent neurotoxicity in cisplatin-based chemotherapy protocols. PMID:27350330

  3. Hypoxic preconditioning protects photoreceptors against light damage independently of hypoxia inducible transcription factors in rods.

    PubMed

    Kast, Brigitte; Schori, Christian; Grimm, Christian

    2016-05-01

    Hypoxic preconditioning protects photoreceptors against light-induced degeneration preserving retinal morphology and function. Although hypoxia inducible transcription factors 1 and 2 (HIF1, HIF2) are the main regulators of the hypoxic response, photoreceptor protection does not depend on HIF1 in rods. Here we used rod-specific Hif2a single and Hif1a;Hif2a double knockout mice to investigate the potential involvement of HIF2 in rods for protection after hypoxic preconditioning. To identify potential HIF2 target genes in rods we determined the retinal transcriptome of hypoxic control and rod-specific Hif2a knockouts by RNA sequencing. We show that rods do not need HIF2 for hypoxia-induced increased survival after light exposure. The transcriptomic analysis revealed a number of genes that are potentially regulated by HIF2 in rods; among those were Htra1, Timp3 and Hmox1, candidates that are interesting due to their connection to human degenerative diseases of the retina. We conclude that neither HIF1 nor HIF2 are required in photoreceptors for protection by hypoxic preconditioning. We hypothesize that HIF transcription factors may be needed in other cells to produce protective factors acting in a paracrine fashion on photoreceptor cells. Alternatively, hypoxic preconditioning induces a rod-intrinsic response that is independent of HIF transcription factors.

  4. Neuroprotective therapy for argon-laser-induced retinal injury

    NASA Astrophysics Data System (ADS)

    Belkin, Michael; Rosner, Mordechai; Solberg, Yoram; Turetz, Yosef

    1999-06-01

    Laser photocoagulation treatment of the central retina is often complicated by an immediate side effect of visual impairment, caused by the unavoidable laser-induced destruction of the normal tissue lying adjacent to the lesion and not affected directly by the laser beam. Furthermore, accidental laser injuries are at present untreatable. A neuroprotective therapy for salvaging the normal tissue might enhance the benefit obtained from treatment and allow safe perifoveal photocoagulation. We have developed a rat model for studying the efficacy of putative neuroprotective compounds in ameliorating laser-induced retinal damage. Four compounds were evaluated: the corticosteroid methylprednisolone, the glutamate-receptor blocker MK-801, the anti-oxidant enzyme superoxide dismutase, and the calcim-overload antagonist flunarizine. The study was carried out in two steps: in the first, the histopathological development of retinal laser injuries was studied. Argon laser lesions were inflicted in the retinas of 18 pigmented rats. The animals were sacrificed after 3, 20 or 60 days and their retinal lesions were evaluated under the light microscope. The laser injury mainly involved the outer layers of the retina, where it destroyed significant numbers of photoreceptor cells. Over time, evidence of two major histopathological processes was observed: traction of adjacent nomral retinal cells into the central area of the lesion forming an internal retinal bulging, and a retinal pigmented epithelial proliferative reaction associated with subretinal neovascularization and invations of the retinal lesion site by phagocytes. The neuroprotective effects of each of the four compounds were verified in a second step of the study. For each drug tested, 12 rats were irradiated wtih argon laser inflictions: six of them received the tested agent while the other six were treated with the corresponding vehicle. Twenty days after laser expsoure, the rats were sacrificed and their lesions were

  5. Proteomic analysis of cPKCβII-interacting proteins involved in HPC-induced neuroprotection against cerebral ischemia of mice.

    PubMed

    Bu, Xiangning; Zhang, Nan; Yang, Xuan; Liu, Yanyan; Du, Jianli; Liang, Jing; Xu, Qunyuan; Li, Junfa

    2011-04-01

    Hypoxic preconditioning (HPC) initiates intracellular signaling pathway to provide protection against subsequent cerebral ischemic injuries, and its mechanism may provide molecular targets for therapy in stroke. According to our study of conventional protein kinase C βII (cPKCβII) activation in HPC, the role of cPKCβII in HPC-induced neuroprotection and its interacting proteins were determined in this study. The autohypoxia-induced HPC and middle cerebral artery occlusion (MCAO)-induced cerebral ischemia mouse models were prepared as reported. We found that HPC reduced 6 h MCAO-induced neurological deficits, infarct volume, edema ratio and cell apoptosis in peri-infarct region (penumbra), but cPKCβII inhibitors Go6983 and LY333531 blocked HPC-induced neuroprotection. Proteomic analysis revealed that the expression of four proteins in cytosol and eight proteins in particulate fraction changed significantly among 49 identified cPKCβII-interacting proteins in cortex of HPC mice. In addition, HPC could inhibit the decrease of phosphorylated collapsin response mediator protein-2 (CRMP-2) level and increase of CRMP-2 breakdown product. TAT-CRMP-2 peptide, which prevents the cleavage of endogenous CRMP-2, could inhibit CRMP-2 dephosphorylation and proteolysis as well as the infarct volume of 6 h MCAO mice. This study is the first to report multiple cPKCβII-interacting proteins in HPC mouse brain and the role of cPKCβII-CRMP-2 in HPC-induced neuroprotection against early stages of ischemic injuries in mice. © 2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry.

  6. Does intraperitoneal medical ozone preconditioning and treatment ameliorate the methotrexate induced nephrotoxicity in rats?

    PubMed Central

    Aslaner, Arif; Çakır, Tuğrul; Çelik, Betül; Doğan, Uğur; Mayir, Burhan; Akyüz, Cebrail; Polat, Cemal; Baştürk, Ahmet; Soyer, Vural; Koç, Süleyman; Şehirli, Ahmet Özer

    2015-01-01

    Methotrexate is a chemotherapeutic agent used for many cancer treatments. It leads to toxicity with its oxidative injury. The purpose of our study is investigating the medical ozone preconditioning and treatment has any effect on the methotrexate-induced kidneys by activating antioxidant enzymes in rats. Eighteen rats were divided into three equal groups; control, Mtx without and with medical ozone. Nephrotoxicity was performed with a single dose of 20 mg/kg Mtx intraperitoneally at the fifteenth day of experiment on groups 2 and 3. Medical ozone preconditioning was performed at a dose of 25 mcg/ml (5 ml) intraperitoneally everyday in the group 3 and treated with medical ozone for five more days while group 2 was received only 5 ml of saline everyday for twenty days. All rats were sacrificed at the end of third week and the blood and kidney tissue samples were obtained to measure the levels of TNF-α, IL-1β, malondialdehyde, glutathione and myeloperoxidase. Kidney injury score was evaluated histolopatologically. Medical ozone preconditioning and treatment ameliorated the biochemical parameters and kidney injury induced by Mtx. There was significant increase in tissue MDA, MPO activity, TNF-α and IL-1β (P<0.05) and significant decrease in tissue GSH and histopathology (P<0.05) after Mtx administration. The preconditioning and treatment with medical ozone ameliorated the nephrotoxicity induced by Mtx in rats by activating antioxidant enzymes and prevented renal tissue. PMID:26550330

  7. Does intraperitoneal medical ozone preconditioning and treatment ameliorate the methotrexate induced nephrotoxicity in rats?

    PubMed

    Aslaner, Arif; Çakır, Tuğrul; Çelik, Betül; Doğan, Uğur; Mayir, Burhan; Akyüz, Cebrail; Polat, Cemal; Baştürk, Ahmet; Soyer, Vural; Koç, Süleyman; Şehirli, Ahmet Özer

    2015-01-01

    Methotrexate is a chemotherapeutic agent used for many cancer treatments. It leads to toxicity with its oxidative injury. The purpose of our study is investigating the medical ozone preconditioning and treatment has any effect on the methotrexate-induced kidneys by activating antioxidant enzymes in rats. Eighteen rats were divided into three equal groups; control, Mtx without and with medical ozone. Nephrotoxicity was performed with a single dose of 20 mg/kg Mtx intraperitoneally at the fifteenth day of experiment on groups 2 and 3. Medical ozone preconditioning was performed at a dose of 25 mcg/ml (5 ml) intraperitoneally everyday in the group 3 and treated with medical ozone for five more days while group 2 was received only 5 ml of saline everyday for twenty days. All rats were sacrificed at the end of third week and the blood and kidney tissue samples were obtained to measure the levels of TNF-α, IL-1β, malondialdehyde, glutathione and myeloperoxidase. Kidney injury score was evaluated histolopatologically. Medical ozone preconditioning and treatment ameliorated the biochemical parameters and kidney injury induced by Mtx. There was significant increase in tissue MDA, MPO activity, TNF-α and IL-1β (P<0.05) and significant decrease in tissue GSH and histopathology (P<0.05) after Mtx administration. The preconditioning and treatment with medical ozone ameliorated the nephrotoxicity induced by Mtx in rats by activating antioxidant enzymes and prevented renal tissue.

  8. Hypoxia-inducible factor 1 is required for remote ischemic preconditioning of the heart.

    PubMed

    Cai, Zheqing; Luo, Weibo; Zhan, Huiwang; Semenza, Gregg L

    2013-10-22

    Both preclinical and clinical studies suggest that brief cycles of ischemia and reperfusion in the arm or leg may protect the heart against injury following prolonged coronary artery occlusion and reperfusion, a phenomenon known as remote ischemic preconditioning. Recent studies in mice indicate that increased plasma interleukin-10 (IL-10) levels play an important role in remote ischemic preconditioning induced by clamping the femoral artery for 5 min followed by 5 min of reperfusion for a total of three cycles. In this study, we demonstrate that remote ischemic preconditioning increases plasma IL-10 levels and decreases myocardial infarct size in wild-type mice but not in littermates that are heterozygous for a knockout allele at the locus encoding hypoxia-inducible factor (HIF) 1α. Injection of a recombinant adenovirus encoding a constitutively active form of HIF-1α into mouse hind limb muscle was sufficient to increase plasma IL-10 levels and decrease myocardial infarct size. Exposure of C2C12 mouse myocytes to cyclic hypoxia and reoxygenation rapidly increased levels of IL-10 mRNA, which was blocked by administration of the HIF-1 inhibitor acriflavine or by expression of short hairpin RNA targeting HIF-1α or HIF-1β. Chromatin immunoprecipitation assays demonstrated that binding of HIF-1 to the Il10 gene was induced when myocytes were subjected to cyclic hypoxia and reoxygenation. Taken together, these data indicate that HIF-1 activates Il10 gene transcription and is required for remote ischemic preconditioning.

  9. Warm preconditioning protects against acute heat-induced respiratory dysfunction and delays bleaching in a symbiotic sea anemone.

    PubMed

    Hawkins, Thomas D; Warner, Mark E

    2017-03-15

    Preconditioning to non-stressful warming can protect some symbiotic cnidarians against the high temperature-induced collapse of their mutualistic endosymbiosis with photosynthetic dinoflagellates (Symbiodinium spp.), a process known as bleaching. Here, we sought to determine whether such preconditioning is underpinned by differential regulation of aerobic respiration. We quantified in vivo metabolism and mitochondrial respiratory enzyme activity in the naturally symbiotic sea anemone Exaiptasia pallida preconditioned to 30°C for >7 weeks as well as anemones kept at 26°C. Preconditioning resulted in increased Symbiodinium photosynthetic activity and holobiont (host+symbiont) respiration rates. Biomass-normalised activities of host respiratory enzymes [citrate synthase and the mitochondrial electron transport chain (mETC) complexes I and IV] were higher in preconditioned animals, suggesting that increased holobiont respiration may have been due to host mitochondrial biogenesis and/or enlargement. Subsequent acute heating of preconditioned and 'thermally naive' animals to 33°C induced dramatic increases in host mETC complex I and Symbiodinium mETC complex II activities only in thermally naive E. pallida These changes were not reflected in the activities of other respiratory enzymes. Furthermore, bleaching in preconditioned E. pallida (defined as the significant loss of symbionts) was delayed by several days relative to the thermally naive group. These findings suggest that changes to mitochondrial biogenesis and/or function in symbiotic cnidarians during warm preconditioning might play a protective role during periods of exposure to stressful heating.

  10. The protective effect of intraperitoneal medical ozone preconditioning and treatment on hepatotoxicity induced by methotrexate

    PubMed Central

    Aslaner, Arif; Çakır, Tuğrul; Çelik, Betül; Doğan, Uğur; Akyüz, Cebrail; Baştürk, Ahmet; Polat, Cemal; Gündüz, Umut; Mayir, Burhan; Şehirli, Ahmet Özer

    2015-01-01

    The aim of this study is to determine the effects of medical ozone preconditioning and treatment on the methotrexate acute induced hepatotoxicity in rats that has not reports elsewhere. Eighteen rats were randomly assigned into three equal groups; control, Mtx and Mtx with ozone. Hepatotoxicity was performed with a single dose of 20 mg/kg Mtx to group 2 and group 3 at the fifteenth day. The medical ozone preconditioning was administered intraperitonealy in group 3 for fifteen days and more five days after inducing Mtx. The other rats of the group 1 and 2 received saline injection. At the twentyfirst day the blood and the liver tissue samples were obtained to measure the levels of liver enzymes ALT and AST, proinflamatory cytokines TNF-α, IL-1β, malondialdehyde, glutathione and myeloperoxidase. And the histolopatological examination was evaluated for injury score. In our study Mtx administration caused a significant increase on the liver enzymes ALT and AST, the tissue MDA and MPO activity and significant decrease in the tissue GSH. Moreover the both pro-inflammatory cytokines were significantly increased in the Mtx group. Medical ozone preconditioning and treatment reversed all these biochemical parameters and histopathological changes of the hepatotoxicity induced by Mtx. We conclude that medical ozone ameliorates Mtx induced hepatotoxicity in rats. PMID:26550257

  11. The protective effect of intraperitoneal medical ozone preconditioning and treatment on hepatotoxicity induced by methotrexate.

    PubMed

    Aslaner, Arif; Çakır, Tuğrul; Çelik, Betül; Doğan, Uğur; Akyüz, Cebrail; Baştürk, Ahmet; Polat, Cemal; Gündüz, Umut; Mayir, Burhan; Şehirli, Ahmet Özer

    2015-01-01

    The aim of this study is to determine the effects of medical ozone preconditioning and treatment on the methotrexate acute induced hepatotoxicity in rats that has not reports elsewhere. Eighteen rats were randomly assigned into three equal groups; control, Mtx and Mtx with ozone. Hepatotoxicity was performed with a single dose of 20 mg/kg Mtx to group 2 and group 3 at the fifteenth day. The medical ozone preconditioning was administered intraperitonealy in group 3 for fifteen days and more five days after inducing Mtx. The other rats of the group 1 and 2 received saline injection. At the twentyfirst day the blood and the liver tissue samples were obtained to measure the levels of liver enzymes ALT and AST, proinflamatory cytokines TNF-α, IL-1β, malondialdehyde, glutathione and myeloperoxidase. And the histolopatological examination was evaluated for injury score. In our study Mtx administration caused a significant increase on the liver enzymes ALT and AST, the tissue MDA and MPO activity and significant decrease in the tissue GSH. Moreover the both pro-inflammatory cytokines were significantly increased in the Mtx group. Medical ozone preconditioning and treatment reversed all these biochemical parameters and histopathological changes of the hepatotoxicity induced by Mtx. We conclude that medical ozone ameliorates Mtx induced hepatotoxicity in rats.

  12. Geranylgeranylacetone preconditioning may attenuate heat-induced inflammation and multiorgan dysfunction in rats.

    PubMed

    Zhao, Yong-Qi; Gao, Jun-Tao; Liu, Shou-Hong; Wu, Yan; Lin, Mao-Tsun; Fan, Ming

    2010-01-01

    Geranylgeranylacetone, an acyclic isoprenoid, is a non-toxic inducer of heat shock protein (HSP)70. HSP70 overproduction is associated with heat tolerance in rats. This study aimed to investigate whether geranylgeranylacetone preconditioning of rats reduced heat-induced inflammation and multiple organ dysfunction. Anaesthetised rats were given vehicle or geranylgeranylacetone (800 mg/kg) orally. After 48 h they were exposed to ambient temperature of 43 degrees C for 70 min to induce heatstroke. Another group of rats kept at room temperature were used as normothermic controls. Vehicle-treated rats all succumbed to heat stress; their survival time was 25 +/- 4 min. Pretreatment with geranylgeranylacetone significantly increased survival time to 92 +/- 15 min. Compared with normothermic controls, all vehicle-treated heatstroke rats displayed hepatic and renal dysfunction (e.g. increased plasma levels of serum urea nitrogen, creatinine, aspartate aminotransferase, alanine aminotransferase and alkaline phosphatase) and active inflammation (e.g. increased plasma and brain levels of interleukin-1 beta, tumour necrosis factor-alpha and interleukin-6). These heat-stress response indicators were all significantly suppressed by geranylgeranylacetone pretreatment. In addition, the plasma and brain levels of interleukin-10 (an anti-inflammatory cytokine) and brain levels of HSP70 were significantly increased after geranylgeranylacetone preconditioning during heatstroke. Geranylgeranylacetone preconditioning attenuates heat-induced inflammation and multiorgan dysfunction in rats.

  13. Remote ischemic preconditioning for prevention of contrast-induced acute kidney injury in diabetic patients.

    PubMed

    Savaj, Shokoufeh; Savoj, Javad; Jebraili, Ismail; Sezavar, Seyed Hashem

    2014-11-01

    There are some clinical trials showing that short-term ischemia in one organ can protect different organs against higher intensity and longer ischemic insult. We designed a study to assess whether remote ischemic preconditioning (RIPC) on one organ can decrease the rate of contrast-induced acute kidney injury (AKI) in diabetic patients who undergo coronary artery angiography (CAA). This randomized control trial included 96 diabetic patients who were candidates for CAA. Exclusion criteria were congestive heart failure and complications during CAA. All of the patients received 1000 mL of normal saline before CAA. The RIPC group underwent 3 cycles of 5-minute ischemia in their right arm. Serum creatinine was measured before and 24 hours after CAA. Contrast-induced AKI was reported in 5 cases in the control group and 1 case in the RIPC group (P = .13, odds ratio, 5.4). The differences in serum creatinine level before and after the procedure was significantly lower in RIPC group than that in the control group (P = .04, odds ratio, 0.08). Serum creatinine rise significantly correlated with contrast dose (P = .02) and a history of hypertension (P = .02) in both groups. Ischemic preconditioning had a protective effect on contrast-induced AKI in our study. Since this method is harmless and cost effective, further studies on patients with chronic kidney disease is required to evaluate addition of ischemic preconditioning to our clinical practice for prevention of contrast-induced AKI.

  14. Mitochondria-specific transgenic overexpression of connexin-43 simulates preconditioning-induced cytoprotection of stem cells

    PubMed Central

    Lu, Gang; Haider, Husnain Kh; Porollo, Aleksey; Ashraf, Muhammad

    2010-01-01

    Aims We previously reported that preconditioning of stem cells with insulin-like growth factor-1 (IGF-1) translocated connexin-43 (Cx-43) into mitochondria, causing cytoprotection. We posit that these preconditioning effects could be simulated by mitochondria-specific overexpression of Cx-43. Methods and results During IGF-1-induced preconditioning of C57black/6 mouse bone marrow stem cell antigen-1+ (Sca-1+) cells, Cx-43 was mainly translocated onto the mitochondrial inner membrane, which was abrogated by an extracellular signal-regulated kinases 1 and 2 (ERK1/2) blocker PD98059. To investigate the role of mitochondrial Cx-43, we successfully designed a vector coding for full-length mouse Cx-43 with a mitochondria-targeting sequence (mito-Cx-43) and cloned into a shuttle vector (pShuttle-IRES-hrGFP-1) for mitochondria-specific overexpression of Cx-43 (mito-Cx-43). Sca-1+ cells with mito-Cx-43 reduced cytosolic accumulation of cytochrome c, lowered caspase-3 activity, and improved survival during index oxygen–glucose deprivation as determined by terminal deoxynucleotidyl transferase dUTP nick-end labelling and lactate dehydrogenase assays. Computational analysis revealed a B-cell lymphoma-2 (Bcl-2) homology domain-3 (BH3) motif in Cx-43 with a conserved pattern of amino acids consistent with the Bcl-2 family that regulated cytochrome c release. Moreover, computational secondary structure prediction indicated an extended α-helix in this region, a known condition for BH3-driven protein–protein interactions. Conclusion Cx-43 translocation into mitochondria during preconditioning was ERK1/2-dependent. Expression of mito-Cx-43 simulated the cytoprotective effects of preconditioning in stem cells. Structural features of Cx-43 were shared with the Bcl-2 family as determined by computational analysis. PMID:20833648

  15. Mitochondria-specific transgenic overexpression of connexin-43 simulates preconditioning-induced cytoprotection of stem cells.

    PubMed

    Lu, Gang; Haider, Husnain Kh; Porollo, Aleksey; Ashraf, Muhammad

    2010-11-01

    We previously reported that preconditioning of stem cells with insulin-like growth factor-1 (IGF-1) translocated connexin-43 (Cx-43) into mitochondria, causing cytoprotection. We posit that these preconditioning effects could be simulated by mitochondria-specific overexpression of Cx-43. During IGF-1-induced preconditioning of C57black/6 mouse bone marrow stem cell antigen-1(+) (Sca-1(+)) cells, Cx-43 was mainly translocated onto the mitochondrial inner membrane, which was abrogated by an extracellular signal-regulated kinases 1 and 2 (ERK1/2) blocker PD98059. To investigate the role of mitochondrial Cx-43, we successfully designed a vector coding for full-length mouse Cx-43 with a mitochondria-targeting sequence (mito-Cx-43) and cloned into a shuttle vector (pShuttle-IRES-hrGFP-1) for mitochondria-specific overexpression of Cx-43 (mito-Cx-43). Sca-1(+) cells with mito-Cx-43 reduced cytosolic accumulation of cytochrome c, lowered caspase-3 activity, and improved survival during index oxygen-glucose deprivation as determined by terminal deoxynucleotidyl transferase dUTP nick-end labelling and lactate dehydrogenase assays. Computational analysis revealed a B-cell lymphoma-2 (Bcl-2) homology domain-3 (BH3) motif in Cx-43 with a conserved pattern of amino acids consistent with the Bcl-2 family that regulated cytochrome c release. Moreover, computational secondary structure prediction indicated an extended α-helix in this region, a known condition for BH3-driven protein-protein interactions. Cx-43 translocation into mitochondria during preconditioning was ERK1/2-dependent. Expression of mito-Cx-43 simulated the cytoprotective effects of preconditioning in stem cells. Structural features of Cx-43 were shared with the Bcl-2 family as determined by computational analysis.

  16. Roles of HIF-1α, VEGF, and NF-κB in Ischemic Preconditioning-Mediated Neuroprotection of Hippocampal CA1 Pyramidal Neurons Against a Subsequent Transient Cerebral Ischemia.

    PubMed

    Lee, Jae-Chul; Tae, Hyun-Jin; Kim, In Hye; Cho, Jeong Hwi; Lee, Tae-Kyeong; Park, Joon Ha; Ahn, Ji Hyeon; Choi, Soo Young; Bai, Hui Chen; Shin, Bich-Na; Cho, Geum-Sil; Kim, Dae Won; Kang, Il Jun; Kwon, Young-Guen; Kim, Young-Myeong; Won, Moo-Ho; Bae, Eun Joo

    2016-10-26

    Ischemic preconditioning (IPC) provides neuroprotection against subsequent severe ischemic insults by specific mechanisms. We tested the hypothesis that IPC attenuates post-ischemic neuronal death in the gerbil hippocampal CA1 region (CA1) throughout hypoxia inducible factor-1α (HIF-1α) and its associated factors such as vascular endothelial growth factor (VEGF) and nuclear factor-kappa B (NF-κB). Lethal ischemia (LI) without IPC increased expressions of HIF-1α, VEGF, and p-IκB-α (/and translocation of NF-κB p65 into nucleus) in CA1 pyramidal neurons at 12 h and/or 1-day post-LI; thereafter, their expressions were decreased in the CA1 pyramidal neurons with time and newly expressed in non-pyramidal cells (pericytes), and the CA1 pyramidal neurons were dead at 5-day post-LI, and, at this point in time, their immunoreactivities were newly expressed in pericytes. In animals with IPC subjected to LI (IPC/LI)-group), CA1 pyramidal neurons were well protected, and expressions of HIF-1α, VEGF, and p-IκB-α (/and translocation of NF-κB p65 into nucleus) were significantly increased compared to the sham-group and maintained after LI. Whereas, treatment with 2ME2 (a HIF-1α inhibitor) into the IPC/LI-group did not preserve the IPC-mediated increases of HIF-1α, VEGF, and p-IκB-α (/and translocation of NF-κB p65 into nucleus) expressions and did not show IPC-mediated neuroprotection. In brief, IPC protected CA1 pyramidal neurons from LI by upregulation of HIF-1α, VEGF, and p-IκB-α expressions. This study suggests that IPC increases HIF-1α expression in CA1 pyramidal neurons, which enhances VEGF expression and NF-κB activation and that IPC may be a strategy for a therapeutic intervention of cerebral ischemic injury.

  17. Hyperbaric oxygen preconditioning attenuates postoperative cognitive impairment in aged rats.

    PubMed

    Sun, Li; Xie, Keliang; Zhang, Changsheng; Song, Rui; Zhang, Hong

    2014-06-18

    Cognitive decline after surgery in the elderly population is a major clinical problem with high morbidity. Hyperbaric oxygen (HBO) preconditioning can induce significant neuroprotection against acute neurological injury. We hypothesized that HBO preconditioning would prevent the development of postoperative cognitive impairment. Elderly male rats (20 months old) underwent stabilized tibial fracture operation under general anesthesia after HBO preconditioning (once a day for 5 days). Separate cohorts of animals were tested for cognitive function with fear conditioning and Y-maze tests, or euthanized at different times to assess the blood-brain barrier integrity, systemic and hippocampal proinflammatory cytokines, and caspase-3 activity. Animals exhibited significant cognitive impairment evidenced by a decreased percentage of freezing time and an increased number of learning trials on days 1, 3, and 7 after surgery, which were significantly prevented by HBO preconditioning. Furthermore, HBO preconditioning significantly ameliorated the increase in serum and hippocampal proinflammatory cytokines tumor necrosis factor-α, interleukin-1 β (IL-1β), IL-6, and high-mobility group protein 1 in surgery-challenged animals. Moreover, HBO preconditioning markedly improved blood-brain barrier integrity and caspase-3 activity in the hippocampus of surgery-challenged animals. These findings suggest that HBO preconditioning could significantly mitigate surgery-induced cognitive impairment, which is strongly associated with the reduction of systemic and hippocampal proinflammatory cytokines and caspase-3 activity.

  18. Flagellin preconditioning enhances the efficacy of mesenchymal stem cells in an irradiation-induced proctitis model.

    PubMed

    Linard, Christine; Strup-Perrot, Carine; Lacave-Lapalun, Jean-Victor; Benderitter, Marc

    2016-09-01

    The success of mesenchymal stem cell transplantation for proctitis depends not only on cell donors but also on host microenvironmental factors, which play a major role in conditioning mesenchymal stem cell immunosuppressive action and repair. This study sought to determine if flagellin, a TLR5 ligand, can enhance the mesenchymal stem cell treatment efficacy in radiation-induced proctitis. With the use of a colorectal model of 27 Gy irradiation in rats, we investigated and compared the effects on immune capacity and remodeling at 28 d after irradiation of the following: 1) systemic mesenchymal stem cell (5 × 10(6)) administration at d 7 after irradiation, 2) administration of flagellin at d 3 and systemic mesenchymal stem cell administration at d 7, and 3) in vitro preconditioning of mesenchymal stem cells with flagellin, 24 h before their administration on d 7. The mucosal CD8(+) T cell population was normalized after treatment with flagellin-preconditioned mesenchymal stem cells or flagellin plus mesenchymal stem cells, whereas mesenchymal stem cells alone did not alter the radiation-induced elevation of CD8(+) T cell frequency. Mesenchymal stem cell treatment returned the irradiation-elevated frequency of CD25(+) cells in the mucosa-to-control levels, whereas both flagellin-preconditioned mesenchymal stem cell and flagellin-plus-mesenchymal stem cell treatment each significantly increased not only CD25(+) cell frequency but also forkhead box p3 and IL-2Rα expression. Specifically, IL-10 was overexpressed after flagellin-preconditioned mesenchymal stem cell treatment. Analysis of collagen expression showed that the collagen type 1/collagen type 3 ratio, an indicator of wound-healing maturation, was low in the irradiated and mesenchymal stem cell-treated groups and returned to the normal level only after the flagellin-preconditioned mesenchymal stem cell treatment. This was associated with a reduction in myofibroblast accumulation. In a proctitis model, flagellin-preconditioned

  19. Neuroprotection by Caffeine in Hyperoxia-Induced Neonatal Brain Injury

    PubMed Central

    Endesfelder, Stefanie; Weichelt, Ulrike; Strauß, Evelyn; Schlör, Anja; Sifringer, Marco; Scheuer, Till; Bührer, Christoph; Schmitz, Thomas

    2017-01-01

    Sequelae of prematurity triggered by oxidative stress and free radical-mediated tissue damage have coined the term “oxygen radical disease of prematurity”. Caffeine, a potent free radical scavenger and adenosine receptor antagonist, reduces rates of brain damage in preterm infants. In the present study, we investigated the effects of caffeine on oxidative stress markers, anti-oxidative response, inflammation, redox-sensitive transcription factors, apoptosis, and extracellular matrix following the induction of hyperoxia in neonatal rats. The brain of a rat pups at postnatal Day 6 (P6) corresponds to that of a human fetal brain at 28–32 weeks gestation and the neonatal rat is an ideal model in which to investigate effects of oxidative stress and neuroprotection of caffeine on the developing brain. Six-day-old Wistar rats were pre-treated with caffeine and exposed to 80% oxygen for 24 and 48 h. Caffeine reduced oxidative stress marker (heme oxygenase-1, lipid peroxidation, hydrogen peroxide, and glutamate-cysteine ligase catalytic subunit (GCLC)), promoted anti-oxidative response (superoxide dismutase, peroxiredoxin 1, and sulfiredoxin 1), down-regulated pro-inflammatory cytokines, modulated redox-sensitive transcription factor expression (Nrf2/Keap1, and NFκB), reduced pro-apoptotic effectors (poly (ADP-ribose) polymerase-1 (PARP-1), apoptosis inducing factor (AIF), and caspase-3), and diminished extracellular matrix degeneration (matrix metalloproteinases (MMP) 2, and inhibitor of metalloproteinase (TIMP) 1/2). Our study affirms that caffeine is a pleiotropic neuroprotective drug in the developing brain due to its anti-oxidant, anti-inflammatory, and anti-apoptotic properties. PMID:28106777

  20. PINK1-induced mitophagy promotes neuroprotection in Huntington's disease

    PubMed Central

    Khalil, B; El Fissi, N; Aouane, A; Cabirol-Pol, M-J; Rival, T; Liévens, J-C

    2015-01-01

    Huntington's disease (HD) is a fatal neurodegenerative disorder caused by aberrant expansion of CAG repeat in the huntingtin gene. Mutant Huntingtin (mHtt) alters multiple cellular processes, leading to neuronal dysfunction and death. Among those alterations, impaired mitochondrial metabolism seems to have a major role in HD pathogenesis. In this study, we used the Drosophila model system to further investigate the role of mitochondrial damages in HD. We first analyzed the impact of mHtt on mitochondrial morphology, and surprisingly, we revealed the formation of abnormal ring-shaped mitochondria in photoreceptor neurons. Because such mitochondrial spheroids were previously detected in cells where mitophagy is blocked, we analyzed the effect of PTEN-induced putative kinase 1 (PINK1), which controls Parkin-mediated mitophagy. Consistently, we found that PINK1 overexpression alleviated mitochondrial spheroid formation in HD flies. More importantly, PINK1 ameliorated ATP levels, neuronal integrity and adult fly survival, demonstrating that PINK1 counteracts the neurotoxicity of mHtt. This neuroprotection was Parkin-dependent and required mitochondrial outer membrane proteins, mitofusin and the voltage-dependent anion channel. Consistent with our observations in flies, we demonstrated that the removal of defective mitochondria was impaired in HD striatal cells derived from HdhQ111 knock-in mice, and that overexpressing PINK1 in these cells partially restored mitophagy. The presence of mHtt did not affect Parkin-mediated mitochondrial ubiquitination but decreased the targeting of mitochondria to autophagosomes. Altogether, our findings suggest that mitophagy is altered in the presence of mHtt and that increasing PINK1/Parkin mitochondrial quality control pathway may improve mitochondrial integrity and neuroprotection in HD. PMID:25611391

  1. Neuroprotection by Caffeine in Hyperoxia-Induced Neonatal Brain Injury.

    PubMed

    Endesfelder, Stefanie; Weichelt, Ulrike; Strauß, Evelyn; Schlör, Anja; Sifringer, Marco; Scheuer, Till; Bührer, Christoph; Schmitz, Thomas

    2017-01-18

    Sequelae of prematurity triggered by oxidative stress and free radical-mediated tissue damage have coined the term "oxygen radical disease of prematurity". Caffeine, a potent free radical scavenger and adenosine receptor antagonist, reduces rates of brain damage in preterm infants. In the present study, we investigated the effects of caffeine on oxidative stress markers, anti-oxidative response, inflammation, redox-sensitive transcription factors, apoptosis, and extracellular matrix following the induction of hyperoxia in neonatal rats. The brain of a rat pups at postnatal Day 6 (P6) corresponds to that of a human fetal brain at 28-32 weeks gestation and the neonatal rat is an ideal model in which to investigate effects of oxidative stress and neuroprotection of caffeine on the developing brain. Six-day-old Wistar rats were pre-treated with caffeine and exposed to 80% oxygen for 24 and 48 h. Caffeine reduced oxidative stress marker (heme oxygenase-1, lipid peroxidation, hydrogen peroxide, and glutamate-cysteine ligase catalytic subunit (GCLC)), promoted anti-oxidative response (superoxide dismutase, peroxiredoxin 1, and sulfiredoxin 1), down-regulated pro-inflammatory cytokines, modulated redox-sensitive transcription factor expression (Nrf2/Keap1, and NFκB), reduced pro-apoptotic effectors (poly (ADP-ribose) polymerase-1 (PARP-1), apoptosis inducing factor (AIF), and caspase-3), and diminished extracellular matrix degeneration (matrix metalloproteinases (MMP) 2, and inhibitor of metalloproteinase (TIMP) 1/2). Our study affirms that caffeine is a pleiotropic neuroprotective drug in the developing brain due to its anti-oxidant, anti-inflammatory, and anti-apoptotic properties.

  2. Methamphetamine Preconditioning Alters Midbrain Transcriptional Responses to Methamphetamine-Induced Injury in the Rat Striatum

    PubMed Central

    Cadet, Jean Lud; McCoy, Michael T.; Cai, Ning Sheng; Krasnova, Irina N.; Ladenheim, Bruce; Beauvais, Genevieve; Wilson, Natascha; Wood, William; Becker, Kevin G.; Hodges, Amber B.

    2009-01-01

    Methamphetamine (METH) is an illicit drug which is neurotoxic to the mammalian brain. Numerous studies have revealed significant decreases in dopamine and serotonin levels in the brains of animals exposed to moderate-to-large METH doses given within short intervals of time. In contrast, repeated injections of small nontoxic doses of the drug followed by a challenge with toxic METH doses afford significant protection against monoamine depletion. The present study was undertaken to test the possibility that repeated injections of the drug might be accompanied by transcriptional changes involved in rendering the nigrostriatal dopaminergic system refractory to METH toxicity. Our results confirm that METH preconditioning can provide significant protection against METH-induced striatal dopamine depletion. In addition, the presence and absence of METH preconditioning were associated with substantial differences in the identity of the genes whose expression was affected by a toxic METH challenge. Quantitative PCR confirmed METH-induced changes in genes of interest and identified additional genes that were differentially impacted by the toxic METH challenge in the presence of METH preconditioning. These genes include small heat shock 27 kD 27 protein 2 (HspB2), thyrotropin-releasing hormone (TRH), brain derived neurotrophic factor (BDNF), c-fos, and some encoding antioxidant proteins including CuZn superoxide dismutase (CuZnSOD), glutathione peroxidase (GPx)-1, and heme oxygenase-1 (Hmox-1). These observations are consistent, in part, with the transcriptional alterations reported in models of lethal ischemic injuries which are preceded by ischemic or pharmacological preconditioning. Our findings suggest that multiple molecular pathways might work in tandem to protect the nigrostriatal dopaminergic pathway against the deleterious effects of the toxic psychostimulant. Further analysis of the molecular and cellular pathways regulated by these genes should help to provide some

  3. Multiple preconditioning paradigms converge on interferon regulatory factor-dependent signaling to promote tolerance to ischemic brain injury.

    PubMed

    Stevens, Susan L; Leung, Philberta Y; Vartanian, Keri B; Gopalan, Banu; Yang, Tao; Simon, Roger P; Stenzel-Poore, Mary P

    2011-06-08

    Ischemic tolerance can be induced by numerous preconditioning stimuli, including various Toll-like receptor (TLR) ligands. We have shown previously that systemic administration of the TLR4 ligand LPS or the TLR9 ligand unmethylated CpG oligodeoxynucleotide before transient brain ischemia in mice confers substantial protection against ischemic damage. To elucidate the molecular mechanisms of preconditioning, we compared brain genomic profiles in response to preconditioning with these TLR ligands and with preconditioning via exposure to brief ischemia. We found that exposure to the TLR ligands and brief ischemia induced genomic changes in the brain characteristic of a TLR pathway-mediated response. Interestingly, all three preconditioning stimuli resulted in a reprogrammed response to stroke injury that converged on a shared subset of 13 genes not evident in the genomic profile from brains that were subjected to stroke without prior preconditioning. Analysis of the promoter region of these shared genes showed sequences required for interferon regulatory factor (IRF)-mediated transcription. The importance of this IRF gene network was tested using mice deficient in IRF3 or IRF7. Our data show that both transcription factors are required for TLR-mediated preconditioning and neuroprotection. These studies are the first to discover a convergent mechanism of neuroprotection induced by preconditioning--one that potentially results in reprogramming of the TLR-mediated response to stroke and requires the presence of IRF3 and IRF7.

  4. Gadolinium and ruthenium red attenuate remote hind limb preconditioning-induced cardioprotection: possible role of TRP and especially TRPV channels.

    PubMed

    Randhawa, Puneet Kaur; Jaggi, Amteshwar Singh

    2016-08-01

    Remote ischemic preconditioning is a well reported therapeutic strategy that induces cardioprotective effects but the underlying intracellular mechanisms have not been widely explored. The current study was designed to investigate the involvement of TRP and especially TRPV channels in remote hind limb preconditioning-induced cardioprotection. Remote hind limb preconditioning stimulus (4 alternate cycles of inflation and deflation of 5 min each) was delivered using a blood pressure cuff tied on the hind limb of the anesthetized rat. Using Langendorff's system, the heart was perfused and subjected to 30-min ischemia and 120-min reperfusion. The myocardial injury was assessed by measuring infarct size, lactate dehydrogenase (LDH), creatine kinase (CK), LVDP, +dp/dtmax, -dp/dtmin, heart rate, and coronary flow rate. Gadolinium, TRP blocker, and ruthenium red, TRPV channel blocker, were employed as pharmacological tools. Remote hind limb preconditioning significantly reduced the infarct size, LDH release, CK release and improved coronary flow rate, hemodynamic parameters including LVDP, +dp/dtmax, -dp/dtmin, and heart rate. However, gadolinium (7.5 and 15 mg kg(-1)) and ruthenium red (4 and 8 mg kg(-1)) significantly attenuated the cardioprotective effects suggesting the involvement of TRP especially TRPV channels in mediating remote hind limb preconditioning-induced cardioprotection. Remote hind limb preconditioning stimulus possibly activates TRPV channels on the heart or sensory nerve fibers innervating the heart to induce cardioprotective effects. Alternatively, remote hind limb preconditioning stimulus may also activate the mechanosensitive TRP and especially TRPV channels on the sensory nerve fibers innervating the skeletal muscles to trigger cardioprotective neurogenic signaling cascade. The cardioprotective effects of remote hind limb preconditioning may be mediated via activation of mechanosensitive TRP and especially TRPV channels.

  5. Argon Preconditioning Protects Airway Epithelial Cells against Hydrogen Peroxide-Induced Oxidative Stress.

    PubMed

    Hafner, Christina; Qi, Hong; Soto-Gonzalez, Lourdes; Doerr, Katharina; Ullrich, Roman; Tretter, Eva Verena; Markstaller, Klaus; Klein, Klaus Ulrich

    2016-01-01

    Oxidative stress is the predominant pathogenic mechanism of ischaemia-reperfusion (IR) injury. The noble gas argon has been shown to alleviate oxidative stress-related myocardial and cerebral injury. The risk of lung IR injury is increased in some major surgeries, reducing clinical outcome. However, no study has examined the lung-protective efficacy of argon preconditioning. The present study investigated the protective effects of argon preconditioning on airway epithelial cells exposed to hydrogen peroxide (H2O2) to induce oxidative stress. A549 airway epithelial cells were treated with a cytotoxic concentration of H2O2 after exposure to standard air or 30 or 50% argon/21% oxygen/5% carbon dioxide/rest nitrogen for 30, 45 or 180 min. Cells were stained with annexin V/propidium iodide, and apoptosis was evaluated by fluorescence-activated cell sorting. Protective signalling pathways activated by argon exposure were identified by Western blot analysis for phosphorylated candidate molecules of the mitogen-activated protein kinase and protein kinase B (Akt) pathways. Preconditioning with 50% argon for 30, 45 and 180 min and 30% argon for 180 min caused significant protection of A549 cells against H2O2-induced apoptosis, with increases in cellular viability of 5-47% (p < 0.0001). A small adverse effect was also observed, which presented as a 12-15% increase in cellular necrosis in argon-treated groups. Argon exposure resulted in early activation of c-Jun N-terminal kinase (JNK) and p38, peaking 10- 30 min after the start of preconditioning, and delayed activation of the extracellular signal-regulated kinase 1/2 (ERK1/2) pathway, peaking after 60-90 min. Argon preconditioning protects airway epithelial cells from H2O2-induced apoptotic cell death. Argon activates the JNK, p38, and ERK1/2 pathways, but not the Akt pathway. The cytoprotective properties of argon suggest possible prophylactic applications in surgery-related IR injury of the lungs. © 2016 S. Karger AG

  6. Neuroprotective Strategies for the Treatment of Blast-Induced Optic Neuropathy

    DTIC Science & Technology

    2016-09-01

    AWARD NUMBER: W81XWH-15-1-0559 TITLE: Neuroprotective Strategies for the Treatment of Blast-Induced Optic Neuropathy PRINCIPAL INVESTIGATOR...potential, and optical coherence tomography. Finally, a pre-application to the DoD for a clinical study was invited for a full submission. 15...Prescribed by ANSI Std. Z39.18 Neuroprotective Strategies for the Treatment of Blast-Induced Optic Neuropathy None provided. Table of Contents

  7. Unraveling the role of adenosine in remote ischemic preconditioning-induced cardioprotection.

    PubMed

    Randhawa, Puneet Kaur; Jaggi, Amteshwar Singh

    2016-06-15

    Remote ischemic preconditioning (RIPC) induced by alternate cycles of preconditioning ischemia and reperfusion protects the heart against sustained ischemia-reperfusion-induced injury. This technique has been translated to clinical levels in patients undergoing various surgical interventions including coronary artery bypass graft surgery, abdominal aortic aneurysm repair, percutaneous coronary intervention and heart valve surgery. Adenosine is a master regulator of energy metabolism and reduces myocardial ischemia-reperfusion-induced injury. Furthermore, adenosine is a critical trigger as well as a mediator in RIPC-induced cardioprotection and scientists have demonstrated the role of adenosine by showing an increase in its levels in the systemic circulation during RIPC delivery. Furthermore, the blockade of cardioprotective effects of RIPC in the presence of specific adenosine receptor blockers and transgenic animals with targeted ablation of A1 receptors has also demonstrated its critical role in RIPC. The studies have shown that adenosine may elicit cardioprotection via activation of neurogenic pathway. The present review describes the possible role and mechanism of adenosine in mediating RIPC-induced cardioprotection.

  8. Role of histidine/histamine in carnosine-induced neuroprotection during ischemic brain damage.

    PubMed

    Bae, Ok-Nam; Majid, Arshad

    2013-08-21

    Urgent need exists for new therapeutic options in ischemic stroke. We recently demonstrated that carnosine, an endogenous dipeptide consisting of alanine and histidine, is robustly neuroprotective in ischemic brain injury and has a wide clinically relevant therapeutic time window. The precise mechanistic pathways that mediate this neuroprotective effect are not known. Following in vivo administration, carnosine is hydrolyzed into histidine, a precursor of histamine. It has been hypothesized that carnosine may exert its neuroprotective activities through the histidine/histamine pathway. Herein, we investigated whether the neuroprotective effect of carnosine is mediated by the histidine/histamine pathway using in vitro primary astrocytes and cortical neurons, and an in vivo rat model of ischemic stroke. In primary astrocytes, carnosine significantly reduced ischemic cell death after oxygen-glucose deprivation, and this effect was abolished by histamine receptor type I antagonist. However, histidine or histamine did not exhibit a protective effect on ischemic astrocytic cell death. In primary neuronal cultures, carnosine was found to be neuroprotective but histamine receptor antagonists had no effect on the extent of neuroprotection. The in vivo effect of histidine and carnosine was compared using a rat model of ischemic stroke; only carnosine exhibited neuroprotection. Taken together, our data demonstrate that although the protective effects of carnosine may be partially mediated by activity at the histamine type 1 receptor on astrocytes, the histidine/histamine pathway does not appear to play a critical role in carnosine induced neuroprotection.

  9. Exercise-induced ischemic preconditioning detected by sequential exercise stress tests: a meta-analysis.

    PubMed

    Lalonde, François; Poirier, Paul; Sylvestre, Marie-Pierre; Arvisais, Denis; Curnier, Daniel

    2015-01-01

    Exercise-induced ischemic preconditioning (IPC) can be assessed with the second exercise stress test during sequential testing. Exercise-induced IPC is defined as the time to 1 mm ST segment depression (STD), the rate-pressure product (RPP) at 1 mm STD, the maximal ST depression and the rate-pressure product at peak exercise. The purpose of this meta-analysis is to validate the parameters used to assess exercise-induced IPC in the scientific community. A literature search was performed using electronic database. The main key words were limited to human studies, which were (a) ischemic preconditioning, (b) warm-up phenomenon, and (c) exercise. Meta-analyses were performed on the study-specific mean difference between the clinical measures obtained in the two consecutive stress tests (second minus first test score). Random effect models were fitted with inverse variance weighting to provide greater weight to studies with larger sample size and more precise estimates. The search resulted in 309 articles of which 34 were included after revision (1053 patients). Results are: (a) time to 1 mm ST segment depression increased by 91 s (95% confidence interval (CI): 75-108), p < 0.001; (b) peak ST depression decreased by -0.38 mm (95% CI: -0.66 to -0.10), p < 0.01; and (c) rate-pressure product at 1 mm STD increased by 1.80 × 10(3)mmHg (95% CI: 1.0-2.0), p < 0.001. This is the first meta-analysis to set clinical parameters to assess the benefit of exercise-induced ischemic preconditioning in sequential stress testing. The results of this first meta-analysis on the sequential stress test confirm what is presented in the literature by independent studies on exercise-induced ischemic preconditioning. From now on, the results could be used in further research to set standardized parameters to assess the phenomenon. © The European Society of Cardiology 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  10. Evidence against a role of inducible nitric oxide synthase in the endothelial protective effects of delayed preconditioning

    PubMed Central

    Laude, Karine; Richard, Vincent; Henry, Jean-Paul; Lallemand, Françoise; Thuillez, Christian

    2000-01-01

    Preconditioning the heart with brief periods of ischaemia induces delayed endothelial protection against reperfusion injury, but the precise mechanisms involved in this endogenous protein are still unclear. Induction of the type II-nitric oxide synthase (iNOS) acts as a mediator of the preconditioning against myocardial infarction and stunning. The present study was designed to assess whether iNOS also contributes to the delayed endothelial protective effects of preconditioning. Rats were subjected to 20 min ischaemia followed by 60 min reperfusion 24 h after sham surgery or preconditioning (one cycle or 2 min ischaemia/5 min reperfusion and two cycles of 5 min ischaemia/5 min reperfusion). At the end of the reperfusion, coronary segments were removed distal to the site of occlusion and mounted in wire myographs. Ischaemia-reperfusion (I/R) decreased the endothelium-dependent relaxations to acetylcholine (maximal relaxations: sham, 66±5%; I/R, 40±1%; P<0.05) and this impairment was prevented by preconditioning (maximal relaxation: 61±6%). Administration of N-(3-aminomethyl)benzyl)acetaminide (1400W), a highly selective inhibitor for iNOS, 10 min before prolonged ischaemia did not modify the beneficial effect of preconditioning (maximal relaxation: 66±5%). These data show that preconditioning induces delayed protection against reperfusion-injury. However, in contrast to the myocytes, these endothelial protective effects of delayed preconditioning do not involve iNOS. PMID:10928956

  11. LPS-induced delayed preconditioning is mediated by Hsp90 and involves the heat shock response in mouse kidney.

    PubMed

    Kaucsár, Tamás; Bodor, Csaba; Godó, Mária; Szalay, Csaba; Révész, Csaba; Németh, Zalán; Mózes, Miklós; Szénási, Gábor; Rosivall, László; Sőti, Csaba; Hamar, Péter

    2014-01-01

    We and others demonstrated previously that preconditioning with endotoxin (LPS) protected from a subsequent lethal LPS challenge or from renal ischemia-reperfusion injury (IRI). LPS is effective in evoking the heat shock response, an ancient and essential cellular defense mechanism, which plays a role in resistance to, and recovery from diseases. Here, by using the pharmacological Hsp90 inhibitor novobiocin (NB), we investigated the role of Hsp90 and the heat shock response in LPS-induced delayed renal preconditioning. Male C57BL/6 mice were treated with preconditioning (P: 2 mg/kg, i.p.) and subsequent lethal (L: 10 mg/kg, i.p.) doses of LPS alone or in combination with NB (100 mg/kg, i.p.). Controls received saline (C) or NB. Preconditioning LPS conferred protection from a subsequent lethal LPS treatment. Importantly, the protective effect of LPS preconditioning was completely abolished by a concomitant treatment with NB. LPS induced a marked heat shock protein increase as demonstrated by Western blots of Hsp70 and Hsp90. NB alone also stimulated Hsp70 and Hsp90 mRNA but not protein expression. However, Hsp70 and Hsp90 protein induction in LPS-treated mice was abolished by a concomitant NB treatment, demonstrating a NB-induced impairment of the heat shock response to LPS preconditioning. LPS-induced heat shock protein induction and tolerance to a subsequent lethal LPS treatment was prevented by the Hsp90 inhibitor, novobiocin. Our findings demonstrate a critical role of Hsp90 in LPS signaling, and a potential involvement of the heat shock response in LPS-induced preconditioning.

  12. LPS-Induced Delayed Preconditioning Is Mediated by Hsp90 and Involves the Heat Shock Response in Mouse Kidney

    PubMed Central

    Kaucsár, Tamás; Bodor, Csaba; Godó, Mária; Szalay, Csaba; Révész, Csaba; Németh, Zalán; Mózes, Miklós; Szénási, Gábor; Rosivall, László; Sőti, Csaba; Hamar, Péter

    2014-01-01

    Introduction We and others demonstrated previously that preconditioning with endotoxin (LPS) protected from a subsequent lethal LPS challenge or from renal ischemia-reperfusion injury (IRI). LPS is effective in evoking the heat shock response, an ancient and essential cellular defense mechanism, which plays a role in resistance to, and recovery from diseases. Here, by using the pharmacological Hsp90 inhibitor novobiocin (NB), we investigated the role of Hsp90 and the heat shock response in LPS-induced delayed renal preconditioning. Methods Male C57BL/6 mice were treated with preconditioning (P: 2 mg/kg, ip.) and subsequent lethal (L: 10 mg/kg, ip.) doses of LPS alone or in combination with NB (100 mg/kg, ip.). Controls received saline (C) or NB. Results Preconditioning LPS conferred protection from a subsequent lethal LPS treatment. Importantly, the protective effect of LPS preconditioning was completely abolished by a concomitant treatment with NB. LPS induced a marked heat shock protein increase as demonstrated by Western blots of Hsp70 and Hsp90. NB alone also stimulated Hsp70 and Hsp90 mRNA but not protein expression. However, Hsp70 and Hsp90 protein induction in LPS-treated mice was abolished by a concomitant NB treatment, demonstrating a NB-induced impairment of the heat shock response to LPS preconditioning. Conclusion LPS-induced heat shock protein induction and tolerance to a subsequent lethal LPS treatment was prevented by the Hsp90 inhibitor, novobiocin. Our findings demonstrate a critical role of Hsp90 in LPS signaling, and a potential involvement of the heat shock response in LPS-induced preconditioning. PMID:24646925

  13. Preconditioning and tolerance against cerebral ischaemia

    PubMed Central

    Dirnagl, Ulrich; Becker, Kyra; Meisel, Andreas

    2009-01-01

    Neuroprotection and brain repair in patients after acute brain damage are still major unfulfilled medical needs. Pharmacological treatments are either ineffective or confounded by adverse effects. Consequently, endogenous mechanisms by which the brain protects itself against noxious stimuli and recovers from damage are being studied. Research on preconditioning, also known as induced tolerance, over the past decade has resulted in various promising strategies for the treatment of patients with acute brain injury. Several of these strategies are being tested in randomised clinical trials. Additionally, research into preconditioning has led to the idea of prophylactically inducing protection in patients such as those undergoing brain surgery and those with transient ischaemic attack or subarachnoid haemorrhage who are at high risk of brain injury in the near future. In this Review, we focus on the clinical issues relating to preconditioning and tolerance in the brain; specifically, we discuss the clinical situations that might benefit from such procedures. We also discuss whether preconditioning and tolerance occur naturally in the brain and assess the most promising candidate strategies that are being investigated. PMID:19296922

  14. Limb ischemic preconditioning protects against contrast-induced nephropathy via renalase.

    PubMed

    Wang, Feng; Yin, Jianyong; Lu, Zeyuan; Zhang, Guangyuan; Li, Junhui; Xing, Tao; Zhuang, Shougang; Wang, Niansong

    2016-07-01

    Clinical trials shows that remote ischemic preconditioning (IPC) can protect against contrast induced nephropathy (CIN) in risky patients, however, the exact mechanism is unclear. In this study, we explored whether renalase, an amine oxidase that has been previously shown to mediate reno-protection by local IPC, would also mediate the same effect elicited by remote IPC in animal model. Limb IPC was performed for 24h followed by induction of CIN. Our results indicated that limb IPC prevented renal function decline, attenuated tubular damage and reduced oxidative stress and inflammation in the kidney. All those beneficial effects were abolished by silencing of renalase with siRNA. This suggests that similar to local IPC, renalase is also critically involved in limb IPC-elicited reno-protection. Mechanistic studies showed that limb IPC increased TNFα levels in the muscle and blood, and up-regulated renalase and phosphorylated IκBα expression in the kidney. Pretreatment with TNFα antagonist or NF-κB inhibitor, largely blocked renalase expression. Besides, TNFα preconditioning increased expression of renal renalase in vivo and in vitro, and attenuated H2O2 induced apoptosis in renal tubular cells. Collectively, our results suggest that limb IPC-induced reno-protection in CIN is dependent on increased renalase expression via activation of the TNFα/NF-κB pathway.

  15. The neuroprotective effect of tropisetron on vincristine-induced neurotoxicity.

    PubMed

    Barzegar-Fallah, Anita; Alimoradi, Houman; Mehrzadi, Saeed; Barzegar-Fallah, Niloofar; Zendedel, Adib; Abbasi, Ata; Dehpour, Ahmad Reza

    2014-03-01

    be a neuroprotective agent for prevention of VCR-induced neuropathy via a receptor-independent pathway.

  16. Hypoxic preconditioning attenuates lipopolysaccharide-induced oxidative stress in rat kidneys

    PubMed Central

    Yang, Chih-Ching; Ma, Ming-Chieh; Chien, Chiang-Ting; Wu, Ming-Shiou; Sun, Wan-Kuan; Chen, Chau-Fong

    2007-01-01

    Chronic hypoxic (CH) preconditioning reduces superoxide-induced renal dysfunction via the upregulation of superoxide dismutase (SOD) activity and contents. Endotoxaemia reduces renal antioxidant status. We hypothesize that CH preconditioning might protect the kidney from subsequent endotoxaemia-induced oxidative injury. Endotoxaemia was induced by intraperitoneal injection of lipopolysaccharide (LPS; 4 mg kg−1) in rats kept at sea level (SL) and rats with CH in an altitude chamber (5500 m for 15 h day−1) for 4 weeks. LPS enhanced xanthine oxidase (XO) and gp91phox (catalytic subunit of NADPH oxidase) expression associated with burst amount of superoxide production from the SL kidney surface and renal venous blood detected by lucigenin-enhanced chemiluminescence. LPS induced a morphologic-independent renal dysfunction in baseline and acute saline loading stages and increased renal IL-1β protein and urinary protein concentration in the SL rats. After 4 weeks of induction, CH significantly increased Cu/ZnSOD, MnSOD and catalase expression (16 ± 17, 128 ± 35 and 48 ± 21, respectively) in renal cortex, and depressed renal cortex XO (44 ± 16%) and renal cortex (20 ± 9%) and medulla (28 ± 11%) gp91phox when compared with SL rats. The combined effect of enhanced antioxidant proteins and depressed oxidative proteins significantly reduced LPS-enhanced superoxide production, renal XO and gp91phox expression, renal IL-1β production, and urinary protein level. CH also ameliorated LPS-induced renal dysfunction in the baseline and acute saline loading periods. We conclude that CH treatment enhances the intrarenal antioxidant/oxidative protein ratio to overcome endotoxaemia-induced reactive oxygen species formation and inflammatory cytokine release. PMID:17317755

  17. Investigating the involvement of TRPV1 ion channels in remote hind limb preconditioning-induced cardioprotection in rats.

    PubMed

    Randhawa, Puneet Kaur; Jaggi, Amteshwar Singh

    2017-02-01

    Remote ischemic preconditioning (RIPC) treatment strategy is a breakthrough in the field of cardiovascular pharmacology as it has the potential to attenuate myocardial ischemia-reperfusion injury. However, the underlying intracellular pathways have not been widely explored. The present study intends to explore the possible role of TRPV1 channels in mediating remote hind limb preconditioning-induced cardioprotection. Remote hind limb preconditioning stimulus (4 cycles in succession) was delivered by tying the blood pressure cuff at the inguinal level of the rat. The Langendorff system was used to perfuse the isolated heart and afterward was subjected to 30 min of global ischemia and 120 min of reperfusion. Sustained ischemia and, thereafter, reperfusion led to cardiac injury that was assessed in terms of infarct size, lactate dehydrogenase (LDH) release, creatine kinase (CK) release, left ventricular end diastolic pressure (LVEDP), left ventricular developed pressure (LVDP), +dp/dtmax, -dp/dtmin, heart rate, rate pressure product, and coronary flow rate. The pharmacological modulators employed included capsaicin as TRPV1 agonist and capsazepine as TRPV1 antagonist. Remote hind limb preconditioning stimulus and capsaicin preconditioning (5 and 10 mg/kg) led to significant reduction in infarct size, LVEDP, LDH release, CK release, and significant improvement in LVDP, +dp/dtmax, -dp/dtmin, heart rate, rate pressure product, and coronary flow rate. However, remote hind limb preconditioning-induced cardioprotective effects were considerably abolished in the presence of capsazepine (2.5 and 5 mg/kg). This indicates that remote hind limb preconditioning stimulus possibly activates TRPV1 channels to produce cardioprotective effects.

  18. Cerebrospinal fluid from rats given hypoxic preconditioning protects neurons from oxygen-glucose deprivation-induced injury.

    PubMed

    Zhang, Yan-Bo; Guo, Zheng-Dong; Li, Mei-Yi; Li, Si-Jie; Niu, Jing-Zhong; Yang, Ming-Feng; Ji, Xun-Ming; Lv, Guo-Wei

    2015-09-01

    Hypoxic preconditioning activates endogenous mechanisms that protect against cerebral ischemic and hypoxic injury. To better understand these protective mechanisms, adult rats were housed in a hypoxic environment (8% O2/92% N2) for 3 hours, and then in a normal oxygen environment for 12 hours. Their cerebrospinal fluid was obtained to culture cortical neurons from newborn rats for 1 day, and then the neurons were exposed to oxygen-glucose deprivation for 1.5 hours. The cerebrospinal fluid from rats subjected to hypoxic preconditioning reduced oxygen-glucose deprivation-induced injury, increased survival rate, upregulated Bcl-2 expression and downregulated Bax expression in the cultured cortical neurons, compared with control. These results indicate that cerebrospinal fluid from rats given hypoxic preconditioning protects against oxygen-glucose deprivation-induced injury by affecting apoptosis-related protein expression in neurons from newborn rats.

  19. Cerebrospinal fluid from rats given hypoxic preconditioning protects neurons from oxygen-glucose deprivation-induced injury

    PubMed Central

    Zhang, Yan-bo; Guo, Zheng-dong; Li, Mei-yi; Li, Si-jie; Niu, Jing-zhong; Yang, Ming-feng; Ji, Xun-ming; Lv, Guo-wei

    2015-01-01

    Hypoxic preconditioning activates endogenous mechanisms that protect against cerebral ischemic and hypoxic injury. To better understand these protective mechanisms, adult rats were housed in a hypoxic environment (8% O2/92% N2) for 3 hours, and then in a normal oxygen environment for 12 hours. Their cerebrospinal fluid was obtained to culture cortical neurons from newborn rats for 1 day, and then the neurons were exposed to oxygen-glucose deprivation for 1.5 hours. The cerebrospinal fluid from rats subjected to hypoxic preconditioning reduced oxygen-glucose deprivation-induced injury, increased survival rate, upregulated Bcl-2 expression and downregulated Bax expression in the cultured cortical neurons, compared with control. These results indicate that cerebrospinal fluid from rats given hypoxic preconditioning protects against oxygen-glucose deprivation-induced injury by affecting apoptosis-related protein expression in neurons from newborn rats. PMID:26604909

  20. A Viable Neuroprotection Strategy Following Soman-induced Status Epilepticus

    DTIC Science & Technology

    2003-12-01

    557-560. 14 Mailliet F, Galloux P and Poisson D. Comparative effects of melatonin , zolpidem and diazepam on sleep, body temperature, blood pressure...Levin ED. Long-term neuroprotection by benzodiazepine full versus partial agonists after transient cerebral ischemia in the gerbil [corrected]. J

  1. The natural olive constituent oleuropein induces nutritional cardioprotection in normal and cholesterol-fed rabbits: comparison with preconditioning.

    PubMed

    Andreadou, Ioanna; Benaki, Dimitra; Efentakis, Panagiotis; Bibli, Sofia-Iris; Milioni, Alkistis-Ioanna; Papachristodoulou, Anastasia; Zoga, Anastasia; Skaltsounis, Alexios-Leandros; Mikros, Emmanuel; Iliodromitis, Efstathios K

    2015-06-01

    groups. The NMR-based metabonomic study, performed through the analysis of spectroscopic data, depicted differences in the metabolome of the various groups with significant alterations in purine metabolism. In conclusion, the addition of oleuropein to a normal or hypercholesterolemic diet results in a preconditioning-like intracellular effect, eliminating the deleterious consequences of ischemia and hypercholesterolemia, followed by a decrease of oxidative stress biomarkers. This effect is exerted through inducing preconditioning-involved signaling transduction. Nutritional preconditioning may support the low cardiovascular morbidity and mortality associated with the consumption of olive products. Georg Thieme Verlag KG Stuttgart · New York.

  2. Experimental investigation on preconditioned rate induced tipping in a thermoacoustic system.

    PubMed

    Tony, J; Subarna, S; Syamkumar, K S; Sudha, G; Akshay, S; Gopalakrishnan, E A; Surovyatkina, E; Sujith, R I

    2017-07-14

    Many systems found in nature are susceptible to tipping, where they can shift from one stable dynamical state to another. This shift in dynamics can be unfavorable in systems found in various fields ranging from ecology to finance. Hence, it is important to identify the factors that can lead to tipping in a physical system. Tipping can mainly be brought about by a change in parameter or due to the influence of external fluctuations. Further, the rate at which the parameter is varied also determines the final state that the system attains. Here, we show preconditioned rate induced tipping in experiments and in a theoretical model of a thermoacoustic system. We provide a specific initial condition (preconditioning) and vary the parameter at a rate higher than a critical rate to observe tipping. We find that the critical rate is a function of the initial condition. Our study is highly relevant because the parameters that dictate the asymptotic behavior of many physical systems are temporally dynamic.

  3. Exploring the putative role of TRPV1 -dependent CGRP release in remote hind preconditioning-induced cardioprotection.

    PubMed

    Randhawa, Puneet Kaur; Jaggi, Amteshwar Singh

    2017-10-01

    Remote ischemic preconditioning (RIPC) is a phenomenon whereby transient nonlethal ischemia and reperfusion episodes confer protection against prolonged ischemia reperfusion-induced injury. However, the underlying intracellular signaling has not been extensively explored. This study aimed to inspect the putative involvement of TRPV1 -dependent CGRP release in mediating remote hind limb preconditioning-induced cardioprotection. In this study, remote hind limb preconditioning stimulus was delivered (four consecutive episodes of 5 minutes of ischemia reperfusion) using a blood pressure cuff tied at the inguinal level of the rat. The isolated rat hearts were perfused on the Langendorff's system and were subjected to 30-minutes global ischemia and 120-minutes reperfusion. Prolonged ischemia and subsequent reperfusion led to myocardial injury that was evaluated in terms of infarct size, LDH release, CK release, LVDP, +dp/dtmax , -dp/dtmin , and coronary flow rate. The pharmacological agents used in this study included capsaicin as TRPV1 channel activator, sumatriptan and CGRP8-37 as CGRP blockers. Remote hind limb and capsaicin preconditioning (10 mg/kg(-1) ) significantly reduced the infarct size, LDH release, CK release and significantly improved LVDP, +dp/dtmax , -dp/dtmin , and coronary flow rate. However, remote hind limb and capsaicin preconditioning-induced cardioprotective effects were remarkably reduced in the presence of sumatriptan (8 mg/kg(-1) ) and CGRP8-37 (1 mg/kg(-1) ). This indicates that remote hind limb preconditioning stimulus probably activates TRPV1 channels which subsequently induces CGRP release to produce cardioprotective effects. © 2017 John Wiley & Sons Ltd.

  4. Hypoxic preconditioning with cobalt attenuates hypobaric hypoxia-induced oxidative damage in rat lungs.

    PubMed

    Shukla, Dhananjay; Saxena, Saurabh; Jayamurthy, Purushotman; Sairam, Mustoori; Singh, Mrinalini; Jain, Swatantra Kumar; Bansal, Anju; Ilavazaghan, Govindaswamy

    2009-01-01

    Shukla, Dhananjay, Saurabh Saxena, Purushotman Jayamurthy, Mustoori Sairam, Mrinalini, Singh, Swatantra Kumar Jain, Anju Bansal, and Govindaswamy Ilavazaghan. High Alt. Med. Biol. 10:57-69, 2009.-Hypoxic preco759nditioning (HPC) provides robust protection against injury from subsequent prolonged hypobaric hypoxia, which is a characteristic of high altitude and is known to induce oxidative injury in lung by increasing the generation of reactive oxygen species (ROS) and decreasing the effectiveness of the antioxidant defense system. We hypothesize that HPC with cobalt might protect the lung from subsequent hypobaric hypoxia-induced lung injury. HPC with cobalt can be achieved by oral feeding of CoCl(2) (12.5 mg kg(-1)) in rats for 7 days. Nonpreconditioned rats responded to hypobaric hypoxia (7619 m) by increased reactive oxygen species (ROS) generation and a decreased GSH/GSSG ratio. They also showed a marked increase in lipid peroxidation, heat-shock proteins (HSP32, HSP70), metallothionins (MT), levels of inflammatory cytokines (TNF-alpha, IFN-gamma, MCP-1), and SOD, GPx, and GST enzyme activity. In contrast, rats preconditioned with cobalt were far less impaired by severe hypobaric hypoxia, as observed by decreased ROS generation, lipid peroxidation, and inflammatory cytokine release and an inceased GSH/GSSG ratio. Increased expression of antioxidative proeins Nrf-1, HSP-32, and MT was also observed in cobalt- preconditioned animals. A marked increase in the protein expression and DNA binding activity of hypoxia-inducible transcriptional factor (HIF-1alpha) and its regulated genes, such as erythropoietin (EPO) and glucose transporter-1 (glut-1), was observed after HPC with cobalt. We conclude that HPC with cobalt enhances antioxidant status in the lung and protects from subsequent hypobaric hypoxia-induced oxidative stress.

