Science.gov

Sample records for precursor cells derived

  1. In vitro osteogenesis from human skin-derived precursor cells.

    PubMed

    Buranasinsup, Shutipen; Sila-Asna, Monnipha; Bunyaratvej, Narong; Bunyaratvej, Ahnond

    2006-05-01

    Embryonic tissue and organ development are initiated from three embryonic germ layers: ectoderm (skin and neuron), mesoderm (blood, bone, muscle, cartilage and fat) and endoderm (respiratory and digestive tract). In former times, it was believed that cell types in each germ layer are specific and do not cross from one to another throughout life. A new finding is that one tissue lineage can differentiate across to another tissue lineage, and this is termed transdifferentiation. We were interested in studying the transdifferentiation of skin-derived precursor cells (ectoderm layer) to osteoblastic cells (mesoderm layer). Human skin-derived precursor cells (hSKP) were isolated and induced into an osteoblastic lineage using osteogenic induction medium (alpha-MEM plus 10% fetal bovine serum supplemented with ascorbic acid, beta-glycerophosphate and dexamethasone). The specific characteristics of osteoblastic cells, including the expression of enzyme alkaline phosphatase, the deposition of mineral and the expression of osterix, bone sialoprotein and osteocalcin, were detected only from the inductive group. The results in our study show that SKP from human skin are a practically available source for osteogenesis. The samples are easily obtainable for autologous use with a high expansion capacity.

  2. SKPs derive from hair follicle precursors and exhibit properties of adult dermal stem cells.

    PubMed

    Biernaskie, Jeffrey; Paris, Maryline; Morozova, Olena; Fagan, B Matthew; Marra, Marco; Pevny, Larysa; Miller, Freda D

    2009-12-01

    Despite the remarkable regenerative capacity of mammalian skin, an adult dermal stem cell has not yet been identified. Here, we investigated whether skin-derived precursors (SKPs) might fulfill such a role. We show that SKPs derive from Sox2(+) hair follicle dermal cells and that these two cell populations are similar with regard to their transcriptome and functional properties. Both clonal SKPs and endogenous Sox2(+) cells induce hair morphogenesis, differentiate into dermal cell types, and home to a hair follicle niche upon transplantation. Moreover, hair follicle-derived SKPs self-renew, maintain their multipotency, and serially reconstitute hair follicles. Finally, grafting experiments show that follicle-associated dermal cells move out of their niche to contribute cells for dermal maintenance and wound-healing. Thus, SKPs derive from Sox2(+) follicle-associated dermal precursors and display functional properties predicted of a dermal stem cell, contributing to dermal maintenance, wound-healing, and hair follicle morphogenesis.

  3. Derivation of Neural Precursor Cells from Human Embryonic Stem Cells for DNA Methylomic Analysis.

    PubMed

    Roubal, Ivan; Park, Sun Joo; Kim, Yong

    2016-01-01

    Embryonic stem cells are self-renewing pluripotent cells with competency to differentiate into all three-germ lineages. Many studies have demonstrated the importance of genetic and epigenetic molecular mechanisms in the maintenance of self-renewal and pluripotency. Stem cells are under unique molecular and cellular regulations different from somatic cells. Proper regulation should be ensured to maintain their unique self-renewal and undifferentiated characteristics. Understanding key mechanisms in stem cell biology will be important for the successful application of stem cells for regenerative therapeutic medicine. More importantly practical use of stem cells will require our knowledge on how to properly direct and differentiate stem cells into the necessary type of cells. Embryonic stem cells and adult stem cells have been used as study models to unveil molecular and cellular mechanisms in various signaling pathways. They are especially beneficial to developmental studies where in vivo molecular/cellular study models are not available. We have derived neural stem cells from human embryonic stem cells as a model to study the effect of teratogen in neural development. We have tested commercial neural differentiation system and successfully derived neural precursor cells exhibiting key molecular features of neural stem cells, which will be useful for experimental application.

  4. Smooth Muscle Precursor Cells Derived from Human Pluripotent Stem Cells for Treatment of Stress Urinary Incontinence

    PubMed Central

    Wang, Zhe; Li, Yan Hui; Wei, Yi; Green, Morgaine; Wani, Prachi; Zhang, Pengbo; Pera, Renee Reijo; Chen, Bertha

    2016-01-01

    There is great interest in using stem cells (SC) to regenerate a deficient urethral sphincter in patients with urinary incontinence. The smooth muscle component of the sphincter is a significant contributor to sphincter function. However, current translational efforts for sphincter muscle restoration focus only on skeletal muscle regeneration because they rely on adult mesenchymal SC as cell source. These adult SC do not yield sufficient smooth muscle cells (SMCs) for transplantation. We may be able to overcome this limitation by using pluripotent stem cell (PSC) to derive SMCs. Hence, we sought to investigate whether smooth muscle precursor cells (pSMCs) derived from human PSCs can restore urethral function in an animal model generated by surgical urethrolysis and ovariectomy. Rats were divided into four groups: control (no intervention), sham saline (surgery + saline injection), bladder SMC (surgery + human bladder SMC injection), and treatment (surgery + pSMC injection, which includes human embryonic stem cell (hESC) H9-derived pSMC, episomal reprogrammed induced pluripotent stem cells (iPSCs)-derived pSMC, or viral reprogrammed iPSC-derived pSMC). pSMCs (2 × 106 cells/rat) were injected periurethrally 3 weeks postsurgery. Leak point pressure (LPP) and baseline external urethral sphincter electromyography were measured 5 weeks postinjection. Both iPSC-derived pSMC treatment groups showed significantly higher LPP compared to the sham saline group, consistent with restoration of urethral sphincter function. While the difference between the H9-derived pSMC treatment and sham saline group was not significant, it did show a trend toward restoration of the LPP to the level of intact controls. Our data indicate that pSMCs derived from human PSCs (hESC and iPSC) can restore sphincter function. PMID:26785911

  5. Alcohol-Induced Molecular Dysregulation in Human Embryonic Stem Cell-Derived Neural Precursor Cells

    PubMed Central

    Kim, Yi Young; Roubal, Ivan; Lee, Youn Soo; Kim, Jin Seok; Hoang, Michael; Mathiyakom, Nathan; Kim, Yong

    2016-01-01

    Adverse effect of alcohol on neural function has been well documented. Especially, the teratogenic effect of alcohol on neurodevelopment during embryogenesis has been demonstrated in various models, which could be a pathologic basis for fetal alcohol spectrum disorders (FASDs). While the developmental defects from alcohol abuse during gestation have been described, the specific mechanisms by which alcohol mediates these injuries have yet to be determined. Recent studies have shown that alcohol has significant effect on molecular and cellular regulatory mechanisms in embryonic stem cell (ESC) differentiation including genes involved in neural development. To test our hypothesis that alcohol induces molecular alterations during neural differentiation we have derived neural precursor cells from pluripotent human ESCs in the presence or absence of ethanol treatment. Genome-wide transcriptomic profiling identified molecular alterations induced by ethanol exposure during neural differentiation of hESCs into neural rosettes and neural precursor cell populations. The Database for Annotation, Visualization and Integrated Discovery (DAVID) functional analysis on significantly altered genes showed potential ethanol’s effect on JAK-STAT signaling pathway, neuroactive ligand-receptor interaction, Toll-like receptor (TLR) signaling pathway, cytokine-cytokine receptor interaction and regulation of autophagy. We have further quantitatively verified ethanol-induced alterations of selected candidate genes. Among verified genes we further examined the expression of P2RX3, which is associated with nociception, a peripheral pain response. We found ethanol significantly reduced the level of P2RX3 in undifferentiated hESCs, but induced the level of P2RX3 mRNA and protein in hESC-derived NPCs. Our result suggests ethanol-induced dysregulation of P2RX3 along with alterations in molecules involved in neural activity such as neuroactive ligand-receptor interaction may be a molecular event

  6. Derivation of Skeletal Myogenic Precursors from Human Pluripotent Stem Cells Using Conditional Expression of PAX7.

    PubMed

    Darabi, Radbod; Perlingeiro, Rita C R

    2016-01-01

    Cell-based therapies are considered as one of the most promising approaches for the treatment of degenerating pathologies including muscle disorders and dystrophies. Advances in the approach of reprogramming somatic cells into induced pluripotent stem (iPS) cells allow for the possibility of using the patient's own pluripotent cells to generate specific tissues for autologous transplantation. In addition, patient-specific tissue derivatives have been shown to represent valuable material for disease modeling and drug discovery. Nevertheless, directed differentiation of pluripotent stem cells into a specific lineage is not a trivial task especially in the case of skeletal myogenesis, which is generally poorly recapitulated during the in vitro differentiation of pluripotent stem cells.Here, we describe a practical and efficient method for the derivation of skeletal myogenic precursors from differentiating human pluripotent stem cells using controlled expression of PAX7. Flow cytometry (FACS) purified myogenic precursors can be expanded exponentially and differentiated in vitro into myotubes, enabling researchers to use these cells for disease modeling as well as therapeutic purposes.

  7. Isolation of Mature (Peritoneum-Derived) Mast Cells and Immature (Bone Marrow-Derived) Mast Cell Precursors from Mice

    PubMed Central

    Meurer, Steffen K.; Neß, Melanie; Weiskirchen, Sabine; Kim, Philipp; Tag, Carmen G.; Kauffmann, Marlies; Huber, Michael; Weiskirchen, Ralf

    2016-01-01

    Mast cells (MCs) are a versatile cell type playing key roles in tissue morphogenesis and host defence against bacteria and parasites. Furthermore, they can enhance immunological danger signals and are implicated in inflammatory disorders like fibrosis. This granulated cell type originates from the myeloid lineage and has similarities to basophilic granulocytes, both containing large quantities of histamine and heparin. Immature murine mast cells mature in their destination tissue and adopt either the connective tissue (CTMC) or mucosal (MMC) type. Some effector functions are executed by activation/degranulation of MCs which lead to secretion of a typical set of MC proteases (MCPT) and of the preformed or newly synthesized mediators from its granules into the local microenvironment. Due to the potential accumulation of mutations in key signalling pathway components of corresponding MC cell-lines, primary cultured MCs are an attractive mean to study general features of MC biology and aspects of MC functions relevant to human disease. Here, we describe a simple protocol for the simultaneous isolation of mature CTMC-like murine MCs from the peritoneum (PMCs) and immature MC precursors from the bone marrow (BM). The latter are differentiated in vitro to yield BM-derived MCs (BMMC). These cells display the typical morphological and phenotypic features of MCs, express the typical MC surface markers, and can be propagated and kept in culture for several weeks. The provided protocol allows simple amplification of large quantities of homogenous, non-transformed MCs from the peritoneum and bone marrow-derived mast cells for cell- and tissue-based biomedical research. PMID:27337047

  8. Learning-induced synaptic potentiation in implanted neural precursor cell-derived neurons

    PubMed Central

    Park, Kyungjoon; Heo, Hwon; Han, Ma Eum; Choi, Kyuhyun; Yi, Jee Hyun; Kang, Shin Jung; Kwon, Yunhee Kim; Shin, Ki Soon

    2015-01-01

    Neuronal loss caused by neurodegenerative diseases, traumatic brain injury and stroke results in cognitive dysfunctioning. Implantation of neural stem/precursor cells (NPCs) can improve the brain function by replacing lost neurons. Proper synaptic integration following neuronal differentiation of implanted cells is believed to be a prerequisite for the functional recovery. In the present study, we characterized the functional properties of immortalized neural progenitor HiB5 cells implanted into the rat hippocampus with chemically induced lesion. The implanted HiB5 cells migrated toward CA1 pyramidal layer and differentiated into vGluT1-positive glutamatergic neurons with morphological and electrophysiological properties of endogenous CA1 pyramidal cells. Functional synaptic integration of HiB5 cell-derived neurons was also evidenced by immunohistochemical and electrophysiological data. Lesion-caused memory deficit was significantly recovered after the implantation when assessed by inhibitory avoidance (IA) learning. Remarkably, IA learning preferentially produced long-term potentiation (LTP) at the synapses onto HiB5 cell-derived neurons, which occluded paring protocol-induced LTP ex vivo. We conclude that the implanted HiB5 cell-derived neurons actively participate in learning process through LTP formation, thereby counteracting lesion-mediated memory impairment. PMID:26634434

  9. Learning-induced synaptic potentiation in implanted neural precursor cell-derived neurons.

    PubMed

    Park, Kyungjoon; Heo, Hwon; Han, Ma Eum; Choi, Kyuhyun; Yi, Jee Hyun; Kang, Shin Jung; Kwon, Yunhee Kim; Shin, Ki Soon

    2015-12-04

    Neuronal loss caused by neurodegenerative diseases, traumatic brain injury and stroke results in cognitive dysfunctioning. Implantation of neural stem/precursor cells (NPCs) can improve the brain function by replacing lost neurons. Proper synaptic integration following neuronal differentiation of implanted cells is believed to be a prerequisite for the functional recovery. In the present study, we characterized the functional properties of immortalized neural progenitor HiB5 cells implanted into the rat hippocampus with chemically induced lesion. The implanted HiB5 cells migrated toward CA1 pyramidal layer and differentiated into vGluT1-positive glutamatergic neurons with morphological and electrophysiological properties of endogenous CA1 pyramidal cells. Functional synaptic integration of HiB5 cell-derived neurons was also evidenced by immunohistochemical and electrophysiological data. Lesion-caused memory deficit was significantly recovered after the implantation when assessed by inhibitory avoidance (IA) learning. Remarkably, IA learning preferentially produced long-term potentiation (LTP) at the synapses onto HiB5 cell-derived neurons, which occluded paring protocol-induced LTP ex vivo. We conclude that the implanted HiB5 cell-derived neurons actively participate in learning process through LTP formation, thereby counteracting lesion-mediated memory impairment.

  10. Intravenous Administration of Human ES-derived Neural Precursor Cells Attenuates Cuprizone-induced CNS Demyelination

    PubMed Central

    Crocker, Stephen J.; Bajpai, Ruchi; Moore, Craig S.; Frausto, Ricardo F.; Brown, Graham D.; Pagarigan, Roberto R.; Whitton, J. Lindsay; Terskikh, Alexey V.

    2011-01-01

    Aims Previous studies have demonstrated the therapeutic potential for human embryonic stem cell-derived neural precursor cells (hES-NPCs) in autoimmune and genetic animal models of demyelinating diseases. Herein, we tested whether intravenous (i.v) administration of hES-NPCs would impact central nervous system (CNS) demyelination in a cuprizone model of demyelination. Methods C57Bl/6 mice were fed cuprizone (0.2%) for two weeks and then separated into two groups that either received an i.v. injection of hES-NPCs or i.v. administration of media without these cells. After an additional two weeks of dietary cuprizone treatment, CNS tissues were analyzed for detection of transplanted cells and differences in myelination in the region of the corpus callosum (CC). Results Cuprizone-induced demyelination in the CC was significantly reduced in mice treated with hES-NPCs compared with cuprizone-treated controls that did not receive stem cells. hES-NPCs were identified within the brain tissues of treated mice and revealed migration of transplanted cells into the CNS. A limited number of human cells were found to express the mature oligodendrocyte marker, O1, or the astrocyte marker, GFAP. Reduced apoptosis and attenuated microglial and astrocytic responses were also observed in the CC of hES-NPC-treated mice. Conclusions These findings indicated that systemically-administered hES-NPCs migrated from circulation into a demyelinated lesion within the CNS and effectively reduced demyelination. Observed reductions in astrocyte and microglial responses, and (c) the benefit of hES-NPC treatment in this model of myelin injury was not obviously accountable to tissue replacement by exogenously administered cells. PMID:21276029

  11. GDNF facilitates differentiation of the adult dentate gyrus-derived neural precursor cells into astrocytes via STAT3

    SciTech Connect

    Boku, Shuken; Nakagawa, Shin; Takamura, Naoki; Kato, Akiko; Takebayashi, Minoru; Hisaoka-Nakashima, Kazue; Omiya, Yuki; Inoue, Takeshi; Kusumi, Ichiro

    2013-05-17

    Highlights: •GDNF has no effect on ADP proliferation and apoptosis. •GDNF increases ADP differentiation into astrocyte. •A specific inhibitor of STAT3 decreases the astrogliogenic effect of GDNF. •STAT3 knockdown by lentiviral shRNA vector also decreases the astrogliogenic effect of GDNF. •GDNF increases the phosphorylation of STAT3. -- Abstract: While the pro-neurogenic actions of antidepressants in the adult hippocampal dentate gyrus (DG) are thought to be one of the mechanisms through which antidepressants exert their therapeutic actions, antidepressants do not increase proliferation of neural precursor cells derived from the adult DG. Because previous studies showed that antidepressants increase the expression and secretion of glial cell line-derived neurotrophic factor (GDNF) in C6 glioma cells derived from rat astrocytes and GDNF increases neurogenesis in adult DG in vivo, we investigated the effects of GDNF on the proliferation, differentiation and apoptosis of cultured neural precursor cells derived from the adult DG. Data showed that GDNF facilitated the differentiation of neural precursor cells into astrocytes but had no effect on their proliferation or apoptosis. Moreover, GDNF increased the phosphorylation of STAT3, and both a specific inhibitor of STAT3 and lentiviral shRNA for STAT3 decreased their differentiation into astrocytes. Taken together, our findings suggest that GDNF facilitates astrogliogenesis from neural precursor cells in adult DG through activating STAT3 and that this action might indirectly affect neurogenesis.

  12. New methods for inducing the differentiation of amniotic-derived mesenchymal stem cells into motor neuron precursor cells.

    PubMed

    Hu, Wei; Guan, Fang-xia; Li, Yuan; Tang, You-jia; Yang, Feng; Yang, Bo

    2013-10-01

    Our study investigates the differentiation of amniotic-derived mesenchymal stem cells (ADMSCs) into motor neuron (MN) precursor cells induced by a combination of extracellular matrix (ECM) and multi-cell factors. Membrane-like ECM was made by an enzymatic and chemical extraction method and exhibited good biological compatibility. Cells in the experimental group (EG) were treated with ECM and multi-cell factors in a multi-step induction process, while the control group (CG) was treated similarly, except without ECM. In the EG, after induction, the cells formed processes that connected with neighboring cells to form a net that had directionality. In these cells, neuron-specific enolase (NSE) and synaptophysin (SYN) expression levels increased and glial fibrillary acidic protein (GFAP) expression decreased. The SYN expression in the EG cells was higher compared with those in the CG. In the CG, NSE expression increased, while the expression of Nestin and SYN did not change. These were several changes in the levels of other genes: ADMSCs at passage 1 expressed Nanog, SOX2, octamer-binding transcription factor 4 (OCT4) and Nestin. In the EG, at the beginning of induction, the expression of Nanog decreased and that of SOX2 and Nestin increased. After 2 days, the cells expressed Nestin, OCT4 and SYNIII, and after 3 days, they expressed Olig2, OCT4, Nestin, SYNII and Islet1 (ISL1). Finally, at day 6, the cells expressed Nestin, SYNI, SYNIII, ISL-1, homeobox 9 (Hb9) and oligodendrocyte lineage transcription factor 2 (Olig2). In the CG, the cells never expressed SYNI, SYNII or Hb9. Our studies therefore demonstrate that the extracted ECM was capable of promoting the maturation of synapses. Human ADMSCs are composed of multiple cell subsets, including neural progenitor cells. The multi-step induction method used in this study causes human ADMSCs to differentiate into MN precursor cells.

  13. Skin-derived precursor cells promote angiogenesis and stimulate proliferation of endogenous neural stem cells after cerebral infarction.

    PubMed

    Mao, Duo; Yao, Xinpeng; Feng, Guowei; Yang, Xiaoqing; Mao, Lina; Wang, Xiaomin; Ke, Tingyu; Che, Yongzhe; Kong, Deling

    2015-01-01

    Stroke is one of the most common diseases that caused high mortality and has become burden to the health care systems. Stem cell transplantation has shown therapeutic effect in ameliorating ischemic damage after cerebral artery occlusion mainly due to their neurogenesis, immune regulation, or effects on the plasticity, proliferation, and survival of host cells. Recent studies demonstrated that skin-derived precursor cells (SKPs) could promote central nervous system regeneration in spinal cord injury model or the neonatal peripheral neuron. Here, we investigated the therapeutic potential of SKPs in a rat model of cerebral ischemia. SKPs were isolated, expanded, and transplanted into rat cortex and striatum after transient middle cerebral artery occlusion. Our results revealed that SKPs transplantation could improve the behavioral measures of neurological deficit. Moreover, immunohistology confirmed that SKPs could secrete basic FGF and VEGF in the ischemic region and further markedly increase the proliferation of endogenous nestin(+) and βIII-tubulin(+) neural stem cells. Furthermore, increased angiogenesis induced by SKPs was observed by vWF and α-SMA staining. These data suggest that SKPs induced endogenous neurogenesis and angiogenesis and protected neuron from hypoxic-ischemic environment. In conclusion, SKPs transplantation may be a promising approach in treatment of stroke.

  14. Neural Growth Factor Stimulates Proliferation of Spinal Cord Derived-Neural Precursor/Stem Cells

    PubMed Central

    Han, Youngmin

    2016-01-01

    Objective Recently, regenerative therapies have been used in clinical trials (heart, cartilage, skeletal). We don't make use of these treatments to spinal cord injury (SCI) patients yet, but regenerative therapies are rising interest in recent study about SCI. Neural precursor/stem cell (NPSC) proliferation is a significant event in functional recovery of the central nervous system (CNS). However, brain NPSCs and spinal cord NPSCs (SC-NPSCs) have many differences including gene expression and proliferation. The purpose of this study was to investigate the influence of neural growth factor (NGF) on the proliferation of SC-NPSCs. Methods NPSCs (2×104) were suspended in 100 µL of neurobasal medium containing NGF-7S (Sigma-Aldrich) and cultured in a 96-well plate for 12 days. NPSC proliferation was analyzed five times for either concentration of NGF (0.02 and 2 ng/mL). Sixteen rats after SCI were randomly allocated into two groups. In group 1 (SCI-vehicle group, n=8), animals received 1.0 mL of the saline vehicle solution. In group 2 (SCI-NGF group, n=8), the animals received single doses of NGF (Sigma-Aldrich). A dose of 0.02 ng/mL of NGF or normal saline as a vehicle control was intra-thecally injected daily at 24 hour intervals for 7 days. For Immunohistochemistry analysis, rats were sacrificed after one week and the spinal cords were obtained. Results The elevation of cell proliferation with 0.02 ng/mL NGF was significant (p<0.05) but was not significant for 2 ng/mL NGF. The optical density was increased in the NGF 0.02 ng/mL group compared to the control group and NGF 2 ng/mL groups. The density of nestin in the SCI-NGF group was significantly increased over the SCI-vehicle group (p<0.05). High power microscopy revealed that the density of nestin in the SCI-NGF group was significantly increased over the SCI-vehicle group. Conclusion SC-NPSC proliferation is an important pathway in the functional recovery of SCI. NGF enhances SC-NPSC proliferation in vitro and in

  15. Neural Growth Factor Stimulates Proliferation of Spinal Cord Derived-Neural Precursor/Stem Cells

    PubMed Central

    Han, Youngmin

    2016-01-01

    Objective Recently, regenerative therapies have been used in clinical trials (heart, cartilage, skeletal). We don't make use of these treatments to spinal cord injury (SCI) patients yet, but regenerative therapies are rising interest in recent study about SCI. Neural precursor/stem cell (NPSC) proliferation is a significant event in functional recovery of the central nervous system (CNS). However, brain NPSCs and spinal cord NPSCs (SC-NPSCs) have many differences including gene expression and proliferation. The purpose of this study was to investigate the influence of neural growth factor (NGF) on the proliferation of SC-NPSCs. Methods NPSCs (2×104) were suspended in 100 µL of neurobasal medium containing NGF-7S (Sigma-Aldrich) and cultured in a 96-well plate for 12 days. NPSC proliferation was analyzed five times for either concentration of NGF (0.02 and 2 ng/mL). Sixteen rats after SCI were randomly allocated into two groups. In group 1 (SCI-vehicle group, n=8), animals received 1.0 mL of the saline vehicle solution. In group 2 (SCI-NGF group, n=8), the animals received single doses of NGF (Sigma-Aldrich). A dose of 0.02 ng/mL of NGF or normal saline as a vehicle control was intra-thecally injected daily at 24 hour intervals for 7 days. For Immunohistochemistry analysis, rats were sacrificed after one week and the spinal cords were obtained. Results The elevation of cell proliferation with 0.02 ng/mL NGF was significant (p<0.05) but was not significant for 2 ng/mL NGF. The optical density was increased in the NGF 0.02 ng/mL group compared to the control group and NGF 2 ng/mL groups. The density of nestin in the SCI-NGF group was significantly increased over the SCI-vehicle group (p<0.05). High power microscopy revealed that the density of nestin in the SCI-NGF group was significantly increased over the SCI-vehicle group. Conclusion SC-NPSC proliferation is an important pathway in the functional recovery of SCI. NGF enhances SC-NPSC proliferation in vitro and in

  16. Adult skin-derived precursor Schwann cells exhibit superior myelination and regeneration supportive properties compared to chronically denervated nerve-derived Schwann cells.

    PubMed

    Kumar, Ranjan; Sinha, Sarthak; Hagner, Andrew; Stykel, Morgan; Raharjo, Eko; Singh, Karun K; Midha, Rajiv; Biernaskie, Jeff

    2016-04-01

    Functional outcomes following delayed peripheral nerve repair are poor. Schwann cells (SCs) play key roles in supporting axonal regeneration and remyelination following nerve injury, thus understanding the impact of chronic denervation on SC function is critical toward developing therapies to enhance regeneration. To improve our understanding of SC function following acute versus chronic-denervation, we performed functional assays of SCs from adult rodent sciatic nerve with acute- (Day 5 post) or chronic-denervation (Day 56 post), versus embryonic nerves. We also compared Schwann cells derived from adult skin-derived precursors (aSKP-SCs) as an accessible, autologous alternative to supplement the distal (denervated) nerve. We found that acutely-injured SCs and aSKP-SCs exhibited superior proliferative capacity, promotion of neurite outgrowth and myelination of axons, both in vitro and following transplant into a sciatic nerve crush injury model, while chronically-denervated SCs were severely impaired. Acute injury caused re-activation of transcription factors associated with an immature and pro-myelinating SC state (Oct-6, cJun, Sox2, AP2α, cadherin-19), but was diminished with prolonged denervation in vivo and could not be rescued following expansion in vitro suggesting that this is a permanent deficiency. Interestingly, aSKP-SCs closely resembled acutely injured and embryonic SCs, exhibiting elevated expression of these same transcription factors. In summary, prolonged denervation resulted in SC deficiency in several functional parameters that may contribute to impaired regeneration. In contrast, aSKP-SCs closely resemble the regenerative attributes ascribed to acutely-denervated or embryonic SCs emphasizing their potential as an accessible and autologous source of glia cells to enhance nerve regeneration, particularly following delays to surgical repair.

  17. Regulation of proteolytic cleavage of brain-derived neurotrophic factor precursor by antidepressants in human neuroblastoma cells

    PubMed Central

    Lin, Pao-Yen

    2015-01-01

    Evidence has supported the role of brain-derived neurotrophic factor (BDNF) in antidepressant effect. The precursor of BDNF (proBDNF) often exerts opposing biological effects on mature BDNF (mBDNF). Hence, the balance between proBDNF and mBDNF might be critical in total neurotrophic effects, leading to susceptibility to or recovery from depression. In the current study, we measured the protein expression levels of proBDNF, and its proteolytic products, truncated BDNF, and mBDNF, in human SH-SY5Y cells treated with different antidepressants. We found that the treatment significantly increased the production of mBDNF, but decreased the production of truncated BDNF and proBDNF. These results support that antidepressants can promote proBDNF cleavage. Further studies are needed to clarify whether proBDNF cleavage plays a role in antidepressant mechanisms. PMID:26491331

  18. Nanofiber Matrices Promote the Neuronal Differentiation of Human Embryonic Stem Cell-Derived Neural Precursors In Vitro

    PubMed Central

    Lim, Shawn H.; Christopherson, Gregory T.; Xu, Leyan; Nasonkin, Igor; Yu, Christopher; Mao, Hai-Quan; Koliatsos, Vassilis E.

    2011-01-01

    The potential of human embryonic stem (ES) cells as experimental therapies for neuronal replacement has recently received considerable attention. In view of the organization of the mature nervous system into distinct neural circuits, key challenges of such therapies are the directed differentiation of human ES cell-derived neural precursors (NPs) into specific neuronal types and the directional growth of axons along specified trajectories. In the present study, we cultured human NPs derived from the NIH-approved ES line BGO1 on polycaprolactone fiber matrices of different diameter (i.e., nanofibers and microfibers) and orientation (i.e., aligned and random); fibers were coated with poly-L-ornithine/laminin to mimic the extracellular matrix and support the adhesion, viability, and differentiation of NPs. On aligned fibrous meshes, human NPs adopt polarized cell morphology with processes extending along the axis of the fiber, whereas NPs on plain tissue culture surfaces or random fiber substrates form nonpolarized neurite networks. Under differentiation conditions, human NPs cultured on aligned fibrous substrates show a higher rate of neuronal differentiation than other matrices; 62% and 86% of NPs become TUJ1 (+) early neurons on aligned micro- and nanofibers, respectively, whereas only 32% and 27% of NPs acquire the same fate on random micro- and nanofibers. Metabolic cell activity/viability studies reveal that fiber alignment and diameter also have an effect on NP viability, but only in the presence of mitogens. Our findings demonstrate that fibrous substrates serve as an artificial extracellular matrix and provide a microenviroment that influences key aspects of the neuronal differentiation of ES-derived NPs. PMID:20973749

  19. Grafted Human iPS Cell-Derived Oligodendrocyte Precursor Cells Contribute to Robust Remyelination of Demyelinated Axons after Spinal Cord Injury

    PubMed Central

    Kawabata, Soya; Takano, Morito; Numasawa-Kuroiwa, Yuko; Itakura, Go; Kobayashi, Yoshiomi; Nishiyama, Yuichiro; Sugai, Keiko; Nishimura, Soraya; Iwai, Hiroki; Isoda, Miho; Shibata, Shinsuke; Kohyama, Jun; Iwanami, Akio; Toyama, Yoshiaki; Matsumoto, Morio; Nakamura, Masaya; Okano, Hideyuki

    2015-01-01

    Summary Murine- and human-induced pluripotent stem cell-derived neural stem/progenitor cells (iPSC-NS/PCs) promote functional recovery following transplantation into the injured spinal cord in rodents and primates. Although remyelination of spared demyelinated axons is a critical mechanism in the regeneration of the injured spinal cord, human iPSC-NS/PCs predominantly differentiate into neurons both in vitro and in vivo. We therefore took advantage of our recently developed protocol to obtain human-induced pluripotent stem cell-derived oligodendrocyte precursor cell-enriched neural stem/progenitor cells and report the benefits of transplanting these cells in a spinal cord injury (SCI) model. We describe how this approach contributes to the robust remyelination of demyelinated axons and facilitates functional recovery after SCI. PMID:26724902

  20. Neuroprotective effects of human spinal cord-derived neural precursor cells after transplantation to the injured spinal cord.

    PubMed

    Emgård, Mia; Piao, Jinghua; Aineskog, Helena; Liu, Jia; Calzarossa, Cinzia; Odeberg, Jenny; Holmberg, Lena; Samuelsson, Eva-Britt; Bezubik, Bartosz; Vincent, Per Henrik; Falci, Scott P; Seiger, Åke; Åkesson, Elisabet; Sundström, Erik

    2014-03-01

    To validate human neural precursor cells (NPCs) as potential donor cells for transplantation therapy after spinal cord injury (SCI), we investigated the effect of NPCs, transplanted as neurospheres, in two different rat SCI models. Human spinal cord-derived NPCs (SC-NPCs) transplanted 9 days after spinal contusion injury enhanced hindlimb recovery, assessed by the BBB locomotor test. In spinal compression injuries, SC-NPCs transplanted immediately or after 1 week, but not 7 weeks after injury, significantly improved hindlimb recovery compared to controls. We could not detect signs of mechanical allodynia in transplanted rats. Four months after transplantation, we found more human cells in the host spinal cord than were transplanted, irrespective of the time of transplantation. There was no focal tumor growth. In all groups the vast majority of NPCs differentiated into astrocytes. Importantly, the number of surviving rat spinal cord neurons was highest in groups transplanted acutely and subacutely, which also showed the best hindlimb function. This suggests that transplanted SC-NPCs improve the functional outcome by a neuroprotective effect. We conclude that SC-NPCs reliably enhance the functional outcome after SCI if transplanted acutely or subacutely, without causing allodynia. This therapeutic effect is mainly the consequence of a neuroprotective effect of the SC-NPCs.

  1. Microglia-derived TNFα induces apoptosis in neural precursor cells via transcriptional activation of the Bcl-2 family member Puma.

    PubMed

    Guadagno, J; Xu, X; Karajgikar, M; Brown, A; Cregan, S P

    2013-01-01

    Neuroinflammation is a common feature of acute neurological conditions such as stroke and spinal cord injury, as well as neurodegenerative conditions such as Parkinson's disease, Alzheimer's disease, and amyotrophic lateral sclerosis. Previous studies have demonstrated that acute neuroinflammation can adversely affect the survival of neural precursor cells (NPCs) and thereby limit the capacity for regeneration and repair. However, the mechanisms by which neuroinflammatory processes induce NPC death remain unclear. Microglia are key mediators of neuroinflammation and when activated to induce a pro-inflammatory state produce a number of factors that could affect NPC survival. Importantly, in the present study we demonstrate that tumor necrosis factor α (TNFα) produced by lipopolysaccharide-activated microglia is necessary and sufficient to trigger apoptosis in mouse NPCs in vitro. Furthermore, we demonstrate that microglia-derived TNFα induces NPC apoptosis via a mitochondrial pathway regulated by the Bcl-2 family protein Bax. BH3-only proteins are known to play a key role in regulating Bax activation and we demonstrate that microglia-derived TNFα induces the expression of the BH3-only family member Puma in NPCs via an NF-κB-dependent mechanism. Specifically, we show that NF-κB is activated in NPCs treated with conditioned media from activated microglia and that Puma induction and NPC apoptosis is blocked by the NF-κB inhibitor BAY-117082. Importantly, we have determined that NPC apoptosis induced by activated microglia-derived TNFα is attenuated in Puma-deficient NPCs, indicating that Puma induction is required for NPC death. Consistent with this, we demonstrate that Puma-deficient NPCs exhibit an ∼13-fold increase in survival as compared with wild-type NPCs following transplantation into the inflammatory environment of the injured spinal cord in vivo. In summary, we have identified a key signaling pathway that regulates neuroinflammation induced apoptosis

  2. Microglia-derived TNFα induces apoptosis in neural precursor cells via transcriptional activation of the Bcl-2 family member Puma.

    PubMed

    Guadagno, J; Xu, X; Karajgikar, M; Brown, A; Cregan, S P

    2013-01-01

    Neuroinflammation is a common feature of acute neurological conditions such as stroke and spinal cord injury, as well as neurodegenerative conditions such as Parkinson's disease, Alzheimer's disease, and amyotrophic lateral sclerosis. Previous studies have demonstrated that acute neuroinflammation can adversely affect the survival of neural precursor cells (NPCs) and thereby limit the capacity for regeneration and repair. However, the mechanisms by which neuroinflammatory processes induce NPC death remain unclear. Microglia are key mediators of neuroinflammation and when activated to induce a pro-inflammatory state produce a number of factors that could affect NPC survival. Importantly, in the present study we demonstrate that tumor necrosis factor α (TNFα) produced by lipopolysaccharide-activated microglia is necessary and sufficient to trigger apoptosis in mouse NPCs in vitro. Furthermore, we demonstrate that microglia-derived TNFα induces NPC apoptosis via a mitochondrial pathway regulated by the Bcl-2 family protein Bax. BH3-only proteins are known to play a key role in regulating Bax activation and we demonstrate that microglia-derived TNFα induces the expression of the BH3-only family member Puma in NPCs via an NF-κB-dependent mechanism. Specifically, we show that NF-κB is activated in NPCs treated with conditioned media from activated microglia and that Puma induction and NPC apoptosis is blocked by the NF-κB inhibitor BAY-117082. Importantly, we have determined that NPC apoptosis induced by activated microglia-derived TNFα is attenuated in Puma-deficient NPCs, indicating that Puma induction is required for NPC death. Consistent with this, we demonstrate that Puma-deficient NPCs exhibit an ∼13-fold increase in survival as compared with wild-type NPCs following transplantation into the inflammatory environment of the injured spinal cord in vivo. In summary, we have identified a key signaling pathway that regulates neuroinflammation induced apoptosis

  3. Microglia-derived TNFα induces apoptosis in neural precursor cells via transcriptional activation of the Bcl-2 family member Puma

    PubMed Central

    Guadagno, J; Xu, X; Karajgikar, M; Brown, A; Cregan, S P

    2013-01-01

    Neuroinflammation is a common feature of acute neurological conditions such as stroke and spinal cord injury, as well as neurodegenerative conditions such as Parkinson's disease, Alzheimer's disease, and amyotrophic lateral sclerosis. Previous studies have demonstrated that acute neuroinflammation can adversely affect the survival of neural precursor cells (NPCs) and thereby limit the capacity for regeneration and repair. However, the mechanisms by which neuroinflammatory processes induce NPC death remain unclear. Microglia are key mediators of neuroinflammation and when activated to induce a pro-inflammatory state produce a number of factors that could affect NPC survival. Importantly, in the present study we demonstrate that tumor necrosis factor α (TNFα) produced by lipopolysaccharide-activated microglia is necessary and sufficient to trigger apoptosis in mouse NPCs in vitro. Furthermore, we demonstrate that microglia-derived TNFα induces NPC apoptosis via a mitochondrial pathway regulated by the Bcl-2 family protein Bax. BH3-only proteins are known to play a key role in regulating Bax activation and we demonstrate that microglia-derived TNFα induces the expression of the BH3-only family member Puma in NPCs via an NF-κB-dependent mechanism. Specifically, we show that NF-κB is activated in NPCs treated with conditioned media from activated microglia and that Puma induction and NPC apoptosis is blocked by the NF-κB inhibitor BAY-117082. Importantly, we have determined that NPC apoptosis induced by activated microglia-derived TNFα is attenuated in Puma-deficient NPCs, indicating that Puma induction is required for NPC death. Consistent with this, we demonstrate that Puma-deficient NPCs exhibit an ∼13-fold increase in survival as compared with wild-type NPCs following transplantation into the inflammatory environment of the injured spinal cord in vivo. In summary, we have identified a key signaling pathway that regulates neuroinflammation induced apoptosis

  4. Beneficial Effect of Human Induced Pluripotent Stem Cell-Derived Neural Precursors in Spinal Cord Injury Repair.

    PubMed

    Romanyuk, Nataliya; Amemori, Takashi; Turnovcova, Karolina; Prochazka, Pavel; Onteniente, Brigitte; Sykova, Eva; Jendelova, Pavla

    2015-01-01

    Despite advances in our understanding and research of induced pluripotent stem cells (iPSCs), their use in clinical practice is still limited due to lack of preclinical experiments. Neural precursors (NPs) derived from a clone of human iPSCs (IMR90) were used to treat a rat spinal cord lesion 1 week after induction. Functional recovery was evaluated using the BBB, beam walking, rotarod, and plantar tests. Lesion morphology, endogenous axonal sprouting, graft survival, and iPSC-NP differentiation were analyzed immunohistochemically. Quantitative polymerase chain reaction (qPCR) was used to evaluate the effect of transplanted iPSC-NPs on endogenous regenerative processes and also to monitor their behavior after transplantation. Human iPSC-NPs robustly survived in the lesion, migrated, and partially filled the lesion cavity during the entire period of observation. Transplanted animals displayed significant motor improvement already from the second week after the transplantation of iPSC-NPs. qPCR revealed the increased expression of human neurotrophins 8 weeks after transplantation. Simultaneously, the white and gray matter were spared in the host tissue. The grafted cells were immunohistochemically positive for doublecortin, MAP2, βIII-tubulin, GFAP, and CNPase 8 weeks after transplantation. Human iPSC-NPs further matured, and 17 weeks after transplantation differentiated toward interneurons, dopaminergic neurons, serotoninergic neurons, and ChAT-positive motoneurons. Human iPSC-NPs possess neurotrophic properties that are associated with significant early functional improvement and the sparing of spinal cord tissue. Their ability to differentiate into tissue-specific neurons leads to the long-term restoration of the lesioned tissue, making the cells a promising candidate for future cell-based therapy of SCI. PMID:25259685

  5. Identification of potential biomarkers of hepatitis B-induced acute liver failure using hepatic cells derived from human skin precursors.

    PubMed

    Rodrigues, Robim M; Sachinidis, Agapios; De Boe, Veerle; Rogiers, Vera; Vanhaecke, Tamara; De Kock, Joery

    2015-09-01

    Besides their role in the elucidation of pathogenic processes of medical and pharmacological nature, biomarkers can also be used to document specific toxicological events. Hepatic cells generated from human skin-derived precursors (hSKP-HPC) were previously shown to be a promising in vitro tool for the evaluation of drug-induced hepatotoxicity. In this study, their capacity to identify potential liver-specific biomarkers at the gene expression level was investigated with particular emphasis on acute liver failure (ALF). To this end, a set of potential ALF-specific biomarkers was established using clinically relevant liver samples obtained from patients suffering from hepatitis B-associated ALF. Subsequently, this data was compared to data obtained from primary human hepatocyte cultures and hSKP-HPC, both exposed to the ALF-inducing reference compound acetaminophen. It was found that both in vitro systems revealed a set of molecules that was previously identified in the ALF liver samples. Yet, only a limited number of molecules was common between both in vitro systems and the ALF liver samples. Each of the in vitro systems could be used independently to identify potential toxicity biomarkers related to ALF. It seems therefore more appropriate to combine primary human hepatocyte cultures with complementary in vitro models to efficiently screen out potential hepatotoxic compounds.

