Science.gov

Sample records for precursor cell maintenance

  1. Robust regeneration of adult zebrafish lateral line hair cells reflects continued precursor pool maintenance

    PubMed Central

    Cruz, Ivan A.; Kappedal, Ryan; Mackenzie, Scott M.; Hailey, Dale W.; Hoffman, Trevor L.; Schilling, Thomas F.; Raible, David W.

    2015-01-01

    We have examined lateral line hair cell and support cell maintenance in adult zebrafish when growth is largely complete. We demonstrate that adult zebrafish not only replenish hair cells after a single instance of hair cell damage, but also maintain hair cells and support cells after multiple rounds of damage and regeneration. We find that hair cells undergo continuous turnover in adult zebrafish in the absence of damage. We identify mitotically-distinct support cell populations and show that hair cells regenerate from underlying support cells in a region-specific manner. Our results demonstrate that there are two distinct support cell populations in the lateral line, which may help explain why zebrafish hair cell regeneration is extremely robust, retained throughout life, and potentially unlimited in regenerative capacity. PMID:25869855

  2. Pannexin 1 Differentially Affects Neural Precursor Cell Maintenance in the Ventricular Zone and Peri-Infarct Cortex.

    PubMed

    Wicki-Stordeur, Leigh E; Sanchez-Arias, Juan C; Dhaliwal, Jagroop; Carmona-Wagner, Esther O; Shestopalov, Valery I; Lagace, Diane C; Swayne, Leigh Anne

    2016-01-27

    We demonstrated previously that Pannexin 1 (Panx1), an ion and metabolite channel, promotes the growth and proliferation of ventricular zone (VZ) neural precursor cells (NPCs) in vitro. To investigate its role in vivo, we used floxed Panx1 mice in combination with viruses to delete Panx1 in VZ NPCs and to track numbers of Panx1-null and Panx1-expressing VZ NPCs over time. Two days after virus injection, Panx1-null cells were less abundant than Panx1-expressing cells, suggesting that Panx1 is required for the maintenance of VZ NPCs. We also investigated the effect of Panx1 deletion in VZ NPCs after focal cortical stroke via photothrombosis. Panx1 is essential for maintaining elevated VZ NPC numbers after stroke. In contrast, Panx1-null NPCs were more abundant than Panx1-expressing NPCs in the peri-infarct cortex. Together, these findings suggest that Panx1 plays an important role in NPC maintenance in the VZ niche in the naive and stroke brain and could be a key target for improving NPC survival in the peri-infarct cortex. Here, we demonstrate that Pannexin 1 (Panx1) maintains a consistent population size of neural precursor cells in the ventricular zone, both in the healthy brain and in the context of stroke. In contrast, Panx1 appears to be detrimental to the survival of neural precursor cells that surround damaged cortical tissue in the stroke brain. This suggests that targeting Panx1 in the peri-infarct cortex, in combination with other therapies, could improve cell survival around the injury site. Copyright © 2016 the authors 0270-6474/16/361203-08$15.00/0.

  3. Maintenance and Repair of the Lung Endothelium Does Not Involve Contributions from Marrow-Derived Endothelial Precursor Cells

    PubMed Central

    Ohle, Sarah J.; Anandaiah, Asha; Fabian, Attila J.; Fine, Alan

    2012-01-01

    Lung endothelium is believed to be a quiescent tissue with the potential to exhibit rapid and effective repair after injury. Endothelial progenitor cells derived from the bone marrow have been proposed as one source of new endothelial cells that may directly contribute to pulmonary endothelial cell homeostasis and repair. Here we use bone marrow transplantation models, using purified hematopoietic stem cells (HSCs) or unfractionated whole marrow, to assess engraftment of cells in the endothelium of a variety of tissues. We find scant evidence for any contribution of bone marrow–derived cells to the pulmonary endothelium in the steady state or after recovery from hyperoxia-induced endothelial injury. Although a rare population of CD45−/CD31+/VECadherin+ bone marrow–derived cells, originating from HSCs, can be found in lung tissue after transplantation, these cells are not readily found in anatomic locations that define the pulmonary endothelium. Moreover, by tracking transplanted bone marrow cells obtained from donor transgenic mice containing endothelial lineage–selective reporters (Tie2-GFP), no contribution of bone marrow–derived cells to the adult lung, liver, pancreas, heart, and kidney endothelium can be detected, even after prolonged follow-up periods of 11 months or after recovery from hyperoxic pulmonary endothelial injury. Our findings argue against any significant engraftment of bone marrow–derived cells in the pulmonary vascular endothelium. PMID:22323363

  4. The Innate Lymphoid Cell Precursor.

    PubMed

    Ishizuka, Isabel E; Constantinides, Michael G; Gudjonson, Herman; Bendelac, Albert

    2016-05-20

    The discovery of tissue-resident innate lymphoid cell populations effecting different forms of type 1, 2, and 3 immunity; tissue repair; and immune regulation has transformed our understanding of mucosal immunity and allergy. The emerging complexity of these populations along with compounding issues of redundancy and plasticity raise intriguing questions about their precise lineage relationship. Here we review advances in mapping the emergence of these lineages from early lymphoid precursors. We discuss the identification of a common innate lymphoid cell precursor characterized by transient expression of the transcription factor PLZF, and the lineage relationships of innate lymphoid cells with conventional natural killer cells and lymphoid tissue inducer cells. We also review the rapidly growing understanding of the network of transcription factors that direct the development of these lineages.

  5. Cell Maintenance Systems

    NASA Technical Reports Server (NTRS)

    Morrison, D. R.

    1985-01-01

    Living human cells require attachment to a suitable surface and special culture conditions in order to grow. These requirements are modified and amplified when cells are taken into a weightless environment. Special handling and maintenance systems are required for routine laboratory procedures conducted in the Orbiter and in the Spacelab. Methods were developed to maintain cells in special incubators designed for the Orbiter middeck, however, electrophoresis and other experiments require cells to be harvested off of the culture substrate before they can be processed or used. The cell transport assembly (CTA) was flown on STS-8, and results show that improvements are required to maintain adequate numbers of cells in this device longer than 48 hours. The life sciences middeck centrifuge probably can be used, but modifications will be required to transfer cells from the CTA and keep the cells sterile. Automated systems such as the Skylab SO-15 flight hardware and crew operated systems are being evaluated for use on the Space Shuttle, Spacelab, and Space Station research modules.

  6. DLG5 in cell polarity maintenance and cancer development.

    PubMed

    Liu, Jie; Li, Juan; Ren, Yu; Liu, Peijun

    2014-01-01

    Failure in establishment and maintenance of epithelial cell polarity contributes to tumorigenesis. Loss of expression and function of cell polarity proteins is directly related to epithelial cell polarity maintenance. The polarity protein discs large homolog 5 (DLG5) belongs to a family of molecular scaffolding proteins called Membrane Associated Guanylate Kinases (MAGUKs). As the other family members, DLG5 contains the multi-PDZ, SH3 and GUK domains. DLG5 has evolved in the same manner as DLG1 and ZO1, two well-studied MAGUKs proteins. Just like DLG1 and ZO1, DLG5 plays a role in cell migration, cell adhesion, precursor cell division, cell proliferation, epithelial cell polarity maintenance, and transmission of extracellular signals to the membrane and cytoskeleton. Since the roles of DLG5 in inflammatory bowel disease (IBD) and Crohn's disease (CD) have been reviewed, here, our review focuses on the roles of DLG5 in epithelial cell polarity maintenance and cancer development.

  7. Convergence and extension movements mediate the specification and fate maintenance of zebrafish slow muscle precursors.

    PubMed

    Yin, Chunyue; Solnica-Krezel, Lilianna

    2007-04-01

    During vertebrate gastrulation, concurrent inductive events and cell movements fashion the body plan. Convergence and extension (C&E) gastrulation movements narrow the vertebrate embryonic body mediolaterally while elongating it rostrocaudally. Segmented somites are shaped and positioned by C&E alongside the notochord and differentiate into skeleton, fast, and slow muscles during somitogenesis. In zebrafish, simultaneous inactivation of non-canonical Wnt signaling components Knypek and Trilobite strongly impairs C&E gastrulation movements. Here we show that knypek;trilobite double mutants exhibit a severe deficit in slow muscles and their precursor, adaxial cells, revealing essential roles of C&E movements in adaxial cell development. Adaxial cells become distinguishable in the presomitic mesoderm during late gastrulation by their expression of myogenic factors and axial-adjacent position. Using cell tracing analyses and genetic manipulations, we demonstrate that C&E movements regulate the number of prospective adaxial cells specified during gastrulation by determining the size of the interface between the inductive axial and target presomitic tissues. During segmentation, when the range of Hedgehog signaling from the axial tissue declines, tight apposition of prospective adaxial cells to the notochord, which is achieved by convergence movements, is necessary for their continuous Hedgehog reception and fate maintenance. We provide direct evidence to show that the deficiency of adaxial cells in knypek;trilobite double mutants is due to impaired C&E movements, rather than an alteration in Hedgehog signal and its reception, or a cell-autonomous requirement for Knypek and Trilobite in adaxial cell development. Our results underscore the significance of precise coordination between cell movements and inductive tissue interactions during cell fate specification.

  8. Perspectives on the role of Pannexin 1 in neural precursor cell biology.

    PubMed

    Sanchez-Arias, Juan C; Wicki-Stordeur, Leigh E; Swayne, Leigh Anne

    2016-10-01

    We recently reported that targeted deletion of Pannexin 1 in neural precursor cells of the ventricular zone impairs the maintenance of these cells in healthy and stroke-injured brain. Here we frame this exciting new finding in the context of our previous studies on Pannexin 1 in neural precursors as well as the close relationship between Pannexin 1 and purinergic receptors established by other groups. Moreover, we identify important gaps in our understanding of Pannexin 1 in neural precursor cell biology in terms of the underlying molecular mechanisms and functional/behavioural outcomes.

  9. Perspectives on the role of Pannexin 1 in neural precursor cell biology

    PubMed Central

    Sanchez-Arias, Juan C.; Wicki-Stordeur, Leigh E.; Swayne, Leigh Anne

    2016-01-01

    We recently reported that targeted deletion of Pannexin 1 in neural precursor cells of the ventricular zone impairs the maintenance of these cells in healthy and stroke-injured brain. Here we frame this exciting new finding in the context of our previous studies on Pannexin 1 in neural precursors as well as the close relationship between Pannexin 1 and purinergic receptors established by other groups. Moreover, we identify important gaps in our understanding of Pannexin 1 in neural precursor cell biology in terms of the underlying molecular mechanisms and functional/behavioural outcomes. PMID:27904473

  10. Adult neurogenesis in the crayfish brain: proliferation, migration, and possible origin of precursor cells.

    PubMed

    Zhang, Yi; Allodi, Silvana; Sandeman, David C; Beltz, Barbara S

    2009-06-01

    The birth of new neurons and their incorporation into functional circuits in the adult brain is a characteristic of many vertebrate and invertebrate organisms, including decapod crustaceans. Precursor cells maintaining life-long proliferation in the brains of crayfish (Procambarus clarkii, Cherax destructor) and clawed lobsters (Homarus americanus) reside within a specialized niche on the ventral surface of the brain; their daughters migrate to two proliferation zones along a stream formed by processes of the niche precursors. Here they divide again, finally producing interneurons in the olfactory pathway. The present studies in P. clarkii explore (1) differential proliferative activity among the niche precursor cells with growth and aging, (2) morphological characteristics of cells in the niche and migratory streams, and (3) aspects of the cell cycle in this lineage. Morphologically symmetrical divisions of neuronal precursor cells were observed in the niche near where the migratory streams emerge, as well as in the streams and proliferation zones. The nuclei of migrating cells elongate and undergo shape changes consistent with nucleokinetic movement. LIS1, a highly conserved dynein-binding protein, is expressed in cells in the migratory stream and neurogenic niche, implicating this protein in the translocation of crustacean brain neuronal precursor cells. Symmetrical divisions of the niche precursors and migration of both daughters raised the question of how the niche precursor pool is replenished. We present here preliminary evidence for an association between vascular cells and the niche precursors, which may relate to the life-long growth and maintenance of the crustacean neurogenic niche.

  11. Hedgehog signaling establishes precursors for germline stem cell niches by regulating cell adhesion

    PubMed Central

    Lin, Kun-Yang; Kao, Shih-Han

    2017-01-01

    Stem cells require different types of supporting cells, or niches, to control stem cell maintenance and differentiation. However, little is known about how those niches are formed. We report that in the development of the Drosophila melanogaster ovary, the Hedgehog (Hh) gradient sets differential cell affinity for somatic gonadal precursors to specify stromal intermingled cells, which contributes to both germline stem cell maintenance and differentiation niches in the adult. We also report that Traffic Jam (an orthologue of a large Maf transcription factor in mammals) is a novel transcriptional target of Hh signaling to control cell–cell adhesion by negative regulation of E-cadherin expression. Our results demonstrate the role of Hh signaling in niche establishment by segregating somatic cell lineages for differentiation. PMID:28363970

  12. Precursor Report of Data Needs and Recommended Practices for PV Plant Availability Operations and Maintenance Reporting.

    SciTech Connect

    Hill, Roger R.; Klise, Geoffrey Taylor; Balfour, John R.

    2015-01-01

    Characterizing the factors that affect reliability of a photovoltaic (PV) power plant is an important aspect of optimal asset management. This document describes the many factors that affect operation and maintenance (O&M) of a PV plant, identifies the data necessary to quantify those factors, and describes how data might be used by O&M service providers and others in the PV industry. This document lays out data needs from perspectives of reliability, availability, and key performance indicators and is intended to be a precursor for standardizing terminology and data reporting, which will improve data sharing, analysis, and ultimately PV plant performance.

  13. Innate lymphoid cells, precursors and plasticity.

    PubMed

    Gronke, Konrad; Kofoed-Nielsen, Michael; Diefenbach, Andreas

    2016-11-01

    Innate lymphoid cells (ILC) have only recently been recognized as a separate entity of the lymphoid lineage. Their subpopulations share common characteristics in terms of early development and major transcriptional circuitry with their related cousins of the T cell world. It is currently hypothesized that ILCs constitute an evolutionary older version of the lymphoid immune system. They are found at all primary entry points for pathogens such as mucosal surfaces of the lung and gastrointestinal system, the skin and the liver, which is the central contact point for pathogens that breach the intestinal barrier and enter the circulation. There, ILC contribute to the first line defense as well as to organ homeostasis. However, ILC are not only involved in classical defense tasks, but also contribute to the organogenesis of lymphoid organs as well as tissue remodeling and even stem cell regeneration. ILC may, therefore, implement different functions according to their emergence in ontogeny, their development and their final tissue location. We will review here their early development from precursors of the fetal liver and the adult bone marrow as well as their late plasticity in adaptation to their environment. Copyright © 2016 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  14. Gradient isolation of glial cells: evidence that flat epithelial cells are astroglial cell precursors.

    PubMed

    Meller, K

    1987-07-01

    Discontinuous gradients of metrizamide were used to separate the cell components of monolayers of primary cultures of embryonic rat brains. These primary cell cultures were of two types: long-term cultures (more than a year) of embryonic rat brain, which contained several glial cell types, and monolayers of cell cultures (several weeks old), which contained a complex population of cells, including neuronal elements. The gradient separation produces fractions of pure flat epithelial cells that are able to survive and proliferate. After a few days, all flat epithelial cells become confluent and show a positive reaction to glial fibrillary acidic protein (GFAP); this indicates that these cells astroglial precursor cells. Following their maintenance in vitro for several months, all cultures give rise to a pure population of astrocytes identified not only by their characteristic morphology, but also by their content of GFAP. It is proposed that the differentiation controls are dependent on cell interactions that are influenced by the composition of the cell population and/or the molecular growth and differentiation factors released by these cells into the medium.

  15. Extracellular adenosine regulates naive T cell development and peripheral maintenance

    PubMed Central

    Cekic, Caglar; Sag, Duygu; Day, Yuan-Ji

    2013-01-01

    Adenosine produced as a byproduct of metabolic activity is present in all tissues and produces dose-dependent suppression of TCR signaling. Naive T cell maintenance depends on inhibition of TCR signals by environmental sensors, which are yet to be fully defined. We produced mice with a floxed adenosine A2A receptor (A2AR) gene, Adora2a, and show that either global A2AR deletion or cre-mediated T cell deletion elicits a decline in the number of naive but not memory T cells. A2AR signaling maintains naive T cells in a quiescent state by inhibiting TCR-induced activation of the phosphatidylinositide 3-kinase (PI3K)–AKT pathway, thereby reducing IL-7Rα down-regulation and naive T cell apoptosis. Patterns of IL-7Rα expression on T cells in chimeric mice reconstituted with Adora2a+/+ and Adora2a−/− bone marrow cells suggest that decreased IL-7Rα in naive T cells is a cell-intrinsic consequence of Adora2a deletion. In addition, A2AR expression increases in early thymic T cell development and contributes to progression of double-negative thymic precursors to single-positive thymocytes with increased IL-7Rα expression. Therefore, A2AR signaling regulates T cell development and maintenance to sustain normal numbers of naive T cells in the periphery. PMID:24145516

  16. Adult neurogenesis in the crayfish brain: proliferation, migration and possible origin of precursor cells

    PubMed Central

    Zhang, Y.; Allodi, S.; Sandeman, D.C.; Beltz, B.S.

    2015-01-01

    The birth of new neurons and their incorporation into functional circuits in the adult brain is a characteristic of many vertebrate and invertebrate organisms, including decapod crustaceans. Precursor cells maintaining life-long proliferation in the brains of crayfish (Procambarus clarkii, Cherax destructor) and clawed lobsters (Homarus americanus) reside within a specialized niche on the ventral surface of the brain; their daughters migrate to two proliferation zones along a stream formed by processes of the niche precursors. Here they divide again, finally producing interneurons in the olfactory pathway. The present studies in P. clarkii explore (1) differential proliferative activity among the niche precursor cells with growth and aging, (2) morphological characteristics of cells in the niche and migratory streams, and (3) aspects of the cell cycle in this lineage. Morphologically symmetrical divisions of neuronal precursor cells were observed in the niche near where the migratory streams emerge, as well as in the streams and proliferation zones. The nuclei of migrating cells elongate and undergo shape changes consistent with nucleokinetic movement. LIS1, a highly conserved dynein-binding protein, is expressed in cells in the migratory stream and neurogenic niche, implicating this protein in the translocation of crustacean brain neuronal precursor cells. Symmetrical divisions of the niche precursors and migration of both daughters raised the question of how the niche precursor pool is replenished. We present here preliminary evidence for an association between vascular cells and the niche precursors, which may relate to the life-long growth and maintenance of the crustacean neurogenic niche. PMID:19294644

  17. Mechanisms of gravitational sensitivity of osteogenic precursor cells.

    PubMed

    Buravkova, L B; Gershovich, P M; Gershovich, J G; Grigor'ev, A I

    2010-04-01

    This report is a detailed review of the current data on the mechanic and gravitational sensitivity of osteoblasts and osteogenic precursor cells in vitro. It summarizes the numerous responses of cells with an osteoblastic phenotype and osteogenic precursor cells and especially their responses to the alteration of their mechanic or gravitational surroundings. The review also discusses the osteogenic cell's pathways of signal transduction and the mechanisms of gravitational sensitivity. It was shown that the earliest multipotent stromal precursor cells of an adult organism's bone marrow can sense changes of intensity in a gravitational or mechanic field in model conditions, which may play a certain role in the development of osteopenia in microgravity.

  18. A primitive cell origin for B-cell precursor ALL?

    PubMed

    Cox, C V; Blair, A

    2005-01-01

    A stem cell origin has been described for both acute and chronic myelogenous leukemias. In contrast, childhood B-cell precursor acute lymphoblastic leukemia (ALL) is thought to arise in committed B-lineage cells. Recently described in vitro and in vivo model systems that support the proliferation and expansion of ALL cells have provided new tools to investigate the cellular targets for the origin of this malignancy. Evidence suggests that some subtypes of childhood ALL have a primitive cell origin and share many immunophenotypic characteristics with normal progenitor cells. These leukemic stem cells may be resistant to current therapeutic strategies designed to kill the bulk ALL cell population and subsequent relapses may arise from this population. More precise definition of these ALL stem cells through combined analyses of antigen expression, genetic lesions, and functionality is essential for the development of more effective, targeted therapeutic strategies.

  19. Doublecortin in Oligodendrocyte Precursor Cells in the Adult Mouse Brain

    PubMed Central

    Boulanger, Jenna J.; Messier, Claude

    2017-01-01

    Key Points Oligodendrocyte precursor cells express doublecortin, a microtubule-associated protein.Oligodendrocyte precursor cells express doublecortin, but at a lower level of expression than in neuronal precursor.Doublecortin is not associated with a potential immature neuronal phenotype in Oligodendrocyte precursor cells. Oligodendrocyte precursor cells (OPC) are glial cells that differentiate into myelinating oligodendrocytes during embryogenesis and early stages of post-natal life. OPCs continue to divide throughout adulthood and some eventually differentiate into oligodendrocytes in response to demyelinating lesions. There is growing evidence that OPCs are also involved in activity-driven de novo myelination of previously unmyelinated axons and myelin remodeling in adulthood. Considering these roles in the adult brain, OPCs are likely mobile cells that can migrate on some distances before they differentiate into myelinating oligodendrocytes. A number of studies have noted that OPCs express doublecortin (DCX), a microtubule-associated protein expressed in neural precursor cells and in migrating immature neurons. Here we describe the distribution of DCX in OPCs. We found that almost all OPCs express DCX, but the level of expression appears to be much lower than what is found in neural precursor. We found that DCX is downregulated when OPCs start expressing mature oligodendrocyte markers and is absent in myelinating oligodendrocytes. DCX does not appear to signal an immature neuronal phenotype in OPCs in the adult mouse brain. Rather, it could be involved either in cell migration, or as a marker of an immature oligodendroglial cell phenotype. PMID:28400715

  20. Human embryonic epidermis contains a diverse Langerhans cell precursor pool.

    PubMed

    Schuster, Christopher; Mildner, Michael; Mairhofer, Mario; Bauer, Wolfgang; Fiala, Christian; Prior, Marion; Eppel, Wolfgang; Kolbus, Andrea; Tschachler, Erwin; Stingl, Georg; Elbe-Bürger, Adelheid

    2014-02-01

    Despite intense efforts, the exact phenotype of the epidermal Langerhans cell (LC) precursors during human ontogeny has not been determined yet. These elusive precursors are believed to migrate into the embryonic skin and to express primitive surface markers, including CD36, but not typical LC markers such as CD1a, CD1c and CD207. The aim of this study was to further characterize the phenotype of LC precursors in human embryonic epidermis and to compare it with that of LCs in healthy adult skin. We found that epidermal leukocytes in first trimester human skin are negative for CD34 and heterogeneous with regard to the expression of CD1c, CD14 and CD36, thus contrasting the phenotypic uniformity of epidermal LCs in adult skin. These data indicate that LC precursors colonize the developing epidermis in an undifferentiated state, where they acquire the definitive LC marker profile with time. Using a human three-dimensional full-thickness skin model to mimic in vivo LC development, we found that FACS-sorted, CD207(-) cord blood-derived haematopoietic precursor cells resembling foetal LC precursors but not CD14(+)CD16(-) blood monocytes integrate into skin equivalents, and without additional exogenous cytokines give rise to cells that morphologically and phenotypically resemble LCs. Overall, it appears that CD14(-) haematopoietic precursors possess a much higher differentiation potential than CD14(+) precursor cells.

  1. Role of neural precursor cells in promoting repair following stroke

    PubMed Central

    Dibajnia, Pooya; Morshead, Cindi M

    2013-01-01

    Stem cell-based therapies for the treatment of stroke have received considerable attention. Two broad approaches to stem cell-based therapies have been taken: the transplantation of exogenous stem cells, and the activation of endogenous neural stem and progenitor cells (together termed neural precursors). Studies examining the transplantation of exogenous cells have demonstrated that neural stem and progenitor cells lead to the most clinically promising results. Endogenous activation of neural precursors has also been explored based on the fact that resident precursor cells have the inherent capacity to proliferate, migrate and differentiate into mature neurons in the uninjured adult brain. Studies have revealed that these neural precursor cell behaviours can be activated following stroke, whereby neural precursors will expand in number, migrate to the infarct site and differentiate into neurons. However, this innate response is insufficient to lead to functional recovery, making it necessary to enhance the activation of endogenous precursors to promote tissue repair and functional recovery. Herein we will discuss the current state of the stem cell-based approaches with a focus on endogenous repair to treat the stroke injured brain. PMID:23064725

  2. Dopamine depletion impairs precursor cell proliferation in Parkinson disease.

    PubMed

    Höglinger, Günter U; Rizk, Pamela; Muriel, Marie P; Duyckaerts, Charles; Oertel, Wolfgang H; Caille, Isabelle; Hirsch, Etienne C

    2004-07-01

    Cerebral dopamine depletion is the hallmark of Parkinson disease. Because dopamine modulates ontogenetic neurogenesis, depletion of dopamine might affect neural precursors in the subependymal zone and subgranular zone of the adult brain. Here we provide ultrastructural evidence showing that highly proliferative precursors in the adult subependymal zone express dopamine receptors and receive dopaminergic afferents. Experimental depletion of dopamine in rodents decreases precursor cell proliferation in both the subependymal zone and the subgranular zone. Proliferation is restored completely by a selective agonist of D2-like (D2L) receptors. Experiments with neural precursors from the adult subependymal zone grown as neurosphere cultures confirm that activation of D2L receptors directly increases the proliferation of these precursors. Consistently, the numbers of proliferating cells in the subependymal zone and neural precursor cells in the subgranular zone and olfactory bulb are reduced in postmortem brains of individuals with Parkinson disease. These observations suggest that the generation of neural precursor cells is impaired in Parkinson disease as a consequence of dopaminergic denervation.

  3. Derivation of Neural Precursor Cells from Human Embryonic Stem Cells for DNA Methylomic Analysis.

    PubMed

    Roubal, Ivan; Park, Sun Joo; Kim, Yong

    2016-01-01

    Embryonic stem cells are self-renewing pluripotent cells with competency to differentiate into all three-germ lineages. Many studies have demonstrated the importance of genetic and epigenetic molecular mechanisms in the maintenance of self-renewal and pluripotency. Stem cells are under unique molecular and cellular regulations different from somatic cells. Proper regulation should be ensured to maintain their unique self-renewal and undifferentiated characteristics. Understanding key mechanisms in stem cell biology will be important for the successful application of stem cells for regenerative therapeutic medicine. More importantly practical use of stem cells will require our knowledge on how to properly direct and differentiate stem cells into the necessary type of cells. Embryonic stem cells and adult stem cells have been used as study models to unveil molecular and cellular mechanisms in various signaling pathways. They are especially beneficial to developmental studies where in vivo molecular/cellular study models are not available. We have derived neural stem cells from human embryonic stem cells as a model to study the effect of teratogen in neural development. We have tested commercial neural differentiation system and successfully derived neural precursor cells exhibiting key molecular features of neural stem cells, which will be useful for experimental application.

  4. Cryopreservation of GABAergic Neuronal Precursors for Cell-Based Therapy

    PubMed Central

    2017-01-01

    Cryopreservation protocols are essential for stem cells storage in order to apply them in the clinic. Here we describe a new standardized cryopreservation protocol for GABAergic neural precursors derived from the medial glanglionic eminence (MGE), a promising source of GABAergic neuronal progenitors for cell therapy against interneuron-related pathologies. We used 10% Me2SO as cryoprotectant and assessed the effects of cell culture amplification and cellular organization, as in toto explants, neurospheres, or individualized cells, on post-thaw cell viability and retrieval. We confirmed that in toto cryopreservation of MGE explants is an optimal preservation system to keep intact the interneuron precursor properties for cell transplantation, together with a high cell viability (>80%) and yield (>70%). Post-thaw proliferation and self-renewal of the cryopreserved precursors were tested in vitro. In addition, their migration capacity, acquisition of mature neuronal morphology, and potency to differentiate into multiple interneuron subtypes were also confirmed in vivo after transplantation. The results show that the cryopreserved precursor features remained intact and were similar to those immediately transplanted after their dissection from the MGE. We hope this protocol will facilitate the generation of biobanks to obtain a permanent and reliable source of GABAergic precursors for clinical application in cell-based therapies against interneuronopathies. PMID:28122047

  5. Improved Single-Source Precursors for Solar-Cell Absorbers

    NASA Technical Reports Server (NTRS)

    Banger, Kulbinder K.; Harris, Jerry; Hepp, Aloysius

    2007-01-01

    Improved single-source precursor compounds have been invented for use in spray chemical vapor deposition (spray CVD) of chalcopyrite semiconductor absorber layers of thin-film cells. A "single-source precursor compound" is a single molecular compound that contains all the required elements, which when used under the spray CVD conditions, thermally decomposes to form CuIn(x)Ga(1-x)S(y)Se(2-y).

  6. Effects of Retinoic Acid Signaling on Extraocular Muscle Myogenic Precursor Cells In Vitro.

    PubMed

    Hebert, Sadie L; Fitzpatrick, Krysta R; McConnell, Samantha A; Cucak, Anja; Yuan, Ching; McLoon, Linda K

    2017-10-07

    One major difference between limb and extraocular muscles (EOM) is the presence of an enriched population of Pitx2-positive myogenic precursor cells in EOM compared to limb muscle. We hypothesize that retinoic acid regulates Pitx2 expression in EOM myogenic precursor cells and that its effects would differ in leg muscle. The two muscle groups expressed differential retinoic acid receptor (RAR) and retinoid X receptor (RXR) levels. RXR co-localized with the Pitx2-positive cells but not with those expressing Pax7. EOM-derived and LEG-derived EECD34 cells were treated with vehicle, retinoic acid, the RAR inverse agonist BMS493, or the RXR antagonist UVI 3003. In vitro, fewer EOM-derived EECD34 cells expressed desmin and fused, while more LEG-derived cells expressed desmin and fused when treated with retinoic acid compared to vehicle. Both EOM and LEG-derived EECD34 cells exposed to retinoic acid showed a higher percentage of cells expressing Pitx2 compared to vehicle, supporting the hypothesis that retinoic acid plays a role in maintaining Pitx2 expression. We hypothesize that retinoic acid signaling aids in the maintenance of large numbers of undifferentiated myogenic precursor cells in the EOM, which would be required to maintain EOM normalcy throughout a lifetime of myonuclear turnover. Copyright © 2017. Published by Elsevier Inc.

  7. Dicer in Mammary Tumor Stem Cell Maintenance

    DTIC Science & Technology

    2006-03-01

    a gene silencing pathway with roles in mRNA stability, translational control, chromatin organization and genome regulation. MicroRNAs ( miRNAs ) are a... miRNAs have been shown to collaborate with oncogenes in the progression of cancer , and in addition, miRNA expression profiling has revealed widespread... miRNA misregulation in cancer . To address the role of miRNAs in the onset and maintenance of breast cancer , we have created embryonic stem (ES) cells

  8. Dicer in Mammary Tumor Stem Cell Maintenance

    DTIC Science & Technology

    2008-03-01

    SUPPLEMENTARY NOTES 14. ABSTRACT To date, most cancer research has focused on alterations in the sequence, gene structure, copy number and expression of...To address the role of miR-34in cancer formation and maintenance, we generated cell lines over express miR-34. We have demonstrated that ectopic...mediators of p53 tumor suppressor network, which plays an important role in many cancer types, including breast cancer . 15. SUBJECT TERMS Dicer

  9. Dietary restriction enhances germline stem cell maintenance

    PubMed Central

    Mair, William; McLeod, Catherine J.; Wang, Lei; Jones, D. Leanne

    2010-01-01

    Summary Dietary restriction (DR) increases lifespan in species ranging from yeast to primates, maintaining tissues in a youthful state and delaying reproductive senescence. However, little is known about the mechanisms by which this occurs. Here we demonstrate that, concurrent with extending lifespan, DR attenuates the age-related decline in male germline stem cell (GSC) number in Drosophila. These data support a model whereby DR enhances maintenance of GSCs to extend the reproductive period of animals subjected to adverse nutritional conditions. This represents the first example of DR maintaining an adult stem cell pool and suggests a potential mechanism by which DR might delay aging in the tissues of higher organisms. PMID:20569233

  10. Altered Processing of Amyloid Precursor Protein in Cells Undergoing Apoptosis

    PubMed Central

    Fiorelli, Tina; Kirouac, Lisa; Padmanabhan, Jaya

    2013-01-01

    Altered proteolysis of amyloid precursor protein is an important determinant of pathology development in Alzheimer's disease. Here, we describe the detection of two novel fragments of amyloid precursor protein in H4 neuroglioma cells undergoing apoptosis. Immunoreactivity of these 25–35 kDa fragments to two different amyloid precursor protein antibodies suggests that they contain the amyloid-β region and an epitope near the C-terminus of amyloid precursor protein. Generation of these fragments is associated with cleavage of caspase-3 and caspase-7, suggesting activation of these caspases. Studies in neurons undergoing DNA damage-induced apoptosis also showed similar results. Inclusion of caspase inhibitors prevented the generation of these novel fragments, suggesting that they are generated by a caspase-dependent mechanism. Molecular weight prediction and immunoreactivity of the fragments generated suggested that such fragments could not be generated by cleavage at any previously identified caspase, secretase, or calpain site on amyloid precursor protein. Bioinformatic analysis of the amino acid sequence of amyloid precursor protein revealed that fragments fitting the observed size and immunoreactivity could be generated by either cleavage at a novel, hitherto unidentified, caspase site or at a previously identified matrix metalloproteinase site in the extracellular domain. Proteolytic cleavage at any of these sites leads to a decrease in the generation of α-secretase cleaved secreted APP, which has both anti-apoptotic and neuroprotective properties, and thus may contribute to neurodegeneration in Alzheimer's disease. PMID:23469123

  11. Oligodendrocyte Precursor Cells Synthesize Neuromodulatory Factors

    PubMed Central

    Sakry, Dominik; Yigit, Hatice; Dimou, Leda; Trotter, Jacqueline

    2015-01-01

    NG2 protein-expressing oligodendrocyte progenitor cells (OPC) are a persisting and major glial cell population in the adult mammalian brain. Direct synaptic innervation of OPC by neurons throughout the brain together with their ability to sense neuronal network activity raises the question of additional physiological roles of OPC, supplementary to generating myelinating oligodendrocytes. In this study we investigated whether OPC express neuromodulatory factors, typically synthesized by other CNS cell types. Our results show that OPC express two well-characterized neuromodulatory proteins: Prostaglandin D2 synthase (PTGDS) and neuronal Pentraxin 2 (Nptx2/Narp). Expression levels of the enzyme PTGDS are influenced in cultured OPC by the NG2 intracellular region which can be released by cleavage and localizes to glial nuclei upon transfection. Furthermore PTGDS mRNA levels are reduced in OPC from NG2-KO mouse brain compared to WT cells after isolation by cell sorting and direct analysis. These results show that OPC can contribute to the expression of these proteins within the CNS and suggest PTGDS expression as a downstream target of NG2 signaling. PMID:25966014

  12. The planarian nanos-like gene Smednos is expressed in germline and eye precursor cells during development and regeneration.

    PubMed

    Handberg-Thorsager, Mette; Saló, Emili

    2007-05-01

    Planarians are highly regenerative organisms with the ability to remake all their cell types, including the germ cells. The germ cells have been suggested to arise from totipotent neoblasts through epigenetic mechanisms. Nanos is a zinc-finger protein with a widely conserved role in the maintenance of germ cell identity. In this work, we describe the expression of a planarian nanos-like gene Smednos in two kinds of precursor cells namely, primordial germ cells and eye precursor cells, during both development and regeneration of the planarian Schmidtea mediterranea. In sexual planarians, Smednos is expressed in presumptive male primordial germ cells of embryos from stage 8 of embryogenesis and throughout development of the male gonads and in the female primordial germ cells of the ovary. Thus, upon hatching, juvenile planarians do possess primordial germ cells. In the asexual strain, Smednos is expressed in presumptive male and female primordial germ cells. During regeneration, Smednos expression is maintained in the primordial germ cells, and new clusters of Smednos-positive cells appear in the regenerated tissue. Remarkably, during the final stages of development (stage 8 of embryogenesis) and during regeneration of the planarian eye, Smednos is expressed in cells surrounding the differentiating eye cells, possibly corresponding to eye precursor cells. Our results suggest that similar genetic mechanisms might be used to control the differentiation of precursor cells during development and regeneration in planarians.

  13. Whole-cell fungal transformation of precursors into dyes.

    PubMed

    Polak, Jolanta; Jarosz-Wilkołazka, Anna

    2010-07-05

    Chemical methods of producing dyes involve extreme temperatures and unsafe toxic compounds. Application of oxidizing enzymes obtained from fungal species, for example laccase, is an alternative to chemical synthesis of dyes. Laccase can be replaced by fungal biomass acting as a whole-cell biocatalyst with properties comparable to the isolated form of the enzyme. The application of the whole-cell system simplifies the transformation process and reduces the time required for its completion. In the present work, four fungal strains with a well-known ability to produce laccase were tested for oxidation of 17 phenolic and non-phenolic precursors into stable and non-toxic dyes. An agar-plate screening test of the organic precursors was carried out using four fungal strains: Trametes versicolor, Fomes fomentarius, Abortiporus biennis, and Cerrena unicolor. Out of 17 precursors, nine were transformed into coloured substances in the presence of actively growing fungal mycelium. The immobilized fungal biomass catalyzed the transformation of 1 mM benzene and naphthalene derivatives in liquid cultures yielding stable and non-toxic products with good dyeing properties. The type of fungal strain had a large influence on the absorbance of the coloured products obtained after 48-hour transformation of the selected precursors, and the most effective was Fomes fomentarius (FF25). Whole-cell transformation of AHBS (3-amino-4-hydroxybenzenesulfonic acid) into a phenoxazinone dye was carried out in four different systems: in aqueous media comprising low amounts of carbon and nitrogen source, in buffer, and in distilled water. This study demonstrated the ability of four fungal strains belonging to the ecological type of white rot fungi to transform precursors into dyes. This paper highlights the potential of fungal biomass for replacing isolated enzymes as a cheaper industrial-grade biocatalyst for the synthesis of dyes and other commercially important products. The use of immobilized

  14. Dicer in Mammary Tumor Stem Cell Maintenance

    DTIC Science & Technology

    2007-03-01

    MicroRNAs ( miRNAs ) are a set of small RNAs produced by the RNAi machinery that play important functions in tissue organization and maintenance of cell... factor p53 is a tumor-suppressor gene that is deleted or mutated in many human cancers . To identify miRNAs that may be part of the p53 pathway, we...identity. Several miRNAs have been shown to collaborate with oncogenes in the progression of cancer , and in addition, miRNA expression profiling has

  15. Identification of embryonic precursor cells that differentiate into thymic epithelial cells expressing autoimmune regulator

    PubMed Central

    Takizawa, Nobukazu; Miyauchi, Maki; Yanai, Hiromi; Tateishi, Ryosuke; Shinzawa, Miho; Yoshinaga, Riko; Kurihara, Masaaki; Yasuda, Hisataka; Sakamoto, Reiko; Yoshida, Nobuaki

    2016-01-01

    Medullary thymic epithelial cells (mTECs) expressing autoimmune regulator (Aire) are critical for preventing the onset of autoimmunity. However, the differentiation program of Aire-expressing mTECs (Aire+ mTECs) is unclear. Here, we describe novel embryonic precursors of Aire+ mTECs. We found the candidate precursors of Aire+ mTECs (pMECs) by monitoring the expression of receptor activator of nuclear factor-κB (RANK), which is required for Aire+ mTEC differentiation. pMECs unexpectedly expressed cortical TEC molecules in addition to the mTEC markers UEA-1 ligand and RANK and differentiated into mTECs in reaggregation thymic organ culture. Introduction of pMECs in the embryonic thymus permitted long-term maintenance of Aire+ mTECs and efficiently suppressed the onset of autoimmunity induced by Aire+ mTEC deficiency. Mechanistically, pMECs differentiated into Aire+ mTECs by tumor necrosis factor receptor-associated factor 6-dependent RANK signaling. Moreover, nonclassical nuclear factor-κB activation triggered by RANK and lymphotoxin-β receptor signaling promoted pMEC induction from progenitors exhibiting lower RANK expression and higher CD24 expression. Thus, our findings identified two novel stages in the differentiation program of Aire+ mTECs. PMID:27401343

  16. Identification of embryonic precursor cells that differentiate into thymic epithelial cells expressing autoimmune regulator.

    PubMed

    Akiyama, Nobuko; Takizawa, Nobukazu; Miyauchi, Maki; Yanai, Hiromi; Tateishi, Ryosuke; Shinzawa, Miho; Yoshinaga, Riko; Kurihara, Masaaki; Demizu, Yosuke; Yasuda, Hisataka; Yagi, Shintaro; Wu, Guoying; Matsumoto, Mitsuru; Sakamoto, Reiko; Yoshida, Nobuaki; Penninger, Josef M; Kobayashi, Yasuhiro; Inoue, Jun-Ichiro; Akiyama, Taishin

    2016-07-25

    Medullary thymic epithelial cells (mTECs) expressing autoimmune regulator (Aire) are critical for preventing the onset of autoimmunity. However, the differentiation program of Aire-expressing mTECs (Aire(+) mTECs) is unclear. Here, we describe novel embryonic precursors of Aire(+) mTECs. We found the candidate precursors of Aire(+) mTECs (pMECs) by monitoring the expression of receptor activator of nuclear factor-κB (RANK), which is required for Aire(+) mTEC differentiation. pMECs unexpectedly expressed cortical TEC molecules in addition to the mTEC markers UEA-1 ligand and RANK and differentiated into mTECs in reaggregation thymic organ culture. Introduction of pMECs in the embryonic thymus permitted long-term maintenance of Aire(+) mTECs and efficiently suppressed the onset of autoimmunity induced by Aire(+) mTEC deficiency. Mechanistically, pMECs differentiated into Aire(+) mTECs by tumor necrosis factor receptor-associated factor 6-dependent RANK signaling. Moreover, nonclassical nuclear factor-κB activation triggered by RANK and lymphotoxin-β receptor signaling promoted pMEC induction from progenitors exhibiting lower RANK expression and higher CD24 expression. Thus, our findings identified two novel stages in the differentiation program of Aire(+) mTECs.

  17. Maintenance of postmitotic neuronal cell identity

    PubMed Central

    Deneris, Evan S.; Hobert, Oliver

    2015-01-01

    The identity of specific cell types in the nervous system is defined by the expression of neuron type–specific gene batteries. How the expression of such batteries is initiated during nervous system development has been under intensive study over the past few decades. However, comparatively little is known about how gene batteries that define the terminally differentiated state of a neuron type are maintained throughout the life of an animal. We provide here an overview of studies in invertebrate and vertebrate model systems that have carved out the general and not commonly appreciated principle that neuronal identity is maintained in postmitotic neurons by the sustained, and often autoregulated expression of the same transcription factors that have initiated terminal differentiation in a developing organism. Disruption of postmitotic maintenance mechanisms may result in neuropsychiatric and neurodegenerative conditions. PMID:24929660

  18. Maintenance of postmitotic neuronal cell identity.

    PubMed

    Deneris, Evan S; Hobert, Oliver

    2014-07-01

    The identity of specific cell types in the nervous system is defined by the expression of neuron type-specific gene batteries. How the expression of such batteries is initiated during nervous system development has been under intensive study over the past few decades. However, comparatively little is known about how gene batteries that define the terminally differentiated state of a neuron type are maintained throughout the life of an animal. Here we provide an overview of studies in invertebrate and vertebrate model systems that have carved out the general and not commonly appreciated principle that neuronal identity is maintained in postmitotic neurons by the sustained, and often autoregulated, expression of the same transcription factors that initiate terminal differentiation in a developing organism. Disruption of postmitotic maintenance mechanisms may result in neuropsychiatric and neurodegenerative conditions.

  19. Electrical stimulation by enzymatic biofuel cell to promote proliferation, migration and differentiation of muscle precursor cells.

    PubMed

    Lee, Jae Ho; Jeon, Won-Yong; Kim, Hyug-Han; Lee, Eun-Jung; Kim, Hae-Won

    2015-01-01

    Electrical stimulation is a very important biophysical cue for skeletal muscle maintenance and myotube formation. The absence of electrical signals from motor neurons causes denervated muscles to atrophy. Herein, we investigate for the first time the utility of an enzymatic biofuel cell (EBFC) as a promising means for mimicking native electrical stimulation. EBFC was set up using two different enzymes: one was glucose oxidase (GOX) used for the generation of anodic current followed by the oxidation of glucose; the other was Bilirubin oxidase (BOD) for the generation of cathodic current followed by the reduction of oxygen. We studied the behaviors of muscle precursor cells (MPCs) in terms of proliferation, migration and differentiation under different electrical conditions. The EBFC electrical stimulations significantly increased cell proliferation and migration. Furthermore, the electrical stimulations promoted the differentiation of cells into myotube formation based on expressions at the gene and protein levels. The EBFC set up, with its free forms adjustable to any implant design, was subsequently applied to the nanofiber scaffolding system. The MPCs were demonstrated to be stimulated in a similar manner as the 2D culture conditions, suggesting potential applications of the EBFC system for muscle repair and regeneration.

  20. Whole-cell fungal transformation of precursors into dyes

    PubMed Central

    2010-01-01

    Background Chemical methods of producing dyes involve extreme temperatures and unsafe toxic compounds. Application of oxidizing enzymes obtained from fungal species, for example laccase, is an alternative to chemical synthesis of dyes. Laccase can be replaced by fungal biomass acting as a whole-cell biocatalyst with properties comparable to the isolated form of the enzyme. The application of the whole-cell system simplifies the transformation process and reduces the time required for its completion. In the present work, four fungal strains with a well-known ability to produce laccase were tested for oxidation of 17 phenolic and non-phenolic precursors into stable and non-toxic dyes. Results An agar-plate screening test of the organic precursors was carried out using four fungal strains: Trametes versicolor, Fomes fomentarius, Abortiporus biennis, and Cerrena unicolor. Out of 17 precursors, nine were transformed into coloured substances in the presence of actively growing fungal mycelium. The immobilized fungal biomass catalyzed the transformation of 1 mM benzene and naphthalene derivatives in liquid cultures yielding stable and non-toxic products with good dyeing properties. The type of fungal strain had a large influence on the absorbance of the coloured products obtained after 48-hour transformation of the selected precursors, and the most effective was Fomes fomentarius (FF25). Whole-cell transformation of AHBS (3-amino-4-hydroxybenzenesulfonic acid) into a phenoxazinone dye was carried out in four different systems: in aqueous media comprising low amounts of carbon and nitrogen source, in buffer, and in distilled water. Conclusions This study demonstrated the ability of four fungal strains belonging to the ecological type of white rot fungi to transform precursors into dyes. This paper highlights the potential of fungal biomass for replacing isolated enzymes as a cheaper industrial-grade biocatalyst for the synthesis of dyes and other commercially important

  1. Effectiveness of maintenance treatments for nonsmall cell lung cancer

    PubMed Central

    Eadens, Matthew J; Robinson, Steven I; Price, Katharine AR

    2011-01-01

    Maintenance therapy for advanced nonsmall cell lung cancer has shown some clinical benefit for patients by improving progression-free survival and, to a lesser extent, overall survival. Two main strategies exist for maintenance therapy, ie, continuation and switch maintenance. Continuation maintenance involves the continued use of one of the induction drugs beyond 4–6 cycles of initial treatment. Switch maintenance utilizes a third agent initiated after first-line chemotherapy. Both cytotoxic agents and targeted agents have been studied. Switch maintenance therapy with pemetrexed in nonsquamous tumors and erlotinib appear to show the most clear clinical benefit. Continuation maintenance with bevacizumab has shown improvement in progression-free survival. Data concerning the role of cetuximab for maintenance is conflicting. Toxicity, quality of life, and cost are important confounding issues that need to be considered. Several ongoing Phase III trials are investigating strategies to improve on the current agents as well as testing promising new therapies. PMID:28210116

  2. Thin film solar cells by selenization sulfurization using diethyl selenium as a selenium precursor

    SciTech Connect

    Dhere, Neelkanth G.; Kadam, Ankur A.

    2009-12-15

    A method of forming a CIGSS absorber layer includes the steps of providing a metal precursor, and selenizing the metal precursor using diethyl selenium to form a selenized metal precursor layer (CIGSS absorber layer). A high efficiency solar cell includes a CIGSS absorber layer formed by a process including selenizing a metal precursor using diethyl selenium to form the CIGSS absorber layer.

  3. Formation and specification of a Drosophila dopaminergic precursor cell.

    PubMed

    Watson, Joseph D; Crews, Stephen T

    2012-09-01

    Dopaminergic neurons play important roles in animal behavior, including motivation, reward and locomotion. The Drosophila dopaminergic H-cell interneuron is an attractive system for studying the genetics of neural development because analysis is focused on a single neuronal cell type. Here we provide a mechanistic understanding of how MP3, the precursor to the H-cell, forms and acquires its identity. We show that the gooseberry/gooseberry-neuro (gsb/gsb-n) transcription factor genes act to specify MP3 cell fate. It is proposed that single-minded commits neuroectodermal cells to a midline fate, followed by a series of signaling events that result in the formation of a single gsb(+)/gsb-n(+) MP3 cell per segment. The wingless signaling pathway establishes a midline anterior domain by activating expression of the forkhead transcription factors sloppy paired 1 and sloppy paired 2. This is followed by hedgehog signaling that activates gsb/gsb-n expression in a subgroup of anterior cells. Finally, Notch signaling results in the selection of a single MP3, with the remaining cells becoming midline glia. In MP3, gsb/gsb-n direct H-cell development, in large part by activating expression of the lethal of scute and tailup H-cell regulatory genes. Thus, a series of signaling and transcriptional events result in the specification of a unique dopaminergic precursor cell. Additional genetic experiments indicate that the molecular mechanisms that govern MP3/H-cell development might also direct the development of non-midline dopaminergic neurons.

  4. Formation and specification of a Drosophila dopaminergic precursor cell

    PubMed Central

    Watson, Joseph D.; Crews, Stephen T.

    2012-01-01

    Dopaminergic neurons play important roles in animal behavior, including motivation, reward and locomotion. The Drosophila dopaminergic H-cell interneuron is an attractive system for studying the genetics of neural development because analysis is focused on a single neuronal cell type. Here we provide a mechanistic understanding of how MP3, the precursor to the H-cell, forms and acquires its identity. We show that the gooseberry/gooseberry-neuro (gsb/gsb-n) transcription factor genes act to specify MP3 cell fate. It is proposed that single-minded commits neuroectodermal cells to a midline fate, followed by a series of signaling events that result in the formation of a single gsb+/gsb-n+ MP3 cell per segment. The wingless signaling pathway establishes a midline anterior domain by activating expression of the forkhead transcription factors sloppy paired 1 and sloppy paired 2. This is followed by hedgehog signaling that activates gsb/gsb-n expression in a subgroup of anterior cells. Finally, Notch signaling results in the selection of a single MP3, with the remaining cells becoming midline glia. In MP3, gsb/gsb-n direct H-cell development, in large part by activating expression of the lethal of scute and tailup H-cell regulatory genes. Thus, a series of signaling and transcriptional events result in the specification of a unique dopaminergic precursor cell. Additional genetic experiments indicate that the molecular mechanisms that govern MP3/H-cell development might also direct the development of non-midline dopaminergic neurons. PMID:22874915

  5. Follicular Dendritic Cells Emerge from Ubiquitous Perivascular Precursors

    PubMed Central

    Krautler, Nike Julia; Kana, Veronika; Kranich, Jan; Tian, Yinghua; Perera, Dushan; Lemm, Doreen; Schwarz, Petra; Armulik, Annika; Browning, Jeffrey L.; Tallquist, Michelle; Buch, Thorsten; Oliveira-Martins, José B.; Zhu, Caihong; Hermann, Mario; Wagner, Ulrich; Brink, Robert; Heikenwalder, Mathias; Aguzzi, Adriano

    2013-01-01

    Summary The differentiation of follicular dendritic cells (FDC) is essential to the remarkable microanatomic plasticity of lymphoid follicles. Here we show that FDC arise from ubiquitous perivascular precursors (preFDC) expressing platelet-derived growth factor receptor β (PDGFRβ). PDGFRβ-Cre-driven reporter gene recombination resulted in FDC labeling, whereas conditional ablation of PDGFRβ+-derived cells abolished FDC, indicating that FDC originate from PDGFRβ+ cells. Lymphotoxin-α-overexpressing prion protein (PrP)+ kidneys developed PrP+ FDC after transplantation into PrP mice, confirming that preFDC exist outside lymphoid organs. Adipose tissue-derived PDGFRβ+ stromal-vascular cells responded to FDC maturation factors and, when transplanted into lymphotoxin β receptor (LTβR) kidney capsules, differentiated into Mfge8+CD21/35+ FcγRIIβ+PrP+ FDC capable of trapping immune complexes and recruiting B cells. Spleens of lymphocyte-deficient mice contained perivascular PDGFRβ+ FDC precursors whose expansion required both lymphoid tissue inducer (LTi) cells and lymphotoxin. The ubiquity of preFDC and their strategic location at blood vessels may explain the de novo generation of organized lymphoid tissue at sites of lymphocytic inflammation. PMID:22770220

  6. Suiciding of lymphocytic precursor cells by tritiated nucleosides, in vitro.

    PubMed

    Uyeki, E M; Nishimura, T; Bisel, T U

    1978-02-01

    Differences in suiciding by various tritiated nucleosides were observed between two functional assays for in vitro lymphocytic precursor cell development, the hemolysin plaque-forming cell (PFC) assay and the B lymphocytic colony-forming cell (CFC-L) assay, using BDF1 mouse spleen cells. PFC growth was markedly reduced by an early (days 0-1) pulse of tritiated deoxyadenosine ([3H]dAdo), but relatively unaffected by a pulse of tritiated thymidine ([3H]dThd) during the same interval. In contrast, CFC-L formation significantly dropped after an early (day 0) [3H]dThd pulse, as well as after pulses of [3H]dAdo and the corresponding tritiated ribosides, uridine and adenosine. This implied a cycling state in an early lymphocytic precursor cell, as opposed to the PFC insensitivity to an early [3H]dThd pulse. The response pattern of colonies and clusters to [3H]dThd supported our notion of a delayed suiciding of CFC contributing to the increase in cluster numbers.

  7. Epigenetic mechanisms regulating differentiation of neural stem/precursor cells.

    PubMed

    Adefuin, Aliya Mari D; Kimura, Ayaka; Noguchi, Hirofumi; Nakashima, Kinichi; Namihira, Masakazu

    2014-01-01

    Differentiation of neural stem/precursor cells (NS/PCs) into neurons, astrocytes and oligodendrocytes during mammalian brain development is a carefully controlled and timed event. Increasing evidences suggest that epigenetic regulation is necessary to drive this. Here, we provide an overview of the epigenetic mechanisms involved in the developing mammalian embryonic forebrain. Histone methylation is a key factor but other epigenetic factors such as DNA methylation and noncoding RNAs also partake during fate determination. As numerous epigenetic modifications have been identified, future studies on timing and regional specificity of these modifications will further deepen our understanding of how intrinsic and extrinsic mechanisms participate together to precisely control brain development.

  8. Oligodendrocyte precursor cells generate pituicytes in vivo during neurohypophysis development.

    PubMed

    Virard, Isabelle; Coquillat, Delphine; Bancila, Mircea; Kaing, Sovann; Durbec, Pascale

    2006-02-01

    In the vertebrate brain, much remains to be understood concerning the origin of glial cell diversity and the potential lineage relationships between the various types of glia. Besides astrocytes and myelin-forming oligodendrocytes, other macroglial cell populations are found in discrete areas of the central nervous system (CNS). They share functional features with astrocytes and oligodendrocytes but also display specific characteristics. Such specialized cells, called pituicytes, are located in the neurohypophysis (NH). Our work focuses on the lineage of the pituicytes during rodent development. First, we show that cells identified with a combination of oligodendrocyte precursor cell (OPC) markers are present in the developing rat NH. In culture, neonatal NH progenitors also share major functional characteristics with OPCs, being both migratory and bipotential, i.e. able to give rise to type 2 astrocytes and oligodendrocytes. We then observe that, either in vitro or after transplantation into myelin-deficient Shiverer brain, pieces of NH generate myelinating oligodendrocytes, confirming the oligodendrogenic potentiality of NH cells. However, no mature oligodendrocyte can be found in the NH. This led us to hypothesize that the OPCs present in the developing NH might be generating other glial cells, especially the pituicytes. Consistent with this hypothesis, the OPCs appear during NH development before pituicytes differentiate. Finally, we establish a lineage relationship between olig1+ cells, most likely OPCs, and the pituicytes by fate-mapping experiments using genetically engineered mice. This constitutes the first demonstration that OPCs generate glial cells other than oligodendrocytes in vivo.

  9. Single Source Precursors for Thin Film Solar Cells

    NASA Technical Reports Server (NTRS)

    Banger, Kulbinder K.; Hollingsworth, Jennifer A.; Harris, Jerry D.; Cowen, Jonathan; Buhro, William E.; Hepp, Aloysius F.

    2002-01-01

    The development of thin film solar cells on flexible, lightweight, space-qualified substrates provides an attractive cost solution to fabricating solar arrays with high specific power, (W/kg). The use of a polycrystalline chalcopyrite absorber layer for thin film solar cells is considered as the next generation photovoltaic devices. At NASA GRC we have focused on the development of new single source precursors (SSP) and their utility to deposit the chalcopyrite semi-conducting layer (CIS) onto flexible substrates for solar cell fabrication. The syntheses and thermal modulation of SSPs via molecular engineering is described. Thin-film fabrication studies demonstrate the SSPs can be used in a spray CVD (chemical vapor deposition) process, for depositing CIS at reduced temperatures, which display good electrical properties, suitable for PV (photovoltaic) devices.

  10. Functional signature of human islet-derived precursor cells compared to bone marrow-derived mesenchymal stem cells.

    PubMed

    Limbert, Catarina; Ebert, Regina; Schilling, Tatjana; Path, Gunter; Benisch, Peggy; Klein-Hitpass, Ludger; Seufert, Jochen; Jakob, Franz

    2010-05-01

    Pancreatic islet beta-cell replenishment can be driven by epithelial cells from exocrine pancreas via epithelial-mesenchymal transition (EMT) and the reverse process MET, while specified pancreatic mesenchymal cells control islet cell development and maintenance. The role of human islet-derived precursor cells (hIPCs) in regeneration and support of endocrine islets is under investigation. Here, we analyzed hIPCs as to their immunophenotype, multilineage differentiation capacity, and gene profiling, in comparison to human bone marrow-derived mesenchymal stem cells (hBM-MSCs). hIPCs and hBM-MSCs display a common mesenchymal character and express lineage-specific marker genes upon induction toward pancreatic endocrine and mesenchymal pathways of differentiation. hIPCs can go further along endocrine pathways while lacking some core mesenchymal differentiation attributes. Significance analysis of microarray (SAM) from 5 hBM-MSC and 3 hIPC donors mirrored such differences. Candidate gene cluster analysis disclosed differential expression of key lineage regulators, indicated a HoxA gene-associated positional memory in hIPCs and hBM-MSCs, and showed as well a clear transition state from mesenchyme to epithelium or vice versa in hIPCs. Our findings raise new research platforms to further clarify the potential of hIPCs to undergo complete MET thus contributing to islet cell replenishment, maintenance, and function.

  11. Notch signaling acts before cell division to promote asymmetric cleavage and cell fate of neural precursor cells.

    PubMed

    Bhat, Krishna Moorthi

    2014-10-21

    Asymmetric cell divisions in the central nervous system generate neurons of diverse fates. In Drosophila melanogaster, the protein Numb localizes asymmetrically to dividing neural precursor cells such that only one daughter cell inherits Numb. Numb inhibits Notch signaling in this daughter cell, resulting in a different cell fate from the Notch-induced fate in the other-Numb-negative-daughter cell. Precursor cells undergo asymmetric cytokinesis generating daughter cells of different sizes. I found that inactivation of Notch in fly embryonic neural precursor cells disrupted the asymmetric positioning of the cleavage furrow and produced daughter cells of the same size and fate. Moreover, inactivation of Notch at different times altered the degree of asymmetric Numb localization, such that earlier inactivation of Notch caused symmetric distribution of Numb and later inactivation produced incomplete asymmetric localization of Numb. The extent of asymmetrically localized Numb positively correlated with the degree of asymmetric cytokinesis and the size disparity in daughter cells. Loss of Numb or expression of constitutively active Notch led to premature specification of the precursor cells into the fate of one of the daughter cells. Thus, in addition to its role in the specification of daughter cell fate after division, Notch controls Numb localization in the precursor cells to determine the size and fate of daughter cells. Numb also inhibits Notch signaling in precursor cells to prevent Notch-induced differentiation of the precursor cell, forming an autoregulatory loop.

  12. Bre1a, a histone H2B ubiquitin ligase, regulates the cell cycle and differentiation of neural precursor cells.

    PubMed

    Ishino, Yugo; Hayashi, Yoshitaka; Naruse, Masae; Tomita, Koichi; Sanbo, Makoto; Fuchigami, Takahiro; Fujiki, Ryoji; Hirose, Kenzo; Toyooka, Yayoi; Fujimori, Toshihiko; Ikenaka, Kazuhiro; Hitoshi, Seiji

    2014-02-19

    Cell cycle regulation is crucial for the maintenance of stem cell populations in adult mammalian tissues. During development, the cell cycle length in neural stem cells increases, which could be associated with their capabilities for self-renewal. However, the molecular mechanisms that regulate differentiation and cell cycle progression in embryonic neural stem cells remain largely unknown. Here, we investigated the function of Bre1a, a histone H2B ubiquitylation factor, which is expressed in most but not all of neural precursor cells (NPCs) in the developing mouse brain. We found that the knockdown of Bre1a in NPCs lengthened their cell cycle through the upregulation of p57(kip2) and the downregulation of Cdk2. In addition, the knockdown of Bre1a increased the expression of Hes5, an effector gene of Notch signaling, through the action of Fezf1 and Fezf2 genes and suppressed the differentiation of NPCs. Our data suggest that Bre1a could be a bifunctional gene that regulates both the differentiation status and cell cycle length of NPCs. We propose a novel model that the Bre1a-negative cells in the ventricular zone of early embryonic brains remain undifferentiated and are selected as self-renewing neural stem cells, which increase their cell cycle time during development.

  13. GBM secretome induces transient transformation of human neural precursor cells.

    PubMed

    Venugopal, Chitra; Wang, X Simon; Manoranjan, Branavan; McFarlane, Nicole; Nolte, Sara; Li, Meredith; Murty, Naresh; Siu, K W Michael; Singh, Sheila K

    2012-09-01

    Glioblastoma (GBM) is the most aggressive primary brain tumor in humans, with a uniformly poor prognosis. The tumor microenvironment is composed of both supportive cellular substrates and exogenous factors. We hypothesize that exogenous factors secreted by brain tumor initiating cells (BTICs) could predispose normal neural precursor cells (NPCs) to transformation. When NPCs are grown in GBM-conditioned media, and designated as "tumor-conditioned NPCs" (tcNPCs), they become highly proliferative and exhibit increased stem cell self-renewal, or the unique ability of stem cells to asymmetrically generate another stem cell and a daughter cell. tcNPCs also show an increased transcript level of stem cell markers such as CD133 and ALDH and growth factor receptors such as VEGFR1, VEGFR2, EGFR and PDGFRα. Media analysis by ELISA of GBM-conditioned media reveals an elevated secretion of growth factors such as EGF, VEGF and PDGF-AA when compared to normal neural stem cell-conditioned media. We also demonstrate that tcNPCs require prolonged or continuous exposure to the GBM secretome in vitro to retain GBM BTIC characteristics. Our in vivo studies reveal that tcNPCs are unable to form tumors, confirming that irreversible transformation events may require sustained or prolonged presence of the GBM secretome. Analysis of GBM-conditioned media by mass spectrometry reveals the presence of secreted proteins Chitinase-3-like 1 (CHI3L1) and H2A histone family member H2AX. Collectively, our data suggest that GBM-secreted factors are capable of transiently altering normal NPCs, although for retention of the transformed phenotype, sustained or prolonged secretome exposure or additional transformation events are likely necessary.

  14. Reversal of developmental restrictions in neural crest lineages: Transition from Schwann cells to glial-melanocytic precursors in vitro

    PubMed Central

    Dupin, Elisabeth; Real, Carla; Glavieux-Pardanaud, Corinne; Vaigot, Pierre; Le Douarin, Nicole M.

    2003-01-01

    In vertebrate embryos, diversification of the lineages arising from the neural crest (NC) is controlled to a large extent by environmental factors. In previous work, we showed that endothelin 3 (ET3) peptide favors the development of glial and melanocytic NC precursors in vitro. This factor is also capable of inducing proliferation of cultured epidermal pigment cells and their conversion to glia. ET3 therefore strongly promotes the emergence of melanocytic and glial phenotypes from precursors and acts on the maintenance of these phenotypes. In the present work, we explored the capacity of ET3 to reprogram glial cells into melanocytes. Schwann cells expressing glial-specific markers [such as the Schwann cell myelin protein (SMP)] were isolated from sciatic nerves of quail embryos and cultured in vitro. We found that ET3 promotes cell growth and sequential expression of melanocyte differentiation markers in cultures of purified SMP-expressing cells, whereas it had no significant effect on SMP-negative cells from the same nerves. Moreover, we provide evidence for the transition of differentiated Schwann cells to melanocytes in clonal cultures. This transition involves the production of a mixed progeny of melanoblasts/melanocytes, glia, and cells bearing differentiation markers of both phenotypes. Therefore, Schwann cells exposed to ET3 transdifferentiate to melanocytes through reversion to the stage of bipotent glial-melanocytic NC precursors. These findings show that NC-derived pigment and glial cells are phenotypically unstable in vitro and may undergo reversal of precursor hierarchy to function as bipotent stem cells. PMID:12702775

  15. Early T-cell precursor acute lymphoblastic leukaemia.

    PubMed

    Haydu, J Erika; Ferrando, Adolfo A

    2013-07-01

    Early T-cell precursor (ETP) leukaemias have been recently recognized as a form of T-cell acute lymphoblastic leukaemia (T-ALL) with a poor prognosis. The purpose of this review is to outline the most recent advances in the biology, genetics and prognostic significance of this aggressive disease. Detailed immunophenotypic analyses have defined ETP T-ALLs as a distinct group of T-ALL with a poor prognosis. Transcriptionally, ETP T-ALLs and early immature T-ALLs, a broader group of tumours characterized by very early arrest in T-cell differentiation, are most related to haematopoietic stem cells and myeloid progenitors. Consistently, these leukaemias show lower frequencies of prototypical T-ALL lesions such as CDKN2A/B deletions and activating mutations in NOTCH1 and show a higher prevalence of mutations typically associated with the pathogenesis of acute myeloid leukaemias (AMLs). ETP and early immature T-ALLs are characterized by a very early differentiation arrest and show unique genetic and transcriptional features that overlap both with T-ALL and with AML. Given the unique biology and poor prognosis associated with the ETP T-ALL group, there is an urgent need of new tailored therapeutic strategies for the treatment of this disease.

  16. Precursors of executive function in infants with sickle cell anemia.

    PubMed

    Hogan, Alexandra M; Telfer, Paul T; Kirkham, Fenella J; de Haan, Michelle

    2013-10-01

    Executive dysfunction occurs in sickle cell anemia, but there are few early data. Infants with sickle cell anemia (n = 14) and controls (n = 14) performed the "A-not-B" and Object Retrieval search tasks, measuring precursors of executive function at 9 and 12 months. Significant group differences were not found. However, for the A-not-B task, 7 of 11 sickle cell anemia infants scored in the lower 2 performance categories at 9 months, but only 1 at 12 months (P = .024); controls obtained scores at 12 months that were statistically comparable to the scores they had already obtained at 9 months. On the Object Retrieval task, 9- and 12-month controls showed comparable scores, whereas infants with sickle cell anemia continued to improve (P = .027); at 9 months, those with lower hemoglobin oxygen saturation passed fewer trials (R s = 0.670, P = .024) and took longer to obtain the toy (R s = -0.664, P = .013). Subtle delays in acquiring developmental skills may underlie abnormal executive function in childhood.

  17. The role of Pitx2 in maintaining the phenotype of myogenic precursor cells in the extraocular muscles.

    PubMed

    Hebert, Sadie L; Daniel, Mark L; McLoon, Linda K

    2013-01-01

    Many differences exist between extraocular muscles (EOM) and non-cranial skeletal muscles. One striking difference is the sparing of EOM in various muscular dystrophies compared to non-cranial skeletal muscles. EOM undergo continuous myonuclear remodeling in normal, uninjured adults, and distinct transcription factors are required for the early determination, development, and maintenance of EOM compared to limb skeletal muscle. Pitx2, a bicoid-like homeobox transcription factor, is required for the development of EOM and the maintenance of characteristic properties of the adult EOM phenotype, but is not required for the development of limb muscle. We hypothesize that these unique properties of EOM contribute to the constitutive differences between EOM and non-craniofacial skeletal muscles. Using flow cytometry, CD34(+)/Sca1(-/)CD45(-/)CD31(-) cells (EECD34 cells) were isolated from extraocular and limb skeletal muscle and in vitro, EOM EECD34 cells proliferated faster than limb muscle EECD34 cells. To further define these myogenic precursor cells from EOM and limb skeletal muscle, they were analyzed for their expression of Pitx2. Western blotting and immunohistochemical data demonstrated that EOM express higher levels of Pitx2 than limb muscle, and 80% of the EECD34 cells expressed Pitx2. siRNA knockdown of Pitx2 expression in EECD34 cells in vitro decreased proliferation rates and impaired the ability of EECD34 cells to fuse into multinucleated myotubes. High levels of Pitx2 were retained in dystrophic and aging mouse EOM and the EOM EECD34 cells compared to limb muscle. The differential expression of Pitx2 between EOM and limb skeletal muscle along with the functional changes in response to lower levels of Pitx2 expression in the myogenic precursor cells suggest a role for Pitx2 in the maintenance of constitutive differences between EOM and limb skeletal muscle that may contribute to the sparing of EOM in muscular dystrophies.

  18. Telomere Reprogramming and Maintenance in Porcine iPS Cells

    PubMed Central

    Ji, Guangzhen; Ruan, Weimin; Liu, Kai; Wang, Fang; Sakellariou, Despoina; Chen, Jijun; Yang, Yang; Okuka, Maja; Han, Jianyong; Liu, Zhonghua; Lai, Liangxue; Gagos, Sarantis; Xiao, Lei; Deng, Hongkui; Li, Ning; Liu, Lin

    2013-01-01

    Telomere reprogramming and silencing of exogenous genes have been demonstrated in mouse and human induced pluripotent stem cells (iPS cells). Pigs have the potential to provide xenotransplant for humans, and to model and test human diseases. We investigated the telomere length and maintenance in porcine iPS cells generated and cultured under various conditions. Telomere lengths vary among different porcine iPS cell lines, some with telomere elongation and maintenance, and others telomere shortening. Porcine iPS cells with sufficient telomere length maintenance show the ability to differentiate in vivo by teratoma formation test. IPS cells with short or dysfunctional telomeres exhibit reduced ability to form teratomas. Moreover, insufficient telomerase and incomplete telomere reprogramming and/or maintenance link to sustained activation of exogenous genes in porcine iPS cells. In contrast, porcine iPS cells with reduced expression of exogenous genes or partial exogene silencing exhibit insufficient activation of endogenous pluripotent genes and telomerase genes, accompanied by telomere shortening with increasing passages. Moreover, telomere doublets, telomere sister chromatid exchanges and t-circles that presumably are involved in telomere lengthening by recombination also are found in porcine iPS cells. These data suggest that both telomerase-dependent and telomerase-independent mechanisms are involved in telomere reprogramming during induction and passages of porcine iPS cells, but these are insufficient, resulting in increased telomere damage and shortening, and chromosomal instability. Active exogenes might compensate for insufficient activation of endogenous genes and incomplete telomere reprogramming and maintenance of porcine iPS cells. Further understanding of telomere reprogramming and maintenance may help improve the quality of porcine iPS cells. PMID:24098638

  19. A monoclonal antibody that recognizes B cells and B cell precursors in mice

    PubMed Central

    1981-01-01

    The monoclonal antibody, RA3-2C2, appears to be specific for cells within the B cell lineage. This antibody does not recognize thymocytes, peripheral T cells, or nonlymphoid hematopoietic cells in the spleen or bone marrow. Nor does it recognize the pluripotent hematopoietic stem cells, the spleen colony-forming unit, All sIg+ B cells and most plasma cells are RA3-2C2+. In addition, approximately 20% of nucleated bone marrow cells are RA3-2C2+ but sIg-. This population contains B cell precursors that can give rise to sIg+ cells within 2 d in vitro. PMID:6787164

  20. A monoclonal antibody that recognizes B cells and B cell precursors in mice

    SciTech Connect

    Coffman, R.L.; Weissman, I.L.

    1981-02-01

    The monoclonal antibody, RA3-2C2, appears to be specific for cells within the B cell lineage. This antibody does not recognize thymocytes, peripheral T cells, or nonlymphoid hematopoietic cells in the spleen or bone marrow. Nor does it recognize the pluripotent hematopoietic stem cells, the spleen colony-forming unit, All sIg+ B cells and most plasma cells are RA3-2C2+. In addition, approximately 20% of nucleated bone marrow cells are RA3-2C2+ but sIg-. This population contains B cell precursors that can give rise to sIg+ cells within 2 d in vitro.

  1. Lysophosphatidic Acid Receptor Is a Functional Marker of Adult Hippocampal Precursor Cells.

    PubMed

    Walker, Tara L; Overall, Rupert W; Vogler, Steffen; Sykes, Alex M; Ruhwald, Susann; Lasse, Daniela; Ichwan, Muhammad; Fabel, Klaus; Kempermann, Gerd

    2016-04-12

    Here, we show that the lysophosphatidic acid receptor 1 (LPA1) is expressed by a defined population of type 1 stem cells and type 2a precursor cells in the adult mouse dentate gyrus. LPA1, in contrast to Nestin, also marks the quiescent stem cell population. Combining LPA1-GFP with EGFR and prominin-1 expression, we have enabled the prospective separation of both proliferative and non-proliferative precursor cell populations. Transcriptional profiling of the isolated proliferative precursor cells suggested immune mechanisms and cytokine signaling as molecular regulators of adult hippocampal precursor cell proliferation. In addition to LPA1 being a marker of this important stem cell population, we also show that the corresponding ligand LPA is directly involved in the regulation of adult hippocampal precursor cell proliferation and neurogenesis, an effect that can be attributed to LPA signaling via the AKT and MAPK pathways. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Enrichment of skin-derived neural precursor cells from dermal cell populations by altering culture conditions.

    PubMed

    Bayati, Vahid; Gazor, Rohoullah; Nejatbakhsh, Reza; Negad Dehbashi, Fereshteh

    2016-01-01

    As stem cells play a critical role in tissue repair, their manipulation for being applied in regenerative medicine is of great importance. Skin-derived precursors (SKPs) may be good candidates for use in cell-based therapy as the only neural stem cells which can be isolated from an accessible tissue, skin. Herein, we presented a simple protocol to enrich neural SKPs by monolayer adherent cultivation to prove the efficacy of this method. To enrich neural SKPs from dermal cell populations, we have found that a monolayer adherent cultivation helps to increase the numbers of neural precursor cells. Indeed, we have cultured dermal cells as monolayer under serum-supplemented (control) and serum-supplemented culture, followed by serum free cultivation (test) and compared. Finally, protein markers of SKPs were assessed and compared in both experimental groups and differentiation potential was evaluated in enriched culture. The cells of enriched culture concurrently expressed fibronectin, vimentin and nestin, an intermediate filament protein expressed in neural and skeletal muscle precursors as compared to control culture. In addition, they possessed a multipotential capacity to differentiate into neurogenic, glial, adipogenic, osteogenic and skeletal myogenic cell lineages. It was concluded that serum-free adherent culture reinforced by growth factors have been shown to be effective on proliferation of skin-derived neural precursor cells (skin-NPCs) and drive their selective and rapid expansion.