  5. 670 nm red light preconditioning supports Müller cell function: evidence from the white light-induced damage model in the rat retina.

    PubMed

    Albarracin, Rizalyn; Valter, Krisztina

    2012-01-01

    Glial cells play an important role in the maintenance of normal structure and function of the neural components of the central nervous system. The Müller cells are one of the macroglial elements in the retina and their wide-ranging roles are responsible for the protection and proper functioning of the photoreceptors. In the present study, we aimed to test the effects of pretreatment with 670 nm red light on Müller cells in the light-induced model of retinal degeneration. Adult Sprague-Dawley albino rats were treated with 670 nm red light, from an LED source prior to exposure to bright (1000 lux) continuous light for 24 h. Müller cell-specific markers were used to assess structural and functional changes in this cell type 1 week after contact with damaging light. Changes in gene (Edn2, LIF, TNF-α) and protein (S100β, Vimentin, LIF, iNOS, GS, Cyclin-D1) levels and localization were evaluated using RT-qPCR, and immunohistochemistry. Our results showed that 670 nm light pretreatment ameliorates the light-induced alterations in the expression of Müller-cell specific markers for structure, stress, metabolism and inflammation. This suggests that 670 nm light preconditioning may promote neuroprotective effects in the retina from light-induced damage, possibly through pathways regulating the roles of Müller cells in maintaining retinal homeostasis.

  6. Role of Endogenous Opioid System in Ischemic-Induced Late Preconditioning

    PubMed Central

    Fraessdorf, Jan; Hollmann, Markus W.; Hanschmann, Iris; Heinen, André; Weber, Nina C.; Preckel, Benedikt; Huhn, Ragnar

    2015-01-01

    Background Opioid receptors (OR) are involved in myocardial late preconditioning (LPC) induced by morphine and δ1-opioid receptor (δ1-OR) agonists. The role of OR in ischemic-induced LPC is unknown. We investigated whether 1) OR are involved in the trigger and/or mediation phase of LPC and 2) a time course effect on the expression of different opioid receptors and their endogenous ligands exists. Methods Male Wistar rats were randomly allocated to four groups (each group n = 8). Awake animals were ischemic preconditioned by a 5 minutes coronary occlusion. 24 hours later, anesthetized animals underwent 25 minutes coronary occlusion followed by 2 hours of reperfusion. The role of OR was investigated by treatment with intraperitoneal naloxone (Nal) 10 minutes prior to LPC (Nal-LPC; trigger phase) or 10 min prior to sustained ischemia (LPC-Nal; mediation phase). Results LPC reduced infarct size from 61±10% in controls to 25±9% (P<0.001). Naloxone during trigger or mediation phase completely abolished LPC-induced cardioprotection (59±9% and 62±9%; P<0.001 vs. LPC). 8, 12 and 24 hours after the ischemic stimulus, expression of δ-OR in the heart was increased, whereas μ-opioid receptor (μ-OR) and κ-opioid receptor (κ-OR) were not. Plasma concentrations of β-endorphin and leu-enkephalin but not dynorphin were increased by LPC. Conclusion Ischemic LPC is triggererd and mediated by OR. Expression of δ-OR and plasma levels of endogenous opioid peptides are increased after ischemic LPC. PMID:26226627

  7. The hyperbaric oxygen preconditioning-induced brain protection is mediated by a reduction of early apoptosis after transient global cerebral ischemia.

    PubMed

    Ostrowski, Robert P; Graupner, Gerhart; Titova, Elena; Zhang, Jennifer; Chiu, Jeffrey; Dach, Neal; Corleone, Dalia; Tang, Jiping; Zhang, John H

    2008-01-01

    We hypothesized that the brain-protective effect of hyperbaric oxygen (HBO) preconditioning in a transient global cerebral ischemia rat model is mediated by the inhibition of early apoptosis. One hundred ten male Sprague-Dawley (SD) rats (300-350 g body weight) were allocated to the sham group and three other groups with 10 min of four-vessel occlusion, untreated or preconditioned with either 3 or 5 hyperbaric oxygenations. HBO preconditioning improved neurobehavioral scores and reduced mortality, decreased ischemic cell change, reduced the number of early apoptotic cells and hampered a conversion of early to late apoptotic alterations. HBO preconditioning reduced the immunoreactivity of phosphorylated p38 in vulnerable neurons and increased the expression of brain derived neurotrophic factor (BDNF) in early stage post-ischemia. However, preconditioning with 3 HBO treatments proved less beneficial than with 5 HBO treatments. We conclude that HBO preconditioning may be neuroprotective by reducing early apoptosis and inhibition of the conversion of early to late apoptosis, possibly through an increase in brain BDNF level and the suppression of p38 activation.

  8. Ischemic preconditioning decreases intracellular zinc accumulation induced by oxygen-glucose deprivation in gerbil hippocampal CA1 neurons.

    PubMed

    Miyawaki, Takahiro; Yokota, Hidenori; Oguro, Keiji; Kato, Kengo; Shimazaki, Kuniko

    2004-05-27

    In normal gerbils, intracellular zinc ions ([Zn2+]i) and calcium ions ([Ca2+]i) accumulate in hippocampal CA1 neurons after global ischemia. We examined whether ischemic preconditioning modifies these changes in gerbil hippocampal slices. In normal slices, large increases in [Zn2+]i and [Ca2+]i were observed in the stratum radiatum of the CA1 area after oxygen-glucose deprivation. In preconditioned slices, there were significantly decreased peak levels of [Zn2+]i and [Ca2+]i in CA1. However, there were no differences in the peak levels of these ions in CA3 and dentate gyrus. These results suggest that modified [Zn2+]i and [Ca2+]i accumulation after an ischemic insult might be important for the mechanisms of ischemic tolerance induced by preconditioning.

  9. TARGETED DELETION OF INDUCIBLE HEAT SHOCK PROTEIN 70 ABROGATES THE LATE INFARCT-SPARING EFFECT OF MYOCARDIAL ISCHEMIC PRECONDITIONING

    EPA Science Inventory

    Abstract submitted for 82nd annual meeting of the American Association for Thoracic Surgery, May 4-8, 2002 in Washington D.C.

    Targeted Deletion of Inducible Heat Shock Protein 70 Abrogates the Late Infarct-Sparing Effect of Myocardial Ischemic Preconditioning

    Craig...

  10. TARGETED DELETION OF INDUCIBLE HEAT SHOCK PROTEIN 70 ABROGATES THE LATE INFARCT-SPARING EFFECT OF MYOCARDIAL ISCHEMIC PRECONDITIONING

    EPA Science Inventory

    Abstract submitted for 82nd annual meeting of the American Association for Thoracic Surgery, May 4-8, 2002 in Washington D.C.

    Targeted Deletion of Inducible Heat Shock Protein 70 Abrogates the Late Infarct-Sparing Effect of Myocardial Ischemic Preconditioning

    Craig...

  11. Protection against muscle damage induced by electrical stimulation: efficiency of a preconditioning programme.

    PubMed

    Vanderthommen, Marc; Chamayou, Remy; Demoulin, Christophe; Crielaard, Jean-Michel; Croisier, Jean-Louis

    2015-07-01

    The aim of this study was to explore the efficiency of a preconditioning programme composed of neuromuscular electrical stimulation (NMES) in the protection against muscle damage induced by a subsequent bout of NMES. Sixteen male volunteers were split up into a control group (CG; n = 8) and a preconditioned group (PCG; n = 8). Both groups attended two NMES bouts (test 1 and test 2) spaced 5 weeks apart. Each one consisted in 100 quadriceps contractions and 100 hamstrings contractions. PCG attended five additional progressive NMES sessions between test 1 and test 2. The outcome measures were the changes in muscle soreness [0-10 pain score on visual analogue pain scale (VAS)], muscle flexibility and serum creatine kinase (CK) activity; they were assessed before (pre-T1) and after (post-T1) test 1 and before (pre-T2) and after (post-T2) test 2. Damage markers increased similarly in both groups after test 1 (at post-T1, VAS scores = 4·18 ± 2 and 4·43 ± 1·56 cm in CG and PCG, respectively; CK activity = 2307 ± 3774 and 1671 ± 1790 IU l(-1) in CG and PCG, respectively). Compared with test 1, these damage markers were reduced after test 2 in CG (at post-T2, VAS score = 2·68 ± 1·27 cm and CK activity = 218 ± 72 IU l(-1) ). Muscle soreness was further reduced after test 2 in PCG (VAS score = 0·37 ± 0·74 cm). A protective effect against muscle damage can be obtained after only one NMES bout, and an additional protective effect can be induced by a preconditioning programme. © 2014 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  12. Protective effects of fentanyl preconditioning on cardiomyocyte apoptosis induced by ischemia-reperfusion in rats

    PubMed Central

    Xu, Q.; Li, Q.-G.; Fan, G.-R.; Liu, Q.-H.; Mi, F.-L.; Liu, B.

    2017-01-01

    We aimed to study the effect of fentanyl (Fen) preconditioning on cardiomyocyte apoptosis induced by ischemia-reperfusion (I/R) in rats. A total of 120 Sprague Dawley male rats (age: 3 months) were randomly divided into: sham operation group (S group), I/R group, normal saline I/R group (NS group), and fentanyl low, middle, and high dose groups (Fen1: 2 μg/kg; Fen2: 4 μg/kg; Fen3: 6 μg/kg). Heart rate (HR), mean arterial pressure (MAP), left ventricular developed pressure (LVDP), ±dp/dtmax, malondialdehyde (MDA), superoxide dismutase (SOD) activity, creatine phosphokinase-MB (CK-MB), and cardiac troponin-I (cTnI) were measured. Myocardial ischemic (MI) area, total apoptotic myocardial cells, and protein and mRNA expressions of B-cell lymphoma 2 (Bcl-2) and Bax were detected. HR and MAP were higher, while LVDP and ±dp/dtmax were close to the base value in the Fen groups compared to those in the I/R group. Decreased MDA concentration and CK-MB value and increased SOD activity were found in the Fen groups compared to the I/R group, while cTnI concentration was significantly lower in the Fen1 and Fen2 groups (all P<0.05). Myocardial damage was less in the Fen groups compared to the I/R group and the MI areas and apoptotic indexes were significantly lower in the Fen1 and Fen2 groups (all P<0.05). Furthermore, significantly increased protein and mRNA expressions of Bcl-2, and decreased protein and mRNA expressions of Bax were found in the Fen groups compared to the I/R group (all P<0.05). Fentanyl preconditioning may suppress cardiomyocyte apoptosis induced by I/R in rats by regulating Bcl-2 and Bax. PMID:28225864

  13. Morphine-Induced Preconditioning: Involvement of Protein Kinase A and Mitochondrial Permeability Transition Pore

    PubMed Central

    Dorsch, Marianne; Behmenburg, Friederike; Raible, Miriam; Blase, Dominic; Grievink, Hilbert; Hollmann, Markus W.; Heinen, André; Huhn, Ragnar

    2016-01-01

    Background Morphine induces myocardial preconditioning (M-PC) via activation of mitochondrial large conductance Ca2+-sensitive potassium (mKCa) channels. An upstream regulator of mKCa channels is protein kinase A (PKA). Furthermore, mKCa channel activation regulates mitochondrial bioenergetics and thereby prevents opening of the mitochondrial permeability transition pore (mPTP). Here, we investigated in the rat heart in vivo whether 1) M-PC is mediated by activation of PKA, and 2) pharmacological opening of the mPTP abolishes the cardioprotective effect of M-PC and 3) M-PC is critically dependent on STAT3 activation, which is located upstream of mPTP within the signalling pathway. Methods Male Wistar rats were randomised to six groups (each n = 6). All animals underwent 25 minutes of regional myocardial ischemia and 120 minutes of reperfusion. Control animals (Con) were not further treated. Morphine preconditioning was initiated by intravenous administration of 0.3 mg/kg morphine (M-PC). The PKA blocker H-89 (10 μg/kg) was investigated with and without morphine (H-89+M-PC, H-89). We determined the effect of mPTP opening with atractyloside (5 mg/kg) with and without morphine (Atr+M-PC, Atr). Furthermore, the effect of morphine on PKA activity was tested in isolated adult rat cardiomyocytes. In further experiments in isolated hearts we tested the protective properties of morphine in the presence of STAT3 inhibition, and whether pharmacological prevention of the mPTP-opening by cyclosporine A (CsA) is cardioprotective in the presence of STAT3 inhibition. Results Morphine reduced infarct size from 64±5% to 39±9% (P<0.05 vs. Con). H-89 completely blocked preconditioning by morphine (64±9%; P<0.05 vs. M-PC), but H-89 itself had not effect on infarct size (61±10%; P>0.05 vs. Con). Also, atractyloside abolished infarct size reduction of morphine completely (65±9%; P<0.05 vs. M-PC) but had no influence on infarct size itself (64±5%; P>0.05 vs. Con). In isolated

  14. Exercise preconditioning improves behavioral functions following transient cerebral ischemia induced by 4-vessel occlusion (4-VO) in rats.

    PubMed

    Tahamtan, Mahshid; Allahtavakoli, Mohammad; Abbasnejad, Mehdi; Roohbakhsh, Ali; Taghipour, Zahra; Taghavi, Mohsen; Khodadadi, Hassan; Shamsizadeh, Ali

    2013-12-01

    There is evidence that exercise decreases ischemia/reperfusion injury in rats. Since behavioral deficits are the main outcome in patients after stroke, our study was designed to investigate whether exercise preconditioning improves the acute behavioral functions and also brain inflammatory injury following cerebral ischemia. Male rats weighing 250-300 g were randomly allocated into five experimental groups. Exercise was performed on a treadmill 30min/day for 3 weeks. Ischemia was induced by 4-vessel occlusion method. Recognition memory was assessed by novel object recognition task (NORT) and step-through passive avoidance task. Sensorimotor function and motor movements were evaluated by adhesive removal test and ledged beam-walking test, respectively. Brain inflammatory injury was evaluated by histological assessment. In NORT, the discrimination ratio was decreased after ischemia (P < 0.05) and exercise preconditioning improved it in ischemic animals. In the passive avoidance test, a significant reduction in response latency was observed in the ischemic group. Exercise preconditioning significantly decreased the response latency in the ischemic rats (P < 0.001). In the adhesive removal test, latency to touch and remove the sticky labels from forepaw was increased following induction of ischemia (all P < 0.001) and exercise preconditioning decreased these indices compared to the ischemic group (all P < 0.001). In the ledged beam-walking test, the slip ratio was increased following ischemia (P < 0.05).  In the ischemia group, marked neuronal injury in hippocampus was observed. These neuropathological changes were attenuated by exercise preconditioning (P < 0.001). Our results showed that exercise preconditioning improves behavioral functions and maintains more viable cells in the dorsal hippocampus of the ischemic brain.

  15. Neuroprotective effects of ginkgetin against neuroinjury in Parkinson's disease model induced by MPTP via chelating iron.

    PubMed

    Wang, Y-Q; Wang, M-Y; Fu, X-R; Peng-Yu; Gao, G-F; Fan, Y-M; Duan, X-L; Zhao, B-L; Chang, Y-Z; Shi, Z-H

    2015-01-01

    Disruption of neuronal iron homeostasis and oxidative stress are closely related to the pathogenesis of Parkinson's disease (PD). Ginkgetin, a natural biflavonoid isolated from leaves of Ginkgo biloba L, has many known effects, including anti-inflammatory, anti-influenza virus, and anti-fungal activities, but its underlying mechanism of the neuroprotective effects in PD remains unclear. The present study utilized PD models induced by 1-methyl-4-phenylpyridinium (MPP(+)) and 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) to explore the neuroprotective ability of ginkgetin in vivo and in vitro. Our results showed that ginkgetin could provide significant protection from MPP(+)-induced cell damage in vitro by decreasing the levels of intracellular reactive oxygen species and maintaining mitochondrial membrane potential. Meanwhile, ginkgetin dramatically inhibited cell apoptosis induced by MPP+ through the caspase-3 and Bcl2/Bax pathway. Moreover, ginkgetin significantly improved sensorimotor coordination in a mouse PD model induced by MPTP by dramatically inhibiting the decrease of tyrosine hydroxylase expression in the substantia nigra and superoxide dismutase activity in the striatum. Interestingly, ginkgetin could strongly chelate ferrous ion and thereby inhibit the increase of the intracellular labile iron pool through downregulating L-ferritin and upregulating transferrin receptor 1. These results indicate that the neuroprotective mechanism of ginkgetin against neurological injury induced by MPTP occurs via regulating iron homeostasis. Therefore, ginkgetin may provide neuroprotective therapy for PD and iron metabolism disorder related diseases.

  16. Progesterone-induced neuroprotection: factors that may predict therapeutic efficacy.

    PubMed

    Singh, Meharvan; Su, Chang

    2013-06-13

    Both progesterone and estradiol have well-described neuroprotective effects against numerous insults in a variety of cell culture models, animal models and in humans. However, the efficacy of these hormones may depend on a variety of factors, including the type of hormone used (ex. progesterone versus medroxyprogesterone acetate), the duration of the postmenopausal period prior to initiating the hormone intervention, and potentially, the age of the subject. The latter two factors relate to the proposed existence of a "window of therapeutic opportunity" for steroid hormones in the brain. While such a window of opportunity has been described for estrogen, there is a paucity of information to address whether such a window of opportunity exists for progesterone and its related progestins. Here, we review known cellular mechanisms likely to underlie the protective effects of progesterone and furthermore, describe key differences in the neurobiology of progesterone and the synthetic progestin, medroxyprogesterone acetate (MPA). Based on the latter, we offer a model that defines some of the key cellular and molecular players that predict the neuroprotective efficacy of progesterone. Accordingly, we suggest how changes in the expression or function of these cellular and molecular targets of progesterone with age or prolonged duration of hormone withdrawal (such as following surgical or natural menopause) may impact the efficacy of progesterone. This article is part of a Special Issue entitled Hormone Therapy.

  17. Progesterone-induced Neuroprotection: Factors that may predict therapeutic efficacy

    PubMed Central

    Singh, Meharvan; Su, Chang

    2013-01-01

    Both progesterone and estradiol have well-described neuroprotective effects against numerous insults in a variety of cell culture models, animal models and in humans. However, the efficacy of these hormones may depend on a variety of factors, including the type of hormone used (ex. progesterone versus medroxyprogesterone acetate), the duration of the postmenopausal period prior to initiating the hormone intervention, and potentially, the age of the subject. The latter two factors relate to the proposed existence of a “window of therapeutic opportunity” for steroid hormones in the brain. While such a window of opportunity has been described for estrogen, there is a paucity of information to address whether such a window of opportunity exists for progesterone and its related progestins. Here, we review known cellular mechanisms likely to underlie the protective effects of progesterone and furthermore, describe key differences in the neurobiology of progesterone and the synthetic progestin, medroxyprogesterone acetate (MPA). Based on the latter, we offer a model that defines some of the key cellular and molecular players that predict the neuroprotective efficacy of progesterone. Accordingly, we suggest how changes in the expression or function of these cellular and molecular targets of progesterone with age or prolonged duration of hormone withdrawal (such as following surgical or natural menopause) may impact the efficacy of progesterone. PMID:23340161

  18. Hypercholesterolemia abrogates sevoflurane-induced delayed preconditioning against myocardial infarct in rats by alteration of nitric oxide synthase signaling.

    PubMed

    Zhang, Feng-Jiang; Ma, Lei-Lei; Wang, Wen-Na; Qian, Ling-Bo; Yang, Mei-Juan; Yu, Jing; Chen, Gang; Yu, Li-Na; Yan, Min

    2012-05-01

    The aim of the current study was to determine whether hypercholesterolemia affects the delayed sevoflurane preconditioning against myocardial ischemia-reperfusion (IR) injury and, if so, the underlying mechanism. Male Sprague-Dawley rats fed 2% cholesterol-enriched chow for 8 weeks were subjected to sevoflurane preconditioning (2.4% vol/vol, 1 h) 24 h before myocardial ischemia was induced by occluding the left anterior descending coronary artery for 30 min followed by reperfusion for 120 min. The hemodynamic parameters left ventricular developed pressure, left ventricular end-diastolic pressure, and maximal rise/fall rate of left ventricular pressure were continuously monitored, and myocardial infarct size was determined at the end of reperfusion. The protein expression of myocardial nitric oxide synthase (NOS), Bcl-2, and Bad was assessed before ischemia. We found that the left ventricular hemodynamic parameters during the whole IR procedure and the myocardial infarct size did not significantly differ between the normocholesterolemic and hypercholesterolemic control groups. The hemodynamic parameters were all markedly improved during the reperfusion period, and the myocardial infarct size was significantly reduced by delayed sevoflurane preconditioning in normocholesterolemic rats, but all of these improvements were reversed by N-(3-(aminomethyl)benzyl) acetamidine (1400W, 1 mg/kg; i.v., 10 min before ischemia), a selective inducible NOS (iNOS) inhibitor, and 5-hydroxy decanoate sodium (5 mg/kg, i.v., 10 min before ischemia), a mitochondrial ATP-dependent K⁺ channel blocker. Such cardiac improvement induced by delayed sevoflurane preconditioning did not occur in hypercholesterolemic rats and was not exacerbated by 1400W or 5-hydroxy decanoate sodium. The expression of myocardial iNOS was markedly enhanced by delayed sevoflurane preconditioning in normocholesterolemic, but not in hypercholesterolemic rats. The expression of endothelial NOS and Bad did not differ

  19. Hypoxia-Inducible Factor-1α Target Genes Contribute to Retinal Neuroprotection

    PubMed Central

    Cheng, Lin; Yu, Honghua; Yan, Naihong; Lai, Kunbei; Xiang, Mengqing

    2017-01-01

    Hypoxia-inducible factor (HIF) is a transcription factor that facilitates cellular adaptation to hypoxia and ischemia. Long-standing evidence suggests that one isotype of HIF, HIF-1α, is involved in the pathogenesis of various solid tumors and cardiac diseases. However, the role of HIF-1α in retina remains poorly understood. HIF-1α has been recognized as neuroprotective in cerebral ischemia in the past two decades. Additionally, an increasing number of studies has shown that HIF-1α and its target genes contribute to retinal neuroprotection. This review will focus on recent advances in the studies of HIF-1α and its target genes that contribute to retinal neuroprotection. A thorough understanding of the function of HIF-1α and its target genes may lead to identification of novel therapeutic targets for treating degenerative retinal diseases including glaucoma, age-related macular degeneration, diabetic retinopathy, and retinal vein occlusions. PMID:28289375

  20. Neuroprotective effects of constituents of Eragrostis ferruginea against Aβ-induced toxicity in PC12 cells.

    PubMed

    Na, Chae Sun; Hong, Seong Su; Choi, Yun-Hyeok; Lee, Yong Ho; Hong, Sun Hee; Lim, Ji-Youn; Kang, Byeong Hoa; Park, So-Young; Lee, Dongho

    2010-07-01

    A new flavonoid, 7-demethylageconyflavone A (1), and five known compounds, tricin (2), ageconyflavone A (3), corylin (4), nectandrin B (5), and 4-ketopinoresinol (6) were isolated from the aerial parts of Eragrostis ferruginea. Their structures were determined using spectroscopic techniques, including 1D- and 2D-NMR. All compounds were tested for the neuroprotective effects against amyloid beta peptide (Abeta) using PC12 cells, a major cause of the pathology of Alzheimer's disease. Tricin (2) was found to have a neuroprotective effect with an ED(50) value of 20.3 microM against Abeta-induced toxicity in PC12 cells. Ageconyflavone A (3), nectandrin B (5) and 4-ketopinoresinol (6) demonstrated moderate neuroprotective effects with ED(50) values of 58.7, 44.1, and 54.8 microM, respectively.

  1. The neuroprotective effect of hyperbaric oxygen treatment on laser-induced retinal damage in rats

    NASA Astrophysics Data System (ADS)

    Vishnevskia-Dai, Victoria; Belokopytov, Mark; Dubinsky, Galina; Nachum, Gal; Avni, Isaac; Belkin, Michael; Rosner, Mordechai

    2005-04-01

    Retinal damage induced by mechanical trauma, ischemia or laser photocoagulation increases considerably by secondary degeneration processes. The spread of damage may be ameliorated by neuroprotection that is aimed at reducing the extent of the secondary degeneration and promote healing processes. Hyperbaric oxygen (HBO) treatment consists of inspiration of oxygen at higher than one absolute atmospheric pressure. Improved neural function was observed in patients with acute brain trauma or ischemia treated with HBO. This study was designed to evaluate the neuroprotective effect of hyperbaric oxygen (HBO) on laser induced retinal damage in a rat model. Standard argon laser lesions were created in 25 pigmented rats divided into three groups: Ten rats were treated immediately after the irradiation with HBO three times during the first 24 hr followed by 12 consecutive daily treatments. Five rats received a shorter treatment regimen of 10 consecutive HBO treatments. The control group (10 rats) underwent the laser damage with no additional treatment. The retinal lesions were evaluated 20 days after the injury. All outcome measures were improved by the longer HBO treatment (P<0.01). The shorter HBO treatment was less effective, showing an increase only in nuclei density at the central area of lesion (P< 0.01). Hyperbaric oxygen seems to exert a neuroprotective effect on laser-induced retinal damage in a rat model. In the range of HBO exposures studied, longer exposure provides more neuroprotection. These results encourage further evaluation of the potential therapeutic use of hyperbaric oxygen in diseases and injuries of the retina.

  2. Pharmacological preconditioning with hyperbaric oxygen: can this therapy attenuate myocardial ischemic reperfusion injury and induce myocardial protection via nitric oxide?

    PubMed

    Yogaratnam, Jeysen Zivan; Laden, Gerard; Guvendik, Lavent; Cowen, Mike; Cale, Alex; Griffin, Steve

    2008-09-01

    Ischemic reperfusion injury (IRI) is an inevitable part cardiac surgery such as coronary artery bypass graft (CABG). While ischemic hypoxia and the ensuing normoxic or hyperoxic reperfusion are critical to the initiation and propagation of IRI, conditioning myocardial cells to an oxidative stress prior to IRI may limit the consequences of this injury. Hyperbaric oxygen (HBO2) is a modality of treatment that is known to generate an oxidative stress. Studies have shown that treatment with HBO2 postischemia and reperfusion is useful in ameliorating myocardial IRI. Moreover, preconditioning the myocardium with HBO2 before reperfusion has demonstrated a myocardial protective effect by limiting the infarct size post ischemia and reperfusion. Current evidence suggests that HBO2 preconditioning may partly attenuate IRI by stimulating the endogenous production of nitric oxide (NO). As NO has the capacity to reduce neutrophil sequestration, adhesion and associated injury, and improve vascular flow, HBO2 preconditioning induced NO may play a role in providing myocardial protection during interventions that involve an inevitable episode of IRI. This current opinion review article attempts to suggest that HBO2 may be used to pharmacologically precondition and protect the myocardium from the effects of IRI that is known to occur during cardiac surgery.

  3. Preconditioning chemotherapy with cisplatin enhances the antitumor activity of cytokine-induced killer cells in a murine melanoma model.

    PubMed

    Chen, Jing; Huang, Xiang; Huang, Guichun; Chen, Yitian; Chen, Longbang; Song, Haizhu

    2012-04-01

    Accumulating evidence has indicated that preconditioning chemotherapy could eliminate the suppressive factors in antitumor immune response, thereby leading to the full release of the efficacy of the subsequent immunotherapy. In this study, a single subtoxic dose (5 mg/kg, intraperitoneally) of cisplatin was chosen as the preconditioning chemotherapy in combination with cytokine-induced killer (CIK) cells (4×10(6), intravenously) to treat the murine B16 melanoma xenografts. It was found that cisplatin pretreatment could enhance the antitumor activity of CIK cells. To explore the potential mechanisms underlying the efficacy-enhancing effect of cisplatin, the in vivo trafficking and distribution of the infused CIK cells were traced. It was found that cisplatin could augment the homing ability of CIK cells into the tumor, tumor-draining lymph nodes (TDLNs), and spleen tissues. The endogenous effector cells, CD3(+) T lymphocytes also had an increased accumulation in the tumor and TDLNs after cisplatin precondition. Moreover, cisplatin could also modulate the percentages of myeloid cells, thus encouraging immune responses by increasing the percentages of dendritic cells and relieving the immunosuppression by preferentially eliminating the myeloid-derived suppressor cells. In conclusion, our findings suggested that cisplatin preconditioning chemotherapy could enhance the antitumor activity of CIK cells in a murine melanoma model, and this efficacy-enhancing effect was attributed to the augmented homing ability of exogenous and endogenous effector cells and the modulation of the myeloid cells.

  4. Low G preconditioning reduces liver injury induced by high +Gz exposure in rats

    PubMed Central

    Shi, Bin; Feng, Zhi-Qiang; Li, Wen-Bing; Zhang, Hong-Yi

    2015-01-01

    AIM: To investigate the effect of repeated lower +Gz exposure on liver injury induced by high +Gz exposure in rats. METHODS: Sixty male Wister rats were randomly divided into a blank control group, a low G preconditioning group (LG) (exposed to +4 Gz/5 min per day for 3 d before +10 Gz/5 min exposure), and a +10 Gz/5 min group (10G) (n = 20 in each group). Blood specimens and liver tissue were harvested at 0 h and 6 h after +10 Gz/5 min exposure. Liver function was analyzed by measuring serum alanine transaminase (ALT) and aspartate aminotransferase (AST) levels, and liver injury was further assessed by histopathological observation. Malondialdehyde (MDA), superoxide dismutase (SOD) and Na+-K+-ATPase were determined in hepatic tissue. RESULTS: The group LG had lower ALT, AST, and MDA values at 0 h after exposure than those in group 10G. SOD values and Na+-K+-ATPase activity in the LG group were higher than in group 10G 0 h post-exposure. Hepatocyte injury was significantly less in group LG than in group 10G on histopathological evaluation. CONCLUSION: It is suggested that repeated low +Gz exposure shows a protective effect on liver injury induced by high +Gz exposure in rats. PMID:26074692

  5. Coronary microembolization does not induce acute preconditioning against infarction in pigs-the role of adenosine.

    PubMed

    Skyschally, Andreas; Schulz, Rainer; Gres, Petra; Konietzka, Ina; Martin, Claus; Haude, Michael; Erbel, Raimund; Heusch, Gerd

    2004-08-01

    After coronary microembolization (ME) adenosine is released from ischemic areas of the microembolized myocardium. This adenosine dilates vessels in adjacent nonembolized myocardium and increases coronary blood flow. For ischemic preconditioning (IP) to protect the myocardium against infarction, an increase in the interstitial adenosine concentration (iADO) prior to the subsequent ischemia/reperfusion is necessary. We hypothesized that the adenosine release after ME is sufficient to increase iADO and protect the myocardium against infarction from subsequent ischemia/reperfusion. We have therefore compared myocardial protection by either coronary microembolization or ischemic preconditioning prior to ischemia/reperfusion. In anesthetized pigs, the left anterior descending (LAD) was cannulated and perfused from an extracorporeal circuit. In 11 pigs, sustained ischemia was induced by 85% inflow reduction for 90 min (controls). Two other groups of pigs were subjected either to IP (n = 8; 10-min ischemia/15-min reperfusion) or coronary ME (n = 9; i.c. microspheres; 42 microm Ø; 3000 x ml(-1) x min inflow) prior to sustained ischemia. Coronary venous adenosine concentration (vADO) and iADO (microdialysis) were measured. Infarct size was determined after 2-h reperfusion by triphenyl tetrazolium chloride staining. In pigs subjected to IP, infarct size was reduced to 2.6 +/- 1.1% (mean +/- S.E.M.) vs. 17.0 +/- 3.2% in controls. iADO was increased from 2.4 +/- 1.3 to 13.1 +/- 5.8 micromol x l(-1) during the reperfusion following IP. In pigs subjected to ME, at 10 min after ME, coronary blood flow (38.6 +/- 3.6 to 53.6 +/- 4.3 ml x min(-1)) and vADO (0.25 +/- 0.04 to 0.48 +/- 0.07 micromol x l(-1)) were increased. However, iADO (2.0 +/- 0.5 at baseline vs. 2.3 +/- 0.6 micromol x l(-1) at 10 min after ME) did not increase. Infarct size induced by sustained ischemia following ME (22.5 +/- 5.2%) was above that of controls for any given subendocardial blood flow. ME released

  6. Neuroprotective effect of lycopene against MPTP induced experimental Parkinson's disease in mice.

    PubMed

    Prema, Asokan; Janakiraman, Udaiyappan; Manivasagam, Thamilarasan; Thenmozhi, Arokiasamy Justin

    2015-07-10

    Parkinson's disease (PD) is the second most common neurodegenerative disorder that mainly affects the movement of the aged populations. Lycopene is a carotenoid with unique pharmacological properties and its efficacy on experimental Hunginton's disease and brain ischemia has shown intense neuroprotective effects. The present study was aimed to explore the neuroprotective effect of lycopene against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induced PD mice. Administration of lycopene (5, 10 and 20 mg/kg/day orally) protected MPTP induced depletion of striatal dopamine (DA) and its metabolites in a dose dependent manner. It also attenuated MPTP-induced oxidative stress and motor abnormalities seen in PD mice. Our western blot studies showed that treatment with lycopene reversed MPTP induced apoptosis may be due to its antioxidant and antiapoptotic properties. As to conclude, lycopene reverses neurochemical deficts, oxidative stress, apoptosis and physiological abnormalities in PD mice and offer promise strategy in the treatment of this neurodegenerative disease.

  7. Protection by ozone preconditioning is mediated by the antioxidant system in cisplatin-induced nephrotoxicity in rats.

    PubMed Central

    Borrego, Aluet; Zamora, Zullyt B; González, Ricardo; Romay, Cheyla; Menéndez, Silvia; Hernández, Frank; Montero, Teresita; Rojas, Enys

    2004-01-01

    BACKGROUND: Acute renal failure is a dose-limiting factor of cisplatin chemotherapy. Here, we show the protective effect of ozone oxidative preconditioning against cisplatin-induced renal dysfunction in rats. Ozone oxidative preconditioning is a prophylactic approach, which favors the antioxidant-pro-oxidant balance for preservation of the cell redox state by increasing antioxidant endogenous systems in various in vivo and in vitro experimental models. AIMS: To analyze the protective role of ozone oxidative preconditioning against cisplatin-induced nephrotoxicity. METHODS: Male Sprague-Dawley rats were pretreated with 15 intrarectal applications of ozone/oxygen mixture at 0.36, 0.72, 1.1, 1.8 and 2.5 mg/kg before cisplatin intraperitoneal injection (6 mg/kg). Serum and kidneys were extracted and analyzed 5 days after cisplatin treatment for determinations of the renal content of glutathione, thiobarbituric acid-reactive substances, renal concentration and enzymatic activities of catalase, superoxide dismutase and glutathione peroxidase. RESULTS: Ozone pretreatment prevented the increase in serum creatinine levels, the glutathione depletion and the inhibition of superoxide dismutase, catalase and glutathione peroxidase activities induced by cisplatin in the rat kidney. Also, the renal content of thiobarbituric acid-reactive substances was decreased by ozone therapy. These protective effects of ozone were dose dependent. CONCLUSIONS: Intrarectal ozone therapy prevented effectively the renal antioxidant unbalance induced by cisplatin treatment. PMID:15203559

  8. Protection by ozone preconditioning is mediated by the antioxidant system in cisplatin-induced nephrotoxicity in rats.

    PubMed

    Borrego, Aluet; Zamora, Zullyt B; González, Ricardo; Romay, Cheyla; Menéndez, Silvia; Hernández, Frank; Montero, Teresita; Rojas, Enys

    2004-02-01

    Acute renal failure is a dose-limiting factor of cisplatin chemotherapy. Here, we show the protective effect of ozone oxidative preconditioning against cisplatin-induced renal dysfunction in rats. Ozone oxidative preconditioning is a prophylactic approach, which favors the antioxidant-pro-oxidant balance for preservation of the cell redox state by increasing antioxidant endogenous systems in various in vivo and in vitro experimental models. To analyze the protective role of ozone oxidative preconditioning against cisplatin-induced nephrotoxicity. Male Sprague-Dawley rats were pretreated with 15 intrarectal applications of ozone/oxygen mixture at 0.36, 0.72, 1.1, 1.8 and 2.5 mg/kg before cisplatin intraperitoneal injection (6 mg/kg). Serum and kidneys were extracted and analyzed 5 days after cisplatin treatment for determinations of the renal content of glutathione, thiobarbituric acid-reactive substances, renal concentration and enzymatic activities of catalase, superoxide dismutase and glutathione peroxidase. Ozone pretreatment prevented the increase in serum creatinine levels, the glutathione depletion and the inhibition of superoxide dismutase, catalase and glutathione peroxidase activities induced by cisplatin in the rat kidney. Also, the renal content of thiobarbituric acid-reactive substances was decreased by ozone therapy. These protective effects of ozone were dose dependent. Intrarectal ozone therapy prevented effectively the renal antioxidant unbalance induced by cisplatin treatment.

  9. Neuroprotective effect of Allium cepa L. in aluminium chloride induced neurotoxicity.

    PubMed

    Singh, Tanveer; Goel, Rajesh Kumar

    2015-07-01

    The present study was envisaged to investigate the neuroprotective potential of Allium cepa (A. cepa) in aluminium chloride induced neurotoxicity. Aluminium chloride (50 mg/kg/day) was administered orally in mice supplemented with different doses of A. cepa hydroethanolic extract for a period of 60 days. Various behavioural, biochemical and histopathological parameters were estimated in aluminium exposed animals. Chronic aluminium administration resulted in significant motor incoordination and memory deficits, which were also endorsed biochemically as there was increased oxidative stress as well as elevated acetylcholinesterase (AChE) and aluminium levels in the brain. Supplementation with A. cepa in aluminium exposed animals significantly improved muscle coordination and memory deficits as well as reduced oxidative stress, AChE and decreased abnormal aluminium deposition in the brain. Histopathologically, there was marked deterioration visualized as decreased vacuolated cytoplasm as well as decreased pyramidal cells in the hippocampal area of mice brain which were found to be reversed with A. cepa supplementation. Administration of BADGE (PPARγ antagonist) in aluminium exposed animals reversed the neuroprotective potential of A. cepa as assessed with various behavioural, biochemical, neurochemical and histopathological estimations. In conclusion, finding of this study suggested significant neuroprotective potential of A. cepa in aluminium induced neurotoxicity. Further, the role of PPARγ receptor agonism has also been suggested as a putative neuroprotective mechanism of A. cepa, which needs further studies for confirmation.

  10. BCG vaccine-induced neuroprotection in a mouse model of Parkinson's disease.

    PubMed

    Yong, Jing; Lacan, Goran; Dang, Hoa; Hsieh, Terry; Middleton, Blake; Wasserfall, Clive; Tian, Jide; Melega, William P; Kaufman, Daniel L

    2011-01-31

    There is a growing interest in using vaccination with CNS antigens to induce autoreactive T cell responses that home to damaged areas in the CNS and ameliorate neurodegenerative disease. Neuroprotective vaccine studies have focused on administering oligodendrocyte antigens or Copaxone® in complete Freund's adjuvant (CFA). Theoretical considerations, however, suggest that vaccination with a neuronal antigen may induce more robust neuroprotective immune responses. We assessed the neuroprotective potential of vaccines containing tyrosine hydroxylase (a neuronal protein involved in dopamine synthesis) or Copaxone® in CFA in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson's disease. Surprisingly, we observed that the main beneficial factor in these vaccines was the CFA. Since the major immunogenic component in CFA is Mycobacterium tuberculosis, which closely related to the bacille Calmette-Guérin (BCG) that is used in human vaccines, we tested BCG vaccination in the MPTP mouse model. We observed that BCG vaccination partially preserved markers of striatal dopamine system integrity and prevented an increase in activated microglia in the substantia nigra of MPTP-treated mice. These results support a new neuroprotective vaccine paradigm in which general (nonself-reactive) immune stimulation in the periphery can limit potentially deleterious microglial responses to a neuronal insult and exert a neurorestorative effect in the CNS. Accordingly, BCG vaccination may provide a new strategy to augment current treatments for a wide range of neuropathological conditions.

  11. BCG Vaccine-Induced Neuroprotection in a Mouse Model of Parkinson's Disease

    PubMed Central

    Yong, Jing; Lacan, Goran; Dang, Hoa; Hsieh, Terry; Middleton, Blake; Wasserfall, Clive; Tian, Jide; Melega, William P.; Kaufman, Daniel L.

    2011-01-01

    There is a growing interest in using vaccination with CNS antigens to induce autoreactive T cell responses that home to damaged areas in the CNS and ameliorate neurodegenerative disease. Neuroprotective vaccine studies have focused on administering oligodendrocyte antigens or Copaxone® in complete Freund's adjuvant (CFA). Theoretical considerations, however, suggest that vaccination with a neuronal antigen may induce more robust neuroprotective immune responses. We assessed the neuroprotective potential of vaccines containing tyrosine hydroxylase (a neuronal protein involved in dopamine synthesis) or Copaxone® in CFA in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson's disease. Surprisingly, we observed that the main beneficial factor in these vaccines was the CFA. Since the major immunogenic component in CFA is Mycobacterium tuberculosis, which closely related to the bacille Calmette-Guérin (BCG) that is used in human vaccines, we tested BCG vaccination in the MPTP mouse model. We observed that BCG vaccination partially preserved markers of striatal dopamine system integrity and prevented an increase in activated microglia in the substantia nigra of MPTP-treated mice. These results support a new neuroprotective vaccine paradigm in which general (nonself-reactive) immune stimulation in the periphery can limit potentially deleterious microglial responses to a neuronal insult and exert a neurorestorative effect in the CNS. Accordingly, BCG vaccination may provide a new strategy to augment current treatments for a wide range of neuropathological conditions. PMID:21304945

  12. Effects of ozone oxidative preconditioning on radiation-induced organ damage in rats

    PubMed Central

    Gultekin, Fatma Ayca; Bakkal, Bekir Hakan; Guven, Berrak; Tasdoven, Ilhan; Bektas, Sibel; Can, Murat; Comert, Mustafa

    2013-01-01

    Because radiation-induced cellular damage is attributed primarily to harmful effects of free radicals, molecules with direct free radical scavenging properties are particularly promising as radioprotectors. It has been demonstrated that controlled ozone administration may promote an adaptation to oxidative stress, preventing the damage induced by reactive oxygen species. Thus, we hypothesized that ozone would ameliorate oxidative damage caused by total body irradiation (TBI) with a single dose of 6 Gy in rat liver and ileum tissues. Rats were randomly divided into groups as follows: control group; saline-treated and irradiated (IR) groups; and ozone oxidative preconditioning (OOP) and IR groups. Animals were exposed to TBI after a 5-day intraperitoneal pretreatment with either saline or ozone (1 mg/kg/day). They were decapitated at either 6 h or 72 h after TBI. Plasma, liver and ileum samples were obtained. Serum AST, ALT and TNF-α levels were elevated in the IR groups compared with the control group and were decreased after treatment with OOP. TBI resulted in a significant increase in the levels of MDA in the liver and ileal tissues and a decrease of SOD activities. The results demonstrated that the levels of MDA liver and ileal tissues in irradiated rats that were pretreated with ozone were significantly decreased, while SOD activities were significantly increased. OOP reversed all histopathological alterations induced by irradiation. In conclusion, data obtained from this study indicated that ozone could increase the endogenous antioxidant defense mechanism in rats and there by protect the animals from radiation-induced organ toxicity. PMID:22915786

  13. The Mechanism of Helium-Induced Preconditioning: A Direct Role for Nitric Oxide in Rabbits

    PubMed Central

    Pagel, Paul S.; Krolikowski, John G.; Pratt, Phillip F.; Shim, Yon Hee; Amour, Julien; Warltier, David C.; Weihrauch, Dorothee

    2008-01-01

    BACKGROUND Helium produces preconditioning against myocardial infarction by activating prosurvival signaling, but whether nitric oxide (NO) generated by endothelial NO synthase plays a role in this phenomenon is unknown. We tested the hypothesis that NO mediates helium-induced cardioprotection in vivo. METHODS Rabbits (n = 62) instrumented for hemodynamic measurement were subjected to a 30-min left anterior descending coronary artery occlusion and 3 h reperfusion, and received 0.9% saline (control) or three cycles of 70% helium–30% oxygen administered for 5 min interspersed with 5 min of an air–oxygen mixture before left anterior descending coronary artery occlusion in the absence or presence of pretreatment with the nonselective NOS inhibitor N-nitro-l-arginine methyl ester (L-NAME; 10 mg/kg), the selective inducible NOS inhibitor aminoguanidine hydrochloride (AG; 300 mg/kg), or selective neuronal NOS inhibitor 7-nitroindazole (7-NI; 50 mg/kg). In additional rabbits, the fluorescent probe 4,5-diaminofluroscein diacetate (DAF-2DA) and confocal laser microscopy were used to detect NO production in the absence or presence of helium with or without L-NAME pretreatment. RESULTS Helium reduced (P < 0.05) infarct size (24% ± 4% of the left ventricular area at risk; mean ± sd) compared with control (46% ± 3%). L-NAME, AG, and 7-NI did not alter myocardial infarct size when administered alone. L-NAME, but not 7-NI or AG, abolished helium-induced cardioprotection. Helium enhanced DAF-2DA fluorescence compared with control (26 ± 8 vs 15 ± 5 U, respectively). Pretreatment with L-NAME abolished these helium-induced increases in DAF-2DA fluorescence. CONCLUSIONS The results indicate that cardioprotection by helium is mediated by NO that is probably generated by endothelial NOS in vivo. PMID:18713880

  14. Effect of remote ischemic preconditioning on platelet activation and reactivity induced by ablation for atrial fibrillation.

    PubMed

    Stazi, Alessandra; Scalone, Giancarla; Laurito, Marianna; Milo, Maria; Pelargonio, Gemma; Narducci, Maria Lucia; Parrinello, Rossella; Figliozzi, Stefano; Bencardino, Gianluigi; Perna, Francesco; Lanza, Gaetano A; Crea, Filippo

    2014-01-07

    Radiofrequency ablation of atrial fibrillation has been associated with some risk of thromboembolic events. Previous studies showed that preventive short episodes of forearm ischemia (remote ischemic preconditioning [IPC]) reduce exercise-induced platelet reactivity. In this study, we assessed whether remote IPC has any effect on platelet activation induced by radiofrequency ablation of atrial fibrillation. We randomized 19 patients (age, 54.7±11 years; 17 male) undergoing radiofrequency catheter ablation of paroxysmal atrial fibrillation to receive remote IPC or sham intermittent forearm ischemia (control subjects) before the procedure. Blood venous samples were collected before and after remote IPC/sham ischemia, at the end of the ablation procedure, and 24 hours later. Platelet activation and reactivity were assessed by flow cytometry by measuring monocyte-platelet aggregate formation, platelet CD41 in the monocyte-platelet aggregate gate, and platelet CD41 and CD62 in the platelet gate in the absence and presence of ADP stimulation. At baseline, there were no differences between groups in platelet variables. Radiofrequency ablation induced platelet activation in both groups, which persisted after 24 hours. However, compared with control subjects, remote IPC patients showed a lower increase in all platelet variables, including monocyte-platelet aggregate formation (P<0.0001), CD41 in the monocyte-platelet aggregate gate (P=0.002), and CD41 (P<0.0001) and CD62 (P=0.002) in the platelet gate. Compared with control subjects, remote IPC was also associated with a significantly lower ADP-induced increase in all platelet markers. Our data show that remote IPC before radiofrequency catheter ablation for paroxysmal atrial fibrillation significantly reduces the increased platelet activation and reactivity associated with the procedure.

  15. Reactive oxygen species are not a required trigger for exercise-induced late preconditioning in the rat heart.

    PubMed

    Taylor, Ryan P; Starnes, Joseph W

    2012-11-01

    Reactive oxygen species (ROS) have been reported to play a primary role in triggering the cardioprotective adaptations by some preconditioning procedures, but whether they are required for exercise-induced preconditioning is unclear. Thus in this study we used the free radical scavenger N-(2-mercaptopropionyl)glycine (MPG) to test the hypothesis that ROS is the trigger for exercise-induced preconditioning of the heart against ischemia-reperfusion injury. Male F344 rats were assigned to four groups: sedentary (SED, n = 7), SED/MPG (100 mg/kg ip daily for 2 days, n = 12), exercised on a treadmill for 2 days at 20 m/min, 6° grade, for 60 min (RUN, n = 7), and RUN/MPG with 100 mg/kg MPG injected 15 min before exercise (n = 10). Preliminary experiments verified that MPG administration maintained myocardial redox status during the exercise bout. Twenty-four hours postexercise or MPG treatment isolated perfused working hearts were subjected to global ischemia for 22.5 min followed by reperfusion for 30 min. Recovery of myocardial external work (percentage of preischemic systolic pressure times cardiac output) for SED (50.4 ± 4.5) and SED/RUN (54.7 ± 6.6) was similar and improved in both exercise groups (P < 0.05) to 77.9 ± 3.0 in RUN and 76.7 ± 4.5 in RUN/MPG. A 2 × 2 ANOVA also revealed that exercise decreased lactate dehydrogenase release from the heart during reperfusion (marker of cell damage) without MPG effects or interactions. Expression of the cytoprotective protein inducible heat shock protein 70 increased by similar amounts in the left ventricles of RUN and RUN/MPG compared with sedentary groups (P < 0.05). We conclude that ROS are not a necessary trigger for exercise-induced preconditioning in rats.

  16. Reactive oxygen species are not a required trigger for exercise-induced late preconditioning in the rat heart

    PubMed Central

    Taylor, Ryan P.

    2012-01-01

    Reactive oxygen species (ROS) have been reported to play a primary role in triggering the cardioprotective adaptations by some preconditioning procedures, but whether they are required for exercise-induced preconditioning is unclear. Thus in this study we used the free radical scavenger N-(2-mercaptopropionyl)glycine (MPG) to test the hypothesis that ROS is the trigger for exercise-induced preconditioning of the heart against ischemia-reperfusion injury. Male F344 rats were assigned to four groups: sedentary (SED, n = 7), SED/MPG (100 mg/kg ip daily for 2 days, n = 12), exercised on a treadmill for 2 days at 20 m/min, 6° grade, for 60 min (RUN, n = 7), and RUN/MPG with 100 mg/kg MPG injected 15 min before exercise (n = 10). Preliminary experiments verified that MPG administration maintained myocardial redox status during the exercise bout. Twenty-four hours postexercise or MPG treatment isolated perfused working hearts were subjected to global ischemia for 22.5 min followed by reperfusion for 30 min. Recovery of myocardial external work (percentage of preischemic systolic pressure times cardiac output) for SED (50.4 ± 4.5) and SED/RUN (54.7 ± 6.6) was similar and improved in both exercise groups (P < 0.05) to 77.9 ± 3.0 in RUN and 76.7 ± 4.5 in RUN/MPG. A 2 × 2 ANOVA also revealed that exercise decreased lactate dehydrogenase release from the heart during reperfusion (marker of cell damage) without MPG effects or interactions. Expression of the cytoprotective protein inducible heat shock protein 70 increased by similar amounts in the left ventricles of RUN and RUN/MPG compared with sedentary groups (P < 0.05). We conclude that ROS are not a necessary trigger for exercise-induced preconditioning in rats. PMID:22955056

  17. Acceleration of potential-induced degradation by salt-mist preconditioning in crystalline silicon photovoltaic modules

    NASA Astrophysics Data System (ADS)

    Suzuki, Soh; Nishiyama, Naoki; Yoshino, Seiji; Ujiro, Takumi; Watanabe, Shin; Doi, Takuya; Masuda, Atsushi; Tanahashi, Tadanori

    2015-08-01

    We examined the sequential effects of salt-mist stress followed by high-system-voltage stress on the power loss of crystalline silicon photovoltaic (PV) modules to determine whether a crucial failure as potential-induced degradation (PID) is accelerated by material-property changes caused by the long-term effects of a less harmful stress such as salt-mist spraying. Degradation profiles confirmed in this study show that PID is accelerated by certain types of salt-mist preconditioning. For the acceleration of PID, the contribution of sodium ions liberated from the front glass of the PV module seems to be excluded. Therefore, we consider that the sodium ions penetrating into the PV modules from the ambient environment may also cause degradation according to the proposed mechanisms of PID, as the sodium ions existing in the front glass cause PID. Furthermore, this type of degradation may indicate the wear-out phenomenon after a long-term exposure in the field (especially near the coast).

  18. Mechanisms underpinning protection against eccentric exercise-induced muscle damage by ischemic preconditioning.

    PubMed

    Franz, Alexander; Behringer, Michael; Nosaka, Kazunori; Buhren, Bettina Alexandra; Schrumpf, Holger; Mayer, Constantin; Zilkens, Christoph; Schumann, Moritz

    2017-01-01

    Eccentric exercise training is effective for increasing muscle mass and strength, and improving insulin sensitivity and blood lipid profiles. However, potential muscle damage symptoms such as prolonged loss of muscle function and delayed onset of muscle soreness may restrict the use of eccentric exercise, especially in clinical populations. Therefore, strategies to reduce eccentric exercise-induced muscle damage (EIMD) are necessary, and an extensive number of scientific studies have tried to identify potential intervention modalities to perform eccentric exercises without adverse effects. The present paper is based on a narrative review of current literature, and provides a novel hypothesis by which an ischemic preconditioning (IPC) of the extremities may reduce EIMD. IPC consists of an intermittent application of short-time non-lethal ischemia to an extremity (e.g. using a tourniquet) followed by reperfusion and was discovered in clinical settings in an attempt to minimize inflammatory responses induced by ischemia and ischemia-reperfusion-injury (I/R-Injury) during surgery. The present hypothesis is based on morphological and biochemical similarities in the pathophysiology of skeletal muscle damage during clinical surgery and EIMD. Even though the primary origin of stress differs between I/R-Injury and EIMD, subsequent cellular alterations characterized by an intracellular accumulation of Ca(2+), an increased production of reactive oxygen species or increased apoptotic signaling are essential elements for both. Moreover, the incipient immune response appears to be similar in I/R-Injury and EIMD, which is indicated by an infiltration of leukocytes into the damaged soft-tissue. Thus far, IPC is considered as a potential intervention strategy in the area of cardiovascular or orthopedic surgery and provides significant impact on soft-tissue protection and downregulation of undesired excessive inflammation induced by I/R-Injury. Based on the known major impact of IPC

  19. Increased hypoxic tolerance by chemical inhibition of oxidative phosphorylation: "chemical preconditioning".

    PubMed

    Riepe, M W; Esclaire, F; Kasischke, K; Schreiber, S; Nakase, H; Kempski, O; Ludolph, A C; Dirnagl, U; Hugon, J

    1997-03-01

    A short ischemic episode preceding sustained ischemia is known to increase tolerance against ischemic cell death. We report early-onset long-lasting neuroprotection against in vitro hypoxia by preceding selective chemical inhibition of oxidative phosphorylation: "chemical preconditioning." The amplitude of CA1 population spikes (psap) in hippocampal slices prepared from control animals (control slices) was 31 +/- 27% (mean +/- SD) upon 45-min recovery from 15-min in vitro hypoxia. In slices prepared from animals treated in vivo with 20 mg/kg 3-nitropropionate (3-np) 1-24 h prior to slice preparation (preconditioned slices), psap improved to 90 +/- 15% (p < 0.01). Posthypoxic oxygen free radicals were reduced to 65 +/- 10% (mean +/- SD) of control in preconditioned slices (p < 0.05). Posthypoxic neuronal density improved from 52 +/- 15% (mean +/- SD) in control slices to 97 +/- 23% in preconditioned slices (p < 0.001). Glibenclamide, an antagonist at KATP-channels, partly reversed increased hypoxic tolerance. We conclude that chemical preconditioning induces early-onset long-lasting tolerance against in vitro hypoxia. Ultimately, this strategy may be applicable as a neuroprotective strategy in humans.

  20. Methamphetamine-induced dopaminergic toxicity prevented owing to the neuroprotective effects of salicylic acid.

    PubMed

    Thrash-Williams, Bessy; Karuppagounder, Senthilkumar S; Bhattacharya, Dwipayan; Ahuja, Manuj; Suppiramaniam, Vishnu; Dhanasekaran, Muralikrishnan

    2016-06-01

    Methamphetamine (Schedule-II drug, U.S. Drug Enforcement Administration) is one of the most abused illicit drug following cocaine, marijuana, and heroin in the USA. There are numerous health impairments and substantial economic burden caused by methamphetamine abuse. Salicylic acid, potent anti-inflammatory drug and a known neuroprotectant has shown to protect against toxicity-induced by other dopaminergic neurotoxins. Hence, in this study we investigated the neuroprotective effects of salicylic acid against methamphetamine-induced toxicity in mice. The current study investigated the effects of sodium salicylate and/or methamphetamine on oxidative stress, monoamine oxidase, mitochondrial complex I & IV activities using spectrophotometric and fluorimetric methods. Behavioral analysis evaluated the effect on movement disorders-induced by methamphetamine. Monoaminergic neurotransmitter levels were evaluated using high pressure liquid chromatography-electrochemical detection. Methamphetamine caused significant generation of reactive oxygen species and decreased complex-I activity leading to dopamine depletion. Striatal dopamine depletion led to significant behavioral changes associated with movement disorders. Sodium salicylate (50 & 100mg/kg) significantly scavenged reactive oxygen species, blocked mitochondrial dysfunction and exhibited neuroprotection against methamphetamine-induced neurotoxicity. In addition, sodium salicylate significantly blocked methamphetamine-induced behavioral changes related to movement abnormalities. One of the leading causative theories in nigral degeneration associated with movement disorders such as Parkinson's disease is exposure to stimulants, drugs of abuse, insecticide and pesticides. These neurotoxic substances can induce dopaminergic neuronal insult by oxidative stress, apoptosis, mitochondrial dysfunction and inflammation. Salicylic acid due to its antioxidant and anti-inflammatory effects could provide neuroprotection against the

  1. Neuroprotection in diet-induced ketotic rat brain after focal ischemia.

    PubMed

    Puchowicz, Michelle A; Zechel, Jennifer L; Valerio, Jose; Emancipator, Douglas S; Xu, Kui; Pundik, Svetlana; LaManna, Joseph C; Lust, W David

    2008-12-01

    Neuroprotective properties of ketosis may be related to the upregulation of hypoxia inducible factor (HIF)-1alpha, a primary constituent associated with hypoxic angiogenesis and a regulator of neuroprotective responses. The rationale that the utilization of ketones by the brain results in elevation of intracellular succinate, a known inhibitor of prolyl hydroxylase (the enzyme responsible for the degradation of HIF-1alpha) was deemed as a potential mechanism of ketosis on the upregulation of HIF-1alpha. The neuroprotective effect of diet-induced ketosis (3 weeks of feeding a ketogenic diet), as pretreatment, on infarct volume, after reversible middle cerebral artery occlusion (MCAO), and the upregulation of HIF-1alpha were investigated. The effect of beta-hydroxybutyrate (BHB), as a pretreatment, via intraventricular infusion (4 days of infusion before stroke) was also investigated following MCAO. Levels of HIF-1alpha and Bcl-2 (anti-apoptotic protein) proteins and succinate content were measured. A 55% or 70% reduction in infarct volume was observed with BHB infusion or diet-induced ketosis, respectively. The levels of HIF-1alpha and Bcl-2 proteins increased threefold with diet-induced ketosis; BHB infusions also resulted in increases in these proteins. As hypothesized, succinate content increased by 55% with diet-induced ketosis and fourfold with BHB infusion. In conclusion, the biochemical link between ketosis and the stabilization of HIF-1alpha is through the elevation of succinate, and both HIF-1alpha stabilization and Bcl-2 upregulation play a role in ketone-induced neuroprotection in the brain.

  2. Retinal ganglion cell neuroprotection induced by activation of alpha7 nicotinic acetylcholine receptors

    PubMed Central

    Mata, David; Linn, David M.

    2015-01-01

    The α7nAChR agonist, PNU-282987, has previously been shown to have a neuroprotective effect against loss of retinal ganglion cells (RGCs) in an in vivo glaucoma model when the agent was injected into the vitreous chamber of adult Long Evans rat eyes. Here, we characterized the neuroprotective effect of PNU-282987 at the nerve fiber and retinal ganglion cell layer, determined that neuroprotection occurred when the agonist was applied as eye drops and verified detection of the agonist in the retina, using LC/MS/MS. To induce glaucoma-like conditions in adult Long Evans rats, hypertonic saline was injected into the episcleral veins to induce scar tissue and increase intraocular pressure. Within one month, this procedure produced significant loss of RGCs compared to untreated conditions. RGCs were quantified after immunostaining with an antibody against Thy 1.1 and imaged using a confocal microscope. In dose-response studies, concentrations of PNU-282987 were applied to the animal’s right eye two times each day, while the left eye acted as an internal control. Eye drops of PNU-282987 resulted in neuroprotection against RGC loss in a dose-dependent manner using concentrations between 100 µM and 2 mM PNU-282987. LC/MS/MS results demonstrated that PNU-282987 was detected in the retina when applied as eye drops, relatively small amounts of PNU-282987 were measured in blood plasma and no PNU-282987 was detected in cardiac tissue. These results support the hypothesis that eye drop application of PNU-282987 can prevent loss of RGCs associated with glaucoma, which can lead to neuroprotective treatments for diseases that involve α7nAChRs. PMID:26239818

  3. Neuroprotective role of Convolvulus pluricaulis on aluminium induced neurotoxicity in rat brain.

    PubMed

    Bihaqi, Syed Waseem; Sharma, Meenakshi; Singh, Avninder Pal; Tiwari, Manisha

    2009-07-30

    Convolvulus pluricaulis (Convolvulaceae) has long been used as traditional herbal medicine in India as nerve tonic. We investigated neuroprotective effects of aqueous extract from Convolvulus pluricaulis (CP) against aluminium chloride induced neurotoxicity in rat cerebral cortex. Daily administration of CP (150 mg/kg) for 3 months along with aluminium chloride (50 mg/kg) decreased the elevated enzymatic activity of acetylcholine esterase and also inhibited the decline in Na(+)/K(+)ATPase activity which resulted from aluminium intake. Beside, preventing accumulation of lipid and protein damage, changes in the levels of endogenous antioxidant enzymes associated with aluminium administration were also rectified. Oral administration of CP preserved the mRNA levels of muscarinic receptor 1 (M1 receptor), choline acetyl transferase (ChAT) and Nerve Growth Factor-Tyrosine kinase A receptor (NGF-TrkA). It also ameliorated the upregulated protein expression of cyclin dependent kinase5 (Cdk5) induced by aluminium. The potential of CPE to inhibit aluminium induced toxicity was compared with rivastigmine tartrate (1mg/kg), which was taken as standard. The potential of the extract to prevent aluminium-induced neurotoxicity was also reflected at the microscopic level, indicative of its neuroprotective effects. Convolvulus pluricaulis possesses neuroprotective potential, thus validating its use in alleviating toxic effects of aluminium.

  4. Neuroprotective effects mediated by dopamine receptor agonists against malonate-induced lesion in the rat striatum.

    PubMed

    Fancellu, R; Armentero, M-T; Nappi, G; Blandini, F

    2003-10-01

    In rats, intrastriatal injection of malonate, a reversible inhibitor of the mitochondrial enzyme succinate dehydrogenase, induces a lesion similar to that observed following focal ischemia or in Huntington's disease. In this study we used the malonate model to explore the neuroprotective potential of dopamine agonists. Rats were injected intraperitoneally with increasing concentrations of D1, D2, or mixed D1/D2 dopamine agonists prior to intrastriatal injection of malonate. Administration of increasing doses of the D2-specific agonist quinpirole resulted in increased protection against malonate toxicity. Conversely, the D1-specific agonist SKF-38393, as well as the mixed D1/D2 agonist apomorphine, conferred higher neuroprotection at lower than at higher drug concentrations. Our data suggest that malonate- induced striatal toxicity can be attenuated by systemic administration of dopamine agonists, with D1 and D2 agonists showing different profiles of efficacy.

  5. Adenosine receptors: regulatory players in the preservation of mitochondrial function induced by ischemic preconditioning of rat liver.

    PubMed

    Duarte, Filipe V; Amorim, João A; Varela, Ana T; Teodoro, João S; Gomes, Ana P; Cunha, Rodrigo A; Palmeira, Carlos M; Rolo, Anabela P

    2016-11-15

    Although adenosine A1 receptors (A1R) have been associated to ischemic preconditioning (IPC), direct evidence for their ability to preserve mitochondrial function upon hepatic preconditioning is still missing and could represent a novel strategy to boost the quality of liver transplants. We tested if the A1R antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) prevented IPC in the liver and if the A1R agonist 2-chloro-N(6)-cyclopentyladenosine (CCPA) might afford a pharmacological preconditioning. Livers underwent a 120 min of 70% warm ischemia and 16 h of reperfusion (I/R), and the IPC group underwent a 5-min ischemic episode followed by a 10-min period of reperfusion before I/R. DPCPX or CCPA was administered intraperitoneally 2 h before IPC or I/R. The control of mitochondrial function emerged as the central element affected by IPC and controlled by endogenous A1R activation. Thus, livers from IPC- or CCPA-treated rats displayed an improved oxidative phosphorylation with higher state 3 respiratory rate, higher respiratory control ratio, increased ATP content, and decreased lag phase. IPC and CCPA also prevented the I/R-induced susceptibility to calcium-induced mitochondrial permeability transition, the rate of reactive oxygen species (ROS) generation, and the decreased mitochondrial content of phospho-Ser(9) GSK-3β. DPCPX abrogated these effects of IPC. These implicate the control of GSK-3β activity by Akt-mediated Ser(9)-GSK-3β phosphorylation preserving the efficiency of oxidative phosphorylation and ROS-mediated cell death in the ability of A1R activation to mimic IPC in the liver. In conclusion, the parallel between IPC and A1R-mediated preconditioning also paves the way to consider a putative therapeutic use of the later in liver transplants.

  6. Preconditioning-induced ischemic tolerance: a window into endogenous gearing for cerebroprotection

    PubMed Central

    2010-01-01

    Ischemic tolerance defines transient resistance to lethal ischemia gained by a prior sublethal noxious stimulus (i.e., preconditioning). This adaptive response is thought to be an evolutionarily conserved defense mechanism, observed in a wide variety of species. Preconditioning confers ischemic tolerance if not in all, in most organ systems, including the heart, kidney, liver, and small intestine. Since the first landmark experimental demonstration of ischemic tolerance in the gerbil brain in early 1990's, basic scientific knowledge on the mechanisms of cerebral ischemic tolerance increased substantially. Various noxious stimuli can precondition the brain, presumably through a common mechanism, genomic reprogramming. Ischemic tolerance occurs in two temporally distinct windows. Early tolerance can be achieved within minutes, but wanes also rapidly, within hours. Delayed tolerance develops in hours and lasts for days. The main mechanism involved in early tolerance is adaptation of membrane receptors, whereas gene activation with subsequent de novo protein synthesis dominates delayed tolerance. Ischemic preconditioning is associated with robust cerebroprotection in animals. In humans, transient ischemic attacks may be the clinical correlate of preconditioning leading to ischemic tolerance. Mimicking the mechanisms of this unique endogenous protection process is therefore a potential strategy for stroke prevention. Perhaps new remedies for stroke are very close, right in our cells. PMID:20298534

  7. Neuroprotective effect of curcumin-loaded lactoferrin nano particles against rotenone induced neurotoxicity.

    PubMed

    Bollimpelli, V Satish; Kumar, Prashant; Kumari, Sonali; Kondapi, Anand K

    2016-05-01

    Curcumin is known to have neuroprotective role and possess antioxidant, anti-inflammatory activities. Rotenone, a flavonoid induced neurotoxicity in dopaminergic cells is being widely studied in Parkinson's Disease (PD) research. In the present study, curcumin loaded lactoferrin nano particles prepared by sol-oil chemistry were used to protect dopaminergic cell line SK-N-SH against rotenone induced neurotoxicity. These curcumin loaded nano particles were of 43-60 nm diameter size and around 100 nm hydrodynamic size as assessed by transmission electron microscopy, atomic force microscopy and dynamic light scattering analysis respectively. The encapsulation efficiency was 61.3% ± 2.4%. Cellular uptake of curcumin through these nano particles was confirmed by confocal imaging and spectrofluorimetric analysis. The curcumin loaded lactoferrin nanoparticles showed greater intracellular drug uptake, sustained retention and greater neuroprotection than soluble counterpart. Neuroprotective activity was characterized through viability assays and by estimating ROS levels. Furthermore rotenone induced PD like features were characterized by decrease in tyrosine hydroxylase expression and increase in α-synuclein expression. Taken together curcumin loaded lactoferrin nanoparticles could be a promising drug delivery strategy against neurotoxicity in dopaminergic neurons. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Neuroprotective activityof Cymbopogon martinii against cerebral ischemia/reperfusion-induced oxidative stress in rats.