  6. Identification of a bipotential precursor cell in hepatic cell lines derived from transgenic mice expressing cyto-Met in the liver.

    PubMed

    Spagnoli, F M; Amicone, L; Tripodi, M; Weiss, M C

    1998-11-16

    Met murine hepatocyte (MMH) lines were established from livers of transgenic mice expressing constitutively active human Met. These lines harbor two cell types: epithelial cells resembling the parental populations and flattened cells with multiple projections and a dispersed growth habit that are designated palmate. Epithelial cells express the liver-enriched transcription factors HNF4 and HNF1alpha, and proteins associated with epithelial cell differentiation. Treatments that modulate their differentiation state, including acidic FGF, induce hepatic functions. Palmate cells show none of these properties. However, they can differentiate along the hepatic cell lineage, giving rise to: (a) epithelial cells that express hepatic transcription factors and are competent to express hepatic functions; (b) bile duct-like structures in three-dimensional Matrigel cultures. Derivation of epithelial from palmate cells is confirmed by characterization of the progeny of individually fished cells. Furthermore, karyotype analysis confirms the direction of the phenotypic transition: palmate cells are diploid and the epithelial cells are hypotetraploid. The clonal isolation of the palmate cell, an immortalized nontransformed bipotential cell that does not yet express the liver-enriched transcription factors and is a precursor of the epithelial-hepatocyte in MMH lines, provides a new tool for the study of mechanisms controlling liver development. PMID:9817765

  7. CD34(+) Liver Cancer Stem Cells Were Formed by Fusion of Hepatobiliary Stem/Progenitor Cells with Hematopoietic Precursor-Derived Myeloid Intermediates.

    PubMed

    Zeng, Changjun; Zhang, Yanling; Park, Su Cheol; Eun, Jong Ryeol; Nguyen, Ngoc Tue; Tschudy-Seney, Benjamin; Jung, Yong Jin; Theise, Neil D; Zern, Mark A; Duan, Yuyou

    2015-11-01

    A large number of cancer stem cells (CSCs) were identified and characterized; however, the origins and formation of CSCs remain elusive. In this study, we examined the origination of the newly identified CD34(+) liver CSC (LCSC). We found that CD34(+) LCSC coexpressed liver stem cell and myelomonocytic cell markers, showing a mixed phenotype, a combination of hepatobiliary stem/progenitor cells (HSPCs) and myelomonocytic cells. Moreover, human xenografts produced by CD34(+) LCSCs and the parental cells, which CD34(+) LCSC was isolated from, coexpressed liver cancer and myelomonocytic markers, also demonstrating mixed phenotypes. The xenografts and the parental cells secreted albumin demonstrating their hepatocyte origin and also expressed cytokines [interleukin (IL)-1b, IL-6, IL-12A, IL-18, tumor necrosis factor-alpha (TNF-α), and CSF1] and chemokines (IL-8, CCL2, and CCL5). Expression of these cytokines and chemokines responded to the stimuli [interferon-γ (INF-γ), IL-4, and lipopolysaccharide (LPS)]. Furthermore, human xenografts and the parental cells phagocytized Escherichia coli. CD34(+) LCSC coexpressed CD45, demonstrating that its origin appears to be from a hematopoietic precursor. The percentage of cells positive for OV6, CD34, and CD31, presenting the markers of HSPC, hematopoietic, and myelomonocytic cells, increased under treatment of CD34(+) LCSC with a drug. Cytogenetic analysis showed that CD34(+) LCSC contained a greater number of chromosomes. HBV DNA integrations and mutations in CD34(+) LCSC and the parental cells were identical to those in the literature or the database. Thus, these results demonstrated that CD34(+) LCSCs were formed by fusion of HSPC with CD34(+) hematopoietic precursor-derived myeloid intermediates; it appears that this is the first report that human CSCs have been formed by the fusion. Therefore, it represents a significant step toward better understanding of the formation of human CSC and the diverse origins of liver

  8. Transplantation of GABAergic cells derived from bioreactor-expanded human neural precursor cells restores motor and cognitive behavioral deficits in a rodent model of Huntington's disease.

    PubMed

    McLeod, Marcus C; Kobayashi, Nao R; Sen, Arindom; Baghbaderani, Behnam A; Sadi, Damaso; Ulalia, Ruperto; Behie, Leo A; Mendez, Ivar

    2013-01-01

    Huntington's disease (HD) is a neurodegenerative disorder that is characterized by progressive dementia, choreiform involuntary movements, and emotional deterioration. Neuropathological features include the progressive degeneration of striatal γ-aminobutyric acid (GABA) neurons. New therapeutic approaches, such as the transplantation of human neural precursor cells (hNPCs) to replace damaged or degenerated cells, are currently being investigated. The aim of this study was to investigate the potential for utilizing telencephalic hNPCs expanded in suspension bioreactors for cell restorative therapy in a rodent model of HD. hNPCs were expanded in a hydrodynamically controlled and homogeneous environment under serum-free conditions. In vitro analysis revealed that the bioreactor-expanded telencephalic (BET)-hNPCs could be differentiated into a highly enriched population of GABAergic neurons. Behavioral assessments of unilateral striatal quinolinic acid-lesioned rodents revealed a significant improvement in motor and memory deficits following transplantation with GABAergic cells differentiated from BET-hNPCs. Immunohistochemical analysis revealed that transplanted BET-hNPCs retained a GABAergic neuronal phenotype without aberrant transdifferentiation or tumor formation, indicating that BET-hNPCs are a safe source of cells for transplantation. This preclinical study has important implications as the transplantation of GABAergic cells derived from predifferentiated BET-hNPCs may be a safe and feasible cell replacement strategy to promote behavioral recovery in HD.

  9. Remyelination Is Correlated with Regulatory T Cell Induction Following Human Embryoid Body-Derived Neural Precursor Cell Transplantation in a Viral Model of Multiple Sclerosis.

    PubMed

    Plaisted, Warren C; Zavala, Angel; Hingco, Edna; Tran, Ha; Coleman, Ronald; Lane, Thomas E; Loring, Jeanne F; Walsh, Craig M

    2016-01-01

    We have recently described sustained clinical recovery associated with dampened neuroinflammation and remyelination following transplantation of neural precursor cells (NPCs) derived from human embryonic stem cells (hESCs) in a viral model of the human demyelinating disease multiple sclerosis. The hNPCs used in that study were derived by a novel direct differentiation method (direct differentiation, DD-NPCs) that resulted in a unique gene expression pattern when compared to hNPCs derived by conventional methods. Since the therapeutic potential of human NPCs may differ greatly depending on the method of derivation and culture, we wanted to determine whether NPCs differentiated using conventional methods would be similarly effective in improving clinical outcome under neuroinflammatory demyelinating conditions. For the current study, we utilized hNPCs differentiated from a human induced pluripotent cell line via an embryoid body intermediate stage (EB-NPCs). Intraspinal transplantation of EB-NPCs into mice infected with the neurotropic JHM strain of mouse hepatitis virus (JHMV) resulted in decreased accumulation of CD4+ T cells in the central nervous system that was concomitant with reduced demyelination at the site of injection. Dampened neuroinflammation and remyelination was correlated with a transient increase in CD4+FOXP3+ regulatory T cells (Tregs) concentrated within the peripheral lymphatics. However, compared to our earlier study, pathological improvements were modest and did not result in significant clinical recovery. We conclude that the genetic signature of NPCs is critical to their effectiveness in this model of viral-induced neurologic disease. These comparisons will be useful for understanding what factors are critical for the sustained clinical improvement. PMID:27310015

  10. Remyelination Is Correlated with Regulatory T Cell Induction Following Human Embryoid Body-Derived Neural Precursor Cell Transplantation in a Viral Model of Multiple Sclerosis

    PubMed Central

    Plaisted, Warren C.; Zavala, Angel; Hingco, Edna; Tran, Ha; Coleman, Ronald; Lane, Thomas E.; Loring, Jeanne F.; Walsh, Craig M.

    2016-01-01

    We have recently described sustained clinical recovery associated with dampened neuroinflammation and remyelination following transplantation of neural precursor cells (NPCs) derived from human embryonic stem cells (hESCs) in a viral model of the human demyelinating disease multiple sclerosis. The hNPCs used in that study were derived by a novel direct differentiation method (direct differentiation, DD-NPCs) that resulted in a unique gene expression pattern when compared to hNPCs derived by conventional methods. Since the therapeutic potential of human NPCs may differ greatly depending on the method of derivation and culture, we wanted to determine whether NPCs differentiated using conventional methods would be similarly effective in improving clinical outcome under neuroinflammatory demyelinating conditions. For the current study, we utilized hNPCs differentiated from a human induced pluripotent cell line via an embryoid body intermediate stage (EB-NPCs). Intraspinal transplantation of EB-NPCs into mice infected with the neurotropic JHM strain of mouse hepatitis virus (JHMV) resulted in decreased accumulation of CD4+ T cells in the central nervous system that was concomitant with reduced demyelination at the site of injection. Dampened neuroinflammation and remyelination was correlated with a transient increase in CD4+FOXP3+ regulatory T cells (Tregs) concentrated within the peripheral lymphatics. However, compared to our earlier study, pathological improvements were modest and did not result in significant clinical recovery. We conclude that the genetic signature of NPCs is critical to their effectiveness in this model of viral-induced neurologic disease. These comparisons will be useful for understanding what factors are critical for the sustained clinical improvement. PMID:27310015

  11. The human insulin gene displays transcriptionally active epigenetic marks in islet-derived mesenchymal precursor cells in the absence of insulin expression.

    PubMed

    Mutskov, Vesco; Raaka, Bruce M; Felsenfeld, Gary; Gershengorn, Marvin C

    2007-12-01

    Human islet-derived precursor cells (hIPCs), mesenchymal cells derived in vitro from adult pancreas, proliferate freely and do not express insulin but can be differentiated to epithelial cells that express insulin. hIPCs have been studied with the goal of obtaining large quantities of insulin-producing cells suitable for transplantation into patients suffering from type 1 diabetes. It appeared that undifferentiated hIPCs are "committed" to a pancreatic endocrine phenotype through multiple cell divisions, suggesting that epigenetic modifications at the insulin locus could be responsible. We determined patterns of histone modifications over the insulin gene in human islets and hIPCs and compared them with HeLa and human bone marrow-derived mesenchymal stem cells (hBM-MSCs), neither of which expresses insulin. The insulin gene in islets displays high levels of histone modifications (H4 hyperacetylation and dimethylation of H3 lysine 4) typical of active genes. These are not present in HeLa and hBM-MSCs, which instead have elevated levels of H3 lysine 9 dimethylation, a mark of inactive genes. hIPCs, in contrast, show significant levels of active chromatin modifications, as much as half those seen in islets, and show no measurable H3 K9 methylation. Cells expanded from a minor population of mesenchymal stromal cells found in islets exhibit the same histone modifications as established hIPCs. We conclude that hIPCs, which do not express the insulin gene, nonetheless uniquely exhibit epigenetic marks that could poise them for activation of insulin expression. This epigenetic signature may be a general mechanism whereby tissue-derived precursor cells are committed to a distinct specification. Disclosure of potential conflicts of interest is found at the end of this article.

  12. The Innate Lymphoid Cell Precursor.

    PubMed

    Ishizuka, Isabel E; Constantinides, Michael G; Gudjonson, Herman; Bendelac, Albert

    2016-05-20

    The discovery of tissue-resident innate lymphoid cell populations effecting different forms of type 1, 2, and 3 immunity; tissue repair; and immune regulation has transformed our understanding of mucosal immunity and allergy. The emerging complexity of these populations along with compounding issues of redundancy and plasticity raise intriguing questions about their precise lineage relationship. Here we review advances in mapping the emergence of these lineages from early lymphoid precursors. We discuss the identification of a common innate lymphoid cell precursor characterized by transient expression of the transcription factor PLZF, and the lineage relationships of innate lymphoid cells with conventional natural killer cells and lymphoid tissue inducer cells. We also review the rapidly growing understanding of the network of transcription factors that direct the development of these lineages.

  13. Pentosan polysulfate promotes proliferation and chondrogenic differentiation of adult human bone marrow-derived mesenchymal precursor cells

    PubMed Central

    2010-01-01

    Introduction This study was undertaken to determine whether the anti-osteoarthritis drug pentosan polysulfate (PPS) influenced mesenchymal precursor cell (MPC) proliferation and differentiation. Methods Human MPCs were maintained in monolayer, pellet or micromass cultures (MMC) for up to 10 days with PPS at concentrations of 0 to 20 μg/ml. MPC viability and proliferation was assessed using the WST-1 assay and 3H-thymidine incorporation into DNA, while apoptosis was monitored by flow cytometry. Proteoglycan (PG) biosynthesis was determined by 35SO42- incorporation and staining with Alcian blue. Proteoglycan and collagen type I and collagen type II deposition in pellet cultures was also examined by Toluidine blue and immunohistochemical staining, respectively. The production of hyaluronan (HA) by MPCs in MMC was assessed by ELISA. The relative outcome of PPS, HA, heparin or dextran sulfate (DS) on PG synthesis was compared in 5-day MMC. Gene expression of MPCs in 7-day and 10-day MMC was examined using real-time PCR. MPC differentiation was investigated by co-culturing with PPS in osteogenic or adipogenic inductive culture media for 28 days. Results Significant MPC proliferation was evident by day 3 at PPS concentrations of 1 to 5 μg/ml (P < 0.01). In the presence of 1 to 10 μg/ml PPS, a 38% reduction in IL-4/IFNγ-induced MPC apoptosis was observed. In 5-day MMC, 130% stimulation of PG synthesis occurred at 2.5 μg/ml PPS (P < 0.0001), while 5.0 μg/ml PPS achieved maximal stimulation in the 7-day and 10-day cultures (P < 0.05). HA and DS at ≥ 5 μg/ml inhibited PG synthesis (P < 0.05) in 5-day MMC. Collagen type II deposition by MMC was significant at ≥ 0.5 μg/ml PPS (P < 0.001 to 0.05). In MPC-PPS pellet cultures, more PG, collagen type II but less collagen type I was deposited than in controls. Real-time PCR results were consistent with the protein data. At 5 and 10 μg/ml PPS, MPC osteogenic differentiation was suppressed (P < 0.01). Conclusions This is

  14. Skin-derived neural precursors competitively generate functional myelin in adult demyelinated mice.

    PubMed

    Mozafari, Sabah; Laterza, Cecilia; Roussel, Delphine; Bachelin, Corinne; Marteyn, Antoine; Deboux, Cyrille; Martino, Gianvito; Baron-Van Evercooren, Anne

    2015-09-01

    Induced pluripotent stem cell-derived (iPS-derived) neural precursor cells may represent the ideal autologous cell source for cell-based therapy to promote remyelination and neuroprotection in myelin diseases. So far, the therapeutic potential of reprogrammed cells has been evaluated in neonatal demyelinating models. However, the repair efficacy and safety of these cells has not been well addressed in the demyelinated adult CNS, which has decreased cell plasticity and scarring. Moreover, it is not clear if these induced pluripotent-derived cells have the same reparative capacity as physiologically committed CNS-derived precursors. Here, we performed a side-by-side comparison of CNS-derived and skin-derived neural precursors in culture and following engraftment in murine models of adult spinal cord demyelination. Grafted induced neural precursors exhibited a high capacity for survival, safe integration, migration, and timely differentiation into mature bona fide oligodendrocytes. Moreover, grafted skin-derived neural precursors generated compact myelin around host axons and restored nodes of Ranvier and conduction velocity as efficiently as CNS-derived precursors while outcompeting endogenous cells. Together, these results provide important insights into the biology of reprogrammed cells in adult demyelinating conditions and support use of these cells for regenerative biomedicine of myelin diseases that affect the adult CNS.

  15. Junction phosphate is derived from the precursor in the tRNA spliced by the archaeon Haloferax volcanii cell extract.

    PubMed Central

    Zofallova, L; Guo, Y; Gupta, R

    2000-01-01

    RNA splicing in archaea requires at least an endonuclease and a ligase, as is the case for the splicing of eukaryal nuclear tRNAs. Splicing endonucleases from archaea and eukarya are homologous, although they differ in subunit composition and substrate recognition properties. However, they all produce 2',3' cyclic phosphate and 5'-hydroxyl termini. An in vitro-transcribed, partial intron-deleted Haloferax volcanii elongator tRNA(Met) has been used to study splicing by H. volcanii cell extracts. Substrates and products were analyzed by nearest neighbor analyses using nuclease P1 and RNase T2, and fingerprinting analyses using acid-urea gels in the first dimension and gradient thin layer chromatography in the second dimension. The results suggest that 2',3' cyclic phosphate at the 3' end of the 5' exon is converted into the splice junction phosphate forming a 3',5'-phosphodiester linkage. This resembles the animal cell type systems where the junction phosphate preexists in the transcript, and differs from yeast type systems, where GTP is the source of junction phosphate. PMID:10917597

  16. Enzymatically degradable poly(ethylene glycol) hydrogels for the 3D culture and release of human embryonic stem cell derived pancreatic precursor cell aggregates.

    PubMed

    Amer, Luke D; Holtzinger, Audrey; Keller, Gordon; Mahoney, Melissa J; Bryant, Stephanie J

    2015-08-01

    This study aimed to develop a three dimensional culture platform for aggregates of human embryonic stem cell (hESC)-derived pancreatic progenitors that enables long-term culture, maintains aggregate size and morphology, does not adversely affect differentiation and provides a means for aggregate recovery. A platform was developed with poly(ethylene glycol) hydrogels containing collagen type I, for cell-matrix interactions, and peptide crosslinkers, for facile recovery of aggregates. The platform was first demonstrated with RIN-m5F cells, showing encapsulation and subsequent release of single cells and aggregates without adversely affecting viability. Aggregates of hESC-derived pancreatic progenitors with an effective diameter of 82 (15)μm were either encapsulated in hydrogels or cultured in suspension for 28 days. At day 14, aggregate viability was maintained in the hydrogels, but significantly reduced (88%) in suspension culture. However by day 28, viability was reduced under both culture conditions. Aggregate size was maintained in the hydrogels, but in suspension was significantly higher (∼ 2-fold) by day 28. The ability to release aggregates followed by a second enzyme treatment to achieve single cells enabled assessment by flow cytometry. Prior to encapsulation, there were 39% Pdx1(+)/Nkx6.1(+) cells, key endocrine markers required for β-cell maturation. The fraction of doubly positive cells was not affected in hydrogels but was slightly and significantly lower in suspension culture by 28 days. In conclusion, we demonstrate that a MMP-sensitive PEG hydrogel containing collagen type I is a promising platform for hESC-derived pancreatic progenitors that maintains viable aggregates, aggregate size, and progenitor state and offers facile recovery of aggregates.

  17. Enzymatically degradable poly(ethylene glycol) hydrogels for the 3D culture and release of human embryonic stem cell derived pancreatic precursor cell aggregates

    PubMed Central

    Amer, Luke D.; Holtzinger, Audrey; Keller, Gordon; Mahoney, Melissa J.; Bryant, Stephanie J.

    2015-01-01

    This study aimed to develop a three dimensional culture platform for aggregates of human embryonic stem cell (hESC)-derived pancreatic progenitors that enables long-term culture, maintains aggregate size and morphology, does not adversely affect differentiation and provides a means for aggregate recovery. A platform was developed with poly(ethylene glycol) hydrogels containing collagen type I, for cell-matrix interactions, and peptide crosslinkers, for facile recovery of aggregates. The platform was first demonstrated with RIN-m5F cells, showing encapsulation and subsequent release of single cells and aggregates without adversely affecting viability. Aggregates of hESC-derived pancreatic progenitors with an effective diameter of 82 (15) μm were either encapsulated in hydrogels or cultured in suspension for 28 days. At day 14, aggregate viability was maintained in the hydrogels, but significantly reduced (88%) in suspension culture. However by day 28, viability was reduced in both culture conditions. Aggregate size was maintained in the hydrogels, but in suspension was significantly higher (~2-fold) by day 28. The ability to release aggregates followed by a second enzyme treatment to achieve single cells enabled assessment by flow cytometry. Prior to encapsulation, there were 39% Pdx1+/Nkx6.1+ cells, key endocrine markers required for β-cell maturation. The fraction of doubly positive cells was not affected in hydrogels but was slightly and significantly lower in suspension culture by 28 days. In conclusion, we demonstrate that a MMP-sensitive PEG hydrogel containing collagen type I is a promising platform for hESC-derived pancreatic progenitors that maintains viable aggregates, aggregate size, and progenitor state and offers facile recovery of aggregates. PMID:25913222

  18. Human embryonic epidermis contains a diverse Langerhans cell precursor pool.

    PubMed

    Schuster, Christopher; Mildner, Michael; Mairhofer, Mario; Bauer, Wolfgang; Fiala, Christian; Prior, Marion; Eppel, Wolfgang; Kolbus, Andrea; Tschachler, Erwin; Stingl, Georg; Elbe-Bürger, Adelheid

    2014-02-01

    Despite intense efforts, the exact phenotype of the epidermal Langerhans cell (LC) precursors during human ontogeny has not been determined yet. These elusive precursors are believed to migrate into the embryonic skin and to express primitive surface markers, including CD36, but not typical LC markers such as CD1a, CD1c and CD207. The aim of this study was to further characterize the phenotype of LC precursors in human embryonic epidermis and to compare it with that of LCs in healthy adult skin. We found that epidermal leukocytes in first trimester human skin are negative for CD34 and heterogeneous with regard to the expression of CD1c, CD14 and CD36, thus contrasting the phenotypic uniformity of epidermal LCs in adult skin. These data indicate that LC precursors colonize the developing epidermis in an undifferentiated state, where they acquire the definitive LC marker profile with time. Using a human three-dimensional full-thickness skin model to mimic in vivo LC development, we found that FACS-sorted, CD207(-) cord blood-derived haematopoietic precursor cells resembling foetal LC precursors but not CD14(+)CD16(-) blood monocytes integrate into skin equivalents, and without additional exogenous cytokines give rise to cells that morphologically and phenotypically resemble LCs. Overall, it appears that CD14(-) haematopoietic precursors possess a much higher differentiation potential than CD14(+) precursor cells.

  19. The role of fetal epithelial tissues in the maturation/differentiation of bone marrow-derived precursors into dendritic epidermal T cells (DETC) of the mouse.

    PubMed

    Stingl, G; Elbe, A; Paer, E; Kilgus, O; Strohal, R; Schreiber, S

    1991-01-01

    Our attempts to clarify the contribution of the thymic vs. the cutaneous microenvironment in the maturation of dendritic epidermal T cell (DETC) precursors into DETC gave diverse results. In one series of experiments, we found that i.v. injection of fetal thymocytes (containing a TCR V gamma 3-expressing subpopulation), but not of adult thymocytes (containing no TCR V gamma 3+ cells) results in the appearance of CD3/TCR V gamma 3+ dendritic epidermal cells (=DETC). In other experiments, we have obtained evidence that transplantation of day 16 fetal skin onto a Thy-1-disparate recipient results in the appearance of donor-type DETC. Our further observation that the transplanted skin contains CD45+/Thy-1+/CD3- lymphocytes, but no mature T cells, therefore implies that fetal skin can provide stimuli promoting the expression of CD3/TCR genes in immature (CD3-) DETC precursors. It remains to be seen whether both or only one of these maturational pathways are (is) followed under physiological conditions.

  20. Selective apoptosis of pluripotent mouse and human stem cells by novel ceramide analogues prevents teratoma formation and enriches for neural precursors in ES cell–derived neural transplants

    PubMed Central

    Bieberich, Erhard; Silva, Jeane; Wang, Guanghu; Krishnamurthy, Kannan; Condie, Brian G.

    2004-01-01

    The formation of stem cell–derived tumors (teratomas) is observed when engrafting undifferentiated embryonic stem (ES) cells, embryoid body–derived cells (EBCs), or mammalian embryos and is a significant obstacle to stem cell therapy. We show that in tumors formed after engraftment of EBCs into mouse brain, expression of the pluripotency marker Oct-4 colocalized with that of prostate apoptosis response-4 (PAR-4), a protein mediating ceramide-induced apoptosis during neural differentiation of ES cells. We tested the ability of the novel ceramide analogue N-oleoyl serinol (S18) to eliminate mouse and human Oct-4(+)/PAR-4(+) cells and to increase the proportion of nestin(+) neuroprogenitors in EBC-derived cell cultures and grafts. S18-treated EBCs persisted in the hippocampal area and showed neuronal lineage differentiation as indicated by the expression of β-tubulin III. However, untreated cells formed numerous teratomas that contained derivatives of endoderm, mesoderm, and ectoderm. Our results show for the first time that ceramide-induced apoptosis eliminates residual, pluripotent EBCs, prevents teratoma formation, and enriches the EBCs for cells that undergo neural differentiation after transplantation. PMID:15545317

  1. Contribution of the 37-kDa laminin receptor precursor in the anti-metastatic PSP94-derived peptide PCK3145 cell surface binding

    SciTech Connect

    Annabi, Borhane; Currie, Jean-Christophe; Bouzeghrane, Mounia; Dulude, Helene; Daigneault, Luc; Garde, Seema; Rabbani, Shafaat A.; Panchal, Chandra; Wu, Jinzi J.; Beliveau, Richard . E-mail: oncomol@nobel.si.uqam.ca

    2006-07-21

    Purpose: PCK3145 is an anti-metastatic synthetic peptide with promising therapeutic efficacy against hormone-refractory prostate cancer. The characterization of the PCK3145 peptide cell surface binding/internalization mechanisms and of the receptors involved remained to be explored. Results: [{sup 14}C]PCK3145 cell surface binding assays showed rapid and transient kinetic profile, that was inhibited by RGD peptides, laminin, hyaluronan, and type-I collagen. RGD peptides were however unable to inhibit PCK3145 intracellular uptake. Far-Western ligand binding studies enabled the identification of the 37-kDa laminin receptor precursor (37LRP) as a potential ligand for PCK3145. Overexpression of the recombinant 37LRP indeed led to an increase in PCK3145 binding but unexpectedly not to its uptake. Conclusions: Our data support the implication of laminin receptors in cell surface binding and in transducing PCK3145 anti-metastatic effects, and provide a rational for targeting cancers that express high levels of such laminin receptors.

  2. Long-term culture and differentiation of CNS precursors derived from anterior human neural rosettes following exposure to ventralizing factors

    SciTech Connect

    Colleoni, Silvia; Giannelli, Serena G.; Armentero, Marie-Therese; Blandini, Fabio; Broccoli, Vania; Lazzari, Giovanna

    2010-04-15

    In this study we demonstrated that neural rosettes derived from human ES cells can give rise either to neural crest precursors, following expansion in presence of bFGF and EGF, or to dopaminergic precursors after exposure to ventralizing factors Shh and FGF8. Both regionalised precursors are capable of extensive proliferation and differentiation towards the corresponding terminally differentiated cell types. In particular, peripheral neurons, cartilage, bone, smooth muscle cells and also pigmented cells were obtained from neural crest precursors while tyrosine hydroxylase and Nurr1 positive dopaminergic neurons were derived from FGF8 and Shh primed rosette cells. Gene expression and immunocytochemistry analyses confirmed the expression of dorsal and neural crest genes such as Sox10, Slug, p75, FoxD3, Pax7 in neural precursors from bFGF-EGF exposed rosettes. By contrast, priming of rosettes with FGF8 and Shh induced the expression of dopaminergic markers Engrailed1, Pax2, Pitx3, floor plate marker FoxA2 and radial glia markers Blbp and Glast, the latter in agreement with the origin of dopaminergic precursors from floor plate radial glia. Moreover, in vivo transplant of proliferating Shh/FGF8 primed precursors in parkinsonian rats demonstrated engraftment and terminal dopaminergic differentiation. In conclusion, we demonstrated the derivation of long-term self-renewing precursors of selected regional identity as potential cell reservoirs for cell therapy applications, such as CNS degenerative diseases, or for the development of toxicological tests.

  3. Electrochemical behavior of carbon aerogels derived from different precursors

    SciTech Connect

    Pekala, R.W.; Alviso, C.T.; Nielson, J.K.; Tran, T.D.; Reynolds, G.M.; Dresshaus, M.S.

    1995-04-01

    The ability to tailor the structure and properties of porous carbons has led to their increased use as electrodes in energy storage devices. Our research focuses on the synthesis and characterization of carbon aerogels for use in electrochemical double layer capacitors. Carbon aerogels are formed from the sol-gel polymerization of (1) resorcinol-formaldehyde or (2) phenolic-furfural, followed by supercritical drying from carbon dioxide, and subsequent pyrolysis in an inert atmosphere. These materials can be produced as monoliths, composites, thin films, powders, or microspheres. In all cases, the areogels have an open-cell structure with an ultrafine pore size (<100 nm), high surface area (400-1 100 m{sup 2}/g), and a solid matrix composed of interconnected particles, fibers, or platelets with characteristic dimensions of 10 nm. This paper examines the effects of the carbon precursor and processing conditions on electrochemical performance in aqueous and organic electrolytes.

  4. Whole-cell fungal transformation of precursors into dyes

    PubMed Central

    2010-01-01

    Background Chemical methods of producing dyes involve extreme temperatures and unsafe toxic compounds. Application of oxidizing enzymes obtained from fungal species, for example laccase, is an alternative to chemical synthesis of dyes. Laccase can be replaced by fungal biomass acting as a whole-cell biocatalyst with properties comparable to the isolated form of the enzyme. The application of the whole-cell system simplifies the transformation process and reduces the time required for its completion. In the present work, four fungal strains with a well-known ability to produce laccase were tested for oxidation of 17 phenolic and non-phenolic precursors into stable and non-toxic dyes. Results An agar-plate screening test of the organic precursors was carried out using four fungal strains: Trametes versicolor, Fomes fomentarius, Abortiporus biennis, and Cerrena unicolor. Out of 17 precursors, nine were transformed into coloured substances in the presence of actively growing fungal mycelium. The immobilized fungal biomass catalyzed the transformation of 1 mM benzene and naphthalene derivatives in liquid cultures yielding stable and non-toxic products with good dyeing properties. The type of fungal strain had a large influence on the absorbance of the coloured products obtained after 48-hour transformation of the selected precursors, and the most effective was Fomes fomentarius (FF25). Whole-cell transformation of AHBS (3-amino-4-hydroxybenzenesulfonic acid) into a phenoxazinone dye was carried out in four different systems: in aqueous media comprising low amounts of carbon and nitrogen source, in buffer, and in distilled water. Conclusions This study demonstrated the ability of four fungal strains belonging to the ecological type of white rot fungi to transform precursors into dyes. This paper highlights the potential of fungal biomass for replacing isolated enzymes as a cheaper industrial-grade biocatalyst for the synthesis of dyes and other commercially important

  5. High-avidity cytotoxic T lymphocytes specific for a new PRAME-derived peptide can target leukemic and leukemic-precursor cells.

    PubMed

    Quintarelli, Concetta; Dotti, Gianpietro; Hasan, Sayyeda T; De Angelis, Biagio; Hoyos, Valentina; Errichiello, Santa; Mims, Martha; Luciano, Luigia; Shafer, Jessica; Leen, Ann M; Heslop, Helen E; Rooney, Cliona M; Pane, Fabrizio; Brenner, Malcolm K; Savoldo, Barbara

    2011-03-24

    The cancer testis antigen (CTA) preferentially expressed antigen of melanoma (PRAME) is overexpressed by many hematologic malignancies, but is absent on normal tissues, including hematopoietic progenitor cells, and may therefore be an appropriate candidate for T cell-mediated immunotherapy. Because it is likely that an effective antitumor response will require high-avidity, PRAME-specific cytotoxic T lymphocytes (CTLs), we attempted to generate such CTLs using professional and artificial antigen-presenting cells loaded with a peptide library spanning the entire PRAME protein and consisting of 125 synthetic pentadecapeptides overlapping by 11 amino acids. We successfully generated polyclonal, PRAME-specific CTL lines and elicited high-avidity CTLs, with a high proportion of cells recognizing a previously uninvestigated HLA-A*02-restricted epitope, P435-9mer (NLTHVLYPV). These PRAME-CTLs could be generated both from normal donors and from subjects with PRAME(+) hematologic malignancies. The cytotoxic activity of our PRAME-specific CTLs was directed not only against leukemic blasts, but also against leukemic progenitor cells as assessed by colony-forming-inhibition assays, which have been implicated in leukemia relapse. These PRAME-directed CTLs did not affect normal hematopoietic progenitors, indicating that this approach may be of value for immunotherapy of PRAME(+) hematologic malignancies. PMID:21278353

  6. Glial versus melanocyte cell fate choice: Schwann cell precursors as a cellular origin of melanocytes.

    PubMed

    Adameyko, Igor; Lallemend, Francois

    2010-09-01

    Melanocytes and Schwann cells are derived from the multipotent population of neural crest cells. Although both cell types were thought to be generated through completely distinct pathways and molecular processes, a recent study has revealed that these different cell types are intimately interconnected far beyond previously postulated limits in that they share a common post-neural crest progenitor, i.e. the Schwann cell precursor. This finding raises interesting questions about the lineage relationships of hitherto unrelated cell types such as melanocytes and Schwann cells, and may provide clinical insights into mechanisms of pigmentation disorders and for cancer involving Schwann cells and melanocytes.

  7. Sustainable Life Cycles of Natural-Precursor-Derived Nanocarbons.

    PubMed

    Bazaka, Kateryna; Jacob, Mohan V; Ostrikov, Kostya Ken

    2016-01-13

    Sustainable societal and economic development relies on novel nanotechnologies that offer maximum efficiency at minimal environmental cost. Yet, it is very challenging to apply green chemistry approaches across the entire life cycle of nanotech products, from design and nanomaterial synthesis to utilization and disposal. Recently, novel, efficient methods based on nonequilibrium reactive plasma chemistries that minimize the process steps and dramatically reduce the use of expensive and hazardous reagents have been applied to low-cost natural and waste sources to produce value-added nanomaterials with a wide range of applications. This review discusses the distinctive effects of nonequilibrium reactive chemistries and how these effects can aid and advance the integration of sustainable chemistry into each stage of nanotech product life. Examples of the use of enabling plasma-based technologies in sustainable production and degradation of nanotech products are discussed-from selection of precursors derived from natural resources and their conversion into functional building units, to methods for green synthesis of useful naturally degradable carbon-based nanomaterials, to device operation and eventual disintegration into naturally degradable yet potentially reusable byproducts.

  8. Sustainable Life Cycles of Natural-Precursor-Derived Nanocarbons.

    PubMed

    Bazaka, Kateryna; Jacob, Mohan V; Ostrikov, Kostya Ken

    2016-01-13

    Sustainable societal and economic development relies on novel nanotechnologies that offer maximum efficiency at minimal environmental cost. Yet, it is very challenging to apply green chemistry approaches across the entire life cycle of nanotech products, from design and nanomaterial synthesis to utilization and disposal. Recently, novel, efficient methods based on nonequilibrium reactive plasma chemistries that minimize the process steps and dramatically reduce the use of expensive and hazardous reagents have been applied to low-cost natural and waste sources to produce value-added nanomaterials with a wide range of applications. This review discusses the distinctive effects of nonequilibrium reactive chemistries and how these effects can aid and advance the integration of sustainable chemistry into each stage of nanotech product life. Examples of the use of enabling plasma-based technologies in sustainable production and degradation of nanotech products are discussed-from selection of precursors derived from natural resources and their conversion into functional building units, to methods for green synthesis of useful naturally degradable carbon-based nanomaterials, to device operation and eventual disintegration into naturally degradable yet potentially reusable byproducts. PMID:26717047

  9. Formation of Golgi-derived active zone precursor vesicles.

    PubMed

    Maas, Christoph; Torres, Viviana I; Altrock, Wilko D; Leal-Ortiz, Sergio; Wagh, Dhananjay; Terry-Lorenzo, Ryan T; Fejtova, Anna; Gundelfinger, Eckart D; Ziv, Noam E; Garner, Craig C

    2012-08-01

    Vesicular trafficking of presynaptic and postsynaptic components is emerging as a general cellular mechanism for the delivery of scaffold proteins, ion channels, and receptors to nascent and mature synapses. However, the molecular mechanisms leading to the selection of cargos and their differential transport to subneuronal compartments are not well understood, in part because of the mixing of cargos at the plasma membrane and/or within endosomal compartments. In the present study, we have explored the cellular mechanisms of active zone precursor vesicle assembly at the Golgi in dissociated hippocampal neurons of Rattus norvegicus. Our studies show that Piccolo, Bassoon, and ELKS2/CAST exit the trans-Golgi network on a common vesicle that requires Piccolo and Bassoon for its proper assembly. In contrast, Munc13 and synaptic vesicle proteins use distinct sets of Golgi-derived transport vesicles, while RIM1α associates with vesicular membranes in a post-Golgi compartment. Furthermore, Piccolo and Bassoon are necessary for ELKS2/CAST to leave the Golgi in association with vesicles, and a core domain of Bassoon is sufficient to facilitate formation of these vesicles. While these findings support emerging principles regarding active zone differentiation, the cellular and molecular analyses reported here also indicate that the Piccolo-Bassoon transport vesicles leaving the Golgi may undergo further changes in protein composition before arriving at synaptic sites.

  10. Aniline is an inducer, and not a precursor, for indole derivatives in Rubrivivax benzoatilyticus JA2.

    PubMed

    Mujahid, Mohammed; Sasikala, Ch; Ramana, Ch V

    2014-01-01

    Rubrivivax benzoatilyticus JA2 and other anoxygenic photosynthetic bacteria produce indole derivatives when exposed to aniline, a xenobiotic compound. Though this phenomenon has been reported previously, the role of aniline in the production of indoles is still a biochemical riddle. The present study aims at understanding the specific role of aniline (as precursor or stimulator) in the production of indoles and elucidating the biochemical pathway of indoles in aniline-exposed cells by using stable isotope approaches. Metabolic profiling revealed tryptophan accumulation only in aniline exposed cells along with indole 3-acetic acid (IAA) and indole 3-aldehyde (IAld), the two major catabolites of tryptophan. Deuterium labelled aniline feeding studies revealed that aniline is not a precursor of indoles in strain JA2. Further, production of indoles only in aniline-exposed cells suggests that aniline is an indoles stimulator. In addition, production of indoles depended on the presence of a carbon source, and production enhanced when carbon sources were added to the culture. Isotope labelled fumarate feeding identified, fumarate as the precursor of indole, indicating de novo synthesis of indoles. Glyphosate (shikimate pathway inhibitor) inhibited the indoles production, accumulation of tryptophan, IAA and IAld indicating that indoles synthesis in strain JA2 occurs via the de novo shikimate pathway. The up-regulation of anthranilate synthase gene and induction of anthranilate synthase activity correlated well with tryptophan production in strain JA2. Induction of tryptophan aminotransferase and tryptophan 2-monooxygenase activities corroborated well with IAA levels, suggesting that tryptophan catabolism occurs simultaneously in aniline exposed cells. Our study demonstrates that aniline (stress) stimulates tryptophan/indoles synthesis via the shikimate pathway by possibly modulating the metabolic pathway.

  11. Stable tRNA precursors in HeLa cells.

    PubMed Central

    Harada, F; Matsubara, M; Kato, N

    1984-01-01

    Two tRNA precursors were isolated from 32P-labeled or unlabeled HeLa cells by two dimensional polyacrylamide gel electrophoresis, and were sequenced. These were the precursors of tRNAMet and tRNALeu, and both contained four extra nucleotides including 5'-triphosphates at their 5'-end and nine extra nucleotides including oligo U at their 3'-end. These RNAs are the first naturally occurring tRNA precursors from higher eukaryotes whose sequences have been determined. In these molecules, several modified nucleosides such as m2G, t6A and ac4C in mature tRNAs were undermodified. Two additional hydrogen bonds were formed in the clover leaf structures of these tRNA precursors. These extra hydrogen bonds may be responsible for the stabilities of these tRNA precursors. Images PMID:6514577

  12. Aldehyde dehydrogenase activity promotes survival of human muscle precursor cells

    PubMed Central

    Jean, Elise; Laoudj-Chenivesse, Dalila; Notarnicola, Cécile; Rouger, Karl; Serratrice, Nicolas; Bonnieu, Anne; Gay, Stéphanie; Bacou, Francis; Duret, Cédric; Carnac, Gilles

    2011-01-01

    Abstract Aldehyde dehydrogenases (ALDH) are a family of enzymes that efficiently detoxify aldehydic products generated by reactive oxygen species and might therefore participate in cell survival. Because ALDH activity has been used to identify normal and malignant cells with stem cell properties, we asked whether human myogenic precursor cells (myoblasts) could be identified and isolated based on their levels of ALDH activity. Human muscle explant-derived cells were incubated with ALDEFLUOR, a fluorescent substrate for ALDH, and we determined by flow cytometry the level of enzyme activity. We found that ALDH activity positively correlated with the myoblast-CD56+ fraction in those cells, but, we also observed heterogeneity of ALDH activity levels within CD56-purified myoblasts. Using lentiviral mediated expression of shRNA we demonstrated that ALDH activity was associated with expression of Aldh1a1 protein. Surprisingly, ALDH activity and Aldh1a1 expression levels were very low in mouse, rat, rabbit and non-human primate myoblasts. Using different approaches, from pharmacological inhibition of ALDH activity by diethylaminobenzaldehyde, an inhibitor of class I ALDH, to cell fractionation by flow cytometry using the ALDEFLUOR assay, we characterized human myoblasts expressing low or high levels of ALDH. We correlated high ALDH activity ex vivo to resistance to hydrogen peroxide (H2O2)-induced cytotoxic effect and in vivo to improved cell viability when human myoblasts were transplanted into host muscle of immune deficient scid mice. Therefore detection of ALDH activity, as a purification strategy, could allow non-toxic and efficient isolation of a fraction of human myoblasts resistant to cytotoxic damage. PMID:19840193

  13. Isolation of blood-vessel-derived multipotent precursors from human skeletal muscle.

    PubMed

    Chen, William C W; Saparov, Arman; Corselli, Mirko; Crisan, Mihaela; Zheng, Bo; Péault, Bruno; Huard, Johnny

    2014-01-01

    Since the discovery of mesenchymal stem/stromal cells (MSCs), the native identity and localization of MSCs have been obscured by their retrospective isolation in culture. Recently, using fluorescence-activated cell sorting (FACS), we and other researchers prospectively identified and purified three subpopulations of multipotent precursor cells associated with the vasculature of human skeletal muscle. These three cell populations: myogenic endothelial cells (MECs), pericytes (PCs), and adventitial cells (ACs), are localized respectively to the three structural layers of blood vessels: intima, media, and adventitia. All of these human blood-vessel-derived stem cell (hBVSC) populations not only express classic MSC markers but also possess mesodermal developmental potentials similar to typical MSCs. Previously, MECs, PCs, and ACs have been isolated through distinct protocols and subsequently characterized in separate studies. The current isolation protocol, through modifications to the isolation process and adjustments in the selective cell surface markers, allows us to simultaneously purify all three hBVSC subpopulations by FACS from a single human muscle biopsy. This new method will not only streamline the isolation of multiple BVSC subpopulations but also facilitate future clinical applications of hBVSCs for distinct therapeutic purposes. PMID:25177794

  14. Improved Single-Source Precursors for Solar-Cell Absorbers

    NASA Technical Reports Server (NTRS)

    Banger, Kulbinder K.; Harris, Jerry; Hepp, Aloysius

    2007-01-01

    Improved single-source precursor compounds have been invented for use in spray chemical vapor deposition (spray CVD) of chalcopyrite semiconductor absorber layers of thin-film cells. A "single-source precursor compound" is a single molecular compound that contains all the required elements, which when used under the spray CVD conditions, thermally decomposes to form CuIn(x)Ga(1-x)S(y)Se(2-y).