  3. Attenuation of proliferation in oligodendrocyte precursor cells by activated microglia.

    PubMed

    Taylor, Deanna L; Pirianov, Grisha; Holland, Samantha; McGinnity, Colm J; Norman, Adele L; Reali, Camilla; Diemel, Lara T; Gveric, Djordje; Yeung, Davy; Mehmet, Huseyin

    2010-06-01

    Activated microglia can influence the survival of neural cells through the release of cytotoxic factors. Here, we investigated the interaction between Toll-like receptor 4 (TLR4)-activated microglia and oligodendrocytes or their precursor cells (OPC). Primary rat or N9 microglial cells were activated by exposure to TLR4-specifc lipopolysaccharide (LPS), resulting in mitogen-activated protein kinase activation, increased CD68 and inducible nitric oxide synthase expression, and release of the proinflammatory cytokines tumor necrosis factor (TNF) and interleukin-6 (IL-6). Microglial conditioned medium (MGCM) from LPS-activated microglia attenuated primary OPC proliferation without inducing cell death. The microglial-induced inhibition of OPC proliferation was reversed by stimulating group III metabotropic glutamate receptors in microglia with the agonist L-AP4. In contrast to OPC, LPS-activated MGCM enhanced the survival of mature oligodendrocytes. Further investigation suggested that TNF and IL-6 released from TLR4-activated microglia might contribute to the effect of MGCM on OPC proliferation, insofar as TNF depletion of LPS-activated MGCM reduced the inhibition of OPC proliferation, and direct addition of TNF or IL-6 attenuated or increased proliferation, respectively. OPC themselves were also found to express proteins involved in TLR4 signalling, including TLR4, MyD88, and MAL. Although LPS stimulation of OPC did not induce proinflammatory cytokine release or affect their survival, it did trigger JNK phosphorylation, suggesting that TLR4 signalling in these cells is active. These findings suggest that OPC survival may be influenced not only by factors released from endotoxin-activated microglia but also through a direct response to endotoxins. This may have consequences for myelination under conditions in which microglial activation and cerebral infection are both implicated. , Inc.

  4. Steroid signaling promotes stem cell maintenance in the Drosophila testis.

    PubMed

    Li, Yijie; Ma, Qing; Cherry, Christopher M; Matunis, Erika L

    2014-10-01

    Stem cell regulation by local signals is intensely studied, but less is known about the effects of hormonal signals on stem cells. In Drosophila, the primary steroid twenty-hydroxyecdysone (20E) regulates ovarian germline stem cells (GSCs) but was considered dispensable for testis GSC maintenance. Male GSCs reside in a microenvironment (niche) generated by somatic hub cells and adjacent cyst stem cells (CySCs). Here, we show that depletion of 20E from adult males by overexpressing a dominant negative form of the Ecdysone receptor (EcR) or its heterodimeric partner ultraspiracle (usp) causes GSC and CySC loss that is rescued by 20E feeding, uncovering a requirement for 20E in stem cell maintenance. EcR and USP are expressed, activated and autonomously required in the CySC lineage to promote CySC maintenance, as are downstream genes ftz-f1 and E75. In contrast, GSCs non-autonomously require ecdysone signaling. Global inactivation of EcR increases cell death in the testis that is rescued by expression of EcR-B2 in the CySC lineage, indicating that ecdysone signaling supports stem cell viability primarily through a specific receptor isoform. Finally, EcR genetically interacts with the NURF chromatin-remodeling complex, which we previously showed maintains CySCs. Thus, although 20E levels are lower in males than females, ecdysone signaling acts through distinct cell types and effectors to ensure both ovarian and testis stem cell maintenance.

  5. Proteolysis in plasmid DNA stable maintenance in bacterial cells.

    PubMed

    Karlowicz, Anna; Wegrzyn, Katarzyna; Dubiel, Andrzej; Ropelewska, Malgorzata; Konieczny, Igor

    2016-07-01

    Plasmids, as extrachromosomal genetic elements, need to work out strategies that promote independent replication and stable maintenance in host bacterial cells. Their maintenance depends on constant formation and dissociation of nucleoprotein complexes formed on plasmid DNA. Plasmid replication initiation proteins (Rep) form specific complexes on direct repeats (iterons) localized within the plasmid replication origin. Formation of these complexes along with a strict control of Rep protein cellular concentration, quaternary structure, and activity, is essential for plasmid maintenance. Another important mechanism for maintenance of low-copy-number plasmids are the toxin-antitoxin (TA) post-segregational killing (psk) systems, which prevent plasmid loss from the bacterial cell population. In this mini review we discuss the importance of nucleoprotein complex processing by energy-dependent host proteases in plasmid DNA replication and plasmid type II toxin-antitoxin psk systems, and draw attention to the elusive role of DNA in this process.

  6. Circulating Osteogenic Precursor Cells in Type 2 Diabetes Mellitus

    PubMed Central

    Manavalan, J. S.; Cremers, S.; Dempster, D. W.; Zhou, H.; Dworakowski, E.; Kode, A.; Kousteni, S.

    2012-01-01

    Context: Type 2 diabetes mellitus (T2D) is associated with an increased risk of fractures and low bone formation. However, the mechanism for the low bone formation is not well understood. Recently, circulating osteogenic precursor (COP) cells, which contribute to bone formation, have been characterized in the peripheral circulation. Objective: Our objective was to characterize the number and maturity of COP cells in T2D. Patients, Design, and Setting: Eighteen postmenopausal women with T2D and 27 controls participated in this cross-sectional study at a clinical research center. Main Outcome Measures: COP cells were characterized using flow cytometry and antibodies against osteocalcin (OCN) and early stem cell markers. Histomorphometric (n = 9) and molecular (n=14) indices of bone turnover and oxidative stress were also measured. Results: The percentage of OCN+ cells in peripheral blood mononuclear cells was lower in T2D (0.8 ± 0.2 vs. 1.6 ± 0.4%; P < 0.0001), whereas the percentage of OCN+ cells coexpressing the early marker CD146 was increased (OCN+/CD146+: 33.3 ± 7 vs. 12.0 ± 4%; P < 0.0001). Reduced histomorphometric indices of bone formation were observed in T2D subjects, including mineralizing surface (2.65 ± 1.9 vs. 7.58 ± 2.4%, P = 0.02), bone formation rate (0.01 ± 0.1 vs. 0.05 ±0.2 μm3/um2 · d, P = 0.02), and osteoblast surface (1.23 ±0.9 vs. 4.60 ± 2.5%, P = 0.03). T2D subjects also had reduced molecular expression of the osteoblast regulator gene Runx2 but increased expression of the oxidative stress markers p66Shc and SOD2. Conclusions: Circulating OCN+ cells were decreased in T2D, whereas OCN+/CD146+ cells were increased. Histomorphometric indices of bone formation were decreased in T2D, as was molecular expression of osteoblastic activity. Stimulation of bone formation may have beneficial therapeutic skeletal consequences in T2D. PMID:22740707

  7. Glial versus melanocyte cell fate choice: Schwann cell precursors as a cellular origin of melanocytes.

    PubMed

    Adameyko, Igor; Lallemend, Francois

    2010-09-01

    Melanocytes and Schwann cells are derived from the multipotent population of neural crest cells. Although both cell types were thought to be generated through completely distinct pathways and molecular processes, a recent study has revealed that these different cell types are intimately interconnected far beyond previously postulated limits in that they share a common post-neural crest progenitor, i.e. the Schwann cell precursor. This finding raises interesting questions about the lineage relationships of hitherto unrelated cell types such as melanocytes and Schwann cells, and may provide clinical insights into mechanisms of pigmentation disorders and for cancer involving Schwann cells and melanocytes.

  8. Cell cycle regulation during proliferation and differentiation of mammalian muscle precursor cells.

    PubMed

    Ciemerych, Maria A; Archacka, Karolina; Grabowska, Iwona; Przewoźniak, Marta

    2011-01-01

    Proliferation and differentiation of muscle precursor cells are intensively studied not only in the developing mouse embryo but also using models of skeletal muscle regeneration or analyzing in vitro cultured cells. These analyses allowed to show the universality of the cell cycle regulation and also uncovered tissue-specific interplay between major cell cycle regulators and factors crucial for the myogenic differentiation. Examination of the events accompanying proliferation and differentiation leading to the formation of functional skeletal muscle fibers allows understanding the molecular basis not only of myogenesis but also of skeletal muscle regeneration. This chapter presents the basis of the cell cycle regulation in proliferating and differentiating muscle precursor cells during development and after muscle injury. It focuses at major cell cycle regulators, myogenic factors, and extracellular environment impacting on the skeletal muscle.

  9. Stem cell maintenance in a different niche

    PubMed Central

    Ahn, Ji Yeon; Lee, Seung Tae

    2013-01-01

    To overcome the difficulty of controlling stem cell fate and function in applications to regenerative medicine, a number of alternative approaches have been made. Recent reports demonstrate that a non-cellular niche modulating the biophysical microenvironment with chemical factors can support stem cell self-renewal. In our previous studies, early establishment was executed to optimize biophysical factors and it was subsequently found that the microgeometry of the extracellular matrix made huge differences in stem cell behavior and phenotype. We review here a three-dimensional, non-cellular niche designed to support stem cell self-renewal. The characteristics of stem cells under the designed system are further discussed. PMID:23875159

  10. CD44-positive cells are candidates for astrocyte precursor cells in developing mouse cerebellum.

    PubMed

    Cai, Na; Kurachi, Masashi; Shibasaki, Koji; Okano-Uchida, Takayuki; Ishizaki, Yasuki

    2012-03-01

    Neural stem cells are generally considered to be committed to becoming precursor cells before terminally differentiating into either neurons or glial cells during neural development. Neuronal and oligodendrocyte precursor cells have been identified in several areas in the murine central nervous system. The presence of astrocyte precursor cells (APCs) is not so well understood. The present study provides several lines of evidence that CD44-positive cells are APCs in the early postnatal mouse cerebellum. In developing mouse cerebellum, CD44-positive cells, mostly located in the white matter, were positive for the markers of the astrocyte lineage, but negative for the markers of mature astrocytes. CD44-positive cells were purified from postnatal cerebellum by fluorescence-activated cell sorting and characterized in vitro. In the absence of any signaling molecule, many cells died by apoptosis. The surviving cells gradually expressed glial fibrillary acidic protein, a marker for mature astrocytes, indicating that differentiation into mature astrocytes is the default program for these cells. The cells produced no neurospheres nor neurons nor oligodendrocytes under any condition examined, indicating these cells are not neural stem cells. Leukemia inhibitory factor greatly promoted astrocytic differentiation of CD44-positive cells, whereas bone morphogenetic protein 4 (BMP4) did not. Fibroblast growth factor-2 was a potent mitogen for these cells, but was insufficient for survival. BMP4 inhibited activation of caspase-3 and greatly promoted survival, suggesting a novel role for BMP4 in the control of development of astrocytes in cerebellum. We isolated and characterized only CD44 strongly positive large cells and discarded small and/or CD44 weakly positive cells in this study. Further studies are necessary to characterize these cells to help determine whether CD44 is a selective and specific marker for APCs in the developing mouse cerebellum. In conclusion, we succeeded in

  11. Mesenchymal precursor cells in the blood of normal individuals

    PubMed Central

    Zvaifler, Nathan J; Marinova-Mutafchieva, Lilla; Adams, Gill; Edwards, Christopher J; Moss, Jill; Burger, Jan A; Maini, Ravinder N

    2000-01-01

    collagen, and BMP receptors (heterodimeric structures expressed on mesenchymal lineage cells). The cultured cells also stained strongly for the SH-2 (endoglin) antigen, a putative marker for marrow MSCs. BMPCs express the gene for SDF-1, a potent stroma-derived CXCα chemokine. Discussion: In the circulation of normal individuals is a small population of CD34- mononuclear cells that proliferate rapidly in culture as an adherent population with a variable morphology, display cytoskeletal, cytoplasmic, and surface markers of mesenchymal precursors, and differentiate into several lineages (fibroblasts, osteoblasts, and adipocytes). These are all features found in bone-marrow-derived MSCs. Therefore, autologous blood could provide cells useful for tissue engineering and gene therapy. In addition, the demonstration of similar cells in the inflammatory joint fluids and synovium of patients with rheumatoid arthritis (RA) suggests that these cells may play a role in the pathogenesis of RA. PMID:11056678

  12. Long-Term Impact of Radiation on the Stem Cell and Oligodendrocyte Precursors in the Brain

    PubMed Central

    Panagiotakos, Georgia; Alshamy, George; Chan, Bill; Abrams, Rory; Greenberg, Edward; Saxena, Amit; Bradbury, Michelle; Edgar, Mark; Gutin, Philip; Tabar, Viviane

    2007-01-01

    Background The cellular basis of long term radiation damage in the brain is not fully understood. Methods and Findings We administered a dose of 25Gy to adult rat brains while shielding the olfactory bulbs. Quantitative analyses were serially performed on different brain regions over 15 months. Our data reveal an immediate and permanent suppression of SVZ proliferation and neurogenesis. The olfactory bulb demonstrates a transient but remarkable SVZ-independent ability for compensation and maintenance of the calretinin interneuron population. The oligodendrocyte compartment exhibits a complex pattern of limited proliferation of NG2 progenitors but steady loss of the oligodendroglial antigen O4. As of nine months post radiation, diffuse demyelination starts in all irradiated brains. Counts of capillary segments and length demonstrate significant loss one day post radiation but swift and persistent recovery of the vasculature up to 15 months post XRT. MRI imaging confirms loss of volume of the corpus callosum and early signs of demyelination at 12 months. Ultrastructural analysis demonstrates progressive degradation of myelin sheaths with axonal preservation. Areas of focal necrosis appear beyond 15 months and are preceded by widespread demyelination. Human white matter specimens obtained post-radiation confirm early loss of oligodendrocyte progenitors and delayed onset of myelin sheath fragmentation with preserved capillaries. Conclusions This study demonstrates that long term radiation injury is associated with irreversible damage to the neural stem cell compartment in the rodent SVZ and loss of oligodendrocyte precursor cells in both rodent and human brain. Delayed onset demyelination precedes focal necrosis and is likely due to the loss of oligodendrocyte precursors and the inability of the stem cell compartment to compensate for this loss. PMID:17622341

  13. Long-term fate of neural precursor cells following transplantation into developing and adult CNS.

    PubMed

    Lepore, A C; Neuhuber, B; Connors, T M; Han, S S W; Liu, Y; Daniels, M P; Rao, M S; Fischer, I

    2006-05-12

    Successful strategies for transplantation of neural precursor cells for replacement of lost or dysfunctional CNS cells require long-term survival of grafted cells and integration with the host system, potentially for the life of the recipient. It is also important to demonstrate that transplants do not result in adverse outcomes. Few studies have examined the long-term properties of transplanted neural precursor cells in the CNS, particularly in non-neurogenic regions of the adult. The aim of the present study was to extensively characterize the fate of defined populations of neural precursor cells following transplantation into the developing and adult CNS (brain and spinal cord) for up to 15 months, including integration of graft-derived neurons with the host. Specifically, we employed neuronal-restricted precursors and glial-restricted precursors, which represent neural precursor cells with lineage restrictions for neuronal and glial fate, respectively. Transplanted cells were prepared from embryonic day-13.5 fetal spinal cord of transgenic donor rats that express the marker gene human placental alkaline phosphatase to achieve stable and reliable graft tracking. We found that in both developing and adult CNS grafted cells showed long-term survival, morphological maturation, extensive distribution and differentiation into all mature CNS cell types (neurons, astrocytes and oligodendrocytes). Graft-derived neurons also formed synapses, as identified by electron microscopy, suggesting that transplanted neural precursor cells integrated with adult CNS. Furthermore, grafts did not result in any apparent deleterious outcomes. We did not detect tumor formation, cells did not localize to unwanted locations and no pronounced immune response was present at the graft sites. The long-term stability of neuronal-restricted precursors and glial-restricted precursors and the lack of adverse effects suggest that transplantation of lineage-restricted neural precursor cells can

  14. Bone marrow B cell precursor number after allogeneic stem cell transplantation and GVHD development.

    PubMed

    Fedoriw, Yuri; Samulski, T Danielle; Deal, Allison M; Dunphy, Cherie H; Sharf, Andrew; Shea, Thomas C; Serody, Jonathan S; Sarantopoulos, Stefanie

    2012-06-01

    Patients without chronic graft-versus-host disease (cGVHD) have robust B cell reconstitution and are able to maintain B cell homeostasis after allogeneic hematopoietic stem cell transplantation (HSCT). To determine whether B lymphopoiesis differs before cGVHD develops, we examined bone marrow (BM) biopsies for terminal deoxynucleotidyl transferase (TdT) and PAX5 immunostaining early post-HSCT at day 30 when all patients have been shown to have high B cell activating factor (BAFF) levels. We found significantly greater numbers of BM B cell precursors in patients who did not develop cGVHD compared with those who developed cGVHD (median = 44 vs 2 cells/high powered field [hpf]; respectively; P < .001). Importantly, a significant increase in precursor B cells was maintained when patients receiving high-dose steroid therapy were excluded (median = 49 vs 20 cells/hpf; P = .017). Thus, we demonstrate the association of BM B cell production capacity in human GVHD development. Increased BM precursor B cell number may serve to predict good clinical outcome after HSCT. Copyright © 2012 American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  15. Bone Marrow B cell Precursor Number after Allogeneic Stem Cell Transplantation and GVHD Development

    PubMed Central

    Fedoriw, Yuri; Samulski, T. Danielle; Deal, Allison M.; Dunphy, Cherie H.; Sharf, Andrew; Shea, Thomas C.; Serody, Jonathan S.; Sarantopoulos, Stefanie

    2013-01-01

    Patients without chronic graft-versus-host disease (cGVHD) have robust B cell reconstitution and are able to maintain B cell homeostasis after allogeneic hematopoietic stem cell transplantation (HSCT). To determine whether B lymphopoiesis differs before cGVHD develops, we examined bone marrow (BM) biopsies for terminal deoxynucleotidyl transferase (TdT) and PAX5 immunostaining early post-HSCTat day 30 when all patients have been shown to have high B cell activating factor (BAFF) levels. We found significantly greater numbers of BM B cell precursors in patients who did not develop cGVHD compared with those who developed cGVHD (median = 44 vs 2 cells/high powered field [hpf]; respectively; P < .001). Importantly, a significant increase in precursor B cells was maintained when patients receiving high-dose steroid therapy were excluded (median = 49 vs 20 cells/hpf; P =.017). Thus, we demonstrate the association of BM B cell production capacity in human GVHD development. Increased BM precursor B cell number may serve to predict good clinical outcome after HSCT. PMID:22446015

  16. [Regenerative potential of human adult precursor cells: cell therapy--an option for treating cartilage defects?].

    PubMed

    Dehne, T; Tschirschmann, M; Lauster, R; Sittinger, M

    2009-05-01

    Cell-based therapeutical approaches are already in clinical use and are attracting growing interest for the treatment of joint defects. Mesenchymal stem and precursor cells (MSC) cover a wide range of properties that are useful for the regeneration process of bone and cartilage defects. The following article is an overview of the regenerative potential of MSC and discusses how the properties of these cells can be used for the development of new strategies in regenerative medicine.

  17. Cell-type dependent modulation of Notch signaling by the amyloid precursor protein.

    PubMed

    Oh, Sun Young; Chen, Ci-Di; Abraham, Carmela R

    2010-04-01

    The amyloid precursor protein is a ubiquitously expressed transmembrane protein that has been long implicated in the pathogenesis of Alzheimer's disease but its normal biological function has remained elusive despite extensive effort. We have previously reported the identification of Notch2 as an amyloid precursor protein interacting protein in E18 rat neurons. Here, we sought to reveal the physiologic consequences of this interaction. We report a functional relationship between amyloid precursor protein and Notch1, which does not affect Delta ligand binding. First, we observed interactions between the amyloid precursor protein and Notch in mouse embryonic stem cells lacking both presenilin 1 and presenilin 2, the active proteolytic components of the gamma-secretase complex, suggesting that these two transmembrane proteins can interact in the absence of presenilin. Next, we demonstrated that the amyloid precursor protein affects Notch signaling by using Notch-dependent luciferase assays in two cell lines, the human embryonic kidney 293 and the monkey kidney, COS7. We found that the amyloid precursor protein exerts opposing effects on Notch signaling in human embryonic kidney 293 vs. COS7 cells. Finally, we show that more Notch Intracellular Domain is found in the nucleus in the presence of exogenous amyloid precursor protein or its intracellular domain, suggesting the mechanism by which the amyloid precursor protein affects Notch signaling in certain cells. Our results provide evidence of potentially important communications between the amyloid precursor protein and Notch.

  18. Lack of evidence for recipient precursor cells replenishing β-cells in transplanted islets.

    PubMed

    Hamamoto, Yoshiyuki; Akashi, Tomoyuki; Inada, Akari; Bonner-Weir, Susan; Weir, Gordon C

    2010-01-01

    Bone marrow and tissue precursor cells have been postulated to replenish grafts of transplanted islets. Several investigators have reported that bone marrow cells can promote the regeneration of injured islets. In this study, we investigated the potential of recipient-derived precursor cells to form new pancreatic endocrine cells in islet grafts transplanted under the kidney capsule. Mouse insulin promoter (MIP)-green fluorescence protein (GFP) mice, which express GFP only in β-cells, or β-actin GFP mice, which express GFP ubiquitously, were used to determine if the recipient-derived cells differentiate into β-cells or other types of endocrine cells. We transplanted MIP-GFP islets into wild-type mice, wild-type islets into MIP-GFP mice, β-actin GFP islets into wild-type mice, and wild-type islets into β-actin GFP mice. β-Actin GFP bone marrow cells were then injected into wild-type mice to evaluate the potential role of bone marrow stem cells to provide new islet cells to the graft. No β-cells with green fluorescence were seen in the graft when wild-type islets were transplanted into MIP-GFP mice. When wild-type islets were transplanted into β-actin GFP mice, no β-cells with GFP staining could be identified in the grafts. Similarly, no endocrine cells with GFP staining could be identified in the grafts after injection of β-actin GFP bone marrow cells into wild-type islet-transplanted wild-type mice. This study provides further support for the concept that recipient precursor cells do not produce new β-cells in grafts of transplanted islets.

  19. Intraflagellar transport (IFT) cargo: IFT transports flagellar precursors to the tip and turnover products to the cell body.

    PubMed

    Qin, Hongmin; Diener, Dennis R; Geimer, Stefan; Cole, Douglas G; Rosenbaum, Joel L

    2004-01-19

    Intraflagellar transport (IFT) is the bidirectional movement of multisubunit protein particles along axonemal microtubules and is required for assembly and maintenance of eukaryotic flagella and cilia. One posited role of IFT is to transport flagellar precursors to the flagellar tip for assembly. Here, we examine radial spokes, axonemal subunits consisting of 22 polypeptides, as potential cargo for IFT. Radial spokes were found to be partially assembled in the cell body, before being transported to the flagellar tip by anterograde IFT. Fully assembled radial spokes, detached from axonemal microtubules during flagellar breakdown or turnover, are removed from flagella by retrograde IFT. Interactions between IFT particles, motors, radial spokes, and other axonemal proteins were verified by coimmunoprecipitation of these proteins from the soluble fraction of Chlamydomonas flagella. These studies indicate that one of the main roles of IFT in flagellar assembly and maintenance is to transport axonemal proteins in and out of the flagellum.

  20. Antioxidant Protection of NADPH-Depleted Oligodendrocyte Precursor Cells Is Dependent on Supply of Reduced Glutathione

    PubMed Central

    Kilanczyk, Ewa; Saraswat Ohri, Sujata; Whittemore, Scott R.

    2016-01-01

    The pentose phosphate pathway is the main source of NADPH, which by reducing oxidized glutathione, contributes to antioxidant defenses. Although oxidative stress plays a major role in white matter injury, significance of NADPH for oligodendrocyte survival has not been yet investigated. It is reported here that the NADPH antimetabolite 6-amino-NADP (6AN) was cytotoxic to cultured adult rat spinal cord oligodendrocyte precursor cells (OPCs) as well as OPC-derived oligodendrocytes. The 6AN-induced necrosis was preceded by increased production of superoxide, NADPH depletion, and lower supply of reduced glutathione. Moreover, survival of NADPH-depleted OPCs was improved by the antioxidant drug trolox. Such cells were also protected by physiological concentrations of the neurosteroid dehydroepiandrosterone (10−8 M). The protection by dehydroepiandrosterone was associated with restoration of reduced glutathione, but not NADPH, and was sensitive to inhibition of glutathione synthesis. A similar protective mechanism was engaged by the cAMP activator forskolin or the G protein-coupled estrogen receptor (GPER/GPR30) ligand G1. Finally, treatment with the glutathione precursor N-acetyl cysteine reduced cytotoxicity of 6AN. Taken together, NADPH is critical for survival of OPCs by supporting their antioxidant defenses. Consequently, injury-associated inhibition of the pentose phosphate pathway may be detrimental for the myelination or remyelination potential of the white matter. Conversely, steroid hormones and cAMP activators may promote survival of NADPH-deprived OPCs by increasing a NADPH-independent supply of reduced glutathione. Therefore, maintenance of glutathione homeostasis appears as a critical effector mechanism for OPC protection against NADPH depletion and preservation of the regenerative potential of the injured white matter. PMID:27449129

  1. Human iPSC Derived GABA Ergic Precursor Cell Therapy for Chronic Epilepsy

    DTIC Science & Technology

    2016-10-01

    AWARD NUMBER: W81XWH-14-1-0558 TITLE: Human iPSC-Derived GABA-Ergic Precursor Cell Therapy for Chronic Epilepsy PRINCIPAL INVESTIGATOR: Ashok K...SUBTITLE Human iPSC-Derived GABA-Ergic Precursor Cell Therapy for Chronic Epilepsy 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-14-1-0558 5c...medial ganglionic eminence (hMGE)-like precursor cells generated from the human induced pluripotent stem cells (hiPSCs) into the hippocampus of

  2. Muscle precursor cells invade and repopulate freeze-killed muscles.

    PubMed

    Morgan, J E; Coulton, G R; Partridge, T A

    1987-10-01

    A problem with the use of muscle grafting as a therapeutic procedure is to produce a graft functionally adequate to replace a muscle of complex architecture, such as a sphincter muscle. We thought it might be possible to use dead cadaver muscles, repopulated by the patient's own muscle precursor cells (mpc), to reconstruct muscles whose anatomy would be imposed by the framework of dead muscle and whose genetic constitution would be determined by the mpc. Here we show, in the mouse, that an extensor digitorum longus (EDL) muscle, killed by repeated freezing and thawing, repopulated with mpc and grafted into a nu/nu or tolerant AKR host mouse, is capable of supporting muscle formation. By using the allotypic isoenzyme forms of glucose-6-phosphate isomerase as markers, we have shown that the newly regenerated muscle in such grafts is derived mainly from the implanted mpc, but also to some extent from the host mouse's own mpc. By 50-70 days after grafting, new muscle fibres were found to constitute up to 70% of the graft. Many fibres had assumed diameters in the normal range for mouse muscle, often having peripherally placed nuclei. These findings raise the possibility of the therapeutic use of such grafts. To our surprise, dead EDL muscle grafts into which no mpc had been implanted were also the site of good muscle regeneration. New-formed muscle in these grafts was shown to be derived entirely from mpc which must have migrated into the graft from the host. Investigation of the mechanisms underlying this phenomenon should further our knowledge of factors which regulate the proliferation and movement of dormant mpc in adult animals.

  3. Different radiosensitivities of mast-cell precursors in the bone marrow and skin of mice

    SciTech Connect

    Kitamura, Y.; Yokoyama, M.; Sonoda, T.; Mori, K.J.

    1983-01-01

    Although tissue mast cells are derived from the bone marrow, some descendants of bone marrow-derived precursors retain the ability to proliferate and differentiate into mast cells even after localization in the skin. The purpose of the present study was to determine the D/sub 0/ values for mast-cell precursors in the bone marrow and those localized in the skin. Bone marrow cells were removed from (WB X C57BL/6)F/sub 1/+/+ mice after various doses of irradiation and injected into the skin of the congenic W/W/sup v/ mice which were genetically without mast cells. Radiosensitivity of mast-cell precursors in the bone marrow was evaluated by determining the proportion of the injection sites at which mast cells did not appear. For the assay of the radiosensitivity of mast-cell precursors localized in the skin, pieces of skin were removed from beige C57BL/6 (bg/sup J//bg/sup J/, Chediak-Higashi syndrome) mice after various doses of irradiation and grafted onto the backs of the normal C57BL/6 mice. Radiosensitivity of mast-cell precursors in the skin was evaluated by determining the decrease of beige-type mast cells which possessed giant granules. Mast-cell precursors in the bone marrow were much more radiosenitive than those localized in the skin. D/sup 0/ value was about 100 rad for the former and about 800 rad for the latter.

  4. Different radiosensitivities of mast-cell precursors in the bone marrow and skin of mice

    SciTech Connect

    Kitamura, Y.; Yokoyama, M.; Sonoda, T.; Mori, K.J.

    1983-01-01

    Although tissue mast cells are derived from the bone marrow, some descendants of bone marrow-derived precursors retain the ability to proliferate and differentiate into mast cells even after localization in the skin. The purpose of the present study was to determine the D0 values for mast-cell precursors in the bone marrow and those localized in the skin. Bone marrow cells were removed from (WB X C57BL/6)F1-+/+ mice after various doses of irradiation and injected into the skin of the congenic W/Wv mice which were genetically without mast cells. Radiosensitivity of mast-cell precursors in the bone marrow was evaluated by determining the proportion of the injection sites at which mast cells did not appear. For the assay of the radiosensitivity of mast-cell precursors localized in the skin, pieces of skin were removed from beige C57BL/6 (bgJ/bgJ. Chediak-Higashi syndrome) mice after various doses of irradiation and grafted onto the back of the normal C57BL/6 mice. Radiosensitivity of mast-cell precursors in the skin was evaluated by determining the decrease of beige-type mast cells which possessed giant granules. Mast-cell precursors in the bone marrow were much more radiosensitive than those localized in the skin. D0 value was about 100 rad for the former and about 800 rad for the latter.

  5. Concomitant T-cell receptor alpha and delta gene rearrangements in individual T-cell precursors.

    PubMed Central

    Thompson, S D; Pelkonen, J; Hurwitz, J L

    1990-01-01

    A debate has recently surfaced concerning the degree of precommitment attained by alpha beta and gamma delta T-cell precursors prior to T-cell receptor (TCR) gene rearrangement. It has been suggested that precursors may be precommitted to rearrange either alpha or delta genes, but not both, thus giving rise to alpha beta- and gamma delta-producing T cells, respectively. Alternatively, the precursors may be flexible with regard to potential TCR gene rearrangements. To address this controversy, the gene rearrangements among a group of T-cell hybridomas from fetal, newborn, and early postnatal mouse thymi were examined. Six probes spanning the delta and alpha loci were used in Southern blot analyses to characterize the rearrangements which occurred on homologous chromosomes in each cell. Although homologous chromosomes often rearranged in synchrony within the alpha locus, a number of hybridomas were found which had retained a delta rearrangement on one chromosome and an alpha rearrangement on the second. Results show that a precommitment by T cells to rearrange delta or alpha genes in a mutually exclusive manner is not an absolute feature of mouse thymocyte development. Images PMID:2164690

  6. Nicotinamide metabolism regulates glioblastoma stem cell maintenance

    PubMed Central

    Jung, Jinkyu; Kim, Leo J.Y.; Wang, Xiuxing; Wu, Qiulian; Sanvoranart, Tanwarat; Hubert, Christopher G.; Prager, Briana C.; Wallace, Lisa C.; Jin, Xun; Mack, Stephen C.; Rich, Jeremy N.

    2017-01-01

    Metabolic dysregulation promotes cancer growth through not only energy production, but also epigenetic reprogramming. Here, we report that a critical node in methyl donor metabolism, nicotinamide N-methyltransferase (NNMT), ranked among the most consistently overexpressed metabolism genes in glioblastoma relative to normal brain. NNMT was preferentially expressed by mesenchymal glioblastoma stem cells (GSCs). NNMT depletes S-adenosyl methionine (SAM), a methyl donor generated from methionine. GSCs contained lower levels of methionine, SAM, and nicotinamide, but they contained higher levels of oxidized nicotinamide adenine dinucleotide (NAD+) than differentiated tumor cells. In concordance with the poor prognosis associated with DNA hypomethylation in glioblastoma, depletion of methionine, a key upstream methyl group donor, shifted tumors toward a mesenchymal phenotype and accelerated tumor growth. Targeting NNMT expression reduced cellular proliferation, self-renewal, and in vivo tumor growth of mesenchymal GSCs. Supporting a mechanistic link between NNMT and DNA methylation, targeting NNMT reduced methyl donor availability, methionine levels, and unmethylated cytosine, with increased levels of DNA methyltransferases, DNMT1 and DNMT3A. Supporting the clinical significance of these findings, NNMT portended poor prognosis for glioblastoma patients. Collectively, our findings support NNMT as a GSC-specific therapeutic target in glioblastoma by disrupting oncogenic DNA hypomethylation. PMID:28515364

  7. ATR contributes to telomere maintenance in human cells

    PubMed Central

    Pennarun, Gaëlle; Hoffschir, Françoise; Revaud, Deborah; Granotier, Christine; Gauthier, Laurent R.; Mailliet, Patrick; Biard, Denis S.; Boussin, François D.

    2010-01-01

    Telomere maintenance is essential to preserve genomic stability and involves several telomere-specific proteins as well as DNA replication and repair proteins. The kinase ATR, which has a crucial function in maintaining genome integrity from yeast to human, has been shown to be involved in telomere maintenance in several eukaryotic organisms, including yeast, Arabidopsis and Drosophila. However, its role in telomere maintenance in mammals remains poorly explored. Here, we report by using telomere-fluorescence in situ hybridization (Telo-FISH) on metaphase chromosomes that ATR deficiency causes telomere instability both in primary human fibroblasts from Seckel syndrome patients and in HeLa cells. The telomere aberrations resulting from ATR deficiency (i.e. sister telomere fusions and chromatid-type telomere aberrations) are mainly generated during and/or after telomere replication, and involve both leading and lagging strand telomeres as shown by chromosome orientation-FISH (CO-FISH). Moreover, we show that ATR deficiency strongly sensitizes cells to the G-quadruplex ligand 360A, enhancing sister telomere fusions and chromatid-type telomere aberrations involving specifically the lagging strand telomeres. Altogether, these data reveal that ATR plays a critical role in telomere maintenance during and/or after telomere replication in human cells. PMID:20147462

  8. Diversity of Neural Precursor Cell Types in the Prenatal Macaque Cerebral Cortex Exists Largely within the Astroglial Cell Lineage

    PubMed Central

    Cunningham, Christopher L.; Martínez-Cerdeño, Verónica; Noctor, Stephen C.

    2013-01-01

    The germinal zones of the embryonic macaque neocortex comprise the ventricular zone (VZ) and the subventricular zone (SVZ). The mammalian SVZ is subdivided into an inner SVZ and an outer SVZ, with the outer SVZ being particularly large in primates. The existence of distinct precursor cell types in the neocortical proliferative zones was inferred over 100 years ago and recent evidence supports this concept. Precursor cells exhibiting diverse morphologies, patterns of transcription factor expression, and fate potential have been identified in the neocortical proliferative zones. Neurogenic precursor cells are thought to exhibit characteristics of glial cells, but the existence of neurogenic precursor cells that do not share glial specific properties has also been proposed. Therefore, one question that remains is whether neural precursor cells in the prenatal neocortex belong within the astroglial cell class, as they do in neurogenic regions of the adult neocortex, or instead include a diverse collection of precursor cells belonging to distinct cell classes. We examined the expression of astroglial markers by mitotic precursor cells in the telencephalon of prenatal macaque and human. We show that in the dorsal neocortex all mitotic cells at the surface of the ventricle, and all Pax6+ and Tbr2+ mitotic cells in the proliferative zones, express the astroglial marker GFAP. The majority of mitotic cells undergoing division away from the ventricle express GFAP, and many of the GFAP-negative mitoses express markers of cells derived from the ventral telencephalon or extracortical sites. In contrast, a markedly lower proportion of precursor cells express GFAP in the ganglionic eminence. In conclusion, we propose that the heterogeneity of neural precursor cells in the dorsal cerebral cortex develops within the GFAP+ astroglial cell class. PMID:23724007

  9. CD4+ T cell anergy prevents autoimmunity and generates regulatory T cell precursors

    PubMed Central

    Kalekar, Lokesh A.; Schmiel, Shirdi E.; Nandiwada, Sarada L.; Lam, Wing Y.; Barsness, Laura O.; Zhang, Na; Stritesky, Gretta L.; Malhotra, Deepali; Pauken, Kristen E.; Linehan, Jonathan L.; O’Sullivan, M. Gerard; Fife, Brian T.; Hogquist, Kristin A.; Jenkins, Marc K.; Mueller, Daniel L.

    2015-01-01

    The role that anergy, an acquired state of T cell functional unresponsiveness, plays in natural peripheral tolerance remains unclear. In this study, we demonstrate that anergy is selectively induced in fetal antigen-specific maternal CD4+ T cells during pregnancy. A naturally occurring subpopulation of anergic polyclonal CD4+ T cells, enriched in self antigen-specific T cell receptors, is also observed in healthy hosts. Neuropilin-1 expression in anergic conventional CD4+ T cells is associated with thymic regulatory T cell (Treg cell)-related gene hypomethylation, and this correlates with their capacity to differentiate into Foxp3+ Treg cells that suppress immunopathology. Thus, our data suggest that not only is anergy induction important in preventing autoimmunity, but it also generates the precursors for peripheral Treg cell differentiation. PMID:26829766

  10. Auraptene induces oligodendrocyte lineage precursor cells in a cuprizone-induced animal model of demyelination.

    PubMed

    Nakajima, Mitsunari; Shimizu, Risei; Furuta, Kohei; Sugino, Mami; Watanabe, Takashi; Aoki, Rui; Okuyama, Satoshi; Furukawa, Yoshiko

    2016-05-15

    We investigated the effects of auraptene on mouse oligodendroglial cell lineage in an animal model of demyelination induced by cuprizone. Auraptene, a citrus coumarin, was intraperitoneally administered to mice fed the demyelinating agent cuprizone. Immunohistochemical analysis of the corpus callosum and/or Western blotting analysis of brain extracts revealed that cuprizone reduced immunoreactivity for myelin-basic protein, a marker of myelin, whereas it increased immunoreactivity to platelet derived-growth factor receptor-α, a marker of oligodendrocyte precursor cells. Administration of auraptene enhanced the immunoreactivity to oligodendrocyte transcription factor 2, a marker of oligodendrocyte precursor cells and oligodendrocyte lineage precursor cells, but had no effect on immunoreactivity to myelin-basic protein or platelet-derived growth factor receptor-α. These findings suggest that auraptene promotes the production of oligodendrocyte lineage precursor cells in an animal model of demyelination and may be useful for individuals with demyelinating diseases. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Transcriptional control of stem cell maintenance in the Drosophila intestine.

    PubMed

    Bardin, Allison J; Perdigoto, Carolina N; Southall, Tony D; Brand, Andrea H; Schweisguth, François

    2010-03-01

    Adult stem cells maintain tissue homeostasis by controlling the proper balance of stem cell self-renewal and differentiation. The adult midgut of Drosophila contains multipotent intestinal stem cells (ISCs) that self-renew and produce differentiated progeny. Control of ISC identity and maintenance is poorly understood. Here we find that transcriptional repression of Notch target genes by a Hairless-Suppressor of Hairless complex is required for ISC maintenance, and identify genes of the Enhancer of split complex [E(spl)-C] as the major targets of this repression. In addition, we find that the bHLH transcription factor Daughterless is essential to maintain ISC identity and that bHLH binding sites promote ISC-specific enhancer activity. We propose that Daughterless-dependent bHLH activity is important for the ISC fate and that E(spl)-C factors inhibit this activity to promote differentiation.

  12. Loss of T cell precursors after spaceflight and exposure to vector-averaged gravity

    NASA Technical Reports Server (NTRS)

    Woods, Chris C.; Banks, Krista E.; Gruener, Raphael; DeLuca, Dominick

    2003-01-01

    Using fetal thymus organ culture (FTOC), we examined the effects of spaceflight and vector-averaged gravity on T cell development. Under both conditions, the development of T cells was significantly attenuated. Exposure to spaceflight for 16 days resulted in a loss of precursors for CD4+, CD8+, and CD4+CD8+ T cells in a rat/mouse xenogeneic co-culture. A significant decrease in the same precursor cells, as well as a decrease in CD4-CD8- T cell precursors, was also observed in a murine C57BL/6 FTOC after rotation in a clinostat to produce a vector-averaged microgravity-like environment. The block in T cell development appeared to occur between the pre-T cell and CD4+CD8+ T cell stage. These data indicate that gravity plays a decisive role in the development of T cells.

  13. Loss of T cell precursors after spaceflight and exposure to vector-averaged gravity

    NASA Technical Reports Server (NTRS)

    Woods, Chris C.; Banks, Krista E.; Gruener, Raphael; DeLuca, Dominick

    2003-01-01

    Using fetal thymus organ culture (FTOC), we examined the effects of spaceflight and vector-averaged gravity on T cell development. Under both conditions, the development of T cells was significantly attenuated. Exposure to spaceflight for 16 days resulted in a loss of precursors for CD4+, CD8+, and CD4+CD8+ T cells in a rat/mouse xenogeneic co-culture. A significant decrease in the same precursor cells, as well as a decrease in CD4-CD8- T cell precursors, was also observed in a murine C57BL/6 FTOC after rotation in a clinostat to produce a vector-averaged microgravity-like environment. The block in T cell development appeared to occur between the pre-T cell and CD4+CD8+ T cell stage. These data indicate that gravity plays a decisive role in the development of T cells.

  14. Human post-thymic precursor cells in health and disease. I. Characterization of the autologous rosette-forming T cells as post-thymic precursors.

    PubMed Central

    Palacios, R; Alarcón-Segovia, D; Llorente, L; Ruíz-Arguelles, A; Díaz-Jouanen, E

    1981-01-01

    Human autologous-rosette-forming T cells (Tar cells) have many of the characteristics of post-thymic precursor cells. Thus, they bind to sheep erythrocytes but have neither receptors for the Fc portion of IgG nor for that of IgM. They include a subpopulation that binds peanut agglutinin which suggests that they are immature and, as opposed to T cells with either receptors for the FC portion of IgM (T mu) or of IgG (T gamma), Tar cells adhere to nylon wool, another possible indicator of immaturity, as is their extreme sensitivity to hydrocortisone both in vitro and in vivo. There are more Tar cells in cord blood than in the peripheral blood of young adults and there are more Tar cells in the peripheral blood of young adults than in the peripheral blood of elderly subjects. By co-culturing T mu and B cells, or T mu, or Tar and B cells in the presence of pokeweek mitogen (PWM) we were able to determine that these cells cause feedback inhibition, a function considered characteristic of post-thymic precursors. In co-cultures in which we placed mononuclear cells (MNC) or MNC plus Tar cells, or MNC depleted of Tar cells or MNC depleted of Tar cells plus Tar cells stimulated with PWM, we determined that Tar cells play a role in the generation of suppression thereby confirming that human Tar cells are precursor cells. We also found that Tar cells proliferated and generated T gamma and T mu cells both spontaneously and in greater numbers, under the effect of serum thymic factor. PMID:6970170

  15. PPARβ/δ and PPARγ maintain undifferentiated phenotypes of mouse adult neural precursor cells from the subventricular zone.

    PubMed

    Bernal, Carolina; Araya, Claudia; Palma, Verónica; Bronfman, Miguel

    2015-01-01

    The subventricular zone (SVZ) is one of the main niches of neural stem cells in the adult mammalian brain. Stem and precursor cells in this region are the source for neurogenesis and oligodendrogesis, mainly in the olfactory bulb and corpus callosum, respectively. The identification of the molecular components regulating the decision of these cells to differentiate or maintain an undifferentiated state is important in order to understand the modulation of neurogenic processes in physiological and pathological conditions. PPARs are a group of transcription factors, activated by lipid ligands, with important functions in cellular differentiation and proliferation in several tissues. In this work, we demonstrate that mouse adult neural precursor cells (NPCs), in situ and in vitro, express PPARβ/δ and PPARγ. Pharmacological activation of both PPARs isoforms induces proliferation and maintenance of the undifferentiated phenotype. Congruently, inhibition of PPARβ/δ and PPARγ results in a decrease of proliferation and loss of the undifferentiated phenotype. Interestingly, PPARγ regulates the level of EGFR in adult NPCs, concurrent with it is function described in embryonic NPCs. Furthermore, we describe for the first time that PPARβ/δ regulates SOX2 level in adult NPCs, probably through a direct transcriptional regulation, as we identified two putative PPAR response elements in the promoter region of Sox2. EGFR and SOX2 are key players in neural stem/precursor cells self-renewal. Finally, rosiglitazone, a PPARγ ligand, increases PPARβ/δ level, suggesting a possible cooperation between these two PPARs in the control of cell fate behavior. Our work contributes to the understanding of the molecular mechanisms associated to neural cell fate decision and places PPARβ/δ and PPARγ as interesting new targets of modulation of mammalian brain homeostasis.

  16. PPARβ/δ and PPARγ maintain undifferentiated phenotypes of mouse adult neural precursor cells from the subventricular zone

    PubMed Central

    Bernal, Carolina; Araya, Claudia; Palma, Verónica; Bronfman, Miguel

    2015-01-01

    The subventricular zone (SVZ) is one of the main niches of neural stem cells in the adult mammalian brain. Stem and precursor cells in this region are the source for neurogenesis and oligodendrogesis, mainly in the olfactory bulb and corpus callosum, respectively. The identification of the molecular components regulating the decision of these cells to differentiate or maintain an undifferentiated state is important in order to understand the modulation of neurogenic processes in physiological and pathological conditions. PPARs are a group of transcription factors, activated by lipid ligands, with important functions in cellular differentiation and proliferation in several tissues. In this work, we demonstrate that mouse adult neural precursor cells (NPCs), in situ and in vitro, express PPARβ/δ and PPARγ. Pharmacological activation of both PPARs isoforms induces proliferation and maintenance of the undifferentiated phenotype. Congruently, inhibition of PPARβ/δ and PPARγ results in a decrease of proliferation and loss of the undifferentiated phenotype. Interestingly, PPARγ regulates the level of EGFR in adult NPCs, concurrent with it is function described in embryonic NPCs. Furthermore, we describe for the first time that PPARβ/δ regulates SOX2 level in adult NPCs, probably through a direct transcriptional regulation, as we identified two putative PPAR response elements in the promoter region of Sox2. EGFR and SOX2 are key players in neural stem/precursor cells self-renewal. Finally, rosiglitazone, a PPARγ ligand, increases PPARβ/δ level, suggesting a possible cooperation between these two PPARs in the control of cell fate behavior. Our work contributes to the understanding of the molecular mechanisms associated to neural cell fate decision and places PPARβ/δ and PPARγ as interesting new targets of modulation of mammalian brain homeostasis. PMID:25852474

  17. Induction of cytotoxic T cell precursors in vivo. Role of T helper cells

    PubMed Central

    1983-01-01

    Strain AS rats respond with two populations of cytotoxic T lymphocytes to stimulation in vitro by the major histocompatibility complex (MHC)- incompatible strain HL rat tumor (HL-A2T2). One is specific for MHC alloantigens present on both HL-A2T2 and normal HL targets, the other is tumor specific. The activation of these killer cells requires helper T lymphocytes. The tumor-specific helper cells depend on syngeneic radioresistant accessory cells to present the tumor antigens in an immunogenic form. The appropriate helper-accessory cell interaction results in the production of soluble factors which then induce the maturation of precursor cells into effective killer cells. Studies with a procedure for inducing negative selection of T cells in vivo showed that short-term exposure to HL-A2T2 tumor induced selection only for TH but not cytotoxic T lymphocyte precursors (CTLp). Simultaneous injection of supernatants from concanavalin A-activated spleen cell cultures, however, did produce selection of CTLp. These and other findings suggest that under normal circumstances in vivo, both signals (recognition of antigen and acceptance of maturation factors) are provided in the vicinity of an antigen presenting macrophage-like accessory cell. PMID:6222131

  18. Inducible T-cell receptor expression in precursor T-cells for leukemia control

    PubMed Central

    Hoseini, Shahabuddin S; Hapke, Martin; Herbst, Jessica; Wedekind, Dirk; Baumann, Rolf; Heinz, Niels; Schiedlmeier, Bernhard; Vignali, Dario AA; van den Brink, Marcel R.M.; Schambach, Axel; Blazar, Bruce R.; Sauer, Martin G.

    2015-01-01

    Co-transplantation of hematopoietic stem cells with those engineered to express leukemia-reactive T cell receptors (TCRs) and differentiated ex vivo into precursor T cells (preTs) may reduce the risk of leukemia relapse. Since expression of potentially self-(leukemia-) reactive TCRs will lead to negative selection or provoke autoimmunity upon thymic maturation, we investigated a novel concept whereby TCR expression set under the control of an inducible promoter would allow timely controlled TCR expression. After in vivo maturation and gene induction, preTs developed potent anti-leukemia effects. Engineered preTs provided protection even after repeated leukemia challenges by giving rise to effector and central memory cells. Importantly, adoptive transfer of TCR-transduced allogeneic preTs mediated anti-leukemia effect without evoking graft-versus-host disease (GVHD). Earlier transgene induction forced CD8+ T cell development, was required to obtain a mature T cell subset of targeted specificity, allowed engineered T cells to efficiently pass positive selection and abrogated the endogenous T cell repertoire. Later induction favored CD4 differentiation and failed to produce a leukemia-reactive population emphasizing the dominant role of positive selection. Taken together, we provide new functional insights for the employment of TCR-engineered precursor cells as a controllable immunotherapeutic modality with significant anti-leukemia activity. PMID:25652739

  19. Gene expression analysis of embryonic photoreceptor precursor cells using BAC-Crx-EGFP transgenic mouse.

    PubMed

    Muranishi, Yuki; Sato, Shigeru; Inoue, Tatsuya; Ueno, Shinji; Koyasu, Toshiyuki; Kondo, Mineo; Furukawa, Takahisa

    2010-02-12

    Crx is a transcription factor which is predominantly expressed in developing and mature photoreceptor cells in the retina, and plays a crucial role in the terminal differentiation of both rods and cones. Crx is one of the earliest-expressed genes specifically in photoreceptor precursors, allowing us to trace photoreceptor precursor cells from embryonic stages to adult stage by visualizing Crx-expressing cells. In the current study, we generated a transgenic mouse line which expresses enhanced green fluorescence protein (EGFP) in the retina driven by the Crx promoter using bacterial artificial chromosome (BAC) transgenesis. EGFP-positive cells were observed in the presumptive photoreceptor layer in the retina at embryonic day 15.5 (E15.5), and continued to be expressed in developing and mature photoreceptor cells up to adult stage. We sorted EGFP-positive photoreceptor precursors at E17.5 using fluorescence-activated cell sorter (FACS), and subsequently performed microarray analysis of the FACS-sorted cells. We observed various photoreceptor genes, especially cone genes, are enriched in the EGFP-positive cells, indicating that embryonic cone photoreceptor precursors are enriched. In addition, we found that most of the EGFP-positive cells were post-mitotic cells. Thus, the transgenic line we established can serve as a useful tool to study both developing and mature photoreceptor cells, including embryonic cone precursors whose analysis has been difficult.

  20. Human iPSC-Derived GABA Ergic Precursor Cell Therapy for Chronic Epilepsy

    DTIC Science & Technology

    2015-10-01

    AWARD NUMBER: W81XWH-14-1-0558 TITLE: Human iPSC-Derived GABA-Ergic Precursor Cell Therapy for Chronic Epilepsy PRINCIPAL INVESTIGATOR: Ashok K...AND SUBTITLE 5a. CONTRACT NUMBER Human iPSC-Derived GABA-Ergic Precursor Cell Therapy for Chronic Epilepsy 5b. GRANT NUMBER W81XWH-14-1-0558 5c...exhibiting chronic temporal lobe epilepsy (TLE) would: (1) greatly diminish the frequency and intensity of spontaneous recurrent seizures (SRS, Specific

  1. A complex between contactin-1 and the protein tyrosine phosphatase PTPRZ controls the development of oligodendrocyte precursor cells

    SciTech Connect

    Lamprianou, Smaragda; Chatzopoulou, Elli; Thomas, Jean-Léon; Bouyain, Samuel; Harroch, Sheila

    2013-09-23

    The six members of the contactin (CNTN) family of neural cell adhesion molecules are involved in the formation and maintenance of the central nervous system (CNS) and have been linked to mental retardation and neuropsychiatric disorders such as autism. Five of the six CNTNs bind to the homologous receptor protein tyrosine phosphatases gamma (PTPRG) and zeta (PTPRZ), but the biological roles of these interactions remain unclear. We report here the cocrystal structure of the carbonic anhydrase-like domain of PTPRZ bound to tandem Ig repeats of CNTN1 and combine these structural data with binding assays to show that PTPRZ binds specifically to CNTN1 expressed at the surface of oligodendrocyte precursor cells. Furthermore, analyses of glial cell populations in wild-type and PTPRZ-deficient mice show that the binding of PTPRZ to CNTN1 expressed at the surface of oligodendrocyte precursor cells inhibits their proliferation and promotes their development into mature oligodendrocytes. Overall, these results implicate the PTPRZ/CNTN1 complex as a previously unknown modulator of oligodendrogenesis.

  2. Ago2 Immunoprecipitation Identifies Predicted MicroRNAs in Human Embryonic Stem Cells and Neural Precursors

    PubMed Central

    Swerdel, Mavis R.; Moore, Jennifer C.; Cohen, Rick I.; Wu, Hao; Sun, Yi E.; Hart, Ronald P.

    2009-01-01

    Background MicroRNAs are required for maintenance of pluripotency as well as differentiation, but since more microRNAs have been computationally predicted in genome than have been found, there are likely to be undiscovered microRNAs expressed early in stem cell differentiation. Methodology/Principal Findings SOLiD ultra-deep sequencing identified >107 unique small RNAs from human embryonic stem cells (hESC) and neural-restricted precursors that were fit to a model of microRNA biogenesis to computationally predict 818 new microRNA genes. These predicted genomic loci are associated with chromatin patterns of modified histones that are predictive of regulated gene expression. 146 of the predicted microRNAs were enriched in Ago2-containing complexes along with 609 known microRNAs, demonstrating association with a functional RISC complex. This Ago2 IP-selected subset was consistently expressed in four independent hESC lines and exhibited complex patterns of regulation over development similar to previously-known microRNAs, including pluripotency-specific expression in both hESC and iPS cells. More than 30% of the Ago2 IP-enriched predicted microRNAs are new members of existing families since they share seed sequences with known microRNAs. Conclusions/Significance Extending the classic definition of microRNAs, this large number of new microRNA genes, the majority of which are less conserved than their canonical counterparts, likely represent evolutionarily recent regulators of early differentiation. The enrichment in Ago2 containing complexes, the presence of chromatin marks indicative of regulated gene expression, and differential expression over development all support the identification of 146 new microRNAs active during early hESC differentiation. PMID:19784364

  3. CD4 T-Cell Memory Generation and Maintenance

    PubMed Central

    Gasper, David J.; Tejera, Melba Marie; Suresh, M.

    2014-01-01

    Immunologic memory is the adaptive immune system's powerful ability to remember a previous antigen encounter and react with accelerated vigor upon antigen re-exposure. It provides durable protection against reinfection with pathogens and is the foundation for vaccine-induced immunity. Unlike the relatively restricted immunologic purview of memory B cells and CD8 T cells, the field of CD4 T-cell memory must account for multiple distinct lineages with diverse effector functions, the issue of lineage commitment and plasticity, and the variable distribution of memory cells within each lineage. Here, we discuss the evidence for lineage-specific CD4 T-cell memory and summarize the known factors contributing to memory-cell generation, plasticity, and long-term maintenance. PMID:24940912

  4. CD4 T-cell memory generation and maintenance.

    PubMed

    Gasper, David J; Tejera, Melba Marie; Suresh, M

    2014-01-01

    Immunologic memory is the adaptive immune system's powerful ability to remember a previous antigen encounter and react with accelerated vigor upon antigen re-exposure. It provides durable protection against reinfection with pathogens and is the foundation for vaccine-induced immunity. Unlike the relatively restricted immunologic purview of memory B cells and CD8 T cells, the field of CD4 T-cell memory must account for multiple distinct lineages with diverse effector functions, the issue of lineage commitment and plasticity, and the variable distribution of memory cells within each lineage. Here, we discuss the evidence for lineage-specific CD4 T-cell memory and summarize the known factors contributing to memory-cell generation, plasticity, and long-term maintenance.

  5. Induction of Skin-Derived Precursor Cells from Human Induced Pluripotent Stem Cells.

    PubMed

    Sugiyama-Nakagiri, Yoriko; Fujimura, Tsutomu; Moriwaki, Shigeru

    2016-01-01

    The generation of full thickness human skin from dissociated cells is an attractive approach not only for treating skin diseases, but also for treating many systemic disorders. However, it is currently not possible to obtain an unlimited number of skin dermal cells. The goal of this study was to develop a procedure to produce skin dermal stem cells from induced pluripotent stem cells (iPSCs). Skin-derived precursor cells (SKPs) were isolated as adult dermal precursors that could differentiate into both neural and mesodermal progenies and could reconstitute the dermis. Thus, we attempted to generate SKPs from iPSCs that could reconstitute the skin dermis. Human iPSCs were initially cultured with recombinant noggin and SB431542, an inhibitor of activin/nodal and TGFβ signaling, to induce neural crest progenitor cells. Those cells were then treated with SKP medium that included CHIR99021, a WNT signal activator. The induction efficacy from neural crest progenitor cells to SKPs was more than 97%. No other modifiers tested were able to induce those cells. Those human iPSC-derived SKPs (hiPSC-SKPs) showed a similar gene expression signature to SKPs isolated from human skin dermis. Human iPSC-SKPs differentiated into neural and mesodermal progenies, including adipocytes, skeletogenic cell types and Schwann cells. Moreover, they could be induced to follicular type keratinization when co-cultured with human epidermal keratinocytes. We here provide a new efficient protocol to create human skin dermal stem cells from hiPSCs that could contribute to the treatment of various skin disorders.

  6. The pioneer factor Smed-gata456-1 is required for gut cell differentiation and maintenance in planarians.

    PubMed

    González-Sastre, Alejandro; De Sousa, Nídia; Adell, Teresa; Saló, Emili

    2017-01-01

    How adult stem cells differentiate into different cell types remains one of the most intriguing questions in regenerative medicine. Pioneer factors are transcription factors that can bind to and open chromatin, and are among the first elements involved in cell differentiation. We used the freshwater planarian Schmidtea mediterranea as a model system to study the role of the gata456 family of pioneer factors in gut cell differentiation during both regeneration and maintenance of the digestive system. Our findings reveal the presence of two members of the gata456 family in the Schmidtea mediterranea genome; Smed-gata456-1 and Smed-gata456-2. Our results show that Smed-gata456-1 is the only ortholog with a gut cell-related function. Smed-gata456-1 is essential for the differentiation of precursors into intestinal cells and for the survival of these differentiated cells, indicating a key role in gut regeneration and maintenance. Furthermore, tissues other than the gut appear normal following Smed-gata456-1 RNA interference (RNAi), indicating a gut-specific function. Importantly, different neoblast subtypes are unaffected by Smed-gata456-1(RNAi), suggesting that 1) Smed-gata456-1 is involved in the differentiation and maintenance, but not in the early determination, of gut cells; and 2) that the stem cell compartment is not dependent on a functional gut.

  7. Murine complement receptor 1 is required for germinal center B cell maintenance but not initiation.

    PubMed

    Donius, Luke R; Weis, Janis J; Weis, John H

    2014-06-01

    Germinal centers are the anatomic sites for the generation of high affinity immunoglobulin expressing plasma cells and memory B cells. The germinal center B cells that are precursors of these cells circulate between the light zone B cell population that interact with antigen laden follicular dendritic cells (FDC) and the proliferative dark zone B cell population. Antigen retention by follicular dendritic cells is dependent on Fc receptors and complement receptors, and complement receptor 1 (Cr1) is the predominant complement receptor expressed by FDC. The newly created Cr1KO mouse was used to test the effect of Cr1-deficiency on the kinetics of the germinal center reaction and the generation of IgM and switched memory B cell formation. Immunization of Cr1KO mice with a T cell-dependent antigen resulted in the normal initial expansion of B cells with a germinal center phenotype however these cells were preferentially lost in the Cr1KO animal over time (days). Bone marrow chimera animals documented the surprising finding that the loss of germinal center B cell maintenance was linked to the expression of Cr1 on B cells, not the FDC. Cr1-deficiency further resulted in antigen-specific IgM titer and IgM memory B cell reductions, but not antigen-specific IgG after 35-37 days. Investigations of nitrophenyl (NP)-specific IgG demonstrated that Cr1 is not necessary for affinity maturation during the response to particulate antigen. These data, along with those generated in our initial description of the Cr1KO animal describe unique functions of Cr1 on the surface of both B cells and FDC.

  8. Early B-lymphocyte precursor cells in mouse bone marrow: Subosteal localization of B220+ cells during postirradiation regeneration

    SciTech Connect

    Jacobsen, K.; Tepper, J.; Osmond, D.G. )

    1990-05-01

    The localization of early B-lymphocyte precursor cells in the bone marrow of young mice has been studied during recovery from sublethal whole body gamma-irradiation (150 rad). Initial studies by double immunofluorescence labeling of the B-lineage-associated cell surface glycoprotein, B220, and of mu heavy chains in bone marrow cell suspensions, demonstrated a sequential wave of regeneration of early B precursor cells, pre-B cells, and B cells. Early B precursor cells expressing B220 but not mu chains were enriched at 1-3 days following irradiation. After in vivo administration of 125I-labeled monoclonal antibody 14.8 to detect B220+ cells in situ, light and electron microscope radioautography of femoral bone marrow sections revealed concentrations of labeled B220+ cells located peripherally near the cortical bone at 1-3 days following irradiation, increasing in numbers in more central areas by 5-7 days. Proliferative B220+ precursor cells were found within layers of bone-lining cells and in a subosteal area characterized by a prominent electron-dense extracellular matrix, often associated with stromal reticular cells. The results demonstrate that the precursor cells that are active in the bone marrow early in the recovery of B lymphopoiesis after gamma-irradiation are located both within and near the endosteum of the surrounding bone. The distinctive extracellular matrix and stromal cell associations noted in this region may contribute to a supportive local microenvironment for early hemopoietic progenitor cells.

  9. Dual Targeting of Cell Wall Precursors by Teixobactin Leads to Cell Lysis

    PubMed Central

    Homma, Tomoyuki; Nuxoll, Austin; Gandt, Autumn Brown; Ebner, Patrick; Engels, Ina; Schneider, Tanja; Götz, Friedrich; Lewis, Kim

    2016-01-01

    Teixobactin represents the first member of a newly discovered class of antibiotics that act through inhibition of cell wall synthesis. Teixobactin binds multiple bactoprenol-coupled cell wall precursors, inhibiting both peptidoglycan and teichoic acid synthesis. Here, we show that the impressive bactericidal activity of teixobactin is due to the synergistic inhibition of both targets, resulting in cell wall damage, delocalization of autolysins, and subsequent cell lysis. We also find that teixobactin does not bind mature peptidoglycan, further increasing its activity at high cell densities and against vancomycin-intermediate Staphylococcus aureus (VISA) isolates with thickened peptidoglycan layers. These findings add to the attractiveness of teixobactin as a potential therapeutic agent for the treatment of infection caused by antibiotic-resistant Gram-positive pathogens. PMID:27550357

  10. Regulation of Asymmetric Cell Division in Mammalian Neural Stem and Cancer Precursor Cells.

    PubMed

    Daynac, Mathieu; Petritsch, Claudia K

    Stem and progenitor cells are characterized by their abilities to self-renew and produce differentiated progeny. The balance between self-renewal and differentiation is achieved through control of cell division mode, which can be either asymmetric or symmetric. Failure to properly control cell division mode may result in premature depletion of the stem/progenitor cell pool or abnormal growth and impaired differentiation. In many tissues, including the brain, stem cells and progenitor cells undergo asymmetric cell division through the establishment of cell polarity. Cell polarity proteins are therefore potentially critical regulators of asymmetric cell division. Decrease or loss of asymmetric cell division can be associated with reduced differentiation common during aging or impaired remyelination as seen in demyelinating diseases. Progenitor-like glioma precursor cells show decreased asymmetric cell division rates and increased symmetric divisions, which suggests that asymmetric cell division suppresses brain tumor formation. Cancer stem cells, on the other hand, still undergo low rates of asymmetric cell division, which may provide them with a survival advantage during therapy. These findings led to the hypotheses that asymmetric cell divisions are not always tumor suppressive but can also be utilized to maintain a cancer stem cell population. Proper control of cell division mode is therefore not only deemed necessary to generate cellular diversity during development and to maintain adult tissue homeostasis but may also prevent disease and determine disease progression. Since brain cancer is most common in the adult and aging population, we review here the current knowledge on molecular mechanisms that regulate asymmetric cell divisions in the neural and oligodendroglial lineage during development and in the adult brain.

  11. Mesenchymal precursor cells maintain the differentiation and proliferation potentials of breast epithelial cells

    PubMed Central

    2014-01-01

    Introduction Stromal-epithelial interactions play a fundamental role in tissue homeostasis, controlling cell proliferation and differentiation. Not surprisingly, aberrant stromal-epithelial interactions contribute to malignancies. Studies of the cellular and molecular mechanisms underlying these interactions require ex vivo experimental model systems that recapitulate the complexity of human tissue without compromising the differentiation and proliferation potentials of human primary cells. Methods We isolated and characterized human breast epithelial and mesenchymal precursors from reduction mammoplasty tissue and tagged them with lentiviral vectors. We assembled heterotypic co-cultures and compared mesenchymal and epithelial cells to cells in corresponding monocultures by analyzing growth, differentiation potentials, and gene expression profiles. Results We show that heterotypic culture of non-immortalized human primary breast epithelial and mesenchymal precursors maintains their proliferation and differentiation potentials and constrains their growth. We further describe the gene expression profiles of stromal and epithelial cells in co-cultures and monocultures and show increased expression of the tumor growth factor beta (TGFβ) family member inhibin beta A (INHBA) in mesenchymal cells grown as co-cultures compared with monocultures. Notably, overexpression of INHBA in mesenchymal cells increases colony formation potential of epithelial cells, suggesting that it contributes to the dynamic reciprocity between breast mesenchymal and epithelial cells. Conclusions The described heterotypic co-culture system will prove useful for further characterization of the molecular mechanisms mediating interactions between human normal or neoplastic breast epithelial cells and the stroma, and will provide a framework to test the relevance of the ever-increasing number of oncogenomic alterations identified in human breast cancer. PMID:24916766

  12. Mesenchymal precursor cells maintain the differentiation and proliferation potentials of breast epithelial cells.

    PubMed

    Duss, Stephan; Brinkhaus, Heike; Britschgi, Adrian; Cabuy, Erik; Frey, Daniel M; Schaefer, Dirk J; Bentires-Alj, Mohamed

    2014-06-10

    Stromal-epithelial interactions play a fundamental role in tissue homeostasis, controlling cell proliferation and differentiation. Not surprisingly, aberrant stromal-epithelial interactions contribute to malignancies. Studies of the cellular and molecular mechanisms underlying these interactions require ex vivo experimental model systems that recapitulate the complexity of human tissue without compromising the differentiation and proliferation potentials of human primary cells. We isolated and characterized human breast epithelial and mesenchymal precursors from reduction mammoplasty tissue and tagged them with lentiviral vectors. We assembled heterotypic co-cultures and compared mesenchymal and epithelial cells to cells in corresponding monocultures by analyzing growth, differentiation potentials, and gene expression profiles. We show that heterotypic culture of non-immortalized human primary breast epithelial and mesenchymal precursors maintains their proliferation and differentiation potentials and constrains their growth. We further describe the gene expression profiles of stromal and epithelial cells in co-cultures and monocultures and show increased expression of the tumor growth factor beta (TGFβ) family member inhibin beta A (INHBA) in mesenchymal cells grown as co-cultures compared with monocultures. Notably, overexpression of INHBA in mesenchymal cells increases colony formation potential of epithelial cells, suggesting that it contributes to the dynamic reciprocity between breast mesenchymal and epithelial cells. The described heterotypic co-culture system will prove useful for further characterization of the molecular mechanisms mediating interactions between human normal or neoplastic breast epithelial cells and the stroma, and will provide a framework to test the relevance of the ever-increasing number of oncogenomic alterations identified in human breast cancer.

  13. Differential Effects of Isoxazole-9 on Neural Stem/Progenitor Cells, Oligodendrocyte Precursor Cells, and Endothelial Progenitor Cells

    PubMed Central

    Maki, Takakuni; Shindo, Akihiro; Osumi, Noriko; Zhao, Jing; Lin, Hong; Holder, Julie C.; Chuang, Tsu Tshen; McNeish, John D.; Arai, Ken; Lo, Eng H.

    2015-01-01

    Adult mammalian brain can be plastic after injury and disease. Therefore, boosting endogenous repair mechanisms would be a useful therapeutic approach for neurological disorders. Isoxazole-9 (Isx-9) has been reported to enhance neurogenesis from neural stem/progenitor cells (NSPCs). However, the effects of Isx-9 on other types of progenitor/precursor cells remain mostly unknown. In this study, we investigated the effects of Isx-9 on the three major populations of progenitor/precursor cells in brain: NSPCs, oligodendrocyte precursor cells (OPCs), and endothelial progenitor cells (EPCs). Cultured primary NSPCs, OPCs, or EPCs were treated with various concentrations of Isx-9 (6.25, 12.5, 25, 50 μM), and their cell numbers were counted in a blinded manner. Isx-9 slightly increased the number of NSPCs and effectively induced neuronal differentiation of NSPCs. However, Isx-9 significantly decreased OPC number in a concentration-dependent manner, suggesting cytotoxicity. Isx-9 did not affect EPC cell number. But in a matrigel assay of angiogenesis, Isx-9 significantly inhibited tube formation in outgrowth endothelial cells derived from EPCs. This potential anti-tube-formation effect of Isx-9 was confirmed in a brain endothelial cell line. Taken together, our data suggest that mechanisms and targets for promoting stem/progenitor cells in the central nervous system may significantly differ between cell types. PMID:26407349

  14. Cerebellar granule cells are predominantly generated by terminal symmetric divisions of granule cell precursors.

    PubMed

    Nakashima, Kie; Umeshima, Hiroki; Kengaku, Mineko

    2015-06-01

    Neurons in the central nervous system (CNS) are generated by symmetric and asymmetric cell division of neural stem cells and their derivative progenitor cells. Cerebellar granule cells are the most abundant neurons in the CNS, and are generated by intensive cell division of granule cell precursors (GCPs) during postnatal development. Dysregulation of GCP cell cycle is causal for some subtypes of medulloblastoma. However, the details and mechanisms underlying neurogenesis from GCPs are not well understood. Using long-term live-cell imaging of proliferating GCPs transfected with a fluorescent newborn-granule cell marker, we found that GCPs underwent predominantly symmetric divisions, generating two GCPs or two neurons, while asymmetric divisions generating a GCP and a neuron were only occasionally observed, in both dissociated culture and within tissues of isolated cerebellar lobules. We found no significant difference in cell cycle length between proliferative and neurogenic divisions, or any consistent changes in cell cycle length during repeated proliferative division. Unlike neural stem cells in the cerebral cortex and spinal cord, which generate many neurons by repeated asymmetric division, cerebellar GCPs produce neurons predominantly by terminal symmetric division. These results indicate diverse mechanisms of neurogenesis in the mammalian brain. © 2015 Wiley Periodicals, Inc.

  15. Accumulation of specific sterol precursors targets a MAP kinase cascade mediating cell-cell recognition and fusion.

    PubMed

    Weichert, Martin; Lichius, Alexander; Priegnitz, Bert-Ewald; Brandt, Ulrike; Gottschalk, Johannes; Nawrath, Thorben; Groenhagen, Ulrike; Read, Nick D; Schulz, Stefan; Fleißner, André

    2016-10-18

    Sterols are vital components of eukaryotic cell membranes. Defects in sterol biosynthesis, which result in the accumulation of precursor molecules, are commonly associated with cellular disorders and disease. However, the effects of these sterol precursors on the metabolism, signaling, and behavior of cells are only poorly understood. In this study, we show that the accumulation of only ergosterol precursors with a conjugated double bond in their aliphatic side chain specifically disrupts cell-cell communication and fusion in the fungus Neurospora crassa Genetically identical germinating spores of this fungus undergo cell-cell fusion, thereby forming a highly interconnected supracellular network during colony initiation. Before fusion, the cells use an unusual signaling mechanism that involves the coordinated and alternating switching between signal sending and receiving states of the two fusion partners. Accumulation of only ergosterol precursors with a conjugated double bond in their aliphatic side chain disrupts this coordinated cell-cell communication and suppresses cell fusion. These specific sterol precursors target a single ERK-like mitogen-activated protein (MAP) kinase (MAK-1)-signaling cascade, whereas a second MAP kinase pathway (MAK-2), which is also involved in cell fusion, is unaffected. These observations indicate that a minor specific change in sterol structure can exert a strong detrimental effect on a key signaling pathway of the cell, resulting in the absence of cell fusion.

  16. Cytotoxicity of CD56-positive lymphocytes against autologous B-cell precursor acute lymphoblastic leukemia cells.

    PubMed

    Fei, F; Lim, M; George, A A; Kirzner, J; Lee, D; Seeger, R; Groffen, J; Abdel-Azim, H; Heisterkamp, N

    2015-04-01

    Precursor B-lineage acute lymphoblastic leukemia (pre-B ALL) affects hematopoietic development and therefore is associated with immune deficiencies that can be further exacerbated by chemotherapy. It is unclear if and when monoclonal antibodies (mAbs) that stimulate antibody-mediated cellular cytotoxicity (ADCC) can be used for treatment because this depends on the presence of functional effector cells. Here, we used flow cytometry to determine that patient samples at diagnosis, post-induction and relapse contain detectable numbers of CD56+ cells. We were able to selectively expand CD56+ immune effector cells from bone marrow and peripheral blood samples at diagnosis and at various stages of treatment by co-culture with artificial antigen-presenting K562 clone 9.mbIL-21 cells. Amplified CD56+CD3- cells had spontaneous and anti-B cell-activating factor receptor mAb-stimulated ADCC activity against allogeneic ALL cells, which could be further enhanced by IL-15. Importantly, matched CD56+ effector cells also killed autologous ALL cells grown out from leukemia samples of the same patient, through both spontaneous as well as antibody-dependent cellular cytotoxicity. Since autologous cell therapy will not be complicated by graft-versus-host disease, our results show that expanded CD56+ cells could be applied for treatment of pre-B ALL without transplantation, or for purging of bone marrow in the setting of autologous bone marrow transplants.

  17. LPS-stimulated human bone marrow stroma cells support myeloid cell development and progenitor cell maintenance.

    PubMed

    Ziegler, Patrick; Boettcher, Steffen; Takizawa, Hitoshi; Manz, Markus G; Brümmendorf, Tim H

    2016-01-01

    The nonhematopoietic bone marrow (BM) microenvironment provides a functional niche for hematopoietic cell maintenance, recruitment, and differentiation. It consists of multiple cell types including vasculature, bone, adipose tissue, and fibroblast-like bone marrow stromal cells (BMSC), which can be summarized under the generic term niche cells. BMSC express Toll-like receptors (TLRs) and are capable to respond to TLR-agonists by changing their cytokine expression pattern in order to more efficiently support hematopoiesis. Here, we show that in addition to enhanced myeloid colony formation from human CD34+ cells, lipopolysaccharide (LPS) stimulation retains overall higher numbers of CD34+ cells in co-culture assays using BMSC, with eightfold more CD34+ cells that underwent up to three divisions as compared to non-stimulated assays. When subjected to cytokine-supplemented myeloid colony-forming unit (CFU) assays or transplanted into newborn RAG2(-/-) γc (-/-) mice, CD34(+) cells from LPS-stimulated BMSC cultures give rise to the full spectrum of myeloid colonies and T and B cells, respectively, thus supporting maintenance of myeloid and lymphoid primed hematopoietic progenitor cells (HPCs) under inflammatory conditions. Collectively, we suggest that BMSC enhance hematopoiesis during inflammatory conditions to support the replenishment of innate immune effector cells and to prevent the exhaustion of the hematopoietic stem and progenitor cell (HSPC) pool.

  18. Hedgehog Signaling in the Maintenance of Cancer Stem Cells.

    PubMed

    Cochrane, Catherine R; Szczepny, Anette; Watkins, D Neil; Cain, Jason E

    2015-08-11

    Cancer stem cells (CSCs) represent a rare population of cells with the capacity to self-renew and give rise to heterogeneous cell lineages within a tumour. Whilst the mechanisms underlying the regulation of CSCs are poorly defined, key developmental signaling pathways required for normal stem and progenitor functions have been strongly implicated. Hedgehog (Hh) signaling is an evolutionarily-conserved pathway essential for self-renewal and cell fate determination. Aberrant Hh signaling is associated with the development and progression of various types of cancer and is implicated in multiple aspects of tumourigenesis, including the maintenance of CSCs. Here, we discuss the mounting evidence suggestive of Hh-driven CSCs in the context of haematological malignancies and solid tumours and the novel strategies that hold the potential to block many aspects of the transformation attributed to the CSC phenotype, including chemotherapeutic resistance, relapse and metastasis.

