Sample records for precooling

  1. Precooling With Crushed Ice: As Effective as Heat Acclimation at Improving Cycling Time-Trial Performance in the Heat.

    PubMed

    Zimmermann, Matthew; Landers, Grant; Wallman, Karen; Kent, Georgina

    2018-02-01

    This study compared the effects of precooling (ice ingestion) and heat-acclimation training on cycling time-trial (CTT) performance in the heat. Fifteen male cyclists/triathletes completed two 800-kJ CTTs in the heat, with a 12-d training program in between. Initially, all participants consumed 7 g/kg of water (22°C) in 30 min before completing an 800-kJ CTT in hot, humid conditions (pre-CTT) (35°C, 50% relative humidity [RH]). Participants were then split into 2 groups, with the precooling group (n = 7) training in thermoneutral conditions and then undergoing precooling with ice ingestion (7 g/kg, 1°C) prior to the final CTT (post-CTT) and the heat-acclimation group (n = 8) training in hot conditions (35°C, 50% RH) and consuming water (7 g/kg) prior to post-CTT. After training in both conditions, improvement in CTT time was deemed a likely positive benefit (precooling -166 ± 133 s, heat acclimation -105 ± 62 s), with this result being similar between conditions (d = 0.22, -0.68-1.08 90% confidence interval [CI]). Core temperature for post-CTT was lower in precooling than in heat acclimation from 20 min into the precooling period until the 100-kJ mark of the CTT (d > 0.98). Sweat onset occurred later in precooling (250 ± 100 s) than in heat acclimation (180 ± 80 s) for post-CTT (d = 0.65, -0.30-1.50 90% CI). Thermal sensation was lower at the end of the precooling period prior to post-CTT for the precooling trial than with heat acclimation (d = 1.24, 0.90-1.58 90% CI). Precooling with ice ingestion offers an alternative method of improving endurance-cycling performance in hot conditions if heat acclimation cannot be attained.

  2. Seal For Precooling A Turbopump

    NASA Technical Reports Server (NTRS)

    Owen, Samuel S.; Mulready, R.C.

    1988-01-01

    Diaphragm reduces misalignment. Rotary seal retains precooling fluid in pump section of cryogenic turbopump, preventing fluid from entering turbine section. Precooling fluid held in pump section of turbopump by knife-edge labyrinth seal on diaphragm.

  3. Thermodynamic analysis and economical evaluation of two 310-80 K pre-cooling stage configurations for helium refrigeration and liquefaction cycle

    NASA Astrophysics Data System (ADS)

    Zhu, Z. G.; Zhuang, M.; Jiang, Q. F.; Y Zhang, Q.; Feng, H. S.

    2017-12-01

    In 310-80 K pre-cooling stage, the temperature of the HP helium stream reduces to about 80 K where nearly 73% of the enthalpy drop from room temperature to 4.5 K occurs. Apart from the most common liquid nitrogen pre-cooling, another 310-80 K pre-cooling configuration with turbine is employed in some helium cryoplants. In this paper, thermodynamic and economical performance of these two kinds of 310-80 K pre-cooling stage configurations has been studied at different operating conditions taking discharge pressure, isentropic efficiency of turbines and liquefaction rate as independent parameters. The exergy efficiency, total UA of heat exchangers and operating cost of two configurations are computed. This work will provide a reference for choosing 310-80 K pre-cooling stage configuration during design.

  4. Performance improvement of multi-stage pulse tube cryocoolers with a self-precooled pulse tube

    NASA Astrophysics Data System (ADS)

    Qiu, L. M.; Zhi, X. Q.; Han, L.; Cao, Q.; Gan, Z. H.

    2012-10-01

    Reducing the pulse tube losses is significant for improving the cooling performance of pulse tube cryocoolers (PTCs) in particular for multi-stage ones, although ignored to a certain extent. A simple method called self-precooled pulse tube for multi-stage PTCs is comprehensively studied in order to reduce the entropy flow inside the pulse tube. Different from the complex multi-bypass or extra cryocooler or cryogens for precooling, the key of the idea is to directly precool some part of the lower stage pulse tube by using a small amount of cooling power from the upper stage through a thermal bridge. A two-stage separate Stirling PTC was chosen to demonstrate the effects of self-precooled pulse tube. Theoretical calculation showed that both the precooling temperature and position of the pulse tube affected the performance of the cryocooler. The experiment results showed that the cooling performance of the second stage with self-precooled pulse tube was remarkably improved as the bottom temperature decreased from 26.60 K to 18.02 K. The cooling power was notably increased with minor performance reduction of the first stage. By further optimizing the operation parameters, a no-load temperature of 15.87 K was achieved, which is the lowest temperature ever obtained by a two-stage Stirling PTC with only an inertance shifter. The study proves that the precooled pulse tube can help hot end heat exchanger reject the heat inside pulse tube, reduce the heat losses of the cold end and consequently improve the cooling performance of the cryocooler.

  5. Pre-cooling moderately enhances visual discrimination during exercise in the heat.

    PubMed

    Clarke, Neil D; Duncan, Michael J; Smith, Mike; Hankey, Joanne

    2017-02-01

    Pre-cooling has been reported to attenuate the increase in core temperature, although, information regarding the effects of pre-cooling on cognitive function is limited. The present study investigated the effects of pre-cooling on visual discrimination during exercise in the heat. Eight male recreational runners completed 90 min of treadmill running at 65% [Formula: see text] 2max in the heat [32.4 ± 0.9°C and 46.8 ± 6.4% relative humidity (r.h.)] on two occasions in a randomised, counterbalanced crossover design. Participants underwent pre-cooling by means of water immersion (20.3 ± 0.3°C) for 60 min or remained seated for 60 min in a laboratory (20.2 ± 1.7°C and 60.2 ± 2.5% r.h.). Rectal temperature (T rec ) and mean skin temperature (T skin ) were monitored throughout the protocol. At 30-min intervals participants performed a visual discrimination task. Following pre-cooling, T rec (P = 0.040; [Formula: see text] = 0.48) was moderately lower at 0 and 30 min and T skin (P = 0.003; [Formula: see text] = 0.75) lower to a large extent at 0 min of exercise. Visual discrimination was moderately more accurate at 60 and 90 min of exercise following pre-cooling (P = 0.067; [Formula: see text] = 0.40). Pre-cooling resulted in small improvements in visual discrimination sensitivity (F 1,7  = 2.188; P = 0.183; [Formula: see text] = 0.24), criterion (F 1,7  = 1.298; P = 0.292; [Formula: see text] = 0.16) and bias (F 1,7  = 2.202; P = 0.181; [Formula: see text] = 0.24). Pre-cooling moderately improves visual discrimination accuracy during exercise in the heat.

  6. Whole-body pre-cooling and heat storage during self-paced cycling performance in warm humid conditions.

    PubMed

    Kay, D; Taaffe, D R; Marino, F E

    1999-12-01

    The aim of this study was to establish the effect that pre-cooling the skin without a concomitant reduction in core temperature has on subsequent self-paced cycling performance under warm humid (31 degrees C and 60% relative humidity) conditions. Seven moderately trained males performed a 30 min self-paced cycling trial on two separate occasions. The conditions were counterbalanced as control or whole-body pre-cooling by water immersion so that resting skin temperature was reduced by approximately 5-6 degrees C. After pre-cooling, mean skin temperature was lower throughout exercise and rectal temperature was lower (P < 0.05) between 15 and 25 min of exercise. Consequently, heat storage increased (P < 0.003) from 84.0+/-8.8 W x m(-2) to 153+/-13.1 W x m(-2) (mean +/- s(mean)) after pre-cooling, while total body sweat fell from 1.7+/-0.1 l x h(-1) to 1.2+/-0.1 l h(-1) (P < 0.05). The distance cycled increased from 14.9+/-0.8 to 15.8+/-0.7 km (P < 0.05) after pre-cooling. The results indicate that skin pre-cooling in the absence of a reduced rectal temperature is effective in reducing thermal strain and increasing the distance cycled in 30 min under warm humid conditions.

  7. Effect of wrist cooling on aerobic and anaerobic performance in elite sportsmen.

    PubMed

    Krishnan, Anup; Singh, Krishan; Sharma, Deep; Upadhyay, Vivekanand; Singh, Amit

    2018-01-01

    Body cooling has been used to increase sporting performance and enhance recovery. Several studies have reported improvement in exercise capacities using forearm and hand cooling or only hand cooling. Wrist cooling has emerged as a portable light weight solution for precooling prior to sporting activity. The Astrand test for aerobic performance and the Wingate test for anaerobic performance are reliable and accurate tests for performance assessment. This study conducted on elite Indian athletes analyses the effects of wrist precooling on aerobic and anaerobic performance as tested by the Astrand test and the Wingate test before and after wrist precooling. 67 elite sportsmen were administered Wingate and Astrand test under standardised conditions with and without wrist precooling using a wrist cooling device (dhamaSPORT). Paired t -test was applied to study effect on aerobic [VO 2 (ml/min/kg)] and anaerobic performance [peak power (W/kg) and average power (W/kg)] and Cohen's d was used to calculate effect size of wrist precooling. After wrist precooling, significant increase of 0.22 ( p  = 0.014, 95% CI: 0.047, 0.398) in peak power (W/kg) and 0.22 ( p  < 0.0001, 95% CI: 0.142, 0.291) was observed in average power (W/kg). Although, an increase of 1.38 ( p  = 0.097, 95% CI: -0.225, 3.012) was observed in VO 2 (ml/min/kg), wrist precooling was not significantly effective in aerobic performance. Wrist cooling effect size was smaller in VO 2 (Cohen's d  = 0.21), peak power (Cohen's d  = 0.31) and it was larger in average power (Cohen's d  = 0.71). Results show wrist precooling significantly improves anaerobic than aerobic performance of elite sportsmen.

  8. Multivariate Analysis of Fruit Antioxidant Activities of Blackberry Treated with 1-Methylcyclopropene or Vacuum Precooling

    PubMed Central

    Li, Jian; Ma, Guowei; Ma, Lin; Bao, Xiaolin; Li, Liping; Zhao, Qian

    2018-01-01

    Effects of 1-methylcyclopropene (1-MCP) and vacuum precooling on quality and antioxidant properties of blackberries (Rubus spp.) were evaluated using one-way analysis of variance, principal component analysis (PCA), partial least squares (PLS), and path analysis. Results showed that the activities of antioxidant enzymes were enhanced by both 1-MCP treatment and vacuum precooling. PCA could discriminate 1-MCP treated fruit and the vacuum precooled fruit and showed that the radical-scavenging activities in vacuum precooled fruit were higher than those in 1-MCP treated fruit. The scores of PCA showed that H2O2 content was the most important variables of blackberry fruit. PLSR results showed that peroxidase (POD) activity negatively correlated with H2O2 content. The results of path coefficient analysis indicated that glutathione (GSH) also had an indirect effect on H2O2 content. PMID:29487622

  9. Field-Based Pre-Cooling for On-Court Tennis Conditioning Training in the Heat

    PubMed Central

    Duffield, Rob; Bird, Stephen P.; Ballard, Robert J.

    2011-01-01

    The present study investigated the effects of pre-cooling for on- court, tennis-specific conditioning training in the heat. Eight highly-trained tennis players performed two on-court conditioning sessions in 35°C, 55% Relative Humidity. Sessions were randomised, involved either a pre-cooling or control session, and consisted of 30-min of court- based, tennis movement drills. Pre-cooling involved 20-min of an ice-vest and cold towels to the head/neck and legs, followed by warm-up in a cold compression garment. On-court movement distance was recorded by 1Hz Global Positioning Satellite (GPS) devices, while core temperature, heart rate and perceptual exertion and thermal stress were also recorded throughout the session. Additionally, mass and lower-body peak power during repeated counter-movement jumps were measured before and after each session. No significant performance differences were evident between conditions, although a moderate-large effect (d = 0.7-1.0; p > 0.05) was evident for total (2989 ± 256 v 2870 ± 159m) and high-intensity (805 ± 340 v 629 ± 265m) distance covered following pre-cooling. Further, no significant differences were evident between conditions for rise in core temperature (1.9 ± 0.4 v 2. 2 ± 0.4°C; d > 0.9; p > 0.05), although a significantly smaller change in mass (0.9 ± 0.3 v 1. 3 ± 0.3kg; p < 0.05) was present following pre-cooling. Perceived thermal stress and exertion were significantly lower (d > 1.0; p < 0.05) during the cooling session. Finally, lower-body peak power did not differ between conditions before or after training (d < 0.3; p > 0.05). Conclusions: Despite trends for lowered physiological load and increased distances covered following cooling, the observed responses were not significantly different or as explicit as previously reported laboratory-based pre-cooling research. Key points Pre-cooling did not significantly enhance training performance or reduce physiological load for tennis training in the heat, although trends indicate some benefits for both. Pre-cooling can reduce perceptual strain of on-court tennis training in the heat to improve perceptual load of training sessions. Court-side pre-cooling may not be of sufficient volume to invoke large physiological changes. PMID:24149886

  10. Improved running performance in hot humid conditions following whole body precooling.

    PubMed

    Booth, J; Marino, F; Ward, J J

    1997-07-01

    On two separate occasions, eight subjects controlled speed to run the greatest distance possible in 30 min in a hot, humid environment (ambient temperature 32 degrees C, relative humidity 60%). For the experimental test (precooling), exercise was preceeded by cold-water immersion. Precooling increased the distance run by 304 +/- 166 m (P < 0.05). Precooling decreased the pre-exercise rectal and mean skin temperature by 0.7 degrees C and 5.9 degrees C, respectively (P < 0.05). Rectal and mean skin temperature were decreased up to 20 and 25 min during exercise, respectively (P < 0.05). Mean body temperature decreased from 36.5 +/- 0.1 degrees C to 33.8 +/- 0.2 degrees C following precooling (P < 0.05) and remained lower throughout exercise (P < 0.01) and at the end of exercise (by 0.8 degrees C; P < 0.05). The rate of heat storage at the end of exercise increased from 113 +/- 45 to 249 +/- 55 W.m-2 (P < 0.005). Precooling lowered the heart rate at rest (13%), 5 (9%), and 10 min (10%) exercise (P < 0.05) and increased the end of exercise blood lactate from 4.9 +/- 0.5 to 7.4 +/- 0.9 mmol.L-1 (P < 0.01). The VO2 at 10 and 20 min of exercise and total body sweating are not different between tests. In conclusion, water immersion precooling increased exercise endurance in hot, humid conditions with an enhanced rate of heat storage and decreased thermoregulatory strain.

  11. Building America Case Study: Residential Mechanical Precooling, Roseville, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    A. German and M. Hoeschele

    2017-05-01

    Precooling is an operational strategy with potentially no up-front cost that cools occupied spaces earlier in the day to minimize or avoid afternoon air conditioner operation. In its simplest form, precooling can be implemented by scheduling air conditioner operation to reduce thermostat setpoints between 2 degrees and 6 degrees F below typical comfort settings in advance of the on-peak time period.

  12. Building America Case Study: Residential Mechanical Precooling, Roseville, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2017-05-08

    Precooling is an operational strategy with potentially no up-front cost that cools occupied spaces earlier in the day to minimize or avoid afternoon air conditioner operation. In its simplest form, precooling can be implemented by scheduling air conditioner operation to reduce thermostat setpoints between 2 degrees and 6 degrees F below typical comfort settings in advance of the on-peak time period.

  13. The Sensitivity of Precooled Air-Breathing Engine Performance to Heat Exchanger Design Parameters

    NASA Astrophysics Data System (ADS)

    Webber, H.; Bond, A.; Hempsell, M.

    The issues relevant to propulsion design for Single Stage To Orbit (SSTO) vehicles are considered. In particular two air- breathing engine concepts involving precooling are compared; SABRE (Synergetic Air-Breathing and Rocket Engine) as designed for the Skylon SSTO launch vehicle, and a LACE (Liquid Air Cycle Engine) considered in the 1960's by the Americans for an early generation spaceplane. It is shown that through entropy minimisation the SABRE has made substantial gains in performance over the traditional LACE precooled engine concept, and has shown itself as the basis of a viable means of realising a SSTO vehicle. Further, it is demonstrated that the precooler is a major source of thermodynamic irreversibility within the engine cycle and that further reduction in entropy can be realised by increasing the heat transfer coefficient on the air side of the precooler. If this were to be achieved, it would improve the payload mass delivered to orbit by the Skylon launch vehicle by between 5 and 10%.

  14. Whole-body pre-cooling does not alter human muscle metabolism during sub-maximal exercise in the heat.

    PubMed

    Booth, J; Wilsmore, B R; Macdonald, A D; Zeyl, A; Mcghee, S; Calvert, D; Marino, F E; Storlien, L H; Taylor, N A

    2001-06-01

    Muscle metabolism was investigated in seven men during two 35 min cycling trials at 60% peak oxygen uptake, at 35 degrees C and 50% relative humidity. On one occasion, exercise was preceded by whole-body cooling achieved by immersion in water during a reduction in temperature from 29 to 24 degrees C, and, for the other trial, by immersion in water at a thermoneutral temperature (control, 34.8 degrees C). Pre-cooling did not alter oxygen uptake during exercise (P > 0.05), whilst the change in cardiac frequency and body mass both tended to be lower following pre-cooling (0.05 < P < 0.10). When averaged over the exercise period, muscle and oesophageal temperatures after pre-cooling were reduced by 1.5 and 0.6 degrees C respectively, compared with control (P < 0.05). Pre-cooling had a limited effect on muscle metabolism, with no differences between the two conditions in muscle glycogen, triglyceride, adenosine triphosphate, creatine phosphate, creatine or lactate contents at rest, or following exercise. These data indicate that whole-body pre-cooling does not alter muscle metabolism during submaximal exercise in the heat. It is more likely that thermoregulatory and cardiovascular strain are reduced, through lower muscle and core temperatures.

  15. The effect of short-term coenzyme Q10 supplementation and pre-cooling strategy on cardiac damage markers in elite swimmers.

    PubMed

    Emami, Ali; Tofighi, Asghar; Asri-Rezaei, Siamak; Bazargani-Gilani, Behnaz

    2018-02-01

    Strenuous physical exercise and hyperthermia may paradoxically induce oxidative stress and adverse effects on myocardial function. The purpose of this study was to investigate the effect of 14-d coenzyme Q10 (CoQ10) supplementation and pre-cooling on serum creatine kinase-MB (CK-MB), cardiac Troponin I (cTnI), myoglobin (Mb), lactate dehydrogenase (LD), total antioxidant capacity (TAC), lipid peroxidation (LPO) and CoQ10 concentration in elite swimmers. In total, thirty-six healthy males (mean age 17 (sd 1) years) were randomly selected and divided into four groups of supplementation, supplementation with pre-cooling, pre-cooling and control. During an eighteen-session protocol in the morning and evening, subjects attended speed and endurance swimming training sessions for 5 km in each session. Blood sampling was done before (two stages) and after (two stages) administration of CoQ10 and pre-cooling. ANCOVA and repeated measurement tests with Bonferroni post hoc test were used for the statistical analysis of the data. There was no significant statistical difference among groups for the levels of CK-MB, cTnI, Mb, LD, TAC, LPO and CoQ10 at the presampling (stages 1 and 2) (P>0·05). However, pre-cooling and control groups show a significant increase in the levels of CK-MB, cTnI, Mb, LD and LPO compared with the supplementation and supplementation with pre-cooling groups in the post-sampling (stages 1 and 2) (P<0·05), except for the TAC and CoQ10. Consequently, CoQ10 supplementation prevents adverse changes of myocardial damage and oxidative stress during swimming competition phase. Meanwhile, the pre-cooling strategy individually has no desired effect on the levels of CK-MB, cTnI, Mb, LD, LPO, TAC and CoQ10.

  16. Optimization of the freezing process for hematopoietic progenitor cells: effect of precooling, initial dimethyl sulfoxide concentration, freezing program, and storage in vapor-phase or liquid nitrogen on in vitro white blood cell quality.

    PubMed

    Dijkstra-Tiekstra, Margriet J; Setroikromo, Airies C; Kraan, Marcha; Gkoumassi, Effimia; de Wildt-Eggen, Janny

    2014-12-01

    Adding dimethyl sulfoxide (DMSO) to hematopoietic progenitor cells (HPCs) causes an exothermic reaction, potentially affecting their viability. The freezing method might also influence this. The aim was to investigate the effect of 1) precooling of DMSO and plasma (D/P) and white blood cell (WBC)-enriched product, 2) DMSO concentration of D/P, 3) freezing program, and 4) storage method on WBC quality. WBC-enriched product without CD34+ cells was used instead of HPCs. This was divided into six or eight portions. D/P (20 or 50%; precooled or room temperature [RT]) was added to the WBC-enriched product (precooled or RT), resulting in 10% DMSO, while monitoring temperature. The product was frozen using controlled-rate freezing ("fast-rate" or "slow-rate") and placed in vapor-phase or liquid nitrogen. After thawing, WBC recovery and viability were determined. Temperature increased most for precooled D/P to precooled WBC-enriched product, without influence of 20 or 50% D/P, but remained for all variations below 30°C. WBC recovery for both freezing programs was more than 95%. Recovery of WBC viability was higher for slow-rate freezing compared to fast-rate freezing (74% vs. 61%; p < 0.05) and also for 50% compared to 20% D/P (two test variations). Effect of precooling D/P or WBC-enriched product and of storage in vapor-phase or liquid nitrogen was marginal. Based on these results, precooling is not necessary. Fifty percent D/P is preferred over 20% D/P. Slow-rate freezing is preferred over fast-rate freezing. For safety reasons storage in vapor-phase nitrogen is preferred over storage in liquid nitrogen. Additional testing using real HPCs might be necessary. © 2014 AABB.

  17. Precooling treatments induce resistance of Anastrepha ludens eggs to quarantine treatments of high-pressure processing combined with cold.

    PubMed

    Castañón-Rodríguez, J F; Velazquez, G; Montoya, P; Vázquez, M; Ramírez, J A

    2014-04-01

    High-pressure processing (HPP) combined with heat or cold has been proposed as an alternative quarantine process for Mexican fruit fly Anastrepha ludens Loew (Diptera: Tephritidae). HPP conditions at levels higher than 100 MPa applied to destroy eggs and larvae can also affect the postharvest physiology of the fruits. HPP at pressure levels in the range of 50-100 MPa is recommended. Eggs have been reported as being more resistant to HPP than larvae. Therefore, the objective of this study was to assess the effect of a precooling treatment on the biological viability of A. ludens eggs treated by HPP at 0 degrees C. The capability of nondestroyed eggs to develop and reproduce was also evaluated. One-, 2-, 3-, and 4-d-old eggs were precooled in ice water for 0 (control) 3, 6, 12, or 24 h and then pressurized at 50, 70, or 90 MPa for 0, 3, 6, or 9 min at 0 degrees C. The hatching capability of pressurized eggs was evaluated. The most lethal effect of HPP on nonprecooled eggs (0 h) was obtained at 90 MPa for 9 min, destroying all eggs except for the 3-d-old ones, which showed an 11.8% hatch rate. Precooling treatment improved the hatch rate of eggs ranging from 4 to 50% depending on precooling conditions. The main effect was observed after 6 h. These results suggest that precooling modified the biochemistry and physiology of eggs, improving their resistance to HPP treatments.

  18. Demand Shifting with Thermal Mass in Large Commercial Buildings in a California Hot Climate Zone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Peng; Yin, Rongxin; Brown, Carrie

    2009-06-01

    The potential for using building thermal mass for load shifting and peak energy demand reduction has been demonstrated in a number of simulation, laboratory, and field studies. Previous Lawrence Berkeley National Laboratory research has demonstrated that the approach is very effective in cool and moderately warm climate conditions (California Climate Zones 2-4). However, this method had not been tested in hotter climate zones. This project studied the potential of pre-cooling the building early in the morning and increasing temperature setpoints during peak hours to reduce cooling-related demand in two typical office buildings in hotter California climates ? one in Visaliamore » (CEC Climate Zone 13) and the other in San Bernardino (CEC Climate Zone 10). The conclusion of the work to date is that pre-cooling in hotter climates has similar potential to that seen previously in cool and moderate climates. All other factors being equal, results to date indicate that pre-cooling increases the depth (kW) and duration (kWh) of the possible demand shed of a given building. The effectiveness of night pre-cooling in typical office building under hot weather conditions is very limited. However, night pre-cooling is helpful for office buildings with an undersized HVAC system. Further work is required to duplicate the tests in other typical buildings and in other hot climate zones and prove that pre-cooling is truly effective.« less

  19. System and method for pre-cooling of buildings

    DOEpatents

    Springer, David A.; Rainer, Leo I.

    2011-08-09

    A method for nighttime pre-cooling of a building comprising inputting one or more user settings, lowering the indoor temperature reading of the building during nighttime by operating an outside air ventilation system followed, if necessary, by a vapor compression cooling system. The method provides for nighttime pre-cooling of a building that maintains indoor temperatures within a comfort range based on the user input settings, calculated operational settings, and predictions of indoor and outdoor temperature trends for a future period of time such as the next day.

  20. Mixed-method pre-cooling reduces physiological demand without improving performance of medium-fast bowling in the heat.

    PubMed

    Minett, Geoffrey M; Duffield, Rob; Kellett, Aaron; Portus, Marc

    2012-05-01

    This study examined physiological and performance effects of pre-cooling on medium-fast bowling in the heat. Ten, medium-fast bowlers completed two randomised trials involving either cooling (mixed-methods) or control (no cooling) interventions before a 6-over bowling spell in 31.9±2.1°C and 63.5±9.3% relative humidity. Measures included bowling performance (ball speed, accuracy and run-up speeds), physical characteristics (global positioning system monitoring and counter-movement jump height), physiological (heart rate, core temperature, skin temperature and sweat loss), biochemical (serum concentrations of damage, stress and inflammation) and perceptual variables (perceived exertion and thermal sensation). Mean ball speed (114.5±7.1 vs. 114.1±7.2 km · h(-1); P = 0.63; d = 0.09), accuracy (43.1±10.6 vs. 44.2±12.5 AU; P = 0.76; d = 0.14) and total run-up speed (19.1±4.1 vs. 19.3±3.8 km · h(-1); P = 0.66; d = 0.06) did not differ between pre-cooling and control respectively; however 20-m sprint speed between overs was 5.9±7.3% greater at Over 4 after pre-cooling (P = 0.03; d = 0.75). Pre-cooling reduced skin temperature after the intervention period (P = 0.006; d = 2.28), core temperature and pre-over heart rates throughout (P = 0.01-0.04; d = 0.96-1.74) and sweat loss by 0.4±0.3 kg (P = 0.01; d = 0.34). Mean rating of perceived exertion and thermal sensation were lower during pre-cooling trials (P = 0.004-0.03; d = 0.77-3.13). Despite no observed improvement in bowling performance, pre-cooling maintained between-over sprint speeds and blunted physiological and perceptual demands to ease the thermoregulatory demands of medium-fast bowling in hot conditions.

  1. Numerical Study of a 10 K Two Stage Pulse Tube Cryocooler with Precooling Inside the Pulse Tube

    NASA Astrophysics Data System (ADS)

    Xiaomin, Pang; Xiaotao, Wang; Wei, Dai; Jianyin, Hu; Ercang, Luo

    2017-02-01

    High efficiency cryocoolers working below 10 K have many applications such as cryo-pump, superconductor cooling and cryogenic electronics. This paper presents a thermally coupled two-stage pulse tube cryocooler system and its numeric analysis. The simulation results indicate that temperature distribution in the pulse tube has a significant impact on the system performance. So a precooling heat exchanger is put inside the second stage pulse tube for a deep investigation on its influence on the system performance. The influences of operating parameters such as precooling temperature, location of the precooling heat exchanger are discussed. Comparison of energy losses apparently show the advantages of the configuration which leads to an improvement on the efficiency. Finally, the cryocooler is predicted to be able to reach a relative Carnot efficiency of 10.7% at 10 K temperature.

  2. Precooling and ozone treatments affects postharvest quality of black mulberry (Morus nigra) fruits.

    PubMed

    Han, Qiang; Gao, Haiyan; Chen, Hangjun; Fang, Xiangjun; Wu, Weijie

    2017-04-15

    Mulberry (Morus spp.) fruits are delicious and nutritious, but they are highly perishable and have a very short shelf-life for sale in the market. This study investigated the effect and mechanisms of 2ppm ozone and precooling treatments on the postharvest quality of mulberry fruit during refrigerated storage. The results revealed that mulberry fruit subjected to ozone and precooling treatment had higher levels of titratable acidity and total soluble solids content, better retention in firmness and color, and lower decay rate, respiratory intensity, and polyphenol oxidase activity compared to the control. From the analysis of cell ultrastructure and cell wall components of fruit, ozone and precooling treatments also induced shrinkage of the stomata in the epidermis, inhibited bacteria invasion, reduced water transpiration, and delayed the decomposition of the cell walls and the degradation of epidermal tissues. Copyright © 2016. Published by Elsevier Ltd.

  3. An application of gap regenerator/expander precooled by two stage G-M refrigerator

    NASA Technical Reports Server (NTRS)

    Matsubara, Y.; Yasukochi, K.

    1983-01-01

    The degradation of regenerator effectiveness below 10K is due to the imbalance of the heat capacity of the regenerator material and helium gas as a working fluid. One of the attractive methods to increase this efficiency could be realized by a gap regenerator system regarding helium gas property. This paper describes an experiment using pressurized helium gas as a regenerator material. A two stage G-M cycle refrigerator has been used for precooling the gap regenerator system. With this method, minimum temperature below 5K has been obtained when the precooling temperature maintained at 10K.

  4. A Data Driven Pre-cooling Framework for Energy Cost Optimization in Commercial Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vishwanath, Arun; Chandan, Vikas; Mendoza, Cameron

    Commercial buildings consume significant amount of energy. Facility managers are increasingly grappling with the problem of reducing their buildings’ peak power, overall energy consumption and energy bills. In this paper, we first develop an optimization framework – based on a gray box model for zone thermal dynamics – to determine a pre-cooling strategy that simultaneously shifts the peak power to low energy tariff regimes, and reduces both the peak power and overall energy consumption by exploiting the flexibility in a building’s thermal comfort range. We then evaluate the efficacy of the pre-cooling optimization framework by applying it to building managementmore » system data, spanning several days, obtained from a large commercial building located in a tropical region of the world. The results from simulations show that optimal pre-cooling reduces peak power by over 50%, energy consumption by up to 30% and energy bills by up to 37%. Next, to enable ease of use of our framework, we also propose a shortest path based heuristic algorithmfor solving the optimization problemand show that it has comparable erformance with the optimal solution. Finally, we describe an application of the proposed optimization framework for developing countries to reduce the dependency on expensive fossil fuels, which are often used as a source for energy backup.We conclude by highlighting our real world deployment of the optimal pre-cooling framework via a software service on the cloud platform of a major provider. Our pre-cooling methodology, based on the gray box optimization framework, incurs no capital expense and relies on data readily available from a building management system, thus enabling facility managers to take informed decisions for improving the energy and cost footprints of their buildings« less

  5. Auto-DR and Pre-cooling of Buildings at Tri-City Corporate Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, Rongxin; Xu, Peng; Kiliccote, Sila

    2008-11-01

    Over the several past years, Lawrence Berkeley National Laboratory (LBNL) has conducted field tests for different pre-cooling strategies in different commercial buildings within California. The test results indicated that pre-cooling strategies were effective in reducing electric demand in these buildings during peak periods. This project studied how to optimize pre-cooling strategies for eleven buildings in the Tri-City Corporate Center, San Bernardino, California with the assistance of a building energy simulation tool -- the Demand Response Quick Assessment Tool (DRQAT) developed by LBNL's Demand Response Research Center funded by the California Energy Commission's Public Interest Energy Research (PIER) Program. From themore » simulation results of these eleven buildings, optimal pre-cooling and temperature reset strategies were developed. The study shows that after refining and calibrating initial models with measured data, the accuracy of the models can be greatly improved and the models can be used to predict load reductions for automated demand response (Auto-DR) events. This study summarizes the optimization experience of the procedure to develop and calibrate building models in DRQAT. In order to confirm the actual effect of demand response strategies, the simulation results were compared to the field test data. The results indicated that the optimal demand response strategies worked well for all buildings in the Tri-City Corporate Center. This study also compares DRQAT with other building energy simulation tools (eQUEST and BEST). The comparison indicate that eQUEST and BEST underestimate the actual demand shed of the pre-cooling strategies due to a flaw in DOE2's simulation engine for treating wall thermal mass. DRQAT is a more accurate tool in predicting thermal mass effects of DR events.« less

  6. Effect of pre-cooling, with and without thigh cooling, on strain and endurance exercise performance in the heat.

    PubMed

    Cotter, J D; Sleivert, G G; Roberts, W S; Febbraio, M A

    2001-04-01

    Body cooling before exercise (i.e. pre-cooling) reduces physiological strain in humans during endurance exercise in temperate and warm environments, usually improving performance. This study examined the effectiveness of pre-cooling humans by ice-vest and cold (3 degrees C) air, with (LC) and without (LW) leg cooling, in reducing heat strain and improving endurance performance in the heat (35 degrees C, 60% RH). Nine habitually-active males completed three trials, involving pre-cooling (LC and LW) or no pre-cooling (CON: 34 degrees C air) before 35-min cycle exercise: 20 min at approximately 65% VO2peak then a 15-min work-performance trial. At exercise onset, mean core (Tc, from oesophagus and rectum) and skin temperatures, forearm blood flow (FBF), heart rate (HR), and ratings of exertion, body temperature and thermal discomfort were lower in LW and LC than CON (P<0.05). They remained lower at 20 min [e.g. Tc: CON 38.4+/-0.2 (+/-S.E.), LW 37.9+/-0.1, and LC 37.8+/-0.1 degrees C; HR: 177+/-3, 163+/-3 and 167+/-3 b.p.m.), except that FBF was equivalent (P=0.10) between CON (15.5+/-1.6) and LW (13.6+/-1.0 ml.100 ml tissue(-1) x min(-1)). Subsequent power output was higher in LW (2.95+/-0.24) and LC (2.91+/-0.25) than in CON (2.52+/-0.28 W kg(-1), P=0.00, N=8), yet final Tc remained lower. Pre-cooling by ice-vest and cold air effectively reduced physiological and psychophysical strain and improved endurance performance in the heat, irrespective of whether thighs were warmed or cooled.

  7. Numerical study of a cryogen-free vuilleumier type pulse tube cryocooler operating below 10 K

    NASA Astrophysics Data System (ADS)

    Wang, Y. N.; Wang, X. T.; Dai, W.; Luo, E. C.

    2017-12-01

    This paper presents a numerical investigation on a Vuilleumier (VM) type pulse tube cooler. Different from previous systems that use liquid nitrogen, Stirling type pre-coolers are used to provide the cooling power for the thermal compressor, which leads to a convenient cryogen-free system and offers the flexibility of changing working temperature range of the thermal compressor to obtain an optimum efficiency. Firstly, main component dimensions were optimized with lowest no-load temperature as the target. Then the dependence of system performance on average pressure, frequency, displacer displacement amplitude and thermal compressor pre-cooling temperature were studied. Finally, the effect of pre-cooling temperature on overall cooling efficiency at 5 K was studied. A highest relative Carnot efficiency of 0.82 % was predicted with an average pressure of 2.5 MPa, a frequency of 3 Hz, a displacer displacement amplitude of 6.5 mm, ambient end temperature 300 K and pre-cooling temperature 65 K, respectively.

  8. The influence of whole-body vs. torso pre-cooling on physiological strain and performance of high-intensity exercise in the heat.

    PubMed

    Sleivert, G G; Cotter, J D; Roberts, W S; Febbraio, M A

    2001-04-01

    Little research has been reported examining the effects of pre-cooling on high-intensity exercise performance, particularly when combined with strategies to keep the working muscle warm. This study used nine active males to determine the effects of pre-cooling the torso and thighs (LC), pre-cooling the torso (ice-vest in 3 degrees C air) while keeping the thighs warm (LW), or no cooling (CON: 31 degrees C air), on physiological strain and high-intensity (45-s) exercise performance (33 degrees C, 60% rh). Furthermore, we sought to determine whether performance after pre-cooling was influenced by a short exercise warm-up. The 45-s test was performed at different (P<0.05) mean core temperature [(rectal+oesophageal)/2] [CON: 37.3+/-0.3 (S.D.), LW: 37.1+/-0.3, LC: 36.8+/-0.4 degrees C] and mean skin temperature (CON: 34.6+/-0.6, LW: 29.0+/-1.0, LC: 27.2+/-1.2 degrees C) between all conditions. Forearm blood flow prior to exercise was also lower in LC (3.1+/-2.0 ml 100 ml tissue(-1) x min(-1)) than CON (8.2+/-2.5, P=0.01) but not LW (4.3+/-2.6, P=0.46). After an exercise warm-up, muscle temperature (Tm) was not significantly different between conditions (CON: 37.3+/-1.5, LW: 37.3+/-1.2, LC: 36.6+/-0.7 degrees C, P=0.16) but when warm-up was excluded, T(m) was lower in LC (34.5+/-1.9 degrees C, P=0.02) than in CON (37.3+/-1.0) and LW (37.1+/-0.9). Even when a warm-up was performed, torso+thigh pre-cooling decreased both peak (-3.4+/-3.8%, P=0.04) and mean power output (-4.1+/-3.8%, P=0.01) relative to the control, but this effect was markedly larger when warm-up was excluded (peak power -7.7+/-2.5%, P=0.01; mean power -7.6+/-1.2%, P=0.01). Torso-only pre-cooling did not reduce peak or mean power, either with or without warm-up. These data indicate that pre-cooling does not improve 45-s high-intensity exercise performance, and can impair performance if the working muscles are cooled. A short exercise warm-up largely removes any detrimental effects of a cold muscle on performance by increasing Tm.

  9. Modeling Burns for Pre-Cooled Skin Flame Exposure

    PubMed Central

    2017-01-01

    On a television show, a pre-cooled bare-skinned person (TV host) passed through engulfing kerosene flames. The assumption was that a water film should protect him during 0.74 s flame exposure in an environment of 86 kW/m2 heat flux. The TV host got light burn inflammation on the back, arms and legs. The present work studies skin temperatures and burn damage integral of such dangerous flame exposure. The skin temperature distribution during water spray pre-cooling, transport to the flames, flame exposure, transport to the water pool, and final water pool cooling is modelled numerically. Details of the temperature development of the skin layers are presented, as well as the associated damage integral. It is shown that 5 °C water spray applied for a 30 s period pre-cooled the skin sufficiently to prevent severe skin injury. Soot marks indicate that the water layer evaporated completely in some areas resulting in skin flame contact. This exposed dry skin directly to the flames contributing significantly to the damage integral. It is further analyzed how higher water temperature, shorter pre-cooling period or longer flame exposure influence the damage integral. It is evident that minor changes in conditions could lead to severe burns and that high heat flux levels at the end of the exposure period are especially dangerous. This flame stunt should never be repeated. PMID:28880253

  10. 10 K high frequency pulse tube cryocooler with precooling

    NASA Astrophysics Data System (ADS)

    Liu, Sixue; Chen, Liubiao; Wu, Xianlin; Zhou, Yuan; Wang, Junjie

    2016-07-01

    A high frequency pulse tube cryocooler with precooling (HPTCP) has been developed and tested to meet the requirement of weak magnetic signals measurement, and the performance characteristics are presented in this article. The HPTCP is a two-stage pulse tube cryocooler with the precooling-stage replaced by liquid nitrogen. Two regenerators completely filled with stainless steel (SS) meshes are used in the cooler. Together with cold inertance tubes and cold gas reservoir, a cold double-inlet configuration is used to control the phase relationship of the HPTCP. The experimental result shows that the cold double-inlet configuration has improved the performance of the cooler obviously. The effects of operation parameters on the performance of the cooler are also studied. With a precooling temperature of 78.5 K, the maximum refrigeration capacity is 0.26 W at 15 K and 0.92 W at 20 K when the input electric power are 174 W and 248 W respectively, and the minimum no-load temperature obtained is 10.3 K, which is a new record on refrigeration temperature for high frequency pulse tube cryocooler reported with SS completely used as regenerative matrix.

  11. Impact of Precooling and Controlled-Atmosphere Storage on γ-Aminobutyric Acid (GABA) Accumulation in Longan (Dimocarpus longan Lour.) Fruit.

    PubMed

    Zhou, Molin; Ndeurumio, Kessy H; Zhao, Lei; Hu, Zhuoyan

    2016-08-24

    Longan (Dimocarpus longan Lour.) fruit cultivars 'Chuliang' and 'Shixia' were analyzed for γ-aminobutyric acid (GABA) accumulation after precooling and in controlled-atmosphere storage. Fruit were exposed to 5% O2 plus 3%, 5%, or 10% CO2 at 4 °C, and GABA and associated enzymes, aril firmness, and pericarp color were measured. Aril softening and pericarp browning were delayed by 5% CO2 + 5% O2. GABA concentrations and glutamate decarboxylase (GAD; EC 4.1.1.15) activities declined during storage at the higher-CO2 treatments. However, GABA aminotransferase (GABA-T; EC 2.6.1.19) activities in elevated CO2-treated fruit fluctuated during storage. GABA concentrations increased after precooling treatments. GAD activity and GABA-T activity were different between cultivars after precooling. GABA concentrations in fruit increased after 3 days of 10% CO2 + 5% O2 treatment and then declined as storage time increased. GABA accumulation was associated with stimulation of GAD activity rather than inhibition of GABA-T activity.

  12. Precooling and Warm-Up Effects on Time Trial Cycling During Heat Stress.

    PubMed

    Al-Horani, Ramzi A; Wingo, Jonathan E; Ng, Jason; Bishop, Phillip; Richardson, Mark

    2018-02-01

    Heat stress limits endurance exercise performance. Combining precooling and warm-up prior to endurance exercise in the heat may exploit the benefits of both strategies while avoiding the potential negative consequences of each. This study tested the hypothesis that precooling combined with warm-up improves time trial cycling performance in the heat relative to either treatment alone. Nine healthy men completed three 16.1-km time trials in 33°C after: 1) precooling (ice slurry and ice vest) alone (PREC); 2) warm-up alone (WU); or 3) PREC plus WU (COMBO). Tre was lower after PREC compared to WU throughout exercise and lower than COMBO for the first 12 km; COMBO was lower than WU for the first 4 km. Tsk during PREC was lower than COMBO and WU for the first 8 km, and lower in COMBO than WU for the first 4 km. PREC lowered pre-exercise heart rate relative to COMBO and WU (68 ± 10, 106 ± 12, 101 ± 13 bpm, respectively), but it increased similarly during exercise. Local sweat rate (SR) was lower in PREC (0.1 ± 0.1 mg · cm-2 · min-1) than COMBO (0.5 ± 0.2 mg · cm-2 · min-1) and WU (0.6 ± 0.2 mg · cm-2 · min-1) for the first 4 km. Treatments did not differentially affect performance (PREC = 31.9 ± 1.9 min, COMBO = 32.6 ± 2.7 min, WU = 33.1 ± 2.9 min). We conclude precooling alone or with warm-up mitigated thermal strain during exercise, but did not significantly improve 16.1-km cycling time trial performance.Al-horani RA, Wingo JE, Ng J, Bishop P, Richardson M. Precooling and warm-up effects on time trial cycling during heat stress. Aerosp Med Hum Perform. 2018; 89(2):87-93.

  13. Research on hypersonic aircraft using pre-cooled turbojet engines

    NASA Astrophysics Data System (ADS)

    Taguchi, Hideyuki; Kobayashi, Hiroaki; Kojima, Takayuki; Ueno, Atsushi; Imamura, Shunsuke; Hongoh, Motoyuki; Harada, Kenya

    2012-04-01

    Systems analysis of a Mach 5 class hypersonic aircraft is performed. The aircraft can fly across the Pacific Ocean in 2 h. A multidisciplinary optimization program for aerodynamics, structure, propulsion, and trajectory is used in the analysis. The result of each element model is improved using higher accuracy analysis tools. The aerodynamic performance of the hypersonic aircraft is examined through hypersonic wind tunnel tests. A thermal management system based on the data of the wind tunnel tests is proposed. A pre-cooled turbojet engine is adopted as the propulsion system for the hypersonic aircraft. The engine can be operated continuously from take-off to Mach 5. This engine uses a pre-cooling cycle using cryogenic liquid hydrogen. The high temperature inlet air of hypersonic flight would be cooled by the same liquid hydrogen used as fuel. The engine is tested under sea level static conditions. The engine is installed on a flight test vehicle. Both liquid hydrogen fuel and gaseous hydrogen fuel are supplied to the engine from a tank and cylinders installed within the vehicle. The designed operation of major components of the engine is confirmed. A large amount of liquid hydrogen is supplied to the pre-cooler in order to make its performance sufficient for Mach 5 flight. Thus, fuel rich combustion is adopted at the afterburner. The experiments are carried out under the conditions that the engine is mounted upon an experimental airframe with both set up either horizontally or vertically. As a result, the operating procedure of the pre-cooled turbojet engine is demonstrated.

  14. Precooling leg muscle improves intermittent sprint exercise performance in hot, humid conditions.

    PubMed

    Castle, Paul C; Macdonald, Adam L; Philp, Andrew; Webborn, Anthony; Watt, Peter W; Maxwell, Neil S

    2006-04-01

    We used three techniques of precooling to test the hypothesis that heat strain would be alleviated, muscle temperature (Tmu) would be reduced, and as a result there would be delayed decrements in peak power output (PPO) during exercise in hot, humid conditions. Twelve male team-sport players completed four cycling intermittent sprint protocols (CISP). Each CISP consisted of twenty 2-min periods, each including 10 s of passive rest, 5 s of maximal sprint against a resistance of 7.5% body mass, and 105 s of active recovery. The CISP, preceded by 20 min of no cooling (Control), precooling via an ice vest (Vest), cold water immersion (Water), and ice packs covering the upper legs (Packs), was performed in hot, humid conditions (mean +/- SE; 33.7 +/- 0.3 degrees C, 51.6 +/- 2.2% relative humidity) in a randomized order. The rate of heat strain increase during the CISP was faster in Control than Water and Packs (P < 0.01), but it was similar to Vest. Packs and Water blunted the rise of Tmu until minute 16 and for the duration of the CISP (40 min), respectively (P < 0.01). Reductions in PPO occurred from minute 32 onward in Control, and an increase in PPO by approximately 4% due to Packs was observed (main effect; P < 0.05). The method of precooling determined the extent to which heat strain was reduced during intermittent sprint cycling, with leg precooling offering the greater ergogenic effect on PPO than either upper body or whole body cooling.

  15. Does the diurnal increase in central temperature interact with pre-cooling or passive warm-up of the leg?

    PubMed

    Racinais, Sébastien; Blonc, Stephen; Oksa, Juha; Hue, Olivier

    2009-01-01

    Seven male subjects volunteered to participate in an investigation of whether the diurnal increase in core temperature influences the effects of pre-cooling or passive warm-up on muscular power. Morning (07:00-09:00h) and afternoon (17:00-19:00h) evaluation of maximal power output during a cycling sprint was performed on different days in a control condition (room at 21.8 degrees C, 69% rh), after 30min of pre-cooling in a cold bath (16 degrees C), or after 30min of passive warm-up in a hot bath (38 degrees C). Despite an equivalent increase from morning to afternoon in core temperature in all conditions (+0.4 degrees C, P<0.05), power output displayed a diurnal increase in control condition only. A local cooling or heating of the leg in a neutral environment blunted the diurnal variation in muscular power. Because pre-cooling decreases muscle power, force and velocity irrespective of time-of-day, athletes should strictly avoid any cooling before a sprint exercise. In summary, diurnal variation in muscle power output seems to be more influenced by muscle rather than core temperature.

  16. Heat exchanger development at Reaction Engines Ltd.

    NASA Astrophysics Data System (ADS)

    Varvill, Richard

    2010-05-01

    The SABRE engine for SKYLON has a sophisticated thermodynamic cycle with heat transfer between the fluid streams. The intake airflow is cooled in an efficient counterflow precooler, consisting of many thousand small bore thin wall tubes. Precooler manufacturing technology has been under investigation at REL for a number of years with the result that flightweight matrix modules can now be produced. A major difficulty with cooling the airflow to sub-zero temperatures at low altitude is the problem of frost formation. Frost control technology has been developed which enables steady state operation. The helium loop requires a top cycle heat exchanger (HX3) to deliver a constant inlet temperature to the main turbine. This is constructed in silicon carbide and the feasibility of manufacturing various matrix geometries has been investigated along with suitable joining techniques. A demonstration precooler will be made to run in front of a Viper jet engine at REL's B9 test facility in 2011. This precooler will incorporate full frost control and be built from full size SABRE engine modules. The facility will incorporate a high pressure helium loop that rejects the absorbed heat to a bath of liquid nitrogen.

  17. The effect of different precooling rates and cold storage on milk microbiological quality and composition.

    PubMed

    Paludetti, Lizandra F; Kelly, Alan L; O'Brien, Bernadette; Jordan, Kieran; Gleeson, David

    2018-03-01

    The objective of this study was to measure the effect of different milk cooling rates, before entering the bulk tank, on the microbiological load and composition of the milk, as well as on energy usage. Three milk precooling treatments were applied before milk entered 3 identical bulk milk tanks: no plate cooler (NP), single-stage plate cooler (SP), and double-stage plate cooler (DP). These precooling treatments cooled the milk to 32.0 ± 1.4°C, 17.0 ± 2.8°C, and 6.0 ± 1.1°C, respectively. Milk was added to the bulk tank twice daily for 72 h, and the tank refrigeration temperature was set at 3°C. The blend temperature within each bulk tank was reduced after each milking event as the volume of milk at 3°C increased simultaneously. The bacterial counts of the milk volumes precooled at different rates did not differ significantly at 0 h of storage or at 24-h intervals thereafter. After 72 h of storage, the total bacterial count of the NP milk was 3.90 ± 0.09 log 10 cfu/mL, whereas that of the precooled milk volumes were 3.77 ± 0.09 (SP) and 3.71 ± 0.09 (DP) log 10 cfu/mL. The constant storage temperature (3°C) over 72 h helped to reduce bacterial growth rates in milk; consequently, milk composition was not affected and minimal, if any, proteolysis occurred. The DP treatment had the highest energy consumption (17.6 ± 0.5 Wh/L), followed by the NP (16.8 ± 2.7 Wh/L) and SP (10.6 ± 1.3 Wh/L) treatments. This study suggests that bacterial count and composition of milk are minimally affected when milk is stored at 3°C for 72 h, regardless of whether the milk is precooled; however, milk entering the tank should have good initial microbiological quality. Considering the numerical differences between bacterial counts, however, the use of the SP or DP precooling systems is recommended to maintain low levels of bacterial counts and reduce energy consumption. The Authors. Published by FASS Inc. and Elsevier Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

  18. Duration-dependant response of mixed-method pre-cooling for intermittent-sprint exercise in the heat.

    PubMed

    Minett, Geoffrey M; Duffield, Rob; Marino, Frank E; Portus, Marc

    2012-10-01

    This study examined the effects of pre-cooling duration on performance and neuromuscular function for self-paced intermittent-sprint shuttle running in the heat. Eight male, team-sport athletes completed two 35-min bouts of intermittent-sprint shuttle running separated by a 15-min recovery on three separate occasions (33°C, 34% relative humidity). Mixed-method pre-cooling was completed for 20 min (COOL20), 10-min (COOL10) or no cooling (CONT) and reapplied for 5-min mid-exercise. Performance was assessed via sprint times, percentage decline and shuttle-running distance covered. Maximal voluntary contractions (MVC), voluntary activation (VA) and evoked twitch properties were recorded pre- and post-intervention and mid- and post-exercise. Core temperature (T (c)), skin temperature, heart rate, capillary blood metabolites, sweat losses, perceptual exertion and thermal stress were monitored throughout. Venous blood draws pre- and post-exercise were analyzed for muscle damage and inflammation markers. Shuttle-running distances covered were increased 5.2 ± 3.3% following COOL20 (P < 0.05), with no differences observed between COOL10 and CONT (P > 0.05). COOL20 aided in the maintenance of mid- and post-exercise MVC (P < 0.05; d > 0.80), despite no conditional differences in VA (P > 0.05). Pre-exercise T (c) was reduced by 0.15 ± 0.13°C with COOL20 (P < 0.05; d > 1.10), and remained lower throughout both COOL20 and COOL10 compared to CONT (P < 0.05; d > 0.80). Pre-cooling reduced sweat losses by 0.4 ± 0.3 kg (P < 0.02; d > 1.15), with COOL20 0.2 ± 0.4 kg less than COOL10 (P = 0.19; d = 1.01). Increased pre-cooling duration lowered physiological demands during exercise heat stress and facilitated the maintenance of self-paced intermittent-sprint performance in the heat. Importantly, the dose-response interaction of pre-cooling and sustained neuromuscular responses may explain the improved exercise performance in hot conditions.

  19. The Effects of Crushed Ice Ingestion Prior to Steady State Exercise in the Heat.

    PubMed

    Zimmermann, Matthew; Landers, Grant; Wallman, Karen E; Saldaris, Jacinta

    2017-06-01

    This study examined the physiological effects of crushed ice ingestion before steady state exercise in the heat. Ten healthy males with age (23 ± 3 y), height (176.9 ± 8.7 cm), body-mass (73.5 ± 8.0 kg), VO 2peak (48.5 ± 3.6 mL∙kg∙min -1 ) participated in the study. Participants completed 60 min of cycling at 55% of their VO 2peak preceded by 30 min of precooling whereby 7 g∙kg -1 of thermoneutral water (CON) or crushed ice (ICE) was ingested. The reduction in T c at the conclusion of precooling was greater in ICE (-0.9 ± 0.3 °C) compared with CON (-0.2 ± 0.2 °C) (p ≤ .05). Heat storage capacity was greater in ICE compared with CON after precooling (ICE -29.3 ± 4.8 W∙m -2 ; CON -11.1 ± 7.3 W∙m -2 , p < .05). Total heat storage was greater in ICE compared with CON at the end of the steady state cycle (ICE 62.0 ± 12.5 W∙m-2; CON 49.9 ± 13.4 W∙m -2 , p < .05). Gross efficiency was higher in ICE compared with CON throughout the steady state cycle (ICE 21.4 ± 1.8%; CON 20.4 ± 1.9%, p < .05). Ice ingestion resulted in a lower thermal sensation at the end of precooling and a lower sweat rate during the initial stages of cycling (p < .05). Sweat loss, respiratory exchange ratio, heart rate and ratings of perceived exertion and thirst were similar between conditions (p > .05). Precooling with crushed ice led to improved gross efficiency while cycling due to an increased heat storage capacity, which was the result of a lower core temperature.

  20. Conceptual Study on Hypersonic Turbojet Experimental Vehicle (HYTEX)

    NASA Astrophysics Data System (ADS)

    Taguchi, Hideyuki; Murakami, Akira; Sato, Tetsuya; Tsuchiya, Takeshi

    Pre-cooled turbojet engines have been investigated aiming at realization of reusable space transportation systems and hypersonic airplanes. Evaluation methods of these engine performances have been established based on ground tests. There are some plans on the demonstration of hypersonic propulsion systems. JAXA focused on hypersonic propulsion systems as a key technology of hypersonic transport airplane. Demonstrations of Mach 5 class hypersonic technologies are stated as a development target at 2025 in the long term vision. In this study, systems analyses of hypersonic turbojet experiment (HYTEX) with Mach 5 flight capability is performed. Aerodynamic coefficients are obtained by CFD analyses and wind tunnel tests. Small Pre-cooled turbojet is fabricated and tested using liquid hydrogen as fuel. As a result, characteristics of the baseline vehicle shape is clarified, . and effects of pre-cooling are confirmed at the firing test.

  1. Combined refrigeration system with a liquid pre-cooling heat exchanger

    DOEpatents

    Gaul, Christopher J.

    2003-07-01

    A compressor-pump unit for use in a vapor-compression refrigeration system is provided. The compressor-pump unit comprises a driving device including a rotatable shaft. A compressor is coupled with a first portion of the shaft for compressing gaseous refrigerant within the vapor-compression refrigeration system. A liquid pump is coupled with a second portion of the shaft for receiving liquid refrigerant having a first pressure and for discharging the received liquid refrigerant at a second pressure with the second pressure being higher than the first pressure by a predetermined amount such that the discharged liquid refrigerant is subcooled. A pre-cooling circuit is connected to the liquid pump with the pre-cooling circuit being exposed to the gaseous refrigerant whereby the gaseous refrigerant absorbs heat from the liquid refrigerant, prior to the liquid refrigerant entering the liquid pump.

  2. Temperature Changes During Therapeutic Ultrasound in the Precooled Human Gastrocnemius Muscle

    PubMed Central

    Rimington, Stephanie J.; Draper, David O.; Durrant, Earlene; Fellingham, Gilbert

    1994-01-01

    Therapeutic ultrasound is frequently employed as a deep heating rehabilitation modality. It is administered in one of three ways: a) ultrasound with no preceding treatment, b) ultrasound on preheated tissues, or c) ultrasound on precooled tissues. The purpose of this study was to investigate the effect of ultrasound treatments on the tissue temperature rise of precooled human gastrocnemius muscle. Sixteen male subjects had a 23-gauge hypodermic needle microprobe inserted 3 cm deep into the medial aspect of their anesthetized gastrocnemius muscles. Data were gathered on each subject for one of two randomly assigned treatments: a) ultrasound treatment on precooled tissue, or b) ultrasound with no preceding treatment. Each treatment consisted of ultrasound delivered topically at 1.5 watts/cm2 in a continuous mode for 10 minutes. Ultrasound was applied in an overlapping longitudinal motion at 4 cm/s, with temperature readings recorded at 30-second intervals. We discovered a difference between the two treatment methods [t(14) = 16.26, p < .0001]. Ultrasound alone increased tissue temperature an average of 2°C, whereas ultrasound preceded by 15 minutes of ice did not increase tissue temperature even to the original baseline level. We concluded that, at a depth of 3 cm, ultrasound alone provided a greater heating effect than ultrasound preceded by an ice treatment. PMID:16558295

  3. Operating characteristics of a three-stage Stirling pulse tube cryocooler operating around 5 K

    NASA Astrophysics Data System (ADS)

    Qiu, L. M.; Cao, Q.; Zhi, X. Q.; Han, L.; Gan, Z. H.; Yu, Y. B.; Liu, Y.; Zhang, X. J.; Pfotenhauer, J. M.

    2012-07-01

    A Stirling pulse tube cryocooler (SPTC) operating at the liquid-helium temperatures represents an excellent prospect for satisfying the requirements of space applications because of its compactness, high efficiency and reliability. However, the working mechanism of a 4 K SPTC is more complicated than that of the Gifford McMahon (GM) PTC that operates at the relatively low frequency of 1-2 Hz, and has not yet been well understood. In this study, the primary operating parameters, including frequency, charge pressure, input power and precooling temperature, are systematically investigated in a home-developed separate three-stage SPTC. The investigation demonstrates that the frequency and precooling temperature are closely coupled via phase shift. In order to improve the cooling capacity it is important to lower the frequency and the precooling temperature simultaneously. In contrast to the behavior predicted by previous studies, the pressure dependence of the gas properties results in an optimized pressure that decreases significantly as the temperature is lowered. The third stage reaches a lowest temperature of 4.97 K at 29.9 Hz and 0.91 MPa. A cooling power of 25 mW is measured at 6.0 K. The precooling temperature is 23.7 K and the input power is 100 W.