  15. Bioinspired magnetite formation from a disordered ferrihydrite-derived precursor.

    PubMed

    Dey, Archan; Lenders, Jos J M; Sommerdijk, Nico A J M

    2015-01-01

    We show that by reacting ferrihydrite (FeH) with Fe((II)) ions and subsequently increasing the pH, magnetite is formed through a multi-step nucleation process mediated by monodisperse FeH-Fe((II)) primary particles. The interaction of these primary particles with a transient green rust phase leads to the formation of smaller secondary particles which form the feedstock for magnetite formation. Surprisingly, the presence of a polypeptide additive prevents the formation of green rust as an Fe((II))-rich intermediate phase, and leads to the formation of amorphous aggregates of FeH-Fe((II)) particles which subsequently transform into the final magnetite nanocrystals. The observation of multiple transitions and the involvement of disordered precursor phases in this bioinspired crystallization route is important for our understanding of the nucleation of magnetite in geological and biological environments, and may lead to new approaches in the sustainable synthesis of this technologically important mineral.

  16. Colonization of the murine hindgut by sacral crest-derived neural precursors: experimental support for an evolutionarily conserved model.

    PubMed

    Kapur, R P

    2000-11-01

    Enteric ganglia in the hindgut are derived from separate vagal and sacral neural crest populations. Two conflicting models, based primarily on avian data, have been proposed to describe the contribution of sacral neural crest cells. One hypothesizes early colonization of the hindgut shortly after neurulation, and the other states that sacral crest cells reside transiently in the extraenteric ganglion of Remak and colonize the hindgut much later, after vagal crest-derived neural precursors arrive. In this study, I show that Wnt1-lacZ-transgene expression, an "early" marker of murine neural crest cells, is inconsistent with the "early-colonization" model. Although Wnt1-lacZ-positive sacral crest cells populate pelvic ganglia in the mesenchyme surrounding the hindgut, they are not found in the gut prior to the arrival of vagal crest cells. Similarly, segments of murine hindgut harvested prior to the arrival of vagal crest cells and grafted under the renal capsule fail to develop enteric neurons, unless adjacent pelvic mesenchyme is included in the graft. When pelvic mesenchyme from DbetaH-nlacZ transgenic embryos is apposed with nontransgenic hindgut, neural precursors from the mesenchyme colonize the hindgut and form intramural ganglion cells that express the transgenic marker. Contribution of sacral crest-derived cells to the enteric nervous system is not affected by cocolonization of grafts by vagal crest-derived neuroglial precursors. The findings complement recent studies of avian chimeras and support an evolutionarily conserved model in which sacral crest cells first colonize the extramural ganglion and secondarily enter the hindgut mesenchyme.

  17. Intramyocardial angiogenic cell precursors in nonischemic dilated cardiomyopathy.

    PubMed

    Arom, Kitipan V; Ruengsakulrach, Permyos; Belkin, Michael; Tiensuwan, Montip

    2009-08-01

    To determine the efficacy of intramyocardial injection of angiogenic cell precursors in nonischemic dilated cardiomyopathy, 35 patients with nonischemic dilated cardiomyopathy underwent injections of angiogenic cell precursors into the left ventricle (cell group). Seventeen patients with nonischemic dilated cardiomyopathy were matched from the heart failure database to form a control group that was treated medically. Angiogenic cell precursors were obtained from autologous blood, cultured in vitro, and injected into all free-wall areas of the left ventricle in the cell group. After these injections, New York Heart Association functional class improved significantly by 1.1 +/- 0.7 classes at 284.7 +/- 136.2 days, and left ventricular ejection fraction improved in 71.4% of patients (25/35); the mean increase in left ventricular ejection fraction was 4.4% +/- 10.6% at 192.7 +/- 135.1 days. Improved quality of life was demonstrated by better physical function, role-physical, general health, and vitality domains in a short-form health survey at the 3-month follow-up. In the control group, there were no significant improvements in left ventricular ejection fraction or New York Heart Association class which increased by 0.6 +/- 0.8 classes. It was concluded that intramyocardial angiogenic cell precursor injection is probably effective in the treatment of nonischemic dilated cardiomyopathy. PMID:19713335

  18. Myeloid derived suppressor cells

    PubMed Central

    Waldron, Todd J.; Quatromoni, Jon G.; Karakasheva, Tatiana A.; Singhal, Sunil; Rustgi, Anil K.

    2013-01-01

    The goal of achieving measurable response with cancer immunotherapy requires counteracting the immunosuppressive characteristics of tumors. One of the mechanisms that tumors utilize to escape immunosurveillance is the activation of myeloid derived suppressor cells (MDSCs). Upon activation by tumor-derived signals, MDSCs inhibit the ability of the host to mount an anti-tumor immune response via their capacity to suppress both the innate and adaptive immune systems. Despite their relatively recent discovery and characterization, anti-MDSC agents have been identified, which may improve immunotherapy efficacy. PMID:23734336

  19. Skin-Derived Precursors against UVB-Induced Apoptosis via Bcl-2 and Nrf2 Upregulation

    PubMed Central

    Zhong, Jianqiao

    2016-01-01

    Bcl-2 and Nrf2 are critical factors in protecting cells against UVB-induced apoptosis. Hair-follicle-bulge stem cells could resist ionization through Bcl-2 upregulation. Skin-derived precursors (SKPs) dwelling on the bulge may be against UVB irradiation. Initially, SKPs were isolated and identified. Then, SKPs were exposed to UVB and grew in medium for 24 hours. CCK-8 assay, TUNEL, and Ki67 staining evaluated cells apoptosis/proliferation, while SA-βgal staining evaluated cells senescence and pH2AX immunostaining evaluated DNA damage. Meanwhile, Bcl-2, Nrf2, HO-1, Bax, and Bak expressions were assessed by qRT-PCR and western blot. Two weeks later, floating spheres appeared and were identified as SKPs. After UVB radiation, SKPs maintained spherical colonies and outnumbered unirradiated ones, showing high Ki67 expression and low TUNEL, SA-βgal, and pH2AX expression. Fibroblasts (FBs), however, displayed deformation, senescence, and reduction, with increased TUNEL, SA-βgal, and pH2AX expression. Moreover, Bcl-2 and Nrf2 mRNA expression were significantly higher than Bak and Bax in irradiated SKPs. Conversely, Bcl-2 and Nrf2 mRNA levels greatly decreased compared with Bax and Bak in irradiated FBs. Interestingly, SKPs showed higher protein levels of Bcl-2, Nrf2, and HO-1 than FBs. SKPs exert a beneficial effect on resisting UVB-induced apoptosis, which may be associated with Bcl-2 and Nrf2 upregulation.

  20. Antireflective coatings applied from metal-organic derived liquid precursors.

    PubMed

    Yoldas, B E; O'Keeffe, T W

    1979-09-15

    Antireflective (AR) coatings, which are produced from organometallic driven solutions containing oxide constituents in a chemically polymerized form, are presented. These solutions leave a film on substrates which, upon heat treatment, converts to a glasslike oxide film having the desired optical thickness and index of refraction. The index can be varied continuously from 1.4 to 2.4; thus the AR coatings can be fine-tuned for different substrates and for specific wavelengths of light. Silicon solar cells AR-coated by this technique showed as much as 49% improvement in efficiency over the uncoated state. The real advantage of the process, however, lies in the fact that it is simple, well-suited for automated mass production of photovoltaic cells, and reduces the cost of coating application from an estimated $0.20 per W-package to about $0.01 per W-package. PMID:20212817

  1. THE MECHANISM OF ANTIGENIC STIMULATION OF PRIMARY AND SECONDARY CLONAL PRECURSOR CELLS

    PubMed Central

    Klinman, Norman R.

    1972-01-01

    Cell transfers to carrier-immunized irradiated mice have permitted an analysis of the in vitro stimulation of clonal precursors of anti-2,4-dinitrophenyl (DNP) antibody-producing cells derived from both immune and nonimmune mice. The results indicate that: (a) carrier-specific enhancement is obligatory for stimulation of primary precursor cells and increases both the size and number of detectable foci derived from secondary precursors. (b) This carrier-specific enhancement is most apparent in the stimulation of precursors of high-affinity antibody producer cells. (c) The antibody produced by primary foci, like that of secondary foci, appears homogeneous. (d) The frequency of clonal precursors in normal spleens is 38% that in spleens from mice 4–8 months after immunization, and the number of such precursors in normal spleens can be reduced fivefold by specific suppression of donor mice with soluble antigen. (e) The average of association constants of primary monofocal antibodies, like that of primary serum antibody produced in carrier-primed mice, is less than 10-fold lower than that of secondary clonal or serum antibody. (f) The affinity of primary monofocal antibodies shows a slight dependence on stimulating antigen concentration; however, a minimum threshold affinity consonant with stimulation is apparent. (g) Free hapten inhibits antigenic stimulation of primary precursor cells at a much lower concentration than is required for the inhibition of secondary precursors. These results are interpreted as indicating that (a) primary stimulation, like secondary stimulation, results from the selective stimulation by antigen of a population of cells differing from one another in their potential antibody product but each having only a single such product; (b) the antigen receptors of primary cells interact with antigen as if they are monovalent while receptors of secondary cells evidence multivalence; (c) antigenic stimulation appears to require both a relatively high

  2. Review: R28 retinal precursor cells: The first 20 years

    PubMed Central

    2014-01-01

    The R28 retinal precursor cell line was established 20 years ago, originating from a postnatal day 6 rat retinal culture immortalized with the 12S E1A (NP-040507) gene of the adenovirus in a replication-incompetent viral vector. Since that time, R28 cells have been characterized and used for a variety of in vitro and in vivo studies of retinal cell behavior, including differentiation, neuroprotection, cytotoxicity, and light stimulation, as well as retinal gene expression and neuronal function. While no cell culture is equivalent to the intact eye, R28 cells continue to provide an important experimental system for the study of many retinal processes. PMID:24644404

  3. Effects of mycobacterial infection on proliferation of hematopoietic precursor cells.

    PubMed

    Choi, Hong-Hee; Kim, Kwang-Kyu; Kim, Kwang Dong; Kim, Hwa-Jung; Jo, Eun-Kyeong; Song, Chang-Hwa

    2011-12-01

    Bacterial infection can affect hematopoietic precursor cells in bone marrow, because the infected tissues produce various cytokines and chemokines. Little is known about hematopoietic precursor cells, including hematopoietic stem cells and their progenitors, during mycobacterial infection. Here, we showed that mycobacterial infections result in the expansion of not only the lin-c-kit+sca-1+ (LKS+) cell population, but also granulocyte-monocyte progenitor cells in a chronic murine tuberculosis model. Interestingly, stimulation of LKS+ cells with attenuated Mycobacterium tuberculosis H37Ra culture filtrate (RaCF) was significantly stronger than that by virulent H37Rv culture filtrate (RvCF). Lower TNF-α and IL-6 levels were observed in RvCF-stimulated bone marrow cells. Neutralization of TNF-α or IL-6 in RaCF-stimulated bone marrow cells markedly suppressed LKS+ cell clonal expansion. Additionally, numbers of LKS+ cells were lower in TLR2(-/-) and MyD88(-/-) mice after mycobacterial infection. Taken together, LKS+ cell proliferation related to mycobacterial virulence may be related to the secretion of TNF-α and IL-6 associated with TLR signaling. Expansion of hematopoietic progenitor cells may, therefore, play an important role during mycobacterial infection.

  4. Commitment and Differentiation of Osteoclast Precursor Cells by the Sequential Expression of C-Fms and Receptor Activator of Nuclear Factor κb (Rank) Receptors

    PubMed Central

    Arai, Fumio; Miyamoto, Takeshi; Ohneda, Osamu; Inada, Tomohisa; Sudo, Tetsuo; Brasel, Kenneth; Miyata, Takashi; Anderson, Dirk M.; Suda, Toshio

    1999-01-01

    Osteoclasts are terminally differentiated cells derived from hematopoietic stem cells. However, how their precursor cells diverge from macrophagic lineages is not known. We have identified early and late stages of osteoclastogenesis, in which precursor cells sequentially express c-Fms followed by receptor activator of nuclear factor κB (RANK), and have demonstrated that RANK expression in early-stage of precursor cells (c-Fms+RANK−) was stimulated by macrophage colony-stimulating factor (M-CSF). Although M-CSF and RANKL (ligand) induced commitment of late-stage precursor cells (c-Fms+RANK+) into osteoclasts, even late-stage precursors have the potential to differentiate into macrophages without RANKL. Pretreatment of precursors with M-CSF and delayed addition of RANKL showed that timing of RANK expression and subsequent binding of RANKL are critical for osteoclastogenesis. Thus, the RANK–RANKL system determines the osteoclast differentiation of bipotential precursors in the default pathway of macrophagic differentiation. PMID:10601350

  5. Intraspinal transplantation of mouse and human neural precursor cells

    PubMed Central

    Weinger, Jason G.; Chen, Lu; Coleman, Ronald; Leang, Ronika; Plaisted, Warren C.; Loring, Jeanne F.; Lane, Thomas E.

    2013-01-01

    This unit describes the preparation and transplantation of human neural precursor cells (hNPCs) and mouse neural precursor cells (mNPCs) into the thoracic region of the mouse spinal cord. The techniques in this unit also describe how to prepare the mouse for surgery by performing a laminectomy to expose the spinal cord for transplantation. Here we show NPCs genetically labeled with eGFP transplanted into the spinal cord of a mouse following viralmediated demyelination can efficiently be detected via eGFP expression. Transplantation of these cells into the spinal cord is an efficacious way to determine their effects in neurological disorders such as multiple sclerosis, Alzheimer's disease, and spinal cord injury. PMID:24510791

  6. Peripheral Brain Derived Neurotrophic Factor Precursor Regulates Pain as an Inflammatory Mediator

    PubMed Central

    Luo, Cong; Zhong, Xiao-Lin; Zhou, Fiona H.; Li, Jia-yi; Zhou, Pei; Xu, Jun-Mei; Song, Bo; Li, Chang-Qi; Zhou, Xin-Fu; Dai, Ru-Ping

    2016-01-01

    The precursor of brain derived neurotrophic factor (proBDNF), the unprocessed BDNF gene product, binds to its receptors and exerts the opposing biologic functions of mature BDNF. proBDNF is expressed in the peripheral tissues but the functions of peripheral proBDNF remain elusive. Here we showed that proBDNF and its predominant receptor, p75 pan-neurotrophin receptor were upregulated in the nerve fibers and inflammatory cells in the local tissue in inflammatory pain. Neutralization of proBDNF by polyclonal antibody attenuated pain in different models of inflammatory pain. Unilateral intra-plantar supplementation of proBDNF by injecting exogenous proBDNF or ectopic overexpression resulted in pain hypersensitivity and induced spinal phosphorylated extracellular signal-regulated kinase activation. Exogenous proBDNF injection induced the infiltration of inflammatory cells and the activation of proinflammatory cytokines, suggesting that inflammatory reaction contributed to the pro-algesic effect of proBDNF. Finally, we generated monoclonal anti-proBDNF antibody that could biologically block proBDNF. Administration of monoclonal Ab-proBDNF attenuated various types of inflammatory pain and surgical pain. Thus, peripheral proBDNF is a potential pain mediator and anti-proBDNF pretreatment may alleviate the development of inflammatory pain. PMID:27251195

  7. Functional activity of mitochondria in cultured neural precursor cells.

    PubMed

    Plotnikov, E Yu; Marei, M V; Podgornyi, O V; Aleksandrova, M A; Zorov, D B; Sukhikh, G T

    2006-01-01

    We studied mitochondrial transmembrane potential of neural precursor cells forming neurospheres in culture. Uneven energization of mitochondria in neurosphere cells was detected. Heterogeneity of cells by the mitochondrial potential increased with neurosphere enlargement during culturing. Decrease in the mitochondrial potential in the central cells in large spheres, presumably caused by insufficient diffusion of oxygen and nutrients, can provoke their damage and death. Population of cells with high mitochondrial potential responded to addition of the nuclear dye by a decrease in mitochondrial potential, which can indicate functioning of ABCG2 complex in these cells, characteristic of undifferentiated stem cells. These data will help to create optimum conditions for culturing of neural stem cells for the maintenance of their maximum functional and proliferative activity. PMID:16929986

  8. Non-Viral Generation of Neural Precursor-like Cells from Adult Human Fibroblasts

    PubMed Central

    Maucksch, C; Firmin, E; Butler-Munro, C; Montgomery, JM; Dottori, M; Connor, B

    2012-01-01

    Recent studies have reported direct reprogramming of human fibroblasts to mature neurons by the introduction of defined neural genes. This technology has potential use in the areas of neurological disease modeling and drug development. However, use of induced neurons for large-scale drug screening and cell-based replacement strategies is limited due to their inability to expand once reprogrammed. We propose it would be more desirable to induce expandable neural precursor cells directly from human fibroblasts. To date several pluripotent and neural transcription factors have been shown to be capable of converting mouse fibroblasts to neural stem/precursor-like cells when delivered by viral vectors. Here we extend these findings and demonstrate that transient ectopic insertion of the transcription factors SOX2 and PAX6 to adult human fibroblasts through use of non-viral plasmid transfection or protein transduction allows the generation of induced neural precursor (iNP) colonies expressing a range of neural stem and pro-neural genes. Upon differentiation, iNP cells give rise to neurons exhibiting typical neuronal morphologies and expressing multiple neuronal markers including tyrosine hydroxylase and GAD65/67. Importantly, iNP-derived neurons demonstrate electrophysiological properties of functionally mature neurons with the capacity to generate action potentials. In addition, iNP cells are capable of differentiating into glial fibrillary acidic protein (GFAP)-expressing astrocytes. This study represents a novel virusfree approach for direct reprogramming of human fibroblasts to a neural precursor fate. PMID:24693194

  9. Skin-Derived Precursors against UVB-Induced Apoptosis via Bcl-2 and Nrf2 Upregulation

    PubMed Central

    Zhong, Jianqiao

    2016-01-01

    Bcl-2 and Nrf2 are critical factors in protecting cells against UVB-induced apoptosis. Hair-follicle-bulge stem cells could resist ionization through Bcl-2 upregulation. Skin-derived precursors (SKPs) dwelling on the bulge may be against UVB irradiation. Initially, SKPs were isolated and identified. Then, SKPs were exposed to UVB and grew in medium for 24 hours. CCK-8 assay, TUNEL, and Ki67 staining evaluated cells apoptosis/proliferation, while SA-βgal staining evaluated cells senescence and pH2AX immunostaining evaluated DNA damage. Meanwhile, Bcl-2, Nrf2, HO-1, Bax, and Bak expressions were assessed by qRT-PCR and western blot. Two weeks later, floating spheres appeared and were identified as SKPs. After UVB radiation, SKPs maintained spherical colonies and outnumbered unirradiated ones, showing high Ki67 expression and low TUNEL, SA-βgal, and pH2AX expression. Fibroblasts (FBs), however, displayed deformation, senescence, and reduction, with increased TUNEL, SA-βgal, and pH2AX expression. Moreover, Bcl-2 and Nrf2 mRNA expression were significantly higher than Bak and Bax in irradiated SKPs. Conversely, Bcl-2 and Nrf2 mRNA levels greatly decreased compared with Bax and Bak in irradiated FBs. Interestingly, SKPs showed higher protein levels of Bcl-2, Nrf2, and HO-1 than FBs. SKPs exert a beneficial effect on resisting UVB-induced apoptosis, which may be associated with Bcl-2 and Nrf2 upregulation. PMID:27635399

  10. Skin-Derived Precursors against UVB-Induced Apoptosis via Bcl-2 and Nrf2 Upregulation.

    PubMed

    Zhong, Jianqiao; Li, Li

    2016-01-01

    Bcl-2 and Nrf2 are critical factors in protecting cells against UVB-induced apoptosis. Hair-follicle-bulge stem cells could resist ionization through Bcl-2 upregulation. Skin-derived precursors (SKPs) dwelling on the bulge may be against UVB irradiation. Initially, SKPs were isolated and identified. Then, SKPs were exposed to UVB and grew in medium for 24 hours. CCK-8 assay, TUNEL, and Ki67 staining evaluated cells apoptosis/proliferation, while SA-βgal staining evaluated cells senescence and pH2AX immunostaining evaluated DNA damage. Meanwhile, Bcl-2, Nrf2, HO-1, Bax, and Bak expressions were assessed by qRT-PCR and western blot. Two weeks later, floating spheres appeared and were identified as SKPs. After UVB radiation, SKPs maintained spherical colonies and outnumbered unirradiated ones, showing high Ki67 expression and low TUNEL, SA-βgal, and pH2AX expression. Fibroblasts (FBs), however, displayed deformation, senescence, and reduction, with increased TUNEL, SA-βgal, and pH2AX expression. Moreover, Bcl-2 and Nrf2 mRNA expression were significantly higher than Bak and Bax in irradiated SKPs. Conversely, Bcl-2 and Nrf2 mRNA levels greatly decreased compared with Bax and Bak in irradiated FBs. Interestingly, SKPs showed higher protein levels of Bcl-2, Nrf2, and HO-1 than FBs. SKPs exert a beneficial effect on resisting UVB-induced apoptosis, which may be associated with Bcl-2 and Nrf2 upregulation. PMID:27635399

  11. Glial-restricted precursors as potential candidates for ALS cell-replacement therapy.

    PubMed

    Kruminis-Kaszkiel, Ewa; Wojtkiewicz, Joanna; Maksymowicz, Wojciech

    2014-01-01

    Amyotrophic lateral sclerosis is a multifactorial progressive neurodegenerative disorder leading to severe disability and death within 3-5 years after diagnosis. The main mechanisms underlying the disease progression are poorly known but according to the current knowledge, neuroinflammation is a key player in motor neurons damage. Astrocytes constitute an important cell population involved in neuroinflammatory reaction. Many studies confirmed their striking connection with motor neuron pathology and therefore they might be a target for the treatment of ALS. Cell-based therapy appears to be a promising strategy. Since direct replacement or restoring of motor neurons using various stem cells is challenging, enrichment of healthy donor-derived astrocytes appears to be a more realistic and beneficial approach. The effects of astrocytes have been examined using transplantation of glial-restricted precursors (GRPs) that represent one of the earliest precursors within the oligodendrocytic and astrocytic cell lineage. In this review, we focused on evidence-based data on astrocyte replacement transplantation therapy using GRPs in animal models of motor neuron diseases. The efficacy of GRPs engrafting is very encouraging. Furthermore, the lesson learned from application of lineage-restricted precursors in spinal cord injury (SCI) indicates that differentiation of GRPs into astrocytes before transplantation might be more advantageous in the context of axon regeneration. To sum up, the studies of glial-restricted precursors have made a step forward to ALS research and might bring breakthroughs to the field of ALS therapy in the future.

  12. Thin film solar cells by selenization sulfurization using diethyl selenium as a selenium precursor

    SciTech Connect

    Dhere, Neelkanth G.; Kadam, Ankur A.

    2009-12-15

    A method of forming a CIGSS absorber layer includes the steps of providing a metal precursor, and selenizing the metal precursor using diethyl selenium to form a selenized metal precursor layer (CIGSS absorber layer). A high efficiency solar cell includes a CIGSS absorber layer formed by a process including selenizing a metal precursor using diethyl selenium to form the CIGSS absorber layer.

  13. Single Source Precursors for Thin Film Solar Cells

    NASA Technical Reports Server (NTRS)

    Banger, Kulbinder K.; Hollingsworth, Jennifer A.; Harris, Jerry D.; Cowen, Jonathan; Buhro, William E.; Hepp, Aloysius F.

    2002-01-01

    The development of thin film solar cells on flexible, lightweight, space-qualified substrates provides an attractive cost solution to fabricating solar arrays with high specific power, (W/kg). The use of a polycrystalline chalcopyrite absorber layer for thin film solar cells is considered as the next generation photovoltaic devices. At NASA GRC we have focused on the development of new single source precursors (SSP) and their utility to deposit the chalcopyrite semi-conducting layer (CIS) onto flexible substrates for solar cell fabrication. The syntheses and thermal modulation of SSPs via molecular engineering is described. Thin-film fabrication studies demonstrate the SSPs can be used in a spray CVD (chemical vapor deposition) process, for depositing CIS at reduced temperatures, which display good electrical properties, suitable for PV (photovoltaic) devices.

  14. [Pulmonary arterial hypertension, bone marrow, endothelial cell precursors and serotonin].

    PubMed

    Ayme-Dietrich, Estelle; Banas, Sophie M; Monassier, Laurent; Maroteaux, Luc

    2016-01-01

    Serotonin and bone-marrow-derived stem cells participate together in triggering pulmonary hypertension. Our work has shown that the absence of 5-HT2B receptors generates permanent changes in the composition of the blood and bone-marrow in the myeloid lineages, particularly in endothelial cell progenitors. The initial functions of 5-HT2B receptors in pulmonary arterial hypertension (PAH) are restricted to bone-marrow cells. They contribute to the differentiation/proliferation/mobilization of endothelial progenitor cells from the bone-marrow. Those bone-marrow-derived cells have a critical role in the development of pulmonary hypertension and pulmonary vascular remodeling. These data indicate that bone-marrow derived endothelial progenitors play a key role in the pathogenesis of PAH and suggest that interactions involving serotonin and bone morphogenic protein type 2 receptor (BMPR2) could take place at the level of the bone-marrow. PMID:27687599

  15. Mesenchymal precursor cells in the blood of normal individuals.

    PubMed

    Zvaifler, N J; Marinova-Mutafchieva, L; Adams, G; Edwards, C J; Moss, J; Burger, J A; Maini, R N

    2000-01-01

    STATEMENT OF FINDINGS: Mesenchymal precursor cells found in the blood (BMPCs) of normal persons adhere to plastic and glass and proliferate logarithmically in DMEM-20% fetal calf serum (FCS) without growth factors. They form cells with fibroblast-like and stromal morphology, which is not affected by eliminating CD34, CD3, or CD14 cells. Osteogenic supplements (dexamethasone, ascorbic acid, and beta-glycerophosphate) added to the culture inhibited fibroblast formation, and BMPCs assumed the cuboidal shape of osteoblasts. After 5 days in supplemented medium, the elutriated cells displayed alkaline phosphatase (AP), and the addition of bone morphogenetic protein (BMP)2 (1 ng) doubled AP production (P < 0.04). Two weeks later, 30% of the cells were very large and reacted with anti-osteocalcin antibody. The same cultures also contained sudanophlic adipocytes and multinucleated giant cells that stained for tartrate-resistant acid phosphatase (TRAP) and vitronectin receptors. Cultured BMPCs immunostain with antibodies to vimentin, type I collagen, and BMP receptors, heterodimeric structures expressed on mesenchymal lineage cells. In addition, BMPCs stain with anti-CD105 (endoglin), a putative marker for bone-marrow mesenchymal stem cells (MSCs). PMID:11056678

  16. Effect of isotretinoin on serum levels of precursor and peripherally derived androgens in patients with acne.

    PubMed

    Lookingbill, D P; Demers, L M; Tigelaar, R E; Shalita, A R

    1988-04-01

    Sebaceous glands are stimulated by androgens and can convert them to more active forms. Isotretinoin, however, has a profound inhibitory effect on sebaceous gland size and function. This study evaluated the effect of isotretinoin on serum levels of precursor and tissue-derived androgens. Twenty-four subjects (15 men and nine women) were treated for 20 weeks with 1 mg/kg/d of isotretinoin. Serum samples were obtained at baseline, 8, 16, and 24 weeks, and assayed for precursor androgens--total testosterone (TT), free testosterone (free T), dehydroepiandrosterone (DHEA), dehydroepiandrosterone-sulfate (DHEA-S); and tissue androgens--dihydrotestosterone (DHT), and its metabolite, 3 alpha-androstanediol glucuronide (3 alpha-diol G). Isotretinoin had no meaningful effects on precursor androgens, except for producing an elevation of free T in women. In contrast, isotretinoin produced depressions in the serum levels of DHT and 3 alpha-diol G in women and in 3 alpha-diol G in men. These decreases are believed to be the result, rather than the cause, of a reduction in the size of the sebaceous glands: The magnitude of the observed decreases may represent the amount of tissue-derived androgens that sebaceous glands normally contribute to the circulating pool. PMID:2965551

  17. The potential of mouse skin-derived precursors to differentiate into mesenchymal and neural lineages and their application to osteogenic induction in vivo.

    PubMed

    Kang, Hyun Ki; Min, Seung-Ki; Jung, Sung Youn; Jung, Kyoungsuk; Jang, Da Hyun; Kim, O Bok; Chun, Gae-Sig; Lee, Zang Hee; Min, Byung-Moo

    2011-12-01

    Although previous studies indicate that skin-derived precursors (SKPs) are multipotent dermal precursors that share similarities with neural crest stem cells (NCSCs), a shared ability for multilineage differentiation toward neural crest lineages between SKPs and NCSCs has not been fully demonstrated. Here, we report the derivation of SKPs from adult mouse skin and their directed multilineage differentiation toward neural crest lineages. Under controlled in vitro conditions, mouse SKPs were propagated and directed toward peripheral nervous system lineages such as peripheral neurons and Schwann cells, and mesenchymal lineages, such as osteogenic, chondrogenic, adipogenic, and smooth muscle cells. To ask if SKPs could generate these same lineages in vivo, a mixture of SKP-derived mesenchymal stem cells and hydroxyapatite/tricalcium phosphate was transplanted into the rat calvarial defects. Over the ensuing 4 weeks, we observed formation of osteogenic structure in the calvarial defect without any evidence of teratomas. These findings demonstrate the multipotency of adult mouse SKPs to differentiate into neural crest lineages. In addition, SKP-derived mesenchymal stem cells represent an accessible, potentially autologous source of precursor cells for tissue-engineered bone repair. PMID:21879252

  18. Extracellular Vesicles from Vascular Endothelial Cells Promote Survival, Proliferation and Motility of Oligodendrocyte Precursor Cells

    PubMed Central

    Kurachi, Masashi; Mikuni, Masahiko; Ishizaki, Yasuki

    2016-01-01

    We previously examined the effect of brain microvascular endothelial cell (MVEC) transplantation on rat white matter infarction, and found that MVEC transplantation promoted remyelination of demyelinated axons in the infarct region and reduced apoptotic death of oligodendrocyte precursor cells (OPCs). We also found that the conditioned medium (CM) from cultured MVECs inhibited apoptosis of cultured OPCs. In this study, we examined contribution of extracellular vesicles (EVs) contained in the CM to its inhibitory effect on OPC apoptosis. Removal of EVs from the CM by ultracentrifugation reduced its inhibitory effect on OPC apoptosis. To confirm whether EVs derived from MVECs are taken up by cultured OPCs, we labeled EVs with PKH67, a fluorescent dye, and added them to OPC cultures. Many vesicular structures labeled with PKH67 were found within OPCs immediately after their addition. Next we examined the effect of MVEC-derived EVs on OPC behaviors. After 2 days in culture with EVs, there was significantly less pyknotic and more BrdU-positive OPCs when compared to control. We also examined the effect of EVs on motility of OPCs. OPCs migrated longer in the presence of EVs when compared to control. To examine whether these effects on cultured OPCs are shared by EVs from endothelial cells, we prepared EVs from conditioned media of several types of endothelial cells, and tested their effects on cultured OPCs. EVs from all types of endothelial cells we examined reduced apoptosis of OPCs and promoted their motility. Identification of the molecules contained in EVs from endothelial cells may prove helpful for establishment of effective therapies for demyelinating diseases. PMID:27403742

  19. Rejuvenation of MPTP-induced human neural precursor cell senescence by activating autophagy

    SciTech Connect

    Zhu, Liang; Dong, Chuanming; Sun, Chenxi; Ma, Rongjie; Yang, Danjing; Zhu, Hongwen; Xu, Jun

    2015-08-21

    Aging of neural stem cell, which can affect brain homeostasis, may be caused by many cellular mechanisms. Autophagy dysfunction was found in aged and neurodegenerative brains. However, little is known about the relationship between autophagy and human neural stem cell (hNSC) aging. The present study used 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) to treat neural precursor cells (NPCs) derived from human embryonic stem cell (hESC) line H9 and investigate related molecular mechanisms involved in this process. MPTP-treated NPCs were found to undergo premature senescence [determined by increased senescence-associated-β-galactosidase (SA-β-gal) activity, elevated intracellular reactive oxygen species level, and decreased proliferation] and were associated with impaired autophagy. Additionally, the cellular senescence phenotypes were manifested at the molecular level by a significant increase in p21 and p53 expression, a decrease in SOD2 expression, and a decrease in expression of some key autophagy-related genes such as Atg5, Atg7, Atg12, and Beclin 1. Furthermore, we found that the senescence-like phenotype of MPTP-treated hNPCs was rejuvenated through treatment with a well-known autophagy enhancer rapamycin, which was blocked by suppression of essential autophagy gene Beclin 1. Taken together, these findings reveal the critical role of autophagy in the process of hNSC aging, and this process can be reversed by activating autophagy. - Highlights: • We successfully establish hESC-derived neural precursor cells. • MPTP treatment induced senescence-like state in hESC-derived NPCs. • MPTP treatment induced impaired autophagy of hESC-derived NPCs. • MPTP-induced hESC-derived NPC senescence was rejuvenated by activating autophagy.

  20. Syntheses of biodiesel precursors: sulfonic acid catalysts for condensation of biomass-derived platform molecules.

    PubMed

    Balakrishnan, Madhesan; Sacia, Eric R; Bell, Alexis T

    2014-04-01

    Synthesis of transportation fuel from lignocellulosic biomass is an attractive solution to the green alternative-energy problem. The production of biodiesel, in particular, involves the process of upgrading biomass-derived small molecules to diesel precursors containing a specific carbon range (C11 -C23). Herein, a carbon-upgrading process utilizing an acid-catalyzed condensation of furanic platform molecules from biomass is described. Various types of sulfonic acid catalysts have been evaluated for this process, including biphasic and solid supported catalysts. A silica-bound alkyl sulfonic acid catalyst has been developed for promoting carbon-carbon bond formation of biomass-derived carbonyl compounds with 2-methylfuran. This hydrophobic solid acid catalyst exhibits activity and selectivity that are comparable to those of a soluble acid catalyst. The catalyst can be readily recovered and recycled, possesses appreciable hydrolytic stability in the presence of water, and retains its acidity over multiple reaction cycles. Application of this catalyst to biomass-derived platform molecules led to the synthesis of a variety of furanic compounds, which are potential biodiesel precursors.

  1. Catecholamine regulation of stromal precursors and hemopoietic stem cells in cytostatic myelosuppression.

    PubMed

    Dygai, A M; Khmelevskaya, E S; Skurikhin, E G; Pershina, O V; Andreeva, T V; Ermakova, N N

    2012-04-01

    Effects of a sympatholytic drug on bone marrow stromal and hemopoietic precursors were studied on the model of cyclophosphamide-induced myelosuppression. Sympatholytic treatment increased the content of hemopoietic stem cells of different classes in the bone marrow. Selective stimulation of differentiation of polypotent precursors into granulocyte-macrophage precursors was noted. Acceleration of proliferation and maturation of granulocytic precursors was observed at later terms during regeneration of the hemopoietic tissue. The sympatholytic inhibited proliferation of stromal precursors and reduced feeder activity of fibroblasts for granulocyte precursors.

  2. Effects of Amphotericin B on Macrophages and Their Precursor Cells

    PubMed Central

    Lin, Hsiu-San; Medoff, Gerald; Kobayashi, George S.

    1977-01-01

    The effect of amphotericin B (AmB) treatment on the mononuclear phagocyte system of mice was investigated. Peritoneal macrophages from mice that received AmB treatment showed a higher phagocytic and antibacterial activity than those from normal untreated mice. When the levels of macrophage precursor cells in bone marrow and spleen were followed in mice after AmB treatment, an eightfold increase in the splenic content of limited stem cells for both macrophages and granulocytes (colony-forming units in culture) and a threefold increase in the number of pluripotent hemopoietic stem cells (colony-forming units in spleen) were observed on day 4. These were also accompanied by a slight increase in the colony-forming units in spleen and in culture in femoral marrows. AmB was capable of inducing a large number of peritoneal colony-forming cells in the peritoneum, and caused a significant rise in the serum level of colony-stimulating factor. No significant change in the level of blood monocytes was noted, although a transient increase in the proportion of neutrophils was observed within 24 h after AmB treatment. PMID:836011

  3. Age-associated decrease in muscle precursor cell differentiation.

    PubMed

    Lees, Simon J; Rathbone, Christopher R; Booth, Frank W

    2006-02-01

    Muscle precursor cells (MPCs) are required for the regrowth, regeneration, and/or hypertrophy of skeletal muscle, which are deficient in sarcopenia. In the present investigation, we have addressed the issue of age-associated changes in MPC differentiation. MPCs, including satellite cells, were isolated from both young and old rat skeletal muscle with a high degree of myogenic purity (>90% MyoD and desmin positive). MPCs isolated from skeletal muscle of 32-mo-old rats exhibited decreased differentiation into myotubes and demonstrated decreased myosin heavy chain (MHC) and muscle creatine kinase (CK-M) expression compared with MPCs isolated from 3-mo-old rats. p27(Kip1) is a cyclin-dependent kinase inhibitor that has been shown to enhance muscle differentiation in culture. Herein we describe our finding that p27(Kip1) protein was lower in differentiating MPCs from skeletal muscle of 32-mo-old rats than in 3-mo-old rat skeletal muscle. Although MHC and CK-M expression were approximately 50% lower in differentiating MPCs isolated from 32-mo-old rats, MyoD protein content was not different and myogenin protein concentration was twofold higher. These data suggest that there are inherent differences in cell signaling during the transition from cell cycle arrest to the formation of myotubes in MPCs isolated from sarcopenic muscle. Furthermore, there is an age-associated decrease in muscle-specific protein expression in differentiating MPCs despite normal MyoD and elevated myogenin levels. PMID:16192302

  4. Msx genes define a population of mural cell precursors required for head blood vessel maturation.

    PubMed

    Lopes, Miguel; Goupille, Olivier; Saint Cloment, Cécile; Lallemand, Yvan; Cumano, Ana; Robert, Benoît

    2011-07-01

    Vessels are primarily formed from an inner endothelial layer that is secondarily covered by mural cells, namely vascular smooth muscle cells (VSMCs) in arteries and veins and pericytes in capillaries and veinules. We previously showed that, in the mouse embryo, Msx1(lacZ) and Msx2(lacZ) are expressed in mural cells and in a few endothelial cells. To unravel the role of Msx genes in vascular development, we have inactivated the two Msx genes specifically in mural cells by combining the Msx1(lacZ), Msx2(lox) and Sm22α-Cre alleles. Optical projection tomography demonstrated abnormal branching of the cephalic vessels in E11.5 mutant embryos. The carotid and vertebral arteries showed an increase in caliber that was related to reduced vascular smooth muscle coverage. Taking advantage of a newly constructed Msx1(CreERT2) allele, we demonstrated by lineage tracing that the primary defect lies in a population of VSMC precursors. The abnormal phenotype that ensues is a consequence of impaired BMP signaling in the VSMC precursors that leads to downregulation of the metalloprotease 2 (Mmp2) and Mmp9 genes, which are essential for cell migration and integration into the mural layer. Improper coverage by VSMCs secondarily leads to incomplete maturation of the endothelial layer. Our results demonstrate that both Msx1 and Msx2 are required for the recruitment of a population of neural crest-derived VSMCs.