  19. Hedgehog Signaling in the Maintenance of Cancer Stem Cells

    PubMed Central

    Cochrane, Catherine R.; Szczepny, Anette; Watkins, D. Neil; Cain, Jason E.

    2015-01-01

    Cancer stem cells (CSCs) represent a rare population of cells with the capacity to self-renew and give rise to heterogeneous cell lineages within a tumour. Whilst the mechanisms underlying the regulation of CSCs are poorly defined, key developmental signaling pathways required for normal stem and progenitor functions have been strongly implicated. Hedgehog (Hh) signaling is an evolutionarily-conserved pathway essential for self-renewal and cell fate determination. Aberrant Hh signaling is associated with the development and progression of various types of cancer and is implicated in multiple aspects of tumourigenesis, including the maintenance of CSCs. Here, we discuss the mounting evidence suggestive of Hh-driven CSCs in the context of haematological malignancies and solid tumours and the novel strategies that hold the potential to block many aspects of the transformation attributed to the CSC phenotype, including chemotherapeutic resistance, relapse and metastasis. PMID:26270676

  20. Establishment of a cell line with features of early dendritic cell precursors from fetal mouse skin.

    PubMed

    Girolomoni, G; Lutz, M B; Pastore, S; Assmann, C U; Cavani, A; Ricciardi-Castagnoli, P

    1995-08-01

    During ontogeny, the skin is progressively populated by major histocompatibility complex class II-negative dendritic cell (DC) precursors that then mature into efficient antigen-presenting cells (APC). To characterize these DC progenitors better, we generated myeloid cell lines from fetal mouse skin by infecting cell suspensions with a retroviral vector carrying an envAKR-mycMH2 fusion gene. These cells, represented by the line FSDC, displayed a dendritic morphology and their proliferation in serum-free medium was promoted by granulocyte/macrophage colony-stimulating factor (GM-CSF), but not macrophage-CSF. FSDC expressed strong surface-membrane ATP/ADPase activity, intracellular staining for 2A1 antigen, and a surface phenotype consistent with a myeloid precursor: H-2d,b+, I-Ad,b+, CD54+, CD11b+, CD11c+, 2.4G2+, F4/80+, CD44+, 2F8+, ER-MP 12-, Sca-1+, Sca-2+, NLDC-145-, B7.2+, B7.1-, J11d-, B220-, Thy-1-, and CD3-. FSDC stimulated poorly allogeneic or syngeneic T cells in the primary mixed-leukocyte reaction, and markedly increased this function after treatment with GM-CSF, GM-CSF and interleukin (IL)-4 or interferon-gamma (IFN-gamma); in contrast, stem cell factor, IL-1 alpha and tumor necrosis factor-alpha had no effect. Preculture with IFN-gamma was required for presentation of haptens to primed T cells in vitro. However, FSDC, even after cytokine activation, were less potent APC than adult epidermal Langerhans cells in both of the above assays. Finally, FSDC derivatized with haptens and injected either intravenously or subcutaneously could efficiently induce contact sensitivity responses in naive syngeneic mice. The results indicate that fetal mouse skin is colonized by myeloid precursors possessing a macrophage/immature DC-like surface phenotype and priming capacity in vivo. These cells need further differentiation and activation signals (e.g. cytokines) to express their antigen presenting potential in vitro.

  1. The thymus exports long-lived fully committed T cell precursors that can colonize primary lymphoid organs.

    PubMed

    Lambolez, Florence; Arcangeli, Marie-Laure; Joret, Anne-Marie; Pasqualetto, Valérie; Cordier, Corinne; Di Santo, James P; Rocha, Benedita; Ezine, Sophie

    2006-01-01

    Thymic export of cells is believed to be restricted to mature T cells. Here we show that the thymus also exports fully committed T cell precursors that colonize primary lymphoid organs. These precursor cells exited the thymus before T cell receptor rearrangements and colonized lymphoid organs such as the thymus and the gut. Migration of the thymic T cell-committed precursors led to permanent colonization of the gut precursor compartment, improved the capacity of gut precursors to further differentiate into T cells and was sufficient for the generation of 'euthymic like' CD8alphaalpha(+) intraepithelial lymphocytes. These data demonstrate a new function for the thymus in peripheral seeding with T cell precursors that become long lived after thymus export.

  2. Isolation and Study of Adipocyte Precursors

    PubMed Central

    Church, Christopher; Berry, Ryan; Rodeheffer, Matthew S

    2014-01-01

    White adipose tissue (WAT) is a heterogeneous tissue composed of lipid-filled adipocytes and several non-adipocyte cell populations, including endothelial, blood, uncharacterized stromal, and adipocyte precursor cells. Although lipid-filled adipocytes account for the majority of WAT volume and mass, non-adipocyte cell populations have critical roles in WAT maintenance, growth and function. As mature adipocytes are terminally-differentiated post-mitotic cells, differentiation of adipocyte precursors is required for hyperplastic WAT growth during development and in obesity. In this chapter, we present methods to separate adipocyte precursor cells from other non-adipocyte cell populations within WAT for analysis by flow cytometry or purification by fluorescence-activated cell sorting (FACS). Additionally, we provide methods to study the adipogenic capacity of purified adipocyte precursor cells ex vivo. PMID:24480340

  3. Cytotoxicity of CD56-positive lymphocytes against autologous B-cell precursor acute lymphoblastic leukemia cells

    PubMed Central

    Fei, Fei; Lim, Min; George, Aswathi A.; Kirzner, Jonathan; Lee, Dean; Seeger, Robert; Groffen, John; Abdel-Azim, Hisham; Heisterkamp, Nora

    2014-01-01

    Precursor B-lineage acute lymphoblastic leukemia (pre-B ALL) affects hematopoietic development and therefore is associated with immune deficiencies that can be further exacerbated by chemotherapy. It is unclear if and when monoclonal antibodies (mAbs) that stimulate antibody-mediated cellular cytotoxicity (ADCC) can be used for treatment because this depends on the presence of functional effector cells. Here, we used flow cytometry to determine that patient samples at diagnosis, post-induction and relapse contain detectable numbers of CD56+ cells. We were able to selectively expand CD56+ immune effector cells from bone marrow and peripheral blood samples at diagnosis and at various stages of treatment by co-culture with artificial antigen-presenting K562 clone 9.mbIL-21 cells. Amplified CD56+CD3- cells had spontaneous and anti-BAFF-R mAb-stimulated ADCC activity against autologous ALL cells, which could be further enhanced by IL15. Importantly, matched CD56+ effector cells also killed autologous ALL cells grown out from leukemia samples of the same patient, through both spontaneous as well as antibody-dependent cellular cytotoxicity. Since autologous cell therapy will not be complicated by graft-versus-host disease, our results show that expanded CD56+ cells could be applied for treatment of pre-B-ALL without transplantation, or for purging of bone marrow in the setting of autologous bone marrow transplants. PMID:25134458

  4. IPC: professional type 1 interferon-producing cells and plasmacytoid dendritic cell precursors.

    PubMed

    Liu, Yong-Jun

    2005-01-01

    Type 1 interferon-(alpha, beta, omega)-producing cells (IPCs), also known as plasmacytoid dendritic cell precursors (pDCs), represent 0.2%-0.8% of peripheral blood mononuclear cells in both humans and mice. IPCs display plasma cell morphology, selectively express Toll-like receptor (TLR)-7 and TLR9, and are specialized in rapidly secreting massive amounts of type 1 interferon following viral stimulation. IPCs can promote the function of natural killer cells, B cells, T cells, and myeloid DCs through type 1 interferons during an antiviral immune response. At a later stage of viral infection, IPCs differentiate into a unique type of mature dendritic cell, which directly regulates the function of T cells and thus links innate and adaptive immune responses. After more than two decades of effort by researchers, IPCs finally claim their place in the hematopoietic chart as the most important cell type in antiviral innate immunity. Understanding IPC biology holds future promise for developing cures for infectious diseases, cancer, and autoimmune diseases.

  5. Schwann Cells in Neuromuscular Junction Formation and Maintenance.

    PubMed

    Barik, Arnab; Li, Lei; Sathyamurthy, Anupama; Xiong, Wen-Cheng; Mei, Lin

    2016-09-21

    The neuromuscular junction (NMJ) is a tripartite synapse that is formed by motor nerve terminals, postjunctional muscle membranes, and terminal Schwann cells (TSCs) that cover the nerve-muscle contact. NMJ formation requires intimate communications among the three different components. Unlike nerve-muscle interaction, which has been well characterized, less is known about the role of SCs in NMJ formation and maintenance. We show that SCs in mice lead nerve terminals to prepatterned AChRs. Ablating SCs at E8.5 (i.e., prior nerve arrival at the clusters) had little effect on aneural AChR clusters at E13.5, suggesting that SCs may not be necessary for aneural clusters. SC ablation at E12.5, a time when phrenic nerves approach muscle fibers, resulted in smaller and fewer nerve-induced AChR clusters; however, SC ablation at E15.5 reduced AChR cluster size but had no effect on cluster density, suggesting that SCs are involved in AChR cluster maturation. Miniature endplate potential amplitude, but not frequency, was reduced when SCs were ablated at E15.5, suggesting that postsynaptic alterations may occur ahead of presynaptic deficits. Finally, ablation of SCs at P30, after NMJ maturation, led to NMJ fragmentation and neuromuscular transmission deficits. Miniature endplate potential amplitude was reduced 3 d after SC ablation, but both amplitude and frequency were reduced 6 d after. Together, these results indicate that SCs are not only required for NMJ formation, but also necessary for its maintenance; and postsynaptic function and structure appeared to be more sensitive to SC ablation. Neuromuscular junctions (NMJs) are critical for survival and daily functioning. Defects in NMJ formation during development or maintenance in adulthood result in debilitating neuromuscular disorders. The role of Schwann cells (SCs) in NMJ formation and maintenance was not well understood. We genetically ablated SCs during development and after NMJ formation to investigate the consequences

  6. Schwann Cells in Neuromuscular Junction Formation and Maintenance

    PubMed Central

    Barik, Arnab; Li, Lei; Sathyamurthy, Anupama; Xiong, Wen-Cheng

    2016-01-01

    The neuromuscular junction (NMJ) is a tripartite synapse that is formed by motor nerve terminals, postjunctional muscle membranes, and terminal Schwann cells (TSCs) that cover the nerve-muscle contact. NMJ formation requires intimate communications among the three different components. Unlike nerve-muscle interaction, which has been well characterized, less is known about the role of SCs in NMJ formation and maintenance. We show that SCs in mice lead nerve terminals to prepatterned AChRs. Ablating SCs at E8.5 (i.e., prior nerve arrival at the clusters) had little effect on aneural AChR clusters at E13.5, suggesting that SCs may not be necessary for aneural clusters. SC ablation at E12.5, a time when phrenic nerves approach muscle fibers, resulted in smaller and fewer nerve-induced AChR clusters; however, SC ablation at E15.5 reduced AChR cluster size but had no effect on cluster density, suggesting that SCs are involved in AChR cluster maturation. Miniature endplate potential amplitude, but not frequency, was reduced when SCs were ablated at E15.5, suggesting that postsynaptic alterations may occur ahead of presynaptic deficits. Finally, ablation of SCs at P30, after NMJ maturation, led to NMJ fragmentation and neuromuscular transmission deficits. Miniature endplate potential amplitude was reduced 3 d after SC ablation, but both amplitude and frequency were reduced 6 d after. Together, these results indicate that SCs are not only required for NMJ formation, but also necessary for its maintenance; and postsynaptic function and structure appeared to be more sensitive to SC ablation. SIGNIFICANCE STATEMENT Neuromuscular junctions (NMJs) are critical for survival and daily functioning. Defects in NMJ formation during development or maintenance in adulthood result in debilitating neuromuscular disorders. The role of Schwann cells (SCs) in NMJ formation and maintenance was not well understood. We genetically ablated SCs during development and after NMJ formation to

  7. Formation and maintenance of the Golgi apparatus in plant cells.

    PubMed

    Ito, Yoko; Uemura, Tomohiro; Nakano, Akihiko

    2014-01-01

    The Golgi apparatus plays essential roles in intracellular trafficking, protein and lipid modification, and polysaccharide synthesis in eukaryotic cells. It is well known for its unique stacked structure, which is conserved among most eukaryotes. However, the mechanisms of biogenesis and maintenance of the structure, which are deeply related to ER-Golgi and intra-Golgi transport systems, have long been mysterious. Now having extremely powerful microscopic technologies developed for live-cell imaging, the plant Golgi apparatus provides an ideal system to resolve the question. The plant Golgi apparatus has unique features that are not conserved in other kingdoms, which will also give new insights into the Golgi functions in plant life. In this review, we will summarize the features of the plant Golgi apparatus and transport mechanisms around it, with a focus on recent advances in Golgi biogenesis by live imaging of plants cells. © 2014 Elsevier Inc. All rights reserved.

  8. Progranulin promotes the retinal precursor cell proliferation and the photoreceptor differentiation in the mouse retina.

    PubMed

    Kuse, Yoshiki; Tsuruma, Kazuhiro; Sugitani, Sou; Izawa, Hiroshi; Ohno, Yuta; Shimazawa, Masamitsu; Hara, Hideaki

    2016-03-31

    Progranulin (PGRN) is a secreted growth factor associated with embryo development, tissue repair, and inflammation. In a previous study, we showed that adipose-derived stem cell-conditioned medium (ASC-CM) is rich in PGRN. In the present study, we investigated whether PGRN is associated with retinal regeneration in the mammalian retina. We evaluated the effect of ASC-CM using the N-methyl-N-nitrosourea-induced retinal damage model in mice. ASC-CM promoted the differentiation of photoreceptor cells following retinal damage. PGRN increased the number of BrdU(+) cells in the outer nuclear layer following retinal damage some of which were Rx (retinal precursor cell marker) positive. PGRN also increased the number of rhodopsin(+) photoreceptor cells in primary retinal cell cultures. SU11274, a hepatocyte growth factor (HGF) receptor inhibitor, attenuated the increase. These findings suggest that PGRN may affect the differentiation of retinal precursor cells to photoreceptor cells through the HGF receptor signaling pathway.

  9. IL-9-Producing Mast Cell Precursors and Food Allergy

    DTIC Science & Technology

    2016-10-01

    development of anaphylactic response to food allergens (This novel cell type was originally named as IMCP9 in the proposal). The central hypothesis is that...transfer Fig. 3 Origin of intestinal MCPs, MMC9, and CD4+TH2 cells in irradiated recipient mice after reconstitution in a murine model of food...producing innate cells with MC-lineage molecular signatures. Bone Marrow MCPs Give Rise to Intestinal MMC9s To examine theMC lineage origin of intestinal

  10. Generation of GABAergic and dopaminergic interneurons from endogenous embryonic olfactory bulb precursor cells.

    PubMed

    Vergaño-Vera, Eva; Yusta-Boyo, María J; de Castro, Fernando; Bernad, Antonio; de Pablo, Flora; Vicario-Abejón, Carlos

    2006-11-01

    During the embryonic period, many olfactory bulb (OB) interneurons arise in the lateral ganglionic eminence (LGE) from precursor cells expressing Dlx2, Gsh2 and Er81 transcription factors. Whether GABAergic and dopaminergic interneurons are also generated within the embryonic OB has not been studied thoroughly. In contrast to abundant Dlx2 and Gsh2 expression in ganglionic eminences (GE), Dlx2 and Gsh2 proteins are not expressed in the E12.5-13.5 mouse OB, whereas the telencephalic pallial domain marker Pax6 is abundant. We found GABAergic and dopaminergic neurons originating from dividing precursor cells in E13.5 OB and in short-term dissociated cultures prepared from the rostral half of E13.5 OB. In OB cultures, 22% of neurons were GAD+, of which 53% were Dlx2+, whereas none expressed Gsh2. By contrast, 70% of GAD+ cells in GE cultures were Dlx2+ and 16% expressed Gsh2. In E13.5 OB slices transplanted with EGFP-labeled E13.5 OB precursor cells, 31.7% of EGFP+ cells differentiated to GABAergic neurons. OB and LGE precursors transplanted into early postnatal OB migrated and differentiated in distinct patterns. Transplanted OB precursors gave rise to interneurons with dendritic spines in close proximity to synaptophysin-positive boutons. Interneurons were also abundant in differentiating OB neural stem cell cultures; the neurons responded to the neurotrophin Bdnf and expressed presynaptic proteins. In vivo, the Bdnf receptor TrkB colocalized with synaptic proteins at the glomeruli. These findings suggest that, in addition to receiving interneurons from the LGE, the embryonic OB contains molecularly distinct local precursor cells that generate mature GABAergic and dopaminergic neurons.

  11. B-cell precursor acute lymphoblastic leukemia and stromal cells communicate through Galectin-3

    PubMed Central

    Fei, Fei; Joo, Eun Ji; Tarighat, Somayeh S.; Schiffer, Isabelle; Paz, Helicia; Fabbri, Muller; Abdel-Azim, Hisham; Groffen, John; Heisterkamp, Nora

    2015-01-01

    The molecular interactions between B-cell precursor acute lymphoblastic leukemia (pre-B ALL) cells and stromal cells in the bone marrow that provide microenvironmentally-mediated protection against therapeutic drugs are not well-defined. Galectin-3 (Lgals3) is a multifunctional galactose-binding lectin with reported location in the nucleus, cytoplasm and extracellular space in different cell types. We previously reported that ALL cells co-cultured with stroma contain high levels of Galectin-3. We here establish that, in contrast to more mature B-lineage cancers, Galectin-3 detected in and on the ALL cells originates from stromal cells, which express it on their surface, secrete it as soluble protein and also in exosomes. Soluble and stromal-bound Galectin-3 is internalized by ALL cells, transported to the nucleus and stimulates transcription of endogenous LGALS3 mRNA. When human and mouse ALL cells develop tolerance to different drugs while in contact with protective stromal cells, Galectin-3 protein levels are consistently increased. This correlates with induction of Galectin-3 transcription in the ALL cells. Thus Galectin-3 sourced from stroma becomes supplemented by endogenous Galectin-3 production in the pre-B ALL cells that are under continuous stress from drug treatment. Our data suggest that stromal Galectin-3 may protect ALL cells through auto-induction of Galectin-3 mRNA and tonic NFκB pathway activation. Since endogenously synthesized Galectin-3 protects pre-B ALL cells against drug treatment, we identify Galectin-3 as one possible target to counteract the protective effects of stroma. PMID:25869099

  12. Alzheimer's disease therapeutics targeted to the control of amyloid precursor protein translation: maintenance of brain iron homeostasis.

    PubMed

    Bandyopadhyay, Sanghamitra; Rogers, Jack T

    2014-04-15

    The neurotoxicity of amyloid beta (Aβ), a major cleavage product of the amyloid precursor protein (APP), is enhanced by iron, as found in the amyloid plaques of Alzheimer's disease (AD) patients. By contrast, the long-known neuroprotective activity of APP is evident after α-secretase cleavage of the precursor to release sAPPα, and depends on the iron export actions of APP itself. The latter underlie its neurotrophic and protective effects in facilitating the homeostatic actions of ferroportin mediated-iron export. Thus APP-dependent iron export may alleviate oxidative stress by minimizing labile iron thus protecting neurons from iron overload during stroke and hemorrhage. Consistent with this, altered phosphorylation of iron-regulatory protein-1 (IRP1) and its signaling processes play a critical role in modulating APP translation via the 5' untranslated region (5'UTR) of its transcript. The APP 5'UTR region encodes a functional iron-responsive element (IRE) RNA stem loop that represents a potential target for modulating APP production. Targeted regulation of APP gene expression via the modulation of 5'UTR sequence function represents a novel approach for the potential treatment of AD since altering APP translation can be used to improve both the protective brain iron balance and provide anti-amyloid efficacy. Approved drugs including paroxetine and desferrioxamine and several novel compounds have been identified that suppress abnormal metal-promoted Aβ accumulation with a subset of these acting via APP 5'UTR-dependent mechanisms to modulate APP translation and cleavage to generate the non-toxic sAPPα.

  13. Isolation of neural precursor cells from skeletal muscle tissues and their differentiation into neuron-like cells.

    PubMed

    Park, Jung Sik; Kim, Soyeon; Han, Dong Keun; Lee, Ji Youl; Ghil, Sung Ho

    2007-08-31

    Skeletal muscle contains several precursor cells that generate muscle, bone, cartilage and blood cells. Although there are reports that skeletal muscle-derived cells can trans-differentiate into neural-lineage cells, methods for isolating precursor cells, and procedures for successful neural induction have not been fully established. Here, we show that the preplate cell isolation method, which separates cells based on their adhesion characteristics, permits separation of cells possessing neural precursor characteristics from other cells of skeletal muscle tissues. We term these isolated cells skeletal muscle-derived neural precursor cells (SMNPs). The isolated SMNPs constitutively expressed neural stem cell markers. In addition, we describe effective neural induction materials permitting the neuron-like cell differentiation of SMNPs. Treatment with retinoic acid or forskolin facilitated morphological changes in SMNPs; they differentiated into neuron-like cells that possessed specific neuronal markers. These results suggest that the preplate isolation method, and treatment with retinoic acid or forskolin, may provide vital assistance in the use of SMNPs in cell-based therapy of neuronal disease.

  14. Retrovirus-mediated conditional immortalization and analysis of established cell lines of osteoclast precursor cells

    SciTech Connect

    Kawata, Shigehisa; Suzuki, Jun; Maruoka, Masahiro; Mizutamari, Megumi; Ishida-Kitagawa, Norihiro; Yogo, Keiichiro; Jat, Parmjit S.; Shishido, Tomoyuki . E-mail: shishid@bs.naist.jp

    2006-11-10

    Osteoclast precursor cells (OPCs) have previously been established from bone marrow cells of SV40 temperature-sensitive T antigen-expressing transgenic mice. Here, we use retrovirus-mediated gene transfer to conditionally immortalize OPCs by expressing temperature-sensitive large T antigen (tsLT) from wild type bone marrow cells. The immortalized OPCs proliferated at the permissive temperature of 33.5 deg. C, but stopped growing at the non-permissive temperature of 39 deg. C. In the presence of receptor activator of NF{kappa}B ligand (RANKL), the OPCs differentiated into tartrate-resistant acid phosphatase (TRAP)-positive cells and formed multinucleate osteoclasts at 33.5 deg. C. From these OPCs, we cloned two types of cell lines. Both differentiated into TRAP-positive cells, but one formed multinucleate osteoclasts while the other remained unfused in the presence of RANKL. These results indicate that the established cell lines are useful for analyzing mechanisms of differentiation, particularly multinucleate osteoclast formation. Retrovirus-mediated conditional immortalization should be a useful method to immortalize OPCs from primary bone marrow cells.

  15. Acute hepatitis A induction of precursor B-cell acute lymphoblastic leukemia: a causal relationship?

    PubMed

    Senadhi, V; Emuron, D; Gupta, R

    2010-09-01

    Precursor B-cell acute lymphoblastic leukemia accounts for 2% of all lymphoid neoplasms in the United States and occurs most frequently in childhood, but can also occur in adults with a median age of 39 years. It is more commonly seen in males and in Caucasians. We present a case of a 51-year-old Caucasian female with the development of precursor B-cell acute lymphoblastic leukemia after suffering acute hepatitis A 4 weeks prior to her diagnosis. She presented with malaise for a month without spontaneous bruising/bleeding, infections, or B-symptoms, such as fevers, night sweats, or unintentional weight loss. Nonspecific viral transformation of bone marrow has been discussed in the literature, but we specifically describe hepatitis A-induced adult-onset precursor B-cell acute lymphoblastic leukemia, which is the first reported case in the literature.

  16. Age-related impairment of T cell-induced skeletal muscle precursor cell function

    PubMed Central

    Dumke, Breanna R.

    2011-01-01

    Sarcopenia is the age-associated loss of skeletal muscle mass and strength. Recent evidence suggests that an age-associated loss of muscle precursor cell (MPC) functionality contributes to sarcopenia. The objectives of the present study were to examine the influence of activated T cells on MPCs and determine whether an age-related defect in this signaling occurs. MPCs were collected from the gastrocnemius and plantaris of 3-mo-old (young) and 32-mo-old (old) animals. Splenic T cells were harvested using anti-CD3 Dynabead isolation. T cells were activated for 48 h with costimulation of 100 IU/ml interleukin-2 (IL-2) and 5 μg/ml of anti-CD28. Costimulation increased 5-bromo-2′-deoxyuridine incorporation of T cells from 13.4 ± 4.6% in control to 64.8 ± 6.0% in costimulated cells. Additionally, T cell cytokines increased proliferation on MPCs isolated from young muscle by 24.0 ± 5.7%, whereas there was no effect on MPCs isolated from aged muscle. T cell cytokines were also found to be a chemoattractant. T cells were able to promote migration of MPCs isolated from young muscle; however, MPCs isolated from aged muscle did not respond to the T cell-released chemokines. Conversely, whereas T cell-released cytokines did not affect myogenesis of MPCs isolated from young animals, there was a decrease in MPCs isolated from old animals. These data suggest that T cells may play a critical role in mediating MPC function. Furthermore, aging may alter T cell-induced MPC function. These findings have implications for developing strategies aimed at increasing MPC migration and proliferation leading to an improved regenerative capacity of aged skeletal muscle. PMID:21325640

  17. Evaluating alternative stem cell hypotheses for adult corneal epithelial maintenance

    PubMed Central

    West, John D; Dorà, Natalie J; Collinson, J Martin

    2015-01-01

    In this review we evaluate evidence for three different hypotheses that explain how the corneal epithelium is maintained. The limbal epithelial stem cell (LESC) hypothesis is most widely accepted. This proposes that stem cells in the basal layer of the limbal epithelium, at the periphery of the cornea, maintain themselves and also produce transient (or transit) amplifying cells (TACs). TACs then move centripetally to the centre of the cornea in the basal layer of the corneal epithelium and also replenish cells in the overlying suprabasal layers. The LESCs maintain the corneal epithelium during normal homeostasis and become more active to repair significant wounds. Second, the corneal epithelial stem cell (CESC) hypothesis postulates that, during normal homeostasis, stem cells distributed throughout the basal corneal epithelium, maintain the tissue. According to this hypothesis, LESCs are present in the limbus but are only active during wound healing. We also consider a third possibility, that the corneal epithelium is maintained during normal homeostasis by proliferation of basal corneal epithelial cells without any input from stem cells. After reviewing the published evidence, we conclude that the LESC and CESC hypotheses are consistent with more of the evidence than the third hypothesis, so we do not consider this further. The LESC and CESC hypotheses each have difficulty accounting for one main type of evidence so we evaluate the two key lines of evidence that discriminate between them. Finally, we discuss how lineage-tracing experiments have begun to resolve the debate in favour of the LESC hypothesis. Nevertheless, it also seems likely that some basal corneal epithelial cells can act as long-term progenitors if limbal stem cell function is compromised. Thus, this aspect of the CESC hypothesis may have a lasting impact on our understanding of corneal epithelial maintenance, even if it is eventually shown that stem cells are restricted to the limbus as proposed

  18. Prolonged cultivation of hippocampal neural precursor cells shifts their differentiation potential and selects for aneuploid cells.

    PubMed

    Nguyen, The Duy; Widera, Darius; Greiner, Johannes; Müller, Janine; Martin, Ina; Slotta, Carsten; Hauser, Stefan; Kaltschmidt, Christian; Kaltschmidt, Barbara

    2013-12-01

    Neural precursor cells (NPCs) are lineage-restricted neural stem cells with limited self-renewal, giving rise to a broad range of neural cell types such as neurons, astrocytes, and oligodendrocytes. Despite this developmental potential, the differentiation capacity of NPCs has been controversially discussed concerning the trespassing lineage boundaries, for instance resulting in hematopoietic competence. Assessing their in vitro plasticity, we isolated nestin+/Sox2+, NPCs from the adult murine hippocampus. In vitro-expanded adult NPCs were able to form neurospheres, self-renew, and differentiate into neuronal, astrocytic, and oligodendrocytic cells. Although NPCs cultivated in early passage efficiently gave rise to neuronal cells in a directed differentiation assay, extensively cultivated NPCs revealed reduced potential for ectodermal differentiation. We further observed successful differentiation of long-term cultured NPCs into osteogenic and adipogenic cell types, suggesting that NPCs underwent a fate switch during culture. NPCs cultivated for more than 12 passages were aneuploid (abnormal chromosome numbers such as 70 chromosomes). Furthermore, they showed growth factor-independent proliferation, a hallmark of tumorigenic transformation. In conclusion, our findings substantiate the lineage restriction of NPCs from adult mammalian hippocampus. Prolonged cultivation results, however, in enhanced differentiation potential, which may be attributed to transformation events leading to aneuploid cells.

  19. Export of Precursor tRNAIle from the Nucleus to the Cytoplasm in Human Cells

    PubMed Central

    Wei, Min; Zhao, Xia; Liu, Mi; Niu, Meijuan; Seif, Elias; Kleiman, Lawrence

    2016-01-01

    In the current concept, tRNA maturation in vertebrate cells, including splicing of introns, trimming of 5’ leader and 3’ trailer, and adding of CCA, is thought to occur exclusively in the nucleus. Here we provide evidence to challenge this concept. Unspliced intron-containing precursor tRNAIle was identified in Human Immunodeficiency Virus type 1 (HIV-1) virions, which are synthesized in the cytoplasm. Northern blot, confocal microscopy and quantitative RT-PCR further verified enrichment of this unspliced tRNAIle within the cytoplasm in human cells. In addition to containing an intron, the cytoplasmic precursor tRNAIle also contains a short incompletely processed 5´ leader and a 3´ trailer, which abundance is around 1000 fold higher than the nuclear precursor tRNAIle with long 5’ leader and long 3’ trailer. In vitro data also suggest that the cytoplasmic unspliced end-immature precursor tRNAIle could be processed by short isoform of RNase Z, but not long isoform of RNase Z. These data suggest that precursor tRNAs could export from the nucleus to the cytoplasm in human cells, instead of be processed only in the nucleus. PMID:27101286

  20. Export of Precursor tRNAIle from the Nucleus to the Cytoplasm in Human Cells.

    PubMed

    Wei, Min; Zhao, Xia; Liu, Mi; Niu, Meijuan; Seif, Elias; Kleiman, Lawrence

    2016-01-01

    In the current concept, tRNA maturation in vertebrate cells, including splicing of introns, trimming of 5' leader and 3' trailer, and adding of CCA, is thought to occur exclusively in the nucleus. Here we provide evidence to challenge this concept. Unspliced intron-containing precursor tRNAIle was identified in Human Immunodeficiency Virus type 1 (HIV-1) virions, which are synthesized in the cytoplasm. Northern blot, confocal microscopy and quantitative RT-PCR further verified enrichment of this unspliced tRNAIle within the cytoplasm in human cells. In addition to containing an intron, the cytoplasmic precursor tRNAIle also contains a short incompletely processed 5´ leader and a 3´ trailer, which abundance is around 1000 fold higher than the nuclear precursor tRNAIle with long 5' leader and long 3' trailer. In vitro data also suggest that the cytoplasmic unspliced end-immature precursor tRNAIle could be processed by short isoform of RNase Z, but not long isoform of RNase Z. These data suggest that precursor tRNAs could export from the nucleus to the cytoplasm in human cells, instead of be processed only in the nucleus.

  1. Maintenance and Function of a Plant Chromosome in Human Cells.

    PubMed

    Wada, Naoki; Kazuki, Yasuhiro; Kazuki, Kanako; Inoue, Toshiaki; Fukui, Kiichi; Oshimura, Mitsuo

    2017-02-17

    Replication, segregation, gene expression, and inheritance are essential features of all eukaryotic chromosomes. To delineate the extent of conservation of chromosome functions between humans and plants during evolutionary history, we have generated the first human cell line containing an Arabidopsis chromosome. The Arabidopsis chromosome was mitotically stable in hybrid cells following cell division, and initially existed as a translocated chromosome. During culture, the translocated chromosomes then converted to two types of independent plant chromosomes without human DNA sequences, with reproducibility. One pair of localization signals of CENP-A, a marker of functional centromeres was detected in the Arabidopsis genomic region in independent plant chromosomes. These results suggest that the chromosome maintenance system was conserved between human and plants. Furthermore, the expression of plant endogenous genes was observed in the hybrid cells, implicating that the plant chromosomal region existed as euchromatin in a human cell background and the gene expression system is conserved between two organisms. The present study suggests that the essential chromosome functions are conserved between evolutionarily distinct organisms such as humans and plants. Systematic analyses of hybrid cells may lead to the production of a shuttle vector between animal and plant, and a platform for the genome writing.

  2. Redox changes induced in hippocampal precursor cells by heavy ion irradiation.

    PubMed

    Limoli, C L; Giedzinski, E; Baure, J; Rola, R; Fike, J R

    2007-06-01

    Hippocampal precursors retain the capacity to proliferate and differentiate throughout life, and their progeny, immature neurons, can undergo neurogenesis, a process believed to be important in maintaining the cognitive health of an organism. A variety of stresses including irradiation have been shown to deplete neural precursor cells, an effect that inhibits neurogenesis and is associated with the onset of cognitive impairments. Our past work has shown that neural precursor cells exposed to X-rays or protons exhibit a prolonged increase in oxidative stress, a factor we hypothesize to be critical in regulating the function of these cells after irradiation and other stresses. Here we report that irradiation of hippocampal precursor cells with high-linear energy transfer (LET) 1 GeV/nucleon 56Fe ions leads to significantly higher levels of oxidative stress when compared to lower LET radiations (X-rays, protons). Irradiation with 1 Gy of 56Fe ions elicits twofold to fivefold higher levels of reactive oxygen species (ROS) compared to unirradiated controls, and at lower doses (precursors exhibit a linear dose response 6 h after heavy ion exposure. The use of the antioxidant lipoic acid (LA) was able to reduce ROS levels below background levels when added before or after 56Fe ion irradiation. These results conclusively show that low doses of 56Fe ions can elicit significant levels of oxidative stress in neural precursor cells. Given the prevalence of heavy ions in space and the duration of interplanetary travel, these data suggest that astronauts are at risk for developing cognitive decrements. However, our results also indicate that antioxidants delivered before as radioprotective agents or after as mitigating agents hold promise as effective countermeasures for ameliorating certain adverse effects of heavy ion exposure to the CNS.

  3. Isolation of Precursor Cells from Waste Solid Fat Tissue

    NASA Technical Reports Server (NTRS)

    Byerly, Diane; Sognier, Marguerite A.

    2009-01-01

    A process for isolating tissue-specific progenitor cells exploits solid fat tissue obtained as waste from such elective surgical procedures as abdominoplasties (tummy tucks) and breast reductions. Until now, a painful and risky process of aspiration of bone marrow has been used to obtain a limited number of tissue- specific progenitor cells. The present process yields more tissue-specific progenitor cells and involves much less pain and risk for the patient. This process includes separation of fat from skin, mincing of the fat into small pieces, and forcing a fat saline mixture through a sieve. The mixture is then digested with collagenase type I in an incubator. After centrifugation tissue-specific progenitor cells are recovered and placed in a tissue-culture medium in flasks or Petri dishes. The tissue-specific progenitor cells can be used for such purposes as (1) generating three-dimensional tissue equivalent models for studying bone loss and muscle atrophy (among other deficiencies) and, ultimately, (2) generating replacements for tissues lost by the fat donor because of injury or disease.

  4. Nestin Reporter Transgene Labels Multiple Central Nervous System Precursor Cells

    PubMed Central

    Walker, Avery S.; Goings, Gwendolyn E.; Kim, Yongsoo; Miller, Richard J.; Chenn, Anjen; Szele, Francis G.

    2010-01-01

    Embryonic neuroepithelia and adult subventricular zone (SVZ) stem and progenitor cells express nestin. We characterized a transgenic line that expresses enhanced green fluorescent protein (eGFP) specified to neural tissue by the second intronic enhancer of the nestin promoter that had several novel features. During embryogenesis, the dorsal telencephalon contained many and the ventral telencephalon few eGFP+ cells. eGFP+ cells were found in postnatal and adult neurogenic regions. eGFP+ cells in the SVZ expressed multiple phenotype markers, glial fibrillary acidic protein, Dlx, and neuroblast-specific molecules suggesting the transgene is expressed through the lineage. eGFP+ cell numbers increased in the SVZ after cortical injury, suggesting this line will be useful in probing postinjury neurogenesis. In non-neurogenic regions, eGFP was strongly expressed in oligodendrocyte progenitors, but not in astrocytes, even when they were reactive. This eGFP+ mouse will facilitate studies of proliferative neuroepithelia and adult neurogenesis, as well as of parenchymal oligodendrocytes. PMID:21527990

  5. FGF Signaling Regulates Rod Photoreceptor Cell Maintenance and Regeneration in Zebrafish

    PubMed Central

    Qin, Zhao; Kidd, Ambrose R.; Thomas, Jennifer L.; Poss, Kenneth D.; Hyde, David R.; Raymond, Pamela A.; Thummel, Ryan

    2011-01-01

    Fgf signaling is required for many biological processes involving the regulation of cell proliferation and maintenance, including embryonic patterning, tissue homeostasis, wound healing, and cancer progression. Although the function of Fgf signaling is suggested in several different regeneration models, including appendage regeneration in amphibians and fin and heart regeneration in zebrafish, it has not yet been studied during zebrafish photoreceptor cell regeneration. Here we demonstrate that intravitreal injections of FGF-2 induced rod precursor cell proliferation and photoreceptor cell neuroprotection during intense light damage. Using the dominant-negative Tg(hsp70:dn-fgfr1) transgenic line, we found that Fgf signaling was required for homeostasis of rod, but not cone, photoreceptors. Even though fgfr1 is expressed in both rod and cone photoreceptors, we found that Fgf signaling differentially affected the regeneration of cone and rod photoreceptors in the light-damaged retina, with the dominant-negative hsp70:dn-fgfr1 transgene significantly repressing rod photoreceptor regeneration without affecting cone photoreceptors. These data suggest that rod photoreceptor homeostasis and regeneration is Fgf-dependent and that rod and cone photoreceptors in adult zebrafish are regulated by different signaling pathways. PMID:21945172

  6. Acute myeloid leukemia fusion proteins deregulate genes involved in stem cell maintenance and DNA repair

    PubMed Central

    Alcalay, Myriam; Meani, Natalia; Gelmetti, Vania; Fantozzi, Anna; Fagioli, Marta; Orleth, Annette; Riganelli, Daniela; Sebastiani, Carla; Cappelli, Enrico; Casciari, Cristina; Sciurpi, Maria Teresa; Mariano, Angela Rosa; Minardi, Simone Paolo; Luzi, Lucilla; Muller, Heiko; Di Fiore, Pier Paolo; Frosina, Guido; Pelicci, Pier Giuseppe

    2003-01-01

    Acute myelogenous leukemias (AMLs) are genetically heterogeneous and characterized by chromosomal rearrangements that produce fusion proteins with aberrant transcriptional regulatory activities. Expression of AML fusion proteins in transgenic mice increases the risk of myeloid leukemias, suggesting that they induce a preleukemic state. The underlying molecular and biological mechanisms are, however, unknown. To address this issue, we performed a systematic analysis of fusion protein transcriptional targets. We expressed AML1/ETO, PML/RAR, and PLZF/RAR in U937 hemopoietic precursor cells and measured global gene expression using oligonucleotide chips. We identified 1,555 genes regulated concordantly by at least two fusion proteins that were further validated in patient samples and finally classified according to available functional information. Strikingly, we found that AML fusion proteins induce genes involved in the maintenance of the stem cell phenotype and repress DNA repair genes, mainly of the base excision repair pathway. Functional studies confirmed that ectopic expression of fusion proteins constitutively activates pathways leading to increased stem cell renewal (e.g., the Jagged1/Notch pathway) and provokes accumulation of DNA damage. We propose that expansion of the stem cell compartment and induction of a mutator phenotype are relevant features underlying the leukemic potential of AML-associated fusion proteins. PMID:14660751

  7. Early postradition recovery of hematopoietic stromal precursor cells

    SciTech Connect

    Todriya, T.V.

    1985-04-01

    The aim of this investigation was an immunohistochemical study of alpha-endorphin-producing cells and also a study of rat mast cells (MC in the antral mucosa of the human stomach. Men aged 18 to 30 years undergoing in-patient treatment wre studied. According to the results of radioimmunoassay, antibodies against alpha-endorphin did not react with enkephalins, beta-endorphin, or the C-terminal fragment of beta-endorphin, but had cross reactivity of about 10% with gammaendorphin. Results were subjected to statistical analysis by Student's test at a 85% level of significance and they are shown. The facts presented here suggest that MC of human gastric mucosa include argyrophilic cells which contain alpha-endorphin.

  8. Biliary tree stem cells, precursors to pancreatic committed progenitors: evidence for possible life-long pancreatic organogenesis.

    PubMed

    Wang, Yunfang; Lanzoni, Giacomo; Carpino, Guido; Cui, Cai-Bin; Dominguez-Bendala, Juan; Wauthier, Eliane; Cardinale, Vincenzo; Oikawa, Tsunekazu; Pileggi, Antonello; Gerber, David; Furth, Mark E; Alvaro, Domenico; Gaudio, Eugenio; Inverardi, Luca; Reid, Lola M

    2013-09-01

    Peribiliary glands (PBGs) in bile duct walls, and pancreatic duct glands (PDGs) associated with pancreatic ducts, in humans of all ages, contain a continuous, ramifying network of cells in overlapping maturational lineages. We show that proximal (PBGs)-to-distal (PDGs) maturational lineages start near the duodenum with cells expressing markers of pluripotency (NANOG, OCT4, and SOX2), proliferation (Ki67), self-replication (SALL4), and early hepato-pancreatic commitment (SOX9, SOX17, PDX1, and LGR5), transitioning to PDG cells with no expression of pluripotency or self-replication markers, maintenance of pancreatic genes (PDX1), and expression of markers of pancreatic endocrine maturation (NGN3, MUC6, and insulin). Radial-axis lineages start in PBGs near the ducts' fibromuscular layers with stem cells and end at the ducts' lumens with cells devoid of stem cell traits and positive for pancreatic endocrine genes. Biliary tree-derived cells behaved as stem cells in culture under expansion conditions, culture plastic and serum-free Kubota's Medium, proliferating for months as undifferentiated cells, whereas pancreas-derived cells underwent only approximately 8-10 divisions, then partially differentiated towards an islet fate. Biliary tree-derived cells proved precursors of pancreas' committed progenitors. Both could be driven by three-dimensional conditions, islet-derived matrix components and a serum-free, hormonally defined medium for an islet fate (HDM-P), to form spheroids with ultrastructural, electrophysiological and functional characteristics of neoislets, including glucose regulatability. Implantation of these neoislets into epididymal fat pads of immunocompromised mice, chemically rendered diabetic, resulted in secretion of human C-peptide, regulatable by glucose, and able to alleviate hyperglycemia in hosts. The biliary tree-derived stem cells and their connections to pancreatic committed progenitors constitute a biological framework for life-long pancreatic

  9. Detection of Biosynthetic Precursors, Discovery of Glycosylated Forms, and Homeostasis of Calcitonin in Human Cancer Cells.

    PubMed

    Cao, Feihua; Gamble, Allan B; Onagi, Hideki; Howes, Joanna; Hennessy, James E; Gu, Chen; Morgan, Jeremy A M; Easton, Christopher J

    2017-07-05

    The peptide hormone calcitonin is intimately connected with human cancer development and proliferation. Its biosynthesis is reasoned to proceed via glycine-, α-hydroxyglycine-, glycyllysine-, and glycyllysyllysine-extended precursors; however, as a result of the limitations of current analytical methods, until now, there has been no procedure capable of detecting these individual species in cell or tissue samples. Therefore, their presence and dynamics in cancer had not been established. Here, we report the first methodology for the separation, detection, and quantification of calcitonin and each of its precursors in human cancer cells. We also report the discovery and characterization of O-glycosylated calcitonin and its analogous biosynthetic precursors. Through direct and simultaneous analysis of the glycosylated and nonglycosylated species, we interrogate the hormone biosynthesis. This shows that the cellular calcitonin level is maintained to mitigate effects of biosynthetic enzyme inhibitors that substantially change the proportions of calcitonin-related species released into the culture medium.

  10. Effect of ionizing radiation on human skeletal muscle precursor cells

    PubMed Central

    Jurdana, Mihaela; Cemazar, Maja; Pegan, Katarina; Mars, Tomaz

    2013-01-01

    Background Long term effects of different doses of ionizing radiation on human skeletal muscle myoblast proliferation, cytokine signalling and stress response capacity were studied in primary cell cultures. Materials and methods Human skeletal muscle myoblasts obtained from muscle biopsies were cultured and irradiated with a Darpac 2000 X-ray unit at doses of 4, 6 and 8 Gy. Acute effects of radiation were studied by interleukin – 6 (IL-6) release and stress response detected by the heat shock protein (HSP) level, while long term effects were followed by proliferation capacity and cell death. Results Compared with non-irradiated control and cells treated with inhibitor of cell proliferation Ara C, myoblast proliferation decreased 72 h post-irradiation, this effect was more pronounced with increasing doses. Post-irradiation myoblast survival determined by measurement of released LDH enzyme activity revealed increased activity after exposure to irradiation. The acute response of myoblasts to lower doses of irradiation (4 and 6 Gy) was decreased secretion of constitutive IL-6. Higher doses of irradiation triggered a stress response in myoblasts, determined by increased levels of stress markers (HSPs 27 and 70). Conclusions Our results show that myoblasts are sensitive to irradiation in terms of their proliferation capacity and capacity to secret IL-6. Since myoblast proliferation and differentiation are a key stage in muscle regeneration, this effect of irradiation needs to be taken in account, particularly in certain clinical conditions. PMID:24294183

  11. PROGRAMMED CELL DEATH IN EXTRAOCULAR MUSCLE TENDON/SCLERA PRECURSORS

    EPA Science Inventory

    Abstract

    Purpose: This study was designed to examine the occurrence of natural cell death in the periocular mesenchyme of mouse embryos.

    Methods: Vital staining with LysoTracker Red and Nile blue sulphate as well as terminal nick end labeling (TUNEL) were utiliz...

  12. PROGRAMMED CELL DEATH IN EXTRAOCULAR MUSCLE TENDON/SCLERA PRECURSORS

    EPA Science Inventory

    Abstract

    Purpose: This study was designed to examine the occurrence of natural cell death in the periocular mesenchyme of mouse embryos.

    Methods: Vital staining with LysoTracker Red and Nile blue sulphate as well as terminal nick end labeling (TUNEL) were utiliz...

  13. Hedgehog signalling stimulates precursor cell accumulation and impairs epithelial maturation in the murine oesophagus.

    PubMed

    van Dop, Willemijn A; Rosekrans, Sanne L; Uhmann, Anja; Jaks, Viljar; Offerhaus, G Johan A; van den Bergh Weerman, Marius A; Kasper, Maria; Heijmans, Jarom; Hardwick, James C H; Verspaget, Hein W; Hommes, Daan W; Toftgård, Rune; Hahn, Heidi; van den Brink, Gijs R

    2013-03-01

    In the intestine Hedgehog (Hh) signalling is directed from epithelium to mesenchyme and negatively regulates epithelial precursor cell fate. The role of Hh signalling in the oesophagus has not been studied in vivo. Here the authors examined the role of Hh signalling in epithelial homeostasis of oesophagus. The authors used transgenic mice in which the Hh receptor Patched1 (Ptch1) could be conditionally inactivated in a body-wide manner and mice in which Gli1 could be induced specifically in the epithelium of the skin and oesophagus. Effects on epithelial homeostasis of the oesophagus were examined using immunohistochemistry, in situ hybridisation, transmission electron microscopy and real-time PCR. Hh signalling was examined in patients with oesophageal squamous cell carcinoma (SCC) by quantitative real-time PCR. Sonic Hh is signalled in an autocrine manner in the basal layer of the oesophagus. Activation of Hh signalling resulted in an expansion of the epithelial precursor cell compartment and failure of epithelial maturation and migration. Levels of Hh targets GLI1, HHIP and PTCH1 were increased in SCC compared with normal tissue from the same patients. Here the authors find that Hh signalling positively regulates the precursor cell compartment in the oesophageal epithelium in an autocrine manner. Since Hh signalling targets precursor cells in the oesophageal epithelium and signalling is increased in SCCs, Hh signalling may be involved in oesophageal SCC formation.

  14. Alpha-ketoglutarate Curbs Differentiation and Induces Cell Death in Mesenchymal Stromal Precursors with Mitochondrial Dysfunction.

    PubMed

    Singh, Karmveer; Krug, Linda; Basu, Abhijit; Meyer, Patrick; Treiber, Nicolai; Vander Beken, Seppe; Wlaschek, Meinhard; Kochanek, Stefan; Bloch, Wilhelm; Geiger, Hartmut; Maity, Pallab; Scharffetter-Kochanek, Karin

    2017-04-11

    Increased concentrations of reactive oxygen species (ROS) originating from dysfunctional mitochondria contribute to diverse aging-related degenerative disorders. But so far little is known about the impact of distinct ROS on metabolism and fate of stromal precursor cells. We here demonstrate that an increase in superoxide anion radicals due to superoxide dismutase 2 (Sod2) deficiency in stromal precursor cells suppress osteogenic and adipogenic differentiation through fundamental changes in the global metabolite landscape. Our data identify impairment of the pyruvate and L-glutamine metabolism causing toxic accumulation of alpha-ketoglutarate in the Sod2 deficient and intrinsically aged stromal precursor cells as a major cause for their reduced lineage differentiation. Alpha-ketoglutarate accumulation led to enhanced nucleocytoplasmic vacuolation and chromatin condensation-mediated cell death in Sod2 deficient stromal precursor cells as a consequence of DNA damage, Hif-1α instability and reduced histone H3 (Lys27) acetylation. These findings hold promise for prevention and treatment of mitochondrial disorders commonly associated with aged individuals. This article is protected by copyright. All rights reserved.

  15. VEGFA splicing: divergent isoforms regulate spermatogonial stem cell maintenance

    PubMed Central

    Sargent, Kevin M.; Clopton, Debra T.; Lu, Ningxia; Pohlmeier, William E.

    2015-01-01

    Despite being well-known for regulating angiogenesis in both normal and tumorigenic environments, vascular endothelial growth factor A (VEGFA) has been recently implicated in male fertility, namely in the maintenance of spermatogonial stem cells (SSC). The VEGFA gene can be spliced into multiple distinct isoforms that are either angiogenic or antiangiogenic in nature. Although studies have demonstrated the alternative splicing of VEGFA, including the divergent roles of the two isoform family types, many investigations do not differentiate between them. Data concerning VEGFA in the mammalian testis are limited, but the various angiogenic isoforms appear to promote seminiferous cord formation and to form a gradient across which cells may migrate. Treatment with either antiangiogenic isoforms of VEGFA or with inhibitors to angiogenic signaling impair these processes. Serendipitously, expression of KDR, the primary receptor for both types of VEGFA isoforms, was observed on male germ cells. These findings led to further investigation of the way that VEGFA elicits avascular functions within testes. Following treatment of donor perinatal male mice with either antiangiogenic VEGFA165b or angiogenic VEGFA164 isoforms, seminiferous tubules were less colonized following transplantation with cells from VEGFA165b-treated donors. Thus, VEGFA165b and possibly other antiangiogenic isoforms of VEGFA reduce SSC number either by promoting premature differentiation, inducing cell death, or by preventing SSC formation. Thus, angiogenic isoforms of VEGFA are hypothesized to promote SSC self-renewal, and the divergent isoforms are thought to balance one another to maintain SSC homeostasis in vivo. PMID:26553653

  16. Sonic hedgehog-expressing basal cells are general post-mitotic precursors of functional taste receptor cells

    PubMed Central

    Miura, Hirohito; Scott, Jennifer K.; Harada, Shuitsu; Barlow, Linda A.

    2014-01-01

    Background Taste buds contain ~60 elongate cells and several basal cells. Elongate cells comprise three functional taste cell types: I - glial cells, II - bitter/sweet/umami receptor cells, and III - sour detectors. Although taste cells are continuously renewed, lineage relationships among cell types are ill-defined. Basal cells have been proposed as taste bud stem cells, a subset of which express Sonic hedgehog (Shh). However, Shh+ basal cells turnover rapidly suggesting that Shh+ cells are precursors of some or all taste cell types. Results To fate map Shh-expressing cells, mice carrying ShhCreERT2 and a high (CAG-CAT-EGFP) or low (R26RLacZ) efficiency reporter allele were given tamoxifen to activate Cre in Shh+ cells. Using R26RLacZ, lineage-labeled cells occur singly within buds, supporting a post-mitotic state for Shh+ cells. Using either reporter, we show that Shh+ cells differentiate into all three taste cell types, in proportions reflecting cell type ratios in taste buds (I > II > III). Conclusions Shh+ cells are not stem cells, but are post-mitotic, immediate precursors of taste cells. Shh+ cells differentiate into each of the three taste cell types, and the choice of a specific taste cell fate is regulated to maintain the proper ratio within buds. PMID:24590958

  17. Carbon-Nanodot Solar Cells from Renewable Precursors.

    PubMed

    Marinovic, Adam; Kiat, Lim S; Dunn, Steve; Titirici, Maria-Magdalena; Briscoe, Joe

    2017-03-09

    It has recently been shown that waste biomass can be converted into a wide range of functional materials, including those with desirable optical and electronic properties, offering the opportunity to find new uses for these renewable resources. Photovoltaics is one area in which finding the combination of abundant, low-cost and non-toxic materials with the necessary functionality can be challenging. In this paper the performance of carbon nanodots derived from a wide range of biomaterials obtained from different biomass sources as sensitisers for TiO2 -based nanostructured solar cells was compared; polysaccharides (chitosan and chitin), monosaccharide (d-glucose), amino acids (l-arginine and l-cysteine) and raw lobster shells were used to produce carbon nanodots through hydrothermal carbonisation. The highest solar power conversion efficiency (PCE) of 0.36 % was obtained by using l-arginine carbon nanodots as sensitisers, whereas lobster shells, as a model source of chitin from actual food waste, showed a PCE of 0.22 %. By comparing this wide range of materials, the performance of the solar cells was correlated with the materials characteristics by carefully investigating the structural and optical properties of each family of carbon nanodots, and it was shown that the combination of amine and carboxylic acid functionalisation is particularly beneficial for the solar-cell performance.

  18. Alcohol-Induced Molecular Dysregulation in Human Embryonic Stem Cell-Derived Neural Precursor Cells.

    PubMed

    Kim, Yi Young; Roubal, Ivan; Lee, Youn Soo; Kim, Jin Seok; Hoang, Michael; Mathiyakom, Nathan; Kim, Yong

    Adverse effect of alcohol on neural function has been well documented. Especially, the teratogenic effect of alcohol on neurodevelopment during embryogenesis has been demonstrated in various models, which could be a pathologic basis for fetal alcohol spectrum disorders (FASDs). While the developmental defects from alcohol abuse during gestation have been described, the specific mechanisms by which alcohol mediates these injuries have yet to be determined. Recent studies have shown that alcohol has significant effect on molecular and cellular regulatory mechanisms in embryonic stem cell (ESC) differentiation including genes involved in neural development. To test our hypothesis that alcohol induces molecular alterations during neural differentiation we have derived neural precursor cells from pluripotent human ESCs in the presence or absence of ethanol treatment. Genome-wide transcriptomic profiling identified molecular alterations induced by ethanol exposure during neural differentiation of hESCs into neural rosettes and neural precursor cell populations. The Database for Annotation, Visualization and Integrated Discovery (DAVID) functional analysis on significantly altered genes showed potential ethanol's effect on JAK-STAT signaling pathway, neuroactive ligand-receptor interaction, Toll-like receptor (TLR) signaling pathway, cytokine-cytokine receptor interaction and regulation of autophagy. We have further quantitatively verified ethanol-induced alterations of selected candidate genes. Among verified genes we further examined the expression of P2RX3, which is associated with nociception, a peripheral pain response. We found ethanol significantly reduced the level of P2RX3 in undifferentiated hESCs, but induced the level of P2RX3 mRNA and protein in hESC-derived NPCs. Our result suggests ethanol-induced dysregulation of P2RX3 along with alterations in molecules involved in neural activity such as neuroactive ligand-receptor interaction may be a molecular event

  19. Alcohol-Induced Molecular Dysregulation in Human Embryonic Stem Cell-Derived Neural Precursor Cells

    PubMed Central

    Kim, Yi Young; Roubal, Ivan; Lee, Youn Soo; Kim, Jin Seok; Hoang, Michael; Mathiyakom, Nathan; Kim, Yong

    2016-01-01

    Adverse effect of alcohol on neural function has been well documented. Especially, the teratogenic effect of alcohol on neurodevelopment during embryogenesis has been demonstrated in various models, which could be a pathologic basis for fetal alcohol spectrum disorders (FASDs). While the developmental defects from alcohol abuse during gestation have been described, the specific mechanisms by which alcohol mediates these injuries have yet to be determined. Recent studies have shown that alcohol has significant effect on molecular and cellular regulatory mechanisms in embryonic stem cell (ESC) differentiation including genes involved in neural development. To test our hypothesis that alcohol induces molecular alterations during neural differentiation we have derived neural precursor cells from pluripotent human ESCs in the presence or absence of ethanol treatment. Genome-wide transcriptomic profiling identified molecular alterations induced by ethanol exposure during neural differentiation of hESCs into neural rosettes and neural precursor cell populations. The Database for Annotation, Visualization and Integrated Discovery (DAVID) functional analysis on significantly altered genes showed potential ethanol’s effect on JAK-STAT signaling pathway, neuroactive ligand-receptor interaction, Toll-like receptor (TLR) signaling pathway, cytokine-cytokine receptor interaction and regulation of autophagy. We have further quantitatively verified ethanol-induced alterations of selected candidate genes. Among verified genes we further examined the expression of P2RX3, which is associated with nociception, a peripheral pain response. We found ethanol significantly reduced the level of P2RX3 in undifferentiated hESCs, but induced the level of P2RX3 mRNA and protein in hESC-derived NPCs. Our result suggests ethanol-induced dysregulation of P2RX3 along with alterations in molecules involved in neural activity such as neuroactive ligand-receptor interaction may be a molecular event

  20. iPSC-derived neural precursor cells: potential for cell transplantation therapy in spinal cord injury.

    PubMed

    Nagoshi, Narihito; Okano, Hideyuki

    2017-10-09

    A number of studies have demonstrated that transplantation of neural precursor cells (NPCs) promotes functional recovery after spinal cord injury (SCI). However, the NPCs had been mostly harvested from embryonic stem cells or fetal tissue, raising the ethical concern. Yamanaka and his colleagues established induced pluripotent stem cells (iPSCs) which could be generated from somatic cells, and this innovative development has made rapid progression in the field of SCI regeneration. We and other groups succeeded in producing NPCs from iPSCs, and demonstrated beneficial effects after transplantation for animal models of SCI. In particular, efficacy of human iPSC-NPCs in non-human primate SCI models fostered momentum of clinical application for SCI patients. At the same time, however, artificial induction methods in iPSC technology created alternative issues including genetic and epigenetic abnormalities, and tumorigenicity after transplantation. To overcome these problems, it is critically important to select origins of somatic cells, use integration-free system during transfection of reprogramming factors, and thoroughly investigate the characteristics of iPSC-NPCs with respect to quality management. Moreover, since most of the previous studies have focused on subacute phase of SCI, establishment of effective NPC transplantation should be evaluated for chronic phase hereafter. Our group is currently preparing clinical-grade human iPSC-NPCs, and will move forward toward clinical study for subacute SCI patients soon in the near future.

  1. Retinoic acid regulates the development of oligodendrocyte precursor cells in vitro.

    PubMed

    Laeng, P; Décimo, D; Pettmann, B; Janet, T; Labourdette, G

    1994-12-15

    Cultures of oligodendrocyte precursor cells can be grown from brain hemispheres of newborn rats. These cells, also called O-2A progenitor cells, can differentiate in vitro into oligodendrocytes or type 2 astrocytes. Basic FGF and PDGF are known to stimulate their proliferation and delay their differentiation. Lack or excess of retinoic acid (RA) has been known for a long time to alter brain development suggesting that this compound is involved in normal brain development. Here we report that RA partially inhibits both the proliferation and the differentiation of oligodendrocyte precursor cells. It also down-regulates the mitogenic effect of bFGF on these cells while keeping them in an immature stage. RA is more effective than bFGF in inhibiting myelin basic protein mRNA expression in these cells, and like bFGF, it preserves their bipotential character. RA nuclear receptors RAR-alpha and their transcripts are expressed in oligodendrocyte precursor cells as seen by Western blot, Northern blot and in situ hybridization. The expression of RAR-alpha transcripts is stimulated transiently by RA alone or associated to bFGF. The expression of RAR-beta transcripts is not constitutive and is induced by RA alone or associated to bFGF and to a lesser extent by bFGF alone. These results suggest that retinoids participate in the control of the development of glial cells of the oligodendrocyte lineage.

  2. Glial-restricted precursors as potential candidates for ALS cell-replacement therapy.

    PubMed

    Kruminis-Kaszkiel, Ewa; Wojtkiewicz, Joanna; Maksymowicz, Wojciech

    2014-01-01

    Amyotrophic lateral sclerosis is a multifactorial progressive neurodegenerative disorder leading to severe disability and death within 3-5 years after diagnosis. The main mechanisms underlying the disease progression are poorly known but according to the current knowledge, neuroinflammation is a key player in motor neurons damage. Astrocytes constitute an important cell population involved in neuroinflammatory reaction. Many studies confirmed their striking connection with motor neuron pathology and therefore they might be a target for the treatment of ALS. Cell-based therapy appears to be a promising strategy. Since direct replacement or restoring of motor neurons using various stem cells is challenging, enrichment of healthy donor-derived astrocytes appears to be a more realistic and beneficial approach. The effects of astrocytes have been examined using transplantation of glial-restricted precursors (GRPs) that represent one of the earliest precursors within the oligodendrocytic and astrocytic cell lineage. In this review, we focused on evidence-based data on astrocyte replacement transplantation therapy using GRPs in animal models of motor neuron diseases. The efficacy of GRPs engrafting is very encouraging. Furthermore, the lesson learned from application of lineage-restricted precursors in spinal cord injury (SCI) indicates that differentiation of GRPs into astrocytes before transplantation might be more advantageous in the context of axon regeneration. To sum up, the studies of glial-restricted precursors have made a step forward to ALS research and might bring breakthroughs to the field of ALS therapy in the future.

  3. Plasma cell precursors: long-distance travelers looking for a home.

    PubMed

    Luther, Sanjiv A

    2010-07-23

    Little is known about the migration of plasma cell precursors to the lymph node medulla. In this issue of Immunity, Fooksman et al. (2010) propose that this migration is largely independent of chemotactic cues but follows a long linear walk of random orientation.

  4. p73 regulates maintenance of neural stem cell

    SciTech Connect

    Agostini, Massimiliano; Tucci, Paola; Bano, Daniele; Nicotera, Pierluigi; McKeon, Frank; Melino, Gerry

    2010-12-03

    Research highlights: {yields} TAp73 is expressed in neural stem cells and its expression increases following their differentiation. {yields} Neural stem cells from p73 null mice have a reduced proliferative potential. {yields} p73-deficient neural stem cells show reduced expression of members of the Sox-2 and Notch gene families. {yields} Neurogenic areas are reduced in the brains of embryonic and adult p73-/- mice. -- Abstract: p73, a member of the p53 family, is a transcription factor that plays a key role in many biological processes. In the present study, we show that TAp73 is expressed in neural stem cells (NSC) and its expression increases following their differentiation. NSC from p73 null mice have a reduced proliferative potential, together with reduced expression of members of the Sox-2 and Notch gene families known to be important for NSC proliferation. In parallel with this in vitro data, the width of the neurogenic areas was reduced in the brains of embryonic and adult p73-/- mice. These data suggest that p73, and in particular TAp73, is important for maintenance of the NSC pool.

  5. Low Temperature Affects Stem Cell Maintenance in Brassica oleracea Seedlings.

    PubMed

    de Jonge, Jennifer; Kodde, Jan; Severing, Edouard I; Bonnema, Guusje; Angenent, Gerco C; Immink, Richard G H; Groot, Steven P C

    2016-01-01

    Most of the above ground tissues in higher plants originate from stem cells located in the shoot apical meristem (SAM). Several plant species can suffer from spontaneous stem cell arrest resulting in lack of further shoot development. In Brassica oleracea this SAM arrest is known as blindness and occurs in an unpredictable manner leading to considerable economic losses for plant raisers and farmers. Detailed analyses of seedlings showed that stem cell arrest is triggered by low temperatures during germination. To induce this arrest reproducibly and to study the effect of the environment, an assay was developed. The role of genetic variation on the susceptibility to develop blind seedlings was analyzed by a quantitative genetic mapping approach, using seeds from a double haploid population from a cross between broccoli and Chinese kale, produced at three locations. The analysis revealed, besides an effect of the seed production location, a region on linkage group C3 associated with blindness sensitivity. A subsequent dynamic genome-wide transcriptome analysis resulted in the identification of around 3000 differentially expressed genes early after blindness induction. A large number of cell cycle genes were en masse induced early during the development of blindness, whereas shortly after, all were down-regulated. This miss-regulation of core cell cycle genes is accompanied with a strong reduction of cells reaching the DNA replication phase. From the differentially expressed genes, 90 were located in the QTL region C3. Among them are two genes belonging to the MINICHROMOSOMAL MAINTENANCE gene family, known to be involved in DNA replication, a RETINOBLASTOMA-RELATED gene, a key regulator for cell cycle initiation, and several MutS homologs genes, involved in DNA repair. These genes are potential candidates for being involved in the development of blindness in Brassica oleracea sensitive genotypes.

  6. Low Temperature Affects Stem Cell Maintenance in Brassica oleracea Seedlings

    PubMed Central

    de Jonge, Jennifer; Kodde, Jan; Severing, Edouard I.; Bonnema, Guusje; Angenent, Gerco C.; Immink, Richard G. H.; Groot, Steven P. C.

    2016-01-01

    Most of the above ground tissues in higher plants originate from stem cells located in the shoot apical meristem (SAM). Several plant species can suffer from spontaneous stem cell arrest resulting in lack of further shoot development. In Brassica oleracea this SAM arrest is known as blindness and occurs in an unpredictable manner leading to considerable economic losses for plant raisers and farmers. Detailed analyses of seedlings showed that stem cell arrest is triggered by low temperatures during germination. To induce this arrest reproducibly and to study the effect of the environment, an assay was developed. The role of genetic variation on the susceptibility to develop blind seedlings was analyzed by a quantitative genetic mapping approach, using seeds from a double haploid population from a cross between broccoli and Chinese kale, produced at three locations. The analysis revealed, besides an effect of the seed production location, a region on linkage group C3 associated with blindness sensitivity. A subsequent dynamic genome-wide transcriptome analysis resulted in the identification of around 3000 differentially expressed genes early after blindness induction. A large number of cell cycle genes were en masse induced early during the development of blindness, whereas shortly after, all were down-regulated. This miss-regulation of core cell cycle genes is accompanied with a strong reduction of cells reaching the DNA replication phase. From the differentially expressed genes, 90 were located in the QTL region C3. Among them are two genes belonging to the MINICHROMOSOMAL MAINTENANCE gene family, known to be involved in DNA replication, a RETINOBLASTOMA-RELATED gene, a key regulator for cell cycle initiation, and several MutS homologs genes, involved in DNA repair. These genes are potential candidates for being involved in the development of blindness in Brassica oleracea sensitive genotypes. PMID:27375654

  7. The Mesenchymal Precursor Cell Marker Antibody STRO-1 Binds to Cell Surface Heat Shock Cognate 70.

    PubMed

    Fitter, Stephen; Gronthos, Stan; Ooi, Soo Siang; Zannettino, Andrew C W

    2016-12-27

    Since its discovery more than 25 years ago, the STRO-1 antibody has played a fundamental role in defining the hierarchical nature of mesenchymal precursor cells (MPC) and their progeny. STRO-1 antibody binding remains a hallmark of immature pluripotent MPC. Despite the significance of STRO-1 in the MPC field, the identity of the antigen has remained elusive. Using a combination of two-dimensional gel electrophoresis, coupled with Western blotting and Tandem mass spectroscopy, we have identified the STRO-1 antigen as heat shock cognate 70 (HSC70;HSPA8). STRO-1 binds to immune-precipitated HSC70 and siRNA-mediated knock down of HSPA8 reduced STRO-1 binding. STRO-1 surface binding does not correlate with HSC70 expression and sequestration of cholesterol reduces STRO-1 surface binding, suggesting that the plasma membrane lipid composition may be an important determinant in the presentation of HSC70 on the cell surface. HSC70 is present on the surface of STRO-1(+) but not STRO-1(-) cell lines as assessed by cell surface biotinylation and recombinant HSC70 blocks STRO-1 binding to the cell surface. The STRO-1 epitope on HSC70 was mapped to the ATPase domain using a series of deletion mutants in combination with peptide arrays. Deletion of the first four amino acids of the consensus epitope negated STRO-1 binding. Notably, in addition to HSC70, STRO-1 cross-reacts with heat shock protein 70 (HSP70), however all the clonogenic cell activity is restricted to the STRO-1(BRIGHT) /HSP70(-) fraction. These results provide important insight into the properties that define multipotent MPC and provide the impetus to explore the role of cell surface HSC70 in MPC biology. Stem Cells 2016.

  8. Sonic hedgehog acts cell-autonomously on muscle precursor cells to generate limb muscle diversity

    PubMed Central

    Anderson, Claire; Williams, Victoria C.; Moyon, Benjamin; Daubas, Philippe; Tajbakhsh, Shahragim; Buckingham, Margaret E.; Shiroishi, Toshihiko; Hughes, Simon M.; Borycki, Anne-Gaëlle

    2012-01-01

    How muscle diversity is generated in the vertebrate body is poorly understood. In the limb, dorsal and ventral muscle masses constitute the first myogenic diversification, as each gives rise to distinct muscles. Myogenesis initiates after muscle precursor cells (MPCs) have migrated from the somites to the limb bud and populated the prospective muscle masses. Here, we show that Sonic hedgehog (Shh) from the zone of polarizing activity (ZPA) drives myogenesis specifically within the ventral muscle mass. Shh directly induces ventral MPCs to initiate Myf5 transcription and myogenesis through essential Gli-binding sites located in the Myf5 limb enhancer. In the absence of Shh signaling, myogenesis is delayed, MPCs fail to migrate distally, and ventral paw muscles fail to form. Thus, Shh production in the limb ZPA is essential for the spatiotemporal control of myogenesis and coordinates muscle and skeletal development by acting directly to regulate the formation of specific ventral muscles. PMID:22987640

  9. Fast Flux Test Facility interim examination and maintenance cell: Past, present, and future

    SciTech Connect

    Vincent, J.R.

    1990-09-01

    The Fast Flux Test Facility Interim Examination and Maintenance Cell was designed to perform interim examination and/or disassembly of experimental core components for final analysis elsewhere, as well as maintenance of sodium-wetted or neutron-activated internal reactor parts and plant support hardware. The Interim Examination and Maintenance Cell equipment developed and used for the first ten years of operation has been primarily devoted to the disassembly and examination of core component test assemblies. While no major reactor equipment has required remote repair or maintenance, the Interim Examina Examination and Maintenance Cell has served as the remote repair facility for its own in-cell equipment, and several innovative remote repairs have been accomplished. The Interim Examination and Maintenance Cell's demonstrated versatility has shown its capability to support a challenging future. 12 refs., 9 figs.

  10. Allogeneic Mesenchymal Precursor Cell Therapy to Limit Remodeling After Myocardial Infarction: The Effect of Cell Dosage

    PubMed Central

    Hamamoto, Hirotsugu; Gorman, Joseph H.; Ryan, Liam P.; Hinmon, Robin; Martens, Timothy P.; Schuster, Michael D.; Plappert, Theodore; Kiupel, Matti; St. John-Sutton, Martin G.; Itescu, Silviu; Gorman, Robert C.

    2011-01-01

    Background This experiment assessed the dose-dependent effect of a unique allogeneic STRO-3–positive mesenchymal precursor cell (MPC) on postinfarction left ventricular (LV) remodeling. The MPCs were administered in a manner that would simulate an off-the-self, early postinfarction, preventative approach to cardiac cell therapy in a sheep transmural myocardial infarct (MI) model. Methods Allogeneic MPCs were isolated from male crossbred sheep. Forty-six female sheep underwent coronary ligation to produce a transmural LV anteroapical infarction. One hour after infarction, the borderzone myocardium received an injection of 25, 75, 225, or 450 × 106 MPCs, or cell medium. Echocardiography was performed at 4 and 8 weeks after MI to quantify LV end-diastolic (LVEDV) and end-systolic volumes (LVESV), ejection fraction (EF), and infarct expansion. CD31 and smooth muscle actin (SMA) immunohistochemical staining was performed on infarct and borderzone specimens to quantify vascular density. Results Compared with controls, low-dose (25 and 75 × 106 cells) MPC treatment significantly attenuated infarct expansion and increases in LVEDV and LVESV. EF was improved at all cell doses. CD31 and SMA immunohistochemical staining demonstrated increased vascular density in the borderzone only at the lower cell doses. There was no evidence of myocardial regeneration within the infarct. Conclusion Allogeneic STRO-3 positive MPCs attenuate the remodeling response to transmural MI in a clinically relevant large-animal model. This effect is associated with vasculogenesis and arteriogenesis within the borderzone and infarct and is most pronounced at lower cell doses. PMID:19231391

  11. Subretinal transplantation of MACS purified photoreceptor precursor cells into the adult mouse retina.

    PubMed

    Eberle, Dominic; Santos-Ferreira, Tiago; Grahl, Sandra; Ader, Marius

    2014-02-22

    Vision impairment and blindness due to the loss of the light-sensing cells of the retina, i.e. photoreceptors, represents the main reason for disability in industrialized countries. Replacement of degenerated photoreceptors by cell transplantation represents a possible treatment option in future clinical applications. Indeed, recent preclinical studies demonstrated that immature photoreceptors, isolated from the neonatal mouse retina at postnatal day 4, have the potential to integrate into the adult mouse retina following subretinal transplantation. Donor cells generated a mature photoreceptor morphology including inner and outer segments, a round cell body located at the outer nuclear layer, and synaptic terminals in close proximity to endogenous bipolar cells. Indeed, recent reports demonstrated that donor photoreceptors functionally integrate into the neural circuitry of host mice. For a future clinical application of such cell replacement approach, purified suspensions of the cells of choice have to be generated and placed at the correct position for proper integration into the eye. For the enrichment of photoreceptor precursors, sorting should be based on specific cell surface antigens to avoid genetic reporter modification of donor cells. Here we show magnetic-associated cell sorting (MACS) - enrichment of transplantable rod photoreceptor precursors isolated from the neonatal retina of photoreceptor-specific reporter mice based on the cell surface marker CD73. Incubation with anti-CD73 antibodies followed by micro-bead conjugated secondary antibodies allowed the enrichment of rod photoreceptor precursors by MACS to approximately 90%. In comparison to flow cytometry, MACS has the advantage that it can be easier applied to GMP standards and that high amounts of cells can be sorted in relative short time periods. Injection of enriched cell suspensions into the subretinal space of adult wild-type mice resulted in a 3-fold higher integration rate compared to

  12. Esophageal squamous cell carcinoma - precursor lesions and early diagnosis

    PubMed Central

    Lopes, Antonio Barros; Fagundes, Renato Borges

    2012-01-01

    Squamous cell carcinoma of the esophagus (SCCE) carries a poor prognosis due to late diagnosis. Early detection is highly desirable, since surgical and endoscopic resection offers the only possible cure for esophageal cancer. Population screening should be undertaken in high risk areas, and in low or moderate risk areas for people with risk factors (alcoholics, smokers, mate drinkers, history of head and neck cancer, achalasia and lye stricture of the esophagus). Esophageal balloon cytology is an easy and inexpensive sampling technique, but the current methods are insufficient for primary screening due to sampling errors. Conventional endoscopy with biopsy remains the standard procedure for the identification of pre-malignant and early malignant changes in esophageal mucosa and endoscopic detection. It may be enhanced by several techniques such as dye and optic chromoendoscopy, magnifying endoscopy, and optical-based spectroscopic and imaging modalities. Since more than 80% of SCCE deaths occur in developing countries, where expensive techniques such as narrow band imaging (NBI) and autofluorescence imaging are unavailable, the most cost-effective tool for targeting biopsies may be Lugol dye chromoendoscopy, since it is easy, accurate, inexpensive and available worldwide. In ideal conditions, or in developed countries, is it reasonable to think that optimal detection will require a combination of techniques, such as the combination of Lugol’s chromoendoscopy and NBI to identify esophageal areas that require further characterization by a high resolution technique. The efficacy and cost-effectiveness will determine whether these modalities will become part of standard endoscopy practice. PMID:22267978

  13. HIV-1 broadly neutralizing antibody precursor B cells revealed by germline-targeting immunogen

    SciTech Connect

    Jardine, Joseph G.; Kulp, Daniel W.; Havenar-Daughton, Colin; Sarkar, Anita; Briney, Bryan; Sok, Devin; Sesterhenn, Fabian; Ereno-Orbea, June; Kalyuzhniy, Oleksandr; Deresa, Isaiah; Hu, Xiaozhen; Spencer, Skye; Jones, Meaghan; Georgeson, Erik; Adachi, Yumiko; Kubitz, Michael; deCamp, Allan C.; Julien, Jean -Philippe; Wilson, Ian A.; Burton, Dennis R.; Crotty, Shane; Schief, William R.