  4. Modification split type air conditioning unit by installing internal heat exchanger and condenser precooling

    NASA Astrophysics Data System (ADS)

    Ambarita, H.

    2018-03-01

    In this paper, a modified of air conditioning (AC) system is proposed. In the modified system, an internal heat exchanger and condenser precooling unit are installed. The objective is to explore the effect of the additional equipment to the performance of the system. An AC with compressor power of 1 PK is modified and compared with the original one. The results show that ER of the modified system is higher than the original one in order of 3.6%. The work of the compressor of the modified system is 12.5% lower than work of the compressor without modification. Finally, the COP of the modified system is 11.71% higher than the original one. These facts reveal that the combination of IHX and condenser precooling shows positive impact on the performance of the AC. It is recommended to use the modified system to improve the energy efficiency of the Air Conditioning system.

  5. Cryogenic refrigeration apparatus

    DOEpatents

    Crunkleton, James A.

    1992-01-01

    A technique for producing a cold environment in a refrigerant system in which input fluid from a compressor at a first temperature is introduced into an input channel of the system and is pre-cooled to a second temperature for supply to one of at least two stages of the system, and to a third temperature for supply to another stage thereof. The temperatures at such stages are reduced to fourth and fifth temperatures below the second and third temperatures, respectively. Fluid at the fourth temperature from the one stage is returned through the input channel to the compressor and fluid at the fifth temperature from the other stage is returned to the compressor through an output channel so that pre-cooling of the input fluid to the one stage occurs by regenerative cooling and counterflow cooling and pre-cooling of the input fluid to the other stage occurs primarily by counterflow cooling.

  6. Cryogenic refrigeration apparatus

    DOEpatents

    Crunkleton, J.A.

    1992-03-31

    A technique for producing a cold environment in a refrigerant system in which input fluid from a compressor at a first temperature is introduced into an input channel of the system and is pre-cooled to a second temperature for supply to one of at least two stages of the system, and to a third temperature for supply to another stage thereof. The temperatures at such stages are reduced to fourth and fifth temperatures below the second and third temperatures, respectively. Fluid at the fourth temperature from the one stage is returned through the input channel to the compressor and fluid at the fifth temperature from the other stage is returned to the compressor through an output channel so that pre-cooling of the input fluid to the one stage occurs by regenerative cooling and counterflow cooling and pre-cooling of the input fluid to the other stage occurs primarily by counterflow cooling. 6 figs.

  7. The effectiveness of cooling conditions on temperature of canine EDTA whole blood samples

    PubMed Central

    Sun, Xiaocun; Flatland, Bente

    2016-01-01

    Background Preanalytic factors such as time and temperature can have significant effects on laboratory test results. For example, ammonium concentration will increase 31% in blood samples stored at room temperature for 30 min before centrifugation. To reduce preanalytic error, blood samples may be placed in precooled tubes and chilled on ice or in ice water baths; however, the effectiveness of these modalities in cooling blood samples has not been formally evaluated. The purpose of this study was to evaluate the effectiveness of various cooling modalities on reducing temperature of EDTA whole blood samples. Methods Pooled samples of canine EDTA whole blood were divided into two aliquots. Saline was added to one aliquot to produce a packed cell volume (PCV) of 40% and to the second aliquot to produce a PCV of 20% (simulated anemia). Thirty samples from each aliquot were warmed to 37.7 °C and cooled in 2 ml allotments under one of three conditions: in ice, in ice after transfer to a precooled tube, or in an ice water bath. Temperature of each sample was recorded at one minute intervals for 15 min. Results Within treatment conditions, sample PCV had no significant effect on cooling. Cooling in ice water was significantly faster than cooling in ice only or transferring the sample to a precooled tube and cooling it on ice. Mean temperature of samples cooled in ice water was significantly lower at 15 min than mean temperatures of those cooled in ice, whether or not the tube was precooled. By 4 min, samples cooled in an ice water bath had reached mean temperatures less than 4 °C (refrigeration temperature), while samples cooled in other conditions remained above 4.0 °C for at least 11 min. For samples with a PCV of 40%, precooling the tube had no significant effect on rate of cooling on ice. For samples with a PCV of 20%, transfer to a precooled tube resulted in a significantly faster rate of cooling than direct placement of the warmed tube onto ice. Discussion Canine EDTA whole blood samples cool most rapidly and to a greater degree when placed in an ice-water bath rather than in ice. Samples stored on ice water can rapidly drop below normal refrigeration temperatures; this should be taken into consideration when using this cooling modality. PMID:27917319

  8. Pre-cooling for endurance exercise performance in the heat: a systematic review

    PubMed Central

    2012-01-01

    Background Endurance exercise capacity diminishes under hot environmental conditions. Time to exhaustion can be increased by lowering body temperature prior to exercise (pre-cooling). This systematic literature review synthesizes the current findings of the effects of pre-cooling on endurance exercise performance, providing guidance for clinical practice and further research. Methods The MEDLINE, EMBASE, CINAHL, Web of Science and SPORTDiscus databases were searched in May 2012 for studies evaluating the effectiveness of pre-cooling to enhance endurance exercise performance in hot environmental conditions (≥ 28°C). Studies involving participants with increased susceptibility to heat strain, cooling during or between bouts of exercise, and protocols where aerobic endurance was not the principle performance outcome were excluded. Potential publications were assessed by two independent reviewers for inclusion and quality. Means and standard deviations of exercise performance variables were extracted or sought from original authors to enable effect size calculations. Results In all, 13 studies were identified. The majority of studies contained low participant numbers and/or absence of sample size calculations. Six studies used cold water immersion, four crushed ice ingestion and three cooling garments. The remaining study utilized mixed methods. Large heterogeneity in methodological design and exercise protocols was identified. Effect size calculations indicated moderate evidence that cold water immersion effectively improved endurance performance, and limited evidence that ice slurry ingestion improved performance. Cooling garments were ineffective. Most studies failed to document or report adverse events. Low participant numbers in each study limited the statistical power of certain reported trends and lack of blinding could potentially have introduced either participant or researcher bias in some studies. Conclusions Current evidence indicates cold water immersion may be the most effective method of pre-cooling to improve endurance performance in hot conditions, although practicality must be considered. Ice slurry ingestion appears to be the most promising practical alternative. Interestingly, cooling garments appear of limited efficacy, despite their frequent use. Mechanisms behind effective pre-cooling remain uncertain, and optimal protocols have yet to be established. Future research should focus on standardizing exercise performance protocols, recruiting larger participant numbers to enable direct comparisons of effectiveness and practicality for each method, and ensuring potential adverse events are evaluated. PMID:23249542

  9. Effect of the timing of ice slurry ingestion for precooling on endurance exercise capacity in a warm environment.

    PubMed

    Takeshima, Keisuke; Onitsuka, Sumire; Xinyan, Zheng; Hasegawa, Hiroshi

    2017-04-01

    It has been demonstrated that precooling with ice slurry ingestion enhances endurance exercise capacity in the heat. However, no studies have yet evaluated the optimal timing of ice slurry ingestion for precooling. This study aimed to investigate the effects of varying the timing of ice slurry ingestion for precooling on endurance exercise capacity in a warm environment. Ten active male participants completed 3 experimental cycling trials to exhaustion at 55% peak power output (PPO) after 15min of warm-up at 30% PPO at 30°C and 80% relative humidity. Three experimental conditions were set: no ice slurry ingestion (CON), pre-warm-up ice slurry ingestion (-1°C; 7.5gkg -1 ) (PRE), and post-warm-up ice slurry ingestion (POST). Rectal and mean skin temperatures at the beginning of exercise in the POST condition (37.1±0.2°C, 33.8±0.9°C, respectively) were lower than those in the CON (37.5±0.3°C; P<0.001, 34.8±0.8°C; P<0.01, respectively) and PRE (37.4±0.2°C; P<0.01, 34.6±0.7°C; P<0.01, respectively) conditions. These reductions increased heat storage capacity and resulted in improved exercise capacity in the POST condition (60.2±8.7min) compared to that in the CON (52.0±11.9min; effect size [ES]=0.78) and PRE (56.9±10.4min; ES=0.34) conditions. Ice slurry ingestion after warm-up effectively reduced both rectal and skin temperatures and increased cycling time to exhaustion in a warm environment. Timing ice slurry ingestion to occur after warm-up may be effective for precooling in a warm environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Investigation on a thermal-coupled two-stage Stirling-type pulse tube cryocooler

    NASA Astrophysics Data System (ADS)

    Yang, Luwei

    2008-11-01

    Multi-stage Stirling-type pulse tube cryocoolers with high frequency (30-60 Hz) are one important direction in recent years. A two-stage Stirling-type pulse tube cryocooler with thermally coupled stages has been designed and established two years ago and some results have been published. In order to study the effect of first stage precooling temperature, related characteristics on performance are experimentally investigated. It shows that at high input power, when the precooling temperature is lower than 110 K, its effect on second stage temperature is quite small. There is also the evident effect of precooling temperature on pulse tube temperature distribution; this is for the first time that author notice the phenomenon. The mean working pressure is investigated and the 12.8 K lowest temperature with 500 W input power and 1.22 MPa average pressure have been gained, this is the lowest reported temperature for high frequency two-stage PTCS. Simulation has reflected upper mentioned typical features in experiments.

  11. Heat Exchanger Design in Combined Cycle Engines

    NASA Astrophysics Data System (ADS)

    Webber, H.; Feast, S.; Bond, A.

    Combined cycle engines employing both pre-cooled air-breathing and rocket modes of operation are the most promising propulsion system for achieving single stage to orbit vehicles. The air-breathing phase is purely for augmentation of the mission velocity required in the rocket phase and as such must be mass effective, re-using the components of the rocket cycle, whilst achieving adequate specific impulse. This paper explains how the unique demands placed on the air-breathing cycle results in the need for sophisticated thermodynamics and the use of a series of different heat exchangers to enable precooling and high pressure ratio compression of the air for delivery to the rocket combustion chambers. These major heat exchanger roles are; extracting heat from incoming air in the precooler, topping up cycle flow temperatures to maintain constant turbine operating conditions and extracting rejected heat from the power cycle via regenerator loops for thermal capacity matching. The design solutions of these heat exchangers are discussed.

  12. Advances on a cryogen-free Vuilleumier type pulse tube cryocooler

    NASA Astrophysics Data System (ADS)

    Wang, Yanan; Zhao, Yuejing; Zhang, Yibing; Wang, Xiaotao; Vanapalli, Srinivas; Dai, Wei; Li, Haibing; Luo, Ercang

    2017-03-01

    This paper presents experimental results and numerical evaluation of a Vuilleumier (VM) type pulse tube cryocooler. The cryocooler consists of three main subsystems: a thermal compressor, a low temperature pulse tube cryocooler, and a Stirling type precooler. The thermal compressor, similar to that in a Vuilleumier cryocooler, is used to drive the low temperature stage pulse tube cryocooler. The Stirling type precooler is used to establish a temperature difference for the thermal compressor to generate pressure wave. A lowest no-load temperature of 15.1 K is obtained with a pressure ratio of 1.18, a working frequency of 3 Hz and an average pressure of 2.45 MPa. Numerical simulations have been performed to help the understanding of the system performance. With given experimental conditions, the simulation predicts a lowest temperature in reasonable agreement with the experimental result. Analyses show that there is a large discrepancy in the pre-cooling power between experiments and calculation, which requires further investigation.

  13. Influence of regenerator void volume on performance of a precooled 4 K Stirling type pulse tube cryocooler

    NASA Astrophysics Data System (ADS)

    Li, Zhuopei; Jiang, Yanlong; Gan, Zhihua; Qiu, Limin; Chen, Jie

    2015-09-01

    Stirling type pulse tube cryocoolers (SPTC), typically operating at 30-60 Hz, have the advantage of compact structure, light weight, and long life compared with Gifford-McMahon type (1-2 Hz) PTC (GMPTC). The behavior of flow and heat transfer in the regenerator of a 4 K SPTC deviates from that at warmer temperatures and low frequencies. In this paper the behavior of 4 K regenerator at high frequencies is investigated based on a single-stage 4 K SPTC precooled by a two-stage GMPTC. The 4 K SPTC and the GMPTC is thermally coupled with two thermal bridges. The 4 K SPTC uses a 10 K cold inertance tube as phase shifter to improve phase relationship between mass flow and pressure. The regenerator void volume is an important factor that significantly influences the heat transfer between regenerator matrix and working fluid helium, pressure drop along the regenerator, and phase shift between mass flow and pressure. In this paper, influence of regenerator void volume on the performance of the 4 K SPTC with different operating parameters including operating frequencies and average pressure is studied theoretically and experimentally. The first and second precooling powers provided by the GMPTC are obtained which are important parameters to evaluate the efficiency of the whole 4 K system with precooling. The results of the regenerator void volume are given and discussed in normalized form for general use.

  14. Techno-economic and thermodynamic analysis of pre-cooling systems at gaseous hydrogen refueling stations

    DOE PAGES

    Elgowainy, Amgad; Reddi, Krishna; Lee, Dong-Yeon; ...

    2017-10-16

    In this study, we conducted a techno-economic and thermodynamic analysis of precooling units (PCUs) at hydrogen refueling stations and developed a cost-minimizing design algorithm for the PCU observing the SAE J2601 refueling protocol for T40 stations. In so doing, we identified major factors that affect PCU cost and energy use. The hydrogen precooling energy intensity depends strongly on the station utilization rate, but approaches 0.3 kWh e/kg-H 2 at full utilization. In early fuel cell electric vehicle markets where utilization of the refueling capacity is low, the overhead cooling load (to keep the heat exchanger cold at -40°C) results inmore » significantly high PCU energy intensity because only a small amount of hydrogen is being dispensed. We developed a parameterized precooling energy intensity prediction formula as a function of the ambient temperature and station utilization rate. We also found that the Joule-Thomson effect of the flow control device introduces a significant increase in temperature upstream of the PCU’s heat exchanger (HX), which impacts the PCU design capacity. An optimal PCU (per dispenser, at 35°C HX inlet temperature) consists of a 13-kW refrigerator and a HX with 1400 kg of thermal mass (aluminum), which currently costs $70,000 (uninstalled). Finally, the total (installed) capital and operation cost of PCU at a fully utilized hydrogen refueling station adds $0.50/kg-H 2.« less

  15. Techno-economic and thermodynamic analysis of pre-cooling systems at gaseous hydrogen refueling stations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elgowainy, Amgad; Reddi, Krishna; Lee, Dong-Yeon

    In this study, we conducted a techno-economic and thermodynamic analysis of precooling units (PCUs) at hydrogen refueling stations and developed a cost-minimizing design algorithm for the PCU observing the SAE J2601 refueling protocol for T40 stations. In so doing, we identified major factors that affect PCU cost and energy use. The hydrogen precooling energy intensity depends strongly on the station utilization rate, but approaches 0.3 kWh e/kg-H 2 at full utilization. In early fuel cell electric vehicle markets where utilization of the refueling capacity is low, the overhead cooling load (to keep the heat exchanger cold at -40°C) results inmore » significantly high PCU energy intensity because only a small amount of hydrogen is being dispensed. We developed a parameterized precooling energy intensity prediction formula as a function of the ambient temperature and station utilization rate. We also found that the Joule-Thomson effect of the flow control device introduces a significant increase in temperature upstream of the PCU’s heat exchanger (HX), which impacts the PCU design capacity. An optimal PCU (per dispenser, at 35°C HX inlet temperature) consists of a 13-kW refrigerator and a HX with 1400 kg of thermal mass (aluminum), which currently costs $70,000 (uninstalled). Finally, the total (installed) capital and operation cost of PCU at a fully utilized hydrogen refueling station adds $0.50/kg-H 2.« less

  16. Predicted optical performance of the high-altitude balloon experiment (HABE) telescope in an adverse thermal environment

    NASA Astrophysics Data System (ADS)

    Akau, Ronald L.; Givler, Richard C.; Eastman, Daniel R.

    1994-07-01

    The High-Altitude Balloon Experiment telescope was designed to operate at an ambient temperature of -55 degree(s)C and an altitude of 26 km, using a precooled primary mirror. Although at this altitude the air density is only 1.4 percent of the value at sea level, the temperature gradients within the telescope are high enough to deform the optical wavefront. This problem is considerably lessened by precooling the primary mirror to -35 degree(s)C. This paper describes the application of several codes to determine the range of wavefront deformation during a mission.

  17. Precooling of a dilution refrigerator

    NASA Astrophysics Data System (ADS)

    Pavlov, Valentin N.

    A non-trivial system for Precooling of the dilution refrigerator for low-temperatureexperiments on an ISOL-facility is described in detail. Neither exchange gas in the vacuum jacket of the cryostat nor a demantable window in the 4K shield are used in this system. Instead of that the dilution refrigerator is supplemented with two capillaries and a heater in order to cool all low-temperature parts of the refrigerator down to start conditions. The, time of cooling depends on the total impedance of the first heat exchanger. Such system has been developed and tested in Dubna, and it is in operation.

  18. Physiological and perceptual effects of precooling in wheelchair basketball athletes

    PubMed Central

    Pumpa, Kate; Knight, Emma; Miller, Joanna

    2016-01-01

    Objective To investigate the physiological and perceptual effects of three precooling strategies during pre-exercise rest in athletes with a spinal cord injury (SCI). Design Randomized, counterbalanced. Participants were precooled, then rested for 60 minutes (22.7 ± 0.2°C, 64.2 ± 2.6%RH). Setting National Wheelchair Basketball Training Centre, Australia. Participants Sixteen wheelchair basketball athletes with a SCI. Interventions Participants were precooled through; 1) 10 minutes of 15.8°C cold water immersion (CWI), 2) ingestion of 6.8 g/kg−1 of slushie (S) from sports drink; 3) ingestion of 6.8 g/kg−1 of slushie with application of iced towels to the legs, torso and back/arms (ST); or 4) ingestion of 6.8 g/kg−1 of room temperature (22.3°C) sports drink (CON). Outcome measures Core temperature (Tgi), skin temperature (Tsk), heart rate (HR), and thermal and gastrointestinal comfort. Results Following CWI, a significant reduction in Tgi was observed compared to CON, with a greatest reduction of 1.58°C occurring 40 minutes post-cooling (95% CI [1.07, 2.10]). A significant reduction in Tgi following ST compared to CON was also observed at 20 minutes (0.56°C; [0.03, 1.09]) and 30 minutes (0.56°C; [0.04, 1.09]) post-cooling. Additionally, a significant interaction between impairment level and time was observed for Tgi and HR, demonstrating athletes with a higher level of impairment experienced a greater reduction in HR and significant decrease in rate of decline in Tgi, compared to lesser impaired athletes. Conclusion CWI and ST can effectively lower body temperature in athletes with a SCI, and may assist in tolerating warm conditions. PMID:27192132

  19. Novel precooling strategy enhances time trial cycling in the heat.

    PubMed

    Ross, Megan L R; Garvican, Laura A; Jeacocke, Nikki A; Laursen, Paul B; Abbiss, Chris R; Martin, David T; Burke, Louise M

    2011-01-01

    To develop and investigate the efficacy of a new precooling strategy combining external and internal techniques on the performance of a cycling time trial (TT) in a hot and humid environment. Eleven well-trained male cyclists undertook three trials of a laboratory-based cycling TT simulating the course characteristics of the Beijing Olympic Games event in a controlled hot and humid environment (32°C-35°C at 50%-60% relative humidity). The trials, separated by 3-7 d, were undertaken in a randomized crossover design and consisted of the following: 1) CON-no treatment apart from the ad libitum consumption of cold water (4°C), 2) STD COOL-whole-body immersion in cold (10°C) water for 10 min followed by wearing a cooling jacket, or 3) NEW COOL-combination of consumption of 14 g of ice slurry ("slushie") per kilogram body mass made from a commercial sports drink while applying iced towels. There was an observable effect on rectal temperature (T(rec)) before the commencement of the TT after both precooling techniques (STD COOL < NEW COOL < CON, P < 0.05), but pacing of the TT resulted in similar T(rec), HR, and RPE throughout the cycling protocol in all trials. NEW COOL was associated with a 3.0% increase in power (approximately 8 W) and a 1.3% improvement in performance time (approximately 1:06 min) compared with the CON trial, with the true likely effects ranging from a trivial to a large benefit. The effect of the STD COOL trial compared with the CON trial was "unclear." This new precooling strategy represents a practical and effective technique that could be used by athletes in preparation for endurance events undertaken in hot and humid conditions.

  20. Development of a Twin-Screw D-2 Extruder for the ITER Pellet Injection System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meitner, Steven J; Baylor, Larry R; Carbajo, Juan J

    A twin-screw extruder for the ITER pellet injection system is under development at the Oak Ridge National Laboratory. The extruder will provide a stream of solid hydrogen isotopes to a secondary section, where pellets are cut and accelerated with single-stage gas gun into the plasma. A one-fifth ITER scale prototype extruder has been built to produce a continuous solid deuterium extrusion. Deuterium gas is precooled and liquefied before being introduced into the extruder. The precooler consists of a copper vessel containing liquid nitrogen surrounded by a deuterium gas filled copper coil. The liquefier is comprised of a copper cylinder connectedmore » to a Cryomech AL330 cryocooler, which is surrounded by a copper coil that the precooled deuterium flows through. The lower extruder barrel is connected to a Cryomech GB-37 cryocooler to solidify the deuterium (at approximate to 15 K) before it is forced through the extruder nozzle. A viewport located below the extruder nozzle provides a direct view of the extrusion. A camera is used to document the extrusion quality and duration. A data acquisition system records the extruder temperatures, torque, and speed, upstream, and downstream pressures. This paper will describe the prototype twin-screw extruder and initial extrusion results.« less

  1. Twin-Screw Extruder Development for the ITER Pellet Injection System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meitner, Steven J; Baylor, Larry R; Combs, Stephen Kirk

    The ITER pellet injection system is comprised of devices to form and accelerate pellets, and will be connected to inner wall guide tubes for fueling, and outer wall guide tubes for ELM pacing. An extruder will provide a stream of solid hydrogen isotopes to a secondary section, where pellets are cut and accelerated with a gas gun into the plasma. The ITER pellet injection system is required to provide a plasma fueling rate of 120 Pa-m3/s (900 mbar-L/s) and durations of up to 3000 s. The fueling pellets will be injected at a rate up to 10 Hz and pelletsmore » used to trigger ELMs will be injected at higher rates up to 20 Hz. A twin-screw extruder for the ITER pellet injection system is under development at the Oak Ridge National Laboratory. A one-fifth ITER scale prototype has been built and has demonstrated the production of a continuous solid deuterium extrusion. The 27 mm diameter, intermeshed, counter-rotating extruder screws are rotated at a rate up to ≈5 rpm. Deuterium gas is pre-cooled and liquefied and solidified in separate extruder barrels. The precooler consists of a deuterium gas filled copper coil suspended in a separate stainless steel vessel containing liquid nitrogen. The liquefier is comprised of a copper barrel connected to a Cryomech AL330 cryocooler, which has a machined helical groove surrounded by a copper jacket, through which the pre-cooled deuterium condenses. The lower extruder barrel is connected to a Cryomech GB-37 cryocooler to solidify the deuterium (at ≈15 K) before it is forced through the extruder die. The die forms the extrusion to a 3 mm x 4 mm rectangular cross section. Design improvements have been made to improve the pre-cooler and liquefier heat exchangers, to limit the loss of extrusion through gaps in the screws. This paper will describe the design improvements for the next iteration of the extruder prototype.« less

  2. Physiological responses to incremental exercise in the heat following internal and external precooling.

    PubMed

    James, C A; Richardson, A J; Watt, P W; Gibson, O R; Maxwell, N S

    2015-06-01

    Twelve males completed three incremental, discontinuous treadmill tests in the heat [31.9(1.0) °C, 61.9(8.9)%] to determine speed at two fixed blood lactate concentrations (2 and 3.5 mmol/L), running economy (RE), and maximum oxygen uptake ( V ˙ O 2 m a x ). Trials involved 20 min of either internal cooling (ICE, 7.5 g/kg ice slurry ingestion) or mixed-methods external cooling (EXT, cold towels, forearm immersion, ice vest, and cooling shorts), alongside no intervention (CON). Following precooling, participants ran 0.3 km/h faster at 2 mmol/L and 0.2 km/h faster at 3.5 mmol/L (P = 0.04, partial η(2)  = 0.27). Statistical differences were observed vs CON for ICE (P = 0.03, d = 0.15), but not EXT (P = 0.12, d = 0.15). There was no effect of cooling on RE (P = 0.81, partial η(2)  = 0.02), nor on V ˙ O 2 m a x (P = 0.69, partial η(2)  = 0.04). An effect for cooling on physiological strain index was observed (P < 0.01, partial η(2)  = 0.41), with differences vs CON for EXT (P = 0.02, d = 0.36), but not ICE (P = 0.06, d = 0.36). Precooling reduced thermal sensation (P < 0.01, partial η(2)  = 0.66) in both cooling groups (P < 0.01). Results indicate ICE and EXT provide similar physiological responses for exercise up to 30 min duration in the heat. Differing thermoregulatory responses are suggestive of specific event characteristics determining the choice of cooling. Precooling appears to reduce blood lactate accumulation and reduce thermoregulatory and perceptual strain during incremental exercise. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Long-Time Cooling before Cryopreservation Decreased Translocation of Phosphatidylserine (Ptd-L-Ser) in Human Ovarian Tissue

    PubMed Central

    2015-01-01

    Objectives To translocation (externalization) of phosphatidylserine lead at least the five negative effects observed during cells cryopreservation: hypoxia, increasing of intracellular Ca2+, osmotic disruption of cellular membranes, generation of reactive oxygen species (ROS) and lipid peroxidation. The aim of this study was to test the intensiveness of the phosphatidylserine translocation immediately after thawing and after 45 d xenografting of human ovarian tissue, which was either frozen just after operative removal from patient or cooled before cryopreservation to 5°C for 24 h and then frozen. Materials and Methods Ovarian fragments from twelve patients were divided into small pieces in form of cortex with medulla, and randomly divided into the following four groups. Pieces of Group 1 (n=30) were frozen immediately after operation, thawed and just after thawing their quality was analyzed. Group 2 pieces (n=30) after operation were cooled to 5°C for 24 h, then frozen after 24 h pre-cooling to 5°C, thawed and just after thawing their quality was analyzed. Group 3 pieces (n=30) were frozen immediately after operation without pre-cooling, thawed, transplanted to SCID mice and then, after 45 d of culture their quality was analyzed. Group 4 pieces (n=30) were frozen after 24 h pre-cooling to 5°C, thawed, transplanted to SCID mice and then, after 45 d their quality was analyzed. The effectiveness of the pre-freezing cooling of tissuewas evaluated by the development of follicles (histology) and by intensiveness of translocation of phosphatidylserine (FACS with FITC-Annexin V and Propidium Iodide). Results For groups 1, 2, 3 and 4 the mean densities of follicles per 1 mm3 was 19.0, 20.2, 12.9, and 12.2, respectively (P1-2, 3-4 >0.1). For these groups, 99%, 98%, 88% and 90% preantral follicles, respectively were morphologically normal (P1-2, 3-4 >0.1). The FACS analysis showed significantly decreased intensiveness of translocation of phosphatidylserine after pre-cooling of frozen tissue (46.3% and 33.6% in Groups 2 and 4, respectively), in contrast with tissue frozen without pre-cooling (77.1% and 60.2 % in Groups 1 and 3, respectively, P1, 3-2, 4 <0.05). Conclusions Long time (24 h) cooling of ovarian tissue to 5°C before cryopreservation decreased translocation of phosphatidylserine that evidences about increases the viability of the cells in the tissue after thawing. PMID:26083026

  4. Long-Time Cooling before Cryopreservation Decreased Translocation of Phosphatidylserine (Ptd-L-Ser) in Human Ovarian Tissue.

    PubMed

    Isachenko, Vladimir; Todorov, Plamen; Isachenko, Evgenia; Rahimi, Gohar; Tchorbanov, Andrey; Mihaylova, Nikolina; Manoylov, Iliyan; Mallmann, Peter; Merzenich, Markus

    2015-01-01

    To translocation (externalization) of phosphatidylserine lead at least the five negative effects observed during cells cryopreservation: hypoxia, increasing of intracellular Ca2+, osmotic disruption of cellular membranes, generation of reactive oxygen species (ROS) and lipid peroxidation. The aim of this study was to test the intensiveness of the phosphatidylserine translocation immediately after thawing and after 45 d xenografting of human ovarian tissue, which was either frozen just after operative removal from patient or cooled before cryopreservation to 5°C for 24 h and then frozen. Ovarian fragments from twelve patients were divided into small pieces in form of cortex with medulla, and randomly divided into the following four groups. Pieces of Group 1 (n=30) were frozen immediately after operation, thawed and just after thawing their quality was analyzed. Group 2 pieces (n=30) after operation were cooled to 5°C for 24 h, then frozen after 24 h pre-cooling to 5°C, thawed and just after thawing their quality was analyzed. Group 3 pieces (n=30) were frozen immediately after operation without pre-cooling, thawed, transplanted to SCID mice and then, after 45 d of culture their quality was analyzed. Group 4 pieces (n=30) were frozen after 24 h pre-cooling to 5°C, thawed, transplanted to SCID mice and then, after 45 d their quality was analyzed. The effectiveness of the pre-freezing cooling of tissuewas evaluated by the development of follicles (histology) and by intensiveness of translocation of phosphatidylserine (FACS with FITC-Annexin V and Propidium Iodide). For groups 1, 2, 3 and 4 the mean densities of follicles per 1 mm3 was 19.0, 20.2, 12.9, and 12.2, respectively (P1-2, 3-4 >0.1). For these groups, 99%, 98%, 88% and 90% preantral follicles, respectively were morphologically normal (P1-2, 3-4 >0.1). The FACS analysis showed significantly decreased intensiveness of translocation of phosphatidylserine after pre-cooling of frozen tissue (46.3% and 33.6% in Groups 2 and 4, respectively), in contrast with tissue frozen without pre-cooling (77.1% and 60.2 % in Groups 1 and 3, respectively, P1, 3-2, 4 <0.05). Long time (24 h) cooling of ovarian tissue to 5°C before cryopreservation decreased translocation of phosphatidylserine that evidences about increases the viability of the cells in the tissue after thawing.

  5. Development of a Low-Lift Chiller Controller and Simplified Precooling Control Algorithm - Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gayeski, N.; Armstrong, Peter; Alvira, M.

    2011-11-30

    KGS Buildings LLC (KGS) and Pacific Northwest National Laboratory (PNNL) have developed a simplified control algorithm and prototype low-lift chiller controller suitable for model-predictive control in a demonstration project of low-lift cooling. Low-lift cooling is a highly efficient cooling strategy conceived to enable low or net-zero energy buildings. A low-lift cooling system consists of a high efficiency low-lift chiller, radiant cooling, thermal storage, and model-predictive control to pre-cool thermal storage overnight on an optimal cooling rate trajectory. We call the properly integrated and controlled combination of these elements a low-lift cooling system (LLCS). This document is the final report formore » that project.« less

  6. Thermodynamic efficiency analysis and cycle optimization of deeply precooled combined cycle engine in the air-breathing mode

    NASA Astrophysics Data System (ADS)

    Zhang, Jianqiang; Wang, Zhenguo; Li, Qinglian

    2017-09-01

    The efficiency calculation and cycle optimization were carried out for the Synergistic Air-Breathing Rocket Engine (SABRE) with deeply precooled combined cycle. A component-level model was developed for the engine, and exergy efficiency analysis based on the model was carried out. The methods to improve cycle efficiency have been proposed. The results indicate cycle efficiency of SABRE is between 29.7% and 41.7% along the flight trajectory, and most of the wasted exergy is occupied by the unburned hydrogen in exit gas. Exergy loss exists in each engine component, and the sum losses of main combustion chamber(CC), pre-burner(PB), precooler(PC) and 3# heat exchanger(HX3) are greater than 71.3% of the total loss. Equivalence ratio is the main influencing factor of cycle, and it can be regulated by adjusting parameters of helium loop. Increase the maximum helium outlet temperature of PC by 50 K, the total assumption of hydrogen will be saved by 4.8%, and the cycle efficiency is advanced by 3% averagely in the trajectory. Helium recirculation scheme introduces a helium recirculation loop to increase local helium flow rate of PC. It turns out the total assumption of hydrogen will be saved by 9%, that's about 1740 kg, and the cycle efficiency is advanced by 5.6% averagely.

  7. Stereodynamic insight into the thermal history effects on poly(vinyl chloride) calorimetric sub-glass and glass transitions as a fragile glass model.

    PubMed

    Pin, Jean-Mathieu; Behazin, Ehsan; Misra, Manjusri; Mohanty, Amar

    2018-05-02

    The dynamic thermal history impact of poly(vinyl chloride) (PVC) has been explored for a wide range of pre-cooling rates, from 1 to 30 °C min-1. A first macroscopic insight into the dynamic thermal history influence has been highlighted through a decrease in the apparent activation energy (Eapp) in the first stage of the glass transition. The overall glass transition Eapp surface was successfully modeled in a polynomial fashion regarding the pre-cooling range. Raman scattering was used to associate the Eapp variations along the glass transition conversion with the stereochemistry evolution during the polymeric relaxation. Herein, the selection of atactic PVC as the polymer model permits us to monitor the glassy polymer segment stereodynamics during the heating ramp through the C-Cl stretching. The intermolecular H-Cl dipole interactions, as well as intramolecular conformational reorganizations among syndiotactic, isotactic and heterotactic polymer sequences, have been associated with non-cooperative and cooperative motions, i.e. the β- and α-process, respectively. The fruitful comparison of the two extreme values of the pre-cooling rates permits us to propose a thermokinetic scenario that explains the occurrence, intensity, and inter-dependence of β- and α-processes in the glassy state and during the glass transition. This scenario could potentially be generalized to all the other polymeric glass-formers.

  8. Nitrogen expander cycles for large capacity liquefaction of natural gas

    NASA Astrophysics Data System (ADS)

    Chang, Ho-Myung; Park, Jae Hoon; Gwak, Kyung Hyun; Choe, Kun Hyung

    2014-01-01

    Thermodynamic study is performed on nitrogen expander cycles for large capacity liquefaction of natural gas. In order to substantially increase the capacity, a Brayton refrigeration cycle with nitrogen expander was recently added to the cold end of the reputable propane pre-cooled mixed-refrigerant (C3-MR) process. Similar modifications with a nitrogen expander cycle are extensively investigated on a variety of cycle configurations. The existing and modified cycles are simulated with commercial process software (Aspen HYSYS) based on selected specifications. The results are compared in terms of thermodynamic efficiency, liquefaction capacity, and estimated size of heat exchangers. The combination of C3-MR with partial regeneration and pre-cooling of nitrogen expander cycle is recommended to have a great potential for high efficiency and large capacity.

  9. Hypothermic manipulation of bone cement can extend the handling time during vertebroplasty.

    PubMed

    Lai, Po-Liang; Tai, Ching-Lung; Chu, I-Ming; Fu, Tsai-Sheng; Chen, Lih-Huei; Chen, Wen-Jer

    2012-10-16

    Polymethylmethacrylate (PMMA) is commonly used for clinical applications. However, the short handling time increases the probability of a surgeon missing the crucial period in which the cement maintains its ideal viscosity for a successful injection. The aim of this article was to illustrate the effects a reduction in temperature would have on the cement handling time during percutaneous vertebroplasty. The injectability of bone cement was assessed using a cement compressor. By twisting the compressor, the piston transmits its axial load to the plunger, which then pumps the bone cement out. The experiments were categorized based on the different types of hypothermic manipulation that were used. In group I (room temperature, sham group), the syringes were kept at 22°C after mixing the bone cement. In group 2 (precooling the bone cement and the container), the PMMA powder and liquid, as well as the beaker, spatula, and syringe, were stored in the refrigerator (4°C) overnight before mixing. In group 3 (ice bath cooling), the syringes were immediately submerged in ice water after mixing the bone cement at room temperature. The average liquid time, paste time, and handling time were 5.1 ± 0.7, 3.4 ± 0.3, and 8.5 ± 0.8 min, respectively, for group 1; 9.4 ± 1.1, 5.8 ± 0.5, and 15.2 ± 1.2 min, respectively, for group 2; and 83.8 ± 5.2, 28.8 ± 6.9, and 112.5 ± 11.3 min, respectively, for group 3. The liquid and paste times could be increased through different cooling methods. In addition, the liquid time (i.e. waiting time) for ice bath cooling was longer than for that of the precooling method (p < 0.05). Both precooling (i.e. lowering the initial temperature) and ice bath cooling (i.e. lowering the surrounding temperature) can effectively slow polymerization. Precooling is easy for clinical applications, while ice bath cooling might be more suitable for multiple-level vertebroplasty. Clinicians can take advantage of the improved injectability without any increased cost.

  10. Hypothermic manipulation of bone cement can extend the handling time during vertebroplasty

    PubMed Central

    2012-01-01

    Background Polymethylmethacrylate (PMMA) is commonly used for clinical applications. However, the short handling time increases the probability of a surgeon missing the crucial period in which the cement maintains its ideal viscosity for a successful injection. The aim of this article was to illustrate the effects a reduction in temperature would have on the cement handling time during percutaneous vertebroplasty. Methods The injectability of bone cement was assessed using a cement compressor. By twisting the compressor, the piston transmits its axial load to the plunger, which then pumps the bone cement out. The experiments were categorized based on the different types of hypothermic manipulation that were used. In group I (room temperature, sham group), the syringes were kept at 22°C after mixing the bone cement. In group 2 (precooling the bone cement and the container), the PMMA powder and liquid, as well as the beaker, spatula, and syringe, were stored in the refrigerator (4°C) overnight before mixing. In group 3 (ice bath cooling), the syringes were immediately submerged in ice water after mixing the bone cement at room temperature. Results The average liquid time, paste time, and handling time were 5.1 ± 0.7, 3.4 ± 0.3, and 8.5 ± 0.8 min, respectively, for group 1; 9.4 ± 1.1, 5.8 ± 0.5, and 15.2 ± 1.2 min, respectively, for group 2; and 83.8 ± 5.2, 28.8 ± 6.9, and 112.5 ± 11.3 min, respectively, for group 3. The liquid and paste times could be increased through different cooling methods. In addition, the liquid time (i.e. waiting time) for ice bath cooling was longer than for that of the precooling method (p < 0.05). Conclusions Both precooling (i.e. lowering the initial temperature) and ice bath cooling (i.e. lowering the surrounding temperature) can effectively slow polymerization. Precooling is easy for clinical applications, while ice bath cooling might be more suitable for multiple-level vertebroplasty. Clinicians can take advantage of the improved injectability without any increased cost. PMID:23072273

  11. Improving Best Air Conditioner Efficiency by 20-30% through a High Efficiency Fan and Diffuser Stage Coupled with an Evaporative Condenser Pre-Cooler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, Danny S; Sherwin, John R; Raustad, Richard

    2014-04-10

    The Florida Solar Energy Center (FSEC) conducted a research project to improve the best residential air conditioner condenser technology currently available on the market by retrofitting a commercially-available unit with both a high efficiency fan system and an evaporative pre-cooler. The objective was to integrate these two concepts to achieve an ultra-efficient residential air conditioner design. The project produced a working prototype that was 30% more efficient compared to the best currently-available technologies; the peak the energy efficiency ratio (EER) was improved by 41%. Efficiency at the Air-Conditioning and Refrigeration Institute (ARI) standard B-condition which is used to estimate seasonalmore » energy efficiency ratio (SEER), was raised from a nominal 21 Btu/Wh to 32 Btu/Wh.« less

  12. Carbohydrate Status of Tulip Bulbs during Cold-Induced Flower Stalk Elongation and Flowering.

    PubMed Central

    Lambrechts, H.; Rook, F.; Kolloffel, C.

    1994-01-01

    The effect of a cold treatment on the carbohydrate status of the scales and flower stalk of Tulipa gesneriana L. cv Apeldoorn bulbs during growth after planting was studied and compared with bulbs not given cold treatment. Bulbs were stored dry for 12 weeks at 5[deg]C (precooled) or 17[deg]C (noncooled). Only the 5[deg]C treatment led to rapid flower stalk elongation and flowering following planting at higher temperatures. Precooling enhanced mobilization of starch, fructans, and sucrose in the scales. The cold-stimulated starch breakdown was initially accompanied by increased [alpha]-amylase activity per scale. In noncooled bulbs, [alpha]-amylase activity slightly decreased or remained more or less constant. Cold-induced flower stalk elongation was partially accompanied by a decrease in the sucrose content and an increase in the glucose content and invertase activity per g dry weight. The starch content in internodes initially decreased and subsequently increased; [alpha]-amylase activity per g dry weight of the lowermost internode showed a peak pattern during starch breakdown and increased thereafter. The internodes of noncooled bulbs, on the contrary, accumulated sucrose. Their glucose content and invertase activity per g dry weight remained low. Starch breakdown was not found and [alpha]-amylase activity per g dry weight of the lowermost internode remained at a low level. Precooling of tulip bulbs thus favors reserve mobilization in the scales and flower stalk and glucose accumulation in the elongating internodes. PMID:12232100

  13. Alumina shunt for precooling a cryogen-free 4He or 3He refrigerator

    NASA Astrophysics Data System (ADS)

    Uhlig, Kurt

    2016-10-01

    In this technical report a cryogen-free 1 K cryostat is described where the pot of the 4He refrigeration unit is precooled by the 2nd stage of a pulse tube cryocooler (PTC) from room temperature to T ∼ 3 K via a shunt made from sintered alumina (SA); the total mass of the 1 K stage is 3.5 kg. SA has high thermal conductivity at high temperatures; but below ∼50 K the thermal conductivity drops rapidly, almost following a T3-law. This makes SA an interesting candidate for the construction of a thermal shunt, especially as the heat capacity of metals drops by several orders of magnitude in the temperature range from 300 K to 3 K. At the base temperature of the PTC, the heat conduction of the shunt is so small that the heat leak into the 1 K stage is negligible.

  14. β-Cryptoxanthin and Zeaxanthin Pigments Accumulation to Induce Orange Color on Citrus Fruits

    NASA Astrophysics Data System (ADS)

    Hidayati Sumiasih, Inanpi; Poerwanto, Roedhy; Efendi, Darda; Agusta, Andria; Yuliani, Sri

    2018-01-01

    Degreening, a transformation process of green color on citrus peel to be orange color on tropical low-land citrus fruits often fails. Orange color of the citrus peel comes from the mixture carotenoid pigments, such as zeaxanthine and mainly β-cryptoxanthin and β-citraurin. The accumulation of β-citraurin occurs when the fruits are exposed to low temperature, and otherwise, it will fail to occur. Precooling treatment on lowland tropical citrus fruits is expected to stimulate the accumulation of β-citraurin. The results showed the most favorable color obtained from precooling and 24-hour ethylene exposure duration. This treatment could decrease total chlorophyll and β-carotene content as well as proven to increase 3 times the accumulation of β-cryptoxanthin in accelerating the appearance of bright orange color on citrus peel. Degreening gave no significant effect to internal quality of Citrus reticulata.

  15. Cryopreservation of banana's cv Grand Naine in vitro rhizomes.

    PubMed

    Londe, Luciana C N; Vendrame, Wagner A; Sanaei, Massy; Oliveira, Alexandre B DE

    2018-01-01

    The preservation of banana genetic material is usually performed through seedlings. However, most banana cultivars do not produce seed and are propagated vegetatively. Therefore, cryopreservation is a feasible technique that allows the preservation of banana genotypes indefinitely. For the success of cryopreservation protocols, the selection of cryoprotectants and pre-freezing techniques are important factor. Therefore, the objective of this study was to verify the effects of different cryoprotectants with and without 1% phloroglucinol and pre-cooling periods on the development of a protocol for cryopreservation of in vitro rhizomes ofMusa accuminata(AAA) cv Grand Naine banana. The addition of 1% phloroglucinol to the cryoprotective solutions, such as PVS2 enhanced recovery of cryopreserved banana rhizomes. In addition, pre-cooling of explants in ice for 3 hours in PVS2 + 1% of phloroglucinol allowed efficient cryopreservation of banana rhizomes, followed by successful recovery and regeneration of in vitro shoots of banana cv Grand Naine.

  16. Deceleration, precooling, and multi-pass stopping of highly charged ions in Be{sup +} Coulomb crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmöger, L., E-mail: lisa.schmoeger@mpi-hd.mpg.de; Schwarz, M.; Versolato, O. O.

    2015-10-15

    Preparing highly charged ions (HCIs) in a cold and strongly localized state is of particular interest for frequency metrology and tests of possible spatial and temporal variations of the fine structure constant. Our versatile preparation technique is based on the generic modular combination of a pulsed ion source with a cryogenic linear Paul trap. Both instruments are connected by a compact beamline with deceleration and precooling properties. We present its design and commissioning experiments regarding these two functionalities. A pulsed buncher tube allows for the deceleration and longitudinal phase-space compression of the ion pulses. External injection of slow HCIs, specificallymore » Ar{sup 13+}, into the linear Paul trap and their subsequent retrapping in the absence of sympathetic cooling is demonstrated. The latter proved to be a necessary prerequisite for the multi-pass stopping of HCIs in continuously laser-cooled Be{sup +} Coulomb crystals.« less

  17. Press-hardening of zinc coated steel - characterization of a new material for a new process

    NASA Astrophysics Data System (ADS)

    Kurz, T.; Larour, P.; Lackner, J.; Steck, T.; Jesner, G.

    2016-11-01

    Press-hardening of zinc-coated PHS has been limited to the indirect process until a pre-cooling step was introduced before the hot forming to prevent liquid metal embrittlement. Even though that's only a minor change in the process itself it does not only eliminate LME, but increases also the demands on the base material especially in terms of hardenability or phase transformations at temperatures below 700 °C in general. This paper deals with the characterization of a modified zinc-coated material for press-hardening with pre-cooling that assures a robust process. The pre-cooling step itself and especially the transfer of the blank in the hot-forming die is more demanding than the standard 22MnB5 can stand to ensure full hardenability. Therefore the transformation behavior of the modified material is shown in CCT and TTT diagrams. Of the same importance are the changed hot forming temperature and flow curves for material at lower temperatures than typically used in direct hot forming. The resulting mechanical properties after hardening from tensile testing and bending tests are shown in detail. Finally some results from side impact crash tests and correlations of the findings with mechanical properties such as fracture elongation, tensile strength, VDA238 bending angle at maximum force as well as postuniform bending slope are given as well. Fracture elongation is shown to be of little help for damage prediction in side impact crash. Tensile strength and VDA bending properties enable however some accurate prediction of the PHS final damage behavior in bending dominated side impact load case.

  18. Cooling During Exercise: An Overlooked Strategy for Enhancing Endurance Performance in the Heat.

    PubMed

    Stevens, Christopher J; Taylor, Lee; Dascombe, Ben J

    2017-05-01

    It is well established that endurance performance is negatively affected by environmental heat stress due to a complex interaction of physical, physiological and psychological alterations. Numerous scientific investigations have attempted to improve performance in the heat with pre-cooling (cooling prior to an exercise test), and as such this has become a well-established ergogenic practice for endurance athletes. However, the use of mid-cooling (cooling during an exercise test) has received considerably less research attention in comparison, despite recent evidence to suggest that the advantage gained from mid-cooling may outweigh that of pre-cooling. A range of mid-cooling strategies are beneficial for endurance performance in the heat, including the ingestion of cold fluids and ice slurry, both with and without menthol, as well as cooling of the neck and face region via a cooling collar or water poured on the head and face. The combination of pre-cooling and mid-cooling has also been effective, but few comparisons exist between the timing and type of such interventions. Therefore, athletes should experiment with a range of suitable mid-cooling strategies for their event during mock competition scenarios, with the aim to determine their individual tolerable limits and performance benefits. Based on current evidence, the effect of mid-cooling on core temperature appears largely irrelevant to any subsequent performance improvements, while cardiovascular, skin temperature, central nervous system function and psychophysiological factors are likely involved. Research is lacking on elite athletes, and as such it is currently unclear how this population may benefit from mid-cooling.

  19. Does Pre-Cooling With Whole-Body Immersion Affect Thermal Sensation or Perceived Exertion?: A Critically-Appraised Topic.

    PubMed

    Wohlfert, Timothy M; Miller, Kevin C

    2018-02-21

    Clinical Scenario: Exertional heat stroke (EHS) is a potentially deadly heat illness and poses a significant health risk to athletes; EHS survival rates are near 100% if properly recognized and treated. 1 Whole body cold water immersion (CWI) is the most effective method of lowering body core temperature. 2 Precooling (PC) with CWI before exercise may prevent severe hyperthermia and/or EHS by increasing the body's overall heat-storage capacity. 3 However, PC may also alter athletes' perception of how hot they feel or how hard they are exercising. Consequently, they may be unable to accurately perceive their body core temperature or how hard they are working which may predispose them to severe hyperthermia or EHS. Does PC with whole-body CWI affect thermal sensation (TS) or rating of perceived exertion (RPE) during exercise in the heat? In four studies, 4-7 RPE during exercise ranged from 12 ± 2 to 20 ± 3 with no clinically meaningful differences between PC and control trials. Thermal sensation scores ranged from 2 ± 1 to 8 ± 0.5 in control trials and from 2 ± 1 to 7.5 ± 0.5 during PC trials. Clinical Bottom Line: Precooling did not cause clinically-meaningful differences in RPE or TS during exercise. It is unlikely PC would predispose athletes to EHS by altering perceptions of exercise intensity or body core temperature. Strength of Recommendation: None of the reviewed studies 4-7 (all level 2 studies with PEDro scores ≥5) suggest PC with CWI influences RPE or TS in exercising males.

  20. 46 CFR 38.05-4 - Design and construction of nonpressure vessel type cargo tanks-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... precooling or cooling during loading shall be included in the design. (g) All weld intersections or crossings... intersection. All other welding in the primary tank and in the secondary barrier shall be spot radiographed in...

  1. 46 CFR 38.05-4 - Design and construction of nonpressure vessel type cargo tanks-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... precooling or cooling during loading shall be included in the design. (g) All weld intersections or crossings... intersection. All other welding in the primary tank and in the secondary barrier shall be spot radiographed in...

  2. 46 CFR 38.05-4 - Design and construction of nonpressure vessel type cargo tanks-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... precooling or cooling during loading shall be included in the design. (g) All weld intersections or crossings... intersection. All other welding in the primary tank and in the secondary barrier shall be spot radiographed in...

  3. 46 CFR 38.05-4 - Design and construction of nonpressure vessel type cargo tanks-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... precooling or cooling during loading shall be included in the design. (g) All weld intersections or crossings... intersection. All other welding in the primary tank and in the secondary barrier shall be spot radiographed in...

  4. 46 CFR 38.05-4 - Design and construction of nonpressure vessel type cargo tanks-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... precooling or cooling during loading shall be included in the design. (g) All weld intersections or crossings... intersection. All other welding in the primary tank and in the secondary barrier shall be spot radiographed in...

  5. Effects of pre-cooling procedures on intermittent-sprint exercise performance in warm conditions.

    PubMed

    Duffield, Rob; Marino, Frank E

    2007-08-01

    The aim of this study was to determine whether pre-cooling procedures improve both maximal sprint and sub-maximal work during intermittent-sprint exercise. Nine male rugby players performed a familiarisation session and three testing sessions of a 2 x 30-min intermittent sprint protocol, which consisted of a 15-m sprint every min separated by free-paced hard-running, jogging and walking in 32 degrees C and 30% humidity. The three sessions included a control condition, Ice-vest condition and Ice-bath/Ice-vest condition, with respective cooling interventions imposed for 15-min pre-exercise and 10-min at half-time. Performance measures of sprint time and % decline and distance covered during sub-maximal exercise were recorded, while physiological measures of core temperature (T (core)), mean skin temperature (T (skin)), heart rate, heat storage, nude mass, rate of perceived exertion, rate of thermal comfort and capillary blood measures of lactate [La(-)], pH, Sodium (Na(+)) and Potassium (K(+)) were recorded. Results for exercise performance indicated no significant differences between conditions for the time or % decline in 15-m sprint efforts or the distance covered during sub-maximal work bouts; however, large effect size data indicated a greater distance covered during hard running following Ice-bath cooling. Further, lowered T (core), T (skin), heart rate, sweat loss and thermal comfort following Ice-bath cooling than Ice-vest or Control conditions were present, with no differences present in capillary blood measures of [La(-)], pH, K(+) or Na(+). As such, the ergogenic benefits of effective pre-cooling procedures in warm conditions for team-sports may be predominantly evident during sub-maximal bouts of exercise.

  6. A Comparison of Mixed-Method Cooling Interventions on Preloaded Running Performance in the Heat.

    PubMed

    Stevens, Christopher J; Bennett, Kyle J M; Sculley, Dean V; Callister, Robin; Taylor, Lee; Dascombe, Ben J

    2017-03-01

    Stevens, CJ, Bennett, KJM, Sculley, DV, Callister, R, Taylor, L, and Dascombe, BJ. A comparison of mixed-method cooling interventions on preloaded running performance in the heat. J Strength Cond Res 31(3): 620-629, 2017-The purpose of this investigation was to assess the effect of combining practical methods to cool the body on endurance running performance and physiology in the heat. Eleven trained male runners completed 4 randomized, preloaded running time trials (20 minutes at 70% V[Combining Dot Above]O2max and a 3 km time trial) on a nonmotorized treadmill in the heat (33° C). Trials consisted of precooling by combined cold-water immersion and ice slurry ingestion (PRE), midcooling by combined facial water spray and menthol mouth rinse (MID), a combination of all methods (ALL), and control (CON). Performance time was significantly faster in MID (13.7 ± 1.2 minutes; p < 0.01) and ALL (13.7 ± 1.4 minutes; p = 0.04) but not PRE (13.9 ± 1.4 minutes; p = 0.24) when compared with CON (14.2 ± 1.2 minutes). Precooling significantly reduced rectal temperature (initially by 0.5 ± 0.2° C), mean skin temperature, heart rate and sweat rate, and increased iEMG activity, whereas midcooling significantly increased expired air volume and respiratory exchange ratio compared with control. Significant decreases in forehead temperature, thermal sensation, and postexercise blood prolactin concentration were observed in all conditions compared with control. Performance was improved with midcooling, whereas precooling had little or no influence. Midcooling may have improved performance through an attenuated inhibitory psychophysiological and endocrine response to the heat.

  7. The effect of cooling prior to and during exercise on exercise performance and capacity in the heat: a meta-analysis.

    PubMed

    Tyler, Christopher James; Sunderland, Caroline; Cheung, Stephen S

    2015-01-01

    Exercise is impaired in hot, compared with moderate, conditions. The development of hyperthermia is strongly linked to the impairment and as a result various strategies have been investigated to combat this condition. This meta-analysis focused on the most popular strategy: cooling. Precooling has received the most attention but recently cooling applied during the bout of exercise has been investigated and both were reviewed. We conducted a literature search and retrieved 28 articles which investigated the effect of cooling administered either prior to (n=23) or during (n=5) an exercise test in hot (wet bulb globe temperature >26°C) conditions. Mean and weighted effect size (Cohen's d) were calculated. Overall, precooling has a moderate (d=0.73) effect on subsequent performance but the magnitude of the effect is dependent on the nature of the test. Sprint performance is impaired (d=-0.26) but intermittent performance and prolonged exercise are both improved following cooling (d=0.47 and d=1.91, respectively). Cooling during exercise has a positive effect on performance and capacity (d=0.76). Improvements were observed in studies with and without cooling-induced physiological alterations, and the literature supports the suggestion of a dose-response relationship among cooling, thermal strain and improvements in performance and capacity. In summary, precooling can improve subsequent intermittent and prolonged exercise performance and capacity in a hot environment but sprint performance is impaired. Cooling during exercise also has a positive effect on exercise performance and capacity in a hot environment. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  8. Mild evaporative cooling applied to the torso provides thermoregulatory benefits during running in the heat.

    PubMed

    Filingeri, D; Fournet, D; Hodder, S; Havenith, G

    2015-06-01

    We investigated the effects of mild evaporative cooling applied to the torso, before or during running in the heat. Nine male participants performed three trials: control-no cooling (CTR), pre-exercise cooling (PRE-COOL), and during-exercise cooling (COOL). Trials consisted of 10-min neutral exposure and 50-min heat exposure (30 °C; 44% humidity), during which a 30-min running protocol (70% VO2max ) was performed. An evaporative cooling t-shirt was worn before the heat exposure (PRE-COOL) or 15 min after the exercise was started (COOL). PRE-COOL significantly lowered local skin temperature (Tsk ) (up to -5.3 ± 0.3 °C) (P < 0.001), mean Tsk (up to -2 ± 0.1 °C) (P < 0.001), sweat losses (-143 ± 40 g) (P = 0.002), and improved thermal comfort (P = 0.001). COOL suddenly lowered local Tsk (up to -3.8 ± 0.2 °C) (P < 0.001), mean Tsk (up to -1 ± 0.1 °C) (P < 0.001), heart rate (up to -11 ± 2 bpm) (P = 0.03), perceived exertion (P = 0.001), and improved thermal comfort (P = 0.001). We conclude that the mild evaporative cooling provided significant thermoregulatory benefits during exercise in the heat. However, the timing of application was critical in inducing different thermoregulatory responses. These findings provide novel insights on the thermoregulatory role of Tsk during exercise in the heat. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Adiabatic demagnetization refrigerator for use in zero gravity

    NASA Technical Reports Server (NTRS)

    Dingus, Michael L.

    1988-01-01

    In this effort, a new design concept for an adiabatic demagnetization refrigerator (ADR) that is capable of operation in zero gravity has been developed. The design uses a vortex precooler to lower the initial temperature of magnetic salt from the initial space superfluid helium dewar of 1.8 K to 1.1 K. This reduces the required maximum magnetic field from 4 Tesla to 2 Tesla. The laboratory prototype vortex precooler reached a minimum temperature of 0.78 K, and had a cooling power of 1 mW at 1.1 K. A study was conducted to determine the dependence of vortex cooler performance on system element configuration. A superfluid filled capillary heat switch was used in the design. The laboratory prototype ADR reached a minimum temperature of 0.107 K, and maintained temperatures below 0.125 K for 90 minutes. Demagnetization was carried out from a maximum field of 2 T. A soft iron shield was developed that reduced the radial central field to 1 gauss at 0.25 meters.

  10. A Cryogenic Target for Compton Scattering Experiments at HI γS

    NASA Astrophysics Data System (ADS)

    Kendellen, David; Ahmed, Mohammad; Weller, Henry; Feldman, Gerald

    2015-04-01

    We have designed, constructed, and tested a cryogenic target for use at the High Intensity γ-ray Source (HI γS). The target is able to liquefy helium (LHe), hydrogen (LH2), and deuterium (LD2). It precools room-temperature gas in two stages with a Gifford-McMahon cryocooler. The precooled gas condenses onto a series of copper fins and drips down to fill a 0.25 L Kapton target cell. The cryotarget will be used to measure nuclear and nucleon electromagnetic polarizabilities. The electromagnetic polarizabilities of the nucleons, α and β, will be probed by scattering a γ-ray beam on unpolarized LD2 and LH2 targets. Scattered photons will be detected by the HI γS NaI Detector Array (HINDA). We have tested the target with LHe at 3 K and are preparing for LD2 testing and production running. Work supported by US Department of Energy Contracts DE-FG02-97ER41033, DE-FG02-06ER41422, and DE-SCOO0536.