  5. Secretory clusterin inhibits osteoclastogenesis by attenuating M-CSF-dependent osteoclast precursor cell proliferation

    SciTech Connect

    Choi, Bongkun; Kang, Soon-Suk; Kang, Sang-Wook; Min, Bon-Hong; Lee, Eun-Jin; Song, Da-Hyun; Kim, Sang-Min; Song, Youngsup; Yoon, Seung-Yong; Chang, Eun-Ju

    2014-07-18

    Highlights: • We describe the expression and secretion of clusterin in osteoclasts. • Endogenous clusterin deficiency does not affect osteoclast formation. • Exogenous treatment with secretory clusterin decreases osteoclast differentiation. • Secretory clusterin attenuates osteoclast precursor cell proliferation by inhibiting M-CSF-mediated ERK activation. - Abstract: Secretory clusterin (sCLU)/apolipoprotein J is a multifunctional glycoprotein that is ubiquitously expressed in various tissues. Reduced sCLU in the joints of patients with bone erosive disease is associated with disease activity; however, its exact role has yet to be elucidated. Here, we report that CLU is expressed and secreted during osteoclastogenesis in mouse bone marrow-derived macrophages (BMMs) that are treated with receptor activator of nuclear factor kappa-B ligand (RANKL) and macrophage colony-stimulating factor (M-CSF). CLU-deficient BMMs obtained from CLU{sup −/−} mice exhibited no significant alterations in OC differentiation in comparison with BMMs obtained from wild-type mice. In contrast, exogenous sCLU treatment significantly inhibited OC formation in both BMMs and OC precursor cultures. The inhibitory effect of sCLU was more prominent in BMMs than OC precursor cultures. Interestingly, treating BMMs with sCLU decreased the proliferative effects elicited by M-CSF and suppressed M-CSF-induced ERK activation of OC precursor cells without causing apoptotic cell death. This study provides the first evidence that sCLU reduces OC formation by inhibiting the actions of M-CSF, thereby suggesting its protective role in bone erosion.

  6. CHO cells synthesize amidated neuropeptide Y from a C-peptide deleted form of the precursor.

    PubMed

    Johansen, T E; O'Hare, M M; Wulff, B S; Schwartz, T W

    1991-07-01

    Post-translational processing of peptide precursors producing amidated, biologically active peptides is generally believed to occur only in specially differentiated endocrine or neural cells. Previously it has been shown that endoproteolytic processing of peptide precursors is very inefficient in non-endocrine cells like CHO cells. We have studied the processing of a C-peptide-deleted precursor of neuropeptide Y (NPY) in which the precursor terminates in the sequence Gly-Lys-Arg and does not require any dibasic specific endoproteolytic processing. Following transfection of CHO cells with an expression plasmid encoding this mutated NPY precursor, between 50 and 80 percent of the synthesized NPY was secreted from stable transfectants as authentic amidated NPY as assessed by both a C-terminal amide specific radioimmunoassay and by isoelectric focusing. It is concluded that amidated peptides can be produced in non-endocrine cells provided they are presented with a precursor which does not have to be endoproteolytically processed.

  7. Effects of skin-derived precursors on wound healing of denervated skin in a nude mouse model.

    PubMed

    Shu, Bin; Xie, Ju-Lin; Xu, Ying-Bin; Lai, Wen; Huang, Yong; Mao, Ren-Xiang; Liu, Xu-Sheng; Qi, Shao-Hai

    2015-01-01

    Denervated skin could result in impaired healing of wounds, such as decubitus ulcers and diabetic foot ulcers. Other studies indicated that cutaneous fiber density is reduced after inner nerve transection and that neuropeptide level depletes after denervation, leading to reduced cell proliferation around the wound and thus wound healing problems. Recent studies have revealed that skin-derived precursors (SKPs), which form a neural crest-related stem cell population in the dermis of skin, participate in cutaneous nerve regeneration. We hypothesized that injecting SKPs into denervated wound promotes healing. A bilateral denervation wound model was established followed by SKP transplantation. The wound healing rate was determined at 7, 14, and 21 d after injury. Cell proliferation activity during wound healing was analyzed by proliferating cell nuclear antigen immunohistochemistry (IHC). Nerve fiber density was measured by S-100 IHC. The contents of nerve growth factor, substance P, and calcitonin gene-related peptide were examined by enzyme-linked immunosorbent assay. The rate of epithelization in the SKP-treated group was faster than that in the control group. Wound cell proliferation and nerve fiber density were obviously higher in the SKP-treated group than in the control group. In addition, the content of neuropeptides was higher in the SKP-treated group than in the control group during wound healing. In conclusion, SKPs can promote denervated wound healing through cell proliferation and nerve fiber regeneration, and can facilitate the release of neuropeptides.

  8. Effects of skin-derived precursors on wound healing of denervated skin in a nude mouse model

    PubMed Central

    Shu, Bin; Xie, Ju-Lin; Xu, Ying-Bin; Lai, Wen; Huang, Yong; Mao, Ren-Xiang; Liu, Xu-Sheng; Qi, Shao-Hai

    2015-01-01

    Denervated skin could result in impaired healing of wounds, such as decubitus ulcers and diabetic foot ulcers. Other studies indicated that cutaneous fiber density is reduced after inner nerve transection and that neuropeptide level depletes after denervation, leading to reduced cell proliferation around the wound and thus wound healing problems. Recent studies have revealed that skin-derived precursors (SKPs), which form a neural crest-related stem cell population in the dermis of skin, participate in cutaneous nerve regeneration. We hypothesized that injecting SKPs into denervated wound promotes healing. A bilateral denervation wound model was established followed by SKP transplantation. The wound healing rate was determined at 7, 14, and 21 d after injury. Cell proliferation activity during wound healing was analyzed by proliferating cell nuclear antigen immunohistochemistry (IHC). Nerve fiber density was measured by S-100 IHC. The contents of nerve growth factor, substance P, and calcitonin gene-related peptide were examined by enzyme-linked immunosorbent assay. The rate of epithelization in the SKP-treated group was faster than that in the control group. Wound cell proliferation and nerve fiber density were obviously higher in the SKP-treated group than in the control group. In addition, the content of neuropeptides was higher in the SKP-treated group than in the control group during wound healing. In conclusion, SKPs can promote denervated wound healing through cell proliferation and nerve fiber regeneration, and can facilitate the release of neuropeptides. PMID:26045771

  9. Two Peptides Derived from the Nerve Growth Factor Precursor Are Biologically Active

    PubMed Central

    Dicou, Eleni; Pflug, Beth; Magazin, Marilyn; Lehy, Thérèse; Djakiew, Daniel; Ferrara, Pascual; Nerrière, Véronique; Harvie, Douglas

    1997-01-01

    This report provides evidence that the proregion of the NGF precursor protein contains two novel bioactive peptides. The presence of pairs of basic amino acid (aa) residues in the NGF proregion suggests that two or three peptides other than NGF may be generated by proteolytic cleavage. Synthetic peptides of 29 aa (LIP1) and 38aa (LIP2) corresponding to the sequences −71 to −43 and −40 to −3 of the proNGF, respectively, were used in this study. ELISA specific for these two peptides revealed their presence in the rat intestine. LIP1 was localized by immunohistochemistry in endocrine cells of the intestinal epithelium, and LIP2 was immunoprecipitated from an intestinal extract. We also provide evidence for the presence of specific receptors for LIP2 in several cell lines. Scatchard analysis indicated the presence of a low affinity binding site with a Kd of ∼10−7 M and a high affinity binding site of 10−9 M. Cross-linking studies revealed receptor forms of about 140 kD and 93 kD in a prostatic adenocarcinoma cell line. LIP1 and LIP2 induced rapid F-actin redistribution in PC12 cells within 2 min of incubation, which suggests a role of LIP1 and LIP2 in the process of neurite outgrowth. Furthermore, both propeptides induced rapid tyrosine phosphorylation of the Trk protein in both prostatic adenocarcinoma cells and PC12 cells, thus implicating trk in their mechanism of action. These results support our hypothesis that two peptides within the NGF precursor protein are biologically active. PMID:9015309

  10. Alterations in hippocampal myelin and oligodendrocyte precursor cells during epileptogenesis.

    PubMed

    Luo, Yuanyuan; Hu, Qiao; Zhang, Qian; Hong, Siqi; Tang, Xiaoju; Cheng, Li; Jiang, Li

    2015-11-19

    Recent reports have described damage to myelinated fibers in the central nervous system (CNS) in patients with temporal lobe epilepsy (TLE) and animal models. However, only limited data are available on the dynamic changes that occur in myelinated fibers, oligodendrocytes (which are myelin-forming cells), and oligodendrocyte precursor cells (OPCs), which are a reservoir of new oligodendrocytes, in the hippocampus throughout epileptogenesis. The current study was designed to examine this issue using a rat model of lithium-pilocarpine-induced epilepsy. Electroencephalography (EEG), immunofluorescence, and Western blot analysis showed that the loss of myelin and oligodendrocytes in the rat hippocampus began during the acute stage of epileptogenesis, and the severity of this loss increased throughout epileptogenesis. Accompanying this loss of myelin and oligodendrocytes, OPCs in the rat hippocampus became activated and their populations increased during several phases of epileptogenesis (the acute, latent and chronic phases). The transcription factors olig1 and olig2, which play crucial roles in regulating OPC proliferation, differentiation and remyelination, were up-regulated during the early phases (the acute and latent phases) followed by a sharp decline in their expression during the chronic and late chronic phases. This study is the first to confirm the loss of myelin and oligodendrocytes during lithium-pilocarpine-induced epileptogenesis accompanied by a transient increase in the number of OPCs. Prevention of the loss of myelin and oligodendrocytes may provide a novel treatment strategy for epilepsy.

  11. Naive CD8+ T-cell precursors display structured TCR repertoires and composite antigen-driven selection dynamics

    PubMed Central

    Neller, Michelle A; Ladell, Kristin; McLaren, James E; Matthews, Katherine K; Gostick, Emma; Pentier, Johanne M; Dolton, Garry; Schauenburg, Andrea JA; Koning, Dan; Fontaine Costa, Ana Isabel CA; Watkins, Thomas S; Venturi, Vanessa; Smith, Corey; Khanna, Rajiv; Miners, Kelly; Clement, Mathew; Wooldridge, Linda; Cole, David K; van Baarle, Debbie; Sewell, Andrew K; Burrows, Scott R; Price, David A; Miles, John J

    2015-01-01

    Basic parameters of the naive antigen (Ag)-specific T-cell repertoire in humans remain poorly defined. Systematic characterization of this ‘ground state' immunity in comparison with memory will allow a better understanding of clonal selection during immune challenge. Here, we used high-definition cell isolation from umbilical cord blood samples to establish the baseline frequency, phenotype and T-cell antigen receptor (TCR) repertoire of CD8+ T-cell precursor populations specific for a range of viral and self-derived Ags. Across the board, these precursor populations were phenotypically naive and occurred with hierarchical frequencies clustered by Ag specificity. The corresponding patterns of TCR architecture were highly ordered and displayed partial overlap with adult memory, indicating biased structuring of the T-cell repertoire during Ag-driven selection. Collectively, these results provide new insights into the complex nature and dynamics of the naive T-cell compartment. PMID:25801351

  12. Ex Situ Formation of Metal Selenide Quantum Dots Using Bacterially Derived Selenide Precursors

    SciTech Connect

    Fellowes, Jonathan W.; Pattrick, Richard; Lloyd, Jon; Charnock, John M.; Coker, Victoria S.; Mosselmans, JFW; Weng, Tsu-Chien; Pearce, Carolyn I.

    2013-04-12

    Luminescent quantum dots were synthesized using bacterially derived selenide (SeII-) as the precursor. Biogenic SeII- was produced by the reduction of Se-IV by Veillonella atypica and compared directly against borohydride-reduced Se-IV for the production of glutathione-stabilized CdSe and beta-mercaptoethanol-stabilized ZnSe nanoparticles by aqueous synthesis. Biological SeII- formed smaller, narrower size distributed QDs under the same conditions. The growth kinetics of biologically sourced CdSe phases were slower. The proteins isolated from filter sterilized biogenic SeII- included a methylmalonyl-CoA decarboxylase previously characterized in the closely related Veillonella parvula. XAS analysis of the glutathione-capped CdSe at the S K-edge suggested that sulfur from the glutathione was structurally incorporated within the CdSe. A novel synchrotron based XAS technique was also developed to follow the nucleation of biological and inorganic selenide phases, and showed that biogenic SeII- is more stable and more resistant to beam-induced oxidative damage than its inorganic counterpart. The bacterial production of quantum dot precursors offers an alternative, 'green' synthesis technique that negates the requirement of expensive, toxic chemicals and suggests a possible link to the exploitation of selenium contaminated waste streams.

  13. PRDM6 is enriched in vascular precursors during development and inhibits endothelial cell proliferation, survival, and differentiation.

    PubMed

    Wu, Yaxu; Ferguson, James E; Wang, Hong; Kelley, Rusty; Ren, Rongqin; McDonough, Holly; Meeker, James; Charles, Peter C; Wang, Hengbin; Patterson, Cam

    2008-01-01

    The mechanisms that regulate the differentiation program of multipotential stem cells remain poorly understood. In order to define the cues that delineate endothelial commitment from precursors, we screened for candidate regulatory genes in differentiating mouse embryoid bodies. We found that the PR/SET domain protein, PRDM6, is enriched in flk1(+) hematovascular precursor cells using a microarray-based approach. As determined by 5' RACE, full-length PRDM6 protein contains a PR domain and four Krüppel-like zinc fingers. In situ hybridization in mouse embryos demonstrates staining of the primitive streak, allantois, heart, outflow tract, paraaortic splanchnopleura (P-Sp)/aorto-gonadal-mesonephric (AGM) region and yolk sac, all sites known to be enriched in vascular precursor cells. PRDM6 is also detected in embryonic and adult-derived endothelial cell lines. PRDM6 is co-localized with histone H4 and methylates H4-K20 (but not H3) in vitro and in vivo, which is consistent with the known participation of PR domains in histone methyltransferase activity. Overexpression of PRDM6 in mouse embryonic endothelial cells induces apoptosis by activating caspase-3 and inducing G1 arrest. PRDM6 inhibits cell proliferation as determined by BrdU incorporation in endothelial cells, but not in rat aortic smooth muscle cells. Overexpression of PRDM6 also results in reduced tube formation in cultured endothelial cells grown in Matrigel. Taken together, our data indicate that PRDM6 is expressed by vascular precursors, has differential effects in endothelial cells and smooth muscle cells, and may play a role in vascular precursor differentiation and survival by modulating local chromatin-remodeling activity within hematovascular subpopulations during development.

  14. Role of precursor crystal structure on electrochemical performance of carbide-derived carbon electrodes

    NASA Astrophysics Data System (ADS)

    Palazzo, Benjamin; Norris, Zach; Taylor, Greg; Yu, Lei; Lofland, Samuel; Hettinger, Jeffrey

    2015-03-01

    Binary carbides with hexagonal and cubic crystal structures have been synthesized by reactive magnetron sputtering of vanadium and other transition metals in acetylene or methane gas mixed with argon. The binary carbides are converted to carbide-derived carbon (CDC) films using chlorine gas in a post-deposition process in an external vacuum reaction furnace. Residual chlorine has been removed using an annealing step in a hydrogen atmosphere. The CDC materials have been characterized by x-ray diffraction, x-ray fluorescence, and scanning electron microscopy. The performance of the CDC materials in electrochemical device applications has been measured with the hexagonal phase precursor demonstrating a significantly higher specific capacitance in comparison to that of the cubic phase. We report these results and pore-size distributions of these and similar materials.

  15. Characterization of the Murine Myeloid Precursor Cell Line MuMac-E8

    PubMed Central

    Fricke, Stephan; Riemschneider, Sina; Kohlschmidt, Janine; Hilger, Nadja; Fueldner, Christiane; Knauer, Jens; Sack, Ulrich; Emmrich, Frank; Lehmann, Jörg

    2014-01-01

    Starting point for the present work was the assumption that the cell line MuMac-E8 represents a murine cell population with stem cell properties. Preliminary studies already pointed to the expression of stem-cell associated markers and a self-regenerative potential of the cells. The cell line MuMac-E8 should be examined for their differential stage within stem cell hierarchy. MuMac-E8 cells were derived from a chimeric mouse model of arthritis. It could be shown that MuMac-E8 cells express mRNA of some genes associated with pluripotent stem cells (Nanog, Nucleostemin), of genes for hematopoietic markers (EPCR, Sca-1, CD11b, CD45), for the mesenchymal marker CD105 and of genes for the neural markers Pax-6 and Ezrin. In methylcellulose and May-Grünwald-Giemsa staining, hematopoietic colonies were obtained but the hematopoietic system of lethally irradiated mice could not be rescued. Osteogenic differentiation was not detectable. Thus, it became evident that MuMac-E8 represents not a stem cell line. However, MuMac-E8 cells expressed several myeloid surface markers (i.e. CD11b, F4/80, CD14, CD64), showed phagocytosis and is capable of producing nitric oxide. Thus, this cell line seems to be arrested an advanced stage of myeloid differentiation. Adherence data measured by impedance-based real-time cell analysis together with cell morphology data suggested that MuMac-E8 represents a new macrophage precursor cell line exhibiting weak adherence. This cell line is suitable as an in-vitro model for testing of macrophage functions. Moreover, it might be also useful for differentiation or reprogramming studies. PMID:25546418

  16. Characterization of the murine myeloid precursor cell line MuMac-E8.

    PubMed

    Fricke, Stephan; Pfefferkorn, Cathleen; Wolf, Doris; Riemschneider, Sina; Kohlschmidt, Janine; Hilger, Nadja; Fueldner, Christiane; Knauer, Jens; Sack, Ulrich; Emmrich, Frank; Lehmann, Jörg

    2014-01-01

    Starting point for the present work was the assumption that the cell line MuMac-E8 represents a murine cell population with stem cell properties. Preliminary studies already pointed to the expression of stem-cell associated markers and a self-regenerative potential of the cells. The cell line MuMac-E8 should be examined for their differential stage within stem cell hierarchy. MuMac-E8 cells were derived from a chimeric mouse model of arthritis. It could be shown that MuMac-E8 cells express mRNA of some genes associated with pluripotent stem cells (Nanog, Nucleostemin), of genes for hematopoietic markers (EPCR, Sca-1, CD11b, CD45), for the mesenchymal marker CD105 and of genes for the neural markers Pax-6 and Ezrin. In methylcellulose and May-Grünwald-Giemsa staining, hematopoietic colonies were obtained but the hematopoietic system of lethally irradiated mice could not be rescued. Osteogenic differentiation was not detectable. Thus, it became evident that MuMac-E8 represents not a stem cell line. However, MuMac-E8 cells expressed several myeloid surface markers (i.e. CD11b, F4/80, CD14, CD64), showed phagocytosis and is capable of producing nitric oxide. Thus, this cell line seems to be arrested an advanced stage of myeloid differentiation. Adherence data measured by impedance-based real-time cell analysis together with cell morphology data suggested that MuMac-E8 represents a new macrophage precursor cell line exhibiting weak adherence. This cell line is suitable as an in-vitro model for testing of macrophage functions. Moreover, it might be also useful for differentiation or reprogramming studies.

  17. Serum of patients with active rheumatoid arthritis inhibits differentiation of osteochondrogenic precursor cells.

    PubMed

    Pathak, Janak L; Verschueren, Patrick; Lems, Willem F; Bravenboer, Nathalie; Klein-Nulend, Jenneke; Bakker, Astrid D; Luyten, Frank P

    2016-05-01

    Delayed fracture healing is frequently experienced in patients with systemic inflammation such as during rheumatoid arthritis (RA). The reasons for this are diverse, but could also be caused by inflammatory cytokines and/or growth factors in serum from patients with active disease. We hypothesized that serum from patients with active RA contains circulating inflammatory factors that inhibit differentiation of osteochondrogenic precursors. Serum was obtained from 15 patients with active RA (active RA-sera) and from the same patients in clinical remission 1 year later (remission RA-sera; controls). The effect of active RA-sera on osteochondrogenic differentiation of chondrogenic ATDC5 cells and primary human periosteum-derived progenitor cells (HPDC) was determined in micromass culture. In ATDC5 cells, active RA-sera reduced Ki67 transcription levels by 40% and cartilage matrix accumulation by 14% at day 14, and Alp transcription levels by 16%, and matrix mineralization by 17% at day 21 compared with remission RA-sera. In HPDCs, active RA-sera inhibited metabolic activity by 8%, SOX9 transcription levels by 14%, and cartilage matrix accumulation by 7% at day 7 compared with remission RA-sera. In conclusion, sera from patients with active RA negatively affect differentiation of osteochondrogenic precursors, and as a consequence may contribute to delayed fracture healing in these patients.

  18. Increasing the CD4+ T Cell Precursor Frequency Leads to Competition for IFN-γ Thereby Degrading Memory Cell Quantity and Quality1

    PubMed Central

    Whitmire, Jason K.; Benning, Nicola; Eam, Boreth; Whitton, J. Lindsay

    2009-01-01

    The precursor frequency of naive CD4+ T cells shows an inverse relationship with the number of memory cells generated after exposure to cognate Ag. Using the lymphocytic choriomeningitis virus (LCMV) model, we show here that only when the initial number of naive virus-specific CD4+ T cell precursors is low (≤104 per spleen) do they give rise to abundant and homogeneous memory cells that are CD62Llow, IL-7Rhigh, and imbued with an enhanced capacity to produce cytokine, proliferate, and survive over time. Furthermore, memory cells derived from a high naive precursor number show functional deficits upon secondary exposure to virus. The negative effect of higher naive precursor frequency was not attributable to competition for limiting amounts of Ag, because LCMV-naive CD4+ TCR-transgenic CD4 T cells were recruited into the LCMV-induced response even when their initial number was high. Instead, the T cells appear to compete for direct IFN-γ signals as they differentiate into memory cells. These results are consistent with a model of T cell development in which the most fit effector T cells that receive sufficient direct IFN-γ signals are selected to differentiate further into memory cells. PMID:18453598

  19. Purification of neural precursor cells reveals the presence of distinct, stimulus-specific subpopulations of quiescent precursors in the adult mouse hippocampus.

    PubMed

    Jhaveri, Dhanisha J; O'Keeffe, Imogen; Robinson, Gregory J; Zhao, Qiong-Yi; Zhang, Zong Hong; Nink, Virginia; Narayanan, Ramesh K; Osborne, Geoffrey W; Wray, Naomi R; Bartlett, Perry F

    2015-05-27

    The activity of neural precursor cells in the adult hippocampus is regulated by various stimuli; however, whether these stimuli regulate the same or different precursor populations remains unknown. Here, we developed a novel cell-sorting protocol that allows the purification to homogeneity of neurosphere-forming neural precursors from the adult mouse hippocampus and examined the responsiveness of individual precursors to various stimuli using a clonal assay. We show that within the Hes5-GFP(+)/Nestin-GFP(+)/EGFR(+) cell population, which comprises the majority of neurosphere-forming precursors, there are two distinct subpopulations of quiescent precursor cells, one directly activated by high-KCl depolarization, and the other activated by norepinephrine (NE). We then demonstrate that these two populations are differentially distributed along the septotemporal axis of the hippocampus, and show that the NE-responsive precursors are selectively regulated by GABA, whereas the KCl-responsive precursors are selectively modulated by corticosterone. Finally, based on RNAseq analysis by deep sequencing, we show that the progeny generated by activating NE-responsive versus KCl-responsive quiescent precursors are molecularly different. These results demonstrate that the adult hippocampus contains phenotypically similar but stimulus-specific populations of quiescent precursors, which may give rise to neural progeny with different functional capacity.

  20. Carboxylate Precursor Effects on MOD Derived Metal Oxide (Nickel/Nickel Oxide ) Thin Films

    NASA Astrophysics Data System (ADS)

    Gao, Xiang

    Thin films in the (Ni/NiO) system have been widely studied because of their significant potential for use in batteries, fuel cells, solar cells, supercapacitors, magnetic devices and various sensor applications. Such films typically are deposited onto suitable substrates by electrochemical or vapor deposition methods, followed by heat treatment to develop the oxide structure. In this study, by contrast, the Ni/NiO thin films were prepared by metallo-organic decomposition (MOD) technique in order to facilitate the development of nano structure feature as well as molecular scale mixing and excellent composition control. Critical parameters that must be controlled during this deposition process to achieve high quality films include: carboxylate precursor chemistry, solution chemistry, film structure chemistry, film deposition characteristics, film structure development and pyrolysis characteristics. These crucial control parameters are, for the most areas, poorly understood for this system especially for the carboxylate precursor chemistry effects on properties of Ni/NiO thin films. The goal of this work, therefore, is to understand and design those parameters in term of precursor species, viscosity, solute concentration and solvent composition as well as film deposition and heat treatment conditions that can lead to the controlled fabrication of nano-sized, high surface area, low resistive Ni/NiO thin films on Si and metallic substrates such as stainless steels and silver. The solvent system used consisted of a unique mixture of propionic acid and amylamine, in molar ratio of 0.5--2.0, with Ni acetate as the solute precursor in the concentration range of 0.2--2 mol/l. The films were prepared by spin deposition at 3000 rpm from carboxylate solution precursors with viscosity range of 10--640 cP. Good quality nano-sized Ni/NiO thin films, in the range of 0.2--2 microm thickness, on Si or stainless steel substrates were obtained by a mixed AA/PPA solvent system in the

  1. Higher vulnerability and stress sensitivity of neuronal precursor cells carrying an alpha-synuclein gene triplication.

    PubMed

    Flierl, Adrian; Oliveira, Luís M A; Falomir-Lockhart, Lisandro J; Mak, Sally K; Hesley, Jayne; Soldner, Frank; Arndt-Jovin, Donna J; Jaenisch, Rudolf; Langston, J William; Jovin, Thomas M; Schüle, Birgitt

    2014-01-01

    Parkinson disease (PD) is a multi-factorial neurodegenerative disorder with loss of dopaminergic neurons in the substantia nigra and characteristic intracellular inclusions, called Lewy bodies. Genetic predisposition, such as point mutations and copy number variants of the SNCA gene locus can cause very similar PD-like neurodegeneration. The impact of altered α-synuclein protein expression on integrity and developmental potential of neuronal stem cells is largely unexplored, but may have wide ranging implications for PD manifestation and disease progression. Here, we investigated if induced pluripotent stem cell-derived neuronal precursor cells (NPCs) from a patient with Parkinson's disease carrying a genomic triplication of the SNCA gene (SNCA-Tri). Our goal was to determine if these cells these neuronal precursor cells already display pathological changes and impaired cellular function that would likely predispose them when differentiated to neurodegeneration. To achieve this aim, we assessed viability and cellular physiology in human SNCA-Tri NPCs both under normal and environmentally stressed conditions to model in vitro gene-environment interactions which may play a role in the initiation and progression of PD. Human SNCA-Tri NPCs displayed overall normal cellular and mitochondrial morphology, but showed substantial changes in growth, viability, cellular energy metabolism and stress resistance especially when challenged by starvation or toxicant challenge. Knockdown of α-synuclein in the SNCA-Tri NPCs by stably expressed short hairpin RNA (shRNA) resulted in reversal of the observed phenotypic changes. These data show for the first time that genetic alterations such as the SNCA gene triplication set the stage for decreased developmental fitness, accelerated aging, and increased neuronal cell loss. The observation of this "stem cell pathology" could have a great impact on both quality and quantity of neuronal networks and could provide a powerful new tool for

  2. Higher Vulnerability and Stress Sensitivity of Neuronal Precursor Cells Carrying an Alpha-Synuclein Gene Triplication

    PubMed Central

    Flierl, Adrian; Oliveira, Luís M. A.; Falomir-Lockhart, Lisandro J.; Mak, Sally K.; Hesley, Jayne; Soldner, Frank; Arndt-Jovin, Donna J.; Jaenisch, Rudolf; Langston, J. William; Jovin, Thomas M.; Schüle, Birgitt

    2014-01-01

    Parkinson disease (PD) is a multi-factorial neurodegenerative disorder with loss of dopaminergic neurons in the substantia nigra and characteristic intracellular inclusions, called Lewy bodies. Genetic predisposition, such as point mutations and copy number variants of the SNCA gene locus can cause very similar PD-like neurodegeneration. The impact of altered α-synuclein protein expression on integrity and developmental potential of neuronal stem cells is largely unexplored, but may have wide ranging implications for PD manifestation and disease progression. Here, we investigated if induced pluripotent stem cell-derived neuronal precursor cells (NPCs) from a patient with Parkinson’s disease carrying a genomic triplication of the SNCA gene (SNCA-Tri). Our goal was to determine if these cells these neuronal precursor cells already display pathological changes and impaired cellular function that would likely predispose them when differentiated to neurodegeneration. To achieve this aim, we assessed viability and cellular physiology in human SNCA-Tri NPCs both under normal and environmentally stressed conditions to model in vitro gene-environment interactions which may play a role in the initiation and progression of PD. Human SNCA-Tri NPCs displayed overall normal cellular and mitochondrial morphology, but showed substantial changes in growth, viability, cellular energy metabolism and stress resistance especially when challenged by starvation or toxicant challenge. Knockdown of α-synuclein in the SNCA-Tri NPCs by stably expressed short hairpin RNA (shRNA) resulted in reversal of the observed phenotypic changes. These data show for the first time that genetic alterations such as the SNCA gene triplication set the stage for decreased developmental fitness, accelerated aging, and increased neuronal cell loss. The observation of this “stem cell pathology” could have a great impact on both quality and quantity of neuronal networks and could provide a powerful new

  3. Transplanted Bone Marrow-Derived Cells Contribute to Human Adipogenesis.

    PubMed

    Rydén, Mikael; Uzunel, Mehmet; Hård, Joanna L; Borgström, Erik; Mold, Jeff E; Arner, Erik; Mejhert, Niklas; Andersson, Daniel P; Widlund, Yvonne; Hassan, Moustapha; Jones, Christina V; Spalding, Kirsty L; Svahn, Britt-Marie; Ahmadian, Afshin; Frisén, Jonas; Bernard, Samuel; Mattsson, Jonas; Arner, Peter

    2015-09-01

    Because human white adipocytes display a high turnover throughout adulthood, a continuous supply of precursor cells is required to maintain adipogenesis. Bone marrow (BM)-derived progenitor cells may contribute to mammalian adipogenesis; however, results in animal models are conflicting. Here we demonstrate in 65 subjects who underwent allogeneic BM or peripheral blood stem cell (PBSC) transplantation that, over the entire lifespan, BM/PBSC-derived progenitor cells contribute ∼10% to the subcutaneous adipocyte population. While this is independent of gender, age, and different transplantation-related parameters, body fat mass exerts a strong influence, with up to 2.5-fold increased donor cell contribution in obese individuals. Exome and whole-genome sequencing of single adipocytes suggests that BM/PBSC-derived progenitors contribute to adipose tissue via both differentiation and cell fusion. Thus, at least in the setting of transplantation, BM serves as a reservoir for adipocyte progenitors, particularly in obese subjects. PMID:26190649

  4. Reduced Osteogenesis of Human Osteogenic Precursors' Cells Cultured in the Random Positioning Machine

    NASA Astrophysics Data System (ADS)

    Gershovich, J. G.; Buravkova, L. B.

    2008-06-01

    Recent studies have shown that simulated microgravity (SMG) results in altered proliferation and differentiation not only osteoblasts but also affects on osteogenic capacity of mesenchymal stem cells (MSCs) from various sources. For present study we used system that simulates effects of microgravity produced by the Random Positioning Machine (RPM). Cultured MCSs from human bone marrow and human osteoblasts (OBs) were exposed to SMG at RPM for 10-40 days. Induced osteogenesis of these progenitor cells was compared with the appropriate static (1g) and dynamic (horizontal shaker) controls. Clinorotated OBs and MSCs showed proliferation rate lower than static and dynamic control groups of cells in the early terms of SMG. Significant reduction of ALP activity was detected after 10 days of clinorotation of MSCs. There was no such dramatic difference in ALP activity of MSCs derived cells between SMG and control groups after 20 days of clinorotation but the expression of ALP was still reduced. However, virtually no matrix mineralization was found in OBs cultured under SMG conditions in the presence of differentiation stimuli. The similar effect was observed when we assayed matrix calcification of MSCs derived cultures. Thus, our results confirm low gravity mediated reduction of osteogenesis of different osteogenic precursors' cells and can clarify the mechanisms of bone loss during spaceflight.

  5. Monocyte Heterogeneity: Consequences for Monocyte-Derived Immune Cells

    PubMed Central

    de Vries, Teun J.; Everts, Vincent

    2016-01-01

    Blood monocytes are precursors of dendritic cells, macrophages, and osteoclasts. They are a heterogeneous cell population with differences in size, phenotype, and function. Although monocytes maintain several tissue-specific populations of immune cells in homeostasis, their contribution to populations of dendritic cells, macrophages, and osteoclasts is significantly increased in inflammation. Identification of a growing number of functionally different subsets of cells within populations of monocyte-derived immune cells has recently put monocyte heterogeneity into sharp focus. Here, we summarize recent findings in monocyte heterogeneity and their differentiation into dendritic cells, macrophages, and osteoclasts. We also discuss these advances in the context of the formation of functionally different monocyte-derived subsets of dendritic cells, macrophages, and osteoclasts. PMID:27478854

  6. T cell dysfunction in the diabetes-prone BB rat. A role for thymic migrants that are not T cell precursors

    SciTech Connect

    Georgiou, H.M.; Lagarde, A.C.; Bellgrau, D.

    1988-01-01

    Diabetes-prone BB (BB-DP) rats express several T cell dysfunctions which include poor proliferative and cytotoxic responses to alloantigen. The goal of this study was to determine the origin of these T cell dysfunctions. When BB-DP rats were thymectomized, T cell depleted, and transplanted with neonatal thymus tissue from diabetes-resistant and otherwise normal DA/BB F1 rats, the early restoration of T cell function proceeded normally on a cell-for-cell basis; i.e., peripheral T cells functioned like those from the thymus donor. Because the thymus in these experiments was subjected to gamma irradiation before transplantation and there was no evidence of F1 chimerism in the transplanted BB-DP rats, it appeared that the BB-DP T cell precursors could mature into normally functioning T cells if the maturation process occurred in a normal thymus. If the F1 thymus tissue was treated with dGua before transplantation, the T cells of these animals functioned poorly like those from untreated BB-DP rats. dGua poisons bone marrow-derived cells, including gamma radiation-resistant cells of the macrophage/dendritic cell lineages, while sparing the thymic epithelium. Therefore, the reversal of the T cell dysfunction depends on the presence in the F1 thymus of gamma radiation-resistant, dGua-sensitive F1 cells. Conversely, thymectomized and T cell-depleted F1 rats expressed T cell dysfunction when transplanted with gamma-irradiated BB thymus grafts. T cell responses were normal in animals transplanted with dGua-treated BB thymus grafts. With increasing time after thymus transplantation, T cells from all animals gradually expressed the functional phenotype of the bone marrow donor. Taken together these results suggest that BB-DP bone marrow-derived cells that are not T cell precursors influence the maturation environment in the thymus of otherwise normal BB-DP T cell precursors.

  7. Differentiation of IL-17-producing effector and regulatory human T cells from lineage-committed naive precursors.

    PubMed

    Mercer, Frances; Khaitan, Alka; Kozhaya, Lina; Aberg, Judith A; Unutmaz, Derya

    2014-08-01

    A subset of human regulatory T cells (Tregs) secretes IL-17 and thus resembles Th17 effector cells. How IL-17(+) Tregs differentiate from naive precursors remains unclear. In this study, we show that IL-17-producing T cells can differentiate from CCR6(+) naive T cell precursors in the presence of IL-2, IL-1β, TGF-β, and IL-23. CCR6(+) naive T cells are present in adult peripheral and umbilical cord blood and in both conventional T naive and FOXP3(+) naive Treg subsets. IL-17(+) cells derived from CCR6(+) naive Tregs (referred to as IL-17(+) Tregs) express FOXP3 but not HELIOS, another Treg-associated transcription factor, and these cells display suppressor capacity and a surface phenotype resembling memory Tregs. Remarkably, the IL-17(+) Treg compartment was preferentially reduced relative to the canonical Th17 and Treg compartments in a subset of HIV(+) subjects, suggesting a specific perturbation of this subset during the course of disease. Our findings that CCR6(+) naive precursors contain a predetermined reservoir to replenish IL-17-secreting cells may have implications in balancing the Th17 and IL-17(+) Treg compartments that are perturbed during HIV infection and potentially in other inflammatory diseases.

  8. CD4+ T cell anergy prevents autoimmunity and generates regulatory T cell precursors

    PubMed Central

    Kalekar, Lokesh A.; Schmiel, Shirdi E.; Nandiwada, Sarada L.; Lam, Wing Y.; Barsness, Laura O.; Zhang, Na; Stritesky, Gretta L.; Malhotra, Deepali; Pauken, Kristen E.; Linehan, Jonathan L.; O’Sullivan, M. Gerard; Fife, Brian T.; Hogquist, Kristin A.; Jenkins, Marc K.; Mueller, Daniel L.

    2015-01-01

    The role that anergy, an acquired state of T cell functional unresponsiveness, plays in natural peripheral tolerance remains unclear. In this study, we demonstrate that anergy is selectively induced in fetal antigen-specific maternal CD4+ T cells during pregnancy. A naturally occurring subpopulation of anergic polyclonal CD4+ T cells, enriched in self antigen-specific T cell receptors, is also observed in healthy hosts. Neuropilin-1 expression in anergic conventional CD4+ T cells is associated with thymic regulatory T cell (Treg cell)-related gene hypomethylation, and this correlates with their capacity to differentiate into Foxp3+ Treg cells that suppress immunopathology. Thus, our data suggest that not only is anergy induction important in preventing autoimmunity, but it also generates the precursors for peripheral Treg cell differentiation. PMID:26829766

  9. Trypsin and thrombin accelerate aggregation of human endocrine pancreas precursor cells.

    PubMed

    Wei, Chiju; Geras-Raaka, Elizabeth; Marcus-Samuels, Bernice; Oron, Yoram; Gershengorn, Marvin C

    2006-02-01

    Human islet-derived precursor cells (hIPCs) and human pancreatic ductal carcinoma (PANC-1) cells can be induced to form aggregates that subsequently differentiate into hormone-expressing islet-like cell aggregates (ICAs). We show that challenge of hIPCs or PANC-1 cells with thrombin or trypsin resulted in stimulation of signaling via the inositol-tris-phosphate second messenger pathway leading to rapid, transient increases in cytosolic calcium ion concentration in the majority of the cells. Because we found that hIPCs, PANC-1 cells, human fetal pancreas, and human adult islets express two protease-activated receptors (PARs), PAR-1 and PAR-2, we tested whether the effects of thrombin and trypsin were mediated, at least in part, by these receptors. Peptide agonists that are relatively specific for PAR-1 (SFLLRN-amide) or PAR-2 (SLIGRL-amide) stimulated increases in inositol phosphates and cytosolic calcium ion concentration, and increased the phosphorylation of Rho, a small G-protein associated with cytoskeletal changes affecting cellular morphology and migration. Most importantly, we show that these agonists increased the rate of hIPC aggregation leading to the formation of more viable, smaller ICAs. Our data show that thrombin and trypsin accelerate aggregation, an early stage of hIPC differentiation in vitro, and imply that pancreatic trypsin and thrombin may be involved in islet development in vivo. PMID:16021635

  10. Induced neural stem/precursor cells for fundamental studies and potential application in neurodegenerative diseases.

    PubMed

    Shen, Ting; Pu, Jiali; Zheng, Tingting; Zhang, Baorong

    2015-10-01

    Recent research has shown that defined sets of exogenous factors are sufficient to convert rodent and human somatic cells directly into induced neural stem cells or neural precursor cells (iNSCs/iNPCs). The process of transdifferentiation bypasses the step of a pluripotent state and reduces the risk of tumorigenesis and genetic instability while retaining the self-renewing capacity. This iNSC/iNPC technology has fueled much excitement in regenerative medicine, as these cells can be differentiated into target cells for re placement therapy for neurodegenerative diseases. Patients' somatic cell-derived iNSCs/iNPCs have also been proposed to serve as disease models with potential value in both fundamental studies and clinical applications. This review focuses on the mechanisms, techniques, and app lications of iNSCs/iNPCs from a series of related studies, as well as further efforts in designing novel strategies using iNSC/iNPC technology and its potential applications in neurodegenerative diseases.

  11. Partial processing of the neuropeptide Y precursor in transfected CHO cells.

    PubMed

    Wulff, B S; O'Hare, M M; Boel, E; Theill, L E; Schwartz, T W

    1990-02-12

    The activation of regulatory peptides by post-translational modification of their biosynthetic precursors is generally thought to occur only in neuroendocrine cells. We have selected clones of Chinese hamster ovary cells, a non-neuroendocrine cell line, which were transfected with a eukaryotic expression vector coding for the precursor for neuropeptide Y. Although the majority of the immunoreactive NPY was found in the form of pro-NPY, some degree of intracellular proteolytic processing of the precursor occurred in all clones. Part of the intracellular NPY immunoreactivity was even correctly amidated. Extracellular degradation of pro-NPY in the tissue culture medium generated immunoreactivity which corresponded in size to NPY. It is concluded that precursor processing can occur in non-neuroendocrine cells both as a biological process within the cells and as apparent processing, degradation in the tissue culture medium.

  12. Loss of T cell precursors after spaceflight and exposure to vector-averaged gravity

    NASA Technical Reports Server (NTRS)

    Woods, Chris C.; Banks, Krista E.; Gruener, Raphael; DeLuca, Dominick

    2003-01-01

    Using fetal thymus organ culture (FTOC), we examined the effects of spaceflight and vector-averaged gravity on T cell development. Under both conditions, the development of T cells was significantly attenuated. Exposure to spaceflight for 16 days resulted in a loss of precursors for CD4+, CD8+, and CD4+CD8+ T cells in a rat/mouse xenogeneic co-culture. A significant decrease in the same precursor cells, as well as a decrease in CD4-CD8- T cell precursors, was also observed in a murine C57BL/6 FTOC after rotation in a clinostat to produce a vector-averaged microgravity-like environment. The block in T cell development appeared to occur between the pre-T cell and CD4+CD8+ T cell stage. These data indicate that gravity plays a decisive role in the development of T cells.