    2016-03-25

    Induction of broadly neutralizing antibodies (bnAbs) is a major HIV vaccine goal. Germline-targeting immunogens aim to initiate bnAb induction by activating bnAb germline precursor B cells. Critical unmet challenges are to determine whether bnAb precursor naïve B cells bind germline-targeting immunogens and occur at sufficient frequency in humans for reliable vaccine responses. We employed deep mutational scanning and multi-target optimization to develop a germline-targeting immunogen (eOD-GT8) for diverse VRC01-class bnAbs. We then used the immunogen to isolate VRC01-class precursor naïve B cells from HIV-uninfected donors. Frequencies of true VRC01-class precursors, their structures, and their eOD-GT8 affinities support this immunogen as a candidate human vaccine prime. Lastly, these methods could be applied to germline targeting for other classes of HIV bnAbs and for Abs to other pathogens.

  14. HIV-1 broadly neutralizing antibody precursor B cells revealed by germline-targeting immunogen

    DOE PAGES

    Jardine, Joseph G.; Kulp, Daniel W.; Havenar-Daughton, Colin; ...

    2016-03-25

    Induction of broadly neutralizing antibodies (bnAbs) is a major HIV vaccine goal. Germline-targeting immunogens aim to initiate bnAb induction by activating bnAb germline precursor B cells. Critical unmet challenges are to determine whether bnAb precursor naïve B cells bind germline-targeting immunogens and occur at sufficient frequency in humans for reliable vaccine responses. We employed deep mutational scanning and multi-target optimization to develop a germline-targeting immunogen (eOD-GT8) for diverse VRC01-class bnAbs. We then used the immunogen to isolate VRC01-class precursor naïve B cells from HIV-uninfected donors. Frequencies of true VRC01-class precursors, their structures, and their eOD-GT8 affinities support this immunogen asmore » a candidate human vaccine prime. Lastly, these methods could be applied to germline targeting for other classes of HIV bnAbs and for Abs to other pathogens.« less

  15. Interaction of type A lantibiotics with undecaprenol-bound cell envelope precursors.

    PubMed

    Müller, Anna; Ulm, Hannah; Reder-Christ, Katrin; Sahl, Hans-Georg; Schneider, Tanja

    2012-06-01

    Lantibiotics are a unique group within the antimicrobial peptides characterized by the presence of thioether amino acids (lanthionine and methyllanthionine). These peptides are produced by and primarily act on Gram-positive bacteria exerting multiple activities at the cytoplasmic membrane of susceptible strains. Previously, the cell wall precursor lipid II was identified as the molecular target for the prototype lantibiotic nisin. Binding and sequestration of lipid II blocks the incorporation of the central cell wall precursor into the growing peptidoglycan network, thereby inhibiting the formation of a functional cell wall. Additionally, nisin combines this activity with a unique target-mediated pore formation, using lipid II as a docking molecule. The interaction with the pyrophosphate moiety of lipid II is crucial for nisin binding. We show that, besides binding to lipid II, nisin interacts with the lipid intermediates lipid III (undecaprenol-pyrophosphate-N-acetyl-glucosamine) and lipid IV (undecaprenol-pyrophosphate-N-acetyl-glucosamine-N-acetyl-mannosamine) of the wall teichoic acid (WTA) biosynthesis pathway. Binding of nisin to the precursors was observed at a stoichiometry of 2:1. The specific interaction with WTA precursors further promoted target-mediated pore formation in artificial lipid bilayers. Specific interactions with lipid III and lipid IV could also be demonstrated for related type A lantibiotics, for example, gallidermin, containing the conserved lipid-II-binding motif.

  16. HIV-1 broadly neutralizing antibody precursor B cells revealed by germline-targeting immunogen.

    PubMed

    Jardine, Joseph G; Kulp, Daniel W; Havenar-Daughton, Colin; Sarkar, Anita; Briney, Bryan; Sok, Devin; Sesterhenn, Fabian; Ereño-Orbea, June; Kalyuzhniy, Oleksandr; Deresa, Isaiah; Hu, Xiaozhen; Spencer, Skye; Jones, Meaghan; Georgeson, Erik; Adachi, Yumiko; Kubitz, Michael; deCamp, Allan C; Julien, Jean-Philippe; Wilson, Ian A; Burton, Dennis R; Crotty, Shane; Schief, William R

    2016-03-25

    Induction of broadly neutralizing antibodies (bnAbs) is a major HIV vaccine goal. Germline-targeting immunogens aim to initiate bnAb induction by activating bnAb germline precursor B cells. Critical unmet challenges are to determine whether bnAb precursor naïve B cells bind germline-targeting immunogens and occur at sufficient frequency in humans for reliable vaccine responses. Using deep mutational scanning and multitarget optimization, we developed a germline-targeting immunogen (eOD-GT8) for diverse VRC01-class bnAbs. We then used the immunogen to isolate VRC01-class precursor naïve B cells from HIV-uninfected donors. Frequencies of true VRC01-class precursors, their structures, and their eOD-GT8 affinities support this immunogen as a candidate human vaccine prime. These methods could be applied to germline targeting for other classes of HIV bnAbs and for Abs to other pathogens.

  17. Generation, Release, and Uptake of the NAD Precursor Nicotinic Acid Riboside by Human Cells.

    PubMed

    Kulikova, Veronika; Shabalin, Konstantin; Nerinovski, Kirill; Dölle, Christian; Niere, Marc; Yakimov, Alexander; Redpath, Philip; Khodorkovskiy, Mikhail; Migaud, Marie E; Ziegler, Mathias; Nikiforov, Andrey

    2015-11-06

    NAD is essential for cellular metabolism and has a key role in various signaling pathways in human cells. To ensure proper control of vital reactions, NAD must be permanently resynthesized. Nicotinamide and nicotinic acid as well as nicotinamide riboside (NR) and nicotinic acid riboside (NAR) are the major precursors for NAD biosynthesis in humans. In this study, we explored whether the ribosides NR and NAR can be generated in human cells. We demonstrate that purified, recombinant human cytosolic 5'-nucleotidases (5'-NTs) CN-II and CN-III, but not CN-IA, can dephosphorylate the mononucleotides nicotinamide mononucleotide and nicotinic acid mononucleotide (NAMN) and thus catalyze NR and NAR formation in vitro. Similar to their counterpart from yeast, Sdt1, the human 5'-NTs require high (millimolar) concentrations of nicotinamide mononucleotide or NAMN for efficient catalysis. Overexpression of FLAG-tagged CN-II and CN-III in HEK293 and HepG2 cells resulted in the formation and release of NAR. However, NAR accumulation in the culture medium of these cells was only detectable under conditions that led to increased NAMN production from nicotinic acid. The amount of NAR released from cells engineered for increased NAMN production was sufficient to maintain viability of surrounding cells unable to use any other NAD precursor. Moreover, we found that untransfected HeLa cells produce and release sufficient amounts of NAR and NR under normal culture conditions. Collectively, our results indicate that cytosolic 5'-NTs participate in the conversion of NAD precursors and establish NR and NAR as integral constituents of human NAD metabolism. In addition, they point to the possibility that different cell types might facilitate each other's NAD supply by providing alternative precursors.

  18. Selective beta-cell differentiation of dissociated embryonic pancreatic precursor cells cultured in synthetic polyethylene glycol hydrogels.

    PubMed

    Mason, Mariah N; Mahoney, Melissa J

    2009-06-01

    Continuing advances in islet cell transplantation have been promising; however, several limitations, including severe shortage of transplantable islets, hinder the widespread use of this therapy. Pancreatic precursor cells are one alternative to cadaveric donor islets. These cells found in the developing pancreatic buds are capable of self-renewal and also have the innate ability to become insulin-producing beta-cells. For this work, bioinert polyethylene glycol (PEG) hydrogels were chosen as the supportive three-dimensional matrix for encapsulation of dissociated pancreatic precursor cells obtained from the dorsal pancreatic bud of day-15 rat embryos. This culture system was selected in order to eliminate cell-extracellular matrix and cell-cell signal heterogeneity present when intact pancreatic buds are embedded in protein-based gels, the typical in vitro culture conditions used to study this cell population. In this study it was found that (1) dissociated precursor cells maintain a robust viability for 7 days in PEG hydrogel culture, (2) encapsulated cells selectively differentiate into insulin-expressing beta-cells, and (3) differentiated beta-cells have releasable insulin stores, but are not achieving a mature, glucose responsive phenotype. These findings suggest that encapsulating dissociated pancreatic precursor cells in an environment designed to minimize the heterogeneous signaling cues present during development or in standard culture conditions generates a population highly enriched in pancreatic beta-cells; however, future efforts must focus on achieving glucose responsiveness in this cell population. Further, these results indicate that differentiation down a beta-cell lineage may be the default pathway in pancreatic development.

  19. Extracellular Vesicles from Vascular Endothelial Cells Promote Survival, Proliferation and Motility of Oligodendrocyte Precursor Cells

    PubMed Central

    Kurachi, Masashi; Mikuni, Masahiko; Ishizaki, Yasuki

    2016-01-01

    We previously examined the effect of brain microvascular endothelial cell (MVEC) transplantation on rat white matter infarction, and found that MVEC transplantation promoted remyelination of demyelinated axons in the infarct region and reduced apoptotic death of oligodendrocyte precursor cells (OPCs). We also found that the conditioned medium (CM) from cultured MVECs inhibited apoptosis of cultured OPCs. In this study, we examined contribution of extracellular vesicles (EVs) contained in the CM to its inhibitory effect on OPC apoptosis. Removal of EVs from the CM by ultracentrifugation reduced its inhibitory effect on OPC apoptosis. To confirm whether EVs derived from MVECs are taken up by cultured OPCs, we labeled EVs with PKH67, a fluorescent dye, and added them to OPC cultures. Many vesicular structures labeled with PKH67 were found within OPCs immediately after their addition. Next we examined the effect of MVEC-derived EVs on OPC behaviors. After 2 days in culture with EVs, there was significantly less pyknotic and more BrdU-positive OPCs when compared to control. We also examined the effect of EVs on motility of OPCs. OPCs migrated longer in the presence of EVs when compared to control. To examine whether these effects on cultured OPCs are shared by EVs from endothelial cells, we prepared EVs from conditioned media of several types of endothelial cells, and tested their effects on cultured OPCs. EVs from all types of endothelial cells we examined reduced apoptosis of OPCs and promoted their motility. Identification of the molecules contained in EVs from endothelial cells may prove helpful for establishment of effective therapies for demyelinating diseases. PMID:27403742

  20. Neurogenesis and precursor cell differences in the dorsal and ventral adult canine hippocampus.

    PubMed

    Lowe, Aileen; Dalton, Marshall; Sidhu, Kuldip; Sachdev, Perminder; Reynolds, Brent; Valenzuela, Michael

    2015-04-23

    During evolution a unique anterior-posterior flexure posited the canine dentate gyrus in two distinct dorsal and ventral positions. We therefore sought to explore neurogenesis and neurogenic cell-related difference along the canine hippocampal dorsal-ventral axis. Post mortem histological analysis revealed 49.1% greater doublecortin (DCX)-positive cells and a 158.5% greater percentage of double labeled DCX-positive/neuronal nuclei (NeuN) positive cells in the dorsal subgranular zone compared to the ventral. We then show neural precursor cells isolated from fresh hippocampal tissue are capable of proliferating long term, and after differentiation, express neuronal and glial markers. Dorsal hippocampal isolates produced a 120.0% higher frequency of sphere-forming neural precursor cells compared to ventral hippocampal tissue. Histological DCX and neurosphere assay results were highly correlated. Overall, we provide the first evidence that the dorsal canine hippocampus has a markedly higher rate of adult neurogenesis than the ventral hippocampus, possibly related to a greater frequency of contributory neural precursor cells.

  1. Long-term maintenance of human induced pluripotent stem cells by automated cell culture system

    PubMed Central

    Konagaya, Shuhei; Ando, Takeshi; Yamauchi, Toshiaki; Suemori, Hirofumi; Iwata, Hiroo

    2015-01-01

    Pluripotent stem cells, such as embryonic stem cells and induced pluripotent stem (iPS) cells, are regarded as new sources for cell replacement therapy. These cells can unlimitedly expand under undifferentiated conditions and be differentiated into multiple cell types. Automated culture systems enable the large-scale production of cells. In addition to reducing the time and effort of researchers, an automated culture system improves the reproducibility of cell cultures. In the present study, we newly designed a fully automated cell culture system for human iPS maintenance. Using an automated culture system, hiPS cells maintained their undifferentiated state for 60 days. Automatically prepared hiPS cells had a potency of differentiation into three germ layer cells including dopaminergic neurons and pancreatic cells. PMID:26573336

  2. Long-term maintenance of human induced pluripotent stem cells by automated cell culture system.

    PubMed

    Konagaya, Shuhei; Ando, Takeshi; Yamauchi, Toshiaki; Suemori, Hirofumi; Iwata, Hiroo

    2015-11-17

    Pluripotent stem cells, such as embryonic stem cells and induced pluripotent stem (iPS) cells, are regarded as new sources for cell replacement therapy. These cells can unlimitedly expand under undifferentiated conditions and be differentiated into multiple cell types. Automated culture systems enable the large-scale production of cells. In addition to reducing the time and effort of researchers, an automated culture system improves the reproducibility of cell cultures. In the present study, we newly designed a fully automated cell culture system for human iPS maintenance. Using an automated culture system, hiPS cells maintained their undifferentiated state for 60 days. Automatically prepared hiPS cells had a potency of differentiation into three germ layer cells including dopaminergic neurons and pancreatic cells.

  3. Homing of hemopoietic precursor cells to the embryonic thymus: characterization of an invasive mechanism induced by chemotactic peptides

    PubMed Central

    1986-01-01

    During embryonic development, T cell precursors migrate to the thymus, where immunocompetency is acquired. Our previous studies have shown that avian hemopoietic precursor cells are recruited to the thymus by chemotactic peptides secreted by thymic epithelial cells (Champion, S., B. A. Imhof, P. Savagner, and J. P. Thiery, 1986, Cell, 44:781-790). In this study, we have characterized the homing of these precursor cells to the thymus in vivo by electron and light microscopy. Hemopoietic precursors could be seen to extravasate from blood or lymphatic vessels, migrate in the mesenchyme, traverse the perithymic basement membrane, and finally intercalate into the thymic epithelium. Labeled hemopoietic precursors injected into the blood circulation also followed the same pathway. Migrating hemopoietic precursor cells were found to express the fibronectin receptor complex. In the presence of thymic chemotactic peptides, hemopoietic precursors traverse a human amniotic basement membrane. This invasive process was inhibited by antibodies to laminin or to fibronectin, two major glycoproteins of the amniotic membrane, by monovalent Fab' fragments of antibodies to the fibronectin receptor, and, finally by synthetic peptides that contain the cell-binding sequence Arg-Gly-Asp-Ser of fibronectin. These results indicate that hemopoietic precursors respond to thymic chemotactic peptides by invasive behavior. Direct interactions between basement membrane components and fibronectin receptors appear to be required for this developmentally regulated invasion process. PMID:3793754

  4. Preparation of adult muscle fiber-associated stem/precursor cells.

    PubMed

    Conboy, Michael J; Conboy, Irina M

    2010-01-01

    In our studies of muscle regeneration we have developed, modified, and optimized techniques to isolate and study the stem and precursor cells to muscle tissue. Our goals have been to obtain for study muscle fibers in bulk, or the fiber-associated cells, separately from the other cells found in muscle. Using these techniques, myofiber-associated cells may be isolated from neonatal through adult muscle, from resting or from regenerating muscle, thus allowing one to investigate the cellular populations participating during the time course of these events. The protocol is applicable to any age and condition of muscle and may be adapted for other tissues.

  5. Morphological and electrophysiological features of mature neurons in differentiated skin-derived precursor cells.

    PubMed

    Liebmann, L; Beetz, C; Thorwarth, M; Deufel, T; Hübner, Ca

    2012-01-01

    In vitro modelling of neuronal pathologies is, in particular, demanding and a lot of efforts have been undertaken to differentiate skin derived precursor cells into neuronal cells. However, so far all attempts did not result in cells with functional features of neurons like the ability to generate action potentials or synaptic activity. Here, we report that simple modifications of the protocols result in neuronal cells that display action potentials and synaptic activity. We think that our observation is an important step to model individual neuronal pathologies in vitro.

  6. Two transcription factors can direct three photoreceptor outcomes from rod precursor cells in mouse retinal development

    PubMed Central

    Ng, Lily; Lu, Ailing; Swaroop, Alok; Sharlin, David; Swaroop, Anand; Forrest, Douglas

    2011-01-01

    The typical mammalian visual system is based upon three photoreceptor types: rods for dim light vision and two types of cones (M and S) for color vision in daylight. However, the process that generates photoreceptor diversity and the cell type in which diversity arises remain unclear. Mice deleted for thyroid hormone receptor ®2 (TR®2) and neural retina leucine zipper factor (NRL) lack M cones and rods, respectively, but gain S cones. We therefore tested the hypothesis that NRL and TR®2 direct a common precursor to a rod, M cone or S cone outcome using Nrlb2/b2 “knock-in” mice that express TR®2 instead of NRL from the endogenous Nrl gene. Nrlb2/b2 mice lacked rods and produced excess M cones in contrast to the excess S cones in Nrl−/− mice. Notably, the presence of both factors yielded rods in Nrl+/b2 mice. The results demonstrate innate plasticity in post-mitotic rod precursors that allows these cells to form three functional photoreceptor types in response to NRL or TRβ2. We also detected precursor cells in normal embryonic retina that transiently co-expressed Nrl and TRβ2, suggesting that some precursors may originate in a plastic state. The plasticity of the precursors revealed in Nrlb2/b2 mice suggests that a two-step transcriptional switch can direct three photoreceptor fates: first, rod versus cone identity dictated by NRL and secondly, if NRL fails to act, M versus S cone identity dictated by TR®2. PMID:21813673

  7. Two transcription factors can direct three photoreceptor outcomes from rod precursor cells in mouse retinal development.

    PubMed

    Ng, Lily; Lu, Ailing; Swaroop, Alok; Sharlin, David S; Swaroop, Anand; Forrest, Douglas

    2011-08-03

    The typical mammalian visual system is based upon three photoreceptor types: rods for dim light vision and two types of cones (M and S) for color vision in daylight. However, the process that generates photoreceptor diversity and the cell type in which diversity arises remain unclear. Mice deleted for thyroid hormone receptor β2 (TRβ2) and neural retina leucine zipper factor (NRL) lack M cones and rods, respectively, but gain S cones. We therefore tested the hypothesis that NRL and TRβ2 direct a common precursor to a rod, M cone, or S cone outcome using Nrl(b2/b2) "knock-in" mice that express TRβ2 instead of NRL from the endogenous Nrl gene. Nrl(b2/b2) mice lacked rods and produced excess M cones in contrast to the excess S cones in Nrl(-/-) mice. Notably, the presence of both factors yielded rods in Nrl(+/b2) mice. The results demonstrate innate plasticity in postmitotic rod precursors that allows these cells to form three functional photoreceptor types in response to NRL or TRβ2. We also detected precursor cells in normal embryonic retina that transiently coexpressed Nrl and TRβ2, suggesting that some precursors may originate in a plastic state. The plasticity of the precursors revealed in Nrl(b2/b2) mice suggests that a two-step transcriptional switch can direct three photoreceptor fates: first, rod versus cone identity dictated by NRL, and second, if NRL fails to act, M versus S cone identity dictated by TRβ2.

  8. Skin-derived precursor cells promote wound healing in diabetic mice.

    PubMed

    Sato, Hideyoshi; Ebisawa, Katsumi; Takanari, Keisuke; Yagi, Shunjiro; Toriyama, Kazuhiro; Yamawaki-Ogata, Aika; Kamei, Yuzuru

    2015-01-01

    Impaired wound healing as one of the complications arising from diabetes mellitus is a serious clinical issue. Recently, various cell therapies have been reported for promotion of wound healing. Skin-derived precursor cells (SKPs) are multipotent adult stem cells with the tendency to differentiate into neurons. We investigated the potency of promoting diabetic wound healing by the application of SKPs. Skin-derived precursor cells isolated from diabetic murine skin were cultured in sphere formation medium. At passage 2, they were suspended in phosphate-buffered saline (PBS), and applied topically to full-thickness excisional cutaneous wounds in diabetic mice. Application of PBS served as controls (n = 21 for each group; n = 42 total). Time to closure and percentage closure were calculated by morphometry. Wounds were harvested at 10 and 28 days and then processed, sectioned, and stained (CD31, α-smooth muscle actin, and neurofilament heavy chain) to quantify vascularity and neurofilaments. Wounds treated with SKPs demonstrated a significantly decreased time to closure (18.63 days) compared with PBS-control wounds (21.72 days, P < 0.01), and a significant improvement in percentage closure at 7, 10, 14, and 18 days compared with PBS-control wounds (P < 0.01). Histological analysis showed that the Capillary Score (the number of vessels/mm2) was significantly higher in SKP-treated wounds at day 10 but not at day 28. Nerve Density (the number of neurofilaments/mm2) had increased significantly in SKP-treated wounds at day 28 compared with control group. Some applied SKPs were stained by neurofilament heavy chain, which demonstrates that SKPs directly differentiated into neurons. Skin-derived precursor cells promoted diabetic wound healings through vasculogenesis at the early stage of wound healing. Skin-derived precursor cells are a possible therapeutic tool for diabetic impaired wound healing.

  9. Ebf2 is a selective marker of brown and beige adipogenic precursor cells.

    PubMed

    Wang, Wenshan; Kissig, Megan; Rajakumari, Sona; Huang, Li; Lim, Hee-Woong; Won, Kyoung-Jae; Seale, Patrick

    2014-10-07

    Brown adipocytes and muscle and dorsal dermis descend from precursor cells in the dermomyotome, but the factors that regulate commitment to the brown adipose lineage are unknown. Here, we prospectively isolated and determined the molecular profile of embryonic brown preadipose cells. Brown adipogenic precursor activity in embryos was confined to platelet-derived growth factor α(+), myogenic factor 5(Cre)-lineage-marked cells. RNA-sequence analysis identified early B-cell factor 2 (Ebf2) as one of the most selectively expressed genes in this cell fraction. Importantly, Ebf2-expressing cells purified from Ebf2(GFP) embryos or brown fat tissue did not express myoblast or dermal cell markers and uniformly differentiated into brown adipocytes. Interestingly, Ebf2-expressing cells from white fat tissue in adult animals differentiated into brown-like (or beige) adipocytes. Loss of Ebf2 in brown preadipose cells reduced the expression levels of brown preadipose-signature genes, whereas ectopic Ebf2 expression in myoblasts activated brown preadipose-specific genes. Altogether, these results indicate that Ebf2 specifically marks and regulates the molecular profile of brown preadipose cells.

  10. CD34+ hematopoietic precursors are present in human decidua and differentiate into natural killer cells upon interaction with stromal cells

    PubMed Central

    Vacca, Paola; Vitale, Chiara; Montaldo, Elisa; Conte, Romana; Cantoni, Claudia; Fulcheri, Ezio; Darretta, Valeria; Moretta, Lorenzo; Mingari, Maria Cristina

    2011-01-01

    Natural killer (NK) cells are the main lymphoid population in the maternal decidua during the first trimester of pregnancy. Decidual NK (dNK) cells display a unique functional profile and play a key role in promoting tissue remodeling, neoangiogenesis, and immune modulation. However, little information exists on their origin and development. Here we discovered CD34+ hematopoietic precursors in human decidua (dCD34+). We show that dCD34+ cells differ from cord blood- or peripheral blood-derived CD34+ precursors. The expression of IL-15/IL-2 receptor common β-chain (CD122), IL-7 receptor α-chain (CD127), and mRNA for E4BP4 and ID2 transcription factors suggested that dCD34+ cells are committed to the NK cell lineage. Moreover, they could undergo in vitro differentiation into functional (i.e., IL-8– and IL-22–producing) CD56brightCD16−KIR+/− NK cells in the presence of growth factors or even upon coculture with decidual stromal cells. Their NK cell commitment was further supported by the failure to undergo myeloid differentiation in the presence of GM-CSF. Our findings strongly suggest that decidual NK cells may directly derive from CD34+ cell precursors present in the decidua upon specific cellular interactions with components of the decidual microenvironment. PMID:21248224

  11. Insulin-independent role of adiponectin receptor signaling in Drosophila germline stem cell maintenance.

    PubMed

    Laws, Kaitlin M; Sampson, Leesa L; Drummond-Barbosa, Daniela

    2015-03-15

    Adipocytes have key endocrine roles, mediated in large part by secreted protein hormones termed adipokines. The adipokine adiponectin is well known for its role in sensitizing peripheral tissues to insulin, and several lines of evidence suggest that adiponectin might also modulate stem cells/precursors. It remains unclear, however, how adiponectin signaling controls stem cells and whether this role is secondary to its insulin-sensitizing effects or distinct. Drosophila adipocytes also function as an endocrine organ and, although no obvious adiponectin homolog has been identified, Drosophila AdipoR encodes a well-conserved homolog of mammalian adiponectin receptors. Here, we generate a null AdipoR allele and use clonal analysis to demonstrate an intrinsic requirement for AdipoR in germline stem cell (GSC) maintenance in the Drosophila ovary. AdipoR null GSCs are not fully responsive to bone morphogenetic protein ligands from the niche and have a slight reduction in E-cadherin levels at the GSC-niche junction. Conversely, germline-specific overexpression of AdipoR inhibits natural GSC loss, suggesting that reduction in adiponectin signaling might contribute to the normal decline in GSC numbers observed over time in wild-type females. Surprisingly, AdipoR is not required for insulin sensitization of the germline, leading us to speculate that insulin sensitization is a more recently acquired function than stem cell regulation in the evolutionary history of adiponectin signaling. Our findings establish Drosophila female GSCs as a new system for future studies addressing the molecular mechanisms whereby adiponectin receptor signaling modulates stem cell fate.

  12. Comparison of melatonin with growth factors in promoting precursor cells proliferation in adult mouse subventricular zone

    PubMed Central

    Sotthibundhu, Areechun; Ekthuwapranee, Kasima; Govitrapong, Piyarat

    2016-01-01

    Melatonin, secreted mainly by the pineal gland, plays roles in various physiological functions including protecting cell death. We showed in previous study that the proliferation and differentiation of precursor cells from the adult mouse subventricular zone (SVZ) can be modulated by melatonin via the MT1 melatonin receptor. Since melatonin and epidermal growth factor receptor (EGFR) share some signaling pathway components, we investigated whether melatonin can promote the proliferation of precursor cells from the adult mouse SVZ via the extracellular signal-regulated protein kinase /mitogen-activated protein kinase (ERK/MAPK) pathways in comparison with epidermal growth factor (EGF). Melatonin-induced ERK/MAPK pathways compared with EGF were measured by using in vitro and vivo models. We used neurosphere proliferation assay, immunocytochemistry, and immuno-blotting to analyze significant differences between melatonin and growth factor treatment. We also used specific antagonist and inhibitors to confirm the exactly signaling pathway including luzindole and U0126. We found that significant increase in proliferation was observed when two growth factors (EGF+bFGF) and melatonin were used simultaneously compared with EGF + bFGF or compared with melatonin alone. In addition, the present result suggested the synergistic effect occurred of melatonin and growth factors on the activating the ERK/MAPK pathway. This study exhibited that melatonin could act as a trophic factor, increasing proliferation in precursor cells mediated through the melatonin receptor coupled to ERK/MAPK signaling pathways. Understanding the mechanism by which melatonin regulates precursor cells may conduct to the development of novel strategies for neurodegenerative disease therapy. PMID:28275319

  13. In vitro effect of glutathione precursors on cytotoxicity of amino acids to human mesothelial cells.

    PubMed

    Grzybowski, A E

    1999-09-01

    Amino acids (AA) which were proposed as an alternative osmotically active agents in dialysates are toxic to human peritoneal mesothelial cells (HPMC) due to disturbance of the antioxidant-oxidant balance in cells by reducing level of glutathione. We assessed if the addition intracellular glutathione precursors: N-acetyl-cysteine (NAC), tioproline (TP), L--2-oxo--4-thiazolidine acid (PC), and glutathione (GSH) could reduce the cytotoxicity of AA, as measured by inhibition of cells proliferation and disorders of intracellular 86Rb transport. HPMC were obtained from omentum from nonuremic donors and cultured in in vitro conditions. The HPMC proliferation capacity was assessed indirectly by the 3H-methyl-thymidine incorporation assay. The injury to HPMC membrane integrity was assessed by the release of radioisotope molecules of 86Rb from the prelabelled cells. We have found that AA diminished the intracellular potassium (86Rb) influx. Supplementation of AA mixture with NAC enhanced the total 86Rb influx into HMC. Other precursors of intracellular glutathione (TP,PC,GSH) tested in the presence of AA significantly stimulated intracellular transport of 86Rb via Na,K-ATPase dependent channel, but the total intracellular transport of 86Rb was still lower than in control. HMC proliferation was significantly inhibited by AA what was measured by incorporation of H-metyl-tymidine. In the presence of NAC inhibition of HMC proliferation caused by AA was weaker. Our results suggest that some of intracellular glutathione precursors may reduce the disturbances of the HMC function caused by AA.

  14. Lineage-Specific Genes Are Prominent DNA Damage Hotspots during Leukemic Transformation of B Cell Precursors.

    PubMed

    Boulianne, Bryant; Robinson, Mark E; May, Philippa C; Castellano, Leandro; Blighe, Kevin; Thomas, Jennifer; Reid, Alistair; Müschen, Markus; Apperley, Jane F; Stebbing, Justin; Feldhahn, Niklas

    2017-02-14

    In human leukemia, lineage-specific genes represent predominant targets of deletion, with lymphoid-specific genes frequently affected in lymphoid leukemia and myeloid-specific genes in myeloid leukemia. To investigate the basis of lineage-specific alterations, we analyzed global DNA damage in primary B cell precursors expressing leukemia-inducing oncogenes by ChIP-seq. We identified more than 1,000 sensitive regions, of which B lineage-specific genes constitute the most prominent targets. Identified hotspots at B lineage genes relate to DNA-DSBs, affect genes that harbor genomic lesions in human leukemia, and associate with ectopic deletion in successfully transformed cells. Furthermore, we show that most identified regions overlap with gene bodies of highly expressed genes and that induction of a myeloid lineage phenotype in transformed B cell precursors promotes de novo DNA damage at myeloid loci. Hence, we demonstrate that lineage-specific transcription predisposes lineage-specific genes in transformed B cell precursors to DNA damage, which is likely to promote the frequent alteration of lineage-specific genes in human leukemia. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  15. Acetylcholine stimulates cortical precursor cell proliferation in vitro via muscarinic receptor activation and MAP kinase phosphorylation.

    PubMed

    Ma, W; Maric, D; Li, B S; Hu, Q; Andreadis, J D; Grant, G M; Liu, Q Y; Shaffer, K M; Chang, Y H; Zhang, L; Pancrazio, J J; Pant, H C; Stenger, D A; Barker, J L

    2000-04-01

    Increasing evidence has shown that some neurotransmitters act as growth-regulatory signals during brain development. Here we report a role for the classical neurotransmitter acetylcholine (ACh) to stimulate proliferation of neural stem cells and stem cell-derived progenitor cells during neural cell lineage progression in vitro. Neuroepithelial cells in the ventricular zone of the embryonic rat cortex were found to express the m2 subtype of the muscarinic receptor. Neural precursor cells dissociated from the embryonic rat cortical neuroepithelium were expanded in culture with basic fibroblast growth factor (bFGF). reverse transcriptase-polymerase chain reaction (RT-PCR) revealed the presence of m2, m3 and m4 muscarinic receptor subtype transcripts, while immunocytochemistry demonstrated m2 protein. ACh and carbachol induced an increase in cytosolic Ca2+ and membrane currents in proliferating (BrdU+) cells, both of which were abolished by atropine. Exposure of bFGF-deprived precursor cells to muscarinic agonists not only increased both cell number and DNA synthesis, but also enhanced differentiation of neurons. These effects were blocked by atropine, indicating the involvement of muscarinic ACh receptors. The growth-stimulating effects were also antagonized by a panel of inhibitors of second messengers, including 1,2-bis-(O-aminophenoxy)-ethane-N,N,N', N'-tetraacetic acid (BAPTA-AM) to chelate cytosolic Ca2+, EGTA to complex extracellular Ca2+, pertussis toxin, which uncouples certain G-proteins, the protein kinase C inhibitor H7 and the mitogen-activated protein kinase (MAPK) inhibitor PD98059. Muscarinic agonists activated MAPK, which was significantly inhibited by atropine and the same panel of inhibitors. Thus, muscarinic receptors expressed by neural precursors transduce a growth-regulatory signal during neurogenesis via pathways involving pertussis toxin-sensitive G-proteins, Ca2+ signalling, protein kinase C activation, MAPK phosphorylation and DNA synthesis.

  16. Anti-ageing glycoprotein promotes long-term survival of transplanted neurosensory precursor cells.

    PubMed

    Yanai, Anat; Viringipurampeer, Ishaq A; Bashar, Emran; Gregory-Evans, Kevin

    2016-05-27

    Cell therapy, to replace lost tissue, is a promising approach for the treatment of various neurodegenerative diseases. Many studies suggest, however, that the percentage of transplanted cells that survive and undergo functional integration remains low as a result of immune rejection, suboptimal precursor cell type, trauma during cell transplantation, toxic compounds released by dying tissues or nutritional deficiencies. We recently developed an ex vivo system to facilitate identification of factors contributing to the death of transplanted neuronal (photoreceptor) cells and compounds that block these toxic effects. In this system, photoreceptor precursor cells (PPCs) are sandwiched between a neurosensory retinal explant and retinal pigment epithelium derived from human embryonic stem cells. Explant medium was collected to identify toxic components and PPC survival was assessed by flow cytometry. We also assessed the potential for AAGP™, a cryopreservative molecule, to improve PPC survival. We identified elevated prostaglandin E2 (PGE2) in the explant medium and demonstrated that AAGP™ reduced PGE2 levels by 2.6-fold. A pro-inflammatory stress assay suggested that this may result from AAGP™ inhibition of cyclo-oxygenase-2 (COX-2) expression. We confirmed that PGE2 reduced the viability of cultured PPCs by 44% and found that the survival rate of PPCs pretreated with AAGP™ was 2.8-fold higher than in untreated PPCs. These data suggest that PGE2 release from necrotic tissue may be one factor that reduces the survival of transplanted precursor cells and that the pro-survival molecule AAGP™ may improve long-term transplanted cell viability. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  17. Differential mechanisms of memory CD8 T cell maintenance by individual myeloid cell types

    PubMed Central

    Frasca, Loredana; Stonier, Spencer W.; Overwijk, Willem W.; Schluns, Kimberly S.

    2010-01-01

    This study tested the hypothesis that individual myeloid subsets have a differential ability to maintain memory CD8 T cells via IL-15. Although DCs support IL-15-mediated homeostasis of memory CD8 T cells in vivo, whether various DC subsets and other myeloid cells similarly mediate homeostasis is unknown. Therefore, we studied the ability of different myeloid cells to maintain memory CD8 T cells in vitro. Using an in vitro cocoulture system that recapitulated known roles of DCs and IL-15 on memory CD8 T cells, all in vitro-derived or ex vivo-isolated DCs maintained CD8 T cells better than rIL-15 alone, and FLT-3L-DCs are the most efficient compared with GM-DCs, BM-derived macrophages, or freshly isolated DCs. Although FLT-3L-DCs were the least effective at inducing CD8 T cell proliferation, FLT-3L-DCs promoted better CD8 T cell survival and increased Bcl-2 and MCL-2 expression in CD8 T cells. T cell maintenance correlated only partially with DC expression of IL-15Rα and IL-15, suggesting that DCs provided additional support signals. Indeed, in the absence of IL-15 signals, CD70/CD27 further supported CD8 T cell maintenance. IFN-α enhanced CD70 expression by DCs, resulting in increased proliferation of CD8 T cells. Overall, this study supports our hypothesis by demonstrating that specific DC subtypes had a greater capacity to support memory CD8 T cell maintenance and did so through different mechanisms. Furthermore, this study shows that IL-15 trans-presentation can work in conjunction with other signals, such as CD70/CD27 interactions, to mediate CD8 T cell homeostasis efficiently. PMID:20354106

  18. Adult neurogenesis and repair of the adult CNS with neural progenitors, precursors, and stem cells.

    PubMed

    Emsley, Jason G; Mitchell, Bartley D; Kempermann, Gerd; Macklis, Jeffrey D

    2005-04-01

    Recent work in neuroscience has shown that the adult central nervous system contains neural progenitors, precursors, and stem cells that are capable of generating new neurons, astrocytes, and oligodendrocytes. While challenging previous dogma that no new neurons are born in the adult mammalian CNS, these findings bring with them future possibilities for the development of novel neural repair strategies. The purpose of this review is to present current knowledge about constitutively occurring adult mammalian neurogenesis, to highlight the critical differences between "neurogenic" and "non-neurogenic" regions in the adult brain, and to describe the cardinal features of two well-described neurogenic regions-the subventricular zone/olfactory bulb system, and the dentate gyrus of the hippocampus. We also provide an overview of currently used models for studying neural precursors in vitro, mention some precursor transplantation models, and emphasize that, in this rapidly growing field of neuroscience, one must take caution with respect to a variety of methodological considerations for studying neural precursor cells both in vitro and in vivo. The possibility of repairing neural circuitry by manipulating neurogenesis is an intriguing one, and, therefore, we also review recent efforts to understand the conditions under which neurogenesis can be induced in non-neurogenic regions of the adult CNS. This work aims toward molecular and cellular manipulation of endogenous neural precursors in situ, without transplantation. We conclude this review with a discussion of what the function might be of newly generated neurons in the adult brain and provide a summary of current thinking about the consequences of disturbed adult neurogenesis and the reaction of neurogenic regions to disease.

  19. Adult neurogenesis and cellular brain repair with neural progenitors, precursors and stem cells.

    PubMed

    Sohur, U Shivraj; Emsley, Jason G; Mitchell, Bartley D; Macklis, Jeffrey D

    2006-09-29

    Recent work in neuroscience has shown that the adult central nervous system (CNS) contains neural progenitors, precursors and stem cells that are capable of generating new neurons, astrocytes and oligodendrocytes. While challenging the previous dogma that no new neurons are born in the adult mammalian CNS, these findings bring with them the future possibilities for development of novel neural repair strategies. The purpose of this review is to present the current knowledge about constitutively occurring adult mammalian neurogenesis, highlight the critical differences between 'neurogenic' and 'non-neurogenic' regions in the adult brain, and describe the cardinal features of two well-described neurogenic regions-the subventricular zone/olfactory bulb system and the dentate gyrus of the hippocampus. We also provide an overview of presently used models for studying neural precursors in vitro, mention some precursor transplantation models and emphasize that, in this rapidly growing field of neuroscience, one must be cautious with respect to a variety of methodological considerations for studying neural precursor cells both in vitro and in vivo. The possibility of repairing neural circuitry by manipulating neurogenesis is an intriguing one, and, therefore, we also review recent efforts to understand the conditions under which neurogenesis can be induced in non-neurogenic regions of the adult CNS. This work aims towards molecular and cellular manipulation of endogenous neural precursors in situ, without transplantation. We conclude this review with a discussion of what might be the function of newly generated neurons in the adult brain, and provide a summary of present thinking about the consequences of disturbed adult neurogenesis and the reaction of neurogenic regions to disease.

  20. Adult neurogenesis and cellular brain repair with neural progenitors, precursors and stem cells

    PubMed Central

    Shivraj Sohur, U; Emsley, Jason G; Mitchell, Bartley D; Macklis, Jeffrey D

    2006-01-01

    Recent work in neuroscience has shown that the adult central nervous system (CNS) contains neural progenitors, precursors and stem cells that are capable of generating new neurons, astrocytes and oligodendrocytes. While challenging the previous dogma that no new neurons are born in the adult mammalian CNS, these findings bring with them the future possibilities for development of novel neural repair strategies. The purpose of this review is to present the current knowledge about constitutively occurring adult mammalian neurogenesis, highlight the critical differences between ‘neurogenic’ and ‘non-neurogenic’ regions in the adult brain, and describe the cardinal features of two well-described neurogenic regions—the subventricular zone/olfactory bulb system and the dentate gyrus of the hippocampus. We also provide an overview of presently used models for studying neural precursors in vitro, mention some precursor transplantation models and emphasize that, in this rapidly growing field of neuroscience, one must be cautious with respect to a variety of methodological considerations for studying neural precursor cells both in vitro and in vivo. The possibility of repairing neural circuitry by manipulating neurogenesis is an intriguing one, and, therefore, we also review recent efforts to understand the conditions under which neurogenesis can be induced in non-neurogenic regions of the adult CNS. This work aims towards molecular and cellular manipulation of endogenous neural precursors in situ, without transplantation. We conclude this review with a discussion of what might be the function of newly generated neurons in the adult brain, and provide a summary of present thinking about the consequences of disturbed adult neurogenesis and the reaction of neurogenic regions to disease. PMID:16939970

  1. In Senescence, Age-associated B Cells (ABC) Secrete TNFα and Inhibit Survival of B Cell Precursors1

    PubMed Central

    Ratliff, Michelle; Alter, Sarah; Frasca, Daniela; Blomberg, Bonnie B.; Riley, Richard L.

    2013-01-01

    Aged mice exhibit ~ 5-10 fold increases in an ordinarily minor CD21/35− CD23− mature B cell subset termed age-associated B cells (ABC). ABC from old, but not young, mice induce apoptosis in pro-B cells directly through secretion of TNFα. In addition, aged ABC, via TNFα, stimulate bone marrow cells to suppress pro-B cell growth. ABC effects can be prevented by the anti-inflammatory cytokine IL-10. Notably, CD21/35+ CD23+ follicular (FO) splenic and FO-like recirculating bone marrow B cells in both young and aged mice contain a subpopulation which produces IL-10. Unlike young adult FO B cells, old FO B cells also produce TNFα; however, secretion of IL-10 within this B cell population ameliorates the TNFα-mediated effects on B cell precursors. Loss of B cell precursors in the bone marrow of old mice in vivo was significantly associated with increased ABC relative to recirculating FO-like B cells. Adoptive transfer of aged ABC into RAG-2 KO recipients resulted in significant losses of pro-B cells within the bone marrow. These results suggest that alterations in B cell composition during old age, in particular the increase in ABC within the B cell compartments contribute to a pro-inflammatory environment within the bone marrow. This provides a mechanism of inappropriate B cell “feedback” which promotes down-regulation of B lymphopoiesis in old age. PMID:23410004

  2. Integrin-mediated interactions between human bone marrow stromal precursor cells and the extracellular matrix.

    PubMed

    Gronthos, S; Simmons, P J; Graves, S E; Robey, P G

    2001-02-01

    To date, the precise interactions between bone marrow stromal cells and the extracellular matrix that govern stromal cell development remain unclear. The integrin super-family of cell-surface adhesion molecules represents a major pathway used by virtually all cell types to interact with different extracellular matrix components. In this study, purified populations of stromal precursor cells were isolated from the STRO-1-positive fraction of normal human marrow, by fluoresence-activated cell sorting, and then assayed for their ability to initiate clonogenic growth in the presence of various integrin ligands. Bone marrow-derived stromal progenitors displayed differential growth to fibronectin, vitronectin, and laminin, over collagen types I and III, but showed a similar affinity for collagen type IV. The integrin heterodimers alpha1beta1, alpha2beta1, alpha5beta1, alpha6beta1, alpha(v)beta3, and alpha(v)beta5 were found to coexpress with the STRO-1 antigen on the cell surface of CFU-F, using dual-color analysis. Furthermore, only a proportion of stromal precursors expressed the integrin alpha4beta1, while no measurable levels of the integrin alpha3beta1 could be detected. Subsequent adhesion studies using functional blocking antibodies to different integrin alpha/beta heterodimers showed that stromal cell growth on collagen, laminin, and fibronectin was mediated by multiple beta1 integrins. In contrast, cloning efficiency in the presence of vitronectin was mediated in part by alpha(v)beta3. When human marrow stromal cells were cultured under osteoinductive conditions, their ability to form a mineralized matrix in vitro was significantly diminished in the presence of a functional blocking monoclonal antibody to the beta1 integrin subunit. The results of this study indicate that beta1 integrins appear to be the predominant adhesion receptor subfamily utilized by stromal precursor cells to adhere and proliferate utilizing matrix glycoproteins commonly found in the bone

  3. Ankfy1 is dispensable for neural stem/precursor cell development.

    PubMed

    Weng, Chao; Ding, Man; Chang, Lian-Sheng; Ren, Ming-Xin; Zhang, Hong-Feng; Lu, Zu-Neng; Fu, Hui

    2016-11-01

    There are few studies on the membrane protein Ankfy1. We have found Ankfy1 is specifically expressed in neural stem/precursor cells during early development in mice (murine). To further explore Ankfy1 function in neural development, we developed a gene knockout mouse with a mixed Balb/C and C57/BL6 genetic background. Using immunofluorescence and in situ hybridization, neural defects were absent in mixed genetic Ankfy1 null mice during development and in adults up to 2 months old. However, Ankfy1 gene knockout mice with a pure genetic background were found to be lethal in the C57/BL6 inbred mice embryos, even after seven generations of backcrossing. Polymerase chain reaction confirmed homozygotes were unattainable as early as embryonic day 11.5. We conclude that Ankfy1 protein is dispensable in neural stem/precursor cells, but could be critical for early embryonic murine development, depending on the genetic background.

  4. Circulating myeloid and lymphoid precursor dendritic cells are clonally involved in myelodysplastic syndromes.

    PubMed

    Ma, L; Delforge, M; van Duppen, V; Verhoef, G; Emanuel, B; Boogaerts, M; Hagemeijer, A; Vandenberghe, P

    2004-09-01

    Circulating myeloid and lymphoid precursor dendritic cell (pDC) counts were determined in peripheral blood from 22 patients with myelodysplastic syndromes (MDS) by a single-platform flow cytometric protocol. The absolute count of myeloid and lymphoid pDC, as well as their relative number (as proportion of mononuclear cells or total leukocytes) was significantly lower in MDS (n=22) than in healthy controls (n=41). In 11 patients with chromosomal aberrations, purified pDC were examined by interphase fluorescence in situ hybridization. This revealed clonal involvement of myeloid as well as lymphoid pDC in all of them. These data therefore strongly suggest that myeloid and lymphoid pDC share a common precursor. Whether reduced peripheral blood counts of pDC contribute to the immunological abnormalities observed in MDS remains to be investigated.

  5. Identification of myocardial and vascular precursor cells in human and mouse epicardium.

    PubMed

    Limana, Federica; Zacheo, Antonella; Mocini, David; Mangoni, Antonella; Borsellino, Giovanna; Diamantini, Adamo; De Mori, Roberta; Battistini, Luca; Vigna, Elisa; Santini, Massimo; Loiaconi, Vincenzo; Pompilio, Giulio; Germani, Antonia; Capogrossi, Maurizio C

    2007-12-07

    During cardiac development, the epicardium is the source of multipotent mesenchymal cells, which give rise to endothelial and smooth muscle cells in coronary vessels and also, possibly, to cardiomyocytes. The aim of the present study was to determine whether stem cells are retained in the adult human and murine epicardium and to investigate the regenerative potential of these cells following acute myocardial infarction. We show that c-kit(+) and CD34(+) cells can indeed be detected in human fetal and adult epicardium and that they represent 2 distinct populations. Both subsets of cells were negative for CD45, a cell surface marker that identifies the hematopoietic cell lineage. Immunofluorescence revealed that freshly isolated c-kit(+) and CD34(+) cells expressed early and late cardiac transcription factors and could acquire an endothelial phenotype in vitro. In the murine model of myocardial infarction, there was an increase in the absolute number and proliferation of epicardial c-kit(+) cells 3 days after coronary ligation; at this time point, epicardial c-kit(+) cells were identified in the subepicardial space and expressed GATA4. Furthermore, 1 week after myocardial infarction, cells coexpressing c-kit(+), together with endothelial or smooth muscle cell markers, were identified in the wall of subepicardial blood vessels. In summary, the postnatal epicardium contains a cell population with stem cell characteristics that retains the ability to give rise to myocardial precursors and vascular cells. These cells may play a role in the regenerative response to cardiac damage.

  6. CD22 is required for formation of memory B cell precursors within germinal centers

    PubMed Central

    Chappell, Craig P.; Draves, Kevin E.

    2017-01-01

    CD22 is a BCR co-receptor that regulates B cell signaling, proliferation and survival and is required for T cell-independent Ab responses. To investigate the role of CD22 during T cell-dependent (TD) Ab responses and memory B cell formation, we analyzed Ag-specific B cell responses generated by wild-type (WT) or CD22-/- B cells following immunization with a TD Ag. CD22-/- B cells mounted normal early Ab responses yet failed to generate either memory B cells or long-lived plasma cells, whereas WT B cells formed both populations. Surprisingly, B cell expansion and germinal center (GC) differentiation were comparable between WT and CD22-/- B cells. CD22-/- B cells, however, were significantly less capable of generating a population of CXCR4hiCD38hi GC B cells, which we propose represent memory B cell precursors within GCs. These results demonstrate a novel role for CD22 during TD humoral responses evident during primary GC formation and underscore that CD22 functions not only during B cell maturation but also during responses to both TD and T cell-independent antigens. PMID:28346517

  7. Substrate-Favored Lysosomal and Proteasomal Pathways Participate in the Normal Balance Control of Insulin Precursor Maturation and Disposal in β-Cells

    PubMed Central

    Gu, Jingyu; Osei, Kwame; Wang, Jie

    2011-01-01

    Our recent studies have uncovered that aggregation-prone proinsulin preserves a low relative folding rate and maintains a homeostatic balance of natively and non-natively folded states (i.e., proinsulin homeostasis, PIHO) in β-cells as a result of the integration of maturation and disposal processes. Control of precursor maturation and disposal is thus an early regulative mechanism in the insulin production of β-cells. Herein, we show pathways involved in the disposal of endogenous proinsulin at the early secretory pathway. We conducted metabolic-labeling, immunoblotting, and immunohistochemistry studies to examine the effects of selective proteasome and lysosome or autophagy inhibitors on the kinetics of proinsulin and control proteins in various post-translational courses. Our metabolic-labeling studies found that the main lysosomal and ancillary proteasomal pathways participate in the heavy clearance of insulin precursor in mouse islets/β-cells cultured at the mimic physiological glucose concentrations. Further immunoblotting and immunohistochemistry studies in cloned β-cells validated that among secretory proteins, insulin precursor is heavily and preferentially removed. The rapid disposal of a large amount of insulin precursor after translation is achieved mainly through lysosomal autophagy and the subsequent basal disposals are carried out by both lysosomal and proteasomal pathways within a 30 to 60-minute post-translational process. The findings provide the first clear demonstration that lysosomal and proteasomal pathways both play roles in the normal maintenance of PIHO for insulin production, and defined the physiological participation of lysosomal autophagy in the protein quality control at the early secretory pathway of pancreatic β-cells. PMID:22102916

  8. Frizzled signalling controls orientation of asymmetric sense organ precursor cell divisions in Drosophila.

    PubMed

    Gho, M; Schweisguth, F

    1998-05-14

    During metazoan development, cell-fate diversity is brought about, in part, by asymmetric cell divisions. In Drosophila, bristle mechanosensory organs are composed of four different cells that originate from a single precursor cell, pI, after two rounds of asymmetric division. At each division, distinct fates are conferred on sister cells by the asymmetric segregation of Numb, a negative regulator of Notch signalling. Here we show that the orientation of the mitotic spindles and the localization of the Numb crescent follow a stereotyped pattern. Mitosis of pI is orientated parallel to the anteroposterior axis of the fly. We show that signalling mediated by the Frizzled receptor polarizes pI along this axis, thereby specifying the orientation of the mitotic spindle and positioning the Numb crescent. The mitoses of the two cells produced by mitosis of pI are orientated parallel and orthogonal, respectively, to the division axis of pI. This difference in cell-division orientation is largely independent of the identity of the secondary precursor cells, and is regulated by Frizzled-independent mechanisms.

  9. Progranulin promotes the retinal precursor cell proliferation and the photoreceptor differentiation in the mouse retina

    PubMed Central

    Kuse, Yoshiki; Tsuruma, Kazuhiro; Sugitani, Sou; Izawa, Hiroshi; Ohno, Yuta; Shimazawa, Masamitsu; Hara, Hideaki

    2016-01-01

    Progranulin (PGRN) is a secreted growth factor associated with embryo development, tissue repair, and inflammation. In a previous study, we showed that adipose-derived stem cell-conditioned medium (ASC-CM) is rich in PGRN. In the present study, we investigated whether PGRN is associated with retinal regeneration in the mammalian retina. We evaluated the effect of ASC-CM using the N-methyl-N-nitrosourea-induced retinal damage model in mice. ASC-CM promoted the differentiation of photoreceptor cells following retinal damage. PGRN increased the number of BrdU+ cells in the outer nuclear layer following retinal damage some of which were Rx (retinal precursor cell marker) positive. PGRN also increased the number of rhodopsin+ photoreceptor cells in primary retinal cell cultures. SU11274, a hepatocyte growth factor (HGF) receptor inhibitor, attenuated the increase. These findings suggest that PGRN may affect the differentiation of retinal precursor cells to photoreceptor cells through the HGF receptor signaling pathway. PMID:27030285

  10. Ionotropic glutamate receptor antagonists inhibit the proliferation of granule cell precursors in the adult brain after seizures induced by pentylenetrazol.

    PubMed

    Jiang, Wen; Wolfe, Ken; Xiao, Lan; Zhang, Zhi-Jun; Huang, Yuan-Gui; Zhang, Xia

    2004-09-10

    Seizures have been shown to promote the proliferation of granule cell precursors in the adult brain, but the underlying mechanisms remain largely unknown. Using systemic bromodeoxyuridine (BrdU) to label dividing cells, we examined the effects of selective ionotropic glutamate receptor antagonists on granule cell precursor proliferation in adult rats after pentylenetrazol (PTZ)-induced generalized clonic seizures. We found that the NMDA receptor antagonist MK-801 significantly inhibited behavioral and EEG seizures and completely blocked seizure-induced increase in the number of BrdU-labeled cells in the dentate gyrus. Although the AMPA/KA receptor antagonist DNQX was not observed to affect seizures, it significantly suppressed the number of BrdU-labeled cells in the dentate gyrus. Double immunohistochemical staining showed that both the mature granule cells and the majority of BrdU-labeled, mitotically active cells expressed the NMDA receptor subunit NR1 and the AMPA/KA receptor subunit GluR2. Because accumulated evidence showed that mild seizures are sufficient to promote precursor cell proliferation, the present findings that MK-801 inhibited seizures and completely blocked seizure-induced increase in precursor cell proliferation suggest that the direct blockade action of MK-801 on NMDA receptors on the granule cell precursors may play an important role in blocking seizure-induced precursor cell proliferation. The suppression of seizure-induced proliferation of granule cell precursors by DNQX may be achieved by the direct action of DNQX on AMPA/KA receptors on the granule cell precursors. Thus, our findings indicate that seizures may promote cell proliferation in the adult rat dentate gyrus through glutamatergic mechanisms acting on both NMDA and AMPA/KA receptors.

  11. New melanogenesis and photobiological processes in activation and proliferation of precursor melanocytes after UV-exposure: ultrastructural differentiation of precursor melanocytes from Langerhans cells

    SciTech Connect

    Jimbow, K.; Uesugi, T.

    1982-02-01

    Photobiological processes involving new melanogenesis after exposure to ultraviolet (UV) light were experimentally studied in C57 black adult mice by histochemistry, cytochemistry, and autoradiography. The trunk and the plantar region of the foot, where no functioning melanocytes were present before exposure, were exposed to UV-A for 14 consecutive days. Both regions revealed a basically similar pattern for new melanogenesis which involved an activation of precursor melanocytes. Essentially all of ''indeterminate'' cells appeared to be precursor melanocytes, the fine structure of which could be differentiated even from poorly developed Langerhans cells. New melanogenesis was manifested by 4 stages of cellular and subcellular reactions of these cells as indicated by histochemistry of dihydroxyphenylalanine (dopa) and autoradiography of thymidine incorporation: (a) an initial lag in the activation of precursor melanocytes with development of Golgi cisternae and rough endoplasmic reticulum followed by formation of unmelanized melanosomes (day 0 to 2); (b) synthesis of active tyrosinase accumulated in Golgi cisternae and vesicles with subsequent formation of melanized melanosomes in these cells (day 3 to 5); (c) mitotic proliferation of many of these activated cells, followed by an exponential increase of new melanocytes (day 6 to 7); and (d) melanosome transfer with differentiation of 10 nm filaments and arborization of dendrites, but without any significant change in the melanocyte population (day 8 to 14). The melanosome transfer was, however, not obvious until after 7 days of exposure. The size of newly synthesized melanosomes was similar to that of tail skin where native melanocytes were present before exposure.

  12. Myelinogenic Plasticity of Oligodendrocyte Precursor Cells following Spinal Cord Contusion Injury.

    PubMed

    Assinck, Peggy; Duncan, Greg J; Plemel, Jason R; Lee, Michael J; Stratton, Jo A; Manesh, Sohrab B; Liu, Jie; Ramer, Leanne M; Kang, Shin H; Bergles, Dwight E; Biernaskie, Jeff; Tetzlaff, Wolfram

    2017-09-06

    Spontaneous remyelination occurs after spinal cord injury (SCI), but the extent of myelin repair and identity of the cells responsible remain incompletely understood and contentious. We assessed the cellular origin of new myelin by fate mapping platelet-derived growth factor receptor α (PDGFRα), Olig2+, and P0+ cells following contusion SCI in mice. Oligodendrocyte precursor cells (OPCs; PDGFRα+) produced oligodendrocytes responsible for de novo ensheathment of ∼30% of myelinated spinal axons at injury epicenter 3 months after SCI, demonstrating that these resident cells are a major contributor to oligodendrocyte regeneration. OPCs also produced the majority of myelinating Schwann cells in the injured spinal cord; invasion of peripheral myelinating (P0+) Schwann cells made only a limited contribution. These findings reveal that PDGFRα+ cells perform diverse roles in CNS repair, as multipotential progenitors that generate both classes of myelinating cells. This endogenous repair might be exploited as a therapeutic target for CNS trauma and disease.SIGNIFICANCE STATEMENT Spinal cord injury (SCI) leads to profound functional deficits, though substantial numbers of axons often survive. One possible explanation for these deficits is loss of myelin, creating conduction block at the site of injury. SCI leads to oligodendrocyte death and demyelination, and clinical trials have tested glial transplants to promote myelin repair. However, the degree and duration of myelin loss, and the extent and mechanisms of endogenous repair, have been contentious issues. Here, we use genetic fate mapping to demonstrate that spontaneous myelin repair by endogenous oligodendrocyte precursors is much more robust than previously recognized. These findings are relevant to many types of CNS pathology, raising the possibility that CNS precursors could be manipulated to repair myelin in lieu of glial transplantation. Copyright © 2017 the authors 0270-6474/17/378635-20$15.00/0.

  13. Efficient perovskite solar cells fabricated using an aqueous lead nitrate precursor.

    PubMed

    Hsieh, Tsung-Yu; Wei, Tzu-Chien; Wu, Kuan-Lin; Ikegami, Masashi; Miyasaka, Tsutomu

    2015-09-04

    A novel, aqueous precursor system (Pb(NO3)2 + water) is developed to replace conventional (PbI2 + DMF) for fabricating methylammonium lead iodide (MAPbI3) perovskite solar cells (PSCs). When the morphology and surface coverage of the Pb(NO3)2 film was controlled during coating, a power conversion efficiency of 12.58% under standard conditions (AM1.5, 100 mW cm(-2)) was achieved for the PSC.

  14. The correlation between the percent of CD3- CD56+ cells and NK precursor function.

    PubMed

    Gharehbaghian, Ahmad; Donaldson, Craig; Newman, John; Bannister, Gordon; Bradley, Benjamin A

    2006-12-01

    The number and function of human natural killer (NK) cells are generally assessed to monitor the baseline of immune function, the effect of treatment, the progress of malignancy or metastases and diseases. NK cells recognise and kill target cells in the absence of prior sensitisation and are able to defend the host from infection or prevent the progression of a disease. Human NK cells express CD16 and CD56 which are (massively) being used as a major hallmark for the NK cell. The purpose of this study was to identify the unique subsets of peripheral blood mononuclear cells (PBMC) (%CD3-CD56+ cells) by flow cytometry and to determine whether there is any correlation with functionally mature progeny of (NKp) precursor after five days of culture. The correlation was analysed using samples obtained from 120 Caucasian patients. 20-30ml of whole blood was collected in sterile tube containing preservative free sodium heparin and a similar sample was obtained after five days. Maturation of NKp required the continuous presence of recombinant interleukin 2 (rIL-2), or interleukin 15 (rIL-15) and functional maturity of NK cells was determined by their ability to lyse target cells from the K562 cell line. The NK precursor frequency was measured by limiting dilution analysis (LDA), which The NKpf assay was set up with a range of cell dilutions from 40,000 to 625 per 100ml/well in 96 well culture plates. At the end of the culture period the K562 cell line labelled with Europium (Eu-K562) was added and Eu release measured in culture supernatants using time-resolved fluorometry. The PBMC were set up in parallel cultures under various conditions . On day five cells were collected from culture plates and adjusted to 1x10 cells/ml and then mixed. The mixture was incubated and anti CD3 and anti CD56 were added. NK cells were enumerated in 120 patients by double staining with a combination of anti-CD3- and anti-CD56+. The results of these Immunophenotyping studies by flow cytometry

  15. Kaempferol increases levels of coenzyme Q in kidney cells and serves as a biosynthetic ring precursor.

    PubMed

    Fernández-Del-Río, Lucía; Nag, Anish; Gutiérrez Casado, Elena; Ariza, Julia; Awad, Agape M; Joseph, Akil I; Kwon, Ohyun; Verdin, Eric; de Cabo, Rafael; Schneider, Claus; Torres, Jorge Z; Burón, María I; Clarke, Catherine F; Villalba, José M

    2017-09-01

    Coenzyme Q (Q) is a lipid-soluble antioxidant essential in cellular physiology. Patients with Q deficiencies, with few exceptions, seldom respond to treatment. Current therapies rely on dietary supplementation with Q10, but due to its highly lipophilic nature, Q10 is difficult to absorb by tissues and cells. Plant polyphenols, present in the human diet, are redox active and modulate numerous cellular pathways. In the present study, we tested whether treatment with polyphenols affected the content or biosynthesis of Q. Mouse kidney proximal tubule epithelial (Tkpts) cells and human embryonic kidney cells 293 (HEK 293) were treated with several types of polyphenols, and kaempferol produced the largest increase in Q levels. Experiments with stable isotope (13)C-labeled kaempferol demonstrated a previously unrecognized role of kaempferol as an aromatic ring precursor in Q biosynthesis. Investigations of the structure-function relationship of related flavonols showed the importance of two hydroxyl groups, located at C3 of the C ring and C4' of the B ring, both present in kaempferol, as important determinants of kaempferol as a Q biosynthetic precursor. Concurrently, through a mechanism not related to the enhancement of Q biosynthesis, kaempferol also augmented mitochondrial localization of Sirt3. The role of kaempferol as a precursor that increases Q levels, combined with its ability to upregulate Sirt3, identify kaempferol as a potential candidate in the design of interventions aimed on increasing endogenous Q biosynthesis, particularly in kidney. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. 3-Sulfanylhexanol precursor biogenesis in grapevine cells: the stimulating effect of Botrytis cinerea.

    PubMed

    Thibon, Cécile; Cluzet, Stéphanie; Mérillon, Jean Michel; Darriet, Philippe; Dubourdieu, Denis

    2011-02-23

    Volatile thiols, compounds that contribute strongly to the varietal aroma, are present in much higher concentrations in sweet wines than in dry wines. This positive effect, due to the presence of Botrytis cinerea on the berries, in fact results from a strong enrichment of cysteine S-conjugate precursors in botrytized berries. In the present study, a convenient model was investigated to reproduce and therefore study this phenomenon. A Vitis vinifera cell culture was used as a simple model, and we focused on S-3-(hexan-1-ol)-l-cysteine (P-3SH), the cysteinylated precursor of 3-sulfanylhexanol. We demonstrated that grapevine cells were able to produce P-3SH and that the presence of B. cinerea considerably increased the precursor level (up to 1000-fold). This positive result was determined to be due to metabolites secreted by the fungus. These molecules were temperature sensitive, unstable over time, and their production was activated in the presence of grapevine cells. Moreover, part of the pathway leading to P-3SH was deciphered: it was directly derived from the cleavage of S-3-(hexan-1-ol)-l-glutathione, which itself was generated after a conjugation of glutathione on (E)-2-hexenal.

  17. Mitotic position and morphology of committed precursor cells in the zebrafish retina adapt to architectural changes upon tissue maturation.

    PubMed

    Weber, Isabell P; Ramos, Ana P; Strzyz, Paulina J; Leung, Louis C; Young, Stephen; Norden, Caren

    2014-04-24

    The development of complex neuronal tissues like the vertebrate retina requires the tight orchestration of cell proliferation and differentiation. Although the complexity of transcription factors and signaling pathways involved in retinogenesis has been studied extensively, the influence of tissue maturation itself has not yet been systematically explored. Here, we present a quantitative analysis of mitotic events during zebrafish retinogenesis that reveals three types of committed neuronal precursors in addition to the previously known apical progenitors. The identified precursor types present at distinct developmental stages and exhibit different mitotic location (apical versus nonapical), cleavage plane orientation, and morphology. Interestingly, the emergence of nonapically dividing committed bipolar cell precursors can be linked to an increase in apical crowding caused by the developing photoreceptor cell layer. Furthermore, genetic interference with neuronal subset specification induces ectopic divisions of committed precursors, underlining the finding that progressing morphogenesis can effect precursor division position.

  18. An Engineered Cardiac Reporter Cell Line Identifies Human Embryonic Stem Cell-Derived Myocardial Precursors

    PubMed Central

    Mihardja, Shirley S.; Liszewski, Walter; Erle, David J.; Lee, Randall J.; Bernstein, Harold S.

    2011-01-01

    Unlike some organs, the heart is unable to repair itself after injury. Human embryonic stem cells (hESCs) grow and divide indefinitely while maintaining the potential to develop into many tissues of the body. As such, they provide an unprecedented opportunity to treat human diseases characterized by tissue loss. We have identified early myocardial precursors derived from hESCs (hMPs) using an α-myosin heavy chain (αMHC)-GFP reporter line. We have demonstrated by immunocytochemistry and quantitative real-time PCR (qPCR) that reporter activation is restricted to hESC-derived cardiomyocytes (CMs) differentiated in vitro, and that hMPs give rise exclusively to muscle in an in vivo teratoma formation assay. We also demonstrate that the reporter does not interfere with hESC genomic stability. Importantly, we show that hMPs give rise to atrial, ventricular and specialized conduction CM subtypes by qPCR and microelectrode array analysis. Expression profiling of hMPs over the course of differentiation implicate Wnt and transforming growth factor-β signaling pathways in CM development. The identification of hMPs using this αMHC-GFP reporter line will provide important insight into the pathways regulating human myocardial development, and may provide a novel therapeutic reagent for the treatment of cardiac disease. PMID:21245908

  19. Repressor transcription factor 7-like 1 promotes adipogenic competency in precursor cells.

    PubMed

    Cristancho, Ana G; Schupp, Michael; Lefterova, Martina I; Cao, Shengya; Cohen, Daniel M; Chen, Christopher S; Steger, David J; Lazar, Mitchell A

    2011-09-27

    The identification of factors that define adipocyte precursor potential has important implications for obesity. Preadipocytes are fibroblastoid cells committed to becoming round lipid-laden adipocytes. In vitro, this differentiation process is facilitated by confluency, followed by adipogenic stimuli. During adipogenesis, a large number of cytostructural genes are repressed before adipocyte gene induction. Here we report that the transcriptional repressor transcription factor 7-like 1 (TCF7L1) binds and directly regulates the expression of cell structure genes. Depletion of TCF7L1 inhibits differentiation, because TCF7L1 indirectly induces the adipogenic transcription factor peroxisome proliferator-activated receptor γ in a manner that can be replaced by inhibition of myosin II activity. TCF7L1 is induced by cell contact in adipogenic cell lines, and ectopic expression of TCF7L1 alleviates the confluency requirement for adipocytic differentiation of precursor cells. In contrast, TCF7L1 is not induced during confluency of non-adipogenic fibroblasts, and, remarkably, forced expression of TCF7L1 is sufficient to commit non-adipogenic fibroblasts to an adipogenic fate. These results establish TCF7L1 as a transcriptional hub coordinating cell-cell contact with the transcriptional repression required for adipogenic competency.

  20. Zinc Deficiency Induces Apoptosis via Mitochondrial p53- and Caspase-Dependent Pathways in Human Neuronal Precursor Cells

    ERIC Educational Resources Information Center

    Seth, Rohit; Corniola, Rikki S.; Gower-Winter, Shannon D.; Morgan, Thomas J., Jr.; Bishop, Brian; Levenson, Cathy W.

    2015-01-01

    Previous studies have shown that zinc deficiency leads to apoptosis of neuronal precursor cells in vivo and in vitro. In addition to the role of p53 as a nuclear transcription factor in zinc deficient cultured human neuronal precursors (NT-2), we have now identified the translocation of phosphorylated p53 to the mitochondria and p53-dependent…

  1. Epidermal growth factor precursor in mouse lactating mammary gland alveolar cells

    SciTech Connect

    Brown, C.F.; Teng, C.T.; Pentecost, B.T.; DiAugustine, R.P. )

    1989-07-01

    Previous studies have demonstrated that high levels of epidermal growth factor (EGF) occur in human and rodent milk and that oral administration of this polypeptide stimulates rodent gastrointestinal development. It is not known whether EGF in milk originates from cells of the lactating mammary gland or is sequestered from an extramammary source. In the present study, prepro-EGF mRNA (approximately 4.7 kilobases) was detected in the CD-1 mouse mammary gland throughout the period of lactation; by comparison, negligible levels of this EGF transcript were found in the gland during pregnancy. Low levels of EGF immunoreactivity (4-5 ng/g wet wt tissue) were extracted from lactating (day 18) mammary glands with dilute acetic acid. Immunolocalization was evident with antisera to either EGF or two other regions of the EGF precursor in essentially all alveolar cells of the lactating gland. The most prominent staining with antiserum to EGF was observed along the luminal borders of cells; this pattern of cellular staining required proteolytic pretreatment of tissue sections. Western blot analyses of cell membranes isolated from the day 16 lactating mammary gland revealed an EGF-immunoreactive band at about 145K, which was equivalent in size to the EGF precursor found in mouse kidney cell membranes. Despite these findings, labeling of lactating mammary gland mince with L-(35S)methionine and cysteine for up to 4 h did not reveal any specific bands in immunoprecipitates. These cumulative findings suggest that the precursor form of EGF occurs in alveolar cells of lactating mammary gland and that this protein is translocated to the cell membrane.

  2. Hepatic precursors derived from murine embryonic stem cells contribute to regeneration of injured liver.

    PubMed

    Heo, Jeonghoon; Factor, Valentina M; Uren, Tania; Takahama, Yasushi; Lee, Ju-Seog; Major, Marian; Feinstone, Stephen M; Thorgeirsson, Snorri S

    2006-12-01

    We established an efficient system for differentiation, expansion and isolation of hepatic progenitor cells from mouse embryonic stem (ES) cells and evaluated their capacity to repopulate injured liver. Using mouse ES cells transfected with the green fluorescent protein (GFP) reporter gene regulated by albumin (ALB) enhancer/promoter, we found that a serum-free chemically defined medium supports formation of embryoid bodies (EBs) and differentiation of hepatic lineage cells in the absence of exogenous growth factors or feeder cell layers. The first GFP+ cells expressing ALB were detected in close proximity to "beating" myocytes after 7 days of EB cultures. GFP+ cells increased in number, acquired hepatocyte-like morphology and hepatocyte-specific markers (i.e., ALB, AAT, TO, and G6P), and by 28 days represented more than 30% of cells isolated from EB outgrowths. The FACS-purified GFP+ cells developed into functional hepatocytes without evidence of cell fusion and participated in the repairing of diseased liver when transplanted into MUP-uPA/SCID mice. The ES cell-derived hepatocytes were responsive to normal growth regulation and proliferated at the same rate as the host hepatocytes after an additional growth stimulus from CCl(4)-induced liver injury. The transplanted GFP+ cells also differentiated into biliary epithelial cells. In conclusion, a highly enriched population of committed hepatocyte precursors can be generated from ES cells in vitro for effective cell replacement therapy.

  3. β-Amyloid precursor protein: function in stem cell development and Alzheimer's disease brain.

    PubMed

    Small, David H; Hu, Yanling; Bolós, Marta; Dawkins, Edgar; Foa, Lisa; Young, Kaylene M

    2014-01-01

    Stem cell therapy may be a suitable approach for the treatment of many neurodegenerative diseases. However, one major impediment to the development of successful cell-based therapies is our limited understanding of the mechanisms that instruct neural stem cell behaviour, such as proliferation and cell fate specification. The β-amyloid precursor protein (APP) of Alzheimer's disease (AD) may play an important role in neural stem cell proliferation and differentiation. Our recent work shows that in vitro, APP stimulates neural stem or progenitor cell proliferation and neuronal differentiation. The effect on proliferation is mediated by an autocrine factor that we have identified as cystatin C. As cystatin C expression is also reported to inhibit the development of amyloid pathology in APP transgenic mice, our finding has implications for the possible use of cystatin C for the therapy of AD.

  4. Secretory clusterin inhibits osteoclastogenesis by attenuating M-CSF-dependent osteoclast precursor cell proliferation

    SciTech Connect

    Choi, Bongkun; Kang, Soon-Suk; Kang, Sang-Wook; Min, Bon-Hong; Lee, Eun-Jin; Song, Da-Hyun; Kim, Sang-Min; Song, Youngsup; Yoon, Seung-Yong; Chang, Eun-Ju

    2014-07-18

    Highlights: • We describe the expression and secretion of clusterin in osteoclasts. • Endogenous clusterin deficiency does not affect osteoclast formation. • Exogenous treatment with secretory clusterin decreases osteoclast differentiation. • Secretory clusterin attenuates osteoclast precursor cell proliferation by inhibiting M-CSF-mediated ERK activation. - Abstract: Secretory clusterin (sCLU)/apolipoprotein J is a multifunctional glycoprotein that is ubiquitously expressed in various tissues. Reduced sCLU in the joints of patients with bone erosive disease is associated with disease activity; however, its exact role has yet to be elucidated. Here, we report that CLU is expressed and secreted during osteoclastogenesis in mouse bone marrow-derived macrophages (BMMs) that are treated with receptor activator of nuclear factor kappa-B ligand (RANKL) and macrophage colony-stimulating factor (M-CSF). CLU-deficient BMMs obtained from CLU{sup −/−} mice exhibited no significant alterations in OC differentiation in comparison with BMMs obtained from wild-type mice. In contrast, exogenous sCLU treatment significantly inhibited OC formation in both BMMs and OC precursor cultures. The inhibitory effect of sCLU was more prominent in BMMs than OC precursor cultures. Interestingly, treating BMMs with sCLU decreased the proliferative effects elicited by M-CSF and suppressed M-CSF-induced ERK activation of OC precursor cells without causing apoptotic cell death. This study provides the first evidence that sCLU reduces OC formation by inhibiting the actions of M-CSF, thereby suggesting its protective role in bone erosion.