    PubMed

    Buch, Prakruti; Patel, Vishal; Ranpariya, Vishavas; Sheth, Navin; Parmar, Sachin

    2012-06-26

    Cymbopogon martinii (Roxb.) Watson (Family: Graminae), commonly known as Palmarosa, is traditionally prescribed for central nervous system (CNS) disorders such as neuralgia, epileptic fits and anorexia. Although the plant possesses diverse pharmacological actions, the neuroprotective action has got little attention. The present study evaluated neuroprotective effect of essential oil of Cymbopogon martinii (EOCM) against global cerebral ischemia/reperfusion (I/R)-induced oxidative stress in rats. Global ischemic brain damage was induced by bilateral common carotid artery (BCCA) occlusion for 30 min, followed by 60 min reperfusion on Wistar albino rats. The biochemical levels of lipid peroxidation (LPO), superoxide dismutase (SOD), catalase (CAT), total thiols and glutathione (GSH) were estimated and brain coronal sections and histopathological studies were performed. BCCA occlusion, followed by reperfusion caused varied biochemical/enzymatic alterations viz. increase in LPO and decrease in SOD, CAT, total thiols and GSH. The prior treatment of EOCM (50 mg/kg and 100 mg/kg, p.o. for 10 days) markedly reversed these changes and restored to normal levels as compared to I/R groups. Moreover, brain coronal sections and histopathological studies revealed protection against ischemic brain damage in the EOCM-treated groups. This study, for the first time, shows potent neuroprotective effect of EOCM against global cerebral I/R-induced oxidative stress in rats, suggesting its therapeutic potential in cerebrovascular diseases (CVD) including stroke.

  9. [Neuroprotective effects of semax in MPTP-induced disturbances of brain dopamine system].

    PubMed

    Levitskaia, N G; Sebentsova, E A; Andreeva, L A; Alfeeva, L Iu; Kamenskiĭ, A A; Miasoedov, N F

    2002-11-01

    Effects of an ACTH (4-10) analogue Semax (MEHFPGP) on behaviour of white rats with MPTP-induced disturbances of brain DA-system have been studied. It was shown that MPTP administration (25 mg/kg) reduced motor activity and auhmented the anxiety level in rats. Semax administration (daily intranasal 0.2 mg/kg) attenuated behaviour disturbances induced by neurotoxin. The observed protective action of Semax in rats with MFTP-induced DA system disturbances may be due to both its modulating influence on the brain DA system and peptide neuroprotective effects.

  10. Prevention of the ischemia-induced decrease in mitochondrial Tom20 content by ischemic preconditioning.

    PubMed

    Boengler, Kerstin; Gres, Petra; Cabestrero, Alberto; Ruiz-Meana, Marisol; Garcia-Dorado, David; Heusch, Gerd; Schulz, Rainer

    2006-09-01

    Preserved mitochondrial function (respiration, calcium handling) and integrity (cytochrome c release) is central for cell survival following ischemia/reperfusion. Mitochondrial function also requires import of proteins from the cytosol via the translocase of the outer and inner membrane (TOM and TIM complexes). Since mitochondrial function following ischemia/reperfusion is better preserved by ischemic preconditioning (IP), we now investigated whether expression of parts of the import machinery is affected by ischemia/reperfusion without or with IP in vivo. We analyzed the mitochondrial content of the presequence receptor Tom20, the pore forming unit Tom40 and Tim23. Goettinger minipigs were subjected to 90 min of low-flow ischemia without or with preconditioning by 10 min ischemia and 15 min reperfusion. Mitochondria were isolated from the ischemic or preconditioned anterior wall of the left ventricle and from the control posterior wall. Infarct size was significantly reduced by IP (20.1 +/- 1.6% of area at risk (non-preconditioned) vs. 6.5 +/- 2.5% of area at risk (IP)). Using Western blot analysis, the ratio of Tom20 (normalized to Ponceau S) between mitochondria isolated from the anterior ischemic and posterior control wall was reduced (0.72 +/- 0.11, a.u., n = 8), whereas the mitochondrial Tom20 content was preserved by IP (1.17 +/- 0.16 a.u., n = 7, P < 0.05). The mitochondrial Tom40, Tim23 and adenine nucleotide transporter (ANT) contents were not significantly different between non-preconditioned and preconditioned myocardium. The preservation of the mitochondrial Tom20 protein level may contribute to the improved mitochondrial function after IP.

  11. [Dexmedetomidine preconditioning protects against lipopolysaccharides-induced injury in the human alveolar epithelial cells].

    PubMed

    Zhang, Lei; Zhou, Xian-Jin; Zhan, Li-Ying; Wu, Xiao-Jing; Li, Wen-Lan; Zhao, Bo; Meng, Qing-Tao; Xia, Zhong-Yuan

    2017-08-14

    Dexmedetomidine (DEX) has demonstrated the preconditioning effect and shown protective effects against organize injury. In this study, using A549 (human alveolar epithelial cell) cell lines, we investigated whether DEX preconditioning protected against acute lung injury (ALI) in vitro. A549 were randomly divided into four groups (n=5): control group, DEX group, lipopolysaccharides (LPS) group, and D-LPS (DEX+LPS) group. Phosphate buffer saline (PBS) or DEX were administered. After 2h preconditioning, the medium was refreshed and the cells were challenged with LPS for 24h on the LPS and D-LPS group. Then the malondialdehyde (MDA), superoxide dismutase (SOD), Bcl-2, Bax, caspase-3 and the cytochrome c in the A549 were tested. The apoptosis was also evaluated in the cells. Compare with LPS group, DEX preconditioning reduced the apoptosis (26.43%±1.05% vs. 33.58%±1.16%, p<0.05) in the A549, which is correlated with decreased MDA (12.84±1.05 vs. 19.16±1.89 protein, p<0.05) and increased SOD activity (30.28±2.38 vs. 20.86±2.19 protein, p<0.05). DEX preconditioning also increased the Bcl-2 level (0.53±0.03 vs. 0.32±0.04, p<0.05) and decreased the level of Bax (0.49±0.04 vs. 0.65±0.04, p<0.05), caspase-3 (0.54±0.04 vs. 0.76±0.04, p<0.05) and cytochrome c. DEX preconditioning has a protective effect against ALI in vitro. The potential mechanisms involved are the inhibition of cell death and improvement of antioxidation. Copyright © 2017 Sociedade Brasileira de Anestesiologia. Publicado por Elsevier Editora Ltda. All rights reserved.

  12. Remote ischaemic preconditioning protects against cardiopulmonary bypass‐induced tissue injury: a preclinical study

    PubMed Central

    Kharbanda, R K; Li, J; Konstantinov, I E; Cheung, M M H; White, P A; Frndova, H; Stokoe, J; Cox, P; Vogel, M; Van Arsdell, G; MacAllister, R; Redington, A N

    2006-01-01

    Objectives To test the hypothesis that remote ischaemic preconditioning (rIPC) reduces injury after cardiopulmonary bypass (CPB). Design Randomised study with an experimental model of CPB (3 h CPB with 2 h of cardioplegic arrest). Twelve 15 kg pigs were randomly assigned to control or rIPC before CPB and followed up for 6 h. Intervention rIPC was induced by four 5 min cycles of lower limb ischaemia before CPB. Main outcome measures Troponin I, glial protein S‐100B, lactate concentrations, load‐independent indices (conductance catheter) of systolic and diastolic function, and pulmonary resistance and compliance were measured before and for 6 h after CPB. Results Troponin I increased after CPB in both groups but during reperfusion the rIPC group had lower concentrations than controls (mean area under the curve −57.3 (SEM 7.3) v 89.0 (11.6) ng·h/ml, p  =  0.02). Lactate increased after CPB in both groups but during reperfusion the control group had significantly more prolonged hyperlactataemia (p  =  0.04). S‐100B did not differ between groups. Indices of ventricular function did not differ. There was a tendency to improved lung compliance (p  =  0.07), and pulmonary resistance changed less in the rIPC than in the control group during reperfusion (p  =  0.02). Subsequently, peak inspiratory pressure was lower (p  =  0.001). Conclusion rIPC significantly attenuated clinically relevant markers of myocardial and pulmonary injury after CPB. Transient limb ischaemia as an rIPC stimulus has potentially important clinical applications. PMID:16818489

  13. HIF1α is necessary for exercise-induced neuroprotection while HIF2α is needed for dopaminergic neuron survival in the substantia nigra pars compacta.

    PubMed

    Smeyne, M; Sladen, P; Jiao, Y; Dragatsis, I; Smeyne, R J

    2015-06-04

    Exercise reduces the risk of developing a number of neurological disorders and increases the efficiency of cellular energy production. However, overly strenuous exercise produces oxidative stress. Proper oxygenation is crucial for the health of all tissues, and tight regulation of cellular oxygen is critical to balance O2 levels and redox homeostasis in the brain. Hypoxia Inducible Factor (HIF)1α and HIF2α are transcription factors regulated by cellular oxygen concentration that initiate gene regulation of vascular development, redox homeostasis, and cell cycle control. HIF1α and HIF2α contribute to important adaptive mechanisms that occur when oxygen and ROS homeostasis become unbalanced. It has been shown that preconditioning by exposure to a stressor prior to a hypoxic event reduces damage that would otherwise occur. Previously we reported that 3 months of exercise protects SNpc dopaminergic (DA) neurons from toxicity caused by Complex I inhibition. Here, we identify the cells in the SNpc that express HIF1α and HIF2α and show that running exercise produces hypoxia in SNpc DA neurons, and alters the expression of HIF1α and HIF2α. In mice carrying a conditional knockout of Hif1α in postnatal neurons we observe that exercise alone produces SNpc TH+ DA neuron loss. Loss of HIF1α also abolishes exercise-induced neuroprotection. In mice lacking Hif2α in postnatal neurons, the number of TH+ DA neurons in the adult SNpc is diminished, but 3months of exercise rescues this loss. We conclude that HIF1α is necessary for exercise-induced neuroprotection and both HIF1α and HIF2α are necessary for the survival and function of adult SNpc DA neurons.

  14. CCL2 upregulation triggers hypoxic preconditioning-induced protection from stroke

    PubMed Central

    2012-01-01

    Background A brief exposure to systemic hypoxia (i.e., hypoxic preconditioning; HPC) prior to transient middle cerebral artery occlusion (tMCAo) reduces infarct volume, blood-brain barrier disruption, and leukocyte migration. CCL2 (MCP-1), typically regarded as a leukocyte-derived pro-inflammatory chemokine, can also be directly upregulated by hypoxia-induced transcription. We hypothesized that such a hypoxia-induced upregulation of CCL2 is required for HPC-induced ischemic tolerance. Methods Adult male SW/ND4, CCL2-null, and wild-type mice were used in these studies. Cortical CCL2/CCR2 message, protein, and cell-type specific immunoreactivity were determined following HPC (4 h, 8% O2) or room air control (21% O2) from 6 h through 2 weeks following HPC. Circulating leukocyte subsets were determined by multi-parameter flow cytometry in naïve mice and 12 h after HPC. CCL2-null and wild-type mice were exposed to HPC 2 days prior to tMCAo, with immunoneutralization of CCL2 during HPC achieved by a monoclonal CCL2 antibody. Results Cortical CCL2 mRNA and protein expression peaked at 12 h after HPC (both p < 0.01), predominantly in cortical neurons, and returned to baseline by 2 days. A delayed cerebral endothelial CCL2 message expression (p < 0.05) occurred 2 days after HPC. The levels of circulating monocytes (p < 0.0001), T lymphocytes (p < 0.0001), and granulocytes were decreased 12 h after HPC, and those of B lymphocytes were increased (p < 0.0001), but the magnitude of these respective changes did not differ between wild-type and CCL2-null mice. HPC did decrease the number of circulating CCR2+ monocytes (p < 0.0001) in a CCL2-dependent manner, but immunohistochemical analyses at this 12 h timepoint indicated that this leukocyte subpopulation did not move into the CNS. While HPC reduced infarct volumes by 27% (p < 0.01) in wild-type mice, CCL2-null mice subjected to tMCAo were not protected by HPC. Moreover, administration of a CCL2 immunoneutralizing antibody

  15. Hypoxia-induced retinal ganglion cell death and the neuroprotective effects of beta-adrenergic antagonists.

    PubMed

    Chen, Yi-Ning; Yamada, Hideyuki; Mao, Wei; Matsuyama, Shigemi; Aihara, Makoto; Araie, Makoto

    2007-05-07

    Hypoxia-induced retinal ganglion cell (RGC) death has been implicated in glaucomatous optic neuropathy. However, the precise mechanism of death signaling and how neuroprotective agents affect it are still unclear. The aim of this study is to characterize the mechanisms of hypoxia-induced apoptosis of cultured purified RGCs and to study the neuroprotective effects of beta-adrenergic antagonists. Rat RGCs were purified utilizing a modified two-step immuno-panning procedure. First, the extent of apoptosis in RGCs under hypoxia was quantified. Next, the effects of glutamate-channel antagonists (MK801 or DNQX), Bax inhibiting peptide (BIP), and beta-adrenergic antagonists (betaxolol, nipradilol, timolol or carteolol) on hypoxia-induced RGC death were investigated by the cell viability assay. Third, the effects of beta-adrenergic antagonists on hypoxia-induced increase of intracellular calcium concentrations ([Ca(2+)](i)) and the additional effect of NO scavenger to nipradilol were evaluated. Apoptotic RGC percentages under hypoxia were significantly increased compared to the control. The viability of RGCs under hypoxia was not affected by MK801 or DNQX, whereas it was increased in a dose-dependent manner with exposure to BIP, and to betaxolol, nipradilol, timolol, but not to carteolol. These effective beta-adrenergic antagonists showed no significant change in hypoxia-induced [Ca(2+)](i) levels. The NO scavenger alleviated neuroprotective effect by nipradilol. In conclusion, purified RGC damage induced by hypoxia involves Bax-dependent apoptotic pathway, but mostly independent of glutamate receptor-mediated excitotoxicity. Betaxolol, timolol and nipradilol showed a protective effect against hypoxia-induced RGC death, which was thought to be irrelevant either to calcium channel or beta-adrenoceptor blocking effects.

  16. "Manganese-induced neurotoxicity: a review of its behavioral consequences and neuroprotective strategies".

    PubMed

    Peres, Tanara V; Schettinger, Maria Rosa C; Chen, Pan; Carvalho, Fabiano; Avila, Daiana S; Bowman, Aaron B; Aschner, Michael

    2016-11-04

    Manganese (Mn) is an essential heavy metal. However, Mn's nutritional aspects are paralleled by its role as a neurotoxicant upon excessive exposure. In this review, we covered recent advances in identifying mechanisms of Mn uptake and its molecular actions in the brain as well as promising neuroprotective strategies. The authors focused on reporting findings regarding Mn transport mechanisms, Mn effects on cholinergic system, behavioral alterations induced by Mn exposure and studies of neuroprotective strategies against Mn intoxication. We report that exposure to Mn may arise from environmental sources, occupational settings, food, total parenteral nutrition (TPN), methcathinone drug abuse or even genetic factors, such as mutation in the transporter SLC30A10. Accumulation of Mn occurs mainly in the basal ganglia and leads to a syndrome called manganism, whose symptoms of cognitive dysfunction and motor impairment resemble Parkinson's disease (PD). Various neurotransmitter systems may be impaired due to Mn, especially dopaminergic, but also cholinergic and GABAergic. Several proteins have been identified to transport Mn, including divalent metal tranporter-1 (DMT-1), SLC30A10, transferrin and ferroportin and allow its accumulation in the central nervous system. Parallel to identification of Mn neurotoxic properties, neuroprotective strategies have been reported, and these include endogenous antioxidants (for instance, vitamin E), plant extracts (complex mixtures containing polyphenols and non-characterized components), iron chelating agents, precursors of glutathione (GSH), and synthetic compounds that can experimentally afford protection against Mn-induced neurotoxicity.

  17. Dopamine receptor agonists mediate neuroprotection in malonate-induced striatal lesion in the rat.

    PubMed

    Armentero, Marie-Thérèse; Fancellu, Roberto; Nappi, Giuseppe; Blandini, Fabio

    2002-12-01

    Mitochondrial bioenergetic defects are involved in neurological disorders associated with neuronal damage in the striatum, such as Huntington's disease and cerebral ischemia. The striatal release of neurotransmitters, in particular dopamine, may contribute to the development of the neuronal damage. Recent studies have shown that dopamine agonists may exert neuroprotective effects via multiple mechanisms, including modulation of dopamine release from nigrostriatal dopaminergic terminals. In rats, intrastriatal injection of malonate, a reversible inhibitor of the mitochondrial enzyme succinate dehydrogenase, induces a lesion similar to that observed following focal ischemia or in Huntington's disease. In this study, we used the malonate model to explore the neuroprotective potential of dopamine agonists. Sprague-Dawley rats were injected systemically with increasing concentrations of D(1), D(2), or mixed D(1)/D(2) dopamine agonists prior to malonate intrastriatal insult. Administration of increasing doses of the D(2)-specific agonist quinpirole resulted in increased protection against malonate toxicity. Conversely, the D(1)-specific agonist SKF-38393, as well as the mixed D(1)/D(2) agonist apomorphine, conferred higher neuroprotection at lower than at higher concentrations. Our data suggest that malonate-induced striatal toxicity can be attenuated by systemic administration of dopamine agonists, with D(1) and D(2) agonists showing different profiles of efficacy.

  18. Comparative neuroprotective profile of statins in quinolinic acid induced neurotoxicity in rats.

    PubMed

    Kalonia, Harikesh; Kumar, Puneet; Kumar, Anil

    2011-01-01

    A possible neuroprotective role has been recently suggested for 3H3MGCoA reductase inhibitors (statins). Here, we sought to determine neuroprotective effect of statins in quinolinic acid induced neurotoxicity in rats. Rats were surgically administered quinolinic acid and treated with Atorvastatin (10, 20 mg/kg), simvastatin (15, 30 mg/kg) and fluvastatin (5, 10 mg/kg) once daily up to 3 weeks. Atorvastatin (10, 20 mg/kg), simvastatin (30 mg/kg) and fluvastatin (10 mg/kg) treatment significantly attenuated the quinolinic acid induced behavioral (locomotor activity, rotarod performance and beam walk test), biochemical (lipid peroxidation, nitrite concentration, SOD and catalase), mitochondrial enzyme complex alterations in rats suggesting their free radical scavenging potential. Additionally, atorvastatin (10, 20 mg/kg), simvastatin (30 mg/kg) and fluvastatin (10 mg/kg) significantly decrease the TNF-α level and striatal lesion volume in quinolinic acid treated animals indicating their anti-inflammatory effects. In comparing the protective effect of different statins, atorvastatin is effective at both the doses while simvastatin and fluvastatins at respective lower doses were not able to produce the protective effect in quinolinic acid treated animals. These modulations can account, at least partly, for the beneficial effect of statins in our rodent model of striatal degeneration. Our findings show that statins could be explored as possible neuroprotective agents for neurodegenerative disorders such as HD.

  19. Meclizine-induced enhanced glycolysis is neuroprotective in Parkinson disease cell models

    PubMed Central

    Hong, Chien Tai; Chau, Kai-Yin; Schapira, Anthony H. V.

    2016-01-01

    Meclizine is a well-tolerated drug routinely used as an anti-histamine agent in the management of disequilibrium. Recently, meclizine has been assessed for its neuroprotective properties in ischemic stroke and Huntington disease models. We found that meclizine protected against 6-hydroxydopamine-induced apoptosis and cell death in both SH-SY5Y cells and rat primary cortical cultures. Meclizine increases the level of 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3), which activates phosphofructokinase, a rate-determining enzyme of glycolysis. This protection is therefore mediated by meclizine’s ability to enhance glycolysis and increase mitochondrial hyperpolarization. Meclizine represents an interesting candidate for further investigation to re-purpose for its potential to be neuroprotective in Parkinson disease. PMID:27145922

  20. Neuroprotective effects of Tilia americana var. mexicana on damage induced by cerebral ischaemia in mice.

    PubMed

    Angeles-López, Guadalupe E; González-Trujano, Ma Eva; Gómez, Claudia; Chánez-Cárdenas, Ma Elena; Ventura-Martinez, Rosa

    2016-09-01

    Tilia americana var. mexicana (T. americana) is a plant widely used in Mexico for its medicinal properties on the central nervous system. In the present study, we designed a protocol to investigate the neuroprotective effects of non-polar and polar extracts of T. americana on damage induced by cerebral ischaemia in mice. Vehicle or extracts were administered immediately after ischaemia. Functional neurological deficit, survival percentage and infarct area were determined in each experimental group. Results showed that groups treated with non-polar or polar extracts of T. americana had increased survival rate, improved neurological deficits and diminished the infarct area in relation to the ischaemic group. In conclusion, this study confirms the neuroprotective activity of T. americana, suggests a possible synergism between non-polar and polar constituents and supports its potential as a useful aid in the clinical management of stroke.

  1. Specific Conditions for Resveratrol Neuroprotection against Ethanol-Induced Toxicity.

    PubMed

    Gonthier, Brigitte; Allibe, Nathalie; Cottet-Rousselle, Cécile; Lamarche, Frédéric; Nuiry, Laurence; Barret, Luc

    2012-01-01

    Aims. 3,5,4'-Trihydroxy-trans-stilbene, a natural polyphenolic compound present in wine and grapes and better known as resveratrol, has free radical scavenging properties and is a potent protector against oxidative stress induced by alcohol metabolism. Today, the mechanism by which ethanol exerts its toxicity is still not well understood, but it is generally considered that free radical generation plays an important role in the appearance of structural and functional alterations in cells. The aim of this study was to evaluate the protective action of resveratrol against ethanol-induced brain cell injury. Methods. Primary cultures of rat astrocytes were exposed to ethanol, with or without a pretreatment with resveratrol. We examined the dose-dependent effects of this resveratrol pretreatment on cytotoxicity and genotoxicity induced by ethanol. Cytotoxicity was assessed using the MTT reduction test. Genotoxicity was evidenced using single cell gel electrophoresis. In addition, DNA staining with fluorescent dyes allowed visualization of nuclear damage using confocal microscopy. Results. Cell pretreatment with low concentrations of trans-resveratrol (0.1-10 μM) slowed down cell death and DNA damage induced by ethanol exposure, while higher concentrations (50-100 μM) enhanced these same effects. No protection by cis-resveratrol was observed. Conclusion. Protection offered by trans-resveratrol against ethanol-induced neurotoxicity was only effective for low concentrations of this polyphenol.

  2. Specific Conditions for Resveratrol Neuroprotection against Ethanol-Induced Toxicity

    PubMed Central

    Gonthier, Brigitte; Allibe, Nathalie; Cottet-Rousselle, Cécile; Lamarche, Frédéric; Nuiry, Laurence; Barret, Luc

    2012-01-01

    Aims. 3,5,4′-Trihydroxy-trans-stilbene, a natural polyphenolic compound present in wine and grapes and better known as resveratrol, has free radical scavenging properties and is a potent protector against oxidative stress induced by alcohol metabolism. Today, the mechanism by which ethanol exerts its toxicity is still not well understood, but it is generally considered that free radical generation plays an important role in the appearance of structural and functional alterations in cells. The aim of this study was to evaluate the protective action of resveratrol against ethanol-induced brain cell injury. Methods. Primary cultures of rat astrocytes were exposed to ethanol, with or without a pretreatment with resveratrol. We examined the dose-dependent effects of this resveratrol pretreatment on cytotoxicity and genotoxicity induced by ethanol. Cytotoxicity was assessed using the MTT reduction test. Genotoxicity was evidenced using single cell gel electrophoresis. In addition, DNA staining with fluorescent dyes allowed visualization of nuclear damage using confocal microscopy. Results. Cell pretreatment with low concentrations of trans-resveratrol (0.1–10 μM) slowed down cell death and DNA damage induced by ethanol exposure, while higher concentrations (50–100 μM) enhanced these same effects. No protection by cis-resveratrol was observed. Conclusion. Protection offered by trans-resveratrol against ethanol-induced neurotoxicity was only effective for low concentrations of this polyphenol. PMID:22778731

  3. Melatonin prevents mitochondrial dysfunction and promotes neuroprotection by inducing autophagy during oxaliplatin-evoked peripheral neuropathy.

    PubMed

    Areti, Aparna; Komirishetty, Prashanth; Akuthota, Manasaveena; Malik, Rayaz A; Kumar, Ashutosh

    2017-04-01

    Oxaliplatin, an organoplatinum compound, is used in the treatment of colorectal cancer, but its clinical use can be limited due to the development of peripheral neuropathy. Whilst mitochondrial dysfunction has been implicated as a major pathomechanism for oxaliplatin-induced neurotoxicity, the prevention of autophagy may also aggravate neuronal cell death. Melatonin, a well-known mitoprotectant and autophagy inducer, was used to examine its neuroprotective role in oxaliplatin-induced peripheral neuropathy (OIPN). Melatonin prevented the loss of mitochondrial membrane potential (Ψm) and promoted neuritogenesis in oxaliplatin-challenged neuro-2a cells. It did not interfere with the cytotoxic activity of oxaliplatin in human colon cancer cell line, HT-29. Melatonin treatment significantly alleviated oxaliplatin-induced pain behavior and neuropathic deficits in rats. It also ameliorated nitro-oxidative stress mediated by oxaliplatin, thus prevented nitrosylation of proteins and loss of antioxidant enzymes, and therefore, it improved mitochondrial electron transport chain function and maintained cellular bioenergetics by improving the ATP levels. The protective effects of melatonin were attributed to preventing oxaliplatin-induced neuronal apoptosis by increasing the autophagy pathway (via LC3A/3B) in peripheral nerves and dorsal root ganglion (DRG). Hence, it preserved the epidermal nerve fiber density in oxaliplatin-induced neuropathic rats. Taken together, we provide detailed molecular mechanisms for the neuroprotective effect of melatonin and suggest it has translational potential for oxaliplatin-induced neuropathy. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Neuroprotective effect of Tinospora cordifolia ethanol extract on 6-hydroxy dopamine induced Parkinsonism

    PubMed Central

    Kosaraju, Jayasankar; Chinni, Santhivardhan; Roy, Partha Deb; Kannan, Elango; Antony, A. Shanish; Kumar, M. N. Satish

    2014-01-01

    Objective: The present study investigates the neuroprotective activity of ethanol extract of Tinospora cordifolia aerial parts against 6-hydroxy dopamine (6-OHDA) lesion rat model of Parkinson's disease (PD). Materials and Methods: T. cordifolia ethanol extract (TCEE) was standardized with high performance thin layer chromatography using berberine. Experimental PD was induced by intracerebral injection of 6-OHDA (8 μg). Animals were divided into five groups: sham operated, negative control, positive control (levodopa 6 mg/kg) and two experimental groups (n = 6/group). Experimental groups received 200 and 400 mg/kg of TCEE once daily for 30 days by oral gavage. Biochemical parameters including dopamine level, oxidative stress, complex I activity and brain iron asymmetry ratio and locomotor activity including skeletal muscle co-ordination and degree of catatonia were assessed. Results: TCEE exhibited significant neuroprotection by increasing the dopamine levels (1.96 ± 0.20 and 2.45 ± 0.40 ng/mg of protein) and complex I activity (77.14 ± 0.89 and 78.50 ± 0.96 nmol/min/mg of protein) at 200 and 400 mg/kg respectively when compared with negative control group. Iron asymmetry ratio was also significantly attenuated by TCEE at 200 (1.57 ± 0.18) and 400 mg/kg (1.11 ± 0.15) when compared with negative control group. Neuroprotection by TCEE was further supported by reduced oxidative stress and restored locomotor activity in treatment groups. Conclusion: Results show that TCEE possess significant neuroprotection in 6-OHDA induced PD by protecting dopaminergic neurons and reducing the iron accumulation. PMID:24741189

  5. Neuroprotective evaluation of Tilia americana and Annona diversifolia in the neuronal damage induced by intestinal ischemia.

    PubMed

    Angeles-López, Guadalupe E; González-Trujano, María Eva; Déciga-Campos, Myrna; Ventura-Martínez, Rosa

    2013-08-01

    Tilia americana and Annona diversifolia are plants widely distributed in Mexico and sold in markets for their medicinal properties on the central nervous system (CNS) including possible neuroprotection. Pharmacological studies have corroborated CNS activities due to flavonoid constituents, but evidence of their neuroprotector effects are lacking. This study was conducted to test aqueous and organic extracts of these two plants for neuroprotective effects in a novel experimental model of intestinal ischemia in situ. T. americana and A. diversifolia aqueous and organic extracts were administrated to guinea pigs at an oral dose of 100 and 300 mg/kg for 15 days. Twenty four hours after the last administration, the animals were anesthetized and intestinal ischemia in situ was induced by clamping for 80 min selected branches of the superior mesenteric artery. Ischemic segments placed in an in vitro organ bath were stimulated electrically (0.3 Hz frequency, 3.0 ms duration, 14 V intensity) and chemically (ACh; 1 × 10(-9) to 1×10(-5) M). Neuroprotection was considered present when the depressed contractile response of the ischemic tissue to electrical stimulation was normalized in the treated animals. Results showed that pretreatment with the T. americana hexane and aqueous extracts, but not with those from A. diversifolia, significantly improved responses of the ischemic tissue. These results suggest that T. americana possesses neuroprotective effects against neuronal damage induced by ischemia, and that flavonoids as well as non-polar constituents are involved. Our study supports the use of this plant in folk medicine and suggests its possible effectiveness for stroke prevention.

  6. Neuroprotective effects of (-)-linalool against oxygen-glucose deprivation-induced neuronal injury.

    PubMed

    Park, Hyeon; Seol, Geun Hee; Ryu, Sangwoo; Choi, In-Young

    2016-04-01

    (-)-Linalool, a major component of many essential oils, is widely used in cosmetics and flavoring ingredients as well as in traditional medicines. Although various in vitro and in vivo studies have shown that (-)-linalool has anti-convulsant, anti-nociceptive, anti-inflammatory and anti-oxidative properties, its anti-ischemic/hypoxic effects have yet to be determined. This study assessed the neuroprotective effects of (-)-linalool against oxygen-glucose deprivation/reoxygenation (OGD/R)-induced cortical neuronal injury, an in vitro model of ischemic stroke. (-)-Linalool significantly attenuated OGD/R-evoked cortical neuronal injury/death, although it did not inhibit N-methyl-D-aspartate (NMDA)-induced excitotoxicity. (-)-Linalool significantly reduced intracellular oxidative stress during OGD/R-induced injury, as well as scavenging peroxyl radicals (Trolox equivalents or TE = 3.8). This anti-oxidant effect was found to correlate with the restoration of OGD/R-induced decreases in the activities of SOD and catalase. In addition, (-)-linalool inhibited microglial migration induced by monocyte-chemoattractant protein-1 (MCP-1), a chemokine released by OGD/R. These findings show that (-)-linalool has neuroprotective effects against OGD/R-induced neuronal injury, which may be due to its anti-oxidant and anti-inflammatory activities. Detailed examination of the anti-ischemic mechanisms of (-)-linalool may indicate strategies for the development of drugs to treat cerebral ischemic injury.

  7. Hypoxia-inducible factors as neuroprotective agent in Alzheimer's disease.

    PubMed

    Ashok, Ben Sundra; Ajith, Thekkuttuparambil Ananthanarayanan; Sivanesan, Senthilkumar

    2017-03-01

    Beta amyloid (Aβ)-42 peptide and phosphorylated tau protein have been demonstrated as the pathological hallmarks of Alzheimer's disease (AD). A gradual decline of oxygen and glucose supply to the brain during aging or hypoxia was manifested as a contributing factor to hypometabolism. The brain regions susceptible to hypometabolism are the hippocampus, entorhinal cortex and cognition-associated neocortical regions like parietal, temporal and frontal cortex. In AD patients, the brain regions with hypometabolism can trigger overexpression of amyloid precursor protein and decrease the clearance of Aβ. Aβ and hypoxia can evoke inflammation, oxidative stress and finally neuronal cell death. Among the transcription factors involved in the compensatory mechanism, hypoxia-inducible factor-1 alpha (HIF-1α) has a major role in the cellular adaptation by inducing the expression of several proteins, including vascular endothelial growth factor, erythropoietin and inducible nitric oxide synthase. Therefore, maintaining the HIF-1α level by inhibiting the prolyl 4-hydroxylase was effective to attenuate the nerve damage during hypoxia and postpone the incidence of AD. Agents such as iron chelators, and heavy metals like cobalt and nickel were demonstrated to be effective in maintaining the HIF-1α level in the nerve. This review article discusses the possible role of HIF-1α as a neuroprotector in AD and the future perspectives. © 2016 John Wiley & Sons Australia, Ltd.

  8. [Comparison of pharmacological renal preconditioning with dalargin and lithium ions in the model of gentamycin-induced acute renal failure].

    PubMed

    Cherpakov, R A; Grebenchikov, O A; Plotnikov, E Ju; Likhvantsev, V V

    2015-01-01

    To examine the efficacy of renal preconditioning effect of dalargin and lithium ions by observing the model of gentamycin-induced acute renalfailure. The experiments were performed on white rats, male. The influence of dalargin and lithium ions on the development of gentamycin-induced acute renalfailure was studied in vivo. On the first 24 hours after dalargin injections were terminated, the rats were euthanized humanly. After this we took the blood for a biochemistry study and a renal culture for biochemical test and also for the test of gsk-3β activity. Concentrations of creatinine and urea were studied in serum. The culture samples of renal tubular epithelium before insertion of gentamycin were incubated in dalargin or lithium ions in different concentrations. After that the substratum was immediately changed to gentamycin in different concentrations also and the incubated for 24 hours. After all the standards MTT-test was performed (based on the ability of living cells to reduce the unpainted form by 3-4,5-dimethylthiazol-2-yl-2,5-difenilterarazola to blue crystalline farmazan). Lithium precondition leads to the 250% increase of gsk-3β concentration (p = 0.035). The same results were observed after injection of dalargin in 50 mcg/kg concentration. Concentration of creatinine was 44% lower in the dalargin group than in the control group (p = 0.022). Concentration of creatinine was 32% lower in the lithium group than in the control group (p = 0.030). Concentration of urea was 27% lower in the lithium group than in the control group (p = 0.049). Morphological inflammatory changes in the control group were more significant also. In vitro studies showed the maximum efficacy in the lithium group. The most effective dalargin concentration was 5 mg/ml. Lithium and dalargine preconditioning lowers the signs of gentamycine induced acute renal failure and damage rate of renal parenchyma in vivo and in vitro.

  9. Delayed myocardial preconditioning induced by cobalt chloride in the rat: HIF-1α and iNOS involvement.

    PubMed

    Belaidi, Elise; Beguin, Pauline C; Levy, Patrick; Ribuot, Christophe; Godin-Ribuot, Diane

    2012-08-01

    We previously reported that acute exposure to intermittent hypoxia results in delayed cardioprotection against ischemia/reperfusion (I/R) injury and that the hypoxia-inducible factor (HIF)-1α, a transcriptional factor stabilized by hypoxia, as well as inducible nitric oxide synthase (iNOS) play a key role in this form of preconditioning. As cobalt chloride (CoCl(2)) is known to promote HIF-1α stabilization by inhibiting prolyl hydroxylase activity, we hypothesized that CoCl(2) could mimic the cardioprotective effects of hypoxia. Two groups of rats were administered 30 mg/kg twice of CoCl(2) or sterile water. Twenty-four hours later, hearts were perfused in Langendorff mode and subjected to an I/R protocol. Infarct size and functional recovery were studied. The role of iNOS was assessed by measuring myocardial iNOS content and by observing the effects of the iNOS inhibitor aminoguanidine (Ag, 100 μm, prior to ischemia). The role of HIF-1α was investigated by preventing its stabilization using cadmium chloride (CdCl(2), 1 mg/kg), administered 1 h before cobalt treatment. Treatment by CoCl(2) significantly reduced myocardial infarction by 33% and increased coronary flow (CF) at reperfusion by 27% compared with control rats, and this was accompanied by a threefold increase in myocardial iNOS content. CdCl(2) pretreatment and Ag perfusion abolished the beneficial effects on both infarct size and CF. Thus, the hypoxia-sensitive transcription factor HIF-1α and iNOS appear to play a pivotal role in the delayed pharmacological myocardial preconditioning induced by cobalt, thus mimicking the effects of hypoxic preconditioning. These results underscore the importance of prolyl hydroxylases as potential therapeutic targets for cardioprotection.

  10. Neuroprotection by GH against excitotoxic-induced cell death in retinal ganglion cells.

    PubMed

    Martínez-Moreno, Carlos G; Ávila-Mendoza, José; Wu, Yilun; Arellanes-Licea, Elvira Del Carmen; Louie, Marcela; Luna, Maricela; Arámburo, Carlos; Harvey, Steve

    2016-08-01

    Retinal growth hormone (GH) has been shown to promote cell survival in retinal ganglion cells (RGCs) during developmental waves of apoptosis during chicken embryonic development. The possibility that it might also against excitotoxicity-induced cell death was therefore examined in the present study, which utilized quail-derived QNR/D cells as an in vitro RGC model. QNR/D cell death was induced by glutamate in the presence of BSO (buthionine sulfoxamide) (an enhancer of oxidative stress), but this was significantly reduced (P<0.01) in the presence of exogenous recombinant chicken GH (rcGH). Similarly, QNR/D cells that had been prior transfected with a GH plasmid to overexpress secreted and non-secreted GH. This treatment reduced the number of TUNEL-labeled cells and blocked their release of lactate dehydrogenase (LDH). In a further experiment with dissected neuroretinal explants from ED (embryonic day) 10 embryos, rcGH treatment of the explants also reduced (P<0.01) the number of glutamate-BSO-induced apoptotic cells and blocked the explant release of LDH. This neuroprotective action was likely mediated by increased STAT5 phosphorylation and increased bcl-2 production, as induced by exogenous rcGH treatment and the media from GH-overexpressing QNR/D cells. As rcGH treatment and GH-overexpression cells also increased the content of IGF-1 and IGF-1 mRNA this neuroprotective action of GH is likely to be mediated, at least partially, through an IGF-1 mechanism. This possibility is supported by the fact that the siRNA knockdown of GH or IGF-1 significantly reduced QNR/D cell viability, as did the immunoneutralization of IGF-1. GH is therefore neuroprotective against excitotoxicity-induced RGC cell death by anti-apoptotic actions involving IGF-1 stimulation.

  11. Sigma 1 receptor agonists act as neuroprotective drugs through inhibition of inducible nitric oxide synthase.

    PubMed

    Vagnerova, Kamila; Hurn, Patricia D; Bhardwaj, Anish; Kirsch, Jeffrey R

    2006-08-01

    Postischemic administration of the sigma-1 agonists reduces ischemic brain injury; however, the mechanism is unclear. We hypothesized that the sigma-1 agonist (+)isoform of pentazocine (P(+)) reduces damage in part by ameliorating cell death mediated via inducible nitric oxide synthase (iNOS) and that the (-)isoform (P(-)) lacks this effect. We compared treatment with P(+) with or without the iNOS inhibitor aminoguanidine (AG) and also the effects of P(+) in iNOS deficient (iNOSKO) mice. A possible mechanism of neuroprotection is inhibition of iNOS expression. Male C57/Bl6 mice were subjected to transient middle cerebral artery occlusion (90 min) and drugs were administered with reperfusion: 1) P(+) with AG (P+/AG), 2) P(+), 3) P(-), 4) AG, or 5) placebo. iNOSKOs were treated with either P(+) or placebo. Infarction (triphenyltetrazolium chloride histology, 72 h) was reduced by P(+) treatment in striatum by 44% and in neocortex by 23% versus placebo (P < 0.05), a reduction comparable to AG effect. P(-) did not attenuate brain injury. There was no difference in P(+)/AG treatment compared with showed the same level of neuroprotection as P(+) alone. P(+) also did not provide further neuroprotection for iNOSKOs. We conclude that postischemic administration of P(+) reduces infarct volume in mice. Because AG provides no additional benefit to P(+) treatment and iNOSKOs do not benefit from P(+), we speculate that P(+) acts by suppressing cell death resulting from iNOS toxicity.

  12. Neuroprotective effect of geranylgeranylacetone against ischemia-induced retinal injury.

    PubMed

    Harada, Chikako; Nakamura, Kazuaki; Guo, Xiaoli; Kitaichi, Nobuyoshi; Mitamura, Yoshinori; Yoshida, Kazuhiko; Ohno, Shigeaki; Yoshida, Hiroshi; Harada, Takayuki

    2007-09-07

    This study was conducted to assess the effects of geranylgeranylacetone (GGA) on ischemia-induced retinal injury. Adult C57BL/6J mice were given oral treatments of GGA at 200 mg/kg daily for seven days. Ischemic retinal injury was carried out, and the extent of retinal cell death was quantitatively examined after 7 days. Immunohistochemistry for single-stranded DNA, phosphorylated form of p38 mitogen-activated protein kinase (p38 MAPK), and cleaved caspase-3 were performed one day after ischemic injury. In GGA-treated mice, we found the number of surviving retinal neurons was significantly increased compared with vehicle-treated mice. Ischemia-induced phosphorylation of p38 MAPK, which mediates apoptosis of retinal ganglion cells, was suppressed by GGA treatment. In such retinas, cleaved caspase-3- and single-stranded DNA-positive cells were also decreased compared with vehicle-treated mice. Oral GGA is a useful treatment for various retinal degenerative diseases that involve ischemic injury.

  13. Neuroprotective effect of selenium on iminodipropionitrile-induced toxicity.

    PubMed Central

    al-Deeb, S; al-Moutaery, K; Bruyn, G W; Tariq, M

    1995-01-01

    The present investigation was undertaken to study the effect of selenium on experimental dyskinesia in rats. The movement disorders were produced in rats by intraperitoneal administration of iminodipropionitrile (IDPN) in the dose of 100 mg/kg per day for 12 days. Selenious acid was administered daily 30 minutes before IDPN in the doses of 5 mumol/kg, 10 mumol/kg and 20 mumol/kg bodyweight in three different groups of rats. Animals were observed daily for any neurobehavioral changes including circling, backwalking, head weaving and twitching. Immediately after behavioral studies, blood and brain specimens were collected for analysis of thiobarbituric acid reactive substances (TBARS) to measure the extent of free radical production. Our results showed that concurrent use of selenium significantly inhibited IDPN-induced neurobehavioral changes in a dose-dependent manner. Treatment of rats with selenium also reduced the TBARS production in blood and different regions of brain. These findings suggest that selenium attenuates the IDPN-induced neurotoxicity by inhibiting lipid peroxidation. Images Fig.1 PMID:7786879

  14. Neuroprotective effect of lithium after pilocarpine-induced status epilepticus in mice.

    PubMed

    Hong, Namgue; Choi, Yun-Sik; Kim, Seong Yun; Kim, Hee Jung

    2017-01-01

    Status epilepticus is the most common serious neurological condition triggered by abnormal electrical activity, leading to severe and widespread cell loss in the brain. Lithium has been one of the main drugs used for the treatment of bipolar disorder for decades, and its anticonvulsant and neuroprotective properties have been described in several neurological disease models. However, the therapeutic mechanisms underlying lithium's actions remain poorly understood. The muscarinic receptor agonist pilocarpine is used to induce status epilepticus, which is followed by hippocampal damage. The present study was designed to investigate the effects of lithium post-treatment on seizure susceptibility and hippocampal neuropathological changes following pilocarpine-induced status epilepticus. Status epilepticus was induced by administration of pilocarpine hydrochloride (320 mg/kg, i.p.) in C57BL/6 mice at 8 weeks of age. Lithium (80 mg/kg, i.p.) was administered 15 minutes after the pilocarpine injection. After the lithium injection, status epilepticus onset time and mortality were recorded. Lithium significantly delayed the onset time of status epilepticus and reduced mortality compared to the vehicle-treated group. Moreover, lithium effectively blocked pilocarpine-induced neuronal death in the hippocampus as estimated by cresyl violet and Fluoro-Jade B staining. However, lithium did not reduce glial activation following pilocarpine-induced status epilepticus. These results suggest that lithium has a neuroprotective effect and would be useful in the treatment of neurological disorders, in particular status epilepticus.

  15. Neuroprotective effect of trans-cinnamaldehyde on the 6-hydroxydopamine-induced dopaminergic injury.

    PubMed

    Pyo, Ji-Hi; Jeong, You-Kyung; Yeo, Sujung; Lee, Je-Hyun; Jeong, Mi-Young; Kim, Sung-Hoon; Choi, Yeong-Gon; Lim, Sabina

    2013-01-01

    The anti-inflammatory and neuroprotective effects of trans-cinnamaldehyde (TCA) were investigated on the inflammatory cells and the dopaminergic degeneration in mice. TCA inhibited the up-regulation of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in the lipopolysaccharide (LPS)-induced inflammatory BV2 microglial cells. To investigate the TCA efficacy on the 6-hydroxydopamine (6-OHDA)-induced dopaminergic degeneration in mice, an intracerebroventricular injection of 6-OHDA was given to the mice, and TCA (30 mg/kg) was intraperitoneally administered. At 7 d after the 6-OHDA injection, 6-OHDA led to a severe loss of tyrosine hydroxylase (TH)-positive dopaminergic neurons in the striatum and substantia nigra (SN). On the other hand, TCA dramatically maintained the number of TH-positive dopaminergic neurons in the striatum and SN regions of the 6-OHDA-treated mice, which indicates that TCA is able to inhibit the 6-OHDA-induced reduction of TH expression in the dopaminergic neurons in the striatum and SN regions. TCA also inhibited the induction of iNOS and COX-2 in the 6-OHDA model, similarly as shown in the LPS-induced inflammatory BV2 microglial cells. These results indicate that TCA has a neuroprotective effect on dopaminergic neurons and that this effect may be associated with the inhibition of inflammatory responses. These findings suggest that TCA may be a therapeutic candidate for the prevention of inflammation-mediated neurodegenerative diseases.

  16. Neuroprotective effect of lithium after pilocarpine-induced status epilepticus in mice

    PubMed Central

    Hong, Namgue; Choi, Yun-Sik; Kim, Seong Yun

    2017-01-01

    Status epilepticus is the most common serious neurological condition triggered by abnormal electrical activity, leading to severe and widespread cell loss in the brain. Lithium has been one of the main drugs used for the treatment of bipolar disorder for decades, and its anticonvulsant and neuroprotective properties have been described in several neurological disease models. However, the therapeutic mechanisms underlying lithium's actions remain poorly understood. The muscarinic receptor agonist pilocarpine is used to induce status epilepticus, which is followed by hippocampal damage. The present study was designed to investigate the effects of lithium post-treatment on seizure susceptibility and hippocampal neuropathological changes following pilocarpine-induced status epilepticus. Status epilepticus was induced by administration of pilocarpine hydrochloride (320 mg/kg, i.p.) in C57BL/6 mice at 8 weeks of age. Lithium (80 mg/kg, i.p.) was administered 15 minutes after the pilocarpine injection. After the lithium injection, status epilepticus onset time and mortality were recorded. Lithium significantly delayed the onset time of status epilepticus and reduced mortality compared to the vehicle-treated group. Moreover, lithium effectively blocked pilocarpine-induced neuronal death in the hippocampus as estimated by cresyl violet and Fluoro-Jade B staining. However, lithium did not reduce glial activation following pilocarpine-induced status epilepticus. These results suggest that lithium has a neuroprotective effect and would be useful in the treatment of neurological disorders, in particular status epilepticus. PMID:28066149

  17. Broad neuroprotective profile of nicotinamide in different mouse models of MPTP-induced parkinsonism.

    PubMed

    Anderson, D W; Bradbury, K A; Schneider, J S

    2008-08-01

    The factors contributing to substantia nigra pars compacta (SNc) dopamine (DA) neuron death and striatal DA depletion in Parkinson's disease (PD) are still poorly understood. However, mitochondrial dysfunction, cellular energy depletion and oxidative stress appear to play important roles in the pathogenesis of PD. In view of this, the current study examined the potential of nicotinamide, a form of the B-complex vitamin niacin, to protect against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced SNc cell loss and striatal DA depletion in two mouse MPTP models that respond differently to putative neuroprotective agents. Adult male C57Bl/6 mice received nicotinamide (125, 250 or 500 mg/kg i.p.) prior to either acute (four injections in 1 day at 2-h intervals) or sub-acute (two injections per day at 4-h intervals for 5 days) MPTP administration. Striatal DA levels, changes in numbers of tyrosine hydroxylase (TH)- and cresyl violet-stained cells in the SNc at 2 and 6 weeks following the last MPTP exposure were analyzed. Nicotinamide administration resulted in a dose-dependent sparing of striatal DA levels and SNc neurons in acute MPTP-treated animals. Only the highest dose of nicotinamide had similar effects in sub-acute MPTP-treated animals. At 6 weeks after MPTP exposure, there was some spontaneous recovery of striatal DA levels in both models: neuroprotective effects were still apparent in acute but not sub-acute MPTP-treated animals. These results show neuroprotective effects of nicotinamide in different mouse Parkinson models associated with different forms of cell death and suggest that nicotinamide may have broad neuroprotective potential in PD.

  18. Reactive Oxygen Species and Mitochondrial KATP Channels Mediate Helium-Induced Preconditioning Against Myocardial Infarction In Vivo

    PubMed Central

    Pagel, Paul S.; Krolikowski, John G.; Pratt, Phillip F.; Shim, Yon Hee; Amour, Julien; Warltier, David C.; Weihrauch, Dorothee

    2008-01-01

    Objectives Helium produces preconditioning by activating prosurvival kinases, but the roles of reactive oxygen species (ROS) or mitochondrial KATP channels in this process are unknown. We tested the hypothesis that ROS and mitochondrial KATP channels mediate helium-induced preconditioning in vivo. Design Randomized, prospective study. Setting University research laboratory. Participants Male New Zealand white rabbits. Interventions Rabbits (n=64) were instrumented for measurement of systemic hemodynamics and subjected to a 30 min left anterior descending coronary artery (LAD) occlusion and 3 h reperfusion. In separate experimental groups, rabbits (n=7 or 8 per group) were randomly assigned to receive 0.9% saline (control) or three cycles of 70% helium-30% oxygen administered for 5 min interspersed with 5 min of an air-oxygen mixture before LAD occlusion with or without the ROS scavengers N-acetylcysteine (NAC; 150 mg/kg) or N-2-mercaptoproprionyl glycine (2-MPG; 75 mg/kg), or the mitochondrial KATP antagonist 5-hydroxydecanoate (5-HD; 5 mg/kg). Statistical analysis of data was performed with analysis of variance for repeated measures followed by Bonferroni's modification of Student's t test. Measurements and Main Results Myocardial infarct size was determined using triphenyltetrazolium chloride staining and presented as a percentage of the left ventricular area at risk. Helium significantly (P<0.05) reduced infarct size (23±4% of the area at risk; mean±SD) compared with control (46±3%). NAC, 2-MPG, and 5-HD did not affect irreversible ischemic injury when administered alone (49±5, 45±6, and 45±3%), but these drugs blocked reductions in infarct size produced by helium (45±4, 45±2, and 44±3%). Conclusions The results suggest that ROS and mitochondrial KATP channels mediate helium-induced preconditioning in vivo. PMID:18662630

  19. Neuroprotective Effect of Lutein on NMDA-Induced Retinal Ganglion Cell Injury in Rat Retina.

    PubMed

    Zhang, Chanjuan; Wang, Zhen; Zhao, Jiayi; Li, Qin; Huang, Cuiqin; Zhu, Lihong; Lu, Daxiang

    2016-05-01

    Lutein injection is a possible therapeutic approach for retinal diseases, but the molecular mechanism of its neuroprotective effect remains to be elucidated. The aim of this study was to investigate its protective effects in retinal ganglion cells (RGCs) against N-methyl-D-aspartate (NMDA)-induced retinal damage in vivo. Retinal damage was induced by intravitreal NMDA injection in rats. Each animal was given five daily intraperitoneal injections of Lutein or vehicle along with intravitreal NMDA injections. Electroretinograms were recorded. The number of viable RGCs was quantified using the retinal whole-mount method by immunofluorescence. Proteins were measured by Western blot assays. Lutein reduced the retinal damage and improved the response to light, as shown by an animal behavior assay (the black-and-white box method) in rats. Furthermore, Lutein treatment prevented the NMDA-induced reduction in phNR wave amplitude. Lutein increased RGC number after NMDA-induced retina damage. Most importantly, Bax, cytochrome c, p-p38 MAPK, and p-c-Jun were all upregulated in rats injected with NMDA, but these expression patterns were reversed by continuous Lutein uptake. Bcl-2, p-GSK-3β, and p-Akt in the Lutein-treated eyes were increased compared with the NMDA group. Lutein has neuroprotective effects against retinal damage, its protective effects may be partly mediated by its anti-excitability neurotoxicity, through MAPKs and PI3K/Akt signaling, suggesting a potential approach for suppressing retinal neural damage.

  20. Copolymer-1 vaccination regimens for neuroprotection in laser-induced retinal injuries

    NASA Astrophysics Data System (ADS)

    Belokopytov, Mark; Dubinsky, Galina; Belkin, Michael; Epstein, Yoram; Rosner, Mordechai

    2005-04-01

    The neuroprotective effect of immunization by glatiramer acetate (Copolymer-1, Cop-1, Copaxone) in adjuvant against laser-induced retinal damage was previously reported. The present study quantitatively compares various regimens of this vaccination for reducing the spread of laser-induced retinal damage and investigates the cellular mechanism of Cop-1 activity. Standard argon laser lesions were created in 78 DA pigmented rats divided into five groups: three Cop-1 single treatment groups (treated 7 days before, immediately after, or 24 hours after the injury), one group treated twice (7 days before and 20 days after injury), and a control group treated with adjuvant 7 days before the injury. The retinal lesions were evaluated 3, 20, and 60 days after the injury. Immunostaining of the retinas of the pretreated and control group animals 3 days after the laser injury was performed for T-cell detection. Cop-1 pre-immunization reduced photoreceptor loss at all time points as measured over the central zone of the lesion and 3 and 20 days after lasing as measured over the whole damaged area. Lesion diameter was reduced only 60 days after laser injury in pre-treated animals. Cop-1 given immediately after injury reduced cell loss as measured 20 and 60 days later in the whole lesion and 20 days after the laser irradiation, when measured in the center of lesion. It had no effect on lesion diameter. Late treatment reduced only the lesion diameter at all time points. Repeated treatment enhanced the neuroprotective effect, decreasing the cell loss in the center of lesion and reducing the diameter of lesion. T-cells were detected in the retinal lesions of pre-immunized animals and not in non-treated group, demonstrating the cellular immune mechanism of Cop-1. Immunization with Cop-1 is neuroprotective against laser-induced retinal injuries, and repeating the treatment enhances this effect. Cellular immune action of Cop-1 of was detected.

  1. Kinin-B2 Receptor Exerted Neuroprotection After Diisopropylfluorophosphate-induced Neuronal Damage

    PubMed Central

    Torres-Rivera, Wilmarie; Pérez, Dinely; Park, Keon-Young; Carrasco, Marimée; Platt, Manu O.; Eterović, Vesna A.; Ferchmin, Pedro A.; Ulrich, Henning; Martins, Antonio H.

    2013-01-01

    The kinin-B2 receptor (B2BKR) activated by its endogenous ligand bradykinin participates in various metabolic processes including control of arterial pressure and inflammation. Recently, functions for this receptor in brain development and protection against glutamate-provoked excitotoxicity have been proposed. Here, we report neuroprotective properties for bradykinin against organophosphate poisoning using acute hippocampal slices as an in vitro model. Following slice perfusion for 10 min with diisopropylfluorophosphate (DFP) to initiate the noxious stimulus, responses of pyramidal neurons upon an electric impulse were reduced to less than 30 % of control amplitudes. Effects on synaptic-elicited population spikes were reverted when preparations had been exposed to bradykinin 30 min after challenging with DFP. Accordingly, bradykinin-induced population spike recovery was abolished by HOE-140, a B2BKR antagonist. However, the kinin-B1 receptor (B1BKR) agonist Lys-des-Arg9-bradykinin, inducing phosphorylation of MEK/MAPK and cell death, abolished bradykinin-mediated neuroprotection, an effect, which was reverted by the ERK inhibitor PD98059. In agreement with pivotal B1BKR functions in this process, antagonism of endogenous B1BKR activity alone was enough for restoring population spike activity. On the other hand pralidoxime, an oxime, reactivating AChE after organophosphate poisoning, induced population spike recovery after DFP exposure in the presence of bradykinin and Lys-des-Arg9-bradykinin. Lys-des-Arg9-bradykinin did not revert protection exerted by pralidoxime, however when instead bradykinin and Ly-des-Arg9-bradykinin were superfused together, recovery of population spikes diminished. These findings again confirm the neuroprotective feature of bradykinin, which is, diminished by its endogenous metabolites, stimulating the B1BKR, providing a novel understanding of physiological roles of these receptors. PMID:23735753

  2. Priming of the Cells: Hypoxic Preconditioning for Stem Cell Therapy.

    PubMed

    Wei, Zheng Z; Zhu, Yan-Bing; Zhang, James Y; McCrary, Myles R; Wang, Song; Zhang, Yong-Bo; Yu, Shan-Ping; Wei, Ling

    2017-10-05

    Stem cell-based therapies are promising in regenerative medicine for protecting and repairing damaged brain tissues after injury or in the context of chronic diseases. Hypoxia can induce physiological and pathological responses. A hypoxic insult might act as a double-edged sword, it induces cell death and brain damage, but on the other hand, sublethal hypoxia can trigger an adaptation response called hypoxic preconditioning or hypoxic tolerance that is of immense importance for the survival of cells and tissues. This review was based on articles published in PubMed databases up to August 16, 2017, with the following keywords: "stem cells," "hypoxic preconditioning," "ischemic preconditioning," and "cell transplantation." Original articles and critical reviews on the topics were selected. Hypoxic preconditioning has been investigated as a primary endogenous protective mechanism and possible treatment against ischemic injuries. Many cellular and molecular mechanisms underlying the protective effects of hypoxic preconditioning have been identified. In cell transplantation therapy, hypoxic pretreatment of stem cells and neural progenitors markedly increases the survival and regenerative capabilities of these cells in the host environment, leading to enhanced therapeutic effects in various disease models. Regenerative treatments can mobilize endogenous stem cells for neurogenesis and angiogenesis in the adult brain. Furthermore, transplantation of stem cells/neural progenitors achieves therapeutic benefits via cell replacement and/or increased trophic support. Combinatorial approaches of cell-based therapy with additional strategies such as neuroprotective protocols, anti-inflammatory treatment, and rehabilitation therapy can significantly improve therapeutic benefits. In this review, we will discuss the recent progress regarding cell types and applications in regenerative medicine as well as future applications.

  3. Non-Coding RNAs in Stroke and Neuroprotection

    PubMed Central

    Saugstad, Julie A.

    2015-01-01

    This review will focus on the current state of knowledge regarding non-coding RNAs (ncRNA) in stroke and neuroprotection. There will be a brief introduction to microRNAs (miRNA), long ncRNAs (lncRNA), and piwi-interacting RNAs (piRNA), followed by evidence for the regulation of ncRNAs in ischemia. This review will also discuss the effect of neuroprotection induced by a sublethal duration of ischemia or other stimuli given before a stroke (preconditioning) on miRNA expression and the role of miRNAs in preconditioning-induced neuroprotection. Experimental manipulation of miRNAs and/or their targets to induce pre- or post-stroke protection will also be presented, as well as discussion on miRNA responses to current post-stroke therapies. This review will conclude with a brief discussion of future directions for ncRNAs studies in stroke, such as new approaches to model complex ncRNA datasets, challenges in ncRNA studies, and the impact of extracellular RNAs on human diseases such as stroke. PMID:25821444

  4. The neuroprotective effect of lovastatin on MPP(+)-induced neurotoxicity is not mediated by PON2.

    PubMed

    Aguirre-Vidal, Yoshajandith; Montes, Sergio; Tristan-López, Luis; Anaya-Ramos, Laura; Teiber, John; Ríos, Camilo; Baron-Flores, Verónica; Monroy-Noyola, Antonio

    2015-05-01

    Parkinson's disease (PD) is a neurodegenerative disorder characterized by loss of the pigmented dopaminergic neurons in the substantia nigra pars compacta with subsequent striatal dopamine (DA) deficiency and increased lipid peroxidation. The etiology of the disease is still unclear and it is thought that PD may be caused by a combination of genetic and environmental factors. In the search of new pharmacological options, statins have been recognized for their potential application to treat PD, due to their antioxidant effect. The aim of this work is to contribute in the characterization of the neuroprotective effect of lovastatin in a model of PD induced by 1-methyl-4-phenylpyridinium (MPP(+)). Male Wistar rats (200-250 g) were randomly allocated into 4 groups and administered for 7 days with different pharmacological treatments. Lovastatin administration (5 mg/kg) diminished 40% of the apomorphine-induced circling behavior, prevented the striatal DA depletion and lipid peroxides formation by MPP(+) intrastriatal injection, as compared to the group of animals treated only with MPP(+). Lovastatin produced no change in paraoxonase-2 (PON2) activity. It is evident that lovastatin conferred neuroprotection against MPP(+)-induced protection but this effect was not associated with the induction of PON2 in the rat striatum.

  5. Neuroprotective effect of Feronia limonia on ischemia reperfusion induced brain injury in rats

    PubMed Central

    Rakhunde, Purushottam B.; Saher, Sana; Ali, Syed Ayaz

    2014-01-01

    Objectives: Brain stroke is a leading cause of death without effective treatment. Feronia limonia have potent antioxidant activity and can be proved as neuroprotective against ischemia-reperfusion induced brain injury. Materials and Methods: We studied the effect of methanolic extract of F. limonia fruit (250 mg/kg, 500 mg/kg body weight, p.o.) and Vitamin E as reference standard drug on 30 min induced ischemia, followed by reperfusion by testing the neurobehavioral tests such as neurodeficit score, rota rod test, hanging wire test, beam walk test and elevated plus maze. The biochemical parameters, which were measured in animals brain were catalase, superoxide dismutase (SOD), malondialdehyde and nitric oxide in control and treated rats. Results: The methanolic extract of F. limonia fruit (250 mg/kg, 500 mg/kg body weight, p.o.) treated groups showed a statistically significant improvement in the neurobehavioral parameters such as motor performance (neurological status, significant increase in grasping ability, forelimb strength improvement in balance and co-ordination). The biochemical parameters in the brains of rats showed a significant reduction in the total nitrite (P < 0.01) and lipid peroxidation (P < 0.01), also a significant enhanced activity of enzymatic antioxidants such as catalase (P < 0.01) and SOD (P < 0.05). Conclusion: These observations suggest the neuroprotective and antioxidant activity of F. limonia and Vitamin E on ischemia reperfusion induced brain injury and may require further evaluation. PMID:25538333

  6. Neuroprotective potential of Indigofera oblongifolia leaf methanolic extract against lead acetate-induced neurotoxicity

    PubMed Central

    Al-Quraishy, Saleh; Dkhil, Mohamed A.; Ibrahim, Shaimaa R.; Abdel Moneim, Ahmed E.

    2016-01-01

    Lead (Pb) is one of the most common environmental toxicants, exposure to which can cause significant neurotoxicity and an associated decline in brain function. This study investigated the possible neuroprotective role of Indigofera oblongifolia leaf methanolic extract (IOLME) against lead-induced neurotoxicity. Rats were intraperitoneally injected with lead acetate, with or without IOLME (intragastric administration for 5 days), and the neuroprotective effect of IOLME was assessed by measuring the lead concentration, redox status (lipid peroxidation, nitric oxide and glutathione), enzymatic antioxidant activities (superoxide dismutase, catalase, glutathione peroxidase and reductase), PCR assays of apoptosis markers (Bax and Bcl-2) and histopathology of the brain. The increases in the lipid peroxidation, nitric oxide, and apoptosis, the decreases in the glutathione level and the activity of antioxidant enzymes, and the altered histology of the brain induced by lead acetate were mitigated in the brain of rats pre-treated with IOLME. These findings indicate that IOLME has beneficial effects and it mitigates lead acetate-induced neurotoxicity via its antioxidant and anti-apoptotic activities. PMID:28123424

  7. Neuroprotective effect of hydroxysafflor yellow A on 6-hydroxydopamine-induced Parkinson's disease in rats.

    PubMed

    Han, Bing; Hu, Jia; Shen, Jingyu; Gao, Yonglin; Lu, Yan; Wang, Tian

    2013-08-15

    Parkinson's disease (PD) is a progressive neurodegenerative disorder affecting predominantly the dopaminergic mesotelencephalic system. Enormous progress has been made in the treatment of PD. Our previous study has shown that hydroxysafflor yellow A (HSYA) could attenuate the neurotoxicity induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in mice. In the present work, we examined whether HSYA had the neuroprotective effect on dopaminergic neurons of substantia nigra in a rat model of PD. Adult Sprague-Dawley rats were unilaterally injected with 6-hydroxydopamine (6-OHDA) into the medial forebrain bundle. The PD rats were treated with HSYA (2 or 8 mg/kg) via caudal vein injection daily for 4 weeks. Rotational tests showed that HSYA significantly attenuated apomorphine-induced turns in 6-OHDA-induced PD rats. HSYA treatment resulted in a significant protection against the loss of tyrosine hydroxylase-positive cells. Our data showed that HSYA also increased the levels of dopamine and its metabolites, glial cell line-derived neurotrophic factor and brain-derived neurotrophic factor in striatum of PD rats. In conclusion, these results supported a role for HSYA in preserving dopamine neuron integrity and motor function in a rodent model of PD, and implied a potential neuroprotective role for HSYA in this disease.

  8. Neuroprotective activity of Stereospermum suaveolens DC against 6-OHDA induced Parkinson's disease model.

    PubMed

    Shalavadi, M H; Chandrashekhar, V M; Avinash, S P; Sowmya, C; Ramkishan, A

    2012-01-01

    To evaluate the neuroprotective effect of Stereospermum suaveolens DC on 6-hydroxy dopamine induced Parkinson's disease model. The study was conducted on Sprague-Dawley rats where parkinson's disease was induced by producing the striatal 6-hydroxy dopamine lesions. The test animals received methanolic extract of Stereospermum suaveolens at dose of 125, 250 and 500 mg/kg for 42 days. Behavioral assessment, spontaneous locomotor activity and muscular coordination were studied. Antioxidant levels, striatal infraction area were assessed and histopathological studies were carried out. The Stereospermum suaveolens DC methanolic extract showed significant dose dependent increase in behavioral activity, improved muscular coordination. Significant reduction of lipid peroxidation (LPO), increased antioxidant enzymes like superoxide dismutase (SOD), catalase (CAT) and non-enzymatic activity of glutathione (GSH) and total thiol levels in extract treated groups was observed in test groups as compared to control group. Striatal infarction area was significantly reduced in extract treated groups as compared to control group. The methanolic extract of Stereospermum suaveolens DC showed neuroprotective activity against 6-hydroxy dopamine induced Parkinson's disease in rats.