  13. Soot aggregate restructuring due to coatings of secondary organic aerosol derived from aromatic precursors.

    PubMed

    Schnitzler, Elijah G; Dutt, Ashneil; Charbonneau, André M; Olfert, Jason S; Jäger, Wolfgang

    2014-12-16

    Restructuring of monodisperse soot aggregates due to coatings of secondary organic aerosol (SOA) derived from hydroxyl radical-initiated oxidation of toluene, p-xylene, ethylbenzene, and benzene was investigated in a series of photo-oxidation (smog) chamber experiments. Soot aggregates were generated by combustion of ethylene using a McKenna burner, treated by denuding, size-selected by a differential mobility analyzer, and injected into a smog chamber, where they were exposed to low vapor pressure products of aromatic hydrocarbon oxidation, which formed SOA coatings. Aggregate restructuring began once a threshold coating mass was reached, and the degree of the subsequent restructuring increased with mass growth factor. Although significantly compacted, fully processed aggregates were not spherical, with a mass-mobility exponent of 2.78, so additional SOA was required to fill indentations between collapsed branches of the restructured aggregates before the dynamic shape factor of coated particles approached 1. Trends in diameter growth factor, effective density, and dynamic shape factor with increasing mass growth factor indicate distinct stages in soot aggregate processing by SOA coatings. The final degree and coating mass dependence of soot restructuring were found to be the same for SOA coatings from all four aromatic precursors, indicating that the surface tensions of the SOA coatings are similar. PMID:25390075

  14. [Antitoxic properties of pantothenic acid derivatives, precursors of coenzyme A biosynthesis, with regard to kanamycin].

    PubMed

    Moĭseenok, A G; Dorofeev, B F; Sheĭbak, V M; Khomich, T I

    1984-11-01

    The effect of calcium pantothenate (CPN)B 4'-phospho-CPN (PCP), pantetheine (PT) and calcium S-sulfopantetheine (SPN) on acute toxicity of kanamycin sulfate was studied on albino mice. The above derivatives of pantothenic acid except PT lowered the antibiotic toxicity. The coefficient of the antitoxic effect (LD50/ED50) of SPN and PCP was 1.3-1.4 times higher than that of CPN. The combined use of kanamycin (1/5 of the LD50) with CPN, PCP or PT (30 mg/kg bw was equivalent to CPN) for 15 days prevented the increase in the total content of CoA and in the content of the fraction of free CoA and the precursors of its biosynthesis participating in the reaction of N-acetylation in the liver and brain. The contents of these substances were within the normal during the whole experiment. A certain increase in the activity of pantothenate kinase in the liver cytosol due to the use of kanamycin was eliminated by the simultaneous use of PCP and PT. The vitamin-containing compounds PCP and SPN were recommended for the clinical trials as agents preventing complications of kanamycin therapy. PMID:6524887

  15. Synthesis of magnetocoated tetrapod ZnO-whiskers by polymer precursor derived method

    NASA Astrophysics Data System (ADS)

    Xing, Xin; Li, Gongyi; Liu, Lin; Li, Xiaodong; Chu, Zengyong; Cheng, Haifeng

    2011-02-01

    Magnetic coatings were synthesized in situ on the surface of tetrapod ZnO-whiskers (ZnOws) via a Fe-containing polymer precursor derived method. Raw ZnOws were dispersed in polymer solution prepared from FeCl3 modified polymethylsilane. Then the dispersion was solidified and cured. When the curing temperature was high enough, the polymer to inorganic conversion occurred, and ZnOws with magnetic coatings were obtained. Results of scanning electron microscopy, energy diffraction of X-ray spectroscopy, and X-ray diffraction proved that magnetic ZnOw maintains a tetrapod morphology and Fe has been introduced on the surface of ZnOw. The appropriate pyrolysis temperature is above 800 °C. A study of the electromagnetic parameters of the composite powder proved that μ″ is between 0.1 and 0.3. The material has radar-absorbing properties. At a thickness of 2.6 mm, the calculated maximum reflection loss for the absorber is about -9.2 dB at 2-8 GHz.

  16. Soot aggregate restructuring due to coatings of secondary organic aerosol derived from aromatic precursors.

    PubMed

    Schnitzler, Elijah G; Dutt, Ashneil; Charbonneau, André M; Olfert, Jason S; Jäger, Wolfgang

    2014-12-16

    Restructuring of monodisperse soot aggregates due to coatings of secondary organic aerosol (SOA) derived from hydroxyl radical-initiated oxidation of toluene, p-xylene, ethylbenzene, and benzene was investigated in a series of photo-oxidation (smog) chamber experiments. Soot aggregates were generated by combustion of ethylene using a McKenna burner, treated by denuding, size-selected by a differential mobility analyzer, and injected into a smog chamber, where they were exposed to low vapor pressure products of aromatic hydrocarbon oxidation, which formed SOA coatings. Aggregate restructuring began once a threshold coating mass was reached, and the degree of the subsequent restructuring increased with mass growth factor. Although significantly compacted, fully processed aggregates were not spherical, with a mass-mobility exponent of 2.78, so additional SOA was required to fill indentations between collapsed branches of the restructured aggregates before the dynamic shape factor of coated particles approached 1. Trends in diameter growth factor, effective density, and dynamic shape factor with increasing mass growth factor indicate distinct stages in soot aggregate processing by SOA coatings. The final degree and coating mass dependence of soot restructuring were found to be the same for SOA coatings from all four aromatic precursors, indicating that the surface tensions of the SOA coatings are similar.

  17. Inducible T-cell receptor expression in precursor T cells for leukemia control.

    PubMed

    Hoseini, S S; Hapke, M; Herbst, J; Wedekind, D; Baumann, R; Heinz, N; Schiedlmeier, B; Vignali, D A A; van den Brink, M R M; Schambach, A; Blazar, B R; Sauer, M G

    2015-07-01

    Co-transplantation of hematopoietic stem cells with those engineered to express leukemia-reactive T-cell receptors (TCRs) and differentiated ex vivo into precursor T cells (preTs) may reduce the risk of leukemia relapse. As expression of potentially self-(leukemia-) reactive TCRs will lead to negative selection or provoke autoimmunity upon thymic maturation, we investigated a novel concept whereby TCR expression set under the control of an inducible promoter would allow timely controlled TCR expression. After in vivo maturation and gene induction, preTs developed potent anti-leukemia effects. Engineered preTs provided protection even after repeated leukemia challenges by giving rise to effector and central memory cells. Importantly, adoptive transfer of TCR-transduced allogeneic preTs mediated anti-leukemia effect without evoking graft-versus-host disease (GVHD). Earlier transgene induction forced CD8(+) T-cell development was required to obtain a mature T-cell subset of targeted specificity, allowed engineered T cells to efficiently pass positive selection and abrogated the endogenous T-cell repertoire. Later induction favored CD4 differentiation and failed to produce a leukemia-reactive population emphasizing the dominant role of positive selection. Taken together, we provide new functional insights for the employment of TCR-engineered precursor cells as a controllable immunotherapeutic modality with significant anti-leukemia activity.

  18. Inducible T-cell receptor expression in precursor T cells for leukemia control.

    PubMed

    Hoseini, S S; Hapke, M; Herbst, J; Wedekind, D; Baumann, R; Heinz, N; Schiedlmeier, B; Vignali, D A A; van den Brink, M R M; Schambach, A; Blazar, B R; Sauer, M G

    2015-07-01

    Co-transplantation of hematopoietic stem cells with those engineered to express leukemia-reactive T-cell receptors (TCRs) and differentiated ex vivo into precursor T cells (preTs) may reduce the risk of leukemia relapse. As expression of potentially self-(leukemia-) reactive TCRs will lead to negative selection or provoke autoimmunity upon thymic maturation, we investigated a novel concept whereby TCR expression set under the control of an inducible promoter would allow timely controlled TCR expression. After in vivo maturation and gene induction, preTs developed potent anti-leukemia effects. Engineered preTs provided protection even after repeated leukemia challenges by giving rise to effector and central memory cells. Importantly, adoptive transfer of TCR-transduced allogeneic preTs mediated anti-leukemia effect without evoking graft-versus-host disease (GVHD). Earlier transgene induction forced CD8(+) T-cell development was required to obtain a mature T-cell subset of targeted specificity, allowed engineered T cells to efficiently pass positive selection and abrogated the endogenous T-cell repertoire. Later induction favored CD4 differentiation and failed to produce a leukemia-reactive population emphasizing the dominant role of positive selection. Taken together, we provide new functional insights for the employment of TCR-engineered precursor cells as a controllable immunotherapeutic modality with significant anti-leukemia activity. PMID:25652739

  19. Expression and precursor processing of neuropeptide Y in human and murine neuroblastoma and pheochromocytoma cell lines.

    PubMed

    O'Hare, M M; Schwartz, T W

    1989-12-15

    The synthesis and processing of the precursor for neuropeptide Y (NPY) were studied in 16 human and murine neuroendocrine cell lines. Eight of the cell lines, NS-20Y, PC12, LA-N-5, CHP-234, SMS-KCNR, SH-SY5Y, SMS-KCN, and BE(2)-M17, produced sufficient quantities to permit chromatographic characterization of the NPY immunoreactivity. Although the cell lines varied in the amount of NPY they produced, both within and between cell lines, they displayed a relatively constant pattern of posttranslational modifications. In contrast to observations in tumor extracts (M. M. T. O'Hare and T. W. Schwartz, Cancer Res., 49: 7010-7014, 1989), all cell lines studied contained a substantial amount of the intracellular NPY in the form of the unprocessed propeptide, 57% (range, 33-72%) as characterized by both gel filtrations (32 experiments in 8 cell lines) and "in vitro conversion" with endoproteinase Lys-C. In the majority, 4 of 6 cell lines studied, almost all of the NPY, which by size corresponded to the mature 36-amino acid form, was amidated as assessed by isoelectric focusing and by a radioimmunoassay specific for the COOH-terminal amide group of the peptide. Both the propeptide and smaller molecular forms of NPY were secreted from the cell cultures; however, proteolytic degradation in the tissue culture medium prevented a detailed, meaningful characterization of these peptides. It is concluded that many neuroendocrine cell lines, especially those derived from human neuroblastomas, express the NPY gene; the cells display a partly impaired dibasic processing capacity but they generally amidate the products efficiently.

  20. Differentiation of Donor-Derived Cells Into Microglia After Umbilical Cord Blood Stem Cell Transplantation

    PubMed Central

    Takahashi, Kazuya; Kakuda, Yumiko; Munemoto, Saori; Yamazaki, Hirohito; Nozaki, Ichiro; Yamada, Masahito

    2015-01-01

    Abstract Recent studies have indicated that microglia originate from immature progenitors in the yolk sac. After birth, microglial populations are maintained under normal conditions via self-renewal without the need to recruit monocyte-derived microglial precursors. Peripheral cell invasion of the brain parenchyma can only occur with disruption of the blood-brain barrier. Here, we report an autopsy case of an umbilical cord blood transplant recipient in whom cells derived from the donor blood differentiated into ramified microglia in the recipient brain parenchyma. Although the blood-brain barrier and glia limitans seemed to prevent invasion of these donor-derived cells, most of the invading donor-derived ramified cells were maintained in the cerebral cortex. This result suggests that invasion of donor-derived cells occurs through the pial membrane. PMID:26226134

  1. cGMP production of patient-specific iPSCs and photoreceptor precursor cells to treat retinal degenerative blindness

    PubMed Central

    Wiley, Luke A.; Burnight, Erin R.; DeLuca, Adam P.; Anfinson, Kristin R.; Cranston, Cathryn M.; Kaalberg, Emily E.; Penticoff, Jessica A.; Affatigato, Louisa M.; Mullins, Robert F.; Stone, Edwin M.; Tucker, Budd A.

    2016-01-01

    Immunologically-matched, induced pluripotent stem cell (iPSC)-derived photoreceptor precursor cells have the potential to restore vision to patients with retinal degenerative diseases like retinitis pigmentosa. The purpose of this study was to develop clinically-compatible methods for manufacturing photoreceptor precursor cells from adult skin in a non-profit cGMP environment. Biopsies were obtained from 35 adult patients with inherited retinal degeneration and fibroblast lines were established under ISO class 5 cGMP conditions. Patient-specific iPSCs were then generated, clonally expanded and validated. Post-mitotic photoreceptor precursor cells were generated using a stepwise cGMP-compliant 3D differentiation protocol. The recapitulation of the enhanced S-cone phenotype in retinal organoids generated from a patient with NR2E3 mutations demonstrated the fidelity of these protocols. Transplantation into immune compromised animals revealed no evidence of abnormal proliferation or tumor formation. These studies will enable clinical trials to test the safety and efficiency of patient-specific photoreceptor cell replacement in humans. PMID:27471043

  2. cGMP production of patient-specific iPSCs and photoreceptor precursor cells to treat retinal degenerative blindness.

    PubMed

    Wiley, Luke A; Burnight, Erin R; DeLuca, Adam P; Anfinson, Kristin R; Cranston, Cathryn M; Kaalberg, Emily E; Penticoff, Jessica A; Affatigato, Louisa M; Mullins, Robert F; Stone, Edwin M; Tucker, Budd A

    2016-01-01

    Immunologically-matched, induced pluripotent stem cell (iPSC)-derived photoreceptor precursor cells have the potential to restore vision to patients with retinal degenerative diseases like retinitis pigmentosa. The purpose of this study was to develop clinically-compatible methods for manufacturing photoreceptor precursor cells from adult skin in a non-profit cGMP environment. Biopsies were obtained from 35 adult patients with inherited retinal degeneration and fibroblast lines were established under ISO class 5 cGMP conditions. Patient-specific iPSCs were then generated, clonally expanded and validated. Post-mitotic photoreceptor precursor cells were generated using a stepwise cGMP-compliant 3D differentiation protocol. The recapitulation of the enhanced S-cone phenotype in retinal organoids generated from a patient with NR2E3 mutations demonstrated the fidelity of these protocols. Transplantation into immune compromised animals revealed no evidence of abnormal proliferation or tumor formation. These studies will enable clinical trials to test the safety and efficiency of patient-specific photoreceptor cell replacement in humans. PMID:27471043

  3. Equine peripheral blood-derived progenitors in comparison to bone marrow-derived mesenchymal stem cells.

    PubMed

    Koerner, Jens; Nesic, Dobrila; Romero, Jose Diaz; Brehm, Walter; Mainil-Varlet, Pierre; Grogan, Shawn Patrick

    2006-06-01

    Fibroblast-like cells isolated from peripheral blood of human, canine, guinea pig, and rat have been demonstrated to possess the capacity to differentiate into several mesenchymal lineages. The aim of this work was to investigate the possibility of isolating pluripotent precursor cells from equine peripheral blood and compare them with equine bone marrow-derived mesenchymal stem cells. Human mesenchymal stem cells (MSCs) were used as a control for cell multipotency assessment. Venous blood (n = 33) and bone marrow (n = 5) were obtained from adult horses. Mononuclear cells were obtained by Ficoll gradient centrifugation and cultured in monolayer, and adherent fibroblast-like cells were tested for their differentiation potential. Chondrogenic differentiation was performed in serum-free medium in pellet cultures as a three-dimensional model, whereas osteogenic and adipogenic differentiation were induced in monolayer culture. Evidence for differentiation was made via biochemical, histological, and reverse transcription-polymerase chain reaction evaluations. Fibroblast-like cells were observed on day 10 in 12 out of 33 samples and were allowed to proliferate until confluence. Equine peripheral blood-derived cells had osteogenic and adipogenic differentiation capacities comparable to cells derived from bone marrow. Both cell types showed a limited capacity to produce lipid droplets compared to human MSCs. This result may be due to the assay conditions, which are established for human MSCs from bone marrow and may not be optimal for equine progenitor cells. Bone marrow-derived equine and human MSCs could be induced to develop cartilage, whereas equine peripheral blood progenitors did not show any capacity to produce cartilage at the histological level. In conclusion, equine peripheral blood-derived fibroblast-like cells can differentiate into distinct mesenchymal lineages but have less multipotency than bone marrow-derived MSCs under the conditions used in this study.

  4. Rejuvenation of MPTP-induced human neural precursor cell senescence by activating autophagy.

    PubMed

    Zhu, Liang; Dong, Chuanming; Sun, Chenxi; Ma, Rongjie; Yang, Danjing; Zhu, Hongwen; Xu, Jun

    2015-08-21

    Aging of neural stem cell, which can affect brain homeostasis, may be caused by many cellular mechanisms. Autophagy dysfunction was found in aged and neurodegenerative brains. However, little is known about the relationship between autophagy and human neural stem cell (hNSC) aging. The present study used 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) to treat neural precursor cells (NPCs) derived from human embryonic stem cell (hESC) line H9 and investigate related molecular mechanisms involved in this process. MPTP-treated NPCs were found to undergo premature senescence [determined by increased senescence-associated-β-galactosidase (SA-β-gal) activity, elevated intracellular reactive oxygen species level, and decreased proliferation] and were associated with impaired autophagy. Additionally, the cellular senescence phenotypes were manifested at the molecular level by a significant increase in p21 and p53 expression, a decrease in SOD2 expression, and a decrease in expression of some key autophagy-related genes such as Atg5, Atg7, Atg12, and Beclin 1. Furthermore, we found that the senescence-like phenotype of MPTP-treated hNPCs was rejuvenated through treatment with a well-known autophagy enhancer rapamycin, which was blocked by suppression of essential autophagy gene Beclin 1. Taken together, these findings reveal the critical role of autophagy in the process of hNSC aging, and this process can be reversed by activating autophagy. PMID:26159917

  5. Sparing of extraocular muscle in aging and muscular dystrophies: A myogenic precursor cell hypothesis

    SciTech Connect

    Kallestad, Kristen M.; Hebert, Sadie L.; McDonald, Abby A.; Daniel, Mark L.; Cu, Sharon R.; McLoon, Linda K.

    2011-04-01

    The extraocular muscles (EOM) are spared from pathology in aging and many forms of muscular dystrophy. Despite many studies, this sparing remains an enigma. The EOM have a distinct embryonic lineage compared to somite-derived muscles, and we have shown that they continuously remodel throughout life, maintaining a population of activated satellite cells even in aging. These data suggested the hypothesis that there is a population of myogenic precursor cells (mpcs) in EOM that is different from those in limb, with either elevated numbers of stem cells and/or mpcs with superior proliferative capacity compared to mpcs in limb. Using flow cytometry, EOM and limb muscle mononuclear cells were compared, and a number of differences were seen. Using two different cell isolation methods, EOM have significantly more mpcs per mg muscle than limb skeletal muscle. One specific subpopulation significantly increased in EOM compared to limb was positive for CD34 and negative for Sca-1, M-cadherin, CD31, and CD45. We named these the EOMCD34 cells. Similar percentages of EOMCD34 cells were present in both newborn EOM and limb muscle. They were retained in aged EOM, whereas the population decreased significantly in adult limb muscle and were extremely scarce in aged limb muscle. Most importantly, the percentage of EOMCD34 cells was elevated in the EOM from both the mdx and the mdx/utrophin{sup -/-} (DKO) mouse models of DMD and extremely scarce in the limb muscles of these mice. In vitro, the EOMCD34 cells had myogenic potential, forming myotubes in differentiation media. After determining a media better able to induce proliferation in these cells, a fusion index was calculated. The cells isolated from EOM had a 40% higher fusion index compared to the same cells isolated from limb muscle. The EOMCD34 cells were resistant to both oxidative stress and mechanical injury. These data support our hypothesis that the EOM may be spared in aging and in muscular dystrophies due to a

  6. Transplanted astrocytes derived from BMP- or CNTF-treated glial-restricted precursors have opposite effects on recovery and allodynia after spinal cord injury

    PubMed Central

    Davies, Jeannette E; Pröschel, Christoph; Zhang, Ningzhe; Noble, Mark; Mayer-Pröschel, Margot; Davies, Stephen JA

    2008-01-01

    Background Two critical challenges in developing cell-transplantation therapies for injured or diseased tissues are to identify optimal cells and harmful side effects. This is of particular concern in the case of spinal cord injury, where recent studies have shown that transplanted neuroepithelial stem cells can generate pain syndromes. Results We have previously shown that astrocytes derived from glial-restricted precursor cells (GRPs) treated with bone morphogenetic protein-4 (BMP-4) can promote robust axon regeneration and functional recovery when transplanted into rat spinal cord injuries. In contrast, we now show that transplantation of GRP-derived astrocytes (GDAs) generated by exposure to the gp130 agonist ciliary neurotrophic factor (GDAsCNTF), the other major signaling pathway involved in astrogenesis, results in failure of axon regeneration and functional recovery. Moreover, transplantation of GDACNTF cells promoted the onset of mechanical allodynia and thermal hyperalgesia at 2 weeks after injury, an effect that persisted through 5 weeks post-injury. Delayed onset of similar neuropathic pain was also caused by transplantation of undifferentiated GRPs. In contrast, rats transplanted with GDAsBMP did not exhibit pain syndromes. Conclusion Our results show that not all astrocytes derived from embryonic precursors are equally beneficial for spinal cord repair and they provide the first identification of a differentiated neural cell type that can cause pain syndromes on transplantation into the damaged spinal cord, emphasizing the importance of evaluating the capacity of candidate cells to cause allodynia before initiating clinical trials. They also confirm the particular promise of GDAs treated with bone morphogenetic protein for spinal cord injury repair. PMID:18803859

  7. Neuropeptide Y is important for basal and seizure-induced precursor cell proliferation in the hippocampus.

    PubMed

    Howell, Owain W; Silva, Sharmalene; Scharfman, Helen E; Sosunov, Alexander A; Zaben, Malik; Shtaya, Anan; Shatya, Anan; McKhann, Guy; Herzog, Herbert; Laskowski, Alexandra; Gray, William P

    2007-04-01

    We have shown that neuropeptide Y (NPY) regulates neurogenesis in the normal dentate gyrus (DG) via Y(1) receptors (Howell, O.W., Scharfman, H.E., Herzog, H., Sundstrom, L.E., Beck-Sickinger, A. and Gray, W.P. (2003) Neuropeptide Y is neuroproliferative for post-natal hippocampal precursor cells. J Neurochem, 86, 646-659; Howell, O.W., Doyle, K., Goodman, J.H., Scharfman, H.E., Herzog, H., Pringle, A., Beck-Sickinger, A.G. and Gray, W.P. (2005) Neuropeptide Y stimulates neuronal precursor proliferation in the post-natal and adult dentate gyrus. J Neurochem, 93, 560-570). This regulation may be relevant to epilepsy, because seizures increase both NPY expression and precursor cell proliferation in the DG. Therefore, the effects of NPY on DG precursors were evaluated in normal conditions and after status epilepticus. In addition, potentially distinct NPY-responsive precursors were identified, and an analysis performed not only of the DG, but also the caudal subventricular zone (cSVZ) and subcallosal zone (SCZ) where seizures modulate glial precursors. We show a proliferative effect of NPY on multipotent nestin cells expressing the stem cell marker Lewis-X from both the DG and the cSVZ/SCZ in vitro. We confirm an effect on proliferation in the cSVZ/SCZ of Y(1) receptor(-/-) mice and demonstrate a significant reduction in basal and seizure-induced proliferation in the DG of NPY(-/-) mice.

  8. Correlation of antitumor chemoimmunotherapy with bone marrow macrophage precursor cell stimulation and macrophage cytotoxicity.

    PubMed

    Fisher, B; Wolmark, N

    1976-07-01

    The present investigations have assessed the effects of prolonged cyclophosphamide (CY) and Corynebacterium (CP) treatment on the production of bone marrow macrophage precursors [colony-forming cells (CFC)] and on the cytotoxicity of macrophages comprising colonies produced by the CFC. The findings have been correlated with tumor growth in animals receiving the immunochemotherapy. In addition, studies have been directed toward ascertaining whether the administration of CP with CY might lessen the myelosuppressive effects of the latter. Following each consecutive weekly dose of CY (even after as many as 11), there was a significant depression in the number of bone marrow cells (BMC's) but, by the next injection, marrow cellularity had returned to normal. When the number of BMC's was reduced, the proportion of the remaining cells, which consisted of CFC, was increased. Upon reconstitution of the marrow, the proportion of CFC returned to the level of the controls. The total number of CFC in marrow was at no time following CY therapy significantly less than the number in marrow of untreated mice. The addition of CP to the treatment regimen with CY resulted in an absolute as well as relative increase in CFC at all times during administration of the combined therapy, i.e., when there was a depression in total numbers of marrow cells, as well as when marrow restoration had occurred. Although CP stimulated the number of cells entering into differentiation, it failed to affect the total numbers of marrow cells, as well as when marrow restoration had occurred. Although CP stimulated the number of cells entering into differentiation, it failed to affect the total BMC's had been neither increased nor prevented from decreasing, by CP administration, indicating that the use of total cellularity as an index of the CP marrow-sparing effect is without merit. The present results relative to cytotoxicity of macrophages derived from the CFC concur with and extend our previous findings

  9. Precursor Derived Nanostructured Si-C-X Materials for Nuclear Applications. Final Report, October 2010 - September 2014

    SciTech Connect

    Bordia, Rajendra; Tomar, Vikas; Henager, Chuck

    2015-04-08

    Polymer derived ceramic route is an attractive approach to make structural materials with unique nanostructures that have very desirable high temperature properties. Processing techniques to make a variety of needed shapes and forms (e.g. coatings, matrices for fiber reinforced composites, porous ceramics) have been developed. With appropriate high temperature processing, the precursors can be converted to nano-crystalline materials. In this collaborative project, we investigated the processing, stability and properties of nanostructured Si-C materials, derived from polymeric precursors, and their performance under conditions appropriate for nuclear energy applications. All the milestones of the project were accomplished. Some of the results are being currently analyzed and additional papers being prepared in which support from NEUP will be acknowledged. So far, eight peer-reviewed papers have been published and one invention disclosure made. In this report, we summarize the major findings of this project.

  10. Telencephalic neural precursor cells show transient competence to interpret the dopaminergic niche of the embryonic midbrain.

    PubMed

    Baizabal, José-Manuel; Valencia, Concepción; Guerrero-Flores, Gilda; Covarrubias, Luis

    2011-01-15

    Neural Precursor Cells (NPCs) generate complex stereotypic arrays of neuronal subtypes in the brain. This process involves the integration of patterning cues that progressively restrict the fate of specific NPCs. Yet the capacity of NPCs to interpret foreign microenvironments during development remains poorly defined. The aim of this work was to test the competence of mouse telencephalic NPCs to respond to the dopaminergic niche of the mesencephalon. Telencephalic NPCs isolated from midgestation mouse embryos (E10.5) and transplanted to age-matched mesencephalic explants efficiently differentiated into neurons but were largely unable to produce midbrain dopaminergic (mDA) neurons. Instead, E10.5 telencephalic NPCs behaved as restricted gabaergic progenitors that maintained ectopic expression of Foxg1 and Pax6. In contrast, E8.5 telencephalic NPCs were able to differentiate into Lmx1a(+)/Foxa2(+)/TH(+) neurons in the dopaminergic niche of the mesencephalic explants. In addition, these early telencephalic NPCs showed region-dependent expression of Nkx6.1, Nkx2.2 and site-specific differentiation into gabaergic neurons within the mesencephalic tissue. Significant dopaminergic differentiation of E8.5 telencephalic NPCs was not observed after transplantation to E12.5 mesencephalic explants, suggesting that inductive signals in the dopaminergic niche rapidly decay after midgestation. Moreover, we employed transplantation of embryonic stem cells-derived precursors to demonstrate that extinction of inductive signals within the telencephalon lags behind the commitment of residing NPCs. Our data indicate that the plasticity to interpret multiple instructive niches is an early and ephemeral feature of the telencephalic neural lineage.

  11. Antioxidant Protection of NADPH-Depleted Oligodendrocyte Precursor Cells Is Dependent on Supply of Reduced Glutathione

    PubMed Central

    Kilanczyk, Ewa; Saraswat Ohri, Sujata; Whittemore, Scott R.

    2016-01-01

    The pentose phosphate pathway is the main source of NADPH, which by reducing oxidized glutathione, contributes to antioxidant defenses. Although oxidative stress plays a major role in white matter injury, significance of NADPH for oligodendrocyte survival has not been yet investigated. It is reported here that the NADPH antimetabolite 6-amino-NADP (6AN) was cytotoxic to cultured adult rat spinal cord oligodendrocyte precursor cells (OPCs) as well as OPC-derived oligodendrocytes. The 6AN-induced necrosis was preceded by increased production of superoxide, NADPH depletion, and lower supply of reduced glutathione. Moreover, survival of NADPH-depleted OPCs was improved by the antioxidant drug trolox. Such cells were also protected by physiological concentrations of the neurosteroid dehydroepiandrosterone (10−8 M). The protection by dehydroepiandrosterone was associated with restoration of reduced glutathione, but not NADPH, and was sensitive to inhibition of glutathione synthesis. A similar protective mechanism was engaged by the cAMP activator forskolin or the G protein-coupled estrogen receptor (GPER/GPR30) ligand G1. Finally, treatment with the glutathione precursor N-acetyl cysteine reduced cytotoxicity of 6AN. Taken together, NADPH is critical for survival of OPCs by supporting their antioxidant defenses. Consequently, injury-associated inhibition of the pentose phosphate pathway may be detrimental for the myelination or remyelination potential of the white matter. Conversely, steroid hormones and cAMP activators may promote survival of NADPH-deprived OPCs by increasing a NADPH-independent supply of reduced glutathione. Therefore, maintenance of glutathione homeostasis appears as a critical effector mechanism for OPC protection against NADPH depletion and preservation of the regenerative potential of the injured white matter. PMID:27449129

  12. Co-ultramicronized Palmitoylethanolamide/Luteolin Promotes the Maturation of Oligodendrocyte Precursor Cells

    PubMed Central

    Barbierato, Massimo; Facci, Laura; Marinelli, Carla; Zusso, Morena; Argentini, Carla; Skaper, Stephen D.; Giusti, Pietro

    2015-01-01

    Oligodendrocytes have limited ability to repair the damage to themselves or to other nerve cells, as seen in demyelinating diseases like multiple sclerosis. An important strategy may be to replace the lost oligodendrocytes and/or promote the maturation of undifferentiated oligodendrocyte precursor cells (OPCs). Recent studies show that a composite of co-ultramicronized N-palmitoylethanolamine (PEA) and luteolin (co-ultramicronized PEA/luteolin, 10:1 by mass) is efficacious in improving outcome in experimental models of spinal cord and traumatic brain injuries. Here, we examined the ability of co-ultramicronized PEA/luteolin to promote progression of OPCs into a more differentiated phenotype. OPCs derived from newborn rat cortex were placed in culture and treated the following day with 10 μM co-ultramicronized PEA/luteolin. Cells were collected 1, 4 and 8 days later and analyzed for expression of myelin basic protein (MBP). qPCR and Western blot analyses revealed a time-dependent increase in expression of both mRNA for MBP and MBP content, along with an increased expression of genes involved in lipid biogenesis. Ultramicronized PEA or luteolin, either singly or in simple combination, were ineffective. Further, co-ultramicronized PEA/luteolin promoted morphological development of OPCs and total protein content without affecting proliferation. Co-ultramicronized PEA/luteolin may represent a novel pharmacological strategy to promote OPC maturation. PMID:26578323

  13. Toluene derivatives as simple coupling precursors for cascade palladium-catalyzed oxidative C-H bond acylation of acetanilides.

    PubMed

    Wu, Yinuo; Choy, Pui Ying; Mao, Fei; Kwong, Fuk Yee

    2013-01-25

    A palladium-catalyzed cascade cross-coupling of acetanilide and toluene for the synthesis of ortho-acylacetanilide is described. Toluene derivatives can act as effective acyl precursors (upon sp(3)-C-H bond oxidation by a Pd/TBHP system) in the oxidative coupling between two C-H bonds. This dehydrogenative Pd-catalyzed ortho-acylation proceeds under mild reaction conditions. PMID:23230572

  14. Precursor B Cells Increase in the Lung during Airway Allergic Inflammation: A Role for B Cell-Activating Factor

    PubMed Central

    Malmhäll, Carina; Rådinger, Madeleine; Ramos-Ramirez, Patricia; Lu, You; Deák, Tünde; Semitekolou, Maria; Gaga, Mina; Sjöstrand, Margareta; Lötvall, Jan; Bossios, Apostolos

    2016-01-01

    Background B cells, key cells in allergic inflammation, differentiate in the bone marrow and their precursors include pro-B, pre-B and immature B cells. Eosinophil progenitor cells increase in the lung after allergen exposure. However, the existence and possible role of B cell precursors in the lung during allergic inflammation remains elusive. Methods A BALB/c mouse model of allergic airway inflammation was utilized to perform phenotypic and quantification analyses of pro-B and pre-B cells in the lung by flow cytometry. B cell maturation factors IL-7 and B cell-activating factor (BAFF) and their receptors (CD127 and BAFFR, BCMA, TACI, respectively) were also evaluated in the lung and serum. The effect of anti-BAFF treatment was investigated both in vivo (i.p. administration of BAFF-R-Ig fusion protein) and in vitro (colony forming cell assay). Finally, BAFF levels were examined in the bronchoalveolar lavage (BAL) of asthmatic patients and healthy controls. Results Precursor pro and pre-B cells increase in the lung after allergen exposure, proliferate in the lung tissue in vivo, express markers of chemotaxis (CCR10 and CXCR4) and co-stimulation (CD40, CD86) and are resistant to apoptosis (Bax). Precursor B cells express receptors for BAFF at baseline, while after allergen challenge both their ligand BAFF and the BCMA receptor expression increases in B cell precursors. Blocking BAFFR in the lung in vivo decreases eosinophils and proliferating precursor B cells. Blocking BAFFR in bone marrow cultures in vitro reduces pre-B colony formation units. BAFF is increased in the BAL of severe asthmatics. Conclusion Our data support the concept of a BAFF-mediated role for B cell precursors in allergic airway inflammation. PMID:27513955

  15. Y1 receptors are critical for the proliferation of adult mouse precursor cells in the olfactory neuroepithelium.

    PubMed

    Doyle, Kharen L; Karl, Tim; Hort, Yvonne; Duffy, Liesl; Shine, John; Herzog, Herbert

    2008-05-01

    While the regenerative capacity of the olfactory neuroepithelium has been well studied less is known about the molecular events controlling precursor cell activity. Neuropeptide Y (NPY) is expressed at high levels in the olfactory system, and NPY has been shown to play a role in neuroregeneration of the brain. In this study, we show that the numbers of olfactory neurospheres derived from NPY, NPY/peptide YY, and Y1 receptor knockout mice are decreased compared with wild type (WT) controls. Furthermore, flow cytometric analysis of isolated horizontal basal cells, globose basal cells, and glandular cells showed that only glandular cells derived from WT mice, but not from NPY and Y1 receptor knockout mice, formed secondary neurospheres suggesting a critical role for NPY signaling in this process. Interestingly, olfactory function tests revealed that olfaction in Y1 knockout mice is impaired compared with those of WT mice, probably because of the reduced number of olfactory neurons formed. Together these results indicate that NPY and the Y1 receptor are required for the normal proliferation of adult olfactory precursors and olfactory function.

  16. Induction of multipotential hematopoietic progenitors from human pluripotent stem cells via re-specification of lineage-restricted precursors

    PubMed Central

    Doulatov, Sergei; Vo, Linda T.; Chou, Stephanie S.; Kim, Peter G.; Arora, Natasha; Li, Hu; Hadland, Brandon K.; Bernstein, Irwin D.; Collins, James J.; Zon, Leonard I.; Daley, George Q.

    2013-01-01

    Summary Human pluripotent stem cells (hPSCs) represent a promising source of patient-specific cells for disease modeling, drug screens, and cellular therapies. However, the inability to derive engraftable human hematopoietic stem and progenitor (HSPCs) has limited their characterization to in vitro assays. We report a strategy to re-specify lineage-restricted CD34+CD45+ myeloid precursors derived from hPSCs into multilineage progenitors that can be expanded in vitro and engraft in vivo. HOXA9, ERG, and RORA conferred self-renewal and multilineage potential in vitro and maintained primitive CD34+CD38− cells. Screening cells via transplantation revealed that two additional factors, SOX4 and MYB, were required for engraftment. Progenitors specified with all five factors gave rise to reproducible short-term engraftment with myeloid and erythroid lineages. Erythroid precursors underwent hemoglobin switching in vivo, silencing embryonic and activating adult globin expression. Our combinatorial screening approach establishes a strategy for obtaining transcription factor-mediated engraftment of blood progenitors from human pluripotent cells. PMID:24094326

  17. Platelet-Derived Stromal Cell-Derived Factor-1 Is Required for the Transformation of Circulating Monocytes into Multipotential Cells

    PubMed Central

    Seta, Noriyuki; Okazaki, Yuka; Miyazaki, Hiroshi; Kato, Takashi; Kuwana, Masataka

    2013-01-01

    Background We previously described a primitive cell population derived from human circulating CD14+ monocytes, named monocyte-derived multipotential cells (MOMCs), which are capable of differentiating into mesenchymal and endothelial lineages. To generate MOMCs in vitro, monocytes are required to bind to fibronectin and be exposed to soluble factor(s) derived from circulating CD14− cells. The present study was conducted to identify factors that induce MOMC differentiation. Methods We cultured CD14+ monocytes on fibronectin in the presence or absence of platelets, CD14− peripheral blood mononuclear cells, platelet-conditioned medium, or candidate MOMC differentiation factors. The transformation of monocytes into MOMCs was assessed by the presence of spindle-shaped adherent cells, CD34 expression, and the potential to differentiate in vitro into mesenchymal and endothelial lineages. Results The presence of platelets or platelet-conditioned medium was required to generate MOMCs from monocytes. A screening of candidate platelet-derived soluble factors identified stromal cell-derived factor (SDF)-1 as a requirement for generating MOMCs. Blocking an interaction between SDF-1 and its receptor CXCR4 inhibited MOMC generation, further confirming SDF-1′s critical role in this process. Finally, circulating MOMC precursors were found to reside in the CD14+CXCR4high cell population. Conclusion The interaction of SDF-1 with CXCR4 is essential for the transformation of circulating monocytes into MOMCs. PMID:24066125

  18. Epicardial HIF signaling regulates vascular precursor cell invasion into the myocardium

    PubMed Central

    Tao, Jiayi; Doughman, Yongqiu; Yang, Ke; Ramirez-Bergeron, Diana; Watanabe, Michiko

    2013-01-01

    During cardiogenesis, a subset of epicardial cells undergoes epithelial-mesenchymal-transition (EMT) and the resulting epicardial derived cells (EPDCs) contribute to the formation of coronary vessels. Our previous data showed hypoxia inducible factor-1α (HIF-1α) expression at specific sites within the epicardium and support a link between hypoxia inducible factors (HIFs) and the patterning of coronary vasculogenesis. To better understand the autocrine role of HIFs in the epicardium, we transduced adenovirus mediated expression of constitutively active HIF-1α (AdcaHIF1α) into the embryonic avian epicardium where the vascular precursors reside. We found that introducing caHIF1α into the epicardial mesothelium prevented EPDCs from proper migration into the myocardium. In vitro collagen gel assays and ex vivo organ culture data further confirmed that infection with AdcaHIF1α impaired the ability of EPDCs to invade. However, the proficiency of epicardial cells to undergo EMT was enhanced while the movement of EPDCs within the sub-epicardium and their differentiation into smooth muscle cells were not disrupted by caHIF1α. We also showed that the transcript level of Flt-1 (VEGFR1), which can act as a VEGF signaling inhibitor, increased several fold after introducing caHIF1α into epicardial cells. Blocking the activation of the VEGF pathway in epicardial cells recapitulated the inhibition of EPDC invasion. These results suggest that caHIF1α mediated up-regulation of Flt-1, which blocks the activation of the VEGF pathway, is responsible for the inhibition of EPDC myocardial migration. In conclusion, our studies demonstrate that HIF signaling potentially regulates the degree of epicardial EMT and the extent of EPDC migration into the myocardium, both of which are likely critical in patterning the coronary vasculature during early cardiac vasculogenesis. These signals could explain why the larger coronaries appear and remain on the epicardial surface. PMID:23384563

  19. Trafficking of cell surface beta-amyloid precursor protein: retrograde and transcytotic transport in cultured neurons

    PubMed Central

    1995-01-01

    Amyloid beta-protein (A beta), the principal constituent of senile plaques seen in Alzheimer's disease (AD), is derived by proteolysis from the beta-amyloid precursor protein (beta PP). The mechanism of A beta production in neurons, which are hypothesized to be a rich source of A beta in brain, remains to be defined. In this study, we describe a detailed localization of cell surface beta PP and its subsequent trafficking in primary cultured neurons. Full-length cell surface beta PP was present primarily on perikarya and axons, the latter with a characteristic discontinuous pattern. At growth cones, cell surface beta PP was inconsistently detected. By visualizing the distribution of beta PP monoclonal antibodies added to intact cultures, beta PP was shown to be internalized from distal axons or terminals and retrogradely transported back to perikarya in organelles which colocalized with fluid-phase endocytic markers. Retrograde transport of beta PP was shown in both hippocampal and peripheral sympathetic neurons, the latter using a compartment culture system that isolated cell bodies from distal axons and terminals. In addition, we demonstrated that beta PP from distal axons was transcytotically transported to the surface of perikarya from distal axons in sympathetic neurons. Indirect evidence of this transcytotic pathway was obtained in hippocampal neurons using antisense oligonucleotide to the kinesin heavy chain to inhibit anterograde beta PP transport. Taken together, these results demonstrate novel aspects of beta PP trafficking in neurons, including retrograde axonal transport and transcytosis. Moreover, the axonal predominance of cell surface beta PP is unexpected in view of the recent report of polarized sorting of beta PP to the basolateral domain of MDCK cells. PMID:7721945

  20. Magnetic nanoparticle-mediated gene transfer to oligodendrocyte precursor cell transplant populations is enhanced by magnetofection strategies.