  5. Using superoxide dismutase/catalase mimetics to manipulate the redox environment of neural precursor cells.

    PubMed

    Limoli, C L; Giedzinski, E; Baure, J; Doctrow, S R; Rola, R; Fike, J R

    2006-01-01

    Past work has shown that neural precursor cells are predisposed to redox sensitive changes, and that oxidative stress plays a critical role in the acute and persistent changes that occur within the irradiated CNS. Irradiation leads to a marked rise in reactive oxygen species (ROS) that correlates with oxidative endpoints in vivo and reductions in neurogenesis. To better understand the impact of oxidative stress on neural precursor cells, and to determine if radiation-induced oxidative damage and precursor cell loss after irradiation could be reduced, a series of antioxidant compounds (EUK-134, EUK-163, EUK-172, EUK-189) were tested, three of which possess both superoxide dismutase (SOD) and catalase activities and one (EUK-163) whose only significant activity is SOD. Our results show that these SOD/catalase mimetics apparently increase the oxidation of a ROS-sensitive fluorescent indicator dye, particularly after short (12 h) treatments, but that longer treatments (24 h) decrease oxidation attributable to radiation-induced ROS. Similarly, other studies found that cells incubated with CuZnSOD showed some increase in intracellular ROS levels. Subsequent data suggested that the dye-oxidising capabilities of the EUK compounds were linked to differences in their catalase activity and, most likely, their ability to catalyse peroxidative pathways. In unirradiated mice, the EUK-134 analogue induced some decrease of proliferating precursor cells and immature neurons 48 h after radiation, an effect that may be attributable to cytotoxicity and/or inhibition of precursor proliferation. In irradiated mice, a single injection of EUK-134 was not found to be an effective radioprotector at acute times (48 h). The present results support continued development of our in vitro model as a tool for predicting certain in vivo responses, and suggest that in some biological systems the capability to scavenge superoxide but produce excess H(2)O(2), as is known for CuZnSOD, may be

  6. Blood-brain barrier promotes differentiation of human fetal neural precursor cells.

    PubMed

    Chintawar, Satyan; Cayrol, Romain; Antel, Jack; Pandolfo, Massimo; Prat, Alexandre

    2009-04-01

    In the stem cell niche, neural stem cells (NSCs) are in close contact with the specialized blood-brain barrier (BBB) endothelial cells (ECs) that modulate their proliferation and differentiation behavior. NSCs are also an attractive source for cell transplantation and neural tissue repair after central nervous system injury. After systemic grafting, they are confronted with the BBB before they can enter the brain parenchyma. We investigated the interactions of human fetal neural precursor cells (hfNPCs) with human brain ECs in an in vitro model using primary cultures. We demonstrated that hfNPCs efficiently differentiate to neurons, astrocytes, and oligodendrocytes and move to the subendothelial space of human BBB endothelium, but not to pulmonary artery ECs. Effective differentiation was found to be dependent on the chemokine CCL2/MCP-1, but not on CXCL8/IL-8. Our findings suggest that neural precursor cells specifically interact with the BBB endothelium and differentiate in the subendothelial niche into astrocytes, neurons, and oligodendrocytes, under the influence of the chemokine CCL2/MCP-1.

  7. Efficient delivery of human single fiber-derived muscle precursor cells via biocompatible scaffold.

    PubMed

    Boldrin, Luisa; Malerba, Alberto; Vitiello, Libero; Cimetta, Elisa; Piccoli, Martina; Messina, Chiara; Gamba, Pier Giorgio; Elvassore, Nicola; De Coppi, Paolo

    2008-01-01

    The success of cell therapy for skeletal muscle disorders depends upon two main factors: the cell source and the method of delivery. In this work we have explored the therapeutic potential of human muscle precursor cells (hMPCs), obtained from single human muscle fibers, implanted in vivo via micropatterned scaffolds. hMPCs were initially expanded and characterized in vitro by immunostaining and flow cytometric analysis. For in vivo studies, hMPCs were seeded onto micropatterned poly-lactic-glycolic acid 3D-scaffolds fabricated using soft-lithography and thermal membrane lamination. Seeded scaffolds were then implanted in predamaged tibialis anterior muscles of CD1 nude mice; hMPCs were also directly injected in contralateral limbs as controls. Similarly to what we previously described with mouse precursors cells, we found that hMPCs were able to participate in muscle regeneration and scaffold-implanted muscles contained a greater number of human nuclei, as revealed by immunostaining and Western blot analyses. These results indicate that hMPCs derived from single fibers could be a good and reliable cell source for the design of therapeutic protocols and that implantation of cellularized scaffolds is superior to direct injection for the delivery of myogenic cells into regenerating skeletal muscle.

  8. Repressor transcription factor 7-like 1 promotes adipogenic competency in precursor cells

    PubMed Central

    Cristancho, Ana G.; Schupp, Michael; Lefterova, Martina I.; Cao, Shengya; Cohen, Daniel M.; Chen, Christopher S.; Steger, David J.; Lazar, Mitchell A.

    2011-01-01

    The identification of factors that define adipocyte precursor potential has important implications for obesity. Preadipocytes are fibroblastoid cells committed to becoming round lipid-laden adipocytes. In vitro, this differentiation process is facilitated by confluency, followed by adipogenic stimuli. During adipogenesis, a large number of cytostructural genes are repressed before adipocyte gene induction. Here we report that the transcriptional repressor transcription factor 7-like 1 (TCF7L1) binds and directly regulates the expression of cell structure genes. Depletion of TCF7L1 inhibits differentiation, because TCF7L1 indirectly induces the adipogenic transcription factor peroxisome proliferator-activated receptor γ in a manner that can be replaced by inhibition of myosin II activity. TCF7L1 is induced by cell contact in adipogenic cell lines, and ectopic expression of TCF7L1 alleviates the confluency requirement for adipocytic differentiation of precursor cells. In contrast, TCF7L1 is not induced during confluency of non-adipogenic fibroblasts, and, remarkably, forced expression of TCF7L1 is sufficient to commit non-adipogenic fibroblasts to an adipogenic fate. These results establish TCF7L1 as a transcriptional hub coordinating cell–cell contact with the transcriptional repression required for adipogenic competency. PMID:21914845

  9. Sphedgehog is expressed by pigment cell precursors during early gastrulation in Strongylocentrotus purpuratus.

    PubMed

    Egaña, Ana L; Ernst, Susan G

    2004-10-01

    We have sequenced the Sphedgehog (Sphh) gene from the sea urchin Strongylocentrotus purpuratus. Sphh transcripts are detected first at the mesenchyme blastula stage, and they accumulate throughout early embryogenesis. The Sphh protein is produced by precursor pigment cells during early and midgastrulation. NiCl2 inhibits pigment cell differentiation in sea urchins. Here, we show that, in S. purpuratus, nickel affects a process(es) between 17 and 24 hr of development, corresponding to the time period when Sphh mRNA is first detected. However, nickel treatment does not alter the early expression of Sphh.

  10. Lack of effect of a granulocyte proliferation inhibitor or their committed precursor cells.

    PubMed

    Lord, B I; Testa, N G; Wright, E G; Banerjee, R K

    1977-05-01

    Using the agar culture technique, we have measured the effect of granulocyte extracts GCE (and of erythrocyte-RCE and lymph node extracts-LNE) on the growth and proliferation of the committed granulocytic precursor cells, CFU-C. In addition we have determined their effects on the proliferation of the developing colony cells and on the ultimate cell production in the colonies. The results show that GCE has no effect on the growth or proliferative activity on the CFU-C. It does, however, reduce both the autoradiographic labelling indices of the developing colony cells and the net colony cellularities, acting as a cell cycle modulator. These are effects specific to the GCE since at the dose levels used, neither RCE nor LNE affected these measurements.

  11. Diethanolamine Alters Proliferation and Choline Metabolism in Mouse Neural Precursor Cells

    PubMed Central

    Niculescu, Mihai D.; Wu, Renan; Guo, Zhong; da Costa, Kerry Ann; Zeisel, Steven H.

    2008-01-01

    Diethanolamine (DEA) is a widely used ingredient in many consumer products and in a number of industrial applications. It has been previously reported that dermal administration of DEA to mice diminished hepatic stores of choline and altered brain development in the fetus. The aim of this study was to use mouse neural precursor cells in vitro to assess the mechanism underlying the effects of DEA. Cells exposed to DEA treatment (3mM) proliferated less (by 5-bromo-2-deoxyuridine incorporation) at 48 h (24% of control [CT]), and had increased apoptosis at 72 h (308% of CT). Uptake of choline into cells was reduced by DEA treatment (to 52% of CT), resulting in diminished intracellular concentrations of choline and phosphocholine (55 and 12% of CT, respectively). When choline concentration in the growth medium was increased threefold (to 210μM), the effects of DEA exposure on cell proliferation and apoptosis were prevented, however, intracellular phosphocholine concentrations remained low. In choline kinase assays, we observed that DEA can be phosphorylated to phospho-DEA at the expense of choline. Thus, the effects of DEA are likely mediated by inhibition of choline transport into neural precursor cells and by altered metabolism of choline. Our study suggests that prenatal exposure to DEA may have a detrimental effect on brain development. PMID:17204582

  12. Intestinal label-retaining cells are secretory precursors expressing Lgr5.

    PubMed

    Buczacki, Simon J A; Zecchini, Heather Ireland; Nicholson, Anna M; Russell, Roslin; Vermeulen, Louis; Kemp, Richard; Winton, Douglas J

    2013-03-07

    The rapid cell turnover of the intestinal epithelium is achieved from small numbers of stem cells located in the base of glandular crypts. These stem cells have been variously described as rapidly cycling or quiescent. A functional arrangement of stem cells that reconciles both of these behaviours has so far been difficult to obtain. Alternative explanations for quiescent cells have been that they act as a parallel or reserve population that replace rapidly cycling stem cells periodically or after injury; their exact nature remains unknown. Here we show mouse intestinal quiescent cells to be precursors that are committed to mature into differentiated secretory cells of the Paneth and enteroendocrine lineage. However, crucially we find that after intestinal injury they are capable of extensive proliferation and can give rise to clones comprising the main epithelial cell types. Thus, quiescent cells can be recalled to the stem-cell state. These findings establish quiescent cells as an effective clonogenic reserve and provide a motivation for investigating their role in pathologies such as colorectal cancers and intestinal inflammation.

  13. MECHANICAL VIBRATION INHIBITS OSTEOCLAST FORMATION BY REDUCING DC-STAMP RECEPTOR EXPRESSION IN OSTEOCLAST PRECURSOR CELLS

    PubMed Central

    Kulkarni, R.N.; Voglewede, P.A.; Liu, D.

    2014-01-01

    It is well known that physical inactivity leads to loss of muscle mass, but it also causes bone loss. Mechanistically, osteoclastogenesis and bone resorption have recently been shown to be regulated by vibration. However, the underlying mechanism behind the inhibition of osteoclast formation is yet unknown. Therefore, we investigated whether mechanical vibration of osteoclast precursor cells affects osteoclast formation by the involvement of fusion-related molecules such as dendritic cell-specific transmembrane protein (DC-STAMP), and P2X7 receptor (P2X7R). RAW264.7 (a murine osteoclastic-like cell line) cells were treated with 20 ng/ml receptor activator of NF-κB ligand (RANKL). For 3 consecutive days, the cells were subjected to 1 hour of mechanical vibration with 20 µm displacement at a frequency of 4 Hz and compared to the control cells that were treated under the same condition but without the vibration. After 5 days of culture, osteoclast formation was determined. Gene expression of DC-STAMP and P2X7R by RAW264.7 cells were determined after 1 hour mechanical vibration, while protein production of the DC-STAMP was determined after 6 hours of post incubation after vibration. As a result, mechanical vibration of RAW264.7 cells inhibited the formation of osteoclasts. Vibration down-regulated DC-STAMP gene expression by 1.6-fold in the presence of RANKL and by 1.4-fold in the absence of RANKL. Additionally, DC-STAMP protein production was also down-regulated by 1.4-fold in the presence of RANKL and by 1.2-fold in the absence of RANKL in RAW264.7 cells in response to mechanical vibration. However, vibration did not affect P2X7R gene expression. Mouse anti-DC-STAMP antibody inhibited osteoclast formation in the absence of vibration. Our results suggest that mechanical vibration of osteoclast precursor cells reduce DC-STAMP expression in osteoclast precursor cells leading to the inhibition of osteoclast formation. PMID:23994170

  14. Mechanical vibration inhibits osteoclast formation by reducing DC-STAMP receptor expression in osteoclast precursor cells.

    PubMed

    Kulkarni, Rishikesh N; Voglewede, Philip A; Liu, Dawei

    2013-12-01

    It is well known that physical inactivity leads to loss of muscle mass, but it also causes bone loss. Mechanistically, osteoclastogenesis and bone resorption have recently been shown to be regulated by vibration. However, the underlying mechanism behind the inhibition of osteoclast formation is yet unknown. Therefore, we investigated whether mechanical vibration of osteoclast precursor cells affects osteoclast formation by the involvement of fusion-related molecules such as dendritic cell-specific transmembrane protein (DC-STAMP) and P2X7 receptor (P2X7R). RAW264.7 (a murine osteoclastic-like cell line) cells were treated with 20ng/ml receptor activator of NF-κB ligand (RANKL). For 3 consecutive days, the cells were subjected to 1h of mechanical vibration with 20μm displacement at a frequency of 4Hz and compared to the control cells that were treated under the same condition but without the vibration. After 5days of culture, osteoclast formation was determined. Gene expression of DC-STAMP and P2X7R by RAW264.7 cells was determined after 1h of mechanical vibration, while protein production of the DC-STAMP was determined after 6h of postincubation after vibration. As a result, mechanical vibration of RAW264.7 cells inhibited the formation of osteoclasts. Vibration down-regulated DC-STAMP gene expression by 1.6-fold in the presence of RANKL and by 1.4-fold in the absence of RANKL. Additionally, DC-STAMP protein production was also down-regulated by 1.4-fold in the presence of RANKL and by 1.2-fold in the absence of RANKL in RAW264.7 cells in response to mechanical vibration. However, vibration did not affect P2X7R gene expression. Mouse anti-DC-STAMP antibody inhibited osteoclast formation in the absence of vibration. Our results suggest that mechanical vibration of osteoclast precursor cells reduces DC-STAMP expression in osteoclast precursor cells leading to the inhibition of osteoclast formation. © 2013 Elsevier Inc. All rights reserved.

  15. Ki-67 is required for maintenance of cancer stem cells but not cell proliferation.

    PubMed

    Cidado, Justin; Wong, Hong Yuen; Rosen, D Marc; Cimino-Mathews, Ashley; Garay, Joseph P; Fessler, Abigail G; Rasheed, Zeshaan A; Hicks, Jessica; Cochran, Rory L; Croessmann, Sarah; Zabransky, Daniel J; Mohseni, Morassa; Beaver, Julia A; Chu, David; Cravero, Karen; Christenson, Eric S; Medford, Arielle; Mattox, Austin; De Marzo, Angelo M; Argani, Pedram; Chawla, Ajay; Hurley, Paula J; Lauring, Josh; Park, Ben Ho

    2016-02-02

    Ki-67 expression is correlated with cell proliferation and is a prognostic marker for various cancers; however, its function is unknown. Here we demonstrate that genetic disruption of Ki-67 in human epithelial breast and colon cancer cells depletes the cancer stem cell niche. Ki-67 null cells had a proliferative disadvantage compared to wildtype controls in colony formation assays and displayed increased sensitivity to various chemotherapies. Ki-67 null cancer cells showed decreased and delayed tumor formation in xenograft assays, which was associated with a reduction in cancer stem cell markers. Immunohistochemical analyses of human breast cancers revealed that Ki-67 expression is maintained at equivalent or greater levels in metastatic sites of disease compared to matched primary tumors, suggesting that maintenance of Ki-67 expression is associated with metastatic/clonogenic potential. These results elucidate Ki-67's role in maintaining the cancer stem cell niche, which has potential diagnostic and therapeutic implications for human malignancies.

  16. Ki-67 is required for maintenance of cancer stem cells but not cell proliferation

    PubMed Central

    Cidado, Justin; Wong, Hong Yuen; Rosen, D. Marc; Cimino-Mathews, Ashley; Garay, Joseph P.; Fessler, Abigail G.; Rasheed, Zeshaan A.; Hicks, Jessica; Cochran, Rory L.; Croessmann, Sarah; Zabransky, Daniel J.; Mohseni, Morassa; Beaver, Julia A.; Chu, David; Cravero, Karen; Christenson, Eric S.; Medford, Arielle; Mattox, Austin; De Marzo, Angelo M.; Argani, Pedram; Chawla, Ajay; Hurley, Paula J.; Lauring, Josh; Park, Ben Ho

    2016-01-01

    Ki-67 expression is correlated with cell proliferation and is a prognostic marker for various cancers; however, its function is unknown. Here we demonstrate that genetic disruption of Ki-67 in human epithelial breast and colon cancer cells depletes the cancer stem cell niche. Ki-67 null cells had a proliferative disadvantage compared to wildtype controls in colony formation assays and displayed increased sensitivity to various chemotherapies. Ki-67 null cancer cells showed decreased and delayed tumor formation in xenograft assays, which was associated with a reduction in cancer stem cell markers. Immunohistochemical analyses of human breast cancers revealed that Ki-67 expression is maintained at equivalent or greater levels in metastatic sites of disease compared to matched primary tumors, suggesting that maintenance of Ki-67 expression is associated with metastatic/clonogenic potential. These results elucidate Ki-67's role in maintaining the cancer stem cell niche, which has potential diagnostic and therapeutic implications for human malignancies. PMID:26823390

  17. Malignant Precursor Cells Pre-Exist in Human Breast DCIS and Require Autophagy for Survival

    PubMed Central

    Espina, Virginia; Mariani, Brian D.; Gallagher, Rosa I.; Tran, Khoa; Banks, Stacey; Wiedemann, Joy; Huryk, Heather; Mueller, Claudius; Adamo, Luana; Deng, Jianghong; Petricoin, Emanuel F.; Pastore, Lucia; Zaman, Syed; Menezes, Geetha; Mize, James; Johal, Jasbir; Edmiston, Kirsten; Liotta, Lance A.

    2010-01-01

    Background While it is accepted that a majority of invasive breast cancer progresses from a ductal carcinoma in situ (DCIS) precursor stage, very little is known about the factors that promote survival of DCIS neoplastic cells within the hypoxic, nutrient deprived intraductal microenvironment. Methodology and Principal Findings We examined the hypothesis that fresh human DCIS lesions contain pre-existing carcinoma precursor cells. We characterized these cells by full genome molecular cytogenetics (Illumina HumanCytoSNP profile), and signal pathway profiling (Reverse Phase Protein Microarray, 59 endpoints), and demonstrated that autophagy is required for survival and anchorage independent growth of the cytogenetically abnormal tumorigenic DCIS cells. Ex vivo organoid culture of fresh human DCIS lesions, without enzymatic treatment or sorting, induced the emergence of neoplastic epithelial cells exhibiting the following characteristics: a) spontaneous generation of hundreds of spheroids and duct-like 3-D structures in culture within 2–4 weeks; b) tumorigenicity in NOD/SCID mice; c) cytogenetically abnormal (copy number loss or gain in chromosomes including 1, 5, 6, 8, 13, 17) compared to the normal karyotype of the non-neoplastic cells in the source patient's breast tissue; d) in vitro migration and invasion of autologous breast stroma; and e) up-regulation of signal pathways linked to, and components of, cellular autophagy. Multiple autophagy markers were present in the patient's original DCIS lesion and the mouse xenograft. We tested whether autophagy was necessary for survival of cytogenetically abnormal DCIS cells. The lysosomotropic inhibitor (chloroquine phosphate) of autophagy completely suppressed the generation of DCIS spheroids/3-D structures, suppressed ex vivo invasion of autologous stroma, induced apoptosis, suppressed autophagy associated proteins including Atg5, AKT/PI3 Kinase and mTOR, eliminated cytogenetically abnormal spheroid forming cells from

  18. Lipodepsipeptide empedopeptin inhibits cell wall biosynthesis through Ca2+-dependent complex formation with peptidoglycan precursors.

    PubMed

    Müller, Anna; Münch, Daniela; Schmidt, Yvonne; Reder-Christ, Katrin; Schiffer, Guido; Bendas, Gerd; Gross, Harald; Sahl, Hans-Georg; Schneider, Tanja; Brötz-Oesterhelt, Heike

    2012-06-08

    Empedopeptin is a natural lipodepsipeptide antibiotic with potent antibacterial activity against multiresistant Gram-positive bacteria including methicillin-resistant Staphylococcus aureus and penicillin-resistant Streptococcus pneumoniae in vitro and in animal models of bacterial infection. Here, we describe its so far elusive mechanism of antibacterial action. Empedopeptin selectively interferes with late stages of cell wall biosynthesis in intact bacterial cells as demonstrated by inhibition of N-acetylglucosamine incorporation into polymeric cell wall and the accumulation of the ultimate soluble peptidoglycan precursor UDP-N-acetylmuramic acid-pentapeptide in the cytoplasm. Using membrane preparations and the complete cascade of purified, recombinant late stage peptidoglycan biosynthetic enzymes and their respective purified substrates, we show that empedopeptin forms complexes with undecaprenyl pyrophosphate containing peptidoglycan precursors. The primary physiological target of empedopeptin is undecaprenyl pyrophosphate-N-acetylmuramic acid(pentapeptide)-N-acetylglucosamine (lipid II), which is readily accessible at the outside of the cell and which forms a complex with the antibiotic in a 1:2 molar stoichiometry. Lipid II is bound in a region that involves at least the pyrophosphate group, the first sugar, and the proximal parts of stem peptide and undecaprenyl chain. Undecaprenyl pyrophosphate and also teichoic acid precursors are bound with lower affinity and constitute additional targets. Calcium ions are crucial for the antibacterial activity of empedopeptin as they promote stronger interaction with its targets and with negatively charged phospholipids in the membrane. Based on the high structural similarity of empedopeptin to the tripropeptins and plusbacins, we propose this mechanism of action for the whole compound class.

  19. Remote maintenance for a new generation of hot cells

    SciTech Connect

    Feldman, M.J.; Grant, N.R.

    1987-01-01

    For several years the Consolidated Fuel Reprocessing Program (CFRP) at Oak Ridge National Laboratory (ORNL) has been developing facility concepts, designing specialized equipment, and testing prototypical hardware for reprocessing spent fuel from fast breeder reactors. The major facility conceptual design, the Hot Experimental Facility, was based on total remote maintenance to increase plant availability and to reduce radiation exposure. This thrust included designing modular equipment to facilitate maintenance and the manipulation necessary to accomplish maintenance. Included in the design repetoire was the development effort in advanced servomanipulator systems, a remote sampling system, television viewing, and a transporter for manipulator positioning. Demonstration of these developed items is currently ongoing, and the technology is available for applications where production operations in highly radioactive environments are required.

  20. Transforming growth factor-alpha precursors in human colon carcinoma cells.

    PubMed

    Asbert, M; Montaner, B; Pérez-Tomás, R

    2001-06-01

    Among the proteins of the epidermal growth factor family, transforming growth factor-alpha (TGF-alpha) may be an especially reliable indicator of metastasis or prognosis in human colorectal carcinomas. Moreover, anomalous forms of TGF-alpha have been detected in several tissues of cancer origin, suggesting a role of these forms in the development of the disease. This study was designed to identify the presence of TGF-alpha precursors in different colon cancer cell lines by mean of immunocytochemistry and western blotting techniques. Pro-TGF-alpha was detected in all cell lines tested. Staining for pro-TGF-alpha was observed in cytoplasm. Monoclonal antibody to TGF-alpha detected two bands of 20 and 21 kDa. Polyclonal antibody to pro-TGF-alpha revealed five bands ranging from 15 to 24 kDa. All these proteins were also detected in nonmalignant cells expressing a transfected rat pro-TGF-alpha gene. In conclusions, transformation in these human colon carcinoma cells is not due to the presence of anomalous forms of TGF-alpha precursors.

  1. The lantibiotic NAI-107 binds to bactoprenol-bound cell wall precursors and impairs membrane functions.

    PubMed

    Münch, Daniela; Müller, Anna; Schneider, Tanja; Kohl, Bastian; Wenzel, Michaela; Bandow, Julia Elisabeth; Maffioli, Sonia; Sosio, Margherita; Donadio, Stefano; Wimmer, Reinhard; Sahl, Hans-Georg

    2014-04-25

    The lantibiotic NAI-107 is active against Gram-positive bacteria including vancomycin-resistant enterococci and methicillin-resistant Staphylococcus aureus. To identify the molecular basis of its potency, we studied the mode of action in a series of whole cell and in vitro assays and analyzed structural features by nuclear magnetic resonance (NMR). The lantibiotic efficiently interfered with late stages of cell wall biosynthesis and induced accumulation of the soluble peptidoglycan precursor UDP-N-acetylmuramic acid-pentapeptide (UDP-MurNAc-pentapeptide) in the cytoplasm. Using membrane preparations and a complete cascade of purified, recombinant late stage peptidoglycan biosynthetic enzymes (MraY, MurG, FemX, PBP2) and their respective purified substrates, we showed that NAI-107 forms complexes with bactoprenol-pyrophosphate-coupled precursors of the bacterial cell wall. Titration experiments indicate that first a 1:1 stoichiometric complex occurs, which then transforms into a 2:1 (peptide: lipid II) complex, when excess peptide is added. Furthermore, lipid II and related molecules obviously could not serve as anchor molecules for the formation of defined and stable nisin-like pores, however, slow membrane depolarization was observed after NAI-107 treatment, which could contribute to killing of the bacterial cell.

  2. Accumulation of specific sterol precursors targets a MAP kinase cascade mediating cell–cell recognition and fusion

    PubMed Central

    Weichert, Martin; Lichius, Alexander; Priegnitz, Bert-Ewald; Brandt, Ulrike; Gottschalk, Johannes; Nawrath, Thorben; Groenhagen, Ulrike; Read, Nick D.; Schulz, Stefan; Fleißner, André

    2016-01-01

    Sterols are vital components of eukaryotic cell membranes. Defects in sterol biosynthesis, which result in the accumulation of precursor molecules, are commonly associated with cellular disorders and disease. However, the effects of these sterol precursors on the metabolism, signaling, and behavior of cells are only poorly understood. In this study, we show that the accumulation of only ergosterol precursors with a conjugated double bond in their aliphatic side chain specifically disrupts cell–cell communication and fusion in the fungus Neurospora crassa. Genetically identical germinating spores of this fungus undergo cell–cell fusion, thereby forming a highly interconnected supracellular network during colony initiation. Before fusion, the cells use an unusual signaling mechanism that involves the coordinated and alternating switching between signal sending and receiving states of the two fusion partners. Accumulation of only ergosterol precursors with a conjugated double bond in their aliphatic side chain disrupts this coordinated cell–cell communication and suppresses cell fusion. These specific sterol precursors target a single ERK-like mitogen-activated protein (MAP) kinase (MAK-1)-signaling cascade, whereas a second MAP kinase pathway (MAK-2), which is also involved in cell fusion, is unaffected. These observations indicate that a minor specific change in sterol structure can exert a strong detrimental effect on a key signaling pathway of the cell, resulting in the absence of cell fusion. PMID:27708165

  3. Precursor for wind reversal in a square Rayleigh-Bénard cell

    NASA Astrophysics Data System (ADS)

    Podvin, Bérengère; Sergent, Anne

    2017-01-01

    We investigate large-scale circulation reversals in a two-dimensional Rayleigh-Bénard cell using a proper orthogonal decomposition (POD)-based, five-mode model. The Rayleigh number considered is Ra=5 ×107 and the Prandtl number is Pr=4.3 . A precursor event, corresponding to the action of a mode L* which disconnects the core region from the boundary layers before the onset of the reversal, is identified in the simulation. The five-mode model predicts correctly the behavior of the POD modes observed in the simulation, and in particular that of mode L*. The presence of mode L*, which was not included in an earlier, lower-dimensional version of the model [Podvin and Sergent, J. Fluid Mech. 766, 172 (2015), 10.1017/jfm.2015.15], is found to be instrumental for the reversal dynamics of the model, which suggests that it may also be important for those of the simulation. Reversals can therefore be characterized by three time scales: the transition duration, the interreversal time, and the precursor duration, which separates the precursor event from the onset of the reversal. The distribution of the time scales is found to agree well with the simulation when small-scale intermittency is taken into account through the introduction of noise in the model coefficients.

  4. Pemetrexed in maintenance treatment of advanced non-squamous non-small-cell lung cancer.

    PubMed

    Minami, Seigo; Kijima, Takashi

    2015-01-01

    Pemetrexed, a multitargeting antifolate cytotoxic drug, plays a leading role in front-line chemotherapy for patients with advanced non-squamous non-small-cell lung cancer (NSCLC). Following its approval as second-line monotherapy for locally advanced or metastatic non-squamous NSCLC, pemetrexed has established itself as the first-line regimen in combination with cisplatin, and its powerful antitumor effects and less cumulative toxicities were then taken advantage of in the JMEN and PARAMOUNT trials, respectively, to pioneer a new treatment strategy of switch and continuation maintenance monotherapy. These developments have brought about a marked paradigm shift, and made pemetrexed indispensable in the treatment for non-squamous NSCLC. So far, only three drugs have been approved for maintenance therapy; pemetrexed both by switch and continuation maintenance, erlotinib by switch maintenance, and bevacizumab by continuation maintenance. Compared with observation alone after defined cycles of the first-line chemotherapy, subsequent pemetrexed maintenance therapy has provided significantly longer survival and infrequent severe adverse events. The cost-effectiveness of pemetrexed maintenance therapy is controversial, as well as the other two maintenance drugs, bevacizumab and erlotinib. The latest attractive attention is a combination maintenance therapy. We may have to consider epidermal growth factor receptor (EGFR) mutation status for selection of a combination pattern. A combination maintenance therapy of pemetrexed plus bevacizumab is potential for patients with wild-type EGFR status, while a EGFR tyrosine kinase inhibitor-containing combination is promising for patients with active EGFR mutation status. Pemetrexed will be a pivotal drug when a combination maintenance therapy is used in practice. For future maintenance therapy, we need to explore reliable predictive selection or exclusion markers that can predict who will really benefit from maintenance therapy.

  5. Pemetrexed in maintenance treatment of advanced non-squamous non-small-cell lung cancer

    PubMed Central

    Minami, Seigo; Kijima, Takashi

    2015-01-01

    Pemetrexed, a multitargeting antifolate cytotoxic drug, plays a leading role in front-line chemotherapy for patients with advanced non-squamous non-small-cell lung cancer (NSCLC). Following its approval as second-line monotherapy for locally advanced or metastatic non-squamous NSCLC, pemetrexed has established itself as the first-line regimen in combination with cisplatin, and its powerful antitumor effects and less cumulative toxicities were then taken advantage of in the JMEN and PARAMOUNT trials, respectively, to pioneer a new treatment strategy of switch and continuation maintenance monotherapy. These developments have brought about a marked paradigm shift, and made pemetrexed indispensable in the treatment for non-squamous NSCLC. So far, only three drugs have been approved for maintenance therapy; pemetrexed both by switch and continuation maintenance, erlotinib by switch maintenance, and bevacizumab by continuation maintenance. Compared with observation alone after defined cycles of the first-line chemotherapy, subsequent pemetrexed maintenance therapy has provided significantly longer survival and infrequent severe adverse events. The cost-effectiveness of pemetrexed maintenance therapy is controversial, as well as the other two maintenance drugs, bevacizumab and erlotinib. The latest attractive attention is a combination maintenance therapy. We may have to consider epidermal growth factor receptor (EGFR) mutation status for selection of a combination pattern. A combination maintenance therapy of pemetrexed plus bevacizumab is potential for patients with wild-type EGFR status, while a EGFR tyrosine kinase inhibitor-containing combination is promising for patients with active EGFR mutation status. Pemetrexed will be a pivotal drug when a combination maintenance therapy is used in practice. For future maintenance therapy, we need to explore reliable predictive selection or exclusion markers that can predict who will really benefit from maintenance therapy

  6. Characterization of the Murine Myeloid Precursor Cell Line MuMac-E8

    PubMed Central

    Fricke, Stephan; Riemschneider, Sina; Kohlschmidt, Janine; Hilger, Nadja; Fueldner, Christiane; Knauer, Jens; Sack, Ulrich; Emmrich, Frank; Lehmann, Jörg

    2014-01-01

    Starting point for the present work was the assumption that the cell line MuMac-E8 represents a murine cell population with stem cell properties. Preliminary studies already pointed to the expression of stem-cell associated markers and a self-regenerative potential of the cells. The cell line MuMac-E8 should be examined for their differential stage within stem cell hierarchy. MuMac-E8 cells were derived from a chimeric mouse model of arthritis. It could be shown that MuMac-E8 cells express mRNA of some genes associated with pluripotent stem cells (Nanog, Nucleostemin), of genes for hematopoietic markers (EPCR, Sca-1, CD11b, CD45), for the mesenchymal marker CD105 and of genes for the neural markers Pax-6 and Ezrin. In methylcellulose and May-Grünwald-Giemsa staining, hematopoietic colonies were obtained but the hematopoietic system of lethally irradiated mice could not be rescued. Osteogenic differentiation was not detectable. Thus, it became evident that MuMac-E8 represents not a stem cell line. However, MuMac-E8 cells expressed several myeloid surface markers (i.e. CD11b, F4/80, CD14, CD64), showed phagocytosis and is capable of producing nitric oxide. Thus, this cell line seems to be arrested an advanced stage of myeloid differentiation. Adherence data measured by impedance-based real-time cell analysis together with cell morphology data suggested that MuMac-E8 represents a new macrophage precursor cell line exhibiting weak adherence. This cell line is suitable as an in-vitro model for testing of macrophage functions. Moreover, it might be also useful for differentiation or reprogramming studies. PMID:25546418

  7. Functional analysis of the defective T cell regulation of the antigen-specific PFC response in SLE patients: differentiation of suppressor precursor cells to suppressor effector cells.

    PubMed Central

    Heijnen, C J; Pot, K H; Kater, L; Kluin-Nelemans, H C; Uytdehaag, F; Ballieux, R E

    1982-01-01

    The investigation described here is concerned with the T cell regulation of the antigen-specific antibody response which has been studied in patients suffering from systemic lupus erythematosus (SLE). Apart from the fact that T helper cell activity was found to be less efficient, it appeared that the peripheral blood leucocytes (PBL) of patients in an active stage of the disease did not contain the suppressor precursor cells, which functions as the target cell for the inductive signal of T mu+ suppressor inducer cells. The absence of the suppressor precursor cells in SLE patients coincided with the absence of T gamma+ suppressor effector cells. Characterization of the (post-thymic) precursor cells (derived from normal donors) with the aid of monoclonal antibodies of the OKT series and several other markers pointed out that this population contains OKT4+ as well as OKT8+ cells. Further experiments demonstrated that the cells are capable of rosetting with autologous erythrocytes, and do not bear Fc receptors for IgM or IgG. Considering the various findings as a whole the conclusion is warranted that the post-thymic suppressor precursor T cell can differentiate into a suppressor effector cell only after interaction with T suppressor inducer cells. PMID:6210474

  8. Multiple hemopoietic lineages are found after stimulation of mouse bone marrow precursor cells with interleukin 3.

    PubMed Central

    Prystowsky, M. B.; Otten, G.; Naujokas, M. F.; Vardiman, J.; Ihle, J. N.; Goldwasser, E.; Fitch, F. W.

    1984-01-01

    When the murine T-lymphocyte clone L2 is stimulated with concanavalin A, it secretes at least two distinct factors that affect hemopoietic precursor cells, interleukin 3 (IL3) and granulocyte/macrophage colony-stimulating factor (GM-CSF). IL3 accounts for approximately 10% of the colony-stimulating activity in L2-cell-conditioned medium. The IL3 secreted by L2 cells is similar antigenically to the IL3 secreted by WEHI-3 cells. Like the IL3 from WEHI-3 cells, IL3 secreted by L2 cells does not bind to DEAE Sephacel and can be separated from the L2-cell GM-CSF, which does bind to DEAE. By assessment of the functional, morphologic, surface phenotypic, and cytochemical characteristics of bone marrow cells 6 days after stimulation with IL3 in liquid culture, four hemopoietic lineages were found, including macrophage, neutrophilic granulocyte, megakaryocyte, and basophil/mast cell. In addition, when bone marrow cells were stimulated with IL3 in semisolid medium, several types of colonies were found, including mixed colonies containing macrophage, megakaryocyte, and granulocyte lineages. Images Figure 2 Figure 4 Figure 1 PMID:6437231

  9. Effects of cytomegalovirus infection in human neural precursor cells depend on their differentiation state.

    PubMed

    González-Sánchez, H M; Monsiváis-Urenda, A; Salazar-Aldrete, C A; Hernández-Salinas, A; Noyola, D E; Jiménez-Capdeville, M E; Martínez-Serrano, A; Castillo, C G

    2015-08-01

    Cytomegalovirus (CMV) is the most common cause of congenital infection in developed countries and a major cause of neurological disability in children. Although CMV can affect multiple organs, the most important sequelae of intrauterine infection are related to lesions of the central nervous system. However, little is known about the pathogenesis and the cellular events responsible for neuronal damage in infants with congenital infection. Some studies have demonstrated that neural precursor cells (NPCs) show the greatest susceptibility to CMV infection in the developing brain. We sought to establish an in vitro model of CMV infection of the developing brain in order to analyze the cellular events associated with invasion by this virus. To this end, we employed two cell lines as a permanent source of NPC, avoiding the continuous use of human fetal tissue, the human SK-N-MC neuroblastoma cell line, and an immortalized cell line of human fetal neural origin, hNS-1. We also investigated the effect of the differentiation stage in relation to the susceptibility of these cell lines by comparing the neuroblastoma cell line with the multipotent cell line hNS-1. We found that the effects of the virus were more severe in the neuroblastoma cell line. Additionally, we induced hNS-1 to differentiate and evaluated the effect of CMV in these differentiated cells. Like SK-N-MC cells, hNS-1-differentiated cells were also susceptible to infection. Viability of differentiated hNS-1 cells decreased after CMV infection in contrast to undifferentiated cells. In addition, differentiated hNS-1 cells showed an extensive cytopathic effect whereas the effect was scarce in undifferentiated cells. We describe some of the effects of CMV in neural stem cells, and our observations suggest that the degree of differentiation is important in the acquisition of susceptibility.

  10. A Subpopulation of Smooth Muscle Cells, Derived from Melanocyte-Competent Precursors, Prevents Patent Ductus Arteriosus

    PubMed Central

    Puig, Isabel; Champeval, Delphine; Kumasaka, Mayuko; Belloir, Elodie; Bonaventure, Jacky; Mark, Manuel; Yamamoto, Hiroaki; Taketo, Mark M.; Choquet, Philippe; Etchevers, Heather C.; Beermann, Friedrich; Delmas, Véronique; Monassier, Laurent; Larue, Lionel

    2013-01-01

    Background Patent ductus arteriosus is a life-threatening condition frequent in premature newborns but also present in some term infants. Current mouse models of this malformation generally lead to perinatal death, not reproducing the full phenotypic spectrum in humans, in whom genetic inheritance appears complex. The ductus arteriosus (DA), a temporary fetal vessel that bypasses the lungs by shunting the aortic arch to the pulmonary artery, is constituted by smooth muscle cells of distinct origins (SMC1 and SMC2) and many fewer melanocytes. To understand novel mechanisms preventing DA closure at birth, we evaluated the importance of cell fate specification in SMC that form the DA during embryonic development. Upon specific Tyr::Cre-driven activation of Wnt/β-catenin signaling at the time of cell fate specification, melanocytes replaced the SMC2 population of the DA, suggesting that SMC2 and melanocytes have a common precursor. The number of SMC1 in the DA remained similar to that in controls, but insufficient to allow full DA closure at birth. Thus, there was no cellular compensation by SMC1 for the loss of SMC2. Mice in which only melanocytes were genetically ablated after specification from their potential common precursor with SMC2, demonstrated that differentiated melanocytes themselves do not affect DA closure. Loss of the SMC2 population, independent of the presence of melanocytes, is therefore a cause of patent ductus arteriosus and premature death in the first months of life. Our results indicate that patent ductus arteriosus can result from the insufficient differentiation, proliferation, or contractility of a specific smooth muscle subpopulation that shares a common neural crest precursor with cardiovascular melanocytes. PMID:23382837

  11. Pancortins interact with amyloid precursor protein and modulate cortical cell migration

    PubMed Central

    Rice, Heather C.; Townsend, Matthew; Bai, Jilin; Suth, Seiyam; Cavanaugh, William; Selkoe, Dennis J.; Young-Pearse, Tracy L.

    2012-01-01

    Neuronal precursor cell migration in the developing mammalian brain is a complex process requiring the coordinated interaction of numerous proteins. We have recently shown that amyloid precursor protein (APP) plays a role in migration into the cortical plate through its interaction with two cytosolic signaling proteins, disabled 1 (DAB1) and disrupted in schizophrenia 1 (DISC1). In order to identify extracellular factors that may signal through APP to regulate migration, we performed an unbiased mass spectrometry-based screen for factors that bind to the extracellular domain of APP in the rodent brain. Through this screen, we identified an interaction between APP and pancortins, proteins expressed throughout the developing and mature cerebral cortex. Via co-immunoprecipitation, we show that APP interacts with all four of the mammalian pancortin isoforms (AMY, AMZ, BMY, BMZ). We demonstrate that the BMZ and BMY isoforms of pancortin can specifically reduce β-secretase- but not α-secretase-mediated cleavage of endogenous APP in cell culture, suggesting a biochemical consequence of the association between pancortins and APP. Using in utero electroporation to overexpress and knock down specific pancortin isoforms, we reveal a novel role for pancortins in migration into the cortical plate. Interestingly, we observe opposing roles for alternate pancortin isoforms, with AMY overexpression and BMZ knock down both preventing proper migration of neuronal precursor cells. Finally, we show that BMZ can partially rescue a loss of APP expression and that APP can rescue effects of AMY overexpression, suggesting that pancortins act in conjunction with APP to regulate entry into the cortical plate. Taken together, these results suggest a biochemical and functional interaction between APP and pancortins, and reveal a previously unidentified role for pancortins in mammalian cortical development. PMID:22992957

  12. A network model for the specification of vulval precursor cells and cell fusion control in Caenorhabditis elegans

    PubMed Central

    Weinstein, Nathan; Mendoza, Luis

    2013-01-01

    The vulva of Caenorhabditis elegans has been long used as an experimental model of cell differentiation and organogenesis. While it is known that the signaling cascades of Wnt, Ras/MAPK, and NOTCH interact to form a molecular network, there is no consensus regarding its precise topology and dynamical properties. We inferred the molecular network, and developed a multivalued synchronous discrete dynamic model to study its behavior. The model reproduces the patterns of activation reported for the following types of cell: vulval precursor, first fate, second fate, second fate with reversed polarity, third fate, and fusion fate. We simulated the fusion of cells, the determination of the first, second, and third fates, as well as the transition from the second to the first fate. We also used the model to simulate all possible single loss- and gain-of-function mutants, as well as some relevant double and triple mutants. Importantly, we associated most of these simulated mutants to multivulva, vulvaless, egg-laying defective, or defective polarity phenotypes. The model shows that it is necessary for RAL-1 to activate NOTCH signaling, since the repression of LIN-45 by RAL-1 would not suffice for a proper second fate determination in an environment lacking DSL ligands. We also found that the model requires the complex formed by LAG-1, LIN-12, and SEL-8 to inhibit the transcription of eff-1 in second fate cells. Our model is the largest reconstruction to date of the molecular network controlling the specification of vulval precursor cells and cell fusion control in C. elegans. According to our model, the process of fate determination in the vulval precursor cells is reversible, at least until either the cells fuse with the ventral hypoderm or divide, and therefore the cell fates must be maintained by the presence of extracellular signals. PMID:23785384

  13. Higher Vulnerability and Stress Sensitivity of Neuronal Precursor Cells Carrying an Alpha-Synuclein Gene Triplication

    PubMed Central

    Flierl, Adrian; Oliveira, Luís M. A.; Falomir-Lockhart, Lisandro J.; Mak, Sally K.; Hesley, Jayne; Soldner, Frank; Arndt-Jovin, Donna J.; Jaenisch, Rudolf; Langston, J. William; Jovin, Thomas M.; Schüle, Birgitt

    2014-01-01

    Parkinson disease (PD) is a multi-factorial neurodegenerative disorder with loss of dopaminergic neurons in the substantia nigra and characteristic intracellular inclusions, called Lewy bodies. Genetic predisposition, such as point mutations and copy number variants of the SNCA gene locus can cause very similar PD-like neurodegeneration. The impact of altered α-synuclein protein expression on integrity and developmental potential of neuronal stem cells is largely unexplored, but may have wide ranging implications for PD manifestation and disease progression. Here, we investigated if induced pluripotent stem cell-derived neuronal precursor cells (NPCs) from a patient with Parkinson’s disease carrying a genomic triplication of the SNCA gene (SNCA-Tri). Our goal was to determine if these cells these neuronal precursor cells already display pathological changes and impaired cellular function that would likely predispose them when differentiated to neurodegeneration. To achieve this aim, we assessed viability and cellular physiology in human SNCA-Tri NPCs both under normal and environmentally stressed conditions to model in vitro gene-environment interactions which may play a role in the initiation and progression of PD. Human SNCA-Tri NPCs displayed overall normal cellular and mitochondrial morphology, but showed substantial changes in growth, viability, cellular energy metabolism and stress resistance especially when challenged by starvation or toxicant challenge. Knockdown of α-synuclein in the SNCA-Tri NPCs by stably expressed short hairpin RNA (shRNA) resulted in reversal of the observed phenotypic changes. These data show for the first time that genetic alterations such as the SNCA gene triplication set the stage for decreased developmental fitness, accelerated aging, and increased neuronal cell loss. The observation of this “stem cell pathology” could have a great impact on both quality and quantity of neuronal networks and could provide a powerful new

  14. Stabilized metal nanoparticles from organometallic precursors for low temperature fuel cells.

    PubMed

    Ramirez-Meneses, E; Dominguez-Crespo, M A; Torres-Huerta, A M

    2013-01-01

    In this work, a review of articles and patents related to the utilization of colloidal metal nanoparticles produced by the decomposition of organometallic precursors as supported electrocatalysts in different electrochemical reactions including hydrogen evolution reaction (HER), oxygen reduction reaction (ORR) and methanol oxidation reaction (MOR) is discussed. In the case of stabilized metal nanoparticles, the kind of functional group contained in the stabilizer as well as the metal/stabilizer ratio, to evaluate the effect of particle size on the electrochemical performance, were also debated. Potential applications and perspectives of these electrocatalysts in proton exchange membrane fuel cells (PEMFC) are contended with reference to the role played by the coordination compounds and costs.

  15. Laser ablation of persistent twist cells in Drosophila: muscle precursor fate is not segmentally restricted

    NASA Technical Reports Server (NTRS)

    Farrell, E. R.; Keshishian, H.

    1999-01-01

    In Drosophila the precursors of the adult musculature arise during embryogenesis. These precursor cells have been termed Persistent Twist Cells (PTCs), as they continue to express the transcription factor Twist after that gene ceases expression elsewhere in the mesoderm. In the larval abdomen, the PTCs are associated with peripheral nerves in stereotypic ventral, dorsal, and lateral clusters, which give rise, respectively, to the ventral, dorsal, and lateral muscle fiber groups of the adult. We tested the developmental potential of the PTCs by using a microbeam laser to ablate specific clusters in larvae. We found that the ablation of a single segmental PTC cluster does not usually result in the deletion of the corresponding adult fibers of that segment. Instead, normal or near normal numbers of adult fibers can form after the ablation. Examination of pupae following ablation showed that migrating PTCs from adjacent segments are able to invade the affected segment, replenishing the ablated cells. However, the ablation of homologous PTCs in multiple segments does result in the deletion of the corresponding adult muscle fibers. These data indicate that the PTCs in an abdominal segment can contribute to the formation of muscle fibers in adjacent abdominal segments, and thus are not inherently restricted to the formation of muscle fibers within their segment of origin.

  16. BRAF activates PAX3 to control muscle precursor cell migration during forelimb muscle development

    PubMed Central

    Shin, Jaeyoung; Watanabe, Shuichi; Hoelper, Soraya; Krüger, Marcus; Kostin, Sawa; Pöling, Jochen; Kubin, Thomas; Braun, Thomas

    2016-01-01

    Migration of skeletal muscle precursor cells is a key step during limb muscle development and depends on the activity of PAX3 and MET. Here, we demonstrate that BRAF serves a crucial function in formation of limb skeletal muscles during mouse embryogenesis downstream of MET and acts as a potent inducer of myoblast cell migration. We found that a fraction of BRAF accumulates in the nucleus after activation and endosomal transport to a perinuclear position. Mass spectrometry based screening for potential interaction partners revealed that BRAF interacts and phosphorylates PAX3. Mutation of BRAF dependent phosphorylation sites in PAX3 impaired the ability of PAX3 to promote migration of C2C12 myoblasts indicating that BRAF directly activates PAX3. Since PAX3 stimulates transcription of the Met gene we propose that MET signaling via BRAF fuels a positive feedback loop, which maintains high levels of PAX3 and MET activity required for limb muscle precursor cell migration. DOI: http://dx.doi.org/10.7554/eLife.18351.001 PMID:27906130

  17. Effect of heat-treated titanium surfaces on protein adsorption and osteoblast precursor cell initial attachment.

    PubMed

    Kern, Travis; Yang, Yunzhi; Glover, Renee; Ong, Joo L

    2005-03-01

    The clinical success of dental implants is governed in part by surface properties of implants and their interactions with the surrounding tissues. The objective of this study was to investigate the effect of heat-treated titanium surfaces on protein adsorption and osteoblast precursor cell attachment in vitro. Passivated titanium samples used in this study were either non heat treated or heat treated at 750 degrees C for 90 minutes. It was observed that the contact angle on heat-treated titanium surfaces was statistically lower compared with the non-heat-treated titanium surfaces. The non-heat-treated titanium surface was also observed to be amorphous oxide, whereas heat treatment of titanium resulted in the conversion of amorphous oxide to crystalline anatase oxide. No significant difference in albumin and fibronectin adsorption was observed between the heat-treated and non-heat-treated titanium surfaces. In addition, no significant difference in initial cell attachment was observed between the two groups. It was concluded that heat treatment of titanium resulted in significantly more hydrophilic surfaces compared to non-heat-treated titanium surfaces. However, differences in oxide crystallinity and wettability were not observed to affect protein adsorption and initial osteoblast precursor cell attachment.

  18. Stochastic specification of primordial germ cells from mesoderm precursors in axolotl embryos

    PubMed Central

    Chatfield, Jodie; O'Reilly, Marie-Anne; Bachvarova, Rosemary F.; Ferjentsik, Zoltan; Redwood, Catherine; Walmsley, Maggie; Patient, Roger; Loose, Mathew; Johnson, Andrew D.

    2014-01-01

    A common feature of development in most vertebrate models is the early segregation of the germ line from the soma. For example, in Xenopus and zebrafish embryos primordial germ cells (PGCs) are specified by germ plasm that is inherited from the egg; in mice, Blimp1 expression in the epiblast mediates the commitment of cells to the germ line. How these disparate mechanisms of PGC specification evolved is unknown. Here, in order to identify the ancestral mechanism of PGC specification in vertebrates, we studied PGC specification in embryos from the axolotl (Mexican salamander), a model for the tetrapod ancestor. In the axolotl, PGCs develop within mesoderm, and classic studies have reported their induction from primitive ectoderm (animal cap). We used an axolotl animal cap system to demonstrate that signalling through FGF and BMP4 induces PGCs. The role of FGF was then confirmed in vivo. We also showed PGC induction by Brachyury, in the presence of BMP4. These conditions induced pluripotent mesodermal precursors that give rise to a variety of somatic cell types, in addition to PGCs. Irreversible restriction of the germ line did not occur until the mid-tailbud stage, days after the somatic germ layers are established. Before this, germline potential was maintained by MAP kinase signalling. We propose that this stochastic mechanism of PGC specification, from mesodermal precursors, is conserved in vertebrates. PMID:24917499

  19. Laser ablation of persistent twist cells in Drosophila: muscle precursor fate is not segmentally restricted

    NASA Technical Reports Server (NTRS)

    Farrell, E. R.; Keshishian, H.

    1999-01-01

    In Drosophila the precursors of the adult musculature arise during embryogenesis. These precursor cells have been termed Persistent Twist Cells (PTCs), as they continue to express the transcription factor Twist after that gene ceases expression elsewhere in the mesoderm. In the larval abdomen, the PTCs are associated with peripheral nerves in stereotypic ventral, dorsal, and lateral clusters, which give rise, respectively, to the ventral, dorsal, and lateral muscle fiber groups of the adult. We tested the developmental potential of the PTCs by using a microbeam laser to ablate specific clusters in larvae. We found that the ablation of a single segmental PTC cluster does not usually result in the deletion of the corresponding adult fibers of that segment. Instead, normal or near normal numbers of adult fibers can form after the ablation. Examination of pupae following ablation showed that migrating PTCs from adjacent segments are able to invade the affected segment, replenishing the ablated cells. However, the ablation of homologous PTCs in multiple segments does result in the deletion of the corresponding adult muscle fibers. These data indicate that the PTCs in an abdominal segment can contribute to the formation of muscle fibers in adjacent abdominal segments, and thus are not inherently restricted to the formation of muscle fibers within their segment of origin.

  20. The role of donor age and gender in the success of human muscle precursor cell transplantation.

    PubMed

    Stölting, Meline N L; Hefermehl, Lukas J; Tremp, Mathias; Azzabi, Fahd; Sulser, Tullio; Eberli, Daniel

    2017-02-01

    Autologous cell transplantation for the treatment of muscle damage is envisioned to involve the application of muscle precursor cells (MPCs) isolated from adult skeletal muscle. At the onset of trauma, these cells are recruited to proliferate and rebuild injured muscle fibres. However, a variety of donor-specific cues may directly influence the yield and quality of cells isolated from a muscle biopsy. In this study, we isolated human MPCs and assessed the role of donor gender and age on the ability of these MPCs to form functional bioengineered muscle. We analysed the cell yield, growth and molecular expression in vitro, and the muscle tissue formation and contractility of the bioengineered muscle, from cells isolated from men and women in three different age groups: young (20-39 years), adult (40-59 years) and elderly (60-80 years). Our results suggest that human MPCs can be successfully isolated and grown from patients of all ages and both genders. However, young female donors provide fast-growing cells in vitro with an optimum contractile output in vivo and are therefore an ideal cell source for muscle reconstruction. Taken together, these findings describe the donor-related limitations of MPC transplantation and provide insights for a straightforward and unbiased clinical application of these cells for muscle reconstruction. Copyright © 2014 John Wiley & Sons, Ltd.

  1. Melatonin and its precursors in Y79 human retinoblastoma cells: Effect of sodium butyrate

    NASA Technical Reports Server (NTRS)

    Deng, Mei Hua; Coviella, Ignacio Lopez G.; Lynch, Harry J.; Wurtman, Richard J.

    1991-01-01

    The release of melatonin and the production of its precursors, S-hydroxytryptophan and serotonin, in cultured Y79 human retinoblastoma cells were studied. This biosynthetic capability was found to be dependent on cell differentiation, which was initiated by culturing Y79 cells for 7 days in dishes coated with poly-D-lysine to promote cell adhesion to the surface of the culture dishes. Differentiation was further induced by exposing the cell monolayer to sodium butyrate (3 mM) for 3 days. This protocol dramatically increased the release of melatonin, and the syntheses of 5-hydroxytryptophan and serotonin in response to forskolin stimulation. Exposure to dopamine (10 micro-M) or L-DOPA (100 micro-M) markedly diminished the forskolin-stimulated release of melatonin, as well as the production of 5-hydroxytryptophan and serotonin. These observations indicate that Y79 cells represent a primitive cell line which, following appropriate differentiation (e.g. treatment with sodium butyrate) can display biochemical characteristics similar to those of the human retina. Moreover, serotonin synthesis and melatonin release appear to be coupled in Y79 cells. The inhibition of melatonin release by dopamine supports the hypothesis that in these cells, melatonin and dopamine are components of a retinal feedback loop.

  2. Osteoblast precursor cell attachment on heat-treated calcium phosphate coatings.

    PubMed

    Yang, Y; Bumgardner, J D; Cavin, R; Carnes, D L; Ong, J L

    2003-06-01

    The influence of properties of calcium phosphate (CaP) coatings on bone cell activity and bone-implant osseointegration is not well-established. This study investigated the effects of characterized CaP coatings of various heat treatments on osteoblast response. It was hypothesized that heat treatments of CaP coatings alter the initial osteoblast attachment. The 400 degrees C heat-treated coatings were observed to exhibit poor crystallinity and significantly greater phosphate or apatite species compared with as-sputtered and 600 degrees C heat-treated coatings. Similarly, human embryonic palatal mesenchyme (HEPM) cells, an osteoblast precursor cell line, seeded on 400 degrees C heat-treated coatings, exhibited significantly greater cell attachment compared with Ti surfaces, as-sputtered coatings, and 600 degrees C heat-treated coatings. The HEPM cells on Ti surfaces and heat-treated coatings were observed to attach through filopodia, and underwent cell division, whereas the cells on as-sputtered coatings displayed fewer filopodia extensions and cell damage. Analysis of the data suggested that heat treatment of CaP coatings affects cell attachment.

  3. Adult subependymal neural precursors, but not differentiated cells, undergo rapid cathodal migration in the presence of direct current electric fields.

    PubMed

    Babona-Pilipos, Robart; Droujinine, Ilia A; Popovic, Milos R; Morshead, Cindi M

    2011-01-01

    The existence of neural stem and progenitor cells (together termed neural precursor cells) in the adult mammalian brain has sparked great interest in utilizing these cells for regenerative medicine strategies. Endogenous neural precursors within the adult forebrain subependyma can be activated following injury, resulting in their proliferation and migration toward lesion sites where they differentiate into neural cells. The administration of growth factors and immunomodulatory agents following injury augments this activation and has been shown to result in behavioural functional recovery following stroke. With the goal of enhancing neural precursor migration to facilitate the repair process we report that externally applied direct current electric fields induce rapid and directed cathodal migration of pure populations of undifferentiated adult subependyma-derived neural precursors. Using time-lapse imaging microscopy in vitro we performed an extensive single-cell kinematic analysis demonstrating that this galvanotactic phenomenon is a feature of undifferentiated precursors, and not differentiated phenotypes. Moreover, we have shown that the migratory response of the neural precursors is a direct effect of the electric field and not due to chemotactic gradients. We also identified that epidermal growth factor receptor (EGFR) signaling plays a role in the galvanotactic response as blocking EGFR significantly attenuates the migratory behaviour. These findings suggest direct current electric fields may be implemented in endogenous repair paradigms to promote migration and tissue repair following neurotrauma.

  4. Non-PGM cathode catalysts for fuel cell application derived from heat treated heteroatomic amines precursors

    DOEpatents

    Serov, Alexey; Halevi, Barr; Artyushkova, Kateryna; Atanassov, Plamen B; Martinez, Ulises A

    2017-04-25

    A method of preparing M-N--C catalysts utilizing a sacrificial support approach and inexpensive and readily available polymer precursors as the source of nitrogen and carbon is disclosed. Exemplary polymer precursors include non-porphyrin precursors with no initial catalytic activity. Examples of suitable non-catalytic non-porphyrin precursors include, but are not necessarily limited to low molecular weight precursors that form complexes with iron such as 4-aminoantipirine, phenylenediamine, hydroxysuccinimide, ethanolamine, and the like.

  5. Gene Signature of High White Blood Cell Count in B-Precursor Acute Lymphoblastic Leukemia.

    PubMed

    Edwards, Holly; Rubenstein, Mara; Dombkowski, Alan A; Caldwell, J Timothy; Chu, Roland; Xavier, Ana C; Thummel, Ryan; Neely, Melody; Matherly, Larry H; Ge, Yubin; Taub, Jeffrey W

    2016-01-01

    In this study we sought to identify genetic factors associated with the presenting white blood cell (WBC) count in B-precursor acute lymphoblastic leukemia (BP-ALL). Using ETV6-RUNX1-positive BP-ALL patient samples, a homogeneous subtype, we identified 16 differentially expressed genes based on the presenting WBC count (< 50,000/cumm vs > 50,000). We further confirmed that IL1R1, BCAR3, KCNH2, PIR, and ZDHHC23 were differentially expressed in a larger cohort of ETV6-RUNX1-negative BP-ALL patient samples. Statistical analysis demonstrated that expression levels of these genes could accurately categorize high and low WBC count subjects using two independent patient sets, representing positive and negative ETV6-RUNX1 cases. Further studies in leukemia cell line models will better delineate the role of these genes in regulating the white blood cell count and potentially identify new therapeutic targets.

  6. ETOH inhibits embryonic neural stem/precursor cell proliferation via PLD signaling

    SciTech Connect

    Fujita, Yuko; Hiroyama, Masami; Sanbe, Atsushi Yamauchi, Junji; Murase, Shoko; Tanoue, Akito

    2008-05-23

    While a mother's excessive alcohol consumption during pregnancy is known to have adverse effects on fetal neural development, little is known about the underlying mechanism of these effects. In order to investigate these mechanisms, we investigated the toxic effect of ethanol (ETOH) on neural stem/precursor cell (NSC) proliferation. In cultures of NSCs, phospholipase D (PLD) is activated following stimulation with epidermal growth factor (EGF) and fibroblast growth factor 2 (FGF2). Exposure of NSCs to ETOH suppresses cell proliferation, while it has no effect on cell death. Phosphatidic acid (PA), which is a signaling messenger produced by PLD, reverses ETOH inhibition of NSC proliferation. Blocking the PLD signal by 1-butanol suppresses the proliferation. ETOH-induced suppression of NSC proliferation and the protective effect of PA for ETOH-induced suppression are mediated through extracellular signal-regulated kinase signaling. These results indicate that exposure to ETOH impairs NSC proliferation by altering the PLD signaling pathway.

  7. ETOH inhibits embryonic neural stem/precursor cell proliferation via PLD signaling.

    PubMed

    Fujita, Yuko; Hiroyama, Masami; Sanbe, Atsushi; Yamauchi, Junji; Murase, Shoko; Tanoue, Akito

    2008-05-23

    While a mother's excessive alcohol consumption during pregnancy is known to have adverse effects on fetal neural development, little is known about the underlying mechanism of these effects. In order to investigate these mechanisms, we investigated the toxic effect of ethanol (ETOH) on neural stem/precursor cell (NSC) proliferation. In cultures of NSCs, phospholipase D (PLD) is activated following stimulation with epidermal growth factor (EGF) and fibroblast growth factor 2 (FGF2). Exposure of NSCs to ETOH suppresses cell proliferation, while it has no effect on cell death. Phosphatidic acid (PA), which is a signaling messenger produced by PLD, reverses ETOH inhibition of NSC proliferation. Blocking the PLD signal by 1-butanol suppresses the proliferation. ETOH-induced suppression of NSC proliferation and the protective effect of PA for ETOH-induced suppression are mediated through extracellular signal-regulated kinase signaling. These results indicate that exposure to ETOH impairs NSC proliferation by altering the PLD signaling pathway.

  8. Archenteron precursor cells can organize secondary axial structures in the sea urchin embryo.

    PubMed

    Benink, H; Wray, G; Hardin, J

    1997-09-01

    Local cell-cell signals play a crucial role in establishing major tissue territories in early embryos. The sea urchin embryo is a useful model system for studying these interactions in deuterostomes. Previous studies showed that ectopically implanted micromeres from the 16-cell embryo can induce ectopic guts and additional skeletal elements in sea urchin embryos. Using a chimeric embryo approach, we show that implanted archenteron precursors differentiate autonomously to produce a correctly proportioned and patterned gut. In addition, the ectopically implanted presumptive archenteron tissue induces ectopic skeletal patterning sites within the ectoderm. The ectopic skeletal elements are bilaterally symmetric, and flank the ectopic archenteron, in some cases resulting in mirror-image, symmetric skeletal elements. Since the induced patterned ectoderm and supernumerary skeletal elements are derived from the host, the ectopic presumptive archenteron tissue can act to 'organize' ectopic axial structures in the sea urchin embryo.

  9. Roles of neural precursor cell expressed, developmentally downregulated 9 in tumor-associated cellular processes (Review).

    PubMed

    Zhang, Sisen; Wu, Lihua

    2015-11-01

    Neural precursor cell expressed, developmentally downregulated 9 (NEDD9), a gene exclusively expressed in the brain during embryonic stages but not in brains of adult mice, is an important cytoskeletal protein and regarded as a 'router/hub' in cellular signal transduction processes connecting external stimulation signals with downstream target proteins that can directly promote tumor metastasis. Numerous studies showed that NEDD9 has an essential role in cell proliferation, apoptosis, adhesion, migration and invasion. The roles of NEDD9, including the underlying mechanisms of its regulation of cell migration, its distinctive functions in various tumor stages and its association with other diseases, are required to be elucidated at large. Future studies of NEDD9 may provide a more profound understanding of the development of tumor invasiveness and NEDD9 may serve as a potential novel target for tumor therapy. The present review examined the significant roles of NEDD9 in the abovementioned processes.

  10. Esophageal cancer-related gene 4 is a secreted inducer of cell senescence expressed by aged CNS precursor cells.

    PubMed

    Kujuro, Yuki; Suzuki, Norihiro; Kondo, Toru

    2010-05-04

    Mammalian aging is thought to be partially caused by the diminished capacity of stem/precursor cells to undergo self-renewing divisions. Although many cell-cycle regulators are involved in this process, it is unknown to what extent cell senescence, first identified as irreversible growth arrest in vitro, contributes to the aging process. Here, using a serum-induced mouse oligodendrocyte precursor cell (mOPC) senescence model, we identified esophageal cancer-related gene 4 (Ecrg4) as a senescence inducer with implications for the senescence-like state of postmitotic cells in the aging brain. Although mOPCs could proliferate indefinitely when cultured using the appropriate medium (OPC medium), they became senescent in the presence of serum and maintained their senescent phenotype even when the serum was subsequently replaced by OPC medium. We show that Ecrg4 was up-regulated in the senescent OPCs, its overexpression in OPCs induced senescence by accelerating the proteasome-dependent degradation of cyclins D1 and D3, and that its knockdown by a specific short hairpin RNA prevented these phenotypes. We also show that senescent OPCs secreted Ecrg4 and that recombinant Ecrg4 induced OPC senescence in culture. Moreover, increased Ecrg4 expression was observed in the OPCs and neural precursor cells in the aged mouse brain; this was accompanied by the expression of senescence-associated beta-galactosidase activity, indicating the cells' entrance into senescence. These results suggest that Ecrg4 is a factor linking neural-cell senescence and aging.

  11. Expression of CD86 on human marrow CD34(+) cells identifies immunocompetent committed precursors of macrophages and dendritic cells.

    PubMed

    Ryncarz, R E; Anasetti, C

    1998-05-15

    Macrophages and dendritic cells derive from a hematopoietic stem cell and the existence of a common committed progenitor has been hypothesized. We have recently found in normal human marrow a subset of CD34(+) cells that constitutively expresses HLA-DR and low levels of CD86, a natural ligand for the T cell costimulation receptor CD28. This CD34(+) subset can elicit responses from allogeneic T cells. In this study, we show that CD34(+)/CD86(+) cells can also present tetanus toxoid antigen to memory CD4(+) T cells. CD86 is expressed at low levels in macrophages and high levels in dendritic cells. Therefore, we have tested the hypothesis that CD34(+)/CD86(+) cells are the common precursors of both macrophages and dendritic cells. CD34(+)/CD86(+) marrow cells cultured in granulocyte-macrophage colony-stimulating factor (GM-CSF)-generated macrophages. In contrast, CD34(+)/CD86(-) cells cultured in GM-CSF generated a predominant population of granulocytes. CD34(+)/CD86(+) cells cultured in GM-CSF plus tumor necrosis factor-alpha (TNF-alpha) generated almost exclusively CD1a+/CD83(+) dendritic cells. In contrast, CD34(+)/CD86(-) cells cultured in GM-CSF plus TNF-alpha generated a variety of cell types, including a small population of dendritic cells. In addition, CD34(+)/CD86(+) cells cultured in granulocyte colony-stimulating factor failed to generate CD15(+) granulocytes. Therefore, CD34(+)/CD86(+) cells are committed precursors of both macrophages and dendritic cells. The ontogeny of dendritic cells was recapitulated by stimulation of CD34(+)/CD86(-) cells with TNF-alpha that induced expression of CD86. Subsequent costimulation of CD86(+) cells with GM-CSF plus TNF-alpha lead to expression of CD83 and produced terminal dendritic cell differentiation. Thus, expression of CD86 on hematopoietic progenitor cells is regulated by TNF-alpha and denotes differentiation towards the macrophage or dendritic cell lineages.

  12. A carboxy methyl tamarind polysaccharide matrix for adhesion and growth of osteoclast-precursor cells.

    PubMed

    Sanyasi, Sridhar; Kumar, Ashutosh; Goswami, Chandan; Bandyopadhyay, Abhijit; Goswami, Luna

    2014-01-30

    Remodeling of bone by tissue engineering is a realistic option for treating several bone-related pathophysiological ailments such as osteoporosis, bone tumor, bone cancer or abnormal bone development. But, these possibilities are hindered due to lack of proper natural and biodegradable surface on which bone precursor cells can adhere efficiently and grow further. Here we describe the synthesis and characterization of a new hydrogel as an effective surface which can acts as a material for bone tissue engineering. This hydrogel has been prepared by chemically grafting a semi-synthetic polymer with a synthetic monomer, namely hydroxyethyl methacrylate (HEMA). Carboxy methyl tamarind (CMT) was selected as the semi-synthetic polymer. The hydrogel was prepared at different mole ratios and at the ratio of 1:10 (CMT:HEMA) yielded the best hydrogel as characterized by several physico-chemical analysis such as UV spectroscopy, FT-IR spectroscopy and swelling properties. We further demonstrate that this material is suitable for effective adhesion, growth and further clustering of bone precursor cells (RAW 264.7). This material is also compatible for growing other sensitive cells such as neuronal cells (Neuro2a) and human umbilical vein endothelial cells (HUVEC) demonstrating that this surface does not possess any cytotoxicity and is compatible for primary human cells too. We conclude that the hydrogel made of CMT:HEMA at a ratio of 1:10 can be suitable for bone tissue engineering and thus may have clinical as well as commercial application in future. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Direct and efficient cellular transformation of primary rat mesenchymal precursor cells by KSHV

    PubMed Central

    Jones, Tiffany; Ye, Fengchun; Bedolla, Roble; Huang, Yufei; Meng, Jia; Qian, Liwu; Pan, Hongyi; Zhou, Fuchun; Moody, Rosalie; Wagner, Brent; Arar, Mazen; Gao, Shou-Jiang

    2012-01-01

    Infections by viruses are associated with approximately 12% of human cancer. Kaposi’s sarcoma-associated herpesvirus (KSHV) is causally linked to several malignancies commonly found in AIDS patients. The mechanism of KSHV-induced oncogenesis remains elusive, due in part to the lack of an adequate experimental system for cellular transformation of primary cells. Here, we report efficient infection and cellular transformation of primary rat embryonic metanephric mesenchymal precursor cells (MM cells) by KSHV. Cellular transformation occurred at as early as day 4 after infection and in nearly all infected cells. Transformed cells expressed hallmark vascular endothelial, lymphatic endothelial, and mesenchymal markers and efficiently induced tumors in nude mice. KSHV established latent infection in MM cells, and lytic induction resulted in low levels of detectable infectious virions despite robust expression of lytic genes. Most KSHV-induced tumor cells were in a latent state, although a few showed heterogeneous expression of lytic genes. This efficient system for KSHV cellular transformation of primary cells might facilitate the study of growth deregulation mechanisms resulting from KSHV infections. PMID:22293176

  14. Learning-induced synaptic potentiation in implanted neural precursor cell-derived neurons

    PubMed Central

    Park, Kyungjoon; Heo, Hwon; Han, Ma Eum; Choi, Kyuhyun; Yi, Jee Hyun; Kang, Shin Jung; Kwon, Yunhee Kim; Shin, Ki Soon

    2015-01-01

    Neuronal loss caused by neurodegenerative diseases, traumatic brain injury and stroke results in cognitive dysfunctioning. Implantation of neural stem/precursor cells (NPCs) can improve the brain function by replacing lost neurons. Proper synaptic integration following neuronal differentiation of implanted cells is believed to be a prerequisite for the functional recovery. In the present study, we characterized the functional properties of immortalized neural progenitor HiB5 cells implanted into the rat hippocampus with chemically induced lesion. The implanted HiB5 cells migrated toward CA1 pyramidal layer and differentiated into vGluT1-positive glutamatergic neurons with morphological and electrophysiological properties of endogenous CA1 pyramidal cells. Functional synaptic integration of HiB5 cell-derived neurons was also evidenced by immunohistochemical and electrophysiological data. Lesion-caused memory deficit was significantly recovered after the implantation when assessed by inhibitory avoidance (IA) learning. Remarkably, IA learning preferentially produced long-term potentiation (LTP) at the synapses onto HiB5 cell-derived neurons, which occluded paring protocol-induced LTP ex vivo. We conclude that the implanted HiB5 cell-derived neurons actively participate in learning process through LTP formation, thereby counteracting lesion-mediated memory impairment. PMID:26634434

  15. A role of Sema6A expressed in oligodendrocyte precursor cells.

    PubMed

    Okada, Atsumasa; Tomooka, Yasuhiro

    2013-02-28

    Our previous study has confirmed that the distribution of oligodendrocyte precursor cells (OPCs) is disturbed in the embryonic cerebral cortex of Plexin-A4 knockout mice, and that Sema6A is expressed in OPCs in the region. The present study examined whether Sema6A expressed in OPCs is involved in their own migration, and used a clonal FBD-102b line as OPCs model. In an in vitro migration assay, Sema6A knockdown repressed the migration of FBD-102b cells. Additionally, in co-culture, 3T3 cells ectopically expressing Plexin-A4 were segregated from 3T3 cells ectopically expressing Sema6A. When FBD-102b cells were seeded in a spot and exposed to a gradient of both Sema3A and Sema6A, dispersion of FBD-102b cells was suppressed, and Plexin-A4 knockdown in FBD-102b cells attenuated the suppressive effect of the Semaphorins. These results indicate that Sema6A expressed in OPCs is involved in their autonomous migration through ligand-receptor interaction with Plexin-A4 expressed in surrounding cells.

  16. CNS Schwann cells display oligodendrocyte precursor-like potassium channel activation and antigenic expression in vitro.

    PubMed

    Kegler, Kristel; Imbschweiler, Ilka; Ulrich, Reiner; Kovermann, Peter; Fahlke, Christoph; Deschl, Ulrich; Kalkuhl, Arno; Baumgärnter, Wolfgang; Wewetzer, Konstantin

    2014-06-01

    Central nervous system (CNS) injury triggers production of myelinating Schwann cells from endogenous oligodendrocyte precursors (OLPs). These CNS Schwann cells may be attractive candidates for novel therapeutic strategies aiming to promote endogenous CNS repair. However, CNS Schwann cells have been so far mainly characterized in situ regarding morphology and marker expression, and it has remained enigmatic whether they display functional properties distinct from peripheral nervous system (PNS) Schwann cells. Potassium channels (K+) have been implicated in progenitor and glial cell proliferation after injury and may, therefore, represent a suitable pharmacological target. In the present study, we focused on the function and expression of voltage-gated K+ channels Kv(1-12) and accessory β-subunits in purified adult canine CNS and PNS Schwann cell cultures using electrophysiology and microarray analysis and characterized their antigenic phenotype. We show here that K+ channels differed significantly in both cell types. While CNS Schwann cells displayed prominent K D-mediated K+ currents, PNS Schwann cells elicited K(D-) and K(A-type) K+ currents. Inhibition of K+ currents by TEA and Ba2+ was more effective in CNS Schwann cells. These functional differences were not paralleled by differential mRNA expression of Kv(1-12) and accessory β-subunits. However, O4/A2B5 and GFAP expressions were significantly higher and lower, respectively, in CNS than in PNS Schwann cells. Taken together, this is the first evidence that CNS Schwann cells display specific properties not shared by their peripheral counterpart. Both Kv currents and increased O4/A2B5 expression were reminiscent of OLPs suggesting that CNS Schwann cells retain OLP features during maturation.