  11. Cooling interventions for athletes: An overview of effectiveness, physiological mechanisms, and practical considerations

    PubMed Central

    Bongers, Coen C. W. G.; Hopman, Maria T. E.; Eijsvogels, Thijs M. H.

    2017-01-01

    ABSTRACT Exercise-induced increases in core body temperature could negative impact performance and may lead to development of heat-related illnesses. The use of cooling techniques prior (pre-cooling), during (per-cooling) or directly after (post-cooling) exercise may limit the increase in core body temperature and therefore improve exercise performance. The aim of the present review is to provide a comprehensive overview of current scientific knowledge in the field of pre-cooling, per-cooling and post-cooling. Based on existing studies, we will discuss 1) the effectiveness of cooling interventions, 2) the underlying physiological mechanisms and 3) practical considerations regarding the use of different cooling techniques. Furthermore, we tried to identify the optimal cooling technique and compared whether cooling-induced performance benefits are different between cool, moderate and hot ambient conditions. This article provides researchers, physicians, athletes and coaches with important information regarding the implementation of cooling techniques to maintain exercise performance and to successfully compete in thermally stressful conditions. PMID:28349095

  12. 49 CFR 173.5b - Portable and mobile refrigeration systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... operations. These refrigeration systems are used at field sites to cool (pre-cool) produce before the produce... pressure vessel must be designed, manufactured, and maintained in accordance with applicable requirements... initial pressure test performed after manufacture. Additional pressure tests must be performed after any...

  13. 49 CFR 173.5b - Portable and mobile refrigeration systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... operations. These refrigeration systems are used at field sites to cool (pre-cool) produce before the produce... pressure vessel must be designed, manufactured, and maintained in accordance with applicable requirements... initial pressure test performed after manufacture. Additional pressure tests must be performed after any...

  14. Supercold technique duplicates magnetic field in second superconductor

    NASA Technical Reports Server (NTRS)

    Hildebrandt, A. F.

    1964-01-01

    A superconductor cylinder, charged with a high magnetic field, can be used to create a similar field in a larger cylinder. The uncharged cylinder is precooled, lowered into a helium dewar system, and fitted around the cylinder with the magnetic field. Magnetic flux lines pass through the two cylinders.

  15. Time Step Considerations when Simulating Dynamic Behavior of High Performance Homes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tabares-Velasco, Paulo Cesar

    2016-09-01

    Building energy simulations, especially those concerning pre-cooling strategies and cooling/heating peak demand management, require careful analysis and detailed understanding of building characteristics. Accurate modeling of the building thermal response and material properties for thermally massive walls or advanced materials like phase change materials (PCMs) are critically important.

  16. Numerical studies on sizing/ rating of plate fin heat exchangers for a modified Claude cycle based helium liquefier/ refrigerator

    NASA Astrophysics Data System (ADS)

    Goyal, M.; Chakravarty, A.; Atrey, M. D.

    2017-02-01

    Performance of modern helium refrigeration/ liquefaction systems depends significantly on the effectiveness of heat exchangers. Generally, compact plate fin heat exchangers (PFHE) having very high effectiveness (>0.95) are used in such systems. Apart from basic fluid film resistances, various secondary parameters influence the sizing/ rating of these heat exchangers. In the present paper, sizing calculations are performed, using in-house developed numerical models/ codes, for a set of high effectiveness PFHE for a modified Claude cycle based helium liquefier/ refrigerator operating in the refrigeration mode without liquid nitrogen (LN2) pre-cooling. The combined effects of secondary parameters like axial heat conduction through the heat exchanger metal matrix, parasitic heat in-leak from surroundings and variation in the fluid/ metal properties are taken care of in the sizing calculation. Numerical studies are carried out to predict the off-design performance of the PFHEs in the refrigeration mode with LN2 pre-cooling. Iterative process cycle calculations are also carried out to obtain the inlet/ exit state points of the heat exchangers.

  17. Cryogen-free dilution refrigerators

    NASA Astrophysics Data System (ADS)

    Uhlig, K.

    2012-12-01

    We review briefly our first cryogen-free dilution refrigerator (CF-DR) which was precooled by a GM cryocooler. We then show how today's dry DRs with pulse tube precooling have developed. A few examples of commercial DRs are explained and noteworthy features pointed out. Thereby we describe the general advantages of cryogen-free DRs, but also show where improvements are still desirable. At present, our dry DR has a base temperature of 10 mK and a cooling capacity of 700 μW at a mixing chamber temperature of 100 mK. In our cryostat, in most recent work, an additional refrigeration loop was added to the dilution circuit. This 4He circuit has a lowest temperature of about 1 K and a refrigeration capacity of up to 100 mW at temperatures slightly above 1 K; the dilution circuit and the 4He circuit can be run separately or together. The purpose of this additional loop is to increase the cooling capacity for experiments where the cooling power of the still of the DR is not sufficient to cool cold amplifiers and cables, e.g. in studies on superconducting quantum circuits or astrophysical applications.

  18. Effect of controlled ice nucleation on primary drying stage and protein recovery in vials cooled in a modified freeze-dryer.

    PubMed

    Passot, Stéphanie; Tréléa, Ioan Cristian; Marin, Michèle; Galan, Miquel; Morris, G John; Fonseca, Fernanda

    2009-07-01

    The freezing step influences lyophilization efficiency and protein stability. The main objective of this work was to investigate the impact on the primary drying stage of an ultrasound controlled ice nucleation technology, compared with usual freezing protocols. Lyophilization cycles involving different freezing protocols (applying a constant shelf cooling rate of 1 degrees C/min or 0.2 degrees C/min, putting vials on a precooled shelf, and controlling nucleation by ultrasounds or by addition of a nucleating agent) were performed in a prototype freeze-dryer. Three protective media including sucrose or maltodextrin and differing by their thermal properties and their ability to preserve a model protein (catalase) were used. The visual aspect of the lyophilized cake, residual water content, and enzymatic activity recovery of catalase were assessed after each lyophilization cycle and after 1 month of storage of the lyophilized product at 4 degrees C and 25 degrees C. The freezing protocols allowing increasing nucleation temperature (precooled shelf and controlled nucleation by using ultrasounds or a nucleating agent) induced a faster sublimation step and higher sublimation rate homogeneity. Whatever the composition of the protective medium, applying the ultrasound technology made it possible to decrease the sublimation time by 14%, compared with the freezing method involving a constant shelf cooling rate of 1 degrees C/min. Concerning the enzyme activity recovery, the impact of the freezing protocol was observed only for the protective medium involving maltodextrin, a less effective protective agent than sucrose. Higher activity recovery results were obtained after storage when the ultrasound technology or the precooled shelf method was applied. Controlling ice nucleation during the freezing step of the lyophilization process improved the homogeneity of the sublimation rates, which will, in turn, reduce the intervial heterogeneity. The freeze-dryer prototype including the system of controlled nucleation by ultrasounds appears to be a promising tool in accelerating sublimation and improving intrabatch homogeneity.

  19. Automated sample exchange and tracking system for neutron research at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Rix, J. E.; Weber, J. K. R.; Santodonato, L. J.; Hill, B.; Walker, L. M.; McPherson, R.; Wenzel, J.; Hammons, S. E.; Hodges, J.; Rennich, M.; Volin, K. J.

    2007-01-01

    An automated system for sample exchange and tracking in a cryogenic environment and under remote computer control was developed. Up to 24 sample "cans" per cycle can be inserted and retrieved in a programed sequence. A video camera acquires a unique identification marked on the sample can to provide a record of the sequence. All operations are coordinated via a LABVIEW™ program that can be operated locally or over a network. The samples are contained in vanadium cans of 6-10mm in diameter and equipped with a hermetically sealed lid that interfaces with the sample handler. The system uses a closed-cycle refrigerator (CCR) for cooling. The sample was delivered to a precooling location that was at a temperature of ˜25K, after several minutes, it was moved onto a "landing pad" at ˜10K that locates the sample in the probe beam. After the sample was released onto the landing pad, the sample handler was retracted. Reading the sample identification and the exchange operation takes approximately 2min. The time to cool the sample from ambient temperature to ˜10K was approximately 7min including precooling time. The cooling time increases to approximately 12min if precooling is not used. Small differences in cooling rate were observed between sample materials and for different sample can sizes. Filling the sample well and the sample can with low pressure helium is essential to provide heat transfer and to achieve useful cooling rates. A resistive heating coil can be used to offset the refrigeration so that temperatures up to ˜350K can be accessed and controlled using a proportional-integral-derivative control loop. The time for the landing pad to cool to ˜10K after it has been heated to ˜240K was approximately 20min.

  20. Strategies and factors associated with preparing for competing in the heat: a cohort study at the 2015 IAAF World Athletics Championships

    PubMed Central

    Périard, Julien D; Racinais, Sébastien; Dahlström, Örjan; Spreco, Armin; Bargoria, Victor; Halje, Karin; Alonso, Juan-Manuel

    2017-01-01

    Purpose Assess exertional heat illness (EHI) history and preparedness in athletes competing in a World Athletics Championships under hot/humid conditions and identify the factors associated with preparedness strategies. Methods Of the 207 registered national teams invited to participate in the study, 50 (24%) accepted. The 957 athletes (49% of all 1965 registered) in these teams were invited to complete a precompetition questionnaire evaluating EHI history, heat stress prevention (heat acclimatisation, precooling and hydration) and recovery. Responses from 307 (32%) athletes were separated in field events, sprints, middle-distance and long-distance running, and decathlon/heptathlon for analysis. Results 48% of athletes had previously experienced EHI symptoms and 8.5% had been diagnosed with EHI. 15% heat acclimatised (∼20 days) before the championships. 52% had a precooling strategy, ice slurry ingestion (24%) being the most prevalent and women using it more frequently than men (p=0.005). 96% of athletes had a fluid consumption strategy, which differed between event categories (p<0.001). The most common volumes planned on being consumed were 0.5–1 L (27.2%) and ≥2 L (21.8%), water being the most frequent. 89% of athletes planned on using at least one recovery strategy. Female sex (p=0.024) and a previous EHI diagnosis increased the likelihood of using all 3 prevention strategies (p<0.001). Conclusions At a World Championships with expected hot/humid conditions, less than one-fifth of athletes heat acclimatised, half had a precooling strategy and almost all a hydration plan. Women, and especially athletes with an EHI history, were more predisposed to use a complete heat stress prevention strategy. More information regarding heat acclimatisation should be provided to protect athlete health and optimise performance at major athletics competitions in the heat. PMID:27815238

  1. FLUID PURIFIER AND SEALING VALVE

    DOEpatents

    Swanton, W.F.

    1962-04-24

    An improved cold trap designed to condense vapors and collect foreign particles in a flowing fluid is described. In the arrangement, a valve is provided to prevent flow reversal in case of pump failure and to act as a sealing valve. Provision is made for reducing the temperature of the fluid being processed, including a pre-cooling stage. (AEC)

  2. Thermal Expansion: Using Calculator-Based Laboratory Technology to Observe the Anomalous Behavior of Water

    ERIC Educational Resources Information Center

    Branco, Mario; Soletta, Isabella

    2005-01-01

    An experiment that consists of following the changes in temperature at different depths in a precooled liquid while the liquid slowly warms up to the temperature of the surrounding environment is presented. The experiment might be used in a course on temperature, on heat transmission, and in particular in the study of convection currents.

  3. 6 K Cryocooler Program

    NASA Technical Reports Server (NTRS)

    Gully, Willy; Herrero, Fred (Technical Monitor)

    2001-01-01

    The report summarizes experimental and theoretical work on an Oxford type Stirling Cycle mechanical precooler operating in the temperature range of 13-20 degrees Kelvin. It includes measurements of the thermal losses of particle regenerators made from lead, and rare earth and rare earth alloys in an operating three stage cryocooler. A 6 K hybrid cooler is designed using the technical information gathered on regenerator performance.

  4. A Comparison of Propulsion Concepts for SSTO Reusable Launchers

    NASA Astrophysics Data System (ADS)

    Varvill, R.; Bond, A.

    This paper discusses the relevant selection criteria for a single stage to orbit (SSTO) propulsion system and then reviews the characteristics of the typical engine types proposed for this role against these criteria. The engine types considered include Hydrogen/Oxygen (H2/O2) rockets, Scramjets, Turbojets, Turborockets and Liquid Air Cycle Engines. In the authors opinion none of the above engines are able to meet all the necessary criteria for an SSTO propulsion system simultaneously. However by selecting appropriate features from each it is possible to synthesise a new class of engines which are specifically optimised for the SSTO role. The resulting engines employ precooling of the airstream and a high internal pressure ratio to enable a relatively conventional high pressure rocket combustion chamber to be utilised in both airbreathing and rocket modes. This results in a significant mass saving with installation advantages which by careful design of the cycle thermodynamics enables the full potential of airbreathing to be realised. The SABRE engine which powers the SKYLON launch vehicle is an example of one of these so called `Precooled hybrid airbreathing rocket engines' and the concep- tual reasoning which leads to its main design parameters are described in the paper.

  5. Metabolic, thermoregulatory, and perceptual responses during exercise after lower vs. whole body precooling.

    PubMed

    White, Andrea T; Davis, Scott L; Wilson, Thad E

    2003-03-01

    The purpose of this investigation was to compare the thermoregulatory, metabolic, and perceptual effects of lower body (LBI) and whole body (WBI) immersion precooling techniques during submaximal exercise. Eleven healthy men completed two 30-min cycling bouts at 60% of maximal O(2) uptake preceded by immersion to the suprailiac crest (LBI) or clavicle (WBI) in 20 degrees C water. WBI produced significantly lower rectal temperature (T(re)) during minutes 24-30 of immersion and lower T(re), mean skin temperature, and mean body temperature for the first 24, 14, and 16 min of exercise, respectively. Body heat storage rates differed significantly for LBI and WBI during immersion and exercise, although no net differences were observed between conditions. For WBI, metabolic heat production and heart rate were significantly higher during immersion but not during exercise. Thermal sensation was significantly lower (felt colder) and thermal discomfort was significantly higher (less comfortable) for WBI during immersion and exercise. In conclusion, WBI and LBI attenuated T(re) increases during submaximal exercise and produced similar net heat storage over the protocol. LBI minimized metabolic increases and negative perceptual effects associated with WBI.

  6. Design and Operation of the RHIC 80-K Cooler

    NASA Astrophysics Data System (ADS)

    Nicoletti, A.; Reuter, A.; Sidi-Yekhlef, A.; Talty, P.; Quimby, E.

    2004-06-01

    A stand-alone cryogenic system designed to maintain the magnets of the Relativistic Heavy Ion Collider (RHIC) at between 80 and 100 K during accelerator shutdown periods has been conceived and designed at Brookhaven National Laboratory and built by PHPK Technologies of Columbus, Ohio. Since most thermal contraction occurs above this temperature, this unit, referred to as the 80-K Cooler, will eliminate the stresses associated with thermal cycling. The cooling system will provide the necessary refrigeration by circulating cooled helium gas at approximately 1500 kPA through the RHIC heat shields and magnets. This helium is cooled by heat exchange with liquid nitrogen and circulated via three cold centrifugal pumps. The nominal delivered cooling capacity required to maintain the magnets at temperature is approximately 36 kW, primarily intercepted at the heat shield. The system also has separate heat exchangers for use as a pre-cooler from room temperature to 82 K. Selection of sextant or sextants for pre-cooling is designed into the RHIC cryogenic distribution system. Topics covered include Cooler design decisions, details of the Cooler as built, integration into the existing RHIC cryogenic system and initial operating experience.

  7. Effect of local cooling on short-term, intense exercise.

    PubMed

    Kwon, Young S; Robergs, Robert A; Schneider, Suzanne M

    2013-07-01

    The widespread belief that local cooling impairs short-term, strenuous exercise performance is controversial. Eighteen original investigations involving cooling before and intermittent cooling during short-term, intensive exercise are summarized in this review. Previous literature examining short-term intensive exercise and local cooling primarily has been limited to the effects on muscle performance immediately or within minutes following cold application. Most previous cooling studies used equal and longer than 10 minutes of pre-cooling, and found that cooling reduced strength, performance and endurance. Because short duration, high intensity exercise requires adequate warm-up to prepare for optimal performance, prolonged pre-cooling is not an effective method to prepare for this type of exercise. The literature related to the effect of acute local cooling immediately before short duration, high intensity isotonic exercise such as weight lifting is limited. However, local intermittent cooling during short-term, high intense exercise may provide possible beneficial effects; first, by pain reduction, caused by an "irritation effect" from hand thermal receptors which block pain sensation, or second, by a cooling effect, whereby stimulation of hand thermal receptors or a slight lowering of blood temperature might alter central fatigue.

  8. Optimization of Quantitative Proteomics Using 2-Dimensional Difference Gel Electrophoresis to Characterize Molecular Mechanisms of Chemical Warfare Nerve Agent Exposure in the Rat Brain

    DTIC Science & Technology

    2010-11-01

    minced finely with scissors, and transferred to a pre-cooled hand-held glass dounce homogenizer. The pestle was passed through the dounce until the...Nakajima, Sarin experiences in Japan : acute toxicity and long-term effects. Journal of the Neurological Sciences, 2006. 249(1): p. 76-85. 9. Shih, T.-M

  9. [Prevalence and antimicrobial susceptibility of Salmonella isolated from broiler whole production process in four provinces of China].

    PubMed

    Li, W W; Bai, L; Zhang, X L; Xu, X J; Tang, Z; Bi, Z W; Guo, Y C

    2018-04-06

    Objective: To determine the prevalence and antimicrobial susceptibility of Salmonella isolated from broiler production process in 4 provinces of China. Methods: Using convenience sampling method, 238 sample sites from broiler whole production process were chosen in Henan, Jiangsu, Heilongjiang and Shandong provinces in 2012. A total of 11 592 samples were collected and detected to analyze prevalence baseline, including 2 090 samples from breeding chicken farms and hatcheries, 1 421 samples from broiler farms, 5 610 samples from slaughterhouses and 2 471 samples from distribution and retail stores. All Salmonella strains were isolated through selective enrichment, and were serotyped according to Kauffmann-White scheme. The antimicrobial susceptibilities of selected Salmonella strains were determined by the broth microdilution method and fourteen antimicrobial agents were examined. Results: During incubation course, the average prevalence of Salmonella was 5.5% in feces of breeding hens, feces of chicks, and hatching eggs, 123 Salmonella strains were isolated. During cultivation course, the prevalence of Salmonella was 8.0% in feces from broiler farms, soil, feed, and workers, 114 Salmonella strains were isolated. During slaughter course, the prevalence of Salmonella was 24.9% in swabs pre-slaughter, dressed broiler carcasses, pre-cooled broiler carcasses, water from precooling pool, cutter and chipping boards, frozen chicken portions, and workers, 1 438 Salmonella strains were isolated. During distribution and sale course, the prevalence of Salmonella was 20.9% in transport carts, frozen chicken portions, retail chicken portions and workers, 551 Salmonella strains were isolated. The dominant Salmonella serotypes were Salmonella Enteritidis ( n= 1 229) and Salmonella Indiana ( n= 621). Among 1 231 examined strains, 97.2% Salmonella isolates were resistant to at least one antimicrobial, 69.9% Salmonella strains were multi-drug resistant isolates. Conclusion: Our findings indicated that Salmonella contamination was common and serious in commercial broiler whole production process in China, especially in the course of defeathering, precooling and selling. The environment of broiler farm is the important source of Salmonella contamination. Additionally, antibiotic resistance of Salmonella was serious for common antimicrobials and multi-drug resistant strains existed widespread, which can pose potential risk on public health and clinical therapy.

  10. Ergogenic effects of precooling with cold water immersion and ice ingestion: A meta-analysis.

    PubMed

    Choo, Hui C; Nosaka, Kazunori; Peiffer, Jeremiah J; Ihsan, Mohammed; Abbiss, Chris R

    2018-03-01

    This review evaluated the effects of precooling via cold water immersion (CWI) and ingestion of ice slurry/slushy or crushed ice (ICE) on endurance performance measures (e.g. time-to-exhaustion and time trials) and psychophysiological parameters (core [T core ] and skin [T skin ] temperatures, whole body sweat [WBS] response, heart rate [HR], thermal sensation [TS], and perceived exertion [RPE]). Twenty-two studies were included in the meta-analysis based on the following criteria: (i) cooling was performed before exercise with ICE or CWI; (ii) exercise longer than 6 min was performed in ambient temperature ≥26°C; and (iii) crossover study design with a non-cooling passive control condition. CWI improved performance measures (weighted average effect size in Hedges' g [95% confidence interval] + 0.53 [0.28; 0.77]) and resulted in greater increase (ΔEX) in T skin (+4.15 [3.1; 5.21]) during exercise, while lower peak T core (-0.93 [-1.18; -0.67]), WBS (-0.74 [-1.18; -0.3]), and TS (-0.5 [-0.8; -0.19]) were observed without concomitant changes in ΔEX-T core (+0.19 [-0.22; 0.6]), peak T skin (-0.67 [-1.52; 0.18]), peak HR (-0.14 [-0.38; 0.11]), and RPE (-0.14 [-0.39; 0.12]). ICE had no clear effect on performance measures (+0.2 [-0.07; 0.46]) but resulted in greater ΔEX-T core (+1.02 [0.59; 1.45]) and ΔEX-T skin (+0.34 [0.02; 0.67]) without concomitant changes in peak T core (-0.1 [-0.48; 0.28]), peak T skin (+0.1 [-0.22; 0.41]), peak HR (+0.08 [-0.19; 0.35]), WBS (-0.12 [-0.42; 0.18]), TS (-0.2 [-0.49; 0.1]), and RPE (-0.01 [-0.33; 0.31]). From both ergogenic and thermoregulatory perspectives, CWI may be more effective than ICE as a precooling treatment prior to exercise in the heat.

  11. The use of mixed-method, part-body pre-cooling procedures for team-sport athletes training in the heat.

    PubMed

    Duffield, Rob; Steinbacher, Geoff; Fairchild, Timothy J

    2009-12-01

    The current study investigated the effects of a pre-cooling intervention on physiological and performance responses to team-sport training in the heat. Seven male lacrosse players performed a familiarization session and 2 randomized, counterbalanced sessions consisting of a 30-minute intermittent-sprint conditioning session. Prior to the sessions, players performed a 20-minute mixed-method, part-body cooling intervention (consisting of cooling vests, cold towels to the neck, and ice packs to the quadriceps) or no cooling intervention. Performance was determined from collection of 1 Hz global positioning system (GPS) data and analyzed for distance and speed. Prior to, during, and following the sessions, core temperature, heart rate, rating of perceived exertion (RPE), and thermal sensation scale (TSS) were measured; additionally, a venous blood sample was collected before and after each session for measurement of interleukin-6 (IL-6), insulin-like growth factor (IGF-1) and insulin-like growth factor-binding protein3 (IGF-BP3). Results indicated that a greater distance was covered during the pre-cooling condition (3.35 +/- 0.20 vs. 3.11 +/- 0.13 km; p = 0.05). Further, most of this improvement was evident from a greater distance covered during moderate intensities of 7 to 14 km/h (2.28 +/- 0.18 vs. 2.00 +/- 0.24 km; p = 0.05). Peak speeds and very-high-intensity efforts (20 km/h +/-) were not different between conditions (p > 0.05). The increase in core temperature was blunted following cooling, with a lower core temperature throughout the cooling session (38.8 +/- 0.3 vs. 39.3 +/- 0.4 degrees C; p < 0.05). However, there were no differences in heart rate, RPE, TSS, IL-6, IGF-1, or IGF-BP3 between conditions (p > 0.05). Accordingly, the use of a mixed-method, part-body cooling intervention prior to an intermittent-sprint training session in the heat can assist in reducing thermoregulatory load and improve aspects of training performance for team sports.

  12. Strategies and factors associated with preparing for competing in the heat: a cohort study at the 2015 IAAF World Athletics Championships.

    PubMed

    Périard, Julien D; Racinais, Sébastien; Timpka, Toomas; Dahlström, Örjan; Spreco, Armin; Jacobsson, Jenny; Bargoria, Victor; Halje, Karin; Alonso, Juan-Manuel

    2017-02-01

    Assess exertional heat illness (EHI) history and preparedness in athletes competing in a World Athletics Championships under hot/humid conditions and identify the factors associated with preparedness strategies. Of the 207 registered national teams invited to participate in the study, 50 (24%) accepted. The 957 athletes (49% of all 1965 registered) in these teams were invited to complete a precompetition questionnaire evaluating EHI history, heat stress prevention (heat acclimatisation, precooling and hydration) and recovery. Responses from 307 (32%) athletes were separated in field events, sprints, middle-distance and long-distance running, and decathlon/heptathlon for analysis. 48% of athletes had previously experienced EHI symptoms and 8.5% had been diagnosed with EHI. 15% heat acclimatised (∼20 days) before the championships. 52% had a precooling strategy, ice slurry ingestion (24%) being the most prevalent and women using it more frequently than men (p=0.005). 96% of athletes had a fluid consumption strategy, which differed between event categories (p<0.001). The most common volumes planned on being consumed were 0.5-1 L (27.2%) and ≥2 L (21.8%), water being the most frequent. 89% of athletes planned on using at least one recovery strategy. Female sex (p=0.024) and a previous EHI diagnosis increased the likelihood of using all 3 prevention strategies (p<0.001). At a World Championships with expected hot/humid conditions, less than one-fifth of athletes heat acclimatised, half had a precooling strategy and almost all a hydration plan. Women, and especially athletes with an EHI history, were more predisposed to use a complete heat stress prevention strategy. More information regarding heat acclimatisation should be provided to protect athlete health and optimise performance at major athletics competitions in the heat. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  13. Rate dependency and role of nitric oxide in the vascular response to direct cooling in human skin.

    PubMed

    Yamazaki, Fumio; Sone, Ryoko; Zhao, Kun; Alvarez, Guy E; Kosiba, Wojciech A; Johnson, John M

    2006-01-01

    Local cooling of nonglabrous skin without functional sympathetic nerves causes an initial vasodilation followed by vasoconstriction. To further characterize these responses to local cooling, we examined the importance of the rate of local cooling and the effect of nitric oxide synthase (NOS) inhibition in intact skin and in skin with vasoconstrictor function inhibited. Release of norepinephrine was blocked locally (iontophoresis) with bretylium tosylate (BT). Skin blood flow was monitored from the forearm by laser-Doppler flowmetry (LDF). Cutaneous vascular conductance (CVC) was calculated as the ratio of LDF to blood pressure. Local temperature was controlled over 6.3 cm2 around the sites of LDF measurement. Local cooling was applied at -0.33 or -4 degrees C/min. At -4 degrees C/min, CVC increased (P < 0.05) at BT sites in the early phase. At -0.33 degrees C/min, there was no early vasodilator response, but there was a delay in the onset of vasoconstriction relative to intact skin. The NOS inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME) (intradermal microdialysis) decreased (P < 0.05) CVC by 28.3 +/- 3.8% at untreated sites and by 46.9 +/- 6.3% at BT-treated sites from the value before infusion. Rapid local cooling (-4 degrees C/min) to 24 degrees C decreased (P < 0.05) CVC at both untreated (saline) sites and L-NAME only sites from the precooling levels, but it transiently increased (P < 0.05) CVC at both BT + saline sites and BT + L-NAME sites in the early phase. After 35-45 min of local cooling, CVC decreased at BT + saline sites relative to the precooling levels (P < 0.05), but at BT + L-NAME sites CVC was not reduced below the precooling level (P = 0.29). These findings suggest that the rate of local cooling, but not functional NOS, is an important determinant of the early non-adrenergic vasodilator response to local cooling and that functional NOS, adrenergic nerves, as well as other mechanisms play roles in vasoconstriction during prolonged local cooling of skin.

  14. Thermostructural Analysis of the SOFIA Fine Field and Wide Field Imagers Subjected to Convective Thermal Shock

    NASA Technical Reports Server (NTRS)

    Kostyk, Christopher B.

    2012-01-01

    The Stratospheric Observatory For Infrared Astronomy (SOFIA) is a highly modified Boeing 747-SP with a 17- ton infrared telescope installed in the aft portion of the aircraft. Unlike ground- and space-based platforms, SOFIA can deploy to make observations anytime, anywhere, in the world. The originally designed aircraft configuration included a ground pre-cool system, however, due to various factors in the history of the project, that system was not installed. This lack of ground pre-cooling was the source of the concern about whether or not the imagers would be exposed to a potentially unsafe thermostructural environment. This concern was in addition to the already-existing concern of some project members that the air temperature rate of change during flight (both at the same altitude as well as ascent or descent) could cause the imagers to be exposed to an unsafe thermostructural environment. Four optical components were identified as the components of concern: two of higher concern (one in each imager), and two of lower concern (one in each imager). The analysis effort began by analyzing one component, after which the analyses for the other components was deemed unnecessary. The purpose of this report is to document these findings as well as lessons learned from the effort.

  15. Impedance magnitude optimization of the regenerator in Stirling pulse tube cryocoolers working at liquid-helium temperatures

    NASA Astrophysics Data System (ADS)

    Cao, Q.; Qiu, L. M.; Zhi, X. Q.; Han, L.; Gan, Z. H.; Zhang, X. B.; Zhang, X. J.; Sun, D. M.

    2013-12-01

    The impedance magnitude is important for the design and operation of a Stirling pulse tube cryocooler (SPTC). However, the influence of the impedance magnitude on the SPTC working at liquid-helium temperatures is still not clear due to the complexity of refrigeration mechanism at this temperature range. In this study, the influence of the impedance magnitude on the viscous and thermal losses has been investigated, which contributes to the overall refrigeration efficiency. Different from the previous study at liquid nitrogen temperatures, it has been found and verified experimentally that a higher impedance magnitude may result in a larger mass flow rate accompanied with larger losses in the warmer region, hence the refrigeration efficiency is lowered. Numerical simulation is carried out in SPTCs of different geometry dimensions and working parameters, and the experimental study is carried out in a three-stage SPTC. A minimum no-load refrigeration temperature is achieved with an appropriate impedance magnitude that is determined by the combination of frequency and precooling temperature. A lowest temperature of 4.76 K is achieved at 28 Hz and a precooling temperature of 22.6 K, which is the lowest temperature ever achieved with He-4 for SPTCs. Impedance magnitude optimization is clearly an important consideration for the design of a 4 K SPTC.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruth, M.; Pratt, A.; Lunacek, M.

    The combination of distributed energy resources (DER) and retail tariff structures to provide benefits to both utility consumers and the utilities is not well understood. To improve understanding, an Integrated Energy System Model (IESM) is being developed to simulate the physical and economic aspects of DER technologies, the buildings where they reside, and feeders servicing them. The IESM was used to simulate 20 houses with home energy management systems on a single feeder under a time-of-use (TOU) tariff to estimate economic and physical impacts on both the households and the distribution utilities. Home energy management systems (HEMS) reduce consumers’ electricmore » bills by precooling houses in the hours before peak electricity pricing. Utilization of HEMS reduce peak loads during high price hours but shifts it to hours with off-peak and shoulder prices, resulting in a higher peak load. used to simulate 20 houses with home energy management systems on a single feeder under a time-of-use (TOU) tariff to estimate economic and physical impacts on both the households and the distribution utilities. Home energy management systems (HEMS) reduce consumers’ electric bills by precooling houses in the hours before peak electricity pricing. Utilization of HEMS reduce peak loads during high price hours but shifts it to hours with off-peak and shoulder prices, resulting in a higher peak load.« less

  17. Advances in single- and multi-stage Stirling-type pulse tube cryocoolers for space applications in NLIP/SITP/CAS

    NASA Astrophysics Data System (ADS)

    Dang, Haizheng; Tan, Jun; Zha, Rui; Li, Jiaqi; Zhang, Lei; Zhao, Yibo; Gao, Zhiqian; Bao, Dingli; Li, Ning; Zhang, Tao; Zhao, Yongjiang; Zhao, Bangjian

    2017-12-01

    This paper presents a review of recent advances in single- and multi-stage Stirling-type pulse tube cryocoolers (SPTCs) for space applications developed at the National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences (NLIP/SITP/CAS). A variety of single-stage SPTCs operating at 25-150 K have been developed, including several mid-sized ones operating at 80-110 K. Significant progress has been achieved in coolers operating at 30-40 K which use common stainless steel meshes as regenerator matrices. Another important advance is the micro SPTCs with an overall mass of 300-800 g operating at high frequencies varying from 100 Hz to 400 Hz. The main purpose of developing two-stage SPTCs is to simultaneously acquire cooling capacities at both stages, obviating the need for auxiliary precooling in various applications. The three-stage SPTCs are developed mainly for applications at around 10 K, which are also used for precooling the J-T coolers to achieve further lower temperatures. The four-stage SPTCs are developed to directly achieve the liquid helium temperature for cooling space low-Tc superconducting devices and for the deep space exploration as well. Several typical development programs are described and an overview of the cooler performances is presented.

  18. The 'fine line' of heat rejection.

    PubMed

    Carruthers, Phillip

    2010-09-01

    Selection of heat rejection equipment has traditionally entailed a choice between the higher energy consumption of an air-cooled solution, and the high water consumption of a water-cooled solution. This paper examines advancement in heat rejection technology and the way it can be applied to air conditioning and refrigeration plant in healthcare and other facilities. It also examines field difficulties encountered in pipework design as the knowledge and experience levels of engineers designing systems with remote condensers diminish. With plant larger than 1,000 kW, the only option previously has been water-cooled solutions using an array of cooling towers, or perhaps an evaporative condenser, since air-cooled plant involved massive volumes of chemical refrigerant, which posed a problem ecologically. An additional hurdle was problems associated with limitations on pipe lengths for refrigeration plant. The advent of adiabatically pre-cooled closed circuit coolers and air-cooled condensers has introduced an alternative to cooling towers that offers the potential for "water-cooled performance" from an air-cooled solution with no serious threat of Legionella contamination. However, each application needs to be considered on a case-by-case basis. The paper examines, in detail, the impact of adiabatic pre-cooling, with recent examples of its application in sub-tropical Brisbane providing evidence of the potential performance achievable.

  19. Design and expected performance of a compact and continuous nuclear demagnetization refrigerator for sub-mK applications

    NASA Astrophysics Data System (ADS)

    Toda, Ryo; Murakawa, Satoshi; Fukuyama, Hiroshi

    2018-03-01

    Sub-mK temperatures are achievable by a copper nuclear demagnetization refrigerator (NDR). Recently, research demands for such an ultra-low temperature environment are increasing not only in condensed matter physics but also in astrophysics. A standard NDR requires a specially designed room, a high-field superconducting magnet, and a high-power dilution refrigerator (DR). And it is a one-shot cooling apparatus. To reduce these requirements, we are developing a compact and continuous NDR with two PrNi5 nuclear stages which occupies only a small space next to an appropriate pre-cooling stage such as DR. PrNi5 has a large magnetic-field enhancement on Pr3+ nuclei due to the strong hyperfine coupling. This enables us to enclose each stage in a miniature superconducting magnet and to locate two such sets in close proximity by surrounding them with high-permeability magnetic shields. The two stages are thermally connected in series to the pre-cooling stage by two Zn superconducting heat switches. A numerical analysis taking account of thermal resistances of all parts and an eddy current heating shows that the lowest sample temperature of 0.8 mK can be maintained continuously under a 10 nW ambient heat leak.

  20. Pre-cooling of ton-scale particle detectors in low radioactivity environments

    NASA Astrophysics Data System (ADS)

    Cappelli, L.; Pagliarone, C. E.; Bucci, C.; D’Aguanno, D.; Erme, G.; Gorla, P.; Kartal, S.; Marignetti, F.

    2018-03-01

    Low radioactivity sites are mandatory to perform searches for rare processes that cannot be studied with particle accelerators and requires low environmental backgrounds. Neutrino-less double β decay or Dark Matter searches must be performed in underground low radioactivity observatories. Large detectors are needed to increase the acceptances and proper cryogenic systems to run dedicated detectors. To reach the working temperatures, refrigerators as Pulse Tubes, Dilution Units are used inside complex cryostats. CUORE, Cryogenic Underground Observatory for Rare Events, is an experiment located at LNGS under the Gran Sasso mountain. So far, it’s the coldest cubic meter and the largest cold mass ever realized. Its 998 TeO2 bolometers need to be kept at temperatures T< 10 mK. Using only Pulse Tubes, CUORE needs several weeks to reach the baseline T. Then a Fast Cooling System has been designed and constructed for a faster precooling of the whole CUORE cold volume. The Fast Cooling System (FCS) consists of a cryostat with heat exchangers that use 3 Gifford-McMahon refrigerators, a 4He compressor, a filtering module and several sensors that allow to monitor and control the system during CUORE cooldown. The present work describes the FCS and summarizes its performances during the first full CUORE cooldown.

  1. Helium liquefaction plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toscano, W.M.

    1981-05-19

    In a helium liquefaction plant, a compressor includes first, second and third stages and a precooling section includes first, second and third turboexpanders in series between high and low pressure lines of a heat exchanger. A portion of the medium pressure gas at the output of the second turboexpander is directed back through the heat exchanger and mixed with the output of the first compressor stage. The third turboexpander is positioned between the medium and low pressure lines.

  2. Compact Closed Cycle Brayton System Feasibility Study. Volume I.

    DTIC Science & Technology

    1979-08-01

    are exposed to cooler 204°C (400’F) gas originating from the power turbine balance piston labyrinth seal . The removal of the turbomachinery from the... seals , leakage of helium from the intercooler to the precooler inlet could occur, and there is a possibility of water mixing with j the turbomachinery...component joints to be sealed . Some leakage is tolerable at inter-component joints within the system as this leakage remains confined within the

  3. Support For International Conference on Physiological and Cognitive Performance In Extreme Environments

    DTIC Science & Technology

    2000-07-01

    W.S. Roberts and M.A Febbraio 8 INVITED LECTURE 2: HEAT STRESS AND EXERCISE METABOLISM M.A Febbraio 12 PAPER 3: EFFECT OF ENVIRONMENTAL...R. Snow 72 PAPER 14: WHOLE-BODY PRE-COOLING: THERMAL, CARDIOVASCULAR AND METABOLIC CONSEQUENCES. A.D. MacDonald, J. Booth, A.L. Fogarty, K.A...French 191 POSTER 8: ORIGIN AND REGULATION OF METABOLIC HEAT KP. Ivanov 195 POSTER 9: RESTORATION OF PHYSIOLOGICAL FUNCTIONS IN A COOLED

  4. Impact of hydrogen SAE J2601 fueling methods on fueling time of light-duty fuel cell electric vehicles

    DOE PAGES

    Reddi, Krishna; Elgowainy, Amgad; Rustagi, Neha; ...

    2017-05-16

    Hydrogen fuel cell electric vehicles (HFCEVs) are zero-emission vehicles (ZEVs) that can provide drivers a similar experience to conventional internal combustion engine vehicles (ICEVs), in terms of fueling time and performance (i.e. power and driving range). The Society of Automotive Engineers (SAE) developed fueling protocol J2601 for light-duty HFCEVs to ensure safe vehicle fills while maximizing fueling performance. This study employs a physical model that simulates and compares the fueling performance of two fueling methods, known as the “lookup table” method and the “MC formula” method, within the SAE J2601 protocol. Both the fueling methods provide fast fueling of HFCEVsmore » within minutes, but the MC formula method takes advantage of active measurement of precooling temperature to dynamically control the fueling process, and thereby provides faster vehicle fills. Here, the MC formula method greatly reduces fueling time compared to the lookup table method at higher ambient temperatures, as well as when the precooling temperature falls on the colder side of the expected temperature window for all station types. Although the SAE J2601 lookup table method is the currently implemented standard for refueling hydrogen fuel cell vehicles, the MC formula method provides significant fueling time advantages in certain conditions; these warrant its implementation in future hydrogen refueling stations for better customer satisfaction with fueling experience of HFCEVs.« less

  5. Theoretical and experimental investigations on the cooling capacity distributions at the stages in the thermally-coupled two-stage Stirling-type pulse tube cryocooler without external precooling

    NASA Astrophysics Data System (ADS)

    Tan, Jun; Dang, Haizheng

    2017-03-01

    The two-stage Stirling-type pulse tube cryocooler (SPTC) has advantages in simultaneously providing the cooling powers at two different temperatures, and the capacity in distributing these cooling capacities between the stages is significant to its practical applications. In this paper, a theoretical model of the thermally-coupled two-stage SPTC without external precooling is established based on the electric circuit analogy with considering real gas effects, and the simulations of both the cooling performances and PV power distribution between stages are conducted. The results indicate that the PV power is inversely proportional to the acoustic impedance of each stage, and the cooling capacity distribution is determined by the cold finger cooling efficiency and the PV power into each stage together. The design methods of the cold fingers to achieve both the desired PV power and the cooling capacity distribution between the stages are summarized. The two-stage SPTC is developed and tested based on the above theoretical investigations, and the experimental results show that it can simultaneously achieve 0.69 W at 30 K and 3.1 W at 85 K with an electric input power of 330 W and a reject temperature of 300 K. The consistency between the simulated and the experimental results is observed and the theoretical investigations are experimentally verified.

  6. Observation of Flame Stabilized at a Hydrogen-Turbojet-Engine Injector Installed into a Lab-Scale Combustion Wind Tunnel

    NASA Astrophysics Data System (ADS)

    Michishita, Kazutaka; Nomura, Hiroshi; Ujiie, Yasushige; Okai, Keiichi

    A lab-scale combustion wind tunnel was developed for investigation of low-pressure ignition and flame holding in a sub-scale pre-cooled turbojet engine with hydrogen fuel in order to make engine start at high altitudes sure. The combustion wind tunnel is a blow-down type. A fuel injector of the sub-scale pre-cooled turbojet engine was installed into the combustion wind tunnel. Conditions in which a flame can be stabilized at the fuel injector were examined. The combustor pressure and equivalence ratio were varied from 10 to 40 kPa and from 0.4 to 0.8, respectively. The mean inlet air velocity was varied from 2 to 48 m/s. Flames stabilized at 20 kPa in pressure and 0.6 in equivalence ratio were observed. It was found that the decrease in the combustor pressure narrows the mean inlet air velocity range for successful flame holdings. Flame holding at lower combustor pressures is realized at the equivalence ratio of 0.4 in the low mean inlet air velocity range, and at the equivalence ratio of 0.6 in the high mean inlet air velocity range. Flame luminosity is the largest near the fuel injector. The flame luminosity distribution becomes flatter as the increase in the mean inlet air velocity.

  7. Prediction of outcome in asphyxiated newborns treated with hypothermia: Is a MRI scoring system described before the cooling era still useful?

    PubMed

    Al Amrani, Fatema; Marcovitz, Jaclyn; Sanon, Priscille-Nice; Khairy, May; Saint-Martin, Christine; Shevell, Michael; Wintermark, Pia

    2018-05-01

    To determine whether an MRI scoring system, which was validated in the pre-cooling era, can still predict the neurodevelopmental outcome of asphyxiated newborns treated with hypothermia at 2 years of age. We conducted a retrospective cohort study of asphyxiated newborns treated with hypothermia. An MRI scoring system, which was validated in the pre-cooling era, was used to grade the severity of brain injury on the neonatal brain MRI. Their neurodevelopment was assessed around 2 years of age; adverse outcome included cerebral palsy, global developmental delay, and/or epilepsy. One hundred and sixty-nine newborns were included. Among the 131 newborns who survived and had a brain MRI during the neonatal period, 92% were evaluated around 2 years of age or later. Of these newborns, 37% displayed brain injury, and 23% developed an adverse outcome. Asphyxiated newborns treated with hypothermia who had an adverse outcome had a significantly higher MRI score (p <0.001) compared to those without an adverse outcome. An MRI scoring system that was validated before the cooling era is still able to reliably differentiate which of the asphyxiated newborns treated with hypothermia were more prone to develop an adverse outcome around 2 years of age. Copyright © 2018 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  8. Impact of hydrogen SAE J2601 fueling methods on fueling time of light-duty fuel cell electric vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reddi, Krishna; Elgowainy, Amgad; Rustagi, Neha

    Hydrogen fuel cell electric vehicles (HFCEVs) are zero-emission vehicles (ZEVs) that can provide drivers a similar experience to conventional internal combustion engine vehicles (ICEVs), in terms of fueling time and performance (i.e. power and driving range). The Society of Automotive Engineers (SAE) developed fueling protocol J2601 for light-duty HFCEVs to ensure safe vehicle fills while maximizing fueling performance. This study employs a physical model that simulates and compares the fueling performance of two fueling methods, known as the “lookup table” method and the “MC formula” method, within the SAE J2601 protocol. Both the fueling methods provide fast fueling of HFCEVsmore » within minutes, but the MC formula method takes advantage of active measurement of precooling temperature to dynamically control the fueling process, and thereby provides faster vehicle fills. Here, the MC formula method greatly reduces fueling time compared to the lookup table method at higher ambient temperatures, as well as when the precooling temperature falls on the colder side of the expected temperature window for all station types. Although the SAE J2601 lookup table method is the currently implemented standard for refueling hydrogen fuel cell vehicles, the MC formula method provides significant fueling time advantages in certain conditions; these warrant its implementation in future hydrogen refueling stations for better customer satisfaction with fueling experience of HFCEVs.« less

  9. Changes in glutamate concentration, glucose metabolism, and cerebral blood flow during focal brain cooling of the epileptogenic cortex in humans.

    PubMed

    Nomura, Sadahiro; Fujii, Masami; Inoue, Takao; He, Yeting; Maruta, Yuichi; Koizumi, Hiroyasu; Suehiro, Eiichi; Imoto, Hirochika; Ishihara, Hideyuki; Oka, Fumiaki; Matsumoto, Mishiya; Owada, Yuji; Yamakawa, Takeshi; Suzuki, Michiyasu

    2014-05-01

    Recently, focal brain cooling (FBC) was proposed as a method for treating refractory epilepsy. However, the precise influence of cooling on the molecular basis of epilepsy has not been elucidated. Thus the aim of this study was to assess the effect of FBC on glutamate (Glu) concentration, cerebral blood flow (CBF), and glucose metabolism in patients with intractable epilepsy. Nine patients underwent FBC at 15°C for 30 min prior to cortical resection (n = 6) or hippocampectomy (n = 3). Measurement of metabolites and CBF, as well as electrocorticography (ECoG), was performed. Epileptic discharge (ED), as observed by ECoG, disappeared in the cooling period and reappeared in the rewarming period. Glu concentrations were high during the precooling period and were reduced to 51.2% during the cooling period (p = 0.025). Glycerol levels showed a similar decrease (p = 0.028). Lactate concentration was high during the precooling period and was reduced during the cooling period (21.3% decrease; p = 0.005). Glucose and pyruvate levels were maintained throughout the procedure. Changes in CBF were parallel to those observed by ECoG. FBC reduced EDs and concentrations of Glu and glycerol. This demonstrates the neuroprotective effect of FBC. Our findings confirm that FBC is a reasonable and optimal treatment option for patients with intractable epilepsy. Wiley Periodicals, Inc. © 2014 International League Against Epilepsy.

  10. Dynamic high pressure process for fabricating superconducting and permanent magnetic materials

    DOEpatents

    Nellis, William J.; Geballe, Theodore H.; Maple, M. Brian

    1990-01-01

    Shock wave formation of thin layers of materials with improved superconducting and permanent magnetic properties and improved microstructures. The material fabrication system includes a sandwiched structure including a powder material placed between two solid members to enable explosive shock consolidation. The two solid members are precooled to about 80.degree.-100.degree. K. to reduce the residual temperatures attained as a result of the shock wave treatment, and thereby increase the quench rate of the consolidated powder.

  11. Development of Supersonic Vehicle for Demonstration of a Precooled Turbojet Engine

    NASA Astrophysics Data System (ADS)

    Sawai, Shujiro; Fujita, Kazuhisa; Kobayashi, Hiroaki; Sakai, Shin'ichiro; Bando, Nobutaka; Kadooka, Shouhei; Tsuboi, Nobuyuki; Miyaji, Koji; Uchiyama, Taku; Hashimoto, Tatsuaki

    JAXA is developing Mach 5 hypersonic turbojet engine technology that can be applied in a future hypersonic transport. Now, Jet Engine Technology Research Center of JAXA conducts the experimental study using a 1 / 10 scale-model engine. In parallel to engine development activities, a new supersonic flight-testing vehicle for the hypersonic turbojet engine is under development since 2004. In this paper, the system configuration of the flight-testing vehicle is outlined and development status is reported.

  12. Dynamic high pressure process for fabricating superconducting and permanent magnetic materials

    DOEpatents

    Nellis, W.J.; Geballe, T.H.; Maple, M.B.

    1990-03-13

    Shock wave formation of thin layers of materials with improved superconducting and permanent magnetic properties and improved microstructures is disclosed. The material fabrication system includes a sandwiched structure including a powder material placed between two solid members to enable explosive shock consolidation. The two solid members are precooled to about 80--100 K to reduce the residual temperatures attained as a result of the shock wave treatment, and thereby increase the quench rate of the consolidated powder. 9 figs.

  13. Emergency Cooling of Nuclear Power Plant Reactors With Heat Removal By a Forced-Draft Cooling Tower

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murav’ev, V. P., E-mail: murval1@mail.ru

    The feasibility of heat removal during emergency cooling of a reactor by a forced-draft cooling tower with accumulation of the peak heat release in a volume of precooled water is evaluated. The advantages of a cooling tower over a spray cooling pond are demonstrated: it requires less space, consumes less material, employs shorter lines in the heat removal system, and provides considerably better protection of the environment from wetting by entrained moisture.

  14. Pre-cooling with ice slurry ingestion leads to similar run times to exhaustion in the heat as cold water immersion.

    PubMed

    Siegel, Rodney; Maté, Joseph; Watson, Greig; Nosaka, Kazunori; Laursen, Paul B

    2012-01-01

    The purpose of this study was to compare the effects of pre-exercise ice slurry ingestion and cold water immersion on submaximal running time in the heat. On three separate occasions, eight males ran to exhaustion at their first ventilatory threshold in the heat (34.0 ± 0.1 ° C, 52 ± 3% relative humidity) following one of three 30 min pre-exercise manoeuvres: (1) ice slurry ingestion; (2) cold water immersion; or (3) warm fluid ingestion (control). Running time was longer following cold water immersion (56.8 ± 5.6 min; P = 0.008) and ice slurry ingestion (52.7 ± 8.4 min; P = 0.005) compared with control (46.7 ± 7.2 min), but not significantly different between cold water immersion and ice slurry ingestion (P = 0.335). During exercise, rectal temperature was lower with cold water immersion from 15 and 20 min into exercise compared with control and ice slurry ingestion, respectively, and remained lower until 40 min (P = 0.001). At exhaustion rectal temperature was significantly higher following ice slurry ingestion (39.76 ± 0.36 ° C) compared with control (39.48 ± 0.36 ° C; P = 0.042) and tended to be higher than cold water immersion (39.48 ± 0.34 ° C; P = 0.065). As run times were similar between conditions, ice slurry ingestion may be a comparable form of pre-cooling to cold water immersion.

  15. Heat-acclimatization and pre-cooling: a further boost for endurance performance?

    PubMed

    Schmit, C; Le Meur, Y; Duffield, R; Robach, P; Oussedik, N; Coutts, A J; Hausswirth, C

    2017-01-01

    To determine if pre-cooling (PC) following heat-acclimatization (HA) can further improve self-paced endurance performance in the heat, 13 male triathletes performed two 20-km cycling time-trials (TT) at 35 °C, 50% relative humidity, before and after an 8-day training camp, each time with (PC) or without (control) ice vest PC. Pacing strategies, physiological and perceptual responses were assessed during each TT. PC and HA induced moderate (+10 ± 18 W; effect size [ES] 4.4 ± 4.6%) and very large (+28 ± 19 W; ES 11.7 ± 4.1%) increases in power output (PO), respectively. The overall PC effect became unclear after HA (+4 ± 14 W; ES 1.4 ± 3.0%). However, pacing analysis revealed that PC remained transiently beneficial post-HA, i.e., during the first half of the TT. Both HA and PC pre-HA were characterized by an enhanced PO without increased cardio-thermoregulatory or perceptual disturbances, while post-HA PC only improved thermal comfort. PC improved 20-km TT performance in unacclimatized athletes, but an 8-day HA period attenuated the magnitude of this effect. The respective converging physiological responses to HA and PC may explain the blunting of PC effectiveness. However, perceptual benefits from PC can still account for the small alterations to pacing noted post-HA. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Enhancement of Cognitive Processing by Multiple Sclerosis Patients Using Liquid Cooling Technology: A Case Study

    NASA Technical Reports Server (NTRS)

    Montgomery, Leslie D.; Ku, Yu-Tsuan E.; Montgomery, Richard W.; Kliss, Mark (Technical Monitor)

    1997-01-01

    Recent neuropsychological studies demonstrate that cognitive dysfunction is a common symptom in patients with multiple sclerosis. In many cases the presence of cognitive impairment affects the patient's daily activities to a greater extent than would be found due to their physical disability alone. Cognitive dysfunction can have a significant impact on the quality of life of both the patient and that of their primary caregiver. Two cognitively impaired male MS patients were given a visual discrimination task before and after a one hour cooling period. The subjects were presented a series of either red or blue circles or triangles. One of these combinations, or one fourth of the stimuli, was designated as the "target" presentation. EEG was recorded from 20 scalp electrodes using a Tracor Northern 7500 EEG/ERP system. Oral and ear temperatures were obtained and recorded manually every five minutes during the one hour cooling period. The EEG ERP signatures from each series of stimuli were analyzed in the energy density domain to determine the locus of neural activity at each EEG sampling time. The first subject's ear temperature did not decrease during the cooling period. It was actually elevated approximately 0.05 C by the end of the cooling period compared to his mean of control period value. In turn, Subject One's discrimination performance and cortical energy remained essentially the same after body cooling. In contrast, Subject Two's ear temperature decreased approx. 0.8 C during his cooling period. Subject Two's ERROR score decreased from 12 during the precooling control period to 2 after cooling. His ENERGY value increased approximately 300%, from a precooling value of approximately 200 to a postcooling value of nearly 600. These findings might be interpreted by the following three-part hypothesis: (1) the general cognitive impairment of MS patients may be a result of low or unfocused metabolic energy conversion in the cortex; (2) such differences show up most strongly in reduced energy in the occipital region during the initial processing of the precooling period visual stimulus which may indicate impaired early visual processing; and (3) increased postcooling activation in the le ft angular gyrus may result in enhanced higher-level reasoning related to processing visual task information. By this hypothesis the superior performance of Subject Two following body cooling may be a result of increased neural activation in his early visual recognition and processing centers.

  17. Scalable Loading of a Two-Dimensional Trapped-Ion Array

    DTIC Science & Technology

    2015-11-25

    ion -trap array based on two crossed photo-ionization laser beams . With the use of a continuous flux of pre-cooled neutral...push laser Atomic beam Dierential pumping tube Push laser 2D-MOT 50 K Shield 4 K Shield 4 K stage Trap chip MOT laser Ion To ion pump 5s2 1S0 461...conducted a series of Ramsey experiments on a single trapped ion in the presence and absence of neu- tral atom flux as well as each of the PI laser

  18. Integration of Energy/Sustainable Practices into Standard Army MILCON Designs: Energy and Sustainability Study

    DTIC Science & Technology

    2010-11-30

    approved climate zones) ► Dual flush toilets ► 1.5 GPM flow shower heads ► 0.5 GPM flow faucets ► Rainwater harvesting ► Permeable asphalt, permeable...for system with indirect evaporative pre-cooling Sustainability Measures ► Dual flush toilets ► 1.5 GPM flow shower heads, 0.5 GPM flow faucets...daylighting controls with 500 lux setpoint ► Dual flush toilets ►Waterless urinals ► 0.5 GPM flow faucets ► Rainwater harvesting ► Enhanced Commissioning

  19. Mobile refrigeration system for precool and warm up of superconducting magnets

    NASA Astrophysics Data System (ADS)

    Gandla, S. K.; Longsworth, R. C.

    2017-12-01

    Conservation of helium has become more important in recent years due to global shortages in supply. Magnetic resonance imaging (MRI) superconducting magnets use approximately 20% of the world’s helium reserves in liquid form to cool down and maintain operating temperatures at 4 K. This paper describes a mobile cryogenic refrigeration system, which has been developed by Sumitomo (SHI) Cryogenics of America, Inc. to conserve helium by shipping MRI magnets warm and cooling them down or servicing them on site at a medical facility. The system can cool a typical magnet from room temperature to below 40K in less than a week. The system consists of four single stage Displex®-type Gifford-McMahon (GM) expanders in a cryostat with heat exchangers integrated on the cold ends that cool the helium gas, which is circulated in a closed-loop system through the magnet by a cryogenic fan. The system is configured with heaters on the heat exchangers to effectively warm up a magnet. The system includes a scroll vacuum pump, which is used to evacuate the helium circuit with or without the magnet and turbo pump to evacuate the cryostat. Vacuum-jacketed transfer lines connect the cryostat to the magnet. The system is designed with its own controller for continuous operation of precool, warm up and evacuation processes with automatic and manual controls. The cryostat, pumps and gas controls are mounted on a dewar cart. One compressor and the system controller are mounted on a compressor and control cart, and the other three compressors are mounted on separate carts.

  20. Analysis and optimisation of a mixed fluid cascade (MFC) process

    NASA Astrophysics Data System (ADS)

    Ding, He; Sun, Heng; Sun, Shoujun; Chen, Cheng

    2017-04-01

    A mixed fluid cascade (MFC) process that comprises three refrigeration cycles has great capacity for large-scale LNG production, which consumes a great amount of energy. Therefore, any performance enhancement of the liquefaction process will significantly reduce the energy consumption. The MFC process is simulated and analysed by use of proprietary software, Aspen HYSYS. The effect of feed gas pressure, LNG storage pressure, water-cooler outlet temperature, different pre-cooling regimes, liquefaction, and sub-cooling refrigerant composition on MFC performance are investigated and presented. The characteristics of its excellent numerical calculation ability and the user-friendly interface of MATLAB™ and powerful thermo-physical property package of Aspen HYSYS are combined. A genetic algorithm is then invoked to optimise the MFC process globally. After optimisation, the unit power consumption can be reduced to 4.655 kW h/kmol, or 4.366 kW h/kmol on condition that the compressor adiabatic efficiency is 80%, or 85%, respectively. Additionally, to improve the process further, with regards its thermodynamic efficiency, configuration optimisation is conducted for the MFC process and several configurations are established. By analysing heat transfer and thermodynamic performances, the configuration entailing a pre-cooling cycle with three pressure levels, liquefaction, and a sub-cooling cycle with one pressure level is identified as the most efficient and thus optimal: its unit power consumption is 4.205 kW h/kmol. Additionally, the mechanism responsible for the weak performance of the suggested liquefaction cycle configuration lies in the unbalanced distribution of cold energy in the liquefaction temperature range.