    PubMed

    Jenkins, Stuart I; Pickard, Mark R; Granger, Nicolas; Chari, Divya M

    2011-08-23

    This study has tested the feasibility of using physical delivery methods, employing static and oscillating field "magnetofection" techniques, to enhance magnetic nanoparticle-mediated gene transfer to rat oligodendrocyte precursor cells derived for transplantation therapies. These cells are a major transplant population to mediate repair of damage as occurs in spinal cord injury and neurological diseases such as multiple sclerosis. We show for the first time that magnetic nanoparticles mediate effective transfer of reporter and therapeutic genes to oligodendrocyte precursors; transfection efficacy was significantly enhanced by applied static or oscillating magnetic fields, the latter using an oscillating array employing high-gradient NdFeB magnets. The effects of oscillating fields were frequency-dependent, with 4 Hz yielding optimal results. Transfection efficacies obtained using magnetofection methods were highly competitive with or better than current widely used nonviral transfection methods (e.g., electroporation and lipofection) with the additional critical advantage of high cell viability. No adverse effects were found on the cells' ability to divide or give rise to their daughter cells, the oligodendrocytes-key properties that underpin their regeneration-promoting effects. The transplantation potential of transfected cells was tested in three-dimensional tissue engineering models utilizing brain slices as the host tissue; modified transplanted cells were found to migrate, divide, give rise to daughter cells, and integrate within host tissue, further evidencing the safety of the protocols used. Our findings strongly support the concept that magnetic nanoparticle vectors in conjunction with state-of-the-art magnetofection strategies provide a technically simple and effective alternative to current methods for gene transfer to oligodendrocyte precursor cells.

  1. Activating Receptor NKG2D Targets RAE-1-Expressing Allogeneic Neural Precursor Cells in a Viral Model of Multiple Sclerosis

    PubMed Central

    Weinger, Jason G.; Plaisted, Warren C.; Maciejewski, Sonia M.; Lanier, Lewis L.; Walsh, Craig M.; Lane, Thomas E.

    2014-01-01

    Transplantation of major histocompatibility complex (MHC)-mismatched mouse neural precursor cells (NPCs) into mice persistently infected with the neurotropic JHM strain of mouse hepatitis virus (JHMV) results in rapid rejection that is mediated, in part, by T cells. However, the contribution of the innate immune response to allograft rejection in a model of viral-induced neurological disease has not been well defined. Herein, we demonstrate that the natural killer (NK) cell-expressing activating receptor NKG2D participates in transplanted allogeneic NPC rejection in mice persistently infected with JHMV. Cultured NPCs derived from C57BL/6 (H-2b) mice express the NKG2D ligand retinoic acid early precursor transcript (RAE)-1 but expression was dramatically reduced upon differentiation into either glia or neurons. RAE-1+ NPCs were susceptible to NK cell-mediated killing whereas RAE-1- cells were resistant to lysis. Transplantation of C57BL/6-derived NPCs into JHMV-infected BALB/c (H-2d) mice resulted in infiltration of NKG2D+CD49b+ NK cells and treatment with blocking antibody specific for NKG2D increased survival of allogeneic NPCs. Further, transplantation of differentiated RAE-1- allogeneic NPCs into JHMV-infected BALB/c mice resulted in enhanced survival, highlighting a role for the NKG2D:RAE-1 signaling axis in allograft rejection. We also demonstrate that transplantation of allogeneic NPCs into JHMV-infected mice resulted in infection of the transplanted cells suggesting that these cells may be targets for infection. Viral infection of cultured cells increased RAE-1 expression, resulting in enhanced NK cell-mediated killing through NKG2D recognition. Collectively, these results show that in a viral-induced demyelination model, NK cells contribute to rejection of allogeneic NPCs through an NKG2D signaling pathway. PMID:24898518

  2. Effect of copper content in precursor solution on the superconducting properties of YBCO films derived from low-fluorine solution

    NASA Astrophysics Data System (ADS)

    Zhao, Gaoyang; Lei, Li; Liu, Xiaomei; Chen, Yuanqing

    2008-12-01

    Four low-fluorine solutions with different stoichiometry of Y:Ba:Cu = 1:2: ξ ( ξ = 3, 3.5, 4, 4.5) were prepared using Ba-TFA, yttrium and copper acetate as precursors. YBa 2Cu 3O 7-δ (YBCO) films derived from these low-fluorine solutions were coated on LaAlO 3 (LAO) single crystal substrates by dip-coating process. The effect of copper stoichiometry in precursor solution on the microstructure and superconductivity of YBCO films was studied. The growth orientation and microstructure of the films were characterized by X-ray diffractometer (XRD), scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM). The results show that there are large volume fraction of a-axis oriented YBCO grains in the films derived from precursor solutions with stoichiometry of Y:Ba:Cu = 1:2: ξ ( ξ = 3, 3.5, 4.5), while the films from the solution with stoichiometry of Y:Ba:Cu = 1:2:4 mainly grow along c-axis orientation and the volume fraction of c-axis oriented grains is 96.33%. Superconductivity test indicate that the film derived from the precursor solution with stoichiometry of Y:Ba:Cu = 1:2:4 exhibits excellent superconducting properties with the critical transition temperature Tc approximate 90 K, the sharp transition temperature Δ T below 1 K and the critical current density Jc over 1 MA/cm 2 (77 K, 0 T).

  3. B-cell precursor acute lymphoblastic leukemia and stromal cells communicate through Galectin-3

    PubMed Central

    Fei, Fei; Joo, Eun Ji; Tarighat, Somayeh S.; Schiffer, Isabelle; Paz, Helicia; Fabbri, Muller; Abdel-Azim, Hisham; Groffen, John; Heisterkamp, Nora

    2015-01-01

    The molecular interactions between B-cell precursor acute lymphoblastic leukemia (pre-B ALL) cells and stromal cells in the bone marrow that provide microenvironmentally-mediated protection against therapeutic drugs are not well-defined. Galectin-3 (Lgals3) is a multifunctional galactose-binding lectin with reported location in the nucleus, cytoplasm and extracellular space in different cell types. We previously reported that ALL cells co-cultured with stroma contain high levels of Galectin-3. We here establish that, in contrast to more mature B-lineage cancers, Galectin-3 detected in and on the ALL cells originates from stromal cells, which express it on their surface, secrete it as soluble protein and also in exosomes. Soluble and stromal-bound Galectin-3 is internalized by ALL cells, transported to the nucleus and stimulates transcription of endogenous LGALS3 mRNA. When human and mouse ALL cells develop tolerance to different drugs while in contact with protective stromal cells, Galectin-3 protein levels are consistently increased. This correlates with induction of Galectin-3 transcription in the ALL cells. Thus Galectin-3 sourced from stroma becomes supplemented by endogenous Galectin-3 production in the pre-B ALL cells that are under continuous stress from drug treatment. Our data suggest that stromal Galectin-3 may protect ALL cells through auto-induction of Galectin-3 mRNA and tonic NFκB pathway activation. Since endogenously synthesized Galectin-3 protects pre-B ALL cells against drug treatment, we identify Galectin-3 as one possible target to counteract the protective effects of stroma. PMID:25869099

  4. Liver stem cell-derived β-cell surrogates for treatment of type 1 diabetes☆

    PubMed Central

    Yang, Li-Jun

    2012-01-01

    Consistent with the common embryonic origin of liver and pancreas as well the similar glucose-sensing systems in hepatocytes and pancreatic β-cells, it should not be surprising that liver stem cells/hepatocytes can transdifferentiate into insulin-producing cells under high-glucose culture conditions or by genetic reprogramming. Persistent expression of the pancreatic duodenal homeobox-1 (Pdx1) transcription factor or its super-active form Pdx1-VP16 fusion protein in hepatic cells reprograms these cells into pancreatic β-cell precursors. In vitro culture at elevated glucose concentrations or in vivo exposure to a hyperglycemia are required for further differentiation and maturation of liver-derived pancreatic β-cell precursor into functional insulin-producing pancreatic β-like cells. Under appropriate conditions, multiple pancreatic transcription factors can work in concert to reprogram liver stem/adult liver cells into functional insulin-producing cells. If such autologous liver-derived insulin-producing cells can be made to escape the type 1 diabetes-associated autoimmunity, they may serve as a valuable cell source for future cell replacement therapy without the need for life-long immunosuppression. PMID:16890895

  5. Retrovirus-mediated conditional immortalization and analysis of established cell lines of osteoclast precursor cells

    SciTech Connect

    Kawata, Shigehisa; Suzuki, Jun; Maruoka, Masahiro; Mizutamari, Megumi; Ishida-Kitagawa, Norihiro; Yogo, Keiichiro; Jat, Parmjit S.; Shishido, Tomoyuki . E-mail: shishid@bs.naist.jp

    2006-11-10

    Osteoclast precursor cells (OPCs) have previously been established from bone marrow cells of SV40 temperature-sensitive T antigen-expressing transgenic mice. Here, we use retrovirus-mediated gene transfer to conditionally immortalize OPCs by expressing temperature-sensitive large T antigen (tsLT) from wild type bone marrow cells. The immortalized OPCs proliferated at the permissive temperature of 33.5 deg. C, but stopped growing at the non-permissive temperature of 39 deg. C. In the presence of receptor activator of NF{kappa}B ligand (RANKL), the OPCs differentiated into tartrate-resistant acid phosphatase (TRAP)-positive cells and formed multinucleate osteoclasts at 33.5 deg. C. From these OPCs, we cloned two types of cell lines. Both differentiated into TRAP-positive cells, but one formed multinucleate osteoclasts while the other remained unfused in the presence of RANKL. These results indicate that the established cell lines are useful for analyzing mechanisms of differentiation, particularly multinucleate osteoclast formation. Retrovirus-mediated conditional immortalization should be a useful method to immortalize OPCs from primary bone marrow cells.

  6. Can manipulation of differentiation conditions eliminate proliferative cells from a population of ES cell-derived forebrain cells?

    PubMed

    Precious, Sophie V; Kelly, Claire M; Allen, Nicholas D; Rosser, Anne E

    2016-01-01

    There is preliminary evidence that implantation of primary fetal striatal cells provides functional benefit in patients with Huntington's disease, a neurodegenerative condition resulting in loss of medium-sized spiny neurons (MSN) of the striatum. Scarcity of primary fetal tissue means it is important to identify a renewable source of cells from which to derive donor MSNs. Embryonic stem (ES) cells, which predominantly default to telencephalic-like precursors in chemically defined medium (CDM), offer a potentially inexhaustible supply of cells capable of generating the desired neurons. Using an ES cell line, with the forebrain marker FoxG1 tagged to the LacZ reporter, we assessed effects of known developmental factors on the yield of forebrain-like precursor cells in CDM suspension culture. Addition of FGF2, but not DKK1, increased the proportion of FoxG1-expressing cells at day 8 of neural induction. Oct4 was expressed at day 8, but was undetectable by day 16. Differentiation of day 16 precursors generated GABA-expressing neurons, with few DARPP32 positive MSNs. Transplantation of day 8 precursor cells into quinolinic acid-lesioned striata resulted in generation of teratomas. However, transplantation of day 16 precursors yielded grafts expressing neuronal markers including NeuN, calbindin and parvalbumin, but no DARPP32 6 weeks post-transplantation. Manipulation of fate of ES cells requires optimization of both concentration and timing of addition of factors to culture systems to generate the desired phenotypes. Furthermore, we highlight the value of increasing the precursor phase of ES cell suspension culture when directing differentiation toward forebrain fate, so as to dramatically reduce the risk of teratoma formation. PMID:27606335

  7. Phosphorylation Regulates Id2 Degradation and Mediates the Proliferation of Neural Precursor Cells

    PubMed Central

    Sullivan, Jaclyn M.; Havrda, Matthew C.; Kettenbach, Arminja N.; Paolella, Brenton R.; Zhang, Zhonghua; Gerber, Scott A.; Israel, Mark A.

    2016-01-01

    Inhibitor of DNA binding proteins (Id1-Id4) function to inhibit differentiation and promote proliferation of many different cell types. Among the Id family members, Id2 has been most extensively studied in the central nervous system (CNS). Id2 contributes to cultured neural precursor cell (NPC) proliferation as well as to the proliferation of CNS tumors such as glioblastoma that are likely to arise from NPC-like cells. We identified three phosphorylation sites near the N-terminus of Id2 in NPCs. To interrogate the importance of Id2 phosphorylation, Id2−/− NPCs were modified to express wild type (WT) Id2 or an Id2 mutant protein that could not be phosphorylated at the identified sites. We observed that NPCs expressing this mutant lacking phosphorylation near the N-terminus had higher steady-state levels of Id2 when compared to NPCs expressing WT Id2. This elevated level was the result of a longer half-life and reduced proteasome-mediated degradation. Moreover, NPCs expressing constitutively de-phosphorylated Id2 proliferated more rapidly than NPCs expressing WT Id2, a finding consistent with the well-characterized function of Id2 in driving proliferation. Observing that phosphorylation of Id2 modulates the degradation of this important cell-cycle regulator, we sought to identify a phosphatase that would stabilize Id2 enhancing its activity in NPCs and extended our analysis to include human glioblastoma-derived stem cells (GSCs). We found that expression of the phosphatase PP2A altered Id2 levels. Our findings suggest that inhibition of PP2A may be a novel strategy to regulate the proliferation of normal NPCs and malignant GSCs by decreasing Id2 levels. PMID:26756672

  8. Processing of two homologous precursors, pro-neuropeptide Y and pro-pancreatic polypeptide, in transfected cell lines expressing different precursor convertases.

    PubMed

    Wulff, B S; Johansen, T E; Dalbøge, H; O'Hare, M M; Schwartz, T W

    1993-06-25

    The processing of two homologous precursors, pro-neuropeptide Y (pro-NPY) and pro-pancreatic poly-peptide (pro-PP), was studied in four neuroendocrine cell lines after transfection: CA-77 medullary thyroid carcinoma cells, AtT-20 corticotrope pituitary cells, RIN2A-19 pancreatic endocrine cells, and NB1 neuroblastoma cells. Northern blot analysis indicated that the AtT-20 cells only expressed precursor convertase 3; in contrast, NB1 cells only expressed precursor convertase 2, whereas the RIN2A-19 and CA-77 cells expressed both enzymes. Despite these differences in expression pattern of precursor convertases the four cell lines were, surprisingly, indistinguishable in respect to their processing of pro-PP and pro-NPY. In all four cell lines, pro-NPY was almost completely converted to NPY, and, in all four cell lines, only around 50% of the PP precursor was converted to PP. The relatively poor processing efficiency of pro-PP was rather similar to the processing efficiency of the endogenously produced precursors in the respective cell lines, pro-calcitonin (CA-77), proopiomelanocortin (AtT-20), proinsulin (RIN2A-19), and pro-vasoactive intestinal polypeptide (NB1). At least in the CA-77 cells, NPY and PP were apparently sorted to the regulated secretory pathway, as upon stimulation with secretagogue the release of the transfected peptides increased in parallel with the endogenously expressed peptide, calcitonin gene-related peptide. Mutagenesis studies showed that on the N-terminal side of the di-basic processing site, the otherwise important difference in structure between PP and NPY, a proline for glutamine in position 34, was not responsible for the difference in processing efficiency. On the C-terminal side of the processing site, the efficient processing of pro-NPY could not be transferred to pro-PP by exchanging the whole C-terminal domains of the precursors. It is concluded that pro-NPY is processed more efficiently than pro-PP in all neuroendocrine cell lines

  9. Expression of human epidermal growth factor precursor cDNA in transfected mouse NIH 3T3 cells.

    PubMed Central

    Mroczkowski, B; Reich, M; Whittaker, J; Bell, G I; Cohen, S

    1988-01-01

    Stable cell lines expressing the human epidermal growth factor (EGF) precursor have been prepared by transfection of mouse NIH 3T3 cells with a bovine papillomavirus-based vector in which the human kidney EGF precursor cDNA has been placed under the control of the inducible mouse metallothionein I promoter. Synthesis of the EGF precursor can be induced by culturing the cells in 5 mM butyric acid or 100 microM ZnCl2. The EGF precursor synthesized by these cells appears to be membrane associated; none is detectable in the cytoplasm. The size of the EGF precursor expressed by these cells is approximately 150-180 kDa, which is larger than expected from its amino acid sequence, suggesting that it is posttranslationally modified, presumably by glycosylation. The EGF precursor was also detected in the conditioned medium from these cells, indicating that some fraction of the EGF precursor synthesized by these transfected cells may be secreted. Preliminary data suggest that this soluble form of the EGF precursor may compete with 125I-labeled EGF for binding to the EGF receptor. These cell lines should be useful for studying the processing of the EGF precursor to EGF as well as determining the properties and possible functions of the EGF precursor itself. Images PMID:3257563

  10. Decreased demand for olfactory periglomerular cells impacts on neural precursor cell viability in the rostral migratory stream.

    PubMed

    Langenfurth, Anika; Gu, Song; Bautze, Verena; Zhang, Caiyi; Neumann, Julia E; Schüller, Ulrich; Stock, Kristin; Wolf, Susanne A; Maier, Anna-Maria; Mastrella, Giorgia; Pak, Andrew; Cheng, Hongwei; Kälin, Roland E; Holmbeck, Kenn; Strotmann, Jörg; Kettenmann, Helmut; Glass, Rainer

    2016-01-01

    The subventricular zone (SVZ) provides a constant supply of new neurons to the olfactory bulb (OB). Different studies have investigated the role of olfactory sensory input to neural precursor cell (NPC) turnover in the SVZ but it was not addressed if a reduced demand specifically for periglomerular neurons impacts on NPC-traits in the rostral migratory stream (RMS). We here report that membrane type-1 matrix metalloproteinase (MT1-MMP) deficient mice have reduced complexity of the nasal turbinates, decreased sensory innervation of the OB, reduced numbers of olfactory glomeruli and reduced OB-size without alterations in SVZ neurogenesis. Large parts of the RMS were fully preserved in MT1-MMP-deficient mice, but we detected an increase in cell death-levels and a decrease in SVZ-derived neuroblasts in the distal RMS, as compared to controls. BrdU-tracking experiments showed that homing of NPCs specifically to the glomerular layer was reduced in MT1-MMP-deficient mice in contrast to controls while numbers of tracked cells remained equal in other OB-layers throughout all experimental groups. Altogether, our data show the demand for olfactory interneurons in the glomerular layer modulates cell turnover in the RMS, but has no impact on subventricular neurogenesis. PMID:27573347

  11. Decreased demand for olfactory periglomerular cells impacts on neural precursor cell viability in the rostral migratory stream

    PubMed Central

    Langenfurth, Anika; Gu, Song; Bautze, Verena; Zhang, Caiyi; Neumann, Julia E.; Schüller, Ulrich; Stock, Kristin; Wolf, Susanne A.; Maier, Anna-Maria; Mastrella, Giorgia; Pak, Andrew; Cheng, Hongwei; Kälin, Roland E.; Holmbeck, Kenn; Strotmann, Jörg; Kettenmann, Helmut; Glass, Rainer

    2016-01-01

    The subventricular zone (SVZ) provides a constant supply of new neurons to the olfactory bulb (OB). Different studies have investigated the role of olfactory sensory input to neural precursor cell (NPC) turnover in the SVZ but it was not addressed if a reduced demand specifically for periglomerular neurons impacts on NPC-traits in the rostral migratory stream (RMS). We here report that membrane type-1 matrix metalloproteinase (MT1-MMP) deficient mice have reduced complexity of the nasal turbinates, decreased sensory innervation of the OB, reduced numbers of olfactory glomeruli and reduced OB-size without alterations in SVZ neurogenesis. Large parts of the RMS were fully preserved in MT1-MMP-deficient mice, but we detected an increase in cell death-levels and a decrease in SVZ-derived neuroblasts in the distal RMS, as compared to controls. BrdU-tracking experiments showed that homing of NPCs specifically to the glomerular layer was reduced in MT1-MMP-deficient mice in contrast to controls while numbers of tracked cells remained equal in other OB-layers throughout all experimental groups. Altogether, our data show the demand for olfactory interneurons in the glomerular layer modulates cell turnover in the RMS, but has no impact on subventricular neurogenesis. PMID:27573347

  12. Tricyclic Antidepressant Amitriptyline Indirectly Increases the Proliferation of Adult Dentate Gyrus-Derived Neural Precursors: An Involvement of Astrocytes

    PubMed Central

    Boku, Shuken; Hisaoka-Nakashima, Kazue; Nakagawa, Shin; Kato, Akiko; Kajitani, Naoto; Inoue, Takeshi; Kusumi, Ichiro; Takebayashi, Minoru

    2013-01-01

    Antidepressants increase the proliferation of neural precursors in adult dentate gyrus (DG), which is considered to be involved in the therapeutic action of antidepressants. However, the mechanism underlying it remains unclear. By using cultured adult rat DG-derived neural precursors (ADP), we have already shown that antidepressants have no direct effects on ADP. Therefore, antidepressants may increase the proliferation of neural precursors in adult DG via unknown indirect mechanism. We have also shown that amitriptyline (AMI), a tricyclic antidepressant, induces the expressions of GDNF, BDNF, FGF2 and VEGF, common neurogenic factors, in primary cultured astrocytes (PCA). These suggest that AMI-induced factors in astrocytes may increase the proliferation of neural precursors in adult DG. To test this hypothesis, we examined the effects of AMI-induced factors and conditioned medium (CM) from PCA treated with AMI on ADP proliferation. The effects of CM and factors on ADP proliferation were examined with BrdU immunocytochemistry. AMI had no effect on ADP proliferation, but AMI-treated CM increased it. The receptors of GDNF, BDNF and FGF2, but not VEGF, were expressed in ADP. FGF2 significantly increased ADP proliferation, but not BDNF and GDNF. In addition, both of a specific inhibitor of FGF receptors and anti-FGF2 antibody significantly counteracted the increasing effect of CM on ADP proliferation. In addition, FGF2 in brain is mainly derived from astrocytes that are key components of the neurogenic niches in adult DG. These suggest that AMI may increase ADP proliferation indirectly via PCA and that FGF2 may a potential candidate to mediate such an indirect effect of AMI on ADP proliferation via astrocytes. PMID:24260208

  13. Hydrothermal synthesis of ordered mesoporous carbons from a biomass-derived precursor for electrochemical capacitors.

    PubMed

    Feng, Shanshan; Li, Wei; Wang, Jinxiu; Song, Yanfang; Elzatahry, Ahmed A; Xia, Yongyao; Zhao, Dongyuan

    2014-12-21

    Here, we report the reproducible synthesis of highly ordered mesoporous carbons (OMCs) with a 2D hexagonal mesostructure via a facile hydrothermal method employing β-cyclodextrin as a renewable and environmentally-friendly carbon precursor, which gives the OMCs a high surface area and micropore surface areas, as well as an oxygenated surface. As a supercapacitor electrode, these OMCs exhibit a high specific capacitance and a high electrochemical stability.

  14. Export of Precursor tRNAIle from the Nucleus to the Cytoplasm in Human Cells.

    PubMed

    Wei, Min; Zhao, Xia; Liu, Mi; Niu, Meijuan; Seif, Elias; Kleiman, Lawrence

    2016-01-01

    In the current concept, tRNA maturation in vertebrate cells, including splicing of introns, trimming of 5' leader and 3' trailer, and adding of CCA, is thought to occur exclusively in the nucleus. Here we provide evidence to challenge this concept. Unspliced intron-containing precursor tRNAIle was identified in Human Immunodeficiency Virus type 1 (HIV-1) virions, which are synthesized in the cytoplasm. Northern blot, confocal microscopy and quantitative RT-PCR further verified enrichment of this unspliced tRNAIle within the cytoplasm in human cells. In addition to containing an intron, the cytoplasmic precursor tRNAIle also contains a short incompletely processed 5´ leader and a 3´ trailer, which abundance is around 1000 fold higher than the nuclear precursor tRNAIle with long 5' leader and long 3' trailer. In vitro data also suggest that the cytoplasmic unspliced end-immature precursor tRNAIle could be processed by short isoform of RNase Z, but not long isoform of RNase Z. These data suggest that precursor tRNAs could export from the nucleus to the cytoplasm in human cells, instead of be processed only in the nucleus.

  15. Hair follicle melanocyte precursors are awoken by ultraviolet radiation via a cell extrinsic mechanism.

    PubMed

    Ferguson, Blake; Kunisada, Takahiro; Aoki, Hitomi; Handoko, Herlina Y; Walker, Graeme J

    2015-06-01

    Melanocyte stem cells (MCSCs) in the upper portion of the hair follicle periodically supply melanocytes (MCs) that migrate downward into the hair bulb during anagen, the growth phase of the hair cycle. However MCs can also migrate upwards. We previously observed an increase in epidermal MC density in the mouse epidermis after a single ultraviolet radiation (UVR) exposure in neonatal, but not adult mice. To better understand MCSC activation by UVR we methodically studied the response of MCs to narrow band UVB (since UVA does not invoke this response) exposure in neonatal mice, and in adults at different stages of the hair cycle. We found that a single exposure of adult mice did not induce activation of MCSCs, in any stage of the hair cycle. When adult mice MCSCs were isolated in telogen, multiple UVB exposures resulted in their activation and production of daughter cells, which migrated upwards to the epidermis. Importantly, the MCSCs produced new progeny without themselves having incurred DNA damage after UVB exposure. This, together with examination of MC localisation in the skin of mice overexpressing stem cell factor in their keratinocytes, leads us to conclude that MCSC activation by UVB is driven via paracrine production of either SCF and/or other keratinocyte cytokines. We re-examined the increase in epidermal MC density in neonatal mouse skin. This effect was much more profound after only a single exposure than that of even multiple exposures to adult skin, and we show that in this setting also, the epidermal MCs mostly derive from activation of MC precursors in the upper hair follicle, and most likely via a cell extrinsic mechanism. Hence, although adaptive changes in the skin induced by repetitive UVB exposures are necessary in adult mice, in both the adult and neonatal context the division and migration upwards of follicular MCSCs is the major mode by which epidermal MC numbers increase after UVR exposure.

  16. Acquisition of granule neuron precursor identity is a critical determinant of progenitor cell competence to form Hedgehog-induced medulloblastoma

    PubMed Central

    Schüller, Ulrich; Heine, Vivi M.; Mao, Junhao; Kho, Alvin T.; Dillon, Allison K.; Han, Young-Goo; Huillard, Emmanuelle; Sun, Tao; Ligon, Azra H.; Qian, Ying; Ma, Qiufu; Alvarez-Buylla, Arturo; McMahon, Andrew P.; Rowitch, David H.; Ligon, Keith L.

    2008-01-01

    Origins of the brain tumor, medulloblastoma, from stem cells or restricted progenitor cells are unclear. To investigate this, we activated oncogenic Hedgehog (Hh) signaling in multipotent and lineage-restricted CNS progenitors. We observed that normal unipotent cerebellar granule neuron precursors (CGNP) derive from hGFAP+ and Olig2+ RL progenitors. Hh activation in a spectrum of early and late stage CNS progenitors generated similar medulloblastomas, but not other brain cancers, indicating that acquisition of CGNP identity is essential for tumorigenesis. We show in human and mouse medulloblastoma that cells expressing the glia-associated markers Gfap and Olig2 are neoplastic and that they retain features of embryonic-type granule lineage progenitors. Thus, oncogenic Hh signaling promotes medulloblastoma from lineage-restricted granule cell progenitors. PMID:18691547

  17. Redox changes induced in hippocampal precursor cells by heavy ion irradiation.

    PubMed

    Limoli, C L; Giedzinski, E; Baure, J; Rola, R; Fike, J R

    2007-06-01

    Hippocampal precursors retain the capacity to proliferate and differentiate throughout life, and their progeny, immature neurons, can undergo neurogenesis, a process believed to be important in maintaining the cognitive health of an organism. A variety of stresses including irradiation have been shown to deplete neural precursor cells, an effect that inhibits neurogenesis and is associated with the onset of cognitive impairments. Our past work has shown that neural precursor cells exposed to X-rays or protons exhibit a prolonged increase in oxidative stress, a factor we hypothesize to be critical in regulating the function of these cells after irradiation and other stresses. Here we report that irradiation of hippocampal precursor cells with high-linear energy transfer (LET) 1 GeV/nucleon 56Fe ions leads to significantly higher levels of oxidative stress when compared to lower LET radiations (X-rays, protons). Irradiation with 1 Gy of 56Fe ions elicits twofold to fivefold higher levels of reactive oxygen species (ROS) compared to unirradiated controls, and at lower doses (precursors exhibit a linear dose response 6 h after heavy ion exposure. The use of the antioxidant lipoic acid (LA) was able to reduce ROS levels below background levels when added before or after 56Fe ion irradiation. These results conclusively show that low doses of 56Fe ions can elicit significant levels of oxidative stress in neural precursor cells. Given the prevalence of heavy ions in space and the duration of interplanetary travel, these data suggest that astronauts are at risk for developing cognitive decrements. However, our results also indicate that antioxidants delivered before as radioprotective agents or after as mitigating agents hold promise as effective countermeasures for ameliorating certain adverse effects of heavy ion exposure to the CNS.

  18. Isolation of Precursor Cells from Waste Solid Fat Tissue

    NASA Technical Reports Server (NTRS)

    Byerly, Diane; Sognier, Marguerite A.

    2009-01-01

    A process for isolating tissue-specific progenitor cells exploits solid fat tissue obtained as waste from such elective surgical procedures as abdominoplasties (tummy tucks) and breast reductions. Until now, a painful and risky process of aspiration of bone marrow has been used to obtain a limited number of tissue- specific progenitor cells. The present process yields more tissue-specific progenitor cells and involves much less pain and risk for the patient. This process includes separation of fat from skin, mincing of the fat into small pieces, and forcing a fat saline mixture through a sieve. The mixture is then digested with collagenase type I in an incubator. After centrifugation tissue-specific progenitor cells are recovered and placed in a tissue-culture medium in flasks or Petri dishes. The tissue-specific progenitor cells can be used for such purposes as (1) generating three-dimensional tissue equivalent models for studying bone loss and muscle atrophy (among other deficiencies) and, ultimately, (2) generating replacements for tissues lost by the fat donor because of injury or disease.

  19. Decrease in circulating myeloid dendritic cell precursors in patients with intracranial large artery atherosclerosis.

    PubMed

    Zhang, Jin-Xia; Li, Bing-Ling; Lin, Zhong-Qiu; Zhang, Ni; Peng, Xiong; Gong, Zhi-Hua; Long, Liu-Cheng; Zhou, Xuan; Xiang, Ding-Cheng

    2015-01-01

    Intracranial large artery atherosclerosis (ILAA) is a major cause of ischemic cerebrovascular disease. The aim of this study was to investigate whether the levels of circulating dendritic cell precursors (DCP) could reflect the severity of intracranial large artery atherosclerosis (ILAA). For this purpose, a series of angiography were taken to determine the severity and extent of coronary artery and intracranial large artery stenosis, and flow cytometry were taken to determine the levels of circulating mDC precursors and pDC precursors in patients with severe intracranial large artery atherosclerosis (ILAA) (n = 101) and mild intracranial large artery atherosclerosis (ILAA) (n = 123) according to the angiography. Circulating mDC precursors were lower in patients with severe intracranial large artery atherosclerosis (ILAA) than in mild intracranial large artery atherosclerosis (ILAA) (P < 0.05), but circulating pDC precursors were not significant differences (P > 0.05). According to these data, circulating mDC precursors could predict the severity of ILAA, which also could be able to reflect the severity of ILAA.

  20. Early postradition recovery of hematopoietic stromal precursor cells

    SciTech Connect

    Todriya, T.V.

    1985-04-01

    The aim of this investigation was an immunohistochemical study of alpha-endorphin-producing cells and also a study of rat mast cells (MC in the antral mucosa of the human stomach. Men aged 18 to 30 years undergoing in-patient treatment wre studied. According to the results of radioimmunoassay, antibodies against alpha-endorphin did not react with enkephalins, beta-endorphin, or the C-terminal fragment of beta-endorphin, but had cross reactivity of about 10% with gammaendorphin. Results were subjected to statistical analysis by Student's test at a 85% level of significance and they are shown. The facts presented here suggest that MC of human gastric mucosa include argyrophilic cells which contain alpha-endorphin.

  1. Transplanted neural stem/precursor cells instruct phagocytes and reduce secondary tissue damage in the injured spinal cord.

    PubMed

    Cusimano, Melania; Biziato, Daniela; Brambilla, Elena; Donegà, Matteo; Alfaro-Cervello, Clara; Snider, Silvia; Salani, Giuliana; Pucci, Ferdinando; Comi, Giancarlo; Garcia-Verdugo, Jose Manuel; De Palma, Michele; Martino, Gianvito; Pluchino, Stefano

    2012-02-01

    Transplanted neural stem/precursor cells possess peculiar therapeutic plasticity and can simultaneously instruct several therapeutic mechanisms in addition to cell replacement. Here, we interrogated the therapeutic plasticity of neural stem/precursor cells after their focal implantation in the severely contused spinal cord. We injected syngeneic neural stem/precursor cells at the proximal and distal ends of the contused mouse spinal cord and analysed locomotor functions and relevant secondary pathological events in the mice, cell fate of transplanted neural stem/precursor cells, and gene expression and inflammatory cell infiltration at the injured site. We used two different doses of neural stem/precursor cells and two treatment schedules, either subacute (7 days) or early chronic (21 days) neural stem/precursor cell transplantation after the induction of experimental thoracic severe spinal cord injury. Only the subacute transplant of neural stem/precursor cells enhanced the recovery of locomotor functions of mice with spinal cord injury. Transplanted neural stem/precursor cells survived undifferentiated at the level of the peri-lesion environment and established contacts with endogenous phagocytes via cellular-junctional coupling. This was associated with significant modulation of the expression levels of important inflammatory cell transcripts in vivo. Transplanted neural stem/precursor cells skewed the inflammatory cell infiltrate at the injured site by reducing the proportion of 'classically-activated' (M1-like) macrophages, while promoting the healing of the injured cord. We here identify a precise window of opportunity for the treatment of complex spinal cord injuries with therapeutically plastic somatic stem cells, and suggest that neural stem/precursor cells have the ability to re-programme the local inflammatory cell microenvironment from a 'hostile' to an 'instructive' role, thus facilitating the healing or regeneration past the lesion.

  2. PROGRAMMED CELL DEATH IN EXTRAOCULAR MUSCLE TENDON/SCLERA PRECURSORS

    EPA Science Inventory

    Abstract

    Purpose: This study was designed to examine the occurrence of natural cell death in the periocular mesenchyme of mouse embryos.

    Methods: Vital staining with LysoTracker Red and Nile blue sulphate as well as terminal nick end labeling (TUNEL) were utiliz...

  3. NG2-expressing glial precursor cells are a new potential oligodendroglioma cell initiating population in N-ethyl-N-nitrosourea-induced gliomagenesis.

    PubMed

    Briançon-Marjollet, Anne; Balenci, Laurent; Fernandez, Manuel; Estève, François; Honnorat, Jérôme; Farion, Régine; Beaumont, Marine; Barbier, Emmanuel; Rémy, Chantal; Baudier, Jacques

    2010-10-01

    Gliomas are the most common primary brain tumor affecting human adults and remain a therapeutic challenge because cells of origin are still unknown. Here, we investigated the cellular origin of low-grade gliomas in a rat model based on transplacental exposure to N-ethyl-N-nitrosourea (ENU). Longitudinal magnetic resonance imaging coupled to immunohistological and immunocytochemical analyses were used to further characterize low-grade rat gliomas at different stages of evolution. We showed that early low-grade gliomas have characteristics of oligodendroglioma-like tumors and exclusively contain NG2-expressing slow dividing precursor cells, which express early markers of oligodendroglial lineage. These tumor-derived precursors failed to fully differentiate into oligodendrocytes and exhibited multipotential abilities in vitro. Moreover, a few glioma NG2+ cells are resistant to radiotherapy and may be responsible for tumor recurrence, frequently observed in humans. Overall, these findings suggest that transformed multipotent NG2 glial precursor cell may be a potential cell of origin in the genesis of rat ENU-induced oligodendroglioma-like tumors. This work may open up new perspectives for understanding biology of human gliomas.

  4. Blockade of microglial KATP -channel abrogates suppression of inflammatory-mediated inhibition of neural precursor cells.

    PubMed

    Ortega, Francisco J; Vukovic, Jana; Rodríguez, Manuel J; Bartlett, Perry F

    2014-02-01

    Microglia positively affect neural progenitor cell physiology through the release of inflammatory mediators or trophic factors. We demonstrated previously that reactive microglia foster K(ATP) -channel expression and that blocking this channel using glibenclamide administration enhances striatal neurogenesis after stroke. In this study, we investigated whether the microglial K(ATP) -channel directly influences the activation of neural precursor cells (NPCs) from the subventricular zone using transgenic Csf1r-GFP mice. In vitro exposure of NPCs to lipopolysaccharide and interferon-gamma resulted in a significant decrease in precursor cell number. The complete removal of microglia from the culture or exposure to enriched microglia culture also decreased the precursor cell number. The addition of glibenclamide rescued the negative effects of enriched microglia on neurosphere formation and promoted a ∼20% improvement in precursor cell number. Similar results were found using microglial-conditioned media from isolated microglia. Using primary mixed glial and pure microglial cultures, glibenclamide specifically targeted reactive microglia to restore neurogenesis and increased the microglial production of the chemokine monocyte chemoattractant protein-1 (MCP-1). These findings provide the first direct evidence that the microglial K(ATP) -channel is a regulator of the proliferation of NPCs under inflammatory conditions.

  5. Identification of embryonic precursor cells that differentiate into thymic epithelial cells expressing autoimmune regulator.

    PubMed

    Akiyama, Nobuko; Takizawa, Nobukazu; Miyauchi, Maki; Yanai, Hiromi; Tateishi, Ryosuke; Shinzawa, Miho; Yoshinaga, Riko; Kurihara, Masaaki; Demizu, Yosuke; Yasuda, Hisataka; Yagi, Shintaro; Wu, Guoying; Matsumoto, Mitsuru; Sakamoto, Reiko; Yoshida, Nobuaki; Penninger, Josef M; Kobayashi, Yasuhiro; Inoue, Jun-Ichiro; Akiyama, Taishin

    2016-07-25

    Medullary thymic epithelial cells (mTECs) expressing autoimmune regulator (Aire) are critical for preventing the onset of autoimmunity. However, the differentiation program of Aire-expressing mTECs (Aire(+) mTECs) is unclear. Here, we describe novel embryonic precursors of Aire(+) mTECs. We found the candidate precursors of Aire(+) mTECs (pMECs) by monitoring the expression of receptor activator of nuclear factor-κB (RANK), which is required for Aire(+) mTEC differentiation. pMECs unexpectedly expressed cortical TEC molecules in addition to the mTEC markers UEA-1 ligand and RANK and differentiated into mTECs in reaggregation thymic organ culture. Introduction of pMECs in the embryonic thymus permitted long-term maintenance of Aire(+) mTECs and efficiently suppressed the onset of autoimmunity induced by Aire(+) mTEC deficiency. Mechanistically, pMECs differentiated into Aire(+) mTECs by tumor necrosis factor receptor-associated factor 6-dependent RANK signaling. Moreover, nonclassical nuclear factor-κB activation triggered by RANK and lymphotoxin-β receptor signaling promoted pMEC induction from progenitors exhibiting lower RANK expression and higher CD24 expression. Thus, our findings identified two novel stages in the differentiation program of Aire(+) mTECs. PMID:27401343

  6. Patient-Derived Antibody Targets Tumor Cells

    Cancer.gov

    An NCI Cancer Currents blog on an antibody derived from patients that killed tumor cells in cell lines of several cancer types and slowed tumor growth in mouse models of brain and lung cancer without evidence of side effects.

  7. Room temperature strain rate sensitivity in precursor derived HfO{sub 2}/Si-C-N(O) ceramic nanocomposites

    SciTech Connect

    Sujith, Ravindran; Kumar, Ravi

    2014-01-15

    Investigation on the room temperature strain rate sensitivity using depth sensing nanoindentation is carried out on precursor derived HfO{sub 2}/Si-C-N(O) ceramic nanocomposite sintered using pulsed electric current sintering. Using constant load method the strain rate sensitivity values are estimated. Lower strain rate sensitivity of ∼ 3.7 × 10{sup −3} is observed and the limited strain rate sensitivity of these ceramic nanocomposites is explained in terms of cluster model. It is concluded that presence of amorphous Si-C-N(O) clusters are responsible for the limited flowability in these ceramics.

  8. Metabolism of cryptic peptides derived from neuropeptide FF precursors: the involvement of insulin-degrading enzyme.

    PubMed

    Grasso, Giuseppe; Mielczarek, Przemyslaw; Niedziolka, Magdalena; Silberring, Jerzy

    2014-09-22

    The term "cryptome" refers to the subset of cryptic peptides with bioactivities that are often unpredictable and very different from the parent protein. These cryptic peptides are generated by proteolytic cleavage of proteases, whose identification in vivo can be very challenging. In this work, we show that insulin-degrading enzyme (IDE) is able to degrade specific amino acid sequences present in the neuropeptide pro-NPFFA (NPFF precursor), generating some cryptic peptides that are also observed after incubation with rat brain cortex homogenate. The reported experimental findings support the increasingly accredited hypothesis, according to which, due to its wide substrate selectivity, IDE is involved in a wide variety of physiopathological processes.