  17. Amyloid precursor protein regulates migration and metalloproteinase gene expression in prostate cancer cells

    SciTech Connect

    Miyazaki, Toshiaki; Ikeda, Kazuhiro; Horie-Inoue, Kuniko; Inoue, Satoshi

    2014-09-26

    Highlights: • APP knockdown reduced proliferation and migration of prostate cancer cells. • APP knockdown reduced expression of metalloproteinase and EMT-related genes. • APP overexpression promoted LNCaP cell migration. • APP overexpression increased expression of metalloproteinase and EMT-related genes. - Abstract: Amyloid precursor protein (APP) is a type I transmembrane protein, and one of its processed forms, β-amyloid, is considered to play a central role in the development of Alzheimer’s disease. We previously showed that APP is a primary androgen-responsive gene in prostate cancer and that its increased expression is correlated with poor prognosis for patients with prostate cancer. APP has also been implicated in several human malignancies. Nevertheless, the mechanism underlying the pro-proliferative effects of APP on cancers is still not well-understood. In the present study, we explored a pathophysiological role for APP in prostate cancer cells using siRNA targeting APP (siAPP). The proliferation and migration of LNCaP and DU145 prostate cancer cells were significantly suppressed by siAPP. Differentially expressed genes in siAPP-treated cells compared to control siRNA-treated cells were identified by microarray analysis. Notably, several metalloproteinase genes, such as ADAM10 and ADAM17, and epithelial–mesenchymal transition (EMT)-related genes, such as VIM, and SNAI2, were downregulated in siAPP-treated cells as compared to control cells. The expression of these genes was upregulated in LNCaP cells stably expressing APP when compared with control cells. APP-overexpressing LNCaP cells exhibited enhanced migration in comparison to control cells. These results suggest that APP may contribute to the proliferation and migration of prostate cancer cells by modulating the expression of metalloproteinase and EMT-related genes.

  18. In Vitro Epigenetic Reprogramming of Human Cardiac Mesenchymal Stromal Cells into Functionally Competent Cardiovascular Precursors

    PubMed Central

    Vecellio, Matteo; Meraviglia, Viviana; Nanni, Simona; Barbuti, Andrea; Scavone, Angela; DiFrancesco, Dario; Farsetti, Antonella; Pompilio, Giulio; Colombo, Gualtiero I.; Capogrossi, Maurizio C.

    2012-01-01

    Adult human cardiac mesenchymal-like stromal cells (CStC) represent a relatively accessible cell type useful for therapy. In this light, their conversion into cardiovascular precursors represents a potential successful strategy for cardiac repair. The aim of the present work was to reprogram CStC into functionally competent cardiovascular precursors using epigenetically active small molecules. CStC were exposed to low serum (5% FBS) in the presence of 5 µM all-trans Retinoic Acid (ATRA), 5 µM Phenyl Butyrate (PB), and 200 µM diethylenetriamine/nitric oxide (DETA/NO), to create a novel epigenetically active cocktail (EpiC). Upon treatment the expression of markers typical of cardiac resident stem cells such as c-Kit and MDR-1 were up-regulated, together with the expression of a number of cardiovascular-associated genes including KDR, GATA6, Nkx2.5, GATA4, HCN4, NaV1.5, and α-MHC. In addition, profiling analysis revealed that a significant number of microRNA involved in cardiomyocyte biology and cell differentiation/proliferation, including miR 133a, 210 and 34a, were up-regulated. Remarkably, almost 45% of EpiC-treated cells exhibited a TTX-sensitive sodium current and, to a lower extent in a few cells, also the pacemaker If current. Mechanistically, the exposure to EpiC treatment introduced global histone modifications, characterized by increased levels of H3K4Me3 and H4K16Ac, as well as reduced H4K20Me3 and H3s10P, a pattern compatible with reduced proliferation and chromatin relaxation. Consistently, ChIP experiments performed with H3K4me3 or H3s10P histone modifications revealed the presence of a specific EpiC-dependent pattern in c-Kit, MDR-1, and Nkx2.5 promoter regions, possibly contributing to their modified expression. Taken together, these data indicate that CStC may be epigenetically reprogrammed to acquire molecular and biological properties associated with competent cardiovascular precursors. PMID:23284745

  19. Reactive oxygen species are required for zoledronic acid-induced apoptosis in osteoclast precursors and mature osteoclast-like cells

    PubMed Central

    Tai, Ta-Wei; Chen, Ching-Yu; Su, Fong-Chin; Tu, Yuan-Kun; Tsai, Tsung-Ting; Lin, Chiou-Feng; Jou, I.-Ming

    2017-01-01

    Inhibiting osteoclasts and osteoclast precursors to reduce bone resorption is an important strategy to treat osteoclast-related diseases, such as osteoporosis, inflammatory bone loss, and malignant bone metastasis. However, the mechanism by which apoptosis is induced in the osteoclasts and their precursors are not completely understood. Here, we used nitrogen-containing bisphosphonate zoledronic acid (ZA) to induce cell apoptosis in human and murine osteoclast precursors and mature osteoclast-like cells. Caspase-3-mediated cell apoptosis occurred following the ZA (100 μM) treatment. Reactive oxygen species (ROS) were also generated in a time-dependent manner. Following knock-down of the p47phox expression, which is required for ROS activation, or co-treatment with the ROS inhibitor, N-acetyl-L-cysteine, ZA-induced apoptosis was significantly suppressed in both osteoclast precursors and mature osteoclast-like cells. The ROS-activated mitogen-activated protein kinases pathways did not trigger cell apoptosis. However, a ROS-regulated Mcl-1 decrease simultaneously with glycogen synthase kinase (GSK)-3β promoted cell apoptosis. These findings show that ZA induces apoptosis in osteoclast precursors and mature osteoclast-like cells by triggering ROS- and GSK-3β-mediated Mcl-1 down-regulation. PMID:28281643

  20. Mast cell diversion of T-lineage precursor cells by the essential T-lineage transcription factor GATA-3

    PubMed Central

    Taghon, Tom; Yui, Mary A.; Rothenberg, Ellen V.

    2011-01-01

    GATA-3 is essential for T cell development from the earliest stages. However, highly abundant GATA-3 can drive T-lineage precursors to a non-T fate, depending on Notch signaling and developmental stage. GATA-3 overexpression blocked pro-T cell survival when Notch-Delta signals were present, but enhanced viability in their absence. In double-negative (DN1) and DN2 but not DN3 fetal thymocytes, GATA-3 overexpression rapidly induced mast cell lineage respecification with high frequency by direct transcriptional reprogramming. Normal DN2 thymocytes also displayed mast cell potential, when interleukin 3 and stem cell factor were added in the absence of Notch signaling. Our results suggest a close relationship between the pro-T and mast cell programs and a new role for Notch in T-lineage fidelity. PMID:17603486

  1. Transplantation of Neural Precursor Cells in the Treatment of Parkinson Disease: An Efficacy and Safety Analysis.

    PubMed

    Lige, Leng; Zengmin, Tian

    The aim of this study was to evaluate the clinical safety, feasibility and efficacy of transplantation of neural precursor cells (NPCs) in the treatment for Parkinson's disease (PD). Twenty-one patients, aged 42-79 years (median age 57.33 years), participated in the study. A total of 3 × 107 NPCs in 0.25 ml were deposited unilaterally into the striatum. To access the effectiveness of first transplantation surgery, comparisons between the resulting pre-first surgery evaluation and pre-second surgery evaluation were made with repeatedmeasures analysis of variance. Unified Parkinson's Disease Rating Scale (UPDRS), Hoehn-Yahr, PDQ-39 and Schwab-England Scores were used to evaluate the Parkinson patients' neurofunctions. Four aspects were used to assess the possible side effects of transplantation: a) tumor formation, b) immune rejection and use of immunosuppressant, c) graft induced complication and d) delivery related side effects. This study demonstrated that the symptoms of PD patients were statistically improved after transplantation (P < 0.01). There were no obvious side effects of transplantation. Transplantation of neural precursor cells may be a valid and safe treatment method for Parkinson's Disease.

  2. Intracellular Nitric Oxide Mediates Neuroproliferative Effect of Neuropeptide Y on Postnatal Hippocampal Precursor Cells*

    PubMed Central

    Cheung, Angela; Newland, Philip L.; Zaben, Malik; Attard, George S.; Gray, William P.

    2012-01-01

    Neuropeptide Y (NPY) is widely expressed in the central and peripheral nervous systems and is proliferative for a range of cells types in vitro. NPY plays a key role in regulating adult hippocampal neurogenesis in vivo under both basal and pathological conditions, although the underlying mechanisms are largely unknown. We have investigated the role of nitric oxide (NO) on the neurogenic effects of NPY. Using postnatal rat hippocampal cultures, we show that the proliferative effect of NPY on nestin+ precursor cells is NO-dependent. As well as the involvement of neuronal nitric-oxide synthase, the proliferative effect is mediated via an NO/cyclic guanosine monophosphate (cGMP)/cGMP-dependent protein kinase (PKG) and extracellular signal-regulated kinase (ERK) 1/2 signaling pathway. We show that NPY-mediated intracellular NO signaling results in an increase in neuroproliferation. By contrast, extracellular NO had an opposite, inhibitory effect on proliferation. The importance of the NO-cGMP-PKG signaling pathway in ERK1/2 activation was confirmed using Western blotting. This work unites two significant modulators of hippocampal neurogenesis within a common signaling framework and provides a mechanism for the independent extra- and intracellular regulation of postnatal neural precursors by NO. PMID:22474320

  3. Synthesis of albumin via a precursor protein in cell suspensions from rat liver.

    PubMed

    Edwards, K; Schreiber, G; Dryburgh, H; Urban, J; Inglis, A S

    1976-03-16

    The mechanism of the biosynthesis of albumin was studied in cell suspensions from rat liver. The cells were prepared by continuous perfusion of the liver in situ with 0.05% collagenase and 0.10% hyaluronidase and incubated under conditions optimized for the incorporation of amino acids into protein. Seven minutes after starting the incubation L-[1-14C]leucine was added, followed after 25 min by a 15 or 30-min chase with an 830-fold excess of non-radioactive L-leucine. Total protein, an albumin-like protein, and albumin were isolated from samples withdrawn immediately of total protein was found to remain constant after addition of the non-radioactive L-leucine, whereas that of the albumin-like protein decreased and that of albumin increased with incubation time. The increase in albumin radioactivity accounted for the decrease in radioactivity of the albumin-like protein, suggesting that the latter is a precursor of albumin. The precursor protein differed from albumin by an oligopeptide extension at the N-terminal end.

  4. Early phosphorylation of MARCKS at Ser25 in migrating precursor cells and differentiating peripheral neurons.

    PubMed

    Ruiz-Perera, Lucía M; Arruti, Cristina; Zolessi, Flavio R

    2013-06-07

    MARCKS is a ubiquitous actin-binding protein, with special functions in the development of the central nervous system. We have previously described a neuronal-specific isoform, phosphorylated at serine 25 (S25p-MARCKS), which is present very early during neuronal differentiation in the chick retina. However, very little is known about MARCKS expression or functions in the peripheral nervous system (PNS). In the present work, we analyzed migrating PNS precursor cells in the chick embryo, particularly those originating from the neural crest, and found that they all express a high amount of MARCKS and that a subpopulation of them also contained S25p-MARCKS from early developmental stages. MARCKS protein was also found in dorsal root and trigeminal ganglia during embryo development. Not only is the protein present in these structures but it is also phosphorylated in differentiating neurons with a maximal signal on the ganglion periphery, where neurogenesis is occurring. In conclusion, MARCKS is present and phosphorylated at early stages during the differentiation of PNS cells and precursors, indicating that it might also be important for the differentiation of these tissues. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  5. Rejuvenation of MPTP-induced human neural precursor cell senescence by activating autophagy

    SciTech Connect

    Zhu, Liang; Dong, Chuanming; Sun, Chenxi; Ma, Rongjie; Yang, Danjing; Zhu, Hongwen; Xu, Jun

    2015-08-21

    Aging of neural stem cell, which can affect brain homeostasis, may be caused by many cellular mechanisms. Autophagy dysfunction was found in aged and neurodegenerative brains. However, little is known about the relationship between autophagy and human neural stem cell (hNSC) aging. The present study used 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) to treat neural precursor cells (NPCs) derived from human embryonic stem cell (hESC) line H9 and investigate related molecular mechanisms involved in this process. MPTP-treated NPCs were found to undergo premature senescence [determined by increased senescence-associated-β-galactosidase (SA-β-gal) activity, elevated intracellular reactive oxygen species level, and decreased proliferation] and were associated with impaired autophagy. Additionally, the cellular senescence phenotypes were manifested at the molecular level by a significant increase in p21 and p53 expression, a decrease in SOD2 expression, and a decrease in expression of some key autophagy-related genes such as Atg5, Atg7, Atg12, and Beclin 1. Furthermore, we found that the senescence-like phenotype of MPTP-treated hNPCs was rejuvenated through treatment with a well-known autophagy enhancer rapamycin, which was blocked by suppression of essential autophagy gene Beclin 1. Taken together, these findings reveal the critical role of autophagy in the process of hNSC aging, and this process can be reversed by activating autophagy. - Highlights: • We successfully establish hESC-derived neural precursor cells. • MPTP treatment induced senescence-like state in hESC-derived NPCs. • MPTP treatment induced impaired autophagy of hESC-derived NPCs. • MPTP-induced hESC-derived NPC senescence was rejuvenated by activating autophagy.

  6. Transplanted skin-derived precursor stem cells generate enteric ganglion-like structures in vivo.

    PubMed

    Wagner, Justin P; Sullins, Veronica F; Dunn, James C Y

    2014-08-01

    Hirschsprung's disease is characterized by a developmental arrest of neural crest cell migration, causing distal aganglionosis. Transplanted cells derived from the neural crest may regenerate enteric ganglia in this condition. We investigated the potential of skin-derived precursor cells (SKPs) to engraft and to differentiate into enteric ganglia in aganglionic rat intestine in vivo. Adult Lewis rat jejunal segments were separated from intestinal continuity and treated with benzalkonium chloride to induce aganglionosis. Ganglia were identified via immunohistochemical stains for S100 and β-III tubulin (TUJ1). SKPs were procured from neonatal Lewis rats expressing enhanced green fluorescent protein (GFP) and cultured in neuroglial-selective media. SKP cell line expansion was quantified, and immunophenotypes were assessed by immunocytochemistry. Aganglionic segments underwent SKP transplantation 21-79days after benzalkonium chloride treatment. The presence of GFP+cells, mature neurons, and mature glia was evaluated at posttransplant days 1, 6, and 9. Benzalkonium chloride-induced aganglionosis persisted for at least 85days. Prior to differentiation, SKPs expressed S100, denoting neural crest lineage, and nestin, a marker of neuronal precursors. Differentiated SKPs in vitro expressed GFAP, a marker of glial differentiation, as well as TUJ1 and several enteric neurotransmitters. After transplantation, GFP+structures resembling ganglia were identified between longitudinal and circular smooth muscle layers. SKPs are capable of engraftment, migration, and differentiation within aganglionic rodent intestine in vivo. Differentiated SKPs generate structures that resemble enteric ganglia. Our observations suggest that SKPs represent a potential gangliogenic therapeutic agent for Hirschsprung's disease. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Altered expression and phosphorylation of amyloid precursor protein in heat shocked neuronal PC12 cells.

    PubMed

    Johnson, G; Refolo, L M; Merril, C R; Wallace, W

    1993-07-01

    The pathology of the Alzheimer's disease (AD) brain, including amyloid plaques, neurofibrillary tangles and neuronal degeneration, indicates that neurons affected by AD exist under conditions of stress. In fact, the brains of AD patients undergo many changes classically associated with the heat shock response, which is one form of a stress response. These changes include reduced protein synthesis, disrupted cytoskeleton, increased number of proteins associated with ubiquitin, and the induction of heat shock proteins. To investigate the response of neurons to stress, we examined neuronal PC12 cells incubated at either 37 degrees C (control cells) or 45 degrees C (heat-shocked cells). After a 30 min exposure at 45 degrees C, the heat-shocked cells exhibited several features characteristic of the classical heat shock response including a 45% reduction in total protein synthesis, the induction of heat shock protein 72, and an increased phosphorylation of the protein synthesis initiation factor eIF-2 alpha. We used this cellular model system to study the neuronal response to stress specifically focusing on protein synthesis elongation factor 2 (EF-2) and the Alzheimer's amyloid precursor protein (APP), the precursor form of beta-amyloid peptide. Hyperphosphorylation of EF-2 has been observed in the neocortex and hippocampus of AD brain. However, in our system, we find no hyperphosphorylation of EF-2 in response to heat shock. Heat-shocked neuronal PC12 cells exhibited two additional APP-like polypeptides not present in controls. We also found a significant decrease in the phosphorylation state of APP in response to heat shock.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Connexin43 and connexin47 alterations after neural precursor cells transplantation in experimental autoimmune encephalomyelitis.

    PubMed

    Theotokis, Paschalis; Kleopa, Kleopas A; Touloumi, Olga; Lagoudaki, Roza; Lourbopoulos, Athanasios; Nousiopoulou, Evangelia; Kesidou, Evangelia; Poulatsidou, Kyriaki-Nepheli; Dardiotis, Efthimios; Hadjigeorgiou, Georgios; Karacostas, Dimitris; Cifuentes-Diaz, Carmen; Irinopoulou, Theano; Grigoriadis, Nikolaos

    2015-10-01

    Exogenous transplanted neural precursor cells (NPCs) exhibit miscellaneous immune-modulatory effects in models of autoimmune demyelination. However, the regional interactions of NPCs with the host brain tissue in remissive inflammatory events have not been adequately studied. In this study we used the chronic MOG-induced Experimental Autoimmune Encephalomyelitis (EAE) model in C57BL/six mice. Based on previous data, we focused on neuropathology at Day 50 post-induction (D50) and studied the expression of connexin43 (Cx43) and Cx47, two of the main glial gap junction (GJ) proteins, in relation to the intraventricular transplantation of GFP(+) NPCs and their integration with the host tissue. By D50, NPCs had migrated intraparenchymally and were found in the corpus callosum at the level of the lateral ventricles and hippocampus. The majority of GFP(+) cells differentiated with simple or ramified processes expressing mainly markers of mature GLIA (GFAP and NogoA) and significantly less of precursor glial cells. GFP(+) NPCs expressed connexins and formed GJs around the hippocampus more than lateral ventricles. The presence of NPCs did not alter the increase in Cx43 GJ plaques at D50 EAE, but prevented the reduction of oligodendrocytic Cx47, increased the number of oligodendrocytes, local Cx47 levels and Cx47 GJ plaques per cell. These findings suggest that transplanted NPCs may have multiple effects in demyelinating pathology, including differentiation and direct integration into the panglial syncytium, as well as amelioration of oligodendrocyte GJ loss, increasing the supply of potent myelinating cells to the demyelinated tissue.

  9. Neural stem cells isolated from amyloid precursor protein-mutated mice for drug discovery.

    PubMed

    Baldassarro, Vito Antonio; Lizzo, Giulia; Paradisi, Michela; Fernández, Mercedes; Giardino, Luciana; Calzà, Laura

    2013-10-26

    To develop an in vitro model based on neural stem cells derived from transgenic animals, to be used in the study of pathological mechanisms of Alzheimer's disease and for testing new molecules. Neural stem cells (NSCs) were isolated from the subventricular zone of Wild type (Wt) and Tg2576 mice. Primary and secondary neurosphere generation was studied, analysing population doubling and the cell yield per animal. Secondary neurospheres were dissociated and plated on MCM Gel Cultrex 2D and after 6 d in vitro (DIVs) in mitogen withdrawal conditions, spontaneous differentiation was studied using specific neural markers (MAP2 and TuJ-1 for neurons, GFAP for astroglial cells and CNPase for oligodendrocytes). Gene expression pathways were analysed in secondary neurospheres, using the QIAGEN PCR array for neurogenesis, comparing the Tg2576 derived cell expression with the Wt cells. Proteins encoded by the altered genes were clustered using STRING web software. As revealed by 6E10 positive staining, all Tg2576 derived cells retain the expression of the human transgenic Amyloid Precursor Protein. Tg2576 derived primary neurospheres show a decrease in population doubling. Morphological analysis of differentiated NSCs reveals a decrease in MAP2- and an increase in GFAP-positive cells in Tg2576 derived cells. Analysing the branching of TuJ-1 positive cells, a clear decrease in neurite number and length is observed in Tg2576 cells. The gene expression neurogenesis pathway revealed 11 altered genes in Tg2576 NSCs compared to Wt. Tg2576 NSCs represent an appropriate AD in vitro model resembling some cellular alterations observed in vivo, both as stem and differentiated cells.

  10. Critical role of integrin-linked kinase in granule cell precursor proliferation and cerebellar development.

    PubMed

    Mills, Julia; Niewmierzycka, Agnieszka; Oloumi, Arusha; Rico, Beatriz; St-Arnaud, Rene; Mackenzie, Ian R; Mawji, Nasrin M; Wilson, Jason; Reichardt, Louis F; Dedhar, Shoukat

    2006-01-18

    Integrin-linked kinase (ILK) is a serine/threonine protein kinase that plays an important role in integrin signaling and cell proliferation. We used Cre recombinase (Cre)-loxP technology to study CNS restricted knock-out of the ilk gene by either Nestin-driven or gfap-driven Cre-mediated recombination. Developmental changes in ilk-excised brain regions are similar to those observed in mice lacking the integrin beta1 subunit in the CNS, including defective laminin deposition, abnormal glial morphology, and alterations in granule cell migration. Decreases in 6-bromodeoxyuridine (BrdU) pulse labeling and proliferating cell nuclear antigen expression in the external granule cell layer of the cerebellum demonstrated that proliferation is disrupted in granule cells lacking ILK. Previous studies have shown that laminin-sonic hedgehog (Shh)-induced granule cell precursor (GCP) proliferation is dependent on beta1 integrins, several of which bind laminin and interact with ILK through the beta1 cytoplasmic domain. Both ex vivo deletion of ilk and a small molecule inhibitor of ILK kinase activity decreased laminin-Shh-induced BrdU labeling in cultured GCPs. Together, these results implicate ILK as a critical effector in a signaling pathway necessary for granule cell proliferation and cerebellar development.

  11. Critical Role of Integrin-Linked Kinase in Granule Cell Precursor Proliferation and Cerebellar Development

    PubMed Central

    Mills, Julia; Niewmierzycka, Agnieszka; Oloumi, Arusha; Rico, Beatriz; St-Arnaud, Rene; Mackenzie, Ian R.; Mawji, Nasrin M.; Wilson, Jason; Reichardt, Louis F.; Dedhar, Shoukat

    2009-01-01

    Integrin-linked kinase (ILK) is a serine/threonine protein kinase that plays an important role in integrin signaling and cell proliferation. We used Cre recombinase (Cre)-loxP technology to study CNS restricted knock-out of the ilk gene by either Nestin-driven or gfap-driven Cre-mediated recombination. Developmental changes in ilk-excised brain regions are similar to those observed in mice lacking the integrin β1 subunit in the CNS, including defective laminin deposition, abnormal glial morphology, and alterations in granule cell migration. Decreases in 6-bromodeoxyuridine (BrdU) pulse labeling and proliferating cell nuclear antigen expression in the external granule cell layer of the cerebellum demonstrated that proliferation is disrupted in granule cells lacking ILK. Previous studies have shown that laminin-sonic hedgehog (Shh)-induced granule cell precursor (GCP) proliferation is dependent on β1 integrins, several of which bind laminin and interact with ILK through the β1 cytoplasmic domain. Both ex vivo deletion of ilk and a small molecule inhibitor of ILK kinase activity decreased laminin-Shh-induced BrdU labeling in cultured GCPs. Together, these results implicate ILK as a critical effector in a signaling pathway necessary for granule cell proliferation and cerebellar development. PMID:16421303

  12. Cannabidiol Activates Neuronal Precursor Genes in Human Gingival Mesenchymal Stromal Cells.

    PubMed

    Soundara Rajan, Thangavelu; Giacoppo, Sabrina; Scionti, Domenico; Diomede, Francesca; Grassi, Gianpaolo; Pollastro, Federica; Piattelli, Adriano; Bramanti, Placido; Mazzon, Emanuela; Trubiani, Oriana

    2016-12-05

    In the last years, mesenchymal stromal cells (MSCs) from oral tissues have received considerable interest in regenerative medicine since they can be obtained with minimal invasive procedure and exhibit immunomodulatory properties. This study was aimed to investigate whether in vitro pre-treatment of MSCs obtained from human gingiva (hGMSCs) with Cannabidiol (CBD), a cannabinoid component produced by the plant Cannabis sativa, may promote human gingiva derived MSCs to differentiate toward neuronal precursor cells. Specifically, we have treated the hGMSCs with CBD (5 µM) for 24 h in order to evaluate the expression of genes involved in cannabidiol signaling, cell proliferation, self-renewal and multipotency, and neural progenitor cells differentiation. Next generation sequencing (NGS) demonstrated that CBD activates genes associated with G protein coupled receptor signaling in hGMSCs. Genes involved in DNA replication, cell cycle, proliferation, and apoptosis were regulated. Moreover, genes associated with the biological process of neuronal progenitor cells (NCPs) proliferation, neuron differentiation, neurogenesis, and nervous system development were significantly modulated. From our results, we hypothesize that human gingiva-derived MSCs conditioned with CBD could represent a valid method for improving the hGMSCs phenotype and thus might be a potential therapeutic tool in the treatment of neurodegenerative diseases. J. Cell. Biochem. 9999: 1-16, 2016. © 2016 Wiley Periodicals, Inc.

  13. Biochemical precursor effects on the fatty acid production in cell suspension cultures of Theobroma cacao L.

    PubMed

    Parra, O; Gallego, A M; Urrea, A; Rojas, L F; Correa, C; Atehortúa, L

    2017-02-01

    Cocoa butter (CB) is composed of 96% palmitic, stearic, oleic, linoleic and linolenic fatty acids that are responsible for the hardness, texture and fusion properties of chocolate. Through in vitro plant cell culture it is possible to modify CB lipid profiles and to study the fatty acid biosynthesis pathway on a subcellular level, evaluating fundamental aspects to enhance in vitro fatty acid production in a specific and controlled way. In this research, culture media was supplemented with acetate, biotin, pyruvate, bicarbonate and glycerol at three different concentrations and the effects on the biomass production (g/L), cell viability, and fatty acids profile and production was evaluated in in vitro cell suspensions culture. It was found that biotin stimulated fatty acid synthesis without altering cell viability and cell growth. It was also evident a change in the lipid profile of cell suspensions, increasing middle and long chain fatty acids proportion, which are unusual to those reported in seeds; thus implying that it is possible to modify lipid profiles according to the treatment used. According to the results of sucrose gradients and enzyme assays performed, it is proposed that cacao cells probably use the pentose phosphate pathway, mitochondria being the key organelle in the carbon flux for the synthesis of reductant power and fatty acid precursors.

  14. Melatonin and its precursors in Y79 human retinoblastoma cells - Effect of sodium butyrate

    NASA Technical Reports Server (NTRS)

    Deng, Mei H.; Lopez G.-Coviella, Ignacio; Lynch, Harry J.; Wurtman, Richard J.

    1991-01-01

    We studied the release of melatonin and the production of its precursors, 5-hydroxytryptophan and serotonin, in cultured Y79 human retinoblastoma cells. This biosynthetic capability was found to be dependent on cell differentiation, which was initiated by culturing Y79 cells for 7 days in dishes coated with poly-D-lysine to promote cell adhesion to the surface of the culture dishes. Differentiation was further induced by exposing the cell monolayer to sodium butyrate (3 mM) for three days. This protocol dramatically increased the release of melatonin, and the syntheses of 5-hydroxytryptophan and serotonin in response to forskolin stimulation. Exposure to dopamine or L-DOPA markedly diminished the forskolin-stimulated release of melatonin, as well as the production of 5-hydroxytryptophan and serotonin. These observations indicate that Y79 cells represent a primitive cell line which, following appropriate differentiation can display biochemical characteristics similar to those of the human retina. Moreover, serotonin synthesis and melatonin release appear to be coupled in Y79 ceils.

  15. HIV impairs CD34+-derived monocytic precursor differentiation into functional dendritic cells.

    PubMed

    Bordoni, V; Castelli, G; Montesoro, E; Federico, M; Sacchi, A; Morsilli, O; Agrati, C; Martini, F; Chelucci, C

    2013-01-01

    Dendritic cells (DCs) perform a basic role in the immune system by allowing the initiation of the primary T-cell-dependent immune response. Given previous indirect evidence that DC maturation and function are impaired by HIV, we have developed an in vitro culture system in order to verify the effect of HIV infection on DC function during the development from hematopoietic progenitors. Considering that monocytic (Mo) differentiating cells efficiently replicate monocytotropic HIV, we examined whether HIV-infected monocytic precursors (MoP) were able to generate functional DCs. CD34+ hematopoietic progenitor cells (HPCs) were induced along Mo differentiative pathway in liquid cultures and at an early stage of culture, MoP were infected with M-tropic BaL HIV strain, and after 2 days they were switched to DC differentiation with GM-CSF and IL-4. Derived DCs were actively infected, as detected by HIV-p24 production. HIV did not significantly affect cell viability, but induced a reduction in cell proliferation and an inefficient functional activity in terms of uptake capability and stimulation of allogenic T cells. These results indicate that HIV-infected MoP lost the capacity to generate functional DCs, and this may represent one of the many mechanisms of immunosuppression exploited by HIV.

  16. CD4 cell count and CD4/CD8 ratio increase during rituximab maintenance in granulomatosis with polyangiitis patients

    PubMed Central

    Nossent, Johannes C.

    2016-01-01

    Introduction Rituximab (RTX) is a B cell-depleting agent approved for the treatment of granulomatosis with polyangiitis (GPA). RTX reduces antibody producing precursor plasma cells and inhibits B and T cells interaction. Infections related to T cell immunodeficiency are not infrequent during RTX treatment. Our study investigated CD4 cell count and CD4/CD8 ratio in GPA patients during the first two years of long-term RTX treatment. Methods A single centre cohort study of 35 patients who received median total cumulative dose of cyclophosphamide (CYC) of 15 g and were treated with RTX 2 g followed by retreatment with either 2 g once annually or 1 g biannually. Serum levels of total immunoglobulin (Ig) and lymphocytes subsets were recorded at RTX initiation and at 3, 6, 12, 18 and 24 months. Low CD4 count and inverted CD4/CD8 ratio were defined as CD4 < 0.3 × 109/l and ratio < 1. Results The CD4 cell count and CD4/CD8 ratio decreased slightly following the initial RTX treatment and then increased gradually during maintenance treatment. While the proportion of patients with low CD4 cell count decreased from 43% at baseline to 18% at 24 months, the ratio remained inverted in 40%. Oral daily prednisolone dose at baseline, CYC exposure and the maintenance regimen did not influence the CD4 cell count and ratio. Being older (p = 0.012) and having a higher CRP (p = 0.044) and ESR (p = 0.024) at baseline significantly increased the risk of inverted CD4/CD8 ratio at 24 months. Inverted ratio at baseline associated with lower total Ig levels during the study. Conclusions Overall, the CD4 and CD4/CD8 ratio increased during maintenance RTX therapy in GPA with no discernible impact of other immunosuppressive therapy. However the increase in CD4 was not followed by an increase in the CD4/CD8 ratio, especially in older patients. Inverted CD4/CD8 ratio associated with lower Ig levels, suggesting a more profound B cell depleting effect of RTX with a relative increase in CD8

  17. Generation of Valpha14 NKT cells in vitro from hematopoietic precursors residing in bone marrow and peripheral blood.

    PubMed

    Shimamura, Michio; Kobayashi, Kumi; Watanabe, Hiroko; Huang, Yi-Ying; Okamoto, Naoki; Kanie, Osamu; Goji, Hiroshi; Kobayashi, Masumi

    2004-03-01

    We previously reported the generation of Valpha14 invariant TCR+ (Valpha14i) NK1.1+ natural killer T (NKT) cells in the cytokine-activated suspension culture of murine fetal liver cells. In this study, we attempted to apply this finding to the induction of Valpha14i NKT cell differentiation in the culture of hematopoietic precursors residing in bone marrow or peripheral blood. Preferential generation of NKT cells was found in the culture of Thy-1(+)-depleted bone marrow cells in the presence of culture supernatant from Con A-stimulated spleen T cells and a combination of recombinant IL-3, IL-4, IL-7 and GM-CSF. NKT cell development from peripheral blood hematopoietic precursors was induced when they were cultured on stromal cell monolayers prepared from Thy-1(+)-depleted bone marrow or fetal liver cells, suggesting that certain environments derived from hematopoietic organs are required for the induction of NKT cells from precursors in vitro. A significant fraction of NKT cells generated in the culture were positive for staining with CD1-alpha-galactosylceramide tetramer, indicating that Valpha14i NKT cells were the major subset among the NKT cells. The present methods for obtaining NKT cells in the culture of bone marrow or peripheral blood cells are applicable to the treatment of patients suffering from diseases with numerical and functional disorders of NKT cells.

  18. Measurement of precursor miRNA in exosomes from human ESC-derived mesenchymal stem cells.

    PubMed

    Chen, Tian Sheng; Lim, Sai Kiang

    2013-01-01

    Mesenchymal stem cells (MSCs) derived from human embryonic stem cells (ESCs) have been shown to secrete exosomes that are cardioprotective against myocardial ischemia reperfusion injury in a mouse model. To elucidate this cardioprotective mechanism, we have characterized the protein, nucleic acid, and lipid composition of MSC exosomes. Here we describe the isolation and analysis of RNA in MSC exosome. We have previously reported that RNAs in MSC exosome are primarily small RNA molecules of <300 nt and they include many miRNAs. Many of these miRNAs are in the precursor form suggesting that pre-miRNAs, and not mature miRNAs are preferentially loaded into exosomes. The protocols described here include assays to ascertain the presence of pre-miRNAs, profiling of miRNA and pre-miRNA, and quantitative estimation of mature and pre-miRNA.

  19. FIP200 is required for the cell-autonomous maintenance of fetal hematopoietic stem cells.

    PubMed

    Liu, Fei; Lee, Jae Y; Wei, Huijun; Tanabe, Osamu; Engel, James D; Morrison, Sean J; Guan, Jun-Lin

    2010-12-02

    Little is known about whether autophagic mechanisms are active in hematopoietic stem cells (HSCs) or how they are regulated. FIP200 (200-kDa FAK-family interacting protein) plays important roles in mammalian autophagy and other cellular functions, but its role in hematopoietic cells has not been examined. Here we show that conditional deletion of FIP200 in hematopoietic cells leads to perinatal lethality and severe anemia. FIP200 was cell-autonomously required for the maintenance and function of fetal HSCs. FIP200-deficient HSC were unable to reconstitute lethally irradiated recipients. FIP200 ablation did not result in increased HSC apoptosis, but it did increase the rate of HSC proliferation. Consistent with an essential role for FIP200 in autophagy, FIP200-null fetal HSCs exhibited both increased mitochondrial mass and reactive oxygen species. These data identify FIP200 as a key intrinsic regulator of fetal HSCs and implicate a potential role for autophagy in the maintenance of fetal hematopoiesis and HSCs.

  20. Variability of doublecortin-associated dendrite maturation in adult hippocampal neurogenesis is independent of the regulation of precursor cell proliferation

    PubMed Central

    Plümpe, Tobias; Ehninger, Dan; Steiner, Barbara; Klempin, Friederike; Jessberger, Sebastian; Brandt, Moritz; Römer, Benedikt; Rodriguez, Gerardo Ramirez; Kronenberg, Golo; Kempermann, Gerd

    2006-01-01

    Background In the course of adult hippocampal neurogenesis most regulation takes place during the phase of doublecortin (DCX) expression, either as pro-proliferative effect on precursor cells or as survival-promoting effect on postmitotic cells. We here obtained quantitative data about the proliferative population and the dynamics of postmitotic dendrite development during the period of DCX expression. The question was, whether any indication could be obtained that the initiation of dendrite development is timely bound to the exit from the cell cycle. Alternatively, the temporal course of morphological maturation might be subject to additional regulatory events. Results We found that (1) 20% of the DCX population were precursor cells in cell cycle, whereas more than 70% were postmitotic, (2) the time span until newborn cells had reached the most mature stage associated with DCX expression varied between 3 days and several weeks, (3) positive or negative regulation of precursor cell proliferation did not alter the pattern and dynamics of dendrite development. Dendrite maturation was largely independent of close contacts to astrocytes. Conclusion These data imply that dendrite maturation of immature neurons is initiated at varying times after cell cycle exit, is variable in duration, and is controlled independently of the regulation of precursor cell proliferation. We conclude that in addition to the major regulatory events in cell proliferation and selective survival, additional micro-regulatory events influence the course of adult hippocampal neurogenesis. PMID:17105671

  1. Variability of doublecortin-associated dendrite maturation in adult hippocampal neurogenesis is independent of the regulation of precursor cell proliferation.

    PubMed

    Plümpe, Tobias; Ehninger, Dan; Steiner, Barbara; Klempin, Friederike; Jessberger, Sebastian; Brandt, Moritz; Römer, Benedikt; Rodriguez, Gerardo Ramirez; Kronenberg, Golo; Kempermann, Gerd

    2006-11-15

    In the course of adult hippocampal neurogenesis most regulation takes place during the phase of doublecortin (DCX) expression, either as pro-proliferative effect on precursor cells or as survival-promoting effect on postmitotic cells. We here obtained quantitative data about the proliferative population and the dynamics of postmitotic dendrite development during the period of DCX expression. The question was, whether any indication could be obtained that the initiation of dendrite development is timely bound to the exit from the cell cycle. Alternatively, the temporal course of morphological maturation might be subject to additional regulatory events. We found that (1) 20% of the DCX population were precursor cells in cell cycle, whereas more than 70% were postmitotic, (2) the time span until newborn cells had reached the most mature stage associated with DCX expression varied between 3 days and several weeks, (3) positive or negative regulation of precursor cell proliferation did not alter the pattern and dynamics of dendrite development. Dendrite maturation was largely independent of close contacts to astrocytes. These data imply that dendrite maturation of immature neurons is initiated at varying times after cell cycle exit, is variable in duration, and is controlled independently of the regulation of precursor cell proliferation. We conclude that in addition to the major regulatory events in cell proliferation and selective survival, additional micro-regulatory events influence the course of adult hippocampal neurogenesis.

  2. An update on receptor-like kinase involvement in the maintenance of plant cell wall integrity.

    PubMed

    Engelsdorf, Timo; Hamann, Thorsten

    2014-10-01

    Plant cell walls form the interface between the cells and their environment. They perform different functions, such as protecting cells from biotic and abiotic stress and providing structural support during development. Maintenance of the functional integrity of cell walls during these different processes is a prerequisite that enables the walls to perform their particular functions. The available evidence suggests that an integrity maintenance mechanism exists in plants that is capable of both detecting wall integrity impairment caused by cell wall damage and initiating compensatory responses to maintain functional integrity. The responses involve 1-aminocyclopropane-1-carboxylic acid (ACC), jasmonic acid, reactive oxygen species and calcium-based signal transduction cascades as well as the production of lignin and other cell wall components. Experimental evidence implicates clearly different signalling molecules, but knowledge regarding contributions of receptor-like kinases to this process is less clear. Different receptor-like kinase families have been considered as possible sensors for perception of cell wall damage; however, strong experimental evidence that provides insights into functioning exists for very few kinases. This review examines the involvement of cell wall integrity maintenance in different biological processes, defines what constitutes plant cell wall damage that impairs functional integrity, clarifies which stimulus perception and signal transduction mechanisms are required for integrity maintenance and assesses the available evidence regarding the functions of receptor-like kinases during cell wall integrity maintenance. The review concludes by discussing how the plant cell wall integrity maintenance mechanism could form an essential component of biotic stress responses and of plant development, functions that have not been fully recognized to date. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany

  3. Maintaining clarity: Review of maintenance therapy in non-small cell lung cancer

    PubMed Central

    Dearing, Kristen R; Sangal, Ashish; Weiss, Glen J

    2014-01-01

    The purpose of this article is to review the role of maintenance therapy in the treatment of advanced non-small cell lung cancer (NSCLC). A brief overview about induction chemotherapy and its primary function in NSCLC is provided to address the basis of maintenance therapies foundation. The development of how maintenance therapy is utilized in this population is discussed and current guidelines for maintenance therapy are reviewed. Benefits and potential pitfalls of maintenance therapy are addressed, allowing a comprehensive review of the achieved clinical benefit that maintenance therapy may or may not have on NSCLC patient population. A review of current literature was conducted and a table is provided comparing the results of various maintenance therapy clinical trials. The table includes geographical location of each study, the number of patients enrolled, progression free survival and overall survival statistics, post-treatment regimens and if molecular testing was conducted. The role of molecular testing in relation to therapeutic treatment options for advanced NSCLC patients is discussed. A treatment algorithm clearly depicts first line and second line treatment for management of NSCLC and includes molecular testing, maintenance therapy and the role clinical trials have in treatment of NSCLC. This treatment algorithm has been specifically tailored and developed to assist clinicians in the management of advanced NSCLC. PMID:24829857

  4. An Atlas of Network Topologies Reveals Design Principles for Caenorhabditis elegans Vulval Precursor Cell Fate Patterning.

    PubMed

    Ping, Xianfeng; Tang, Chao

    2015-01-01

    The vulval precursor cell (VPC) fate patterning in Caenorhabditis elegans is a classic model experimental system for cell fate determination and patterning in development. Despite its apparent simplicity (six neighboring cells arranged in one dimension) and many experimental and computational efforts, the patterning strategy and mechanism remain controversial due to incomplete knowledge of the complex biology. Here, we carry out a comprehensive computational analysis and obtain a reservoir of all possible network topologies that are capable of VPC fate patterning under the simulation of various biological environments and regulatory rules. We identify three patterning strategies: sequential induction, morphogen gradient and lateral antagonism, depending on the features of the signal secreted from the anchor cell. The strategy of lateral antagonism, which has not been reported in previous studies of VPC patterning, employs a mutual inhibition of the 2° cell fate in neighboring cells. Robust topologies are built upon minimal topologies with basic patterning strategies and have more flexible and redundant implementations of modular functions. By simulated mutation, we find that all three strategies can reproduce experimental error patterns of mutants. We show that the topology derived by mapping currently known biochemical pathways to our model matches one of our identified functional topologies. Furthermore, our robustness analysis predicts a possible missing link related to the lateral antagonism strategy. Overall, we provide a theoretical atlas of all possible functional networks in varying environments, which may guide novel discoveries of the biological interactions in vulval development of Caenorhabditis elegans and related species.

  5. Amyloid Precursor Protein Mediates a Tyrosine-kinase Dependent Activation Response in Endothelial Cells

    PubMed Central

    Austin, S.A.; Sens, M.A.; Combs, C.K.

    2010-01-01

    Amyloid precursor protein (APP) is a ubiquitously expressed type one integral membrane protein. It has the ability to bind numerous extracellular matrix components and propagate signaling responses via its cytoplasmic phosphotyrosine, 682YENPTY687, binding motif. We recently demonstrated increased protein levels of APP, phosphorylated APP (Tyr682), and beta-amyloid (Aβ) in brain vasculature of atherosclerotic and Alzheimer’s disease (AD) tissue co-localizing primarily within the endothelial layer. This study demonstrates similar APP changes in peripheral vasculature from human and mouse apoE−/− aorta suggesting APP-related changes are not restricted to brain vasculature. Therefore, primary mouse aortic endothelial cells (PAEC) and human umbilical vein endothelial cells (HUVEC) were used as a model system to examine the function of APP in endothelial cells. APP multimerization with an anti-N-terminal APP antibody, 22C11, to simulate ligand binding stimulated a Src kinase family dependent increase in protein phosphotyrosine levels, APP phosphorylation, and Aβ secretion. Furthermore, APP multimerization stimulated increased protein levels of the proinflammatory proteins, cyclooxygenase (COX)-2 and vascular cell adhesion molecule (VCAM)-1 also in a Src kinase family dependent fashion. Endothelial APP was also involved in mediating monocytic cell adhesion. Collectively, these data demonstrate that endothelial APP regulates immune cell adhesion and stimulates a tyrosine kinase-dependent response driving acquisition of a reactive endothelial phenotype. These APP-mediated events may serve as therapeutic targets for intervention in progressive vascular changes common to cerebrovascular disease and AD. PMID:19923279

  6. Amyloid precursor proteins, neural differentiation of pluripotent stem cells and its relevance to Alzheimer's disease.

    PubMed

    Khandekar, Neeta; Lie, Khun Hong; Sachdev, Perminder S; Sidhu, Kuldip S

    2012-05-01

    Alzheimer's disease (AD) is a leading cause of age-related dementia that is characterized by an extensive loss of neurons and synaptic transmission. The pathological hallmarks of AD are neurofibrillary tangles and deposition of β-amyloid (Aβ) plaques. Previous research has investigated how Aβ fragments disrupt synaptic mechanisms in the vulnerable regions of the brain. There is a tremendous potential for stem cell technology to extend upon this research, not only in terms of developing therapeutic applications, but also in modeling AD. Indeed, the advent of induced pluripotent stem cell technology has opened up exciting new avenues for generating patient and disease-specific cell lines from somatic cells that may be used to model AD. Amyloid precursor protein (APP) is a key protein in neuronal development and this article reviews the role of APP in AD. Stem cell technology offers the opportunity to make use of APP in the directed differentiation of induced pluripotent stem cells into functional neurons, a process that may help generate a model of AD and thereby facilitate an understanding of the mechanisms underlying this disease.

  7. Technical note: Isolation and characterization of ovine brown adipocyte precursor cells.

    PubMed

    Ma, X; Hou, Y Q; Dahanayaka, S; Satterfield, M C; Burghardt, R C; Bazer, F W; Wu, G

    2015-05-01

    Brown adipose tissue (BAT) plays a critical role in regulating body temperature in newborn lambs. Availability of a stable BAT cell line would be invaluable for biochemical studies to elucidate cellular and molecular mechanisms responsible for nutritional regulation of fetal BAT growth and development. Ovine brown adipocyte precursor cells (BAPC) were isolated from fetal lambs at d 90 of gestation and cultured to establish a stable cell line. These cells were characterized by adipogenic differentiation and expression of a hallmark gene, (). The BAPC doubled every 24 h. After a 9-d induction with a serum-free Dulbecco's modified Eagle Ham/F12 medium, BAPC differentiated into brown adipocytes with large lipid droplets. The differentiation medium induced expression of mRNA and protein in BAPC. Furthermore, after BAPC were passaged 30 times, they maintained similar cell morphology, the potential for adipogenic differentiation, and the ability to express . Taken together, we have established a stable ovine BAPC cell line for studying nutritional regulation of BAT growth and development in the fetus.

  8. An Atlas of Network Topologies Reveals Design Principles for Caenorhabditis elegans Vulval Precursor Cell Fate Patterning

    PubMed Central

    Ping, Xianfeng; Tang, Chao

    2015-01-01

    The vulval precursor cell (VPC) fate patterning in Caenorhabditis elegans is a classic model experimental system for cell fate determination and patterning in development. Despite its apparent simplicity (six neighboring cells arranged in one dimension) and many experimental and computational efforts, the patterning strategy and mechanism remain controversial due to incomplete knowledge of the complex biology. Here, we carry out a comprehensive computational analysis and obtain a reservoir of all possible network topologies that are capable of VPC fate patterning under the simulation of various biological environments and regulatory rules. We identify three patterning strategies: sequential induction, morphogen gradient and lateral antagonism, depending on the features of the signal secreted from the anchor cell. The strategy of lateral antagonism, which has not been reported in previous studies of VPC patterning, employs a mutual inhibition of the 2° cell fate in neighboring cells. Robust topologies are built upon minimal topologies with basic patterning strategies and have more flexible and redundant implementations of modular functions. By simulated mutation, we find that all three strategies can reproduce experimental error patterns of mutants. We show that the topology derived by mapping currently known biochemical pathways to our model matches one of our identified functional topologies. Furthermore, our robustness analysis predicts a possible missing link related to the lateral antagonism strategy. Overall, we provide a theoretical atlas of all possible functional networks in varying environments, which may guide novel discoveries of the biological interactions in vulval development of Caenorhabditis elegans and related species. PMID:26114587

  9. Inhibition of amyloid precursor protein processing enhances gemcitabine-mediated cytotoxicity in pancreatic cancer cells.

    PubMed

    Woods, Neha Kabra; Padmanabhan, Jaya

    2013-10-18

    Pancreatic adenocarcinoma or pancreatic cancer is often diagnosed at a very late stage at which point treatment options are minimal. Current chemotherapeutic interventions prolong survival marginally, thereby emphasizing the acute need for better treatment options to effectively manage this disease. Studies from different laboratories have shown that the Alzheimer disease-associated amyloid precursor protein (APP) is overexpressed in various cancers but its significance is not known. Here we sought to determine the role of APP in pancreatic cancer cell survival and proliferation. Our results show that pancreatic cancer cells secrete high levels of sAPPα, the α-secretase cleaved ectodomain fragment of APP, as compared with normal non-cancerous cells. Treatment of cells with batimastat or GI254023X, inhibitors of the α-secretase ADAM10, prevented sAPPα generation and reduced cell survival. Additionally, inhibition of sAPPα significantly reduced anchorage independent growth of the cancer cells. The effect of batimastat on cell survival and colony formation was enhanced when sAPPα downregulation was combined with gemcitabine treatment. Moreover, treatment of batimastat-treated cells with recombinant sAPPα reversed the inhibitory effect of the drug thereby indicating that sAPPα can indeed induce proliferation of cancer cells. Down-regulation of APP and ADAM10 brought about similar results, as did batimastat treatment, thereby confirming that APP processing is important for growth and proliferation of these cells. These results suggest that inhibition of sAPPα generation might enhance the effectiveness of the existing chemotherapeutic regimen for a better outcome.

  10. Inhibition of Amyloid Precursor Protein Processing Enhances Gemcitabine-mediated Cytotoxicity in Pancreatic Cancer Cells*

    PubMed Central

    Woods, Neha Kabra; Padmanabhan, Jaya

    2013-01-01

    Pancreatic adenocarcinoma or pancreatic cancer is often diagnosed at a very late stage at which point treatment options are minimal. Current chemotherapeutic interventions prolong survival marginally, thereby emphasizing the acute need for better treatment options to effectively manage this disease. Studies from different laboratories have shown that the Alzheimer disease-associated amyloid precursor protein (APP) is overexpressed in various cancers but its significance is not known. Here we sought to determine the role of APP in pancreatic cancer cell survival and proliferation. Our results show that pancreatic cancer cells secrete high levels of sAPPα, the α-secretase cleaved ectodomain fragment of APP, as compared with normal non-cancerous cells. Treatment of cells with batimastat or GI254023X, inhibitors of the α-secretase ADAM10, prevented sAPPα generation and reduced cell survival. Additionally, inhibition of sAPPα significantly reduced anchorage independent growth of the cancer cells. The effect of batimastat on cell survival and colony formation was enhanced when sAPPα downregulation was combined with gemcitabine treatment. Moreover, treatment of batimastat-treated cells with recombinant sAPPα reversed the inhibitory effect of the drug thereby indicating that sAPPα can indeed induce proliferation of cancer cells. Down-regulation of APP and ADAM10 brought about similar results, as did batimastat treatment, thereby confirming that APP processing is important for growth and proliferation of these cells. These results suggest that inhibition of sAPPα generation might enhance the effectiveness of the existing chemotherapeutic regimen for a better outcome. PMID:24022491

  11. Disturbed CXCR4/CXCL12 axis in paediatric precursor B-cell acute lymphoblastic leukaemia.

    PubMed

    van den Berk, Lieke C J; van der Veer, Arian; Willemse, Marieke E; Theeuwes, Myrte J G A; Luijendijk, Mirjam W; Tong, Wing H; van der Sluis, Inge M; Pieters, Rob; den Boer, Monique L

    2014-07-01

    Malignant cells infiltrating the bone marrow (BM) interfere with normal cellular behaviour of supporting cells, thereby creating a malignant niche. We found that CXCR4-receptor expression was increased in paediatric precursor B-cell acute lymphoblastic leukaemia (BCP-ALL) cells compared with normal mononuclear haematopoietic cells (P < 0·0001). Furthermore, high CXCR4-expression correlated with an unfavourable outcome in BCP-ALL (5-year cumulative incidence of relapse ± standard error: 38·4% ± 6·9% in CXCR4-high versus 12% ± 4·6% in CXCR4-low expressing cases, P < 0·0001). Interestingly, BM levels of the CXCR4-ligand (CXCL12) were 2·7-fold lower (P = 0·005) in diagnostic BCP-ALL samples compared with non-leukaemic controls. Induction chemotherapy restored CXCL12 levels to normal. Blocking the CXCR4-receptor with Plerixafor showed that the lower CXCL12 serum levels at diagnosis could not be explained by consumption by the leukaemic cells, nor did we observe an altered CXCL12-production capacity of BM-mesenchymal stromal cells (BM-MSC) at this time-point. We rather observed that a very high density of leukaemic cells negatively affected CXCL12-production by the BM-MSC while stimulating the secretion levels of granulocyte colony-stimulating factor (G-CSF). These results suggest that highly proliferative leukaemic cells are able to down-regulate secretion of cytokines involved in homing (CXCL12), while simultaneously up-regulating those involved in haematopoietic mobilization (G-CSF). Therefore, interference with the CXCR4/CXCL12 axis may be an effective way to mobilize BCP-ALL cells.

  12. ECM components guide IL-10 producing regulatory T-cell (TR1) induction from effector memory T-cell precursors.

    PubMed

    Bollyky, Paul L; Wu, Rebecca P; Falk, Ben A; Lord, James D; Long, S Alice; Preisinger, Anton; Teng, Brandon; Holt, Gregory E; Standifer, Nathan E; Braun, Kathleen R; Xie, Cindy Fang; Samuels, Peter L; Vernon, Robert B; Gebe, John A; Wight, Thomas N; Nepom, Gerald T

    2011-05-10

    We describe a role for ECM as a biosensor for inflammatory microenvironments that plays a critical role in peripheral immune tolerance. We show that hyaluronan (HA) promotes induction of Foxp3- IL-10-producing regulatory T cells (TR1) from conventional T-cell precursors in both murine and human systems. This is, to our knowledge, the first description of an ECM component inducing regulatory T cells. Intact HA, characteristic of healing tissues, promotes induction of TR1 capable of abrogating disease in an IL-10-dependent mouse colitis model whereas fragmentary HA, typical of inflamed tissues, does not, indicating a decisive role for tissue integrity in this system. The TR1 precursor cells in this system are CD4(+)CD62L(-)FoxP3(-), suggesting that effector memory cells assume a regulatory phenotype when they encounter their cognate antigen in the context of intact HA. Matrix integrity cues might thereby play a central role in maintaining peripheral tolerance. This TR1 induction is mediated by CD44 cross-linking and signaling through p38 and ERK1/2. This induction is suppressed, also in a CD44-dependent manner, by osteopontin, a component of chronically inflamed ECM, indicating that CD44 signaling serves as a nexus for fate decisions regarding TR1 induction. Finally, we demonstrate that TR1 induction signals can be recapitulated using synthetic matrices. These results reveal important roles for the matrix microenvironment in immune regulation and suggest unique strategies for immunomodulation.

  13. Generation of the heterodimeric precursor GP3 of the Chlamydomonas cell wall.

    PubMed

    Voigt, Jürgen; Kiess, Michael; Getzlaff, Rita; Wöstemeyer, Johannes; Frank, Ronald

    2010-09-01

    The cell wall of the unicellular green alga Chlamydomonas reinhardtii exclusively consists of hydroxyproline-containing glycoproteins. Protein chemical analysis of its polypeptide constituents was hindered by their cross-linking via peroxidase-catalysed intermolecular isodityrosine formation and transaminase-dependent processes. To overcome this problem, we have identified putative soluble precursors using polyclonal antibodies raised against deglycosylation products of the highly purified insoluble wall fraction and analysed their amino acid sequence. The occurrence of the corresponding polypeptide in the insoluble glycoprotein framework was finally probed by epitope mapping of the polyclonal antibodies using overlapping scan peptides which, together, cover the whole amino acid sequence of the putative precursor. As a control, peptide fragments released from the insoluble wall fraction by trypsin treatment were analysed by mass spectroscopy. By this approach, the heterodimeric, chaotrope-soluble glycoprotein GP3 proved to be a constituent of the insoluble extracellular matrix of Chlamydomonas reinhardtii. Furthermore, we have shown that the polypeptide backbones of both GP3 subunits are encoded by the same gene and differ by a C-terminal truncation in the case of GP3A.

  14. Degradation of algal organic matter using microbial fuel cells and its association with trihalomethane precursor removal.

    PubMed

    Wang, Huan; Liu, Dongmei; Lu, Lu; Zhao, Zhiwei; Xu, Yongpeng; Cui, Fuyi

    2012-07-01

    In order to provide an alternative for removal of algal organic matter (AOM) produced during algal blooms in aquatic environment, microbial fuel cell (MFC) was used to study AOM degradation and its association with THM precursor removal. The chemical oxygen demand (COD) removals in MFCs were 81 ± 6% and 73 ± 3% for AOM from Microcystis aeruginosa (AOM(M)) and Chlorella vulgaris (AOM(C)), respectively. THM precursor was also effectively degraded (AOM(M) 85 ± 2%, AOM(C) 72 ± 4%). The major AOM components (proteins, lipids, and carbohydrates) were obviously removed in MFCs. The contribution of each component to the THM formation potential (THMFP) was obtained based on calculation. The THMFP produced from soluble microbial products was very low. If the energy input during operation process was not considered, MFCs treatment could recover electrical energy of 0.29 ± 0.02 kWh/kg COD (AOM(M)) and 0.35 ± 0.06 kWh/kg COD (AOM(C)).

  15. Hippocalcin Is Required for Astrocytic Differentiation through Activation of Stat3 in Hippocampal Neural Precursor Cells

    PubMed Central

    Kang, Min-Jeong; Park, Shin-Young; Han, Joong-Soo

    2016-01-01

    Hippocalcin (Hpca) is a neuronal calcium sensor protein expressed in the mammalian brain. However, its function in neural stem/precursor cells has not yet been studied. Here, we clarify the function of Hpca in astrocytic differentiation in hippocampal neural precursor cells (HNPCs). When we overexpressed Hpca in HNPCs in the presence or absence of bFGF, expression levels of nerve-growth factors such as neurotrophin-3 (NT-3), neurotrophin-4/5 (NT-4/5), and brain-derived neurotrophic factor (BDNF), together with the proneural basic helix loop helix (bHLH) transcription factors NeuroD and neurogenin 1 (Ngn1), increased significantly. In addition, there was an increase in the number of cells expressing glial fibrillary acidic protein (GFAP), an astrocyte marker, and in branch outgrowth, indicating astrocytic differentiation of the HNPCs. Downregulation of Hpca by transfection with Hpca siRNA reduced expression of NT-3, NT-4/5, BDNF, NeuroD, and Ngn1 as well as levels of GFAP protein. Furthermore, overexpression of Hpca increased the phosphorylation of STAT3 (Ser727), and this effect was abolished by treatment with a STAT3 inhibitor (S3I-201), suggesting that STAT3 (Ser727) activation is involved in Hpca-mediated astrocytic differentiation. As expected, treatment with Stat3 siRNA or STAT3 inhibitor caused a complete inhibition of astrogliogenesis induced by Hpca overexpression. Taken together, this is the first report to show that Hpca, acting through Stat3, has an important role in the expression of neurotrophins and proneural bHLH transcription factors, and that it is an essential regulator of astrocytic differentiation and branch outgrowth in HNPCs. PMID:27840601

  16. Human Neural Precursor Cells Promote Neurologic Recovery in a Viral Model of Multiple Sclerosis

    PubMed Central

    Chen, Lu; Coleman, Ronald; Leang, Ronika; Tran, Ha; Kopf, Alexandra; Walsh, Craig M.; Sears-Kraxberger, Ilse; Steward, Oswald; Macklin, Wendy B.; Loring, Jeanne F.; Lane, Thomas E.

    2014-01-01

    Summary Using a viral model of the demyelinating disease multiple sclerosis (MS), we show that intraspinal transplantation of human embryonic stem cell-derived neural precursor cells (hNPCs) results in sustained clinical recovery, although hNPCs were not detectable beyond day 8 posttransplantation. Improved motor skills were associated with a reduction in neuroinflammation, decreased demyelination, and enhanced remyelination. Evidence indicates that the reduced neuroinflammation is correlated with an increased number of CD4+CD25+FOXP3+ regulatory T cells (Tregs) within the spinal cords. Coculture of hNPCs with activated T cells resulted in reduced T cell proliferation and increased Treg numbers. The hNPCs acted, in part, through secretion of TGF-β1 and TGF-β2. These findings indicate that the transient presence of hNPCs transplanted in an animal model of MS has powerful immunomodulatory effects and mediates recovery. Further investigation of the restorative effects of hNPC transplantation may aid in the development of clinically relevant MS treatments. PMID:24936469

  17. Overexpression of amyloid precursor protein increases copper content in HEK293 cells

    SciTech Connect

    Suazo, Miriam; Hodar, Christian; Morgan, Carlos; Cerpa, Waldo; Cambiazo, Veronica; Inestrosa, Nibaldo C.; Gonzalez, Mauricio

    2009-05-15

    Amyloid precursor protein (APP) is a transmembrane glycoprotein widely expressed in mammalian tissues and plays a central role in Alzheimer's disease. However, its physiological function remains elusive. Cu{sup 2+} binding and reduction activities have been described in the extracellular APP135-156 region, which might be relevant for cellular copper uptake and homeostasis. Here, we assessed Cu{sup 2+} reduction and {sup 64}Cu uptake in two human HEK293 cell lines overexpressing APP. Our results indicate that Cu{sup 2+} reduction increased and cells accumulated larger levels of copper, maintaining cell viability at supra-physiological levels of Cu{sup 2+} ions. Moreover, wild-type cells exposed to both Cu{sup 2+} ions and APP135-155 synthetic peptides increased copper reduction and uptake. Complementation of function studies in human APP751 transformed Fre1 defective Saccharomyces cerevisiae cells rescued low Cu{sup 2+} reductase activity and increased {sup 64}Cu uptake. We conclude that Cu{sup 2+} reduction activity of APP facilitates copper uptake and may represent an early step in cellular copper homeostasis.

  18. Development of a chemically defined serum-free medium for differentiation of rat adipose precursor cells

    SciTech Connect

    Deslex, S.; Negrel, R.; Ailhaud, G.

    1987-01-01

    Stromal-vascular cells from the epididymal fat pad of 4-week-old rats, when cultured in a medium containing insulin or insulin-like growth factor, IFG-I, triiodothyronine and transferrin, were able to undergo adipose conversion. Over ninety percent of the cells accumulated lipid droplets and this proportion was reduced in serum-supplemented medium. The adipose conversion was assessed by the development of lipoprotein lipase (LPL) and glycerol-3-phosphate dehydrogenase (GPDH) activities, (/sup 14/)glucose incorporation into polar and neutral lipids, triacylglycerol accumulation and lipolysis in response to isoproterenol. Similar results were obtained with stromal-vascular cells from rat subcutaneous and retroperitoneal adipose tissues. Stromal-vascular cells required no adipogenic factors in addition to the components of the serum-free medium. Insulin was required within a physiological range of concentrations for the emergence of LPL and at higher concentrations for that of GPDH. When present at concentrations ranging from 2 to 50 nM, IGF-I was able to replace insulin for the expression of both LPL and and GPDH. The development of a serum free, chemically defined medium for the differentiation of diploid adiopose precursor cells opens up the possibility of characterizing inhibitors or activators of the adipose conversion process.

  19. Surface Expression of Precursor N-cadherin Promotes Tumor Cell Invasion12

    PubMed Central

    Maret, Deborah; Gruzglin, Eugenia; Sadr, Mohamad Seyed; Siu, Vincent; Shan, Weisong; Koch, Alexander W; Seidah, Nabil G; Del Maestro, Rolando F; Colman, David R

    2010-01-01

    The expression of N-cadherin (NCAD) has been shown to correlate with increased tumor cell motility and metastasis. However, NCAD-mediated adhesion is a robust phenomenon and therefore seems to be inconsistent with the “release” from intercellular adhesion required for invasion. We show that in the most invasive melanoma and brain tumor cells, altered posttranslational processing results in abundant nonadhesive precursor N-cadherin (proNCAD) at the cell surface, although total NCAD levels remain constant. We demonstrate that aberrantly processed proNCAD promotes cell migration and invasion in vitro. Furthermore, in human tumor specimens, we find high levels of proNCAD as well, supporting an overall conclusion that proNCAD and mature NCAD coexist on these tumor cell surfaces and that it is the ratio between these functionally antagonistic moieties that directly correlates with invasion potential. Our work provides insight into what may be a widespread mechanism for invasion and metastasis and challenges the current dogma of the functional roles played by classic cadherins in tumor progression. PMID:21170270

  20. Transformation of quiescent adult oligodendrocyte precursor cells into malignant glioma through a multistep reactivation process.

    PubMed

    Galvao, Rui Pedro; Kasina, Anita; McNeill, Robert S; Harbin, Jordan E; Foreman, Oded; Verhaak, Roel G W; Nishiyama, Akiko; Miller, C Ryan; Zong, Hui

    2014-10-07

    How malignant gliomas arise in a mature brain remains a mystery, hindering the development of preventive and therapeutic interventions. We previously showed that oligodendrocyte precursor cells (OPCs) can be transformed into glioma when mutations are introduced perinatally. However, adult OPCs rarely proliferate compared with their perinatal counterparts. Whether these relatively quiescent cells have the potential to transform is unknown, which is a critical question considering the late onset of human glioma. Additionally, the premalignant events taking place between initial mutation and a fully developed tumor mass are particularly poorly understood in glioma. Here we used a temporally controllable Cre transgene to delete p53 and NF1 specifically in adult OPCs and demonstrated that these cells consistently give rise to malignant gliomas. To investigate the transforming process of quiescent adult OPCs, we then tracked these cells throughout the premalignant phase, which revealed a dynamic multistep transformation, starting with rapid but transient hyperproliferative reactivation, followed by a long period of dormancy, and then final malignant transformation. Using pharmacological approaches, we discovered that mammalian target of rapamycin signaling is critical for both the initial OPC reactivation step and late-stage tumor cell proliferation and thus might be a potential target for both glioma prevention and treatment. In summary, our results firmly establish the transforming potential of adult OPCs and reveal an actionable multiphasic reactivation process that turns slowly dividing OPCs into malignant gliomas.

  1. PERK Activation Promotes Medulloblastoma Tumorigenesis by Attenuating Premalignant Granule Cell Precursor Apoptosis.

    PubMed

    Ho, Yeung; Li, Xiting; Jamison, Stephanie; Harding, Heather P; McKinnon, Peter J; Ron, David; Lin, Wensheng

    2016-07-01

    Evidence suggests that activation of pancreatic endoplasmic reticulum kinase (PERK) signaling in response to endoplasmic reticulum stress negatively or positively influences cell transformation by regulating apoptosis. Patched1 heterozygous deficient (Ptch1(+/-)) mice reproduce human Gorlin's syndrome and are regarded as the best animal model to study tumorigenesis of the sonic hedgehog subgroup of medulloblastomas. It is believed that medulloblastomas in Ptch1(+/-) mice results from the transformation of granule cell precursors (GCPs) in the developing cerebellum. Here, we determined the role of PERK signaling on medulloblastoma tumorigenesis by assessing its effects on premalignant GCPs and tumor cells. We found that PERK signaling was activated in both premalignant GCPs in young Ptch1(+/-) mice and medulloblastoma cells in adult mice. We demonstrated that PERK haploinsufficiency reduced the incidence of medulloblastomas in Ptch1(+/-) mice. Interestingly, PERK haploinsufficiency enhanced apoptosis of premalignant GCPs in young Ptch1(+/-) mice but had no significant effect on medulloblastoma cells in adult mice. Moreover, we showed that the PERK pathway was activated in medulloblastomas in humans. These results suggest that PERK signaling promotes medulloblastoma tumorigenesis by attenuating apoptosis of premalignant GCPs during the course of malignant transformation.

  2. Sparing of extraocular muscle in aging and muscular dystrophies: a myogenic precursor cell hypothesis.

    PubMed

    Kallestad, Kristen M; Hebert, Sadie L; McDonald, Abby A; Daniel, Mark L; Cu, Sharon R; McLoon, Linda K

    2011-04-01

    The extraocular muscles (EOM) are spared from pathology in aging and many forms of muscular dystrophy. Despite many studies, this sparing remains an enigma. The EOM have a distinct embryonic lineage compared to somite-derived muscles, and we have shown that they continuously remodel throughout life, maintaining a population of activated satellite cells even in aging. These data suggested the hypothesis that there is a population of myogenic precursor cells (mpcs) in EOM that is different from those in limb, with either elevated numbers of stem cells and/or mpcs with superior proliferative capacity compared to mpcs in limb. Using flow cytometry, EOM and limb muscle mononuclear cells were compared, and a number of differences were seen. Using two different cell isolation methods, EOM have significantly more mpcs per mg muscle than limb skeletal muscle. One specific subpopulation significantly increased in EOM compared to limb was positive for CD34 and negative for Sca-1, M-cadherin, CD31, and CD45. We named these the EOMCD34 cells. Similar percentages of EOMCD34 cells were present in both newborn EOM and limb muscle. They were retained in aged EOM, whereas the population decreased significantly in adult limb muscle and were extremely scarce in aged limb muscle. Most importantly, the percentage of EOMCD34 cells was elevated in the EOM from both the mdx and the mdx/utrophin(-/-) (DKO) mouse models of DMD and extremely scarce in the limb muscles of these mice. In vitro, the EOMCD34 cells had myogenic potential, forming myotubes in differentiation media. After determining a media better able to induce proliferation in these cells, a fusion index was calculated. The cells isolated from EOM had a 40% higher fusion index compared to the same cells isolated from limb muscle. The EOMCD34 cells were resistant to both oxidative stress and mechanical injury. These data support our hypothesis that the EOM may be spared in aging and in muscular dystrophies due to a subpopulation

  3. Sparing of extraocular muscle in aging and muscular dystrophies: A myogenic precursor cell hypothesis

    SciTech Connect

    Kallestad, Kristen M.; Hebert, Sadie L.; McDonald, Abby A.; Daniel, Mark L.; Cu, Sharon R.; McLoon, Linda K.

    2011-04-01

    The extraocular muscles (EOM) are spared from pathology in aging and many forms of muscular dystrophy. Despite many studies, this sparing remains an enigma. The EOM have a distinct embryonic lineage compared to somite-derived muscles, and we have shown that they continuously remodel throughout life, maintaining a population of activated satellite cells even in aging. These data suggested the hypothesis that there is a population of myogenic precursor cells (mpcs) in EOM that is different from those in limb, with either elevated numbers of stem cells and/or mpcs with superior proliferative capacity compared to mpcs in limb. Using flow cytometry, EOM and limb muscle mononuclear cells were compared, and a number of differences were seen. Using two different cell isolation methods, EOM have significantly more mpcs per mg muscle than limb skeletal muscle. One specific subpopulation significantly increased in EOM compared to limb was positive for CD34 and negative for Sca-1, M-cadherin, CD31, and CD45. We named these the EOMCD34 cells. Similar percentages of EOMCD34 cells were present in both newborn EOM and limb muscle. They were retained in aged EOM, whereas the population decreased significantly in adult limb muscle and were extremely scarce in aged limb muscle. Most importantly, the percentage of EOMCD34 cells was elevated in the EOM from both the mdx and the mdx/utrophin{sup -/-} (DKO) mouse models of DMD and extremely scarce in the limb muscles of these mice. In vitro, the EOMCD34 cells had myogenic potential, forming myotubes in differentiation media. After determining a media better able to induce proliferation in these cells, a fusion index was calculated. The cells isolated from EOM had a 40% higher fusion index compared to the same cells isolated from limb muscle. The EOMCD34 cells were resistant to both oxidative stress and mechanical injury. These data support our hypothesis that the EOM may be spared in aging and in muscular dystrophies due to a

  4. Role of key regulators of the cell cycle in maintenance of hematopoietic stem cells.

    PubMed

    Matsumoto, Akinobu; Nakayama, Keiichi I

    2013-02-01

    Hematopoietic stem cells (HSCs) are characterized by pluripotentiality and self-renewal ability. To maintain a supply of mature blood cells and to avoid HSC exhaustion during the life span of an organism, most HSCs remain quiescent, with only a limited number entering the cell cycle. The molecular mechanisms by which quiescence is maintained in HSCs are addressed, with recent genetic studies having provided important insight into the relation between the cell cycle activity and stemness of HSCs. The cell cycle is tightly regulated in HSCs by complex factors. Key regulators of the cell cycle in other cell types-including cyclins, cyclin-dependent kinases (CDKs), the retinoblastoma protein family, the transcription factor E2F, and CDK inhibitors-also contribute to such regulation in HSCs. Most, but not all, of these regulators are necessary for maintenance of HSCs, with abnormal activation or suppression of the cell cycle resulting in HSC exhaustion. The cell cycle in HSCs is also regulated by external factors such as cytokines produced by niche cells as well as by the ubiquitin-proteasome pathway. Studies of the cell cycle in HSCs may shed light on the pathogenesis of hematopoietic disorders, serve as a basis for the development of new therapeutic strategies for such disorders, prove useful for the expansion of HSCs in vitro as a possible replacement for blood transfusion, and provide insight into stem cell biology in general. This article is part of a Special Issue entitled Biochemistry of Stem Cells. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Stem cell maintenance by manipulating signaling pathways: past, current and future

    PubMed Central

    Chen, Xi; Ye, Shoudong; Ying, Qi-Long

    2015-01-01

    Pluripotent stem cells only exist in a narrow window during early embryonic development, whereas multipotent stem cells are abundant throughout embryonic development and are retainedin various adult tissues and organs. While pluripotent stem cell lines have been established from several species, including mouse, rat, and human, it is still challenging to establish stable multipotent stem cell lines from embryonic or adult tissues. Based on current knowledge, we anticipate that by manipulating extrinsic and intrinsic signaling pathways, most if not all types of stem cells can be maintained in a long-term culture. In this article, we summarize current culture conditions established for the long-term maintenance of authentic pluripotent and multipotent stem cells and the signaling pathways involved. We also discuss the general principles of stem cell maintenance and propose several strategies on the establishment of novel stem cell lines through manipulation of signaling pathways. [BMB Reports 2015; 48(12): 668-676] PMID:26497581

  6. Biomaterial Strategies for Stem Cell Maintenance During In Vitro Expansion

    PubMed Central

    Yan, Xiang-Zhen; van den Beucken, Jeroen J.J.P.; Both, Sanne K.; Yang, Pi-Shan; Jansen, John A.

    2014-01-01

    Stem cells, having the potential for self-renewal and multilineage differentiation, are the building blocks for tissue/organ regeneration. Stem cells can be isolated from various sources but are, in general, available in too small numbers to be used directly for clinical purpose without intermediate expansion procedures in vitro. Although this in vitro expansion of undifferentiated stem cells is necessary, stem cells typically diminish their ability to self-renew and proliferate during passaging. Consequently, maintaining the stemness of stem cells has been recognized as a major challenge in stem cell-based research. This review focuses on the latest developments in maintaining the self-renewal ability of stem cells during in vitro expansion by biomaterial strategies. Further, this review highlights what should be the focus for future studies using stem cells for regenerative applications. PMID:24168361

  7. Optimization of precursor deposition for evaporated Cu2ZnSnS4 solar cells

    NASA Astrophysics Data System (ADS)

    Cui, Hongtao; Li, Wei; Liu, Xiaolei; Song, Ning; Lee, Chang-Yeh; Liu, Fangyang; Hao, Xiaojing

    2015-03-01

    The influence of three kinds of precursor depositions on the performance of corresponding Cu2ZnSnS4 solar cells has been investigated, which includes evaporation of stacking metal layers (Mo/Zn/Cu/Sn), co-evaporation of metal elements (Mo/(Zn,Cu,Sn)) and co-evaporation of metals together with a small amount of sulfur (Mo/(Zn,Cu,Sn,S)) . It is found that Mo/(Zn,Cu,Sn) leads to large grain absorber and the best open circuit voltage VOC, short circuit current density JSC and efficiency; Mo/Zn/Cu/Sn produces a porous structure with small grain size which causes lowest shunt resistance, VOC, JSC and efficiency; Mo/(Zn,Cu,Sn,S) results in a dense film with small grain size which induces highest shunt resistance (RSH) and fill factor (FF); ~200 nm thick MoS2 layer is formed during the sulfurization.

  8. Efficiency Enhancement of Perovskite Solar Cells by Pumping Away the Solvent of Precursor Film Before Annealing

    NASA Astrophysics Data System (ADS)

    Xu, Qing-Yang; Yuan, Da-Xing; Mu, Hao-Ran; Igbari, Femi; Bao, Qiaoliang; Liao, Liang-Sheng

    2016-05-01

    A new approach to improve the quality of MAPbI3 - x Cl x perovskite film was demonstrated. It involves annealing the precursor film after pumping away the solvent, which can decrease the influence of solvent evaporation rate for the growth of the MAPbI3 - x Cl x perovskite film. The resulting film showed improved morphology, stronger absorption, fewer crystal defects, and smaller charge transfer resistance. The corresponding device demonstrated enhanced performance when compared with a reference device. The averaged value of power conversion efficiency increased from 10.61 to 12.56 %, and a champion efficiency of 14.0 % was achieved. This work paves a new way to improve the efficiency of perovskite solar cells.