  1. Impact of upper body precooling during warm-up on subsequent time trial paced cycling in the heat.

    PubMed

    Katica, Charles P; Wingo, Jonathan E; Herron, Robert L; Ryan, Greg A; Bishop, Stacy H; Richardson, Mark

    2018-06-01

    The purpose of this study was to test the hypothesis that cooling the upper body during a warm-up enhances performance during a subsequent 16.1-km simulated cycling time trial in a hot environment. Counterbalanced, repeated measures design. Eight trained, male cyclists (peak oxygen uptake=57.8±5.0mLkg -1 min -1 ) completed two simulated 16.1-km time trials in a hot environment (35.0±0.5°C, 43.8±2.0% relative humidity) each separated by 72h. Treatments were counterbalanced; participants warmed up for 20min while either wearing head and neck ice wraps and an ice vest (COOLING) or no cooling apparatus (CONTROL). Following the warm-up mean skin temperature (T¯ sk ), mean body temperature (T¯ b ) and rating of thermal comfort were significantly lower than baseline following the COOLING trial (all P<0.05); however, rectal temperature was unaffected (P=0.35). Because the effects of precooling on T¯ sk and T¯ b were not sustained during exercise, values for COOLING and CONTROL were not different throughout the time trial (P=0.38). Nonetheless, time to completion was significantly faster following the COOLING intervention when compared to the CONTROL (29.3±3.6min, vs. 30.3±3.1min; P=0.04). These data suggest that in short distance time trials in hot conditions cyclists may benefit from utilizing a cooling modality during the warm-up. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  2. Airborne microbial composition in a high-throughput poultry slaughtering facility.

    PubMed

    Liang, Ruiping; Tian, Jijing; She, Ruiping; Meng, Hua; Xiao, Peng; Chang, Lingling

    2013-03-01

    A high-throughput chicken slaughtering facility in Beijing was systematically investigated for numbers of airborne microorganisms. Samples were assessed for counts of aerobic bacteria, Staphylococcus aureus, total coliforms, Escherichia coli, Pseudomonas aeruginosa, Listeria monocytogenes, Bacillus cereus, and Salmonella. During a 4-month period (September to December 2011), samples were collected for 10 min three times daily (preproduction, production, and postproduction). Samples were collected for three consecutive days of each month with an FA-1 sampler from six sampling sites: receiving-hanging, soaking-scalding and defeathering, evisceration, precooling, subdividing, and packing. Humidity, temperature, wind velocity, and airborne particulates also were recorded at each sampling site and time. The highest counts of microorganisms were recorded in the initial stages of processing, i.e., the receiving-hanging and defeathering areas, with a definite decline toward the evisceration, prechilling, subdividing, and packing areas; the prechilling area had the lowest microbial counts of 2.4 × 10(3) CFU/m(3). Mean total coliforms counts ranged from 8.4 × 10(3) to 140 CFU/m(3). Maximum E. coli counts were 6.1 × 10(3) CFU/m(3) in the soaking-scalding and defeathering area. B. cereus, P. aeruginosa, and S. aureus represented only a small proportion of the microbial population (1,900 to 20 CFU/m(3)). L. monocytogenes and Salmonella were rarely detected in evisceration, precooling, subdividing, and packing areas. Our study identified the levels of bioaerosols that may affect chicken product quality. This finding could be useful for improved control of microbial contamination to ensure product quality.

  3. Field Testing and Modeling of Supermarket Refrigeration Systems as a Demand Response Resource

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deru, Michael; Hirsch, Adam; Clark, Jordan

    Supermarkets offer a substantial demand response (DR) resource because of their high energy intensity and use patterns; however, refrigeration as the largest load has been challenging to access. Previous work has analyzed supermarket DR using heating, ventilating, and air conditioning; lighting; and anti-sweat heaters. This project evaluated and quantified the DR potential inherent in supermarket refrigeration systems in the Bonneville Power Administration service territory. DR events were carried out and results measured in an operational 45,590-ft2 supermarket located in Hillsboro, Oregon. Key results from the project include the rate of temperature increase in freezer reach-in cases and walk-ins when refrigerationmore » is suspended, the load shed amount for DR tests, and the development of calibrated models to quantify available DR resources. Simulations showed that demand savings of 15 to 20 kilowatts (kW) are available for 1.5 hours for a typical store without precooling and for about 2.5 hours with precooling using only the low-temperature, non-ice cream cases. This represents an aggregated potential of 20 megawatts within BPA's service territory. Inability to shed loads for medium-temperature (MT) products because of the tighter temperature requirements is a significant barrier to realizing larger DR for supermarkets. Store owners are reluctant to allow MT case set point changes, and laboratory tests of MT case DR strategies are needed so that owners become comfortable testing, and implementing, MT case DR. The next-largest barrier is the lack of proper controls in most supermarket displays over ancillary equipment, such as anti-sweat heaters, lights, and fans.« less

  4. Application of a run around coil system to a roof fan house at Michoud Assembly Facility at New Orleans, Louisiana

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Analysis of the proposed run around coil system indicates that it offers a decrease in steam, electricity and water consumptions. The run around coil system consist of two coils, a precooling coil which will be located at up stream and a reheating coil which will be located at down stream of the chilled water spray chamber. This system will provide the necessary reheat in summer, spring and fall. At times, if the run around coil system can not provide the necessary reheat, the existing reheat coil could be utilized.

  5. Multi-objective Optimization on Helium Liquefier Using Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Wang, H. R.; Xiong, L. Y.; Peng, N.; Meng, Y. R.; Liu, L. Q.

    2017-02-01

    Research on optimization of helium liquefier is limited at home and abroad, and most of the optimization is single-objective based on Collins cycle. In this paper, a multi-objective optimization is conducted using genetic algorithm (GA) on the 40 L/h helium liquefier developed by Technical Institute of Physics and Chemistry of the Chinese Academy of Science (TIPC, CAS), steady solutions are obtained in the end. In addition, the exergy loss of the optimized system is studied in the case of with and without liquid nitrogen pre-cooling. The results have guiding significance for the future design of large helium liquefier.

  6. Rapid in vitro propagation, conservation and analysis of genetic stability of Viola pilosa.

    PubMed

    Soni, Madhvi; Kaur, Rajinder

    2014-01-01

    A protocol for in vitro propagation was developed for Viola pilosa, a plant of immense medicinal value. To start with in vitro propagation, the sterilized explants (buds) were cultured on MS basal medium supplemented with various concentrations of growth regulators. One of the medium compositions MS basal + 0.5 mg/l BA + 0.5 mg/l TDZ + 0.5 mg/l GA3 gave best results for in vitro shoot bud establishment. Although the problem of shoot vitrification occurred on this medium but this was overcome by transferring the vitrified shoots on MS medium supplemented with 1 mg/l BA and 0.25 mg/l Kn. The same medium was found to be the best medium for further in vitro shoot multiplication. 100 % root induction from in vitro grown shoots was obtained on half strength MS medium supplemented with 1 mg/l IBA. In vitro formed plantlets were hardened and transferred to soil with 83 % survival. Additionally, conservation of in vitro multiplying shoots was also attempted using two different approaches namely slowing down the growth at low temperature and cryopreservation following vitrification. At low temperature retrieval rate was better at 10 °C than at 4 °C after conservation of in vitro multiplying shoots. In cryopreservation-vitrification studies, the vitrified shoot buds gave maximum retrieval of 41.66 % when they were precooled at 4 °C, while only 16.66 % vitrified shoots were retrieved from those precooled at 10 °C. Genetic stability of the in vitro grown plants was analysed by RAPD and ISSR markers which indicated no somaclonal variation among in vitro grown plants demonstrating the feasibility of using the protocol without any adverse genetical effects.

  7. Effect of cooling rate on sperm quality of cryopreserved Andalusian donkey spermatozoa.

    PubMed

    Demyda-Peyrás, S; Bottrel, M; Acha, D; Ortiz, I; Hidalgo, M; Carrasco, J J; Gómez-Arrones, V; Gósalvez, J; Dorado, J

    2018-06-01

    The aim of this study was to evaluate the effect of different cooling rates on post-thaw quality of cryopreserved donkey spermatozoa. Eighteen ejaculates from six adult Andalusian donkeys (three ejaculates per donkey) were collected using an artificial vagina. Pooled semen samples (two ejaculates per pool) were divided into three aliquots, and frozen in Gent freezing extender using three different cryopreservation protocols (P): P1 (conventional slow freezing, as control): semen pre-cooled in an Equitainer for 2 h and frozen in liquid nitrogen (LN 2 ) vapour; P2 (controlled pre-freeze cooling rate): semen pre-cooled at a controlled rate for 73 min and frozen in LN 2 vapour; and P3 (rapid freezing) semen frozen immediately in LN 2 vapour. After thawing at 37 °C for 30 s, semen samples were assessed for motility, morphology, acrosome and plasma membrane integrity; spermatozoa were also tested for DNA integrity. Significant (P < 0.01) differences were found between the cryopreservation protocols for all sperm parameters evaluated, except for DNA integrity. Semen samples frozen using P2 showed significantly (P < 0.01) higher values for sperm motility, morphology, sperm membrane integrity, and acrosome integrity. On the contrary, P3 reduced sperm motility (P < 0.01) and increased the percentage of spermatozoa with damaged plasma membrane (P < 0.001). In our study, we demonstrated that the sperm of Andalusian donkey is particularly sensitive to the cooling rate used before freezing. Furthermore, Andalusian donkey semen can be successfully cryopreserved using controlled cooling rates combined with freezing in LN 2 vapour. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Pre-cooling with intermittent ice ingestion lowers the core temperature in a hot environment as compared with the ingestion of a single bolus.

    PubMed

    Naito, Takashi; Ogaki, Tetsuro

    2016-07-01

    The timing in which ice is ingested may be important for optimizing its success. However, the effects of differences in the timing of ice ingestion has not been studied in resting participants. Therefore, the purpose of this study was to investigate the effects of differences in the timing of ice ingestion on rectal temperature (Tre) and rating of perceptual sensation in a hot environment. Seven males ingested 1.25gkg(-1) of crushed ice (ICE1.25: 0.5°C) or cold water (CON: 4°C) every 5min for 30min, or were given 7.5gkgBM(-1) of crushed ice (ICE7.5) to consume for 30min in a hot environment (35°C, 30% relative humidity). The participants then remained at rest for 1h. As physiological indices, Tre, body mass and urine specific gravity were measured. Rating of thermal sensation was measured at 5-min intervals throughout the experiment. ICE1.25 continued to decrease Tre until approximately 50min, and resulted in a greater reduction in Tre (-0.56±0.20°C) than ICE7.5 (-0.41±0.14°C). Tre was reduced from 40 to 75min by ICE1.25, which is a significant reduction in comparison to ICE7.5 (p<.05). Mean RTS with ICE1.25 at 50-65min was significantly lower than that with ICE7.5 (p<.05). These results suggest that pre-cooling with intermittent ice ingestion is a more effective strategy both for lowering the Tre and for the rating of thermal sensation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Assessment of Cognitive Processing by Multiple Sclerosis Patients Using Electroencephalographic Energy Density Analysis

    NASA Technical Reports Server (NTRS)

    Montgomery, Leslie D.; Ku, Yu-Tsuan E.; Luna, Bernadette; Montgomery, Richard W.; Kliss, Mark (Technical Monitor)

    1997-01-01

    Recent neuropsychological studies demonstrate that cognitive dysfunction is a common symptom in patients with multiple sclerosis. In many cases the presence of cognitive impairment affects the patient's daily activities to a greater extent than would be found due to their physical disability alone. Cognitive dysfunction can have a significant impact on the quality of life of both the patient and that of their primary caregiver. Two cognitively impaired male MS patients were given a visual discrimination task before and after a one hour cooling period. The subjects were presented a series of either red or blue circles or triangles. One of these combinations, or one fourth of the stimuli, was designated as the "target" presentation. EEG was recorded from 20 scalp electrodes using a Tracor Northern 7500 EEG/ERP system. Oral and ear temperatures were obtained and recorded manually every five minutes during the one hour cooling period. The EEG ERP signatures from each series of stimuli were analyzed in the energy density domain to determine the locus of neural activity at each EEG sampling time. The first subject's ear temperature did not decrease during the cooling period. It was actually elevated approximately 0.05C by the end of the cooling period compared to his mean of control period value. In turn, Subject One's discrimination performance and cortical energy remained essentially the same after body cooling. In contrast, Subject Two's ear temperature decreased approx. 0.8C during his cooling period. Subject Two's ERROR score decreased from 12 during the precooling control period to 2 after cooling. His ENERGY value increased approximately 300%, from a precooling value of approximately 200 to a postcooling value of nearly 600.

  10. Support of NASA ADR/ Cross-Enterprise NRA Advanced Adiabatic Demagnetization Refrigerators for Continuous Cooling from 10K to 50mK, Development of a Heat Switch

    NASA Technical Reports Server (NTRS)

    Richards, Paul L.

    2005-01-01

    Mechanical heat switches are used in conjunction with sorption refrigerators, adiabatic demagnetization refrigerators and for other cryogenic tasks including the pre-cooling cryogenic systems. They use a mechanical actuator which closes Au plated Cu jaws on an Au plated Cu bar. The thermal conductance in the closed position is essentially independent of the area of the jaws and proportional to the force applied. It varies linearly with T. It is approximately 10mW/K for 200 N at 1.5K. In some applications, the heat switch can be driven from outside the cryostat by a rotating rod and a screw. Such heat switches are available commercially from several sources. In other applications, including systems for space, it is desirable to drive the switch using a cold linear motor, or solenoid. Superconducting windings are used at temperatures s 4.2K to minimize power dissipation, but are not appropriate for pre-cooling a system at higher temperatures. This project was intended to improve the design of solenoid activated mechanical heat switches and to provide such switches as required to support the development of Advanced Adiabatic Demagnetization Refrigerators for Continuous Cooling from 10 K to 50 mK at GSFC. By the time funding began in 5/1/01, the immediate need for mechanical heat switches at GSFC had subsided but, at the same time, the opportunity had arisen to improve the design of mechanical heat switching by incorporating a "latching solenoid". In this device, the solenoid current is required only for changing the state of the switch and not during the whole time that the switch is closed.

  11. Improving the ablation efficiency of excimer laser systems with higher repetition rates through enhanced debris removal and optimized spot pattern.

    PubMed

    Arba-Mosquera, Samuel; Klinner, Thomas

    2014-03-01

    To evaluate the reasons for the required increased radiant exposure for higher-repetition-rate excimer lasers and determine experimentally possible compensations to achieve equivalent ablation profiles maintaining the same single-pulse energies and radiant exposures for laser repetition rates ranging from 430 to 1000 Hz. Schwind eye-tech-solutions GmbH and Co. KG, Kleinostheim, Germany. Experimental study. Poly(methyl methacrylate) (PMMA) plates were photoablated. The pulse laser energy was maintained during all experiments; the effects of the flow of the debris removal, the shot pattern for the correction, and precooling the PMMA plates were evaluated in terms of achieved ablation versus repetition rate. The mean ablation performance ranged from 88% to 100%; the variability between the profile measurements ranged from 1.4% to 6.2%. Increasing the laser repetition rate from 430 Hz to 1000 Hz reduced the mean ablation performance from 98% to 91% and worsened the variability from 1.9% to 4.3%. Increasing the flow of the debris removal, precooling the PMMA plates to -18°C, and adapting the shot pattern for the thermal response of PMMA to excimer ablation helped stabilize the variability. Only adapting the shot pattern for the thermal response of PMMA to excimer ablation helped stabilize the mean ablation performance. The ablation performance of higher-repetition-rate excimer lasers on PMMA improved with improvements in the debris removal systems and shot pattern. More powerful debris removal systems and smart shot patterns in terms of thermal response improved the performance of these excimer lasers. Copyright © 2014 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  12. Cutaneous vascular and core temperature responses to sustained cold exposure in hypoxia.

    PubMed

    Simmons, Grant H; Barrett-O'Keefe, Zachary; Minson, Christopher T; Halliwill, John R

    2011-10-01

    We tested the effect of hypoxia on cutaneous vascular regulation and defense of core temperature during cold exposure. Twelve subjects had two microdialysis fibres placed in the ventral forearm and were immersed to the sternum in a bathtub on parallel study days (normoxia and poikilocapnic hypoxia with an arterial O(2) saturation of 80%). One fibre served as the control (1 mM propranolol) and the other received 5 mM yohimbine (plus 1 mM propranolol) to block adrenergic receptors. Skin blood flow was assessed at each site (laser Doppler flowmetry), divided by mean arterial pressure to calculate cutaneous vascular conductance (CVC), and scaled to baseline. Cold exposure was first induced by a progressive reduction in water temperature from 36 to 23°C over 30 min to assess cutaneous vascular regulation, then by clamping the water temperature at 10°C for 45 min to test defense of core temperature. During normoxia, cold stress reduced CVC in control (-44 ± 4%) and yohimbine sites (-13 ± 7%; both P < 0.05 versus precooling). Hypoxia caused vasodilatation prior to cooling but resulted in greater reductions in CVC in control (-67 ± 7%) and yohimbine sites (-35 ± 11%) during cooling (both P < 0.05 versus precooling; both P < 0.05 versus normoxia). Core cooling rate during the second phase of cold exposure was unaffected by hypoxia (-1.81 ± 0.23°C h(-1) in normoxia versus -1.97 ± 0.33°C h(-1) in hypoxia; P > 0.05). We conclude that hypoxia increases cutaneous (non-noradrenergic) vasoconstriction during prolonged cold exposure, while core cooling rate is not consistently affected.

  13. Anti-icing properties of superhydrophobic ZnO/PDMS composite coating

    NASA Astrophysics Data System (ADS)

    Yang, Chao; Wang, Fajun; Li, Wen; Ou, Junfei; Li, Changquan; Amirfazli, Alidad

    2016-01-01

    We present the excellent anti-icing performance for a superhydrophobic coating surface based on ZnO/polydimethylsiloxane (ZnO/PDMS) composite. The superhydrophobic ZnO/PDMS coating surface was prepared by a facile solution mixing, drop coating, room-temperature curing and surface abrading procedure. The superhydrophobic ZnO/PDMS composite coating possesses a water contact angle of 159.5° and a water sliding angle of 8.3° at room temperature (5 °C). The anti-icing properties of the superhydrophobic coating were investigated by continuously dropping cold-water droplets (about 0 °C) onto the pre-cooled surface using a home-made apparatus. The sample was placed at different tilting angle (0° and 10°) and pre-cooled to various temperatures (-5, -10 and -15 °C) prior to measure. The pure Al surface was also studied for comparison. It was found that icing accretion on the surface could be reduced apparently because the water droplets merged together and slid away from the superhydrophobic surface at all of the measuring temperatures when the surface is horizontally placed. In addition, water droplet slid away completely from the superhydrophobic surface at -5 and -10 °C when the surface is tilted at 10°, which demonstrates its excellent anti-icing properties at these temperatures. When the temperature decreased to -15 °C, though ice accretion on the tilted superhydrophobic coating surface could not be avoided absolutely, the amount of ice formed on the surface is very small, which indicated that the coating surface with superhydrophobicity could significantly reduce ice accumulation on the surface at very low temperature (-15 °C). Importantly, the sample is also stable against repeated icing/deicing cycles. More meaningfully, once the superhydrophobic surface is damaged, it can be repaired easily and rapidly.

  14. Heat pipes for terrestrial applications in dehumidification systems

    NASA Technical Reports Server (NTRS)

    Khattar, Mukesh K.

    1988-01-01

    A novel application of heat pipes which greatly enhances dehumidification performance of air-conditioning systems is presented. When an air-to-air heat pipe heat exchanger is placed between the warm return air and cold supply air streams of an air conditioner, heat is efficiently transferred from the return air to the supply air. As the warm return air precools during this process, it moves closer to its dew-point temperature. Therefore, the cooling system works less to remove moisture. This paper discusses the concept, its benefits, the challenges of incorporating heat pipes in an air-conditioning system, and the preliminary results from a field demonstration of an industrial application.

  15. Experimental study on natural circulation precooling of cryogenic pump system with gas phase inlet reflux configuration

    NASA Astrophysics Data System (ADS)

    Chen, G. B.; Zhong, Y. K.; Zheng, X. L.; Li, Q. F.; Xie, X. M.; Gan, Z. H.; Huang, Y. H.; Tang, K.; Kong, B.; Qiu, L. M.

    2003-12-01

    A novel gas-phase inlet configuration in the natural circulation system instead of the liquid-phase inlet is introduced to cool down a cryogenic pump system from room temperature to cryogenic temperatures, effectively. The experimental apparatus is illustrated and test process is described. Heat transfer and pressure drop data during the cool-down process are recorded and portrayed. By contrast with liquid-phase inlet configuration, experimental results demonstrate that the natural circulation with the gas-phase inlet configuration is an easier and more controllable way to cool down the pump system and maintain it at cryogenic temperatures.

  16. Air Conditioner/Dehumidifier

    NASA Technical Reports Server (NTRS)

    1986-01-01

    An ordinary air conditioner in a very humid environment must overcool the room air, then reheat it. Mr. Dinh, a former STAC associate, devised a heat pipe based humidifier under a NASA Contract. The system used heat pipes to precool the air; the air conditioner's cooling coil removes heat and humidity, then the heat pipes restore the overcooled air to a comfortable temperature. The heat pipes use no energy, and typical savings are from 15-20%. The Dinh Company also manufactures a "Z" coil, a retrofit cooling coil which may be installed on an existing heater/air conditioner. It will also provide free hot water. The company has also developed a photovoltaic air conditioner and solar powered water pump.

  17. Wind Tunnel Test of Mach 5 Class Hypersonic Airplane

    NASA Astrophysics Data System (ADS)

    Nakatani, Hiroki; Taguchi, Hideyuki; Fujita, Kazuhisa; Shindo, Shigemi; Honami, Shinji

    JAXA is currently performing studies on a Hypersonic Turbojet Experimental Vehicle, which involve a hypersonic flight test of a Small Pre-cooled Turbojet Engine. The aerodynamic performance of this airplane was examined at the JAXA hypersonic, supersonic, and transonic wind tunnel facilities. The 6-degrees-of-freedom forces and pressure distribution around the model were measured and evaluated. This airplane satisfies the lift-to-drag ratio requirement for a flight test at Mach 5. In addition, the results indicate that this airplane has longitudinal and directional static stability if the moment reference point is x/l smaller than 0.35. A separation occurs at the external expanding nozzle. Therefore, a redesign is necessary to solve these problems.

  18. Turbofan Engine Core Compartment Vent Aerodynamic Configuration Development Methodology

    NASA Technical Reports Server (NTRS)

    Hebert, Leonard J.

    2006-01-01

    This paper presents an overview of the design methodology used in the development of the aerodynamic configuration of the nacelle core compartment vent for a typical Boeing commercial airplane together with design challenges for future design efforts. Core compartment vents exhaust engine subsystem flows from the space contained between the engine case and the nacelle of an airplane propulsion system. These subsystem flows typically consist of precooler, oil cooler, turbine case cooling, compartment cooling and nacelle leakage air. The design of core compartment vents is challenging due to stringent design requirements, mass flow sensitivity of the system to small changes in vent exit pressure ratio, and the need to maximize overall exhaust system performance at cruise conditions.

  19. Optimal design of gas adsorption refrigerators for cryogenic cooling

    NASA Technical Reports Server (NTRS)

    Chan, C. K.

    1983-01-01

    The design of gas adsorption refrigerators used for cryogenic cooling in the temperature range of 4K to 120K was examined. The functional relationships among the power requirement for the refrigerator, the system mass, the cycle time and the operating conditions were derived. It was found that the precool temperature, the temperature dependent heat capacities and thermal conductivities, and pressure and temperature variations in the compressors have important impacts on the cooling performance. Optimal designs based on a minimum power criterion were performed for four different gas adsorption refrigerators and a multistage system. It is concluded that the estimates of the power required and the system mass are within manageable limits in various spacecraft environments.

  20. Crushed Ice Ingestion Does Not Improve Female Cycling Time Trial Performance in the Heat.

    PubMed

    Zimmermann, Matthew; Landers, Grant Justin; Wallman, Karen Elizabeth

    2017-02-01

    This study examined the effects of precooling via ice ingestion on female cycling performance in hot, humid conditions. Ten female endurance athletes, mean age (28 ± 6 y), height (167.6 ± 6.5 cm) and body-mass (68.0 ± 11.5 kg) participated in the study. Participants completed an 800 kJ cycle time-trial in hot, humid conditions (34.9 ± 0.3 °C, 49.8 ± 3.5% RH). This was preceded by the consumption of 7 g∙kg -1 of crushed ice (ICE) or water (CON). There was no difference in performance time (CON 3851 ± 449 s; ICE 3767 ± 465 s), oxygen consumption (CON 41.6 ± 7.0 ml∙kg∙min -1 ; ICE 42.4 ± 6.0 ml∙kg∙min -1 ) or respiratory exchange ratio (CON 0.88 ± 0.05; ICE 0.90 ± 0.06) between conditions (p > .05, d < 0.5). Core and skin temperature following the precooling period were lower in ICE (T c 36.4 ± 0.4 °C; T sk 31.6 ± 1.2 °C) compared with CON (T c 37.1 ± 0.4 °C; T sk 32.4 ± 0.7 °C) and remained lower until the 100 kJ mark of the cycle time-trial (p < .05, d > 1.0). Sweat onset occurred earlier in CON (228 ± 113 s) compared with ICE (411 ± 156 s) (p < .05, d = 1.63). Mean thermal sensation (CON 1.8 ± 2.0; ICE 1.2 ± 2.5, p < .05, d = 2.51), perceived exertion (CON 15.3 ± 2.9; ICE 14.9 ± 3.0, p < .05, d = 0.38) and perceived thirst (CON 5.6 ± 2.2; ICE 4.6 ± 2.4, p < .05, d = 0.98) were lower in ICE compared with CON. Crushed ice ingestion did not improve cycling performance in females, although perceptual responses were reduced.

  1. Use of thermal imagery for estimation of core body temperature during precooling, exertion, and recovery in wildland firefighter protective clothing.

    PubMed

    Bourlai, Thirimachos; Pryor, Riana R; Suyama, Joe; Reis, Steven E; Hostler, David

    2012-01-01

    Monitoring core body temperature to identify heat stress in first responders and in individuals participating in mass gatherings (e.g., marathons) is difficult. This study utilized high-sensitivity thermal imaging technology to predict the core temperature of human subjects at a distance while performing simulated field operations wearing thermal protective garments. Six male subjects participating in a study of precooling prior to exertion in wildland firefighter thermal protective clothing had thermal images of the face captured with a high-resolution thermal imaging camera concomitant with measures of core and skin temperature before, during, and after treadmill exercise in a heated room. Correlations and measures of agreement between core temperature and thermal imaging-based temperature were performed. The subjects walked an average (± standard deviation) of 42.6 (±5.9) minutes and a distance of 4.2 (±0.6) km on the treadmill. Mean heart rate at the end of exercise was 152 (±33) bpm and core body temperature at the end of exercise was 38.3°C (±0.7°C). A visual relationship and a strong correlation between core temperature and thermal imaging of the face were identified in all subjects, with the closest relationship and best agreement occurring during exercise. The Bland-Altman test of agreement during exercise revealed the majority of measurement pairs to be within two standard deviations of the measured temperature. High-resolution thermal imaging in the middle-wave infrared spectrum (3-5 μm) can be used to accurately estimate core body temperature during exertion in a hot room while participants are wearing wildland firefighting garments. Although this technology is promising, it must be refined. Using alternative measurement sites such as the skin over the carotid artery, using multiple measurement sites, or adding pulse detection may improve the estimation of body temperature by thermal imagery.

  2. Specification of the 2nd cryogenic plant for RAON

    NASA Astrophysics Data System (ADS)

    Yoon, S.; Ki, T.; Lee, K. W.; Kim, Y.; Jo, H. C.; Kim, D. G.

    2017-12-01

    RAON is a rare isotope beam facility being built at Daejeon, South Korea. The RAON consists of three linear accelerators, SCL1 (1st SuperConducting LINAC), SCL2, and SCL3. Each LINAC has its own cryogenic plant. The cryogenic plant for SCL2 will provide the cooling for cryomodules, low temperature SC magnets, high temperature SC magnets, and a cryogenic distribution system. This paper describes the specification of the plant including cooling capacity, steady state and transient operation modes, and cooling strategies. In order to reduce CAPEX with the specification, two suppliers will consider no liquid nitrogen pre-cooling, one integrated cold box, and one back-up HP compressor. The detail design of the plant will be started at the end of this year.

  3. Optimum Design of Hypersonic Airbreathing Propulsion

    NASA Astrophysics Data System (ADS)

    Kobayashi, Hiroaki; Sato, Tetsuya; Tanatsugu, Nobuhiro

    The flight of Spaceplane is always under accelarating in the assent way and always under decelarating in the desent way and yet cruising in the return way. Besides, its flight envelope is considerably wider than that of airplane. Thus the integrated design method is required to build the best transportation system optimized taking into account the propulsion system and the airframe under the entire flight conditions. In this paper it is shown an optimization method on TSTO spaceplane system. Genetic algorithm (GA) was applied to optimize design parameters of engine, airframe, and trajectory simultaneously. Several types of engine were quantitatively compared using payload ratio as an evaluating function. It was concluded that precooled turbojets is the most promising engine for TSTO among Turbine Based Combined Cycle (TBCC) engines.

  4. Cooling-capacity characteristics of Helium-4 JT cryocoolers

    NASA Astrophysics Data System (ADS)

    Wang, Y. L.; Liu, D. L.; Gan, Z. H.; Guo, Y. X.; Shen, Y. W.; Chen, S. F.

    2017-12-01

    Cooling capacity of a Helium-4 JT cryocooler may be achieved at a temperature higher than liquid helium temperature. The latent cooling capacity, which should be obtained at liquid helium temperature, is defined as a special part of cooling capacity. With the thermodynamic analysis on steady working conditions of a Helium-4 JT cryocooler, its cooling capacity and temperature characteristics are presented systematically. The effects of precooling temperature and high pressure on the cooling capacity and latent cooling capacity are illustrated. Furthermore, the JT cryocoolers using hydrogen and neon as the working fluids are also discussed. It is shown that helium JT cryocooler has a special cooling capacity characteristic which does not exist in JT cryocoolers using other pure working fluids.

  5. [Male infertility. Current life style could be responsible for infertility].

    PubMed

    Jung, A; Schill, W B

    2000-09-14

    Optimal spermatogenesis requires the testicles to be at a lower temperature than the body core. This is achieved by the following factors:--Blood in the testicular artery is precooled by the surrounding veins of the plexus pampiniformis; nevertheless, high fever results in substantial warming of the testicles;--Heat loss via the scrotal skin, with tight-fitting, thermally insulating clothing or obesity having an unfavorable effect;--increased circulation of air around the genitals on physical activity;--High temperature gradient to the environment when ambient temperatures are low. If the combination of these factors is unfavorable, disturbed spermatogenesis and fertility may result, which, however, is usually reversible. Likewise, electromagnetic waves may impair spermatogenesis by heat induction in the testicles, but only when exposure is excessive.

  6. Emerging hypersonic propulsion technology

    NASA Technical Reports Server (NTRS)

    Curran, E. T.; Beach, H. L., Jr.

    1988-01-01

    Currently there is a renewal of interest in the utilization of air breathing engines for hypersonic flight. The use of such engines in accelerative missions is discussed, and the nature of the trade-off between engine thrust-to-weight ratio and specific impulse is highlighted. It is also pointed out that the use of a cryogenic fuel such as liquid hydrogen offers the opportunity to develop both precooled derivatives of turboaccelerator engines and new cryogenic engine cycles, where the heat exchange process plays a significant role in the engine concept. The continuing challenges of developing high speed supersonic combustion ramjet engines are discussed. The paper concludes with a brief review of the difficult discipline of vehicle integration, and the challenges of both ground and flight testing.

  7. Collisions between ultracold metastable He atoms

    NASA Astrophysics Data System (ADS)

    Woestenenk, G.; Mastwijk, H. C.; Thomsen, J. W.; vna der Straten, P.; Pieksma, M.; van Rijnbach, M.; Niehaus, A.

    1999-06-01

    We present experimental data on collisions between excited He-atoms occurring in a magneto-optical trap (MOT) at a temperature of 1.1 mK. He(2 3S)-atoms produced in a discharge are pre-cooled and trapped using the He(2 3S)-He(2 3P 2) transition for laser manipulation. Measurements of the Penning ionization rate as a function of the MOT-laser frequency are presented and theoretically analyzed. The analysis, based on a model which is presented in detail for the first time, leads to a good understanding of the complex nature of optical collisions. Further, first and preliminary measurements of the kinetic energy distributions of He 2+- and He +-ions formed by Penning ionization in optical collisions are presented.

  8. A general computer model for predicting the performance of gas sorption refrigerators

    NASA Technical Reports Server (NTRS)

    Sigurdson, K. B.

    1983-01-01

    Projected performance requirements for cryogenic spacecraft sensor cooling systems which demand higher reliability and longer lifetimes are outlined. The gas/solid sorption refrigerator is viewed as a potential solution to cryogenic cooling needs. A software model of an entire gas sorption refrigerator system was developed. The numerical model, evaluates almost any combination and order of refrigerator components and any sorbent-sorbate pair or which the sorption isotherm data are available. Parametric curves for predicting system performance were generated for two types of refrigerators, a LaNi5-H2 absorption cooler and a Charcoal-N2 adsorption cooler. It is found that precooling temperature and heat exchanger effectiveness affect the refrigerator performance. It is indicated that gas sorption refrigerators are feasible for a number of space applications.

  9. Diode Laser Ear Piercing: A Novel Technique.

    PubMed

    Suseela, Bibilash Babu; Babu, Preethitha; Chittoria, Ravi Kumar; Mohapatra, Devi Prasad

    2016-01-01

    Earlobe piercing is a common office room procedure done by a plastic surgeon. Various methods of ear piercing have been described. In this article, we describe a novel method of laser ear piercing using the diode laser. An 18-year-old female patient underwent an ear piercing using a diode laser with a power of 2.0 W in continuous mode after topical local anaesthetic and pre-cooling. The diode laser was fast, safe, easy to use and highly effective way of ear piercing. The advantages we noticed while using the diode laser over conventional methods were more precision, minimal trauma with less chances of hypertrophy and keloids, no bleeding with coagulation effect of laser, less time taken compared to conventional method and less chance of infection due to thermal heat effect of laser.

  10. Activated Carbon-hydrogen based Continuous Sorption Cooling in Single Adsorbent Bed with LN2 Heat Sink

    NASA Astrophysics Data System (ADS)

    Koley, Susmita; Ghosh, Indranil

    Quick and periodic inflow-outflow of adsorbate in an adsorbent column createsa differential temperature between the two ends of it, allowing for the generation of continuous sorption cooling in a single adsorbent tube. The concept has been proven experimentally and theoretically for near room temperature applications using activated carbon-nitrogen. The feasibility of generating continuous solid sorption cooling in a single adsorbent tube in the cryogenic domainhas been studied theoretically with a different adsorbent-adsorbate pair, namely, activated carbon-hydrogen. Precooling of gaseous hydrogen (before it enters the adsorbent column) and removal of the heat of adsorption has been achieved using liquid nitrogen. Theoretical estimation shows nearly 20 K temperature difference between the two ends under no load condition. Finally, parametric variations have been performed.

  11. Hydronic rooftop cooling systems

    DOEpatents

    Bourne, Richard C [Davis, CA; Lee, Brian Eric [Monterey, CA; Berman, Mark J [Davis, CA

    2008-01-29

    A roof top cooling unit has an evaporative cooling section that includes at least one evaporative module that pre-cools ventilation air and water; a condenser; a water reservoir and pump that captures and re-circulates water within the evaporative modules; a fan that exhausts air from the building and the evaporative modules and systems that refill and drain the water reservoir. The cooling unit also has a refrigerant section that includes a compressor, an expansion device, evaporator and condenser heat exchangers, and connecting refrigerant piping. Supply air components include a blower, an air filter, a cooling and/or heating coil to condition air for supply to the building, and optional dampers that, in designs that supply less than 100% outdoor air to the building, control the mixture of return and ventilation air.

  12. Scalable loading of a two-dimensional trapped-ion array

    PubMed Central

    Bruzewicz, Colin D.; McConnell, Robert; Chiaverini, John; Sage, Jeremy M.

    2016-01-01

    Two-dimensional arrays of trapped-ion qubits are attractive platforms for scalable quantum information processing. Sufficiently rapid reloading capable of sustaining a large array, however, remains a significant challenge. Here with the use of a continuous flux of pre-cooled neutral atoms from a remotely located source, we achieve fast loading of a single ion per site while maintaining long trap lifetimes and without disturbing the coherence of an ion quantum bit in an adjacent site. This demonstration satisfies all major criteria necessary for loading and reloading extensive two-dimensional arrays, as will be required for large-scale quantum information processing. Moreover, the already high loading rate can be increased by loading ions in parallel with only a concomitant increase in photo-ionization laser power and no need for additional atomic flux. PMID:27677357

  13. Materials, Turbomachinery and Heat Exchangers for Supercritical CO2 Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Mark; Nellis, Greg; Corradini, Michael

    2012-10-19

    The objective of this project is to produce the necessary data to evaluate the performance of the supercritical carbon dioxide cycle. The activities include a study of materials compatibility of various alloys at high temperatures, the heat transfer and pressure drop in compact heat exchanger units, and turbomachinery issues, primarily leakage rates through dynamic seals. This experimental work will serve as a test bed for model development and design calculations, and will help define further tests necessary to develop high-efficiency power conversion cycles for use on a variety of reactor designs, including the sodium fast reactor (SFR) and very high-temperaturemore » gas reactor (VHTR). The research will be broken into three separate tasks. The first task deals with the analysis of materials related to the high-temperature S-CO{sub 2} Brayton cycle. The most taxing materials issues with regard to the cycle are associated with the high temperatures in the reactor side heat exchanger and in the high-temperature turbine. The system could experience pressures as high as 20MPa and temperatures as high as 650°C. The second task deals with optimization of the heat exchangers required by the S-CO{sub 2} cycle; the S-CO{sub 2} flow passages in these heat exchangers are required whether the cycle is coupled with a VHTR or an SFR. At least three heat exchangers will be required: the pre-cooler before compression, the recuperator, and the heat exchanger that interfaces with the reactor coolant. Each of these heat exchangers is unique and must be optimized separately. The most challenging heat exchanger is likely the pre-cooler, as there is only about a 40°C temperature change but it operates close to the CO{sub 2} critical point, therefore inducing substantial changes in properties. The proposed research will focus on this most challenging component. The third task examines seal leakage through various dynamic seal designs under the conditions expected in the S-CO{sub 2} cycle, including supercritical, choked, and two-phase flow conditions.« less

  14. Challenging Pneumatic Requirements for Acoustic Testing of the Cryogenic Second Stage for the New Delta 3 Rocket

    NASA Technical Reports Server (NTRS)

    Webb, Andrew T.

    1998-01-01

    The paper describes the unique pneumatic test requirements for the acoustic and shock separation testing of the Second Stage for the new Delta III Rocket at the Goddard Space Flight Center in Greenbelt, Maryland. The testing was conducted in the 45,000 cu ft (25-feet wide by 30-feet deep by 50-foot high) Acoustic Facility. The acoustic testing required that the liquid oxygen (LOX) and liquid hydrogen (LH2) tanks be filled with enough liquid nitrogen (LN2) to simulate launch fuel masses during testing. The challenge for this test dealt with designing, procuring, and fabricating the pneumatic supply systems for quick assembly while maintaining the purity requirements and minimizing costs. The pneumatic systems were designed to fill and drain the both LOX and LH2 tanks as well as to operate the fill/drain and vent valves for each of the tanks. The test criteria for the pneumatic sub-systems consisted of function, cleanliness, availability, and cost. The first criteria, function, required the tanks to be filled and drained in an efficient manner while preventing them from seeing pressures greater than 9 psig which would add a pressure cycle to the tank. An LN2 tanker, borrowed from another NASA facility, served as the pre-cool and drain tanker. Pre-cooling the tanks allowed for more efficient and cost effective transfer from the LN2 delivery tankers. Helium gas, supplied from a high purity tube trailer, was used to pressurize the vapor space above the LN2 pushing it into the drain tanker. The tube trailer also supplied high pressure helium to the vehicle for valve control and component purges. Cleanliness was maintained by proper component selection, end-use particle filtration, and any on-site cleaning determined necessary by testing. In order to meet the availability/cost juggling act, products designed for LOX delivery systems were procured to ensure system compatibility while off the shelf valves and tubing designed for the semiconductor industry were procured for the gas systems.

  15. Investment appraisal of technology innovations on dairy farm electricity consumption.

    PubMed

    Upton, J; Murphy, M; De Boer, I J M; Groot Koerkamp, P W G; Berentsen, P B M; Shalloo, L

    2015-02-01

    The aim of this study was to conduct an investment appraisal for milk-cooling, water-heating, and milk-harvesting technologies on a range of farm sizes in 2 different electricity-pricing environments. This was achieved by using a model for electricity consumption on dairy farms. The model simulated the effect of 6 technology investment scenarios on the electricity consumption and electricity costs of the 3 largest electricity-consuming systems within the dairy farm (i.e., milk-cooling, water-heating, and milking machine systems). The technology investment scenarios were direct expansion milk-cooling, ice bank milk-cooling, milk precooling, solar water-heating, and variable speed drive vacuum pump-milking systems. A dairy farm profitability calculator was combined with the electricity consumption model to assess the effect of each investment scenario on the total discounted net income over a 10-yr period subsequent to the investment taking place. Included in the calculation were the initial investments, which were depreciated to zero over the 10-yr period. The return on additional investment for 5 investment scenarios compared with a base scenario was computed as the investment appraisal metric. The results of this study showed that the highest return on investment figures were realized by using a direct expansion milk-cooling system with precooling of milk to 15°C with water before milk entry to the storage tank, heating water with an electrical water-heating system, and using standard vacuum pump control on the milking system. Return on investment figures did not exceed the suggested hurdle rate of 10% for any of the ice bank scenarios, making the ice bank system reliant on a grant aid framework to reduce the initial capital investment and improve the return on investment. The solar water-heating and variable speed drive vacuum pump scenarios failed to produce positive return on investment figures on any of the 3 farm sizes considered on either the day and night tariff or the flat tariff, even when the technology costs were reduced by 40% in a sensitivity analysis of technology costs. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  16. Investigation of bypass fluid flow in an active magnetic regenerative liquefier

    DOE PAGES

    Holladay, Jamelyn; Teyber, Reed; Meinhardt, Kerry; ...

    2018-05-19

    Active magnetic regenerators (AMR) with second order magnetocaloric materials operating below the Curie temperature have a unique property where the magnetized specific heat is lower than the demagnetized specific heat. The associated thermal mass imbalance allows a fraction of heat transfer fluid in the cold heat exchanger to bypass the magnetized regenerator. This cold bypassed fluid can precool a process stream as it returns to the hot side, thereby increasing the efficiency of liquefaction and reducing the cost of liquid cryogens. In the present work, the net cooling power of an active magnetic regenerative liquefier is investigated as a functionmore » of the bypass flow fraction. In conclusion, experiments are performed at a fixed temperature span yielding a 30% improvement in net cooling power, affirming the potential of bypass flow in active magnetic regenerative liquefiers.« less

  17. Investigation of bypass fluid flow in an active magnetic regenerative liquefier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holladay, Jamelyn; Teyber, Reed; Meinhardt, Kerry

    Active magnetic regenerators (AMR) with second order magnetocaloric materials operating below the Curie temperature have a unique property where the magnetized specific heat is lower than the demagnetized specific heat. The associated thermal mass imbalance allows a fraction of heat transfer fluid in the cold heat exchanger to bypass the magnetized regenerator. This cold bypassed fluid can precool a process stream as it returns to the hot side, thereby increasing the efficiency of liquefaction and reducing the cost of liquid cryogens. In the present work, the net cooling power of an active magnetic regenerative liquefier is investigated as a functionmore » of the bypass flow fraction. Experiments are performed at a fixed temperature span yielding a 30% improvement in net cooling power, affirming the potential of bypass flow in active magnetic regenerative liquefiers.« less

  18. Investigation of bypass fluid flow in an active magnetic regenerative liquefier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holladay, Jamelyn; Teyber, Reed; Meinhardt, Kerry

    Active magnetic regenerators (AMR) with second order magnetocaloric materials operating below the Curie temperature have a unique property where the magnetized specific heat is lower than the demagnetized specific heat. The associated thermal mass imbalance allows a fraction of heat transfer fluid in the cold heat exchanger to bypass the magnetized regenerator. This cold bypassed fluid can precool a process stream as it returns to the hot side, thereby increasing the efficiency of liquefaction and reducing the cost of liquid cryogens. In the present work, the net cooling power of an active magnetic regenerative liquefier is investigated as a functionmore » of the bypass flow fraction. In conclusion, experiments are performed at a fixed temperature span yielding a 30% improvement in net cooling power, affirming the potential of bypass flow in active magnetic regenerative liquefiers.« less

  19. Thermodynamic design of natural gas liquefaction cycles for offshore application

    NASA Astrophysics Data System (ADS)

    Chang, Ho-Myung; Lim, Hye Su; Choe, Kun Hyung

    2014-09-01

    A thermodynamic study is carried out for natural gas liquefaction cycles applicable to offshore floating plants, as partial efforts of an ongoing governmental project in Korea. For offshore liquefaction, the most suitable cycle may be different from the on-land LNG processes under operation, because compactness and simple operation are important as well as thermodynamic efficiency. As a turbine-based cycle, closed Claude cycle is proposed to use NG (natural gas) itself as refrigerant. The optimal condition for NG Claude cycle is determined with a process simulator (Aspen HYSYS), and the results are compared with fully-developed C3-MR (propane pre-cooled mixed refrigerant) JT cycles and various N2 (nitrogen) Brayton cycles in terms of efficiency and compactness. The newly proposed NG Claude cycle could be a good candidate for offshore LNG processes.

  20. Capacity enhancement of indigenous expansion engine based helium liquefier

    NASA Astrophysics Data System (ADS)

    Doohan, R. S.; Kush, P. K.; Maheshwari, G.

    2017-02-01

    Development of technology and understanding for large capacity helium refrigeration and liquefaction at helium temperature is indispensable for coming-up projects. A new version of helium liquefier designed and built to provide approximately 35 liters of liquid helium per hour. The refrigeration capacity of this reciprocating type expansion engine machine has been increased from its predecessor version with continuous improvement and deficiency debugging. The helium liquefier has been built using components by local industries including cryogenic Aluminum plate fin heat exchangers. Two compressors with nearly identical capacity have been deployed for the operation of system. Together they consume about 110 kW of electric power. The system employs liquid Nitrogen precooling to enhance liquid Helium yield. This paper describes details of the cryogenic expander design improvements, reconfiguration of heat exchangers, performance simulation and their experimental validation.

  1. Design and Testing of the Contra-Rotating Turbine for the Scimitar Precooled Mach 5 Cruise Engine

    NASA Astrophysics Data System (ADS)

    Varvill, R.; Paniagua, G.; Kato, H.; Thatcher, M.

    tion chamber and subsequent expansion through the main noz- zle to produce thrust. In subsonic flight it becomes the gas generator driving a high bypass ratio ducted fan through a hub turbine, the exhaust mixing with the duct flow and discharging through the bypass nozzle to produce thrust. In both modes the turbo-compressor is driven by a helium turbine which has contra rotating stages to improve its efficiency at low rotational speed and reduce the number of stages required. Due to the large speed of sound mismatch between the air compressor and the helium turbine it is possible to eliminate the turbine stators by contra rotating the spools. The compressor is divided into low pressure and high pressure spools although by normal gas turbine standards they are both low pressure ratio machines.

  2. ESS Cryogenic System Process Design

    NASA Astrophysics Data System (ADS)

    Arnold, P.; Hees, W.; Jurns, J.; Su, X. T.; Wang, X. L.; Weisend, J. G., II

    2015-12-01

    The European Spallation Source (ESS) is a neutron-scattering facility funded and supported in collaboration with 17 European countries in Lund, Sweden. Cryogenic cooling at ESS is vital particularly for the linear accelerator, the hydrogen target moderators, a test stand for cryomodules, the neutron instruments and their sample environments. The paper will focus on specific process design criteria, design decisions and their motivations for the helium cryoplants and auxiliary equipment. Key issues for all plants and their process concepts are energy efficiency, reliability, smooth turn-down behaviour and flexibility. The accelerator cryoplant (ACCP) and the target moderator cryoplant (TMCP) in particular need to be prepared for a range of refrigeration capacities due to the intrinsic uncertainties regarding heat load definitions. Furthermore the paper addresses questions regarding process arrangement, 2 K cooling methodology, LN2 precooling, helium storage, helium purification and heat recovery.

  3. Aseptic minimum volume vitrification technique for porcine parthenogenetically activated blastocyst.

    PubMed

    Lin, Lin; Yu, Yutao; Zhang, Xiuqing; Yang, Huanming; Bolund, Lars; Callesen, Henrik; Vajta, Gábor

    2011-01-01

    Minimum volume vitrification may provide extremely high cooling and warming rates if the sample and the surrounding medium contacts directly with the respective liquid nitrogen and warming medium. However, this direct contact may result in microbial contamination. In this work, an earlier aseptic technique was applied for minimum volume vitrification. After equilibration, samples were loaded on a plastic film, immersed rapidly into factory derived, filter-sterilized liquid nitrogen, and sealed into sterile, pre-cooled straws. At warming, the straw was cut, the filmstrip was immersed into a 39 degree C warming medium, and the sample was stepwise rehydrated. Cryosurvival rates of porcine blastocysts produced by parthenogenetical activation did not differ from control, vitrified blastocysts with Cryotop. This approach can be used for minimum volume vitrification methods and may be suitable to overcome the biological dangers and legal restrictions that hamper the application of open vitrification techniques.

  4. Concepts for a low-vibration and cryogen-free tabletop dilution refrigerator

    NASA Astrophysics Data System (ADS)

    Uhlig, Kurt

    2017-10-01

    The purpose of this article is to describe several concepts of how to cool a modern tabletop dilution refrigerator (DR) with a cryogen-free pulse tube cryocooler (PTC). Tabletop DRs have come more and more into the focus of scientists, recently, because they offer easy access to the mixing chamber mounting plate from all directions and because of their very short cooldown times. However, these milli-Kelvin coolers are precooled with LHe which makes their handling inconvenient and often expensive. In the paper it is explained how a cryocooler can be directly coupled to a DR unit making the use of LHe superfluous. Furthermore, concepts are discussed where a tabletop DR is cooled by a remote PTC; PTC and DR are mounted in separate vacuum containers which are connected by a stainless steel bellows tube. This kind of apparatus would offer an extremely low level of vibration at the mixing chamber mounting plate.

  5. Dry demagnetization cryostat for sub-millikelvin helium experiments: Refrigeration and thermometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Todoshchenko, I., E-mail: todo@boojum.hut.fi; Kaikkonen, J.-P.; Hakonen, P. J.

    We demonstrate successful “dry” refrigeration of quantum fluids down to T = 0.16 mK by using copper nuclear demagnetization stage that is pre-cooled by a pulse-tube-based dilution refrigerator. This type of refrigeration delivers a flexible and simple sub-mK solution to a variety of needs including experiments with superfluid {sup 3}He. Our central design principle was to eliminate relative vibrations between the high-field magnet and the nuclear refrigeration stage, which resulted in the minimum heat leak of Q = 4.4 nW obtained in field of 35 mT. For thermometry, we employed a quartz tuning fork immersed into liquid {sup 3}He. We show that themore » fork oscillator can be considered as self-calibrating in superfluid {sup 3}He at the crossover point from hydrodynamic into ballistic quasiparticle regime.« less

  6. Autonomous oxygen production for a Mars return vehicle

    NASA Technical Reports Server (NTRS)

    Ash, R. L.; Richter, R.; Dowler, W. L.; Hanson, J. A.; Uphoff, C. W.

    1982-01-01

    The way in which a chemical processor that uses the Martian atmosphere as its only feedstock, thereby reducing the mass that must be launched from earth, can help to return a surface sample from Mars from a single Space Shuttle launch is described. Richter's (1981) study on both the theoretical and experimental aspects of oxygen separation using yttria-stabilized zirconia membranes is cited. Here, separation is accomplished by applying a voltage across the membrane which results in the selective conduction of oxygen ions from one side to the other. It is noted that by using thermal dissociation of the carbon dioxide in the Martian atmosphere to produce oxygen (and carbon monoxide), these zirconia electrolytic cells can be employed to separate oxygen from the atmospheric stream. Descriptions are also given of atmospheric filtration, atmospheric compression, and waste heat recovery, and of the oxygen precooler and oxygen compressor.

  7. A cryogen-free Vuilleumier type pulse tube cryocooler operating below 10 K

    NASA Astrophysics Data System (ADS)

    Wang, Yanan; Wang, Xiaotao; Dai, Wei; Luo, Ercang

    2018-03-01

    Vuilleumier (VM) type pulse tube cryocooler (PTC) utilizes the thermal compressor to drive the low temperature stage PTC. This paper presents the latest experimental results of a cryogen-free VM type PTC that operates in the temperature range below 10 K. Stirling type pre-coolers instead of liquid nitrogen provide the cooling power for the thermal compressor. Compared with previous configuration, the thermal compressor was improved with a higher output pressure ratio, and lead and HoCu2 spheres were packed within the regenerator for the low temperature stage PTC for a better match with targeted cold end temperature. A lowest no-load temperature of 7.58 K was obtained with a pressure ratio of 1.23, a working frequency of 3 Hz and an average pressure of 1.63 MPa. The experimental results show good consistency in terms of lowest temperature with the simulation under the same working condition.

  8. A new device for the efficient pulverisation and extraction of myocardial biopsies for high energy phosphate analysis.

    PubMed

    Speir, E H; Sullivan, J; Patterson, R E

    1985-07-01

    We developed a new device for processing frozen myocardial biopsies. Frozen samples of 20 to 50 mg were dropped into a 25 ml stainless steel centrifuge tube held in a custom-made aluminium container precooled in liquid nitrogen. A stainless steel pestle attached to a stainless steel disk was driven by a modified heavy-duty staple gun to pulverise the tissue rapidly at low temperatures. The tissue powder was extracted with 0.3N PCA at 0 degree C in the centrifuge tube which was then transferred to a Sorvall super-speed centrifuge. Values for adenosine triphosphate (ATP) were 5.6 +/- 0.7 mumol . g-1 wet weight (mean +/- SD). Creatine phosphate (CP) yield was 12.2 +/- 3 mumol . g-1 wet weight. The % recovery of an added internal standard for ATP was 86 +/- 18% and for CP 90 +/- 16% with the new method.

  9. A compact cryogen-free platform operating at 1 K or 50 mK

    NASA Astrophysics Data System (ADS)

    Matthews, A. J.; Patton, M.; Marsh, T.; van der Vliet, H.

    2018-03-01

    We report the design and performance characteristics of a compact cryogen-free platform. The system is based around a continuous 1 K pot which operates using a small (10 m3 h‑1) room temperature circulation pump. The pot cools an experimental plate to ≈ 1.2 K, and has a cooling capacity of 100 mW at a temperature ≈ 1.9 K. Cooling the pot from room temperature to < 2 K takes around 12 hours. The temperature range of the platform can be lowered to < 50 mK with the addition of a small dilution refrigerator, using the 1 K pot as a pre-cooling stage for the circulating 3He. The dilution stage has a typical (continuous) cooling capacity of 30 µW at 100 mK (300 µW at 250 mK) and is designed to operate with just 3 litres of (NTP) 3He.

  10. Infrared spectroscopy and density functional calculations on titanium-dinitrogen complexes

    NASA Astrophysics Data System (ADS)

    Yoo, Hae-Wook; Choi, Changhyeok; Cho, Soo Gyeong; Jung, Yousung; Choi, Myong Yong

    2018-04-01

    Titanium-nitrogen complexes were generated by laser ablated titanium (Ti) atoms and N2 gas molecules in this study. These complexes were isolated on the pre-deposited solid Ar matrix on the pre-cooled KBr window (T ∼ 5.4 K), allowing infrared spectra to be measured. Laser ablation experiments with 15N2 isotope provided distinct isotopic shifts in the infrared spectra that strongly implicated the formation of titanium-nitrogen complexes, Ti(NN)x. Density functional theory (DFT) calculations were employed to investigate the molecular structures, electronic ground state, relative energies, and IR frequencies of the anticipated Ti(NN)x complexes. Based on laser ablation experiments and DFT calculations, we were able to assign multiple Ti(NN)x (x = 1-6) species. Particularly, Ti(NN)5 and Ti(NN)6, which have high nitrogen content, may serve as good precursors in preparing polynitrogens.

  11. Reduced infancy and childhood epilepsy following hypothermia-treated neonatal encephalopathy.

    PubMed

    Liu, Xun; Jary, Sally; Cowan, Frances; Thoresen, Marianne

    2017-11-01

    To investigate what proportion of a regional cohort of cooled infants with neonatal encephalopathy develop epilepsy (determined by the International League Against Epilepsy [ILAE] definition and the number of antiepileptic drugs [AEDs]) up to 8 years of age. From 2006-2013, 151 infants with perinatal asphyxia underwent 72 h cooling. Clinical and amplitude-integrated electroencepalography (aEEG) with single-channel EEG-verified neonatal seizures were treated with AEDs. Brain magnetic resonance imaging (MRI) was assessed using a 0-11 severity score. Postneonatal seizures, epilepsy rates, and AED treatments were documented. One hundred thirty-four survivors were assessed at 18-24 months; adverse outcome was defined as death or Bayley III composite Cognition/Language or Motor scores <85 and/or severe cerebral palsy or severely reduced vision/hearing. Epilepsy rates in 103 children age 4-8 years were also documented. aEEG confirmed seizures occurred precooling in 77 (57%) 151 of neonates; 48% had seizures during and/or after cooling and received AEDs. Only one infant was discharged on AEDs. At 18-24 months, one third of infants had an adverse outcome including 11% mortality. At 2 years, 8 (6%) infants had an epilepsy diagnosis (ILAE definition), of whom 3 (2%) received AEDs. Of the 103 4- to 8-year-olds, 14 (13%) had developed epilepsy, with 7 (7%) receiving AEDs. Infants/children on AEDs had higher MRI scores than those not on AEDs (median [interquartile range] 9 [8-11] vs. 2 [0-4]) and poorer outcomes. Nine (64%) of 14 children with epilepsy had cerebral palsy compared to 13 (11%) of 120 without epilepsy, and 10 (71%) of 14 children with epilepsy had adverse outcomes versus 23 (19%) of 120 survivors without epilepsy. The number of different AEDs given to control neonatal seizures, aEEG severity precooling, and MRI scores predicted childhood epilepsy. We report, in a regional cohort of infants cooled for perinatal asphyxia, 6% with epilepsy at 2 years (2% on AEDs) increasing to 13% (7% on AEDs) at early school age. These AED rates are much lower than those reported in the cooling trials, even with adjusting for our cohort's milder asphyxia. Long-term follow-up is needed to document final epilepsy rates. Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.

  12. ATHENA X-IFU 300 K-50 mK cryochain demonstrator cryostat

    NASA Astrophysics Data System (ADS)

    Prouvé, T.; Duval, J. M.; Charles, I.; Yamasaki, N. Y.; Mitsuda, K.; Nakagawa, T.; Shinozaki, K.; Tokoku, C.; Yamamoto, R.; Minami, Y.; Le Du, M.; Andre, J.; Daniel, C.; Linder, M.