  9. Neuroprotective effects of polygalacic acid on scopolamine-induced memory deficits in mice.

    PubMed

    Guo, Changrun; Shen, Jinyang; Meng, Zhaoqing; Yang, Xiaolin; Li, Fei

    2016-02-15

    Polygala tenuifolia Willd is a Traditional Chinese Medicine used for the treatment of learning and memory deficits. Triterpenoid saponins, the main bioactive compounds of Polygala tenuifolia Willd, are easily hydrolyzed to polygalacic acid (PA). The present study was undertaken to investigate the neuroprotective effects of PA on scopolamine-induced cognitive dysfunction and to elucidate its underlying mechanisms of action. PA (3, 6, and 12 mg/kg) was administered orally to mice for fourteen days, and scopolamine (1 mg/kg) was injected intraperitoneally for fourteen days to induce memory impairment. Memory-related behaviors were evaluated using the Morris water maze. Cholinergic and neuroinflammatory activities were measured in brain tissue. Superoxide dismutase activities, malondialdehyde and reduced glutathione contents were also measured in the brains. Treatment with scopolamine significantly increased the escape latency time, decreased the number of crossings, and shortened the time spent in the target quadrant, while PA reversed these scopolamine-induced effects. PA significantly improved cholinergic system reactivity, as indicated by decreased acetylcholinesterase (AChE) activity, increased choline acetyltransferase (ChAT) activity, and elevated levels of acetylcholine (ACh) in the hippocampus and frontal cortex. PA also significantly ameliorated neuroinflammation and oxidative stress in mice. These results suggest that PA might exert a significant neuroprotective effect on cognitive impairment, driven in part by the modulation of cholinergic activity and neuroinflammation. Copyright © 2015 Elsevier GmbH. All rights reserved.

  10. Neuroprotective effects of madecassoside in early stage of Parkinson's disease induced by MPTP in rats.

    PubMed

    Xu, Chang-Liang; Qu, Rong; Zhang, Jin; Li, Lu-Fan; Ma, Shi-Ping

    2013-10-01

    In this study, we investigated the neuroprotective effects of madecassoside, isolated from the Chinese medicinal herb Centella asiatica, in the rat model of early phase of parkinsonism. During intragastric administrations of madecassoside for 7 days, the rats were injected with MPTP on the 7th day. And for the following 14 days, madecassoside were also administered. On the 14th day, the behavioral tests were assessed after 1h of administration. And then, the rats were sacrificed, substantia nigra and striatum were dissected. The content of DA, MDA, GSH, and Bcl-2/Bax gene expression levels and BDNF protein level was determined. Treatment with madecassoside was found to improve locomotor dysfunction and to protect dopaminergic neuron by antagonizing MPTP induced neurotoxicity. Madecassoside significantly attenuated the MPTP-induced reduction of dopamine in the striatum. The MDA contents were significantly decreased while the GSH levels, Bcl-2/Bax ratio and protein expression of BDNF were significantly increased in madecassoside treated groups. These results indicated that madecassoside was effective in recovering MPTP-induced early signs of parkinsonism via its neuroprotective effects including reversing the depletion of DA, antioxidant activity, increasing ratio of Bcl-2/Bax, increasing protein expression of BDNF.

  11. Neuroprotective Properties of Melissa Officinalis L. Extract Against Ecstasy-Induced Neurotoxicity

    PubMed Central

    Hassanzadeh, Gholamreza; Pasbakhsh, Parichehr; Akbari, Mohammad; Shokri, Saeed; Ghahremani, Mohammadhosein; Amin, Gholamreza; Kashani, Iraj; Azami Tameh, Abolfazl

    2011-01-01

    Objective: The aim of the present study was to investigate the neuroprotective effects of Melissa officinalis, a major antioxidant plant, against neuron toxicity in hippocampal primary culture induced by 3,4-methylenedioxymethamphetamine (MDMA) or ecstasy, one of the most abused drugs, which causes neurotoxicity. Materials and Methods: 3-(4,5-dimethyl-2 thiazoyl)-2,5-diphenyl-tetrazolium bromide (MTT) assay was used to assess mitochondrial activity, reflecting cell survival. Caspase-3 activity assay and Hoechst / propiedium iodide (PI) staining were done to show apoptotic cell death. Results: A high dose of ecstasy caused profound mitochondrial dysfunction, around 40% less than the control value, and increased apoptotic neuronal death to around 35% more than the control value in hippocampal neuronal culture. Co-treatment with Melissa officinalis significantly reversed these damages to around 15% and 20% respectively of the MDMA alone group, and provided protection against MDMA-induced mitochondrial dysfunction and apoptosis in neurons. Conclusion: Melissa officinalis has revealed neuroprotective effects against apoptosis induced by MDMA in the primary neurons of hippocampal culture, which could be due to its free radical scavenging properties and monoamine oxidase (MAO) inhibitory effects. PMID:23671824

  12. Preconditioning Human Cardiac Stem Cells with an HO-1 Inducer Exerts Beneficial Effects After Cell Transplantation in the Infarcted Murine Heart.

    PubMed

    Cai, Chuanxi; Guo, Yiru; Teng, Lei; Nong, Yibing; Tan, Min; Book, Michael J; Zhu, Xiaoping; Wang, Xiao-Liang; Du, Junjie; Wu, Wen-Jian; Xie, Wei; Hong, Kyung U; Li, Qianhong; Bolli, Roberto

    2015-12-01

    The regenerative potential of c-kit(+) cardiac stem cells (CSCs) is severely limited by the poor survival of cells after transplantation in the infarcted heart. We have previously demonstrated that preconditioning human CSCs (hCSCs) with the heme oxygenase-1 inducer, cobalt protoporphyrin (CoPP), has significant cytoprotective effects in vitro. Here, we examined whether preconditioning hCSCs with CoPP enhances CSC survival and improves cardiac function after transplantation in a model of myocardial infarction induced by a 45-minute coronary occlusion and 35-day reperfusion in immunodeficient mice. At 30 minutes of reperfusion, CoPP-preconditioned hCSCs(GFP+), hCSCs(GFP+), or medium were injected into the border zone. Quantitative analysis with real-time qPCR for the expression of the human-specific gene HLA revealed that the number of survived hCSCs was significantly greater in the preconditioned-hCSC group at 24 hours and 7 and 35 days compared with the hCSC group. Coimmunostaining of tissue sections for both green fluorescent protein (GFP) and human nuclear antigen further confirmed greater hCSC numbers at 35 days in the preconditioned-hCSC group. At 35 days, compared with the hCSC group, the preconditioned-hCSC group exhibited increased positive and negative left ventricular (LV) dP/dt, end-systolic elastance, and anterior wall/apical strain rate (although ejection fraction was similar), reduced LV remodeling, and increased proliferation of transplanted cells and of cells apparently committed to cardiac lineage. In conclusion, CoPP-preconditioning of hCSCs enhances their survival and/or proliferation, promotes greater proliferation of cells expressing cardiac markers, and results in greater improvement in LV remodeling and in indices of cardiac function after infarction. © 2015 The Authors STEM CELLS published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  13. Neuroprotective effects of butterbur and rough aster against kainic Acid-induced oxidative stress in mice.

    PubMed

    Oh, Sang Hee; Sok, Dai-Eun; Kim, Mee Ree

    2005-01-01

    The separate and combined neuroprotective effects of rough aster (Aster scaber) and butterbur (Petasite japonicus) extracts against oxidative damage in the brain of mice challenged with kainic acid were examined by comparing behavioral changes and biochemical parameters of oxidative stress. Rough aster butanol extract (400 mg/kg) and/or butterbur butanol extract (150 or 400 mg/kg) were administered to male ICR mice, 6-8 weeks old, through a gavage for 4 days consecutively, and on day 4, kainic acid (50 mg/kg) was administered intraperitoneally. Compared with the vehicle-treated control, no significant changes in body and brain weight were observed in mice administered rough aster or butterbur butanol extract. Administration of kainic acid only, causing a lethality of approximately 54%, resulted in a significant decrease of total glutathione level and increase of thiobarbituric acid-reactive substances (TBARS) value in brain tissue. The administration of butterbur or rough aster extract (400 mg/kg) decreased the lethality (50%) of kainic acid to 25%, alleviated the behavioral signs of neurotoxicity, restored the cytosolic glutathione level of brain homogenate to approximately 80% (P < .05), and reduced kainic acid-induced increases in TBARS values. In contrast to no significant neuroprotection by butterbur extract at a low dose (150 mg/kg), the combination of rough aster extract and butterbur extract reduced the lethality to 12.5%. Moreover, the combination delayed the onset time of behavioral signs by twofold, and significantly preserved the level of cytosolic glutathione peroxidase and glutathione reductase activities. However, the other biochemical parameters were not altered significantly by the combination. Thus, the combination of two vegetable extracts significantly increased the neuroprotective action against kainic acid-induced neurotoxicity. Based on these findings, the combination of butterbur extract and rough aster extract contains a functional agent or

  14. Preconditioning mesenchymal stem cells with the mood stabilizers lithium and valproic acid enhances therapeutic efficacy in a mouse model of Huntington's disease.

    PubMed

    Linares, Gabriel R; Chiu, Chi-Tso; Scheuing, Lisa; Leng, Yan; Liao, Hsiao-Mei; Maric, Dragan; Chuang, De-Maw

    2016-07-01

    Huntington's disease (HD) is a fatal neurodegenerative disorder caused by CAG repeat expansions in the huntingtin gene. Although, stem cell-based therapy has emerged as a potential treatment for neurodegenerative diseases, limitations remain, including optimizing delivery to the brain and donor cell loss after transplantation. One strategy to boost cell survival and efficacy is to precondition cells before transplantation. Because the neuroprotective actions of the mood stabilizers lithium and valproic acid (VPA) induce multiple pro-survival signaling pathways, we hypothesized that preconditioning bone marrow-derived mesenchymal stem cells (MSCs) with lithium and VPA prior to intranasal delivery to the brain would enhance their therapeutic efficacy, and thereby facilitate functional recovery in N171-82Q HD transgenic mice. MSCs were treated in the presence or absence of combined lithium and VPA, and were then delivered by brain-targeted single intranasal administration to eight-week old HD mice. Histological analysis confirmed the presence of MSCs in the brain. Open-field test revealed that ambulatory distance and mean velocity were significantly improved in HD mice that received preconditioned MSCs, compared to HD vehicle-control and HD mice transplanted with non-preconditioned MSCs. Greater benefits on motor function were observed in HD mice given preconditioned MSCs, while HD mice treated with non-preconditioned MSCs showed no functional benefits. Moreover, preconditioned MSCs reduced striatal neuronal loss and huntingtin aggregates in HD mice. Gene expression profiling of preconditioned MSCs revealed a robust increase in expression of genes involved in trophic effects, antioxidant, anti-apoptosis, cytokine/chemokine receptor, migration, mitochondrial energy metabolism, and stress response signaling pathways. Consistent with this finding, preconditioned MSCs demonstrated increased survival after transplantation into the brain compared to non-preconditioned cells

  15. Estrogen Receptor (ER)-α36 Is Involved in Estrogen- and Tamoxifen-Induced Neuroprotective Effects in Ischemic Stroke Models

    PubMed Central

    Fang, Chen; Ji, Xiaofei; Liang, Xiaofeng; Liu, Yang; Han, Chao; Huang, Liang; Zhang, Qiqi; Li, Hongyan; Zhang, Yejun; Liu, Jinqiu

    2015-01-01

    The neuroprotection by estrogen (E2) and tamoxifen is well documented in experimental stroke models; however, the exact mechanism is unclear. A membrane-based estrogen receptor, ER-α36, has been identified. Postmenopausal-levels of E2 act through ER-α36 to induce osteoclast apoptosis due to a prolonged activation of the mitogen-activated protein kinase (MAPK)/extracellular signal-related kinase (ERK) signaling. We hypothesized that ER-α36 may play a role in the neuroprotective activities of estrogen and tamoxifen. Here, we studied ER-α36 expression in the brain, as well as its neuroprotective effects against oxygen and glucose deprivation (OGD) in PC12 cells. We found that ER-α36 was expressed in both rat and human brain. In addition, OGD-induced cell death was prevented by l nmol/L 17β-estradiol (E2β). E2β activates the MAPK/ERK signaling pathway in PC12 cells under basal and OGD conditions by interacting with ER-α36 and also induces ER-α36 expression. Low-dose of tamoxifen up-regulated ER-α36 expression and enhanced neuronal survival in an ovariectomized ischemic stroke model. Furthermore, low-dose of tamoxifen enhanced neuroprotective effects by modulating activates or suppress ER-α36. Our results thus demonstrated that ER-α36 is involved in neuroprotective activities mediated by both estrogen and tamoxifen. PMID:26484775

  16. Estrogen Receptor (ER)-α36 Is Involved in Estrogen- and Tamoxifen-Induced Neuroprotective Effects in Ischemic Stroke Models.

    PubMed

    Zou, Wei; Fang, Chen; Ji, Xiaofei; Liang, Xiaofeng; Liu, Yang; Han, Chao; Huang, Liang; Zhang, Qiqi; Li, Hongyan; Zhang, Yejun; Liu, Jinqiu; Liu, Jing

    2015-01-01

    The neuroprotection by estrogen (E2) and tamoxifen is well documented in experimental stroke models; however, the exact mechanism is unclear. A membrane-based estrogen receptor, ER-α36, has been identified. Postmenopausal-levels of E2 act through ER-α36 to induce osteoclast apoptosis due to a prolonged activation of the mitogen-activated protein kinase (MAPK)/extracellular signal-related kinase (ERK) signaling. We hypothesized that ER-α36 may play a role in the neuroprotective activities of estrogen and tamoxifen. Here, we studied ER-α36 expression in the brain, as well as its neuroprotective effects against oxygen and glucose deprivation (OGD) in PC12 cells. We found that ER-α36 was expressed in both rat and human brain. In addition, OGD-induced cell death was prevented by l nmol/L 17β-estradiol (E2β). E2β activates the MAPK/ERK signaling pathway in PC12 cells under basal and OGD conditions by interacting with ER-α36 and also induces ER-α36 expression. Low-dose of tamoxifen up-regulated ER-α36 expression and enhanced neuronal survival in an ovariectomized ischemic stroke model. Furthermore, low-dose of tamoxifen enhanced neuroprotective effects by modulating activates or suppress ER-α36. Our results thus demonstrated that ER-α36 is involved in neuroprotective activities mediated by both estrogen and tamoxifen.

  17. Neuroprotective effect of curcumin in arsenic-induced neurotoxicity in rats.

    PubMed

    Yadav, Rajesh S; Shukla, Rajendra K; Sankhwar, Madhu Lata; Patel, Devendra K; Ansari, Reyaz W; Pant, Aditya B; Islam, Fakhrul; Khanna, Vinay K

    2010-09-01

    Our recent studies have shown that arsenic-induced neurobehavioral toxicity is protected by curcumin by modulating oxidative stress and dopaminergic functions in rats. In addition, the neuroprotective effect of curcumin has been investigated on arsenic-induced alterations in biogenic amines, their metabolites and nitric oxide (NO), which play an important role in neurotransmission process. Decrease in the levels of dopamine (DA, 28%), norepinephrine (NE, 54%), epinephrine (EPN, 46%), serotonin (5-HT, 44%), 3,4-dihydroxyphenylacetic acid (DOPAC, 20%) and homovanillic acid (HVA, 31%) in corpus striatum; DA (51%), NE (22%), EPN (47%), 5-HT (25%), DOPAC (34%) and HVA (41%) in frontal cortex and DA (35%), NE (35%), EPN (29%), 5-HT (54%), DOPAC (37%) and HVA (46%) in hippocampus, observed in arsenic (sodium arsenite, 20 mg/kg body weight, p.o., 28 days) treated rats exhibited a trend of recovery in rats simultaneously treated with arsenic and curcumin (100 mg/kg body weight, p.o., 28 days). Increased levels of NO in corpus striatum (2.4-fold), frontal cortex (6.1-fold) and hippocampus (6.2-fold) in arsenic-treated rats were found decreased in rats simultaneously treated with arsenic and curcumin. It is evident that curcumin modulates levels of brain biogenic amines and NO in arsenic-exposed rats and these results further strengthen its neuroprotective efficacy. Copyright © 2010 Elsevier Inc. All rights reserved.

  18. Low Doses of Camptothecin Induced Hormetic and Neuroprotective Effects in PC12 Cells

    PubMed Central

    Zhang, Chao; Chen, Shenghui; Bao, Jiaolin; Zhang, Yulin; Huang, Borong; Jia, Xuejing; Chen, Meiwan; Wan, Jian-Bo; Su, Huanxing; Wang, Yitao

    2015-01-01

    Hormetic response is an adaptive mechanism for a cell or organism surviving in an unfavorable environment. It has been an intriguing subject of researches covering a broad range of biological and medical disciplines, in which the underlying significance and molecular mechanisms are under intensive investigation. In the present study, we demonstrated that topoisomerase I inhibitor camptothecin (CPT), a potent anticancer agent, induced an obvious hormetic response in rat pheochromocytoma PC12 cells. Camptothecin inhibited PC12 cell growth at relative high doses as generally acknowledged while stimulated the cell growth by as much as 39% at low doses. Moreover, low doses of CPT protected the cells from hydrogen peroxide (H2O2)-induced cell death. Phosphoinositide 3-kinase (PI3K)/Akt and nuclear factor-E2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathways were reported playing pivotal roles in protecting cells from oxidative stress. We observed that these 2 pathways were upregulated by low doses of CPT, as evidenced by increased levels of phosphorylated PI3K, phosphorylated Akt, phosphorylated mammalian target of rapamycin, Nrf2, and HO-1; and abolishment of the growth-promoting and neuroprotective effects of CPT by LY294002, a PI3K inhibitor. These results suggest that the hormetic and neuroprotective effects of CPT at low doses on PC12 cells were attributable, at least partially, to upregulated PI3K/Akt and Nrf2/HO-1 pathways. PMID:26674066

  19. Neuroprotective Effects of the Triterpenoid, CDDO Methyl Amide, a Potent Inducer of Nrf2-Mediated Transcription

    PubMed Central

    Yang, Lichuan; Calingasan, Noel Y.; Thomas, Bobby; Chaturvedi, Rajnish K.; Kiaei, Mahmoud; Wille, Elizabeth J.; Liby, Karen T.; Williams, Charlotte; Royce, Darlene; Risingsong, Renee; Musiek, Eric S.; Morrow, Jason D.; Sporn, Michael; Beal, M. Flint

    2009-01-01

    The NF-E2-related factor-2 (Nrf2)/antioxidant response element (ARE) signaling pathway regulates phase 2 detoxification genes, including a variety of antioxidative enzymes. We tested neuroprotective effects of the synthetic triterpenoid CDDO-MA, a potent activator of the Nrf2/ARE signaling. CDDO-MA treatment of neuroblastoma SH-SY5Y cells resulted in Nrf2 upregulation and translocation from cytosol to nucleus and subsequent activation of ARE pathway genes. CDDO-MA blocked t-butylhydroperoxide-induced production of reactive oxygen species (ROS) by activation of ARE genes only in wild type, but not Nrf2 knockout mouse embryonic fibroblasts. Oral administration of CDDO-MA resulted in significant protection against MPTP-induced nigrostriatal dopaminergic neurodegeneration, pathological alpha-synuclein accumulation and oxidative damage in mice. Additionally, CDDO-MA treatment in rats produced significant rescue against striatal lesions caused by the neurotoxin 3-NP, and associated increases in the oxidative damage markers malondialdehyde, F2-Isoprostanes, 8-hydroxy-2-deoxyguanosine, 3-nitrotyrosine, and impaired glutathione homeostasis. Our results indicate that the CDDO-MA renders its neuroprotective effects through its potent activation of the Nrf2/ARE pathway, and suggest that triterpenoids may be beneficial for the treatment of neurodegenerative diseases like Parkinson's disease and Huntington's disease. PMID:19484125

  20. Extracellular signal-regulated kinase involved in NGF/VEGF-induced neuroprotective effect.

    PubMed

    Yang, Ji-Ping; Liu, Xin-Feng; Liu, Huai-Jun; Xu, Ge-Lin; Ma, Yu-Ping

    2008-03-28

    Compelling evidence has shown that extracellular signal-regulated kinase (ERK) is widely expressed in many tissues, including the brain. In the present work, we investigated the temporospatial alterations of ERK1 immunoreactivity in hippocampus and perifocal cortex, and the expression involved in NGF/VEGF-induced neuroprotective effect. We demonstrated that ERK1 expression was first increased in hippocampal CA3/DG 1 h after reperfusion, then it was also increased 6 h after reperfusion in other brain regions, with a peak at day 1-3, and then gradually decreased to basal level at day 14. The expression of caspase-3 was strongly increased 1 h after reperfusion, with peak demonstrated at 3d. NGF/VEGF significantly inhibited the expression of ERK1 and caspase-3. These results suggest that ERK1 signaling pathway may be involved in neuronal cell death and NGF/VEGF-induced neuroprotective effect and there appeared an association between ERK and caspase-3. Inhibition of the ERK signaling pathway might therefore provide an efficient way to prevent neuronal cell death after ischemic cerebral injuries.

  1. Neuroprotective effect of yokukansan against cytotoxicity induced by corticosterone on mouse hippocampal neurons.

    PubMed

    Nakatani, Yoshihiko; Tsuji, Minoru; Amano, Taku; Miyagawa, Kazuya; Miyagishi, Hiroko; Saito, Atsumi; Imai, Taro; Takeda, Kotaro; Ishii, Daisuke; Takeda, Hiroshi

    2014-09-25

    Yokukansan, a traditional Japanese herbal medicine, has been used for the management of neurodegenerative disorders and for the treatment of neurosis, insomnia, and behavioral and psychological symptoms of dementia. Recently, several studies have shown that yokukansan has a neuroprotective effect. The aim of this study was to examine the neuroprotective effect of yokukansan on hippocampal neurons from embryonic mouse brain against the effects of corticosterone, which is considered to be a stress hormone and to be cytotoxic toward neurons. The cell survival rates were measured by the WST-8 assay and LDH assay. Twenty-four hours after treatment with corticosterone, cell numbers were significantly decreased compared with the control or treatment with vehicle in a dose-dependent manner. When cells were treated with 30 μM corticosterone, the decrease in the number of cells was significantly recovered by treatment with yokukansan (100-1,000 μg/ml) in a dose-dependent manner. However, yokukansan did not suppress the decrease in cell numbers that was induced by treatment with 100 μM corticosterone. In the LDH assay, treatment with yokukansan at a high concentration (500-1,000 μg/ml) suppressed the LDH concentration induced by treatment with both 30 μM and 100 μM corticosterone compared to treatment with corticosterone alone, respectively. These results suggest that yokukansan protects against the cytotoxic effect of a low concentration of corticosterone on hippocampal neurons. Copyright © 2014 Elsevier GmbH. All rights reserved.

  2. Resveratrol preconditioning protects against cerebral ischemic injury via Nrf2

    PubMed Central

    Narayanan, Srinivasan V.; Dave, Kunjan R.; Saul, Isa; Perez-Pinzon, Miguel A.

    2015-01-01

    Background and Purpose Nuclear erythroid 2 related factor 2 (Nrf2) is an astrocyte-enriched transcription factor that has previously been shown to upregulate cellular antioxidant systems in response to ischemia. While resveratrol preconditioning (RPC) has emerged as a potential neuroprotective therapy, the involvement of Nrf2 in RPC-induced neuroprotection and mitochondrial reactive oxygen species (ROS) production following cerebral ischemia remains unclear. The goal of our study was to study the contribution of Nrf2 to RPC and its effects on mitochondrial function. Methods We used rodent astrocyte cultures and an in vivo stroke model with RPC. An Nrf2 DNA-binding ELISA and protein analysis via Western blotting of downstream Nrf2 targets were performed to determine RPC-induced activation of Nrf2 in rat and mouse astrocytes. Following RPC, mitochondrial function was determined by measuring ROS production and mitochondrial respiration in both wild-type (WT) and Nrf2−/− mice. Infarct volume was measured to determine neuroprotection, while protein levels were measured by immunoblotting. Results We report that Nrf2 is activated by RPC in rodent astrocyte cultures, and that loss of Nrf2 reduced RPC-mediated neuroprotection in a mouse model of focal cerebral ischemia. In addition, we observed that wild-type and Nrf2−/− cortical mitochondria exhibited increased uncoupling and ROS production following RPC treatments, Finally, Nrf2−/− astrocytes exhibited decreased mitochondrial antioxidant expression and were unable to upregulate cellular antioxidants following RPC treatment. Conclusion Nrf2 contributes to RPC-induced neuroprotection through maintaining mitochondrial coupling and antioxidant protein expression. PMID:25908459

  3. Neuroprotective Effects of Eexenatide in a Rotenone-Induced Rat Model of Parkinson's Disease.

    PubMed

    Aksoy, Dürdane; Solmaz, Volkan; Çavuşoğlu, Türker; Meral, Ayfer; Ateş, Utku; Erbaş, Oytun

    2017-09-01

    Several studies suggest an association between Parkinson's disease (PD) and type 2 diabetes mellitus; these 2 diseases are both known to affect the common molecular pathways. As a synthetic agonist for the glucagon-like peptide 1 receptor, exenatide has been evaluated as a neuroprotective agent in multiple animal models. Rotenone models of PD have great potential for the investigation of PD pathology and motor and nonmotor symptoms, as well as the role of gene-environment interactions in PD causation and pathogenesis. Therefore, in this study, the neurochemical, behavioral and histologic effects of exenatide on a rotenone-induced rat model of PD were examined. Eighteen adult male rats were randomly divided into the following 3 groups (n = 6): 1 group received stereotaxical infusion of dimethyl sulfoxide (vehicle, group 1) and the others received stereotaxical infusion of rotenone (groups 2 and 3). Apomorphine-induced rotation test was applied to the rats after 10 days. Thereafter, group 2 was administered isotonic saline, whereas group 3 was administered exenatide for 28 days. Malondialdehyde and tumor necrosis factor alpha levels increased in the rats with PD induced by rotenone, whereas malondialdehyde and tumor necrosis factor alpha levels markedly decreased in the rats treated with exenatide. The apomorphine-induced rotation test scores of exenatide-treated rats were determined to be lower compared with the untreated group. Additionally, treatment with exenatide significantly reduced the loss of dopaminergic neurons in striatum. These results have shown that exenatide has neuroprotective, anti-inflammatory and antioxidant effects in a rotenone-induced rat model of PD. Copyright © 2017 Southern Society for Clinical Investigation. Published by Elsevier Inc. All rights reserved.

  4. Neuroprotective Role of Intermittent Hypobaric Hypoxia in Unpredictable Chronic Mild Stress Induced Depression in Rats

    PubMed Central

    Deep, Satayanarayan; Prasad, Dipti; Singh, Shashi Bala; Khan, Nilofar

    2016-01-01

    Hypoxic exposure results in several pathophysiological conditions associated with nervous system, these include acute and chronic mountain sickness, loss of memory, and high altitude cerebral edema. Previous reports have also suggested the role of hypoxia in pathogenesis of depression and related psychological conditions. On the other hand, sub lethal intermittent hypoxic exposure induces protection against future lethal hypoxia and may have beneficial effect. Therefore, the present study was designed to explore the neuroprotective role of intermittent hypobaric hypoxia (IHH) in Unpredictable Chronic Mild Stress (UCMS) induced depression like behaviour in rats. The IHH refers to the periodic exposures to hypoxic conditions interrupted by the normoxic or lesser hypoxic conditions. The current study examines the effect of IHH against UCMS induced depression, using elevated plus maze (EPM), open field test (OFT), force swim test (FST), as behavioural paradigm and related histological and molecular approaches. The data indicated the UCMS induced depression like behaviour as evident from decreased exploration activity in OFT with increased anxiety levels in EPM, and increased immobility time in the FST; whereas on providing the IHH (5000m altitude, 4hrs/day for two weeks) these behavioural changes were ameliorated. The morphological and molecular studies also validated the neuroprotective effect of IHH against UCMS induced neuronal loss and decreased neurogenesis. Here, we also explored the role of Brain-Derived Neurotrophic Factor (BDNF) in anticipatory action of IHH against detrimental effect of UCMS as upon blocking of BDNF-TrkB signalling the beneficial effect of IHH was nullified. Taken together, the findings of our study demonstrate that the intermittent hypoxia has a therapeutic potential similar to an antidepressant in animal model of depression and could be developed as a preventive therapeutic option against this pathophysiological state. PMID:26901349

  5. Neuroprotective Role of Intermittent Hypobaric Hypoxia in Unpredictable Chronic Mild Stress Induced Depression in Rats.

    PubMed

    Kushwah, Neetu; Jain, Vishal; Deep, Satayanarayan; Prasad, Dipti; Singh, Shashi Bala; Khan, Nilofar

    2016-01-01

    Hypoxic exposure results in several pathophysiological conditions associated with nervous system, these include acute and chronic mountain sickness, loss of memory, and high altitude cerebral edema. Previous reports have also suggested the role of hypoxia in pathogenesis of depression and related psychological conditions. On the other hand, sub lethal intermittent hypoxic exposure induces protection against future lethal hypoxia and may have beneficial effect. Therefore, the present study was designed to explore the neuroprotective role of intermittent hypobaric hypoxia (IHH) in Unpredictable Chronic Mild Stress (UCMS) induced depression like behaviour in rats. The IHH refers to the periodic exposures to hypoxic conditions interrupted by the normoxic or lesser hypoxic conditions. The current study examines the effect of IHH against UCMS induced depression, using elevated plus maze (EPM), open field test (OFT), force swim test (FST), as behavioural paradigm and related histological and molecular approaches. The data indicated the UCMS induced depression like behaviour as evident from decreased exploration activity in OFT with increased anxiety levels in EPM, and increased immobility time in the FST; whereas on providing the IHH (5000m altitude, 4hrs/day for two weeks) these behavioural changes were ameliorated. The morphological and molecular studies also validated the neuroprotective effect of IHH against UCMS induced neuronal loss and decreased neurogenesis. Here, we also explored the role of Brain-Derived Neurotrophic Factor (BDNF) in anticipatory action of IHH against detrimental effect of UCMS as upon blocking of BDNF-TrkB signalling the beneficial effect of IHH was nullified. Taken together, the findings of our study demonstrate that the intermittent hypoxia has a therapeutic potential similar to an antidepressant in animal model of depression and could be developed as a preventive therapeutic option against this pathophysiological state.

  6. Voluntary Exercise Preconditioning Activates Multiple Antiapoptotic Mechanisms and Improves Neurological Recovery after Experimental Traumatic Brain Injury

    PubMed Central

    Zhao, Zaorui; Sabirzhanov, Boris; Wu, Junfang; Faden, Alan I.

    2015-01-01

    Abstract Physical activity can attenuate neuronal loss, reduce neuroinflammation, and facilitate recovery after brain injury. However, little is known about the mechanisms of exercise-induced neuroprotection after traumatic brain injury (TBI) or its modulation of post-traumatic neuronal cell death. Voluntary exercise, using a running wheel, was conducted for 4 weeks immediately preceding (preconditioning) moderate-level controlled cortical impact (CCI), a well-established experimental TBI model in mice. Compared to nonexercised controls, exercise preconditioning (pre-exercise) improved recovery of sensorimotor performance in the beam walk task, as well as cognitive/affective functions in the Morris water maze, novel object recognition, and tail-suspension tests. Further, pre-exercise reduced lesion size, attenuated neuronal loss in the hippocampus, cortex, and thalamus, and decreased microglial activation in the cortex. In addition, exercise preconditioning activated the brain-derived neurotrophic factor pathway before trauma and amplified the injury-dependent increase in heat shock protein 70 expression, thus attenuating key apoptotic pathways. The latter include reduction in CCI-induced up-regulation of proapoptotic B-cell lymphoma 2 (Bcl-2)-homology 3–only Bcl-2 family molecules (Bid, Puma), decreased mitochondria permeabilization with attenuated release of cytochrome c and apoptosis-inducing factor (AIF), reduced AIF translocation to the nucleus, and attenuated caspase activation. Given these neuroprotective actions, voluntary physical exercise may serve to limit the consequences of TBI. PMID:25419789

  7. Voluntary Exercise Preconditioning Activates Multiple Antiapoptotic Mechanisms and Improves Neurological Recovery after Experimental Traumatic Brain Injury.

    PubMed

    Zhao, Zaorui; Sabirzhanov, Boris; Wu, Junfang; Faden, Alan I; Stoica, Bogdan A

    2015-09-01

    Physical activity can attenuate neuronal loss, reduce neuroinflammation, and facilitate recovery after brain injury. However, little is known about the mechanisms of exercise-induced neuroprotection after traumatic brain injury (TBI) or its modulation of post-traumatic neuronal cell death. Voluntary exercise, using a running wheel, was conducted for 4 weeks immediately preceding (preconditioning) moderate-level controlled cortical impact (CCI), a well-established experimental TBI model in mice. Compared to nonexercised controls, exercise preconditioning (pre-exercise) improved recovery of sensorimotor performance in the beam walk task, as well as cognitive/affective functions in the Morris water maze, novel object recognition, and tail-suspension tests. Further, pre-exercise reduced lesion size, attenuated neuronal loss in the hippocampus, cortex, and thalamus, and decreased microglial activation in the cortex. In addition, exercise preconditioning activated the brain-derived neurotrophic factor pathway before trauma and amplified the injury-dependent increase in heat shock protein 70 expression, thus attenuating key apoptotic pathways. The latter include reduction in CCI-induced up-regulation of proapoptotic B-cell lymphoma 2 (Bcl-2)-homology 3-only Bcl-2 family molecules (Bid, Puma), decreased mitochondria permeabilization with attenuated release of cytochrome c and apoptosis-inducing factor (AIF), reduced AIF translocation to the nucleus, and attenuated caspase activation. Given these neuroprotective actions, voluntary physical exercise may serve to limit the consequences of TBI.

  8. Transcriptome profiling of hippocampal CA1 after early-life seizure-induced preconditioning may elucidate new genetic therapies for epilepsy.

    PubMed

    Friedman, L K; Mancuso, J; Patel, A; Kudur, V; Leheste, J R; Iacobas, S; Botta, J; Iacobas, D A; Spray, D C

    2013-07-01

    Injury of the CA1 subregion induced by a single injection of kainic acid (1 × KA) in juvenile animals (P20) is attenuated in animals with two prior sustained neonatal seizures on P6 and P9. To identify gene candidates involved in the spatially protective effects produced by early-life conditioning seizures we profiled and compared the transcriptomes of CA1 subregions from control, 1 × KA- and 3 × KA-treated animals. More genes were regulated following 3 × KA (9.6%) than after 1 × KA (7.1%). Following 1 × KA, genes supporting oxidative stress, growth, development, inflammation and neurotransmission were upregulated (e.g. Cacng1, Nadsyn1, Kcng1, Aven, S100a4, GFAP, Vim, Hrsp12 and Grik1). After 3 × KA, protective genes were differentially over-expressed [e.g. Cat, Gpx7, Gad1, Hspa12A, Foxn1, adenosine A1 receptor, Ca(2+) adaptor and homeostasis proteins, Cacnb4, Atp2b2, anti-apoptotic Bcl-2 gene members, intracellular trafficking protein, Grasp and suppressor of cytokine signaling (Socs3)]. Distinct anti-inflammatory interleukins (ILs) not observed in adult tissues [e.g. IL-6 transducer, IL-23 and IL-33 or their receptors (IL-F2 )] were also over-expressed. Several transcripts were validated by real-time polymerase chain reaction (QPCR) and immunohistochemistry. QPCR showed that casp 6 was increased after 1 × KA but reduced after 3 × KA; the pro-inflammatory gene Cox1 was either upregulated or unchanged after 1 × KA but reduced by ~70% after 3 × KA. Enhanced GFAP immunostaining following 1 × KA was selectively attenuated in the CA1 subregion after 3 × KA. The observed differential transcriptional responses may contribute to early-life seizure-induced pre-conditioning and neuroprotection by reducing glutamate receptor-mediated Ca(2+) permeability of the hippocampus and redirecting inflammatory and apoptotic pathways. These changes could lead to new genetic therapies for epilepsy. © 2013 Federation of European Neuroscience

  9. Neuroprotective effect of Aronia melanocarpa extract against glutamate-induced oxidative stress in HT22 cells.

    PubMed

    Lee, Hyeon Yong; Weon, Jin Bae; Ryu, Gahee; Yang, Woo Seung; Kim, Nam Young; Kim, Myong Ki; Ma, Choong Je

    2017-04-11

    Glutamate (an endogenous excitatory neurotransmitter) at high concentrations contributes to the development of neurodegenerative diseases. Aronia melanocarpa (A. melanocarpa) berries contain anthocyanins and have high antioxidant activities. In this study, we evaluated whether A. melanocarpa berries could protect neuronal cells against glutamate-induced oxidative stress. A. melanocarpa berries exerted a protective effect against cytotoxicity in HT22 mouse hippocampal cells by MTT assay. We evaluated oxidative stress parameters including ROS level, intracellular Ca(2+) level, glutathione level and antioxidant enzyme activity in HT22 cells to elucidate the mechanism of its neuroprotective effect. A. melanocarpa berries decreased glutamate-induced death of HT22 cells. In addition, A. melanocarpa berries reduced ROS and intracellular Ca(2+) levels. Glutathione level, antioxidant enzymes, glutathione reductase and glutathione peroxide activities and mitochondrial membrane potential were also increased in HT22 cells. These results suggested that A. melanocarpa berries protected HT22 cells by exerting an antioxidant effect.

  10. Ex vivo and in vivo neuroprotection induced by argon when given after an excitotoxic or ischemic insult.

    PubMed

    David, Hélène N; Haelewyn, Benoît; Degoulet, Mickael; Colomb, Denis G; Risso, Jean-Jacques; Abraini, Jacques H

    2012-01-01

    In vitro studies have well established the neuroprotective action of the noble gas argon. However, only limited data from in vivo models are available, and particularly whether postexcitotoxic or postischemic argon can provide neuroprotection in vivo still remains to be demonstrated. Here, we investigated the possible neuroprotective effect of postexcitotoxic-postischemic argon both ex vivo in acute brain slices subjected to ischemia in the form of oxygen and glucose deprivation (OGD), and in vivo in rats subjected to an intrastriatal injection of N-methyl-D-aspartate (NMDA) or to the occlusion of middle-cerebral artery (MCAO). We show that postexcitotoxic-postischemic argon reduces OGD-induced cell injury in brain slices, and further reduces NMDA-induced brain damage and MCAO-induced cortical brain damage in rats. Contrasting with its beneficial effect at the cortical level, we show that postischemic argon increases MCAO-induced subcortical brain damage and provides no improvement of neurologic outcome as compared to control animals. These results extend previous data on the neuroprotective action of argon. Particularly, taken together with previous in vivo data that have shown that intraischemic argon has neuroprotective action at both the cortical and subcortical level, our findings on postischemic argon suggest that this noble gas could be administered during but not after ischemia, i.e. before but not after reperfusion has occurred, in order to provide cortical neuroprotection and to avoid increasing subcortical brain damage. Also, the effects of argon are discussed as regards to the oxygen-like chemical, pharmacological, and physical properties of argon.

  11. Ex Vivo and In Vivo Neuroprotection Induced by Argon When Given after an Excitotoxic or Ischemic Insult

    PubMed Central

    David, Hélène N.; Haelewyn, Benoît; Degoulet, Mickael; Colomb, Denis G.; Risso, Jean-Jacques; Abraini, Jacques H.

    2012-01-01

    In vitro studies have well established the neuroprotective action of the noble gas argon. However, only limited data from in vivo models are available, and particularly whether postexcitotoxic or postischemic argon can provide neuroprotection in vivo still remains to be demonstrated. Here, we investigated the possible neuroprotective effect of postexcitotoxic-postischemic argon both ex vivo in acute brain slices subjected to ischemia in the form of oxygen and glucose deprivation (OGD), and in vivo in rats subjected to an intrastriatal injection of N-methyl-D-aspartate (NMDA) or to the occlusion of middle-cerebral artery (MCAO). We show that postexcitotoxic-postischemic argon reduces OGD-induced cell injury in brain slices, and further reduces NMDA-induced brain damage and MCAO-induced cortical brain damage in rats. Contrasting with its beneficial effect at the cortical level, we show that postischemic argon increases MCAO-induced subcortical brain damage and provides no improvement of neurologic outcome as compared to control animals. These results extend previous data on the neuroprotective action of argon. Particularly, taken together with previous in vivo data that have shown that intraischemic argon has neuroprotective action at both the cortical and subcortical level, our findings on postischemic argon suggest that this noble gas could be administered during but not after ischemia, i.e. before but not after reperfusion has occurred, in order to provide cortical neuroprotection and to avoid increasing subcortical brain damage. Also, the effects of argon are discussed as regards to the oxygen-like chemical, pharmacological, and physical properties of argon. PMID:22383981

  12. Neuroprotective influence of taurine on fluoride-induced biochemical and behavioral deficits in rats.

    PubMed

    Adedara, Isaac A; Abolaji, Amos O; Idris, Umar F; Olabiyi, Bolanle F; Onibiyo, Esther M; Ojuade, TeminiJesu D; Farombi, Ebenezer O

    2017-01-05

    Epidemiological and experimental studies have demonstrated that excessive exposure to fluoride induced neurodevelopmental toxicity both in humans and animals. Taurine is a free intracellular β-amino acid with antioxidant and neuroprotective properties. The present study investigated the neuroprotective mechanism of taurine by evaluating the biochemical and behavioral characteristics in rats exposed to sodium fluoride (NaF) singly in drinking water at 15 mg/L alone or orally co-administered by gavage with taurine at 100 and 200 mg/kg body weight for 45 consecutive days. Locomotor behavior was assessed using video-tracking software during a 10-min trial in a novel environment while the brain structures namely the hypothalamus, cerebrum and cerebellum of the rats were processed for biochemical determinations. Results showed that taurine administration prevented NaF-induced locomotor and motor deficits namely decrease in total distance travelled, total body rotation, maximum speed, absolute turn angle along with weak forelimb grip, increased incidence of fecal pellets and time of grooming, immobility and negative geotaxis. The taurine mediated enhancement of the exploratory profiles of NaF-exposed rats was supported by track and occupancy plot analyses. Moreover, taurine prevented NaF-induced increase in hydrogen peroxide and lipid peroxidation levels but increased acetylcholinesterase and the antioxidant enzymes activities in the hypothalamus, cerebrum and cerebellum of the rats. Collectively, taurine protected against NaF-induced neurotoxicity via mechanisms involving the restoration of acetylcholinesterase activity and antioxidant status with concomitant inhibition of lipid peroxidation in the brain of rats. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Neuroprotective effect of resveratrol on arsenic trioxide-induced oxidative stress in feline brain.

    PubMed

    Cheng, Y; Xue, J; Jiang, H; Wang, M; Gao, L; Ma, D; Zhang, Z

    2014-07-01

    Arsenic trioxide (As2O3) is a known environmental toxicant and potent chemotherapeutic agent. Significant correlation has been reported between arsenic exposure (including consumption of arsenic-contaminated water and clinical use of As2O3) and dysfunction in the nervous system. In this study, we aimed to elucidate the effect of resveratrol with neuroprotective activities on As2O3-induced oxidative damage and cerebral cortex injury. Twenty-four healthy Chinese Dragon Li cats of either sex were randomly divided into four groups: control (1 ml/kg physiological saline), As2O3 (1 mg/kg), resveratrol (3 mg/kg) and As2O3 (1 mg/kg) + resveratrol (3 mg/kg). As2O3+resveratrol-treated group were given resveratrol (3 mg/kg) 1 h before As2O3 (1 mg/kg) administration. Pretreatment with resveratrol upregulated the activities of antioxidant enzymes and attenuated As2O3-induced increases in reactive oxygen species and malondialdehyde production. In addition, resveratrol attenuated the As2O3-induced reduction in the level of reduced glutathione and the ratio of reduced glutathione to oxidised glutathione, and accumulation of arsenic in the cerebral cortex. These findings support neuroprotective effect of resveratrol on As2O3 toxicity in feline brain and provide a better understanding of the mechanism that resveratrol modulates As2O3-induced oxidative damage and a stronger rational for clinical use of resveratrol to protect brain against the toxicity of arsenic. © The Author(s) 2014.

  14. Minoxidil is a potential neuroprotective drug for paclitaxel-induced peripheral neuropathy

    PubMed Central

    Chen, Yi-Fan; Chen, Li-Hsien; Yeh, Yu-Min; Wu, Pei-Ying; Chen, Yih-Fung; Chang, Lian-Yun; Chang, Jang-Yang; Shen, Meng-Ru

    2017-01-01

    Chemotherapy-induced peripheral neuropathy (CIPN) is a common side effect of cancer treatment. No medication has been shown to be effective in the treatment of CIPN. This study aims to integrate the image-based high-content screening, mouse behavior models and mechanistic cell-based assays to discover potential neuroprotective drugs. Among screened compounds, minoxidil showed the most potent neuroprotective effect against paclitaxel, with regard to neurite outgrowth of dorsal root ganglia (DRG). Minoxidil protected mice from thermal insensitivity and alleviated mechanical allodynia in paclitaxel-treated mice. The ultrastructure and quantified G-ratio of myelin integrity of sciatic nerve tissues supported the observations in mouse behavioral tests. The mechanistic study on DRG neurons suggested that minoxidil suppressed neuroinflammation and remodeled the dysregulation of intracellular calcium homeostasis provoked by paclitaxel. Importantly, minoxidil showed a synergistic anti-tumor effect with paclitaxel both in tumor xenograft models of cervical and breast cancer. Interestingly, the quantitative assays on hair length and hair growth both exhibited that minoxidil significantly improved the hair quality after chemotherapy. Since minoxidil is a drug approved by the Food and Drug Administration (FDA), the safety and biocompatibility are well documented. The immediate next step is to launch an early-stage clinical trial intending to prevent CIPN by minoxidil. PMID:28349969

  15. Minoxidil is a potential neuroprotective drug for paclitaxel-induced peripheral neuropathy.

    PubMed

    Chen, Yi-Fan; Chen, Li-Hsien; Yeh, Yu-Min; Wu, Pei-Ying; Chen, Yih-Fung; Chang, Lian-Yun; Chang, Jang-Yang; Shen, Meng-Ru

    2017-03-28

    Chemotherapy-induced peripheral neuropathy (CIPN) is a common side effect of cancer treatment. No medication has been shown to be effective in the treatment of CIPN. This study aims to integrate the image-based high-content screening, mouse behavior models and mechanistic cell-based assays to discover potential neuroprotective drugs. Among screened compounds, minoxidil showed the most potent neuroprotective effect against paclitaxel, with regard to neurite outgrowth of dorsal root ganglia (DRG). Minoxidil protected mice from thermal insensitivity and alleviated mechanical allodynia in paclitaxel-treated mice. The ultrastructure and quantified G-ratio of myelin integrity of sciatic nerve tissues supported the observations in mouse behavioral tests. The mechanistic study on DRG neurons suggested that minoxidil suppressed neuroinflammation and remodeled the dysregulation of intracellular calcium homeostasis provoked by paclitaxel. Importantly, minoxidil showed a synergistic anti-tumor effect with paclitaxel both in tumor xenograft models of cervical and breast cancer. Interestingly, the quantitative assays on hair length and hair growth both exhibited that minoxidil significantly improved the hair quality after chemotherapy. Since minoxidil is a drug approved by the Food and Drug Administration (FDA), the safety and biocompatibility are well documented. The immediate next step is to launch an early-stage clinical trial intending to prevent CIPN by minoxidil.

  16. Acute hydrogen sulfide-induced neuropathology and neurological sequelae: challenges for translational neuroprotective research.

    PubMed

    Rumbeiha, Wilson; Whitley, Elizabeth; Anantharam, Poojya; Kim, Dong-Suk; Kanthasamy, Arthi

    2016-08-01

    Hydrogen sulfide (H2 S), the gas with the odor of rotten eggs, was formally discovered in 1777, over 239 years ago. For many years, it was considered an environmental pollutant and a health concern only in occupational settings. Recently, however, it was discovered that H2 S is produced endogenously and plays critical physiological roles as a gasotransmitter. Although at low physiological concentrations it is physiologically beneficial, exposure to high concentrations of H2 S is known to cause brain damage, leading to neurodegeneration and long-term neurological sequelae or death. Neurological sequelae include motor, behavioral, and cognitive deficits, which are incapacitating. Currently, there are concerns about accidental or malicious acute mass civilian exposure to H2 S. There is a major unmet need for an ideal neuroprotective treatment, for use in the field, in the event of mass civilian exposure to high H2 S concentrations. This review focuses on the neuropathology of high acute H2 S exposure, knowledge gaps, and the challenges associated with development of effective neuroprotective therapy to counteract H2 S-induced neurodegeneration.

  17. Acute hydrogen sulfide–induced neuropathology and neurological sequelae: challenges for translational neuroprotective research

    PubMed Central

    Whitley, Elizabeth; Anantharam, Poojya; Kim, Dong‐Suk; Kanthasamy, Arthi

    2016-01-01

    Hydrogen sulfide (H2S), the gas with the odor of rotten eggs, was formally discovered in 1777, over 239 years ago. For many years, it was considered an environmental pollutant and a health concern only in occupational settings. Recently, however, it was discovered that H2S is produced endogenously and plays critical physiological roles as a gasotransmitter. Although at low physiological concentrations it is physiologically beneficial, exposure to high concentrations of H2S is known to cause brain damage, leading to neurodegeneration and long‐term neurological sequelae or death. Neurological sequelae include motor, behavioral, and cognitive deficits, which are incapacitating. Currently, there are concerns about accidental or malicious acute mass civilian exposure to H2S. There is a major unmet need for an ideal neuroprotective treatment, for use in the field, in the event of mass civilian exposure to high H2S concentrations. This review focuses on the neuropathology of high acute H2S exposure, knowledge gaps, and the challenges associated with development of effective neuroprotective therapy to counteract H2S‐induced neurodegeneration. PMID:27442775

  18. The tyrosine phosphatase inhibitor orthovanadate mimics NGF-induced neuroprotective signaling in rat hippocampal neurons.

    PubMed

    Gerling, Norbert; Culmsee, Carsten; Klumpp, Susanne; Krieglstein, Josef

    2004-06-01

    Activation of the high affinity neurotrophin receptor tropomyosin-related kinase A (TrkA) by nerve growth factor (NGF) leads to phosphorylation of intracellular tyrosine residues of the receptor with subsequent activation of signaling pathways involved in neuronal survival such as the phosphoinositide-3-kinase (PI3-K)/protein kinase B (PKB/Akt) pathway and the mitogen-activated protein kinase (MAPK) cascade. In the present study, we tested whether inhibition of protein-tyrosine phosphatases (PTP) by orthovanadate could enhance tyrosine phosphorylation of TrkA thereby stimulating NGF-like survival signaling in embryonic hippocampal neurons. We found that the PTP inhibitor orthovanadate (1 microM) enhanced TrkA phosphorylation and protected neurons against staurosporine (STS)-induced apoptosis in a time-and concentration-dependent manner. Inhibition of PTP enhanced TrkA phosphorylation also in the presence of NGF antibodies indicating that NGF binding to TrkA was not required for the effects of orthovanadate. Moreover, orthovanadate enhanced phosphorylation of Akt and the MAPK Erk1/2 suggesting that the signaling pathways involved in the protective effect were similar to those activated by NGF. Accordingly, inhibition of PI3-K by wortmannin and MAPK-kinase (MEK) inhibition by UO126 abolished the neuroprotective effects. In conclusion, the results indicate that orthovanadate mimics the effect of NGF on survival signaling pathways in hippocampal neurons. Thus, PTP inhibition appears to be an appropriate strategy to trigger neuroprotective signaling pathways downstream of neurotrophin receptors.

  19. Neuroprotective effects of dexmedetomidine against hyperoxia-induced injury in the developing rat brain

    PubMed Central

    Endesfelder, Stefanie; Makki, Hanan; von Haefen, Clarissa; Spies, Claudia D.; Bührer, Christoph; Sifringer, Marco

    2017-01-01

    Dexmedetomidine (DEX) is a highly selective agonist of α2-receptors with sedative, anxiolytic, and analgesic properties. Neuroprotective effects of dexmedetomidine have been reported in various brain injury models. In the present study, we investigated the effects of dexmedetomidine on hippocampal neurogenesis, specifically the proliferation capacity and maturation of neurons and neuronal plasticity following the induction of hyperoxia in neonatal rats. Six-day old sex-matched Wistar rats were exposed to 80% oxygen or room air for 24 h and treated with 1, 5 or 10 μg/kg of dexmedetomidine or normal saline. A single pretreatment with DEX attenuated the hyperoxia-induced injury in terms of neurogenesis and plasticity. In detail, both the proliferation capacity (PCNA+ cells) as well as the expression of neuronal markers (Nestin+, PSA-NCAM+, NeuN+ cells) and transcription factors (SOX2, Tbr1/2, Prox1) were significantly reduced under hyperoxia compared to control. Furthermore, regulators of neuronal plasticity (Nrp1, Nrg1, Syp, and Sema3a/f) were also drastically decreased. A single administration of dexmedetomidine prior to oxygen exposure resulted in a significant up-regulation of expression-profiles compared to hyperoxia. Our results suggest that dexmedetomidine may have neuroprotective effects in an acute hyperoxic model of the neonatal rat. PMID:28158247

  20. Longitudinal MRI evaluation of neuroprotective effects of pharmacologically induced hypothermia in experimental ischemic stroke.

    PubMed

    Wang, Silun; Gu, Xiaohuan; Paudyal, Ramesh; Wei, Ling; Dix, Thomas A; Yu, Shan P; Zhang, Xiaodong

    2017-04-01

    Pharmacologically induced hypothermia (PIH) shows promising neuroprotective effects after stroke insult. However, the dynamic evolution of stroke infarct during the hypothermic therapy has not been understood very well. In the present study, MRI was utilized to longitudinally characterize the infarct evolution in a mouse model of ischemic stroke treated by PIH using the neurotensin agonist HPI201. Adult male C57BL/6 mice underwent permanent occlusion of the right middle cerebra artery (MCA). Each animal received a vehicle or HPI201 intraperitoneal injection. The temporal changes of stroke lesion were examined using T2-weighted imaging and diffusion-weighted imaging (DWI) in the acute phase (1-3h) and 24h post stroke. Significantly reduced infarct and edema volumes were observed in PIH treated stroke mice, in agreement with TTC staining findings. Also, the TUNEL staining results indicated apoptotic cells were widely distributed among the ischemic cortex in control group but limited in PIH treated mice. Dramatically reduced growth rate of infarction was seen in PIH treated stroke mice. These results demonstrate HPI201 has strong neuroprotection effects during acute stroke. In particular, MRI with the numerical modelling of temporal infarct evolution could provide a unique means to examine and predict the dynamic response of the PIH treatment on infarct evolution.

  1. HSP70.1 AND -70.3 ARE REQUIRED FOR LATE-PHASE PROTECTION INDUCED BY ISCHEMIC PRECONDITIONING OF MOUSE HEARTS

    EPA Science Inventory

    Heat-Shock Proteins 70.1 and 70.3 Are Required for Late-phase Protection
    Induced by Ischemic Preconditioning of the Mouse Heart
    Craig R. Hampton 1 , Akira Shimamoto 1 , Christine L. Rothnie 1 , Jeaneatte Griscavage-Ennis 1 ,
    Albert Chong 1 , David J. Dix 2 , Edward D. Ve...

  2. HSP70.1 AND -70.3 ARE REQUIRED FOR LATE-PHASE PROTECTION INDUCED BY ISCHEMIC PRECONDITIONING OF MOUSE HEARTS

    EPA Science Inventory

    Heat-Shock Proteins 70.1 and 70.3 Are Required for Late-phase Protection
    Induced by Ischemic Preconditioning of the Mouse Heart
    Craig R. Hampton 1 , Akira Shimamoto 1 , Christine L. Rothnie 1 , Jeaneatte Griscavage-Ennis 1 ,
    Albert Chong 1 , David J. Dix 2 , Edward D. Ve...

  3. Ischemic preconditioning inhibits development of edematous cerulein-induced pancreatitis: Involvement of cyclooxygenases and heat shock protein 70

    PubMed Central

    Warzecha, Zygmunt; Dembinski, Artur; Ceranowicz, Piotr; Konturek, Stanislaw J; Dembinski, Marcin; Pawlik, Wieslaw W; Tomaszewska, Romana; Stachura, Jerzy; Kusnierz-Cabala, Beata; Naskalski, Jerzy W; Konturek, Peter C

    2005-01-01

    AIM: To determine whether ischemic preconditioning (IP) affects the development of edematous cerulein-induced pancreatitis and to assess the role of cyclooxygenase-1 (COX-1), COX-2, and heat shock protein 70 (HSP 70) in this process. METHODS: In male Wistar rats, IP was performed by clamping of celiac artery (twice for 5 min at 5-min intervals). Thirty minutes after IP or sham operation, acute pancreatitis was induced by cerulein. Activity of COX-1 or COX-2 was inhibited by resveratrol or rofecoxib, respectively (10 mg/kg). RESULTS: IP significantly reduced pancreatic damage in cerulein-induced pancreatitis as demonstrated by the improvement of pancreas histology, reduction in serum lipase and poly-C ribonuclease activity, and serum concentration of pro-inflammatory interleukin (IL)-1β. Also, IP attenuated the pancreatitis-evoked fall in pancreatic blood flow and pancreatic DNA synthesis. Serum level of anti-inflammatory IL-10 was not affected by IP. Cerulein-induced pancreatitis and IP increased the content of HSP 70 in the pancreas. Maximal increase in HSP 70 was observed when IP was combined with cerulein-induced pancreatitis. Inhibition of COXs, especially COX-2, reduced the protective effect of IP in edematous pancreatitis. CONCLUSION: Our results indicate that IP reduces pancreatic damage in cerulein-induced pancreatitis and this effect, at least in part, depends on the activity of COXs and pancreatic production of HSP 70. PMID:16273606

  4. Polycomb Group Proteins as Epigenetic Mediators of Neuroprotection in Ischemic Tolerance

    PubMed Central

    Stapels, Martha; Piper, Chelsea; Yang, Tao; Li, Minghua; Stowell, Cheri; Xiong, Zhi-gang; Saugstad, Julie; Simon, Roger P.; Geromanos, Scott; Langridge, James; Lan, Jing-quan; Zhou, An

    2010-01-01

    Exposing the brain to sublethal ischemia affects the response to a subsequent, otherwise injurious ischemia, resulting in transcriptional suppression and neuroprotection, a response called ischemic tolerance. Here, we show that the proteomic signature of the ischemic-tolerant brain is characterized by increased abundance of transcriptional repressors, particularly polycomb group (PcG) proteins. Knocking down PcG proteins precluded the induction of ischemic tolerance, whereas in an in vitro model, overexpressing the PcG proteins SCMH1 or BMI1 induced tolerance to ischemia without preconditioning. We found that PcG proteins are associated with the promoter regions of genes encoding two potassium channel proteins that show decreased abundance in ischemic-tolerant brains. Furthermore, PcG proteins decreased potassium currents in cultured neuronal cells and knocking down potassium channels elicited tolerance without preconditioning. These findings reveal a previously unknown mechanism of neuroprotection that involves gene repressors of the PcG family. PMID:20197544

  5. Polycomb group proteins as epigenetic mediators of neuroprotection in ischemic tolerance.

    PubMed

    Stapels, Martha; Piper, Chelsea; Yang, Tao; Li, Minghua; Stowell, Cheri; Xiong, Zhi-gang; Saugstad, Julie; Simon, Roger P; Geromanos, Scott; Langridge, James; Lan, Jing-quan; Zhou, An

    2010-03-02

    Exposing the brain to sublethal ischemia affects the response to a subsequent, otherwise injurious ischemia, resulting in transcriptional suppression and neuroprotection, a response called ischemic tolerance. Here, we show that the proteomic signature of the ischemic-tolerant brain is characterized by increased abundance of transcriptional repressors, particularly polycomb group (PcG) proteins. Knocking down PcG proteins precluded the induction of ischemic tolerance, whereas in an in vitro model, overexpressing the PcG proteins SCMH1 or BMI1 induced tolerance to ischemia without preconditioning. We found that PcG proteins are associated with the promoter regions of genes encoding two potassium channel proteins that show decreased abundance in ischemic-tolerant brains. Furthermore, PcG proteins decreased potassium currents in cultured neuronal cells, and knocking down potassium channels elicited tolerance without preconditioning. These findings reveal a previously unknown mechanism of neuroprotection that involves gene repressors of the PcG family.

  6. [Radiation preconditioning of mouse retina results in tolerance to MNU-induced degeneration and stimulates retinal recovery].

    PubMed

    Tronov, V A; Vinogradova, Yu V; Poplinskaya, V A; Nekrasova, E I; Ostrovsky, M A

    2015-01-01

    Emerging body of data indicate protecting effect of low level of stress (preconditioning) on retina. Our previous studies have revealed a non-linear dose-response relationship for cytotoxic effect of both ionizing radiation and N-methyl-N-nitrosourea (MNU) on mouse retina. Moreover, non-cytotoxic dose of MNU increased tolerance of retina to following challenge dose of MNU. This result displays protection of retina through mechanism of recovery. In the present study we used the mouse model for MNU-induced retinal degeneration to evaluate the adaptive response of the retina to proton irradiation and implication of glial Muller cells in this response. In this paper, we have shown that the recovery of the retina after exposure to genotoxic agents is associated with an increased efficiency of DNA damage repair and lowered death of retinal photoreceptors.

  7. Cardiac-specific overexpression of caveolin-3 induces endogenous cardiac protection by mimicking ischemic preconditioning

    PubMed Central

    Tsutsumi, Yasuo M.; Horikawa, Yousuke T.; Jennings, Michelle M.; Kidd, Michael W.; Niesman, Ingrid R.; Yokoyama, Utako; Head, Brian P.; Hagiwara, Yasuko; Ishikawa, Yoshihiro; Miyanohara, Atsushi; Patel, Piyush M.; Insel, Paul A.; Patel, Hemal H.; Roth, David M.

    2009-01-01

    Background Caveolae, lipid-rich microdomains of the sarcolemma, localize and enrich cardiac protective signaling molecules. Caveolin-3 (Cav-3), the dominant isoform in cardiac myocytes, is a determinant of caveolae formation. We hypothesized that cardiac myocyte-specific overexpression of Cav-3 would enhance the formation of caveolae and augment cardiac protection in vivo. Methods and Results Ischemic preconditioning (IPC) in vivo increased formation of caveolae. Adenovirus for Cav-3 increased caveolar formation and phosphorylation of survival kinases in cardiac myocytes. A transgenic (TG) mouse with cardiac myocyte-specific overexpression of Cav-3 (Cav-3 OE) showed enhanced formation of caveolae on the sarcolemma. Cav-3 OE mice subjected to ischemia/reperfusion injury had a significantly reduced infarct size relative to TGneg mice. Endogenous cardiac protection in Cav-3 OE mice was similar to wild-type mice undergoing IPC; no increased protection was observed in preconditioned Cav-3 OE mice. Cav-3 knockout mice did not show endogenous protection and showed no protection in response to IPC. Cav-3 OE mouse hearts had increased basal Akt and GSK3β phosphorylation comparable to wild-type mice exposed to IPC. Wortmannin, a PI3K inhibitor, attenuated basal phosphorylation of Akt and GSK3β and blocked cardiac protection in Cav-3 OE mice. Cav-3 OE mice had improved functional recovery and reduced apoptosis at 24 h of reperfusion. Conclusion Expression of caveolin-3 is both necessary and sufficient for cardiac protection, a conclusion that unites long-standing ultrastructural and molecular observations in the ischemic heart. The current results indicate that increased expression of caveolins, apparently via actions that depend on PI3K, has the potential to protect hearts exposed to ischemia-reperfusion injury. PMID:18936328

  8. Neuroprotective efficacy of curcumin in arsenic induced cholinergic dysfunctions in rats.

    PubMed

    Yadav, Rajesh S; Chandravanshi, Lalit P; Shukla, Rajendra K; Sankhwar, Madhu L; Ansari, Reyaz W; Shukla, Pradeep K; Pant, Aditya B; Khanna, Vinay K

    2011-12-01

    Our recent studies have shown that curcumin protects arsenic induced neurotoxicity by modulating oxidative stress, neurotransmitter levels and dopaminergic system in rats. As chronic exposure to arsenic has been associated with cognitive deficits in humans, the present study has been carried out to implore the neuroprotective potential of curcumin in arsenic induced cholinergic dysfunctions in rats. Rats treated with arsenic (sodium arsenite, 20mg/kg body weight, p.o., 28 days) exhibited a significant decrease in the learning activity, assessed by passive avoidance response associated with decreased binding of (3)H-QNB, known to label muscarinic-cholinergic receptors in hippocampus (54%) and frontal cortex (27%) as compared to controls. Decrease in the activity of acetylcholinesterase in hippocampus (46%) and frontal cortex (33%), staining of Nissl body, immunoreactivity of choline acetyltransferase (ChAT) and expression of ChAT protein in hippocampal region was also observed in arsenic treated rats as compared to controls. Simultaneous treatment with arsenic and curcumin (100mg/kg body weight, p.o., 28 days) increased learning and memory performance associated with increased binding of (3)H-QNB in hippocampus (54%), frontal cortex (25%) and activity of acetylcholinesterase in hippocampus (41%) and frontal cortex (29%) as compared to arsenic treated rats. Increase in the expression of ChAT protein, immunoreactivity of ChAT and staining of Nissl body in hippocampal region was also observed in rats simultaneously treated with arsenic and curcumin as compared to those treated with arsenic alone. The results of the present study suggest that curcumin significantly modulates arsenic induced cholinergic dysfunctions in brain and also exhibits neuroprotective efficacy of curcumin. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Curcumin confers neuroprotection against alcohol-induced hippocampal neurodegeneration via CREB-BDNF pathway in rats.

    PubMed

    Motaghinejad, Majid; Motevalian, Manijeh; Fatima, Sulail; Hashemi, Hajar; Gholami, Mina

    2017-03-01

    Alcohol abuse causes severe damage to the brain neurons. Studies have reported the neuroprotective effects of curcumin against alcohol-induced neurodegeneration. However, the precise mechanism of action remains unclear. Seventy rats were equally divided into 7 groups (10 rats per group). Group 1 received normal saline (0.7ml/rat) and group 2 received alcohol (2g/kg/day) for 21days. Groups 3, 4, 5 and 6 concurrently received alcohol (2g/kg/day) and curcumin (10, 20, 40 and 60mg/kg, respectively) for 21days. Animals in group 7 self- administered alcohol for 21days. Group 8 treated with curcumin (60mg/kg, i.p.) alone for 21days. Open Field Test (OFT) was used to investigate motor activity in rats. Hippocampal oxidative, antioxidative and inflammatory factors were evaluated. Furthermore, brain cyclic adenosine monophosphate (cAMP) response element binding protein (CREB) and brain derived neurotrophic factor (BDNF) levels were studied at gene level by reverse transcriptase polymerase chain reaction (RT-PCR). In addition, protein expression for BDNF, CREB, phosphorylated CREB (CREB-P), Bax and Bcl-2 was determined by western blotting. Voluntary and involuntary administration of alcohol altered motor activity in OFT, and curcumin treatment inhibited this alcohol-induced motor disturbance. Also, alcohol administration augmented lipid peroxidation, mitochondrial oxidized glutathione (GSSG), interleukin-1 beta (IL-1β), tumor necrosis factor-alpha (TNF-α) and Bax levels in isolated hippocampal tissues. Furthermore, alcohol-induced significant reduction were observed in reduced form of glutathione (GSH), superoxide dismutase (SOD), glutathione peroxidase (GPx) and glutathione reductase (GR) activities and CREB, BDNF and Bcl-2 levels. Also curcumin alone did not change the behavior and biochemical and molecular parameters. Curcumin can act as a neuroprotective agent against neurodegenerative effects of alcohol abuse, probably via activation of CREB-BDNF signaling pathway

  10. An alkaloid extract obtained from Phlegmariurus Saururus induces neuroprotection after status epilepticus.

    PubMed

    Danelon, Víctor; Montroull, Laura; Vallejo, Mariana; Cabrera, José; Agnese, Alicia; Ortega, María Gabriela; Mascó, Daniel

    2017-10-15

    The brain is exposed to many excitotoxic insults that can lead to neuronal damage. Among these, Epilepsy is a neurological disease that affects a large percentage of world population and is commonly associated with cognitive disorders and excitotoxic neuronal death. Most experimental strategies are focused on preventing Status Epilepticus (SE), but once it has already occurred, the key question is whether it is possible to save neurons. The aim of this study was to determine if a purified alkaloid extract (AE) obtained from Phlegmariurus saururus, a genus of Lycophyte plants (sometimes known as firmossesor fir club mosses) could induce neuroprotection following SE. In vitro and in vivo techniques were applied for this purpose. Protein levels were measured by western blotting procedures. Neuronal death analysis was performed by calcein-ethidium staining and the presence of the NeuN protein as a marker for presence or absence of cells (in vitro experiments) and by Fluoro Jade B staining for the in vivo experiments. The effect of AE in the hippocampal neurons culture was the first determination, where we found an increase in neuronal survival and in the level of pErk and TrkB activation, 24 h after the addition of AE. In a well-established in vitro model of SE, we found that 24 h after being added to the hippocampal neuron-astrocyte co-culture, the AE induces a significant increase in neuronal survival. In addition to this, in the in vivo Li-pilocarpine model of SE, the AE induced a remarkable neuroprotection in areas such as the entorhinal cortex and hippocampal CA1 area. These results make the AE an excellent candidate for potential clinical use in neurological disorders where memory impairment and neuronal death occurs. Published by Elsevier GmbH.