  9. Preparation of primary myogenic precursor cell/myoblast cultures from basal vertebrate lineages.

    PubMed

    Froehlich, Jacob Michael; Seiliez, Iban; Gabillard, Jean-Charles; Biga, Peggy R

    2014-01-01

    Due to the inherent difficulty and time involved with studying the myogenic program in vivo, primary culture systems derived from the resident adult stem cells of skeletal muscle, the myogenic precursor cells (MPCs), have proven indispensible to our understanding of mammalian skeletal muscle development and growth. Particularly among the basal taxa of Vertebrata, however, data are limited describing the molecular mechanisms controlling the self-renewal, proliferation, and differentiation of MPCs. Of particular interest are potential mechanisms that underlie the ability of basal vertebrates to undergo considerable postlarval skeletal myofiber hyperplasia (i.e. teleost fish) and full regeneration following appendage loss (i.e. urodele amphibians). Additionally, the use of cultured myoblasts could aid in the understanding of regeneration and the recapitulation of the myogenic program and the differences between them. To this end, we describe in detail a robust and efficient protocol (and variations therein) for isolating and maintaining MPCs and their progeny, myoblasts and immature myotubes, in cell culture as a platform for understanding the evolution of the myogenic program, beginning with the more basal vertebrates. Capitalizing on the model organism status of the zebrafish (Danio rerio), we report on the application of this protocol to small fishes of the cyprinid clade Danioninae. In tandem, this protocol can be utilized to realize a broader comparative approach by isolating MPCs from the Mexican axolotl (Ambystoma mexicanum) and even laboratory rodents. This protocol is now widely used in studying myogenesis in several fish species, including rainbow trout, salmon, and sea bream(1-4). PMID:24835774

  10. Influence of basic fibroblast growth factor and astroglial cells on the ultrastructure of developing rat brain neuronal precursors in vitro.

    PubMed

    Miehe, M; Leterrier, J F; Deloulme, J C; Gensburger, C; Knoetgen, M F; Sensenbrenner, M

    1996-01-01

    We have examined the ultrastructural aspect of neuronal precursors derived from 14-day-old rat embryos during their development under various culture conditions. Cells maintained in serum-free medium which have developed for 1 week in vitro present ultrastructural features of young neurons. They contain many free ribosomes and microtubules, but few other organelles and incompletely developed Golgi apparatus. In the presence of basic fibroblast growth factor (bFGF), besides cells remaining in aggregates and displaying morphological features of undifferentiated cells, dispersed neuroblasts underwent accelerated ultrastructural maturation. They present well-developed Golgi apparatus, axodendritic synapses and dense-core vesicles already after 3 days in culture. By contrast, in the presence of astroglial-conditioned medium a more homogeneous population developed showing ultrastructural features of relatively mature neurons. However, the neuronal precursors acquired the most mature ultrastructural aspect when they were cocultured with astroglial cells. The neuronal cell bodies contain highly developed Golgi complexes, well-differentiated ergastoplasm and Niss1 body formations, while in the complex neurite network much more numerous mature synapses with clear and dense-core vesicles are visible. These observations indicate that a combination of soluble factors and membrane-bound factors is essential for extensive ultrastructural development of neuronal precursors in vitro. Another finding was that in these cultured neurons neurofilaments (NF) were never seen, while NF protein subunits were found. These data suggest that the polymerization of the three NF subunits into intermediate filaments might need particular cellular factors which probably do not exist under our in vitro conditions.

  11. Naive CD8⁺ T-cell precursors display structured TCR repertoires and composite antigen-driven selection dynamics.

    PubMed

    Neller, Michelle A; Ladell, Kristin; McLaren, James E; Matthews, Katherine K; Gostick, Emma; Pentier, Johanne M; Dolton, Garry; Schauenburg, Andrea J A; Koning, Dan; Fontaine Costa, Ana Isabel C A; Watkins, Thomas S; Venturi, Vanessa; Smith, Corey; Khanna, Rajiv; Miners, Kelly; Clement, Mathew; Wooldridge, Linda; Cole, David K; van Baarle, Debbie; Sewell, Andrew K; Burrows, Scott R; Price, David A; Miles, John J

    2015-08-01

    Basic parameters of the naive antigen (Ag)-specific T-cell repertoire in humans remain poorly defined. Systematic characterization of this 'ground state' immunity in comparison with memory will allow a better understanding of clonal selection during immune challenge. Here, we used high-definition cell isolation from umbilical cord blood samples to establish the baseline frequency, phenotype and T-cell antigen receptor (TCR) repertoire of CD8(+) T-cell precursor populations specific for a range of viral and self-derived Ags. Across the board, these precursor populations were phenotypically naive and occurred with hierarchical frequencies clustered by Ag specificity. The corresponding patterns of TCR architecture were highly ordered and displayed partial overlap with adult memory, indicating biased structuring of the T-cell repertoire during Ag-driven selection. Collectively, these results provide new insights into the complex nature and dynamics of the naive T-cell compartment.

  12. Antimicrobial Activity of Artemisinin and Precursor Derived from In Vitro Plantlets of Artemisia annua L.

    PubMed Central

    Appalasamy, Suganthi; Lo, Kiah Yann; Ch'ng, Song Jin; Nornadia, Ku; Othman, Ahmad Sofiman; Chan, Lai-Keng

    2014-01-01

    Artemisia annua L., a medicinal herb, produces secondary metabolites with antimicrobial property. In Malaysia due to the tropical hot climate, A. annua could not be planted for production of artemisinin, the main bioactive compound. In this study, the leaves of three in vitro A. annua L. clones were, extracted and two bioactive compounds, artemisinin and a precursor, were isolated by thin layer chromatography. These compounds were found to be effective in inhibiting the growth of Gram-positive and Gram-negative bacteria but not Candida albicans. Their antimicrobial activity was similar to that of antibactericidal antibiotic streptomycin. They were found to inhibit the growth of the tested microbes at the minimum inhibition concentration of 0.09 mg/mL, and toxicity test using brine shrimp showed that even the low concentration of 0.09 mg/mL was very lethal towards the brine shrimps with 100% mortality rate. This study hence indicated that in vitro cultured plantlets of A. annua can be used as the alternative method for production of artemisinin and its precursor with antimicrobial activities. PMID:24575401

  13. Review of terminology of precursors of vulvar squamous cell carcinoma.

    PubMed

    Scurry, James; Wilkinson, Edward J

    2006-07-01

    The popular term for vulvar squamous cell carcinoma in situ/dysplasia is vulvar intraepithelial neoplasia (VIN). VIN is a histological diagnosis based on loss of squamous epithelial maturation associated with enlarged, hyperchromatic, pleomorphic nuclei and increased, usually atypical mitoses. There are two types of VIN: the usual (not otherwise specified) type, also known as warty-basaloid, and the differentiated type. There are 3 grading systems for warty-basaloid VIN: the traditional 3-grade system of VIN 1-3, a low-grade/high grade Bethesda-like system and the International Society for the Study of Vulvovaginal Disease's proposal for only 1 grade. The ISSVD system eliminates VIN 1 and combines VIN 2 and 3 on the grounds that VIN 1 has not been shown to be a reproducible diagnosis and VIN 2 and 3 are not reliably separated. The evidence supports the ISSVD proposal. Warty basaloid VIN may be sub-typed into warty and basaloid VIN. Sub-typing has clinical relevance but its reproducibility is not proven. Warty-basaloid VIN may regress. Differentiated VIN has been typically diagnosed co-incident with squamous cell carcinoma. With increased frequency of performance of biopsy of hyperplastic lesions, differentiated VIN should be diagnosed more commonly before squamous carcinoma occurs.

  14. In vitro differentiation of porcine aortic vascular precursor cells to endothelial and vascular smooth muscle cells.

    PubMed

    Zaniboni, Andrea; Bernardini, Chiara; Bertocchi, Martina; Zannoni, Augusta; Bianchi, Francesca; Avallone, Giancarlo; Mangano, Chiara; Sarli, Giuseppe; Calzà, Laura; Bacci, Maria Laura; Forni, Monica

    2015-09-01

    Recent findings suggest that progenitor and multipotent mesenchymal stromal cells (MSCs) are associated with vascular niches. Cells displaying mesenchymal properties and differentiating to whole components of a functional blood vessel, including endothelial and smooth muscle cells, can be defined as vascular stem cells (VSCs). Recently, we isolated a population of porcine aortic vascular precursor cells (pAVPCs), which have MSC- and pericyte-like properties. The aim of the present work was to investigate whether pAVPCs possess VSC-like properties and assess their differentiation potential toward endothelial and smooth muscle lineages. pAVPCs, maintained in a specific pericyte growth medium, were cultured in high-glucose DMEM + 10% FBS (long-term medium, LTM) or in human endothelial serum-free medium + 5% FBS and 50 ng/ml of hVEGF (endothelial differentiation medium, EDM). After 21 days of culture in LTM, pAVPCs showed an elongated fibroblast-like morphology, and they seem to organize in cord-like structures. qPCR analysis of smooth muscle markers [α-smooth muscle actin (α-SMA), calponin, and smooth muscle myosin (SMM) heavy chain] showed a significant increment of the transcripts, and immunofluorescence analysis confirmed the presence of α-SMA and SMM proteins. After 21 days of culture in EDM, pAVPCs displayed an endothelial cell-like morphology and revealed the upregulation of the expression of endothelial markers (CD31, vascular endothelial-cadherin, von Willebrand factor, and endothelial nitric oxide synthase) showing the CD31-typical pattern. In conclusion, pAVPCs could be defined as a VSC-like population considering that, if they are maintained in a specific pericyte medium, they express MSC markers, and they have, in addition to the classical mesenchymal trilineage differentiation potential, the capacity to differentiate in vitro toward the smooth muscle and the endothelial cell phenotypes.

  15. Retroviral transduction of hematopoietic progenitors derived from human embryonic stem cells.

    PubMed

    Menendez, Pablo; Wang, Lisheng; Cerdan, Chantal; Bhatia, Mickie

    2006-01-01

    It has been recently identified that cytokines and BMP-4 promote hematopoiesis from human embryonic stem cells (hESC) and that, before hematopoietic commitment, a rare subpopulation of cells lacking CD45, but expressing PECAM-1, Flk-1, and VE-cadherin (hereinafter termed CD45(neg)PFV precursors), are exclusively responsible for hematopoietic cell fate on cytokine stimulation. Efficient strategies to stably transduce these hematopoietic precursors specifically generated from hESCs would provide a novel and desirable tool to study hematopoietic development through the introduction and characterization of candidate genes suspected to regulate self-renewal processes of hESC-derived hematopoietic cells or dynamically track hESC-derived hematopoietic stem cells in vivo. To date, only transient transfection and stable transduction using lentiviral vectors have been reported in undifferentiated hESC followed by random and spontaneous differentiation into different cell types. However, protocols for stable transduction of hematopoietic progenitors prospectively derived from hESC need to be developed yet. In the present chapter, we described detailed methods on the recently characterized and optimized GALV-pseudotyped retroviral gene transfer strategy to stably transduce the hematopoietic progenitor cells prospectively derived from CD45(neg)PFV hemogenic precursors as a vital tool to study hematopoietic development and to characterize candidate genes suspected to eventually confer robust and sustained repopulating ability to hESC-derived hematopoietic cells.

  16. Meninges harbor cells expressing neural precursor markers during development and adulthood.

    PubMed

    Bifari, Francesco; Berton, Valeria; Pino, Annachiara; Kusalo, Marijana; Malpeli, Giorgio; Di Chio, Marzia; Bersan, Emanuela; Amato, Eliana; Scarpa, Aldo; Krampera, Mauro; Fumagalli, Guido; Decimo, Ilaria

    2015-01-01

    Brain and skull developments are tightly synchronized, allowing the cranial bones to dynamically adapt to the brain shape. At the brain-skull interface, meninges produce the trophic signals necessary for normal corticogenesis and bone development. Meninges harbor different cell populations, including cells forming the endosteum of the cranial vault. Recently, we and other groups have described the presence in meninges of a cell population endowed with neural differentiation potential in vitro and, after transplantation, in vivo. However, whether meninges may be a niche for neural progenitor cells during embryonic development and in adulthood remains to be determined. In this work we provide the first description of the distribution of neural precursor markers in rat meninges during development up to adulthood. We conclude that meninges share common properties with the classical neural stem cell niche, as they: (i) are a highly proliferating tissue; (ii) host cells expressing neural precursor markers such as nestin, vimentin, Sox2 and doublecortin; and (iii) are enriched in extracellular matrix components (e.g., fractones) known to bind and concentrate growth factors. This study underlines the importance of meninges as a potential niche for endogenous precursor cells during development and in adulthood.

  17. Cyclopropene derivatives as precursors to enantioenriched cyclopropanols and n-butenals possessing quaternary carbon stereocenters.

    PubMed

    Simaan, Marwan; Delaye, Pierre-Olivier; Shi, Min; Marek, Ilan

    2015-10-12

    The diastereoselective carbocupration reaction of cyclopropenylmethyl ethers followed by addition of oxenoid leads to the formation of diastereo- and enantiomerically enriched 2,2,3,3-tetrasubstituted cyclopropanol derivatives. Ring fragmentation of the copper cyclopropanolate leads to acyclic butenal derivatives possessing enantiomerically enriched α-quaternary carbon stereocenters in a single-pot operation.

  18. HIV-1 broadly neutralizing antibody precursor B cells revealed by germline-targeting immunogen

    PubMed Central

    Jardine, Joseph G.; Kulp, Daniel W.; Havenar-Daughton, Colin; Sarkar, Anita; Briney, Bryan; Sok, Devin; Sesterhenn, Fabian; Ereño-Orbea, June; Kalyuzhniy, Oleksandr; Deresa, Isaiah; Hu, Xiaozhen; Spencer, Skye; Jones, Meaghan; Georgeson, Erik; Adachi, Yumiko; Kubitz, Michael; deCamp, Allan C.; Julien, Jean-Philippe; Wilson, Ian A.; Burton, Dennis R.; Crotty, Shane; Schief, William R.

    2016-01-01

    Induction of broadly neutralizing antibodies (bnAbs) is a major HIV vaccine goal. Germline-targeting immunogens aim to initiate bnAb induction by activating bnAb germline precursor B cells. Critical unmet challenges are to determine whether bnAb precursor naïve B cells bind germline-targeting immunogens and occur at sufficient frequency in humans for reliable vaccine responses. We employed deep mutational scanning and multi-target optimization to develop a germline-targeting immunogen (eOD-GT8) for diverse VRC01-class bnAbs. We then used the immunogen to isolate VRC01-class precursor naïve B cells from HIV-uninfected donors. Frequencies of true VRC01-class precursors, their structures, and their eOD-GT8 affinities support this immunogen as a candidate human vaccine prime. These methods could be applied to germline targeting for other classes of HIV bnAbs and for Abs to other pathogens. PMID:27013733

  19. HIV-1 broadly neutralizing antibody precursor B cells revealed by germline-targeting immunogen.

    PubMed

    Jardine, Joseph G; Kulp, Daniel W; Havenar-Daughton, Colin; Sarkar, Anita; Briney, Bryan; Sok, Devin; Sesterhenn, Fabian; Ereño-Orbea, June; Kalyuzhniy, Oleksandr; Deresa, Isaiah; Hu, Xiaozhen; Spencer, Skye; Jones, Meaghan; Georgeson, Erik; Adachi, Yumiko; Kubitz, Michael; deCamp, Allan C; Julien, Jean-Philippe; Wilson, Ian A; Burton, Dennis R; Crotty, Shane; Schief, William R

    2016-03-25

    Induction of broadly neutralizing antibodies (bnAbs) is a major HIV vaccine goal. Germline-targeting immunogens aim to initiate bnAb induction by activating bnAb germline precursor B cells. Critical unmet challenges are to determine whether bnAb precursor naïve B cells bind germline-targeting immunogens and occur at sufficient frequency in humans for reliable vaccine responses. Using deep mutational scanning and multitarget optimization, we developed a germline-targeting immunogen (eOD-GT8) for diverse VRC01-class bnAbs. We then used the immunogen to isolate VRC01-class precursor naïve B cells from HIV-uninfected donors. Frequencies of true VRC01-class precursors, their structures, and their eOD-GT8 affinities support this immunogen as a candidate human vaccine prime. These methods could be applied to germline targeting for other classes of HIV bnAbs and for Abs to other pathogens.

  20. Interaction of type A lantibiotics with undecaprenol-bound cell envelope precursors.

    PubMed

    Müller, Anna; Ulm, Hannah; Reder-Christ, Katrin; Sahl, Hans-Georg; Schneider, Tanja

    2012-06-01

    Lantibiotics are a unique group within the antimicrobial peptides characterized by the presence of thioether amino acids (lanthionine and methyllanthionine). These peptides are produced by and primarily act on Gram-positive bacteria exerting multiple activities at the cytoplasmic membrane of susceptible strains. Previously, the cell wall precursor lipid II was identified as the molecular target for the prototype lantibiotic nisin. Binding and sequestration of lipid II blocks the incorporation of the central cell wall precursor into the growing peptidoglycan network, thereby inhibiting the formation of a functional cell wall. Additionally, nisin combines this activity with a unique target-mediated pore formation, using lipid II as a docking molecule. The interaction with the pyrophosphate moiety of lipid II is crucial for nisin binding. We show that, besides binding to lipid II, nisin interacts with the lipid intermediates lipid III (undecaprenol-pyrophosphate-N-acetyl-glucosamine) and lipid IV (undecaprenol-pyrophosphate-N-acetyl-glucosamine-N-acetyl-mannosamine) of the wall teichoic acid (WTA) biosynthesis pathway. Binding of nisin to the precursors was observed at a stoichiometry of 2:1. The specific interaction with WTA precursors further promoted target-mediated pore formation in artificial lipid bilayers. Specific interactions with lipid III and lipid IV could also be demonstrated for related type A lantibiotics, for example, gallidermin, containing the conserved lipid-II-binding motif. PMID:22432708

  1. Tripartite containing motif 32 modulates proliferation of human neural precursor cells in HIV-1 neurodegeneration

    PubMed Central

    Fatima, M; Kumari, R; Schwamborn, J C; Mahadevan, A; Shankar, S K; Raja, R; Seth, P

    2016-01-01

    In addition to glial cells, HIV-1 infection occurs in multipotent human neural precursor cells (hNPCs) and induces quiescence in NPCs. HIV-1 infection of the brain alters hNPC stemness, leading to perturbed endogenous neurorestoration of the CNS following brain damage by HIV-1, compounding the severity of dementia in adult neuroAIDS cases. In pediatric neuroAIDS cases, HIV-1 infection of neural stem cell can lead to delayed developmental milestones and impaired cognition. Using primary cultures of human fetal brain-derived hNPCs, we gained novel insights into the role of a neural stem cell determinant, tripartite containing motif 32 (TRIM32), in HIV-1 Tat-induced quiescence of NPCs. Acute HIV-1 Tat treatment of hNPCs resulted in proliferation arrest but did not induce differentiation. Cellular localization and levels of TRIM32 are critical regulators of stemness of NPCs. HIV-1 Tat exposure increased nuclear localization and levels of TRIM32 in hNPCs. The in vitro findings were validated by studying TRIM32 localization and levels in frontal cortex of HIV-1-seropositive adult patients collected at post mortem as well as by infection of hNPCs by HIV-1. We observed increased percentage of cells with nuclear localization of TRIM32 in the subventricular zone (SVZ) as compared with age-matched controls. Our quest for probing into the mechanisms revealed that TRIM32 is targeted by miR-155 as downregulation of miR-155 by HIV-1 Tat resulted in upregulation of TRIM32 levels. Furthermore, miR-155 or siRNA against TRIM32 rescued HIV-1 Tat-induced quiescence in NPCs. Our findings suggest a novel molecular cascade involving miR-155 and TRIM32 leading to HIV-1 Tat-induced attenuated proliferation of hNPCs. The study also uncovered an unidentified role for miR-155 in modulating human neural stem cell proliferation, helping in better understanding of hNPCs and diseased brain. PMID:26586575

  2. Generation, Release, and Uptake of the NAD Precursor Nicotinic Acid Riboside by Human Cells.

    PubMed

    Kulikova, Veronika; Shabalin, Konstantin; Nerinovski, Kirill; Dölle, Christian; Niere, Marc; Yakimov, Alexander; Redpath, Philip; Khodorkovskiy, Mikhail; Migaud, Marie E; Ziegler, Mathias; Nikiforov, Andrey

    2015-11-01

    NAD is essential for cellular metabolism and has a key role in various signaling pathways in human cells. To ensure proper control of vital reactions, NAD must be permanently resynthesized. Nicotinamide and nicotinic acid as well as nicotinamide riboside (NR) and nicotinic acid riboside (NAR) are the major precursors for NAD biosynthesis in humans. In this study, we explored whether the ribosides NR and NAR can be generated in human cells. We demonstrate that purified, recombinant human cytosolic 5'-nucleotidases (5'-NTs) CN-II and CN-III, but not CN-IA, can dephosphorylate the mononucleotides nicotinamide mononucleotide and nicotinic acid mononucleotide (NAMN) and thus catalyze NR and NAR formation in vitro. Similar to their counterpart from yeast, Sdt1, the human 5'-NTs require high (millimolar) concentrations of nicotinamide mononucleotide or NAMN for efficient catalysis. Overexpression of FLAG-tagged CN-II and CN-III in HEK293 and HepG2 cells resulted in the formation and release of NAR. However, NAR accumulation in the culture medium of these cells was only detectable under conditions that led to increased NAMN production from nicotinic acid. The amount of NAR released from cells engineered for increased NAMN production was sufficient to maintain viability of surrounding cells unable to use any other NAD precursor. Moreover, we found that untransfected HeLa cells produce and release sufficient amounts of NAR and NR under normal culture conditions. Collectively, our results indicate that cytosolic 5'-NTs participate in the conversion of NAD precursors and establish NR and NAR as integral constituents of human NAD metabolism. In addition, they point to the possibility that different cell types might facilitate each other's NAD supply by providing alternative precursors. PMID:26385918

  3. Waste polyvinylchloride derived pitch as a precursor to develop carbon fibers and activated carbon fibers.

    PubMed

    Qiao, W M; Yoon, S H; Mochida, I; Yang, J H

    2007-01-01

    Polyvinylchloride (PVC) was successfully recycled through the solvent extraction from waste pipe with an extraction yield of ca. 86%. The extracted PVC was pyrolyzed by a two-stage process (260 and 410 degrees C) to obtain free-chlorine PVC based pitch through an effective removal of chlorine from PVC during the heat-treatment. As-prepared pitch (softening point: 220 degrees C) was spun, stabilized, carbonized into carbon fibers (CFs), and further activated into activated carbon fibers (ACFs) in a flow of CO2. As-prepared CFs show comparable mechanical properties to commercial CFs, whose maximum tensile strength and modulus are 862 MPa and 62 GPa, respectively. The resultant ACFs exhibit a high surface area of 1200 m2/g, narrow pore size distribution and a low oxygen content of 3%. The study provides an effective insight to recycle PVC from waste PVC and develop a carbon precursor for high performance carbon materials such as CFs and ACFs.

  4. Transplanted microvascular endothelial cells promote oligodendrocyte precursor cell survival in ischemic demyelinating lesions.

    PubMed

    Iijima, Keiya; Kurachi, Masashi; Shibasaki, Koji; Naruse, Masae; Puentes, Sandra; Imai, Hideaki; Yoshimoto, Yuhei; Mikuni, Masahiko; Ishizaki, Yasuki

    2015-11-01

    We previously showed that transplantation of brain microvascular endothelial cells (MVECs) greatly stimulated remyelination in the white matter infarct of the internal capsule (IC) induced by endothelin-1 injection and improved the behavioral outcome. In the present study, we examined the effect of MVEC transplantation on the infarct volume using intermittent magnetic resonance image and on the behavior of oligodendrocyte lineage cells histochemically. Our results in vivo show that MVEC transplantation reduced the infarct volume in IC and apoptotic death of oligodendrocyte precursor cells (OPCs). These results indicate that MVECs have a survival effect on OPCs, and this effect might contribute to the recovery of the white matter infarct. The conditioned-medium from cultured MVECs reduced apoptosis of cultured OPCs, while the conditioned medium from cultured fibroblasts did not show such effect. These results suggest a possibility that transplanted MVECs increased the number of OPCs through the release of humoral factors that prevent their apoptotic death. Identification of such humoral factors may lead to the new therapeutic strategy against ischemic demyelinating diseases.

  5. Transplanted microvascular endothelial cells promote oligodendrocyte precursor cell survival in ischemic demyelinating lesions.

    PubMed

    Iijima, Keiya; Kurachi, Masashi; Shibasaki, Koji; Naruse, Masae; Puentes, Sandra; Imai, Hideaki; Yoshimoto, Yuhei; Mikuni, Masahiko; Ishizaki, Yasuki

    2015-11-01

    We previously showed that transplantation of brain microvascular endothelial cells (MVECs) greatly stimulated remyelination in the white matter infarct of the internal capsule (IC) induced by endothelin-1 injection and improved the behavioral outcome. In the present study, we examined the effect of MVEC transplantation on the infarct volume using intermittent magnetic resonance image and on the behavior of oligodendrocyte lineage cells histochemically. Our results in vivo show that MVEC transplantation reduced the infarct volume in IC and apoptotic death of oligodendrocyte precursor cells (OPCs). These results indicate that MVECs have a survival effect on OPCs, and this effect might contribute to the recovery of the white matter infarct. The conditioned-medium from cultured MVECs reduced apoptosis of cultured OPCs, while the conditioned medium from cultured fibroblasts did not show such effect. These results suggest a possibility that transplanted MVECs increased the number of OPCs through the release of humoral factors that prevent their apoptotic death. Identification of such humoral factors may lead to the new therapeutic strategy against ischemic demyelinating diseases. PMID:26212499

  6. Neurogenesis and precursor cell differences in the dorsal and ventral adult canine hippocampus.

    PubMed

    Lowe, Aileen; Dalton, Marshall; Sidhu, Kuldip; Sachdev, Perminder; Reynolds, Brent; Valenzuela, Michael

    2015-04-23

    During evolution a unique anterior-posterior flexure posited the canine dentate gyrus in two distinct dorsal and ventral positions. We therefore sought to explore neurogenesis and neurogenic cell-related difference along the canine hippocampal dorsal-ventral axis. Post mortem histological analysis revealed 49.1% greater doublecortin (DCX)-positive cells and a 158.5% greater percentage of double labeled DCX-positive/neuronal nuclei (NeuN) positive cells in the dorsal subgranular zone compared to the ventral. We then show neural precursor cells isolated from fresh hippocampal tissue are capable of proliferating long term, and after differentiation, express neuronal and glial markers. Dorsal hippocampal isolates produced a 120.0% higher frequency of sphere-forming neural precursor cells compared to ventral hippocampal tissue. Histological DCX and neurosphere assay results were highly correlated. Overall, we provide the first evidence that the dorsal canine hippocampus has a markedly higher rate of adult neurogenesis than the ventral hippocampus, possibly related to a greater frequency of contributory neural precursor cells.

  7. A new precursor for the immobilization of enzymes inside sol-gel-derived hybrid silica nanocomposites containing polysaccharides.

    PubMed

    Shchipunov, Yurii A; Karpenko, Tat'yana Yu; Bakunina, Irina Yu; Burtseva, Yuliya V; Zvyagintseva, Tat'yana N

    2004-01-30

    Tetrakis(2-hydroxyethyl) orthosilicate (THEOS) introduced by Hoffmann et al. (J. Phys. Chem. B., 106 (2002) 1528) was first used to prepare hybrid nanocomposites containing various polysaccharides and immobilize enzymes in these materials. Two different types of O-glycoside hydrolyses (EC3.2.1), 1-->3-beta-D-glucanase LIV from marine mollusk Spisula sacchalinensis and alpha-D-galactosidase from marine bacterium Pseudoalteromonas sp. KMM 701, were taken for the immobilization. To reveal whether the polysaccharide inside the hybrid material influences the enzyme entrapment and functioning, negatively charged xanthan, cationic derivative of hydroxyethylcellulose and uncharged locust bean gum were examined. The mechanical properties of these nanocomposites were characterized by a dynamic rheology and their structure by a scanning electron microscopy. It was found that 1-->3-beta-D-glucanase was usually immobilized without the loss of its activity, while the alpha-D-galactosidase activity in the immobilized state depended on the polysaccharide type of material. An important point is that the amount of immobilized enzymes was small, comparable to their content in the living cells. It was shown by the scanning electron microscopy that the hybrid nanocomposites are sufficiently porous that allows the enzymatic substrates and products to diffuse from an external aqueous solution to the enzymes, whereas protein molecules were immobilized firmly and not easily washed out of the silica matrix. A sharp increase of the enzyme lifetime (more than a hundred times) was observed after the immobilization. As established, the efficient entrapment of enzymes is caused by few advantages of new precursor over the currently used TEOS and TMOS: (i) organic solvents and catalysts are not needed owing to the complete solubility of THEOS in water and the catalytic effect of polysaccharides on the sol-gel processes; (ii) the entrapment of enzymes can be performed at any pH which is suitable

  8. Age-Related Changes in Population of Stromal Precursor Cells in Hematopoietic and Lymphoid Organs.

    PubMed

    Gorskaya, Yulia F.; Latzinik, Natalia V.; Shuklina, Ekaterina U.; Nesterenko, Vladimir G.

    2000-07-01

    It is shown that the content of precursor cells of stromal tissue (CFC-F) in the hemopoietic and lymphoid organs of SAMP (rapidly-ageing mice) and SAMR mice (mice with a normal ageing rate) decreases as the animals grow older. However the decrease in the content of CFC-F in SAMP mice begins substantially earlier - in the age group of 9-11 months, while in the SAMR mice - only in the age group of 16-19 months. It was found that the age reduction of the number to an equal degree relates to the whole population of CFC-F, in particular both the fraction of weakly-linked CFC-F, which is isolated by means of mechanical disaggregation of the tissue, and the fraction which may only be isolated using trypsin. It is shown that the concentration of inducible osteogenic precursor cells (IOPC) in the spleen of guinea pigs does not change with age, but their content in that organ in old animals (2-3 years old) drops by two times. It was found that in elderly animals the mass of the ectopic osseous tissue, formed by the implantation of an osteoinductor (autologous epithelium of the urinary bladder) in a system open for entrance of cells, decreases by two times. After curettage of the medullary cavity of guinea pig tibia (i.e. under conditions of an increased demand for osteogenic cells) the mass of induced ectopic osseous tissue decreases by 4 times, which indicates to the possible functional relationship between the pool of determined and inducible osteogenic precursor cells. On the whole, the obtained data show that during ageing there is a reduction in the number of stromal precursor cells (CFC-F and IOPC), which form a specific microenvironment for hemopoietic and lymphoid organs, which is important to understand the role of these cells in the development of age pathologies, in particular senile osteoporosis. PMID:12687170

  9. Embryonic Nkx2.1-expressing neural precursor cells contribute to the regional heterogeneity of adult V-SVZ neural stem cells.

    PubMed

    Delgado, Ryan N; Lim, Daniel A

    2015-11-15

    The adult ventricular-subventricular zone (V-SVZ) of the lateral ventricle produces several subtypes of olfactory bulb (OB) interneurons throughout life. Neural stem cells (NSCs) within this zone are heterogeneous, with NSCs located in different regions of the lateral ventricle wall generating distinct OB interneuron subtypes. The regional expression of specific transcription factors appears to correspond to such geographical differences in the developmental potential of V-SVZ NSCs. However, the transcriptional definition and developmental origin of V-SVZ NSC regional identity are not well understood. In this study, we found that a population of NSCs in the ventral region of the V-SVZ expresses the transcription factor Nkx2.1 and is derived from Nkx2.1-expressing (Nkx2.1+) embryonic precursors. To follow the fate of Nkx2.1+ cells and their progeny in vivo, we used mice with an Nkx2.1-CreER "knock-in" allele. Nkx2.1+ V-SVZ NSCs labeled in adult mice generated interneurons for the deep granule cell layer of the OB. Embryonic brain Nkx2.1+ precursors labeled at embryonic day 12.5 gave rise to Nkx2.1+ NSCs of the ventral V-SVZ in postnatal and adult mice. Thus, embryonic Nkx2.1+ neural precursors give rise to a population of Nkx2.1+ NSCs in the ventral V-SVZ where they contribute to the regional heterogeneity of V-SVZ NSCs.

  10. Vitreous humor and albumin augment the proliferation of cultured retinal precursor cells.

    PubMed

    Yang, Jing; Klassen, Henry; Pries, Mette; Wang, Wei; Nissen, Mogens H

    2009-02-01

    Intravitreal injection is an important delivery route for studies involving the transplantation of various types of precursor cells to the retina; however, the effect on these cells of exposure to the vitreous microenvironment has not been specifically investigated. Here vitreous humor was evaluated for the potential to influence the proliferation of rat retinal precursor cells in vitro. Cells were isolated at embryonic day 19 and plated in standard proliferation medium in the presence or absence of fluid expressed from porcine vitreous humor. Cellular proliferation at different concentrations of vitreous fluid supplementation was quantified by using a (3)H-thymidine incorporation assay. Active components of vitreous fluid were partially characterized by gel filtration chromatography (GFC) and UV spectral analysis. The effect of each vitreous fraction on proliferation was determined as well. Results showed that addition of 20% vitreous fluid to primary rat retinal cultures significantly increased (3)H-thymidine incorporation compared with growth medium without vitreous supplementation. A vitreous fraction showing growth-promoting activity was localized to a molecular mass range <1000 Da, consistent with ascorbic acid. Ascorbic acid was confirmed in vitreous fluid by UV spectral analysis. Growth-augmenting activity was present in higher molecular mass vitreous fractions, consistent with protein components. Albumin, the major protein in vitreous fluid, was found to augment proliferation. Because vitreous-associated augmentation of retinal precursor proliferation remains an epidermal growth factor-dependent phenomenon, the proliferative status of transplanted cells in the vitreous cavity is likely determined by a combination of factors. PMID:18803297

  11. Putative prethymic T cell precursors within the early human embryonic liver: a molecular and functional analysis

    PubMed Central

    1993-01-01

    Hematopoietic cells present in the liver in early human fetal life were characterized by phenotypic analysis using a broad panel of monoclonal antibodies. Expression of very late antigen 4 and leukocyte function- associated antigen 3 cell adhesion receptors and 4F2 cell activation molecules was found in all fetal liver hematopoietic cells before acquisition of T cell-, B cell-, or myeloid-specific surface markers, and before the time of intrathymic colonization. Molecular studies showed that expression of the interleukin 2 receptor beta (IL-2R beta) also occurred in the embryonic liver at this early ontogenic stage. In contrast, no expression of IL-2R alpha or IL-2 transcripts was found in fetal liver cells, whereas transcription of the IL-4 gene was detected in a small fetal liver cell subset. Putative T cell precursors were identified among the hematopoietic fetal liver cells by the expression of genes encoding the gamma, delta, epsilon, and zeta invariant chains of the CD3-T cell receptor (TCR) complex. However, no transcription of the polymorphic alpha and beta TCR genes was detected. Functional in vitro assays further demonstrated that fetal liver hematopoietic cells from those early embryos were capable of proliferating in response to T cell growth factors, including IL-4 and IL-2. However, whereas IL-4- induced proliferation paralleled the appearance in vitro of CD45+CD7- CD4dull cells expressing the CD14 myeloid antigen, as well as of CD34+ primitive hematopoietic progenitors, differentiation into CD45+CD7+CD8+CD3- immature T cells was observed when using IL-2. Moreover, coculture with thymic epithelial cell monolayers provided additional evidence that early fetal liver hematopoietic cells may include very primitive T cell precursors, which were able to differentiate in vitro into TCR alpha/beta+ mature T cells. Therefore, our results indicate that, after triggering of the T cell-specific maturation program in primitive fetal liver hematopoietic progenitors

  12. Waste polyvinylchloride derived pitch as a precursor to develop carbon fibers and activated carbon fibers.

    PubMed

    Qiao, W M; Yoon, S H; Mochida, I; Yang, J H

    2007-01-01

    Polyvinylchloride (PVC) was successfully recycled through the solvent extraction from waste pipe with an extraction yield of ca. 86%. The extracted PVC was pyrolyzed by a two-stage process (260 and 410 degrees C) to obtain free-chlorine PVC based pitch through an effective removal of chlorine from PVC during the heat-treatment. As-prepared pitch (softening point: 220 degrees C) was spun, stabilized, carbonized into carbon fibers (CFs), and further activated into activated carbon fibers (ACFs) in a flow of CO2. As-prepared CFs show comparable mechanical properties to commercial CFs, whose maximum tensile strength and modulus are 862 MPa and 62 GPa, respectively. The resultant ACFs exhibit a high surface area of 1200 m2/g, narrow pore size distribution and a low oxygen content of 3%. The study provides an effective insight to recycle PVC from waste PVC and develop a carbon precursor for high performance carbon materials such as CFs and ACFs. PMID:17157493

  13. In vitro transdifferentiation of human cultured CD34+ stem cells into oligodendrocyte precursors using thyroid hormones.

    PubMed

    Venkatesh, Katari; Srikanth, Lokanathan; Vengamma, Bhuma; Chandrasekhar, Chodimella; Prasad, Bodapati Chandra Mouleshwara; Sarma, Potukuchi Venkata Gurunadha Krishna

    2015-02-19

    The extent of myelination on the axon promotes transmission of impulses in the neural network, any disturbances in this process results in the neurodegenerative condition. Transplantation of oligodendrocyte precursors that supports in the regeneration of axons through myelination is an important step in the restoration of damaged neurons. Therefore, in the present study, the differentiation of human CD34+ stem cells into oligodendrocytes was carried out. The pure human CD34+ culture developed from the stem cells obtained from a peripheral blood of a donor were subjected to oligodendrocyte differentiation medium (ODM). The ODM at a concentration of 40ng/ml thyroxine, 40ng/ml 3,3',5-tri-iodo-thyronine showed distinct morphological changes from day 6 to 9 with cells exhibiting conspicuous stellate morphology and extensive foot processes. The real-time PCR analysis showed prominent expression of Olig2, CNPase, PDGFRα and PLP1/DM20 in the differentiated cells confirming the formed cells are oligodendrocyte precursors. The expression of these genes increased from days 6 to 9 corresponding to the morphological changes observed with almost no expression of GFAP+ cells. The distinct CNPase activity was observed in these differentiated cells compared to normal CD34+ stem cells correlating with results of real-time PCR conclusively explains the development of oligodendrocytes from human CD34+ stem cells.

  14. Multiple biological activities for two peptides derived from the nerve growth factor precursor

    SciTech Connect

    Dicou, Eleni . E-mail: dicou@ipmc.cnrs.fr

    2006-09-01

    ProNGF can be cleaved proteolytically at dibasic residues and liberates two other peptides beside NGF, LIP1 a 29 amino acid (aa) peptide and LIP2 a 38 aa peptide. These peptides were found present in the rat intestine and shown to induce rapid phosphorylation of the Trk receptor in cell lines. The present study describes several novel biological properties for these peptides. They exert an anti-proliferative effect on the mitogenic activity of estrogen and IGF in MCF-7 cells. They protect against in vivo induction of excitotoxic lesions by the glutamatergic analogue ibotenate injected into the developing mouse brain and against in vitro NMDA-induced cell death in primary neuronal cultures. They bind to murine microglial cells and induce phosphorylation of Akt. These results suggest a role for LIP1 and LIP2 in cell survival.

  15. Are iridoids in leaf beetle larvae synthesized de novo or derived from plant precursors? A methodological approach.

    PubMed

    Søe, Astrid R B; Bartram, Stefan; Gatto, Nathalie; Boland, Wilhelm

    2004-09-01

    Iridoids, belonging to a group of cyclopentanoid monoterpenoids, are secreted by many species of leaf beetles as a defense against predators. Using chemically modified precursors of iridoid biosynthesis, it has been shown that some leaf beetle larvae can synthesize these iridoids de novo as well as sequester plant-produced molecules. Stable isotope techniques can provide useful methods for studying terpenoid biosynthesis without disturbing the natural conditions much. Two terpenoid biosynthesis pathways (mevalonic acid (MVA) pathway and methylerythritol-4-phosphate (MEP) pathway) may lead to different delta13C signatures of the products. Our results from natural abundance 13C and 13C-labelled iridoid precursors in Gastrophysa viridula and Phaedon cochleariae suggested that the two leaf beetle species use only de novo synthesis of their defensive iridoids. We observed that the isotope signature of the leaf-beetle-produced iridoids (via the MVA pathway) resembled that of the MEP-derived monoterpenoids from plants. Owing to this close similarity in the natural 13C abundances in the plant and insect compounds, a determination of iridoid-origin in leaf beetle secretion may only be possible by use of isotopically labelled compounds.

  16. Brain-derived neurotrophic factor (BDNF) and its precursor (proBDNF) in genetically defined fear-induced aggression.

    PubMed

    Ilchibaeva, Tatiana V; Kondaurova, Elena M; Tsybko, Anton S; Kozhemyakina, Rimma V; Popova, Nina K; Naumenko, Vladimir S

    2015-09-01

    The brain-derived neurotrophic factor (BDNF), its precursor (proBDNF) and BDNF mRNA levels were studied in the brain of wild rats selectively bred for more than 70 generations for either high level or for the lack of affective aggressiveness towards man. Significant increase of BDNF mRNA level in the frontal cortex and increase of BDNF level in the hippocampus of aggressive rats was revealed. In the midbrain and hippocampus of aggressive rats proBDNF level was increased, whereas BDNF/proBDNF ratio was reduced suggesting the prevalence and increased influence of proBDNF in highly aggressive rats. In the frontal cortex, proBDNF level in aggressive rats was decreased. Thus, considerable structure-specific differences in BDNF and proBDNF levels as well as in BDNF gene expression between highly aggressive and nonaggressive rats were shown. The data suggested the implication of BDNF and its precursor proBDNF in the mechanism of aggressiveness and in the creation of either aggressive or nonaggressive phenotype.

  17. Polysiloxanes derived from the controlled hydrolysis of tetraethoxysilane as precursors to silica for use in ceramic processing

    NASA Technical Reports Server (NTRS)

    Philipp, Warren H.