  9. Efficiency Enhancement of Perovskite Solar Cells by Pumping Away the Solvent of Precursor Film Before Annealing.

    PubMed

    Xu, Qing-Yang; Yuan, Da-Xing; Mu, Hao-Ran; Igbari, Femi; Bao, Qiaoliang; Liao, Liang-Sheng

    2016-12-01

    A new approach to improve the quality of MAPbI3 - x Cl x perovskite film was demonstrated. It involves annealing the precursor film after pumping away the solvent, which can decrease the influence of solvent evaporation rate for the growth of the MAPbI3 - x Cl x perovskite film. The resulting film showed improved morphology, stronger absorption, fewer crystal defects, and smaller charge transfer resistance. The corresponding device demonstrated enhanced performance when compared with a reference device. The averaged value of power conversion efficiency increased from 10.61 to 12.56 %, and a champion efficiency of 14.0 % was achieved. This work paves a new way to improve the efficiency of perovskite solar cells.

  10. Expression and regulation of the 67-kda laminin-binding protein and its precursor gene in lymphoid-cells.

    PubMed

    Suzuki, H; Zhang, X; Sobel, M; Kondoh, N; Papas, T; Bhat, N

    1993-12-01

    The 67-kDa laminin-binding protein is a non-integrin laminin-binding protein that mediates cancer cell adhesion and migration. The expression of the 67-kDa laminin-binding protein and of its putative precursor, a 37-kDa polypeptide, was studied in peripheral T-cells and T-lymphoma cell lines. Immunofluorescence experiments detected antigen in both the cytosol and on the cell membrane. On immunoblots of T-cell protein extracts, both the 37-kDa precursor and the mature 67-kDa protein were present. The mRNA for the precursor was expressed in both immature and mature thymocytes. In three independent T-lymphoma cell lines, the mRNA levels were decreased after prolonged stimulation with phorbol esters. Since the latter directly activate protein kinase C, it appears that regulation of the 37-kDa precursor in T-cells may be mediated by the signal transduction cascade associated with protein kinase C activation.

  11. Different Mechanisms Must Be Considered to Explain the Increase in Hippocampal Neural Precursor Cell Proliferation by Physical Activity

    PubMed Central

    Overall, Rupert W.; Walker, Tara L.; Fischer, Tim J.; Brandt, Moritz D.; Kempermann, Gerd

    2016-01-01

    The number of proliferating neural precursor cells in the adult hippocampus is strongly increased by physical activity. The mechanisms through which this behavioral stimulus induces cell proliferation, however, are not yet understood. In fact, even the mode of proliferation of the stem and progenitor cells is not exactly known. Evidence exists for several mechanisms including cell cycle shortening, reduced cell death and stem cell recruitment, but as yet no model can account for all observations. An appreciation of how the cells proliferate, however, is crucial to our ability to model the neurogenic process and predict its behavior in response to pro-neurogenic stimuli. In a recent study, we addressed modulation of the cell cycle length as one possible mode of regulation of precursor cell proliferation in running mice. Our results indicated that the observed increase in number of proliferating cells could not be explained through a shortening of the cell cycle. We must therefore consider other mechanisms by which physical activity leads to enhanced precursor cell proliferation. Here we review the evidence for and against several different hypotheses and discuss the implications for future research in the field. PMID:27536215

  12. Detection of normal B-cell precursors that give rise to colonies producing both kappa and lambda light immunoglobulin chains.

    PubMed Central

    Sauter, H; Paige, C J

    1987-01-01

    The pre-B-cell cloning assay is an in vitro differentiation system in which B-lymphocyte precursors expand and generate colonies containing immunoglobulin-secreting cells. Analysis of surface characteristics, growth requirements, and kinetics suggested that these cells represent early stages of the B-cell differentiation pathway. Here we describe a modification of the assay, which allowed us to determine the differentiative potential of these clonable pre-B cells. Using a nitrocellulose protein-transfer technique, we studied immunoglobulin light chain expression in colonies derived from fetal mouse liver B-cell precursors; in particular, we explored whether the B-cell precursors are already committed to the expression of a particular light chain gene at the initiation of culture. Our results show that fetal liver-derived B-cell progenitors generate colonies in vitro that secrete kappa and lambda light chains at a ratio similar to that found in colonies derived from adult splenic B cells. Further, we document the existence of colonies that are derived from single cells and that simultaneously secrete both types of light chains. This indicates that the progenitors of (kappa + lambda)-producing colonies are light chain-uncommitted at the initiation of culture. These cells are able to rearrange their light chain genes in vitro and differentiate along the B-cell pathway to form colonies secreting both kappa and lambda chains. PMID:3110779

  13. SYK as a New Therapeutic Target in B-Cell Precursor Acute Lymphoblastic Leukemia

    PubMed Central

    Uckun, Fatih M.; Qazi, Sanjive

    2014-01-01

    The identification of SYK as a master regulator of apoptosis controlling the activation of the PI3-K/AKT, NFκB, and STAT3 pathways—three major anti-apoptotic signaling pathways in B-lineage leukemia/lymphoma cells—prompts the hypothesis that rationally designed inhibitors targeting SYK may overcome the resistance of malignant B-lineage lymphoid cells to apoptosis and thereby provide the foundation for more effective multi-modality treatment regimens for poor prognosis B-precursor acute lymphoblastic leukemia (BPL). In recent preclinical proof-of-concept studies, a liposomal nanoparticle (LNP) formulation of a SYK substrate-binding site inhibitor, known as C61, has been developed as a nanomedicine candidate against poor prognosis and relapsed BPL. This nanoscale formulation of C61 exhibited a uniquely favorable pharmacokinetics and safety profile in mice, induced apoptosis in radiation-resistant primary leukemic cells taken directly from BPL patients as well as in vivo clonogenic BPL xenograft cells, destroyed the leukemic stem cell fraction of BPL blasts, and exhibited potent in vivo anti-leukemic activity in xenograft models of aggressive BPL. Further development of C61-LNP may provide the foundation for new and effective treatment strategies against therapy-refractory BPL. PMID:24851191

  14. Altered neutrophil immunophenotypes in childhood B-cell precursor acute lymphoblastic leukemia

    PubMed Central

    Oliveira, Elen; Bacelar, Thiago S.; Ciudad, Juana; Ribeiro, Maria Cecília M.; Garcia, Daniela R.N.; Sedek, Lukasz; Maia, Simone F.; Aranha, Daniel B.; Machado, Indyara C.; Ikeda, Arissa; Baglioli, Bianca F.; Lopez-Duarte, Nathalia; Teixeira, Lisandra A. C.; Szczepanski, Tomasz; Silva, Maria Luiza M.; Land, Marcelo G.P.

    2016-01-01

    An increasing number of evidences suggest a genetic predisposition in acute lymphoblastic leukemia (ALL) that might favor the occurrence of the driver genetic alterations. Such genetic background might also translate into phenotypic alterations of residual hematopoietic cells. Whether such phenotypic alterations are present in bone marrow (BM) cells from childhood B-cell precursor (BCP)-ALL remains to be investigated. Here we analyzed the immunophenotypic profile of BM and peripheral blood (PB) maturing/matured neutrophils from 118 children with BCP-ALL and their relationship with the features of the disease. Our results showed altered neutrophil phenotypes in most (77%) BCP-ALL cases. The most frequently altered marker was CD10 (53%), followed by CD33 (34%), CD13 (15%), CD15/CD65 (10%) and CD123 (7%). Of note, patients with altered neutrophil phenotypes had younger age (p = 0.03) and lower percentages of BM maturing neutrophils (p = 0.004) together with greater BM lymphocyte (p = 0.04), and mature B-cell (p = 0.03) counts. No significant association was found between an altered neutrophil phenotype and other disease features. These findings point out the potential existence of an altered residual hematopoiesis in most childhood BCP-ALL cases. PMID:27028865

  15. Rejuvenation of MPTP-induced human neural precursor cell senescence by activating autophagy.

    PubMed

    Zhu, Liang; Dong, Chuanming; Sun, Chenxi; Ma, Rongjie; Yang, Danjing; Zhu, Hongwen; Xu, Jun

    2015-08-21

    Aging of neural stem cell, which can affect brain homeostasis, may be caused by many cellular mechanisms. Autophagy dysfunction was found in aged and neurodegenerative brains. However, little is known about the relationship between autophagy and human neural stem cell (hNSC) aging. The present study used 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) to treat neural precursor cells (NPCs) derived from human embryonic stem cell (hESC) line H9 and investigate related molecular mechanisms involved in this process. MPTP-treated NPCs were found to undergo premature senescence [determined by increased senescence-associated-β-galactosidase (SA-β-gal) activity, elevated intracellular reactive oxygen species level, and decreased proliferation] and were associated with impaired autophagy. Additionally, the cellular senescence phenotypes were manifested at the molecular level by a significant increase in p21 and p53 expression, a decrease in SOD2 expression, and a decrease in expression of some key autophagy-related genes such as Atg5, Atg7, Atg12, and Beclin 1. Furthermore, we found that the senescence-like phenotype of MPTP-treated hNPCs was rejuvenated through treatment with a well-known autophagy enhancer rapamycin, which was blocked by suppression of essential autophagy gene Beclin 1. Taken together, these findings reveal the critical role of autophagy in the process of hNSC aging, and this process can be reversed by activating autophagy. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Amyloid Precursor Protein Enhances Nav1.6 Sodium Channel Cell Surface Expression*

    PubMed Central

    Liu, Chao; Tan, Francis Chee Kuan; Xiao, Zhi-Cheng; Dawe, Gavin S.

    2015-01-01

    Amyloid precursor protein (APP) is commonly associated with Alzheimer disease, but its physiological function remains unknown. Nav1.6 is a key determinant of neuronal excitability in vivo. Because mouse models of gain of function and loss of function of APP and Nav1.6 share some similar phenotypes, we hypothesized that APP might be a candidate molecule for sodium channel modulation. Here we report that APP colocalized and interacted with Nav1.6 in mouse cortical neurons. Knocking down APP decreased Nav1.6 sodium channel currents and cell surface expression. APP-induced increases in Nav1.6 cell surface expression were Go protein-dependent, enhanced by a constitutively active Go protein mutant, and blocked by a dominant negative Go protein mutant. APP also regulated JNK activity in a Go protein-dependent manner. JNK inhibition attenuated increases in cell surface expression of Nav1.6 sodium channels induced by overexpression of APP. JNK, in turn, phosphorylated APP. Nav1.6 sodium channel surface expression was increased by T668E and decreased by T668A, mutations of APP695 mimicking and preventing Thr-668 phosphorylation, respectively. Phosphorylation of APP695 at Thr-668 enhanced its interaction with Nav1.6. Therefore, we show that APP enhances Nav1.6 sodium channel cell surface expression through a Go-coupled JNK pathway. PMID:25767117

  17. Grafting neural precursor cells promotes functional recovery in an SCA1 mouse model.

    PubMed

    Chintawar, Satyan; Hourez, Raphael; Ravella, Ajay; Gall, David; Orduz, David; Rai, Myriam; Bishop, Don Patrick; Geuna, Stefano; Schiffmann, Serge N; Pandolfo, Massimo

    2009-10-21

    The B05 transgenic SCA1 mice, expressing human ataxin-1 with an expanded polyglutamine tract in cerebellar Purkinje cells (PCs), recapitulate many pathological and behavioral characteristics of the neurodegenerative disease spinocerebellar ataxia type 1 (SCA1), including progressive ataxia and PC loss. We transplanted neural precursor cells (NPCs) derived from the subventricular zone of GFP-expressing adult mice into the cerebellar white matter of SCA1 mice when they showed absent (5 weeks), initial (13 weeks), and significant (24 weeks) PC loss. Only in mice with significant cell loss, grafted NPCs migrated into the cerebellar cortex. These animals showed improved motor skills compared with sham-treated controls. No grafted cell adopted the morphological and immunohistochemical characteristics of PCs, but the cerebellar cortex in NPC-grafted SCA1 mice had a significantly thicker molecular layer and more surviving PCs. Perforated patch-clamp recordings revealed a normalization of the PC basal membrane potential, which was abnormally depolarized in sham-treated animals. No significant increase in levels of several neurotrophic factors was observed, suggesting, along with morphological observation, that the neuroprotective effect of grafted NPCs was mediated by direct contact with the host PCs. We postulate that a similar neuroprotective effect of NPCs may be applicable to other cerebellar degenerative diseases.

  18. Dual-Source Precursor Approach for Highly Efficient Inverted Planar Heterojunction Perovskite Solar Cells.

    PubMed

    Luo, Deying; Zhao, Lichen; Wu, Jiang; Hu, Qin; Zhang, Yifei; Xu, Zhaojian; Liu, Yi; Liu, Tanghao; Chen, Ke; Yang, Wenqiang; Zhang, Wei; Zhu, Rui; Gong, Qihuang

    2017-03-15

    The highest efficiencies reported for perovskite solar cells so far have been obtained mainly with methylammonium and formamidinium mixed cations. Currently, high-quality mixed-cation perovskite thin films are normally made by use of antisolvent protocols. However, the widely used "antisolvent"-assisted fabrication route suffers from challenges such as poor device reproducibility, toxic and hazardous organic solvent, and incompatibility with scalable fabrication process. Here, a simple dual-source precursor approach is developed to fabricate high-quality and mirror-like mixed-cation perovskite thin films without involving additional antisolvent process. By integrating the perovskite films into the planar heterojunction solar cells, a power conversion efficiency of 20.15% is achieved with negligible current density-voltage hysteresis. A stabilized power output approaching 20% is obtained at the maximum power point. These results shed light on fabricating highly efficient perovskite solar cells via a simple process, and pave the way for solar cell fabrication via scalable methods in the near future.

  19. Triazole RGD antagonist reverts TGFβ1-induced endothelial-to-mesenchymal transition in endothelial precursor cells.

    PubMed

    Bianchini, Francesca; Peppicelli, Silvia; Fabbrizzi, Pierangelo; Biagioni, Alessio; Mazzanti, Benedetta; Menchi, Gloria; Calorini, Lido; Pupi, Alberto; Trabocchi, Andrea

    2017-01-01

    Fibrosis is the dramatic consequence of a dysregulated reparative process in which activated fibroblasts (myofibroblasts) and Transforming Growth Factor β1 (TGFβ1) play a central role. When exposed to TGFβ1, fibroblast and epithelial cells differentiate in myofibroblasts; in addition, endothelial cells may undergo endothelial-to-mesenchymal transition (EndoMT) and actively participate to the progression of fibrosis. Recently, the role of αv integrins, which recognize the Arg-Gly-Asp (RGD) tripeptide, in the release and signal transduction activation of TGFβ1 became evident. In this study, we present a class of triazole-derived RGD antagonists that interact with αvβ3 integrin. Above different compounds, the RGD-2 specifically interferes with integrin-dependent TGFβ1 EndoMT in Endothelial Colony-Forming Cells (ECPCs) derived from circulating Endothelial Precursor Cells (ECPCs). The RGD-2 decreases the amount of membrane-associated TGFβ1, and reduces both ALK5/TGFβ1 type I receptor expression and Smad2 phosphorylation in ECPCs. We found that RGD-2 antagonist reverts EndoMT, reducing α-smooth muscle actin (α-SMA) and vimentin expression in differentiated ECPCs. Our results outline the critical role of integrin in fibrosis progression and account for the opportunity of using integrins as target for anti-fibrotic therapeutic treatment.

  20. Langerhans cell precursors acquire RANK/CD265 in prenatal human skin

    PubMed Central

    Schöppl, Alice; Botta, Albert; Prior, Marion; Akgün, Johnnie; Schuster, Christopher; Elbe-Bürger, Adelheid

    2015-01-01

    The skin is the first barrier against foreign pathogens and the prenatal formation of a strong network of various innate and adaptive cells is required to protect the newborn from perinatal infections. While many studies about the immune system in healthy and diseased adult human skin exist, our knowledge about the cutaneous prenatal/developing immune system and especially about the phenotype and function of antigen-presenting cells such as epidermal Langerhans cells (LCs) in human skin is still scarce. It has been shown previously that LCs in healthy adult human skin express receptor activator of NF-κB (RANK), an important molecule prolonging their survival. In this study, we investigated at which developmental stage LCs acquire this important molecule. Immunofluorescence double-labeling of cryostat sections revealed that LC precursors in prenatal human skin either do not yet [10–11 weeks of estimated gestational age (EGA)] or only faintly (13–15 weeks EGA) express RANK. LCs express RANK at levels comparable to adult LCs by the end of the second trimester. Comparable with adult skin, dermal antigen-presenting cells at no gestational age express this marker. These findings indicate that epidermal leukocytes gradually acquire RANK during gestation – a phenomenon previously observed also for other markers on LCs in prenatal human skin. PMID:25722033

  1. Amyloid precursor protein in human breast cancer: an androgen-induced gene associated with cell proliferation.

    PubMed

    Takagi, Kiyoshi; Ito, Shigehiro; Miyazaki, Toshiaki; Miki, Yasuhiro; Shibahara, Yukiko; Ishida, Takanori; Watanabe, Mika; Inoue, Satoshi; Sasano, Hironobu; Suzuki, Takashi

    2013-11-01

    Amyloid precursor protein (APP) is a transmembrane protein that is highly expressed in brain tissue. Recently, APP has been implicated in some human malignancies, and its regulation by androgens has also been demonstrated. Such findings suggest the importance of APP in hormone-dependent breast carcinoma, but APP has not yet been examined in breast carcinoma tissues. Therefore, in this study, we examined the biological and clinical significance of APP in breast carcinoma using immunohistochemistry and in vitro studies. APP immunoreactivity was detected in 57 out of 117 (49%) breast carcinoma tissues examined, and it was positively associated with androgen receptor (AR) expression. APP immunoreactivity was also significantly associated with Ki-67 LI and increased risk of recurrence in the estrogen receptor (ER)-positive cases, and was an independent prognostic factor in these patients. Subsequent in vitro experiments demonstrated that APP mRNA expression was significantly induced by biologically active androgen dihydrotestosterone in both a dose-dependent and a time-dependent manner in MCF-7 breast carcinoma cells, which was potently suppressed by an AR blocker hydroxyflutamide. Moreover, cell proliferation activity of MCF-7 and MDA-MB-231 cells was significantly associated with their APP expression level. These findings suggest that APP is an androgen-induced gene that promotes proliferation activity of breast carcinoma cells. Moreover, APP immunohistochemical status is considered a potent prognostic factor in ER-positive breast cancer patients. © 2013 Japanese Cancer Association.

  2. Langerhans cell precursors acquire RANK/CD265 in prenatal human skin.

    PubMed

    Schöppl, Alice; Botta, Albert; Prior, Marion; Akgün, Johnnie; Schuster, Christopher; Elbe-Bürger, Adelheid

    2015-01-01

    The skin is the first barrier against foreign pathogens and the prenatal formation of a strong network of various innate and adaptive cells is required to protect the newborn from perinatal infections. While many studies about the immune system in healthy and diseased adult human skin exist, our knowledge about the cutaneous prenatal/developing immune system and especially about the phenotype and function of antigen-presenting cells such as epidermal Langerhans cells (LCs) in human skin is still scarce. It has been shown previously that LCs in healthy adult human skin express receptor activator of NF-κB (RANK), an important molecule prolonging their survival. In this study, we investigated at which developmental stage LCs acquire this important molecule. Immunofluorescence double-labeling of cryostat sections revealed that LC precursors in prenatal human skin either do not yet [10-11 weeks of estimated gestational age (EGA)] or only faintly (13-15 weeks EGA) express RANK. LCs express RANK at levels comparable to adult LCs by the end of the second trimester. Comparable with adult skin, dermal antigen-presenting cells at no gestational age express this marker. These findings indicate that epidermal leukocytes gradually acquire RANK during gestation - a phenomenon previously observed also for other markers on LCs in prenatal human skin.

  3. Smooth Muscle Cells Give Rise to Osteochondrogenic Precursors and Chondrocytes in Calcifying Arteries

    PubMed Central

    Speer, Mei Y.; Yang, Hsueh-Ying; Brabb, Thea; Leaf, Elizabeth; Look, Amy; Lin, Wei-Ling; Frutkin, Andrew; Dichek, David; Giachelli, Cecilia M.

    2009-01-01

    Vascular calcification is a major risk factor for cardiovascular morbidity and mortality. In order to develop appropriate prevention and/or therapeutic strategies for vascular calcification, it is important to understand the origins of the cells that participate in this process. In this report, we used the SM22-Cre recombinase and Rosa26-LacZ alleles to genetically trace cells derived from smooth muscle. We found that smooth muscle cells (SMCs) gave rise to osteochondrogenic precursor- and chondrocyte-like cells in calcified blood vessels of matrix Gla protein deficient (MGP−/−) mice. This lineage reprogramming of SMCs occurred prior to calcium deposition, and was associated with an early onset of Runx2/Cbfa1 expression and the down regulation of myocardin and Msx2. There was no change in the constitutive expression of Sox9 or BMP2. Osterix, Wnt3a and Wnt7a mRNAs were not detected in either calcified MGP−/− or non-calcified wild type (MGP+/+) vessels. Finally, mechanistic studies in vitro suggest that Erk signaling might be required for SMC transdifferentiation under calcifying conditions. These results provide strong support for the hypothesis that adult SMCs can transdifferentiate and that SMC transdifferentiation is an important process driving vascular calcification and the appearance of skeletal elements in calcified vascular lesions. PMID:19197075

  4. A synergistic approach for neural repair: cell transplantation and induction of endogenous precursor cell activity.

    PubMed

    Madhavan, Lalitha; Collier, Timothy J

    2010-05-01

    Stem cell research offers enormous potential for treating many diseases of the nervous system. At present, therapeutic strategies in stem cell research segregate into two approaches: cell transplantation or endogenous cell stimulation. Realistically, future cell therapies will most likely involve a combination of these two approaches, a theme of our current research. Here, we propose that there exists a 'synergy' between exogenous (transplanted) and endogenous stem cell actions that can be utilized to achieve therapeutic ends. Elucidating mechanisms underlying this exogenous-endogenous stem cell synergism may lead to the development of optimal cell therapies for neural disorders. Copyright 2009 Elsevier Ltd. All rights reserved.

  5. Human embryonic stem cells: isolation, maintenance, and differentiation.

    PubMed

    Turksen, Kursad; Troy, Tammy-Claire

    2006-01-01

    The isolation of pluripotent human embryonic stem (hES) cells having the capacity to differentiate in vitro to numerous cell types generated much excitement and promise in the field of regenerative medicine. However, along with great enthusiasm came hot controversy for stem cell research and researchers alike because available hES cell lines were isolated from "excess" embryos from in vitro fertilization clinics. Despite ethical and political debates, the methods and protocols to study diverse lineages are developing. Furthermore, strategies using specific growth factor combinations, cell-cell and cell-extracellular matrix induction systems are being explored for directed differentiation along a desired lineage. However, there is a great need to characterize the mechanisms that control self-renewal and differentiation and a necessity to improve methodologies and develop new purification protocols for the potential future clinical application of hES cells. After the scientific and political obstacles are overcome, it is anticipated that the hES cell field will make a tremendous difference in conditions, such as burn traumas and diabetic foot ulcers, as well a number of degenerative diseases such as Parkinson's disease, type 1 diabetes, rheumatoid arthritis, and myocardial infarction. In this introductory chapter, we will summarize and review recent progress in the field of hES cell differentiation protocols and discuss some of the current issues surrounding hES cell research.

  6. Telencephalic neural precursor cells show transient competence to interpret the dopaminergic niche of the embryonic midbrain.

    PubMed

    Baizabal, José-Manuel; Valencia, Concepción; Guerrero-Flores, Gilda; Covarrubias, Luis

    2011-01-15

    Neural Precursor Cells (NPCs) generate complex stereotypic arrays of neuronal subtypes in the brain. This process involves the integration of patterning cues that progressively restrict the fate of specific NPCs. Yet the capacity of NPCs to interpret foreign microenvironments during development remains poorly defined. The aim of this work was to test the competence of mouse telencephalic NPCs to respond to the dopaminergic niche of the mesencephalon. Telencephalic NPCs isolated from midgestation mouse embryos (E10.5) and transplanted to age-matched mesencephalic explants efficiently differentiated into neurons but were largely unable to produce midbrain dopaminergic (mDA) neurons. Instead, E10.5 telencephalic NPCs behaved as restricted gabaergic progenitors that maintained ectopic expression of Foxg1 and Pax6. In contrast, E8.5 telencephalic NPCs were able to differentiate into Lmx1a(+)/Foxa2(+)/TH(+) neurons in the dopaminergic niche of the mesencephalic explants. In addition, these early telencephalic NPCs showed region-dependent expression of Nkx6.1, Nkx2.2 and site-specific differentiation into gabaergic neurons within the mesencephalic tissue. Significant dopaminergic differentiation of E8.5 telencephalic NPCs was not observed after transplantation to E12.5 mesencephalic explants, suggesting that inductive signals in the dopaminergic niche rapidly decay after midgestation. Moreover, we employed transplantation of embryonic stem cells-derived precursors to demonstrate that extinction of inductive signals within the telencephalon lags behind the commitment of residing NPCs. Our data indicate that the plasticity to interpret multiple instructive niches is an early and ephemeral feature of the telencephalic neural lineage.

  7. New insights into glycopeptide antibiotic binding to cell wall precursors using SPR and NMR spectroscopy.

    PubMed

    Treviño, Juan; Bayón, Carlos; Ardá, Ana; Marinelli, Flavia; Gandolfi, Raffaella; Molinari, Francesco; Jimenez-Barbero, Jesús; Hernáiz, María J

    2014-06-10

    Glycopeptide antibiotics, such as vancomycin and teicoplanin, are used to treat life-threatening infections caused by multidrug-resistant Gram-positive pathogens. They inhibit bacterial cell wall biosynthesis by binding to the D-Ala-D-Ala C-terminus of peptidoglycan precursors. Vancomycin-resistant bacteria replace the dipeptide with the D-Ala-D-Lac depsipeptide, thus reducing the binding affinity of the antibiotics with their molecular targets. Herein, studies of the interaction of teicoplanin, teicoplanin-like A40926, and of their semisynthetic derivatives (mideplanin, MDL63,246, dalbavancin) with peptide analogues of cell-wall precursors by NMR spectroscopy and surface plasmon resonance (SPR) are reported. NMR spectroscopy revealed the existence of two different complexes in solution, when the different glycopeptides interact with Ac2KdAlaDAlaOH. Despite the NMR experimental conditions, which are different from those employed for the SPR measurements, the NMR spectroscopy results parallel those deduced in the chip with respect to the drastic binding difference existing between the D-Ala and the D-Lac terminating analogues, confirming that all these antibiotics share the same primary molecular mechanism of action and resistance. Kinetic analysis of the interaction between the glycopeptide antibiotics and immobilized AcKdAlaDAlaOH by SPR suggest a dimerization process that was not observed by NMR spectroscopy in DMSO solution. Moreover, in SPR, all glycopeptides with a hydrophobic acyl chain present stronger binding with a hydrophobic surface than vancomycin, indicating that additional interactions through the employed surface are involved. In conclusion, SPR provides a tool to differentiate between vancomycin and other glycopeptides, and the calculated binding affinities at the surface seem to be more relevant to in vitro antimicrobial activity than the estimations from NMR spectroscopy analysis.

  8. Isolation of precursor endothelial cells from peripheral blood for donor-specific crossmatching before organ transplantation.

    PubMed

    Vermehren, Dilki; Sumitran-Holgersson, Suchitra

    2002-12-15

    The clinical importance of endothelial-cell (EC) antibodies (Abs) in allo-transplantation (Tx) has been reported. However, lack of a suitable method for isolation of donor-specific ECs has prevented routine detection of these Abs before Tx. We describe a quick and simple method for the direct isolation of ECs from whole blood, for routine crossmatching (XM) to detect anti-EC Abs. ECs were isolated using magnetic beads coated with Abs against the angiopoietin receptor Tie-2 that is expressed on EC precursors. A retrospective analysis of 50 previously well-characterized XM sera taken immediately before transplantation from patients with end-stage kidney disease were tested. Tie-2+ cells expressed human leukocyte antigen (HLA) class I, class II, and other EC markers. Sera known to contain only EC-specific or EC- and monocyte (EM)-reactive Abs reacted positively with Tie-2+ cells but not with Tie-2- cells from the same individual. In addition, the Tie-2+ cells reacted with sera containing only HLA class I or class II Abs. In all, 3 of 25 sera from patients with stable graft outcome and no rejections reacted with Tie-2+ cells. For the first time, with use of a single-target cell population, the detection of clinically relevant donor-specific HLA class I, class II, EM, and EC-specific Abs can be performed routinely before Tx. This method is promising because it is quick, specific, and easy to perform on whole blood samples and can therefore be used to perform routine donor-specific EC crossmatching (ECXM) in the future. Routine use of ECXM will aid in identifying better donor-recipient combinations and thus have a greater impact on transplant survival as compared with lymphocyte crossmatch (LXM).

  9. Heterogeneous lymphokine-activated killer cell precursor populations. Development of a monoclonal antibody that separates two populations of precursors with distinct culture requirements and separate target-recognition repertoires.

    PubMed

    Fox, B A; Rosenberg, S A

    1989-01-01

    We developed a monoclonal antibody (mAb) 211, which recognizes the precursors in peripheral blood of lymphokine-activated killer cells (LAK) induced by recombinant interleukin-2 (rIL-2). In conjunction with complement mAb 211 also eliminates natural killer cells (NK) and a majority of the cytotoxic T lymphocytes. B cells and monocytes do not express the 211 antigen. Since mAb 211 recognized such a large percentage of peripheral blood lymphocytes we examined which 211+ subpopulation was the predominant precursor of rIL-2-induced LAK cells using two-color fluoresence-activated cell sorting (fluorescein-conjugated 211 mAb plus phycoerythrin-CD11b). This method identified the 211+/CD11b+ population as the predominant phenotype of the rIL-2-induced LAK precursor. In addition, we directly compared the phenotype of the LAK precursor induced by delectinated T-cell growth factor (TCGF) to that induced by rIL-2. The 211-depleted population, which was devoid of NK cells and LAK precursors (inducible by rIL-2), was capable of generating LAK activity when TCGF was used as the source of lymphokine. LAK cells induced by TCGF from the 211-depleted population lysed a fresh sarcoma and an NK-resistant cultured melanoma tumor target but not the Daudi cell line, which was lysed by rIL-2-induced LAK cells. Lymphoid subpopulations, depleted using NKH1a mAb, behaved similarly, generating high levels of lysis against the two solid tumor targets when cultured with TCGF but not with rIL-2. CD 3-depleted populations showed enrichment for LAK precursors using either rIL-2 or TCGF. These results indicate that while rIL-2-induced LAK precursors cannot be separated from cells with NK activity, TCGF-induced LAK cells can be generated from populations of peripheral blood mononuclear cells without NK activity.

  10. Pulsed DC Electric Field-Induced Differentiation of Cortical Neural Precursor Cells.

    PubMed

    Chang, Hui-Fang; Lee, Ying-Shan; Tang, Tang K; Cheng, Ji-Yen

    2016-01-01

    We report the differentiation of neural stem and progenitor cells solely induced by direct current (DC) pulses stimulation. Neural stem and progenitor cells in the adult mammalian brain are promising candidates for the development of therapeutic neuroregeneration strategies. The differentiation of neural stem and progenitor cells depends on various in vivo environmental factors, such as nerve growth factor and endogenous EF. In this study, we demonstrated that the morphologic and phenotypic changes of mouse neural stem and progenitor cells (mNPCs) could be induced solely by exposure to square-wave DC pulses (magnitude 300 mV/mm at frequency of 100-Hz). The DC pulse stimulation was conducted for 48 h, and the morphologic changes of mNPCs were monitored continuously. The length of primary processes and the amount of branching significantly increased after stimulation by DC pulses for 48 h. After DC pulse treatment, the mNPCs differentiated into neurons, astrocytes, and oligodendrocytes simultaneously in stem cell maintenance medium. Our results suggest that simple DC pulse treatment could control the fate of NPCs. With further studies, DC pulses may be applied to manipulate NPC differentiation and may be used for the development of therapeutic strategies that employ NPCs to treat nervous system disorders.

  11. Pulsed DC Electric Field–Induced Differentiation of Cortical Neural Precursor Cells

    PubMed Central

    Chang, Hui-Fang; Lee, Ying-Shan; Tang, Tang K.; Cheng, Ji-Yen

    2016-01-01

    We report the differentiation of neural stem and progenitor cells solely induced by direct current (DC) pulses stimulation. Neural stem and progenitor cells in the adult mammalian brain are promising candidates for the development of therapeutic neuroregeneration strategies. The differentiation of neural stem and progenitor cells depends on various in vivo environmental factors, such as nerve growth factor and endogenous EF. In this study, we demonstrated that the morphologic and phenotypic changes of mouse neural stem and progenitor cells (mNPCs) could be induced solely by exposure to square-wave DC pulses (magnitude 300 mV/mm at frequency of 100-Hz). The DC pulse stimulation was conducted for 48 h, and the morphologic changes of mNPCs were monitored continuously. The length of primary processes and the amount of branching significantly increased after stimulation by DC pulses for 48 h. After DC pulse treatment, the mNPCs differentiated into neurons, astrocytes, and oligodendrocytes simultaneously in stem cell maintenance medium. Our results suggest that simple DC pulse treatment could control the fate of NPCs. With further studies, DC pulses may be applied to manipulate NPC differentiation and may be used for the development of therapeutic strategies that employ NPCs to treat nervous system disorders. PMID:27352251

  12. Co-culture of hepatoma cells with hepatocytic precursor (stem-like) cells inhibits tumor cell growth and invasion by downregulating Akt/NF-κB expression

    PubMed Central

    Sui, Cheng-Jun; Xu, Miao; Li, Wei-Qing; Yang, Jia-Mei; Yan, Hong-Zhu; Liu, Hui-Min; Xia, Chun-Yan; Yu, Hong-Yu

    2016-01-01

    Hepatocytic stem cells (HSCs) have inhibitory effects on hepatocarcinoma cells. The present study investigated the effects of HSC activity in hepatocarcinoma cells in vitro. A Transwell co-culture system of hepatocytic precursor (stem-like) WB-F344 cells and hepatoma CBRH-7919 cells was used to assess HSC activity in metastasized hepatoma cells in vitro. Nude mouse xenografts were used to assess HSC activity in vivo. Co-culture of hepatoma CBRH-7919 cells with WB-F344 cells suppressed the growth and colony formation, tumor cell migration and invasion capacity of CBRH-7919 cells. The nude mouse xenograft assay demonstrated that the xenograft size of CBRH-7919 cells following co-culture with WB-F344 cells was significantly smaller compared with that of control cells. Furthermore, the expression levels of the epithelial markers E-cadherin and β-catenin were downregulated, while the mesenchymal markers α-SMA and vimentin were upregulated. Co-culture of CBRH-7919 cells with WB-F344 cells downregulated NF-κB and phospho-Akt expression. In conclusion, hepatocytic precursor (stem-like) WB-F344 cells inhibited the growth, colony formation and invasion capacity of metastasized hepatoma CBRH-7919 cells in vitro and in vivo by downregulating Akt/NF-κB signaling. PMID:27895771

  13. Targeted Drugs as Maintenance Therapy after Autologous Stem Cell Transplantation in Patients with Mantle Cell Lymphoma

    PubMed Central

    Yan, Fengting; Gopal, Ajay K.; Graf, Solomon A.

    2017-01-01

    The treatment landscape for mantle cell lymphoma (MCL) is rapidly evolving toward the incorporation of novel and biologically targeted pharmaceuticals with improved disease activity and gentler toxicity profiles compared with conventional chemotherapeutics. Upfront intensive treatment of MCL includes autologous stem cell transplantation (SCT) consolidation aimed at deepening and lengthening disease remission, but subsequent relapse occurs. Maintenance therapy after autologous SCT in patients with MCL in remission features lower-intensity treatments given over extended periods to improve disease outcomes. Targeted drugs are a natural fit for this space, and are the focus of considerable clinical investigation. This review summarizes recent advances in the field and their potential impact on treatment practices for MCL. PMID:28287430

  14. GDNF facilitates differentiation of the adult dentate gyrus-derived neural precursor cells into astrocytes via STAT3

    SciTech Connect

    Boku, Shuken; Nakagawa, Shin; Takamura, Naoki; Kato, Akiko; Takebayashi, Minoru; Hisaoka-Nakashima, Kazue; Omiya, Yuki; Inoue, Takeshi; Kusumi, Ichiro

    2013-05-17

    Highlights: •GDNF has no effect on ADP proliferation and apoptosis. •GDNF increases ADP differentiation into astrocyte. •A specific inhibitor of STAT3 decreases the astrogliogenic effect of GDNF. •STAT3 knockdown by lentiviral shRNA vector also decreases the astrogliogenic effect of GDNF. •GDNF increases the phosphorylation of STAT3. -- Abstract: While the pro-neurogenic actions of antidepressants in the adult hippocampal dentate gyrus (DG) are thought to be one of the mechanisms through which antidepressants exert their therapeutic actions, antidepressants do not increase proliferation of neural precursor cells derived from the adult DG. Because previous studies showed that antidepressants increase the expression and secretion of glial cell line-derived neurotrophic factor (GDNF) in C6 glioma cells derived from rat astrocytes and GDNF increases neurogenesis in adult DG in vivo, we investigated the effects of GDNF on the proliferation, differentiation and apoptosis of cultured neural precursor cells derived from the adult DG. Data showed that GDNF facilitated the differentiation of neural precursor cells into astrocytes but had no effect on their proliferation or apoptosis. Moreover, GDNF increased the phosphorylation of STAT3, and both a specific inhibitor of STAT3 and lentiviral shRNA for STAT3 decreased their differentiation into astrocytes. Taken together, our findings suggest that GDNF facilitates astrogliogenesis from neural precursor cells in adult DG through activating STAT3 and that this action might indirectly affect neurogenesis.

  15. Chemotherapy and targeted therapeutics as maintenance of response in advanced non-small cell lung cancer.

    PubMed

    Johnson, Melissa L; Patel, Jyoti D

    2014-02-01

    Non-small cell lung cancer (NSCLC) remains the most common cause of cancer-related death in the United States. Survival for patients with advanced disease remains meager with standard platinum-based doublet therapy even given initially. Improved efficacy and tolerability of third-generation chemotherapies and small-molecule inhibitors has prompted the evaluation of these agents in the maintenance setting in order to enhance current outcomes. Two separate strategies have evolved: the introduction of a non-cross-resistant drug immediately following first-line or induction chemotherapy (switch maintenance), or the continuation of the non-platinum partner initially introduced during induction (continuation maintenance). Here we review the available clinical trial data evaluating both maintenance strategies, and offer our assessment of their contemporary clinical implications and cost-effectiveness.

  16. Recent advances in post autologous transplantation maintenance therapies in B-cell non-Hodgkin lymphomas.

    PubMed

    Epperla, Narendranath; Fenske, Timothy S; Hari, Parameswaran N; Hamadani, Mehdi

    2015-09-24

    Lymphomas constitute the second most common indication for high dose therapy (HDT) followed by autologous hematopoietic cell transplantation (auto-HCT). The intent of administering HDT in these heterogeneous disorders varies from cure (e.g., in relapsed aggressive lymphomas) to disease control (e.g., most indolent lymphomas). Regardless of the underlying histology or remission status at transplantation, disease relapse remains the number one cause of post auto-HCT therapy failure and mortality. The last decade has seen a proliferation of clinical studies looking at prevention of post auto-HCT therapy failure with various maintenance strategies. The benefit of such therapies is in turn dependent on disease histology and timing of transplantation. In relapsed, chemosensitive diffuse large B-cell lymphoma (DLBCL), although post auto-HCT maintenance rituximab seems to be safe and feasible, it does not provide improved survival outcomes and is not recommended. The preliminary results with anti- programmed death -1 (PD-1) antibody therapy as post auto-HCT maintenance in DLBCL is promising but requires randomized validation. Similarly in follicular lymphoma, maintenance therapies including rituximab following auto-HCT should be considered investigational and offered only on a clinical trial. Rituximab maintenance results in improved progression-free survival but has not yet shown to improve overall survival in mantle cell lymphoma (MCL), but given the poor prognosis with post auto-HCT failure in MCL, maintenance rituximab can be considered on a case-by-case basis. Ongoing trials evaluating the efficacy of post auto-HCT maintenance with novel compounds (e.g., immunomodulators, PD-1 inhibitors, proteasome inhibitors and bruton's tyrosine kinase inhibitors) will likely change the practice landscape in the near future for B cell non-Hodgkin lymphomas patients following HDT and auto-HCT.

  17. Recent advances in post autologous transplantation maintenance therapies in B-cell non-Hodgkin lymphomas

    PubMed Central

    Epperla, Narendranath; Fenske, Timothy S; Hari, Parameswaran N; Hamadani, Mehdi

    2015-01-01

    Lymphomas constitute the second most common indication for high dose therapy (HDT) followed by autologous hematopoietic cell transplantation (auto-HCT). The intent of administering HDT in these heterogeneous disorders varies from cure (e.g., in relapsed aggressive lymphomas) to disease control (e.g., most indolent lymphomas). Regardless of the underlying histology or remission status at transplantation, disease relapse remains the number one cause of post auto-HCT therapy failure and mortality. The last decade has seen a proliferation of clinical studies looking at prevention of post auto-HCT therapy failure with various maintenance strategies. The benefit of such therapies is in turn dependent on disease histology and timing of transplantation. In relapsed, chemosensitive diffuse large B-cell lymphoma (DLBCL), although post auto-HCT maintenance rituximab seems to be safe and feasible, it does not provide improved survival outcomes and is not recommended. The preliminary results with anti- programmed death -1 (PD-1) antibody therapy as post auto-HCT maintenance in DLBCL is promising but requires randomized validation. Similarly in follicular lymphoma, maintenance therapies including rituximab following auto-HCT should be considered investigational and offered only on a clinical trial. Rituximab maintenance results in improved progression-free survival but has not yet shown to improve overall survival in mantle cell lymphoma (MCL), but given the poor prognosis with post auto-HCT failure in MCL, maintenance rituximab can be considered on a case-by-case basis. Ongoing trials evaluating the efficacy of post auto-HCT maintenance with novel compounds (e.g., immunomodulators, PD-1 inhibitors, proteasome inhibitors and bruton’s tyrosine kinase inhibitors) will likely change the practice landscape in the near future for B cell non-Hodgkin lymphomas patients following HDT and auto-HCT. PMID:26421260

  18. Maintenance Chemotherapy for Advanced Non–Small-Cell Lung Cancer: New Life for an Old Idea

    PubMed Central

    Gerber, David E.; Schiller, Joan H.

    2013-01-01

    Although well established for the treatment of certain hematologic malignancies, maintenance therapy has only recently become a treatment paradigm for advanced non–small-cell lung cancer. Maintenance therapy, which is designed to prolong a clinically favorable state after completion of a predefined number of induction chemotherapy cycles, has two principal paradigms. Continuation maintenance therapy entails the ongoing administration of a component of the initial chemotherapy regimen, generally the nonplatinum cytotoxic drug or a molecular targeted agent. With switch maintenance (also known as sequential therapy), a new and potentially non–cross-resistant agent is introduced immediately on completion of first-line chemotherapy. Potential rationales for maintenance therapy include increased exposure to effective therapies, decreasing chemotherapy resistance, optimizing efficacy of chemotherapeutic agents, antiangiogenic effects, and altering antitumor immunity. To date, switch maintenance therapy strategies with pemetrexed and erlotinib have demonstrated improved overall survival, resulting in US Food and Drug Administration approval for this indication. Recently, continuation maintenance with pemetrexed was found to prolong overall survival as well. Factors predicting benefit from maintenance chemotherapy include the degree of response to first-line therapy, performance status, the likelihood of receiving further therapy at the time of progression, and tumor histology and molecular characteristics. Several aspects of maintenance therapy have raised considerable debate in the thoracic oncology community, including clinical trial end points, the prevalence of second-line chemotherapy administration, the role of treatment-free intervals, quality of life, economic considerations, and whether progression-free survival is a worthy therapeutic goal in this disease setting. PMID:23401441

  19. Bone Impairment in Phenylketonuria Is Characterized by Circulating Osteoclast Precursors and Activated T Cell Increase

    PubMed Central

    Mussa, Alessandro; D'Amico, Lucia; Fiore, Ludovica; Garelli, Davide; Spada, Marco; Ferracini, Riccardo

    2010-01-01

    Background Phenylketonuria (PKU) is a rare inborn error of metabolism often complicated by a progressive bone impairment of uncertain etiology, as documented by both ionizing and non- ionizing techniques. Methodology Peripheral blood mononuclear cell (PBMC) cultures were performed to study osteoclastogenesis, in the presence or absence of recombinant human monocyte-colony stimulating factor (M-CSF) and receptor activator of NFκB ligand (RANKL). Flow cytometry was utilized to analyze osteoclast precursors (OCPs) and T cell phenotype. Tumour necrosis factor α (TNF-α), RANKL and osteoprotegerin (OPG) were quantified in cell culture supernatants by ELISA. The effects of RANKFc and anti-TNF-α antibodies were also investigated to determine their ability to inhibit osteoclastogenesis. In addition, bone conditions and phenylalanine levels in PKU patients were clinically evaluated. Principal Findings Several in vitro studies in PKU patients' cells identified a potential mechanism of bone formation inhibition commonly associated with this disorder. First, PKU patients disclosed an increased osteoclastogenesis compared to healthy controls, both in unstimulated and M-CSF/RANKL stimulated PBMC cultures. OCPs and the measured RANKL/OPG ratio were higher in PKU patients compared to healthy controls. The addition of specific antagonist RANKFc caused osteoclastogenesis inhibition, whereas anti-TNF-α failed to have this effect. Among PBMCs isolated from PKU patients, activated T cells, expressing CD69, CD25 and RANKL were identified. Confirmatory in vivo studies support this proposed model. These in vivo studies included the analysis of osteoclastogenesis in PKU patients, which demonstrated an inverse relation to bone condition assessed by phalangeal Quantitative Ultrasound (QUS). This was also directly related to non-compliance to therapeutic diet reflected by hyperphenylalaninemia. Conclusions Our results indicate that PKU spontaneous osteoclastogenesis depends on the

  20. Trafficking of cell surface beta-amyloid precursor protein: retrograde and transcytotic transport in cultured neurons

    PubMed Central

    1995-01-01

    Amyloid beta-protein (A beta), the principal constituent of senile plaques seen in Alzheimer's disease (AD), is derived by proteolysis from the beta-amyloid precursor protein (beta PP). The mechanism of A beta production in neurons, which are hypothesized to be a rich source of A beta in brain, remains to be defined. In this study, we describe a detailed localization of cell surface beta PP and its subsequent trafficking in primary cultured neurons. Full-length cell surface beta PP was present primarily on perikarya and axons, the latter with a characteristic discontinuous pattern. At growth cones, cell surface beta PP was inconsistently detected. By visualizing the distribution of beta PP monoclonal antibodies added to intact cultures, beta PP was shown to be internalized from distal axons or terminals and retrogradely transported back to perikarya in organelles which colocalized with fluid-phase endocytic markers. Retrograde transport of beta PP was shown in both hippocampal and peripheral sympathetic neurons, the latter using a compartment culture system that isolated cell bodies from distal axons and terminals. In addition, we demonstrated that beta PP from distal axons was transcytotically transported to the surface of perikarya from distal axons in sympathetic neurons. Indirect evidence of this transcytotic pathway was obtained in hippocampal neurons using antisense oligonucleotide to the kinesin heavy chain to inhibit anterograde beta PP transport. Taken together, these results demonstrate novel aspects of beta PP trafficking in neurons, including retrograde axonal transport and transcytosis. Moreover, the axonal predominance of cell surface beta PP is unexpected in view of the recent report of polarized sorting of beta PP to the basolateral domain of MDCK cells. PMID:7721945

  1. Topographical effects on fiber-mediated microRNA delivery to control oligodendroglial precursor cells development.

    PubMed

    Diao, Hua Jia; Low, Wei Ching; Lu, Q Richard; Chew, Sing Yian

    2015-11-01

    Effective remyelination in the central nervous system (CNS) facilitates the reversal of disability in patients with demyelinating diseases such as multiple sclerosis. Unfortunately until now, effective strategies of controlling oligodendrocyte (OL) differentiation and maturation remain limited. It is well known that topographical and biochemical signals play crucial roles in modulating cell fate commitment. Therefore, in this study, we explored the combined effects of scaffold topography and sustained gene silencing on oligodendroglial precursor cell (OPC) development. Specifically, microRNAs (miRs) were incorporated onto electrospun polycaprolactone (PCL) fiber scaffolds with different fiber diameters and orientations. Regardless of fiber diameter and orientation, efficient knockdown of differentiation inhibitory factors were achieved by either topography alone (up to 70%) or fibers integrated with miR-219 and miR-338 (up to 80%, p < 0.05). Small fiber promoted OPC differentiation by inducing more RIP(+) cells (p < 0.05) while large fiber promoted OL maturation by inducing more MBP(+) cells (p < 0.05). Random fiber enhanced more RIP(+) cells than aligned fibers (p < 0.05), regardless of fiber diameter. Upon miR-219/miR-338 incorporation, 2 μm aligned fibers supported the most MBP(+) cells (∼17%). These findings indicated that the coupling of substrate topographic cues with efficient gene silencing by sustained microRNA delivery is a promising way for directing OPC maturation in neural tissue engineering and controlling remyelination in the CNS.

  2. Highly efficient differentiation of neural precursors from human embryonic stem cells and benefits of transplantation after ischemic stroke in mice.

    PubMed

    Drury-Stewart, Danielle; Song, Mingke; Mohamad, Osama; Guo, Ying; Gu, Xiaohuan; Chen, Dongdong; Wei, Ling

    2013-08-08

    Ischemic stroke is a leading cause of death and disability, but treatment options are severely limited. Cell therapy offers an attractive strategy for regenerating lost tissues and enhancing the endogenous healing process. In this study, we investigated the use of human embryonic stem cell-derived neural precursors as a cell therapy in a murine stroke model. Neural precursors were derived from human embryonic stem cells by using a fully adherent SMAD inhibition protocol employing small molecules. The efficiency of neural induction and the ability of these cells to further differentiate into neurons were assessed by using immunocytochemistry. Whole-cell patch-clamp recording was used to demonstrate the electrophysiological activity of human embryonic stem cell-derived neurons. Neural precursors were transplanted into the core and penumbra regions of a focal ischemic stroke in the barrel cortex of mice. Animals received injections of bromodeoxyuridine to track regeneration. Neural differentiation of the transplanted cells and regenerative markers were measured by using immunohistochemistry. The adhesive removal test was used to determine functional improvement after stroke and intervention. After 11 days of neural induction by using the small-molecule protocol, over 95% of human embryonic stem-derived cells expressed at least one neural marker. Further in vitro differentiation yielded cells that stained for mature neuronal markers and exhibited high-amplitude, repetitive action potentials in response to depolarization. Neuronal differentiation also occurred after transplantation into the ischemic cortex. A greater level of bromodeoxyuridine co-localization with neurons was observed in the penumbra region of animals receiving cell transplantation. Transplantation also improved sensory recovery in transplant animals over that in control animals. Human embryonic stem cell-derived neural precursors derived by using a highly efficient small-molecule SMAD inhibition

  3. Bridges between Cell Cycle Regulation and Self-Renewal Maintenance.

    PubMed

    Viatour, Patrick

    2012-11-01

    Stem cells are a unique population that lies at the summit of any, or at least most, biological systems. They can differentiate in a variety of mature cell types, but they also have the ability to self-renew, that is, the capacity to divide and retain all the features of the mother cell. The regulation of self-renewal has been studied for many years, but several aspects of this regulation are still vague. The combined decision to divide and self-renew or differentiate suggests that the mechanisms that regulate self-renewal and cell cycle activity are intermingled. While inactivation of many cell cycle regulators impacts the physiological and pathological biology of stem cells, the exact mechanisms that link the decision to enter the cell cycle and the choice of the cellular fate are poorly understood. The multiplicity of signals and pathways regulating self-renewal add to the complexity of the phenomenon. Here, I will review the described links between the cell cycle and self-renewal and discuss the role of the niche in the regulation of both mechanisms.

  4. Co-ultramicronized Palmitoylethanolamide/Luteolin Promotes the Maturation of Oligodendrocyte Precursor Cells.

    PubMed

    Barbierato, Massimo; Facci, Laura; Marinelli, Carla; Zusso, Morena; Argentini, Carla; Skaper, Stephen D; Giusti, Pietro

    2015-11-18

    Oligodendrocytes have limited ability to repair the damage to themselves or to other nerve cells, as seen in demyelinating diseases like multiple sclerosis. An important strategy may be to replace the lost oligodendrocytes and/or promote the maturation of undifferentiated oligodendrocyte precursor cells (OPCs). Recent studies show that a composite of co-ultramicronized N-palmitoylethanolamine (PEA) and luteolin (co-ultramicronized PEA/luteolin, 10:1 by mass) is efficacious in improving outcome in experimental models of spinal cord and traumatic brain injuries. Here, we examined the ability of co-ultramicronized PEA/luteolin to promote progression of OPCs into a more differentiated phenotype. OPCs derived from newborn rat cortex were placed in culture and treated the following day with 10 μM co-ultramicronized PEA/luteolin. Cells were collected 1, 4 and 8 days later and analyzed for expression of myelin basic protein (MBP). qPCR and Western blot analyses revealed a time-dependent increase in expression of both mRNA for MBP and MBP content, along with an increased expression of genes involved in lipid biogenesis. Ultramicronized PEA or luteolin, either singly or in simple combination, were ineffective. Further, co-ultramicronized PEA/luteolin promoted morphological development of OPCs and total protein content without affecting proliferation. Co-ultramicronized PEA/luteolin may represent a novel pharmacological strategy to promote OPC maturation.

  5. Co-ultramicronized Palmitoylethanolamide/Luteolin Promotes the Maturation of Oligodendrocyte Precursor Cells

    PubMed Central

    Barbierato, Massimo; Facci, Laura; Marinelli, Carla; Zusso, Morena; Argentini, Carla; Skaper, Stephen D.; Giusti, Pietro

    2015-01-01

    Oligodendrocytes have limited ability to repair the damage to themselves or to other nerve cells, as seen in demyelinating diseases like multiple sclerosis. An important strategy may be to replace the lost oligodendrocytes and/or promote the maturation of undifferentiated oligodendrocyte precursor cells (OPCs). Recent studies show that a composite of co-ultramicronized N-palmitoylethanolamine (PEA) and luteolin (co-ultramicronized PEA/luteolin, 10:1 by mass) is efficacious in improving outcome in experimental models of spinal cord and traumatic brain injuries. Here, we examined the ability of co-ultramicronized PEA/luteolin to promote progression of OPCs into a more differentiated phenotype. OPCs derived from newborn rat cortex were placed in culture and treated the following day with 10 μM co-ultramicronized PEA/luteolin. Cells were collected 1, 4 and 8 days later and analyzed for expression of myelin basic protein (MBP). qPCR and Western blot analyses revealed a time-dependent increase in expression of both mRNA for MBP and MBP content, along with an increased expression of genes involved in lipid biogenesis. Ultramicronized PEA or luteolin, either singly or in simple combination, were ineffective. Further, co-ultramicronized PEA/luteolin promoted morphological development of OPCs and total protein content without affecting proliferation. Co-ultramicronized PEA/luteolin may represent a novel pharmacological strategy to promote OPC maturation. PMID:26578323

  6. Anti-CD22-chimeric antigen receptors targeting B-cell precursor acute lymphoblastic leukemia.

    PubMed

    Haso, Waleed; Lee, Daniel W; Shah, Nirali N; Stetler-Stevenson, Maryalice; Yuan, Constance M; Pastan, Ira H; Dimitrov, Dimiter S; Morgan, Richard A; FitzGerald, David J; Barrett, David M; Wayne, Alan S; Mackall, Crystal L; Orentas, Rimas J

    2013-02-14

    Immune targeting of B-cell malignancies using chimeric antigen receptors (CARs) is a promising new approach, but critical factors impacting CAR efficacy remain unclear. To test the suitability of targeting CD22 on precursor B-cell acute lymphoblastic leukemia (BCP-ALL), lymphoblasts from 111 patients with BCP-ALL were assayed for CD22 expression and all were found to be CD22-positive, with median CD22 expression levels of 3500 sites/cell. Three distinct binding domains targeting CD22 were fused to various TCR signaling domains ± an IgG heavy chain constant domain (CH2CH3) to create a series of vector constructs suitable to delineate optimal CAR configuration. CARs derived from the m971 anti-CD22 mAb, which targets a proximal CD22 epitope demonstrated superior antileukemic activity compared with those incorporating other binding domains, and addition of a 4-1BB signaling domain to CD28.CD3 constructs diminished potency, whereas increasing affinity of the anti-CD22 binding motif, and extending the CD22 binding domain away from the membrane via CH2CH3 had no effect. We conclude that second-generation m971 mAb-derived anti-CD22 CARs are promising novel therapeutics that should be tested in BCP-ALL.

  7. WIP1 modulates responsiveness to Sonic Hedgehog signaling in neuronal precursor cells and medulloblastoma

    PubMed Central

    Wen, Jing; Lee, Juhyun; Malhotra, Anshu; Nahta, Rita; Arnold, Amanda R.; Buss, Meghan C.; Brown, Briana D.; Maier, Caroline; Kenney, Anna M.; Remke, Marc; Ramaswamy, Vijay; Taylor, Michael D.; Castellino, Robert C.

    2016-01-01

    High-level amplification of the protein phosphatase PPM1D (WIP1) is present in a subset of medulloblastomas (MBs) that have an expression profile consistent with active Sonic Hedgehog (SHH) signaling. We found that WIP1 overexpression increased expression of Shh target genes and cell proliferation in response to Shh stimulation in NIH3T3 and cerebellar granule neuron precursor (cGNP) cells in a p53-independent manner. Thus, we developed a mouse in which WIP1 is expressed in the developing brain under control of the Neurod2 promoter (ND2:WIP1). The external granule layer in early post-natal ND2:WIP1 mice exhibited increased proliferation and expression of Shh downstream targets. MB incidence increased and survival decreased when ND2:WIP1 mice were crossed with a Shh-activated MB mouse model. Conversely, Wip1 knock out significantly suppressed MB formation in two independent mouse models of Shh-activated MB. Furthermore, Wip1 knock-down or treatment with a WIP1 inhibitor suppressed the effects of Shh stimulation and potentiated the growth inhibitory effects of SHH pathway-inhibiting drugs in Shh-activated MB cells in vitro. This suggests an important cross-talk between SHH and WIP1 pathways that accelerates tumorigenesis and supports WIP1 inhibition as a potential treatment strategy for MB. PMID:27086929

  8. c-jun is differentially expressed in embryonic and adult neural precursor cells.

    PubMed

    Kawashima, Fumiaki; Saito, Kengo; Kurata, Hirofumi; Maegaki, Yoshihiro; Mori, Tetsuji

    2017-01-16

    c-jun, a major component of AP-1 transcription factor, has a wide variety of functions. In the embryonic brain, c-jun mRNA is abundantly expressed in germinal layers around the ventricles. Although the subventricular zone (SVZ) of the adult brain is a derivative of embryonic germinal layers and contains neural precursor cells (NPCs), the c-jun expression pattern is not clear. To study the function of c-jun in adult neurogenesis, we analyzed c-jun expression in the adult SVZ by immunohistochemistry and compared it with that of the embryonic brain. We found that almost all proliferating embryonic NPCs expressed c-jun, but the number of c-jun immunopositive cells among proliferating adult NPCs was about half. In addition, c-jun was hardly expressed in post-mitotic migrating neurons in the embryonic brain, but the majority of c-jun immunopositive cells were tangentially migrating neuroblasts heading toward the olfactory bulb in the adult brain. In addition, status epilepticus is known to enhance the transient proliferation of adult NPCs, but the c-jun expression pattern was not significantly affected. These expression patterns suggest that c-jun has a pivotal role in the proliferation of embryonic NPCs, but it has also other roles in adult neurogenesis.

  9. Human muscle precursor cells overexpressing PGC-1α enhance early skeletal muscle tissue formation.

    PubMed

    Haralampieva, Deana; Salemi, Souzan; Dinulovic, Ivana; Sulser, Tullio; M Ametamey, Simon; Handschin, Christoph; Eberli, Daniel

    2017-02-03

    Muscle precursor cells (MPCs) are activated satellite cells capable of muscle fiber reconstruction. Therefore, autologous MPC transplantation is envisioned for the treatment of muscle diseases. However, the density of MPCs, as well as their proliferation and differentiation potential gradually decline with age. The goal of this research was to genetically modify human MPCs (hMPCs) to overexpress the peroxisome proliferator-activated receptor gamma coactivator (PGC-1α), a key regulator of exercise-mediated adaptation, and thereby to enhance early skeletal muscle formation and quality. We were able to confirm the sustained myogenic phenotype of the genetically modified hMPCs. While maintaining their viability and proliferation potential, PGC-1α modified hMPCs showed an enhanced myofiber formation capacity in vitro. Engineered muscle tissues were harvested 1, 2 and 4 weeks after subcutaneous injection of cell-collagen suspensions and histological analysis confirmed the earlier myotube formation in PGC-1α modified samples, predominantly of slow twitch myofibers. Increased contractile protein levels were detected by Western Blot. In summary, by genetically modifying hMPCs to overexpress PGC-1α we were able to promote early muscle fiber formation in vitro and in vivo, with an initial switch to slow type myofibers. Therefore, overexpressing PGC-1α is novel strategy to further enhance skeletal muscle tissue engineering.

  10. Ex Vivo Culture of Chick Cerebellar Slices and Spatially Targeted Electroporation of Granule Cell Precursors.

    PubMed

    Hanzel, Michalina; Wingate, Richard J T; Butts, Thomas

    2015-12-14

    The cerebellar external granule layer (EGL) is the site of the largest transit amplification in the developing brain, and an excellent model for studying neuronal proliferation and differentiation. In addition, evolutionary modifications of its proliferative capability have been responsible for the dramatic expansion of cerebellar size in the amniotes, making the cerebellum an excellent model for evo-devo studies of the vertebrate brain. The constituent cells of the EGL, cerebellar granule progenitors, also represent a significant cell of origin for medulloblastoma, the most prevalent paediatric neuronal tumour. Following transit amplification, granule precursors migrate radially into the internal granular layer of the cerebellum where they represent the largest neuronal population in the mature mammalian brain. In chick, the peak of EGL proliferation occurs towards the end of the second week of gestation. In order to target genetic modification to this layer at the peak of proliferation, we have developed a method for genetic manipulation through ex vivo electroporation of cerebellum slices from embryonic Day 14 chick embryos. This method recapitulates several important aspects of in vivo granule neuron development and will be useful in generating a thorough understanding of cerebellar granule cell proliferation and differentiation, and thus of cerebellum development, evolution and disease.

  11. β1-Integrins Are Critical for Cerebellar Granule Cell Precursor Proliferation

    PubMed Central

    Blaess, Sandra; Graus-Porta, Diana; Belvindrah, Richard; Radakovits, Randor; Pons, Sebastian; Littlewood-Evans, Amanda; Senften, Mathias; Guo, Huailian; Li, Yuqing; Miner, Jeffrey H.; Reichardt, Louis F.; Müller, Ulrich

    2009-01-01

    We have previously shown that mice with a CNS restricted knock-out of the integrin β1 subunit gene (Itgb1-CNSko mice) have defects in the formation of lamina and folia in the cerebral and cerebellar cortices that are caused by disruption of the cortical marginal zones. Cortical structures in postnatal and adult Itgb1-CNSko animals are also reduced in size, but the mechanism that causes the size defect has remained unclear. We now demonstrate that proliferation of granule cell precursors (GCPs) is severely affected in the developing cerebellum of Itgb1-CNSko mice. In the absence of β1 expression, GCPs lose contact with laminin in the meningeal basement membrane, cease proliferating, and differentiate prematurely. In vitro studies provide evidence thatβ1 integrins act at least in part cell autonomously in GCPs to regulate their proliferation. Previous studies have shown that sonic hedgehog (Shh)-induced GCP proliferation is potentiated by the integrin ligand laminin. We show that Shh directly binds to laminin and that laminin–Shh induced cell proliferation is dependent on β1 integrin expression in GCPs. Taken together, these data are consistent with a model in which β1 integrin expression in GCPs is required to recruit a laminin–Shh complex to the surface of GCPs and to subsequently modulate the activity of signaling pathways that regulate proliferation. PMID:15056720

  12. Beta1-integrins are critical for cerebellar granule cell precursor proliferation.

    PubMed

    Blaess, Sandra; Graus-Porta, Diana; Belvindrah, Richard; Radakovits, Randor; Pons, Sebastian; Littlewood-Evans, Amanda; Senften, Mathias; Guo, Huailian; Li, Yuqing; Miner, Jeffrey H; Reichardt, Louis F; Müller, Ulrich

    2004-03-31

    We have previously shown that mice with a CNS restricted knock-out of the integrin beta1 subunit gene (Itgb1-CNSko mice) have defects in the formation of lamina and folia in the cerebral and cerebellar cortices that are caused by disruption of the cortical marginal zones. Cortical structures in postnatal and adult Itgb1-CNSko animals are also reduced in size, but the mechanism that causes the size defect has remained unclear. We now demonstrate that proliferation of granule cell precursors (GCPs) is severely affected in the developing cerebellum of Itgb1-CNSko mice. In the absence of beta1 expression, GCPs lose contact with laminin in the meningeal basement membrane, cease proliferating, and differentiate prematurely. In vitro studies provide evidence that beta1 integrins act at least in part cell autonomously in GCPs to regulate their proliferation. Previous studies have shown that sonic hedgehog (Shh)-induced GCP proliferation is potentiated by the integrin ligand laminin. We show that Shh directly binds to laminin and that laminin-Shh induced cell proliferation is dependent on beta1 integrin expression in GCPs. Taken together, these data are consistent with a model in which beta1 integrin expression in GCPs is required to recruit a laminin-Shh complex to the surface of GCPs and to subsequently modulate the activity of signaling pathways that regulate proliferation.

  13. WIP1 modulates responsiveness to Sonic Hedgehog signaling in neuronal precursor cells and medulloblastoma.

    PubMed

    Wen, J; Lee, J; Malhotra, A; Nahta, R; Arnold, A R; Buss, M C; Brown, B D; Maier, C; Kenney, A M; Remke, M; Ramaswamy, V; Taylor, M D; Castellino, R C

    2016-10-20

    High-level amplification of the protein phosphatase PPM1D (WIP1) is present in a subset of medulloblastomas (MBs) that have an expression profile consistent with active Sonic Hedgehog (SHH) signaling. We found that WIP1 overexpression increased expression of Shh target genes and cell proliferation in response to Shh stimulation in NIH3T3 and cerebellar granule neuron precursor cells in a p53-independent manner. Thus, we developed a mouse in which WIP1 is expressed in the developing brain under control of the Neurod2 promoter (ND2:WIP1). The external granule layer (EGL) in early postnatal ND2:WIP1 mice exhibited increased proliferation and expression of Shh downstream targets. MB incidence increased and survival decreased when ND2:WIP1 mice were crossed with an Shh-activated MB mouse model. Conversely, Wip1 knockout significantly suppressed MB formation in two independent mouse models of Shh-activated MB. Furthermore, Wip1 knockdown or treatment with a WIP1 inhibitor suppressed the effects of Shh stimulation and potentiated the growth inhibitory effects of SHH pathway-inhibiting drugs in Shh-activated MB cells in vitro. This suggests an important cross-talk between SHH and WIP1 pathways that accelerates tumorigenesis and supports WIP1 inhibition as a potential treatment strategy for MB.

  14. The genetic basis of early T-cell precursor acute lymphoblastic leukaemia.

    PubMed

    Zhang, Jinghui; Ding, Li; Holmfeldt, Linda; Wu, Gang; Heatley, Sue L; Payne-Turner, Debbie; Easton, John; Chen, Xiang; Wang, Jianmin; Rusch, Michael; Lu, Charles; Chen, Shann-Ching; Wei, Lei; Collins-Underwood, J Racquel; Ma, Jing; Roberts, Kathryn G; Pounds, Stanley B; Ulyanov, Anatoly; Becksfort, Jared; Gupta, Pankaj; Huether, Robert; Kriwacki, Richard W; Parker, Matthew; McGoldrick, Daniel J; Zhao, David; Alford, Daniel; Espy, Stephen; Bobba, Kiran Chand; Song, Guangchun; Pei, Deqing; Cheng, Cheng; Roberts, Stefan; Barbato, Michael I; Campana, Dario; Coustan-Smith, Elaine; Shurtleff, Sheila A; Raimondi, Susana C; Kleppe, Maria; Cools, Jan; Shimano, Kristin A; Hermiston, Michelle L; Doulatov, Sergei; Eppert, Kolja; Laurenti, Elisa; Notta, Faiyaz; Dick, John E; Basso, Giuseppe; Hunger, Stephen P; Loh, Mignon L; Devidas, Meenakshi; Wood, Brent; Winter, Stuart; Dunsmore, Kimberley P; Fulton, Robert S; Fulton, Lucinda L; Hong, Xin; Harris, Christopher C; Dooling, David J; Ochoa, Kerri; Johnson, Kimberly J; Obenauer, John C; Evans, William E; Pui, Ching-Hon; Naeve, Clayton W; Ley, Timothy J; Mardis, Elaine R; Wilson, Richard K; Downing, James R; Mullighan, Charles G

    2012-01-11

    Early T-cell precursor acute lymphoblastic leukaemia (ETP ALL) is an aggressive malignancy of unknown genetic basis. We performed whole-genome sequencing of 12 ETP ALL cases and assessed the frequency of the identified somatic mutations in 94 T-cell acute lymphoblastic leukaemia cases. ETP ALL was characterized by activating mutations in genes regulating cytokine receptor and RAS signalling (67% of cases; NRAS, KRAS, FLT3, IL7R, JAK3, JAK1, SH2B3 and BRAF), inactivating lesions disrupting haematopoietic development (58%; GATA3, ETV6, RUNX1, IKZF1 and EP300) and histone-modifying genes (48%; EZH2, EED, SUZ12, SETD2 and EP300). We also identified new targets of recurrent mutation including DNM2, ECT2L and RELN. The mutational spectrum is similar to myeloid tumours, and moreover, the global transcriptional profile of ETP ALL was similar to that of normal and myeloid leukaemia haematopoietic stem cells. These findings suggest that addition of myeloid-directed therapies might improve the poor outcome of ETP ALL.

  15. Long term maintenance of myeloid leukemic stem cells cultured with unrelated human mesenchymal stromal cells.

    PubMed

    Ito, Sawa; Barrett, A John; Dutra, Amalia; Pak, Evgenia; Miner, Samantha; Keyvanfar, Keyvan; Hensel, Nancy F; Rezvani, Katayoun; Muranski, Pawel; Liu, Paul; Larochelle, Andre; Melenhorst, J Joseph

    2015-01-01

    Mesenchymal stromal cells (MSCs) support the growth and differentiation of normal hematopoietic stem cells (HSCs). Here we studied the ability of MSCs to support the growth and survival of leukemic stem cells (LSCs) in vitro. Primary leukemic blasts isolated from the peripheral blood of 8 patients with acute myeloid leukemia (AML) were co-cultured with equal numbers of irradiated MSCs derived from unrelated donor bone marrow, with or without cytokines for up to 6weeks. Four samples showed CD34(+)CD38(-) predominance, and four were predominantly CD34(+)CD38(+). CD34(+) CD38(-) predominant leukemia cells maintained the CD34(+) CD38(-) phenotype and were viable for 6weeks when co-cultured with MSCs compared to co-cultures with cytokines or medium only, which showed rapid differentiation and loss of the LSC phenotype. In contrast, CD34(+) CD38(+) predominant leukemic cells maintained the CD34(+)CD38(+) phenotype when co-cultured with MSCs alone, but no culture conditions supported survival beyond 4weeks. Cell cycle analysis showed that MSCs maintained a higher proportion of CD34(+) blasts in G0 than leukemic cells cultured with cytokines. AML blasts maintained in culture with MSCs for up to 6weeks engrafted NSG mice with the same efficiency as their non-cultured counterparts, and the original karyotype persisted after co-culture. Chemosensitivity and transwell assays suggest that MSCs provide pro-survival benefits to leukemic blasts through cell-cell contact. We conclude that MSCs support long-term maintenance of LSCs in vitro. This simple and inexpensive approach will facilitate basic investigation of LSCs and enable screening of novel therapeutic agents targeting LSCs. Published by Elsevier B.V.

  16. Early trophoblast determination and stem cell maintenance in the mouse--a review.

    PubMed

    Kunath, T; Strumpf, D; Rossant, J

    2004-04-01

    The first priority of a mammalian embryo is to establish an intimate relationship with its mother. This is accomplished by precocious differentiation of the trophoblast lineage, which mediates uterine implantation and initiates the process of placentation. Surprisingly little is known about the molecular mechanisms that drive trophectoderm differentiation from the equipotent blastomeres of the morula. Somewhat more is known about the maintenance of trophoblast stem cells, once this lineage has been established. The first half of this review will focus on determination of the mouse trophoblast lineage and the second half will discuss the maintenance of trophoblast stem cells.

  17. Cell shape acquisition and maintenance in rodlike bacteria

    NASA Astrophysics Data System (ADS)

    van Teeffelen, Sven; Wingreen, Ned; Gitai, Zemer

    2010-03-01

    The shape of rodlike bacteria such as Escherichia coli is mainly governed by the expansion and reorganization of the peptidoglycan cell wall. The cell wall is a huge, mostly single-layered molecule of stiff glycan strands that typically run perpendicular to the long axis and are crosslinked by short peptides. The wall resists the excess pressure from inside the cell. Although much is known about the enzymes that synthesize the wall, the mechanisms by which the cell maintains a constant rod diameter and uniform glycan strand orientation during growth remain unknown. Here we present quantitative results on the structure and dynamics of two essential proteins, which are believed to play an important role in cell wall synthesis. In particular, we have focused on the filament-forming protein MreB, an actin homolog that forms a long helical bundle along the inner membrane of the cell, and penicillin-binding protein 2, an essential protein for peptide bond formation in the periplasm. Based on their interplay we discuss the possibility of MreB serving as a guide and ruler for cell wall synthesis.

  18. Transient maintenance in bioreactor improves health of neuronal cells.

    PubMed

    Di Loreto, Silvia; Sebastiani, Pierluigi; Benedetti, Elisabetta; Zimmitti, Vincenzo; Caracciolo, Valentina; Amicarelli, Fernanda; Cimini, Annamaria; Adorno, Domenico

    2006-01-01

    To examine whether a neuronal cell suspension can be held in vitro for a relatively short period without compromising survival rates and functionality, we have set up an experimental protocol planning 24 h of suspension culture in a rotary wall vessel (RWV) bioreactor before plating in a conventional adherent system. Apoptosis measurement and activated caspase-8, -9, and -3 detection have demonstrated that survey of the cells was not affected. The activity of major antioxidant enzymes (AOE), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT), was significantly decreased in RWV-maintained cells. A significant decrease of tumor necrosis factor-alpha (TNF-alpha) and interleukin-1beta (IL-1beta) is coupled with a level of activated nuclear factor-kappaB (NF-kappaB) protein significantly lower in RVW cells than in the control. On the contrary, the level of IL-6 expression did not change between the test and the control. A significant up-regulation of growth-associated protein-43 (GAP-43), peroxisome proliferator-activated receptor-beta/delta (PPARbeta/delta), and acyl-CoA synthetase 2 (ACS2) in RWV cells has been detected. We provide the evidence that primary neuronal cells, at an early stage of development, can be maintained in a suspension condition before adherent plating. This experimental environment does not induce detrimental effects but may have an activator role, leading cells to development and maturation in a tridimensional state.