  11. Preconditioning with low concentration NO attenuates subsequent NO-induced apoptosis in vascular smooth muscle cells via HO-1-dependent mitochondrial death pathway

    SciTech Connect

    Kwak, Hyun-Jeong; Park, Kyoung-Mi; Lee, Seahyoung; Lim, Hyun-Joung; Go, Sang-Hee; Eom, Sang-Mi; Park, Hyun-Young . E-mail: hypark65@nih.go.kr

    2006-12-01

    Nitric oxide (NO) signaling pathways are important in both the maintenance of vascular homeostasis and disease progression. Overproduction of NO has been associated with ischemia/reperfusion (I/R) injury. Growing evidences suggest that NO preconditioning has cytoprotective effects against I/R injury. However, the mechanism with which NO mediates these effects remains to be elucidated. The purpose of this study was to examine the mechanism of how NO preconditioning inhibits subsequent NO-induced apoptosis in vascular smooth muscle cells (VSMC), specifically focusing on heme oxygenase-1 (HO-1). According to our data, sodium nitroprusside (SNP) increased HO-1 expression in a concentration dependent manner. Preconditioning with low concentration SNP (0.3 mM) inhibited subsequent high concentration SNP (1.5 mM)-induced apoptosis, and this effect was reversed by the HO-1 inhibitor SnPP. Low concentration SNP-mediated protection involved p38 kinase inactivation and increased Bcl-2 expression. Furthermore, mitochondrial membrane potential was concomitantly increased with decreased expressions of Bax, Apaf-1, and activity of caspase-3, which was reversed by SnPP treatment. Our results show that low concentration SNP preconditioning suppresses subsequent high concentration SNP-induced apoptosis by inhibiting p38 kinase and mitochondrial death pathway via HO-1-dependent mechanisms in VSMC.

  12. The phosphatidylinositol-3 kinase/Akt pathway mediates geranylgeranylacetone-induced neuroprotection against cerebral infarction in rats.

    PubMed

    Abe, Eiji; Fujiki, Minoru; Nagai, Yasuyuki; Shiqi, Kong; Kubo, Takeshi; Ishii, Keisuke; Abe, Tatsuya; Kobayashi, Hidenori

    2010-05-12

    Previous studies demonstrated the cytoprotective effect of geranylgeranylacetone (GGA), a heat shock protein inducer, against ischemic insult. Phosphatidylinositol-3 kinase/Akt (PI3K/Akt) is thought to be an important factor that mediates neuroprotection. However, the signaling pathways in the brain in vivo after oral GGA administration remain unclear. We measured and compared infarction volumes to investigate the effect of GGA on cerebral infarction induced by permanent middle cerebral artery occlusion in rats. We evaluated the effects of pretreatment with 5-hydroxydecanoate (5HD), a specific mitochondrial ATP-sensitive potassium (mitoK(ATP)) channel inhibitor; diazoxide (DZX), a selective mitoK(ATP) channel opener and wortmannin (Wort), a specific PI3K inhibitor of GGA-induced neuroprotection against infarction volumes. To clarify the relationship between PI3K/Akt activation and neuroprotection, we used immunoblot analysis to determine the amount of p-Akt proteins present after GGA administration with or without Wort treatment. Neuroprotective effects of GGA (pretreatment with a single oral GGA dose (800 mg/kg) 48 h before ischemia) were prevented by 5HD, DZX and Wort pretreatment, which indicates that the selective mitoK(ATP) channel and the PI3K/Akt pathway may mediate GGA-dependent protection. Oral GGA-induced p-Akt and GGA pretreatment enhanced ischemia-induced p-Akt, both of which were prevented by Wort pretreatment. These results suggest that a single oral dose of GGA induces p-Akt and that GGA plays an important role in neuroprotection against cerebral ischemia through the mitoK(ATP) channel opening. (c) 2010 Elsevier B.V. All rights reserved.

  13. Green tea polyphenols precondition against cell death induced by oxygen-glucose deprivation via stimulation of laminin receptor, generation of reactive oxygen species, and activation of protein kinase Cε.

    PubMed

    Gundimeda, Usha; McNeill, Thomas H; Elhiani, Albert A; Schiffman, Jason E; Hinton, David R; Gopalakrishna, Rayudu

    2012-10-05

    As the development of synthetic drugs for the prevention of stroke has proven challenging, utilization of natural products capable of preconditioning neuronal cells against ischemia-induced cell death would be a highly useful complementary approach. In this study using an oxygen-glucose deprivation and reoxygenation (OGD/R) model in PC12 cells, we show that 2-day pretreatment with green tea polyphenols (GTPP) and their active ingredient, epigallocatechin-3-gallate (EGCG), protects cells from subsequent OGD/R-induced cell death. A synergistic interaction was observed between GTPP constituents, with unfractionated GTPP more potently preconditioning cells than EGCG. GTPP-induced preconditioning required the 67-kDa laminin receptor (67LR), to which EGCG binds with high affinity. 67LR also mediated the generation of reactive oxygen species (ROS) via activation of NADPH oxidase. An exogenous ROS-generating system bypassed 67LR to induce preconditioning, suggesting that sublethal levels of ROS are indeed an important mediator in GTPP-induced preconditioning. This role for ROS was further supported by the fact that antioxidants blocked GTPP-induced preconditioning. Additionally, ROS induced an activation and translocation of protein kinase C (PKC), particularly PKCε from the cytosol to the membrane/mitochondria, which was also blocked by antioxidants. The crucial role of PKC in GTPP-induced preconditioning was supported by use of its specific inhibitors. Preconditioning was increased by conditional overexpression of PKCε and decreased by its knock-out with siRNA. Collectively, these results suggest that GTPP stimulates 67LR and thereby induces NADPH oxidase-dependent generation of ROS, which in turn induces activation of PKC, particularly prosurvival isoenzyme PKCε, resulting in preconditioning against cell death induced by OGD/R.

  14. Green Tea Polyphenols Precondition against Cell Death Induced by Oxygen-Glucose Deprivation via Stimulation of Laminin Receptor, Generation of Reactive Oxygen Species, and Activation of Protein Kinase Cϵ

    PubMed Central

    Gundimeda, Usha; McNeill, Thomas H.; Elhiani, Albert A.; Schiffman, Jason E.; Hinton, David R.; Gopalakrishna, Rayudu

    2012-01-01

    As the development of synthetic drugs for the prevention of stroke has proven challenging, utilization of natural products capable of preconditioning neuronal cells against ischemia-induced cell death would be a highly useful complementary approach. In this study using an oxygen-glucose deprivation and reoxygenation (OGD/R) model in PC12 cells, we show that 2-day pretreatment with green tea polyphenols (GTPP) and their active ingredient, epigallocatechin-3-gallate (EGCG), protects cells from subsequent OGD/R-induced cell death. A synergistic interaction was observed between GTPP constituents, with unfractionated GTPP more potently preconditioning cells than EGCG. GTPP-induced preconditioning required the 67-kDa laminin receptor (67LR), to which EGCG binds with high affinity. 67LR also mediated the generation of reactive oxygen species (ROS) via activation of NADPH oxidase. An exogenous ROS-generating system bypassed 67LR to induce preconditioning, suggesting that sublethal levels of ROS are indeed an important mediator in GTPP-induced preconditioning. This role for ROS was further supported by the fact that antioxidants blocked GTPP-induced preconditioning. Additionally, ROS induced an activation and translocation of protein kinase C (PKC), particularly PKCϵ from the cytosol to the membrane/mitochondria, which was also blocked by antioxidants. The crucial role of PKC in GTPP-induced preconditioning was supported by use of its specific inhibitors. Preconditioning was increased by conditional overexpression of PKCϵ and decreased by its knock-out with siRNA. Collectively, these results suggest that GTPP stimulates 67LR and thereby induces NADPH oxidase-dependent generation of ROS, which in turn induces activation of PKC, particularly prosurvival isoenzyme PKCϵ, resulting in preconditioning against cell death induced by OGD/R. PMID:22879598

  15. Neuroprotective effects of resveratrol on embryonic dorsal root ganglion neurons with neurotoxicity induced by ethanol.

    PubMed

    Yuan, Hongtu; Zhang, Weiwei; Li, Hao; Chen, Cheng; Liu, Huaxiang; Li, Zhenzhong

    2013-05-01

    Studies have established that ethanol (EtOH) consumption results in damage to the peripheral nervous systems. Although the pathobiological mechanism is still unclear, oxidative stress is known to play an important role in EtOH-induced neurotoxicity. Because resveratrol (Res) is attracting increased attention due to its antioxidative properties, we investigated the neuroprotective efficacy of Res in ethanol-treated embryonic dorsal root ganglion (DRG) neurons in vitro. Organotypic DRG explants and a dispersed cell culture model were used to evaluate the effects of Res on EtOH-induced neurotoxicity. Res increased the number of extended nerve fibers and neurons that migrated from the DRG explants. Hoechst 33342 staining and terminal deoxynucleotidyl-transferase-mediated dUTP nick-end-labeling analysis showed that the EtOH-induced apoptosis was inhibited by Res. The effects of Res were blocked by the 5'-adenosine monophosphate-activated protein kinase inhibitor Compound C and the sirtuin 1 inhibitor nicotinamide. The elevation of oxidative/nitrosative stress, as measured by the amount of reactive oxygen species, malondialdehyde, nitrite, glutathione and superoxide dismutase activity, was also attenuated by Res. The data from the present study indicate that Res protects DRG neurons from EtOH-induced neurotoxicity. Res and its derivative may be effective for the treatment of diseases characterized by axonopathy and neuron loss induced by EtOH. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Neuroprotective effect of osmotin against ethanol-induced apoptotic neurodegeneration in the developing rat brain.

    PubMed

    Naseer, M I; Ullah, I; Narasimhan, M L; Lee, H Y; Bressan, R A; Yoon, G H; Yun, D J; Kim, M O

    2014-03-27

    Fetal alcohol syndrome is a neurological and developmental disorder caused by exposure of developing brain to ethanol. Administration of osmotin to rat pups reduced ethanol-induced apoptosis in cortical and hippocampal neurons. Osmotin, a plant protein, mitigated the ethanol-induced increases in cytochrome c, cleaved caspase-3, and PARP-1. Osmotin and ethanol reduced ethanol neurotoxicity both in vivo and in vitro by reducing the protein levels of cleaved caspase-3, intracellular [Ca(2+)]cyt, and mitochondrial transmembrane potential collapse, and also upregulated antiapoptotic Bcl-2 protein. Osmotin is a homolog of adiponectin, and it controls energy metabolism via phosphorylation. Adiponectin can protect hippocampal neurons against ethanol-induced apoptosis. Abrogation of signaling via receptors AdipoR1 or AdipoR2, by transfection with siRNAs, reduced the ability of osmotin and adiponectin to protect neurons against ethanol-induced neurodegeneration. Metformin, an activator of AMPK (adenosine monophosphate-activated protein kinase), increased whereas Compound C, an inhibitor of AMPK pathway, reduced the ability of osmotin and adiponectin to protect against ethanol-induced apoptosis. Osmotin exerted its neuroprotection via Bcl-2 family proteins and activation of AMPK signaling pathway. Modulation of AMPK pathways by osmotin, adiponectin, and metformin hold promise as a preventive therapy for fetal alcohol syndrome.

  17. Identification of miRNAs Involved in the Protective Effect of Sevoflurane Preconditioning Against Hypoxic Injury in PC12 Cells.

    PubMed

    Sun, Yingying; Li, Yuanhai; Liu, Lei; Wang, Yiqiao; Xia, Yingjing; Zhang, Lingli; Ji, Xuewu

    2015-11-01

    The mechanism of sevoflurane preconditioning-induced neuroprotection is poorly understood. This study was aimed at identifying microRNAs (miRNAs) involved in the protective effect of sevoflurane preconditioning against hypoxic injury using the miRCURYTM LNA Array. The screened differentially expressed miRNAs were further validated using qRT-PCR. Finally, after transfection of miRNA (miR-101a or miR-34b) mimics or inhibitor, MTT and flow cytometry assays were used to evaluate cell survival and apoptosis in sevoflurane preconditioning. qRT-PCR confirmed the changes in expression of differentially expressed miRNAs that were screened by the microarray: down-regulation of rno-miR-101a, rno-miR-106b, and rno-miR-294 and up-regulation of rno-miR-883, rno-miR-16, and rno-miR-34b. MiR-101a and miR-34b were the most differentially expressed miRNAs. Sevoflurane preconditioning-inhibited apoptosis and preconditioning-enhanced cell viability of PC12 cells were significantly attenuated by transfection of miR-101a mimetic or miR-34b inhibitors, but were significantly enhanced by transfection of miR-34b mimetic. Therefore, a number of miRNAs, including miR-101a and miR-34b, might play important roles in the neuroprotection induced by sevoflurane preconditioning. Such miRNAs might provide novel targets for preventive and therapeutic strategies against cerebral ischemia-reperfusion injury.

  18. Neuregulin-1 is neuroprotective in a rat model of organophosphate-induced delayed neuronal injury

    SciTech Connect

    Li, Yonggang; Lein, Pamela J.; Liu, Cuimei; Bruun, Donald A.; Giulivi, Cecilia; Ford, Gregory D.; Tewolde, Teclemichael; Ross-Inta, Catherine; Ford, Byron D.

    2012-07-15

    Current medical countermeasures against organophosphate (OP) nerve agents are effective in reducing mortality, but do not sufficiently protect the CNS from delayed brain damage and persistent neurological symptoms. In this study, we examined the efficacy of neuregulin-1 (NRG-1) in protecting against delayed neuronal cell death following acute intoxication with the OP diisopropylflurophosphate (DFP). Adult male Sprague–Dawley rats were pretreated with pyridostigmine (0.1 mg/kg BW, i.m.) and atropine methylnitrate (20 mg/kg BW, i.m.) prior to DFP (9 mg/kg BW, i.p.) intoxication to increase survival and reduce peripheral signs of cholinergic toxicity but not prevent DFP-induced seizures or delayed neuronal injury. Pretreatment with NRG-1 did not protect against seizures in rats exposed to DFP. However, neuronal injury was significantly reduced in most brain regions by pretreatment with NRG-1 isoforms NRG-EGF (3.2 μg/kg BW, i.a) or NRG-GGF2 (48 μg/kg BW, i.a.) as determined by FluroJade-B labeling in multiple brain regions at 24 h post-DFP injection. NRG-1 also blocked apoptosis and oxidative stress-mediated protein damage in the brains of DFP-intoxicated rats. Administration of NRG-1 at 1 h after DFP injection similarly provided significant neuroprotection against delayed neuronal injury. These findings identify NRG-1 as a promising adjuvant therapy to current medical countermeasures for enhancing neuroprotection against acute OP intoxication. -- Highlights: ► NRG-1 blocked DFP induced neuronal injury. ► NRG-1 did not protect against seizures in rats exposed to DFP. ► NRG-1 blocked apoptosis and oxidative stress in the brains of DFP-intoxicated rats. ► Administration of NRG-1 at 1 h after DFP injection prevented delayed neuronal injury.

  19. Prophylactic neuroprotection by blueberry-enriched diet in a rat model of light-induced retinopathy.

    PubMed

    Tremblay, François; Waterhouse, Jenna; Nason, Janette; Kalt, Wilhelmina

    2013-04-01

    The role of anthocyanins is controversial in vision health. This study investigates the impact of a blueberry-enriched diet as neuroprotectant in a rat model of light-induced retinopathy. Thirty-eight albino Wistar rats and 25 pigmented Brown-Norway rats were fed by gavage with long (7 weeks) and short (2 weeks) intervention with fortified blueberry juice (1 ml; 2.8 mg cyanidin 3-glucoside equivalents) or with a placebo solution (7 weeks) that contained the abundant nonanthocyanin blueberry phenolic, namely, chlorogenic acid, before being submitted to 2 hours of intense light regimen (1.8×10(4) lux). Retinal health was measured by fitting electroretinogram responses with the Naka-Rushton equation. The light-induced retinal damage was severe in the placebo groups, with the maximum amplitude of the electroretinogram being significantly reduced in both Wistar and Brown-Norway rats. The maximum amplitude of the electroretinogram was significantly protected from the light insult in the Wistar rats supplemented with blueberry juice for 7 or 2 weeks, and there was no significant difference between these two groups. The same dietary intervention in the Brown-Norway groups failed to protect the retina. Histological examination of retinal section confirmed the electroretinography results, showing protection of the outer nuclear layer of the retina in the Wistar rats fed with blueberries, while all placebo-fed rats and blueberry-fed Brown-Norway rats showed evidence of retinal damage concentrated in the superior hemiretina. The neuroprotective potential of anthocyanins in this particular model is discussed in terms of interaction with rhodopsin/phototransduction and in terms of antioxidative capacity.

  20. NEUROPROTECTIVE EFFECT OF AMORPHOPHALLUS CAMPANULATUS IN STZ INDUCED ALZHEIMER RAT MODEL

    PubMed Central

    Chen, Dong

    2016-01-01

    Background: The present investigation deals with the assessment of neuroprotective effect Amorphophallus campanulatus (AC) tuber in alzheimer diseased (AD) rat and also postulates its possible mechanism of action. Material and Methods: AD was induced by administering streptozotocin i.e. STZ (3 mg/kg, ICV) day one and 3rd day after surgery. Surgery was performed on anesthetized rats by the help of stereotaxic apparatus. STZ induced AD rats were treated with petroleum ether extract of AC (100, 200 and 500 mg/kg, p.o.) for 14 days. Effect of AC tuber in AD rats were assessed by estimating the alteration in the behavior (Y maze apparatus and single trail passive avoidance), biochemical parameter in the brain tissue {Oxidative stress parameters (SOD, CAT and LPO), amyloid β peptide (Aβ) and acetylcholinesterase (AchE)} and histopathological study of brain tissue. Result: Treatment with AC shows significant (p<0.01) increased in the % of alteration in the behavior and step through latency in Y maze task and single trial passive avoidance test compared to AD rats. AC significantly (p<0.01) decreases the Aβ1-40, Aβ1-42 peptides and AchE in the brain tissue compared to AD rats. Whereas, treatment with AC significantly reduces the oxidative stress level in AD rats. Histopathological study reveals that treatment with AC extract reduces the amyloid plaque formation in the brain tissue of AD rat. Conclusion: The present study concludes the neuroprotective effect of AC extract in AD rats by reducing oxidative stress, Aβ and AchE in the brain tissue. PMID:28480351

  1. NEUROPROTECTIVE EFFECT OF AMORPHOPHALLUS CAMPANULATUS IN STZ INDUCED ALZHEIMER RAT MODEL.

    PubMed

    Chen, Dong

    2016-01-01

    The present investigation deals with the assessment of neuroprotective effect Amorphophallus campanulatus (AC) tuber in alzheimer diseased (AD) rat and also postulates its possible mechanism of action. AD was induced by administering streptozotocin i.e. STZ (3 mg/kg, ICV) day one and 3(rd) day after surgery. Surgery was performed on anesthetized rats by the help of stereotaxic apparatus. STZ induced AD rats were treated with petroleum ether extract of AC (100, 200 and 500 mg/kg, p.o.) for 14 days. Effect of AC tuber in AD rats were assessed by estimating the alteration in the behavior (Y maze apparatus and single trail passive avoidance), biochemical parameter in the brain tissue {Oxidative stress parameters (SOD, CAT and LPO), amyloid β peptide (Aβ) and acetylcholinesterase (AchE)} and histopathological study of brain tissue. Treatment with AC shows significant (p<0.01) increased in the % of alteration in the behavior and step through latency in Y maze task and single trial passive avoidance test compared to AD rats. AC significantly (p<0.01) decreases the Aβ1-40, Aβ1-42 peptides and AchE in the brain tissue compared to AD rats. Whereas, treatment with AC significantly reduces the oxidative stress level in AD rats. Histopathological study reveals that treatment with AC extract reduces the amyloid plaque formation in the brain tissue of AD rat. The present study concludes the neuroprotective effect of AC extract in AD rats by reducing oxidative stress, Aβ and AchE in the brain tissue.

  2. Neuroprotective effects of bee venom acupuncture therapy against rotenone-induced oxidative stress and apoptosis.

    PubMed

    Khalil, Wagdy K B; Assaf, Naglaa; ElShebiney, Shaimaa A; Salem, Neveen A

    2015-01-01

    Parkinson's disease (PD), the most common neurodegenerative movement disorder, is characterized by dopaminergic neurodegeneration, mitochondrial impairment, and oxidative stress. Exposure of animals to rotenone induces a range of responses characteristic of PD, including reactive oxygen species production and dopaminergic cell death. Although l-dopa is the drug of choice for improving core symptoms of PD, it is associated with involuntary movements. The current study was directed to evaluate the neuroprotective effect of bee venom acupuncture therapy (BVA) against rotenone-induced oxidative stress, neuroinflammation, and apoptosis in PD mouse model. Forty male Swiss mice were divided into four groups: (1) received saline solution orally and served as normal control, (2) received rotenone (1.5 mg/kg, s.c. every other day for 6 doses), (3) received rotenone concomitantly with l-dopa (25 mg/kg, daily, p.o. for 6 days), and finally (4) received rotenone concomitantly with BVA (0.02 ml once every 3 days for two weeks). Rotenone-treated mice showed impairment in locomotor behavior and a significant reduction in brain dopamine, serotonin, norepinephrine, GSH levels, and paraoxonase activity, whereas a significant increase was observed in brain malondialdehyde, tumor necrosis factor-α, interleukin-β levels besides DNA damage, and over-expression of caspase-3, Bax, and Bcl-2 genes. Significant improvement of the aforementioned parameters was demonstrated after BVA compared to l-dopa therapy. In conclusion, bee venom normalized all the neuroinflammatory and apoptotic markers and restored brain neurochemistry after rotenone injury. Therefore, BVA is a promising neuroprotective therapy for PD. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Neuroprotective effects of three different sizes nanochelating based nano complexes in MPP(+) induced neurotoxicity.

    PubMed

    Maghsoudi, Amirhossein; Fakharzadeh, Saideh; Hafizi, Maryam; Abbasi, Maryam; Kohram, Fatemeh; Sardab, Shima; Tahzibi, Abbas; Kalanaky, Somayeh; Nazaran, Mohammad Hassan

    2015-03-01

    Parkinson's disease (PD) is the world's second most common dementia, which the drugs available for its treatment have not had effects beyond slowing the disease process. Recently nanotechnology has induced the chance for designing and manufacturing new medicines for neurodegenerative disease. It is demonstrated that by tuning the size of a nanoparticle, the physiological effect of the nanoparticle can be controlled. Using novel nanochelating technology, three nano complexes: Pas (150 nm), Paf (100 nm) and Pac (40 nm) were designed and in the present study their neuroprotective effects were evaluated in PC12 cells treated with 1-methyl-4-phenyl-pyridine ion (MPP (+)). PC12 cells were pre-treated with the Pas, Paf or Pac nano complexes, then they were subjected to 10 μM MPP (+). Subsequently, cell viability, intracellular free Calcium and reactive oxygen species (ROS) levels, mitochondrial membrane potential, catalase (CAT) and superoxide dismutase (SOD) activity, Glutathione (GSH) and malondialdehyde (MDA) levels and Caspase 3 expression were evaluated. All three nano complexes, especially Pac, were able to increase cell viability, SOD and CAT activity, decreased Caspase 3 expression and prevented the generation of ROS and the loss of mitochondrial membrane potential caused by MPP(+). Pre-treatment with Pac and Paf nano complexes lead to a decrease of intracellular free Calcium, but Pas nano complex could not decrease it. Only Pac nano complex decreased MDA levels and other nano complexes could not change this parameter compared to MPP(+) treated cells. Hence according to the results, all nanochelating based nano complexes induced neuroprotective effects in an experimental model of PD, but the smallest nano complex, Pac, showed the best results.

  4. From Chemotherapy-Induced Emesis to Neuroprotection: Therapeutic Opportunities for 5-HT3 Receptor Antagonists.

    PubMed

    Fakhfouri, Gohar; Mousavizadeh, Kazem; Mehr, Sharam Ejtemaei; Dehpour, Ahmad Reza; Zirak, Mohammad Reza; Ghia, Jean-Eric; Rahimian, Reza

    2015-12-01

    5-HT3 receptor antagonists are extensively used as efficacious agents in counteracting chemotherapy-induced emesis. Recent investigations have shed light on other potential effects (analgesic, anxiolytic, and anti-psychotic). Some studies have reported neuroprotective properties for the 5-HT3 receptor antagonists in vitro and in vivo. When administered to Aβ-challenged rat cortical neurons, 5-HT3 receptor antagonists substantially abated apoptosis, elevation of cytosolic Ca(2), glutamate release, reactive oxygen species (ROS) generation, and caspase-3 activity. In addition, in vivo studies show that 5-HT3 receptor antagonists possess, alongside their anti-emetic effects, notable immunomodulatory properties in CNS. We found that pretreatment with tropisetron significantly improved neurological deficits and diminished leukocyte transmigration into the brain, TNF-α level, and brain infarction in a murine model of embolic stroke. Our recent investigation revealed that tropisetron protects against Aβ-induced neurotoxicity in vivo through both 5-HT3 receptor-dependent and -independent pathways. Tropisetron, in vitro, was found to be an efficacious inhibitor of the signaling pathway leading to the activation of pro-inflammatory NF-κB, a transcription factor pivotal to the upregulation of several neuroinflammatory mediators in brain. This mini review summarizes novel evidence concerning effects of 5-HT3 antagonists and their possible mechanisms of action in ameliorating neurodegenerative diseases including Alzheimer, multiple sclerosis, and stroke. Further, we discuss some newly synthesized 5-HT3 receptor antagonists with dual properties of 5-HT3 receptor blockade/alpha-7 nicotinic receptor activator and their potential in management of memory impairment. Since 5-HT3 receptor antagonists possess a large therapeutic window, they can constitute a scaffold for design and synthesis of new neuroprotective medications.

  5. Neamine induces neuroprotection after acute ischemic stroke in type one diabetic rats.

    PubMed

    Ning, R; Chopp, M; Zacharek, A; Yan, T; Zhang, C; Roberts, C; Lu, M; Chen, J

    2014-01-17

    Angiogenin is a member of the ribonuclease superfamily and promotes degradation of the basement membrane and the extracellular matrix. After stroke in type one diabetes (T1DM) rats, Angiogenin is significantly increased and the Angiogenin is inversely correlated with functional outcome. Neamine, an aminoglycoside antibiotic, blocks nuclear translocation of Angiogenin, thereby abolishing the biological activity of Angiogenin. In this study, we therefore investigated the effect and underlying protective mechanisms of Neamine treatment of stroke in T1DM. T1DM was induced in male Wistar rats by streptozotocin (60mg/kg, ip), and T1DM rats were subjected to embolic middle cerebral artery occlusion (MCAo). Neamine (10mg/kg ip) was administered at 2, 24 and 48h after the induction of embolic MCAo. A battery of functional outcome tests was performed. Blood-brain barrier (BBB) leakage, and lesion volume were evaluated and immunostaining, and Western blot were performed. Neamine treatment of stroke in T1DM rats significantly decreased BBB leakage and lesion volume as well as improved functional outcome compared to T1DM-control. Neamine also significantly decreased apoptosis and cleaved caspase-3 in the ischemic brain. Using immunostaining, we found that Neamine treatment significantly decreased nuclear Angiogenin, nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) activity, advanced glycation endproducts receptor (RAGE) number, the positive area of toll-like receptor 4 (TLR4) and increased Angeopoietin-1 expression compared to T1DM-MCAo control rats. Western blot results are consistent with the immunostaining. Neamine treatment of stroke is neuroprotective in T1DM rats. Inhibition of neuroinflammatory factor expression and decrease of BBB leakage may contribute to Neamine-induced neuroprotective effects after stroke in T1DM rats. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  6. Neuroprotective effect of ebselen against intracerebroventricular streptozotocin-induced neuronal apoptosis and oxidative stress in rats.

    PubMed

    Unsal, Cuneyt; Oran, Mustafa; Albayrak, Yakup; Aktas, Cevat; Erboga, Mustafa; Topcu, Birol; Uygur, Ramazan; Tulubas, Feti; Yanartas, Omer; Ates, Ozkan; Ozen, Oguz Aslan

    2016-04-01

    The goal of this study was to examine the neuroprotective effect of ebselen against intracerebroventricular streptozotocin (ICV-STZ)-induced oxidative stress and neuronal apoptosis in rat brain. A total of 30 adult male Sprague-Dawley rats were randomly divided into 3 groups of 10 animals each: control, ICV-STZ, and ICV-STZ treated with ebselen. The ICV-STZ group rats were injected bilaterally with ICV-STZ (3 mg/kg) on days 1 and 3, and ebselen (10 mg/kg/day) was administered for 14 days starting from 1st day of ICV-STZ injection to day 14. Rats were killed at the end of the study and brain tissues were removed for biochemical and histopathological investigation. Our results demonstrated, for the first time, the neuroprotective effect of ebselen on Alzheimer's disease (AD) model in rats. Our present study, in ICV-STZ group, showed significant increase in tissue malondialdehyde levels and significant decrease in enzymatic antioxidants superoxide dismutase and glutathione peroxidase in the frontal cortex tissue. The histopathological studies in the brain of rats also supported that ebselen markedly reduced the ICV-STZ-induced histopathological changes and well preserved the normal histological architecture of the frontal cortex tissue. The number of apoptotic neurons was increased in frontal cortex tissue after ICV-STZ administration. Treatment of ebselen markedly reduced the number of degenerating apoptotic neurons. The study demonstrates the effectiveness of ebselen, as a powerful antioxidant, in preventing the oxidative damage and morphological changes caused by ICV-STZ in rats. Thus, ebselen may have a therapeutic value for the treatment of AD.

  7. Preconditioning with Triiodothyronine Improves the Clinical Signs and Acute Tubular Necrosis Induced by Ischemia/Reperfusion in Rats

    PubMed Central

    Ferreyra, Carla; Vargas, Félix; Rodríguez-Gómez, Isabel; Pérez-Abud, Rocío; O'Valle, Francisco; Osuna, Antonio

    2013-01-01

    Background Renal ischemia/reperfusion (I/R) injury is manifested by acute renal failure (ARF) and acute tubular necrosis (ATN). The aim of this study was to evaluate the effectiveness of preconditioning with 3, 3, 5 triiodothyronine (T3) to prevent I/R renal injury. Methodology/Principal Findings The rats were divided into four groups: sham-operated, placebo-treated (SO-P), sham-operated T3- treated (SO- T3), I/R-injured placebo-treated (IR-P), and I/R-injured T3-treated (IR- T3) groups. At 24 h before ischemia, the animals received a single dose of T3 (100 μg/kg). Renal function and plasma, urinary, and tissue variables were studied at 4, 24, and 48 h of reperfusion, including biochemical, oxidative stress, and inflammation variables, PARP-1 immunohistochemical expression, and ATN morphology. In comparison to the SO groups, the IR-P groups had higher plasma urea and creatinine levels and greater proteinuria (at all reperfusion times) and also showed: increased oxidative stress-related plasma, urinary, and tissue variables; higher plasma levels of IL6 (proinflammatory cytokine); increased glomerular and tubular nuclear PARP-1 expression; and a greater degree of ATN. The IR-T3 group showed a marked reduction in all of these variables, especially at 48 h of reperfusion. No significant differences were observed between SO-P and SO-T3 groups. Conclusions This study demonstrates that preconditioning rats with a single dose of T3 improves the clinical signs and ATN of renal I/R injury. These beneficial effects are accompanied by reductions in oxidative stress, inflammation, and renal PARP-1 expression, indicating that this sequence of factors plays an important role in the ATN induced by I/R injury. PMID:24086411

  8. Neuroprotective effects of triterpene glycosides from glycine max against glutamate induced toxicity in primary cultured rat cortical cells.

    PubMed

    Moon, Hyung-In; Lee, Jai-Heon

    2012-01-01

    To examine the neuroprotective effects of Glycine max, we tested its protection against the glutamate-induced toxicity in primary cortical cultured neurons. In order to clarify the neuroprotective mechanism(s) of this observed effect, isolation was performed to seek and identify active fractions and components. From such fractionation, two triterpene glycosides, 3-O-[α-l-rhamnopyranosyl(1-2)-β-d-glucopyranosyl(1-2)-β-d-glucuronopyranosyl]olean-12-en-3β,22β,24-triol (1) and 3-O-[β-d-glucopyranosyl(1-2)-β-d-galactopyranosyl(1-2)-β-d-glucuronopyranosyl]olean-12-en-3β,22β,24-triol (2) were isolated with the methanol extracts with of air-dried Glycine max. Among these compounds, compound 2 exhibited significant neuroprotective activities against glutamate-induced toxicity, exhibiting cell viability of about 50% at concentrations ranging from 0.1 μM to 10 μM. Therefore, the neuroprotective effect of Glycine max might be due to the inhibition of glutamate-induced toxicity by triterpene glycosides.

  9. Role of hypoxia-inducible factor-1α in preconditioning-induced protection of retinal ganglion cells in glaucoma.

    PubMed

    Zhu, Yanli; Zhang, Lihong; Gidday, Jeffrey M

    2013-01-01

    We recently demonstrated in a mouse model of glaucoma that endogenous epigenetic mechanisms can be activated by a repetitive hypoxic preconditioning (RHP) stimulus to provide robust retinal ganglion cell (RGC) protection. Although we also provided evidence that RHP prevents or delays the apoptotic demise of the RGC soma, the mechanisms responsible for signaling this epigenetic response, as well as the effectors of the glaucoma-tolerant phenotype at the somatic and axonal levels, remain unidentified. In the present study, we used conditional mutant mice lacking hypoxia-inducible factor-1α (HIF-1α) in RGCs (HIF-1α RGC-knockout [KO] mice) to test the hypothesis that RHP-mediated activation of this transcription factor in these cells protects them from glaucomatous injury. Adult HIF-1α RGC-KO mice, generated by mating floxed HIF-1α mice with math5-Cre mice, were used. Experimental glaucoma was induced unilaterally in the HIF-1α RGC-KO mice and matched wild-types by elevating the intraocular pressure to 16-20 mmHg for 3 consecutive weeks, secondary to episcleral vein ligation. Mice of each genotype were randomized to either an RHP protocol (six total exposures to systemic hypoxia [11% oxygen], interspersed over a 2-week period, completed 3 days before ligation surgery) or to an untreated group. RGC soma and axon injury was quantified with Neuronal Nuclei (NeuN) immunohistochemistry in retinal flat mounts and SMI32 immunohistochemistry in cross sections of the post-laminar optic nerve, respectively. HIF-1α RGC-KO mice exhibited normal retinal function and morphology, and crosses of math5-Cre mice with floxed ROSA26 reporter mice confirmed Cre recombinase activity was confined to the RGC axons and soma. Untreated wild-type mice exhibited a 30±2% loss of RGC soma and a 31±3% loss of RGC axons after 3 weeks of intraocular hypertension (both p<0.05 versus fellow eye). The 90% and 81% improvement in soma and axon survival, respectively, observed in the wild

  10. Ischemic preconditioning. Experimental facts and clinical perspective.

    PubMed

    Post, H; Heusch, G

    2002-12-01

    Brief periods of non-lethal ischemia and reperfusion render the myocardium more resistant to subsequent ischemia. This adaption occurs in a biphasic pattern: the first being active immediately and lasting for 2-3 hrs (early preconditioning), the second starting at 24 hrs until 72 hrs after the initial ischemia (delayed preconditioning) and requiring genomic activation with de novo protein synthesis. Early preconditioning is more potent than delayed preconditioning in reducing infarct size; delayed preconditioning also attenuates myocardial stunning. Early preconditioning depends on the ischemia-induced release of adenosine and opioids and, to a lesser degree, also bradykinin and prostaglandins. These molecules activate G-protein coupled receptors, initiate the activation of KATP channels and generation of oxygen radicals, and stimulate a series of protein kinases with essential roles for protein kinase C, tyrosine kinases and members of the MAP kinase family. Delayed preconditioning is triggered by a similar sequence of events, but in addition essentially depends on eNOS-derived NO. Both early and pharmacological preconditioning can be pharmacologically mimicked by exogenous adenosine, opioids, NO and activators of protein kinase C. Newly synthetized proteins associated with delayed preconditioning comprise iNOS, COX-2, manganese superoxide dismutase and possibly heat shock proteins. The final mechanism of protection by preconditioning is yet unknown; energy metabolism, KATP channels, the sodium-proton exchanger, stabilisation of the cytoskeleton and volume regulation will be discussed. For ethical reasons, evidence for ischemic preconditioning in humans is hard to provide. Clinical findings that parallel experimental ischemic preconditioning are reduced ST-segment elevation and pain during repetitive PTCA or exercise tests, a better prognosis of patients in whom myocardial infarction was preceded by angina, and reduced serum markers of myocardial necrosis after

  11. Anticonvulsant and neuroprotective effects of apelin-13 on pentylenetetrazole-induced seizures in male rats.

    PubMed

    Kalantaripour, Taj Pari; Esmaeili-Mahani, Saeed; Sheibani, Vahid; Asadi-Shekaari, Majid; Pasban-Aliabadi, Hamzeh

    2016-12-01

    Epilepsy is a common neurological disorder with no effective treatment or cure. Neuropeptide apelin is an endogenous ligand of angiotensin receptor-like 1 (APJ). It has been shown that apelin has protective and anti-neurodegenerative properties. This study was designed to evaluate the effect of apelin-13 on pentylenetetrazole (PTZ)-induced rat model of seizure. Adult male Wistar rats were divided into the experimental groups as follows: control group receiving PTZ; apelin-treated group which received apelin-13 before PTZ; apelin+F13A-treated group which received apelin-13 plus the apelin receptor antagonist (F13A) before PTZ; apelin+naloxone group which received apelin-13+naloxone before PTZ. Behavioral scoring was used to access seizure. The expression level of APJ was measured by western blotting. Neuronal degeneration, apoptosis and astrocyte activation were evaluated by vanadium acid fuchsin (VAF) staining and immunohistochemistry. Our data demonstrated that apelin-13 pretreatment significantly inhibited seizure threshold (p<0.001) and tonic-clonic latency (p<0.001) compared with the control group. In addition, PTZ-induced up-regulation of APJ was attenuated by apelin-13 treatment. Histological and immunohistochemical findings also showed that apelin-13 could protect cortical neurons against PTZ-induced neuroinflammation and apoptosis. In conclusion, apelin-13 has anticonvulsive and neuroprotective properties against PTZ-induced seizure in rats and provided a new pharmacological aspect of the neuropeptide apelin. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  12. Neuroprotective Effects of AMP-Activated Protein Kinase on Scopolamine Induced Memory Impairment

    PubMed Central

    Kim, Soo-Jeong; Lee, Jun-Ho; Chung, Hwan-Suck; Song, Joo-Hyun; Ha, Joohun

    2013-01-01

    AMP-activated protein kinase (AMPK), an important regulator of energy metabolism, is activated in response to cellular stress when intracellular levels of AMP increase. We investigated the neuroprotective effects of AMPK against scopolamine-induced memory impairment in vivo and glutamate-induced cytotoxicity in vitro. An adenovirus expressing AMPK wild type alpha subunit (WT) or a dominant negative form (DN) was injected into the hippocampus of rats using a stereotaxic apparatus. The AMPK WT-injected rats showed significant reversal of the scopolamine induced cognitive deficit as evaluated by escape latency in the Morris water maze. In addition, they showed enhanced acetylcholinesterase (AChE)-reactive neurons in the hippocampus, implying increased cholinergic activity in response to AMPK. We also studied the cellular mechanism by which AMPK protects against glutamate-induced cell death in primary cultured rat hippocampal neurons. We further demonstrated that AMPK WT-infected cells increased cell viability and reduced Annexin V positive hippocampal neurons. Western blot analysis indicated that AMPK WT-infected cells reduced the expression of Bax and had no effects on Bcl-2, which resulted in a decreased Bax/Bcl-2 ratio. These data suggest that AMPK is a useful cognitive impairment treatment target, and that its beneficial effects are mediated via the protective capacity of hippocampal neurons. PMID:23946693

  13. Neuroprotection of resveratrol against neurotoxicity induced by methamphetamine in mouse mesencephalic dopaminergic neurons.

    PubMed

    Sun, Dong; Yue, Qingwei; Guo, Weihua; Li, Tao; Zhang, Jing; Li, Guibao; Liu, Zengxun; Sun, Jinhao

    2015-01-01

    Resveratrol is originally extracted from huzhang, a Chinese herbal medicine. Recently, resveratrol has attracted a great of attention due to its antioxidant and antiapoptotic properties. Although the neuroprotection of resveratrol on neural damages in various models has been well characterized, little is known about the role of resveratrol in methamphetamine (MA) induced neurotoxicity in mesencephalic dopaminergic neurons. Dopaminergic neurons were isolated from midbrain of mouse embryos at embryonic day 15 and cultured in the presence of MA and resveratrol. Cell viability was examined by MTT assay and the apoptosis was assessed using Hoechst33342/PI double staining. To evaluate the Oxidative damage, ROS assay was performed. Moreover, the changes of time course of intracellular free calcium concentration ([Ca(2+) ]i) were analyzed with Fluo-3/AM tracing. The data showed that MA induced the neurotoxicity of cultured cells in a dose-dependent manner. Resveratrol significantly increased cellular viability and retarded cell apoptosis. Furthermore, resveratrol also attenuated MA induced ROS production and intracellular free calcium overload. Our results suggest that resveratrol protects dopaminergic neurons from MA-induced neuronal cytotoxicity, which, at least partly, is mediated by inhibition of [Ca(2+) ]i and oxidative stress. © 2015 BioFactors 41(4):252-260, 2015.

  14. Protection against acetaminophen-induced liver injury by allopurinol is dependent on aldehyde oxidase-mediated liver preconditioning

    SciTech Connect

    Williams, C. David; McGill, Mitchell R.; Lebofsky, Margitta; Bajt, Mary Lynn; Jaeschke, Hartmut

    2014-02-01

    Acetaminophen (APAP) overdose causes severe and occasionally fatal liver injury. Numerous drugs that attenuate APAP toxicity have been described. However these compounds frequently protect by cytochrome P450 inhibition, thereby preventing the initiating step of toxicity. We have previously shown that pretreatment with allopurinol can effectively protect against APAP toxicity, but the mechanism remains unclear. In the current study, C3HeB/FeJ mice were administered allopurinol 18 h or 1 h prior to an APAP overdose. Administration of allopurinol 18 h prior to APAP overdose resulted in an 88% reduction in liver injury (serum ALT) 6 h after APAP; however, 1 h pretreatment offered no protection. APAP-cysteine adducts and glutathione depletion kinetics were similar with or without allopurinol pretreatment. The phosphorylation and mitochondrial translocation of c-jun-N-terminal-kinase (JNK) have been implicated in the progression of APAP toxicity. In our study we showed equivalent early JNK activation (2 h) however late JNK activation (6 h) was attenuated in allopurinol treated mice, which suggests that later JNK activation is more critical for the toxicity. Additional mice were administered oxypurinol (primary metabolite of allopurinol) 18 h or 1 h pre-APAP, but neither treatment protected. This finding implicated an aldehyde oxidase (AO)-mediated metabolism of allopurinol, so mice were treated with hydralazine to inhibit AO prior to allopurinol/APAP administration, which eliminated the protective effects of allopurinol. We evaluated potential targets of AO-mediated preconditioning and found increased hepatic metallothionein 18 h post-allopurinol. These data show metabolism of allopurinol occurring independent of P450 isoenzymes preconditions the liver and renders the animal less susceptible to an APAP overdose. - Highlights: • 18 h allopurinol pretreatment protects against acetaminophen-induced liver injury. • 1 h allopurinol pretreatment does not protect from APAP-induced

  15. Neuroprotective effect of Celastrus paniculatus on chronic stress-induced cognitive impairment

    PubMed Central

    Bhagya, V.; Christofer, Thomas; Shankaranarayana Rao, B. S.

    2016-01-01

    Objective: Several studies report that chronic stress results in impaired spatial learning and working memory and enhanced anxiety-like behavior. However, not many studies have looked into the possible ways of reversing stress-induced deficits. Celastrus paniculatus (CP), a traditional ayurvedic herbal medicine, was used to treat cognitive deficits in mentally retarded children. CP oil has been reported to have neuroprotective and antioxidant activities. However, the effects of CP oil on chronic stress-induced cognitive deficits are unclear. In the present study, we intended to analyze the neuroprotective effects of CP oil on stress-associated cognitive dysfunctions. Materials and Methods: Chronic stress was induced by subjecting rats to restrainers for 6 h a day for 21 days. CP oil (400, 600 mg/kg) or vehicle was administered intraperitoneally (i.p.) after stress protocol once a day over the next 14 days. Groups used in the present study: normal control, stress, stress + vehicle, stress + CP oil at 2 different doses (400 and 600 mg/kg, i.p.). After the drug treatment, open field and elevated plus maze (EPM) were used to analyze anxiety-like behavior, and partially baited radial arm maze (RAM) and T-maze were used to evaluate spatial learning and memory capabilities. Analysis has been done using two-way ANOVA followed by Bonferroni's post hoc test and one-way ANOVA followed by Tukey's post hoc test. Results: Stressed rats showed enhanced anxiety-like behavior in EPM (P < 0.001) and impaired performance in RAM (P < 0.001) and T-maze tasks (P < 0.001) compared to normal animals. In contrast, CP oil treatment to these rats improved their performance in both RAM (P < 0.001) and T-maze (P < 0.001). In addition, CP oil significantly reduced stress-induced anxiety behavior (P < 0.001). Conclusion: Chronic treatment with CP oil is to improve cognitive abilities in chronically stressed rats. The current study provides a novel perspective on beneficial effect of herbal

  16. Neuroprotective effect of Celastrus paniculatus on chronic stress-induced cognitive impairment.

    PubMed

    Bhagya, V; Christofer, Thomas; Shankaranarayana Rao, B S

    2016-01-01

    Several studies report that chronic stress results in impaired spatial learning and working memory and enhanced anxiety-like behavior. However, not many studies have looked into the possible ways of reversing stress-induced deficits. Celastrus paniculatus (CP), a traditional ayurvedic herbal medicine, was used to treat cognitive deficits in mentally retarded children. CP oil has been reported to have neuroprotective and antioxidant activities. However, the effects of CP oil on chronic stress-induced cognitive deficits are unclear. In the present study, we intended to analyze the neuroprotective effects of CP oil on stress-associated cognitive dysfunctions. Chronic stress was induced by subjecting rats to restrainers for 6 h a day for 21 days. CP oil (400, 600 mg/kg) or vehicle was administered intraperitoneally (i.p.) after stress protocol once a day over the next 14 days. Groups used in the present study: normal control, stress, stress + vehicle, stress + CP oil at 2 different doses (400 and 600 mg/kg, i.p.). After the drug treatment, open field and elevated plus maze (EPM) were used to analyze anxiety-like behavior, and partially baited radial arm maze (RAM) and T-maze were used to evaluate spatial learning and memory capabilities. Analysis has been done using two-way ANOVA followed by Bonferroni's post hoc test and one-way ANOVA followed by Tukey's post hoc test. Stressed rats showed enhanced anxiety-like behavior in EPM (P < 0.001) and impaired performance in RAM (P < 0.001) and T-maze tasks (P < 0.001) compared to normal animals. In contrast, CP oil treatment to these rats improved their performance in both RAM (P < 0.001) and T-maze (P < 0.001). In addition, CP oil significantly reduced stress-induced anxiety behavior (P < 0.001). Chronic treatment with CP oil is to improve cognitive abilities in chronically stressed rats. The current study provides a novel perspective on beneficial effect of herbal therapy on stress-induced cognitive dysfunctions.

  17. Neuroprotective Effects of Rutin in Streptozotocin-Induced Diabetic Rat Retina.

    PubMed

    Ola, Mohammad Shamsul; Ahmed, Mohammed M; Ahmad, Rehan; Abuohashish, Hatem M; Al-Rejaie, Salim S; Alhomida, Abdullah S

    2015-06-01

    Diabetic retinopathy is widely recognized as a neurodegenerative disease of the eye. Increased oxidative stress has been considered the central factor in damaging neural retina in diabetes. Flavonoids, being powerful antioxidants, play protective roles in several oxidative stress-mediated neurodegenerative diseases. In this study, we analyzed the neuroprotective effects of a potential flavonoid, rutin, in the diabetic rat retina. Diabetes was induced in male Wistar rats by single injection of streptozotocin (65 mg/kg). In age-matched control (non-diabetic) and 1 week of diabetic rats, rutin (100 mg/kg/day) was orally administered and continued for 5 weeks. In another group of diabetic rats, only saline was supplemented. After treatments, retinas from all the groups were isolated and analyzed for potential neurotrophic factors and apoptotic and oxidative stress markers using biochemical and immunoblotting techniques. Our results indicate that rutin possesses antidiabetic activity, as blood glucose level decreased and insulin level increased in diabetic rats. In the diabetic retina, rutin supplementation enhanced the reduced levels of brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), and glutathione (GSH) (P < 0.05), and reduced the level of thiobarbituric acid-reactive substances (TBARS) (P < 0.05). In addition, rutin treatment showed antiapoptotic activity by decreasing the level of caspase-3 and increasing the level of Bcl-2 in the diabetic retina. These results suggest the effectiveness of rutin in ameliorating the levels of neuroprotective factors in diabetic retina. Therefore, rutin might be a potential flavonoid that can prevent the retinal damage and subsequently the development of diabetic retinopathy.

  18. Small molecule-induced oxidation of protein disulfide isomerase is neuroprotective

    PubMed Central

    Kaplan, Anna; Gaschler, Michael M.; Dunn, Denise E.; Colligan, Ryan; Brown, Lewis M.; Palmer, Arthur G.; Lo, Donald C.; Stockwell, Brent R.

    2015-01-01

    Protein disulfide isomerase (PDI) is a chaperone protein in the endoplasmic reticulum that is up-regulated in mouse models of, and brains of patients with, neurodegenerative diseases involving protein misfolding. PDI’s role in these diseases, however, is not fully understood. Here, we report the discovery of a reversible, neuroprotective lead optimized compound (LOC)14, that acts as a modulator of PDI. LOC14 was identified using a high-throughput screen of ∼10,000 lead-optimized compounds for potent rescue of viability of PC12 cells expressing mutant huntingtin protein, followed by an evaluation of compounds on PDI reductase activity in an in vitro screen. Isothermal titration calorimetry and fluorescence experiments revealed that binding to PDI was reversible with a Kd of 62 nM, suggesting LOC14 to be the most potent PDI inhibitor reported to date. Using 2D heteronuclear single quantum correlation NMR experiments, we were able to map the binding site of LOC14 as being adjacent to the active site and to observe that binding of LOC14 forces PDI to adopt an oxidized conformation. Furthermore, we found that LOC14-induced oxidation of PDI has a neuroprotective effect not only in cell culture, but also in corticostriatal brain slice cultures. LOC14 exhibited high stability in mouse liver microsomes and blood plasma, low intrinsic microsome clearance, and low plasma-protein binding. These results suggest that LOC14 is a promising lead compound to evaluate the potential therapeutic effects of modulating PDI in animal models of disease. PMID:25848045

  19. Dexmedetomidine post-treatment induces neuroprotection via activation of extracellular signal-regulated kinase in rats with subarachnoid haemorrhage

    PubMed Central

    Wang, Y.; Han, R.; Zuo, Z.

    2016-01-01

    Background Dexmedetomidine, a sedative agent, provides neuroprotection when administered during or before brain ischaemia. This study was designed to determine whether dexmedetomidine post-treatment induces neuroprotection against subarachnoid haemorrhage (SAH) and the mechanisms for this effect. Methods Subarachnoid haemorrhage was induced by endovascular perforation to the junction of the right middle and anterior cerebral arteries in adult rats. Dexmedetomidine was applied immediately or 2 h after onset of SAH. Neurological outcome was evaluated 2 days after SAH. Right frontal cortex area 1 was harvested 24 h after SAH for western blotting. Results Subarachnoid haemorrhage reduced neurological scores and increased brain oedema and blood–brain barrier permeability. These effects were attenuated by dexmedetomidine post-treatment. Neuroprotection by dexmedetomidine was abolished by PD98095, an inhibitor of extracellular signal-regulated kinase (ERK) activation. Phospho-ERK, the activated form of ERK, was increased by dexmedetomidine; this activation was inhibited by PD98095. Conclusions Dexmedetomidine post-treatment provides neuroprotection against SAH. This effect appears to be mediated by ERK. PMID:26865131

  20. Neuroprotective Effects of β-Caryophyllene against Dopaminergic Neuron Injury in a Murine Model of Parkinson's Disease Induced by MPTP.

    PubMed

    Viveros-Paredes, Juan M; González-Castañeda, Rocio E; Gertsch, Juerg; Chaparro-Huerta, Veronica; López-Roa, Rocio I; Vázquez-Valls, Eduardo; Beas-Zarate, Carlos; Camins-Espuny, Antoni; Flores-Soto, Mario E

    2017-07-06

    Parkinson's disease (PD) is one of the most common neurodegenerative disorders and is characterized by the loss of dopaminergic neurons in the substantia nigra (SN). Although the causes of PD are not understood, evidence suggests that its pathogenesis is associated with oxidative stress and inflammation. Recent studies have suggested a protective role of the cannabinoid signalling system in PD. β-caryophyllene (BCP) is a natural bicyclic sesquiterpene that is an agonist of the cannabinoid type 2 receptor (CB2R). Previous studies have suggested that BCP exerts prophylactic and/or curative effects against inflammatory bowel disease through its antioxidative and/or anti-inflammatory action. The present study describes the neuroprotective effects of BCP in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced murine model of PD, and we report the results of our investigation of its neuroprotective mechanism in neurons and glial cells. In the murine model, BCP pretreatment ameliorated motor dysfunction, protected against dopaminergic neuronal losses in the SN and striatum, and alleviated MPTP-induced glia activation. Additionally, BCP inhibited the levels of inflammatory cytokines in the nigrostriatal system. The observed neuroprotection and inhibited glia activation were reversed upon treatment with the CB2R selective antagonist AM630, confirming the involvement of the CB2R. These results indicate that BCP acts via multiple neuroprotective mechanisms in our murine model and suggest that BCP may be viewed as a potential treatment and/or preventative agent for PD.

  1. Neuroprotective and Therapeutic Effect of Caffeine on the Rat Model of Parkinson's Disease Induced by Rotenone.

    PubMed

    Khadrawy, Yasser A; Salem, Ahmed M; El-Shamy, Karima A; Ahmed, Emad K; Fadl, Nevein N; Hosny, Eman N

    2017-09-03

    The present study aimed to investigate the protective and therapeutic effects of caffeine on rotenone-induced rat model of Parkinson's disease (PD). Rats were divided into control, PD model induced by rotenone (1.5 mg/kg intraperitoneally (i.p.) for 45 days), protected group injected with caffeine (30 mg/kg, i.p.) and rotenone for 45 days (during the development of PD model), and treated group injected with caffeine (30 mg/kg, i.p.) for 45 days after induction of PD model. The data revealed a state of oxidative and nitrosative stress in the midbrain and the striatum of animal model of PD as indicated from the increased lipid peroxidation and nitric oxide levels and the decreased reduced glutathione level and activities of glutathione-S-transferase and superoxide dismutase. Rotenone induced a decrease in acetylcholinesterase and Na(+)/K(+)-ATPase activities and an increase in tumor necrosis factor-α level in the midbrain and the striatum. Protection and treatment with caffeine ameliorated the oxidative stress and the changes in acetylcholinesterase and Na(+)/K(+)-ATPase activities induced by rotenone in the midbrain and the striatum. This was associated with improvement in the histopathological changes induced in the two areas of PD model. Caffeine protection and treatment restored the depletion of midbrain and striatal dopamine induced by rotenone and prevented decline in motor activities (assessed by open field test) and muscular strength (assessed by traction and hanging tests) and improved norepinephrine level in the two areas. The present study showed that caffeine offered a significant neuroprotection and treatment against neurochemical, histopathological, and behavioral changes in a rotenone-induced rat model of PD.

  2. Unraveling the mechanism of neuroprotection of curcumin in arsenic induced cholinergic dysfunctions in rats

    SciTech Connect

    Srivastava, Pranay; Yadav, Rajesh S.; Chandravanshi, Lalit P.; Shukla, Rajendra K.; Dhuriya, Yogesh K.; Chauhan, Lalit K.S.; Dwivedi, Hari N.; Pant, Aditiya B.; Khanna, Vinay K.

    2014-09-15

    Earlier, we found that arsenic induced cholinergic deficits in rat brain could be protected by curcumin. In continuation to this, the present study is focused to unravel the molecular mechanisms associated with the protective efficacy of curcumin in arsenic induced cholinergic deficits. Exposure to arsenic (20 mg/kg body weight, p.o) for 28 days in rats resulted to decrease the expression of CHRM2 receptor gene associated with mitochondrial dysfunctions as evident by decrease in the mitochondrial membrane potential, activity of mitochondrial complexes and enhanced apoptosis both in the frontal cortex and hippocampus in comparison to controls. The ultrastructural images of arsenic exposed rats, assessed by transmission electron microscope, exhibited loss of myelin sheath and distorted cristae in the mitochondria both in the frontal cortex and hippocampus as compared to controls. Simultaneous treatment with arsenic (20 mg/kg body weight, p.o) and curcumin (100 mg/kg body weight, p.o) for 28 days in rats was found to protect arsenic induced changes in the mitochondrial membrane potential and activity of mitochondrial complexes both in frontal cortex and hippocampus. Alterations in the expression of pro- and anti-apoptotic proteins and ultrastructural damage in the frontal cortex and hippocampus following arsenic exposure were also protected in rats simultaneously treated with arsenic and curcumin. The data of the present study reveal that curcumin could protect arsenic induced cholinergic deficits by modulating the expression of pro- and anti-apoptotic proteins in the brain. More interestingly, arsenic induced functional and ultrastructural changes in the brain mitochondria were also protected by curcumin. - Highlights: • Neuroprotective mechanism of curcumin in arsenic induced cholinergic deficits studied • Curcumin protected arsenic induced enhanced expression of stress markers in rat brain • Arsenic compromised mitochondrial electron transport chain protected

  3. Neuroprotection of luteolin against methylmercury-induced toxicity in lobster cockroach Nauphoeta cinerea.

    PubMed

    Adedara, Isaac A; Rosemberg, Denis B; Souza, Diogo O; Farombi, Ebenezer O; Aschner, Michael; Rocha, Joao B T

    2016-03-01

    Luteolin (3', 4', 5, 7-tetrahydroxyflavone) is a polyphenolic compound found in foods of plant origin and has been reported to possess antioxidant and neuroprotective properties. However, there is dearth of information on the beneficial effects of luteolin on methylmercury (MeHg), a long-established neurotoxic compound in animals and humans. This study evaluated the effect of luteolin on MeHg-induced behavioral and biochemical deficits, using lobster cockroach Nauphoeta cinerea as an alternative and complementary animal model. The insects were exposed for 35 consecutive days to either MeHg alone (0.05 mg/g feed) or in combination with luteolin at 0.25, 0.5 and 1.0 mg/g feed. Locomotor behavior was assessed using video-tracking software during a 10-min trial in a novel arena and subsequently, biochemical analyses were carried out using the cockroaches' heads. Luteolin supplementation dose-dependently reversed the MeHg-induced locomotor deficits and enhanced the exploratory profiles of MeHg-exposed cockroaches as confirmed by track and occupancy plot analyses. Luteolin reversed the MeHg-induced acetylcholinesterase activity inhibition, decreased dichlorofluorescein oxidation and lipid peroxidation levels, but increased total thiol level and catalase and glutathione S-transferase activities in the treated cockroaches. In conclusion, luteolin prevented oxidative stress indices and neurobehavioral deficits in a Nauphoeta cinerea model of MeHg toxicity.

  4. Neuroprotective activity of Wedelia calendulacea on cerebral ischemia/reperfusion induced oxidative stress in rats

    PubMed Central

    Prakash, Tigari; Kotresha, Dupadahalli; Nedendla, Rama Rao

    2011-01-01

    Objective: This study was undertaken to evaluate the neuroprotective activity of Wedelia calendulacea against cerebral ischemia/reperfusion induced oxidative stress in the rats. Materials and Methods: The global cerebral ischemia was induced in male albino Wistar rats by occluding the bilateral carotid arteries for 30 min followed by 1 h and 4 h reperfusion. At various times of reperfusion, the histopathological changes and the levels of malondialdehyde (MDA), glutathione peroxidase (GPx), glutathione reductase (GR), glutathione–s–transferase (GST), and hydrogen peroxide (H2O2) activity and brain water content were measured. Results: The ischemic changes were preceded by increase in concentration of MDA, hydrogen peroxide and followed by decreased GPx, GR, and GST activity. Treatment with W. calendulacea significantly attenuated ischemia–induced oxidative stress. W. calendulacea administration markedly reversed and restored to near normal level in the groups pre-treated with methanolic extract (250 and 500 mg/kg, given orally in single and double dose/day for 10 days) in dose-dependent way. Similarly, W. calendulacea reversed the brain water content in the ischemia reperfusion animals. The neurodegenaration also conformed by the histopathological changes in the cerebral-ischemic animals. Conclusion: The findings from the present investigation reveal that W. calendulacea protects neurons from global cerebral–ischemic injury in rat by attenuating oxidative stress. PMID:22144773

  5. Neuroprotective Effects of Centella asiatica against Intracerebroventricular Colchicine-Induced Cognitive Impairment and Oxidative Stress

    PubMed Central

    Kumar, Anil; Dogra, Samrita; Prakash, Atish

    2009-01-01

    Oxidative stress appears to be an early event involved in the pathogenesis of Alzheimer's disease. The present study was designed to investigate the neuroprotective effects of Centella asiatica against colchicine-induced memory impairment and oxidative damage in rats. Colchicine (15 μg/5 μL) was administered intracerebroventricularly in the lateral ventricle of male wistar rats. Morris water maze and plus-maze performance tests were used to assess memory performance tasks. Various biochemical parameters such as lipid peroxidation, nitrite, reduced glutathione, glutathione-S-transferase, superoxide dismutase, acetylcholinesterase were also assessed. ICV colchicine resulted marked memory impairment and oxidative damage. Chronic treatment with Centella asiatica extract (150 and 300 mg/kg, p.o.) for a period of 25 days, beginning 4 days prior to colchicine administration, significantly attenuated colchicine-induced memory impairment and oxidative damage. Besides, Centella asiatica significantly reversed colchicines administered increase in acetylcholinesterase activity. Thus, present study indicates protective effect of Centella asiatica against colchicine-induced cognitive impairment and associated oxidative damage. PMID:20798885

  6. Neuroprotective activities of curcumin and quercetin with potential relevance to mitochondrial dysfunction induced by oxaliplatin.

    PubMed

    Waseem, Mohammad; Parvez, Suhel

    2016-03-01

    Peripheral neurotoxicity is one of the serious dose-limiting side effects of oxaliplatin (Oxa) when used in the treatment of malignant conditions. It is documented that it elicits major side effects specifically neurotoxicity due to oxidative stress forcing the patients to limit its clinical use in long-term treatment. Oxidative stress has been proven to be involved in Oxa-induced toxicity including neurotoxicity. The mitochondria have recently emerged as targets for anticancer drugs in various kinds of toxicity including neurotoxicity that can lead to neoplastic disease. However, there is paucity of literature involving the role of the mitochondria in mediating Oxa-induced neurotoxicity and its underlying mechanism is still debatable. The purpose of this study was to investigate the dose-dependent damage caused by Oxa on isolated brain mitochondria under in vitro conditions. The study was also designed to investigate the neuroprotective effects of nutraceuticals, curcumin (CMN), and quercetin (QR) on Oxa-induced mitochondrial oxidative stress and respiratory chain complexes in the brain of rats. Oxidative stress biomarkers, levels of nonenzymatic antioxidants, activities of enzymatic antioxidants, and mitochondrial complexes were evaluated against the neurotoxicity induced by Oxa. Pretreatment with CMN and QR significantly replenished the mitochondrial lipid peroxidation levels and protein carbonyl content induced by Oxa. CMN and QR ameliorated altered nonenzymatic and enzymatic antioxidants and complex enzymes of mitochondria. We conclude that CMN and QR, by attenuating oxidative stress as evident by mitochondrial dysfunction, hold promise as agents that can potentially reduce Oxa-induced adverse effects in the brain.

  7. Neuroprotective effects of bloodletting at Jing points combined with mild induced hypothermia in acute severe traumatic brain injury

    PubMed Central

    Tu, Yue; Miao, Xiao-mei; Yi, Tai-long; Chen, Xu-yi; Sun, Hong-tao; Cheng, Shi-xiang; Zhang, Sai

    2016-01-01

    Bloodletting at Jing points has been used to treat coma in traditional Chinese medicine. Mild induced hypothermia has also been shown to have neuroprotective effects. However, the therapeutic effects of bloodletting at Jing points and mild induced hypothermia alone are limited. Therefore, we investigated whether combined treatment might have clinical effectiveness for the treatment of acute severe traumatic brain injury. Using a rat model of traumatic brain injury, combined treatment substantially alleviated cerebral edema and blood-brain barrier dysfunction. Furthermore, neurological function was ameliorated, and cellular necrosis and the inflammatory response were lessened. These findings suggest that the combined effects of bloodletting at Jing points (20 μL, twice a day, for 2 days) and mild induced hypothermia (6 hours) are better than their individual effects alone. Their combined application may have marked neuroprotective effects in the clinical treatment of acute severe traumatic brain injury. PMID:27482221

  8. Nootropic, neuroprotective and neurotrophic effects of phloretin in scopolamine induced amnesia in mice.

    PubMed

    Ghumatkar, Priya J; Patil, Sachin P; Jain, Pankaj D; Tambe, Rufi M; Sathaye, Sadhana

    2015-08-01

    Phloretin (PHL), a dihydrochalcone flavonoid usually present in the roots and leaves of apple tree. In vitro study on GT1-7 immortalized hypothalamic neurons exposed to amyloid beta (25-35), demonstrated that PHL significantly influenced membrane fluidity and potential. PHL also significantly decreased excitotoxicity by restoring the calcium homeostasis in the same. Thus, PHL proves to be a promising therapeutic moiety which should be further screened in the treatment of Alzheimer's disease. The objective of the present study was to evaluate the nootropic, neuroprotective and neurotrophic roles of PHL in the subacute scopolamine induced amnesia in mice. In this study, mice were pretreated with PHL 2.5mg/kg, 5mg/kg, 10mg/kg and Donepezil (DON) 1mg/kg intraperitoneally (i.p) for 14days. The last 7days of treatment regimen included daily injection of SCP 1.5mg/kg to induce cognitive deficits. Mice were subjected to behavioral analysis. Biochemical estimation of the brain homogenates for acetylcholinesterase and oxidative stress biomarkers were conducted. Furthermore, immunohistochemical analysis for the brain derived neurotrophic factor (BDNF) was carried out particularly in the hippocampus. PHL was found to significantly improve the performance of mice in Morris water maze test (P<0.001) and significantly decreased the acetylcholinesterase activity (P<0.001) at all doses compared to SCP treated mice. Also, PHL significantly elevated the activity of antioxidant enzymes viz. superoxide dismutase, catalase, reduced glutathione levels (P<0.001) and decreased malonaldehyde levels (P<0.001) in comparison with the SCP group. Immunohistochemistry revealed that PHL treatment dose dependently improved BDNF levels in the hippocampus which were found to be significantly depleted (P<0.001) in the SCP group. Additionally, PHL (10mg/kg) significantly enhanced the spatial memory formation (P<0.05) and neurotrophicity (P<0.001) compared to DON (1mg/kg). The aforementioned research

  9. Remote Ischemic Preconditioning for the Prevention of Contrast-Induced Acute Kidney Injury in Diabetics Receiving Elective Percutaneous Coronary Intervention.