    2018-01-01

    In the framework of the ESA X-ray mission ATHENA, scheduled for launch in 2028, an ESA Core Technology Program (CTP) was started in 2016 to build a flight like cryostat demonstrator in parallel with the phase A studies of the ATHENA/X-IFU instrument [1,2]. As part of this CTP, called the Detector Cooling System (DCS), design, manufacturing and test of a cryostat including existing space coolers will be done. In addition to the validation of thermal performance, a Focal Plan Assembly (FPA) demonstrator using Transition Edge Sensors (TES) detector technology will be also integrated and its performance characterized versus the environment provided by the cryostat. This is a unique opportunity to validate many crucial issues of the cryogenic part of such a sensitive instrument. A dedicated activity within this CTP-DCS is the demonstration of the 300 K-50 mK cooling chain in a Ground System Equipment (GSE) cryostat. The studies are focused on the operation of the space coolers, which is made possible by the use of a ground cooler for cooling cryogenic shields and mechanical supports. Thanks to the modularity of the cryostat, several cooling chains could be tested. In the base line configuration described here, the low temperature stage is the CEA hybrid sorption/ADR 50 mK cooler with thermal interfaces at 4 K and 2 K. 4 K cooling is accomplished by a 4 K Joule-Thomson (JT) cryocooler and its Stirling precooler provided by JAXA. Regarding the 2 K stage, at first a 2 K JT from JAXA will be used. Alternatively, a 2 K JT cooler from RAL could replace the JAXA 2 K JT. In both cases new prototype(s) of a 2 K JT will be implemented, precooled by the EM 15 K pule tube cooler from Air Liquide. This test program is also the opportunity to validate the operation of the cryochain with respect to various requirements, such as time constant and temperature stabilities. This would bring us valuable inputs to integrate the cryochain in DCS cryostat or for the X-IFU phase A studies. This cryochain demonstration is also a critical milestone for the SPICA mission [3]. The design of the cryostat and first thermal validations both before and after integration of the JAXA JT coolers are presented in this paper.

  13. Freeze-fracture scanning electron microscopy of Lemna minor L. (duckweed)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Echlin, P.; Pawley, J.B.; Hayes, T.L.

    1979-01-01

    A detailed study has been carried out on the frozen fracture faces of plant material. Roots of Lemna minor are encapsulated in different nonpenetrating polymeric cryoprotectants, rapidly cooled in melting nitrogen and transferred to the pre-cooled cold stage of the AMR Biochamber. The technique has been used to follow the course of development of the phloem tissue in the root tip. These studies have shown that the phloem parenchyma appears to develop in a regular sequence. Unetched surfaces are virtually featureless, and it is necessary to remove a surface layer of water in order to visualize the biological structure. Themore » amount of water sublimed from the fractured surface is a function of both the time of etching and the water binding capacity of the cell contents. It is not possible to etch cells infiltrated with a penetrating cryoprotectant as the glycerol-water eutectic is stable at low temperatures and no water is lost from the fractured surface. Several distinct stages have been observed during the etching process.« less

  14. Experimental progress of a 4K VM/PT hybrid cryocooler for pre-cooling 1K sorption cooler

    NASA Astrophysics Data System (ADS)

    Pan, Changzhao; Zhang, Tong; Wang, Jue; Chen, Liubiao; Guo, Jia; Zhou, Yuan; Wang, Junjie

    2017-12-01

    Sub-kelvin refrigerator has many applications in space detector and manned space station, such as for the transition-edge superconducting (TES) bolometers operated in the 50 mK range. In order to meet the requirement of space applications, the high efficient, vibration free and high stability refrigerator need to be designed. VM/PT hybrid cryocooler is a new type cryocooler capable of attaining temperature below 4K. As a low frequency Stirling type cryocooler, it has the advantages of high stability and high efficiency. Combined with the vibration free sorption cooler and ADR refrigerator, a novel sub-kelvin cooling chain can be designed for the TES bolometer. This paper presents the recent experimental progress of the 4K VM/PT hybrid cryocooler in our laboratory. By optimizing of regenerators, phase shifters and heat exchangers, a lowest temperature of 2.6K was attained. Based on this cryocooler, a preliminary sorption cooler could be designed.

  15. Operating Modes and Cooling Capabilities of the 3-Stage ADR Developed for the Soft-X-ray Spectrometer Instrument on Astro-H

    PubMed Central

    Shirron, Peter J; Kimball, Mark O; James, Bryan L; Muench, Theo; DiPirro, Michael J; Letmate, Richard V; Sampson, Michael A; Bialas, Tom G; Sneiderman, Gary A; Porter, Frederick S; Kelley, Richard L

    2017-01-01

    A 3-stage adiabatic demagnetization refrigerator (ADR)[1] is used on the Soft X-ray Spectrometer instrument[2] on Astro-H[3] to cool a 6×6 array of x-ray microcalorimeters to 50 mK. The ADR is supported by a cryogenic system[4] consisting of a superfluid helium tank, a 4.5 K Joule-Thomson (JT) cryocooler, and additional 2-stage Stirling cryocoolers that pre-cool the JT cooler and cool radiation shields within the cryostat. The ADR is configured so that it can use either the liquid helium or the JT cryocooler as its heat sink, giving the instrument an unusual degree of tolerance for component failures or degradation in the cryogenic system. The flight detector assembly, ADR and dewar were integrated into the flight dewar in early 2014, and have since been extensively characterized and calibrated. This paper summarizes the operation and performance of the ADR in all of its operating modes. PMID:28111478

  16. Operating Modes and Cooling Capabilities of the 3-Stage ADR Developed for the Soft-X-ray Spectrometer Instrument on Astro-H.

    PubMed

    Shirron, Peter J; Kimball, Mark O; James, Bryan L; Muench, Theo; DiPirro, Michael J; Letmate, Richard V; Sampson, Michael A; Bialas, Tom G; Sneiderman, Gary A; Porter, Frederick S; Kelley, Richard L

    2016-03-01

    A 3-stage adiabatic demagnetization refrigerator (ADR)[1] is used on the Soft X-ray Spectrometer instrument[2] on Astro-H[3] to cool a 6×6 array of x-ray microcalorimeters to 50 mK. The ADR is supported by a cryogenic system[4] consisting of a superfluid helium tank, a 4.5 K Joule-Thomson (JT) cryocooler, and additional 2-stage Stirling cryocoolers that pre-cool the JT cooler and cool radiation shields within the cryostat. The ADR is configured so that it can use either the liquid helium or the JT cryocooler as its heat sink, giving the instrument an unusual degree of tolerance for component failures or degradation in the cryogenic system. The flight detector assembly, ADR and dewar were integrated into the flight dewar in early 2014, and have since been extensively characterized and calibrated. This paper summarizes the operation and performance of the ADR in all of its operating modes.

  17. Design Models for the Development of Helium-Carbon Sorption Crycoolers

    NASA Technical Reports Server (NTRS)

    Lindensmith, C. A.; Ahart, M.; Bhandari, P.; Wade, L. A.; Paine, C. G.

    2000-01-01

    We have developed models for predicting the performance of helium-based Joule-Thomson continuous-flow cryocoolers using charcoal-pumped sorption compressors. The models take as inputs the number of compressors, desired heat-lift, cold tip temperature, and available precooling temperature and provide design parameters as outputs. Future laboratory development will be used to verify and improve the models. We will present a preliminary design for a two-stage vibration-free cryocooler that is being proposed as part of a mid-infrared camera on NASA's Next Generation Space Telescope. Model predictions show that a 10 mW helium-carbon cryocooler with a base temperature of 5.5 K will reject less than 650 mW at 18 K. The total input power to the helium-carbon stage is 650 mW. These models, which run in MathCad and Microsoft Excel, can be coupled to similar models for hydrogen sorption coolers to give designs for 2-stage vibration-free cryocoolers that provide cooling from approx. 50 K to 4 K.

  18. Design Models for the Development of Helium-Carbon Sorption Cryocoolers

    NASA Technical Reports Server (NTRS)

    Lindensmith, Chris A.; Ahart, M.; Bhandari, P.; Wade, L. A.; Paine, C. G.

    2000-01-01

    We have developed models for predicting the performance of helium-based Joule-Thomson continuous-flow cryocoolers using charcoal-pumped sorption compressors. The models take as inputs the number of compressors, desired heat-lift, cold tip temperature, and available precooling temperature and provide design parameters as outputs. Future laboratory development will be used to verify and improve the models. We will present a preliminary design for a two-stage vibration-free cryocooler that is being proposed as part of a mid-infrared camera on NASA's Next Generation Space Telescope. Model predictions show that a 10 mW helium-carbon cryocooler with a base temperature of 5.5 K will reject less than 650 mW at 18 K. The total input power to the helium-carbon stage is 650 mW. These models, which run in MathCad and Microsoft Excel, can be coupled to similar models for hydrogen sorption coolers to give designs for 2-stage vibration-free cryocoolers that provide cooling from approximately 50 K to 4 K.

  19. Liquid nitrogen historical and current usage of the central helium liquefier at SNS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neustadt, Thomas S.; Kim, Sang-Ho; Howell, Matthew P.

    The main cryogenic system for the Spallation Neutron Source (SNS) is comprised of a 4-K cold box, a 2-K cold box, six warm compressors, and ancillary support equipment. This system has been cold and operating with little disruption since 2005. Design and operation of liquid nitrogen (LN2) supplied from a single 20,000-gallon supply Dewar will be discussed. LN2 used to precool the 4-K cold box heat exchanger started to increase around 2011. LN2 Consumption during 2012 and 2013 was almost double the nominal usage rate. Studies of this data, plant parameter changes to respond to this information, and current interpretationsmore » are detailed in this paper. The usage rate of LN2 returned to normal in late 2013 and remained there until recent additional changes. Future study plans to understand potential causes of this including contamination migration within the 4-K cold box will also be addressed.« less

  20. Measuring the Optical Performance of Evacuated Receivers via an Outdoor Thermal Transient Test: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kutscher, C.; Burkholder, F.; Netter, J.

    2011-08-01

    Modern parabolic trough solar collectors operated at high temperatures to provide the heat input to Rankine steam power cycles employ evacuated receiver tubes along the collector focal line. High performance is achieved via the use of a selective surface with a high absorptance for incoming short-wave solar radiation and a low emittance for outgoing long-wave infrared radiation, as well as the use of a hard vacuum to essentially eliminate convective and conductive heat losses. This paper describes a new method that determines receiver overall optical efficiency by exposing a fluid-filled, pre-cooled receiver to one sun outdoors and measuring the slopemore » of the temperature curve at the point where the receiver temperature passes the glass envelope temperature (that is, the point at which there is no heat gain or loss from the absorber). This transient test method offers the potential advantages of simplicity, high accuracy, and the use of the actual solar spectrum.« less

  1. Characterisation of cellulose films regenerated from acetone/water coagulants.

    PubMed

    Geng, Hongjuan; Yuan, Zaiwu; Fan, Qingrui; Dai, Xiaonan; Zhao, Yue; Wang, Zhaojiang; Qin, Menghua

    2014-02-15

    A precooled aqueous solution of 7 wt% NaOH/12 wt% urea was used to dissolve cellulose up to a concentration of 2 wt%, which was then coagulated in an acetone/water mixture to regenerate cellulose film. The volume ratio of acetone to water (φ) had a dominant influence on film dimensional stability, film-forming ability, micromorphology, and mechanical strength. The film regenerated at φ=2.0 showed excellent performance in both dimensional stability and film-forming ability. Compared to that from pure acetone, the cellulose film from the acetone/water mixture with φ=2.0 was more densely interwoven, since the cellulosic fibrils formed during regeneration had pores with smaller average diameter. The alkali capsulated in the film during film formation could be released at quite a slow rate into the surrounding aqueous solution. The regenerated cellulose film with adjustable structure and properties may have potential applications in drug release and ultra filtration. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Generation of sclerosant foams by mechanical methods increases the foam temperature.

    PubMed

    Tan, Lulu; Wong, Kaichung; Connor, David; Fakhim, Babak; Behnia, Masud; Parsi, Kurosh

    2017-08-01

    Objective To investigate the effect of agitation on foam temperature. Methods Sodium tetradecyl sulphate and polidocanol were used. Prior to foam generation, the sclerosant and all constituent equipment were cooled to 4-25℃ and compared with cooling the sclerosant only. Foam was generated using a modified Tessari method. During foam agitation, the temperature change was measured using a thermocouple for 120 s. Results Pre-cooling all the constituent equipment resulted in a cooler foam in comparison with only cooling the sclerosant. A starting temperature of 4℃ produced average foam temperatures of 12.5 and 13.2℃ for sodium tetradecyl sulphate and polidocanol, respectively. It was also found that only cooling the liquid sclerosant provided minimal cooling to the final foam temperature, with the temperature 20 and 20.5℃ for sodium tetradecyl sulphate and polidocanol, respectively. Conclusion The foam generation process has a noticeable impact on final foam temperature and needs to be taken into consideration when creating foam.

  3. EEG Analysis of the Effects of Therapeutic Cooling on the Cognitive Performance of Multiple Sclerosis Patients

    NASA Technical Reports Server (NTRS)

    Montgomery, Leslie D.; Montgomery, Richard W.; Ku, Yu-Tsuan E.; Luna, Bernadette; Lee, Hank C.; Kliss, Mark; Webbon, Bruce; Mead, Susan C. (Technical Monitor)

    1999-01-01

    The objective of this project was to determine whether a controlled period of head and torso cooling would enhance the cognitive performance of multiple sclerosis patients. Nineteen MS patients (11 men and 8 women) participated in the study. Control data were taken from nineteen healthy volunteers (12 men and 7 women). All but six of nineteen MS patients tested improved their cognitive performance, as measured by their scores on the Rao test battery. A second objective was to gain insight into the neurological effects of cooling. Visual evoked potentials (VEPs) stimulated by a reversing checkerboard pattern were recorded before and after cooling. We found that cooling selectively benefited the cognitive performance of those MS patients whose pre-cooling VEPs were abnormally shaped (which is an indication of visual pathway impairment due to demyelinization). Moreover, for female MS patients, the degree of cognitive performance improvement following cooling was correlated with a change in the shape of their VEPs toward a more normal shape following cooling.

  4. Microbial analysis of meatballs cooled with vacuum and conventional cooling.

    PubMed

    Ozturk, Hande Mutlu; Ozturk, Harun Kemal; Koçar, Gunnur

    2017-08-01

    Vacuum cooling is a rapid evaporative cooling technique and can be used for pre-cooling of leafy vegetables, mushroom, bakery, fishery, sauces, cooked food, meat and particulate foods. The aim of this study was to apply the vacuum cooling and the conventional cooling techniques for the cooling of the meatball and to show the vacuum pressure effect on the cooling time, the temperature decrease and microbial growth rate. The results of the vacuum cooling and the conventional cooling (cooling in the refrigerator) were compared with each other for different temperatures. The study shows that the conventional cooling was much slower than the vacuum cooling. Moreover, the microbial growth rate of the vacuum cooling was extremely low compared with the conventional cooling. Thus, the lowest microbial growth occurred at 0.7 kPa and the highest microbial growth was observed at 1.5 kPa for the vacuum cooling. The mass loss ratio for the conventional cooling and vacuum cooling was about 5 and 9% respectively.

  5. Multi-stage circulating fluidized bed syngas cooling

    DOEpatents

    Liu, Guohai; Vimalchand, Pannalal; Guan, Xiaofeng; Peng, WanWang

    2016-10-11

    A method and apparatus for cooling hot gas streams in the temperature range 800.degree. C. to 1600.degree. C. using multi-stage circulating fluid bed (CFB) coolers is disclosed. The invention relates to cooling the hot syngas from coal gasifiers in which the hot syngas entrains substances that foul, erode and corrode heat transfer surfaces upon contact in conventional coolers. The hot syngas is cooled by extracting and indirectly transferring heat to heat transfer surfaces with circulating inert solid particles in CFB syngas coolers. The CFB syngas coolers are staged to facilitate generation of steam at multiple conditions and hot boiler feed water that are necessary for power generation in an IGCC process. The multi-stage syngas cooler can include internally circulating fluid bed coolers, externally circulating fluid bed coolers and hybrid coolers that incorporate features of both internally and externally circulating fluid bed coolers. Higher process efficiencies can be realized as the invention can handle hot syngas from various types of gasifiers without the need for a less efficient precooling step.

  6. Effects of Home Energy Management Systems on Distribution Utilities and Feeders Under Various Market Structures: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruth, Mark; Pratt, Annabelle; Lunacek, Monte

    2015-07-17

    The combination of distributed energy resources (DER) and retail tariff structures to provide benefits to both utility consumers and the utilities is poorly understood. To improve understanding, an Integrated Energy System Model (IESM) is being developed to simulate the physical and economic aspects of DER technologies, the buildings where they reside, and feeders servicing them. The IESM was used to simulate 20 houses with home energy management systems on a single feeder under a time of use tariff to estimate economic and physical impacts on both the households and the distribution utilities. HEMS reduce consumers’ electric bills by precooling housesmore » in the hours before peak electricity pricing. Household savings are greater than the reduction utility net revenue indicating that HEMS can provide a societal benefit providing tariffs are structured so that utilities remain solvent. Utilization of HEMS reduce peak loads during high price hours but shifts it to hours with off-peak and shoulder prices and resulting in a higher peak load.« less

  7. Managing heat and immune stress in athletes with evidence-based strategies.

    PubMed

    Pyne, David B; Guy, Joshua H; Edwards, Andrew M

    2014-09-01

    Heat and immune stress can affect athletes in a wide range of sports and environmental conditions. The classical thermoregulatory model of heat stress has been well characterized, as has a wide range of practical strategies largely centered on cooling and heat-acclimation training. In the last decade evidence has emerged of an inflammatory pathway that can also contribute to heat stress. Studies are now addressing the complex and dynamic interplay between hyperthermia, the coagulation cascade, and a systemic inflammatory response occurring after transient damage to the gastrointestinal tract. Damage to the intestinal mucosal membrane increases permeability, resulting in leakage of endotoxins into the circulation. Practical strategies that target both thermoregulatory and inflammatory causes of heat stress include precooling; short-term heat-acclimation training; nutritional countermeasures including hydration, energy replacement, and probiotic supplementation; pacing strategies during events; and postevent cooling measures. Cooperation between international, national, and local sporting organizations is required to ensure that heat-management policies and strategies are implemented effectively to promote athletes' well-being and performance.

  8. Cascading pulse tubes on a large diaphragm pressure wave generator to increase liquefaction potential

    NASA Astrophysics Data System (ADS)

    Caughley, A.; Meier, J.; Nation, M.; Reynolds, H.; Boyle, C.; Tanchon, J.

    2017-12-01

    Fabrum Solutions, in collaboration with Absolut System and Callaghan Innovation, produce a range of large pulse tube cryocoolers based on metal diaphragm pressure wave generator technology (DPWG). The largest cryocooler consists of three in-line pulse tubes working in parallel on a 1000 cm3 swept volume DPWG. It has demonstrated 1280 W of refrigeration at 77 K, from 24 kW of input power and was subsequently incorporated into a liquefaction plant to produce liquid nitrogen for an industrial customer. The pulse tubes on the large cryocooler each produced 426 W of refrigeration at 77 K. However, pulse tubes can produce more refrigeration with higher efficiency at higher temperatures. This paper presents the results from experiments to increase overall liquefaction throughput by operating one or more pulse tubes at a higher temperature to pre-cool the incoming gas. The experiments showed that the effective cooling increased to 1500 W resulting in an increase in liquefaction rate from 13 to 16 l/hour.

  9. Automated Sample Exchange Robots for the Structural Biology Beam Lines at the Photon Factory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hiraki, Masahiko; Watanabe, Shokei; Yamada, Yusuke

    2007-01-19

    We are now developing automated sample exchange robots for high-throughput protein crystallographic experiments for onsite use at synchrotron beam lines. It is part of the fully automated robotics systems being developed at the Photon Factory, for the purposes of protein crystallization, monitoring crystal growth, harvesting and freezing crystals, mounting the crystals inside a hutch and for data collection. We have already installed the sample exchange robots based on the SSRL automated mounting system at our insertion device beam lines BL-5A and AR-NW12A at the Photon Factory. In order to reduce the time required for sample exchange further, a prototype ofmore » a double-tonged system was developed. As a result of preliminary experiments with double-tonged robots, the sample exchange time was successfully reduced from 70 seconds to 10 seconds with the exception of the time required for pre-cooling and warming up the tongs.« less

  10. Operating Modes and Cooling Capabilities of the 3-Stage ADR Developed for the Soft-X-Ray Spectrometer Instrument on Astro-H

    NASA Technical Reports Server (NTRS)

    Shirron, Peter J.; Kimball, Mark O.; James, Bryan L.; Muench, Theo; DiPirro, Michael J.; Letmate, Richard V.; Sampson, Michael A.; Bialas, Tom G.; Sneiderman, Gary A.; Porter, Frederick S.; hide

    2015-01-01

    A 3-stage adiabatic demagnetization refrigerator (ADR) is used on the Soft X-ray Spectrometer instrument on Astro-H to cool a 6x6 array of x-ray microcalorimeters to 50 mK. The ADR is supported by a cryogenic system consisting of a superfluid helium tank, a 4.5 K Joule-Thomson (JT) cryocooler, and additional 2-stage Stirling cryocoolers that pre-cool the JT cooler and cool radiation shields within the cryostat. The ADR is configured so that it can use either the liquid helium or the JT cryocooler as its heat sink, giving the instrument an unusual degree of tolerance for component failures or degradation in the cryogenic system. The flight detector assembly, ADR and dewar were integrated into the flight dewar in early 2014, and have since been extensively characterized and calibrated. This paper summarizes the operation and performance of the ADR in all of its operating modes

  11. Protein stability in pulmonary drug delivery via nebulization.

    PubMed

    Hertel, Sebastian P; Winter, Gerhard; Friess, Wolfgang

    2015-10-01

    Protein inhalation is a delivery route which offers high potential for direct local lung application of proteins. Liquid formulations are usually available in early stages of biopharmaceutical development and nebulizers are the device of choice for atomization avoiding additional process steps like drying and enabling fast progression to clinical trials. While some proteins were proven to remain stable throughout aerosolization e.g. DNase, many biopharmaceuticals are more susceptible towards the stresses encountered during nebulization. The main reason for protein instability is unfolding and aggregation at the air-liquid interface, a problem which is of particular challenge in the case of ultrasound and jet nebulizers due to recirculation of much of the generated droplets. Surfactants are an important formulation component to protect the sensitive biomolecules. A second important challenge is warming of ultrasound and vibrating mesh devices, which can be overcome by overfilling, precooled solutions or cooling of the reservoir. Ultimately, formulation development has to go hand in hand with device evaluation. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Dynamic Simulation of a Helium Liquefier

    NASA Astrophysics Data System (ADS)

    Maekawa, R.; Ooba, K.; Nobutoki, M.; Mito, T.

    2004-06-01

    Dynamic behavior of a helium liquefier has been studied in detail with a Cryogenic Process REal-time SimulaTor (C-PREST) at the National Institute for Fusion Science (NIFS). The C-PREST is being developed to integrate large-scale helium cryogenic plant design, operation and maintenance for optimum process establishment. As a first step of simulations of cooldown to 4.5 K with the helium liquefier model is conducted, which provides a plant-process validation platform. The helium liquefier consists of seven heat exchangers, a liquid-nitrogen (LN2) precooler, two expansion turbines and a liquid-helium (LHe) reservoir. Process simulations are fulfilled with sequence programs, which were implemented with C-PREST based on an existing liquefier operation. The interactions of a JT valve, a JT-bypass valve and a reservoir-return valve have been dynamically simulated. The paper discusses various aspects of refrigeration process simulation, including its difficulties such as a balance between complexity of the adopted models and CPU time.

  13. Badak field's oil flowing; gas is ready

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kennedy, J.L.

    1975-03-24

    Within about 5 y after discovery of the Badak field in East Kalimantan, Indonesia, first deliveries are scheduled to be made from a new LNG plant fed over 530 million CF/day by the field. Badak is also flowing about 13,000 bbl/day of oil, which is piped to the Santan terminal. Other promising gas reserves found in the area could boost production to a level that - when coupled with Badak - would support an LNG-plant input of up to 1 billion CF/day. Indeed, the plant is being built with provisions for adding 2 more trains later. The plant will usemore » an Air Products Co. propane-precooled liquefaction process. The storage system will include four 600,000-bbl aboveground double-wall insulated tanks. Seven 4.4 million cu ft (125,000 cu m) tankers will be constructed to move the LNG from Bontang Bay to market in Japan, where 4 receiving terminals will be built - Chubu, Himeji, Kitakyushu, and Semboku II.« less

  14. Operating Modes and Cooling Capabilities of the Flight ADR for the SXS Instrument on Astro-H

    NASA Technical Reports Server (NTRS)

    Shirron, Peter; Kimball, Mark; DiPirro, Michael

    2015-01-01

    The microcalorimeter array on the Soft X-ray Spectrometer instrument on Astro-H requires cooling to 50 mK, which will be accomplished by a 3-stage adiabatic demagnetization refrigerator (ADR). The ADR is surrounded by a cryogenic system consisting of a superfluid helium tank, a 4.5 K Joule-Thomson (JT) cryocooler, and additional 2-stage Stirling cryocoolers that pre-cool the JT cooler and radiation shields within the cryostat. The unique ADR design allows the instrument to meet all of its science requirements using either the stored cryogen or the JT cryocooler as its heat sink, giving the instrument an unusual degree of tolerance for component failures or degradation in the cryogenic system. The flight detector assembly, ADR and dewar were integrated in early 2014, and have since been extensively characterized and calibrated. At present, the four instruments are being integrated with the spacecraft in preparation for an early 2016 launch. This presentation summarizes the operation and performance of the ADR in all of its operating modes.

  15. Compact setup for the production of {sup 87}Rb |F = 2, m{sub F} = + 2〉 Bose-Einstein condensates in a hybrid trap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nolli, Raffaele; Venturelli, Michela; Marmugi, Luca, E-mail: l.marmugi@ucl.ac.uk

    We present a compact experimental apparatus for Bose-Einstein condensation of {sup 87}Rb in the |F  =  2, m{sub F} = + 2〉 state. A pre-cooled atomic beam of {sup 87}Rb is obtained by using an unbalanced magneto-optical trap, allowing controlled transfer of trapped atoms from the first vacuum chamber to the science chamber. Here, atoms are transferred to a hybrid trap, as produced by overlapping a magnetic quadrupole trap with a far-detuned optical trap with crossed beam configuration, where forced radiofrequency evaporation is realized. The final evaporation leading to Bose-Einstein condensation is then performed by exponentially lowering the optical trapmore » depth. Control and stabilization systems of the optical trap beams are discussed in detail. The setup reliably produces a pure condensate in the |F = 2, m{sub F} = + 2〉 state in 50 s, which includes 33 s loading of the science magneto-optical trap and 17 s forced evaporation.« less

  16. NASA advanced cryocooler technology development program

    NASA Astrophysics Data System (ADS)

    Coulter, Daniel R.; Ross, Ronald G., Jr.; Boyle, Robert F.; Key, R. W.

    2003-03-01

    Mechanical cryocoolers represent a significant enabling technology for NASA's Earth and Space Science Enterprises. Over the years, NASA has developed new cryocooler technologies for a wide variety of space missions. Recent achievements include the NCS, AIRS, TES and HIRDLS cryocoolers, and miniature pulse tube coolers at TRW and Lockheed Martin. The largest technology push within NASA right now is in the temperature range of 4 to 10 K. Missions such as the Next Generation Space Telescope (NGST) and Terrestrial Planet Finder (TPF) plan to use infrared detectors operating between 6-8 K, typically arsenic-doped silicon arrays, with IR telescopes from 3 to 6 meters in diameter. Similarly, Constellation-X plans to use X-ray microcalorimeters operating at 50 mK and will require ~6 K cooling to precool its multistage 50 mK magnetic refrigerator. To address cryocooler development for these next-generation missions, NASA has initiated a program referred to as the Advanced Cryocooler Technology Development Program (ACTDP). This paper presents an overview of the ACTDP program including programmatic objectives and timelines, and conceptual details of the cooler concepts under development.

  17. Cryopreservation of somatic embryogenic cultures of Pinus pinaster: effects on regrowth and embryo maturation.

    PubMed

    Álvarez, José M; Cortizo, Millán; Ordás, Ricardo J

    2012-01-01

    Pinus pinaster is one of the most economically important conifers in the world. Somatic embryogenesis is a powerful tool in breeding programmes because it allows the generation of a great number of different clonal lines from seeds of superior genotypes. Unfortunately, embryogenic competence decreases with the age of cultures. Therefore, it is necessary to have a cryopreservation protocol that ensures a continuous supply of juvenile mass while allowing good maturation and conversion rates into vigorously growing plants. In this work we studied the influence of several cryopreservation parameters, such as cryoprotectant solution and pre-cooling temperature, on embryogenic culture regrowth and embryo maturation. Recovery of rewarmed samples after cryopreservation in a -150 degree C freezer depended on the cooling temperature reached prior to plunging the tubes into liquid nitrogen. As a result, we present an optimised cryopreservation protocol that ensures high recovery and embryo maturation rates. The protocol presented is a simple and fast alternative and enabled successful cryopreservation and recovery of 100 percent of the lines tested. Cryopreserved lines presented the same maturation rates as non-cryopreserved controls.

  18. Enrichment of omega-3 fatty acids in cod liver oil via alternate solvent winterization and enzymatic interesterification.

    PubMed

    Lei, Qiong; Ba, Sai; Zhang, Hao; Wei, Yanyan; Lee, Jasmine Yiqin; Li, Tianhu

    2016-05-15

    Enrichment of omega-3 fatty acids in cod liver oil via alternate operation of solvent winterization and enzymatic interesterification was attempted. Variables including separation method, solvent, oil concentration, time and temperature were optimized for the winterization. Meanwhile, Novozyme 435, Lipozyme RM IM and Lipozyme TL IM were screened for interesterification efficiency under different system air condition, time and temperature. In optimized method, alternate winterization (0.1g/mL oil/acetone, 24h, -80°C, precooled Büchner filtration) and interesterification (Lipozyme TL IM, N2 flow, 2.5h, 40°C) successfully doubled the omega-3 fatty acid content to 43.20 mol%. (1)H NMR was used to determine omega-3 fatty acid content, and GC-MS to characterize oil product, which mainly contained DHA (15.81 mol%) and EPA (20.23 mol%). The proposed method offers considerable efficiency and reduce production cost drastically. Oil produced thereof is with high quality and of particular importance for the development of omega-3 based active pharmaceutical ingredients. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Apparatus and method for maintaining low temperatures about an object at a remote location

    DOEpatents

    Steyert, Jr., William A.; Overton, Jr., William C.

    1982-01-01

    The disclosure is directed to an apparatus and method for maintaining a body at cryogenic temperatures at a remote location such as down a borehole for an extended period of time. A housing contains a body comprising a material having a high specific heat at cryogenic temperatures such as between about 2 and 15 K. The body contains an orifice for containing an instrument or instruments operable at superconducting temperatures. The apparatus is precooled at the surface and lowered into a borehole to a desired depth, such as 2 to 3 miles. The instruments are operated, and the apparatus withdrawn, the material of the body maintaining the very low temperatures at which the instrument(s) operate for a sufficient period of time at the remote or downhole location. The material may comprise a rare earth compound, such as Gd.sub.2 O.sub.3, Gd.sub.2 Se.sub.3, Gd.sub.2 O.sub.2 S or GdAlO.sub.3. Monoclinic and C-phase gadolinium oxides work well. A low temperature is maintainable at a remote location for several hours.

  20. Helium dilution refrigeration system

    DOEpatents

    Roach, Patrick R.; Gray, Kenneth E.

    1988-01-01

    A helium dilution refrigeration system operable over a limited time period, and recyclable for a next period of operation. The refrigeration system is compact with a self-contained pumping system and heaters for operation of the system. A mixing chamber contains .sup.3 He and .sup.4 He liquids which are precooled by a coupled container containing .sup.3 He liquid, enabling the phase separation of a .sup.3 He rich liquid phase from a dilute .sup.3 He-.sup.4 He liquid phase which leads to the final stage of a dilution cooling process for obtaining low temperatures. The mixing chamber and a still are coupled by a fluid line and are maintained at substantially the same level with the still cross sectional area being smaller than that of the mixing chamber. This configuration provides maximum cooling power and efficiency by the cooling period ending when the .sup.3 He liquid is depleted from the mixing chamber with the mixing chamber nearly empty of liquid helium, thus avoiding unnecessary and inefficient cooling of a large amount of the dilute .sup.3 He-.sup.4 He liquid phase.

  1. Helium dilution refrigeration system

    DOEpatents

    Roach, P.R.; Gray, K.E.

    1988-09-13

    A helium dilution refrigeration system operable over a limited time period, and recyclable for a next period of operation is disclosed. The refrigeration system is compact with a self-contained pumping system and heaters for operation of the system. A mixing chamber contains [sup 3]He and [sup 4]He liquids which are precooled by a coupled container containing [sup 3]He liquid, enabling the phase separation of a [sup 3]He rich liquid phase from a dilute [sup 3]He-[sup 4]He liquid phase which leads to the final stage of a dilution cooling process for obtaining low temperatures. The mixing chamber and a still are coupled by a fluid line and are maintained at substantially the same level with the still cross sectional area being smaller than that of the mixing chamber. This configuration provides maximum cooling power and efficiency by the cooling period ending when the [sup 3]He liquid is depleted from the mixing chamber with the mixing chamber nearly empty of liquid helium, thus avoiding unnecessary and inefficient cooling of a large amount of the dilute [sup 3]He-[sup 4]He liquid phase. 2 figs.

  2. Stress and Strain Distributions during Machining of Ti-6Al-4V at Ambient and Cryogenic Temperatures

    NASA Astrophysics Data System (ADS)

    Rahman, Md. Fahim

    Dry and liquid nitrogen pre-cooled Ti-6Al-4V samples were machined at a cutting speed of 43.2 m/min and at low (0.1 mm/rev) to high (0.4 mm/rev) feed rates for understanding the effects of temperature and strain rate on chip microstructures. During cryogenic machining, it was observed that between feed rates of 0.10 and 0.30 mm/rev, a 25% pressure reduction on tool occurred. Smaller number of chips and low tool/chip contact time and temperature were observed (compared to dry machining under ambient conditions). An in-situ set-up that consisted of a microscope and a lathe was constructed and helped to propose a novel serrated chip formation mechanism when microstructures (strain localization) and surface roughness were considered. Dimpled fracture surfaces observed in high-speed-machined chips were formed due to stable crack propagation that was also recorded during in-situ machining. An instability criterion was developed that showed easier strain localization within the 0.10-0.30mm/rev feed rate range.

  3. Operating modes and cooling capabilities of the 3-stage ADR developed for the Soft-X-ray Spectrometer instrument on Astro-H

    NASA Astrophysics Data System (ADS)

    Shirron, Peter J.; Kimball, Mark O.; James, Bryan L.; Muench, Theodore; DiPirro, Michael J.; Letmate, Richard V.; Sampson, Michael A.; Bialas, Tom G.; Sneiderman, Gary A.; Porter, Frederick S.; Kelley, Richard L.

    2016-03-01

    A 3-stage adiabatic demagnetization refrigerator (ADR) (Shirron et al., 2012) is used on the Soft X-ray Spectrometer instrument (Mitsuda et al., 2010) on Astro-H (Takahashi et al., 2010) [3] to cool a 6 × 6 array of X-ray microcalorimeters to 50 mK. The ADR is supported by a cryogenic system (Fujimoto et al., 2010) consisting of a superfluid helium tank, a 4.5 K Joule-Thomson (JT) cryocooler, and additional 2-stage Stirling cryocoolers that pre-cool the JT cooler and cool radiation shields within the cryostat. The ADR is configured so that it can use either the liquid helium or the JT cryocooler as its heat sink, giving the instrument an unusual degree of tolerance for component failures or degradation in the cryogenic system. The flight detector assembly, ADR and dewar were integrated into the flight dewar in early 2014, and have since been extensively characterized and calibrated. This paper summarizes the operation and performance of the ADR in all of its operating modes.

  4. The Planck Sorption Cooler: Using Metal Hydrides to Produce 20 K

    NASA Technical Reports Server (NTRS)

    Pearson, David P.; Bowman, R.; Prina, M.; Wilson, P.

    2006-01-01

    The Jet Propulsion Laboratory has built and delivered two continuous closed cycle hydrogen Joule-Thomson (JT) cryocoolers for the ESA Planck mission, which will measure the anisotropy in the cosmic microwave background. The metal hydride compressor consists of six sorbent beds containing LaNi4.78Sn0.22 alloy and a low pressure storage bed of the same material. Each sorbent bed contains a separate gas-gap heat switch that couples or isolates the bed with radiators during the compressor operating cycle. ZrNiHx hydride is used in this heat switch. The Planck compressor produces hydrogen gas at a pressure of 48 Bar by heating the hydride to approx.450 K. This gas passes through a cryogenic cold end consisting of a tube-in-tube heat exchanger, three pre-cooling stages to bring the gas to nominally 52 K, a JT value to expand the gas into the two-phase regime at approx.20 K, and two liquid - vapor heat exchangers that must remove 190 and 646 mW of heat respectively.

  5. Sprint performance under heat stress: A review.

    PubMed

    Girard, O; Brocherie, F; Bishop, D J

    2015-06-01

    Training and competition in major track-and-field events, and for many team or racquet sports, often require the completion of maximal sprints in hot (>30 °C) ambient conditions. Enhanced short-term (<30 s) power output or single-sprint performance, resulting from transient heat exposure (muscle temperature rise), can be attributed to improved muscle contractility. Under heat stress, elevations in skin/core temperatures are associated with increased cardiovascular and metabolic loads in addition to decreasing voluntary muscle activation; there is also compelling evidence to suggest that large performance decrements occur when repeated-sprint exercise (consisting of brief recovery periods between sprints, usually <60 s) is performed in hot compared with cool conditions. Conversely, poorer intermittent-sprint performance (recovery periods long enough to allow near complete recovery, usually 60-300 s) in hotter conditions is solely observed when exercise induces marked hyperthermia (core temperature >39 °C). Here we also discuss strategies (heat acclimatization, precooling, hydration strategies) employed by "sprint" athletes to mitigate the negative influence of higher environmental temperatures. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. The Common Cryogenic Test Facility for the ATLAS Barrel and End-Cap Toroid Magnets

    NASA Astrophysics Data System (ADS)

    Delruelle, N.; Haug, F.; Junker, S.; Passardi, G.; Pengo, R.; Pirotte, O.

    2004-06-01

    The large ATLAS toroidal superconducting magnet made of the Barrel and two End-Caps needs extensive testing at the surface of the individual components prior to their final assembly into the underground cavern of LHC. A cryogenic test facility specifically designed for cooling sequentially the eight coils making the Barrel Toroid (BT) has been fully commissioned and is now ready for final acceptance of these magnets. This facility, originally designed for testing individually the 46 tons BT coils, will be upgraded to allow the acceptance tests of the two End-Caps, each of them having a 160 tons cold mass. The integrated system mainly comprises a 1.2 kW@4.5 K refrigerator, a 10 kW liquid-nitrogen precooler, two cryostats housing liquid helium centrifugal pumps of respectively 80 g/s and 600 g/s nominal flow and specific instrumentation to measure the thermal performances of the magnets. This paper describes the overall facility with particular emphasis to the cryogenic features adopted to match the specific requirements of the magnets in the various operating scenarios.

  7. Apparatus and method for maintaining low temperatures about an object at a remote location. [Patent application

    DOEpatents

    Steyert, W.A. Jr.; Overton, W.C. Jr.

    1980-10-29

    The disclosure is directed to an apparatus and method for maintaining a body at cryogenic temperatures at a remote location such as down a borehole for an extended period of time. A housing contains a body comprising a material having a high specific heat at cryogenic temperatures such as between about 2 and 15 K. The body contains an orifice for containing an instrument or instruments operable at superconducting temperatures. The apparatus is precooled at the surface and lowered into a borehole to a desired depth, such as 2 to 3 miles. The instruments are operated, and the apparatus withdrawn, the material of the body maintaining the very low temperatures at which the instrument(s) operate for a sufficient period of time at the remote or downhole location. The material may comprise a rare earth compound, such as Gd/sub 2/O/sub 3/, Gd/sub 2/Se/sub 3/, Gd/sub 2/O/sub 2/S or GdAlO/sub 3/. Monoclinic and C-phase gadolinium oxides work well. A low temperature is maintainable at a remote location for several hours.

  8. Quality and freezing qualities of first and second ejaculates collected from endangered Gulf Coast Native rams.

    PubMed

    Nel-Themaat, L; Harding, G D; Chandler, J E; Chenevert, J F; Damiani, P; Fernandez, J M; Humes, P E; Pope, C E; Godke, R A

    2006-10-01

    The Gulf Coast Native sheep, or Louisiana Native sheep, is an endangered previously feral domestic sheep population of European origin that has been under natural selection pressure for reproductive survival in their transplanted range while roaming in the southern Gulf Coast Region of the United States. This sheep population has an increased natural resistance to internal parasites, breeds year-around and has a greater percentage of live lambs as compared with other breeds of sheep raised in similar environments. To preserve the genetic diversity of this important feral sheep population, semen was collected by electro-ejaculation and subjected to cryopreservation for subsequent storage in a genome resource bank. Unrelated rams (n=5) were collected 3 days-a-week, allowing at least 2 days of rest between collections. Two ejaculates were obtained from each ram per collection day, with the second collection conducted 10min after the first ejaculation. Semen was processed using the standard Salamon cryopreservation procedure in a Tris-yolk-glycerol extender, frozen in 0.5ml plastic straws using liquid nitrogen (LN(2)) vapor and stored in LN(2). Each ejaculate was evaluated for volume, sperm concentration/ml (x10(9)/ml), number of spermatozoa/ejaculate (x10(9)), sperm progressive motility (%) for pre-cooled semen, cooled semen and semen after thawing. For the five rams, each semen variable for the first ejaculate was compared with that of the second ejaculate collected 10min later. The mean semen volume, sperm concentration and number of spermatozoa per ejaculate obtained from the first ejaculate were significantly greater (P< or =0.01) than those of the second ejaculate (comparisons being 1.62 and 1.06; 3.2 and 1.5; 5.4 and 1.8, respectively). Overall, the mean motility of pre-cooled (22 degrees Celsius), cooled (5 degrees Celsius) and frozen (-196 degrees Celsius) post-thawed spermatozoa was less (P< or =0.01) in the first ejaculate (71.5, 64.8 and 34.1%, respectively) compared with that of the second ejaculate (75, 72.4 and 44.1%, respectively). Conversely, no differences were detected in loss in the percent progressive motility of sperm from cooled sperm to post-thaw sperm from the first and second ejaculates. In summary, our findings suggest sperm collected during the second ejaculate 10min after the first ejaculate of rams survives thawing with a greater rate of progressive motility than that of the first ejaculate. The ability to collect two consecutive ejaculates in a short period by electro-ejaculation could be valuable for gamete resource banking and preserving genetic diversity of the Gulf Coast Native sheep.

  9. Ultracold Anions for High-Precision Antihydrogen Experiments

    NASA Astrophysics Data System (ADS)

    Cerchiari, G.; Kellerbauer, A.; Safronova, M. S.; Safronova, U. I.; Yzombard, P.

    2018-03-01

    Experiments with antihydrogen (H ¯) for a study of matter-antimatter symmetry and antimatter gravity require ultracold H ¯ to reach ultimate precision. A promising path towards antiatoms much colder than a few kelvin involves the precooling of antiprotons by laser-cooled anions. Because of the weak binding of the valence electron in anions—dominated by polarization and correlation effects—only few candidate systems with suitable transitions exist. We report on a combination of experimental and theoretical studies to fully determine the relevant binding energies, transition rates, and branching ratios of the most promising candidate La- . Using combined transverse and collinear laser spectroscopy, we determined the resonant frequency of the laser cooling transition to be ν =96.592 713 (91 ) THz and its transition rate to be A =4.90 (50 )×104 s-1 . Using a novel high-precision theoretical treatment of La- we calculated yet unmeasured energy levels, transition rates, branching ratios, and lifetimes to complement experimental information on the laser cooling cycle of La- . The new data establish the suitability of La- for laser cooling and show that the cooling transition is significantly stronger than suggested by a previous theoretical study.

  10. Differentiating fatty and non-fatty tissue using photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Pan, Leo; Rohling, Robert; Abolmaesumi, Purang; Salcudean, Septimiu; Tang, Shuo

    2014-03-01

    In this paper, we demonstrate a temporal-domain intensity-based photoacoustic imaging method that can differentiate between fatty and non-fatty tissues. PA pressure intensity is partly dependent on the tissue's speed of sound, which increases as temperature increases in non-fatty tissue and decreases in fatty tissue. Therefore, by introducing a temperature change in the tissue and subsequently monitoring the change of the PA intensity, it is possible to distinguish between the two types of tissue. A commercial ultrasound system with a 128-element 5-14 MHz linear array transducer and a tunable ND:YAG laser were used to produce PA images. Ex-vivo bovine fat and porcine liver tissues were precooled to below 10°C and then warmed to room-temperature over ~1 hour period. A thermocouple monitored the temperature rise while PA images were acquired at 0.5°C intervals. The averaged intensity of the illuminated tissue region at each temperature interval was plotted and linearly fitted. Liver samples showed a mean increase of 2.82 %/°C, whereas bovine fat had a mean decrease of 6.24 %/°C. These results demonstrate that this method has the potential to perform tissue differentiation in the temporal-domain.

  11. Multi-Stage ADRs for Current and Future Astronomy Missions: Performance and Requirements for Cryogen-Free Operation

    NASA Technical Reports Server (NTRS)

    Shirron, Peter; Kimball, Mark; Vlahacos, Kosta

    2010-01-01

    The cooling requirements for current (e.g. Astro-H) and future (e.g. IXO and ASP) astronomy missions pose significant challenges for the sub-Kelvin Cooler. In particular, the use of large detector arrays increases the cooling power needed, and the variety of cryocoolers that can be used for pre-cooling greatly expands the range of temperatures at which the sub-Kelvin cooler can be designed to reject heat. In most cases, there is also a need for a stable higher temperature stage for cooling amplifiers or telescope components. NASA/GSFC is currently building a 3-stage ADR for the Astro-H mission, and is developing a 5-stage ADR suitable for IXO and ASP, as well as many other missions in the early planning stages. The architecture of these ADRs allows them to be adapted rather easily for different cooling requirements and to accommodate different cryocooler capabilities (operating temperature and cooling power). This paper will discuss the performance of these ADRs, which operate in both continuous, and single-shot cooling modes, and the minimum cryocooler capabilities needed to meet the requirements of future missions.

  12. Zero boil-off methods for large-scale liquid hydrogen tanks using integrated refrigeration and storage

    NASA Astrophysics Data System (ADS)

    Notardonato, W. U.; Swanger, A. M.; E Fesmire, J.; Jumper, K. M.; Johnson, W. L.; Tomsik, T. M.

    2017-12-01

    NASA has completed a series of tests at the Kennedy Space Center to demonstrate the capability of using integrated refrigeration and storage (IRAS) to remove energy from a liquid hydrogen (LH2) tank and control the state of the propellant. A primary test objective was the keeping and storing of the liquid in a zero boil-off state, so that the total heat leak entering the tank is removed by a cryogenic refrigerator with an internal heat exchanger. The LH2 is therefore stored and kept with zero losses for an indefinite period of time. The LH2 tank is a horizontal cylindrical geometry with a vacuum-jacketed, multilayer insulation system and a capacity of 125,000 liters. The closed-loop helium refrigeration system was a Linde LR1620 capable of 390W cooling at 20K (without any liquid nitrogen pre-cooling). Three different control methods were used to obtain zero boil-off: temperature control of the helium refrigerant, refrigerator control using the tank pressure sensor, and duty cycling (on/off) of the refrigerator as needed. Summarized are the IRAS design approach, zero boil-off control methods, and results of the series of zero boil-off tests.

  13. Preliminary thermal architecture of the X-IFU instrument dewar

    NASA Astrophysics Data System (ADS)

    Charles, Ivan; Daniel, Christophe; André, Jérome; Duband, Lionel; Duval, Jean-Marc; den Hartog, Roland; Mitsuda, Kazuhisa; Shinozaki, Keisuke; van Weers, Henk; Yamasaki, Noriko Y.

    2016-07-01

    The ESA Athena mission will implement 2 instruments to study the hot and energetic universe. The X-ray Integral Field Unit (X-IFU) will provide spatially resolved high resolution spectroscopy. This high energy resolution of 2.5 eV at 7 keV could be achieved thanks to TES (Transition Edge Sensor) detectors that need to be cooled to very low temperature. To obtain the required 50 mK temperature level, a careful design of the cryostat and of the cooling chain including different technologies in cascade is needed. The preliminary cryogenic architecture of the X-IFU instrument that fulfils the TES detector thermal requirements is described. In particular, the thermal design of the detector focal plane assembly (FPA), that uses three temperature stages (from 2 K to 50 mK) to limit the thermal loads on the lowest temperature stage, is described. The baseline cooling chain is based on European and Japanese mechanical coolers (Stirling, Pulse tube and Joule Thomson coolers) that precool a sub Kelvin cooler made of a 3He sorption cooler coupled with a small ADR (Adiabatic Demagnetization Refrigerator). Preliminary thermal budgets of the X-IFU cryostat are presented and discussed regarding cooling chain performances.

  14. Key composition optimization of meat processed protein source by vacuum freeze-drying technology.

    PubMed

    Ma, Yan; Wu, Xingzhuang; Zhang, Qi; Giovanni, Vigna; Meng, Xianjun

    2018-05-01

    Vacuum freeze-drying technology is a high technology content, a wide range of knowledge of technology in the field of drying technology is involved, it is also a method of the most complex drying equipment, the largest energy consumption, the highest cost of drying method, but due to the particularity of its dry goods: the freeze-drying food has the advantages of complex water performance is good, cooler and luster of freezing and drying food to maintain good products, less nutrient loss, light weight, easy to carry transportation, easy to long-term preservation, and on the quality is far superior to the obvious advantages of other dried food, making it become the forefront of drying technology research and development. The freeze-drying process of Chinese style ham and western Germany fruit tree tenderloin is studied in this paper, their eutectic point, melting point and collapse temperature, freeze-drying curve and its heat and mass transfer characteristics are got, then the precool temperature and the highest limiting temperature of sublimation interface are determined. The effect of system pressure on freeze-dried rate in freeze-drying process is discussed, and the method of regulating pressure circularly is determined.

  15. Mathematical modeling of a Fermilab helium liquefier coldbox

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geynisman, M.G.; Walker, R.J.

    1995-12-01

    Fermilab Central Helium Liquefier (CHL) facility is operated 24 hours-a-day to supply 4.6{degrees}K for the Fermilab Tevatron superconducting proton-antiproton collider Ring and to recover warm return gases. The centerpieces of the CHL are two independent cold boxes rated at 4000 and 5400 liters/hour with LN{sub 2} precool. These coldboxes are Claude cycle and have identical heat exchangers trains, but different turbo-expanders. The Tevatron cryogenics demand for higher helium supply from CHL was the driving force to investigate an installation of an expansion engine in place of the Joule-Thompson valve. A mathematical model was developed to describe the thermo- and gas-dynamicmore » processes for the equipment included in the helium coldbox. The model is based on a finite element approach, opposite to a global variables approach, thus providing for higher accuracy and conversion stability. Though the coefficients used in thermo- and gas-dynamic equations are unique for a given coldbox, the general approach, the equations, the methods of computations, and most of the subroutines written in FORTRAN can be readily applied to different coldboxes. The simulation results are compared against actual operating data to demonstrate applicability of the model.« less

  16. Zero Boil-Off Methods for Large Scale Liquid Hydrogen Tanks Using Integrated Refrigeration and Storage

    NASA Technical Reports Server (NTRS)

    Notardonato, W. U.; Swanger, A. M.; Fesmire, J. E.; Jumper, K. M.; Johnson, W. L.; Tomsik, T. M.

    2017-01-01

    NASA has completed a series of tests at the Kennedy Space Center to demonstrate the capability of using integrated refrigeration and storage (IRAS) to remove energy from a liquid hydrogen (LH2) tank and control the state of the propellant. A primary test objective was the keeping and storing of the liquid in a zero boil-off state, so that the total heat leak entering the tank is removed by a cryogenic refrigerator with an internal heat exchanger. The LH2 is therefore stored and kept with zero losses for an indefinite period of time. The LH2 tank is a horizontal cylindrical geometry with a vacuum-jacketed, multi-layer insulation system and a capacity of 125,000 liters. The closed-loop helium refrigeration system was a Linde LR1620 capable of 390W cooling at 20K (without any liquid nitrogen pre-cooling). Three different control methods were used to obtain zero boil-off: temperature control of the helium refrigerant, refrigerator control using the tank pressure sensor, and duty cycling (on/off) of the refrigerator as needed. Summarized are the IRAS design approach, zero boil-off control methods, and results of the series of zero boil-off tests.

  17. Thermodynamic design of hydrogen liquefaction systems with helium or neon Brayton refrigerator

    NASA Astrophysics Data System (ADS)

    Chang, Ho-Myung; Ryu, Ki Nam; Baik, Jong Hoon

    2018-04-01

    A thermodynamic study is carried out for the design of hydrogen liquefaction systems with helium (He) or neon (Ne) Brayton refrigerator. This effort is motivated by our immediate goal to develop a small-capacity (100 L/h) liquefier for domestic use in Korea. Eight different cycles are proposed and their thermodynamic performance is investigated in comparison with the existing liquefaction systems. The proposed cycles include the standard and modified versions of He Brayton refrigerators whose lowest temperature is below 20 K. The Brayton refrigerator is in direct thermal contact with the hydrogen flow at atmospheric pressure from ambient-temperature gas to cryogenic liquid. The Linde-Hampson system pre-cooled by a Ne Brayton refrigerator is also considered. Full cycle analysis is performed with the real properties of fluids to estimate the figure of merit (FOM) under an optimized operation condition. It is concluded that He Brayton refrigerators are feasible for this small-scale liquefaction, because a reasonably high efficiency can be achieved with simple and safe (low-pressure) operation. The complete cycles with He Brayton refrigerator are presented for the development of a prototype, including the ortho-to-para conversion.

  18. Ultracold Anions for High-Precision Antihydrogen Experiments.

    PubMed

    Cerchiari, G; Kellerbauer, A; Safronova, M S; Safronova, U I; Yzombard, P

    2018-03-30

    Experiments with antihydrogen (H[over ¯]) for a study of matter-antimatter symmetry and antimatter gravity require ultracold H[over ¯] to reach ultimate precision. A promising path towards antiatoms much colder than a few kelvin involves the precooling of antiprotons by laser-cooled anions. Because of the weak binding of the valence electron in anions-dominated by polarization and correlation effects-only few candidate systems with suitable transitions exist. We report on a combination of experimental and theoretical studies to fully determine the relevant binding energies, transition rates, and branching ratios of the most promising candidate La^{-}. Using combined transverse and collinear laser spectroscopy, we determined the resonant frequency of the laser cooling transition to be ν=96.592 713(91)  THz and its transition rate to be A=4.90(50)×10^{4}  s^{-1}. Using a novel high-precision theoretical treatment of La^{-} we calculated yet unmeasured energy levels, transition rates, branching ratios, and lifetimes to complement experimental information on the laser cooling cycle of La^{-}. The new data establish the suitability of La^{-} for laser cooling and show that the cooling transition is significantly stronger than suggested by a previous theoretical study.

  19. Recirculating 1-K-Pot for Pulse-Tube Cryostats

    NASA Technical Reports Server (NTRS)

    Paine, Christopher T.; Naylor, Bret J.; Prouve, Thomas

    2013-01-01

    A paper describes a 1-K-pot that works with a commercial pulse tube cooler for astrophysics instrumentation testbeds that require temperatures <1.7 K. Pumped liquid helium-4 cryostats were commonly used to achieve this temperature. However, liquid helium-4 cryostats are being replaced with cryostats using pulse tube coolers. The closed-cycle 1K-pot system for the pulse tube cooler requires a heat exchanger on the pulse tube, a flow restriction, pump-out line, and pump system that recirculates helium-4. The heat exchanger precools and liquefies helium- 4 gas at the 2.5 to 3.5 K pulse tube cold head. This closed-cycle 1-K-pot system was designed to work with commercially available laboratory pulse tube coolers. It was built using common laboratory equipment such as stainless steel tubing and a mechanical pump. The system is self-contained and requires only common wall power to operate. The lift of 15 mW at 1.1 K and base temperature of 0.97 K are provided continuously. The system can be scaled to higher heat lifts of .30 to 50 mW if desired. Ground-based telescopes could use this innovation to improve the efficiency of existing cryo

  20. Construction of Joule Thomson inversion curves for mixtures using equation of state

    NASA Astrophysics Data System (ADS)

    Patankar, A. S.; Atrey, M. D.

    2017-02-01

    The Joule-Thomson effect is at the heart of Joule-Thomson cryocoolers and gas liquefaction cycles. The effective harnessing of this phenomenon necessitates the knowledge of Joule-Thomson coefficient and the inversion curve. When the working fluid is a mixture, (in mix refrigerant Joule-Thomson cryocooler, MRJT) the phase diagrams, equations of state and inversion curves of multi-component systems become important. The lowest temperature attainable by such a cryocooler depends on the inversion characteristics of the mixture used. In this work the construction of differential Joule-Thomson inversion curves of mixtures using Redlich-Kwong, Soave-Redlich-Kwong and Peng-Robinson equations of state is investigated assuming single phase. It is demonstrated that inversion curves constructed for pure fluids can be improved by choosing an appropriate value of acentric factor. Inversion curves are used to predict maximum inversion temperatures of multicomponent systems. An application where this information is critical is a two-stage J-T cryocooler using a mixture as the working fluid, especially for the second stage. The pre-cooling temperature that the first stage is required to generate depends on the maximum inversion temperature of the second stage working fluid.

  1. Dilution Refrigerator for Nuclear Refrigeration and Cryogenic Thermometry Studies

    NASA Astrophysics Data System (ADS)

    Nakagawa, Hisashi; Hata, Tohru

    2014-07-01

    This study explores the design and construction of an ultra-low temperature facility in order to realize the Provisional low-temperature scale from 0.9 mK to 1 K (PLTS-2000) in Japan, to disseminate its use through calibration services, and to study thermometry at low temperatures below 1 K. To this end, a dilution refrigerator was constructed in-house that has four sintered silver discrete heat exchangers for use as a precooling stage of a copper nuclear demagnetization stage. A melting curve thermometer attached to the mixing chamber flange could be cooled continuously to 4.0 mK using the refrigerator. The dependence of minimum temperatures on circulation rates can be explained by the calculation of Frossati's formula based on a perfect continuous counterflow heat exchanger model, assuming that the Kapitza resistance has a temperature dependence. Residual heat leakage to the mixing chamber was estimated to be around 86 nW. A nuclear demagnetization cryostat with a nuclear stage containing an effective amount of copper (51 mol in a 9 T magnetic field) is under construction, and we will presently start to work toward the realization of the PLTS-2000. In this article, the design and performance of the dilution refrigerator are reported.