  19. Co-expression of metalloproteinases 11 and 12 in cervical scrapes cells from cervical precursor lesions

    PubMed Central

    Valdivia, Alejandra; Peralta, Raúl; Matute-González, Manuel; García Cebada, Juan Manuel; Casasola, Ivonne; Jiménez-Medrano, Cristina; Aguado-Pérez, Rogelio; Villegas, Vanessa; González-Bonilla, Cesar; Manuel-Apolinar, Leticia; Ibáñez, Miguel; Salcedo, Mauricio

    2011-01-01

    The metalloproteinases (MMP) 11 and 12 have been shown to be expressed in cervical cancer (CC). In order to extend our previous results, these MMPs were evaluated in cervical precursor lesions. One hundred seventeen cervical scrapes: thirty-six normal, thirty-six Low grade squamous lesions (LSIL), thirty-six High grade (HSIL), nine CC; and, also ninety-nine paraffin-embedded cervical lesions: fifteen normal cervices, thirty eight LSIL, sixteen HSIL, and five CC were collected. The samples were analyzed for relative expression by real time RT-PCR or immunohistochemistry assay. We were able to identify a relative increased expression of MMP11 in 75% and 78% from LSIL and HSIL samples, respectively. While MMP12 expression was 64% and 75% in LSIL and HSIL, respectively. Positive samples for MMP11 expression were also positive for MMP12 expression and also increased according to illness progression. In the tissues, MMP11 or MMP12 expression was observed in the cytoplasm of the neoplastic cells, while in the normal epithelium was absent. The reaction was always stronger for MMP12 than MMP11. MMP11 expression was present in 77% and 66% of LSIL and HSIL, while MMP12 expression was 73% and 68%. There was a relationship between MMP11 or MMP12 expression and HPV infection. Our data are showing a relationship between diagnostic of precursor lesions and the MMP11 and 12 expressions, suggesting that their expression could be an early event in the neoplastic lesions of the cervix and could have clinical significance. PMID:22076168

  20. Splicing of arabidopsis tRNA(Met) precursors in tobacco cell and wheat germ extracts.

    PubMed

    Akama, K; Junker, V; Yukawa, Y; Sugiura, M; Beier, H

    2000-09-01

    Intron-containing tRNA genes are exceptional within nuclear plant genomes. It appears that merely two tRNA gene families coding for tRNA(GpsiA(Tyr)) and elongator tRNA(CmAU(Met)) contain intervening sequences. We have previously investigated the features required by wheat germ splicing endonuclease for efficient and accurate intron excision from Arabidopsis pre-tRNA(Tyr). Here we have studied the expression of an Arabidopsis elongator tRNA(Met) gene in two plant extracts of different origin. This gene was first transcribed either in HeLa or in tobacco cell nuclear extract and splicing of intron-containing tRNA(Met) precursors was then examined in wheat germ S23 extract and in the tobacco system. The results show that conversion of pre-tRNA(Met) to mature tRNA proceeds very efficiently in both plant extracts. In order to elucidate the potential role of specific nucleotides at the 3' and 5' splice sites and of a structured intron for pre-tRNA(Met) splicing in either extract, we have performed a systematic survey by mutational analyses. The results show that cytidine residues at intron-exon boundaries impair pre-tRNA(Met) splicing and that a highly structured intron is indispensable for pre-tRNA(Met) splicing. tRNA precursors with an extended anticodon stem of three to four base pairs are readily accepted as substrates by wheat and tobacco splicing endonuclease, whereas pre-tRNA molecules that can form an extended anticodon stem of only two putative base pairs are not spliced at all. An amber suppressor, generated from the intron-containing elongator tRNA(Met) gene, is efficiently processed and spliced in both plant extracts.

  1. Functional electrical stimulation-facilitated proliferation and regeneration of neural precursor cells in the brains of rats with cerebral infarction

    PubMed Central

    Xiang, Yun; Liu, Huihua; Yan, Tiebin; Zhuang, Zhiqiang; Jin, Dongmei; Peng, Yuan

    2014-01-01

    Previous studies have shown that proliferation of endogenous neural precursor cells cannot alone compensate for the damage to neurons and axons. From the perspective of neural plasticity, we observed the effects of functional electrical stimulation treatment on endogenous neural precursor cell proliferation and expression of basic fibroblast growth factor and epidermal growth factor in the rat brain on the infarct side. Functional electrical stimulation was performed in rat models of acute middle cerebral artery occlusion. Simultaneously, we set up a placebo stimulation group and a sham-operated group. Immunohistochemical staining showed that, at 7 and 14 days, compared with the placebo group, the numbers of nestin (a neural precursor cell marker)-positive cells in the subgranular zone and subventricular zone were increased in the functional electrical stimulation treatment group. Western blot assays and reverse-transcription PCR showed that total protein levels and gene expression of epidermal growth factor and basic fibroblast growth factor were also upregulated on the infarct side. Prehensile traction test results showed that, at 14 days, prehension function of rats in the functional electrical stimulation group was significantly better than in the placebo group. These results suggest that functional electrical stimulation can promote endogenous neural precursor cell proliferation in the brains of acute cerebral infarction rats, enhance expression of basic fibroblast growth factor and epidermal growth factor, and improve the motor function of rats. PMID:25206808

  2. Modeling and analysis of retinoic acid induced differentiation of uncommitted precursor cells.

    PubMed

    Tasseff, Ryan; Nayak, Satyaprakash; Song, Sang Ok; Yen, Andrew; Varner, Jeffrey D

    2011-05-01

    Manipulation of differentiation programs has therapeutic potential in a spectrum of human cancers and neurodegenerative disorders. In this study, we integrated computational and experimental methods to unravel the response of a lineage uncommitted precursor cell-line, HL-60, to Retinoic Acid (RA). HL-60 is a human myeloblastic leukemia cell-line used extensively to study human differentiation programs. Initially, we focused on the role of the BLR1 receptor in RA-induced differentiation and G1/0-arrest in HL-60. BLR1, a putative G protein-coupled receptor expressed following RA exposure, is required for RA-induced cell-cycle arrest and differentiation and causes persistent MAPK signaling. A mathematical model of RA-induced cell-cycle arrest and differentiation was formulated and tested against BLR1 wild-type (wt) knock-out and knock-in HL-60 cell-lines with and without RA. The current model described the dynamics of 729 proteins and protein complexes interconnected by 1356 interactions. An ensemble strategy was used to compensate for uncertain model parameters. The ensemble of HL-60 models recapitulated the positive feedback between BLR1 and MAPK signaling. The ensemble of models also correctly predicted Rb and p47phox regulation and the correlation between p21-CDK4-cyclin D formation and G1/0-arrest following exposure to RA. Finally, we investigated the robustness of the HL-60 network architecture to structural perturbations and generated experimentally testable hypotheses for future study. Taken together, the model presented here was a first step toward a systematic framework for analysis of programmed differentiation. These studies also demonstrated that mechanistic network modeling can help prioritize experimental directions by generating falsifiable hypotheses despite uncertainty.

  3. Recombinant human CD19L-sTRAIL effectively targets B cell precursor acute lymphoblastic leukemia

    PubMed Central

    Uckun, Fatih M.; Myers, Dorothea E.; Qazi, Sanjive; Ozer, Zahide; Rose, Rebecca; D’Cruz, Osmond J.; Ma, Hong

    2015-01-01

    Patients with B cell precursor acute lymphoblastic leukemia (BPL) respond well to chemotherapy at initial diagnosis; however, therapeutic options are limited for individuals with BPL who relapse. Almost all BPL cells express CD19, and we recently cloned the gene encoding a natural ligand of the human CD19 receptor (CD19L). We hypothesized that fusion of CD19L to the soluble extracellular domain of proapoptotic TNF-related apoptosis-inducing ligand (sTRAIL) would markedly enhance the potency of sTRAIL and specifically induce BPL cell apoptosis due to membrane anchoring of sTRAIL and simultaneous activation of the CD19 and TRAIL receptor (TRAIL-R) apoptosis signaling pathways. Here, we demonstrate that recombinant human CD19L-sTRAIL was substantially more potent than sTRAIL and induced apoptosis in primary leukemia cells taken directly from BPL patients. CD19L-sTRAIL effectively targeted and eliminated in vivo clonogenic BPL xenograft cells, even at femtomolar-picomolar concentrations. In mice, CD19L-sTRAIL exhibited a more favorable pharmacokinetic (PK) profile than sTRAIL and was nontoxic at doses ranging from 32 fmol/kg to 3.2 pmol/kg. CD19L-sTRAIL showed potent in vivo antileukemic activity in NOD/SCID mouse xenograft models of relapsed and chemotherapy-resistant BPL at nontoxic fmol/kg dose levels. Together, these results suggest that recombinant human CD19L-sTRAIL has clinical potential as a biotherapeutic agent against BPL. PMID:25621496

  4. Gold- and Silver Nanoparticles Affect the Growth Characteristics of Human Embryonic Neural Precursor Cells

    PubMed Central

    Söderstjerna, Erika; Johansson, Fredrik; Klefbohm, Birgitta; Englund Johansson, Ulrica

    2013-01-01

    Rapid development of nanotechnologies and their applications in clinical research have raised concerns about the adverse effects of nanoparticles (NPs) on human health and environment. NPs can be directly taken up by organs exposed, but also translocated to secondary organs, such as the central nervous system (CNS) after systemic- or subcutaneous administration, or via the olfactory system. The CNS is particularly vulnerable during development and recent reports describe transport of NPs across the placenta and even into brain tissue using in vitro and in vivo experimental systems. Here, we investigated whether well-characterized commercial 20 and 80 nm Au- and AgNPs have an effect on human embryonic neural precursor cell (HNPC) growth. After two weeks of NP exposure, uptake of NPs, morphological features and the amount of viable and dead cells, proliferative cells (Ki67 immunostaining) and apoptotic cells (TUNEL assay), respectively, were studied. We demonstrate uptake of both 20 and 80 nm Au- and AgNPs respectively, by HNPCs during proliferation. A significant effect on the sphere size- and morphology was found for all cultures exposed to Au- and AgNPs. AgNPs of both sizes caused a significant increase in numbers of proliferating and apoptotic HNPCs. In contrast, only the highest dose of 20 nm AuNPs significantly affected proliferation, whereas no effect was seen on apoptotic cell death. Our data demonstrates that both Au- and AgNPs interfere with the growth profile of HNPCs, indicating the need of further detailed studies on the adverse effects of NPs on the developing CNS. PMID:23505470

  5. NMDA receptor couples Rac1-GEF Tiam1 to direct oligodendrocyte precursor cell migration.

    PubMed

    Xiao, Lin; Hu, Chun; Yang, Wenjing; Guo, Dazhi; Li, Cui; Shen, Weiran; Liu, Xiuyun; Aijun, Huang; Dan, Wang; He, Cheng

    2013-12-01

    Oligodendrocyte precursor cells (OPCs) originate from restricted regions of the brain and migrate into the developing white matter, where they differentiate into oligodendrocytes and myelinate axons in the central nervous system (CNS). The molecular mechanisms that orchestrate these long distance trips of OPCs to populate throughout the CNS are poorly understood. Emerging evidence has argued the expression of N-methyl-d-aspartic acid (NMDA) receptors (NMDARs) in oligodendrocyte lineage cells in vivo, but their physiological function remains elusive. We have previously demonstrated the expression and function of NMDARs in OPC differentiation and myelination/remyelination. Here, we show that NMDARs stimulation promotes OPC migration both by chemotaxis and chemokinesis as demonstrated by various cell migration systems including Boyden transwell, single cell, matrix-gel cell mass, and SVZ tissue explants assays. The pro-migration effect of NMDAR can be abolished by either pharmacological inhibition or shRNA knock down of the T lymphoma invasion and metastasis 1 (Tiam1), a Rac1 guanine nucleotide exchange factor (Rac1-GEF) which is coexpressed and interacts with NMDAR in OPCs. Moreover, NMDAR stimulation evokes cascade activation of the Tiam1/Rac1/ERK signaling pathway which mediates its effect on OPC migration. We also show that glutamate released from cultured cortical neuron promotes OPCs migration via NMDAR, and that antagonism of NMDAR or inhibition of Tiam1 blocks the endogenous glutamate-induced OPCs migration from SVZ to cortical plate in the embryonic brain slice culture. Thus, our result suggests a critical role of NMDAR in regulation of OPCs migration during CNS development by coupling to and activating the Tiam1/Rac1 pathway. Copyright © 2013 Wiley Periodicals, Inc.

  6. Amyloid Precursor Protein (APP) Affects Global Protein Synthesis in Dividing Human Cells

    PubMed Central

    Sobol, Anna; Galluzzo, Paola; Liang, Shuang; Rambo, Brittany; Skucha, Sylvia; Weber, Megan J.; Alani, Sara

    2015-01-01

    Hypoxic non‐small cell lung cancer (NSCLC) is dependent on Notch‐1 signaling for survival. Targeting Notch‐1 by means of γ‐secretase inhibitors (GSI) proved effective in killing hypoxic NSCLC. Post‐mortem analysis of GSI‐treated, NSCLC‐burdened mice suggested enhanced phosphorylation of 4E‐BP1 at threonines 37/46 in hypoxic tumor tissues. In vitro dissection of this phenomenon revealed that Amyloid Precursor Protein (APP) inhibition was responsible for a non‐canonical 4E‐BP1 phosphorylation pattern rearrangement—a process, in part, mediated by APP regulation of the pseudophosphatase Styx. Upon APP depletion we observed modifications of eIF‐4F composition indicating increased recruitment of eIF‐4A to the mRNA cap. This phenomenon was supported by the observation that cells with depleted APP were partially resistant to silvestrol, an antibiotic that interferes with eIF‐4A assembly into eIF‐4F complexes. APP downregulation in dividing human cells increased the rate of global protein synthesis, both cap‐ and IRES‐dependent. Such an increase seemed independent of mTOR inhibition. After administration of Torin‐1, APP downregulation and Mechanistic Target of Rapamycin Complex 1 (mTORC‐1) inhibition affected 4E‐BP1 phosphorylation and global protein synthesis in opposite fashions. Additional investigations indicated that APP operates independently of mTORC‐1. Key phenomena described in this study were reversed by overexpression of the APP C‐terminal domain. The presented data suggest that APP may be a novel regulator of protein synthesis in dividing human cells, both cancerous and primary. Furthermore, APP appears to affect translation initiation using mechanisms seemingly dissimilar to mTORC‐1 regulation of cap‐dependent protein synthesis. J. Cell. Physiol. 230: 1064–1074, 2015. © 2014 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc. PMID:25283437

  7. Cyclosporin A enhances neural precursor cell survival in mice through a calcineurin-independent pathway.

    PubMed

    Sachewsky, Nadia; Hunt, Jessica; Cooke, Michael J; Azimi, Ashkan; Zarin, Taraneh; Miu, Carween; Shoichet, Molly S; Morshead, Cindi M

    2014-08-01

    Cyclosporin A (CsA) has direct effects on neural stem and progenitor cells (together termed neural precursor cells; NPCs) in the adult central nervous system. Administration of CsA in vitro or in vivo promotes the survival of NPCs and expands the pools of NPCs in mice. Moreover, CsA administration is effective in promoting NPC activation, tissue repair and functional recovery in a mouse model of cortical stroke. The mechanism(s) by which CsA mediates this cell survival effect remains unknown. Herein, we examined both calcineurin-dependent and calcineurin-independent pathways through which CsA might mediate NPC survival. To examine calcineurin-dependent pathways, we utilized FK506 (Tacrolimus), an immunosuppressive molecule that inhibits calcineurin, as well as drugs that inhibit cyclophilin A-mediated activation of calcineurin. To evaluate the calcineurin-independent pathway, we utilized NIM811, a non-immunosuppressive CsA analog that functions independently of calcineurin by blocking mitochondrial permeability transition pore formation. We found that only NIM811 can entirely account for the pro-survival effects of CsA on NPCs. Indeed, blocking signaling pathways downstream of calcineurin activation using nNOS mice did not inhibit CsA-mediated cell survival, which supports the proposal that the effects are calcinuerin-independent. In vivo studies revealed that NIM811 administration mimics the pro-survival effects of CsA on NPCs and promotes functional recovery in a model of cortical stroke, identical to the effects seen with CsA administration. We conclude that CsA mediates its effect on NPC survival through calcineurin-independent inhibition of mitochondrial permeability transition pore formation and suggest that this pathway has potential therapeutic benefits for developing NPC-mediated cell replacement strategies. © 2014. Published by The Company of Biologists Ltd.

  8. ECM components guide IL-10 producing regulatory T-cell (TR1) induction from effector memory T-cell precursors

    PubMed Central

    Bollyky, Paul L.; Wu, Rebecca P.; Falk, Ben A.; Lord, James D.; Long, S. Alice; Preisinger, Anton; Teng, Brandon; Holt, Gregory E.; Standifer, Nathan E.; Braun, Kathleen R.; Xie, Cindy Fang; Samuels, Peter L.; Vernon, Robert B.; Gebe, John A.; Wight, Thomas N.; Nepom, Gerald T.

    2011-01-01

    We describe a role for ECM as a biosensor for inflammatory microenvironments that plays a critical role in peripheral immune tolerance. We show that hyaluronan (HA) promotes induction of Foxp3- IL-10–producing regulatory T cells (TR1) from conventional T-cell precursors in both murine and human systems. This is, to our knowledge, the first description of an ECM component inducing regulatory T cells. Intact HA, characteristic of healing tissues, promotes induction of TR1 capable of abrogating disease in an IL-10–dependent mouse colitis model whereas fragmentary HA, typical of inflamed tissues, does not, indicating a decisive role for tissue integrity in this system. The TR1 precursor cells in this system are CD4+CD62L−FoxP3−, suggesting that effector memory cells assume a regulatory phenotype when they encounter their cognate antigen in the context of intact HA. Matrix integrity cues might thereby play a central role in maintaining peripheral tolerance. This TR1 induction is mediated by CD44 cross-linking and signaling through p38 and ERK1/2. This induction is suppressed, also in a CD44-dependent manner, by osteopontin, a component of chronically inflamed ECM, indicating that CD44 signaling serves as a nexus for fate decisions regarding TR1 induction. Finally, we demonstrate that TR1 induction signals can be recapitulated using synthetic matrices. These results reveal important roles for the matrix microenvironment in immune regulation and suggest unique strategies for immunomodulation. PMID:21518860

  9. Role of the Microenvironment in Ovarian Cancer Stem Cell Maintenance

    PubMed Central

    Pasquier, Jennifer; Rafii, Arash

    2013-01-01

    Despite recent progresses in cancer therapy and increased knowledge in cancer biology, ovarian cancer remains a challenging condition. Among the latest concepts developed in cancer biology, cancer stem cells and the role of microenvironment in tumor progression seem to be related. Indeed, cancer stem cells have been described in several solid tumors including ovarian cancers. These particular cells have the ability to self-renew and reconstitute a heterogeneous tumor. They are characterized by specific surface markers and display resistance to therapeutic regimens. During development, specific molecular cues from the tumor microenvironment can play a role in maintaining and expanding stemness of cancer cells. The tumor stroma contains several compartments: cellular component, cytokine network, and extracellular matrix. These different compartments interact to form a permissive niche for the cancer stem cells. Understanding the molecular cues underlying this crosstalk will allow the design of new therapeutic regimens targeting the niche. In this paper, we will discuss the mechanisms implicated in the interaction between ovarian cancer stem cells and their microenvironment. PMID:23484135

  10. Functional and phenotypic differences of pure populations of stem cell-derived astrocytes and neuronal precursor cells.

    PubMed

    Kleiderman, Susanne; Sá, João V; Teixeira, Ana P; Brito, Catarina; Gutbier, Simon; Evje, Lars G; Hadera, Mussie G; Glaab, Enrico; Henry, Margit; Sachinidis, Agapios; Alves, Paula M; Sonnewald, Ursula; Leist, Marcel

    2016-05-01

    Availability of homogeneous astrocyte populations would facilitate research concerning cell plasticity (metabolic and transcriptional adaptations; innate immune responses) and cell cycle reactivation. Current protocols to prepare astrocyte cultures differ in their final content of immature precursor cells, preactivated cells or entirely different cell types. A new method taking care of all these issues would improve research on astrocyte functions. We found here that the exposure of a defined population of pluripotent stem cell-derived neural stem cells (NSC) to BMP4 results in pure, nonproliferating astrocyte cultures within 24-48 h. These murine astrocytes generated from embryonic stem cells (mAGES) expressed the positive markers GFAP, aquaporin 4 and GLT-1, supported neuronal function, and acquired innate immune functions such as the response to tumor necrosis factor and interleukin 1. The protocol was applicable to several normal or disease-prone pluripotent cell lines, and the corresponding mAGES all exited the cell cycle and lost most of their nestin expression, in contrast to astrocytes generated by serum-addition or obtained as primary cultures. Comparative gene expression analysis of mAGES and NSC allowed quantification of differences between the two cell types and a definition of an improved marker set to define astrocytes. Inclusion of several published data sets in this transcriptome comparison revealed the similarity of mAGES with cortical astrocytes in vivo. Metabolic analysis of homogeneous NSC and astrocyte populations revealed distinct neurochemical features: both cell types synthesized glutamine and citrate, but only mature astrocytes released these metabolites. Thus, the homogeneous cultures allowed an improved definition of NSC and astrocyte features. © 2015 Wiley Periodicals, Inc.

  11. Intestinal smooth muscle cell maintenance by basic fibroblast growth factor.

    PubMed

    Lee, Min; Wu, Benjamin M; Stelzner, Matthias; Reichardt, Holger M; Dunn, James C Y

    2008-08-01

    Intestinal tissue engineering is a potential therapy for patients with short bowel syndrome. Tissue engineering scaffolds that promote smooth muscle cell proliferation and angiogenesis are essential toward the regeneration of functional smooth muscles for peristalsis and motility. Since basic fibroblast growth factor (bFGF) can stimulate smooth muscle proliferation and angiogenesis, the delivery of bFGF was employed to stimulate proliferation and survival of primary intestinal smooth muscle cells. Two methods of local bFGF delivery were examined: the incorporation of bFGF into the collagen coating and the encapsulation of bFGF into poly(D,L-lactic-co-glycolic acid) microspheres. Cell-seeded scaffolds were implanted into the omentum and were retrieved after 4, 14, and 28 days. The seeded cells proliferated from day 4 to day 14 in all implants; however, at 28 days, significantly higher density of implanted cells and blood vessels was observed, when 10 microg of bFGF was incorporated into the collagen coating of scaffolds as compared to scaffolds with either no bFGF or 1 microg of bFGF in collagen. Microsphere encapsulation of 1 microg of bFGF produced similar effects as 10 microg of bFGF mixed in collagen and was more effective than the delivery of 1 microg of bFGF by collagen incorporation. The majority of the implanted cells also expressed alpha-smooth muscle actin. Scaffolds coated with microsphere-encapsulated bFGF and seeded with smooth muscle cells may be a useful platform for the regeneration of the intestinal smooth muscle.

  12. Fast Flux Test Facility interim examination and maintenance cell - past, present, and future

    SciTech Connect

    Vincent, J.R.

    1990-01-01

    The Fast Flux Test Facility (FFTF) interim examination and maintenance (IEM) cell was designed to perform interim examination and/or disassembly of experimental core components for final analysis elsewhere, as well as maintenance of sodium-wetted or neutron-activated internal reactor parts and plant support hardware. The first 10 yr of operation were mainly devoted to the disassembly and examination of core component test assemblies. While some maintenance was performed on reactor support equipment, such as the closed-loop ex-vessel machine (CLEM) sodium-wetted grapple, 90% of IEM cell availability has been devoted to core component tests. Some test assemblies originally considered for processing in the IEM cell have not been irradiated; others, not originally planned, have been designed, irradiated, and processed. While no major reactor equipment has required remote repair or maintenance, the IEM cell has served as the remote repair facility for its own in-cell equipment, and several innovative remote repairs have been accomplished and are described.

  13. Drosophila SETDB1 and caspase cooperatively fine-tune cell fate determination of sensory organ precursor.

    PubMed

    Shinoda, Natsuki; Obata, Fumiaki; Zhang, Liu; Miura, Masayuki

    2016-04-01

    Drosophila produce a constant number of mechanosensory bristles called macrochaetae (MC), which develop from sensory organ precursor (SOP) cells within a proneural cluster (PNC). However, what ensures the precise determination of SOP cells remains to be elucidated. In this study, we conducted RNAi screening in PNC for genes involved in epigenetic regulation. We identified a H3K9 histone methyltransferase, SETDB1/eggless, as a regulator of SOP development. Knockdown of SETDB1 in PNC led to additional SOPs. We further tested the relationship between SETDB1 and non-apoptotic function of caspase on SOP development. Reinforcing caspase activation by heterozygous Drosophila inhibitor of apoptosis protein 1 (DIAP1) mutation rescued ectopic SOP development caused by SETDB1 knockdown. Knockdown of SETDB1, however, had little effect on caspase activity. Simultaneous loss of SETDB1 and caspase activity resulted in further increase in MC, indicating that the two components work cooperatively. Our study suggests the fine-tuning mechanisms for SOP development by epigenetic methyltransferase and non-apoptotic caspase function.

  14. The role of neural precursor cells and self assembling peptides in nerve regeneration.

    PubMed

    Zhao, Xiao; Yao, Gordon S; Liu, Yang; Wang, Jian; Satkunendrarajah, Kajana; Fehlings, Michael

    2013-12-19

    Cranial nerve injury involves loss of central neural cells in the brain stem and surrounding support matrix, leading to severe functional impairment. Therapeutically targeting cellular replacement and enhancing structural support may promote neural regeneration. We examined the combinatorial effect of neural precursor cells (NPC) and self assembling peptide (SAP) administration on nerve regeneration. Nerve injury was induced by clip compression of the rodent spinal cord. SAPs were injected immediately into the injured cord and NPCs at 2 weeks post-injury. Behavioral analysis was done weekly and rats were sacrificed at 11 weeks post injury. LFB-H&E staining was done on cord tissue to assess cavitation volume. Motor evoked potentials (MEP) were measured at week 11 to assess nerve conduction and Kaplan Meier curves were created to compare survival estimates. NPCs and SAPs were distributed both caudal and rostral to the injury site. Behavioral analysis showed that SAP + NPC transplantation significantly improved locomotor score p <0.03) and enhanced survival (log rank test, p = 0.008) compared to control. SAP + NPC treatment also improved nerve conduction velocity (p = 0.008) but did not affect cavitation volume (p = 0.73). Combinatorial NPC and SAP injection into injured nerve tissue may enhance neural repair and regeneration.

  15. KU HAPLOINSUFFIENCY CAUSES A LYMPHOPROLIFERATIVE DISORDER OF IMMATURE T-CELL PRECURSORS DUE TO IKAROS MALFUNCTION

    PubMed Central

    Ozer, Zahide; Qazi, Sanjive; Ishkhanian, Rita; Hasty, Paul; Ma, Hong; Uckun, Fatih M.

    2013-01-01

    Ikaros (IK) malfunction has been implicated in the pathogenesis of acute lymphoblastic leukemia (ALL), the most common form of childhood cancer. Therefore, a stringent regulation of IK activity is very important. Here we provide unique genetic and biochemical evidence that the Ku protein components Ku70 and Ku80 act as positive regulators of IK function via formation of IK-Ku70 and IK-Ku80 heterodimers with augmented sequence-specific DNA binding activity. siRNA-mediated depletion of Ku70 or Ku80 reduced the sequence-specific DNA binding activity of IK in EMSA as well as the RT-PCR measured IK target gene expression levels in human cells. The interaction of Ku components with IK likely contributes to the anti-leukemic effects of IK as a tumor suppressor, because Ku70 as well as Ku80 haploinsuffiency in mice caused development of a lymphoproliferative disorder (LPD) involving CD2+CD4+CD8+CD1+IL7R+ thymic T-cell precursors with functional IK deficiency. PMID:24478815

  16. Lead exposure in pheochromocytoma cells induces persistent changes in amyloid precursor protein gene methylation patterns.

    PubMed

    Li, Yuan-Yuan; Chen, Tian; Wan, Yanjian; Xu, Shun-qing

    2012-08-01

    It has been suggested that lead (Pb) exposure in early life may increase amyloid precursor protein (APP) expression and promote the pathogenesis of Alzheimer's disease in old age. The current study examined whether the DNA methylation patterns of APP gene in rat pheochromocytoma (PC12) cells changed after Pb acetate exposure. Undifferentiated PC12 cells were exposed to three doses of Pb acetate (50, 250, and 500 nM) and one control for 2 days or 1 week. The methylation patterns of APP promoter and global DNA methylation were analyzed. The DNA methyltransferase 1 (DNMT1) expression and the level of amyloid β peptide (Aβ) were also investigated. The results showed that the exposure of the three concentrations of Pb acetate could make the APP promoter hypomethylated. The global DNA methylation level and the expression of DNMT1 were changed in the 500 nM group after 2 days exposure and in the 250 and 500 nM group after 7 days exposure. Thus, Pb may exert neurotoxic effects through mechanisms that alter the global and promoter methylation patterns of APP gene. © 2010 Wiley Periodicals, Inc. Environ Toxicol, 2012. Copyright © 2010 Wiley Periodicals, Inc.

  17. Functional plasticity of the N-methyl-d-aspartate receptor in differentiating human erythroid precursor cells

    PubMed Central

    Hänggi, Pascal; Telezhkin, Vsevolod; Kemp, Paul J.; Schmugge, Markus; Gassmann, Max; Goede, Jeroen S.; Speer, Oliver

    2015-01-01

    Calcium signaling is essential to support erythroid proliferation and differentiation. Precise control of the intracellular Ca2+ levels in erythroid precursor cells (EPCs) is afforded by coordinated expression and function of several cation channels, including the recently identified N-methyl-d-aspartate receptor (NMDAR). Here, we characterized the changes in Ca2+ uptake and electric currents mediated by the NMDARs occurring during EPC differentiation using flow cytometry and patch clamp. During erythropoietic maturation, subunit composition and properties of the receptor changed; in proerythroblasts and basophilic erythroblasts, fast deactivating currents with high amplitudes were mediated by the GluN2A subunit-dominated receptors, while at the polychromatic and orthochromatic erythroblast stages, the GluN2C subunit was getting more abundant, overriding the expression of GluN2A. At these stages, the currents mediated by the NMDARs carried the features characteristic of the GluN2C-containing receptors, such as prolonged decay time and lower conductance. Kinetics of this switch in NMDAR properties and abundance varied markedly from donor to donor. Despite this variability, NMDARs were essential for survival of EPCs in any subject tested. Our findings indicate that NMDARs have a dual role during erythropoiesis, supporting survival of polychromatic erythroblasts and contributing to the Ca2+ homeostasis from the orthochromatic erythroblast stage to circulating red blood cells. PMID:25788577

  18. Delayed Transplantation of Human Neural Precursor Cells Improves Outcome from Focal Cerebral Ischemia in Aged Rats

    PubMed Central

    Jin, Kunlin; Mao, XiaoOu; Xie, Lin; Greenberg, Rose B.; Peng, Botao; Moore, Alexander; Greenberg, Maeve B.; Greenberg, David A.

    2010-01-01

    SUMMARY Neural precursor cell (NPC) transplantation may have a role in restoring brain function after stroke, but how aging might affect the brain’s receptivity to such transplants is unknown. We reported previously that transplantation of human embryonic stem cell (hESC)-derived NPCs together with biomaterial (Matrigel) scaffolding into the brains of young adult Sprague-Dawley rats 3 wks after distal middle cerebral artery occlusion (MCAO) reduced infarct volume, and improved neurobehavioral performance. In this study we compared the effect of NPC and Matrigel transplants in young adult (3-mo-old) and aged (24-mo-old) Fisher 344 rats from the National Institute on Aging’s aged rodent colony. Distal MCAO was induced by electrocoagulation and hESC-derived NPCs were transplanted into the infarct cavity 3 wks later. Aged rats developed larger infarcts, but infarct volume and performance on the cylinder and elevated body swing tests, measured 6–8 wks post-transplant, were improved by transplantation. We conclude that advanced age does not preclude a beneficial response to NPC and Matrigel transplantation following experimental stroke. PMID:20883527

  19. MEK Inhibitors Reverse Growth of Embryonal Brain Tumors Derived from Oligoneural Precursor Cells.

    PubMed

    Modzelewska, Katarzyna; Boer, Elena F; Mosbruger, Timothy L; Picard, Daniel; Anderson, Daniela; Miles, Rodney R; Kroll, Mitchell; Oslund, William; Pysher, Theodore J; Schiffman, Joshua D; Jensen, Randy; Jette, Cicely A; Huang, Annie; Stewart, Rodney A

    2016-10-25

    Malignant brain tumors are the leading cause of cancer-related deaths in children. Primitive neuroectodermal tumors of the CNS (CNS-PNETs) are particularly aggressive embryonal tumors of unknown cellular origin. Recent genomic studies have classified CNS-PNETs into molecularly distinct subgroups that promise to improve diagnosis and treatment; however, the lack of cell- or animal-based models for these subgroups prevents testing of rationally designed therapies. Here, we show that a subset of CNS-PNETs co-express oligoneural precursor cell (OPC) markers OLIG2 and SOX10 with coincident activation of the RAS/MAPK (mitogen-activated protein kinase) pathway. Modeling NRAS activation in embryonic OPCs generated malignant brain tumors in zebrafish that closely mimic the human oligoneural/NB-FOXR2 CNS-PNET subgroup by histology and comparative oncogenomics. The zebrafish CNS-PNET model was used to show that MEK inhibitors selectively eliminate Olig2(+)/Sox10(+) CNS-PNET tumors in vivo without impacting normal brain development. Thus, MEK inhibitors represent a promising rationally designed therapy for children afflicted with oligoneural/NB-FOXR2 CNS-PNETs.

  20. Functional plasticity of the N-methyl-d-aspartate receptor in differentiating human erythroid precursor cells.

    PubMed

    Hänggi, Pascal; Telezhkin, Vsevolod; Kemp, Paul J; Schmugge, Markus; Gassmann, Max; Goede, Jeroen S; Speer, Oliver; Bogdanova, Anna

    2015-06-15

    Calcium signaling is essential to support erythroid proliferation and differentiation. Precise control of the intracellular Ca(2+) levels in erythroid precursor cells (EPCs) is afforded by coordinated expression and function of several cation channels, including the recently identified N-methyl-d-aspartate receptor (NMDAR). Here, we characterized the changes in Ca(2+) uptake and electric currents mediated by the NMDARs occurring during EPC differentiation using flow cytometry and patch clamp. During erythropoietic maturation, subunit composition and properties of the receptor changed; in proerythroblasts and basophilic erythroblasts, fast deactivating currents with high amplitudes were mediated by the GluN2A subunit-dominated receptors, while at the polychromatic and orthochromatic erythroblast stages, the GluN2C subunit was getting more abundant, overriding the expression of GluN2A. At these stages, the currents mediated by the NMDARs carried the features characteristic of the GluN2C-containing receptors, such as prolonged decay time and lower conductance. Kinetics of this switch in NMDAR properties and abundance varied markedly from donor to donor. Despite this variability, NMDARs were essential for survival of EPCs in any subject tested. Our findings indicate that NMDARs have a dual role during erythropoiesis, supporting survival of polychromatic erythroblasts and contributing to the Ca(2+) homeostasis from the orthochromatic erythroblast stage to circulating red blood cells. Copyright © 2015 the American Physiological Society.

  1. Bcl2 is not required for the development and maintenance of leukemia stem cells in mice

    PubMed Central

    González-Herrero, Inés; Vicente-Dueñas, Carolina; Orfao, Alberto; Flores, Teresa; Jiménez, Rafael; Cobaleda, César; Sánchez-García, Isidro

    2010-01-01

    The existence of leukemia stem cells (LSCs) responsible for tumor maintenance has been firmly established. Therefore, therapeutic targeting of these LSCs may have a profound impact on cancer eradication. The anti-apoptotic protein Bcl2 has been proposed as a therapeutic target, but its role in LSC biology has not been investigated. In order to understand the role of Bcl2 in LSC generation and maintenance, we have taken advantage of our Sca1-BCRABLp210 mouse model of human chronic myeloid leukemia and bcl2 gene-targeted mice. This study provides genetic evidence that the inhibition of Bcl2 is not critical for the generation, selection or maintenance of the tumor initiating and maintaining cells in mice. PMID:20299524

  2. CD73 protein as a source of extracellular precursors for sustained NAD+ biosynthesis in FK866-treated tumor cells.

    PubMed

    Grozio, Alessia; Sociali, Giovanna; Sturla, Laura; Caffa, Irene; Soncini, Debora; Salis, Annalisa; Raffaelli, Nadia; De Flora, Antonio; Nencioni, Alessio; Bruzzone, Santina

    2013-09-06

    NAD(+) is mainly synthesized in human cells via the "salvage" pathways starting from nicotinamide, nicotinic acid, or nicotinamide riboside (NR). The inhibition with FK866 of the enzyme nicotinamide phosphoribosyltransferase (NAMPT), catalyzing the first reaction in the "salvage" pathway from nicotinamide, showed potent antitumor activity in several preclinical models of solid and hematologic cancers. In the clinical studies performed with FK866, however, no tumor remission was observed. Here we demonstrate that low micromolar concentrations of extracellular NAD(+) or NAD(+) precursors, nicotinamide mononucleotide (NMN) and NR, can reverse the FK866-induced cell death, this representing a plausible explanation for the failure of NAMPT inhibition as an anti-cancer therapy. NMN is a substrate of both ectoenzymes CD38 and CD73, with generation of NAM and NR, respectively. In this study, we investigated the roles of CD38 and CD73 in providing ectocellular NAD(+) precursors for NAD(+) biosynthesis and in modulating cell susceptibility to FK866. By specifically silencing or overexpressing CD38 and CD73, we demonstrated that endogenous CD73 enables, whereas CD38 impairs, the conversion of extracellular NMN to NR as a precursor for intracellular NAD(+) biosynthesis in human cells. Moreover, cell viability in FK866-treated cells supplemented with extracellular NMN was strongly reduced in tumor cells, upon pharmacological inhibition or specific down-regulation of CD73. Thus, our study suggests that genetic or pharmacologic interventions interfering with CD73 activity may prove useful to increase cancer cell sensitivity to NAMPT inhibitors.

  3. Photoreceptor precursors derived from three-dimensional embryonic stem cell cultures integrate and mature within adult degenerate retina.

    PubMed

    Gonzalez-Cordero, Anai; West, Emma L; Pearson, Rachael A; Duran, Yanai; Carvalho, Livia S; Chu, Colin J; Naeem, Arifa; Blackford, Samuel J I; Georgiadis, Anastasios; Lakowski, Jorn; Hubank, Mike; Smith, Alexander J; Bainbridge, James W B; Sowden, Jane C; Ali, Robin R

    2013-08-01

    Irreversible blindness caused by loss of photoreceptors may be amenable to cell therapy. We previously demonstrated retinal repair and restoration of vision through transplantation of photoreceptor precursors obtained from postnatal retinas into visually impaired adult mice. Considerable progress has been made in differentiating embryonic stem cells (ESCs) in vitro toward photoreceptor lineages. However, the capability of ESC-derived photoreceptors to integrate after transplantation has not been demonstrated unequivocally. Here, to isolate photoreceptor precursors fit for transplantation, we adapted a recently reported three-dimensional (3D) differentiation protocol that generates neuroretina from mouse ESCs. We show that rod precursors derived by this protocol and selected via a GFP reporter under the control of a Rhodopsin promoter integrate within degenerate retinas of adult mice and mature into outer segment-bearing photoreceptors. Notably, ESC-derived precursors at a developmental stage similar to postnatal days 4-8 integrate more efficiently compared with cells at other stages. This study shows conclusively that ESCs can provide a source of photoreceptors for retinal cell transplantation.

  4. Sulphatide and its precursor galactosylceramide influence the production of cytokines in human mononuclear cells.

    PubMed

    Buschard, K; Diamant, M; Bovin, L E; Månsson, J E; Fredman, P; Bendtzen, K

    1996-12-01

    Sulphatide is expressed in the central and peripheral neural system, in islets of Langerhans, and in tissues affected by late diabetic complications. Autoantibodies to sulphatide are present in patients with insulin-dependent diabetes and the Guillain-Barré syndrome. Cytokines influence these disease processes, and we therefore studied whether sulphatide and its precursor galactosylceramide (gal-cer) influence the in vitro production of cytokines by blood mononuclear cells (MNC) originating from 15 healthy persons. Using lipopolysaccharide (LPS)-stimulated cells, sulphatide increased the IL-2 production (163 +/- 17% of controls without sulphatide, p = 0.02), and gal-cer increased the IL-1 alpha production (145 +/- 13%, p = 0.006), whereas neither gal-cer nor sulphatide had an effect on the production of IL-6, IL-10 or TNF alpha. When stimulating cells with phytohaemagglutinin (PHA), sulphatide decreased the production of IL-6 (88 +/- 5%, p = 0.009), IL-10 (66 +/- 3%, p = 0.000003), and TNF alpha (75 +/- 9% p = 0.02). Gal-cer, however, increased the production of IL-6 (188 +/- 13% p = 0.000006), and decreased the production of TNF beta (80 +/- 6%, p = 0.007). Neither gal-cer nor sulphatide had an effect on the production of IL-2 or IFN gamma from PHA-stimulated cells. Northern blot analysis using an IL-6 probe similarly showed an increased amount of IL-6 mRNA after gal-cer incubation (range 469%-150%, n = 3) of PHA-stimulated control. Thus, sulphatide and gal-cer influence the production of several cytokines thought to be involved in immunoinflammatory disease processes.

  5. Kv3.1 channels stimulate adult neural precursor cell proliferation and neuronal differentiation.

    PubMed

    Yasuda, Takahiro; Cuny, Hartmut; Adams, David J

    2013-05-15

    Adult neural stem/precursor cells (NPCs) play a pivotal role in neuronal plasticity throughout life. Among ion channels identified in adult NPCs, voltage-gated delayed rectifier K(+) (KDR) channels are dominantly expressed. However, the KDR channel subtype and its physiological role are still undefined. We used real-time quantitative RT-PCR and gene knockdown techniques to identify a major functional KDR channel subtype in adult NPCs. Dominant mRNA expression of Kv3.1, a high voltage-gated KDR channel, was quantitatively confirmed. Kv3.1 gene knockdown with specific small interfering RNAs (siRNA) for Kv3.1 significantly inhibited Kv3.1 mRNA expression by 63.9% (P < 0.001) and KDR channel currents by 52.2% (P < 0.001). This indicates that Kv3.1 is the subtype responsible for producing KDR channel outward currents. Resting membrane properties, such as resting membrane potential, of NPCs were not affected by Kv3.1 expression. Kv3.1 knockdown with 300 nm siRNA inhibited NPC growth (increase in cell numbers) by 52.9% (P < 0.01). This inhibition was attributed to decreased cell proliferation, not increased cell apoptosis. We also established a convenient in vitro imaging assay system to evaluate NPC differentiation using NPCs from doublecortin-green fluorescent protein transgenic mice. Kv3.1 knockdown also significantly reduced neuronal differentiation by 31.4% (P < 0.01). We have demonstrated that Kv3.1 is a dominant functional KDR channel subtype expressed in adult NPCs and plays key roles in NPC proliferation and neuronal lineage commitment during differentiation.

  6. Amyloid precursor protein (APP) affects global protein synthesis in dividing human cells.

    PubMed

    Sobol, Anna; Galluzzo, Paola; Liang, Shuang; Rambo, Brittany; Skucha, Sylvia; Weber, Megan J; Alani, Sara; Bocchetta, Maurizio

    2015-05-01

    Hypoxic non-small cell lung cancer (NSCLC) is dependent on Notch-1 signaling for survival. Targeting Notch-1 by means of γ-secretase inhibitors (GSI) proved effective in killing hypoxic NSCLC. Post-mortem analysis of GSI-treated, NSCLC-burdened mice suggested enhanced phosphorylation of 4E-BP1 at threonines 37/46 in hypoxic tumor tissues. In vitro dissection of this phenomenon revealed that Amyloid Precursor Protein (APP) inhibition was responsible for a non-canonical 4E-BP1 phosphorylation pattern rearrangement-a process, in part, mediated by APP regulation of the pseudophosphatase Styx. Upon APP depletion we observed modifications of eIF-4F composition indicating increased recruitment of eIF-4A to the mRNA cap. This phenomenon was supported by the observation that cells with depleted APP were partially resistant to silvestrol, an antibiotic that interferes with eIF-4A assembly into eIF-4F complexes. APP downregulation in dividing human cells increased the rate of global protein synthesis, both cap- and IRES-dependent. Such an increase seemed independent of mTOR inhibition. After administration of Torin-1, APP downregulation and Mechanistic Target of Rapamycin Complex 1 (mTORC-1) inhibition affected 4E-BP1 phosphorylation and global protein synthesis in opposite fashions. Additional investigations indicated that APP operates independently of mTORC-1. Key phenomena described in this study were reversed by overexpression of the APP C-terminal domain. The presented data suggest that APP may be a novel regulator of protein synthesis in dividing human cells, both cancerous and primary. Furthermore, APP appears to affect translation initiation using mechanisms seemingly dissimilar to mTORC-1 regulation of cap-dependent protein synthesis. © 2014 Wiley Periodicals, Inc.

  7. TGF-beta and its receptor complex in leukemic B-cell precursors.

    PubMed

    Buske, C; Becker, D; Feuring-Buske, M; Hannig, H; Griesinger, F; Hiddemann, W; Wörmann, B

    1998-11-01

    Transforming growth factor beta (TGF-beta) is a highly conserved peptide with growth-inhibitory activity in multiple normal and transformed cell types. Signal transduction is mediated through the receptor complex, consisting of two active seronine or threonine kinases (TGF-beta-receptor I and II) and the receptor-associated proteins betaglycan (TGF-beta-receptor III) and endoglin. In this study, we assessed the analysis of the role of TGF-beta and the transcription of the genes for TGF-beta and its receptor in highly purified leukemic B-cell precursors (BCPs) of patients with common acute lymphoblastic leukemia (cALL). Leukemic BCPs were positive for gene transcription of TGF-beta (9/9), the TGF-beta-receptor I (9/9), the TGF-beta-receptor II (6/6), betaglycan (5/6), and endoglin (6/6). Incubation with TGF-beta significantly reduced the cell viability of leukemic BCPs by a mean of 45% (p = 0.0009). The reduction of cell viability was associated with the induction of apoptosis by a mean of 31%. TGF-beta caused significant suppression of the S phase (p = 0.002) and accumulation in the G0/G1 phase (p = 0.0005). It also reduced expression of the adhesion surface receptor CD18 and the Fas antigen CD95 from 58% to 40% and from 48% to 27%, respectively. The data indicate that TGF-beta is a negative growth signal in leukemic BCPs and point to an additional role of TGF-beta as an immunomodulatory cytokine, suggesting a complex role of TGF-beta in the leukemogenesis of cALL.

  8. Herpes Simplex Virus Dances with Amyloid Precursor Protein while Exiting the Cell

    PubMed Central

    Cheng, Shi-Bin; Ferland, Paulette; Webster, Paul; Bearer, Elaine L.

    2011-01-01

    Herpes simplex type 1 (HSV1) replicates in epithelial cells and secondarily enters local sensory neuronal processes, traveling retrograde to the neuronal nucleus to enter latency. Upon reawakening newly synthesized viral particles travel anterograde back to the epithelial cells of the lip, causing the recurrent cold sore. HSV1 co-purifies with amyloid precursor protein (APP), a cellular transmembrane glycoprotein and receptor for anterograde transport machinery that when proteolyzed produces A-beta, the major component of senile plaques. Here we focus on transport inside epithelial cells of newly synthesized virus during its transit to the cell surface. We hypothesize that HSV1 recruits cellular APP during transport. We explore this with quantitative immuno-fluorescence, immuno-gold electron-microscopy and live cell confocal imaging. After synchronous infection most nascent VP26-GFP-labeled viral particles in the cytoplasm co-localize with APP (72.8+/−6.7%) and travel together with APP inside living cells (81.1+/−28.9%). This interaction has functional consequences: HSV1 infection decreases the average velocity of APP particles (from 1.1+/−0.2 to 0.3+/−0.1 µm/s) and results in APP mal-distribution in infected cells, while interplay with APP-particles increases the frequency (from 10% to 81% motile) and velocity (from 0.3+/−0.1 to 0.4+/−0.1 µm/s) of VP26-GFP transport. In cells infected with HSV1 lacking the viral Fc receptor, gE, an envelope glycoprotein also involved in viral axonal transport, APP-capsid interactions are preserved while the distribution and dynamics of dual-label particles differ from wild-type by both immuno-fluorescence and live imaging. Knock-down of APP with siRNA eliminates APP staining, confirming specificity. Our results indicate that most intracellular HSV1 particles undergo frequent dynamic interplay with APP in a manner that facilitates viral transport and interferes with normal APP transport and distribution. Such dynamic

  9. Noninvasive PET Imaging and Tracking of Engineered Human Muscle Precursor Cells for Skeletal Muscle Tissue Engineering.

    PubMed

    Haralampieva, Deana; Betzel, Thomas; Dinulovic, Ivana; Salemi, Souzan; Stoelting, Meline; Krämer, Stefanie D; Schibli, Roger; Sulser, Tullio; Handschin, Christoph; Eberli, Daniel; Ametamey, Simon M

    2016-09-01

    Transplantation of human muscle precursor cells (hMPCs) is envisioned for the treatment of various muscle diseases. However, a feasible noninvasive tool to monitor cell survival, migration, and integration into the host tissue is still missing. In this study, we designed an adenoviral delivery system to genetically modify hMPCs to express a signaling-deficient form of human dopamine D2 receptor (hD2R). The gene expression levels of the receptor were evaluated by reverse transcriptase polymerase chain reaction, and infection efficiency was evaluated by fluorescent microscopy. The viability, proliferation, and differentiation capacity of the transduced cells, as well as their myogenic phenotype, were determined by flow cytometry analysis and fluorescent microscopy. (18)F-fallypride and (18)F-fluoromisonidazole, two well-established PET radioligands, were assessed for their potential to image engineered hMPCs in a mouse model and their uptakes were evaluated at different time points after cell inoculation in vivo. Biodistribution studies, autoradiography, and PET experiments were performed to determine the extent of signal specificity. To address feasibility for tracking hMPCs in an in vivo model, the safety of the adenoviral gene delivery was evaluated. Finally, the harvested tissues were histologically examined to determine whether survival of the transplanted cells was sustained at different time points. Adenoviral gene delivery was shown to be safe, with no detrimental effects on the primary human cells. The viability, proliferation, and differentiation capacity of the transduced cells were confirmed, and flow cytometry analysis and fluorescent microscopy showed that their myogenic phenotype was sustained. (18)F-fallypride and (18)F-fluoromisonidazole were successfully synthesized. Specific binding of (18)F-fallypride to hD2R hMPCs was demonstrated in vitro and in vivo. Furthermore, the (18)F-fluoromisonidazole signal was high at the early stages. Finally

  10. Netrin-1 regulates somatic cell reprogramming and pluripotency maintenance

    PubMed Central

    Ozmadenci, Duygu; Féraud, Olivier; Markossian, Suzy; Kress, Elsa; Ducarouge, Benjamin; Gibert, Benjamin; Ge, Jian; Durand, Isabelle; Gadot, Nicolas; Plateroti, Michela; Bennaceur-Griscelli, Annelise; Scoazec, Jean-Yves; Gil, Jesus; Deng, Hongkui; Bernet, Agnes; Mehlen, Patrick; Lavial, Fabrice

    2015-01-01

    The generation of induced pluripotent stem (iPS) cells holds great promise in regenerative medicine. The use of the transcription factors Oct4, Sox2, Klf4 and c-Myc for reprogramming is extensively documented, but comparatively little is known about soluble molecules promoting reprogramming. Here we identify the secreted cue Netrin-1 and its receptor DCC, described for their respective survival/death functions in normal and oncogenic contexts, as reprogramming modulators. In various somatic cells, we found that reprogramming is accompanied by a transient transcriptional repression of Netrin-1 mediated by an Mbd3/Mta1/Chd4-containing NuRD complex. Mechanistically, Netrin-1 imbalance induces apoptosis mediated by the receptor DCC in a p53-independent manner. Correction of the Netrin-1/DCC equilibrium constrains apoptosis and improves reprogramming efficiency. Our work also sheds light on Netrin-1's function in protecting embryonic stem cells from apoptosis mediated by its receptor UNC5b, and shows that the treatment with recombinant Netrin-1 improves the generation of mouse and human iPS cells. PMID:26154507

  11. Population genetics inside a cell: Mutations and mitochondrial genome maintenance

    NASA Astrophysics Data System (ADS)

    Goyal, Sidhartha; Shraiman, Boris; Gottschling, Dan

    2012-02-01

    In realistic ecological and evolutionary systems natural selection acts on multiple levels, i.e. it acts on individuals as well as on collection of individuals. An understanding of evolutionary dynamics of such systems is limited in large part due to the lack of experimental systems that can challenge theoretical models. Mitochondrial genomes (mtDNA) are subjected to selection acting on cellular as well as organelle levels. It is well accepted that mtDNA in yeast Saccharomyces cerevisiae is unstable and can degrade over time scales comparable to yeast cell division time. We utilize a recent technology designed in Gottschling lab to extract DNA from populations of aged yeast cells and deep sequencing to characterize mtDNA variation in a population of young and old cells. In tandem, we developed a stochastic model that includes the essential features of mitochondrial biology that provides a null model for expected mtDNA variation. Overall, we find approximately 2% of the polymorphic loci that show significant increase in frequency as cells age providing direct evidence for organelle level selection. Such quantitative study of mtDNA dynamics is absolutely essential to understand the propagation of mtDNA mutations linked to a spectrum of age-related diseases in humans.

  12. Actin filament dynamics impacts keratinocyte stem cell maintenance

    PubMed Central

    Nanba, Daisuke; Toki, Fujio; Matsushita, Natsuki; Matsushita, Sachi; Higashiyama, Shigeki; Barrandon, Yann

    2013-01-01

    Cultured human epidermal keratinocyte stem cells (holoclones) are crucial for regenerative medicine for burns and genetic disorders. In serial culture, holoclones progressively lose their proliferative capacity to become transient amplifying cells with limited growth (paraclones), a phenomenon termed clonal conversion. Although it negatively impacts the culture lifespan and the success of cell transplantation, little is known on the molecular mechanism underlying clonal conversion. Here, we show that holoclones and paraclones differ in their actin filament organization, with actin bundles distributed radially in holoclones and circumferentially in paraclones. Moreover, actin organization sets the stage for a differing response to epidermal growth factor (EGF), since EGF signalling induces a rapid expansion of colony size in holoclones and a significant reduction in paraclones. Furthermore, inhibition of PI3K or Rac1 in holoclones results in the reorganization of actin filaments in a pattern that is similar to that of paraclones. Importantly, continuous Rac1 inhibition in holoclones results in clonal conversion and reduction of growth potential. Together, our data connect loss of stem cells to EGF-induced colony dynamics governed by Rac1. PMID:23554171

  13. Stem/precursor cell-based CNS therapy: the importance of circumventing immune suppression by transplanting autologous cells.

    PubMed

    Kulbatski, Iris

    2010-09-01

    Stem/precursor cell (SPC) therapy for neurodegeneration and neurotrauma has enormous therapeutic potential, but despite ongoing research efforts the success of clinical trials remains limited. Therapies that utilize immune suppression in combination with SPC transplantation have thus far failed to consider the beneficial role of the immune system in central nervous system (CNS) recovery. Systemic immune suppression may prevent neural repair, and in some cases exacerbate the underlying disorder. Until about a decade ago, immunosuppression for CNS disorders was viewed as a therapeutic target, based on the perception that all immune activity in the CNS was destructive. However, recent studies show that the infiltration of blood-borne immune cells into the CNS following neurotrauma and during chronic neurodegeneration promote CNS protection and regeneration. In the context of SPC therapies, although immune suppression prevents rejection of non-autologous cell grafts, it also prevents the restorative immune response by eliminating the immune mediated guidance cues that are required for SPCs to migrate to the location they are needed, and preventing SPC-mediated immunomodulation. This article argues in favor of transplanting autologous SPCs, particularly bone marrow derived cells. The therapeutic use of autologous SPCs for neural repair circumvents the need for concomitant immune suppression, exploits the immunomodulatory capacity of these cells, and maintains the immune niche that supports neural repair and is required to guide these cells to their appropriate locations. Overall, such an approach accommodates the requirements for translational therapeutics, and provides a standardized platform for reconciling the inherent controversies in the science.

  14. Behavior of Primary Cilia and Tricellular Tight Junction Proteins during Differentiation in Temperature-Sensitive Mouse Cochlear Precursor Hair Cells.

    PubMed

    Kakuki, Takuya; Kaneko, Yakuto; Takano, Kenichi; Ninomiya, Takafumi; Kohno, Takayuki; Kojima, Takashi; Himi, Tetsuo

    2016-01-01

    In the sensory hair cells of the mammalian cochlea, the primary cilia in the planar cell polarity as well as the tight junctions in the epithelial cell polarity and the barrier are important to maintain normal hearing. Temperature-sensitive mouse cochlear precursor hair cells were used to investigate the behavior of primary cilia and tricellular tight junction proteins during the differentiation of sensory hair cells. In undifferentiated cells (incubated at 33°C), many acetylated tubulin-positive primary cilia were observed, and each was accompanied with an x03B3;-tubulin-positive basal body. The primary cilia had a '9 + 0' architecture with nine outer microtubule doublets but lacking a central pair of microtubules. In differentiated cells (incubated at 39°C), acetylated tubulin-positive primary cilia as well as acetylated tubulin-positive cilia-like structures were partially observed on the cell surface. In differentiated cells, the number of primary cilia was markedly reduced compared with undifferentiated cells, and innumerable cilia-like structures with no ciliary pockets were partially observed on the cell surface. In undifferentiated cells, few tricellulin molecules and lipolysis-stimulated lipoprotein receptors (LSRs) were observed in the cytoplasm. In differentiated cells, many tricellulin molecules and LSRs were observed on the membranes and within the cytoplasm. Conditional immortalized mouse cochlear precursor hair cells may be useful to investigate the roles of primary cilia and tricellular tight junctions during cellular differentiation and degeneration such as apoptosis.

  15. [Multiple myeloma: Maintenance therapy after autologous hematopoietic stem cell transplantation, depending on minimal residual disease].

    PubMed

    Solovyev, M V; Mendeleeva, L P; Pokrovskaya, O S; Nareyko, M V; Firsova, M V; Galtseva, I V; Davydova, Yu O; Kapranov, N M; Kuzmina, L A; Gemdzhian, E G; Savchenko, V G

    2017-01-01

    To determine the efficiency of maintenance therapy with bortezomib in patients with multiple myeloma (MM) who have achieved complete remission (CR) after autologous hematopoietic stem cell (auto-HSCT), depending on the presence of minimal residual disease (MRD). In January 2014 to February 2016, fifty-two MM patients (19 men and 33 women) aged 24 to 66 years (median 54 years), who had achieved CR after auto-HSCT, were randomized to perform maintenance therapy with bortezomib during a year. On day 100 after auto-HSCT, all the patients underwent immunophenotyping of bone marrow plasma cells by 6-color flow cytometry to detect MRD. Relapse-free survival (RFS) was chosen as a criterion for evaluating the efficiency of maintenance therapy. After auto-HSCT, MRD-negative patients had a statistically significantly higher 2-year RFS rate than MRD-positive patients: 52.9% (95% confidence interval (CI), 35.5 to 70.5%) versus 37.2% (95% CI, 25.4 to 49.3%) (p=0.05). The presence of MRD statistically significantly increased the risk of relapse (odds ratio 1.7; 95% CI, 1.2 to 3.4; p=0.05). Two-year cumulative risk of relapse (using the Kaplan-Meier) after auto-HSCT did not statistically significantly differ in MRD-negative patients receiving (n=15) and not receiving (n=10) maintenance therapy with bortezomib (p=0.58). After completion of maintenance treatment, 42% of the MRD-positive patients achieved a negative status. In the MRD-positive patients who had received maintenance therapy, the average time to recurrence was 5 months longer than that in the naïve patients: 17.3 versus 12.3 months. The MRD status determined in MM patients who have achieved CR after auto-HSCT is an important factor for deciding on the use of maintenance therapy.

  16. Hedgehog signalling is essential for maintenance of cancer stem cells in myeloid leukaemia.

    PubMed

    Zhao, Chen; Chen, Alan; Jamieson, Catriona H; Fereshteh, Mark; Abrahamsson, Annelie; Blum, Jordan; Kwon, Hyog Young; Kim, Jynho; Chute, John P; Rizzieri, David; Munchhof, Michael; VanArsdale, Todd; Beachy, Philip A; Reya, Tannishtha

    2009-04-09

    Although the role of Hedgehog (Hh) signalling in embryonic pattern formation is well established, its functions in adult tissue renewal and maintenance remain unclear, and the relationship of these functions to cancer development has not been determined. Here we show that the loss of Smoothened (Smo), an essential component of the Hh pathway, impairs haematopoietic stem cell renewal and decreases induction of chronic myelogenous leukaemia (CML) by the BCR-ABL1 oncoprotein. Loss of Smo causes depletion of CML stem cells--the cells that propagate the leukaemia--whereas constitutively active Smo augments CML stem cell number and accelerates disease. As a possible mechanism for Smo action, we show that the cell fate determinant Numb, which depletes CML stem cells, is increased in the absence of Smo activity. Furthermore, pharmacological inhibition of Hh signalling impairs not only the propagation of CML driven by wild-type BCR-ABL1, but also the growth of imatinib-resistant mouse and human CML. These data indicate that Hh pathway activity is required for maintenance of normal and neoplastic stem cells of the haematopoietic system and raise the possibility that the drug resistance and disease recurrence associated with imatinib treatment of CML might be avoided by targeting this essential stem cell maintenance pathway.

  17. Integrative proteomic profiling of ovarian cancer cell lines reveals precursor cell associated proteins and functional status

    PubMed Central

    Coscia, F.; Watters, K. M.; Curtis, M.; Eckert, M. A.; Chiang, C. Y.; Tyanova, S.; Montag, A.; Lastra, R. R.; Lengyel, E.; Mann, M.

    2016-01-01

    A cell line representative of human high-grade serous ovarian cancer (HGSOC) should not only resemble its tumour of origin at the molecular level, but also demonstrate functional utility in pre-clinical investigations. Here, we report the integrated proteomic analysis of 26 ovarian cancer cell lines, HGSOC tumours, immortalized ovarian surface epithelial cells and fallopian tube epithelial cells via a single-run mass spectrometric workflow. The in-depth quantification of >10,000 proteins results in three distinct cell line categories: epithelial (group I), clear cell (group II) and mesenchymal (group III). We identify a 67-protein cell line signature, which separates our entire proteomic data set, as well as a confirmatory publicly available CPTAC/TCGA tumour proteome data set, into a predominantly epithelial and mesenchymal HGSOC tumour cluster. This proteomics-based epithelial/mesenchymal stratification of cell lines and human tumours indicates a possible origin of HGSOC either from the fallopian tube or from the ovarian surface epithelium. PMID:27561551

  18. Solution Deposited Precursors and Rapid Optical Processing Used in the Production of CIGS Solar Cells

    SciTech Connect

    Hersh, P. A.; Curtis, C. J.; Van Hest, M. F. A. M.; Habas, S. E.; Miedaner, A.; Ginley, D. S.; Stanbery, B. J.

    2011-01-01

    In this paper we use the combination of solution deposited liquid precursors and rapid optical processing (ROP) to make CIGS. The ROP process takes less than 1 minute of heating to convert the precursor stack to CIGS. Device made with ROP rival performance of device processed using field assisted simultaneous synthesis and transfer FASST{reg_sign} processing.

  19. Targeted disruption of beta-catenin in Sf1-expressing cells impairs development and maintenance of the adrenal cortex.

    PubMed

    Kim, Alex C; Reuter, Anne L; Zubair, Mohamad; Else, Tobias; Serecky, Kerri; Bingham, Nathan C; Lavery, Gareth G; Parker, Keith L; Hammer, Gary D

    2008-08-01

    The nuclear receptor steroidogenic factor 1 (Sf1, Nr5a1) is essential for adrenal development and regulates genes that specify differentiated adrenocortical function. The transcriptional coactivator beta-catenin reportedly synergizes with Sf1 to regulate a subset of these target genes; moreover, Wnt family members, signaling via beta-catenin, are also implicated in adrenocortical development. To investigate the role of beta-catenin in the adrenal cortex, we used two Sf1/Cre transgenes to inactivate conditional beta-catenin alleles. Inactivation of beta-catenin mediated by Sf1/Cre(high), a transgene expressed at high levels, caused adrenal aplasia in newborn mice. Analysis of fetal adrenal development with Sf1/Cre(high)-mediated beta-catenin inactivation showed decreased proliferation in presumptive adrenocortical precursor cells. By contrast, the Sf1/Cre(low) transgene effected a lesser degree of beta-catenin inactivation that did not affect all adrenocortical cells, permitting adrenal survival to reveal age-dependent degeneration of the cortex. These results define crucial roles for beta-catenin--presumably as part of the Wnt canonical signaling pathway--in both embryonic development of the adrenal cortex and in maintenance of the adult organ.

  20. Pax genes: regulators of lineage specification and progenitor cell maintenance.

    PubMed

    Blake, Judith A; Ziman, Melanie R

    2014-02-01

    Pax genes encode a family of transcription factors that orchestrate complex processes of lineage determination in the developing embryo. Their key role is to specify and maintain progenitor cells through use of complex molecular mechanisms such as alternate RNA splice forms and gene activation or inhibition in conjunction with protein co-factors. The significance of Pax genes in development is highlighted by abnormalities that arise from the expression of mutant Pax genes. Here, we review the molecular functions of Pax genes during development and detail the regulatory mechanisms by which they specify and maintain progenitor cells across various tissue lineages. We also discuss mechanistic insights into the roles of Pax genes in regeneration and in adult diseases, including cancer.

  1. Maintenance of Epithelial Stem Cells by Cbl Proteins

    DTIC Science & Technology

    2013-09-01

    our research findings during the entire grant period (Sept. 2010 – Aug. 2013). 1. Analysis of Cbl functions in progenitor-type mammary epithelial...catenin pathway, but further investigation is required to establish this. 2. Analysis of Cbl functions in vivo using gene mutant mouse models We...Nandwani N, Gu H, Band V, Band H. Rapidly fatal myeloproliferative disorders in mice with deletion of Casitas B-cell lymphoma (Cbl) and Cbl-b in

  2. Maintenance of imprinting and nuclear architecture in cycling cells.

    PubMed

    Teller, Kathrin; Solovei, Irina; Buiting, Karin; Horsthemke, Bernhard; Cremer, Thomas

    2007-09-18

    Dynamic gene repositioning has emerged as an additional level of epigenetic gene regulation. An early example was the report of a transient, spatial convergence (< or =2 microm) of oppositely imprinted regions ("kissing"), including the Angelman syndrome/Prader-Willi syndrome (AS/PWS) locus and the Beckwith-Wiedemann syndrome locus in human lymphocytes during late S phase. It was argued that kissing is required for maintaining opposite imprints in cycling cells. Employing 3D-FISH with a BAC contig covering the AS/PWS region, light optical, serial sectioning, and quantitative 3D-image analysis, we observed that both loci always retained a compact structure and did not form giant loops. Three-dimensional distances measured among various, homologous AS/PWS segments in 393 human lymphocytes, 132 human fibroblasts, and 129 lymphoblastoid cells from Gorilla gorilla revealed a wide range of distances at any stage of interphase and in G(0). At late S phase, 4% of nuclei showed distances < or =2 microm, 49% showed distances >6 microm, and 18% even showed distances >8 microm. A similar distance variability was found for Homo sapiens (HSA) 15 centromeres in a PWS patient with a deletion of the maternal AS/PWS locus and for the Beckwith-Wiedemann syndrome loci in human lymphocytes. A transient kiss during late S phase between loci widely separated at other stages of the cell cycle seems incompatible with known global constraints of chromatin movements in cycling cells. Further experiments suggest that the previously observed convergence of AS/PWS loci during late S phase was most likely a side effect of the convergence of nucleolus organizer region-bearing acrocentric human chromosomes, including HSA 15.

  3. Dynamic Pedagogy for Effective Training of Youths in Cell Phone Maintenance

    ERIC Educational Resources Information Center

    Ogbuanya, T. C.; Jimoh, Bakare

    2015-01-01

    The study determined dynamic pedagogies for effective training of youths in cell phone maintenance. The study was conducted in Enugu State of Nigeria. Four research questions were developed while four null hypotheses formulated were tested at 0.05 level of significance. A survey research design was adopted for the study. The population for the…

  4. Characterization of oligodendrocyte lineage precursor cells in the mouse cerebral cortex: a confocal microscopy approach to demyelinating diseases.

    PubMed

    Girolamo, Francesco; Strippoli, Maurizio; Errede, Mariella; Benagiano, Vincenzo; Roncali, Luisa; Ambrosi, Glauco; Virgintino, Daniela

    2010-01-01

    The identification of stem cells resident in the adult central nervous system has redirected the focus of research into demyelinating diseases, such as multiple sclerosis, mainly affecting the brain white matter. This immunocytochemical and morphometrical study was carried out by confocal microscopy in the adult mouse cerebral cortex, with the aim of analysing, in the brain grey matter, the characteristics of the oligodendrocyte lineage cells, whose capability to remyelinate is still controversial. The observations demonstrated the presence in all the cortex layers of glial restricted progenitors, reactive to A2B5 marker, oligodendrocyte precursor cells, expressing the NG2 proteoglycan, and pre-oligodendrocytes and pre-myelinating oligodendrocytes, reactive to the specific marker O4. NG2 expressing cells constitute the major immature population of the cortex, since not only oligodendrocyte precursor cells and pre-oligodendrocytes but also a part of the glial restrict progenitors express the NG2 proteoglycan. Together with the population of these immature cells, a larger population of mature oligodendrocytes was revealed by the classical oligodendrocyte and myelin markers, 2',3'-cyclic nucleotide 3'-phosphodiesterase, myelin basic protein and myelin oligodendrocyte glycoprotein. The results indicate that oligodendrocyte precursors committed to differentiate into myelin forming oligodendrocytes are present through all layers of the adult cortex and that their phenotypic features exactly recall those of the oligodendroglial lineage cells during development.

  5. Nfil3-independent lineage maintenance and antiviral response of natural killer cells.

    PubMed

    Firth, Matthew A; Madera, Sharline; Beaulieu, Aimee M; Gasteiger, Georg; Castillo, Eliseo F; Schluns, Kimberly S; Kubo, Masato; Rothman, Paul B; Vivier, Eric; Sun, Joseph C

    2013-12-16

    Development of the natural killer (NK) cell lineage is dependent on the transcription factor Nfil3 (or E4BP4), which is thought to act downstream of IL-15 signaling. Nfil3-deficient mice lack NK cells, whereas other lymphocyte lineages (B, T, and NKT cells) remain largely intact. We report the appearance of Ly49H-expressing NK cells in Nfil3(-/-) mice infected with mouse cytomegalovirus (MCMV) or recombinant viruses expressing the viral m157 glycoprotein. Nfil3(-/-) NK cells at the peak of antigen-driven expansion were functionally similar to NK cells from infected wild-type mice with respect to IFN-γ production and cytotoxicity, and could comparably produce long-lived memory NK cells that persisted in lymphoid and nonlymphoid tissues for >60 d. We demonstrate that generation and maintenance of NK cell memory is an Nfil3-independent but IL-15-dependent process. Furthermore, specific ablation of Nfil3 in either immature NK cells in the bone marrow or mature peripheral NK cells had no observable effect on NK cell lineage maintenance or homeostasis. Thus, expression of Nfil3 is crucial only early in the development of NK cells, and signals through activating receptors and proinflammatory cytokines during viral infection can bypass the requirement for Nfil3, promoting the proliferation and long-term survival of virus-specific NK cells.

  6. Nfil3-independent lineage maintenance and antiviral response of natural killer cells

    PubMed Central

    Firth, Matthew A.; Madera, Sharline; Beaulieu, Aimee M.; Gasteiger, Georg; Castillo, Eliseo F.; Schluns, Kimberly S.; Kubo, Masato; Rothman, Paul B.; Vivier, Eric

    2013-01-01

    Development of the natural killer (NK) cell lineage is dependent on the transcription factor Nfil3 (or E4BP4), which is thought to act downstream of IL-15 signaling. Nfil3-deficient mice lack NK cells, whereas other lymphocyte lineages (B, T, and NKT cells) remain largely intact. We report the appearance of Ly49H-expressing NK cells in Nfil3−/− mice infected with mouse cytomegalovirus (MCMV) or recombinant viruses expressing the viral m157 glycoprotein. Nfil3−/− NK cells at the peak of antigen-driven expansion were functionally similar to NK cells from infected wild-type mice with respect to IFN-γ production and cytotoxicity, and could comparably produce long-lived memory NK cells that persisted in lymphoid and nonlymphoid tissues for >60 d. We demonstrate that generation and maintenance of NK cell memory is an Nfil3-independent but IL-15–dependent process. Furthermore, specific ablation of Nfil3 in either immature NK cells in the bone marrow or mature peripheral NK cells had no observable effect on NK cell lineage maintenance or homeostasis. Thus, expression of Nfil3 is crucial only early in the development of NK cells, and signals through activating receptors and proinflammatory cytokines during viral infection can bypass the requirement for Nfil3, promoting the proliferation and long-term survival of virus-specific NK cells. PMID:24277151

  7. Pediatric precursor B acute lymphoblastic leukemia: are T helper cells the missing link in the infectious etiology theory?

    PubMed

    Bürgler, Simone; Nadal, David

    2017-12-01

    Precursor B acute lymphoblastic leukemia (BCP-ALL), the most common childhood malignancy, arises from an expansion of malignant B cell precursors in the bone marrow. Epidemiological studies suggest that infections or immune responses to infections may promote such an expansion and thus BCP-ALL development. Nevertheless, a specific pathogen responsible for this process has not been identified. BCP-ALL cells critically depend on interactions with the bone marrow microenvironment. The bone marrow is also home to memory T helper (Th) cells that have previously expanded during an immune response in the periphery. In secondary lymphoid organs, Th cells can interact with malignant cells of mature B cell origin, while such interactions between Th cells and malignant immature B cell in the bone marrow have not been described yet. Nevertheless, literature supports a model where Th cells-expanded during an infection in early childhood-migrate to the bone marrow and support BCP-ALL cells as they support normal B cells. Further research is required to mechanistically confirm this model and to elucidate the interaction pathways between leukemia cells and cells of the tumor microenvironment. As benefit, targeting these interactions could be included in current treatment regimens to increase therapeutic efficiency and to reduce relapses.

  8. MicroRNA 22 Regulates Cell Cycle Length in Cerebellar Granular Neuron Precursors

    PubMed Central

    Berenguer, Jordi; Herrera, Antonio; Vuolo, Laura; Torroba, Blanca; Llorens, Franc; Sumoy, Lauro

    2013-01-01

    During cerebellum development, Sonic hedgehog (Shh)-induced proliferation of cerebellar granular neuronal precursors (CGNPs) is potently inhibited by bone morphogenetic proteins (BMPs). We have previously reported the upregulation of TIEG-1 and Mash1, two antimitotic factors that modulate MYCN transcription and N-Myc activity, in response to BMP2. To gain further insight into the BMP antimitotic mechanism, we used microRNA (miRNA) arrays to compare the miRNAs of CGNPs proliferating in response to Shh with those of CGNPs treated with Shh plus BMP2. The array analysis revealed that miRNA 11 (miR-22) levels significantly increased in cells treated with BMP2. Additionally, in P7 mouse cerebellum, miR-22 distribution mostly recapitulated the combination of BMP2 and BMP4 expression patterns. Accordingly, in CGNP cultures, miR-22 overexpression significantly reduced cell proliferation, whereas miR-22 suppression diminished BMP2 antiproliferative activity. In contrast to BMP2, miR-22 did not induce neural differentiation but instead significantly increased cell cycle length. Consistent with the central role played by N-myc on CGNP proliferation, Max was revealed as a direct target of miR-22, and miR-22 expression caused a significant reduction of Max protein levels and N-myc/Max-dependent promoter activity. Therefore, we conclude that, in addition to the previously described mechanisms, miR-22 plays a specific role on downstream BMPs through cerebellum growth. PMID:23671190

  9. Recruitment of myeloid but not endothelial precursor cells facilitates tumor re-growth after local irradiation

    PubMed Central

    Kozin, Sergey V.; Kamoun, Walid S.; Huang, Yuhui; Dawson, Michelle R.; Jain, Rakesh K.; Duda, Dan G.

    2010-01-01

    Tumor neovascularization and growth may be promoted by recruitment of bone marrow-derived cells (BMDCs), which include endothelial precursor cells (EPCs) and “vascular modulatory” myelomonocytic (CD11b+) cells. BMDCs may also drive tumor re-growth after certain chemotherapeutic and vascular disruption treatments. In this study, we evaluated the role of BMDC recruitment in breast and lung carcinoma xenograft models after local irradiation (LI). We depleted the bone marrow by including whole body irradiation (WBI) of 6Gy as part of a total tumor dose of 21Gy, and compared the growth delay with the one achieved after LI of 21Gy. In both models, including WBI induced longer tumor growth delays. Moreover, including WBI increased lung tumor control probability by LI. Exogenous delivery of BMDCs from radiation-naïve donors partially abrogated the WBI effect. Myeloid BMDCs, primarily macrophages, rapidly accumulated in tumors after LI. Intratumoral expression of SDF-1α, a chemokine that promotes tissue retention of BMDCs, was noted 2 days after LI. Conversely, treatment with an inhibitor of SDF-1α receptor CXCR4 (AMD3100) with LI significantly delayed tumor re-growth. However, when administered starting from 5 days post-LI, AMD3100 treatment was ineffective. Lastly, with restorative bone marrow transplantation of T