    PubMed

    Balbir Singh, Gillian; Ann, Soe Hee; Park, Jongha; Chung, Hyun Chul; Lee, Jong Soo; Kim, Eun-Sook; Choi, Jung Il; Lee, Jiho; Kim, Shin-Jae; Shin, Eun-Seok

    2016-01-01

    Remote ischemic preconditioning (RIPC) induces transient episodes of ischemia by the occlusion of blood flow in non-target tissue, before a subsequent ischemia-reperfusion injury. When RIPC is applied before percutaneous coronary intervention (PCI), the kidneys may be protected against ischemia-reperfusion injury and subsequently contrast-induced acute kidney injury (CI-AKI). The aim of this study was to evaluate the efficacy of RIPC for the prevention of CI-AKI in patients with diabetes with pre-existing chronic kidney disease (CKD) undergoing elective PCI. This randomized, double-blind, sham-controlled study enrolled patients with diabetes scheduled for elective PCI with eGFR ≤60 ml/min/1.73 m2 or urinary albumin creatinine ratio of >300 mg/g to receive either RIPC or the sham ischemic preconditioning. One hundred and two patients (68.9 ± 8.2 years old, 47.1% men) were included. Baseline eGFR, creatinine and serum NGAL was similar between RIPC and control groups (48.5 ± 12 ml/min vs. 46.6 ± 10 ml/min, p = 0.391; 1.42 ± 0.58 mg/dl vs. 1.41 ± 0.34 mg/dl, p = 0.924; and 136.0 ± 45.0 ng/ml vs. 137.6 ± 43.3 ng/ml, p = 0.961, respectively). CI-AKI occurred in 13.7% (14/102) of the total subjects, with both RIPC and control groups having an equal incidence of 13.7% (7/51). No significant differences were seen in creatinine, NGAL, cardiac enzymes (troponin T, CKMB) and hs-CRP between the groups post-procedure. In this study, RIPC applied prior to elective PCI was not effective in preventing CI-AKI in patients with diabetes with pre-existing CKD. ClinicalTrials.gov NCT02329444.

  10. Remote Ischemic Preconditioning for the Prevention of Contrast-Induced Acute Kidney Injury in Diabetics Receiving Elective Percutaneous Coronary Intervention

    PubMed Central

    Balbir Singh, Gillian; Ann, Soe Hee; Park, Jongha; Chung, Hyun Chul; Lee, Jong Soo; Kim, Eun-Sook; Choi, Jung Il; Lee, Jiho; Kim, Shin-Jae; Shin, Eun-Seok

    2016-01-01

    Objective Remote ischemic preconditioning (RIPC) induces transient episodes of ischemia by the occlusion of blood flow in non-target tissue, before a subsequent ischemia-reperfusion injury. When RIPC is applied before percutaneous coronary intervention (PCI), the kidneys may be protected against ischemia-reperfusion injury and subsequently contrast-induced acute kidney injury (CI-AKI). The aim of this study was to evaluate the efficacy of RIPC for the prevention of CI-AKI in patients with diabetes with pre-existing chronic kidney disease (CKD) undergoing elective PCI. Methods This randomized, double-blind, sham-controlled study enrolled patients with diabetes scheduled for elective PCI with eGFR ≤60 ml/min/1.73 m2 or urinary albumin creatinine ratio of >300 mg/g to receive either RIPC or the sham ischemic preconditioning. Results One hundred and two patients (68.9 ± 8.2 years old, 47.1% men) were included. Baseline eGFR, creatinine and serum NGAL was similar between RIPC and control groups (48.5 ± 12 ml/min vs. 46.6 ± 10 ml/min, p = 0.391; 1.42 ± 0.58 mg/dl vs. 1.41 ± 0.34 mg/dl, p = 0.924; and 136.0 ± 45.0 ng/ml vs. 137.6 ± 43.3 ng/ml, p = 0.961, respectively). CI-AKI occurred in 13.7% (14/102) of the total subjects, with both RIPC and control groups having an equal incidence of 13.7% (7/51). No significant differences were seen in creatinine, NGAL, cardiac enzymes (troponin T, CKMB) and hs-CRP between the groups post-procedure. Conclusions In this study, RIPC applied prior to elective PCI was not effective in preventing CI-AKI in patients with diabetes with pre-existing CKD. Trial Registration ClinicalTrials.gov NCT02329444 PMID:27723839

  11. Role of phosphoinositide 3-kinase IA (PI3K-IA) activation in cardioprotection induced by ouabain preconditioning.

    PubMed

    Duan, Qiming; Madan, Namrata D; Wu, Jian; Kalisz, Jennifer; Doshi, Krunal Y; Haldar, Saptarsi M; Liu, Lijun; Pierre, Sandrine V

    2015-03-01

    Acute myocardial infarction, the clinical manifestation of ischemia-reperfusion (IR) injury, is a leading cause of death worldwide. Like ischemic preconditioning (IPC) induced by brief episodes of ischemia and reperfusion, ouabain preconditioning (OPC) mediated by Na/K-ATPase signaling protects the heart against IR injury. Class I PI3K activation is required for IPC, but its role in OPC has not been investigated. While PI3K-IB is critical to IPC, studies have suggested that ouabain signaling is PI3K-IA-specific. Hence, a pharmacological approach was used to test the hypothesis that OPC and IPC rely on distinct PI3K-I isoforms. In Langendorff-perfused mouse hearts, OPC was initiated by 4 min of ouabain 10 μM and IPC was triggered by 4 cycles of 5 min ischemia and reperfusion prior to 40 min of global ischemia and 30 min of reperfusion. Without affecting PI3K-IB, ouabain doubled PI3K-IA activity and Akt phosphorylation at Ser(473). IPC and OPC significantly preserved cardiac contractile function and tissue viability as evidenced by left ventricular developed pressure and end-diastolic pressure recovery, reduced lactate dehydrogenase release, and decreased infarct size. OPC protection was blunted by the PI3K-IA inhibitor PI-103, but not by the PI3K-IB inhibitor AS-604850. In contrast, IPC-mediated protection was not affected by PI-103 but was blocked by AS-604850, suggesting that PI3K-IA activation is required for OPC while PI3K-IB activation is needed for IPC. Mechanistically, PI3K-IA activity is required for ouabain-induced Akt activation but not PKCε translocation. However, in contrast to PKCε translocation which is critical to protection, Akt activity was not required for OPC. Further studies shall reveal the identity of the downstream targets of this new PI3K IA-dependent branch of OPC. These findings may be of clinical relevance in patients at risk for myocardial infarction with underlying diseases and/or medication that could differentially affect the

  12. Multimodal Neuroprotection Induced by PACAP38 in Oxygen–Glucose Deprivation and Middle Cerebral Artery Occlusion Stroke Models

    PubMed Central

    Cohen, Gadi; Arien-Zakay, Hadar; Chen, Jieli; Zhang, Chunling; Chopp, Michael; Jiang, Hao

    2014-01-01

    Pituitary adenylate cyclase activating peptide (PACAP), a potent neuropeptide which crosses the blood–brain barrier, is known to provide neuroprotection in rat stroke models of middle cerebral artery occlusion (MCAO) by mechanism(s) which deserve clarification. We confirmed that following i.v. injection of 30 ng/kg of PACAP38 in rats exposed to 2 h of MCAO focal cerebral ischemia and 48 h reoxygenation, 50 % neuroprotection was measured by reduced caspase-3 activity and volume of cerebral infarction. Similar neuroprotective effects were measured upon PACAP38 treatment of oxygen–glucose deprivation and reoxygenation of brain cortical neurons. The neuroprotection was temporally associated with increased expression of brain-derived neurotrophic factor, phosphorylation of its receptor—tropomyosin-related kinase receptor type B (trkB), activation of phosphoinositide 3-kinase and Akt, and reduction of extracellular signal-regulated kinases 1/2 phosphorylation. PACAP38 increased expression of neuronal markers beta-tubulin III, microtubule-associated protein-2, and growth-associated protein-43. PACAP38 induced stimulation of Rac and suppression of Rho GTPase activities. PACAP38 down-regulated the nerve growth factor receptor (p75NTR) and associated Nogo-(Neurite outgrowth-A) receptor. Collectively, these in vitro and in vivo results propose that PACAP exhibits neuroprotective effects in cerebral ischemia by three mechanisms: a direct one, mediated by PACAP receptors, and two indirect, induced by neurotrophin release, activation of the trkB receptors and attenuation of neuronal growth inhibitory signaling molecules p75NTR and Nogo receptor. PMID:22678884

  13. Multimodal neuroprotection induced by PACAP38 in oxygen-glucose deprivation and middle cerebral artery occlusion stroke models.

    PubMed

    Lazarovici, Philip; Cohen, Gadi; Arien-Zakay, Hadar; Chen, Jieli; Zhang, Chunling; Chopp, Michael; Jiang, Hao

    2012-11-01

    Pituitary adenylate cyclase activating peptide (PACAP), a potent neuropeptide which crosses the blood-brain barrier, is known to provide neuroprotection in rat stroke models of middle cerebral artery occlusion (MCAO) by mechanism(s) which deserve clarification. We confirmed that following i.v. injection of 30 ng/kg of PACAP38 in rats exposed to 2 h of MCAO focal cerebral ischemia and 48 h reoxygenation, 50 % neuroprotection was measured by reduced caspase-3 activity and volume of cerebral infarction. Similar neuroprotective effects were measured upon PACAP38 treatment of oxygen-glucose deprivation and reoxygenation of brain cortical neurons. The neuroprotection was temporally associated with increased expression of brain-derived neurotrophic factor, phosphorylation of its receptor-tropomyosin-related kinase receptor type B (trkB), activation of phosphoinositide 3-kinase and Akt, and reduction of extracellular signal-regulated kinases 1/2 phosphorylation. PACAP38 increased expression of neuronal markers beta-tubulin III, microtubule-associated protein-2, and growth-associated protein-43. PACAP38 induced stimulation of Rac and suppression of Rho GTPase activities. PACAP38 downregulated the nerve growth factor receptor (p75(NTR)) and associated Nogo-(Neurite outgrowth-A) receptor. Collectively, these in vitro and in vivo results propose that PACAP exhibits neuroprotective effects in cerebral ischemia by three mechanisms: a direct one, mediated by PACAP receptors, and two indirect, induced by neurotrophin release, activation of the trkB receptors and attenuation of neuronal growth inhibitory signaling molecules p75(NTR) and Nogo receptor.

  14. Neuroprotective Effect of Matrine in Mouse Model of Vincristine-Induced Neuropathic Pain.

    PubMed

    Gong, Shuai-Shuai; Li, Yu-Xiang; Zhang, Meng-Ting; Du, Juan; Ma, Peng-Sheng; Yao, Wan-Xia; Zhou, Ru; Niu, Yang; Sun, Tao; Yu, Jian-Qiang

    2016-11-01

    Chemotherapy drugs such as vincristine (VCR) can cause neuropathic pain, and there is still lack of ideal strategy to treat it. The current study was designed to investigate effect of matrine (MT) on VCR-induced neuropathic pain in animal model. VCR (75 μg/kg, i.p. for 10 consecutive days) was administered to induce painful neuropathy model in mice. MT (15, 30 and 60 mg/kg, i.p.) and pregabalin (10 mg/kg, i.p.) were administered for 11 consecutive days. Various tests were performed to assess the degree of pain at different days (1, 6, 11, 16, and 21). Von Frey hair, hot plate, cold-plate and paw pressure tests were conducted to assess the degree of mechanical allodynia, thermal hyperalgesia, cold allodynia and mechanical hyperalgesia in the hind paw respectively. The electrophysiological and histopathological changes were also analyzed. Furthermore, tissue malondialdehyde (MDA), total antioxidant capacity (T-AOC),superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), total calcium (TCA), myeloperoxidase (MPO), tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), interleukin-10 (IL-10) were measured to investigate possible involvement of MT in inflammation and oxidative stress. Administration of MT attenuated the VCR-induced behavioral alterations as well as electrophysiological and histopathological changes in a dose dependent manner. Further, MT also attenuated the VCR-induced oxidative stress (MDA, T-AOC, GSH-Px, SOD and TCA) and inflammation (MPO, TNF-α, IL-6 and IL-10). Taken together, MT ameliorated VCR-induced painful neuropathy, which might be attributed to neuroprotective effects by subsequent reduction in oxidative stress and anti-inflammatory actions.

  15. Neuroprotective effect of caffeic acid phenethyl ester in 3-nitropropionic acid-induced striatal neurotoxicity

    PubMed Central

    Bak, Jia; Kim, Hee Jung; Kim, Seong Yun

    2016-01-01

    Caffeic acid phenethyl ester (CAPE), derived from honeybee hives, is a bioactive compound with strong antioxidant activity. This study was designed to test the neuroprotective effect of CAPE in 3-nitropropionic acid (3NP)-induced striatal neurotoxicity, a chemical model of Huntington's disease (HD). Initially, to test CAPE's antioxidant activity, a 2,2'-azino-bis-3-ethylbenzthiazoline-6-sulfonic acid (ABTS) antioxidant assay was employed, and CAPE showed a strong direct radical-scavenging eff ect. In addition, CAPE provided protection from 3NP-induced neuronal cell death in cultured striatal neurons. Based on these observations, the in vivo therapeutic potential of CAPE in 3NP-induced HD was tested. For this purpose, male C57BL/6 mice were repeatedly given 3NP to induce HD-like pathogenesis, and 30 mg/kg of CAPE or vehicle (5% dimethyl sulfoxide and 95% peanut oil) was administered daily. CAPE did not cause changes in body weight, but it reduced mortality by 29%. In addition, compared to the vehicle-treated group, robustly reduced striatal damage was observed in the CAPE-treated animals, and the 3NP-induced behavioral defi cits on the rotarod test were signifi cantly rescued after the CAPE treatment. Furthermore, immunohistochemical data showed that immunoreactivity to glial fibrillary acidic protein (GFAP) and CD45, markers for astrocyte and microglia activation, respectively, were strikingly reduced. Combined, these data unequivocally indicate that CAPE has a strong antioxidant eff ect and can be used as a potential therapeutic agent against HD. PMID:27162482

  16. Moderate increases in intracellular calcium activate neuroprotective signals in hippocampal neurons.

    PubMed

    Bickler, P E; Fahlman, C S

    2004-01-01

    Although large increases in neuronal intracellular calcium concentrations ([Ca(2+)](i)) are lethal, moderate increases in [Ca(2+)](i) of 50-200 nM may induce immediate or long-term tolerance of ischemia or other stresses. In neurons in rat hippocampal slice cultures, we determined the relationship between [Ca(2+)](i), cell death, and Ca(2+)-dependent neuroprotective signals before and after a 45 min period of oxygen and glucose deprivation (OGD). Thirty minutes before OGD, [Ca(2+)](i) was increased in CA1 neurons by 40-200 nM with 1 nM-1 microM of a Ca(2+)-selective ionophore (calcimycin or ionomycin-"Ca(2+) preconditioning"). Ca(2+) preconditioning greatly reduced cell death in CA1, CA3 and dentate during the following 7 days, even though [Ca(2+)](i) was similar (approximately 2 microM) in preconditioned and control neurons 1 h after the OGD. When pre-OGD [Ca(2+)](i) was lowered to 25 nM (10 nM ionophore in Ca(2+)-free medium) or increased to 8 microM (10 microM ionophore), more than 90% of neurons died. Increased levels of the anti-apoptotic protein protein kinase B (Akt) and the MAP kinase ERK (p42/44) were present in preconditioned slices after OGD. Reducing Ca(2+) influx, inhibiting calmodulin, and preventing Akt or MAP kinase p42/44 upregulation prevented Ca(2+) preconditioning, supporting a specific role for Ca(2+) in the neuroprotective process. Further, in continuously oxygenated cultured hippocampal/cortical neurons, preconditioning for 30 min with 10 nM ionomycin reduced cell death following a 4 microM increase in [Ca(2+)](i) elicited by 1 microM ionomycin. Thus, a zone of moderately increased [Ca(2+)](i) before a potentially lethal insult promotes cell survival, uncoupling subsequent large increases in [Ca(2+)](i) from initiating cell death processes.

  17. Neuroprotection of Grape Seed Extract and Pyridoxine against Triton-Induced Neurotoxicity.

    PubMed

    Abdou, Heba M; Wahby, Mayssaa M

    2016-01-01

    Triton WR-1339 administration causes neurotoxicity. Natural products and herbal extracts can attenuate cerebral injury. In the present study, we investigated the neuroprotective role of grape seed extract and/or vitamin B6 against triton-induced neurotoxicity. Thirty-five adult male albino rats of the Sprague-Dawley strain, weighing 140-145 g, were divided into five groups: control, triton, grape seed extract + triton, grape seed extract + triton + vitamin B6, and vitamin B6 + triton. The hematological and biochemical analyses were carried out. Alteration in iNOS mRNA gene expression was determined using reverse-transcriptase PCR analysis. In addition, qualitative DNA fragmentation was examined using agarose gel electrophoresis. Triton-treatment caused significant disturbances in the hematological parameters, the neurological functions, and the antioxidant profile. Also, triton significantly increased the iNOS mRNA expression and DNA damage. Our results showed that grape seed extract and/or vitamin B6 could attenuate all the examined parameters. These natural substances could exhibit protective effects against triton-induced neurological damage because of their antioxidative and antiapoptotic capacities.

  18. Neuroprotective effect of cobalt chloride on hypobaric hypoxia-induced oxidative stress.

    PubMed

    Shrivastava, Kalpana; Shukla, Dhananjay; Bansal, Anju; Sairam, Mustoori; Banerjee, P K; Ilavazhagan, Govindaswamy

    2008-02-01

    Hypobaric hypoxia, characteristic of high altitude is known to increase the formation of reactive oxygen and nitrogen species (RONS), and decrease effectiveness of antioxidant enzymes. RONS are involved and may even play a causative role in high altitude related ailments. Brain is highly susceptible to hypoxic stress and is involved in physiological responses that follow. Exposure of rats to hypobaric hypoxia (7619 m) resulted in increased oxidation of lipids and proteins due to increased RONS and decreased reduced to oxidized glutathione (GSH/GSSG) ratio. Further, there was a significant increase in superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione-S-transferase (GST) levels. Increase in heme oxygenase 1 (HO-1) and heat shock protein 70 (HSP70) was also noticed along with metallothionein (MT) II and III. Administration of cobalt appreciably attenuated the RONS generation, oxidation of lipids and proteins and maintained GSH/GSSH ratio similar to that of control cells via induction of HO-1 and MT offering efficient neuroprotection. It can be concluded that cobalt reduces hypoxia oxidative stress by maintaining higher cellular HO-1 and MT levels via hypoxia inducible factor 1alpha (HIF-1alpha) signaling mechanisms. These findings provide a basis for possible use of cobalt for prevention of hypoxia-induced oxidative stress.

  19. Neuroprotection by memantine against neurodegeneration induced by beta-amyloid(1-40).

    PubMed

    Miguel-Hidalgo, J J; Alvarez, X A; Cacabelos, R; Quack, G

    2002-12-20

    Progressive neuronal loss and cognitive decline in Alzheimer's disease (AD) might be aggravated by beta-amyloid-enhanced excitotoxicity. Memantine is an uncompetitive NMDA receptor antagonist under clinical development for the treatment of AD. Memantine has neuroprotective actions in several in vitro and in vivo models. In the present study, we determined whether memantine protected against beta-amyloid induced neurotoxicity and learning impairment in rats. Twenty Sprague-Dawley rats received vehicle or vehicle plus memantine (steady-state plasma concentrations of 2.34+/-0.23 microM, n=10) s.c. by osmotic pump for 9 days. After 2 days of treatment, 2 microl of water containing beta-amyloid 1-40 [Abeta(1-40)] were injected into the hippocampal fissure. On the ninth day of treatment, animals were sacrificed, and morphological and immunohistochemical techniques were used to determine the extent of neuronal degeneration and astrocytic and microglial activation in the hippocampus. Psychomotor activity and spatial discrimination were tested on the eighth day of treatment. Abeta(1-40), but not water, injections into hippocampus led to neuronal loss in the CA1 subfield, evidence of widespread apoptosis, and astrocytic and microglial activation and hypertrophy. Memantine treated animals had significant reductions in the amount of neuronal degeneration, pyknotic nuclei, and GFAP immunostaining as compared with vehicle treated animals. These data suggest that memantine, at therapeutically relevant concentrations, can protect against neuronal degeneration induced by beta-amyloid.

  20. Neuroprotection of Grape Seed Extract and Pyridoxine against Triton-Induced Neurotoxicity

    PubMed Central

    Abdou, Heba M.

    2016-01-01

    Triton WR-1339 administration causes neurotoxicity. Natural products and herbal extracts can attenuate cerebral injury. In the present study, we investigated the neuroprotective role of grape seed extract and/or vitamin B6 against triton-induced neurotoxicity. Thirty-five adult male albino rats of the Sprague-Dawley strain, weighing 140–145 g, were divided into five groups: control, triton, grape seed extract + triton, grape seed extract + triton + vitamin B6, and vitamin B6 + triton. The hematological and biochemical analyses were carried out. Alteration in iNOS mRNA gene expression was determined using reverse-transcriptase PCR analysis. In addition, qualitative DNA fragmentation was examined using agarose gel electrophoresis. Triton-treatment caused significant disturbances in the hematological parameters, the neurological functions, and the antioxidant profile. Also, triton significantly increased the iNOS mRNA expression and DNA damage. Our results showed that grape seed extract and/or vitamin B6 could attenuate all the examined parameters. These natural substances could exhibit protective effects against triton-induced neurological damage because of their antioxidative and antiapoptotic capacities. PMID:27293516

  1. Neuroprotective effect of thymoquinone in acrylamide-induced neurotoxicity in Wistar rats

    PubMed Central

    Mehri, Soghra; Shahi, Mehran; Razavi, Bibi Marjan; Hassani, Faezeh Vahdati; Hosseinzadeh, Hossein

    2014-01-01

    Objective(s): Acrylamide (ACR) has broad applications in different industries. It also forms in food during heating process. Oxidative stress has a critical role in ACR-induced neurotoxicity in both in vitro and in vivo models; therefore, the aim of the current study was the evaluation of effects of thymoquinone, the main constituent of volatile oil from Nigella sativa seeds in ACR-induced neurotoxicity. Materials and Methods: Male Wistar rats were treated with ACR (50 mg/kg IP) alone or with thymoquinone (TQ) (2.5, 5, 10 mg/kg IP) for 11 days. Two protocols were used in this study, A: in this one TQ and ACR were used simultaneously, B: Administration of TQ was started 1 week before ACR treatment and continued during exposure to ACR. At the end of the treatment, behavioral index (gait score) was examined for rats. After that, rats were sacrificed and molondialdehyde (MDA) as a marker of lipid peroxidation and glutathione (GSH) content were determined in cerebral cortex. Results: Exposure to ACR led to severe gait abnormalities and treatment with TQ significantly decreased abnormalities. Level of MDA was elevated in cerebral cortex after exposure to ACR while TQ treatment significantly and in a dose-dependent manner reduced lipid peroxidation. Results clearly showed that there is no significant difference between two protocols of administration of TQ. Conclusion: It suggests the neuroprotective effect of TQ in this model in part, may be because of due the antioxidant activity of this natural compound. PMID:25859305

  2. In vitro detection of oxygen and glucose deprivation-induced neurodegeneration and pharmacological neuroprotection based on hippocampal stratum pyramidale width.

    PubMed

    Öz, Pınar; Saybaşılı, Hale

    2017-01-01

    Ischemia is one of the most prominent risk factors of neurodegenerative diseases such as Alzheimer's disease. The effects of oxygen and glucose depletion in hippocampal tissue due to ischemia can be mimicked in vitro using the oxygen and glucose deprivation (OGD) model. In this study, we applied OGD on acute rat hippocampal slices in order to design an elementary yet quantitative histological technique that compares the neuroprotective effects of (l)-carnitine to known neuroprotectors, such as the N-methyl-d-aspartate (NMDA) receptor antagonist memantine and the gamma-aminobutyric acid (GABA)-B receptor agonist baclofen. The level of neurodegeneration and the efficiency of pharmacological applications were estimated via stratum pyramidale width measurements in CA1 and CA3 regions of Nissl-stained 200-μm thick hippocampal slices. We demonstrated that (l)-carnitine is an effective pharmacological target against the neurodegeneration induced by in vitro ischemia in a narrow range of concentrations. Even though the effect of chemical neuroprotection was significant, full recovery was not achieved in the dose interval of 5-100μM. In addition to chemical applications, hypothermia was used as a physical neuroprotection against ischemia-related neurodegeneration. Our results showed that incubation of slices for 60min at 4°C provided the same level of neuroprotection as the most effective doses of memantine, baclofen, and (l)-carnitine.

  3. The neuroprotective effects of purslane (Portulaca oleracea) on rotenone-induced biochemical changes and apoptosis in brain of rat.

    PubMed

    Abdel Moneim, Ahmed E

    2013-09-01

    Purslane (Portulaca oleraceae L.), a member of the Portulacaceae family, is widespread as a weed and has been ranked as the eighth most common plant in the world. In order to evaluate purslane herbal aqueous juice as a neuroprotective agent, the antioxidant activity of purslane juice was assessed in vitro and the neuroprotective effects of purslane (1.5 mL/Kg bwt) on rotenone (12 mg/Kg bwt for 12 days) induced biochemical changes and apoptosis in striatum of rats were also examined. The repeated administration of rotenone produced dramatic increases in intercellular content of calcium, dopamine metabolites and apoptosis in the striatum. In addition, rotenone administration caused significant decrease in complex I activity. These biochemical changes and apoptosis inductions were effectively counteracted by administration of purslane. Overall, the present study demonstrated the neuroprotective role of purslane in the striatum and proposes its prophylactic potential against developing brain damage and Parkinson's disease induction followed by rotenone administration, and that purslane may be considered as a potential neuroprotective agent against environmental factors affecting the function of the dopaminergic system.

  4. Neuroprotective effects of 20(S)-protopanaxadiol against glutamate-induced mitochondrial dysfunction in PC12 cells.

    PubMed

    Bak, Dong-Ho; Kim, Hyung Don; Kim, Young Ock; Park, Chun Geun; Han, Seung-Yun; Kim, Jwa-Jin

    2016-02-01

    Ginseng (Panax ginseng C.A. Mey.) is commonly used in traditional oriental medicine for its wide spectrum of medicinal properties, including anti-inflammatory, antitumorigenic, adaptogenic and anti-aging properties. 20(S)-Protopanaxadiol (PPD), the main intestinal metabolite of ginsenosides, is one of the active ingredients in ginseng. In this study, we aimed to investigate the neuroprotective effects of PPD on PC12 cells; however, the underlying mechanisms remain elusive. We examined cell viability by MTT assay and the morphological changes of PC12 cells following glutamate‑induced cell damage and evaluated the anti‑apoptotic effects of PPD using Hoechst 33258 staining, western blot analysis and Muse™ Cell Analyzer and the antioxidant effects of PPD using FACS analysis and immunofluorescence. Furthermore, PPD exerted protective effects on PC12 cells via the inhibition of mitochondrial damage against glutamate-induced excitotoxicity using immunofluorescence, electron microscopy and FACS analysis. We demonstrate that treatment with PPD suppresses apoptosis, which contributes to the neuroprotective effects of PPD against glutamate‑induced excitotoxicity in PC12 cells. Treatment with PPD inhibited nuclear condensation and decreased the number of Annexin V-positive cells. In addition, PPD increased antioxidant activity and mitochondrial homeostasis in the glutamate-exposed cells. These antioxidant effects were responsible for the neuroprotection and enhanced mitochondrial function following treatment with PPD. Furthermore, PD inhibited the glutamate-induced morphological changes in the mitochondria and scavenged the mitochondrial and cytosolic reactive oxygen species (ROS) induced by glutamate. In addition, mitochondrial function was significantly improved in terms of mitochondrial membrane potential (MMP) and enhanced mitochondrial mass compared with the cells exposed to glutamate and not treated with PPD. Taken together, the findings of our study indicate

  5. Neuroprotective effects of a sesquiterpene lactone and flavanones from Paulownia tomentosa Steud. against glutamate-induced neurotoxicity in primary cultured rat cortical cells.

    PubMed

    Kim, Soo-Ki; Cho, Sang-Buem; Moon, Hyung-In

    2010-12-01

    The neuroprotective effects of Paulownia tomentosa against glutamate-induced neurotoxicity were studied in primary cultured rat cortical cells. It was found that the aqueous extract of this medicinal plant significantly attenuated glutamate-induced toxicity. In order to clarify the mechanism(s) underlying this neuroprotective effect, the active fractions and components were isolated and identified. Five compounds were isolated as the methanol extracts from air-dried flowers of P. tomentosa. Isoatriplicolide tiglate exhibited significant neuroprotective activity against glutamate-induced toxicity at concentrations ranging from 1 μM to 10 μM, and exhibited cell viability of approximately 43-78%. Therefore, the neuroprotective effect of P. tomentosa might be due to the inhibition of glutamate-induced toxicity by the sesquiterpene lactone derivative it contains.

  6. Neuroprotective effects of swimming training in a mouse model of Parkinson's disease induced by 6-hydroxydopamine.

    PubMed

    Goes, A T R; Souza, L C; Filho, C B; Del Fabbro, L; De Gomes, M G; Boeira, S P; Jesse, C R

    2014-01-03

    Parkinson's disease (PD) is characterized by progressive dopamine (DA) depletion in the striatum. Exercise has been shown to be a promising non-pharmacological approach to reduce the risk of neurodegeneration diseases. This study was designed to investigate the potential neuroprotective effect of swimming training (ST) in a mouse model of PD induced by 6-hydroxydopamine (6-OHDA) in mice. The present study demonstrated that a 4-week ST was effective in attenuating the following impairments resulting from 6-OHDA exposure: (i) depressive-like behavior in the tail suspension test; (ii) increase in the number of falls in the rotarod test; (iii) impairment on long-term memory in the object recognition test; (iv) increase of the reactive species and interleukin 1-beta (IL-1β) levels; (v) inhibition of the glutathione peroxidase (GPx) activity; (vi) rise of the glutathione reductase (GR) and glutathione S-transferase (GST) activities and vii) decrease of DA, homovanillic acid (HVA) and 3,4-dihydroxyphenylacetic acid (DOPAC) levels. The mechanisms involved in this study are the modulation of GPx, GR and GST activities as well as IL-1β level in a PD model induced by 6-OHDA, protecting against the decrease of DA, DOPAC and HVA levels in the striatum of mice. These findings reinforce that one of the effects induced by exercise on neurodegenerative disease, such as PD, is due to antioxidant and anti-inflammatory properties. We suggest that exercise attenuates cognitive and motor declines, depression, oxidative stress, and neuroinflammation induced by 6-OHDA supporting the hypothesis that exercise can be used as a non-pharmacological tool to reduce the symptoms of PD. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  7. Silymarin versus Silibinin: Differential Antioxidant and Neuroprotective Effects against H2O2-induced Oxidative Stress in PC12 Cells.

    PubMed

    Jiang, Hui-Hui; Yan, Fa-Shun; Shen, Liang; Ji, Hong-Fang

    2016-05-01

    The present study assessed comparatively the antioxidant activities of silymarin and its major active component silibinin and their neuroprotective effects against hydrogen peroxide (H2O2)-induced oxidative stress in rat pheochromocytoma PC12 cells. It was found that despite newly prepared silymarin and silibinin solution possessing comparable superoxide anion (O2*-)-scavenging activities, with time the activity of silymarin lowered slightly, but that of silibinin decreased dramatically. Both silymarin and silibinin suppressed H2O2-induced oxidative stress and apoptosis, and the neuroprotective effect of silymarin was overall relatively stronger than that of silibinin. The findings provided clues for future studies on therapeutic potentials of the whole silymarin or purified silibinin for neurodegenerative diseases.

  8. Chemically Bonding of Amantadine with Gardenamide A Enhances the Neuroprotective Effects against Corticosterone-Induced Insults in PC12 Cells.

    PubMed

    Zhao, Jiaqiang; Peng, Lizhi; Zheng, Wenhua; Wang, Rikang; Zhang, Lei; Yang, Jian; Chen, Heru

    2015-09-21

    Two amantadine (ATD)-gardenamide A (GA) ligands have been designed and synthesized. The bonding of ATD with GA through a methylene carbonyl brigde (L1) enhances the neuroprotective effect against corticosterone (CORT)-induced impairments in PC12 cells; while the bonding through a succinyl brigde (L2) does not. L1 reduces the level of reactive oxygen species (ROS) and cell apoptosis generated by CORT. It restores CORT-changed cell morphology to a state that is closed to normal PC12 cells. One mechanism of L1 to attenuate CORT-induced cell apoptosis is through the adjustment of both caspase-3 and Bcl-2 proteins. Like GA, both nNOS and eNOS might be involved in the neuroprotective mechanism of L1. All the evidences suggest that L1 may be a potential agent to treat depression.

  9. The Loss of Myocardial Benefit following Ischemic Preconditioning Is Associated with Dysregulation of Iron Homeostasis in Diet-Induced Diabetes

    PubMed Central

    Berenshtein, Eduard; Eliashar, Ron; Chevion, Mordechai

    2016-01-01

    Whether the diabetic heart benefits from ischemic preconditioning (IPC), similar to the non-diabetic heart, is a subject of controversy. We recently proposed new roles for iron and ferritin in IPC-protection in Type 1-like streptozotocin-induced diabetic rat heart. Here, we investigated iron homeostasis in Cohen diabetic sensitive rat (CDs) that develop hyperglycemia when fed on a high-sucrose/low-copper diet (HSD), but maintain normoglycemia on regular-diet (RD). Control Cohen-resistant rats (CDr) maintain normoglycemia on either diet. The IPC procedure improved the post-ischemic recovery of normoglycemic hearts (CDr-RD, CDr-HSD and CDs-RD). CDs-HSD hearts failed to show IPC-associated protection. The recovery of these CDs-HSD hearts following I/R (without prior IPC) was better than their RD controls. During IPC ferritin levels increased in normoglycemic hearts, and its level was maintained nearly constant during the subsequent prolonged ischemia, but decayed to its baseline level during the reperfusion phase. In CDs-HSD hearts the baseline levels of ferritin and ferritin-saturation with iron were notably higher than in the controls, and remained unchanged during the entire experiment. This unique and abnormal pattern of post-ischemic recovery of CDs-HSD hearts is associated with marked changes in myocardial iron homeostasis, and suggests that iron and iron-proteins play a causative role/s in the etiology of diabetes-associated cardiovascular disorders. PMID:27458721

  10. A Molecular Approach to Epilepsy Management: from Current Therapeutic Methods to Preconditioning Efforts.

    PubMed

    Amini, Elham; Rezaei, Mohsen; Mohamed Ibrahim, Norlinah; Golpich, Mojtaba; Ghasemi, Rasoul; Mohamed, Zahurin; Raymond, Azman Ali; Dargahi, Leila; Ahmadiani, Abolhassan

    2015-08-01

    Epilepsy is the most common and chronic neurological disorder characterized by recurrent unprovoked seizures. The key aim in treating patients with epilepsy is the suppression of seizures. An understanding of focal changes that are involved in epileptogenesis may therefore provide novel approaches for optimal treatment of the seizure. Although the actual pathogenesis of epilepsy is still uncertain, recently growing lines of evidence declare that microglia and astrocyte activation, oxidative stress and reactive oxygen species (ROS) production, mitochondria dysfunction, and damage of blood-brain barrier (BBB) are involved in its pathogenesis. Impaired GABAergic function in the brain is probably the most accepted hypothesis regarding the pathogenesis of epilepsy. Clinical neuroimaging of patients and experimental modeling have demonstrated that seizures may induce neuronal apoptosis. Apoptosis signaling pathways are involved in the pathogenesis of several types of epilepsy such as temporal lobe epilepsy (TLE). The quality of life of patients is seriously affected by treatment-related problems and also by unpredictability of epileptic seizures. Moreover, the available antiepileptic drugs (AED) are not significantly effective to prevent epileptogenesis. Thus, novel therapies that are proficient to control seizure in people who are suffering from epilepsy are needed. The preconditioning method promises to serve as an alternative therapeutic approach because this strategy has demonstrated the capability to curtail epileptogenesis. For this reason, understanding of molecular mechanisms underlying brain tolerance induced by preconditioning is crucial to delineate new neuroprotective ways against seizure damage and epileptogenesis. In this review, we summarize the work to date on the pathogenesis of epilepsy and discuss recent therapeutic strategies in the treatment of epilepsy. We will highlight that novel therapy targeting such as preconditioning process holds great

  11. Neuroprotective effects of α-iso-cubebene against glutamate-induced damage in the HT22 hippocampal neuronal cell line.

    PubMed

    Park, Sun Young; Jung, Won Jung; Kang, Jum Soon; Kim, Cheol-Min; Park, Geuntae; Choi, Young-Whan

    2015-02-01

    Since oxidative stress is critically involved in excitotoxic damage, we sought to determine whether the activation of the transcription factors, cAMP-responsive element binding protein (CREB) and nuclear factor (erythroid-derived 2)-like 2 (Nrf2, also known as NFE2L2), by α-iso-cubebene is involved in its protective effects against glutamate-induced neuronal cell death. Pre-treatment with α-iso-cubebene significantly attenuated glutamate-induced cytotoxicity in mouse hippocampus-derived neuronal cells. α-iso-cubebene also reduced the glutamate-induced generation of reactive oxygen species and calcium influx, thus preventing apoptotic cell death. α-iso-cubebene inhibited glutamate-induced mitochondrial membrane depolarization and, consequently, inhibited the release of the apoptosis-inducing factor from the mitochondria. Immunoblot anlaysis revealed that the phosphorylation of extracellular signal-regulated kinase (ERK) by glutamate was reduced in the presence of α-iso-cubebene. α-iso-cubebene activated protein kinase A (PKA), CREB and Nrf2, which mediate the expression of the antioxidant enzymes, heme oxygenase-1 (HO-1) and NAD(P)H dehydrogenase [quinone] 1 (NQO1), involved in neuroprotection. In addition, α-iso-cubebene induced the expression of antioxidant responsive element and CRE transcriptional activity, thus conferring neuroprotection against glutamate-induced oxidative injury. α-iso-cubebene also induced the expression of Nrf2-dependent genes encoding HO-1 and NQO1. Furthermore, the knockdown of CREB and Nrf2 by small interfering RNA attenuated the neuroprotective effects of α-iso-cubebene. Taken together, our results indicate that α-iso-cubebene protects HT22 cells from glutamate-induced oxidative damage through the activation of Nrf2/HO-1/NQO-1, as well as through the PKA and CREB signaling pathways.

  12. Synthesis of new heterocyclic compounds based on pyrazolopyridine scaffold and evaluation of their neuroprotective potential in MPP(+)-induced neurodegeneration.

    PubMed

    Jouha, Jabrane; Loubidi, Mohammed; Bouali, Jamila; Hamri, Salha; Hafid, Abderrafia; Suzenet, Franck; Guillaumet, Gérald; Dagcı, Taner; Khouili, Mostafa; Aydın, Fadime; Saso, Luciano; Armagan, Güliz

    2017-03-31

    Neurodegenerative disorders including Alzheimer's disease, Parkinson's disease, and Huntington's disease affect millions of people in the world. Thus several new approaches to treat brain disorders are under development. The aim of the present study is to synthesize potential neuroprotective heterocyclic compounds based on pyrazolopyridine derivatives and then to evaluate their effects in MPP(+)-induced neurodegeneration in human neuroblastoma cell line (SH-SY5Y cells). The effects of the compounds on cell viability were measured by MTT assay and the changes in apoptosis-related proteins including bax, Bcl-2, Bcl-xl and caspase-3 were investigated by western blot technique. Based on the cell viability results obtained by MTT assay, the percentage of neuroprotection-induced by compounds against MPP(+)-induced neurotoxicity in SH-SY5Y cells was between 20% and 30% at 5 μM concentrations of all synthesized compounds. Moreover, the downregulation in pro-apoptotic proteins including bax and caspase-3 were found following the novel synthesized compounds treatments and these effects were observed in a dose-dependent manner. Our results provide an evidence that these heterocyclic compounds based on pyrazolopyridine derivatives may have a role on dopaminergic neuroprotection via antiapoptotic pathways.

  13. Neuroprotection of donepezil against morphine-induced apoptosis is mediated through Toll-like receptors.

    PubMed

    Shafie, Alireza; Moradi, Farshid; Izadpanah, Esmael; Mokarizadeh, Aram; Moloudi, Mohammad Raman; Nikzaban, Mehrnoush; Hassanzadeh, Kambiz

    2015-10-05

    Previously, we had shown that donepezil provides anti-apoptotic effects associated with the prevention of morphine tolerance to the analgesic effect. In this regard, the present study aimed to evaluate the molecular mechanisms involved in this effect considering the possible role of Toll-like receptor (TLR) 2,4, and the balance between pre-apoptotic and anti-apoptotic Bcl family proteins. To this end, male Wistar rats received daily morphine in combination with either normal saline or donepezil (0.5, 1, or 1.5 mg/kg, ip). The analgesic effect was assessed by the plantar test apparatus. The latency was recorded when the animal responded to the light stimulus. On the 15th day, when no significant difference was observed between morphine and saline groups in terms of analgesia, the frontal cortex and lumbar spinal cord of the animals were dissected. Then, TLR2 and 4, Bcl2, and Bax mRNA fold changes were calculated using Real-time PCR method. The results indicated no significant analgesic effect in the morphine group compared with the saline treated animals after 15 days of injection, while daily co-administration of donepezil with morphine preserved significant analgesia. Moreover, Quantitative PCR showed that morphine significantly increased TLRs and Bax gene expressions and decreased the anti-apoptotic Bcl2. In contrast, donepezil prevented these morphine induced changes in the mentioned gene expressions. Taken together, the results suggest that the neuroprotective effects of donepezil in attenuating morphine-induced tolerance and apoptosis are mediated by preventing morphine-induced changes in TLR2 and 4 gene expressions.

  14. Neuroprotective effect of Alpinia galanga (L.) fractions on Aβ(25-35) induced amnesia in mice.

    PubMed

    Hanish Singh, J C; Alagarsamy, V; Diwan, Prakash V; Sathesh Kumar, S; Nisha, J C; Narsimha Reddy, Y

    2011-10-31

    The rhizomes of Alpinia galanga (L.) Willd (Zingiberaceae), a ginger substitute for flavouring food was traditionally used as nervine tonic and stimulant. This investigation is designed to screen cognitive improvement of Alpinia galanga (AG) fractions in Alzheimer's type of amnesia in mice induced by Aβ((25-35)). Alzheimer's disease induced mice treated with fractions (n-hexane, chloroform and ethyl acetate) of AG in 200 and 400mg/kg. Neurotoxicity was induced by intracerebroventricular injection of Aβ((25-35)) on the 14th day of 21 days drug treatment. Open field and water maze were carried to determine habituation memory and hippocampal memory. Na(+)/K(+)-ATPase, acetylcholinesterase (AChE) and antioxidant enzymes (SOD, GPx, catalase and vitamin C) were determined in brain tissue homogenate to estimate the brain biochemical changes and its anti-amnesic potential with intensity of oxidative stress signaling. Further bioactive (chloroform) fraction was eluted through column chromatography to identify the lead molecules. Increased habituation memory and decreased escape latency in behavioral parameter are the indicative of the cognitive enhancement after treatment with Alpinia galanga fractions. Increment in Na(+)/K(+)-ATPase and antioxidant activity depicts brain membrane integrity improvement and free radical scavenging property. AChE level was decreased to improve the cognition by enhancing cholinergic transmission. Anti-amnesic effect was exerted by various fractions of Alpinia galanga. Among all fractions, preeminent neuroprotection was exerted by chloroform fraction, which has compound, 1'δ-1'-acetoxyeugenol acetate and it may be a potential therapeutic agent for Alzheimer's type of amnesia. These results further motivate us to explore the activity of lead compound's anti-amnesic effect on transgenic mice model of AD. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  15. Neuroprotective activity of L-theanine on 3-nitropropionic acid-induced neurotoxicity in rat striatum.

    PubMed

    Thangarajan, Sumathi; Deivasigamani, Asha; Natarajan, Suganya Sarumani; Krishnan, Prasanna; Mohanan, Sandhya Koombankallil

    2014-09-01

    The present study has been designed to investigate the protective effect of L-theanine against 3-nitropropionic acid (3-NP)-induced Huntington's disease (HD)-like symptoms in rats. The present experimental protocol design includes systemic 3-NP acid (10 mg/kg intraperitonially) treatment for 14 d. L-theanine (100 and 200 mg/kg) was given orally, once a day, 1 h before 3-NP acid treatment for 14 d. Body weight and behavioral parameters (Morris water maze, open field test (OFT), forced swim test (FST) and rotarod activity) were assessed on 1st, 5th, 10th and 15th day post-3-NP acid administration. Malondialdehyde (MDA), glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT) levels and mitochondrial enzyme complex. Succinate dehydrogenase (SDH) were measured on the 15th day in the striatum. Systemic 3-NP acid treatment significantly reduced body weight, locomotor activity and oxidative defense. The mitochondrial enzyme activity was also significantly impaired in the striatum region in 3-NP acid-treated animals. L-theanine (100 and 200 mg/kg b.wt.) treatment significantly attenuated the impairment in behavioral, biochemical and mitochondrial enzyme activities as compared to the 3-NP acid-treated group. The results of the present study suggest that pretreatment with L-theanine significantly attenuated 3-NP induced oxidative stress and restored the decreased SOD, GSH, CAT and SDH activity. It also decreased the neuronal damage as evidenced by histopathological analysis of striatum. Based on the above study, it has been proved that L-theanine has neuroprotective activity against 3-NP induced neurotoxicity.

  16. Neuroprotective effects of Vitis vinifera extract on prediabetic mice induced by a high-fat diet.

    PubMed

    Jin, Heung Yong; Cha, Youn Soo; Baek, Hong Sun; Park, Tae Sun

    2013-09-01

    Vitis vinifera grape seed extract (VVE) contains oligomeric proanthocyanidins that show antioxidant and free radical-scavenging activities. We evaluated VVE for its neuroprotective effect in prediabetic mice induce by a high-fat diet (HD). Mice were divided into four groups according to VVE dose: those fed a normal diet (ND; n = 10), HD (n = 10), HD with 100 mg/kg VVE (n = 10), and HD with 250 mg/kg VVE (n = 10). After 12 weeks, immunohistochemical analyses were carried out using a polyclonal antibody against antiprotein gene product 9.5 (protein-gene-product, 9.5), and intraepidermal innervation was subsequently quantified as nerve fiber abundance per unit length of epidermis (intraepidermal nerve fiber, IENF/mm). Daily administration of VVE at doses of 100 or 250 mg/kg for 12 weeks protected HD mice from nerve fiber loss compared to untreated mice, as follows (IENF/mm): controls (40.95 ± 5.40), HD (28.70 ± 6.37), HD with 100 mg/kg (41.14 ± 1.12), and HD with 250 mg/kg (48.98 ± 7.01; p < 0.05, HD with VVE vs. HD). This study provides scientific support for the therapeutic potential of VVE in peripheral neuropathy in an HD mouse model. Our results suggest that VVE could play a role in the management of peripheral neuropathy, similar to other antioxidants known to be beneficial for diabetic peripheral neuropathy.

  17. Hyperbaric oxygen therapy and preconditioning for ischemic and hemorrhagic stroke

    PubMed Central

    Hu, Sheng-li; Feng, Hua; Xi, Guo-hua

    2016-01-01

    To date, the therapeutic methods for ischemic and hemorrhagic stroke are still limited. The lack of oxygen supply is critical for brain injury following stroke. Hyperbaric oxygen (HBO), an approach through a process in which patients breathe in 100% pure oxygen at over 101 kPa, has been shown to facilitate oxygen delivery and increase oxygen supply. Hence, HBO possesses the potentials to produce beneficial effects on stroke. Actually, accumulated basic and clinical evidences have demonstrated that HBO therapy and preconditioning could induce neuroprotective functions via different mechanisms. Nevertheless, the lack of clinical translational study limits the application of HBO. More translational studies and clinical trials are needed in the future to develop effective HBO protocols. PMID:28217297

  18. Brain ischemic preconditioning is abolished by antioxidant drugs but does not up-regulate superoxide dismutase and glutathion peroxidase.

    PubMed

    Puisieux, François; Deplanque, Dominique; Bulckaen, Hélène; Maboudou, Patrice; Gelé, Patrick; Lhermitte, Michel; Lebuffe, Gilles; Bordet, Régis

    2004-11-19

    The present work examined the hypothesis that brain ischemic tolerance induced by ischemic preconditioning (IPC) is triggered by an initial oxidative stress and is associated with an increase in antioxidant enzyme activities as one end-effector of the neuroprotection. Wistar rats were preconditioned by a single 3-min occlusion of the middle cerebral artery. After a various duration of reperfusion (30 min, 24, 72 or 168 h), rats were subjected to a 60-min focal ischemia and sacrificed 24 h later. Cerebral infarcts were significantly reduced when performed during the 24- to 72-h time window after IPC. The pretreatment with the protein synthesis inhibitor, cycloheximide (1 mg/kg, i.p., 30 min prior to IPC), completely suppressed the neuroprotection. The free radical scavenger, dimethylthiourea (DMTU; 300 mg/kg, i.p., 30 min prior to IPC) and the antioxidant ebselen (10 mg/kg, oral cramming, 2 h before and 12 h after IPC) also abolished the IPC-induced protection of the brain. Nevertheless, IPC did not induce any delayed changes in antioxidant enzyme (superoxide dismutase, glutathion peroxidase) activities nor in the neuronal expression of Mn and Cu/Zn superoxide dismutase. These results indicate that an initial oxidative stress could be involved as a trigger of IPC, while antioxidant enzymes do not play a key role as end-effectors in such a neuroprotection.

  19. Hypoxic Preconditioning Enhances the Benefit of Cardiac Progenitor-Cell Therapy for Treatment of Myocardial Infarction by Inducing CXCR4 Expression

    PubMed Central

    Tang, Yao Liang; Zhu, Wuqiang; Cheng, Min; Chen, Lijuan; Zhang, John; Sun, Tao; Kishore, Raj; Phillips, M. Ian; Losordo, Douglas W.; Qin, Gangjian

    2009-01-01

    Myocardial infarction (MI) rapidly depletes the endogenous cardiac progenitor-cell pool, and the inefficient recruitment of exogenously administered progenitor cells limits the effectiveness of cardiac-cell therapy. Recent reports indicate that interactions between the CXC chemokine stromal-cell–derived factor 1 (SDF-1) and its receptor CXC chemokine receptor 4 (CXCR4) critically mediate the ischemia-induced recruitment of bone-marrow—derived circulating stem/progenitor cells, but the expression of CXCR4 in cardiac progenitor cells is very low. Here, we studied the influence of hypoxia on CXCR4 expression in cardiac progenitor cells, on the recruitment of intravenously administered cells to ischemic heart tissue, and on the preservation of heart function in a murine MI model. We found that hypoxic preconditioning increased CXCR4 expression in cardiosphere-derived, Lin−/c-kit+ progenitor (CLK) cells and markedly augmented CLK-cell migration (in vitro) and recruitment (in vivo) to the ischemic myocardium. Four weeks after surgically induced MI, infarct size and heart function were significantly better in mice administered hypoxia-preconditioned CLK cells than in mice treated with cells cultured under normoxic conditions. Furthermore, these effects were largely abolished by the addition of a CXCR4 inhibitor, indicating that the benefits of hypoxic preconditioning are mediated by the SDF-1/CXCR4 axis, and that therapies targeting this axis may enhance cardiac-progenitor-cell—based regenerative therapy. PMID:19407239

  20. Exercise preconditioning modulates genotoxicity induced by doxorubicin in multiple organs of rats.

    PubMed

    Martins, Renato Almeida; Minari, André Luis; Chaves, Marcelo Donizetti; dos Santos, Ronaldo Wagner Thomatieli; Barbisan, Luis Fernando; Ribeiro, Daniel Araki

    2012-06-01

    The aim of this study was to investigate the effects of exercise in multiple organs of rats treated with doxorubicin. Male adult Wistar rats were distributed into the following groups: sedentary + NaCl; exercise + NaCl; sedentary + doxorubicin; and exercise + doxorubicin. Animals were sacrificed 2 days following injections. Central fragments from heart, liver, and kidney were collected and minced in 0.9% NaCl being cellular suspensions used for the single-cell gel (comet) assay. The results showed that exercise was able to prevent genotoxicity induced by doxorubicin in heart cells. By contrast, exercise was not able to prevent genotoxicity induced by doxorubicin in liver cells. The same occurred to kidney cells, i.e. no statistically significant differences (p > 0.05) were found when compared with groups not exposed to doxorubicin. Taken together, our results support the idea that exercise could contribute to the protective effect against genotoxicity induced by doxorubicin in heart cells.

  1. Exercise-induced neuroprotection in the spastic Han Wistar rat: the possible role of brain-derived neurotrophic factor.

    PubMed

    Van Kummer, Brooke H; Cohen, Randy W

    2015-01-01

    Moderate aerobic exercise has been shown to enhance motor skills and protect the nervous system from neurodegenerative diseases, like ataxia. Our lab uses the spastic Han Wistar rat as a model of ataxia. Mutant rats develop forelimb tremor and hind limb rigidity and have a decreased lifespan. Our lab has shown that exercise reduced Purkinje cell degeneration and delayed motor dysfunction, significantly increasing lifespan. Our study investigated how moderate exercise may mediate neuroprotection by analyzing brain-derived neurotrophic factor (BDNF) and its receptor TrkB. To link BDNF to exercise-induced neuroprotection, mutant and normal rats were infused with the TrkB antagonist K252a or vehicle into the third ventricle. During infusion, rats were subjected to moderate exercise regimens on a treadmill. Exercised mutants receiving K252a exhibited a 21.4% loss in Purkinje cells compared to their controls. Cerebellar TrkB expression was evaluated using non-drug-treated mutants subjected to various treadmill running regimens. Running animals expressed three times more TrkB than sedentary animals. BDNF was quantified via Sandwich ELISA, and cerebellar expression was found to be 26.6% greater in mutant rats on 7-day treadmill exercise regimen compared to 30 days of treadmill exercise. These results suggest that BDNF is involved in mediating exercise-induced neuroprotection.

  2. Neuroprotective effects of cannabidiol in endotoxin-induced uveitis: critical role of p38 MAPK activation

    PubMed Central

    El-Remessy, A.B.; Tang, Y.; Zhu, G.; Matragoon, S.; Khalifa, Y.; Liu, E.K.; Liu, J-Y.; Hanson, E.; Mian, S.; Fatteh, N.

    2008-01-01

    Purpose Degenerative retinal diseases are characterized by inflammation and microglial activation. The nonpsychoactive cannabinoid, cannabidiol (CBD), is an anti-inflammatory in models of diabetes and glaucoma. However, the cellular and molecular mechanisms are largely unknown. We tested the hypothesis that retinal inflammation and microglia activation are initiated and sustained by oxidative stress and p38 mitogen-activated protein kinase (MAPK) activation, and that CBD reduces inflammation by blocking these processes. Methods Microglial cells were isolated from retinas of newborn rats. Tumor necrosis factor (TNF)-α levels were estimated with ELISA. Nitric oxide (NO) was determined with a NO analyzer. Superoxide anion levels were determined by the chemiluminescence of luminol derivative. Reactive oxygen species (ROS) was estimated by measuring the cellular oxidation products of 2’, 7’-dichlorofluorescin diacetate. Results In retinal microglial cells, treatment with lipopolysaccharide (LPS) induced immediate NADPH oxidase-generated ROS. This was followed by p38 MAPK activation and resulted in a time-dependent increase in TNF-α production. At a later phase, LPS induced NO, ROS, and p38 MAPK activation that peaked at 2-6 h and was accompanied by morphological change of microglia. Treatment with 1 μM CBD inhibited ROS formation and p38 MAPK activation, NO and TNF-α formation, and maintained cell morphology. In addition, LPS-treated rat retinas showed an accumulation of macrophages and activated microglia, significant levels of ROS and nitrotyrosine, activation of p38 MAPK, and neuronal apoptosis. These effects were blocked by treatment with 5 mg/kg CBD. Conclusions Retinal inflammation and degeneration in uveitis are caused by oxidative stress. CBD exerts anti-inflammatory and neuroprotective effects by a mechanism that involves blocking oxidative stress and activation of p38 MAPK and microglia. PMID:19052649

  3. Neuroprotective effect of Moringa oleifera leaf extract on aluminium-induced temporal cortical degeneration.

    PubMed

    Ekong, Moses B; Ekpo, Mfon M; Akpanyung, Edet O; Nwaokonko, Dennis U

    2017-04-11

    Aluminium (Al), one of the metals implicated in neurodegeneration easily gain access to the nervous system through its presence in many manufactured foods, medicines and drinking water, and causes neurotoxicity utilizing the reactive oxygen specie pathway. The need to curtail these effects on the nervous system motivated the use of the plant Moringa oleifera (MO). This study thus, investigated the neuroprotective effects of MO leaf extract on aluminium-induced temporal cortical degeneration in rats. 24 male albino Wistar rats were grouped (n = 6) into control (1 ml/kg distilled water), l00 mg/kg aluminium chloride (AlCl3), 300 mg/kg MO, and 100 mg/kg AlCl3 and 300 mg/kg MO groups. The administration lasted for 28 days and the rats were sacrificed on day 29 by perfusion-fixation after blood was obtained for serum Al estimation. The brain tissues were then routinely processed for some histological and immunnolabelling studies. There was no significant difference in serum Al in the test groups. Histological results showed atrophied and karyorrhetic cells with loss of Nissl substance in the temporal cortex of the AlCl3 group, while no adverse effect was observed in the cytoarchitecture of the temporal cortex and Nissl substance of the MO group. However, groups which were administered AlCl3 simultaneously with MO extract showed less degenerative features in the cyto-architecture of the temporal cortex with normal Nissl substance staining. There was increased neuron specific enolase (NSE) and glial fibrillary acidic protein (GFAP) expressions in the AlCl3 group, while the MO group also showed increased NSE but decreased GFAP expression. However, the group which were administered AlCl3 simultaneously with MO extract showed less expression of NSE and GFAP. In conclusion, MO protects against Al-induced neurotoxicity of the temporal cortex of rats.

  4. Neuroprotective effect of carvedilol against aluminium induced toxicity: possible behavioral and biochemical alterations in rats.

    PubMed

    Kumar, Anil; Prakash, Atish; Dogra, Samrita

    2011-01-01

    Aluminium, is a trace element available in the Earth's crust naturally and has a toxic potential for humans. It has been suggested as a contributing factor in the pathogenesis of Alzheimer's disease. β-Adrenoceptor blocking agents (β-blockers) have been established as therapeutics for the treatment of patients with hypertension, ischemic heart diseases, chronic heart failure, arrhythmias and glaucoma. Over the years, however, β-blockers have been associated with an incidence, albeit low, of central nervous system (CNS) side effects. In addition, noradrenergic receptors play a modulatory role in many nerve functions, including vigilance, attention, reward, learning and memory. Therefore, the present study has been designed to explore the possible role of carvedilol, an adrenergic antagonist against aluminium chloride-induced neurotoxicity in rats. Aluminium chloride (100 mg/kg) was administered daily for six weeks that significantly increased cognitive dysfunction in the Morris water maze and oxidative damage as indicated by a rise in lipid peroxidation and nitrite concentration and depleted reduced glutathione, superoxide dismutase, catalase and glutathione S-transferase activity compared to sham treatment. Chronic aluminium chloride treatment also significantly increased acetylcholinesterase activity and the aluminium concentration in brain compared to sham. Chronic administration of carvedilol (2.5 and 5 mg/kg, po) daily to rats for a period of 6 weeks significantly improved the memory performance tasks of rats in the Morris water maze test, attenuated oxidative stress (reduced lipid peroxidation, nitrite concentration and restored reduced glutathione, superoxide dismutase, catalase and glutathione S-transferase activity), decreased acetylcholinesterase activity and aluminium concentration in aluminium-treated rats compared to control rats (p < 0.05). Results of this study demonstrated the neuroprotective potential of carvedilol in aluminium chloride-induced

  5. Neuroprotective Effects of Germinated Brown Rice in Rotenone-Induced Parkinson's-Like Disease Rats.

    PubMed

    Chompoopong, Supin; Jarungjitaree, Sunit; Punbanlaem, Tideeporn; Rungruang, Thanaporn; Chongthammakun, Sukumal; Kettawan, Aikkarach; Taechowisan, Thongchai

    2016-09-01

    The effects of germinated brown rice (GBR) on the motor deficits and the dopaminergic (DA) cell death were investigated in Parkinson's-like disease (PD) rats. Reactive oxidative species generated by chronic subcutaneous injection of rotenone (RT) lead to neuronal apoptosis particularly in the nigrostriatal DA system and produce many features of PD, bradykinesis, postural instability and rigidity. In this study, 4-phenylbutyric acid (4-PBA), previously reported to inhibit RT-induced DA cell death, was used as the positive control. Results show that pretreatment with GBR as well as 4-PBA significantly enhanced the motor activity after RT injection, and GBR affected significantly in open field test, only in the ambulation but not the mobility duration, and ameliorated the time to orient down (t-turn) and total time to descend the pole (t-total) in pole test as compared to RT group, but significantly lowered both t-turn and t-total only in 4-PBA group. The percentage of apoptotic cells in brain measured by flow cytometry and the inflammatory effect measured by ELISA of TNF-α showed significant increase in RT group as compared to the control (CT) group at P < 0.05. Apoptotic cells in RT group (85.98 %) showed a significant (P < 0.05) increase versus CT group (17.50 %), and this effect was attenuated in GBR+RT group by decreasing apoptotic cells (79.32 %), whereas, increased viable cells (17.94 %) versus RT group (10.79 %). GBR in GBR + RT group could decrease TNF-α both in the serum and in brain. In summary, GBR showed a neuroprotective effect in RT-induced PD rats, and it may be useful as a value-added functional food to prevent neurodegenerative disease or PD.

  6. Diazoxide preconditioning of endothelial progenitor cells from streptozotocin-induced type 1 diabetic rats improves their ability to repair diabetic cardiomyopathy.

    PubMed

    Ali, Muhammad; Mehmood, Azra; Anjum, Muhammad Sohail; Tarrar, Moazzam Nazir; Khan, Shaheen N; Riazuddin, Sheikh

    2015-12-01

    Type 1 diabetes mellitus (DM) is a strong risk factor for the development of diabetic cardiomyopathy (DCM) which is the leading cause of morbidity and mortality in the type 1 diabetic patients. Stem cells may act as a therapeutic agent for the repair of DCM. However, deteriorated functional abilities and survival of stem cells derived from type 1 diabetic subjects need to be overcome for obtaining potential outcome of the stem cell therapy. Diazoxide (DZ) a highly selective mitochondrial ATP-sensitive K(+) channel opener has been previously shown to improve the ability of mesenchymal stem cells for the repair of heart failure. In the present study, we evaluated the effects of DZ preconditioning in improving the ability of streptozotocin-induced type 1 diabetes affected bone marrow-derived endothelial progenitor cells (DM-EPCs) for the repair of DCM in the type 1 diabetic rats. DM-EPCs were characterized by immunocytochemistry, flow cytometry, and reverse transcriptase PCR for endothelial cell-specific markers like vWF, VE cadherin, VEGFR2, PECAM, CD34, and eNOS. In vitro studies included preconditioning of DM-EPCs with 200 μM DZ for 30 min followed by exposure to either 200 μM H2O2 for 2 h (for oxidative stress induction) or 30 mM glucose media (for induction of hyperglycemic stress) for 48 h. Non-preconditioned EPCs with and without exposure to H2O2 and 30 mM high glucose served as controls. These cells were then evaluated for survival (by MTT and XTT cell viability assays), senescence, paracrine potential (by ELISA for VEGF), and alteration in gene expression [VEGF, stromal derived factor-1α (SDF-1α), HGF, bFGF, Bcl2, and Caspase-3]. DZ preconditioned DM-EPCs demonstrated significantly increased survival and VEGF release while reduced cell injury and senescence. Furthermore, DZ preconditioned DM-EPCs exhibited up-regulated expression of prosurvival genes (VEGF, SDF-1α, HGF, bFGF, and Bcl2) on exposure to H2O2, and VEGF and Bcl2 on exposure to hyperglycemia

  7. Downregulation of miR-181b in mouse brain following ischemic stroke induces neuroprotection against ischemic injury through targeting heat shock protein A5 and ubiquitin carboxyl-terminal hydrolase isozyme L1.

    PubMed

    Peng, Zhifeng; Li, Jiefei; Li, Yun; Yang, Xuan; Feng, Sujuan; Han, Song; Li, Junfa

    2013-10-01

    Understanding the molecular mechanism of cerebral hypoxic preconditioning (HPC)-induced endogenous neuroprotection may provide potential therapeutic targets for ischemic stroke. By using bioinformatics analysis, we found that miR-181b, one of 19 differentially expressed miRNAs, may target aconitate hydratase (ACO2), heat shock protein A5 (HSPA5), and ubiquitin carboxyl-terminal hydrolase isozyme L1 (UCHL1) among 26 changed protein kinase C isoform-specific interacting proteins in HPC mouse brain. In this study, the role of miR-181b in oxygen-glucose deprivation (OGD)-induced N2A cell ischemic injury in vitro and mouse middle cerebral artery occlusion (MCAO)-induced cerebral ischemic injury in vivo, and its regulation of ACO2, HSPA5, and UCHL1 were further determined. We found that miR-181b expression levels significantly decreased in mouse brain following MCAO and in OGD-treated N2A cells. Up- and downregulation of miR-181b by transfection of pre- or anti-miR-181b could negatively regulate HSPA5 and UCHL1 (but not ACO2) protein levels as well as N2A cell death and programmed cell death in OGD-treated N2A cells. By using a T7 promoter-driven control dual luciferase assay, we confirmed that miR-181b could bind to the 3'-untranslated rergions of HSPA5 and UCHL1 mRNAs and repress their translations. miR-181b antagomir reduced caspase-3 cleavage and neural cell loss in cerebral ischemic cortex and improved neurological deficit of mice after MCAO. In addition, HSPA5 and UCHL1 short interfering RNAs (siRNAs) blocked anti-miR-181b-mediated neuroprotection against OGD-induced N2A cell injury in vitro. These results suggest that the downregulated miR-181b induces neuroprotection against ischemic injury through negatively regulating HSPA5 and UCHL1 protein levels, providing a potential therapeutic target for ischemic stroke.

  8. Preconditioning for traumatic brain injury.

    PubMed

    Yokobori, Shoji; Mazzeo, Anna T; Hosein, Khadil; Gajavelli, Shyam; Dietrich, W Dalton; Bullock, M Ross

    2013-02-01

    Traumatic brain injury (TBI) treatment is now focused on the prevention of primary injury and reduction of secondary injury. However, no single effective treatment is available as yet for the mitigation of traumatic brain damage in humans. Both chemical and environmental stresses applied before injury have been shown to induce consequent protection against post-TBI neuronal death. This concept termed "preconditioning" is achieved by exposure to different pre-injury stressors to achieve the induction of "tolerance" to the effect of the TBI. However, the precise mechanisms underlying this "tolerance" phenomenon are not fully understood in TBI, and therefore even less information is available about possible indications in clinical TBI patients. In this review, we will summarize TBI pathophysiology, and discuss existing animal studies demonstrating the efficacy of preconditioning in diffuse and focal type of TBI. We will also review other non-TBI preconditioning studies, including ischemic, environmental, and chemical preconditioning, which maybe relevant to TBI. To date, no clinical studies exist in this field, and we speculate on possible future clinical situations, in which pre-TBI preconditioning could be considered.

  9. Cognitive Improvement Induced by Environment Enrichment in Chronic Cerebral Hypoperfusion Rats: a Result of Upregulated Endogenous Neuroprotection?