  2. DEVELOPMENT OF A 4 K STIRLING-TYPE PULSE TUBE CRYOCOOLER FOR A MOBILE TERAHERTZ DETECTION SYSTEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradley, P. E.; Gerecht, E.; Radebaugh, R.

    2010-04-09

    We discuss in this paper the design and development of a 4 K Stirling-type pulse tube cryocooler for a mobile terahertz detection system. This system integrates new heterodyne detector technology at terahertz frequencies with advancements of Stirling-type pulse tube technology that brings the advent of cooled detector sensitivities in a mobile, compact, and long duration operation system without degradation of sensitivity. To achieve this goal we reduced overall system size, input power, and temperature fluctuations and mechanical vibrations in order to maintain the detector sensitivity. The Stirling-type pulse tube cryocooler developed for this system is a hybrid design employing amore » He-4 pulse-tube cryocooler operating at 60 Hz and 2.5 MPa average pressure that precools a He-3 pulse tube cryocooler operating at 30 Hz and 1.0 MPa average pressure to achieve 4 K cooling for the terahertz receiver. The He-4 cryocooler employs stainless steel mesh regenerators for the first stage and ErPr spheres for the second stage, while the He-3 cryocooler employs stainless mesh for the first stage and ErPr spheres for the second stage with a layered rare-earth third stage regenerator. Design details and cooler performance goals are discussed.« less

  3. Heat Pipes

    NASA Astrophysics Data System (ADS)

    1990-01-01

    Bobs Candies, Inc. produces some 24 million pounds of candy a year, much of it 'Christmas candy.' To meet Christmas demand, it must produce year-round. Thousands of cases of candy must be stored a good part of the year in two huge warehouses. The candy is very sensitive to temperature. The warehouses must be maintained at temperatures of 78-80 degrees Fahrenheit with relative humidities of 38- 42 percent. Such precise climate control of enormous buildings can be very expensive. In 1985, energy costs for the single warehouse ran to more than 57,000 for the year. NASA and the Florida Solar Energy Center (FSEC) were adapting heat pipe technology to control humidity in building environments. The heat pipes handle the jobs of precooling and reheating without using energy. The company contacted a FSEC systems engineer and from that contact eventually emerged a cooperative test project to install a heat pipe system at Bobs' warehouses, operate it for a period of time to determine accurately the cost benefits, and gather data applicable to development of future heat pipe systems. Installation was completed in mid-1987 and data collection is still in progress. In 1989, total energy cost for two warehouses, with the heat pipes complementing the air conditioning system was 28,706, and that figures out to a cost reduction.

  4. Experimental vitrification of human compacted morulae and early blastocysts using fine diameter plastic micropipettes.

    PubMed

    Cremades, N; Sousa, M; Silva, J; Viana, P; Sousa, S; Oliveira, C; Teixeira da Silva, J; Barros, A

    2004-02-01

    Vitrification of human blastocysts has been successfully applied using grids, straws and cryoloops. We assessed the survival rate of human compacted morulae and early blastocysts vitrified in pipette tips with a smaller inner diameter and solution volume than the previously described open pulled straw (OPS) method. Excess day 5 human embryos (n = 63) were experimentally vitrified in vessels. Embryos were incubated at 37 degrees C with sperm preparation medium (SPM) for 1 min, SPM + 7.5% ethylene glycol (EG)/dimethylsulphoxide (DMSO) for 3 min, and SPM + 16.5% EG + 16.5% DMSO + 0.67 mol/l sucrose for 25 s. They were then aspirated (0.5 microl) into a plastic micropipette tip (0.36 mm inner diameter), exposed to liquid nitrogen (LN(2)) vapour for 2 min before being placed into a pre-cooled cryotube, which was then closed and plunged into LN(2). Embryos were warmed and diluted using 0.33 mol/l and 0.2 mol/l sucrose. The survival rate for compacted morulae was 73% (22/30) and 82% (27/33) for early blastocysts. The survival rates of human compacted morulae and early blastocysts after vitrification with this simple technique are similar to those reported in the literature achieved by slow cooling and other vitrification protocols.

  5. Heat Pipes

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Bobs Candies, Inc. produces some 24 million pounds of candy a year, much of it 'Christmas candy.' To meet Christmas demand, it must produce year-round. Thousands of cases of candy must be stored a good part of the year in two huge warehouses. The candy is very sensitive to temperature. The warehouses must be maintained at temperatures of 78-80 degrees Fahrenheit with relative humidities of 38- 42 percent. Such precise climate control of enormous buildings can be very expensive. In 1985, energy costs for the single warehouse ran to more than $57,000 for the year. NASA and the Florida Solar Energy Center (FSEC) were adapting heat pipe technology to control humidity in building environments. The heat pipes handle the jobs of precooling and reheating without using energy. The company contacted a FSEC systems engineer and from that contact eventually emerged a cooperative test project to install a heat pipe system at Bobs' warehouses, operate it for a period of time to determine accurately the cost benefits, and gather data applicable to development of future heat pipe systems. Installation was completed in mid-1987 and data collection is still in progress. In 1989, total energy cost for two warehouses, with the heat pipes complementing the air conditioning system was $28,706, and that figures out to a cost reduction.

  6. Cryogenics and its application with reference to spice grinding: a review.

    PubMed

    Balasubramanian, S; Gupta, Manoj Kumar; Singh, K K

    2012-01-01

    Cryogenics is the study of very low temperature and its application on different materials including biological products. Cryogenics has numerous applications in space science, electronics, automobiles, the manufacturing industry, sports and musical instruments, biological science and agriculture, etc. Cryogenic freezing finds pivotal application in food, that is, spices and condiments. Although there is a wide range of cryogens to produce the desired low temperature, generally liquid nitrogen (LN₂) is used in food grinding. The application of low temperature shows a promising pathway to produce higher quality end product with higher flavor and volatile oil retention. Cryogenic grinders generally consist of precoolers and grinder with the cryogen distribution system. In such grinding systems, cryogens subject the raw material up to or lower than glass transition temperature before it is ground, thus eliminating much of the material and quality hassles of traditional grinding. At present, the capital investment including cryogen and handling costs escalate the final cost of the product. Thus, for large-scale production, a proper design to optimize and make it feasible is the need of the hour and understanding the behavior of different food materials at these low temperature conditions. This article reviews the scenario and application of cryogenics in different sectors, especially to spice grinding.

  7. Commissioning of helium refrigeration system at JLab for 12 GeV upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganni, Venkatarao; Dixon, Kelly D.; Knudsen, Peter N.

    The new 4.5 K refrigerator system added to the Jefferson Lab (JLab) Central Helium Liquefier (CHL) for the 12 GeV upgrade will double its previous capacity. It includes a 4.5 K cold box system and compressor system with associated oil removal and gas management systems. At its maximum capacity condition, this new system supports an additional 238 g/s 30 K 1.16 bar cold compressor return flow, a 15 g/s 4.5 K liquefaction load and a 12.6 kW 35–55 K shield load. Five more design conditions, ranging from liquefaction to refrigeration and a stand-by/reduced load state, were specified for the sizingmore » and selection of its components. The cold box system is comprised of a 300–60 K vertical cold box that incorporates a liquid nitrogen pre-cooler and a 60–4.5 K horizontal cold box housing seven turbines that are configured in four expansion stages including one Joule-Thompson expander. The helium compression system has five compressors to support three pressure levels in the cold box. This paper will briefly review the salient 4.5 K system design features and discuss the recent commissioning results.« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heifetz, Alexander; Vilim, Richard

    Super-critical carbon dioxide (S-CO2) is a promising thermodynamic cycle for advanced nuclear reactors and solar energy conversion applications. Dynamic control of the proposed recompression S-CO2 cycle is accomplished with input from resistance temperature detector (RTD) measurements of the process fluid. One of the challenges in practical implementation of S-CO2 cycle is high corrosion rate of component and sensor materials. In this paper, we develop a mathematical model of RTD sensing using eigendecomposition model of radial heat transfer in a layered long cylinder. We show that the value of RTD time constant primarily depends on the rate of heat transfer frommore » the fluid to the outer wall of RTD. We also show that for typical material properties, RTD time constant can be calculated as the sum of reciprocal eigen-values of the heat transfer matrix. Using the computational model and a set of RTD and CO2 fluid thermophysical parameter values, we calculate the value of time constant of thermowell-mounted RTD sensor at the hot side of the precooler in the S-CO2 cycle. The eigendecomposition model of RTD will be used in future studies to model sensor degradation and its impact on control of S-CO2. (C) 2016 Elsevier B.V. All rights reserved.« less

  9. Reversible deactivation of higher-order posterior parietal areas. I. Alterations of receptive field characteristics in early stages of neocortical processing

    PubMed Central

    Cooke, Dylan F.; Goldring, Adam B.; Baldwin, Mary K. L.; Recanzone, Gregg H.; Chen, Arnold; Pan, Tingrui; Simon, Scott I.

    2014-01-01

    Somatosensory processing in the anesthetized macaque monkey was examined by reversibly deactivating posterior parietal areas 5L and 7b and motor/premotor cortex (M1/PM) with microfluidic thermal regulators developed by our laboratories. We examined changes in receptive field size and configuration for neurons in areas 1 and 2 that occurred during and after cooling deactivation. Together the deactivated fields and areas 1 and 2 form part of a network for reaching and grasping in human and nonhuman primates. Cooling area 7b had a dramatic effect on receptive field size for neurons in areas 1 and 2, while cooling area 5 had moderate effects and cooling M1/PM had little effect. Specifically, cooling discrete locations in 7b resulted in expansions of the receptive fields for neurons in areas 1 and 2 that were greater in magnitude and occurred in a higher proportion of sites than similar changes evoked by cooling the other fields. At some sites, the neural receptive field returned to the precooling configuration within 5–22 min of rewarming, but at other sites changes in receptive fields persisted. These results indicate that there are profound top-down influences on sensory processing of early cortical areas in the somatosensory cortex. PMID:25143546

  10. Holmium:YAG laser lithotripsy: A dominant photothermal ablative mechanism with chemical decomposition of urinary calculi.

    PubMed

    Chan, K F; Vassar, G J; Pfefer, T J; Teichman, J M; Glickman, R D; Weintraub, S T; Welch, A J

    1999-01-01

    Evidence is presented that the fragmentation process of long-pulse Holmium:YAG (Ho:YAG) lithotripsy is governed by photothermal decomposition of the calculi rather than photomechanical or photoacoustical mechanisms as is widely thought. The clinical Ho:YAG laser lithotriptor (2.12 microm, 250 micros) operates in the free-running mode, producing pulse durations much longer than the time required for a sound wave to propagate beyond the optical penetration depth of this wavelength in water. Hence, it is unlikely that shock waves are produced during bubble formation. In addition, the vapor bubble induced by this laser is not spherical. Thus the magnitude of the pressure wave produced at cavitation collapse does not contribute significantly to lithotripsy. A fast-flash photography setup was used to capture the dynamics of urinary calculus fragmentation at various delay times following the onset of the Ho:YAG laser pulse. These images were concurrently correlated with pressure measurements obtained with a piezoelectric polyvinylidene-fluoride needle-hydrophone. Stone mass-loss measurements for ablation of urinary calculi (1) in air (dehydrated and hydrated) and in water, and (2) at pre-cooled and at room temperatures were compared. Chemical and composition analyses were performed on the ablation products of several types of Ho:YAG laser irradiated urinary calculi, including calcium oxalate monohydrate (COM), calcium hydrogen phosphate dihydrate (CHPD), magnesium ammonium phosphate hexahydrate (MAPH), cystine, and uric acid calculi. When the optical fiber was placed perpendicularly in contact with the surface of the target, fast-flash photography provided visual evidence that ablation occurred approximately 50 micros after the initiation of the Ho:YAG laser pulse (250-350 micros duration; 375-400 mJ per pulse), long before the collapse of the cavitation bubble. The measured peak acoustical pressure upon cavitation collapse was negligible (< 2 bars), indicating that photomechanical forces were not responsible for the observed fragmentation process. When the fiber was placed in parallel to the calculus surface, the pressure peaks occurring at the collapse of the cavitation were on the order of 20 bars, but no fragmentation occurred. Regardless of fiber orientation, no shock waves were recorded at the beginning of bubble formation. Ablation of COM calculi (a total of 150 J; 0.5 J per pulse at an 8-Hz repetition rate) revealed different Ho:YAG efficiencies for dehydrated calculus, hydrated calculus, and submerged calculus. COM and cystine calculi, pre-cooled at -80 degrees C and then placed in water, yielded lower mass-loss during ablation (20 J, 1.0 J per pulse) compared to the mass-loss of calculi at room temperature. Chemical analyses of the ablated calculi revealed products resulting from thermal decomposition. Calcium carbonate was found in samples composed of COM calculi; calcium pyrophosphate was found in CHPD samples; free sulfur and cysteine were discovered in samples composed of cystine samples; and cyanide was found in samples of uric acid calculi. These experimental results provide convincing evidence that long-pulse Ho:YAG laser lithotripsy causes chemical decomposition of urinary calculi as a consequence of a dominant photothermal mechanism. Copyright 1999 Wiley-Liss, Inc.

  11. Coolers development for the ATHENA X-IFU cryogenic chain

    NASA Astrophysics Data System (ADS)

    Duband, L.; Charles, I.; Duval, J.-M.

    2014-07-01

    The hot and energetic universe has been selected by ESA as the science theme for the L2 mission with a planned launch in 2028. The Athena mission is one the potential mission concept for the next X-rays generation satellite. One of the instruments of this mission is the X-ray Integral Field Unit (X-IFU) which provides spatially resolved high resolution spectroscopy. This low temperature instrument requires high detector sensitivity that can only be achieved using 50 mK cooling. To obtain this temperature level, a careful design of the cryostat and of the cooling chain comprising different stages in cascade is needed. CEA has undertaken development in various areas to contribute to this cryochain including pulse tube coolers and sub-Kelvin coolers. This paper will describe the status of our different cooler developments. High temperature two stage pulse tube can be used for thermal shields cooling, 15 K pulse tube cooler for 2 K JT precooling and 4 K pulse tube cooler for a potential direct cooling of the sub-kelvin cooler. The 50 mK temperature is achieved using a sub-kelvin cooler comprising an adsorption cooler linked to an ADR stage. This elegant solution gives way to a light, compact and reliable cooler which has been validated in the SPICA/SAFARI project. Modified solutions are also under study to accommodate alternative design.

  12. Early Days of Superfluid ^3He: An Experimenter's View

    NASA Astrophysics Data System (ADS)

    Lee, David

    2010-03-01

    The formulation of the BCS theory led theorists to investigate possible non-S-wave pairing in liquid ^3He. Unfortunately as time went on, estimates for the pairing temperature became unattainably low. Nevertheless, the push to lower temperatures by experimentalists continued and was facilitated by the invention of the dilution refrigerator. Nuclear adiabatic demagnetization could then be used to cool liquid ^3He to ˜1 mK as demonstrated by Goodkind. An alternate approach, suggested by Pomeranchuk, involved adiabatic compression of liquid ^3He into the solid phase. Efforts to develop this technique at the Kapitza Institute, La Jolla and Cornell achieved success in demonstrating cooling of mixtures of liquid and solid ^3He to ˜ 1 mK following dilution refrigerator pre-cooling. Although there was great pessimism regarding the possible observation of pairing in liquid ^3He, the unsettled problem of magnetic ordering in solid ^3He beckoned. Ultimately two phase transition along the melting curve were observed by Osheroff et al at Cornell. Although first associated with solid ^3He, extensive NMR studies showed them to be two new phases of liquid ^3He. A brief history of experiments at various laboratories following the discovery is given, along with early interpretations given by Anderson and Morel and Balian and Werthamer. The key role of Leggett's spin dynamics is also discussed.

  13. Installation and Commissioning of the Super Conducting RF Linac Cryomodules for the Erlp

    NASA Astrophysics Data System (ADS)

    Goulden, A. R.; Bate, R.; Buckley, R. K.; Pattalwar, S. M.

    2008-03-01

    An Energy Recovery Linac Prototype (ERLP) is currently being constructed at Daresbury Laboratory, (UK) to promote the necessary skills in science & technology, particularly in photocathode electron gun and Superconducting RF (SRF), to enable the construction of a fourth generation light source, based on energy recovery linacs-4GLS [1]. The ERLP uses two identical cryomodules, one as a booster Linac used to accelerate the beam to 8.5 MeV, the other as an Energy Recovery Linac (ERL) module with an energy gain of 26.5 MeV. Each module consists of two 9- cell cavities operating at a frequency of 1.3 GHz and a temperature of 2 K. As there is no energy recovery in the booster it requires a peak power of 53 kW; whereas the linac module only requires 8 kW. The RF power is supplied by Inductive Output Tube (IOT) amplifiers. The maximum heat load (or the cooling power) required in the SRF system is 180 W at 2 K and is achieved in two stages: a LN2 pre-cooled Linde TCF50 liquefier produces liquid helium at 4.5 K, followed by a 2 K cold box consisting of a JT valve, recuperator and an external room temperature vacuum pumping system. This presentation reports the experience gained during, installation, commissioning and the initial operation of the cryomodules.

  14. Improvement in fresh fruit and vegetable logistics quality: berry logistics field studies.

    PubMed

    do Nascimento Nunes, M Cecilia; Nicometo, Mike; Emond, Jean Pierre; Melis, Ricardo Badia; Uysal, Ismail

    2014-06-13

    Shelf life of fresh fruits and vegetables is greatly influenced by environmental conditions. Increasing temperature usually results in accelerated loss of quality and shelf-life reduction, which is not physically visible until too late in the supply chain to adjust logistics to match shelf life. A blackberry study showed that temperatures inside pallets varied significantly and 57% of the berries arriving at the packinghouse did not have enough remaining shelf life for the longest supply routes. Yet, the advanced shelf-life loss was not physically visible. Some of those pallets would be sent on longer supply routes than necessary, creating avoidable waste. Other studies showed that variable pre-cooling at the centre of pallets resulted in physically invisible uneven shelf life. We have shown that using simple temperature measurements much waste can be avoided using 'first expiring first out'. Results from our studies showed that shelf-life prediction should not be based on a single quality factor as, depending on the temperature history, the quality attribute that limits shelf life may vary. Finally, methods to use air temperature to predict product temperature for highest shelf-life prediction accuracy in the absence of individual sensors for each monitored product have been developed. Our results show a significant reduction of up to 98% in the root-mean-square-error difference between the product temperature and air temperature when advanced estimation methods are used.

  15. Design of High Voltage Electrical Breakdown Strength measuring system at 1.8K with a G-M cryocooler

    NASA Astrophysics Data System (ADS)

    Li, Jian; Huang, Rongjin; Li, Xu; Xu, Dong; Liu, Huiming; Li, Laifeng

    2017-09-01

    Impregnating resins as electrical insulation materials for use in ITER magnets and feeder system are required to be radiation stable, good mechanical performance and high voltage electrical breakdown strength. In present ITER project, the breakdown strength need over 30 kV/mm, for future DEMO reactor, it will be greater than this value. In order to develop good property insulation materials to satisfy the requirements of future fusion reactor, high voltage breakdown strength measurement system at low temperature is necessary. In this paper, we will introduce our work on the design of this system. This measuring system has two parts: one is an electrical supply system which provides the high voltage from a high voltage power between two electrodes; the other is a cooling system which consists of a G-M cryocooler, a superfluid chamber and a heat switch. The two stage G-M cryocooler pre-cool down the system to 4K, the superfluid helium pot is used for a container to depress the helium to superfluid helium which cool down the sample to 1.8K and a mechanical heat switch connect or disconnect the cryocooler and the pot. In order to provide the sufficient time for the test, the cooling system is designed to keep the sample at 1.8K for 300 seconds.

  16. On the physics of laser-induced selective photothermolysis of hair follicles: Influence of wavelength, pulse duration, and epidermal cooling.

    PubMed

    Svaasand, Lars O; Nelson, J Stuart

    2004-01-01

    The physical basis for optimization of wavelength, pulse duration, and cooling for laser-induced selective photothermolysis of hair follicles in human skin is discussed. The results indicate that the most important optimization parameter is the cooling efficiency of the technique utilized for epidermal protection. The optical penetration is approximately the same for lasers at 694, 755, and 800 nm. The penetration of radiation from Nd:yttrium-aluminum-garnet lasers at 1064 nm is, however, somewhat larger. Photothermal damage to the follicle is shown to be almost independent of laser pulse duration up to 100 ms. The results reveal that epidermal cooling by a 30-80-ms-long cryogen spurt immediately before laser exposure is the only efficient technique for laser pulse durations less than 10 ms. For longer pulse durations in the 30-100 ms range, protection can be done efficiently by skin cooling during laser exposure. For laser pulses of 100 ms, an extended precooling period, e.g., by bringing a cold object into good thermal contact with the skin for about 1 s, can be of value. Thermal quenching of laser induced epidermal temperature rise after pulsed exposure can most efficiently be done with a 20 ms cryogen spurt applied immediately after irradiation. (c) 2004 Society of Photo-Optical Instrumentation Engineers.

  17. Detonation wave profiles measured in plastic bonded explosives using 1550 nm photon doppler velocimetry (PDV)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gustavsen, Richard L; Bartram, Brian D; Sanchez, Nathaniel

    2009-01-01

    We present detonation wave profiles measured in two TATB based explosives and two HMX based explosives. Profiles were measured at the interface of the explosive and a Lithium-Fluoride (LiF) window using 1550 nm Photon Doppler Velocimetry (PDV). Planar detonations were produced by impacting the explosive with a projectile launched in a gas-gun. The impact state was varied to produce varied distance to detonation, and therefore varied support of the Taylor wave following the Chapman-Jouget (CJ) or sonic state. Profiles from experiments with different support should be the same between the Von-Neumann (VN) spike and CJ state and different thereafter. Comparisonmore » of profiles with differing support, therefore, allows us to estimate reaction zone lengths. For the TATB based explosive, a reaction zone length of {approx} 3.9 mm, 500 ns was measured in EDC-35, and a reaction zone length of {approx} 6.3 mm, 800 ns was measured in PBX 9502 pre-cooled to -55 C. The respective VN spike state was 2.25 {+-} 0.05 km/s in EDC-35 and 2.4 {+-} 0.1 km/s in the cooled PBX 9502. We do not believe we have resolved either the VN spike state (> 2.6 km/s) nor the reaction zone length (<< 50 ns) in the HMX based explosives.« less

  18. Supercritical CO2 Power Cycles: Design Considerations for Concentrating Solar Power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neises, Ty; Turchi, Craig

    2014-09-01

    A comparison of three supercritical CO2 Brayton cycles: the simple cycle, recompression cycle and partial-cooling cycle indicates the partial-cooling cycle is favored for use in concentrating solar power (CSP) systems. Although it displays slightly lower cycle efficiency versus the recompression cycle, the partial-cooling cycle is estimated to have lower total recuperator size, as well as a lower maximum s-CO2 temperature in the high-temperature recuperator. Both of these effects reduce recuperator cost. Furthermore, the partial-cooling cycle provides a larger temperature differential across the turbine, which translates into a smaller, more cost-effective thermal energy storage system. The temperature drop across the turbinemore » (and by extension, across a thermal storage system) for the partial-cooling cycle is estimated to be 23% to 35% larger compared to the recompression cycle of equal recuperator conductance between 5 and 15 MW/K. This reduces the size and cost of the thermal storage system. Simulations by NREL and Abengoa Solar indicate the partial-cooling cycle results in a lower LCOE compared with the recompression cycle, despite the former's slightly lower cycle efficiency. Advantages of the recompression cycle include higher thermal efficiency and potential for a smaller precooler. The overall impact favors the use of a partial-cooling cycle for CSP compared to the more commonly analyzed recompression cycle.« less

  19. Infrared spectra of N2O-(ortho-D2)N and N2O-(HD)N clusters trapped in bulk solid parahydrogen.

    PubMed

    Lorenz, Britney D; Anderson, David T

    2007-05-14

    High-resolution infrared spectra of the clusters N2O-(ortho-D2)N and N2O-(HD)N, N=1-4, isolated in bulk solid parahydrogen at liquid helium temperatures are studied in the 2225 cm-1 region of the nu3 antisymmetric stretch of N2O. The clusters form during vapor deposition of separate gas streams of a precooled hydrogen mixture (ortho-D2para-H2 or HDpara-H2) and N2O onto a BaF2 optical substrate held at approximately 2.5 K in a sample-in-vacuum liquid helium cryostat. The cluster spectra reveal the N2O nu3 vibrational frequency shifts to higher energy as a function of N, and the shifts are larger for ortho-D2 compared to HD. These vibrational shifts result from the reduced translational zero-point energy for N2O solvated by the heavier hydrogen isotopomers. These spectra allow the N=0 peak at 2221.634 cm-1, corresponding to the nu3 vibrational frequency of N2O isolated in pure solid parahydrogen, to be assigned. The intensity of the N=0 absorption feature displays a strong temperature dependence, suggesting that significant structural changes occur in the parahydrogen solvation environment of N2O in the 1.8-4.9 K temperature range studied.

  20. Design and performance of a 4He-evaporator at <1.0 K

    NASA Astrophysics Data System (ADS)

    Das, N. K.; Pradhan, J.; Naser, Md. Z. A.; Roy, A.; Mandal, B. Ch.; Mallik, C.; Bhandari, R. K.

    2012-12-01

    A helium evaporator for obtaining 1 K temperature has been built and tested in laboratory. This will function primarily as the precooling stage for the circulating helium isotopic gas mixture. This works on evaporative cooling by way of pumping out the vapour from the top of the pot. A precision needle valve is used initially to fill up the pot and subsequently a permanent flow impedance maintains the helium flow from the bath into the pot to replenish the evaporative loss of helium. Considering the cooling power of 10 mW @1.0 K, a 99.0 cm3 helium evaporator was designed, fabricated from OFE copper and tested in the laboratory. A pumping station comprising of a roots pump backed by a dry pump was used for evacuation. The calibrated RuO thermometer and kapton film heater were used for measuring the temperature and cooling power of the system respectively. The continuously filled 1 K bath is tested in the laboratory and found to offer a temperature less than 1.0 K by withdrawing vapour from the evaporator. In order to minimize the heat load and to prevent film creep across the pumping tube, size optimization of the pumping line and pump-out port has been performed. The results of test run along with relevant analysis, mechanical fabrication of flow impedance are presented here.

  1. [Optimization of lyophilization procedures for freeze-drying of human red blood cells].

    PubMed

    Chen, Lin-feng; Liu, Jing-han; Wang, De-qing; Ouyang, Xi-lin; Zhuang, Yuan; Che, Ji; Yu, Yang; Li, Hui

    2010-09-01

    To investigate the different parameters of the lyophilization procedures that affect the recovery of the rehydrated red blood cells (RBCs). Human RBCs loaded in tubes were cooled with 4 different modes and subjected to water bath at 25 degrees celsius;. The morphological changes of the RBCs were observed to assess the degree of vitrification, and the specimens were placed in the freeze-dryer with the temperature set up at 40, -50, -60, -70 and -80 degrees celsius;. The rates of temperature rise of the main and secondary drying in the lyophilization procedures were compared, and the water residue in the specimens was determined. The protectant did not show ice crystal in the course of freezing and thawing. No significant difference was found in the recovery rate of the rehydrated RBCs freeze-dried at the minimum temperature of -70 degrees celsius; and -80 degrees celsius; (P > 0.05). The E procedure resulted in the maximum recovery of the RBCs (83.14% ± 9.55%) and Hb (85.33% ± 11.42%), showing significant differences from the other groups(P < 0.01 or 0.05). The recovery of the RBCs showed a positive correlation to the water residue in the samples. Fast cooling in liquid nitrogen and shelf precooling at -70 degrees celsius; with a moderate rate of temperature rise in lyophylization and a start dry temperature close to the shelf equilibrium temperature produce optimal freeze-drying result of human RBCs.

  2. Optimum Parameters for Freeze-Drying Decellularized Arterial Scaffolds

    PubMed Central

    Sheridan, William S.; Duffy, Garry P.

    2013-01-01

    Decellularized arterial scaffolds have achieved success in advancing toward clinical use as vascular grafts. However, concerns remain regarding long-term preservation and sterilization of these scaffolds. Freeze drying offers a means of overcoming these concerns. In this study, we investigated the effects of various freeze-drying protocols on decellularized porcine carotid arteries and consequently, determined the optimum parameters to fabricate a stable, preserved scaffold with unaltered mechanical properties. Freeze drying by constant slow cooling to two final temperatures ((Tf), −10°C and −40°C) versus instant freezing was investigated by histological examination and mechanical testing. Slow cooling to Tf= −10°C produced a stiffer and less distensible response than the non freeze-dried scaffolds and resulted in disruption to the collagen fibers. The mechanical response of Tf= −40°C scaffolds demonstrated disruption to the elastin network, which was confirmed with histology. Snap freezing scaffolds in liquid nitrogen and freeze drying to Tf= −40°C with a precooled shelf at −60°C produced scaffolds with unaltered mechanical properties and a histology resembling non-freeze-dried scaffolds. The results of this study demonstrate the importance of optimizing the nucleation and ice crystal growth/size to ensure homogenous drying, preventing extracellular matrix disruption and subsequent inferior mechanical properties. This new manufacturing protocol creates the means for the preservation and sterilization of decellularized arterial scaffolds while simultaneously maintaining the mechanical properties of the tissue. PMID:23614758

  3. Measurements of the optical performance of bolometers for SPICA/SAFARI

    NASA Astrophysics Data System (ADS)

    Audley, Michael D.; de Lange, Gert; Gao, Jian-Rong; Khosropanah, Pourya; Ridder, Marcel; Ferrari, Lorenza; Laauwen, Wouter M.; Ranjan, Manisha; Mauskopf, Philip D.; Morozov, Dmitry; Trappe, Neil A.

    2012-09-01

    We have measured the optical response of detectors designed for SAFARI, the far-infrared imaging spectrometer for the SPICA satellite. To take advantage of SPICA's cooled optics, SAFARI’s three bolometer arrays are populated with extremely sensitive (NEP~2×10-19 W/√Hz) transition edge sensors with a transition temperature close to 100 mK. The extreme sensitivity and low saturation power (~4 fW) of SAFARI’s detectors present challenges to characterizing them. We have therefore built up an ultra-low background test facility with a cryogen-free high-capacity dilution refrigerator, paying careful attention to stray-light exclusion. Our use of a pulse-tube cooler to pre-cool the dilution refrigerator required that the SAFARI Detector System Test Facility provide a high degree electrical, magnetic, and mechanical isolation for the detectors. We have carefully characterized the performance of the test facility in terms of background power loading. The test facility has been designed to be flexible and easily reconfigurable with internal illuminators that allow us to characterize the optical response of the detectors. We describe the test facility and some of the steps we took to create an ultra-low background test environment. We have measured the optical response of two detectors designed for SAFARI’s short-wave wavelength band in combination with a spherical backshort and conical feedhorn. We find an overall optical efficiency of 40% for both, compared with an ideal-case predicted optical efficiency of 66%.

  4. James Webb Space Telescope Mid Infra-Red Instrument Pulse-Tube Cryocooler Electronics

    NASA Technical Reports Server (NTRS)

    Harvey, D.; Flowers, T.; Liu, N.; Moore, K.; Tran, D.; Valenzuela, P.; Franklin, B.; Michaels, D.

    2013-01-01

    The latest generation of long life, space pulse-tube cryocoolers require electronics capable of controlling self-induced vibration down to a fraction of a newton and coldhead temperature with high accuracy down to a few kelvin. Other functions include engineering diagnostics, heater and valve control, telemetry and safety protection of the cryocooler subsystem against extreme environments and operational anomalies. The electronics are designed to survive the thermal, vibration, shock and radiation environment of launch and orbit, while providing a design life in excess of 10 years on-orbit. A number of our current generation high reliability radiation-hardened electronics units are in various stages of integration on several space flight payloads. This paper describes the features and performance of our latest flight electronics designed for the pulse-tube cryocooler that is the pre-cooler for a closed cycle Joule-Thomson cooler providing 6K cooling for the James Webb Space Telescope (JWST) Mid Infra-Red Instrument (MIRI). The electronics is capable of highly accurate temperature control over the temperature range from 4K to 15K. Self-induced vibration is controlled to low levels on all harmonics up to the 16th. A unique active power filter controls peak-to-peak reflected ripple current on the primary power bus to a very low level. The 9 kg unit is capable of delivering 360W continuous power to NGAS's 3-stage pulse-tube High-Capacity Cryocooler (HCC).

  5. Low temperature high frequency coaxial pulse tube for space application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charrier, Aurelia; Charles, Ivan; Rousset, Bernard

    2014-01-29

    The 4K stage is a critical step for space missions. The Hershel mission is using a helium bath, which is consumed day by day (after depletion, the space mission is over) while the Plank mission is equipped with one He4 Joule-Thomson cooler. Cryogenic chain without helium bath is a challenge for space missions and 4.2K Pulse-Tube working at high frequency (around 30Hz) is one option to take it up. A low temperature Pulse-Tube would be suitable for the ESA space mission EChO (Exoplanet Characterisation Observatory, expected launch in 2022), which requires around 30mW cooling power at 6K; and for themore » ESA space mission ATHENA (Advanced Telescope for High ENergy Astrophysics), to pre-cool the sub-kelvin cooler (few hundreds of mW at 15K). The test bench described in this paper combines a Gifford-McMahon with a coaxial Pulse-Tube. A thermal link is joining the intercept of the Pulse-Tube and the second stage of the Gifford-McMahon. This intercept is a separator between the hot and the cold regenerators of the Pulse-Tube. The work has been focused on the cold part of this cold finger. Coupled with an active phase shifter, this Pulse-Tube has been tested and optimized and temperatures as low as 6K have been obtained at 30Hz with an intercept temperature at 20K.« less

  6. Thermoregulation in multiple sclerosis.

    PubMed

    Davis, Scott L; Wilson, Thad E; White, Andrea T; Frohman, Elliot M

    2010-11-01

    Multiple sclerosis (MS) is a progressive neurological disorder that disrupts axonal myelin in the central nervous system. Demyelination produces alterations in saltatory conduction, slowed conduction velocity, and a predisposition to conduction block. An estimated 60-80% of MS patients experience temporary worsening of clinical signs and neurological symptoms with heat exposure. Additionally, MS may produce impaired neural control of autonomic and endocrine functions. This review focuses on five main themes regarding the current understanding of thermoregulatory dysfunction in MS: 1) heat sensitivity; 2) central regulation of body temperature; 3) thermoregulatory effector responses; 4) heat-induced fatigue; and 5) countermeasures to improve or maintain function during thermal stress. Heat sensitivity in MS is related to the detrimental effects of increased temperature on action potential propagation in demyelinated axons, resulting in conduction slowing and/or block, which can be quantitatively characterized using precise measurements of ocular movements. MS lesions can also occur in areas of the brain responsible for the control and regulation of body temperature and thermoregulatory effector responses, resulting in impaired neural control of sudomotor pathways or neural-induced changes in eccrine sweat glands, as evidenced by observations of reduced sweating responses in MS patients. Fatigue during thermal stress is common in MS and results in decreased motor function and increased symptomatology likely due to impairments in central conduction. Although not comprehensive, some evidence exists concerning treatments (cooling, precooling, and pharmacological) for the MS patient to preserve function and decrease symptom worsening during heat stress.

  7. Effect of pre-cooling injection site on pain perception in pediatric dentistry: “A randomized clinical trial”

    PubMed Central

    Ghaderi, Faezeh; Banakar, Shahin; Rostami, Shima

    2013-01-01

    Background: Injection of local anesthesia is one of the most important reasons for development of avoidance behavior in children. Efforts have been performed to decrease pain perception of injection. The present research evaluated the effect of cooling the injection site on pain perception before infiltration of local anesthetics. Materials and Methods: A prospective single-blind crossover clinical trial was used to investigate pain perception in 50 healthy pediatric patients who needed bilateral buccal infiltration of local anesthetics for dental treatment. They received a topical anesthetic agent (Benzocaine) on one side (control) for 1 min and topical anesthetic agent plus one minute of ice pack on the other side (trial) prior to the injection. A dentist blind to the study assessed the patients’ reaction during injection. Wilcoxon and Mann-Whitney U tests were used for statistical analysis. Statistical significance was defined at P < 0.05. Results: The means of sound, eye, and motor scales (SEM) were 4.06 ± 1.32 and 5.44 ± 1.79 for the study and control groups, respectively. The means of visual analogue scales (VAS) for the study and control groups were 42.20 ± 12.70 and 58.40 ± 16.83, respectively; with statistically significant differences between the two groups (P < 0.05). Conclusion: Cooling the injection site before infiltration of local anesthetics in the buccal mucosa for 1 min, reduced pain perceived by pediatric patients. PMID:24379869

  8. Development of post-harvest protocol of okra for export marketing.

    PubMed

    Dhall, R K; Sharma, S R; Mahajan, B V C

    2014-08-01

    The study was carried out on the harvesting and handling methods of okra with the objective to maintain the best quality of pods from harvesting to end consumer especially for export marketing. For that purpose okra cv. 'Punjab-8' pods were harvested with minimum handling (least injuries to the pubescence on the ridges of pod) and normal handling (no safety taken to prevent injuries on pods). Pods were precooled at 15 ± 1ºC, 90-95% RH; jumble packed in the CFB boxes of 2.0 Kg capacity and than stored at 8 ± 1ºC, 90-95% RH. The quality parameters of okra namely texture, chlorophyll content, physiological loss in weight, rotting percentage and general appearance were studied. The pods harvested with minimum handling and field packaging can retain their green colour, crisp texture (maximum force to puncture pod = 500.2 g) with minimum rotting (3.0%) and physiological loss in weight (15.8%) and good appearance upto 13 days of cold storage whereas normal handled pods can be stored upto 5 days at 8 ± 1ºC, 90-95% RH and thereafter lost their general appearance on the 7th day of storage and were discarded. Therefore, in order to maintain high quality of okra from harvesting to the final destination (consumer), the okra pods should be harvested with minimum handling followed by field packaging in CFB boxes.

  9. Design of a Dry Dilution Refrigerator for MMC Gamma Detector Arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedrich, Stephan; Boyd, Stephen; Cantor, Robin

    2017-04-03

    The goal of this LCP is to develop an ultra-high resolution gamma detector based on magnetic microcalorimeters (MMCs) for accurate non-destructive analysis (NDA) of nuclear materials. For highest energy resolution, we will introduce erbium-doped silver (Ag:Er) as a novel sensor material to replace current Au:Er sensors. The detector sensitivity will be increased by developing arrays of 32 Ag:Er pixels read out by 16 SQUID preamplifiers. MMC detectors require operating temperatures of ~15 mK and thus the use of a dilution refrigerator, and the desire for user-friendly operation without cryogenic liquids requires that this refrigerator use pulse-tube pre-cooling to ~4 K.more » For long-term reliability, we intend to re-design the heat switch that is needed to apply the magnetizing current to the Ag:Er sensor and that used to fail in earlier designs after months of operation. A cryogenic Compton veto will be installed to reduce the spectral background of the MMC, especially at low energies where ultra-high energy resolution is most important. The goals for FY16 were 1) to purchase a liquid-cryogen-free dilution refrigerator and adapt it for MMC operation, and 2) to fabricate Ag:Er-based MMC γ-detectors with improved performance and optimize their response. This report discusses the design of the instruments, and progress in MMC detector fabrication. Details of the MMC fabrication have been discussed in an April 2016 report to DOE.« less

  10. Structural properties and adsorption capacity of holocellulose aerogels synthesized from an alkali hydroxide-urea solution

    NASA Astrophysics Data System (ADS)

    Kwon, Gu-Joong; Kim, Dae-Young; Hwang, Jae-Hyun; Kang, Joo-Hyon

    2014-05-01

    A tulip tree was used to synthesize a holocellulose aerogel from an aqueous alkali hydroxide-urea solution with the substitution of an organic solvent followed by freeze-drying. For comparison, the synthesized holocellulose aerogels were divided into two groups according to the source of the hydrogel, an upper suspended layer and a bottom concentrated layer of the centrifuged solution of cellulose and NaOH/urea solvents. We investigated the effects of the temperature of the pre-cooled NaOH/urea solution ( i.e., dissolution temperature) on the pore structure and the adsorption capacity of the holocellulose aerogel. A nano-fibrillar network structure of the holocellulose aerogel was observed, with little morphological difference in pore structure for different dissolution temperatures. Both micropores and mesopores were observed in the holocellulose aerogel. The specific surface area of the holocellulose aerogel was generally greater at lower dissolution temperatures. In a series of adsorption tests using methylene blue, the holocellulose aerogel showed the greatest adsorption capacity at the lowest dissolution temperature tested (-2°C). However, the dissolution temperature generally had little effect on the adsorption capacity. The holocellulose aerogel produced from the upper suspended layer of the centrifuged hydrogel solution showed a greater porosity and adsorption capacity than the one produced from the bottom concentrated layer. Overall, the aerogel made by utilizing a delignified tulip tree display a high surface area and a high adsorption property, indicating its possible application in eco-friendly adsorption materials.

  11. Simulation of scalp cooling by external devices for prevention of chemotherapy-induced alopecia.

    PubMed

    Pliskow, Bradley; Mitra, Kunal; Kaya, Mehmet

    2016-02-01

    Hypothermia of the scalp tissue during chemotherapy treatment (scalp cooling) has been shown to reduce or prevent chemotherapy-induced hair loss. In this study, numerical models are developed to investigate the interaction between different types of external scalp cooling devices and the human scalp tissue. This work focuses on improving methods of modeling scalp cooling devices as it relates specifically to the prevention of chemotherapy-induced alopecia. First, the cooling power needed for any type of device to achieve therapeutic levels of scalp hypothermia is investigated. Subsequently, two types of scalp cooling devices are simulated: a pre-cooled/frozen cap design and a liquid-cooled cap design. For an average patient, simulations show that 38.5W of heat must be extracted from the scalp tissue for this therapy in order to cool the hair follicle to 22°C. In practice, the cooling power must be greater than this amount to account for thermal losses of the device. Simulations show that pre-cooled and liquid-cooled cap designs result in different tissue temperatures over the course of the procedure. However, it is the temperature of the coolant that largely determines the resulting tissue temperature. Simulations confirm that the thermal resistance of the hair/air layer has a large impact on the resulting tissue temperatures. The results should be correlated with experimental data as an effort to determine the optimal parameter choices for this model. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Particle fueling experiments with a series of pellets in LHD

    NASA Astrophysics Data System (ADS)

    Baldzuhn, J.; Damm, H.; Dinklage, A.; Sakamoto, R.; Motojima, G.; Yasuhara, R.; Ida, K.; Yamada, H.; LHD Experiment Group; Wendelstein 7-X Team

    2018-03-01

    Ice pellet injection is performed in the heliotron Large Helical Device (LHD). The pellets are injected in short series, with up to eight individual pellets. Parameter variations are performed for the pellet ice isotopes, the LHD magnetic configurations, the heating scenario, and some others. These experiments are performed in order to find out whether deeper fueling can be achieved with a series of pellets compared to single pellets. An increase of the fueling efficiency is expected since pre-cooling of the plasma by the first pellets within a series could aid deeper penetration of later pellets in the same series. In addition, these experiments show which boundary conditions must be fulfilled to optimize the technique. The high-field side injection of pellets, as proposed for deep fueling in a tokamak, will not be feasible with the same efficiency in a stellarator or heliotron because there the magnetic field gradient is smaller than in a tokamak of comparable size. Hence, too shallow pellet fueling, in particular in a large device or a fusion reactor, will be an issue that can be overcome only by extremely high pellet velocities, or other techniques that will have to be developed in the future. It turned out by our investigations that the fueling efficiency can be enhanced by the injection of a series of pellets to some extent. However, further investigations will be needed in order to optimize this approach for deep particle fueling.

  13. Low-temperature high-density magneto-optical trapping of potassium using the open 4S{yields}5P transition at 405 nm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKay, D. C.; Jervis, D.; Fine, D. J.

    2011-12-15

    We report the laser cooling and trapping of neutral potassium on an open transition. Fermionic {sup 40}K is captured using a magneto-optical trap (MOT) on the closed 4S{sub 1/2}{yields}4P{sub 3/2} transition at 767 nm and then transferred, with high efficiency, to a MOT on the open 4S{sub 1/2}{yields}5P{sub 3/2} transition at 405 nm. Because the 5P{sub 3/2} state has a smaller linewidth than the 4P{sub 3/2} state, the Doppler limit is reduced from 145 {mu}K to 24 {mu}K, and we observe temperatures as low as 63(6) {mu}K. The density of trapped atoms also increases, due to reduced temperature and reducedmore » expulsive light forces. We measure a two-body loss coefficient of {beta}=1.4(1)x10{sup -10} cm{sup 3}/s near saturation intensity, and estimate an upper bound of 8x10{sup -18} cm{sup 2} for the ionization cross section of the 5P state at 405 nm. The combined temperature and density improvement in the 405 nm MOT is a twenty-fold increase in phase-space density over our 767 nm MOT, showing enhanced precooling for quantum gas experiments. A qualitatively similar enhancement is observed in a 405 nm MOT of bosonic {sup 41}K.« less

  14. Intraosseous generation of heat during guided surgical drilling: an ex vivo study of the effect of the temperature of the irrigating fluid.

    PubMed

    Boa, Kristof; Barrak, Ibrahim; Varga, Endre; Joob-Fancsaly, Arpad; Varga, Endre; Piffko, Jozsef

    2016-10-01

    We measured the rise in the intraosseous temperature caused by freehand drilling or drilling through a surgical guide, by comparing different temperatures of irrigation fluid (10°C, 15°C, and 20°C), for every step of the drilling sequence (diameters 2.0, 2.5, 3.0, and 3.5mm) and using a constant drilling speed of 1200rpm. The axial load was controlled at 2.0kg. Bovine ribs were used as test models. In the guided group we used 3-dimensional printed surgical guides and temperature was measured with a thermocouple. The significance of differences was assessed with the Kruskal-Wallis analysis of variance. Guided drilling with 10°C irrigation yielded a significantly lower increment in temperature than the 20°C-guided group. When compared with the 20°C freehand group, the reduction in temperature in the 10°C guided group was significantly more pronounced at all diameters except 3.5mm. Finally, when the 10°C-guided group was compared with the 15°C groups, the temperature rise was significantly less at 2.5 and 3.0mm than with the guided technique, and at 3.0mm compared with the freehand technique. We suggest that the use of 10°C pre-cooled irrigation fluid is superior to warmer fluid for keeping temperature down, and this reduces the difference between guided and freehand drilling. Copyright © 2016 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  15. High-resolution x-ray spectroscopy with the EBIT Calorimeter Spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Porter, F. Scott; Adams, Joseph S.; Kelley, Richard L.

    The EBIT Calorimeter Spectrometer (ECS) is a production-class 36 pixel x-ray calorimeter spectrometer that has been continuously operating at the Electron Beam Ion Trap (EBIT) facility at Lawrence Livermore National Laboratory for almost 2 years. The ECS was designed to be a long-lifetime, turn-key spectrometer that couples high performance with ease of operation and minimal operator intervention. To this end, a variant of the Suzaku/XRS spaceflight detector system has been coupled to a low-maintenance cryogenic system consisting of a long-lifetime liquid He cryostat, and a closed cycle, {sup 3}He pre-cooled adiabatic demagnetization refrigerator. The ECS operates for almost 3 weeksmore » between cryogenic servicing and the ADR operates at 0.05 K for more than 60 hours between automatic recycles under software control. Half of the ECS semiconductor detector array is populated with mid-band pixels that have a resolution of 4.5 eV FWHM, a bandpass from 0.05-12 keV, and a quantum efficiency of 95% at 6 keV. The other half of the array has thick HgTe absorbers that have a bandpass from 0.3 to over 100 keV, an energy resolution of 33 eV FWHM, and a quantum efficiency of 32% at 60 keV. In addition, the ECS uses a real-time, autonomous, data collection and analysis system developed for the Suzaku/XRS instrument and implemented in off-the-shelf hardware for the ECS. Here we will discuss the performance of the ECS instrument and its implementation as a turnkey cryogenic detector system.« less

  16. BlueDetect: An iBeacon-Enabled Scheme for Accurate and Energy-Efficient Indoor-Outdoor Detection and Seamless Location-Based Service

    PubMed Central

    Zou, Han; Jiang, Hao; Luo, Yiwen; Zhu, Jianjie; Lu, Xiaoxuan; Xie, Lihua

    2016-01-01

    The location and contextual status (indoor or outdoor) is fundamental and critical information for upper-layer applications, such as activity recognition and location-based services (LBS) for individuals. In addition, optimizations of building management systems (BMS), such as the pre-cooling or heating process of the air-conditioning system according to the human traffic entering or exiting a building, can utilize the information, as well. The emerging mobile devices, which are equipped with various sensors, become a feasible and flexible platform to perform indoor-outdoor (IO) detection. However, power-hungry sensors, such as GPS and WiFi, should be used with caution due to the constrained battery storage on mobile device. We propose BlueDetect: an accurate, fast response and energy-efficient scheme for IO detection and seamless LBS running on the mobile device based on the emerging low-power iBeacon technology. By leveraging the on-broad Bluetooth module and our proposed algorithms, BlueDetect provides a precise IO detection service that can turn on/off on-board power-hungry sensors smartly and automatically, optimize their performances and reduce the power consumption of mobile devices simultaneously. Moreover, seamless positioning and navigation services can be realized by it, especially in a semi-outdoor environment, which cannot be achieved by GPS or an indoor positioning system (IPS) easily. We prototype BlueDetect on Android mobile devices and evaluate its performance comprehensively. The experimental results have validated the superiority of BlueDetect in terms of IO detection accuracy, localization accuracy and energy consumption. PMID:26907295

  17. The THz/FIR Spectrum of Small Water Clusters in Helium Nanodroplets

    NASA Astrophysics Data System (ADS)

    Schwaab, Gerhard; Schwan, Raffael; Mani, Devendra; Pal, Nitish; Dey, Arghya; Redlich, Britta; van der Meer, Lex; Havenith, Martina

    2017-06-01

    The microscopic properties of water that are relevant for bulk solvation processes are still not fully understood. Here, we combine mass selective Helium nanodroplet spectroscopy with the powerful Terahertz (THz) and far-infrared (FIR) capabilities of the free electron laser facility FELIX to study the fingerprint of small neutral water clusters in the wavelength range from 90-900\\wn. Helium nanodroplets are a gentle, superfluid matrix and allow aggregation of pre-cooled moieties at ultra-cold temperatures (0.37 K). The fast cooling rate allows in some cases to stabilize not only the global minimum structure but also local minimum structures. The FELIX facility in Nijmegen provides narrowband (Δν / ν=0.5%) pulsed radation covering the frequency range from 80-3300 \\wn. We used a repetition rate of 10 Hz and typical pulse energies from 10 mJ at the 90\\wn and 40 mJ at 900\\wn. This corresponds to average powers of 100-400 mW far beyond those available using other radiation sources in this frequency range. The observed spectrum is exceptionally rich and includes lines that are close to or below our resolution limit. By mass selective detection and by varying the pickup pressure, we were able to identify contributions from dimer, trimer, tetramer and pentamer. The number of resonances indicates stabilization of at least two trimer structures in He nanodroplets. A comparison with theoretical predictions is on the way. We are confident that our experiments will contribute to understand the very special behavior of water in a bottom up approach.

  18. Effect of experimentally reduced distal sensation on postural response to hip abductor/ankle evertor muscle vibration.

    PubMed

    Glasser, S; Collings, R; Paton, J; Marsden, J

    2015-07-01

    This study assessed whether postural responses induced by vibratory perturbations of the hip abductors and ankle evertors, were modified when distal tactile sensation was experimentally reduced through cooling. Sixteen healthy subjects were investigated pre and post cooling. Subjects stood with their eyes closed with a stance width of 4 cm. A 2s vibratory stimulus was applied to the left or right hip abductor or ankle evertor muscle. The order of the site and side of the stimulation was randomised. The postural response to hip abductor and ankle evertor vibration was recorded using 3D motion analysis (Codamotion, Leicestershire). Medio-lateral centre of pressure motion was simultaneously recorded during quiet standing via a force plate (Kistler, UK). Pre-cooling people responded to unilateral ankle vibration with an ipsilateral translation and tilt of the pelvis, and an ipsilateral tilt of the trunk. People responded to unilateral hip vibration with a contralateral translation and tilt of the pelvis, and an ipsilateral tilt of the trunk. Following an experimental reduction in distal tactile sensation there was a significant reduction in the amplitude of pelvic tilt in response to ankle vibration (F(6.2)=P<0.05) and a significant increase in amplitude of pelvic tilt in response to hip vibration (F(5.2)=P<0.05). This suggests that the sensitivity to artificial stimulation of hip proprioception increases with distal cooling, possibly indicating a change in the gain/weighting placed upon sensory information from the hips. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. A novel methodology to model the cooling processes of packed horticultural produce using 3D shape models

    NASA Astrophysics Data System (ADS)

    Gruyters, Willem; Verboven, Pieter; Rogge, Seppe; Vanmaercke, Simon; Ramon, Herman; Nicolai, Bart

    2017-10-01

    Freshly harvested horticultural produce require a proper temperature management to maintain their high economic value. Towards this end, low temperature storage is of crucial importance to maintain a high product quality. Optimizing both the package design of packed produce and the different steps in the postharvest cold chain can be achieved by numerical modelling of the relevant transport phenomena. This work presents a novel methodology to accurately model both the random filling of produce in a package and the subsequent cooling process. First, a cultivar-specific database of more than 100 realistic CAD models of apple and pear fruit is built with a validated geometrical 3D shape model generator. To have an accurate representation of a realistic picking season, the model generator also takes into account the biological variability of the produce shape. Next, a discrete element model (DEM) randomly chooses surface meshed bodies from the database to simulate the gravitational filling process of produce in a box or bin, using actual mechanical properties of the fruit. A computational fluid dynamics (CFD) model is then developed with the final stacking arrangement of the produce to study the cooling efficiency of packages under several conditions and configurations. Here, a typical precooling operation is simulated to demonstrate the large differences between using actual 3D shapes of the fruit and an equivalent spheres approach that simplifies the problem drastically. From this study, it is concluded that using a simplified representation of the actual fruit shape may lead to a severe overestimation of the cooling behaviour.

  20. DNA Extraction from Protozoan Oocysts/Cysts in Feces for Diagnostic PCR

    PubMed Central

    2014-01-01

    PCR detection of intestinal protozoa is often restrained by a poor DNA recovery or by inhibitors present in feces. The need for an extraction protocol that can overcome these obstacles is therefore clear. QIAamp® DNA Stool Mini Kit (Qiagen) was evaluated for its ability to recover DNA from oocysts/cysts directly from feces. Twenty-five Giardia-positive, 15 Cryptosporidium-positive, 15 Entamoeba histolytica-positive, and 45 protozoa-free samples were processed as control by microscopy and immunoassay tests. DNA extracts were amplified using 3 sets of published primers. Following the manufacturer's protocol, the kit showed sensitivity and specificity of 100% towards Giardia and Entamoeba. However, for Cryptosporidium, the sensitivity and specificity were 60% (9/15) and 100%, respectively. A series of optimization experiments involving various steps of the kit's protocol were conducted using Cryptosporidium-positive samples. The best DNA recoveries were gained by raising the lysis temperature to the boiling point for 10 min and the incubation time of the InhibitEX tablet to 5 min. Also, using a pre-cooled ethanol for nucleic acid precipitation and small elution volume (50-100 µl) were valuable. The sensitivity of the amended protocol to Cryptosporidium was raised to 100%. Cryptosporidium DNA was successfully amplified by either the first or the second primer set. When applied on parasite-free feces spiked with variable oocysts/cysts counts, ≈ 2 oocysts/cysts were theoretically enough for detection by PCR. To conclude, the Qiagen kit with the amended protocol was proved to be suitable for protozoan DNA extraction directly from feces and support PCR diagnosis. PMID:25031466

  1. DNA extraction from protozoan oocysts/cysts in feces for diagnostic PCR.

    PubMed

    Hawash, Yousry

    2014-06-01

    PCR detection of intestinal protozoa is often restrained by a poor DNA recovery or by inhibitors present in feces. The need for an extraction protocol that can overcome these obstacles is therefore clear. QIAamp® DNA Stool Mini Kit (Qiagen) was evaluated for its ability to recover DNA from oocysts/cysts directly from feces. Twenty-five Giardia-positive, 15 Cryptosporidium-positive, 15 Entamoeba histolytica-positive, and 45 protozoa-free samples were processed as control by microscopy and immunoassay tests. DNA extracts were amplified using 3 sets of published primers. Following the manufacturer's protocol, the kit showed sensitivity and specificity of 100% towards Giardia and Entamoeba. However, for Cryptosporidium, the sensitivity and specificity were 60% (9/15) and 100%, respectively. A series of optimization experiments involving various steps of the kit's protocol were conducted using Cryptosporidium-positive samples. The best DNA recoveries were gained by raising the lysis temperature to the boiling point for 10 min and the incubation time of the InhibitEX tablet to 5 min. Also, using a pre-cooled ethanol for nucleic acid precipitation and small elution volume (50-100 µl) were valuable. The sensitivity of the amended protocol to Cryptosporidium was raised to 100%. Cryptosporidium DNA was successfully amplified by either the first or the second primer set. When applied on parasite-free feces spiked with variable oocysts/cysts counts, ≈ 2 oocysts/cysts were theoretically enough for detection by PCR. To conclude, the Qiagen kit with the amended protocol was proved to be suitable for protozoan DNA extraction directly from feces and support PCR diagnosis.

  2. Physical control oriented model of large scale refrigerators to synthesize advanced control schemes. Design, validation, and first control results

    NASA Astrophysics Data System (ADS)

    Bonne, François; Alamir, Mazen; Bonnay, Patrick

    2014-01-01

    In this paper, a physical method to obtain control-oriented dynamical models of large scale cryogenic refrigerators is proposed, in order to synthesize model-based advanced control schemes. These schemes aim to replace classical user experience designed approaches usually based on many independent PI controllers. This is particularly useful in the case where cryoplants are submitted to large pulsed thermal loads, expected to take place in the cryogenic cooling systems of future fusion reactors such as the International Thermonuclear Experimental Reactor (ITER) or the Japan Torus-60 Super Advanced Fusion Experiment (JT-60SA). Advanced control schemes lead to a better perturbation immunity and rejection, to offer a safer utilization of cryoplants. The paper gives details on how basic components used in the field of large scale helium refrigeration (especially those present on the 400W @1.8K helium test facility at CEA-Grenoble) are modeled and assembled to obtain the complete dynamic description of controllable subsystems of the refrigerator (controllable subsystems are namely the Joule-Thompson Cycle, the Brayton Cycle, the Liquid Nitrogen Precooling Unit and the Warm Compression Station). The complete 400W @1.8K (in the 400W @4.4K configuration) helium test facility model is then validated against experimental data and the optimal control of both the Joule-Thompson valve and the turbine valve is proposed, to stabilize the plant under highly variable thermals loads. This work is partially supported through the European Fusion Development Agreement (EFDA) Goal Oriented Training Program, task agreement WP10-GOT-GIRO.