    PubMed

    Yang, Ying; Zhang, Junjian; Xiong, Li; Deng, Min; Wang, Jing; Xin, Jiawei; Liu, Hui

    2015-06-01

    Environment enrichment (EE) has been demonstrated to improve the cognitive impairment that is induced by chronic cerebral hypoperfusion (CCH), but the underlying mechanism has not yet been elucidated. This study aimed to investigate the role of endogenous neuroprotection in EE-induced cognitive improvement in rats with CCH. Permanent bilateral common carotid artery occlusions (2-vessel occlusions (2VOs)) were performed to induce CCH in male adult Wistar rats. Four weeks after the surgeries, the rats were exposed to enriched environments for 4 weeks (6 h/day). Subsequently, we assessed the effects of EE on cognitive function, brain histone acetylation levels, neuroprotection-related transcription factors (i.e., cAMP response element-binding protein (CREB), phospho-CREB (p-CREB), hypoxia-inducible factor 1 (HIF-1) α, and nuclear regulatory factor 2 (Nrf2)), and oxidative stress and histological changes in the brain. After 2VO, the rats exposed to the EE treatment exhibited increased acetylation of histone 4 and increased p-CREB and Nrf2 protein levels in the brain. HIF-1α levels were increased after 2VO and reduced after EE treatment. The oxidative damage, histopathological changes in the brain, and spatial learning and memory impairments induced by 2VO were subsequently restored after EE treatment. These data indicate that EE promotes the acetylation of histone 4, regulates some neuroprotection-related transcription factors, attenuates oxidative damage, and protects against the histopathological damage to the brain induced by CCH. Together, the effects of EE in CCH rats might contribute to the recovery of spatial learning and memory.

  10. Plasma from human volunteers subjected to remote ischemic preconditioning protects human endothelial cells from hypoxia-induced cell damage.

    PubMed

    Weber, Nina C; Riedemann, Isabelle; Smit, Kirsten F; Zitta, Karina; van de Vondervoort, Djai; Zuurbier, Coert J; Hollmann, Markus W; Preckel, Benedikt; Albrecht, Martin

    2015-03-01

    Short repeated cycles of peripheral ischemia/reperfusion (I/R) can protect distant organs from subsequent prolonged I/R injury; a phenomenon known as remote ischemic preconditioning (RIPC). A RIPC-mediated release of humoral factors might play a key role in this protection and vascular endothelial cells are potential targets for these secreted factors. In the present study, RIPC-plasma obtained from healthy male volunteers was tested for its ability to protect human umbilical endothelial cells (HUVEC) from hypoxia-induced cell damage. 10 healthy male volunteers were subjected to a RIPC-protocol consisting of 4 × 5 min inflation/deflation of a blood pressure cuff located at the upper arm. Plasma was collected before (T0; control), directly after (T1) and 1 h after (T2) the RIPC procedure. HUVEC were subjected to 24 h hypoxia damage and simultaneously incubated with 5% of the respective RIPC-plasma. Cell damage was evaluated by lactate dehydrogenase (LDH)-measurements. Western blot experiments of hypoxia inducible factor 1 alpha (HIF1alpha), phosphorylated signal transducer and activator of transcription 5 (STAT5), protein kinase B (AKT) and extracellular signal-related kinase 1/2 (ERK-1/2) were performed. Furthermore, the concentrations of hVEGF were evaluated in the RIPC-plasma by sandwich ELISA. Hypoxia-induced cell damage was significantly reduced by plasma T1 (p = 0.02 vs T0). The protective effect of plasma T1 was accompanied by an augmentation of the intracellular HIF1alpha (p = 0.01 vs T0) and increased phosphorylation of ERK-1/2 (p = 0.03 vs T0). Phosphorylation of AKT and STAT5 remained unchanged. Analysis of the protective RIPC-plasma T1 showed significantly reduced levels of hVEGF (p = 0.01 vs T0). RIPC plasma protects endothelial cells from hypoxia-induced cell damage and humoral mediators as well as intracellular HIF1alpha may be involved.

  11. Hyperoxia-induced preconditioning against renal ischemic injury is mediated by reactive oxygen species but not related to heat shock proteins 70 and 32.

    PubMed

    Wahhabaghai, Hannaneh; Heidari, Reza; Zeinoddini, Atefeh; Soleyman-Jahi, Saeed; Golmanesh, Leila; Rasoulian, Bahram; Akbari, Hassan; Foadoddoni, Mohsen; Esmailidehaj, Mansour

    2015-06-01

    Pre-exposure of rats to normobaric hyperoxia (O2 ≥ 95%) may induce late preconditioning against renal ischemia-reperfusion (IR) injury. In this study we investigated probable mechanisms of IR injury such as the role of reactive oxygen species (ROS), renal antioxidant agents, and heat shock proteins (HSP) 32 and 70 during delayed hyperoxia-preconditioning (HO). Fifty-two rats were divided into 7 groups: (A) IR, (B) HO + IR, (C) mercaptopropionyl glycine (MPG) + HO + IR, (D) MPG + IR, (E) HO + sham, (F) MPG + sham, and (G) sham. Rats in the following study groups (group B, C and E) were kept in a normobaric hyperoxic environment for 4 h/day for 6 consecutive days, after which they were subjected to 40 minutes of ischemia; animals in the control group (group A, D, F, and G) were kept in a normoxic cage. At the end of the preconditioning period, 24 hours of reperfusion was performed. Renal function was assessed by measuring serum creatinine (Cr), blood urea nitrogen (BUN), and creatinine clearance (CLCr). Induction of the antioxidant system was evaluated by measuring renal catalase (CAT) and superoxide dismutase (SOD) activities and glutathione (GSH) and malondialdehyde (MDA) content. The role of ROS was investigated by use of MPG (a ROS scavenger). HSP32 & 70 mRNA and protein also were determined. The hyperoxia-preconditioned IR group (B) had a lower plasma Cr and BUN and greater CLCr compared with the IR group (A) (P ≤ .016). Administration of MPG led to an increase in plasma Cr and BUN and a decrease in CLCr in group C compared with the hyperoxia-preconditioned group B (P ≤ .004). The hyperoxia-preconditioned IR group had a greater CAT activity and GSH level compared with the IR group A (P ≤ .007), whereas the administration of MPG did not change the GSH level but led to a decrease in CAT activity in group D compared with group B (P < .001). SOD activity did not change in hyperoxia-preconditioned ischemic rats compared with ischemic rats. Hyperoxia

  12. Preconditioning with hyperbaric oxygen and hyperoxia induces tolerance against spinal cord ischemia in rabbits.

    PubMed

    Dong, Hailong; Xiong, Lize; Zhu, Zhenghua; Chen, Shaoyang; Hou, Lichao; Sakabe, Takefumi

    2002-04-01

    The aim of this study was to determine if the ischemic tolerance could be induced in the spinal cord by pretreatment with hyperbaric oxygen (HBO) and what components of HBO (hyperoxia, hyperbaricity, and combination of these two) were critical in the induction of tolerance against ischemic injury. In experiment 1, 21 rabbits were randomly assigned to one of three groups (n = 7 each): animals in the control group received no HBO before spinal cord ischemia; animals in the HBO-1 and HBO-2 groups received HBO (2.5 atmosphere absolute [ATA], 100% O2) pretreatment 1 h/day for 3 and 5 days before ischemia, respectively. In experiment 2, 48 rabbits were randomly assigned to one of four groups (n = 12 each): the control group received no HBO (21% O2, 1 ATA, 1 h/day, 5 days) before spinal cord ischemia; the HB group received 1-h treatment in 21% O2 at 2.5 ATA each day for 5 days; the HO group received 1-h treatment in 100% oxygen at 1 ATA each day for 5 days; and the HBO group received HBO (2.5 ATA, 100% O2) treatment 1 h/day for 5 days. Twenty-four hours after the last treatment, spinal cord ischemia was induced by an infrarenal aorta clamping for 20 min. Forty-eight hours after reperfusion, hind-limb motor function and histopathology of the spinal cord were examined in a blinded fashion. In experiment 1, the neurologic outcome in the HBO-2 group was better than that of the control group (P = 0.004). The number of normal neurons in the anterior spinal cord in the HBO-2 group was more than that of the control group (P = 0.021). In experiment 2, the neurologic and histopathologic outcomes in the HBO group were better than that of the control group (P < 0.01). The histopathologic outcome in the HO group was better than that in the control group (P < 0.05). Serial exposure to high oxygen tension induced ischemic tolerance in spinal cord of rabbits. Simple hyperbaricity (2.5 ATA, 21% O2) did not induce ischemic tolerance.

  13. MLC901, a Traditional Chinese Medicine induces neuroprotective and neuroregenerative benefits after traumatic brain injury in rats.

    PubMed

    Quintard, H; Lorivel, T; Gandin, C; Lazdunski, M; Heurteaux, C

    2014-09-26

    Traumatic brain injury (TBI) is a frequent and clinically highly heterogeneous neurological disorder with large socioeconomic consequences. NeuroAid (MLC601 and MLC901), a Traditional Medicine used in China for patients after stroke has been previously reported to induce neuroprotection and neuroplasticity. This study was designed to evaluate the neuroprotective and neuroregenerative effects of MLC901 in a rat model of TBI. TBI was induced by a moderate lateral fluid percussion applied to the right parietal cortex. MLC901 was injected intraperitoneally at 2h post-TBI, and then administered in drinking water at a concentration of 10mg/ml until sacrifice of the animals. The cognitive deficits induced by TBI were followed by using the "what-where-when" task, which allows the measurement of episodic-like memory. MLC901 treatment decreased brain lesions induced by TBI. It prevented the serum increase of S-100 beta (S100B) and neuron-specific enolase (NSE), which may be markers to predict the neurologic outcome in human patients with TBI. MLC901 reduced the infarct volume when injected up to 2h post-TBI, prevented edema formation and assisted its resolution, probably via the regulation of aquaporin 4. These positive MLC901 effects were associated with an upregulation of vascular endothelial growth factor (VEGF) as well as an increase of endogenous hippocampal neurogenesis and gliogenesis around the lesion. Furthermore, MLC901 reduced cognitive deficits induced by TBI. Rats subjected to TBI displayed a suppression of temporal order memory, which was restored by MLC901. This work provides evidence that MLC901 has neuroprotective and neurorestorative actions, which lead to an improvement in the recovery of cognitive functions in a model of traumatic brain injury. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Neuroprotective and neurotrophic effects of Apigenin and Luteolin in MPTP induced parkinsonism in mice.

    PubMed

    Patil, Sachin P; Jain, Pankaj D; Sancheti, Jayant S; Ghumatkar, Priya J; Tambe, Rufi; Sathaye, Sadhana

    2014-11-01

    In the present study, we aim to investigate the neuroprotective and neurotrophic effects of naturally occurring polyphenols like apigenin and luteolin and also to explore the underlying mechanisms with respect to Parkinson's disease (PD). MPTP (25 mg/kg) along with Probenecid (250 mg/kg) was administrated for five consecutive days to induce parkinsonism in mice. Apigenin (5, 10 and 20 mg/kg), luteolin (10 and 20 mg/kg) and Bromocriptine (10 mg/kg) were administrated orally for 26 days including 5 days of pretreatment. Behavioural analysis and biochemical estimation of oxidative stress biomarkers were conducted. Tyrosine hydroxylase (TH), glial fibrillary acidic protein (GFAP) and brain derived neurotrophic factor (BDNF) were evaluated in substantia nigra (SN) region of the brain by immunostaining. TNF-α was estimated using ELISA technique. Our results demonstrate that apigenin and luteolin treatment improved the locomotor and muscular activities in MPTP treated mice. TH-positive cells decreased up to 7% in MPTP treated mice compared to normal mice (P < 0.001) and were found to be protected from degeneration in apigenin (69%) and luteolin (63%) treated mice (P < 0.001). Levels of GFAP were found to be decreased in the SN of the brain due to apigenin and luteolin treatment as compared to MPTP mice. BDNF levels were elevated significantly in apigenin and luteolin treatment groups when compared to MPTP treatment mice. In conclusion, apigenin and luteolin protected the dopaminergic neurons probably by reducing oxidative damage, neuroinflammation and microglial activation along with enhanced neurotrophic potential. The above results propose both these flavonoids as promising molecules in the therapeutics of PD.

  15. Neuroprotective effects of Vitis vinifera extract on prediabetic mice induced by a high-fat diet

    PubMed Central

    Jin, Heung Yong; Cha, Youn Soo; Baek, Hong Sun

    2013-01-01

    Background/Aims Vitis vinifera grape seed extract (VVE) contains oligomeric proanthocyanidins that show antioxidant and free radical-scavenging activities. We evaluated VVE for its neuroprotective effect in prediabetic mice induce by a high-fat diet (HD). Methods Mice were divided into four groups according to VVE dose: those fed a normal diet (ND; n = 10), HD (n = 10), HD with 100 mg/kg VVE (n = 10), and HD with 250 mg/kg VVE (n = 10). After 12 weeks, immunohistochemical analyses were carried out using a polyclonal antibody against antiprotein gene product 9.5 (protein-gene-product, 9.5), and intraepidermal innervation was subsequently quantified as nerve fiber abundance per unit length of epidermis (intraepidermal nerve fiber, IENF/mm). Results Daily administration of VVE at doses of 100 or 250 mg/kg for 12 weeks protected HD mice from nerve fiber loss compared to untreated mice, as follows (IENF/mm): controls (40.95 ± 5.40), HD (28.70 ± 6.37), HD with 100 mg/kg (41.14 ± 1.12), and HD with 250 mg/kg (48.98 ± 7.01; p < 0.05, HD with VVE vs. HD). Conclusions This study provides scientific support for the therapeutic potential of VVE in peripheral neuropathy in an HD mouse model. Our results suggest that VVE could play a role in the management of peripheral neuropathy, similar to other antioxidants known to be beneficial for diabetic peripheral neuropathy. PMID:24009454

  16. Neuroprotective Actions of Clinoptilolite and Ethylenediaminetetraacetic Acid Against Lead-induced Toxicity in Mice Mus musculus

    PubMed Central

    Basha, Mahaboob P.; Begum, Shabana; Mir, Bilal Ahmed

    2013-01-01

    Objectives: Oxidative stress is considered as a possible molecular mechanism involved in lead (Pb2+) neurotoxicity. Very few studies have been investigated on the occurrence of oxidative stress in developing animals due to Pb2+ exposure. Considering the vulnerability of the developing brain to Pb2+, this study was carried out to investigate the effects of Pb2+ exposure in brain regions especially on antioxidant enzyme activities along with ameliorative effects of ethylenediaminetetraacetic acid (EDTA) and clinoptilolite. Methods: Three-week old developing Swiss mice Mus musculus were intraperitoneally administered with Pb2+ acetate in water (w/v) (100 mg/kg body weight/day) for 21 days and control group was given distilled water. Further Pb2+-toxicated mice were made into two subgroups and separately supplemented with EDTA and clinoptilolite (100 mg/kg body weight) for 2 weeks. Results: In Pb2+-exposed mice, in addition to increased lipid peroxidation, the activity levels of catalase, superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione (GSH) found to decrease in all regions of brain indicating, existence of severe oxidative stress due to decreased antioxidant function. Treatment of Pb2+-exposed mice with EDTA and clinoptilolite lowered the lipid peroxidation (LPO) levels revealing their antioxidant potential to prevent oxidative stress. Similarly their administration led to recover the level of catalase, SOD, and GPx enzymes affected during Pb2+ toxicity in different regions of brain. Conclusions: The protection of brain tissue against Pb2+-induced toxicity by clinoptilolite and EDTA in the present experiment might be due to their ability to react faster with peroxyl radicals there by reducing the severity of biochemical variable indicative of oxidative damage. Thus, the results of present study indicate the neuroprotective potential of clinoptilolite and EDTA against Pb2+ toxicity. PMID:24403728

  17. Neuroprotective effect of estradiol-loaded poly(lactic-co-glycolic acid) nanoparticles on glutamate-induced excitotoxic neuronal death.

    PubMed

    Kim, Jeong Hwan; Kim, Gyu Hyun; Jeong, Ji Heun; Lee, In Ho; Lee, Ye Ji; Lee, Nam Seob; Jeong, Young Gil; Lee, Je Hun; Yu, Kwang Sik; Lee, Shin Hye; Hong, Seul Ki; Kang, Seong Hee; Kang, Bo Sun; Kim, Do Kyung; Han, Seung Yun

    2014-11-01

    Different concentrations of estradiol (E2)-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles (E2-PLGA-NPs) were synthesized using the emulsion-diffusion method. Transmission electron microscopy results showed that the average particle size of E2-PLGA-NPs was 98 ± 1.9 nm when stabilized with polyvinyl alcohol and 103 ± 4.9 nm when stabilized with Tween-80. Fourier transform-infrared spectroscopy with diamond attenuated total reflectance was used to identify the presence or absence of E2 molecules in PLGA nanocapsules. Cell proliferation was assessed after treating SH-SY5Y neuroblastoma cells with 1 nM-1 μM of E2 and E2-PLGA-NPs. The neuroprotective efficacy against glutamate-induced excitotoxicity was also investigated in SH-SY5Y neuroblastoma cells. Neuroprotection was greater in E2-PLGA-NP-treated cells than in cells treated with the same concentration of E2. Furthermore, E2- and E2-PLGA-NP-treated cells expressed more p-ERK1/2 and p-CREB than cells treated with glutamate only. Moreover, the expression of p-ERK1/2 was higher than that of p-CREB. In this study, p-ERK1/2 had a greater influence on the neuroprotective effect of E2 and E2-PLGA-NPs than p-CREB.

  18. Treatment with an activator of hypoxia-inducible factor 1, DMOG provides neuroprotection after traumatic brain injury.

    PubMed

    Sen, Tanusree; Sen, Nilkantha

    2016-08-01

    Traumatic brain injury (TBI) is one of the major cause of morbidity and mortality and it affects more than 1.7 million people in the USA. A couple of regenerative pathways including activation of hypoxia-inducible transcription factor 1 alpha (HIF-1α) are initiated to reduce cellular damage following TBI; however endogenous activation of these pathways is not enough to provide neuroprotection after TBI. Thus we aimed to see whether sustained activation of HIF-1α can provide neuroprotection and neurorepair following TBI. We found that chronic treatment with dimethyloxaloylglycine (DMOG) markedly increases the expression level of HIF-1α and mRNA levels of its downstream proteins such as Vascular endothelial growth factor (VEGF), Phosphoinositide-dependent kinase-1 and 4 (PDK1, PDK4) and Erythropoietin (EPO). Treatment of DMOG activates a major cell survival protein kinase Akt and reduces both cell death and lesion volume following TBI. Moreover, administration of DMOG augments cluster of differentiation 31 (CD31) staining in pericontusional cortex after TBI, which suggests that DMOG stimulates angiogenesis after TBI. Treatment with DMOG also improves both memory and motor functions after TBI. Taken together our results suggest that sustained activation of HIF-1α provides significant neuroprotection following TBI. Published by Elsevier Ltd.

  19. Neuroprotective Effects of Dexmedetomidine Against Hypoxia-Induced Nervous System Injury are Related to Inhibition of NF-κB/COX-2 Pathways.

    PubMed

    Pan, Wanying; Lin, Lin; Zhang, Nan; Yuan, Fuli; Hua, Xiaoxiao; Wang, Yueting; Mo, Liqiu

    2016-10-01

    Dexmedetomidine has been reported to provide neuroprotection against hypoxia-induced damage. However, the underlying mechanisms remain unclear. We examined whether dexmedetomidine's neuroprotective effects were mediated by the NF-κB/COX-2 pathways. Adult male C57BL/6 mice were subjected to a 30-min hypoxic treatment followed by recovery to normal conditions. They received dexmedetomidine (16 or 160 μg/kg) or 25 mg/kg atipamezole, an α2-adrenoreceptor antagonist, intraperitoneally before exposure to hypoxia. The whole brain was harvested 6, 18, or 36 h after the hypoxia to determine the histopathological outcome and cleaved caspase-3, Bax/Bcl, NF-κB, and COX-2 levels. Hypoxia treatment induced significant neurotoxicity, including destruction of the tissue structure and upregulation of the protein levels of caspase-3, the ratio of Bax/Bcl-2, NF-κB, and COX-2. Dexmedetomidine pretreatment effectively improved histological outcome and restored levels of caspase-3, the Bax/Bcl-2 ratio, NF-κB, and COX-2. Atipamezole reversed the neuroprotection induced by dexmedetomidine. Neuroprotection was achieved by PDTC and NS-398, inhibitors of NF-κB and COX-2, respectively. Dexmedetomidine use before hypoxia provides neuroprotection. Inhibition of NF-κB/COX-2 pathways activation may contribute to the neuroprotection of dexmedetomidine.

  20. Neuroprotective Effects of Endurance Exercise Against High-Fat Diet-Induced Hippocampal Neuroinflammation.

    PubMed

    Kang, E-B; Koo, J-H; Jang, Y-C; Yang, C-H; Lee, Y; Cosio-Lima, L M; Cho, J-Y

    2016-05-01

    Obesity contributes to systemic inflammation, which is associated with the varied pathogenesis of neurodegenerative diseases. Growing evidence has demonstrated that endurance exercise (EE) mitigates obesity-induced brain inflammation. However, exercise-mediated anti-inflammatory mechanisms remain largely unknown. We investigated how treadmill exercise (TE) reverses obesity-induced brain inflammation, mainly focusing on toll-like receptor-4 (TLR-4)-dependent neuroinflammation in the obese rat brain after 20 weeks of a high-fat diet (HFD). TE in HFD-fed rats resulted in a significant lowering in the homeostasis model assessment of insulin resistance index, the area under the curve for glucose and abdominal visceral fat, and also improved working memory ability in a passive avoidance task relative to sedentary behaviour in HFD-fed rats, with the exception of body weight. More importantly, TE revoked the increase in HFD-induced proinflammatory cytokines (tumour necrosis factor α and interleukin-1β) and cyclooxygenase-2, which is in parallel with a reduction in TLR-4 and its downstream proteins, myeloid differentiation 88 and tumour necrosis factor receptor associated factor 6, and phosphorylation of transforming growth factor β-activated kinase 1, IkBα and nuclear factor-κB. Moreover, TE reduced an indicator of microglia activation, ionised calcium-binding adapter molecule-1, and also decreased glial fibrillary acidic protein, an indicator of gliosis formed by activated astrocytes in the cerebral cortex and the hippocampal dentate gyrus, compared to HFD-fed sedentary rats. Finally, EE up-regulated the expression of anti-apoptotic protein, Bcl-2, and suppressed the expression of pro-apoptotic protein, Bax, in the hippocampus compared to HFD-fed sedentary rats. Taken together, these data suggest that TE may exert neuroprotective effects as a result of mitigating the production of proinflammatory cytokines by inhibiting the TLR4 signalling pathways. The results of

  1. Neuroprotective effects of Gymnema sylvestre on streptozotocin-induced diabetic neuropathy in rats

    PubMed Central

    FATANI, AMAL JAMIL; AL-REJAIE, SALIM SALIH; ABUOHASHISH, HATEM MUSTAFA; AL-ASSAF, ABDULLAH; PARMAR, MIHIR YOGESHKUMAR; OLA, MOHAMMAD SHAMSUL; AHMED, MOHAMMED MAHBOOBUDDIN

    2015-01-01

    The application of traditional medicine for diabetes and associated complications, such as diabetic neuropathy (DN), has received increasing attention. The aim of the present study was to investigate the potential ameliorative effect of Gymnema sylvestre (Gs) in a rat model of DN. Diabetes was induced via a single intraperitoneal injection of streptozotocin (STZ; 60 mg/kg). Treatment with Gs extract (50 or 100 mg/kg/day) began two weeks following the administration of STZ and was continued for five weeks. Pain threshold behavior tests were performed subsequent to the five-week Gs treatment period. In addition, the serum levels of glucose, insulin and proinflammatory cytokines, including tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6, were determined. Furthermore, the sciatic tissue levels of nitric oxide, thiobarbituric acid reactive substances and reduced glutathione were determined, as well as the activity levels of superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase. Levels of insulin-like growth factor (IGF), nerve growth factor (NGF), TNF-α, IL-1β and IL-6 were also assessed in the sciatic tissue. In addition, the sciatic nerve tissue samples were analyzed for histopathological alterations. The diabetic rats exhibited apparent reductions in the paw-withdrawal (31%; P<0.01) and tail-flick latencies (38%; P<0.05). Furthermore, the diabetic rats demonstrated an evident elevation in serum and sciatic levels of proinflammatory cytokines. Measured oxidative stress biomarkers were significantly altered in the sciatic nerve tissue of the diabetic rats. Treatment with Gs attenuated diabetes-induced modifications with regard to the levels of serum glucose, insulin and proinflammatory cytokines. In the sciatic nerve tissue, the diabetes-induced alterations in IL levels and oxidative stress biomarkers were significantly improved in the Gs-treated rats. Furthermore, the reduction in the sciatic tissue expression levels of IGF

  2. Neuroprotective effects of Gymnema sylvestre on streptozotocin-induced diabetic neuropathy in rats.

    PubMed

    Fatani, Amal Jamil; Al-Rejaie, Salim Salih; Abuohashish, Hatem Mustafa; Al-Assaf, Abdullah; Parmar, Mihir Yogeshkumar; Ola, Mohammad Shamsul; Ahmed, Mohammed Mahboobuddin

    2015-05-01

    The application of traditional medicine for diabetes and associated complications, such as diabetic neuropathy (DN), has received increasing attention. The aim of the present study was to investigate the potential ameliorative effect of Gymnema sylvestre (Gs) in a rat model of DN. Diabetes was induced via a single intraperitoneal injection of streptozotocin (STZ; 60 mg/kg). Treatment with Gs extract (50 or 100 mg/kg/day) began two weeks following the administration of STZ and was continued for five weeks. Pain threshold behavior tests were performed subsequent to the five-week Gs treatment period. In addition, the serum levels of glucose, insulin and proinflammatory cytokines, including tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6, were determined. Furthermore, the sciatic tissue levels of nitric oxide, thiobarbituric acid reactive substances and reduced glutathione were determined, as well as the activity levels of superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase. Levels of insulin-like growth factor (IGF), nerve growth factor (NGF), TNF-α, IL-1β and IL-6 were also assessed in the sciatic tissue. In addition, the sciatic nerve tissue samples were analyzed for histopathological alterations. The diabetic rats exhibited apparent reductions in the paw-withdrawal (31%; P<0.01) and tail-flick latencies (38%; P<0.05). Furthermore, the diabetic rats demonstrated an evident elevation in serum and sciatic levels of proinflammatory cytokines. Measured oxidative stress biomarkers were significantly altered in the sciatic nerve tissue of the diabetic rats. Treatment with Gs attenuated diabetes-induced modifications with regard to the levels of serum glucose, insulin and proinflammatory cytokines. In the sciatic nerve tissue, the diabetes-induced alterations in IL levels and oxidative stress biomarkers were significantly improved in the Gs-treated rats. Furthermore, the reduction in the sciatic tissue expression levels of IGF

  3. Neuroprotective effect of Momordica charantia in global cerebral ischemia and reperfusion induced neuronal damage in diabetic mice.

    PubMed

    Malik, Zafar Ahmad; Singh, Manjeet; Sharma, P L

    2011-01-27

    Momordica charantia L. (Cucurbitaceae) fruits have been used traditionally for centuries, especially for treating diabetes and associated complications. The present study was performed to evaluate neuroprotective effect of lyophilized M. charantia fruit juice against global cerebral ischemia and reperfusion induced neuronal injury in diabetic mice. Global cerebral ischemia induced by occluding both common carotid arteries for 10 min followed by 24 h reperfusion was used to induce neuronal injury. Ischemia-reperfusion induced neuronal injury was evaluated in terms of cerebral infarct size, generation of free radicals measured as thiobarbaturic acid reactive substances (TBARS), and neurological functions measured as short term memory and motor activity. The cerebral oxidative stress and damage, and neurological deficits were dose dependently attenuated by pre-treatment with the lyophilized M. charantia juice (200-800 mg/kg, p.o., o.d.). Moreover, M. charantia also exhibited dose dependent antihyperglycemic activity in diabetic mice. These results suggest that M. charantia has potent neuroprotective activity against global cerebral ischemia-reperfusion induced neuronal injury and consequent neurological deficits in diabetic mice. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  4. Possible role of P-glycoprotein in the neuroprotective mechanism of berberine in intracerebroventricular streptozotocin-induced cognitive dysfunction.

    PubMed

    Kumar, Anil; Ekavali; Mishra, Jitendriya; Chopra, Kanwaljit; Dhull, Dinesh K

    2016-01-01

    The therapeutic potential of berberine has been well documented in various neurological problems. However, the neurological mechanism of berberine remains untapped in the light of its P-glycoprotein (P-gp)-mediated gut efflux properties responsible for reduced bioavailability. Verapamil, a well known L-type calcium channel blocker, has additional inhibitory activity against P-gp efflux pump. Thus, there is a strong scientific rationale to explore the interaction of berberine with verapamil as a possible neuroprotective strategy. The present study was designed to evaluate the effect of berberine, verapamil, and their combination on behavioral alterations, oxidative stress, mitochondrial dysfunction, neuroinflammation, and histopathological modifications in intracerebroventricular streptozocin (ICV-STZ)-induced sporadic dementia of Alzheimer's type in rats. Single bilateral ICV-STZ (3 mg/kg) administration was used as an experimental model of sporadic dementia of Alzheimer's type. Berberine (25, 50, and 100 mg/kg, oral gavage) or verapamil (2.5 and 5 mg/kg, intraperitoneally) were used as treatment drugs, and memantine (5 mg/kg, intraperitoneally) was used as a standard. Berberine and verapamil significantly attenuated behavioral, biochemical, cellular, and histological alterations, suggesting their neuroprotective potential. Further, treatment of berberine (25 and 50 mg/kg) with verapamil (2.5 and 5.0 mg/kg) combinations respectively significantly potentiated their neuroprotective effect which was significant as compared to their effect per se in ICV-STZ-treated animals. The augmentative outcome of verapamil on the neuroprotective effect of berberine can be speculated due to the inhibition of P-gp efflux mechanism and the prevention of calcium homeostasis alteration. Additionally, anti-inflammatory and antioxidant effects of both berberine and verapamil could also contribute in their protective effect.

  5. Aquaporin-4 inhibition mediates piroxicam-induced neuroprotection against focal cerebral ischemia/reperfusion injury in rodents.

    PubMed

    Bhattacharya, Pallab; Pandey, Anand Kumar; Paul, Sudip; Patnaik, Ranjana; Yavagal, Dileep R

    2013-01-01

    Aquaporin-4(AQP4) is an abundant water channel protein in brain that regulates water transport to maintain homeostasis. Cerebral edema resulting from AQP4 over expression is considered to be one of the major determinants for progressive neuronal insult during cerebral ischemia. Although, both upregulation and downregulation of AQP4 expression is associated with brain pathology, over expression of AQP4 is one of the chief contributors of water imbalance in brain during ischemic pathology. We have found that Piroxicam binds to AQP4 with optimal binding energy value. Thus, we hypothesized that Piroxicam is neuroprotective in the rodent cerebral ischemic model by mitigating cerebral edema via AQP4 regulation. Rats were treated with Piroxicam OR placebo at 30 min prior, 2 h post and 4 h post 60 minutes of MCAO followed by 24 hour reperfusion. Rats were evaluated for neurological deficits and motor function just before sacrifice. Brains were harvested for infarct size estimation, water content measurement, biochemical analysis, RT-PCR and western blot experiments. Piroxicam pretreatment thirty minutes prior to ischemia and four hour post reperfusion afforded neuroprotection as evident through significant reduction in cerebral infarct volume, improvement in motor behavior, neurological deficit and reduction in brain edema. Furthermore, ischemia induced surge in levels of nitrite and malondialdehyde were also found to be significantly reduced in ischemic brain regions in treated animals. This neuroprotection was found to be associated with inhibition of acid mediated rise in intracellular calcium levels and also downregulated AQP4 expression. Findings of the present study provide significant evidence that Piroxicam acts as a potent AQP4 regulator and renders neuroprotection in focal cerebral ischemia. Piroxicam could be clinically exploited for the treatment of brain stroke along with other anti-stroke therapeutics in future.

  6. Comparable Neuroprotective Effects of Pergolide and Pramipexole on Ferrous Sulfate-Induced Dopaminergic Cell Death in Cell Culture.

    PubMed

    Reichelt, Doreen; Radad, Khaled; Moldzio, Rudolf; Rausch, Wolf-Dieter; Reichmann, Heinz; Gille, Gabriele

    2016-01-01

    Dopamine agonists are utilized clinically as an initial treatment in younger Parkinson's disease patients to delay the side effects associated with commencement of levodopa medication. These agonists also serveas adjunctive therapeutics with levodopa to lower the incidence of adverse motor symptoms in advanced stages of the disease. To compare the neuroprotective effects of the dopamine agonists pergolide and pramipexole on ferrous sulfate-induced neurotoxicity in dopaminergic neurons from primary mesencephalic cell culture. Pergolide (0.001-1 μM) and pramipexole (0.01-200 μM) were administered to 8 day primary murine mesencephalic cultures for 24 h. in the presence or absence of desferal, sulpiride or cycloheximide. Ferrous sulfate (450 μM) was then added for 24 hrs. Lactate dehydrogenase was assayed in the supernatant, glutathione concentrations measured in cell lysates and fixed cells were stained for tyrosine hydroxylase. Ferrous sulphate induced neurotoxity in cultures (p<0.0001) was abolished in the presence of the iron chelator desferal (p<0.008). Both pergolide (p<0.0001) and pramipexole (p<0.0001) significantly protected dopaminergic neurons against ferrous sulfate induced neurotoxicity and pramipexole helped preserve neurite morphology. Pramipexole treatment significantly reduced lactate dehydrogenase release (p<0.0001) as a measure of cellular injury. The dopamine receptor antagonist sulpiride (p<0.0001) and the protein synthesis inhibitor cycloheximide (p<0.0001) reduced the neuroprotective effects of pergolide indicating the involvement receptor stimulation and de novo protein synthesis in pergolide-mediated neuroprotection. Pramipexole also significantly reversed the decrease in cellular glutathione concentrations induced by ferrous sulfate (p<0.001). Both pergolide and pramipexole protect dopaminergic neurons against the neurotoxicity of ferrous sulfate. Pergolide specifically protects dopaminergic neurons through activation of dopamine receptors

  7. Neuroprotective Effect of Fisetin Against Amyloid-Beta-Induced Cognitive/Synaptic Dysfunction, Neuroinflammation, and Neurodegeneration in Adult Mice.

    PubMed

    Ahmad, Ashfaq; Ali, Tahir; Park, Hyun Young; Badshah, Haroon; Rehman, Shafiq Ur; Kim, Myeong Ok

    2017-04-01

    Alzheimer's disease (AD) is a devastating and progressive neurodegenerative disease and is characterized pathologically by the accumulation of amyloid beta (Aβ) and the hyperphosphorylation of tau proteins in the brain. The deposition of Aβ aggregates triggers synaptic dysfunction, hyperphosphorylation of tau, and neurodegeneration, which lead to cognitive disorders. Here, we investigated the neuroprotective effect of fisetin in the Aβ1-42 mouse model of AD. Single intracerebroventricular injections of Aβ1-42 (3 μl/5 min/mouse) markedly induced memory/synaptic deficits, neuroinflammation, and neurodegeneration. Intraperitoneal injections of fisetin at a dose of 20 mg/kg/day for 2 weeks starting 24 h after Aβ1-42 injection significantly decreased the Aβ1-42-induced accumulation of Aβ, BACE-1 expression, and hyperphosphorylation of tau protein at serine 413. Fisetin treatment also markedly reversed Aβ1-42-induced synaptic dysfunction by increasing the levels of both presynaptic (SYN and SNAP-25) and postsynaptic proteins (PSD-95, SNAP-23, p-GluR1 (Ser 845), p-CREB (Ser 133) and p-CAMKII (Thr 286) and ultimately improved mouse memory, as observed in the Morris water maze test. Fisetin significantly activated p-PI3K, p-Akt (Ser 473), and p-GSK3β (Ser 9) expression in Aβ1-42-treated mice. Moreover, fisetin prevented neuroinflammation by suppressing various activated neuroinflammatory mediators and gliosis; it also suppressed the apoptotic neurodegeneration triggered by Aβ1-42 injections in the mouse hippocampus. Fluorojade-B and immunohistochemical staining for caspase-3 revealed that fisetin prevented neurodegeneration in Aβ1-42-treated mice. Our results suggest that fisetin has a potent neuroprotective effect against Aβ1-42-induced neurotoxicity. These results demonstrate that polyphenolic flavonoids such as fisetin could be a beneficial, effective and safe neuroprotective agent for preventing neurological disorders such as AD.

  8. IGF-II promotes neuroprotection and neuroplasticity recovery in a long-lasting model of oxidative damage induced by glucocorticoids.

    PubMed

    Martín-Montañez, E; Millon, C; Boraldi, F; Garcia-Guirado, F; Pedraza, C; Lara, E; Santin, L J; Pavia, J; Garcia-Fernandez, M

    2017-10-01

    Insulin-like growth factor-II (IGF-II) is a naturally occurring hormone that exerts neurotrophic and neuroprotective properties in a wide range of neurodegenerative diseases and ageing. Accumulating evidence suggests that the effects of IGF-II in the brain may be explained by its binding to the specific transmembrane receptor, IGFII/M6P receptor (IGF-IIR). However, relatively little is known regarding the role of IGF-II through IGF-IIR in neuroprotection. Here, using adult cortical neuronal cultures, we investigated whether IGF-II exhibits long-term antioxidant effects and neuroprotection at the synaptic level after oxidative damage induced by high and transient levels of corticosterone (CORT). Furthermore, the involvement of the IGF-IIR was also studied to elucidate its role in the neuroprotective actions of IGF-II. We found that neurons treated with IGF-II after CORT incubation showed reduced oxidative stress damage and recovered antioxidant status (normalized total antioxidant status, lipid hydroperoxides and NAD(P) H:quinone oxidoreductase activity). Similar results were obtained when mitochondria function was analysed (cytochrome c oxidase activity, mitochondrial membrane potential and subcellular mitochondrial distribution). Furthermore, neuronal impairment and degeneration were also assessed (synaptophysin and PSD-95 expression, presynaptic function and FluoroJade B® stain). IGF-II was also able to recover the long-lasting neuronal cell damage. Finally, the effects of IGF-II were not blocked by an IGF-IR antagonist, suggesting the involvement of IGF-IIR. Altogether these results suggest that, in or model, IGF-II through IGF-IIR is able to revert the oxidative damage induced by CORT. In accordance with the neuroprotective role of the IGF-II/IGF-IIR reported in our study, pharmacotherapy approaches targeting this pathway may be useful for the treatment of diseases associated with cognitive deficits (i.e., neurodegenerative disorders, depression, etc

  9. Identification of Sleep-Modulated Pathways Involved in Neuroprotection from Stroke

    PubMed Central

    Pace, Marta; Baracchi, Francesca; Gao, Bo; Bassetti, Claudio

    2015-01-01

    Study Objectives: Sleep deprivation (SDp) performed before stroke induces an ischemic tolerance state as observed in other forms of preconditioning. As the mechanisms underlying this effect are not well understood, we used DNA oligonucleotide microarray analysis to identify the genes and the gene-pathways underlying SDp preconditioning effects. Design: Gene expression was analyzed 3 days after stroke in 4 experimental groups: (i) SDp performed before focal cerebral ischemia (IS) induction; (ii) SDp performed before sham surgery; (iii) IS without SDp; and (iv) sham surgery without SDp. SDp was performed by gentle handling during the last 6 h of the light period, and ischemia was induced immediately after. Settings: Basic sleep research laboratory. Measurements and Results: Stroke induced a massive alteration in gene expression both in sleep deprived and non-sleep deprived animals. However, compared to animals that underwent ischemia alone, SDp induced a general reduction in transcriptional changes with a reduction in the upregulation of genes involved in cell cycle regulation and immune response. Moreover, an upregulation of a new neuroendocrine pathway which included melanin concentrating hormone, glycoprotein hormones-α-polypeptide and hypocretin was observed exclusively in rats sleep deprived before stroke. Conclusion: Our data indicate that sleep deprivation before stroke reprogrammed the signaling response to injury. The inhibition of cell cycle regulation and inflammation are neuroprotective mechanisms reported also for other forms of preconditioning treatment, whereas the implication of the neuroendocrine function is novel and has never been described before. These results therefore provide new insights into neuroprotective mechanisms involved in ischemic tolerance mechanisms. Citation: Pace M, Baracchi F, Gao B, Bassetti C. Identification of sleep-modulated pathways involved in neuroprotection from stroke. SLEEP 2015;38(11):1707–1718. PMID:26085290

  10. Neuroprotection & mechanism of ethanol in stroke and traumatic brain injury therapy: new prospects for an ancient drug.

    PubMed

    Asmaro, Karam; Fu, Paul; Ding, Yuchuan

    2013-01-01

    Effective efforts to screen for agents that protect against the devastating effects of stroke have not produced viable results thus far. As a result this article reviews the possible role of ethanol as a neuroprotective agent in stroke and traumatic brain injury (TBI). Previous studies have associated ethanol consumption with a decreased risk of ischemic stroke, suggesting a neuroprotective mechanism. The translation of this clinical knowledge into basic science research with the goal of new therapy for acute stroke patients remains in its initial stages. In a recent study involving rats, we have shown that ethanol administration, in the correct dose after stroke onset, protects against ischemia-induced brain injury. The purpose of this paper is to discuss ethanol's neuroprotective properties in stroke when consumed as a preconditioning agent, in TBI with a positive blood alcohol content, and finally in stroke treatment, with the goal of using post-ischemia ethanol (PIE) therapy to ameliorate brain damage in the future.

  11. Hypoxic preconditioning protects cardiomyocytes against hypoxia/reoxygenation-induced cell apoptosis via sphingosine kinase 2 and FAK/AKT pathway.

    PubMed

    Zhang, Ruxin; Li, Ling; Yuan, Li; Zhao, Min

    2016-02-01

    Previous studies have demonstrated that hypoxic preconditioning (HPC) alleviates hypoxia/reoxygenation (H/R) injury. However, the impact and mechanism involved were not fully understood. This study aimed to evaluate the effect of HPC on H/R injury in cardiomyocytes and investigate the molecular mechanisms involved. In our study, primary neonatal rat cardiomyocytes were isolated and characterized by immunofluorescence staining. We established H/R models in vitro to mimic ischemia/reperfusion (I/R) injury in vivo. Primary cardiomyocytes were exposed to HPC and then subjected to H/R. SphK2 expression was determined by quantitative real-time PCR and Western blotting. Cell apoptosis was measured by Hoechst staining. H9c2 cells were transfected with SphK2 siRNA or pcDNA3.1-SphK2 plasmid. The transfection efficiency was evaluated 48h post-transfection. After H/R, cell apoptosis rate was determined by Annexin V-FITC/PI and caspase-3/-9 activity was measured. The activation of FAK/AKT pathway was evaluated by Western blotting. Our results showed that HPC significantly increased SphK2 expression in primary cardiomyocytes under normal or H/R condition and protected against H/R-induced cell apoptosis, whereas SphK2 inhibitor K145 abolished the cardioprotective effect of HPC. HPC markedly reduced the cell apoptosis rate of H9c2, decreased the activities of caspase-3 and -9 and increased p-FAK and p-AKT levels, which were reversed by SphK2 knockdown. Additionally, SphK2 overexpression exerted a similar effect with HPC on cell apoptosis and FAK/AKT. Inhibition of H9c2 cell apoptosis induced by HPC and SphK2 overexpression was abolished by PI3K/AKT inhibitor LY294002. These results indicate that HPC may protect cardiomyocytes against H/R injury via SphK2 and the downstream FAK/AKT signaling pathway. Our findings provided important evidences for the protective role of HPC in ameliorating myocardial H/R injury. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. SO4(=) uptake and catalase role in preconditioning after H2O2-induced oxidative stress in human erythrocytes.

    PubMed

    Morabito, Rossana; Remigante, Alessia; Di Pietro, Maria Letizia; Giannetto, Antonino; La Spada, Giuseppina; Marino, Angela

    2017-02-01

    Preconditioning (PC) is an adaptive response to a mild and transient oxidative stress, shown for the first time in myocardial cells and not described in erythrocytes so far. The possible adaptation of human erythrocytes to hydrogen peroxide (H2O2)-induced oxidative stress has been here verified by monitoring one of band 3 protein functions, i.e., Cl(-)/HCO3(-) exchange, through rate constant for SO4(=) uptake measurement. With this aim, erythrocytes were exposed to a mild and transient oxidative stress (30 min to either 10 or 100 μM H2O2), followed by a stronger oxidant condition (300- or, alternatively, 600-μM H2O2 treatment). SO4(=) uptake was measured by a turbidimetric method, and the possible role of catalase (CAT, significantly contributing to the anti-oxidant system in erythrocytes) in PC response has been verified by measuring the rate of H2O2 degradation. The preventive exposure of erythrocytes to 10 μM H2O2, and then to 300 μM H2O2, significantly ameliorated the rate constant for SO4(=) uptake with respect to 300 μM H2O2 alone, showing thus an adaptive response to oxidative stress. Our results show that (i) SO4(=) uptake measurement is a suitable model to monitor the effects of a mild and transient oxidative stress in human erythrocytes, (ii) band 3 protein anion exchange capability is retained after 10 μM H2O2 treatment, (iii) PC response induced by the 10 μM H2O2 pretreatment is clearly detected, and (iv) PC response, elicited by low-concentrated H2O2, is mediated by CAT enzyme and does not involve band 3 protein tyrosine phosphorylation pathways. Erythrocyte adaptation to a short-term oxidative stress may serve as a basis for future studies about the impact of more prolonged oxidative events, often associated to aging, drug consumption, chronic alcoholism, hyperglycemia, or neurodegenerative diseases.

  13. Spatial distributions of earthquake-induced landslides and hillslope preconditioning in northwest South Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Parker, R. N.; Hancox, G. T.; Petley, D. N.; Massey, C. I.; Densmore, A. L.; Rosser, N. J.

    2015-01-01

    Current models to explain regional-scale landslide events are not able to account for the possible effects of the legacy of previous earthquakes, which have triggered landslides in the past and are known to drive damage accumulation in brittle hillslope materials. This paper tests the hypothesis that spatial distributions of earthquake-induced landslides are determined by both the conditions at the time of the triggering earthquake (time-independent factors), and also the legacy of past events (time-dependent factors). To explore this, we undertake an analysis of failures triggered by the 1929 Buller and 1968 Inangahua earthquakes, in the northwest South Island of New Zealand. The spatial extent of landslides triggered by these events was in part coincident (overlapping). Spatial distributions of earthquake-triggered landslides are determined by a combination of earthquake and local characteristics, which influence the dynamic response of hillslopes. To identify the influence of a legacy from past events, we use logistic regression to control for the effects of time-independent variables (seismic ground motion, hillslope gradient, lithology, and the effects of topographic amplification caused by ridge- and slope-scale topography), in an attempt to reveal unexplained variability in the landslide distribution. We then assess whether this variability can be attributed to the legacy of past events. Our results suggest that the 1929 Buller earthquake influenced the distribution of landslides triggered by the 1968 Inangahua earthquake. Hillslopes in regions that experienced strong ground motions in 1929 were more likely to fail in 1968 than would be expected on the basis of time-independent factors alone. This effect is consistent with our hypothesis that unfailed hillslopes in the 1929 earthquake were weakened by damage accumulated during this earthquake and its associated aftershock sequence, and this weakening then influenced the performance of the landscape in the

  14. Opioid receptor activation is involved in neuroprotection induced by TRPV1 channel activation against excitotoxicity in the rat retina.

    PubMed

    Sakamoto, Kenji; Kuroki, Taiyo; Sagawa, Tomonori; Ito, Hiroko; Mori, Asami; Nakahara, Tsutomu; Ishii, Kunio

    2017-10-05

    Recently, we reported that capsaicin, a transient receptor potential vanilloid type1 (TRPV1) agonist, protected against excitotoxicity induced by intravitreal N-methyl-D-aspartic acid (NMDA) in the rats in vivo. It has been reported that morphine, an opioid receptor agonist, ameliorated excitotoxicity induced by ischemia-reperfusion in the retina, and that capsaicin-induced neuroprotection was reduced by naloxone, an opioid receptor antagonist in the brain. The aim of the present study is to clarify whether activation of opioid receptors is involved in the capsaicin-induced neuroprotection in the retina. Under ketamine/xylazine anesthesia, male Sprague-Dawley rats were subjected to intravitreal NMDA injection (200nmol/eye). Capsaicin (5.0nmol/eye), calcitonin gene-related peptide (CGRP; 0.05pmol/eye), β-endorphin (0.5 pmol/eye), substance P (5nmol/eye), and naloxone (0.5nmol/eye) were intravitreally administered simultaneously with NMDA. Morphometric evaluation 7 days after NMDA injection showed that intravitreal NMDA injection resulted in ganglion cell loss. Capsaicin, CGRP, β-endorphin, and substance P prevented this damage. Treatment with naloxone (0.5nmol/eye) almost completely negated the protective effects of capsaicin, CGRP, β-endorphin, and substance P in the NMDA-injected rats. These results suggested that activation of opioid receptors is possibly involved in the protective effect of capsaicin. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Prevention of oxytosis-induced c-Raf down-regulation by (arylthio)cyclopentenone prostaglandins is neuroprotective.

    PubMed

    Shibata, Shoko; Furuta, Kyoji; Oh-Hashi, Kentaro; Ueda, Hiroshi; Kiuchi, Kazutoshi; Hirata, Yoko

    2017-09-06

    Prolonged exposure to high concentrations of glutamate leads to cell type specific glutathione depletion and resulting oxidative stress, known as oxytosis. As a result of glutathione depletion, accumulation of reactive oxygen species and Ca(2+) influx are increased; however, the specific target of oxytosis has yet to be identified. In the present study, we focused on the effect of glutamate-induced oxidative stress on the extracellular-regulated protein kinase (ERK) pathway using the murine hippocampal HT22 cell line. Although the contribution of the ERK pathway to glutamate-induced oxytosis in HT22 cells is controversial, Western blot analysis revealed that glutamate caused down-regulation of mitogen-activated protein kinase kinase kinase (c-Raf) and a resulting decrease in the phosphorylation of c-Raf, as well as of mitogen-activated protein kinase kinase1/2 (MEK1/2) and ERK1/2, downstream components of the c-Raf/MEK/ERK pathway. Furthermore, neuroprotective (arylthio)cyclopentenone prostaglandins prevented glutamate-induced c-Raf down-regulation and consequently maintained the basal activity of c-Raf and its downstream signaling components. A pull-down assay using biotin-labeled cyclopentenone prostaglandins revealed that they preferentially bound to c-Raf relative to other signaling molecules of the ERK pathway, including Ras, MEK1/2, and ERK. These results suggest that neuroprotective (arylthio)cyclopentenone prostaglandins directly bind to c-Raf protein and protect cells from down-regulation of the c-Raf protein itself, resulting in neuroprotection against oxidative stress. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Hypothermic Preconditioning Reverses Tau Ontogenesis in Human Cortical Neurons and is Mimicked by Protein Phosphatase 2A Inhibition

    PubMed Central

    Rzechorzek, Nina M.; Connick, Peter; Livesey, Matthew R.; Borooah, Shyamanga; Patani, Rickie; Burr, Karen; Story, David; Wyllie, David J.A.; Hardingham, Giles E.; Chandran, Siddharthan

    2015-01-01

    Hypothermia is potently neuroprotective, but the molecular basis of this effect remains obscure. Changes in neuronal tau protein are of interest, since tau becomes hyperphosphorylated in injury-resistant, hypothermic brains. Noting inter-species differences in tau isoforms, we have used functional cortical neurons differentiated from human pluripotent stem cells (hCNs) to interrogate tau modulation during hypothermic preconditioning at clinically-relevant temperatures. Key tau developmental transitions (phosphorylation status and splicing shift) are recapitulated during hCN differentiation and subsequently reversed by mild (32 °C) to moderate (28 °C) cooling — conditions which reduce oxidative and excitotoxic stress-mediated injury in hCNs. Blocking a major tau kinase decreases hCN tau phosphorylation and abrogates hypothermic neuroprotection, whilst inhibition of protein phosphatase 2A mimics cooling-induced tau hyperphosphorylation and protects normothermic hCNs from oxidative stress. These findings indicate a possible role for phospho-tau in hypothermic preconditioning, and suggest that cooling drives human tau towards an earlier ontogenic phenotype whilst increasing neuronal resilience to common neurotoxic insults. This work provides a critical step forward in understanding how we might exploit the neuroprotective benefits of cooling without cooling patients. PMID:26870825

  17. Sca-1+ stem cell survival and engraftment in the infarcted heart: dual role for preconditioning induced connexin-43

    PubMed Central

    Lu, Gang; Haider, Husnain Kh; Jiang, Shujia; Ashraf, Muhammad

    2009-01-01

    Background We report that elevated connexin-43 (Cx-43) in stem cells preconditioned with insulin like growth factor-1 (IGF-1) is cytoprotective and reprograms the cells for cardiomyogenic differentiation. Methods and Results Sca-1+ cells were preconditioned with 100nM IGF-1 for 30-minutes followed by 8-hours (h) of oxygen glucose deprivation (OGD) to assess the cytoprotective effects of preconditioning. LDH release assay, cytochrome-c release and mitochondrial membrane potential assay showed improved survival of preconditioned Sca-1+ cells (PCSca-1+) under OGD as compared to non-preconditioned Sca-1+ cells (non-PCSca-1+) via PI3K/Akt dependent caspase-3 downregulation. We observed PI3K/Akt dependent upregulation of cardiac specific markers including MEF-2c (2.5-fold), GATA4 (3.1-fold) and Cx-43 (3.5-fold). Cx-43 inhibition with specific RNAi reduced the cell survival under OGD and post-transplantation. In vivo studies were performed in a female rat model of acute myocardial infarction (n=78). Animals were grouped to receive intramyocardially 70μl DMEM without cells (group-1), or containing male 1×106 non-PCSca-1+ (group-2) or PCSca-1+ (group-3) cells labeled with PKH26. Survival of the PCSca-1+ was 5.5-fold higher in group-3 compared to group-2 on 7-days post-transplantation. Confocal imaging after actinin and Cx-43 specific immunostaining showed extensive engraftment and myogenic differentiation of PCSca-1+. As compared to group-2, group-3 showed increased blood vessel density (22.3±1.7/microscopic field, p<0.0001) and attenuated infarction size (23.3±3.6%; p=0.002). Heart function indices including ejection fraction (56.2±3.5; p=0.029) and fractional shortening (24.3±2.1; p=0.03) were improved in group-3 compared to group-2. Conclusions Preconditioning with IGF-1 reprograms Sca-1+ for pro-survival signaling and cardiomyogenic differentiation with an important role for Cx-43 in this process. PMID:19414636

  18. Neuroprotective, Neurotrophic and Anti-oxidative Role of Bacopa monnieri on CUS Induced Model of Depression in Rat.

    PubMed

    Kumar, Sourav; Mondal, Amal Chandra

    2016-11-01

    Major depression is a life threatening neuropsychiatric disorder that produces mental illness and major cause of morbidity. The present study was conducted to evaluate the neuroprotective, neurotrophic and antioxidant potential of Bacopa monnieri extract (BME) on chronic unpredictable stress (CUS) induced behavioral depression in rats. Behavioral tests were carried out for investigation of antidepressant like effects of BME, and potential mechanism was assessed by determining neurotrophin level and hippocampal neurogenesis. Depressive-like behavior was assessed by shuttle-box escape test, forced swim test and tail suspension test. Effect of BME on hypothalamic-pituitary-adrenal (HPA) axis was evaluated by measuring the plasma level of adrenocorticotropic hormone (ACTH) and corticosterone. The expression of brain derived neurotrophic factor (BDNF), neuronal marker doublecortin (DCX) in the hippocampus were measured and hippocampal neurogenesis was investigated by 5-bromo-2-deoxyuridine/neuronal nuclei (BrdU/NeuN). In addition, effects of BME on oxidative stress markers were also measured in the hippocampus of CUS exposed rats. The results indicated that BME significantly able to attenuate the depressive-like behaviors, normalized the levels of ACTH, corticosterone, and up-regulate the expression of BDNF, DCX and BrdU/NeuN in CUS induced rats compared to BME treated rats. It is also found that BME significantly increased the activity of antioxidant enzymes on CUS induced rats. These findings revealed that BME exerted neuroprotective effects possibly by promoting hippocampal neurogenesis with elevation of BDNF level and antioxidant defense against oxidative stress.

  19. Neuroprotective effect of D-psicose on 6-hydroxydopamine-induced apoptosis in rat pheochromocytoma (PC12) cells.

    PubMed

    Takata, Maki K; Yamaguchi, Fuminori; Nakanose, Koichi; Watanabe, Yasuo; Hatano, Naoya; Tsukamoto, Ikuko; Nagata, Mitsuhiro; Izumori, Ken; Tokuda, Masaaki

    2005-11-01

    We evaluated the neuroprotective effects of D-psicose, one of the rare sugars, on 6-hydroxydopamine (6-OHDA)-induced apoptosis in catecholaminergic PC12 cells, the in vitro model of Parkinson's disease (PD). Apoptotic characteristics of PC12 cells were assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and terminal deoxynucleotidyl transferase mediated dUTP nick end-labeling (TUNEL) assay. The results showed that D-psicose at a concentration of 50 mM, exerted significant protective effects against the 6-OHDA (200 muM)-induced PC12 cell apoptosis, while other sugars had little or no protective effects. We have observed a significant increase in the level of intracellular glutathione after 24 h in 6-OHDA (200 muM) treated cells, while a decrease in the level was observed at 3 h and 6 h. Also, a synergistic exposure to D-psicose and 6-OHDA for 24 h showed a significant increase in intracellular glutathione level. Therefore, these results suggest that D-psicose may play a potential role as a neuroprotective agent in the treatment of neurodegenerative diseases by inducing an up-regulation of intracellular glutathione.

  20. Neuroprotection elicited by P2Y13 receptors against genotoxic stress by inducing DUSP2 expression and MAPK signaling recovery.

    PubMed

    Morente, Verónica; Pérez-Sen, Raquel; Ortega, Felipe; Huerta-Cepas, Jaime; Delicado, Esmerilda G; Miras-Portugal, M Teresa

    2014-09-01

    Nucleotides activating P2Y13 receptors display neuroprotective actions against different apoptotic stimuli in cerebellar granule neurons. In the present study, P2Y13 neuroprotection was analyzed in conditions of genotoxic stress. Exposure to cisplatin and UV radiation induced caspase-3-dependent apoptotic cell death, and p38 MAPK signaling de-regulation. Pre-treatment with P2Y13 nucleotide agonist, 2methyl-thio-ADP (2MeSADP), restored granule neuron survival and prevented p38 long-lasting activation induced by cytotoxic treatments. Microarray gene expression analysis in 2MeSADP-stimulated cells revealed over-representation of genes related to protein phosphatase activity. Among them, dual-specificity phosphatase-2, DUSP2, was validated as a transcriptional target for P2Y13 receptors by QPCR. This effect could explain 2MeSADP ability to dephosphorylate a DUSP2 substrate, p38, reestablishing the inactive form. In addition, cisplatin-induced p38 sustained activation correlated perfectly with progressive reduction in DUSP2 expression. In conclusion, P2Y13 receptors regulate DUSP2 expression and contribute to p38 signaling homeostasis and survival in granule neurons. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Morus alba leaf extract mediates neuroprotection against glyphosate-induced toxicity and biochemical alterations in the brain.

    PubMed

    Rebai, Olfa; Belkhir, Manel; Boujelben, Adnen; Fattouch, Sami; Amri, Mohamed

    2017-04-01

    Recent studies demonstrate that glyphosate exposure is associated with oxidative stress and some neurological disorders such as Parkinson's pathology. Therefore, phytochemicals, in particular phenolic compounds, have attracted increasing attention as potential agents for neuroprotection. In the present study, we investigate the impact of glyphosate on the rat brain following i.p. injection and the possible molecular target of neuroprotective activity of the phenolic fraction from Morus alba leaf extract (MALE) and its ability to reduce oxidative damage in the brain. Wistar rats from 180 to 240 g were i.p. treated with a single dose of glyphosate (100 mg kg(-1) b.w.) or MALE (100 μg mL(-1) kg(-1) b.w.) for 2 weeks. Brain homogenates were used to evaluate neurotoxicity induced by the pesticide. For this, biochemical parameters were measured. Data shows that MALE regulated oxidative stress and counteracted glyphosate-induced deleterious effects and oxidative damage in the brain, as it abrogated LDH, protein carbonyls, and malonyldialdehyde. MALE also appears to be able to scavenge H2O2 levels, maintain iron and Ca(2+) homeostasis, and increase SOD activity. Thus, in vivo results showed that mulberry leaf extract is a potent protector against glyphosate-induced toxicity, and its protective effect could result from synergism or antagonism between the various bioactive phenolic compounds in the acetonic fraction from M. alba leaf extract.

  2. Neuroprotective effect of taurine in 3-nitropropionic acid-induced experimental animal model of Huntington's disease phenotype.

    PubMed

    Tadros, Mariane G; Khalifa, Amani E; Abdel-Naim, Ashraf B; Arafa, Hossam M M

    2005-11-01

    An experimental animal model of Huntington's disease (HD) phenotype was induced using the mycotoxin 3-nitropropionic acid (3-NP) and was well characterized behaviorally, neurochemically, morphometrically and histologically. Administration of 3-NP caused a reduction in prepulse inhibition (PPI) of acoustic startle response, locomotor hyper- and/or hypoactivity, bilateral striatal lesions, brain oxidative stress, and decreased striatal gamma-aminobutyric acid (GABA) levels. Taurine is a semi-essential beta-amino acid that was demonstrated to have both antioxidant and GABA-A agonistic activity. In this study, treatment with taurine (200 mg/kg daily for 3 days) prior to 3-NP administration reversed both reduced PPI response and locomotor hypoactivity caused by 3-NP injection. Taurine pretreatment also caused about 2-fold increase in GABA concentration compared to 3-NP-treated animals. In addition, taurine demonstrated antioxidant activity against oxidative stress induced by 3-NP administration as evidenced by the reduced striatal malondialdehyde (MDA) and elevated striatal glutathione (GSH) levels. Histochemical examination of striatal tissue showed that prior administration of taurine ahead of 3-NP challenge significantly increased succinate dehydrogenase (SDH) activity compared to 3-NP-treated animals. Histopathological examination further affirmed the neuroprotective effect of taurine in 3-NP-induced HD in rats. Taken together, one may conclude that taurine has neuroprotective role in the current HD paradigm due, at least partly, to its indirect antioxidant effect and GABA agonistic action.

  3. Discovery of a novel neuroprotectant, BHDPC, that protects against MPP+/MPTP-induced neuronal death in multiple experimental models.

    PubMed

    Chong, Cheong-Meng; Ma, Dan; Zhao, Chao; Franklin, Robin J M; Zhou, Zhong-Yan; Ai, Nana; Li, Chuwen; Yu, Huidong; Hou, Tingjun; Sa, Fei; Lee, Simon Ming-Yuen

    2015-12-01

    Progressive degeneration and death of neurons are main causes of neurodegenerative disorders such as Parkinson's disease and Alzheimer's disease. Although some current medicines may temporarily improve their symptoms, no treatments can slow or halt the progression of neuronal death. In this study, a pyrimidine derivative, benzyl 7-(4-hydroxy-3-methoxyphenyl)-5-methyl-4,7-dihydrotetrazolo[1,5-a]pyrimidine-6-carboxylate (BHDPC), was found to attenuate dramatically the MPTP-induced death of dopaminergic neurons and improve behavior movement deficiency in zebrafish, supporting its potential neuroprotective activity in vivo. Further study in rat organotypic cerebellar cultures indicated that BHDPC was able to suppress MPP(+)-induced cell death of brain tissue slices ex vivo. The protective effect of BHDPC against MPP(+) toxicity was also effective in human neuroblastoma SH-SY5Y cells through restoring abnormal changes in mitochondrial membrane potential and numerous apoptotic regulators. Western blotting analysis indicated that BHDPC was able to activate PKA/CREB survival signaling and further up-regulate Bcl2 expression. However, BHDPC failed to suppress MPP(+)-induced cytotoxicity and the increase of caspase 3 activity in the presence of the PKA inhibitor H89. Taken together, these results suggest that BHDPC is a potential neuroprotectant with prosurvival effects in multiple models of neurodegenerative disease in vitro, ex vivo, and in vivo.

  4. Physics-Based Preconditioning for the Numerical Solution of the All-Speed Compressible Navier-Stokes Equations with Laser-Induced Phase Change

    NASA Astrophysics Data System (ADS)

    Weston, Brian; Nourgaliev, Robert; Delplanque, Jean-Pierre; Anderson, Andy

    2016-11-01

    The numerical simulation of flows associated with metal additive manufacturing processes such as selective laser melting and other laser-induced phase change applications present new challenges. Specifically, these flows require a fully compressible formulation since rapid density variations occur due to laser-induced melting and solidification of metal powder. We investigate the preconditioning for a recently developed all-speed compressible Navier-Stokes solver that addresses such challenges. The equations are discretized with a reconstructed Discontinuous Galerkin method and integrated in time with fully implicit discretization schemes. The resulting set of non-linear and linear equations are solved with a robust Newton-Krylov (NK) framework. To enable convergence of the highly ill-conditioned linearized systems, we employ a physics-based operator split preconditioner (PBP), utilizing a robust Schur complement technique. We investigate different options of splitting the physics (field) blocks as well as different block solvers on the reduced preconditioning matrix. We demonstrate that our NK-PBP framework is scalable and converges for high CFL/Fourier numbers on classic problems in fluid dynamics as well as for laser-induced phase change problems.

  5. Preconditioning chemotherapy with paclitaxel and cisplatin enhances the antitumor activity of cytokine induced-killer cells in a murine lung carcinoma model.

    PubMed

    Huang, Xiang; Huang, Guichun; Song, Haizhu; Chen, Longbang

    2011-08-01

    Adoptive cell therapy involving the use of ex vivo generated cytokine-induced killer cells (CIKs) provides a promising approach to immunotherapy. However, the therapeutic activity of CIKs is limited by the immunosuppressive factors active in the host. It has become increasingly apparent that manipulation of the recipient immune system with the preconditioning regimen is essential to guarantee the antitumor effect of subsequent adoptive cell therapy. In our study, paclitaxel (PTX) and cisplatin (DDP) were used as preconditioning drugs combined with CIKs to illustrate the potential mechanisms underlying the synergic antitumor effect against Lewis lung cancer cells in vitro and in vivo. We found that 3LL cells displayed an increased sensitization to CIKs-induced lysis after treatment with PTX or DDP in vitro. Significant inhibition of tumor growth was observed in mice treated with combinatorial chemo-immunotherapy with respect to untreated or single regimen treated ones. Prior chemotherapy markedly enhanced the intratumoral accumulation of CD3(+) T lymphocytes and the homing of CIKs to the spleen and tumor. Moreover, the frequencies of intratumoral and splenic regulatory T cells (Tregs) were significantly decreased after chemotherapy pretreatment. Our findings provide a new rationale for combining immunotherapy and chemotherapy to induce a synergistic antitumor response in patients with lung cancer. Copyright © 2010 UICC.