  3. Utilization of chemically treated municipal solid waste (spent coffee bean powder) as reinforcement in cellulose matrix for packaging applications.

    PubMed

    Thiagamani, Senthil Muthu Kumar; Nagarajan, Rajini; Jawaid, Mohammad; Anumakonda, Varadarajulu; Siengchin, Suchart

    2017-11-01

    As the annual production of the solid waste generable in the form of spent coffee bean powder (SCBP) is over 6 million tons, its utilization in the generation of green energy, waste water treatment and as a filler in biocomposites is desirable. The objective of this article is to analyze the possibilities to valorize coffee bean powder as a filler in cellulose matrix. Cellulose matrix was dissolved in the relatively safer aqueous solution mixture (8% LiOH and 15% Urea) precooled to -12.5°C. To the cellulose solution (SCBP) was added in 5-25wt% and the composite films were prepared by regeneration method using ethyl alcohol as a coagulant. Some SCBP was treated with aq. 5% NaOH and the composite films were also prepared using alkali treated SCBP as a filler. The films of composites were uniform with brown in color. The cellulose/SCBP films without and with alkali treated SCBP were characterized by FTIR, XRD, optical and polarized optical microscopy, thermogravimetric analysis (TGA) and tensile tests. The maximum tensile strength of the composite films with alkali treated SCBP varied between (106-149MPa) and increased with SCBP content when compared to the composites with untreated SCBP. The thermal stability of the composite was higher at elevated temperatures when alkali treated SCBP was used. Based on the improved tensile properties and photo resistivity, the cellulose/SCBP composite films with alkali treated SCBP may be considered for packaging and wrapping of flowers and vegetables. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. LSST Telescope and Optics Status

    NASA Astrophysics Data System (ADS)

    Krabbendam, Victor; Gressler, W. J.; Andrew, J. R.; Barr, J. D.; DeVries, J.; Hileman, E.; Liang, M.; Neill, D. R.; Sebag, J.; Wiecha, O.; LSST Collaboration

    2011-01-01

    The LSST Project continues to advance the design and development of an observatory system capable of capturing 20,000 deg2 of the sky in six wavebands over ten years. Optical fabrication of the unique M1/M3 monolithic mirror has entered final front surface optical processing. After substantial grinding to remove 5 tons of excess glass above the M3 surface, a residual of a single spin casting, both distinct optical surfaces are now clearly evident. Loose abrasive grinding has begun and polishing is to occur during 2011 and final optical testing is planned in early 2012. The M1/M3 telescope cell and internal component designs have matured to support on telescope operational requirements and off telescope coating needs. The mirror position system (hardpoint actuators) and mirror support system (figure actuator) designs have developed through internal laboratory analysis and testing. Review of thermal requirements has assisted with definition of a thermal conditioning and control system. Pre-cooling the M1/M3 substrate will enable productive observing during the large temperature swing often seen at twilight. The M2 ULE™ substrate is complete and lies in storage waiting for additional funding to enable final optical polishing. This 3.5m diameter, 100mm thick meniscus substrate has been ground to within 40 microns of final figure. Detailed design of the telescope mount, including subflooring, has been developed. Finally, substantial progress has been achieved on the facility design. In early 2010, LSST contracted with ARCADIS Geotecnica Consultores, a Santiago based engineering firm to lead the formal architectural design effort for the summit facility.

  5. Ball Aerospace Long Life, Low Temperature Space Cryocoolers

    NASA Astrophysics Data System (ADS)

    Glaister, D. S.; Gully, W.; Marquardt, E.; Stack, R.

    2004-06-01

    This paper describes the development, qualification, characterization testing and performance at Ball Aerospace of long life, low temperature (from 4 to 35 K) space cryocoolers. For over a decade, Ball has built long life (>10 year), multi-stage Stirling and Joule-Thomson (J-T) cryocoolers for space applications, with specific performance and design features for low temperature operation. As infrared space missions have continually pushed for operation at longer wavelengths, the applications for these low temperature cryocoolers have increased. The Ball cryocooler technologies have culminated in the flight qualified SB235 Cryocooler and the in-development 6 K NASA/JPL ACTDP (Advanced Cryocooler Technology Development Program) Cryocooler. The SB235 and its model derivative SB235E are 2-stage coolers designed to provide simultaneous cooling at 35 K (typically, for Mercury Cadmium Telluride or MCT detectors) and 100 K (typically, for the optics) and were baselined for the Raytheon SBIRS Low Track Sensor. The Ball ACTDP cooler is a hybrid Stirling/J-T cooler that has completed its preliminary design with an Engineering Model to be tested in 2005. The ACTDP cooler provides simultaneous cooling at 6 K (typically, for either doped Si detectors or as a sub-Kelvin precooler) and 18 K (typically, for optics or shielding). The ACTDP cooler is under development for the NASA JWST (James Webb Space Telescope), TPF (Terrestrial Planet Finder), and Con-X (Constellation X-Ray) missions. Both the SB235 and ACTDP Coolers are highly leveraged off previous Ball space coolers including multiple life test and flight units.

  6. ARMY GAS-COOLED REACTOR SYSTEMS PROGRAM. Quarterly Progress Report, October 1-December 31, 1963

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1964-02-15

    The ML-1 power plant did not operate during the report period; low power reactor physics and shielding experiments were conducted with the ML-1 reactor. Evaluation of moderate corrosion observed on aluminum parts exposed to the ML-1 shield solution indicated no loss of performance capability. Preliminary tests showed that the corrosion probably was caused by heavy metal ions or chlorides in the solution, Massive corrosion observed on the ML-1 fuel element lower spiders was attributed to sub-standard material; failure of some spiders was attributed to a combination of corrosion and sub-standard fabrication. Evaluation indicated that the upper spiders will perform satisfactorilymore » for the design lifetime. Modification, repair, and reassembly of the CSN-1A t-c set was completed. Operation demonstrated bearing stability, but showed that the turbine effective flow area was too large. A bypass flow path in the turbine was being corrected. The TCS-670 t-c set will be stored indefinitely. Since a commercial alternator will be used for the ML-1A, further development of the brushless alternator was postponed indefinitely. Evaluation revealed that the ML-1 improved precooler design was not compatible with ML-1A requirements. Operntion of the IB-17R-2 and -3 test elements in the GETR continued without incident. Preliminary design of the ML-1A power plant was initiated. Design of modifications to the GCRE facility to adapt it to testing the ML-1 reactor skid was initiated. (auth)« less

  7. Relationships between skin temperature and temporal summation of heat and cold pain.

    PubMed

    Mauderli, Andre P; Vierck, Charles J; Cannon, Richard L; Rodrigues, Anthony; Shen, Chiayi

    2003-07-01

    Temporal summation of heat pain during repetitive stimulation is dependent on C nociceptor activation of central N-methyl-d-aspartate (NMDA) receptor mechanisms. Moderate temporal summation is produced by sequential triangular ramps of stimulation that control skin temperature between heat pulses but do not elicit distinct first and second pain sensations. Dramatic summation of second pain is produced by repeated contact of the skin with a preheated thermode, but skin temperature between taps is not controlled by this procedure. Therefore relationships between recordings of skin temperature and psychophysical ratings of heat pain were evaluated during series of repeated skin contacts. Surface and subcutaneous recordings of skin temperatures revealed efficient thermoregulatory compensation for heat stimulation at interstimulus intervals (ISIs) ranging from 2 to 8 s. Temporal summation of heat pain was strongly influenced by the ISIs and cannot be explained by small increases in skin temperature between taps or by heat storage throughout a stimulus series. Repetitive brief contact with a precooled thermode was utilized to evaluate whether temporal summation of cold pain occurs, and if so, whether it is influenced by skin temperature. Surface and subcutaneous recordings of skin temperature revealed a sluggish thermoregulatory compensation for repetitive cold stimulation. In contrast to heat stimulation, skin temperature did not recover between cold stimuli throughout ISIs of 3-8 s. Psychophysically, repetitive cold stimulation produced an aching pain sensation that progressed gradually and radiated beyond the site of stimulation. The magnitude of aching pain was well related to skin temperature and thus appeared to be established primarily by peripheral factors.

  8. 20 K Helium Refrigeration System for NASA-JSC Chamber-A

    NASA Technical Reports Server (NTRS)

    Homan, J.; Redman, R.; Ganni, V.; Sidi-Yekhelef, A.; Knudsen, P.; Norton, R.; Lauterbach, J.; Linza, R.; Vargas, G.

    2013-01-01

    A new 20 K helium refrigerator installed at NASA Johnson Space Center's Space Environment Simulation Laboratory (SESL) was successfully commissioned and tested in 2012. The refrigerator is used to create a deep space environment within SESL s Chamber A to perform ground testing of the James Webb Space Telescope. The chamber previously and currently still has helium cryopumping panels (CPP) and LN2 shrouds used to create Low Earth Orbit environments. Now with the new refrigerator and new helium shrouds (45 x 65 ) the chamber can create a deep space environment. The process design, system analysis, specification development, and commissioning oversight were performed by the cryogenics department at Jefferson Labs, while the contracts and system installation was performed by the ESC group at JSC. Commissioning data indicate a inverse coefficient of performance better than 70 W/W for a 18 KW load at 20 K (accounting for liquid nitrogen precooling power) that remains essentially constant down to 1/3 of this load. Even at 10 percent of the maximum capacity, the performance is better than 140 W/W at 20K. The refrigerator exceeded all design goals and demonstrated the ability to support a wide load range from 10kW at 15 K to 100 kW at 100K. The refrigerator is capable of operating at any load temperature from 15K to ambient with tight temperature stability. The new shroud (36 tons of aluminum) can be cooled from room temperature to 20 K in 24 hours. This paper will outline the process design and commissioning results.

  9. Commissioning and operational results of helium refrigeration system at JLab for the 12GeV upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knudsen, Peter N.; Ganni, Venkatarao; Dixon, Kelly D.

    The new 4.5 K refrigerator system at the Jefferson Lab (JLab) Central Helium Liquefier (CHL-2) for the 12 GeV upgrade was commissioned in late spring of 2013, following the commissioning of the new compressor system, and has been supporting 12 GeV LINAC commissioning since that time. Six design modes were tested during commissioning, consisting of a maximum capacity, nominal capacity, maximum liquefaction, maximum refrigeration, maximum fill and a stand-by/reduced load condition. The maximum capacity was designed to support a 238 g/s, 30 K and 1.16 bar cold compressor return flow, a 15 g/s, 4.5 K liquefaction load and a 12.6more » kW, 35-55 K shield load. The other modes were selected to ensure proper component sizing and selection to allow the cold box to operate over a wide range of conditions and capacities. The cold box system is comprised of two physically independent cold boxes with interconnecting transfer-lines. The outside (upper) 300-60 K vertical cold box has no turbines and incorporates a liquid nitrogen pre-cooler and 80-K beds. The inside (lower) 60-4.5 K horizontal cold box houses seven turbines that are configured in four expansion stages including one Joule-Thompson expander and a 20-K bed. The helium compression system has five compressors to support three pressure levels in the cold box. This paper will summarize the analysis of the test data obtained over the wide range of operating conditions and capacities which were tested.« less

  10. Commissioning of a 20 K Helium Refrigeration System for NASA-JSC Chamber A

    NASA Technical Reports Server (NTRS)

    Homan, J.; Redman, R.; Ganni, V.; Sidi-Yekhlef, A.; Knudsen, P.; Norton, R.; Lauterbach, J.; Linza, R.; Vargas, G.

    2013-01-01

    A new 20 K helium refrigerator installed at NASA Johnson Space Center s Space Environment Simulation Laboratory (SESL) was successfully commissioned and tested in 2012. The refrigerator is used to create a deep space environment within SESL s Chamber A to perform ground testing of the James Webb Space Telescope (JWST). The chamber previously and currently still has helium cryo-pumping panels (CPP) and liquid nitrogen shrouds used to create low earth orbit environments. Now with the new refrigerator and new helium shrouds the chamber can create a deep space environment. The process design, system analysis, specification development, and commissioning oversight were performed by the cryogenics department at Jefferson Lab, while the contracts and system installation was performed by the ESC group at JSC. Commissioning data indicate an inverse coefficient of performance better than 70 W/W for a 18 kW load at 20 K (accounting for liquid nitrogen pre-cooling power) that remains essentially constant down to one third of this load. Even at 10 percent of the maximum capacity, the performance is better than 150 W/W at 20 K. The refrigerator exceeded all design goals and demonstrated the ability to support a wide load range from 10 kW at 15 K to 100 kW at 100 K. The refrigerator is capable of operating at any load temperature from 15 K to ambient with tight temperature stability. The new shroud (36 tons of aluminum) can be cooled from room temperature to 20 K in 24 hours. This paper will outline the process design and commissioning results.

  11. Numerical study of a gas coupled VM-PT hybrid cryocooler using 3He as the working fluid

    NASA Astrophysics Data System (ADS)

    Wang, J.; Pan, C. Z.; Zhang, T.; Wang, J. J.; Zhou, Y.

    2017-12-01

    The two-stage Vuilleumier gas-coupling pulse tube cryocooler (VM-PT) is one kind of novel low-frequency cryocoolers. In this gas-coupled form, the single stage Vuilleumier cryocooler serves as both pressure wave generator and a pre-cooler for coaxial pulse tube. Compared with the most commercialized GM and GM pulse tube cryocooler, the two-stage VM-PT cryocooler is characterized by its high stability, compact size and thermal actuation which are indispensable for space application. It has already been verified experimentally that this cryocooler can obtain 9.75mW@4.2K and the lowest no-load temperature 3.39K when 4He as the working fluid. However, such refrigerating capacity seems not enough for further application. 3He as a more potential substitution of 4He has better physical properties to improve performance, which has been studied in GM type and Stirling pulse tube cryocooler. For further optimization, a numerical study on the specific performance of two-stage VM-PT cryocooler using 3He is carried out in the present paper though Sage software. Working at the frequency of 1.0Hz and the pressure of 0.8MPa, the two-stage VM-PT cryocooler with 3He obtained 50mW@4.06K. The usage of 3He was 0.0038kg, about 30L under STP. At 4.2K, using 3He can obtain 58mW cooling power and 0.49% relative Carnot efficiency, about 1.6 times higher than using 4He.

  12. Development of a Simplified, Cost Effective GC-ECD Methodology for the Sensitive Detection of Bromoform in the Troposphere

    PubMed Central

    Kuyper, Brett; Labuschagne, Casper; Philibert, Raïssa; Moyo, Nicholas; Waldron, Howard; Reason, Chris; Palmer, Carl

    2012-01-01

    Wherever measurements have been made bromoform was found to be ubiquitous in the surface ocean in pmolar-nmolar concentrations. These measurements show concentrations in coastal regions orders of magnitude higher than in the pelagic oceans. Its atmospheric presence is primarily due to its release from algae and rapid transport to the marine boundary troposphere where it is known to participate in ozone chemistry via photochemical and catalytic pathways. Until quite recently, a limited number of studies existed (compared to other marine volatile organic compounds (VOCs)), mainly due to the analytical challenge(s) presented by the low environmental mixing ratios. In this work we detail the development of a simplified, cost effective method to detect and quantify bromoform in environmental air samples. Air samples (1.5 L) were preconcentrated onto a precooled adsorbent (Carbopack X/Carboxen 1016) trap. These samples were injected by means of rapid thermal desorption for separation and detection by GC-ECD. The system was calibrated by means of a custom-built permeation oven. A linear system response was achieved, having a detection limit of 0.73 ± 0.09 ppt. A range of environmental samples was analysed to demonstrate the ability of the technique to separate and identify bromoform from air samples. The results showed that bromoform concentrations typically averaged 24.7 ± 17.3 ppt in marine air samples, 68.5 ± 26.3 ppt in Cape Town urban air samples and 33.9 ± 40.5 ppt in simulated biomass burning plumes (SBBP). PMID:23202011

  13. Compact, ultra-low vibration, closed-cycle helium recycler for uninterrupted operation of MEG with SQUID magnetometers

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Sun, Limin; Lichtenwalter, Ben; Zerkle, Brent; Okada, Yoshio

    2016-06-01

    A closed-cycle helium recycler was developed for continuous uninterrupted operation for magnetometer-based whole-head magnetoencephalography (MEG) systems. The recycler consists of a two stage 4 K pulse-tube cryocooler and is mounted on the roof of a magnetically shielded room (MSR). A flexible liquid helium (LHe) return line on the recycler is inserted into the fill port of the MEG system in the MSR through a slotted opening in the ceiling. The helium vapor is captured through a line that returns the gas to the top of the recycler assembly. A high-purity helium gas cylinder connected to the recycler assembly supplies the gas, which, after it is liquefied, increases the level of LHe in the MEG system during the start-up phase. No storage tank for evaporated helium gas nor a helium gas purifier is used. The recycler is capable of liquefying helium with a rate of ∼17 L/d after precooling the MEG system. It has provided a fully maintenance-free operation under computer control for 7 months without refill of helium. Although the recycler is used for single-orientation operation at this initial testing site, it is designed to operate at ±20° orientations, allowing the MEG system to be tilted for supine and reclining positions. Vibration of the recycler is dampened to an ultra-low level by using several vibration isolation methods, which enables uninterrupted operation during MEG measurements. Recyclers similar to this system may be quite useful even for MEG systems with 100% magnetometers.

  14. Internal and external cooling methods and their effect on body temperature, thermal perception and dexterity.

    PubMed

    Maley, Matthew J; Minett, Geoffrey M; Bach, Aaron J E; Zietek, Stephanie A; Stewart, Kelly L; Stewart, Ian B

    2018-01-01

    The present study aimed to compare a range of cooling methods possibly utilised by occupational workers, focusing on their effect on body temperature, perception and manual dexterity. Ten male participants completed eight trials involving 30 min of seated rest followed by 30 min of cooling or control of no cooling (CON) (34°C, 58% relative humidity). The cooling methods utilised were: ice cooling vest (CV0), phase change cooling vest melting at 14°C (CV14), evaporative cooling vest (CVEV), arm immersion in 10°C water (AI), portable water-perfused suit (WPS), heliox inhalation (HE) and ice slushy ingestion (SL). Immediately before and after cooling, participants were assessed for fine (Purdue pegboard task) and gross (grip and pinch strength) manual dexterity. Rectal and skin temperature, as well as thermal sensation and comfort, were monitored throughout. Compared with CON, SL was the only method to reduce rectal temperature (P = 0.012). All externally applied cooling methods reduced skin temperature (P<0.05), though CV0 resulted in the lowest skin temperature versus other cooling methods. Participants felt cooler with CV0, CV14, WPS, AI and SL (P<0.05). AI significantly impaired Purdue pegboard performance (P = 0.001), but did not affect grip or pinch strength (P>0.05). The present study observed that ice ingestion or ice applied to the skin produced the greatest effect on rectal and skin temperature, respectively. AI should not be utilised if workers require subsequent fine manual dexterity. These results will help inform future studies investigating appropriate pre-cooling methods for the occupational worker.

  15. Physical control oriented model of large scale refrigerators to synthesize advanced control schemes. Design, validation, and first control results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonne, François; Bonnay, Patrick; Alamir, Mazen

    2014-01-29

    In this paper, a physical method to obtain control-oriented dynamical models of large scale cryogenic refrigerators is proposed, in order to synthesize model-based advanced control schemes. These schemes aim to replace classical user experience designed approaches usually based on many independent PI controllers. This is particularly useful in the case where cryoplants are submitted to large pulsed thermal loads, expected to take place in the cryogenic cooling systems of future fusion reactors such as the International Thermonuclear Experimental Reactor (ITER) or the Japan Torus-60 Super Advanced Fusion Experiment (JT-60SA). Advanced control schemes lead to a better perturbation immunity and rejection,more » to offer a safer utilization of cryoplants. The paper gives details on how basic components used in the field of large scale helium refrigeration (especially those present on the 400W @1.8K helium test facility at CEA-Grenoble) are modeled and assembled to obtain the complete dynamic description of controllable subsystems of the refrigerator (controllable subsystems are namely the Joule-Thompson Cycle, the Brayton Cycle, the Liquid Nitrogen Precooling Unit and the Warm Compression Station). The complete 400W @1.8K (in the 400W @4.4K configuration) helium test facility model is then validated against experimental data and the optimal control of both the Joule-Thompson valve and the turbine valve is proposed, to stabilize the plant under highly variable thermals loads. This work is partially supported through the European Fusion Development Agreement (EFDA) Goal Oriented Training Program, task agreement WP10-GOT-GIRO.« less

  16. Commissioning of a 20 K helium refrigeration system for NASA-JSC Chamber-A

    NASA Astrophysics Data System (ADS)

    Homan, J.; Redman, R.; Ganni, V.; Sidi-Yekhlef, A.; Knudsen, P.; Norton, R.; Lauterbach, J.; Linza, R.; Vargas, G.

    2014-01-01

    A new 20 K helium refrigerator installed at NASA Johnson Space Center's Space Environment Simulation Laboratory (SESL) was successfully commissioned and tested in 2012. The refrigerator is used to create a deep space environment within SESL's Chamber A to perform ground testing of the James Webb Space Telescope (JWST). The chamber previously and currently still has helium cryo-pumping panels (CPP) and liquid nitrogen shrouds used to create low earth orbit environments. Now with the new refrigerator and new helium shrouds the chamber can create a deep space environment. The process design, system analysis, specification development, and commissioning oversight were performed by the cryogenics department at Jefferson Lab, while the contracts and system installation was performed by the ESC group at JSC. Commissioning data indicate an inverse coefficient of performance better than 70 W/W for a 18 kW load at 20 K (accounting for liquid nitrogen pre-cooling power) that remains essentially constant down to one third of this load. Even at 10 percent of the maximum capacity, the performance is better than 150 W/W at 20 K. The refrigerator exceeded all design goals and demonstrated the ability to support a wide load range from 10 kW at 15 K to 100 kW at 100 K. The refrigerator is capable of operating at any load temperature from 15 K to ambient with tight temperature stability. The new shroud (23 metric tons of aluminum) can be cooled from room temperature to 20 K in 24 hours. This paper will outline the design, project execution and commissioning results.

  17. Simulation of IST Turbomachinery Power-Neutral Tests with the ANL Plant Dynamics Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moisseytsev, A.; Sienicki, J. J.

    The validation of the Plant Dynamics Code (PDC) developed at Argonne National Laboratory (ANL) for the steady-state and transient analysis of supercritical carbon dioxide (sCO2) systems has been continued with new test data from the Naval Nuclear Laboratory (operated by Bechtel Marine Propulsion Corporation) Integrated System Test (IST). Although data from three runs were provided to ANL, only two of the data sets were analyzed and described in this report. The common feature of these tests is the power-neutral operation of the turbine-compressor shaft, where no external power through the alternator was provided during the tests. Instead, the shaft speedmore » was allowed to change dictated by the power balance between the turbine, the compressor, and the power losses in the shaft. The new test data turned out to be important for code validation for several reasons. First, the power-neutral operation of the shaft allows validation of the shaft dynamics equations in asynchronous mode, when the shaft is disconnected from the grid. Second, the shaft speed control with the compressor recirculation (CR) valve not only allows for testing the code control logic itself, but it also serves as a good test for validation of both the compressor surge control and the turbine bypass control actions, since the effect of the CR action on the loop conditions is similar for both of these controls. Third, the varying compressor-inlet temperature change test allows validation of the transient response of the precooler, a shell-and-tube heat exchanger. The first transient simulation of the compressor-inlet temperature variation Test 64661 showed a much slower calculated response of the precooler in the calculations than the test data. Further investigation revealed an error in calculating the heat exchanger tube mass for the PDC dynamic equations that resulted in a slower change in the tube wall temperature than measured. The transient calculations for both tests were done in two steps. The first step was done in the same fashion as the FY15 IST analysis, where the CR valve position and the turbine-compressor shaft speed were specified through the PDC input based on the test values. On the second step, the turbine-compressor shaft dynamics equations were invoked by specifying that the shaft is disconnected from the grid. In addition, the CR valve control was used to control the shaft speed, based on the turbine bypass control logic already implemented in the PDC. For the shaft power balance, the friction (windage) loss is calculated based on the shaft balance at the steady-state conditions and is assumed to be scaled to the third power of shaft speed in the transient. Both the steady-state and transient simulations of both tests showed good agreement with the test data. The only significant difference was the turbine performance, which was not predicted as well as it was in the previous IST simulation, resulting in the prediction of a somewhat different flow split between the two turbines. This flow split difference is believed to be the result of not addressing the recent turbine modifications in the model. In addition, the full simulation of the turbine-compressor speed variation Test 65261-P with shaft speed control showed greater a difference with the test data later in the transient than the other test. Further analysis of the results revealed that this difference is most likely due to scaling the shaft windage losses only with the shaft speed and ignoring its dependency on the fluid density in the shaft cavity. Based on the results of steady state and transient calculations of the Tests 64661 and 65216-P, several areas of future improvements for the PDC simulation of the IST are identified.« less

  18. Sources and potential application of waste heat utilization at a gas processing facility

    NASA Astrophysics Data System (ADS)

    Alshehhi, Alyas Ali

    Waste heat recovery (WHR) has the potential to significantly improve the efficiency of oil and gas plants, chemical and other processing facilities, and reduce their environmental impact. In this Thesis a comprehensive energy audit at Abu Dhabi Gas Industries Ltd. (GASCO) ASAB gas processing facilities is undertaken to identify sources of waste heat and evaluate their potential for on-site recovery. Two plants are considered, namely ASAB0 and ASAB1. Waste heat evaluation criteria include waste heat grade (i.e., temperature), rate, accessibility (i.e., proximity) to potential on-site waste heat recovery applications, and potential impact of recovery on installation performance and safety. The operating parameters of key waste heat source producing equipment are compiled, as well as characteristics of the waste heat streams. In addition, potential waste heat recovery applications and strategies are proposed, focusing on utilities, i.e., enhancement of process cooling/heating, electrical/mechanical power generation, and steam production. The sources of waste heat identified at ASAB facilities consist of gas turbine and gas generator exhaust gases, flared gases, excess propane cooling capacity, excess process steam, process gas air-cooler heat dissipation, furnace exhaust gases and steam turbine outlet steam. Of the above waste heat sources, exhaust gases from five gas turbines and one gas generator at ASAB0 plant, as well as from four gas turbines at ASAB1 plant, were found to meet the rate (i.e., > 1 MW), grade (i.e., > 180°C), accessibility (i.e., < 50 m from potential on-site WHR applications) and minimal impact criteria on the performance and safety of existing installations, for potential waste heat recovery. The total amount of waste heat meeting these criteria were estimated at 256 MW and 289 MW at ASAB0 and ASAB1 plants, respectively, both of which are substantial. Of the 289 MW waste generated at ASAB1, approximately 173 MW are recovered by waste heat recovery steam generators (WHRSGs), leaving 116 MW unutilized. The following strategies were developed to recover the above waste heat. At ASAB0, it is proposed that exhaust gases from all five gas turbines be used to power a WHRSG. The steam generated by the WHRSG would both i) drive an absorption refrigeration unit for gas turbine inlet air cooling, which would result in additional electric or mechanical power generation, and pre-cooling of process gas, which could reduce the need for or eliminate air coolers, as well as reduce propane chiller load, and ii) serve for heating of lean gas, which would reduce furnace load. At ASAB1, it is proposed that exhaust gases from all four gas turbines be used to generate steam in WHRSG that would drive an absorption refrigeration unit for either gas turbine inlet air cooling for additional electric or mechanical power generation, or pre-cooling of process gas to eliminate air-coolers and reduce propane chiller cooling load. Considering the smaller amount of waste heat available at ASAB1 (116 MW) relative to ASAB0 (237 MW), these above two recovery options could not be implemented simultaneously at ASAB0. To permit the detailed design and techno-economic feasibility evaluation of the proposed waste heat recovery strategies in a subsequent study, the cooling loads and associated electric power consumption of ASAB0 process gas air-coolers were estimated at 21 MW and 1.9 MW, respectively, and 67 MW and 2.2 MW, respectively for ASAB1 plant. In addition, the heating loads and fuel consumption of ASAB0 furnaces used for lean gas re-generation were estimated at 24 MW and 0.0653 MMSCMD, respectively. In modeling work undertaken in parallel with this study at the Petroleum Institute, the waste heat recovery strategies proposed here were found to be thermodynamically and economically feasible, and to lead to substantial energy and cost savings, hence environmental benefits.

  19. Individualized Prediction of Heat Stress in Firefighters: A Data-Driven Approach Using Classification and Regression Trees.

    PubMed

    Mani, Ashutosh; Rao, Marepalli; James, Kelley; Bhattacharya, Amit

    2015-01-01

    The purpose of this study was to explore data-driven models, based on decision trees, to develop practical and easy to use predictive models for early identification of firefighters who are likely to cross the threshold of hyperthermia during live-fire training. Predictive models were created for three consecutive live-fire training scenarios. The final predicted outcome was a categorical variable: will a firefighter cross the upper threshold of hyperthermia - Yes/No. Two tiers of models were built, one with and one without taking into account the outcome (whether a firefighter crossed hyperthermia or not) from the previous training scenario. First tier of models included age, baseline heart rate and core body temperature, body mass index, and duration of training scenario as predictors. The second tier of models included the outcome of the previous scenario in the prediction space, in addition to all the predictors from the first tier of models. Classification and regression trees were used independently for prediction. The response variable for the regression tree was the quantitative variable: core body temperature at the end of each scenario. The predicted quantitative variable from regression trees was compared to the upper threshold of hyperthermia (38°C) to predict whether a firefighter would enter hyperthermia. The performance of classification and regression tree models was satisfactory for the second (success rate = 79%) and third (success rate = 89%) training scenarios but not for the first (success rate = 43%). Data-driven models based on decision trees can be a useful tool for predicting physiological response without modeling the underlying physiological systems. Early prediction of heat stress coupled with proactive interventions, such as pre-cooling, can help reduce heat stress in firefighters.

  20. Turbojet-type engines for the airbreathing propulsion of reusable winged launchers

    NASA Astrophysics Data System (ADS)

    Duparcq, J. L.; Hermant, E.; Scherrer, D.

    Combined propulsion systems for hypersonic application have become new challenges for industrial and research organizations. In France, SNECMA and SEP, which have just joined together for a common effort on hypersonics within Hyperspace, and ONERA have been involved, under CNES (French space agency) contracts, in the assessment of new propulsion concepts for reusable winged launchers (SSTO or TSTO). As potential solutions for the airbreathing propulsion, some turbojet-type engines are presented: —the twin spool turbojet or turbofan with reheat —the turbojet with reheat —the twin-duct turbojet ramjet —the precooled turbojet with reheat. All these engines have been sized for a flight Mach number under seven with a cryogenic fuel (liquid hydrogen). Mainly due to total temperature and pressure encountered along the trajectory, the systems will have to withstand severe physical constraints. Coupled with performance and size requirements, like specific thrust and maximum air capture area, these operating conditions have been taken into account in order to select each engine cycle and technical arrangement. Performance and mass criteria make it possible to compare these systems and to emphasize their distinctive features among the propulsion concepts envisioned for the future reusable winged launchers (including airbreathing combined engines under study in France). The first step of the final selection, leading to the best adaptation between the engine and the vehicle, will then be tackled. This will be particularly enhanced by the analysis of potential advantages or technical difficulties, like thrust-to-weight ratio or needs of variable geometry and heat exchangers. The twin-duct turbojet ramjet, for example, is probably one of the best candidates for the first stages of propulsion of a reusable winged launcher.

  1. Mutagenic effect of freezing on mitochondrial DNA of Saccharomyces cerevisiae.

    PubMed

    Stoycheva, T; Venkov, P; Tsvetkov, Ts

    2007-06-01

    Although suggested in some studies, the mutagenic effect of freezing has not been proved by induction and isolation of mutants. Using a well-defined genetic model, we supply in this communication evidence for the mutagenic effect of freezing on mitochondrial DNA (mtDNA) of the yeast Saccharomyces cerevisiae. The cooling for 2 h at +4 degrees C, followed by freezing for 1 h at -10 degrees C and 16 h at -20 degrees C resulted in induction of respiratory mutations. The immediate freezing in liquid nitrogen was without mutagenic effect. The study of the stepwise procedure showed that the induction of respiratory mutants takes place during the freezing at -10 and -20 degrees C of cells pre-cooled at +4 degrees C. The genetic crosses of freeze-induced mutants evidenced their mitochondrial rho- origin. The freeze-induced rho- mutants are most likely free of simultaneous nuclear mutations. The extracellular presence of cryoprotectants did not prevent the mutagenic effect of freezing while accumulation of cryoprotectors inside cells completely escaped mtDNA from cryodamage. Although the results obtained favor the notion that the mutagenic effect of freezing on yeast mtDNA is due to formation and growth of intracellular ice crystals, other reasons, such as impairment of mtDNA replication or elevated levels of ROS production are discussed as possible explanations of the mutagenic effect of freezing. It is concluded that: (i) freezing can be used as a method for isolation of mitochondrial mutants in S. cerevisiae and (ii) given the substantial development in cryopreservation of cells and tissues, special precautions should be made to avoid mtDNA damage during the cryopreservation procedures.

  2. Two-stage high frequency pulse tube refrigerator with base temperature below 10 K

    NASA Astrophysics Data System (ADS)

    Chen, Liubiao; Wu, Xianlin; Liu, Sixue; Zhu, Xiaoshuang; Pan, Changzhao; Guo, Jia; Zhou, Yuan; Wang, Junjie

    2017-12-01

    This paper introduces our recent experimental results of pulse tube refrigerator driven by linear compressor. The working frequency is 23-30 Hz, which is much higher than the G-M type cooler (the developed cryocooler will be called high frequency pulse tube refrigerator in this paper). To achieve a temperature below 10 K, two types of two-stage configuration, gas coupled and thermal coupled, have been designed, built and tested. At present, both types can achieve a no-load temperature below 10 K by using only one compressor. As to gas-coupled HPTR, the second stage can achieve a cooling power of 16 mW/10K when the first stage applied a 400 mW heat load at 60 K with a total input power of 400 W. As to thermal-coupled HPTR, the designed cooling power of the first stage is 10W/80K, and then the temperature of the second stage can get a temperature below 10 K with a total input power of 300 W. In the current preliminary experiment, liquid nitrogen is used to replace the first coaxial configuration as the precooling stage, and a no-load temperature 9.6 K can be achieved with a stainless steel mesh regenerator. Using Er3Ni sphere with a diameter about 50-60 micron, the simulation results show it is possible to achieve a temperature below 8 K. The configuration, the phase shifters and the regenerative materials of the developed two types of two-stage high frequency pulse tube refrigerator will be discussed, and some typical experimental results and considerations for achieving a better performance will also be presented in this paper.

  3. Modifications to JLab 12 GeV Refrigerator and Wide Range Mix Mode Performance Testing Results

    NASA Astrophysics Data System (ADS)

    Knudsen, P.; Ganni, V.; Hasan, N.; Dixon, K.; Norton, R.; Creel, J.

    2017-02-01

    Analysis of data obtained during the spring 2013 commissioning of the new 4.5 K refrigeration system at Jefferson Lab (JLab) for the 12 GeV upgrade indicated a wide capacity range with good efficiency and minimal operator interaction. Testing also showed that the refrigerator required higher liquid nitrogen (LN) consumption for its pre-cooler than anticipated by the design. This does not affect the capacity of the refrigerator, but it does result in an increased LN utility cost. During the summer of 2015 the modifications were implemented by the cold box manufacturer, according to a design similar to the JLab 12 GeV cold box specification. Subsequently, JLab recommissioned the cold box and performed extensive performance testing, ranging from 20% to 100% of the design maximum capacity, and in various modes of operation, ranging from pure refrigeration, pure liquefaction, half-and-half mix mode and at selected design modes using the Floating Pressure - Ganni Cycle. The testing demonstrated that the refrigerator system has a good and fairly constant performance over a wide capacity range and different modes of operation. It also demonstrated the modifications resulted in a LN consumption that met the design for the pure refrigeration mode (which is the most demanding) and was lower than the design for the nominal and maximum capacity modes. In addition, a pulsed-load test, similar to what is expected for cryogenic systems supporting fusion experiments, was conducted to observe the response using the Floating Pressure - Ganni Cycle, which was stable and robust. This paper will discuss the results and analysis of this testing pertaining to the LN consumption, the system efficiency over a wide range of capacity and different modes and the behaviour of the system to a pulsed load.

  4. Improving the performance of air-conditioning systems in an ASEAN (Association of South East Asian Nations) climate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Busch, J.F.; Warren, M.L.

    1988-09-01

    This paper describes an analysis of air conditioning performance under hot and humid tropical climate conditions appropriate to the Association of South East Asian Nations (ASEAN) countries. This region, with over 280 million people, has one of the fastest economic and energy consumption growth rates in the world. The work reported here is aimed at estimating the conservation potential derived from good design and control of air conditioning systems in commercial buildings. To test the performance of different air conditioning system types and control options, whole building energy performance was simulated using DOE-2. The 5100 m/sup 2/ (50,000 ft/sup 2/)more » prototype office building module was previously used in earlier commercial building energy standards analysis for Malaysia and Singapore. In general, the weather pattern for ASEAN countries is uniform, with hot and humid air masses known as ''monsoons'' dictating the weather patterns. Since a concentration of cities occurs near the tip of the Malay peninsula, hourly temperature, humidity, and wind speed data for Kuala Lumpur was used for the analysis. Because of the absence of heating loads in ASEAN regions, we have limited air conditioning configurations to two pipe fan coil, constant volume, variable air volume, powered induction, and ceiling bypass configurations. Control strategies were varied to determine the conservation potential in both energy use and peak electric power demands. Sensitivities including fan control, pre-cooling and night ventilation, supply air temperature control, zone temperature set point, ventilation and infiltration, daylighting and internal gains, and system sizing were examined and compared with a base case which was a variable air volume system with no reheat or economizer. Comfort issues, such as over-cooling and space humidity, were also examined.« less

  5. Internal and external cooling methods and their effect on body temperature, thermal perception and dexterity

    PubMed Central

    Minett, Geoffrey M.; Bach, Aaron J. E.; Zietek, Stephanie A.; Stewart, Kelly L.; Stewart, Ian B.

    2018-01-01

    Objective The present study aimed to compare a range of cooling methods possibly utilised by occupational workers, focusing on their effect on body temperature, perception and manual dexterity. Methods Ten male participants completed eight trials involving 30 min of seated rest followed by 30 min of cooling or control of no cooling (CON) (34°C, 58% relative humidity). The cooling methods utilised were: ice cooling vest (CV0), phase change cooling vest melting at 14°C (CV14), evaporative cooling vest (CVEV), arm immersion in 10°C water (AI), portable water-perfused suit (WPS), heliox inhalation (HE) and ice slushy ingestion (SL). Immediately before and after cooling, participants were assessed for fine (Purdue pegboard task) and gross (grip and pinch strength) manual dexterity. Rectal and skin temperature, as well as thermal sensation and comfort, were monitored throughout. Results Compared with CON, SL was the only method to reduce rectal temperature (P = 0.012). All externally applied cooling methods reduced skin temperature (P<0.05), though CV0 resulted in the lowest skin temperature versus other cooling methods. Participants felt cooler with CV0, CV14, WPS, AI and SL (P<0.05). AI significantly impaired Purdue pegboard performance (P = 0.001), but did not affect grip or pinch strength (P>0.05). Conclusion The present study observed that ice ingestion or ice applied to the skin produced the greatest effect on rectal and skin temperature, respectively. AI should not be utilised if workers require subsequent fine manual dexterity. These results will help inform future studies investigating appropriate pre-cooling methods for the occupational worker. PMID:29357373

  6. Effect of thermal state and thermal comfort on cycling performance in the heat.

    PubMed

    Schulze, Emiel; Daanen, Hein A M; Levels, Koen; Casadio, Julia R; Plews, Daniel J; Kilding, Andrew E; Siegel, Rodney; Laursen, Paul B

    2015-07-01

    To determine the effect of thermal state and thermal comfort on cycling performance in the heat. Seven well-trained male triathletes completed 3 performance trials consisting of 60 min cycling at a fixed rating of perceived exertion (14) followed immediately by a 20-km time trial in hot (30°C) and humid (80% relative humidity) conditions. In a randomized order, cyclists either drank ambient-temperature (30°C) fluid ad libitum during exercise (CON), drank ice slurry (-1°C) ad libitum during exercise (ICE), or precooled with iced towels and ice slurry ingestion (15 g/kg) before drinking ice slurry ad libitum during exercise (PC+ICE). Power output, rectal temperature, and ratings of thermal comfort were measured. Overall mean power output was possibly higher in ICE (+1.4%±1.8% [90% confidence limit]; 0.4> smallest worthwhile change [SWC]) and likely higher PC+ICE (+2.5%±1.9%; 1.5>SWC) than in CON; however, no substantial differences were shown between PC+ICE and ICE (unclear). Time-trial performance was likely enhanced in ICE compared with CON (+2.4%±2.7%; 1.4>SWC) and PC+ICE (+2.9%±3.2%; 1.9>SWC). Differences in mean rectal temperature during exercise were unclear between trials. Ratings of thermal comfort were likely and very likely lower during exercise in ICE and PC+ICE, respectively, than in CON. While PC+ICE had a stronger effect on mean power output compared with CON than ICE did, the ICE strategy enhanced late-stage time-trial performance the most. Findings suggest that thermal comfort may be as important as thermal state for maximizing performance in the heat.

  7. Effect of walking and resting after three cryotherapy modalities on the recovery of sensory and motor nerve conduction velocity in healthy subjects.

    PubMed

    Herrera, Esperanza; Sandoval, Maria Cristina; Camargo, Diana M; Salvini, Tania F

    2011-01-01

    Different cryotherapy modalities have distinct effects on sensory and motor nerve conduction parameters. However, it is unclear how these parameters change during the post-cooling period and how the exercise carried out in this period would influence the recovery of nerve conduction velocity (NCV). To compare the effects of three cryotherapy modalities on post-cooling NCV and to analyze the effect of walking on the recovery of sensory and motor NCV. Thirty six healthy young subjects were randomly allocated into three groups: ice massage (n=12), ice pack (n=12) and cold water immersion (n=12). The modalities were applied to the right leg. The subjects of each modality group were again randomized to perform a post-cooling activity: a) 30 min rest, b) walking 15 min followed by 15 min rest. The NCV of sural (sensory) and posterior tibial (motor) nerves was evaluated. Initial (pre-cooling) and final (30 min post-cooling) NCV were compared using a paired t-test. The effects of the modalities and the post-cooling activities on NCV were evaluated by an analysis of covariance. The significance level was α=0.05. There was a significant difference between immersion and ice massage on final sensory NCV (p=0.009). Ice pack and ice massage showed similar effects (p>0.05). Walking accelerated the recovery of sensory and motor NCV, regardless of the modality previously applied (p<0.0001). Cold water immersion was the most effective modality for maintaining reduced sensory nerve conduction after cooling. Walking after cooling, with any of the three modalities, enhances the recovery of sensory and motor NCV.

  8. Cooling an Optically Trapped Ultracold Fermi Gas by Periodical Driving.

    PubMed

    Li, Jiaming; de Melo, Leonardo F; Luo, Le

    2017-03-30

    We present a cooling method for a cold Fermi gas by parametrically driving atomic motions in a crossed-beam optical dipole trap (ODT). Our method employs the anharmonicity of the ODT, in which the hotter atoms at the edge of the trap feel the anharmonic components of the trapping potential, while the colder atoms in the center of the trap feel the harmonic one. By modulating the trap depth with frequencies that are resonant with the anharmonic components, we selectively excite the hotter atoms out of the trap while keeping the colder atoms in the trap, generating parametric cooling. This experimental protocol starts with a magneto-optical trap (MOT) that is loaded by a Zeeman slower. The precooled atoms in the MOT are then transferred to an ODT, and a bias magnetic field is applied to create an interacting Fermi gas. We then lower the trapping potential to prepare a cold Fermi gas near the degenerate temperature. After that, we sweep the magnetic field to the noninteracting regime of the Fermi gas, in which the parametric cooling can be manifested by modulating the intensity of the optical trapping beams. We find that the parametric cooling effect strongly depends on the modulation frequencies and amplitudes. With the optimized frequency and amplitude, we measure the dependence of the cloud energy on the modulation time. We observe that the cloud energy is changed in an anisotropic way, where the energy of the axial direction is significantly reduced by parametric driving. The cooling effect is limited to the axial direction because the dominant anharmonicity of the crossed-beam ODT is along the axial direction. Finally, we propose to extend this protocol for the trapping potentials of large anharmonicity in all directions, which provides a promising scheme for cooling quantum gases using external driving.

  9. Refrigerated Warehouse Demand Response Strategy Guide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott, Doug; Castillo, Rafael; Larson, Kyle

    This guide summarizes demand response measures that can be implemented in refrigerated warehouses. In an appendix, it also addresses related energy efficiency opportunities. Reducing overall grid demand during peak periods and energy consumption has benefits for facility operators, grid operators, utility companies, and society. State wide demand response potential for the refrigerated warehouse sector in California is estimated to be over 22.1 Megawatts. Two categories of demand response strategies are described in this guide: load shifting and load shedding. Load shifting can be accomplished via pre-cooling, capacity limiting, and battery charger load management. Load shedding can be achieved by lightingmore » reduction, demand defrost and defrost termination, infiltration reduction, and shutting down miscellaneous equipment. Estimation of the costs and benefits of demand response participation yields simple payback periods of 2-4 years. To improve demand response performance, it’s suggested to install air curtains and another form of infiltration barrier, such as a rollup door, for the passageways. Further modifications to increase efficiency of the refrigeration unit are also analyzed. A larger condenser can maintain the minimum saturated condensing temperature (SCT) for more hours of the day. Lowering the SCT reduces the compressor lift, which results in an overall increase in refrigeration system capacity and energy efficiency. Another way of saving energy in refrigerated warehouses is eliminating the use of under-floor resistance heaters. A more energy efficient alternative to resistance heaters is to utilize the heat that is being rejected from the condenser through a heat exchanger. These energy efficiency measures improve efficiency either by reducing the required electric energy input for the refrigeration system, by helping to curtail the refrigeration load on the system, or by reducing both the load and required energy input.« less

  10. Bioprinted chitosan-gelatin thermosensitive hydrogels using an inexpensive 3D printer.

    PubMed

    Roehm, Kevin D; Madihally, Sundararajan V

    2017-11-30

    The primary bottleneck in bioprinting cell-laden structures with carefully controlled spatial relation is a lack of biocompatible inks and printing conditions. In this regard, we explored using thermogelling chitosan-gelatin (CG) hydrogel as a novel bioprinting ink; CG hydrogels are unique in that it undergoes a spontaneous phase change at physiological temperature, and does not need post-processing. In addition, we used a low cost (<$800) compact 3D printer, and modified with a new extruder to print using disposable syringes and hypodermic needles. We investigated (i) the effect of concentration of CG on gelation characteristics, (ii) solution preparation steps (centrifugation, mixing, and degassing) on printability and fiber formation, (iii) the print bed temperature profiles via IR imaging and grid-based assessment using thermocouples, (iv) the effect of feed rate (10-480 cm min -1 ), flow rate (15-60 μl min -1 ) and needle height (70-280 μm) on fiber size and characteristics, and (v) the distribution of neuroblastoma cells in printed fibers, and the viability after five days in culture. We used agarose gel to create uniform print surfaces to maintain a constant gap with the needle tip. These results showed that degassing the solution, and precooling the solution was necessary for obtaining continuous fibers. Fiber size decreased from 760, to 243 μm as the feed rate increased from 10 to 100 cm min -1 . Bed temperature played the greatest role in fiber size, followed by feed rate. Increased needle height initially decreased fiber size but then increased showing an optimum. Cells were well distributed within the fibers and exhibited excellent viability and no contamination after 5 d. Overall we printed 3D, sterile, cell-laden structures with an inexpensive bioprinter and a novel ink, without post-processing. The bioprinter described here and the novel CG hydrogels have significant potential as an ink for bioprinitng various cell-laden structures.

  11. Freeze drying optimization of polymeric nanoparticles for ocular flurbiprofen delivery: effect of protectant agents and critical process parameters on long-term stability.

    PubMed

    Ramos Yacasi, Gladys Rosario; Calpena Campmany, Ana Cristina; Egea Gras, María Antonia; Espina García, Marta; García López, María Luisa

    2017-04-01

    The stabilization of flurbiprofen loaded poly-ɛ-caprolactone nanoparticles (FB-PɛCL-NPs) for ocular delivery under accurate freeze-drying (FD) process provides the basis for a large-scale production and its commercial development. Optimization of the FD to improve long-term stability of ocular administration's FB-PɛCL-NPs. FB-PɛCL-NPs were prepared by solvent displacement method with poloxamer 188 (P188) as stabilizer. Freezing and primary drying (PD) were studied and optimized through freeze-thawing test and FD microscopy. Design of experiments was used to accurate secondary drying (SD) conditions and components concentration. Formulations were selected according to desired physicochemical properties. Furthermore, differential scanning calorimetry (DSC) and X-ray diffraction (XRD) were used to study interactions components. Optimized FB-PɛCL-NPs, stabilized with 3.5% (w/w) P188 and protected with 8% (w/w) poly(ethylene glycol), was submitted to precooling at +10 °C for 1 h, freezing at -50 °C for 4 h, PD at +5 °C and 0.140 mbar for 24 h and a SD at +45 °C during 10 h. These conditions showed 188.4 ± 1.3 nm, 0.087 ± 0.014, 85.5 ± 1.4%, 0.61 ± 0.12%, -16.4 ± 0.1 mV and 325 ± 7 mOsm/kg of average size, polydispersity index, entrapment efficiency, residual moisture, surface charge and osmolality, respectively. It performed a long-term stability >12 months. DSC and XRD spectra confirmed adequate chemical interaction between formulation components and showed a semi-crystalline state after FD. An optimal freeze dried ocular formulation was achieved. Evidently, the successful design of this promising colloidal system resulted from rational cooperation between a good formulation and the right conditions in the FD process.

  12. Runaway electron production in DIII-D killer pellet experiments, calculated with the CQL3D/KPRAD model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harvey, R. W.; Chan, V. S.; Chiu, S. C.

    2000-11-01

    Runaway electrons are calculated to be produced during the rapid plasma cooling resulting from ''killer pellet'' injection experiments, in general agreement with observations in the DIII-D [J. L. Luxon , Plasma Physics and Controlled Nuclear Fusion Research 1986 (International Atomic Energy Agency, Vienna, 1987), Vol. I, p. 159] tokamak. The time-dependent dynamics of the kinetic runaway distributions are obtained with the CQL3D [R. W. Harvey and M. G. McCoy, ''The CQL3D Code,'' in Proceedings of the IAEA Technical Committee Meeting on Numerical Modeling, Montreal, 1992 (International Atomic Energy Agency, Vienna, 1992), p. 489] collisional Fokker--Planck code, including the effect ofmore » small and large angle collisions and stochastic magnetic field transport losses. The background density, temperature, and Z{sub eff} are evolved according to the KPRAD [D. G. Whyte and T. E. Evans , in Proceedings of the 24th European Conference on Controlled Fusion and Plasma Physics, Berchtesgaden, Germany (European Physical Society, Petit-Lancy, 1997), Vol. 21A, p. 1137] deposition and radiation model of pellet--plasma interactions. Three distinct runway mechanisms are apparent: (1) prompt ''hot-tail runaways'' due to the residual hot electron tail remaining from the pre-cooling phase, (2) ''knock-on'' runaways produced by large-angle Coulomb collisions on existing high energy electrons, and (3) Dreicer ''drizzle'' runaway electrons due to diffusion of electrons up to the critical velocity for electron runaway. For electron densities below {approx}1x10{sup 15}cm{sup -3}, the hot-tail runaways dominate the early time evolution, and provide the seed population for late time knock-on runaway avalanche. For small enough stochastic magnetic field transport losses, the knock-on production of electrons balances the losses at late times. For losses due to radial magnetic field perturbations in excess of {approx}0.1% of the background field, i.e., {delta}B{sub r}/B{>=}0.001, the losses prevent late-time electron runaway.« less

  13. Deposition Nucleation or Pore Condensation and Freezing?

    NASA Astrophysics Data System (ADS)

    David, Robert O.; Mahrt, Fabian; Marcolli, Claudia; Fahrni, Jonas; Brühwiler, Dominik; Lohmann, Ulrike; Kanji, Zamin A.

    2017-04-01

    Ice nucleation plays an important role in moderating Earth's climate and precipitation formation. Over the last century of research, several mechanisms for the nucleation of ice have been identified. Of the known mechanisms for ice nucleation, only deposition nucleation occurs below water saturation. Deposition nucleation is defined as the formation of ice from supersaturated water vapor on an insoluble particle without the prior formation of liquid. However, recent work has found that the efficiency of so-called deposition nucleation shows a dependence on the homogeneous freezing temperature of water even though no liquid phase is presumed to be present. Additionally, the ability of certain particles to nucleate ice more efficiently after being pre-cooled (pre-activation) raises questions on the true mechanism when ice nucleation occurs below water saturation. In an attempt to explain the dependence of the efficiency of so-called deposition nucleation on the onset of homogeneous freezing of liquid water, pore condensation and freezing has been proposed. Pore condensation and freezing suggests that the liquid phase can exist under sub-saturated conditions with respect to liquid in narrow confinements or pores due to the inverse Kelvin effect. Once the liquid-phase condenses, it is capable of nucleating ice either homogeneously or heterogeneously. The role of pore condensation and freezing is assessed in the Zurich Ice Nucleation Chamber, a continuous flow diffusion chamber, using spherical nonporous and mesoporous silica particles. The mesoporous silica particles have a well-defined particle size range of 400 to 600nm with discreet pore sizes of 2.5, 2.8, 3.5 and 3.8nm. Experiments conducted between 218K and 238K show that so-called deposition nucleation only occurs below the homogenous freezing temperature of water and is highly dependent on the presence of pores and their size. The results strongly support pore condensation and freezing, questioning the role of deposition nucleation as an ice nucleation pathway.

  14. Diffusion-weighted magnetic resonance imaging reveals the effects of different cooling temperatures on the diffusion of water molecules and perfusion within human skeletal muscle.

    PubMed

    Yanagisawa, O; Fukubayashi, T

    2010-11-01

    To evaluate the effect of local cooling on the diffusion of water molecules and perfusion within muscle at different cooling temperatures. Magnetic resonance diffusion-weighted (DW) images of the leg (seven males) were obtained before and after 30 min cooling (0, 10, and 20°C), and after a 30 min recovery period. Two types of apparent diffusion coefficient (ADC; ADC1, reflecting both water diffusion and perfusion within muscle, and ADC2, approximating the true water diffusion coefficient) of the ankle dorsiflexors were calculated from DW images. T2-weighted images were also obtained to calculate T2 values of the ankle dorsiflexors. The skin temperature was measured before, during, and after cooling. Both ADC values significantly decreased after cooling under all cooling conditions; the rate of decrease depended on the cooling temperature used (ADC1: -36% at 0°C, -27.8% at 10°C, and -22.6% at 20°C; ADC2: -26% at 0°C, -21.1% at 10°C, and -14.6% at 20°C). These significant decreases were maintained during the recovery period. Conversely, the T2 value showed no significant changes. Under all cooling conditions, skin temperature significantly decreased during cooling; the rate of decrease depended on the cooling temperature used (-74.8% at 0°C, -51.1% at 10°C, and -26.8% at 20°C). Decreased skin temperatures were not restored to pre-cooling values during the recovery period under any cooling conditions. Local cooling decreased the water diffusion and perfusion within muscle with decreased skin temperature; the rates of decrease depended on the cooling temperature used. These decreases were maintained for 30 min after cooling. Copyright © 2010 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  15. The Effect of Intermittent Head Cooling on Aerobic Performance in the Heat

    PubMed Central

    Walters, Peter; Thom, Nathaniel; Libby, Kai; Edgren, Shelby; Azadian, Amanda; Tannous, Daniel; Sorenson, Elisabeth; Hunt, Brian

    2017-01-01

    Thermoregulation is critical for athletes, particularly those for those who must perform in the heat. Most strategies aimed at reducing heat stress have cooled participants before or during activity. The objective of this study is to investigate whether seven minutes of head cooling applied between bouts of aerobic exercise in hot (35 ± 1.0 °C) and dry (14.68 ±4.29% rh) environmental conditions could positively effect participants peak power output (PP) on a maximal effort graded exercise test (GXT). Twenty-two recreational active men ages 18 to 23 (19.8 ± 1.6 yrs.) completed three performance trials over a 21 day period. During the first trial, participants were familiarized with procedures and completed a maximal effort GXT on a cycle ergometer to establish maximal baseline performances. The second and third trials, which were counterbalanced, consisted of a cooling and placebo condition. During both of these trials, participants cycled 40 minutes at 65% of their maximum VO2, in hot (35 ± 1.0 °C) and dry (17-20% rh) environmental conditions. Immediately after this initial bout of activity, participants were given seven minutes of recovery in which head cooling was applied during the cooling condition and withheld during the placebo condition. Participants then completed a maximal effort GXT. Significant differences (p < 0.001) in participants peak power output (W) were measured when cooling was applied compared to the placebo condition (304.23(W) ± 26.19(W) cooling, 291.68(W) ± 26.04(W) placebo). These results suggest that a relatively brief period of intermittent cooling may enhance subsequent aerobic performance. Key points Thermoregulation is a critical performance variable Pre-cooling and Mid-cooling methods have been shown to benefit aerobic and anaerobic performance To date, intermittent head mid-cooling has not been investigated This study demonstrated that seven minutes of intermittent head cooling was sufficient to positively effect aerobic performance PMID:28344454

  16. Stacking with stochastic cooling

    NASA Astrophysics Data System (ADS)

    Caspers, Fritz; Möhl, Dieter

    2004-10-01

    Accumulation of large stacks of antiprotons or ions with the aid of stochastic cooling is more delicate than cooling a constant intensity beam. Basically the difficulty stems from the fact that the optimized gain and the cooling rate are inversely proportional to the number of particles 'seen' by the cooling system. Therefore, to maintain fast stacking, the newly injected batch has to be strongly 'protected' from the Schottky noise of the stack. Vice versa the stack has to be efficiently 'shielded' against the high gain cooling system for the injected beam. In the antiproton accumulators with stacking ratios up to 105 the problem is solved by radial separation of the injection and the stack orbits in a region of large dispersion. An array of several tapered cooling systems with a matched gain profile provides a continuous particle flux towards the high-density stack core. Shielding of the different systems from each other is obtained both through the spatial separation and via the revolution frequencies (filters). In the 'old AA', where the antiproton collection and stacking was done in one single ring, the injected beam was further shielded during cooling by means of a movable shutter. The complexity of these systems is very high. For more modest stacking ratios, one might use azimuthal rather than radial separation of stack and injected beam. Schematically half of the circumference would be used to accept and cool new beam and the remainder to house the stack. Fast gating is then required between the high gain cooling of the injected beam and the low gain stack cooling. RF-gymnastics are used to merge the pre-cooled batch with the stack, to re-create free space for the next injection, and to capture the new batch. This scheme is less demanding for the storage ring lattice, but at the expense of some reduction in stacking rate. The talk reviews the 'radial' separation schemes and also gives some considerations to the 'azimuthal' schemes.