  6. BDNF-TrkB Pathway Mediates Neuroprotection of Hydrogen Sulfide against Formaldehyde-Induced Toxicity to PC12 Cells

    PubMed Central

    Gao, Sheng-Lan; Tian, Ying; Wang, Chun-Yan; Wang, Li; Gu, Hong-Feng; Tang, Xiao-Qing

    2015-01-01

    Formaldehyde (FA) is a common environmental contaminant that has toxic effects on the central nervous system (CNS). Our previous data demonstrated that hydrogen sulfide (H2S), the third endogenous gaseous mediator, has protective effects against FA-induced neurotoxicity. As is known to all, Brain-derived neurotropic factor (BDNF), a member of the neurotrophin gene family, mediates its neuroprotective properties via various intracellular signaling pathways triggered by activating the tyrosine kinase receptor B (TrkB). Intriguingly, our previous data have illustrated the upregulatory role of H2S on BDNF protein expression in the hippocampus of rats. Therefore, in this study, we hypothesized that H2S provides neuroprotection against FA toxicity by regulating BDNF-TrkB pathway. In the present study, we found that NaHS, a donor of H2S, upregulated the level of BDNF protein in PC12 cells, and significantly rescued FA-induced downregulation of BDNF levels. Furthermore, we found that pretreatment of PC12 cells with K252a, an inhibitor of the BDNF receptor TrkB, markedly reversed the inhibition of NaHS on FA-induced cytotoxicity and ablated the protective effects of NaHS on FA-induced oxidative stress, including the accumulation of intracellular reactive oxygen species (ROS), 4-hydroxy-2-trans-nonenal (4-HNE), and malondialdehyde (MDA). We also showed that K252a abolished the inhibition of NaHS on FA-induced apoptosis, as well as the activation of caspase-3 in PC12 cells. In addition, K252a reversed the protection of H2S against FA-induced downregulation of Bcl-2 protein expression and upregulation of Bax protein expression in PC12 cells. These data indicate that the BDNF-TrkB pathway mediates the neuroprotection of H2S against FA-induced cytotoxicity, oxidative stress and apoptosis in PC12 cells. These findings provide a novel mechanism underlying the protection of H2S against FA-induced neurotoxicity. PMID:25749582

  7. GENE EXPRESSION CHANGES AFTER SEIZURE PRECONDITIONING IN THE THREE MAJOR HIPPOCAMPAL CELL LAYERS

    PubMed Central

    Borges, Karin; Shaw, Renee; Dingledine, Raymond

    2008-01-01

    Rodents experience hippocampal damage after status epilepticus (SE) mainly in pyramidal cells while sparing the dentate granule cell layer (DGCL). Hippocampal damage was prevented in rats that had been preconditioned by brief seizures on two consecutive days before SE. To identify neuroprotective genes and biochemical pathways changed after preconditioning we compared the effect of preconditioning on gene expression in the CA1 and CA3 pyramidal and DGCLs, harvested by laser capture microscopy. In the DGCL the expression of 632 genes was altered, compared to only 151 and 58 genes in CA1 and CA3 pyramidal cell layers. Most of the differentially expressed genes regulate tissue structure and intra- and extracellular signaling, including neurotransmission. A selective upregulation of energy metabolism transcripts occurred in CA1 pyramidal cells relative to the DGCL. These results reveal a broad transcriptional response of the DGCL to preconditioning, and suggest several mechanisms underlying the neuroprotective effect of preconditioning seizures. PMID:17239605

  8. Thioflavones as novel neuroprotective agents.

    PubMed

    Ravishankar, Divyashree; Corona, Giulia; Hogan, Stephanie M; Spencer, Jeremy P E; Greco, Francesca; Osborn, Helen M I

    2016-11-01

    Oxidative stress is associated with the pathology of neurodegenerative diseases. Identification of small molecules capable of protecting against oxidative stress is therefore of significant importance. In this context, a library of 76 hydroxy flavones, methoxy flavones and their 4-thio analogues has been evaluated for neuroprotection against H2O2-induced oxidative stress. This revealed the synthetic 7,8-dihydroxy 4-thioflavones as neuroprotective compounds, with 14d and 18d showing highest neuroprotective effects at lower concentrations (0.3μM). Neuroprotection was found to be mediated via activation of the anti-apoptotic cell survival proteins of the ERK1/2 and PI3K/Akt pathways. Structure-activity relationship analysis revealed the B-ring phenyl group as essential for greater neuroprotection. Replacing the 4-CO moiety with a 4-CS moiety also generally enhanced neuroprotection.

  9. Neuroprotective Properties of Compounds Extracted from Dianthus superbus L. against Glutamate-induced Cell Death in HT22 Cells

    PubMed Central

    Yun, Bo-Ra; Yang, Hye Jin; Weon, Jin Bae; Lee, Jiwoo; Eom, Min Rye; Ma, Choong Je

    2016-01-01

    Background: Dianthus superbus L. has been used in Chinese herbal medicine as a diuretic and anti-inflammatory agent. Objective: In this study, we isolated ten bioactive compounds from D. superbus and evaluated their neuroprotective activity against glutamate-induced cell death in the hippocampal neuronal HT22 cells. Materials and Methods: New compound, (E)-methyl-4-hydroxy-4-(8a-methyl-3-oxodecahydronaphthalen-4a-yl) (1) and, nine known compounds, diosmetin-7-O (2’’,6’’-di-O-α-L-rhamnopyranosyl)-β-D-glucopyranoside (2), 4-hydroxy-3-methoxy-pentyl ester benzenepropanoic acid (3), vanillic acid (4), 4-hydroxy-benzeneacetic acid (5), 4-methoxybenzeneacetic acid (6), (E)-4-methoxycinnamic acid (7), 3-methoxy-4-hydroxyphenylethanol (8), hydroferulic acid (9), and methyl hydroferulate (10), were isolated by bioactivity-guided separation. Structures of the isolated compounds were identified on the basis of 1H nuclear magnetic resonance (NMR), 13C NMR, and two-dimensional NMR spectra, while their neuroprotective properties were evaluated by performing the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Results: D. superbus extract had a neuroprotective effect and isolated 10 compounds. Among the compounds, compounds 5 and 6 effectively protected HT22 cells against glutamate toxicity. Conclusion: In conclusion, the extract of D. superbus and compounds isolated from it exhibited neuroprotective properties, suggesting therapeutic potential for applications in neurotoxic diseases. SUMMARY D. superbus extract significantly protected on glutamate-induced cell death in HT22 cellsNew compound, (E)-methyl-4-hydroxy-4-(8a-methyl-3-oxodecahydronaphthalen-4a-yl) (1) and, nine known compounds, diosmetin-7-O(2’’,6’’-di-O-α-L-rhamnopyranosyl)-β-D-glucopyranoside (2), 4-hydroxy-3-methoxy-pentyl ester benzenepropanoic acid (3), vanillic acid (4), 4-hydroxy-benzeneacetic acid (5), 4-methoxybenzeneacetic acid (6), (E)-4-methoxycinnamic acid (7), 3

  10. Four new compounds from the bulbs of Lycoris aurea with neuroprotective effects against CoCl₂ and H₂O₂-induced SH-SY5Y cell injuries.

    PubMed

    Jin, An; Li, Xue; Zhu, Yun-Yun; Yu, Heng-Yi; Pi, Hui-Fang; Zhang, Peng; Ruan, Han-Li

    2014-03-01

    Three new alkaloids, 2α-hydroxy-6-O-n-butyloduline, O-n-butyllycorenine, (-)-N-(chloromethyl)lycoramine (1-3), and a new phenolic compound, ((7S)-7-(4-hydroxyphenyl)-7-hydroxypropyl)-2'-methylbenzene-3',6'-diol (14), along with ten known alkaloids (4-13), were isolated from the bulbs of Lycoris aurea collected from Huaihua County of Hunan Province, China. Their structures were elucidated by spectroscopic methods including HRESIMS, UV, IR, and NMR. All the isolated compounds were tested for their neuroprotective effects against CoCl2 and H2O2-induced SH-SY5Y cell death. Compounds 1-7 and 10 exhibited significant neuroprotective effects against CoCl2-induced SH-SY5Y cell injury, while compounds 1-5, 7, 10 and 12 showed obvious neuroprotective effects against H2O2-induced SH-SY5Y cell death.

  11. Oral ‘hydrogen water' induces neuroprotective ghrelin secretion in mice

    PubMed Central

    Matsumoto, Akio; Yamafuji, Megumi; Tachibana, Tomoko; Nakabeppu, Yusaku; Noda, Mami; Nakaya, Haruaki

    2013-01-01

    The therapeutic potential of molecular hydrogen (H2) is emerging in a number of human diseases and in their animal models, including in particular Parkinson's disease (PD). H2 supplementation of drinking water has been shown to exert disease-modifying effects in PD patients and neuroprotective effects in experimental PD model mice. However, H2 supplementation does not result in detectable changes in striatal H2 levels, indicating an indirect effect. Here we show that H2 supplementation increases gastric expression of mRNA encoding ghrelin, a growth hormone secretagogue, and ghrelin secretion, which are antagonized by the β1-adrenoceptor blocker, atenolol. Strikingly, the neuroprotective effect of H2 water was abolished by either administration of the ghrelin receptor-antagonist, D-Lys3 GHRP-6, or atenolol. Thus, the neuroprotective effect of H2 in PD is mediated by enhanced production of ghrelin. Our findings point to potential, novel strategies for ameliorating pathophysiology in which a protective effect of H2 supplementation has been demonstrated. PMID:24253616

  12. Profile of minocycline neuroprotection in bilirubin-induced auditory system dysfunction.

    PubMed

    Rice, Ann C; Chiou, Victoria L; Zuckoff, Sarah B; Shapiro, Steven M

    2011-01-12

    Excessive hyperbilirubinemia in human neonates can cause permanent dysfunction of the auditory system, as assessed with brainstem auditory evoked potentials (BAEPs). Jaundiced Gunn rat pups (jjs) exhibit similar BAEP abnormalities as hyperbilirubinemic neonates. Sulfadimethoxine (sulfa) administration to jjs, which displaces bilirubin from serum albumin into tissues including brain, exacerbates acute toxicity. Minocycline administered prior to sulfa in jjs protects against BAEP abnormalities. This study evaluates the neuroprotective capabilities of minocycline HCl (50 mg/kg) administered 30 or 120 min after sulfa (200 mg/kg) in 16 days old jjs. BAEPs are recorded at 6 or 24 h post-sulfa. Abnormal BAEP waves exhibit increased latency and decreased amplitude. The sulfa/saline treated jjs exhibited a significantly increased interwave interval between waves I and II (I-II IWI) and significantly decreased amplitudes of waves II and III compared to the saline/saline jjs. The minocycline 30 min post-sulfa (sulfa/mino+30) group was not significantly different from the saline/saline control group, indicating neuroprotection. The minocycline 120 min post-sulfa (sulfa/mino+120) group had a significantly decreased amplitude of wave III at both 6 and 24h. These studies indicate that minocycline has a graded neuroprotective effect when administered after acute bilirubin neurotoxicity.

  13. Neuroprotective effects of germinated brown rice against hydrogen peroxide induced cell death in human SH-SY5Y cells.

    PubMed

    Ismail, Norsharina; Ismail, Maznah; Fathy, Siti Farhana; Musa, Siti Nor Asma; Imam, Mustapha Umar; Foo, Jhi Biau; Iqbal, Shahid

    2012-01-01

    The neuroprotective and antioxidative effects of germinated brown rice (GBR), brown rice (BR) and commercially available γ-aminobutyric acid (GABA) against cell death induced by hydrogen peroxide (H(2)O(2)) in human neuroblastoma SH-SY5Y cells have been investigated. Results show that GBR suppressed H(2)O(2)-mediated cytotoxicity and induced G0/G1 phase cell cycle arrest in SH-SY5Y cells. Moreover, GBR reduced mitochondrial membrane potential (MMP) and prevented phosphatidylserine (PS) translocation in SH-SY5Y cells, key features of apoptosis, and subsequent cell death. GBR exhibited better neuroprotective and antioxidative activities as compared to BR and GABA. These results indicate that GBR possesses high antioxidative activities and suppressed cell death in SH-SY5Y cells by blocking the cell cycle re-entry and apoptotic mechanisms. Therefore, GBR could be developed as a value added functional food to prevent neurodegenerative diseases caused by oxidative stress and apoptosis.

  14. Increases of Catalase and Glutathione Peroxidase Expressions by Lacosamide Pretreatment Contributes to Neuroprotection Against Experimentally Induced Transient Cerebral Ischemia.

    PubMed

    Choi, Hyun Young; Park, Joon Ha; Chen, Bai Hui; Shin, Bich Na; Lee, Yun Lyul; Kim, In Hye; Cho, Jeong-Hwi; Lee, Tae-Kyeong; Lee, Jae-Chul; Won, Moo-Ho; Ahn, Ji Hyeon; Tae, Hyun-Jin; Yan, Bing Chun; Hwang, In Koo; Cho, Jun Hwi; Kim, Young-Myeong; Kim, Sung Koo

    2016-09-01

    Lacosamide is a new antiepileptic drug which is widely used to treat partial-onset seizures. In this study, we examined the neuroprotective effect of lacosamide against transient ischemic damage and expressions of antioxidant enzymes such as Zn-superoxide dismutase (SOD1), Mn-superoxide dismutase (SOD2), catalase (CAT) and glutathione peroxidase (GPX) in the hippocampal cornu ammonis 1 (CA1) region following 5 min of transient global cerebral ischemia in gerbils. We found that pre-treatment with 25 mg/kg lacosamide protected CA1 pyramidal neurons from transient global cerebral ischemic insult using hematoxylin-eosin staining and neuronal nuclear antigen immunohistochemistry. Transient ischemia dramatically changed expressions of SOD1, SOD2 and GPX, not CAT, in the CA1 pyramidal neurons. Lacosamide pre-treatment increased expressions of CAT and GPX, not SOD1 and 2, in the CA1 pyramidal neurons compared with controls, and their expressions induced by lacosamide pre-treatment were maintained after transient cerebral ischemia. In brief, pre-treatment with lacosamide protected hippocampal CA1 pyramidal neurons from ischemic damage induced by transient global cerebral ischemia, and the lacosamide-mediated neuroprotection may be closely related to increases of CAT and GPX expressions by lacosamide pre-treatment.

  15. Neuroprotective Effect of Lycopene Against PTZ-induced Kindling Seizures in Mice: Possible Behavioural, Biochemical and Mitochondrial Dysfunction.

    PubMed

    Bhardwaj, Manveen; Kumar, Anil

    2016-02-01

    Oxidative stress and mitochondrial dysfunction are the major contributing factors in the pathophysiology of various neurological disorders. Recently, antioxidant therapies aimed at reducing oxidative stress gained a considerable attention in epilepsy treatment. Lycopene, a carotenoid antioxidant, has received scientific interest in recent years. So, the present study has been designed to evaluate the neuroprotective effect of lycopene against the pentylenetetrazol (PTZ)-induced kindling epilepsy. Laca mice received lycopene (2.5, 5 and 10 mg/kg) and sodium valproate for a period of 29 days and PTZ (40 mg/kg i.p (Intraperitoneal)) injection on alternative days. Various behavioural (kindling score), biochemical parameters (lipid peroxidation, superoxide dismutase, reduced glutathione, catalase and nitrite) and mitochondrial enzyme complex activities (I, II and IV) were assessed in the brain. Results depicted that repeated administration of a sub-convulsive dose of PTZ (40 mg/kg) significantly increased kindling score, oxidative damage and impaired mitochondrial enzyme complex activities (I, II and IV) as compared with naive animals. Lycopene (5 and 10 mg/kg) and sodium valproate (100 mg/kg) treatment for a duration of 29 days significantly attenuated kindling score, reversed oxidative damage and restored mitochondrial enzyme complex activities (I, II and IV) as compared with control. Thus, present study demonstrates the neuroprotective potential of lycopene in PTZ-induced kindling in mice.

  16. Neuroprotective role of Bacopa monniera extract against aluminium-induced oxidative stress in the hippocampus of rat brain.

    PubMed

    Jyoti, Amar; Sharma, Deepak

    2006-07-01

    Bacopa monniera is a nerve tonic used extensively in traditional Indian medicinal system "Ayurveda". Reports regarding its various antioxidative, adaptogenic and memory enhancing roles have already appeared in the last few decades. In the present study, aluminium chloride (AlCl(3)) was used to generate neurotoxicity. We have investigated the neuroprotective effect of Bacopa extract against aluminium-induced changes in peroxidative products, such as thio-barbituric acid-reactive substance (TBA-RS) and protein carbonyl contents and superoxide dismutase (SOD) activity. Effect on lipofuscin (age pigments) accumulation and ultrastructural changes were also studied. Bacopa effects were compared with those of l-deprenyl. Co-administration of Bacopa extract during aluminium treatment significantly prevented the aluminium-induced decrease in SOD activity as well as the increased oxidative damage to lipids and proteins. Protective effect was also observed at microscopic level. Fluorescence and electron microscopic studies revealed considerable inhibition of intraneuronal lipofuscin accumulation and necrotic alteration in the CA1 region of the hippocampus. Observations showed that Bacopa's neuroprotective effects were comparable to those of l-deprenyl at both biochemical and microscopic levels.

  17. Neuroprotective Effects of Inhibiting Fyn S-Nitrosylation on Cerebral Ischemia/Reperfusion-Induced Damage to CA1 Hippocampal Neurons

    PubMed Central

    Hao, Lingyun; Wei, Xuewen; Guo, Peng; Zhang, Guangyi; Qi, Suhua

    2016-01-01

    Nitric oxide (NO) can regulate signaling pathways via S-nitrosylation. Fyn can be post-translationally modified in many biological processes. In the present study, using a rat four-vessel-occlusion ischemic model, we aimed to assess whether Fyn could be S-nitrosylated and to evaluate the effects of Fyn S-nitrosylation on brain damage. In vitro, Fyn could be S-nitrosylated by S-nitrosoglutathione (GSNO, an exogenous NO donor), and in vivo, endogenous NO synthesized by NO synthases (NOS) could enhance Fyn S-nitrosylation. Application of GSNO, 7-nitroindazole (7-NI, an inhibitor of neuronal NOS) and hydrogen maleate (MK-801, the N-methyl-d-aspartate receptor (NMDAR) antagonist) could decrease the S-nitrosylation and phosphorylation of Fyn induced by cerebral ischemia/reperfusion (I/R). Cresyl violet staining validated that these compounds exerted neuroprotective effects against the cerebral I/R-induced damage to hippocampal CA1 neurons. Taken together, in this study, we demonstrated that Fyn can be S-nitrosylated both in vitro and in vivo and that inhibiting S-nitrosylation can exert neuroprotective effects against cerebral I/R injury, potentially via NMDAR-mediated mechanisms. These findings may lead to a new field of inquiry to investigate the underlying pathogenesis of stroke and the development of novel treatment strategies. PMID:27420046

  18. Neuroprotective Effects of Inhibiting Fyn S-Nitrosylation on Cerebral Ischemia/Reperfusion-Induced Damage to CA1 Hippocampal Neurons.

    PubMed

    Hao, Lingyun; Wei, Xuewen; Guo, Peng; Zhang, Guangyi; Qi, Suhua

    2016-07-12

    Nitric oxide (NO) can regulate signaling pathways via S-nitrosylation. Fyn can be post-translationally modified in many biological processes. In the present study, using a rat four-vessel-occlusion ischemic model, we aimed to assess whether Fyn could be S-nitrosylated and to evaluate the effects of Fyn S-nitrosylation on brain damage. In vitro, Fyn could be S-nitrosylated by S-nitrosoglutathione (GSNO, an exogenous NO donor), and in vivo, endogenous NO synthesized by NO synthases (NOS) could enhance Fyn S-nitrosylation. Application of GSNO, 7-nitroindazole (7-NI, an inhibitor of neuronal NOS) and hydrogen maleate (MK-801, the N-methyl-d-aspartate receptor (NMDAR) antagonist) could decrease the S-nitrosylation and phosphorylation of Fyn induced by cerebral ischemia/reperfusion (I/R). Cresyl violet staining validated that these compounds exerted neuroprotective effects against the cerebral I/R-induced damage to hippocampal CA1 neurons. Taken together, in this study, we demonstrated that Fyn can be S-nitrosylated both in vitro and in vivo and that inhibiting S-nitrosylation can exert neuroprotective effects against cerebral I/R injury, potentially via NMDAR-mediated mechanisms. These findings may lead to a new field of inquiry to investigate the underlying pathogenesis of stroke and the development of novel treatment strategies.

  19. Neuroprotective Effects of Germinated Brown Rice against Hydrogen Peroxide Induced Cell Death in Human SH-SY5Y Cells

    PubMed Central

    Ismail, Norsharina; Ismail, Maznah; Fathy, Siti Farhana; Musa, Siti Nor Asma; Imam, Mustapha Umar; Foo, Jhi Biau; Iqbal, Shahid

    2012-01-01

    The neuroprotective and antioxidative effects of germinated brown rice (GBR), brown rice (BR) and commercially available γ-aminobutyric acid (GABA) against cell death induced by hydrogen peroxide (H2O2) in human neuroblastoma SH-SY5Y cells have been investigated. Results show that GBR suppressed H2O2-mediated cytotoxicity and induced G0/G1 phase cell cycle arrest in SH-SY5Y cells. Moreover, GBR reduced mitochondrial membrane potential (MMP) and prevented phosphatidylserine (PS) translocation in SH-SY5Y cells, key features of apoptosis, and subsequent cell death. GBR exhibited better neuroprotective and antioxidative activities as compared to BR and GABA. These results indicate that GBR possesses high antioxidative activities and suppressed cell death in SH-SY5Y cells by blocking the cell cycle re-entry and apoptotic mechanisms. Therefore, GBR could be developed as a value added functional food to prevent neurodegenerative diseases caused by oxidative stress and apoptosis. PMID:22949825

  20. Cerebrolysin, a mixture of neurotrophic factors induces marked neuroprotection in spinal cord injury following intoxication of engineered nanoparticles from metals.

    PubMed

    Menon, Preeti Kumaran; Muresanu, Dafin Fior; Sharma, Aruna; Mössler, Herbert; Sharma, Hari Shanker

    2012-02-01

    Spinal cord injury (SCI) is the world's most disastrous disease for which there is no effective treatment till today. Several studies suggest that nanoparticles could adversely influence the pathology of SCI and thereby alter the efficacy of many neuroprotective agents. Thus, there is an urgent need to find suitable therapeutic agents that could minimize cord pathology following trauma upon nanoparticle intoxication. Our laboratory has been engaged for the last 7 years in finding suitable therapeutic strategies that could equally reduce cord pathology in normal and in nanoparticle-treated animal models of SCI. We observed that engineered nanoparticles from metals e.g., aluminum (Al), silver (Ag) and copper (Cu) (50-60 nm) when administered in rats daily for 7 days (50 mg/kg, i.p.) resulted in exacerbation of cord pathology after trauma that correlated well with breakdown of the blood-spinal cord barrier (BSCB) to serum proteins. The entry of plasma proteins into the cord leads to edema formation and neuronal damage. Thus, future drugs should be designed in such a way to be effective even when the SCI is influenced by nanoparticles. Previous research suggests that a suitable combination of neurotrophic factors could induce marked neuroprotection in SCI in normal animals. Thus, we examined the effects of a new drug; cerebrolysin that is a mixture of different neurotrophic factors e.g., brain-derived neurotrophic factor (BDNF), glial cell line derived neurotrophic factor (GDNF), nerve growth factor (NGF), ciliary neurotrophic factor (CNTF) and other peptide fragments to treat normal or nanoparticle-treated rats after SCI. Our observations showed that cerebrolysin (2.5 ml/kg, i.v.) before SCI resulted in good neuroprotection in normal animals, whereas nanoparticle-treated rats required a higher dose of the drug (5.0 ml/kg, i.v.) to induce comparable neuroprotection in the cord after SCI. Cerebrolysin also reduced spinal cord water content, leakage of plasma proteins

  1. Anesthetic preconditioning: the role of free radicals in sevoflurane-induced attenuation of mitochondrial electron transport in Guinea pig isolated hearts.

    PubMed

    Riess, Matthias L; Kevin, Leo G; McCormick, Joseph; Jiang, Ming T; Rhodes, Samhita S; Stowe, David F

    2005-01-01

    Cardioprotection by anesthetic preconditioning (APC) can be abolished by nitric oxide (NO*) synthase inhibitors or by reactive oxygen species (ROS) scavengers. We previously reported attenuated mitochondrial electron transport (ET) and increased ROS generation during preconditioning sevoflurane exposure as part of the triggering mechanism of APC. We hypothesized that NO* and other ROS mediate anesthetic-induced ET attenuation. Cardiac function and reduced nicotinamide adenine dinucleotide (NADH) fluorescence, an index of mitochondrial ET, were measured online in 68 Langendorff-prepared guinea pig hearts. Hearts underwent 30 min of global ischemia and 120 min of reperfusion. Before ischemia, hearts were temporarily perfused with superoxide dismutase, catalase, and glutathione to scavenge ROS or N(G)-nitro-L-arginine-methyl-ester (L-NAME) to inhibit NO* synthase in the presence or absence of 1.3 mM sevoflurane (APC). APC temporarily increased NADH before ischemia, i.e., it attenuated mitochondrial ET. Both this NADH increase and the cardioprotection by APC on reperfusion were prevented by superoxide dismutase, catalase, and glutathione and by N(G)-nitro-L-arginine-methyl-ester. Thus, ROS and NO*, or reaction products including peroxynitrite, mediate sevoflurane-induced ET attenuation. This may lead to a positive feedback mechanism with augmented ROS generation to trigger APC secondary to altered mitochondrial function.

  2. [Molecular-cellular and hormonal mechanisms of induced brain tolerance of extreme factors].

    PubMed

    Samoĭlov, M O; Rybnikova, E A

    2012-01-01

    This review includes results of own studies and literature data on the topical problem of neurobiology and medicine: discovery of the mechanisms of increased brain resistance to extreme exposures. The emphasis is made on the molecular-cellular and hormonal mechanisms of hypoxic preconditioning-induced brain tolerance to injurious hypoxia, psychoemotional and traumatic stress. A role of basic hormonal and intracellular cascade pro-adaptive processes mediating the neuroprotective action of hypoxic preconditioning is reviewed. A dynamics of the mechanisms of development of induced susceptible brain areas (hippocampus, neocortex) tolerance which includes phases of induction, transformation and expression, is presented. New data on preconditioning-induced cross-tolerance providing increased brain resistance not only to hypoxia but also to other stresses are reported. For the first time neuroprotective effects of hypoxic postconditioning are described.

  3. Nerve growth factor neuroprotection of ethanol-induced neuronal death in rat cerebral cortex is age dependent.

    PubMed

    Mooney, S M; Miller, M W

    2007-10-26

    Organotypic cultures of rat cortex were used to test the hypotheses that nerve growth factor (NGF) is neuroprotective for immature cortical neurons and that ethanol abolishes this neuroprotection in a developmental stage-dependent manner. Samples were obtained on gestational day (G) 16 or postnatal day (P) 3 and cultured with ethanol (0 or 400 mg/dl) and NGF (0 or 30 ng/ml) for 72 h. Dying neurons were identified as exhibiting terminal nick-end labeling, immunoreactivity for activated caspase 3, or condensed nuclear chromatin. Two cortical compartments were examined in fetal tissue: a superficial, cell-sparse marginal zone (MZ) and a cell-dense cortical plate (CP). At P3, the CP was subdivided into a cell-dense upper cortical plate (UCP) and a less densely packed lower cortical plate (LCP). Neuronal death in the MZ was affected by neither NGF nor ethanol at both ages. In the fetal CP, NGF did not affect the incidence of cell death, but ethanol increased it. Treatment with NGF caused an upregulation of the expression of Neg, a gene known to be affected by NGF and ethanol. NGF did not ameliorate the ethanol-induced death. In pups, ethanol increased the amount of death in the LCP. NGF did protect against this death. Neither ethanol nor NGF altered the incidence of cell death in the UCP. The laminar-dependent neuroprotection did not correlate with expression of NGF receptors or Neg. Thus, NGF can be protective against the neurotoxic effect of ethanol in the neonatal brain. This effect is site selective and time dependent and it targets postmigratory, differentiating neurons.

  4. The ameliorating effects of 2,3-dihydroxy-4-methoxyacetophenone on scopolamine-induced memory impairment in mice and its neuroprotective activity.

    PubMed

    Weon, Jin Bae; Ko, Hyun-Jeong; Ma, Choong Je

    2013-12-15

    We isolated 2,3-dihydroxy-4-methoxyacetophenone, a neuroprotective compound from Cynenchum paniculatum in our previous study. The present study was conducted to investigate the possible neuroprotective effect of 2,3-dihydroxy-4-methoxyacetophenone that has been previously isolated from Cynenchum paniculatum on hippocampal neuronal cell line, HT22 cells and its possible cognitive-enhancing effect on scopolamine-induced amnesia in mice. Neuroprotective effect against glutamate-induced neurotoxicity in HT22 cells was evaluated by MTT assay. Also, cognitive enhancing effect against scopolamine (1mg/kg, ip) induced learning and memory deficit was measured by Morris water maze test. Oral administered of 2,3-dihydroxy-4-methoxyacetophenone (1, 10, 20, 40 and 50mg/kg) to amnesic mice induced by scopolamine. In Morris water maze test, 2,3-dihydroxy-4-methoxyacetophenone (50mg/kg) improved the impairment of spatial memory induced by scopolamine. 2,3-Dihydroxy-4-methoxyacetophenone protect HT22 cells on glutamate induced cell-death in a dose-dependent manner (EC50 value: 10.94μM). Furthermore, 2,3-dihydroxy-4-methoxyacetophenone was found to inhibit [Ca(2+)] accumulation in HT22 cells and had antioxidantive activity. The results showed that 2,3-dihydroxy-4-methoxyacetophenone exert neuroprotective and cognitive-enhancing activities through its antioxidant activity. We suggest that 2,3-dihydroxy-4-methoxyacetophenone improves cognitive function and may be helpful for the treatment of Alzheimer's disease.

  5. Comparative Study on the Protective Effects of Salidroside and Hypoxic Preconditioning for Attenuating Anoxia-Induced Apoptosis in Pheochromocytoma (PC12) Cells.

    PubMed

    Hu, Yao; Lv, Xiumei; Zhang, Jing; Meng, Xianli

    2016-10-30

    BACKGROUND Hypoxia is an important sign that can result from body injuries or a special condition such as being at a high altitude or deep water diving. In the current studies, hypoxic preconditioning (HPC) plays a key role in reducing hypoxia-induced apoptosis. We aimed to study the pharmacologic preconditioning effects of salidroside versus those of HPC in hypoxia-/anoxia-induced apoptosis in PC12 cells (pheochromocytoma). MATERIAL AND METHODS PC12 cells were treated by different experimental conditions: control condition, hypoxia condition, HPC condition, low-/middle-/high-dose condition of salidroside, cyclosporine A (CsA), and oratractyloside (ATR). The cell viability, lactate dehydrogenase (LDH) activity, apoptosis, mitochondrial membrane potential (MMP), intracellular Ca2+, caspase-3 activity, and expression of Bcl-2 were detected in PC12 cells after the hypoxia treatment. Salidroside, extracted from the traditional Chinese herb Rhodiola rosea L, plays an essential role in reducing hypoxia-induced apoptosis in PC12 cells by the mitochondrial pathway. RESULTS Salidroside decreased the apoptosis and increased the viability of hypoxia-induced PC12 cells more effectively than HPC Moreover, salidroside markedly stabilized MMP and intracellular Ca2+, reduced or inhibited LDH and caspase-3 activity, and up-regulated Bcl-2; CsA and ATR showed corresponding function. CONCLUSIONS Salidroside administration restrains apoptosis induced by hypoxia in PC12 cells. The protective effects are mediated by preservation of mitochondrial integrity and MMP to inhibit the excessive Ca2+ influx and caspase-3 activity and to promote the Bcl-2 expression, providing a potential clinical and effective therapeutic mechanism to reduce deaths from ischemic or hypoxic injury.

  6. Comparative Study on the Protective Effects of Salidroside and Hypoxic Preconditioning for Attenuating Anoxia-Induced Apoptosis in Pheochromocytoma (PC12) Cells

    PubMed Central

    Hu, Yao; Lv, Xiumei; Zhang, Jing; Meng, Xianli

    2016-01-01

    Background Hypoxia is an important sign that can result from body injuries or a special condition such as being at a high altitude or deep water diving. In the current studies, hypoxic preconditioning (HPC) plays a key role in reducing hypoxia-induced apoptosis. We aimed to study the pharmacologic preconditioning effects of salidroside versus those of HPC in hypoxia-/anoxia-induced apoptosis in PC12 cells (pheochromocytoma). Material/Methods PC12 cells were treated by different experimental conditions: control condition, hypoxia condition, HPC condition, low-/middle-/high-dose condition of salidroside, cyclosporine A (CsA), and oratractyloside (ATR). The cell viability, lactate dehydrogenase (LDH) activity, apoptosis, mitochondrial membrane potential (MMP), intracellular Ca2+, caspase-3 activity, and expression of Bcl-2 were detected in PC12 cells after the hypoxia treatment. Salidroside, extracted from the traditional Chinese herb Rhodiola rosea L, plays an essential role in reducing hypoxia-induced apoptosis in PC12 cells by the mitochondrial pathway. Results Salidroside decreased the apoptosis and increased the viability of hypoxia-induced PC12 cells more effectively than HPC Moreover, salidroside markedly stabilized MMP and intracellular Ca2+, reduced or inhibited LDH and caspase-3 activity, and up-regulated Bcl-2; CsA and ATR showed corresponding function. Conclusions Salidroside administration restrains apoptosis induced by hypoxia in PC12 cells. The protective effects are mediated by preservation of mitochondrial integrity and MMP to inhibit the excessive Ca2+ influx and caspase-3 activity and to promote the Bcl-2 expression, providing a potential clinical and effective therapeutic mechanism to reduce deaths from ischemic or hypoxic injury. PMID:27794583

  7. Neuroprotective effects of aldehyde dehydrogenase 2 activation in rotenone-induced cellular and animal models of parkinsonism

    PubMed Central

    Chiu, Ching-Chi; Yeh, Tu-Hsueh; Lai, Szu-Chia; Wu-Chou, Yah-Huei; Chen, Che-Hong; Mochly-Rosen, Daria; Huang, Yin-Cheng; Chen, Yu-Jie; Chen, Chao-Lang; Chang, Ya-Ming; Wang, Hung-Li; Lu, Chin-Song

    2015-01-01

    Many studies have shown that mitochondrial aldehyde dehydrogenase 2 (ALDH2) functions as a cellular protector against oxidative stress by detoxification of cytotoxic aldehydes. Within dopaminergic neurons, dopamine is metabolized by monoamine oxidase to yield 3,4-dihydroxyphenylacetaldehyde (DOPAL) then converts to a less toxic acid product by ALDH. The highly toxic and reactive DOPAL has been hypothesized to contribute to the selective neurodegeneration in Parkinson’s disease (PD). In this study, we investigated the neuroprotective mechanism and therapeutic effect of ALDH2 in rotenone models for parkinsonism. Overexpression of wild-type ALDH2 gene, but not the enzymatically deficient mutant ALDH2*2 (E504K), reduced rotenone-induced cell death. Application of a potent activator of ALDH2, Alda-1, was effective in protecting against rotenone-induced apoptotic cell death in both SH-SY5Y cells and primary cultured substantia nigra (SN) dopaminergic neurons. In addition, intraperitoneal administration of Alda-1 significantly reduced rotenone- or MPTP-induced death of SN tyrosine hydroxylase (TH)-positive dopaminergic neurons. The attenuation of rotenone-induced apoptosis by Alda-1 resulted from decreasing ROS accumulation, reversal of mitochondrial membrane potential depolarization, and inhibition of activation of proteins related to mitochondrial apoptotic pathway. The present study demonstrates that ALDH2 plays a crucial role in maintaining normal mitochondrial function to protect against neurotoxicity and that Alda-1 is effective in ameliorating mitochondrial dysfunction and inhibiting mitochondria-mediated apoptotic pathway. These results indicate that ALDH2 activation could be a neuroprotective therapy for PD. PMID:25263579

  8. Galectin-1 suppresses methamphetamine induced neuroinflammation in human brain microvascular endothelial cells: Neuroprotective role in maintaining blood brain barrier integrity.

    PubMed

    Parikh, Neil U; Aalinkeel, R; Reynolds, J L; Nair, B B; Sykes, D E; Mammen, M J; Schwartz, S A; Mahajan, S D

    2015-10-22

    Methamphetamine (Meth) abuse can lead to the breakdown of the blood-brain barrier (BBB) integrity leading to compromised CNS function. The role of Galectins in the angiogenesis process in tumor-associated endothelial cells (EC) is well established; however no data are available on the expression of Galectins in normal human brain microvascular endothelial cells and their potential role in maintaining BBB integrity. We evaluated the basal gene/protein expression levels of Galectin-1, -3 and -9 in normal primary human brain microvascular endothelial cells (BMVEC) that constitute the BBB and examined whether Meth altered Galectin expression in these cells, and if Galectin-1 treatment impacted the integrity of an in-vitro BBB. Our results showed that BMVEC expressed significantly higher levels of Galectin-1 as compared to Galectin-3 and -9. Meth treatment increased Galectin-1 expression in BMVEC. Meth induced decrease in TJ proteins ZO-1, Claudin-3 and adhesion molecule ICAM-1 was reversed by Galectin-1. Our data suggests that Galectin-1 is involved in BBB remodeling and can increase levels of TJ proteins ZO-1 and Claudin-3 and adhesion molecule ICAM-1 which helps maintain BBB tightness thus playing a neuroprotective role. Galectin-1 is thus an important regulator of immune balance from neurodegeneration to neuroprotection, which makes it an important therapeutic agent/target in the treatment of drug addiction and other neurological conditions.

  9. Neuroprotective effect of 1-methoxyoctadecan-1-ol from Uncaria sinensis on glutamate-induced hippocampal neuronal cell death.

    PubMed

    Ahn, Sung Min; Kim, Ha Neui; Kim, Yu Ri; Oh, Eun Young; Choi, Young Whan; Shin, Hwa Kyoung; Choi, Byung Tae

    2014-08-08

    We isolated a single compound, 1-methoxyoctadecan-1-ol (MOD), from dried hooks and stems of Uncaria sinensis, which is used in traditional Korean medicine to provide relief from various nervous related symptoms. Neuroprotective effects of MOD against glutamate-induced oxidative stress in HT22 cells were investigated by analyzing cell viability, lactate dehydrogenase, flow cytometry, reactive oxygen species (ROS) and Western blot assays. Exposure to glutamate alone resulted in remarkable hippocampal neuronal cell death; however, pretreatment with MOD resulted in suppression of neuronal death and ROS accumulation in connection with cellular Ca2+ level after exposure to glutamate. Stimulation by glutamate also caused significant protein level of phosphorylated p38 mitogen-activated protein kinases (MAPK), and dephosphorylated phosphatidylinositol-3 kinase (PI3K), however, pretreatment with MOD resulted in inhibition of these changes in protein level. Treatment with glutamate alone led to suppressed protein level of mature brain-derived neurotrophic factor (BDNF) and phosphorylated cAMP response element binding protein (CREB); however, pretreatment with MOD resulted in significant enhancement of this level of protein. Anti-oxidant N-acetyl-L-cysteine and both Ca2+ inhibitors, BAPTA and EGTA, showed effects similar to those of MOD in all proteins examined, except mature BDNF. Our results suggest that MOD mainly exerted neuroprotective effects in suppression of ROS accumulation and up-regulation of mature BDNF in association with p38 MAPK and PI3K signaling in hippocampal neuronal cells. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  10. Hypothermia-induced neuroprotection is associated with reduced mitochondrial membrane permeability in a swine model of cardiac arrest.

    PubMed

    Gong, Ping; Hua, Rong; Zhang, Yu; Zhao, Hong; Tang, Ziren; Mei, Xue; Zhang, Mingyue; Cui, Juan; Li, Chunsheng

    2013-06-01

    Increasing evidence has shown that mild hypothermia is neuroprotective for comatose patients resuscitated from cardiac arrest, but the mechanism of this protection is not fully understood. The aim of this study was to determine whether prolonged whole-body mild hypothermia inhibits mitochondrial membrane permeability (MMP) in the cerebral cortex after return of spontaneous circulation (ROSC). Thirty-seven inbred Chinese Wuzhishan minipigs were successfully resuscitated after 8 minutes of untreated ventricular fibrillation (VF) and underwent recovery under normothermic (NT) or prolonged whole-body mild hypothermic (HT; 33°C) conditions for 24 or 72 hours. Cerebral samples from the frontal cortex were collected at 24 and 72 hours after ROSC. Mitochondria were isolated by differential centrifugation. At 24 hours, relative to NT, HT was associated with reductions in opening of the mitochondrial permeability transition pore, release of pro-apoptotic substances from mitochondria, caspase 3 cleavage, apoptosis, and neurologic deficit scores, as well as increases in mitochondrial membrane potential and mitochondrial respiration. Together, these findings suggest that mild hypothermia inhibits ischemia-induced increases in MMP, which may provide neuroprotection against cerebral injury after cardiac arrest.

  11. Neuroprotective effect of steroidal alkaloids on glutamate-induced toxicity by preserving mitochondrial membrane potential and reducing oxidative stress.

    PubMed

    Taveira, Marcos; Sousa, Carla; Valentão, Patrícia; Ferreres, Federico; Teixeira, João P; Andrade, Paula B

    2014-03-01

    Several evidences suggest that enhanced oxidative stress is involved in the pathogenesis and/or progression of several neurodegenerative diseases. The aim of this study was to investigate for the first time whether both extracts from tomato plant (Lycopersicon esculentum Mill.) leaves and their isolated steroidal alkaloids (tomatine and tomatidine) afford neuroprotective effect against glutamate-induced toxicity in SH-SY5Y neuroblastoma cells and to elucidate the mechanisms underlying this protection. Steroidal alkaloids from tomato are well known for their cholinesterases' inhibitory capacity and the results showed that both purified extracts and isolated compounds, at non-toxic concentrations for gastric (AGS), intestinal (Caco-2) and neuronal (SH-SY5Y) cells, have the capacity to preserve mitochondria membrane potential and to decrease reactive oxygen species levels of SH-SY5Y glutamate-insulted cells. Moreover, the use of specific antagonists of cholinergic receptors allowed observing that tomatine and tomatidine can interact with nicotinic receptors, specifically with the α7 type. No effect on muscarinic receptors was noticed. In addition to the selective cholinesterases' inhibition revealed by the compounds/extracts, these results provide novel and important insights into their neuroprotective mechanism. This work also demystifies the applicability of these compounds in therapeutics, by demonstrating that their toxicity was overestimated for long time.

  12. Synaptophysin enhances the neuroprotection of VMAT2 in MPP+-induced toxicity in MN9D cells.

    PubMed

    Chen, Carol X-Q; Huang, Steven Y; Zhang, Limei; Liu, Yong-Jian

    2005-08-01

    The use of the potent neurotoxin MPTP in producing a model for Parkinson's disease (PD) has allowed us to dissect the cellular processes responsible for both selective neuronal vulnerability and neuroprotection in idiopathic PD. It has been suggested that vesicular monoamine transporters (VMATs) play a critical neuroprotective role in MPP+ toxicity. However, little is known about how this detoxificative sequestration in dopaminergic (DAergic) neurons is regulated at the molecular and cellular levels. Using the DAergic cell line MN9D as an in vitro model, we found that overexpression of VMAT2 (a neuronal isoform of VMATs) protects the transformants from MPP+-induced toxicity, consistent with the previous work on fibroblastic CHO cells. We further found that the MN9D cells displayed lower expression levels of secretory vesicle proteins such as synaptophysin. Overexpression of synaptophysin in MN9D cells can significantly increase the resistance of the transformants to MPP+ toxicity. The co-expression of VMAT2 and synaptophysin has shown synergistic protection for the transformants, suggesting a role of synaptophysin in the biogenesis of secretory vesicles and in influencing the targeting of VMAT2 to these vesicles. Our work indicates that both the expression level of VMAT2 and capacity of vesicular packaging of DA are important in protecting DAergic cells from MPP+ toxicity.

  13. Neuroprotective Effects of Acetyl-L-Carnitine Against Oxygen-Glucose Deprivation-Induced Neural Stem Cell Death.

    PubMed

    Bak, Seong Wan; Choi, Hojin; Park, Hyun-Hee; Lee, Kyu-Yong; Lee, Young Joo; Yoon, Moon-Young; Koh, Seong-Ho

    2016-12-01

    Deprivation of oxygen and glucose is the main cause of neuronal cell death during cerebral infarction and can result in severe morbidity and mortality. In general, the neuroprotective therapies that are applied after ischemic stroke have been unsuccessful, despite many investigations. Acetyl-L-carnitine (ALCAR) plays an important role in mitochondrial metabolism and in modulating the coenzyme A (CoA)/acyl-CoA ratio. We investigated the protective effects of ALCAR against oxygen-glucose deprivation (OGD) in neural stem cells (NSCs). We measured cell viability, proliferation, apoptosis, and intracellular signaling protein levels after treatment with varying concentrations of ALCAR under OGD for 8 h. ALCAR protected NSCs against OGD by reducing apoptosis and restoring proliferation. Its protective effects are associated with increases in the expression of survival-related proteins, such as phosphorylated Akt (pAkt), phosphorylated glycogen synthase kinase 3b (pGSK3b), B cell lymphoma 2 (Bcl-2), and Ki-67 in NSCs that were injured by OGD. ALCAR also reduced the expression of death-related proteins, such as Bax, cytosolic cytochrome C, cleaved caspase-9, and cleaved caspase-3. We concluded that ALCAR exhibits neuroprotective effects against OGD-induced damage to NSCs by enhancing the expression of survival signals and decreasing that of death signals.

  14. Hypophosphorylation of ribosomal protein S6 is a molecular mechanism underlying ischemic tolerance induced by either hibernation or preconditioning.

    PubMed

    Miyake, Shin-ichi; Wakita, Hideaki; Bernstock, Joshua D; Castri, Paola; Ruetzler, Christl; Miyake, Junko; Lee, Yang-Ja; Hallenbeck, John M

    2015-12-01

    Thirteen-lined ground squirrels (Ictidomys tridecemlineatus) have an extraordinary capacity to withstand prolonged and profound reductions in blood flow and oxygen delivery to the brain without incurring any cellular damage. As such, the hibernation torpor of I. tridecemlineatus provides a valuable model of tolerance to ischemic stress. Herein, we report that during hibernation torpor, a marked reduction in the phosphorylation of the ribosomal protein S6 (rpS6) occurs within the brains of I. tridecemlineatus. Of note, rpS6 phosphorylation was shown to increase in the brains of rats that underwent an occlusion of the middle cerebral artery. However, such an increase was attenuated after the implementation of an ischemic preconditioning paradigm. In addition, cultured cortical neurons treated with the rpS6 kinase (S6K) inhibitors, D-glucosamine or PF4708671, displayed a decrease in rpS6 phosphorylation and a subsequent increase in tolerance to oxygen/glucose deprivation, an in vitro model of ischemic stroke. Collectively, such evidence suggests that the down-regulation of rpS6 signal transduction may account for a substantial part of the observed increase in cellular tolerance to brain ischemia that occurs during hibernation torpor and after ischemic preconditioning. Further identification and characterization of the mechanisms used by hibernating species to increase ischemic tolerance may eventually clarify how the loss of homeostatic control that occurs during and after cerebral ischemia in the clinic can ultimately be minimized and/or prevented. Mammalian hibernation provides a valuable model of tolerance to ischemic stress. Herein, we demonstrate that marked reductions in the phosphorylation of ribosomal protein S6 (rpS6), extracellular signal-regulated kinase family of mitogen-activated protein (MAP) kinase p44/42 (p44/42MAPK) and ribosomal protein S6 kinase (S6K) occur within the brains of both hibernating squirrels and rats, which have undergone an ischemic

  15. Neuroprotective effects of Buyang Huanwu decoction on cerebral ischemia-induced neuronal damage

    PubMed Central

    Mu, Qingchun; Liu, Pengfei; Hu, Xitong; Gao, Haijun; Zheng, Xu; Huang, Haiyan

    2014-01-01

    Among the various treatment methods for stroke, increasing attention has been paid to traditional Chinese medicines. Buyang Huanwu decoction is a commonly used traditional Chinese medicine for the treatment of stroke. This paper summarizes the active components of the Chinese herb, which is composed of Huangqi (Radix Astragali seu Hedysari), Danggui (Radix Angelica sinensis), Chishao (Radix Paeoniae Rubra), Chuanxiong (Rhizoma Ligustici Chuanxiong), Honghua (Flos Carthami), Taoren (Semen Persicae) and Dilong (Pheretima), and identifies the therapeutic targets and underlying mechanisms that contribute to the neuroprotective properties of Buyang Huanwu decoction. PMID:25368650

  16. Critical role of large-conductance calcium- and voltage-activated potassium channels in leptin-induced neuroprotection of N-methyl-d-aspartate-exposed cortical neurons.

    PubMed

    Mancini, Maria; Soldovieri, Maria Virginia; Gessner, Guido; Wissuwa, Bianka; Barrese, Vincenzo; Boscia, Francesca; Secondo, Agnese; Miceli, Francesco; Franco, Cristina; Ambrosino, Paolo; Canzoniero, Lorella Maria Teresa; Bauer, Michael; Hoshi, Toshinori; Heinemann, Stefan H; Taglialatela, Maurizio

    2014-09-01

    In the present study, the neuroprotective effects of the adipokine leptin, and the molecular mechanism involved, have been studied in rat and mice cortical neurons exposed to N-methyl-d-aspartate (NMDA) in vitro. In rat cortical neurons, leptin elicited neuroprotective effects against NMDA-induced cell death, which were concentration-dependent (10-100 ng/ml) and largest when the adipokine was preincubated for 2h before the neurotoxic stimulus. In both rat and mouse cortical neurons, leptin-induced neuroprotection was fully antagonized by paxilline (Pax, 0.01-1 μM) and iberiotoxin (Ibtx, 1-100 nM), with EC50s of 38 ± 10 nM and 5 ± 2 nM for Pax and Ibtx, respectively, close to those reported for Pax- and Ibtx-induced Ca(2+)- and voltage-activated K(+) channels (Slo1 BK channels) blockade; the BK channel opener NS1619 (1-30 μM) induced a concentration-dependent protection against NMDA-induced excitotoxicity. Moreover, cortical neurons from mice lacking one or both alleles coding for Slo1 BK channel pore-forming subunits were insensitive to leptin-induced neuroprotection. Finally, leptin exposure dose-dependently (10-100 ng/ml) increased intracellular Ca(2+) levels in rat cortical neurons. In conclusion, our results suggest that Slo1 BK channel activation following increases in intracellular Ca(2+) levels is a critical step for leptin-induced neuroprotection in NMDA-exposed cortical neurons in vitro, thus highlighting leptin-based intervention via BK channel activation as a potential strategy to counteract neurodegenerative diseases.

  17. CRITICAL ROLE OF LARGE CONDUCTANCE VOLTAGE- AND CALCIUM-ACTIVATED POTASSIUM CHANNELS IN LEPTIN-INDUCED NEUROPROTECTION OF N-METHYL-D-ASPARTATE-EXPOSED CORTICAL NEURONS

    PubMed Central

    Mancini, Maria; Soldovieri, Maria Virginia; Gessner, Guido; Wissuwa, Bianka; Barrese, Vincenzo; Boscia, Francesca; Secondo, Agnese; Miceli, Francesco; Franco, Cristina; Ambrosino, Paolo; Canzoniero, Lorella MariaTeresa; Bauer, Michael; Hoshi, Toshinori; Heinemann, Stefan H; Taglialatela, Maurizio

    2014-01-01

    In the present study, the neuroprotective effects of the adipokine leptin, and the molecular mechanism involved, have been studied in rat and mice cortical neurons exposed to N-methyl-D-Aspartate (NMDA) in vitro. In rat cortical neurons, leptin elicited neuroprotective effects against NMDA-induced cell death which were concentration-dependent (10–100 ng/ml) and largest when the adipokine was preincubated for 2 hours before the neurotoxic stimulus. In both rat and mouse cortical neurons, leptin-induced neuroprotection was fully antagonized by Paxilline (Pax, 0.01–1 μM) and Iberiotoxin (Ibtx, 1–100 nM), two blockers of Ca2+- and voltage-activated K+ channels (Slo1 BK channels), with EC50s (38±10 nM and 5±2 nM for Pax and Ibtx, respectively) close to those reported for Pax- and Ibtx-induced BK channel blockade; the BK channel opener NS1619 (1–30 μM) induced a concentration-dependent protection against NMDA-induced excitotoxicity. Moreover, cortical neurons from mice lacking one or both alleles coding for Slo1 BK channel pore-forming subunits were insensitive to leptin-induced neuroprotection. Finally, leptin exposure dose-dependently (10–100 ng/ml) increased intracellular Ca2+ levels in rat cortical neurons. In conclusion, our results suggest that Slo1 BK channel activation following increases in intracellular Ca2+ levels is a critical step for leptin-induced neuroprotection in NMDA-exposed cortical neurons in vitro, thus highlighting leptin-based intervention via BK channel activation as a potential strategy to counteract neurodegenerative diseases. PMID:24973659

  18. Nicotine-encapsulated poly(lactic-co-glycolic) acid nanoparticles improve neuroprotective efficacy against MPTP-induced parkinsonism.

    PubMed

    Tiwari, Manindra Nath; Agarwal, Swati; Bhatnagar, Priyanka; Singhal, Naveen Kumar; Tiwari, Shashi Kant; Kumar, Pradeep; Chauhan, Lalit Kumar Singh; Patel, Devendra Kumar; Chaturvedi, Rajnish Kumar; Singh, Mahendra Pratap; Gupta, Kailash Chand

    2013-12-01

    For some instances of Parkinson disease (PD), current evidence in the literature is consistent with reactive oxygen species being involved in the etiology of the disease. The management of PD is still challenging owing to its ambiguous etiology and lack of permanent cure. Because nicotine offers neuroprotection against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonism, the neuroprotective efficacy of nicotine-encapsulated poly(lactic-co-glycolic) acid (PLGA) nanoparticles and the underlying mechanism of improved efficacy, if any, over bulk nicotine were assessed in this study. The selected indicators of oxidative stress, dopaminergic neurodegeneration and apoptosis, were measured in both in vitro and rodent models of parkinsonism in the presence or absence of "nanotized" or bulk nicotine. The levels of dopamine and its metabolites were measured in the striatum, nicotine and its metabolite in the nigrostriatal tissues while the immunoreactivities of tyrosine hydroxylase (TH), metallothionein-III (MT-III), inducible nitric oxide synthase (iNOS) and microglial activation were checked in the substantia nigra of controls and treated mice. GSTA4-4, heme oxygenase (HO)-1, tumor suppressor protein 53 (p53), caspase-3, lipid peroxidation (LPO), and nitrite levels were measured in the nigrostriatal tissues. Nicotine-encapsulated PLGA nanoparticles improved the endurance of TH-immunoreactive neurons and the number of fiber outgrowths and increased the mRNA expression of TH, neuronal cell adhesion molecule, and growth-associated protein-43 over bulk against 1-methyl-4-phenyl pyridinium ion-induced degeneration in the in vitro model. MPTP reduced TH immunoreactivity and levels of dopamine and its metabolites and increased microglial activation, expression of GSTA4-4, iNOS, MT-III, HO-1, p53, and caspase-3, and levels of nitrite and LPO. Whereas both bulk nicotine and nicotine-encapsulated PLGA nanoparticles modulated the changes toward controls, the modulation

  19. Sustained neurological recovery induced by resveratrol is associated with angioneurogenesis rather than neuroprotection after focal cerebral ischemia.

    PubMed

    Hermann, Dirk M; Zechariah, Anil; Kaltwasser, Britta; Bosche, Bert; Caglayan, Ahmet B; Kilic, Ertugrul; Doeppner, Thorsten R

    2015-11-01

    According to the French paradox, red wine consumption reduces the incidence of vascular diseases even in the presence of highly saturated fatty acid intake. This phenomenon is widely attributed to the phytoalexin resveratrol, a red wine ingredient. Experimental studies suggesting that resveratrol has neuroprotective properties mostly used prophylactic delivery strategies associated with short observation periods. These studies did not allow conclusions to be made about resveratrol's therapeutic efficacy post-stroke. Herein, we systematically analyzed effects of prophylactic, acute and post-acute delivery of resveratrol (50mg/kg) on neurological recovery, tissue survival, and angioneurogenesis after focal cerebral ischemia induced by intraluminal middle cerebral artery occlusion in mice. Over an observation period of four weeks, only prolonged post-acute resveratrol delivery induced sustained neurological recovery as assessed by rota rod, tight rope and corner turn tests. Although prophylactic and acute resveratrol delivery reduced infarct volume and enhanced blood-brain-barrier integrity at 2 days post-ischemia by elevating resveratrol's downstream signal sirtuin-1, increasing cell survival signals (phosphorylated Akt, heme oxygenase-1, Bcl-2) and decreasing cell death signals (Bax, activated caspase-3), a sustained reduction of infarct size on day 28 was not observed in any of the three experimental conditions. Instead, enhanced angiogenesis and neurogenesis were noted in animals receiving post-acute resveratrol delivery, which were associated with elevated concentrations of GDNF and VEGF in the brain. Thus, sustained neurological recovery induced by resveratrol depends on successful brain remodeling rather than structural neuroprotection. The recovery promoting effect of delayed resveratrol delivery opens promising perspectives for stroke therapy. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Neuroprotective Effect of(−)Δ9-Tetrahydrocannabinol and Cannabidiol in N-Methyl-d-Aspartate-Induced Retinal Neurotoxicity

    PubMed Central

    El-Remessy, Azza B.; Khalil, Ibrahim E.; Matragoon, Suraporn; Abou-Mohamed, Gamal; Tsai, Nai-Jer; Roon, Penny; Caldwell, Ruth B.; Caldwell, Robert W.; Green, Keith; Liou, Gregory I.

    2003-01-01

    In glaucoma, the increased release of glutamate is the major cause of retinal ganglion cell death. Cannabinoids have been demonstrated to protect neuron cultures from glutamate-induced death. In this study, we test the hypothesis that glutamate causes apoptosis of retinal neurons via the excessive formation of peroxynitrite, and that the neuroprotective effect of the psychotropic Δ9-tetrahydroxycannabinol (THC) or nonpsychotropic cannabidiol (CBD) is via the attenuation of this formation. Excitotoxicity of the retina was induced by intravitreal injection of N-methyl-d-aspartate (NMDA) in rats, which also received 4-hydroxy-2,2,6,6-tetramethylpiperidine-n-oxyl (TEMPOL,a superoxide dismutase-mimetic), N-ω-nitro-l-arginine methyl ester (L-NAME, a nitric oxide synthase inhibitor), THC, or CBD. Retinal neuron loss was determined by TDT-mediated dUTP nick-end labeling assay, inner retinal thickness, and quantification of the mRNAs of ganglion cell markers. NMDA induced a dose- and time-dependent accumulation of nitrite/nitrate, lipid peroxidation, and nitrotyrosine (foot print of peroxynitrite), and a dose-dependent apoptosis and loss of inner retinal neurons. Treatment with L-NAME or TEMPOL protected retinal neurons and confirmed the involvement of peroxynitrite in retinal neurotoxicity. The neuroprotection by THC and CBD was because of attenuation of peroxynitrite. The effect of THC was in part mediated by the cannabinoid receptor CB1. These results suggest the potential use of CBD as a novel topical therapy for the treatment of glaucoma. PMID:14578199

  1. Neuroprotective effects of various doses of topiramate against methylphenidate induced oxidative stress and inflammation in rat isolated hippocampus.

    PubMed

    Motaghinejad, Majid; Motevalian, Manijeh; Shabab, Behnaz

    2016-03-01

    Methylphenidate (MPH) abuse causes neurodegeneration. The neuroprotective effects of topiramate (TPM) have been reported but its putative mechanism remains unclear. The current study evaluates the role of various doses of TPM on protection of rat hippocampal cells from MPH-induced oxidative stress and inflammation in vivo. Seventy adult male rats were divided into six groups. Group 1 received normal saline (0.7 mL/rat) and group 2 was injected with MPH (10 mg/kg) for 21 days. Groups 3, 4, 5, 6 and 7 concurrently were treated by MPH (10 mg/kg) and TPM (10, 30, 50, 70 and 100 mg/kg, intraperitoneally (i.p.)), respectively for 21 days. After drug administration, the open field test (OFT) was used to investigate motor activity. Oxidative, antioxidant and inflammatory factors were measured in isolated hippocampus. Also, the brain-derived neurotrophic factor (BDNF) level was measured by reverse transcriptase-polymerase chain reaction (RT-PCR) and Western blotting. Cresyl violet staining of Dentate Gyrus (DG) and CA1 cell layers of the hippocampus were also performed. MPH significantly disturbs motor activity in OFT and TPM (70 and 100 mg/kg) decreased this disturbance. Also MPH significantly increased lipid peroxidation, mitochondrial reduced state of glutathione (GSH) level, interleukin (IL)-1β and tumour necrosis factor (TNF)-α and BDNF level in isolated hippocampal cells. Also superoxide dismutase, glutathione peroxidase and glutathione reductase activity significantly decreased. Various doses of TPM attenuated these effects and significantly decreased MPH-induced oxidative damage, inflammation and hippocampal cell loss and increased BDNF level. This study suggests that TPM has the potential to be used as a neuroprotective agent against oxidative stress and neuroinflammation induced by frequent use of MPH.

  2. Hypophosphorylation of Ribosomal Protein S6 is a Molecular Mechanism Underlying Ischemic Tolerance Induced by either Hibernation or Preconditioning

    PubMed Central

    Miyake, Shin-ichi; Wakita, Hideaki; Bernstock, Joshua D.; Castri, Paola; Ruetzler, Christl; Miyake, Junko; Lee, Yang-ja; Hallenbeck, John M.

    2015-01-01

    Thirteen-lined ground squirrels (Ictidomys tridecemlineatus) have an extraordinary capacity to withstand prolonged and profound reductions of blood flow and oxygen delivery to brain without incurring any cellular damage. As such, the hibernation torpor of I. tridecemlineatus provides a valuable model of tolerance to ischemic stress. Herein, we report that during hibernation torpor, a marked reduction in the phosphorylation of the ribosomal protein S6 (rpS6) occurs within the brains of I. tridecemlineatus. Of note, rpS6 phosphorylation was shown to increase in the brains of rats that underwent an occlusion of the middle cerebral artery. However, such an increase was attenuated after the implementation of an ischemic preconditioning paradigm. In addition, cultured cortical neurons treated with the rpS6 kinase (S6K) inhibitors, D-glucosamine or PF4708671, displayed a decrease in rpS6 phosphorylation and a subsequent increase in tolerance to oxygen/glucose deprivation, an in vitro model of ischemic stroke. Collectively, such evidence suggests that the down regulation of rpS6 signal transduction may account for a substantial part of the observed increase in cellular tolerance to brain ischemia that occurs during hibernation torpor and after ischemic preconditioning. Further identification and characterization of the mechanisms used by hibernating species to increase ischemic tolerance may eventually clarify how the loss of homeostatic control that occurs during and after cerebral ischemia in the clinic can ultimately be minimized and/or prevented. PMID:26375300

  3. Neuro-Protective Effects of Resveratrol on Carbon Monoxide-Induced Toxicity in Male Rats.

    PubMed

    Tabrizian, Kaveh; Shahraki, Jafar; Bazzi, Mohadeseh; Rezaee, Ramin; Jahantigh, Hosseinali; Hashemzaei, Mahmoud

    2017-09-01

    Acute carbon monoxide (CO) poisoning causes neurotoxicity through induction of necrosis, apoptosis, lipid peroxidation and oxidative stress. Resveratrol (RES) is a natural polyphenolic phytoalexin that exhibits neuroprotective effects in ischemia/reperfusion due to its anti-apoptotic, anti-necrotic and strong anti-oxidant properties as well as its ability to activate pro-survival pathways. In this study, rats were exposed to CO 3000 ppm for 1 h. Immediately after poisoning and on the next four consecutive days, RES (1, 5 and 10 mg/kg) was administered intraperitoneally. On the fifth day, animals' brains were excised, and necrosis, lipid peroxidation level and the level of Akt, BAX and BCL2 expression were evaluated. The results showed that RES 10 mg/kg significantly reduced lipid peroxidation, but RES 1 and 5 mg/kg had no significant effect on this parameter. Furthermore, RES 5 and 10 mg/kg significantly increased Akt expression level, while BAX/BCL2 ratio was reduced by RES 1, 5 and 10 mg/kg. Moreover, RES reduced necrotic foci in the brain, but the best results were seen following treatment with RES 10 mg/kg. In summary, RES showed neuroprotective effect in CO-poisoned rats as it decreased necrosis and BAX/BCL2 ratio and increased Akt expression levels. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  4. Recurrent Sleep Fragmentation Induces Insulin and Neuroprotective Mechanisms in Middle-Aged Flies

    PubMed Central

    Williams, Michael J.; Perland, Emelie; Eriksson, Mikaela M.; Carlsson, Josef; Erlandsson, Daniel; Laan, Loora; Mahebali, Tabusi; Potter, Ella; Frediksson, Robert; Benedict, Christian; Schiöth, Helgi B.

    2016-01-01

    Lack of quality sleep increases central nervous system oxidative stress and impairs removal of neurotoxic soluble metabolites from brain parenchyma. During aging poor sleep quality, caused by sleep fragmentation, increases central nervous system cellular stress. Currently, it is not known how organisms offset age-related cytotoxic metabolite increases in order to safeguard neuronal survival. Furthermore, it is not understood how age and sleep fragmentation interact to affect oxidative stress protection pathways. We demonstrate sleep fragmentation increases systems that protect against oxidative damage and neuroprotective endoplasmic reticulum molecular chaperones, as well as neuronal insulin and dopaminergic expression in middle-aged Drosophila males. Interestingly, even after sleep recovery the expression of these genes was still upregulated in middle-aged flies. Finally, sleep fragmentation generates higher levels of reactive oxygen species (ROS) in middle-aged flies and after sleep recovery these levels remain significantly higher than in young flies. The fact that neuroprotective pathways remain upregulated in middle-aged flies beyond sleep fragmentation suggests it might represent a strong stressor for the brain during later life. PMID:27531979

  5. Neurogenic neuroprotection: clinical perspectives

    PubMed Central

    Mandel, Mauricio; Fonoff, Erich Talamoni; Bor-Seng-Shu, Edson; Teixeira, Manoel Jacobsen; Chadi, Gerson

    2012-01-01

    Summary Neurogenic neuroprotection is a promising approach for treating patients with ischemic brain lesions. In rats, stimulation of the deep brain nuclei has been shown to reduce the volume of focal infarction. In this context, protection of neural tissue can be a rapid intervention that has a relatively long-lasting effect, making fastigial nucleus stimulation (FNS) a potentially valuable method for clinical application. Although the mechanisms of neuroprotection induced by FNS remain partially unclear, important data have been presented in the last two decades. A 1-h electrical FNS reduced, by 59%, infarctions triggered by permanent occlusion of the middle cerebral artery in Fisher rats. The acute effect of electrical FNS is likely mediated by a prolonged opening of potassium channels, and the sustained effect appears to be linked to inhibition of the apoptotic cascade. A better understanding of the neuronal circuitry underlying neurogenic neuroprotection may contribute to improving neurological outcomes in ischemic brain insults. PMID:23597434

  6. Neuroprotective effect of S-allyl-l-cysteine derivatives against endoplasmic reticulum stress-induced cytotoxicity is independent of calpain inhibition.

    PubMed

    Imai, Toru; Kosuge, Yasuhiro; Saito, Hiroaki; Uchiyama, Taketo; Wada, Taira; Shimba, Shigeki; Ishige, Kumiko; Miyairi, Shinichi; Makishima, Makoto; Ito, Yoshihisa

    2016-03-01

    S-allyl-l-cysteine (SAC) is known to have neuroprotective properties. We synthesized various SAC derivatives and tested their effects on endoplasmic reticulum stress-induced neurotoxicity in cultured hippocampal neurons (HPNs). Among the compounds tested, S-propyl-l-cysteine (SPC) exhibited the strongest neuroprotective activity in HPNs, followed by S-ethyl-l-cysteine (SEC) and S-methyl-l-cysteine (SMC). Unlike SAC and SMC, SPC and SEC did not have inhibitory activity on μ-calpain, suggesting that the mechanism underlying the protective activity of SPC and SEC differs from that of SAC.

  7. Neuroprotective Effects of Sigesbeckia pubescens Extract on Glutamate-Induced Oxidative Stress in HT22 Cells via Downregulation of MAPK/caspase-3 Pathways.

    PubMed

    Akanda, Md Rashedunnabi; Kim, Myung-Jin; Kim, In-Shik; Ahn, Dongchoon; Tae, Hyun-Jin; Rahman, Md Mahfujur; Park, Yang-Gyu; Seol, Jae-Won; Nam, Hyeon-Hwa; Choo, Byung-Kil; Park, Byung-Yong

    2017-05-05

    Sigesbeckia pubescens (SP) is a traditional Chinese medicine, possessing antioxidant and anti-inflammatory activities. In this study, we evaluate the neuroprotective activities of SP extract on glutamate-induced oxidative stress in HT22 cells and the molecular mechanism underlying neuroprotection. We applied 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT), crystal violet, reactive oxygen species (ROS), lactate dehydrogenase (LDH), quantitative real-time polymerase chain reaction (qPCR), and western blot analyses for assessing the neuroprotective effects of SP extract. The experimental study revealed that SP considerably increased the cell viability, and reduced the oxidative stress promoted ROS and LDH generation in HT22 cells in a dose-dependent manner. Additionally, the morphology of HT22 cells was effectively improved by SP. Upregulated gene expressions of