  17. Predictive Optimal Control of Active and Passive Building Thermal Storage Inventory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gregor P. Henze; Moncef Krarti

    2005-09-30

    Cooling of commercial buildings contributes significantly to the peak demand placed on an electrical utility grid. Time-of-use electricity rates encourage shifting of electrical loads to off-peak periods at night and weekends. Buildings can respond to these pricing signals by shifting cooling-related thermal loads either by precooling the building's massive structure or the use of active thermal energy storage systems such as ice storage. While these two thermal batteries have been engaged separately in the past, this project investigated the merits of harnessing both storage media concurrently in the context of predictive optimal control. To pursue the analysis, modeling, and simulationmore » research of Phase 1, two separate simulation environments were developed. Based on the new dynamic building simulation program EnergyPlus, a utility rate module, two thermal energy storage models were added. Also, a sequential optimization approach to the cost minimization problem using direct search, gradient-based, and dynamic programming methods was incorporated. The objective function was the total utility bill including the cost of reheat and a time-of-use electricity rate either with or without demand charges. An alternative simulation environment based on TRNSYS and Matlab was developed to allow for comparison and cross-validation with EnergyPlus. The initial evaluation of the theoretical potential of the combined optimal control assumed perfect weather prediction and match between the building model and the actual building counterpart. The analysis showed that the combined utilization leads to cost savings that is significantly greater than either storage but less than the sum of the individual savings. The findings reveal that the cooling-related on-peak electrical demand of commercial buildings can be considerably reduced. A subsequent analysis of the impact of forecasting uncertainty in the required short-term weather forecasts determined that it takes only very simple short-term prediction models to realize almost all of the theoretical potential of this control strategy. Further work evaluated the impact of modeling accuracy on the model-based closed-loop predictive optimal controller to minimize utility cost. The following guidelines have been derived: For an internal heat gain dominated commercial building, reasonable geometry simplifications are acceptable without a loss of cost savings potential. In fact, zoning simplification may improve optimizer performance and save computation time. The mass of the internal structure did not show a strong effect on the optimization. Building construction characteristics were found to impact building passive thermal storage capacity. It is thus advisable to make sure the construction material is well modeled. Zone temperature setpoint profiles and TES performance are strongly affected by mismatches in internal heat gains, especially when they are underestimated. Since they are a key factor in determining the building cooling load, efforts should be made to keep the internal gain mismatch as small as possible. Efficiencies of the building energy systems affect both zone temperature setpoints and active TES operation because of the coupling of the base chiller for building precooling and the icemaking TES chiller. Relative efficiencies of the base and TES chillers will determine the balance of operation of the two chillers. The impact of mismatch in this category may be significant. Next, a parametric analysis was conducted to assess the effects of building mass, utility rate, building location and season, thermal comfort, central plant capacities, and an economizer on the cost saving performance of optimal control for active and passive building thermal storage inventory. The key findings are: (1) Heavy-mass buildings, strong-incentive time-of-use electrical utility rates, and large on-peak cooling loads will likely lead to attractive savings resulting from optimal combined thermal storage control. (2) By using economizer to take advantage of the cool fresh air during the night, the building electrical cost can be reduced by using less mechanical cooling. (3) Larger base chiller and active thermal storage capacities have the potential of shifting more cooling loads to off-peak hours and thus higher savings can be achieved. (4) Optimal combined thermal storage control with a thermal comfort penalty included in the objective function can improve the thermal comfort levels of building occupants when compared to the non-optimized base case. Lab testing conducted in the Larson HVAC Laboratory during Phase 2 showed that the EnergyPlus-based simulation was a surprisingly accurate prediction of the experiment. Therefore, actual savings of building energy costs can be expected by applying optimal controls from simulation results.« less

  18. Risk-Based Remediation Approach for Cs-137 Contaminated Sediment/Soils at the Savannah River Site (SRS) Lower Three Runs Tail (U) - 13348 - SRNS-RP-2012-00546

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freeman, Candice; Bergren, Christopher; Blas, Susan

    Lower Three Runs is a large blackwater stream that runs through the eastern and southern portion of the Savannah River Site. The Lower Three Runs watershed includes two SRS facility areas: P Area (P Reactor) and R Area (R Reactor) that provided effluent discharges to Lower Three Runs. During reactor operations, effluent discharges were well above natural (pre-industrial) or present day stream discharges. The watershed contains a 2,500-acre mainstream impoundment (PAR Pond), several smaller pre-cooler ponds, and a canal system that connects the pre-cooler ponds and discharges surface water to PAR Pond. From the PAR Pond dam, Lower Three Runsmore » flows approximately 36 kilometers braiding through bottom-land/flood-plain forests before it enters the Savannah River. About eight kilometers downstream from the PAR Pond dam, the SRS boundary narrows (termed the Lower Three Runs tail) providing a limited buffer of DOE property for the Lower Three Runs stream and associated flood-plain. Previous screening characterization efforts revealed Cs-137 contamination in the sediment/soils of the flood-plain. As a part of the American Recovery and Reinvestment Act stimulus package, a comprehensive characterization effort was executed on the sediment/soils of the Lower Three Runs tail flood-plain providing a comprehensive look at the contaminant signature of the area. As a follow-up to that characterization, a regulatory decision Core Team, comprised of members of the South Carolina Department of Health and Environmental Control, Environmental Protection Agency - Region IV, and DOE, conducted negotiations on a risk-based approach to address the level of contamination found in the tail flood-plain as an early action that provided a long-term solution to exposure scenarios. For evaluation purposes, the adolescent trespasser was selected as the most likely human receptor for the Lower Three Runs tail portion because of the natural attractiveness of the area for recreational activities (i.e., hunting, fishing, hiking etc.) and access from public property. Exposure of the adolescent trespasser to Cs-137 contaminated sediment/soil at concentrations greater than 23.7 pico curies per gram have been calculated to result in an unacceptable cancer risk (> 1 x 10{sup -4}). Comparing the characterization sampling results conducted in 2009 with the benchmark concentration of 23.7 pCi/g, identified elevated risk levels along three sampling areas in the Lower Three Runs tail portion. On January 5, 2012, it was agreed by the core team that a Removal Action in the Lower Three Runs tail was to be conducted for the identified soil/sediment locations in the three identified areas that exceed the 1 x 10{sup -4} risk (23.7 pCi/g) for the adolescent trespasser receptor. The addition of Land Use Controls following the Removal Action was appropriate to protect human health and the environment. A systematic screening matrix was initiated at the identified hot spots (i.e., sampling points with Cs-137 activities greater than 23.7 pCi/g) to identify the limits of the excavation area. Sediment/soil within the defined removal areas would be excavated to the depth necessary to achieve the cleanup goal and disposed of in a CERCLA Off-Site Rule approved disposal facility. It was agreed that this removal action would adequately reduce the volume of available Cs-137 in the Lower Three Runs tail and consequently residual activities of the Cs-137 would decay over time reducing the amount of Cs-137 available in the tail which would curtail risk. The Land Use Controls consist of installation of an additional seven miles of fencing at major road crossings, utility easements, and at areas that showed a higher probability of access. In addition, signs were placed along the entire SRS perimeter of the Lower Three Runs tail approximately every 200 feet. Sign posts included both a No Trespassing sign and a Contaminant Warning sign. The project initiated a subcontract for both the removal action and the installation of fencing and signs on May 1, 2012. All field activities were completed by July 26, 2012. The project excavated and disposed of over 2700 cubic yards of contaminated sediment/soil, erected approximately seven miles of fence and placed over 2,000 signs demonstrating DOE's commitment to protect human health and act as a good neighbor to residents in the area. (authors)« less

  19. Micromachined Joule-Thomson coolers for cooling low-temperature detectors and electronics

    NASA Astrophysics Data System (ADS)

    ter Brake, Marcel; Lerou, P. P. P. M.; Burger, J. F.; Holland, H. J.; Derking, J. H.; Rogalla, H.

    2017-11-01

    The performance of electronic devices can often be improved by lowering the operating temperature resulting in lower noise and larger speed. Also, new phenomena can be applied at low temperatures, as for instance superconductivity. In order to fully exploit lowtemperature electronic devices, the cryogenic system (cooler plus interface) should be `invisible' to the user. It should be small, low-cost, low-interference, and above all very reliable (long-life). The realization of cryogenic systems fulfilling these requirements is the topic of research of the Cooling and Instrumentation group at the University of Twente. A MEMS-based cold stage was designed and prototypes were realized and tested. The cooler operates on basis of the Joule-Thomson effect. Here, a high-pressure gas expands adiabatically over a flow restriction and thus cools and liquefies. Heat from the environment (e.g., an optical detector) can be absorbed in the evaporation of the liquid. The evaporated working fluid returns to the low-pressure side of the system via a counter-flow heat exchanger. In passing this heat exchanger, it takes up heat from the incoming high-pressure gas that thus is precooled on its way to the restriction. The cold stage consists of a stack of three glass wafers. In the top wafer, a high-pressure channel is etched that ends in a flow restriction with a height of typically 300 nm. An evaporator volume crosses the center wafer into the bottom wafer. This bottom wafer contains the lowpressure channel thus forming a counter-flow heat exchanger. A design aiming at a net cooling power of 10 mW at 96 K and operating with nitrogen as the working fluid was optimized based on the minimization of entropy production. The optimum cold finger measures 28 mm x 2.2 mm x 0.8 mm operating with a nitrogen flow of 1 mg/s at a high pressure of 80 bar and a low pressure of 6 bar. The design and fabrication of the coolers will be discussed along with experimental results.

  20. Variable Conductance Heat Pipe Cooling of Stirling Convertor and General Purpose Heat Source

    NASA Technical Reports Server (NTRS)

    Tarau, Calin; Schwendeman, Carl; Anderson William G.; Cornell, Peggy A.; Schifer, Nicholas A.

    2013-01-01

    In a Stirling Radioisotope Power System (RPS), heat must be continuously removed from the General Purpose Heat Source (GPHS) modules to maintain the modules and surrounding insulation at acceptable temperatures. The Stirling convertor normally provides this cooling. If the Stirling convertor stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS at the cost of an early termination of the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) can be used to passively allow multiple stops and restarts of the Stirling convertor. In a previous NASA SBIR Program, Advanced Cooling Technologies, Inc. (ACT) developed a series of sodium VCHPs as backup cooling systems for Stirling RPS. The operation of these VCHPs was demonstrated using Stirling heater head simulators and GPHS simulators. In the most recent effort, a sodium VCHP with a stainless steel envelope was designed, fabricated and tested at NASA Glenn Research Center (GRC) with a Stirling convertor for two concepts; one for the Advanced Stirling Radioisotope Generator (ASRG) back up cooling system and one for the Long-lived Venus Lander thermal management system. The VCHP is designed to activate and remove heat from the stopped convertor at a 19 degC temperature increase from the nominal vapor temperature. The 19 degC temperature increase from nominal is low enough to avoid risking standard ASRG operation and spoiling of the Multi-Layer Insulation (MLI). In addition, the same backup cooling system can be applied to the Stirling convertor used for the refrigeration system of the Long-lived Venus Lander. The VCHP will allow the refrigeration system to: 1) rest during transit at a lower temperature than nominal; 2) pre-cool the modules to an even lower temperature before the entry in Venus atmosphere; 3) work at nominal temperature on Venus surface; 4) briefly stop multiple times on the Venus surface to allow scientific measurements. This paper presents the experimental results from integrating the VCHP with an operating Stirling convertor and describes the methodology used to achieve their successful combined operation.

  1. Selection of components for the IDEALHY preferred cycle for the large scale liquefaction of hydrogen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quack, H.; Seemann, I.; Klaus, M.

    2014-01-29

    In a future energy scenario, in which storage and transport of liquid hydrogen in large quantities will be used, the efficiency of the liquefaction of hydrogen will be of utmost importance. The goal of the IDEALHY working party is to identify the most promising process for a 50 t/d plant and to select the components, with which such a process can be realized. In the first stage the team has compared several processes, which have been proposed or realized in the past. Based on this information a process has been selected, which is thermodynamically most promising and for which itmore » could be assumed that good components already exist or can be developed in the foreseeable future. Main features of the selected process are the compression of the feed stream to a relatively high pressure level, o-p conversion inside plate-fin heat exchangers and expansion turbines in the supercritical region. Precooling to a temperature between 150 and 100 K will be obtained from a mixed refrigerant cycle similar to the systems used successfully in natural gas liquefaction plants. The final cooling will be produced by two Brayton cycles, both having several expansion turbines in series. The selected overall process has still a number of parameters, which can be varied. The optimum, i.e. the final choice will depend mainly on the quality of the available components. Key components are the expansion turbines of the two Brayton cycles and the main recycle compressor, which may be common to both Brayton cycles. A six-stage turbo-compressor with intercooling between the stages is expected to be the optimum choice here. Each stage may consist of several wheels in series. To make such a high efficient and cost-effective compressor feasible, one has to choose a refrigerant, which has a higher molecular weight than helium. The present preferred choice is a mixture of helium and neon with a molecular weight of about 8 kg/kmol. Such an expensive refrigerant requires that the whole refrigeration loop is extremely tight.« less

  2. Alkali Metal Backup Cooling for Stirling Systems - Experimental Results

    NASA Technical Reports Server (NTRS)

    Schwendeman, Carl; Tarau, Calin; Anderson, William G.; Cornell, Peggy A.

    2013-01-01

    In a Stirling Radioisotope Power System (RPS), heat must be continuously removed from the General Purpose Heat Source (GPHS) modules to maintain the modules and surrounding insulation at acceptable temperatures. The Stirling convertor normally provides this cooling. If the Stirling convertor stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS at the cost of an early termination of the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) can be used to passively allow multiple stops and restarts of the Stirling convertor. In a previous NASA SBIR Program, Advanced Cooling Technologies, Inc. (ACT) developed a series of sodium VCHPs as backup cooling systems for Stirling RPS. The operation of these VCHPs was demonstrated using Stirling heater head simulators and GPHS simulators. In the most recent effort, a sodium VCHP with a stainless steel envelope was designed, fabricated and tested at NASA Glenn Research Center (GRC) with a Stirling convertor for two concepts; one for the Advanced Stirling Radioisotope Generator (ASRG) back up cooling system and one for the Long-lived Venus Lander thermal management system. The VCHP is designed to activate and remove heat from the stopped convertor at a 19 C temperature increase from the nominal vapor temperature. The 19 C temperature increase from nominal is low enough to avoid risking standard ASRG operation and spoiling of the Multi-Layer Insulation (MLI). In addition, the same backup cooling system can be applied to the Stirling convertor used for the refrigeration system of the Long-lived Venus Lander. The VCHP will allow the refrigeration system to: 1) rest during transit at a lower temperature than nominal; 2) pre-cool the modules to an even lower temperature before the entry in Venus atmosphere; 3) work at nominal temperature on Venus surface; 4) briefly stop multiple times on the Venus surface to allow scientific measurements. This paper presents the experimental results from integrating the VCHP with an operating Stirling convertor and describes the methodology used to achieve their successful combined operation.

  3. Alkali Metal Backup Cooling for Stirling Systems - Experimental Results

    NASA Technical Reports Server (NTRS)

    Schwendeman, Carl; Tarau, Calin; Anderson, William G.; Cornell, Peggy A.

    2013-01-01

    In a Stirling Radioisotope Power System (RPS), heat must be continuously removed from the General Purpose Heat Source (GPHS) modules to maintain the modules and surrounding insulation at acceptable temperatures. The Stirling convertor normally provides this cooling. If the Stirling convertor stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS at the cost of an early termination of the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) can be used to passively allow multiple stops and restarts of the Stirling convertor. In a previous NASA SBIR Program, Advanced Cooling Technologies, Inc. (ACT) developed a series of sodium VCHPs as backup cooling systems for Stirling RPS. The operation of these VCHPs was demonstrated using Stirling heater head simulators and GPHS simulators. In the most recent effort, a sodium VCHP with a stainless steel envelope was designed, fabricated and tested at NASA Glenn Research Center (GRC) with a Stirling convertor for two concepts; one for the Advanced Stirling Radioisotope Generator (ASRG) back up cooling system and one for the Long-lived Venus Lander thermal management system. The VCHP is designed to activate and remove heat from the stopped convertor at a 19 degC temperature increase from the nominal vapor temperature. The 19 degC temperature increase from nominal is low enough to avoid risking standard ASRG operation and spoiling of the Multi-Layer Insulation (MLI). In addition, the same backup cooling system can be applied to the Stirling convertor used for the refrigeration system of the Long-lived Venus Lander. The VCHP will allow the refrigeration system to: 1) rest during transit at a lower temperature than nominal; 2) pre-cool the modules to an even lower temperature before the entry in Venus atmosphere; 3) work at nominal temperature on Venus surface; 4) briefly stop multiple times on the Venus surface to allow scientific measurements. This paper presents the experimental results from integrating the VCHP with an operating Stirling convertor and describes the methodology used to achieve their successful combined operation.

  4. Engineered Surface Properties of Porous Tungsten from Cryogenic Machining

    NASA Astrophysics Data System (ADS)

    Schoop, Julius Malte

    Porous tungsten is used to manufacture dispenser cathodes due to it refractory properties. Surface porosity is critical to functional performance of dispenser cathodes because it allows for an impregnated ceramic compound to migrate to the emitting surface, lowering its work function. Likewise, surface roughness is important because it is necessary to ensure uniform wetting of the molten impregnate during high temperature service. Current industry practice to achieve surface roughness and surface porosity requirements involves the use of a plastic infiltrant during machining. After machining, the infiltrant is baked and the cathode pellet is impregnated. In this context, cryogenic machining is investigated as a substitutionary process for the current plastic infiltration process. Along with significant reductions in cycle time and resource use, surface quality of cryogenically machined un-infiltrated (as-sintered) porous tungsten has been shown to significantly outperform dry machining. The present study is focused on examining the relationship between machining parameters and cooling condition on the as-machined surface integrity of porous tungsten. The effects of cryogenic pre-cooling, rake angle, cutting speed, depth of cut and feed are all taken into consideration with respect to machining-induced surface morphology. Cermet and Polycrystalline diamond (PCD) cutting tools are used to develop high performance cryogenic machining of porous tungsten. Dry and pre-heated machining were investigated as a means to allow for ductile mode machining, yet severe tool-wear and undesirable smearing limited the feasibility of these approaches. By using modified PCD cutting tools, high speed machining of porous tungsten at cutting speeds up to 400 m/min is achieved for the first time. Beyond a critical speed, brittle fracture and built-up edge are eliminated as the result of a brittle to ductile transition. A model of critical chip thickness ( hc ) effects based on cutting force, temperature and surface roughness data is developed and used to study the deformation mechanisms of porous tungsten under different machining conditions. It is found that when hmax = hc, ductile mode machining of otherwise highly brittle porous tungsten is possible. The value of hc is approximately the same as the average ligament size of the 80% density porous tungsten workpiece.

  5. Phase relations in the system NaCl-KCl-H 2O. III: Solubilities of halite in vapor-saturated liquids above 445°C and redetermination of phase equilibrium properties in the system NaCl-H 2O to 1000°C and 1500 bars

    NASA Astrophysics Data System (ADS)

    Chou, I.-Ming

    1987-07-01

    Halite solubilities along the three-phase curve in the binary system NaCl-H 2O determined by DTA experiment can be represented by the equation Wt.% NaCl (±0.2) = 19.39 - 0.0364 t + 3.553 × 10 -4T2 - 2.298 × 10 -7T3, where 447≦ T ≦ 800° C. Even though these halite solubilities are up to ~7 wt.% higher than those reported in literature, extrapolated values at temperatures below 447°C merge with the literature values. It is considered that the equation adequately describes halite solubilities between 382 and 800°C. The newly established solubility data are believed to be more reliable because they are compatible with data obtained by using synthetic fluid inclusions and with the observed DTA signals and also because they were measured in a relatively corrosion-free system. In an earlier publication (GUNTER et al., 1983), we were puzzled greatly by multiple and rather unreproducible DTA peaks appearing during isobaric cooling (heating experiments were nondefinitive) at pressures below about 500 bars. These DTA signals apparently suggested that the "halite liquidus" swung sharply upward in temperature as pressure decreased from about 500 bars to that of the halite-saturated boiling curve. Further analysis of the data and helpful discussions with several individuals have revealed that the behavior is a consequence of the initial (precooling) separation of the fluid into NaCl-poor gas and NaCl-rich liquid that failed to homogenize in the short time encompassed by the DTA experiments. The present analysis is based on extrapolations of the dP/dT slopes from pressures above 500 bars. Through use of these new halite solubility data and the data from synthetic fluid inclusions [formed by healing fractures in inclusion-free Brazilian quartz in the presence of two coexisting, immiscible NaCl-H 2O fluids at various temperatures and pressures (Bodnar et al., 1985)], phase equilibria in the system NaCl-H 2O have been redetermined to 1000°C and 1500 bars.

  6. Liquid hydrogen thermal energy storage unit for future ESA science missions

    NASA Astrophysics Data System (ADS)

    Sousa, Patricia Tavares Coutinho Borges de

    The X-IFU instrument for X-ray observation on ESA's new ATHENA satellite will employ a complex cryogenic chain for detector cooling down to 50mK. The existence of heat peaks during the recycling stages of a 300mK cooler can compromise the stability of the entire chain; this issue can be solved by using large cryogenic liquid reservoirs or by over-dimensioning the system. However, these solutions are either costly or temporary, as cryogenic liquids will eventually run out. An Energy Storage Unit (ESU) using liquid hydrogen has been developed as a solution for absorbing 400 J of thermal energy in 30 min between 15K and 16K by taking advantage of the liquid-to-vapour latent heat of hydrogen in a closed system. The ESU is composed of a low temperature liquid hydrogen reservoir, two intermediate interfaces for gas pre-cooling and a hydrogen storage vessel at room temperature. This vessel can either be a 56-litre expansion volume (for ground testing) or a canister filled with a metal hydride, LaNi4:8Sn0:2, that chemically absorbs hydrogen in its atomic form. The latter largely reduces the volume of the vessel and enables working at near-constant pressure and temperature. Two devices have been developed for this project: a Development Model breadboard device used for preliminary testing and the Engineering Model, the final model of the ESU that is to be delivered to ESA and that was subjected to severe mechanical testing in order to comply with strict requirements. Results obtained with both models show that 400 J can be absorbed with a temperature increase of 2K when a 56-litre expansion volume is used, while results using metal hydrides show that the same heat load can be absorbed between 15K and 16:5K, where the cold cell temperature is above 16K for less than 10 min. Full regeneration of the ESU can be achieved in under 24 h without exceeding the cooling power available at the different temperature stages. Experimental results are discussed and suggestions for further improvement are proposed. None None None None None None None None None None None None None None None None None None None None None None None None None None

  7. Development of high resolution x-ray spectrometers for the investigation of bioinorganic chemistry in metalloproteins

    NASA Astrophysics Data System (ADS)

    Drury, Owen Byron

    We have built an X-ray spectrometer for synchrotron-based high-resolution soft X-ray spectroscopy. The spectrometer uses four 9-pixel arrays of superconducting tunnel junctions (STJs) as sensors. They infer the energy of an absorbed X-ray from a temporary increase in tunneling current. The STJs are operated in a two-stage adiabatic demagnetization refrigerator (ADR) that uses liquid nitrogen and helium for precooling to 77 K and 4.2 K, and gallium gadolinium garnet and iron ammonium sulfate to attain a base temperature below 0.1 K. The sensors are held at the end of a 40-cm-long cold finger within ˜1 cm of a sample located inside the vacuum chamber of a synchrotron beam line end station. The spectrometer has an energy resolution between 10 eV and 20 eV FWHM below 1 keV, can be operated at rates up to ˜106 counts/s. STJ spectrometers are suited for chemical analysis of dilute samples by fluorescence-detected X-ray absorption spectroscopy (XAS) in cases where conventional germanium detectors do not have enough energy resolution. We have used this STJ spectrometer at the Advanced Light Source synchrotron for spectroscopy on the lower energy X-ray absorption edges of the elements Mo, S, Fe and N. These elements play an important role in biological nitrogen fixation at the metalloprotein nitrogenase, and we have examined if STJ spectrometers can be used to provide new insights into some of the open questions regarding the reaction mechanism of this protein. We have taken X-ray absorption near-edge spectra (XANES) and extended fine structure spectra (EXAFS) of an Fe 6N(CO)15-compound containing a single N atom inside a cluster of six Fe atoms, as postulated to exist inside the Fe-S cluster of the FeMo-cofactor (FeMo-co) in nitrogenase. The STJ detector has enabled the first-ever extended range EXAFS scans on nitrogen through the oxygen K-edge, enabling a comparison with N EXAFS on FeMo-co. We have taken iron L23-edge spectra of the Fe-S cluster in FeMo-co, which can be used to measure its oxidation state despite the very small chemical shifts. We also have taken spectra on the molybdenum M-edges and on the sulfur L-edges of inorganic model compounds.

  8. Minimal processing of iceberg lettuce has no substantial influence on the survival, attachment and internalization of E. coli O157 and Salmonella.

    PubMed

    Van der Linden, Inge; Avalos Llano, Karina R; Eriksson, Markus; De Vos, Winnok H; Van Damme, Els J M; Uyttendaele, Mieke; Devlieghere, Frank

    2016-12-05

    The influence of a selection of minimal processing techniques (sanitizing wash prior to packaging, modified atmosphere, storage conditions under light or in the dark) was investigated in relation to the survival of, attachment to and internalization of enteric pathogens in fresh produce. Cut Iceberg lettuce was chosen as a model for fresh produce, Escherichia coli O157:H7 (E. coli O157) and Salmonella enterica were chosen as pathogen models. Care was taken to simulate industrial post-harvest processing. A total of 50±0.1g of fresh-cut Iceberg lettuce was packed in bags under near ambient atmospheric air with approximately 21% O 2 (NAA) conditions or equilibrium modified atmosphere with 3% O 2 (EMAP). Two lettuce pieces inoculated with E. coli O157 BRMSID 188 or Salmonella Typhimurium labeled with green fluorescent protein (GFP) were added to each package. The bags with cut lettuce were stored under either dark or light conditions for 2days at 7°C. The pathogens' capacity to attach to the lettuce surface and cut edge was evaluated 2days after inoculation using conventional plating technique and the internalization of the bacteria was investigated and quantified using confocal microscopy. The effect of a sanitizing wash step (40mg/L NaClO or 40mg/L peracetic acid+1143mg/L lactic acid) of the cut lettuce prior to packaging was evaluated as well. Our results indicate that both pathogens behaved similarly under the investigated conditions. Pathogen growth was not observed, nor was there any substantial influence of the investigated atmospheric conditions or light/dark storage conditions on their attachment/internalization. The pathogens attached to and internalized via cut edges and wounds, from which they were able to penetrate into the parenchyma. Internalization through the stomata into the parenchyma was not observed, although some bacteria were found in the substomatal cavity. Washing the cut edges with sanitizing agents to reduce enteric pathogen numbers was not more effective than a rinse with precooled tap water prior to packaging. Our results confirm that cut surfaces are the main risk for postharvest attachment and internalization of E. coli O157 and Salmonella during minimal processing and that storage and packaging conditions have no important effect. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Optimized autonomous operations of a 20 K space hydrogen sorption cryocooler

    NASA Astrophysics Data System (ADS)

    Borders, J.; Morgante, G.; Prina, M.; Pearson, D.; Bhandari, P.

    2004-06-01

    A fully redundant hydrogen sorption cryocooler is being developed for the European Space Agency Planck mission, dedicated to the measurement of the temperature anisotropies of the cosmic microwave background radiation with unprecedented sensitivity and resolution [Advances in Cryogenic Engineering 45A (2000) 499]. In order to achieve this ambitious scientific task, this cooler is required to provide a stable temperature reference (˜20 K) and appropriate cooling (˜1 W) to the two instruments on-board, with a flight operational lifetime of 18 months. During mission operations, communication with the spacecraft will be possible in a restricted time-window, not longer than 2 h/day. This implies the need for an operations control structure with the required robustness to safely perform autonomous procedures. The cooler performance depends on many operating parameters (such as the temperatures of the pre-cooling stages and the warm radiator), therefore the operation control system needs the capability to adapt to variations of these boundary conditions, while maintaining safe operating procedures. An engineering bread board (EBB) cooler was assembled and tested to evaluate the behavior of the system under conditions simulating flight operations and the test data were used to refine and improve the operation control software. In order to minimize scientific data loss, the cooler is required to detect all possible failure modes and to autonomously react to them by taking the appropriate action in a rapid fashion. Various procedures and schemes both general and specific in nature were developed, tested and implemented to achieve these goals. In general, the robustness to malfunctions was increased by implementing an automatic classification of anomalies in different levels relative to the seriousness of the error. The response is therefore proportional to the failure level. Specifically, the start-up sequence duration was significantly reduced, allowing a much faster activation of the system, particularly useful in case of restarts after inadvertent shutdowns arising from malfunctions in the spacecraft. The capacity of the system to detect J-T plugs was increased to the point that the cooler is able to autonomously identify actual contaminants clogging from gas flow reductions due to off-nominal operating conditions. Once a plug is confirmed, the software autonomously energizes, and subsequently turns off, a J-T defrost heater until the clog is removed, bringing the system back to normal operating conditions. In this paper, all the cooler Operational Modes are presented, together with the description of the logic structure of the procedures and the advantages they produce for the operations.

  10. Ice ingestion with a long rest interval increases the endurance exercise capacity and reduces the core temperature in the heat.

    PubMed

    Naito, Takashi; Iribe, Yuka; Ogaki, Tetsuro

    2017-01-05

    The timing in which ice before exercise should be ingested plays an important role in optimizing its success. However, the effects of differences in the timing of ice ingestion before exercise on cycling capacity, and thermoregulation has not been studied. The aim of the present study was to assess the effect of length of time after ice ingestion on endurance exercise capacity in the heat. Seven males ingested 1.25 g kg body mass -1 of ice (0.5 °C) or cold water (4 °C) every 5 min, six times. Under three separate conditions after ice or water ingestion ([1] taking 20 min rest after ice ingestion, [2] taking 5 min rest after ice ingestion, and [3] taking 5 min rest after cold water ingestion), seven physically active male cyclists exercised at 65% of their maximal oxygen uptake to exhaustion in the heat (35 °C, 30% relative humidity). Participants cycled significantly longer following both ice ingestion with a long rest interval (46.0 ± 7.7 min) and that with a short rest interval (38.7 ± 5.7 min) than cold water ingestion (32.3 ± 3.2 min; both p < 0.05), and the time to exhaustion was 16% (p < 0.05) longer for ice ingestion with a long rest interval than that with a short rest interval. Ice ingestion with a long rest interval (-0.55 ± 0.07 °C; both p < 0.05) allowed for a greater drop in the core temperature than both ice ingestion with a short rest interval (-0.36 ± 0.16 °C) and cold water ingestion (-0.11 ± 0.14 °C). Heat storage under condition of ice ingestion with a long rest interval during the pre-exercise period was significantly lower than that observed with a short rest interval (-4.98 ± 2.50 W m -2 ; p < 0.05) and cold water ingestion (2.86 ± 4.44 W m -2 ). Therefore, internal pre-cooling by ice ingestion with a long rest interval had the greatest benefit on exercise capacity in the heat, which is suggested to be driven by a reduced rectal temperature and heat storage before the start of exercise.

  11. Ice Slurry Ingestion and Physiological Strain During Exercise in Non-Compensable Heat Stress.

    PubMed

    Ng, Jason; Wingo, Jonathan E; Bishop, Phillip A; Casey, Jason C; Aldrich, Elizabeth K

    2018-05-01

    Precooling with ice slurry ingestion attenuates the increase in rectal temperature (Tre) during subsequent running and cycling. It remains unclear how this cooling method affects physiological strain during work while wearing protective garments. This study investigated the effect of ice slurry ingestion on physiological strain during work in hot conditions while wearing firefighter protective clothing. In three counterbalanced trials, eight men (mean ± SD; age = 21 ± 2 yr, height = 179.5 ± 3.5 cm, mass = 79.1 ± 4.1 kg, body fat = 11.4 ± 3.7%) wore firefighter protective clothing and walked (4 km · h-1, 12% incline, ∼7 METs) for 30 min in hot conditions (35°C, 40% RH). Every 2.5 min, subjects ingested 1.25 g · kg-1 (relative total: 15 g · kg-1, absolute total: 1186.7 ± 61.3 g) of a tepid (22.4 ± 1.7°C), cold (7.1 ± 1.5°C), or ice slurry (-1.3 ± 0.2°C) beverage. Heart rates (HR) were lower with ice slurry ingestion compared to both fluid trials starting 5 min into exercise (tepid = 158 ± 14, cold = 157 ± 11, ice slurry = 146 ± 13 bpm) and persisting for the remainder of the bout (min 30: tepid = 196 ± 10, cold = 192 ± 10, ice slurry = 181 ± 13 bpm). Tre was lower with ice slurry ingestion compared to cold and tepid trials (min 5: tepid = 37.17 ± 0.38, cold = 37.17 ± 0.39, ice slurry = 37.05 ± 0.43°C; min 30: tepid = 38.15 ± 0.29, cold = 38.31 ± 0.36, ice slurry = 37.95 ± 0.32°C). The physiological strain index (PSI) was lower with ice slurry ingestion compared to fluid trials starting at min 5 (tepid = 3.8 ± 0.7, cold = 3.8 ± 0.6, ice slurry = 3.0 ± 0.5) and remained lower throughout exercise (min 30: tepid = 8.2 ± 0.6, cold = 8.3 ± 0.9, ice slurry = 6.9 ± 1.2). A large quantity of ice slurry ingested under non-compensable heat stress conditions mitigated physiological strain during exercise by blunting the rise in heart rate and rectal temperature.Ng J, Wingo JE, Bishop PA, Casey JC, Aldrich EK. Ice slurry ingestion and physiological strain during exercise in non-compensable heat stress. Aerosp Med Hum Perform. 2018; 89(5):434-441.

  12. Efficiency enhancement for natural gas liquefaction with CO2 capture and sequestration through cycles innovation and process optimization

    NASA Astrophysics Data System (ADS)

    Alabdulkarem, Abdullah

    Liquefied natural gas (LNG) plants are energy intensive. As a result, the power plants operating these LNG plants emit high amounts of CO2 . To mitigate global warming that is caused by the increase in atmospheric CO2, CO2 capture and sequestration (CCS) using amine absorption is proposed. However, the major challenge of implementing this CCS system is the associated power requirement, increasing power consumption by about 15--25%. Therefore, the main scope of this work is to tackle this challenge by minimizing CCS power consumption as well as that of the entire LNG plant though system integration and rigorous optimization. The power consumption of the LNG plant was reduced through improving the process of liquefaction itself. In this work, a genetic algorithm (GA) was used to optimize a propane pre-cooled mixed-refrigerant (C3-MR) LNG plant modeled using HYSYS software. An optimization platform coupling Matlab with HYSYS was developed. New refrigerant mixtures were found, with savings in power consumption as high as 13%. LNG plants optimization with variable natural gas feed compositions was addressed and the solution was proposed through applying robust optimization techniques, resulting in a robust refrigerant which can liquefy a range of natural gas feeds. The second approach for reducing the power consumption is through process integration and waste heat utilization in the integrated CCS system. Four waste heat sources and six potential uses were uncovered and evaluated using HYSYS software. The developed models were verified against experimental data from the literature with good agreement. Net available power enhancement in one of the proposed CCS configuration is 16% more than the conventional CCS configuration. To reduce the CO2 pressurization power into a well for enhanced oil recovery (EOR) applications, five CO2 pressurization methods were explored. New CO2 liquefaction cycles were developed and modeled using HYSYS software. One of the developed liquefaction cycles using NH3 as a refrigerant resulted in 5% less power consumption than the conventional multi-stage compression cycle. Finally, a new concept of providing the CO2 regeneration heat is proposed. The proposed concept is using a heat pump to provide the regeneration heat as well as process heat and CO2 liquefaction heat. Seven configurations of heat pumps integrated with CCS were developed. One of the heat pumps consumes 24% less power than the conventional system or 59% less total equivalent power demand than the conventional system with steam extraction and CO2 compression.

  13. Cryopreservation and xenografting of human ovarian fragments: medulla decreases the phosphatidylserine translocation rate.

    PubMed

    Isachenko, Vladimir; Todorov, Plamen; Isachenko, Evgenia; Rahimi, Gohar; Hanstein, Bettina; Salama, Mahmoud; Mallmann, Peter; Tchorbanov, Andrey; Hardiman, Paul; Getreu, Natalie; Merzenich, Markus

    2016-11-10

    Phosphatidylserine is the phospholipid component which plays a key role in cell cycle signaling, specifically in regards to necrosis and apoptosis. When a cell affected by some negative factors, phosphatidylserine is no longer restricted to the intracellular side of membrane and can be translocated to the extracellular surface of the cell. Cryopreservation can induce translocation of phosphatidylserine in response to hypoxia, increasing intracellular Ca 2+ , osmotic disruption of cellular membranes, generation of reactive oxygen species and lipid peroxidation. As such the aim of this study was to test the level of phosphatidylserine translocation in frozen human medulla-contained and medulla-free ovarian tissue fragments. Ovarian fragments from twelve patients were divided into small pieces of two types, medulla-free cortex (Group 1, n = 42, 1.5-3.0 × 1.5-3.0 × 0.5-0.8 mm) and cortex with medulla (Group 2, n = 42, 1.5-3.0 × 1.5-3.0 × 1.5-2.0 mm), pre-cooled after operative removal to 5 °C for 24 h and then conventionally frozen with 6 % dimethyl sulfoxide, 6 % ethylene glycol and 0.15 M sucrose in standard 5-ml cryo-vials. After thawing at +100 °C and step-wise removal of cryoprotectants in 0.5 M sucrose, ovarian pieces were xenografted to SCID mice for 45 days. The efficacy of tissues cryopreservation, taking into account the presence or absence of medulla, was evaluated by the development of follicles (histology with hematoxylin-eosin) and through the intensity of translocation of phosphatidylserine (FACS with FITC-Annexin V and Propidium Iodide). For Groups 1 and 2, the mean densities of follicles per 1 mm 3 were 9.8, and 9.0, respectively. In these groups, 90 and 90 % preantral follicles appeared morphologically normal. However, FACS analysis showed a significantly decreased intensity of translocation of phosphatidylserine (FITC-Annexin V positive) after cryopreservation of tissue with medulla (Group 2, 59.6 %), in contrast with tissue frozen without medulla (Group 1, 78.0 %, P < 0.05). In Groups 1 and 2 it was detected that 21.6 and 40.0 % cells were viable (FITC-Annexin V negative, Propidium Iodide negative). The presence of medulla in ovarian pieces is beneficial for post-thaw development of cryopreserved human ovarian tissue.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garbesi, Karina; Vossos, Vagelis; Sanstad, Alan

    An increasing number of energy efficient appliances operate on direct current (DC) internally, offering the potential to use DC from renewable energy systems directly and avoiding the losses inherent in converting power to alternating current (AC) and back. This paper investigates that potential for net-metered residences with on-site photovoltaics (PV) by modeling the net power draw of the ‘direct-DC house’ with respect to today’s typical configuration, assuming identical DC-internal loads. Power draws were modeled for houses in 14 U.S. cities, using hourly, simulated PV-system output and residential loads. The latter were adjusted to reflect a 33% load reduction, representative ofmore » the most efficient DC-internal technology, based on an analysis of 32 electricity end-uses. The model tested the effect of climate, electric vehicle (EV) loads, electricity storage, and load shifting on electricity savings; a sensitivity analysis was conducted to determine how future changes in the efficiencies of power system components might affect savings potential. Based on this work, we estimate that net-metered PV residences could save 5% of their total electricity load for houses without storage and 14% for houses with storage. Based on residential PV penetration projections for year 2035 obtained from the National Energy Modeling System (2.7% for the reference case and 11.2% for the extended policy case), direct-DC could save the nation 10 trillion Btu (without storage) or 40 trillion Btu (with storage). Shifting the cooling load by two hours earlier in the day (pre-cooling) has negligible benefits for energy savings. Direct-DC provides no energy savings benefits for EV charging, to the extent that charging occurs at night. However, if charging occurred during the day, for example with employees charging while at work, the benefits would be large. Direct-DC energy savings are sensitive to power system and appliance conversion efficiencies but are not significantly influenced by climate. While direct-DC for residential applications will most likely arise as a spin-off of developments in the commercial sector—because of lower barriers to market entry and larger energy benefits resulting from the higher coincidence between load and insolation—this paper demonstrates that there are substantial benefits in the residential sector as well. Among residential applications, space cooling derives the largest energy savings from being delivered by a direct-DC system. It is the largest load for the average residence on a national basis and is particularly so in high-load regions. It is also the load with highest solar coincidence.« less

  15. Contamination and Optics Degradation as Related to an Evolving Mission Design for the Terrestrial Planet Finder

    NASA Astrophysics Data System (ADS)

    Sharma, P. K.; Lindensmith, C. A.

    1998-12-01

    Terrestrial Planet Finder (TPF) is an evolving mission in NASA's ORIGINS program designed to detect earth like planets and perform high-resolution interferometric imaging of astrophysics targets in the infrared. The planet detection concept involves the use of multiple collectors in formation flying spacecraft and nulling interferometry to isolate the image of the planet (located near a bright star) while the star image is canceled out. The concept development involves the search for 10 to 20 micron radiation from planets orbiting stars out to a distance of 3 to 15 pc using NGST type collectors passively cooled to 35 K with high quality thermal shields. The need to obtain a suitable null for planet detection results in strict requirements of signal amplitude and phase matching at the optics. This in turn implies very tight cleanliness requirements at the optics. Several contamination issues need to be taken into account in order to maintain the integrity of the optics as well as the thermal shields. Cryogenic optical surfaces, e.g., mirror surfaces, are susceptible to contamination due to formation of thin cryolayers from propulsion system exhaust and outgassing products. Detector optics at 5 to 7 K will condense almost all species with the exception of hydrogen and helium. Thermal control surfaces at 35 to 40 K will condense a host of species including water vapor, which because of the presence of several absorption peaks in the infrared, will increase the emissivity of low emissivity surfaces. The increased emissivity will result in a temperature rise for the surface which will lead to decreased performance of cryocoolers, which depend upon passive precooling of the working fluid, used to cool the detectors. The condensed contaminant film on optics will also increase non-specular reflection from the surface, i.e., an increase in Bi-directional Reflectance Distribution Function (BRDF), leading to a lowering of the image quality. Particles on optical surfaces also increase scatter and thus the surface BRDF. This results in an increase in straylight. In addition, the surface particle induced scatter will reduce the contrast of the dark rings of the Point Spread Function (PSF) and hence make separation of a fainter celestial object situated near a brighter object more difficult. Warm particles in the field-of-view of the sensors can be mistaken for a celestial body due to their thermal emission. Similarly, certain contaminant molecules in the field-of-view of the sensors can mimic the sought spectral signatures of the terrestrial type planet. Contamination is an important consideration in the development of the TPF and continued study will help to minimize its effects on the mission.

  16. Turbomachinery for Low-to-High Mach Number Flight

    NASA Technical Reports Server (NTRS)

    Tan, Choon S.; Shah, Parthiv N.

    2004-01-01

    The thrust capability of turbojet cycles is reduced at high flight Mach number (3+) by the increase in inlet stagnation temperature. The 'hot section' temperature limit imposed by materials technology sets the maximum heat addition and, hence, sets the maximum flight Mach number of the operating envelope. Compressor pre-cooling, either via a heat exchanger or mass-injection, has been suggested as a means to reduce compressor inlet temperature and increase mass flow capability, thereby increasing thrust. To date, however, no research has looked at compressor cooling (i.e., using a compressor both to perform work on the gas path air and extract heat from it simultaneously). We wish to assess the feasibility of this novel concept for use in low-to-high Mach number flight. The results to-date show that an axial compressor with cooling: (1) relieves choking in rear stages (hence opening up operability), (2) yields higher-pressure ratio and (3) yields higher efficiency for a given corrected speed and mass flow. The performance benefit is driven: (i) at the blade passage level, by a decrease in the total pressure reduction coefficient and an increase in the flow turning; and (ii) by the reduction in temperature that results in less work required for a given pressure ratio. The latter is a thermodynamic effect. As an example, calculations were performed for an eight-stage compressor with an adiabatic design pressure ratio of 5. By defining non-dimensional cooling as the percentage of compressor inlet stagnation enthalpy removed by a heat sink, the model shows that a non-dimensional cooling of percent in each blade row of the first two stages can increase the compressor pressure ratio by as much as 10-20 percent. Maximum corrected mass flow at a given corrected speed may increase by as much as 5 percent. In addition, efficiency may increase by as much as 5 points. A framework for characterizing and generating the performance map for a cooled compressor has been developed. The approach is based upon CFD computations and mean line analysis. Figures of merit that characterize the bulk performance of blade passage flows with and without cooling are extracted from CFD solutions. Such performance characterization is then applied to a preliminary compressor design framework (mean line). The generic nature of this approach makes it suitable for assessing the effect of different types of compressor cooling schemes, such as heat exchange or evaporative cooling (mass injection). Future work will focus on answering system level questions regarding the feasibility of compressor cooling. Specifically, we wish to determine the operational parametric space in which compressor cooling would be advantageous over other high flight Mach number propulsion concepts. In addition, we will explore the design requirements of cooled compressor turbomachinery, as well as the flow phenomena that limit and control its operation, and the technology barriers that must be crossed for its implementation.

  17. Cooling Effectiveness of a Modified Cold-Water Immersion Method After Exercise-Induced Hyperthermia.

    PubMed

    Luhring, Katherine E; Butts, Cory L; Smith, Cody R; Bonacci, Jeffrey A; Ylanan, Ramon C; Ganio, Matthew S; McDermott, Brendon P

    2016-11-01

     Recommended treatment for exertional heat stroke includes whole-body cold-water immersion (CWI). However, remote locations or monetary or spatial restrictions can challenge the feasibility of CWI. Thus, the development of a modified, portable CWI method would allow for optimal treatment of exertional heat stroke in the presence of these challenges.  To determine the cooling rate of modified CWI (tarp-assisted cooling with oscillation [TACO]) after exertional hyperthermia.  Randomized, crossover controlled trial.  Environmental chamber (temperature = 33.4°C ± 0.8°C, relative humidity = 55.7% ± 1.9%).  Sixteen volunteers (9 men, 7 women; age = 26 ± 4.7 years, height = 1.76 ± 0.09 m, mass = 72.5 ± 9.0 kg, body fat = 20.7% ± 7.1%) with no history of compromised thermoregulation.  Participants completed volitional exercise (cycling or treadmill) until they demonstrated a rectal temperature (T re ) ≥39.0°C. After exercise, participants transitioned to a semirecumbent position on a tarp until either T re reached 38.1°C or 15 minutes had elapsed during the control (no immersion [CON]) or TACO (immersion in 151 L of 2.1°C ± 0.8°C water) treatment.  The T re , heart rate, and blood pressure (reported as mean arterial pressure) were assessed precooling and postcooling. Statistical analyses included repeated-measures analysis of variance with appropriate post hoc t tests and Bonferroni correction.  Before cooling, the T re was not different between conditions (CON: 39.27°C ± 0.26°C, TACO: 39.30°C ± 0.39°C; P = .62; effect size = -0.09; 95% confidence interval [CI] = -0.2, 0.1). At postcooling, the T re was decreased in the TACO (38.10°C ± 0.16°C) compared with the CON condition (38.74°C ± 0.38°C; P < .001; effect size = 2.27; 95% CI = 0.4, 0.9). The rate of cooling was greater during the TACO (0.14 ± 0.06°C/min) than the CON treatment (0.04°C/min ± 0.02°C/min; t 15 = -8.84; P < .001; effect size = 2.21; 95% CI = -0.13, -0.08). These differences occurred despite an insignificant increase in fluid consumption during exercise preceding CON (0.26 ± 0.29 L) versus TACO (0.19 ± 0.26 L; t 12 = 1.73; P = .11; effect size = 0.48; 95% CI = -0.02, 0.14) treatment. Decreases in heart rate did not differ between the TACO and CON conditions (t 15 = -1.81; P = .09; effect size = 0.45; 95% CI = -22, 2). Mean arterial pressure was greater at postcooling with TACO (84.2 ± 6.6 mm Hg) than with CON (67.0 ± 9.0 mm Hg; P < .001; effect size = 2.25; 95% CI = 13, 21).  The TACO treatment provided faster cooling than did the CON treatment. When location, monetary, or spatial restrictions are present, TACO represents an effective alternative to traditional CWI in the emergency treatment of patients with exertional hyperthermia.

  18. The big fat LARS - a LArge Reservoir Simulator for hydrate formation and gas production

    NASA Astrophysics Data System (ADS)

    Beeskow-Strauch, Bettina; Spangenberg, Erik; Schicks, Judith M.; Giese, Ronny; Luzi-Helbing, Manja; Priegnitz, Mike; Klump, Jens; Thaler, Jan; Abendroth, Sven

    2013-04-01

    Simulating natural scenarios on lab scale is a common technique to gain insight into geological processes with moderate effort and expenses. Due to the remote occurrence of gas hydrates, their behavior in sedimentary deposits is largely investigated on experimental set ups in the laboratory. In the framework of the submarine gas hydrate research project (SUGAR) a large reservoir simulator (LARS) with an internal volume of 425 liter has been designed, built and tested. To our knowledge this is presently a word-wide unique set up. Because of its large volume it is suitable for pilot plant scale tests on hydrate behavior in sediments. That includes not only the option of systematic tests on gas hydrate formation in various sedimentary settings but also the possibility to mimic scenarios for the hydrate decomposition and subsequent natural gas extraction. Based on these experimental results various numerical simulations can be realized. Here, we present the design and the experimental set up of LARS. The prerequisites for the simulation of a natural gas hydrate reservoir are porous sediments, methane, water, low temperature and high pressure. The reservoir is supplied by methane-saturated and pre-cooled water. For its preparation an external gas-water mixing stage is available. The methane-loaded water is continuously flushed into LARS as finely dispersed fluid via bottom-and-top-located sparger. The LARS is equipped with a mantle cooling system and can be kept at a chosen set temperature. The temperature distribution is monitored at 14 reasonable locations throughout the reservoir by Pt100 sensors. Pressure needs are realized using syringe pump stands. A tomographic system, consisting of a 375-electrode-configuration is attached to the mantle for the monitoring of hydrate distribution throughout the entire reservoir volume. Two sets of tubular polydimethylsiloxan-membranes are applied to determine gas-water ratio within the reservoir using the effect of permeability differences between gaseous and dissolved methane (Zimmer et al., 2011). Gas hydrate is formed using a confined pressure of 12-15 MPa and a fluid pressure of 8-11 MPa with a set temperature of 275 K. The duration of the formation process depends on the required hydrate saturation and is usually in a range of several weeks. The subsequent decomposition experiments aiming at testing innovative production scenarios such as the application of a borehole tool for thermal stimulation of hydrate via catalytic oxidation of methane within an autothermal catalytic reactor (Schicks et al. 2011). Furthermore, experiments on hydrate decomposition via pressure reduction are performed to mimic realistic scenarios such as found during the production test in Mallik (Yasuda and Dallimore, 2007). In the near future it is planned to scale up existing results on CH4-CO2 exchange efficiency (e.g. Strauch and Schicks, 2012) by feeding CO2 to the hydrate reservoir. All experiments are due to the gain of high-resolution spatial and temporal data predestined as a base for numerical modeling. References Schicks, J. M., Spangenberg, E., Giese, R., Steinhauer, B., Klump, J., Luzi, M., 2011. Energies, 4, 1, 151-172. Zimmer, M., Erzinger, J., Kujawa, C., 2011. Int. J. of Greenhouse Gas Control, 5, 4, 995-1001. Yasuda, M., Dallimore, S. J., 2007. Jpn. Assoc. Pet. Technol., 72, 603-607. Beeskow-Strauch, B., Schicks, J.M., 2012. Energies, 5, 420-437.

  19. Cavity Optomechanics: Coherent Coupling of Light and Mechanical Oscillators

    NASA Astrophysics Data System (ADS)

    Kippenberg, Tobias J.

    2012-06-01

    The mutual coupling of optical and mechanical degrees of freedom via radiation pressure has been a subject of interest in the context of quantum limited displacements measurements for Gravity Wave Detection for many decades, however light forces have remained experimentally unexplored in such systems. Recent advances in nano- and micro-mechanical oscillators have for the first time allowed the observation of radiation pressure phenomena in an experimental setting and constitute the expanding research field of cavity optomechanics [1]. These advances have allowed achieving to enter the quantum regime of mechanical systems, which are now becoming a third quantum technology after atoms, ions and molecules in a first and electronic circuits in a second wave. In this talk I will review these advances. Using on-chip micro-cavities that combine both optical and mechanical degrees of freedom in one and the same device [2], radiation pressure back-action of photons is shown to lead to effective cooling [3-6]) of the mechanical oscillator mode using dynamical backaction, which has been predicted by Braginsky as early as 1969 [4]. This back-action cooling exhibits many close analogies to atomic laser cooling. With this novel technique the quantum mechanical ground state of a micromechanical oscillator has been prepared with high probability using both microwave and optical fields. In our research this is reached using cryogenic precooling to ca. 800 mK in conjunction with laser cooling, allowing cooling of micromechanical oscillator to only motional 1.7 quanta, implying that the mechanical oscillator spends about 40% of its time in the quantum ground state. Moreover it is possible in this regime to observe quantum coherent coupling in which the mechanical and optical mode hybridize and the coupling rate exceeds the mechanical and optical decoherence rate [7]. This accomplishment enables a range of quantum optical experiments, including state transfer from light to mechanics using the phenomenon of optomechanically induced transparency [8]. From a broader perspective the described experiments that exploit optomechanical coupling are motivated both by the effort to realize quantum measurement schemes on mechanical systems in an experimental setting as well as to explore the behavior of nanomechanical systems at low temperatures.[0pt] [1] T. J. Kippenberg, K. J. Vahala, Cavity Optomechanics: Backaction at the mesoscale. Science 321, 1172 (2008, 2008); [2] T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, K. J. Vahala, Analysis of Radiation-Pressure Induced Mechanical Oscillation of an Optical Microcavity. Physical Review Letters 95, 033901 (2005); [3] V. B. Braginsky, S. P. Vyatchanin, Low quantum noise tranquilizer for Fabry-Perot interferometer. Physics Letters A 293, 228 (Feb 4, 2002); [4] V. B. Braginsky, Measurement of Weak Forces in Physics Experiments. (University of Chicago Press, Chicago, 1977); [5] A. Schliesser, P. Del'Haye, N. Nooshi, K. J. Vahala, T. J. Kippenberg, Radiation pressure cooling of a micromechanical oscillator using dynamical backaction. Physical Review Letters 97, 243905 (Dec 15, 2006); [6] A. Schliesser, R. Riviere, G. Anetsberger, O. Arcizet, T. J. Kippenberg, Resolved-sideband cooling of a micromechanical oscillator. Nature Physics 4, 415 (May, 2008); [7] E. Verhagen, S. Deleglise, S. Weis, A. Schliesser, T.J. Kippenberg, Nature (in press, 2012); [8] S. Weis et al., Optomechanically Induced Transparency. Science 330, 1520 (Dec, 2010).

  20. Analysis of supercritical CO{sub 2} cycle control strategies and dynamic response for Generation IV Reactors.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moisseytsev, A.; Sienicki, J. J.

    2011-04-12

    The analysis of specific control strategies and dynamic behavior of the supercritical carbon dioxide (S-CO{sub 2}) Brayton cycle has been extended to the two reactor types selected for continued development under the Generation IV Nuclear Energy Systems Initiative; namely, the Very High Temperature Reactor (VHTR) and the Sodium-Cooled Fast Reactor (SFR). Direct application of the standard S-CO{sub 2} recompression cycle to the VHTR was found to be challenging because of the mismatch in the temperature drop of the He gaseous reactor coolant through the He-to-CO{sub 2} reactor heat exchanger (RHX) versus the temperature rise of the CO{sub 2} through themore » RHX. The reference VHTR features a large temperature drop of 450 C between the assumed core outlet and inlet temperatures of 850 and 400 C, respectively. This large temperature difference is an essential feature of the VHTR enabling a lower He flow rate reducing the required core velocities and pressure drop. In contrast, the standard recompression S-CO{sub 2} cycle wants to operate with a temperature rise through the RHX of about 150 C reflecting the temperature drop as the CO{sub 2} expands from 20 MPa to 7.4 MPa in the turbine and the fact that the cycle is highly recuperated such that the CO{sub 2} entering the RHX is effectively preheated. Because of this mismatch, direct application of the standard recompression cycle results in a relatively poor cycle efficiency of 44.9%. However, two approaches have been identified by which the S-CO{sub 2} cycle can be successfully adapted to the VHTR and the benefits of the S-CO{sub 2} cycle, especially a significant gain in cycle efficiency, can be realized. The first approach involves the use of three separate cascaded S-CO{sub 2} cycles. Each S-CO{sub 2} cycle is coupled to the VHTR through its own He-to-CO{sub 2} RHX in which the He temperature is reduced by 150 C. The three respective cycles have efficiencies of 54, 50, and 44%, respectively, resulting in a net cycle efficiency of 49.3 %. The other approach involves reducing the minimum cycle pressure significantly below the critical pressure such that the temperature drop in the turbine is increased while the minimum cycle temperature is maintained above the critical temperature to prevent the formation of a liquid phase. The latter approach also involves the addition of a precooler and a third compressor before the main compressor to retain the benefits of compression near the critical point with the main compressor. For a minimum cycle pressure of 1 MPa, a cycle efficiency of 49.5% is achieved. Either approach opens up the door to applying the SCO{sub 2} cycle to the VHTR. In contrast, the SFR system typically has a core outlet-inlet temperature difference of about 150 C such that the standard recompression cycle is ideally suited for direct application to the SFR. The ANL Plant Dynamics Code has been modified for application to the VHTR and SFR when the reactor side dynamic behavior is calculated with another system level computer code such as SAS4A/SYSSYS-1 in the SFR case. The key modification involves modeling heat exchange in the RHX, accepting time dependent tabular input from the reactor code, and generating time dependent tabular input to the reactor code such that both the reactor and S-CO{sub 2} cycle sides can be calculated in a convergent iterative scheme. This approach retains the modeling benefits provided by the detailed reactor system level code and can be applied to any reactor system type incorporating a S-CO{sub 2} cycle. This approach was applied to the particular calculation of a scram scenario for a SFR in which the main and intermediate sodium pumps are not tripped and the generator is not disconnected from the electrical grid in order to enhance heat removal from the reactor system thereby enhancing the cooldown rate of the Na-to-CO{sub 2} RHX. The reactor side is calculated with SAS4A/SASSYS-1 while the S-CO{sub 2} cycle is calculated with the Plant Dynamics Code with a number of iterations over a timescale of 500 seconds. It is found that the RHX undergoes a maximum cooldown rate of {approx} -0.3 C/s. The Plant Dynamics Code was also modified to decrease its running time by replacing the compressible flow form of the momentum equation with an incompressible flow equation for use inside of the cooler or recuperators where the CO{sub 2} has a compressibility similar to that of a liquid. Appendices provide a quasi-static control strategy for a SFR as well as the self-adaptive linear function fitting algorithm developed to produce the tabular data for input to the reactor code and Plant Dynamics Code from the detailed output of the other code.« less

Top