    1990-01-01

    Synthesis, properties, and potential applications in ceramic processing for two polysiloxane silica precursors derived from the controlled hydrolysis of tetraethoxysilane (TEOS) are presented. The higher molecular weight TEOS-A is a thick adhesive liquid of viscosity 8000 to 12,000 c.p. having a SiO2 char yield of about 55 percent. The lower molecular weight TEOS-B is a more fluid liquid of viscosity 150 to 200 c.p. having a SiO2 char yield of about 52 percent. The acid catalyzed hydrolysis of TEOS to hydrated silica gel goes through a series of polysiloxane intermediates. The rate of this transition increases with the quantity of water added to the TEOS; thus, for ease of polymer isolation, the amount of water added must be carefully determined so as to produce the desired polymer in a reasonable time. The water to TEOS mole ratio falls in the narrow range of 1.05 for TEOS-A and 0.99 for TEOS-B. Further polymerization or gelation is prevented by storing at -5 C in a freezer. Both polysiloxanes thermoset to a glassy solid at 115 C. The liquid polymers are organic in nature in that they are miscible with toluene and ethanol, slightly souble in heptane, but immiscible with water. For both polymers, results on viscosity versus time are given at several temperatures and water additions. Based on these results, some examples of practical utilization of the precursors for ceramic fabrication are given.

  18. Adult neurogenesis and cellular brain repair with neural progenitors, precursors and stem cells

    PubMed Central

    Shivraj Sohur, U; Emsley, Jason G; Mitchell, Bartley D; Macklis, Jeffrey D

    2006-01-01

    Recent work in neuroscience has shown that the adult central nervous system (CNS) contains neural progenitors, precursors and stem cells that are capable of generating new neurons, astrocytes and oligodendrocytes. While challenging the previous dogma that no new neurons are born in the adult mammalian CNS, these findings bring with them the future possibilities for development of novel neural repair strategies. The purpose of this review is to present the current knowledge about constitutively occurring adult mammalian neurogenesis, highlight the critical differences between ‘neurogenic’ and ‘non-neurogenic’ regions in the adult brain, and describe the cardinal features of two well-described neurogenic regions—the subventricular zone/olfactory bulb system and the dentate gyrus of the hippocampus. We also provide an overview of presently used models for studying neural precursors in vitro, mention some precursor transplantation models and emphasize that, in this rapidly growing field of neuroscience, one must be cautious with respect to a variety of methodological considerations for studying neural precursor cells both in vitro and in vivo. The possibility of repairing neural circuitry by manipulating neurogenesis is an intriguing one, and, therefore, we also review recent efforts to understand the conditions under which neurogenesis can be induced in non-neurogenic regions of the adult CNS. This work aims towards molecular and cellular manipulation of endogenous neural precursors in situ, without transplantation. We conclude this review with a discussion of what might be the function of newly generated neurons in the adult brain, and provide a summary of present thinking about the consequences of disturbed adult neurogenesis and the reaction of neurogenic regions to disease. PMID:16939970

  19. The mononuclear phagocyte system: a new classification of macrophages, monocytes, and their precursor cells*

    PubMed Central

    van Furth, R.; Cohn, Z. A.; Hirsch, J. G.; Humphrey, J. H.; Spector, W. G.; Langevoort, H. L.

    1972-01-01

    There have been many attempts in the past to classify phagocytic mononuclear cells and to define the cell system they are considered to form—among these being the “macrophage system” of Metchnikoff, the “reticulo-endothelial system” of Aschoff, and the “reticulo-histiocyte system” proposed by Volterra and reintroduced by Thomas. None of these is entirely adequate in the light of present knowledge. In 1969, therefore, a group of workers proposed a new classification of all highly phagocytic mononuclear cells and their precursors in what they termed the “mononuclear phagocyte system”. This system includes the promonocytes and their precursors in the bone marrow, the monocytes in the peripheral blood, and the macrophages in the tissues. Subsequent consultation with numerous other specialists throughout the world led to a certain number of changes in this classification, which is now proposed in revised form. Inclusion of cells in the “mononuclear phagocyte system” is based on similarities in the morphology, function, origin, and kinetics of the phagocytes. By these criteria reticular cells, dendritic cells, endothelial cells, and fibroblasts (fibrocytes) are excluded. The proponents point out that as new knowledge is acquired modifications may have to be made, certain cells being added to or removed from the new classification. PMID:4538544

  20. New melanogenesis and photobiological processes in activation and proliferation of precursor melanocytes after UV-exposure: ultrastructural differentiation of precursor melanocytes from Langerhans cells

    SciTech Connect

    Jimbow, K.; Uesugi, T.

    1982-02-01

    Photobiological processes involving new melanogenesis after exposure to ultraviolet (UV) light were experimentally studied in C57 black adult mice by histochemistry, cytochemistry, and autoradiography. The trunk and the plantar region of the foot, where no functioning melanocytes were present before exposure, were exposed to UV-A for 14 consecutive days. Both regions revealed a basically similar pattern for new melanogenesis which involved an activation of precursor melanocytes. Essentially all of ''indeterminate'' cells appeared to be precursor melanocytes, the fine structure of which could be differentiated even from poorly developed Langerhans cells. New melanogenesis was manifested by 4 stages of cellular and subcellular reactions of these cells as indicated by histochemistry of dihydroxyphenylalanine (dopa) and autoradiography of thymidine incorporation: (a) an initial lag in the activation of precursor melanocytes with development of Golgi cisternae and rough endoplasmic reticulum followed by formation of unmelanized melanosomes (day 0 to 2); (b) synthesis of active tyrosinase accumulated in Golgi cisternae and vesicles with subsequent formation of melanized melanosomes in these cells (day 3 to 5); (c) mitotic proliferation of many of these activated cells, followed by an exponential increase of new melanocytes (day 6 to 7); and (d) melanosome transfer with differentiation of 10 nm filaments and arborization of dendrites, but without any significant change in the melanocyte population (day 8 to 14). The melanosome transfer was, however, not obvious until after 7 days of exposure. The size of newly synthesized melanosomes was similar to that of tail skin where native melanocytes were present before exposure.

  1. Sсandium(III) Beta-diketonate Derivatives as Precursors for Oxide Film Deposition by CVD

    NASA Astrophysics Data System (ADS)

    Zherikova, Kseniya V.; Zelenina, Ludmila N.; Chusova, Tamara P.; Morozova, Natalia B.; Trubin, Sergey V.; Vikulova, Eugeniia S.

    Complexes with acetylacetone Sc(acac)3, dipivaloylmethane Sc(thd)3, 2,2,6,6-tetramethyl-4-fluoro-3,5-heptanedione Sc(tfhd)3, pivaloyltrifluoroacetone Sc(ptac)3, trifluoroacetylacetone Sc(tfac)3, and hexafluoroacetylacetone Sc(hfac)3 were synthesized, purified and identified by elemental analysis, m.p., IR and NMR spectroscopy, and mass spectrometry. The thermal behaviour of the synthesized compounds in the solid state was investigated by the method of difference-scanning calorimetry in vacuum. As a result the thermodynamic characteristics of the melting processes were determined. The temperature dependences of saturated and unsaturated vapour pressure of complexes under study were measured by static method with membrane-gauge manometers. The average molecular weight of gas calculated from the experimental data on unsaturated vapours using ideal gas law was close to the molecular weight of monomer for all investigated compounds. Decomposition temperatures of compounds under study were defined as the temperature above that pressure changes became irreversible. The information about melting and decomposition processes were taken into account at measuring saturated vapour pressure of complexes. The row of volatility Sc(hfac)3 > Sc(ptac)3 > Sc(tfac)3 > Sc(thd)3 ≥ Sc(tfhd)3 > Sc(acac)3 was determined from the p-T dependences obtained. Above information about thermal behaviour of complexes enabled one to use it as a guide for CVD experiments aimed at achieving oxide films with high optical properties. Precursor chosen for film deposition was Sc(thd)3 The Sc2O3 film deposition conditions were following: the gas-carrier rate 1 l/h, He gas-reagent rate 10 l/h, total pressure 10 Torr, evaporator temperature 105-110̊С, substrate temperature 450- 650̊С, substrate Si(100). Ellipsometry was applied to characterize the film thickness and refractive index. The morphology and the composition of the films were determined with XPS and SEM.

  2. Mitotic position and morphology of committed precursor cells in the zebrafish retina adapt to architectural changes upon tissue maturation.

    PubMed

    Weber, Isabell P; Ramos, Ana P; Strzyz, Paulina J; Leung, Louis C; Young, Stephen; Norden, Caren

    2014-04-24

    The development of complex neuronal tissues like the vertebrate retina requires the tight orchestration of cell proliferation and differentiation. Although the complexity of transcription factors and signaling pathways involved in retinogenesis has been studied extensively, the influence of tissue maturation itself has not yet been systematically explored. Here, we present a quantitative analysis of mitotic events during zebrafish retinogenesis that reveals three types of committed neuronal precursors in addition to the previously known apical progenitors. The identified precursor types present at distinct developmental stages and exhibit different mitotic location (apical versus nonapical), cleavage plane orientation, and morphology. Interestingly, the emergence of nonapically dividing committed bipolar cell precursors can be linked to an increase in apical crowding caused by the developing photoreceptor cell layer. Furthermore, genetic interference with neuronal subset specification induces ectopic divisions of committed precursors, underlining the finding that progressing morphogenesis can effect precursor division position.

  3. Human Haemato-Endothelial Precursors: Cord Blood CD34+ Cells Produce Haemogenic Endothelium

    PubMed Central

    Pelosi, Elvira; Castelli, Germana; Martin-Padura, Ines; Bordoni, Veronica; Santoro, Simona; Conigliaro, Alice; Cerio, Anna Maria; De Santis Puzzonia, Marco; Marighetti, Paola; Biffoni, Mauro; Alonzi, Tonino; Amicone, Laura; Alcalay, Myriam; Bertolini, Francesco; Testa, Ugo; Tripodi, Marco

    2012-01-01

    Embryologic and genetic evidence suggest a common origin of haematopoietic and endothelial lineages. In the murine embryo, recent studies indicate the presence of haemogenic endothelium and of a common haemato-endothelial precursor, the haemangioblast. Conversely, so far, little evidence supports the presence of haemogenic endothelium and haemangioblasts in later stages of development. Our studies indicate that human cord blood haematopoietic progenitors (CD34+45+144−), triggered by murine hepatocyte conditioned medium, differentiate into adherent proliferating endothelial precursors (CD144+CD105+CD146+CD31+CD45−) capable of functioning as haemogenic endothelium. These cells, proven to give rise to functional vasculature in vivo, if further instructed by haematopoietic growth factors, first switch to transitional CD144+45+ cells and then to haematopoietic cells. These results highlight the plasticity of haemato-endhothelial precursors in human post-natal life. Furthermore, these studies may provide highly enriched populations of human post-fetal haemogenic endothelium, paving the way for innovative projects at a basic and possibly clinical level. PMID:23226561

  4. Susceptibility of human embryonic stem cell-derived neural cells to Japanese encephalitis virus infection.

    PubMed

    Shen, Shih-Cheng; Shen, Ching-I; Lin, Ho; Chen, Chun-Jung; Chang, Chia-Yu; Chen, Sheng-Mei; Lee, Hsiu-Chin; Lai, Ping-Shan; Su, Hong-Lin

    2014-01-01

    Pluripotent human embryonic stem cells (hESCs) can be efficiently directed to become immature neuroepithelial precursor cells (NPCs) and functional mature neural cells, including neurotransmitter-secreting neurons and glial cells. Investigating the susceptibility of these hESCs-derived neural cells to neurotrophic viruses, such as Japanese encephalitis virus (JEV), provides insight into the viral cell tropism in the infected human brain. We demonstrate that hESC-derived NPCs are highly vulnerable to JEV infection at a low multiplicity of infection (MOI). In addition, glial fibrillary acid protein (GFAP)-expressing glial cells are also susceptible to JEV infection. In contrast, only a few mature neurons were infected at MOI 10 or higher on the third day post-infection. In addition, functional neurotransmitter-secreting neurons are also resistant to JEV infection at high MOI. Moreover, we discover that vimentin intermediate filament, reported as a putative neurovirulent JEV receptor, is highly expressed in NPCs and glial cells, but not mature neurons. These results indicate that the expression of vimentin in neural cells correlates to the cell tropism of JEV. Finally, we further demonstrate that membranous vimentin is necessary for the susceptibility of hESC-derived NPCs to JEV infection.

  5. Zinc Deficiency Induces Apoptosis via Mitochondrial p53- and Caspase-Dependent Pathways in Human Neuronal Precursor Cells

    ERIC Educational Resources Information Center

    Seth, Rohit; Corniola, Rikki S.; Gower-Winter, Shannon D.; Morgan, Thomas J., Jr.; Bishop, Brian; Levenson, Cathy W.

    2015-01-01

    Previous studies have shown that zinc deficiency leads to apoptosis of neuronal precursor cells in vivo and in vitro. In addition to the role of p53 as a nuclear transcription factor in zinc deficient cultured human neuronal precursors (NT-2), we have now identified the translocation of phosphorylated p53 to the mitochondria and p53-dependent…

  6. Epidermal growth factor precursor in mouse lactating mammary gland alveolar cells

    SciTech Connect

    Brown, C.F.; Teng, C.T.; Pentecost, B.T.; DiAugustine, R.P. )

    1989-07-01

    Previous studies have demonstrated that high levels of epidermal growth factor (EGF) occur in human and rodent milk and that oral administration of this polypeptide stimulates rodent gastrointestinal development. It is not known whether EGF in milk originates from cells of the lactating mammary gland or is sequestered from an extramammary source. In the present study, prepro-EGF mRNA (approximately 4.7 kilobases) was detected in the CD-1 mouse mammary gland throughout the period of lactation; by comparison, negligible levels of this EGF transcript were found in the gland during pregnancy. Low levels of EGF immunoreactivity (4-5 ng/g wet wt tissue) were extracted from lactating (day 18) mammary glands with dilute acetic acid. Immunolocalization was evident with antisera to either EGF or two other regions of the EGF precursor in essentially all alveolar cells of the lactating gland. The most prominent staining with antiserum to EGF was observed along the luminal borders of cells; this pattern of cellular staining required proteolytic pretreatment of tissue sections. Western blot analyses of cell membranes isolated from the day 16 lactating mammary gland revealed an EGF-immunoreactive band at about 145K, which was equivalent in size to the EGF precursor found in mouse kidney cell membranes. Despite these findings, labeling of lactating mammary gland mince with L-(35S)methionine and cysteine for up to 4 h did not reveal any specific bands in immunoprecipitates. These cumulative findings suggest that the precursor form of EGF occurs in alveolar cells of lactating mammary gland and that this protein is translocated to the cell membrane.

  7. The multi-potentiality of skin-derived stem cells in pigs.

    PubMed

    Zhao, Ming-Tao; Prather, R S

    2011-05-01

    Multipotent skin-derived stem cells represent neural-crest derived precursors which have neural and mesodermal potency and can generate neurons, glias, smooth muscle cells, and adipocytes. Transcriptional profiling studies show that both intrinsic programs and extrinsic signaling pathways mediate their neural and mesodermal potency. In addition, recent progress implies that skin-derived stem cells may have a broader developmental potency than previously expected, of which is their potential to generate germline cells in vitro. In this review, we discuss the transcriptional profiling of multipotency and neural crest-derived characteristics of skin-derived stem cells, and argue for their potential germ-line competency in the view of nuclear and cellular reprogramming.

  8. An 8% ?-based solar cell formed from an electrodeposited precursor film

    NASA Astrophysics Data System (ADS)

    Fernandez, A. M.; Sebastian, P. J.; Bhattacharya, R. N.; Noufi, R.; Contreras, M.; Hermann, A. M.

    1996-06-01

    An 8% 0268-1242/11/6/020/img9 (CIS) based solar cell was developed using an electrodeposited CIS precursor film subjected to post-deposition heat treatment at 0268-1242/11/6/020/img10 in Se and In atmospheres. The cell structure consisted of 0268-1242/11/6/020/img11. The cell parameters such as 0268-1242/11/6/020/img12, 0268-1242/11/6/020/img13, FF = 62.3% and 0268-1242/11/6/020/img14 were determined from I - V characterization of the annealed cell at a light intensity of 0268-1242/11/6/020/img15. The cell parameters improved after annealing in air at 0268-1242/11/6/020/img16. A carrier density of 0268-1242/11/6/020/img17 was obtained from the C - V characterization of the cell.

  9. Aqueous Ln(III) Luminescence Agents Derived from a Tasty Precursor

    SciTech Connect

    Jocher, C.J.; Moore, E.G.; Pierce, J.D.; Raymond, K.N.

    2008-06-02

    The synthesis, aqueous stability and photophysical properties are reported for a novel tetradentate ligand derived from maltol, a commonly used flavor enhancer. In aqueous solution, this chelate forms stable complexes with Ln(III) cations, and sensitized emission was observed from Eu(III), Yb(III), and Nd(III). A comparison with recently reported and structurally analogous ligands reveals a slightly higher basicity but lower complex stability with Eu(III) [pEu = 14.7 (1)]. A very poor metal centered quantum yield with Eu(III) was observed ({Phi}{sub tot} = 0.04%), which can be rationalized by the similar energy of the ligand triplet state and the Eu(III) {sup 5}D{sub 0} emissive level. Instead, sensitized emission from the Yb(III) and Nd(III) cations was observed, which emit in the Near Infra-Red (NIR).

  10. In vitro culture and characterization of enteric neural precursor cells from human gut biopsy specimens using polymer scaffold

    PubMed Central

    Krishnamohan, Janardhanam; Senthilnathan, Venugopal S; Vaikundaraman, Tirunelveli Muthiah; Srinivasan, Thangavelu; Balamurugan, Madasamy; Iwasaki, Masaru; Preethy, Senthilkumar; Abraham, Samuel JK

    2013-01-01

    Summary In vitro expansion and characterization of neural precursor cells from human gut biopsy specimens with or without Hirschsprung's disease using a novel thermoreversible gelation polymer (TGP) is reported aiming at a possible future treatment. Gut biopsy samples were obtained from five patients undergoing gut resection for Hirschsprung's disease (n = 1) or gastrointestinal disorders (n = 4). Cells isolated from the smooth muscle layer and the myenteric plexus were cultured in two groups for 18 to 28 days; Group I: conventional culture as earlier reported and Group II: using TGP scaffold. Neurosphere like bodies (NLBs) were observed in the cultures between 8th to 12th day and H & E staining was positive for neural cells in both groups including aganglionic gut portion from the Hirschsprung's disease patient. Immunohistochemistry using S-100 and neuron specific enolase (NSE) was positive in both groups but the TGP group (Group II) showed more number of cells with intense cytoplasmic granular positivity for both NSE and S-100 compared to Group I. TGP supports the in vitro expansion of human gut derived neuronal cells with seemingly better quality NLBs. Animal Studies can be tried to validate their functional outcome by transplanting the NLBs with TGP scaffolds to see whether this can enhance the outcome of cell based therapies for Hirschsprung's disease. PMID:25343111

  11. Id2 Mediates Oligodendrocyte Precursor Cell Maturation Arrest and Is Tumorigenic in a PDGF-Rich Microenvironment

    PubMed Central

    Havrda, Matthew C.; Paolella, Brenton R.; Ran, Cong; Jering, Karola S.; Wray, Christina M.; Sullivan, Jaclyn M.; Nailor, Audrey; Hitoshi, Yasuyuki; Israel, Mark A.

    2016-01-01

    Maturation defects occurring in adult tissue progenitor cells have the potential to contribute to tumor development; however, there is little experimental evidence implicating this cellular mechanism in the pathogenesis of solid tumors. Inhibitor of DNA-binding 2 (Id2) is a transcription factor known to regulate the proliferation and differentiation of primitive stem and progenitor cells. Id2 is derepressed in adult tissue neural stem cells (NSC) lacking the tumor suppressor Tp53 and modulates their proliferation. Constitutive expression of Id2 in differentiating NSCs resulted in maturation-resistant oligodendroglial precursor cells (OPC), a cell population implicated in the initiation of glioma. Mechanistically, Id2 overexpression was associated with inhibition of the Notch effector Hey1, a bHLH transcription factor that we here characterize as a direct transcriptional repressor of the oligodendroglial lineage determinant Olig2. Orthotopic inoculation of NSCs with enhanced Id2 expression into brains of mice engineered to express platelet-derived growth factor in the central nervous system resulted in glioma. These data implicate a mechanism of altered NSC differentiation in glioma development and characterize a novel mouse model that reflects key characteristics of the recently described proneural subtype of glioblastoma multiforme. Such findings support the emerging concept that the cellular and molecular characteristics of tumor cells are linked to the transformation of distinct subsets of adult tissue progenitors. PMID:24425046

  12. Neurodegenerative mechanisms in Alzheimer disease. A role for oxidative damage in amyloid beta protein precursor-mediated cell death.

    PubMed

    Sopher, B L; Fukuchi, K; Kavanagh, T J; Furlong, C E; Martin, G M

    1996-01-01

    We have established a stably transformed human neuroblastoma cell line (MC65) that conditionally expresses a C-terminal derivative of the amyloid beta protein precursor (beta PP) termed S beta C (a fusion protein composed of the amino-17 and carboxyl-99 residues of beta PP). Conditional expression of S beta C (mediated by the withdrawal of tetracycline from the culture medium) induces pronounced nuclear DNA fragmentation and cytotoxicity in this cell line. These effects are enhanced by hyperoxygen and suppressed by hypooxygen and antioxidants. This cell line is relatively insensitive to the extracellular application of amyloid beta 25-35, and coculture experiments suggest that this cytotoxicity is mediated by an intracellular process. These findings suggest that the overexpression of the C-terminal domain of beta PP can disrupt normal cellular processes in these cells in such a way as to induce a directed (deoxyribonuclease-mediated) mechanism of cell death. This process appears to be modulated and/or mediated by a reactive oxygen specie(s) (ROS). Consistent with a role for ROS in the process of S beta C-mediated toxicity, we have found that the MC65 cell line is hypersensitive to oxidative stress and that it is this sensitivity that appears (at least in part) to underlie its susceptibility to S beta C.

  13. Transgenic expression of cyclin D1 in thymic epithelial precursors promotes epithelial and T cell development.

    PubMed

    Klug, D B; Crouch, E; Carter, C; Coghlan, L; Conti, C J; Richie, E R

    2000-02-15

    We previously reported that precursors within the keratin (K) 8+5+ thymic epithelial cell (TEC) subset generate the major cortical K8+5- TEC population in a process dependent on T lineage commitment. This report demonstrates that expression of a cyclin D1 transgene in K8+5+ TECs expands this subset and promotes TEC and thymocyte development. Cyclin D1 transgene expression is not sufficient to induce TEC differentiation in the absence of T lineage-committed thymocytes because TECs from both hCD3epsilon transgenic and hCD3epsilon/cyclin D1 double transgenic mice remain blocked at the K8+5+ maturation stage. However, enforced cyclin D1 expression does expand the developmental window during which K8+5+ cells can differentiate in response to normal hemopoietic precursors. Thus, enhancement of thymic function may be achieved by manipulating the growth and/or survival of TEC precursors within the K8+5+ subset.

  14. Antiadipogenic properties of retinol in primary cultured differentiating human adipocyte precursor cells.

    PubMed

    Garcia, E; Lacasa, D; Agli, B; Giudicelli, Y; Castelli, D

    2000-04-01

    The aim of this study was to investigate the effect of retinol on the human adipose conversion process using primary cultured human adipocyte precursor cells. When these cells were seeded in a medium containing retinol (concentrations ranging from 3.5 nM to 3.5 muM), cell proliferation was slightly inhibited by high concentrations of retinol, as demonstrated by cell counting and [(3)H]-thymidine incorporation. Moreover, the differentiation capacities of these cells were markedly and dose-dependently inhibited by retinol, as shown by the reduced expression of the lipogenic enzyme glycerol-3-phosphate dehydrogenase and by microscopic morphological analysis. These results strongly suggest that retinol, by inhibiting the ability of human preadipocytes to convert into mature adipocytes, could be of potential interest in the prevention of human adipose tissue development in general and of cellulitis in particular. PMID:18503465

  15. Synergic Effect between Adsorption and Photocatalysis of Metal-Free g-C3N4 Derived from Different Precursors

    PubMed Central

    Xu, Huan-Yan; Wu, Li-Cheng; Zhao, Hang; Jin, Li-Guo; Qi, Shu-Yan

    2015-01-01

    Graphitic carbon nitride (g-C3N4) used in this work was obtained by heating dicyandiamide and melamine, respectively, at different temperatures. The differences of g-C3N4 derived from different precursors in phase composition, functional group, surface morphology, microstructure, surface property, band gap and specific surface area were investigated by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, UV-visible diffuse reflection spectroscopy and BET surface area analyzer, respectively. The photocatalytic discoloration of an active cationic dye, Methylene Blue (MB) under visible-light irradiation indicated that g-C3N4 derived from melamine at 500°C (CN-M500) had higher adsorption capacity and better photocatalytic activity than that from dicyandiamide at 500°C (CN-D500), which was attributed to the larger surface area of CN-M500. MB discoloration ratio over CN-M500 was affected by initial MB concentration and photocatalyst dosage. After 120 min reaction time, the blue color of MB solution disappeared completely. Subsequently, based on the measurement of the surface Zeta potentials of CN-M500 at different pHs, an active anionic dye, Methyl Orange (MO) was selected as the contrastive target pollutant with MB to reveal the synergic effect between adsorption and photocatalysis. Finally, the photocatalytic mechanism was discussed. PMID:26565712

  16. Long Term Liver Engraftment of Functional Hepatocytes Obtained from Germline Cell-Derived Pluripotent Stem Cells

    PubMed Central

    Fagoonee, Sharmila; Famulari, Elvira Smeralda; Silengo, Lorenzo; Tolosano, Emanuela; Altruda, Fiorella

    2015-01-01

    One of the major hurdles in liver gene and cell therapy is availability of ex vivo-expanded hepatocytes. Pluripotent stem cells are an attractive alternative. Here, we show that hepatocyte precursors can be isolated from male germline cell-derived pluripotent stem cells (GPSCs) using the hepatoblast marker, Liv2, and induced to differentiate into hepatocytes in vitro. These cells expressed hepatic-specific genes and were functional as demonstrated by their ability to secrete albumin and produce urea. When transplanted in the liver parenchyma of partially hepatectomised mice, Liv2-sorted cells showed regional and heterogeneous engraftment in the injected lobe. Moreover, approximately 50% of Y chromosome-positive, GPSC-derived cells were found in the female livers, in the region of engraftment, even one month after cell injection. This is the first study showing that Liv2-sorted GPSCs-derived hepatocytes can undergo long lasting engraftment in the mouse liver. Thus, GPSCs might offer promise for regenerative medicine. PMID:26323094

  17. Mechanical vibration inhibits osteoclast formation by reducing DC-STAMP receptor expression in osteoclast precursor cells.

    PubMed

    Kulkarni, Rishikesh N; Voglewede, Philip A; Liu, Dawei

    2013-12-01

    It is well known that physical inactivity leads to loss of muscle mass, but it also causes bone loss. Mechanistically, osteoclastogenesis and bone resorption have recently been shown to be regulated by vibration. However, the underlying mechanism behind the inhibition of osteoclast formation is yet unknown. Therefore, we investigated whether mechanical vibration of osteoclast precursor cells affects osteoclast formation by the involvement of fusion-related molecules such as dendritic cell-specific transmembrane protein (DC-STAMP) and P2X7 receptor (P2X7R). RAW264.7 (a murine osteoclastic-like cell line) cells were treated with 20ng/ml receptor activator of NF-κB ligand (RANKL). For 3 consecutive days, the cells were subjected to 1h of mechanical vibration with 20μm displacement at a frequency of 4Hz and compared to the control cells that were treated under the same condition but without the vibration. After 5days of culture, osteoclast formation was determined. Gene expression of DC-STAMP and P2X7R by RAW264.7 cells was determined after 1h of mechanical vibration, while protein production of the DC-STAMP was determined after 6h of postincubation after vibration. As a result, mechanical vibration of RAW264.7 cells inhibited the formation of osteoclasts. Vibration down-regulated DC-STAMP gene expression by 1.6-fold in the presence of RANKL and by 1.4-fold in the absence of RANKL. Additionally, DC-STAMP protein production was also down-regulated by 1.4-fold in the presence of RANKL and by 1.2-fold in the absence of RANKL in RAW264.7 cells in response to mechanical vibration. However, vibration did not affect P2X7R gene expression. Mouse anti-DC-STAMP antibody inhibited osteoclast formation in the absence of vibration. Our results suggest that mechanical vibration of osteoclast precursor cells reduces DC-STAMP expression in osteoclast precursor cells leading to the inhibition of osteoclast formation.

  18. Simple and improved approaches to long-lasting, hydrophilic silicones derived from commercially available precursors.

    PubMed

    Nguyen, Lien; Hang, Mimi; Wang, Wanxin; Tian, Ye; Wang, Liming; McCarthy, Thomas J; Chen, Wei

    2014-12-24

    Three types of commercially derived methylsilicone materials, Sylgard-184, Q(V)Q(H) (an MQ-based silicone containing no dimethylsiloxane, D units), and D(V)D(H) (a D-based silicone with no additives), were judiciously chosen to study the conditions under which long-lasting hydrophilicity after oxygen plasma treatment can be obtained. A 30 s plasma treatment time under controlled conditions was found to be optimal in terms of achieving the lowest initial advancing and receding contact angles of θ(A)/θ(R) = 10°/5° with undetectable surface damage. Vacuum treatment, a necessary step prior to plasma ignition that has been overlooked in previous studies, as well as room temperature curing were explored as means to remove low molecular weight species. For thin films (a few micrometers), 40 min vacuum treatment was sufficient to achieve low dynamic contact angles of θ(A)/θ(R) = 51-56°/38-43° on all three types of silicones measured more than 30 days after the plasma treatments. These values indicate superior hydrophilicity relative to what has been reported. The small and slow rise in contact angle over time is likely caused by the intrinsic nature of the silicone materials, i.e., surface reorientation of hydrophilic functional groups to the bulk and condensation of surface silanol groups, and is thus unavoidable. For thick films (∼1 mm), room temperature curing in addition to vacuum treatment was required to reduce hydrophobic recovery and to achieve long-lasting hydrophilicity. The final contact angles for thick samples were slightly higher than the corresponding thin film samples due to the greater "reservoir" depth and migration length for mobile species. In particular, Sylgard exhibited inferior performance among the thick samples, and we attribute this to the additives in its commercial formulation. Furthermore, unlike polydimethylsiloxane-based silicones, Q(V)Q(H) does not contain equilibration products of the Dn-type; its thin films perform as well as

  19. Scalable production of embryonic stem cell-derived cells.

    PubMed

    Dang, Stephen M; Zandstra, Peter W

    2005-01-01

    Embryonic stem (ES) cells have the ability to self-renew as well as differentiate into any cell type in the body. These traits make ES cells an attractive "raw material" for a variety of cell-based technologies. However, uncontrolled cell aggregation in ES cell differentiation culture inhibits cell proliferation and differentiation and thwarts the use of stirred suspension bioreactors. Encapsulation of ES cells in agarose microdrops prevents physical interaction between developing embryoid bodies (EBs) that, in turn, prevents EB agglomeration. This enables use of stirred suspension bioreactors that can generate large numbers of ES-derived cells under controlled conditions.

  20. Zinc deficiency impairs neuronal precursor cell proliferation and induces apoptosis via p53-mediated mechanisms.

    PubMed

    Corniola, Rikki S; Tassabehji, Nadine M; Hare, Joan; Sharma, Girdhari; Levenson, Cathy W

    2008-10-27

    The potential importance of stem cells in the adult central nervous system (CNS) that cannot only divide, but also participate in neurogenesis, is now widely appreciated. While we know that the trace element zinc is needed for brain development, the role of this essential nutrient in adult stem cell proliferation and neurogenesis has not been investigated. Adult male rats fed a zinc-restricted diet had approximately 50% fewer Ki67-positive stem cells in the subgranular zone (SGZ) and granular cell layer of the dentate gyrus compared to both zinc-adequate and pair-fed controls (p<0.05). Zinc-deficient rats also had a significant increase the number of TUNEL-labeled cells in the SGZ compared to pair-fed rats (p<0.05). To explore the mechanisms responsible for the effects of zinc deficiency, cultured human Ntera-2 (NT2) neuronal precursor cells were deprived of zinc using the chelator N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN). Consistent with the effects of deficiency in vivo, TPEN treatment resulted in a significant decrease in cellular proliferation, as measured by bromodeoxyuridine (BrdU) uptake, and an increase in caspase3/7-dependent apoptosis. These changes were accompanied by increases in nuclear p53. Oligonucleotide arrays, coupled with use of a dominant-negative p53 construct in NT2 cells, identified 14 differentially regulated p53 target genes. In the early phases zinc deficiency, p53 targets responsible for cell cycle arrest were induced. Continuation of deficiency resulted in the induction of a variety of pro-apoptotic genes such as transforming growth factor-beta (TGF-beta) and retinoblastoma-1 (Rb-1), as well as cellular protection genes such as glutathione peroxidase (GPx). These data suggest that zinc plays a role in neurogenesis by regulating p53-dependent molecular mechanisms that control neuronal precursor cell proliferation and survival.

  1. Synthesis and electrochemical evaluation of an amorphous titanium dioxide derived from a solid state precursor

    NASA Astrophysics Data System (ADS)

    Joyce, Christopher D.; McIntyre, Toni; Simmons, Sade; LaDuca, Holly; Breitzer, Jonathan G.; Lopez, Carmen M.; Jansen, Andrew N.; Vaughey, J. T.

    Titanium oxides are an important class of lithium-ion battery electrodes owing to their good capacity and stability within the cell environment. Although most Ti(IV) oxides are poor electronic conductors, new methods developed to synthesize nanometer scale primary particles have achieved the higher rate capability needed for modern commercial applications. In this report, the anionic water stable titanium oxalate anion [TiO(C 2O 4) 2] 2- was isolated in high yield as the insoluble DABCO (1,4-diazabicyclo[2.2.2]octane) salt. Powder X-ray diffraction studies show that the titanium dioxide material isolated after annealing in air is initially amorphous, converts to N-doped anatase above 400 °C, then to rutile above 600 °C. Electrochemical studies indicate that the amorphous titanium dioxide phase within a carbon matrix has a stable cycling capacity of ∼350 mAh g -1. On crystallizing at 400 °C to a carbon-coated anatase the capacity drops to 210 mAh g -1, and finally upon carbon burn-off to 50 mAh g -1. Mixtures of the amorphous titanium dioxide and Li 4Ti 5O 12 showed a similar electrochemical profile and capacity to Li 4Ti 5O 12 but with the addition of a sloping region to the end of the discharge curve that could be advantageous for determining state-of-charge in systems using Li 4Ti 5O 12.

  2. Trophoblast lineage cells derived from human induced pluripotent stem cells

    SciTech Connect

    Chen, Ying; Wang, Kai; Chandramouli, Gadisetti V.R.; Knott, Jason G.; Leach, Richard

    2013-07-12

    Highlights: •Epithelial-like phenotype of trophoblast lineage cells derived from human iPS cells. •Trophoblast lineage cells derived from human iPS cells exhibit trophoblast function. •Trophoblasts from iPS cells provides a proof-of-concept in regenerative medicine. -- Abstract: Background: During implantation, the blastocyst trophectoderm attaches to the endometrial epithelium and continues to differentiate into all trophoblast subtypes, which are the major components of a placenta. Aberrant trophoblast proliferation and differentiation are associated with placental diseases. However, due to ethical and practical issues, there is almost no available cell or tissue source to study the molecular mechanism of human trophoblast differentiation, which further becomes a barrier to the study of the pathogenesis of trophoblast-associated diseases of pregnancy. In this study, our goal was to generate a proof-of-concept model for deriving trophoblast lineage cells from induced pluripotency stem (iPS) cells from human fibroblasts. In future studies the generation of trophoblast lineage cells from iPS cells established from patient’s placenta will be extremely useful for studying the pathogenesis of individual trophoblast-associated diseases and for drug testing. Methods and results: Combining iPS cell technology with BMP4 induction, we derived trophoblast lineage cells from human iPS cells. The gene expression profile of these trophoblast lineage cells was distinct from fibroblasts and iPS cells. These cells expressed markers of human trophoblasts. Furthermore, when these cells were differentiated they exhibited invasive capacity and placental hormone secretive capacity, suggesting extravillous trophoblasts and syncytiotrophoblasts. Conclusion: Trophoblast lineage cells can be successfully derived from human iPS cells, which provide a proof-of-concept tool to recapitulate pathogenesis of patient placental trophoblasts in vitro.

  3. Transforming growth factor-alpha precursors in human colon carcinoma cells.

    PubMed

    Asbert, M; Montaner, B; Pérez-Tomás, R

    2001-06-01

    Among the proteins of the epidermal growth factor family, transforming growth factor-alpha (TGF-alpha) may be an especially reliable indicator of metastasis or prognosis in human colorectal carcinomas. Moreover, anomalous forms of TGF-alpha have been detected in several tissues of cancer origin, suggesting a role of these forms in the development of the disease. This study was designed to identify the presence of TGF-alpha precursors in different colon cancer cell lines by mean of immunocytochemistry and western blotting techniques. Pro-TGF-alpha was detected in all cell lines tested. Staining for pro-TGF-alpha was observed in cytoplasm. Monoclonal antibody to TGF-alpha detected two bands of 20 and 21 kDa. Polyclonal antibody to pro-TGF-alpha revealed five bands ranging from 15 to 24 kDa. All these proteins were also detected in nonmalignant cells expressing a transfected rat pro-TGF-alpha gene. In conclusions, transformation in these human colon carcinoma cells is not due to the presence of anomalous forms of TGF-alpha precursors.

  4. Adaptive peripheral immune response increases proliferation of neural precursor cells in the adult hippocampus.

    PubMed

    Wolf, Susanne A; Steiner, Barbara; Wengner, Antje; Lipp, Martin; Kammertoens, Thomas; Kempermann, Gerd

    2009-09-01

    To understand the link between peripheral immune activation and neuronal precursor biology, we investigated the effect of T-cell activation on adult hippocampal neurogenesis in female C57Bl/6 mice. A peripheral adaptive immune response triggered by adjuvant-induced rheumatoid arthritis (2 microg/microl methylated BSA) or staphylococcus enterotoxin B (EC(50) of 0.25 microg/ml per 20 g body weight) was associated with a transient increase in hippocampal precursor cell proliferation and neurogenesis as assessed by immunohistochemistry and confocal microscopy. Both treatments were paralleled by an increase in corticosterone levels in the hippocampus 1- to 2-fold over the physiological amount measured by quantitative radioimmunoassay. In contrast, intraperitoneal administration of the innate immune response activator lipopolysaccaride (EC(50) of 0.5 microg/ml per 20 g body weight) led to a chronic 5-fold increase of hippocampal glucocorticoid levels and a decrease of adult neurogenesis. In vitro exposure of murine neuronal progenitor cells to corticosterone triggered either cell death at high (1.5 nM) or proliferation at low (0.25 nM) concentrations. This effect could be blocked using a viral vector system expressing a transdomain of the glucocorticoid receptor. We suggest an evolutionary relevant communication route for the brain to respond to environmental stressors like inflammation mediated by glucocorticoid levels in the hippocampus.

  5. The lantibiotic NAI-107 binds to bactoprenol-bound cell wall precursors and impairs membrane functions.

    PubMed

    Münch, Daniela; Müller, Anna; Schneider, Tanja; Kohl, Bastian; Wenzel, Michaela; Bandow, Julia Elisabeth; Maffioli, Sonia; Sosio, Margherita; Donadio, Stefano; Wimmer, Reinhard; Sahl, Hans-Georg

    2014-04-25

    The lantibiotic NAI-107 is active against Gram-positive bacteria including vancomycin-resistant enterococci and methicillin-resistant Staphylococcus aureus. To identify the molecular basis of its potency, we studied the mode of action in a series of whole cell and in vitro assays and analyzed structural features by nuclear magnetic resonance (NMR). The lantibiotic efficiently interfered with late stages of cell wall biosynthesis and induced accumulation of the soluble peptidoglycan precursor UDP-N-acetylmuramic acid-pentapeptide (UDP-MurNAc-pentapeptide) in the cytoplasm. Using membrane preparations and a complete cascade of purified, recombinant late stage peptidoglycan biosynthetic enzymes (MraY, MurG, FemX, PBP2) and their respective purified substrates, we showed that NAI-107 forms complexes with bactoprenol-pyrophosphate-coupled precursors of the bacterial cell wall. Titration experiments indicate that first a 1:1 stoichiometric complex occurs, which then transforms into a 2:1 (peptide: lipid II) complex, when excess peptide is added. Furthermore, lipid II and related molecules obviously could not serve as anchor molecules for the formation of defined and stable nisin-like pores, however, slow membrane depolarization was observed after NAI-107 treatment, which could contribute to killing of the bacterial cell. PMID:24627484

  6. The immune response of mice treated with anti-mu antibodies: the effect on antibody-forming cells, their precursors and helper cells assayed in vitro.

    PubMed

    Gordon, J; Murgita, R A; Tomasi, T B

    1975-06-01

    Previous studies have shown that mice treated from birth with heterologous anti-mu antiserum are severely immunosuppressed with respect to numbers of splenic plaque-forming cells (PFC) to sheep red blood cells (SRBC) in all immunoglobulin classes. In this study we have investigated, using in vitro techniques, the cellular site of the deficit created by anti-mu. The primary PFC response of spleen cells originating from anti-mu-treated mice was completely suppressed in vitro. The response was restored by the addition to the cultures of B cells but not T cells. T cells were derived from normal spleens which had been depleted of B lymphocytes and adherent cells by filtration through cotton wool columns, or by educated thymus cells obtained from the spleens of lethally irradiated mice injected with syngeneic thymocytes and SRBC. Restoration of the PFC response of spleen cells from anti-mu-treated mice by normal B cells suggested that a cellular deficiency rather than an activity process by inhibitory cells was the cause of the imunosuppression. Also, co-culturing spleen cells from normal and suppressed mice did not reveal the presence of inhibitory cells. Spleen cells from x-irradiated mice, injected with bone marrow from anti-mu-suppressed mice, gave rise to PFC cells when cultured with SRBC and normal T cells, suggesting that stem cells giving rise to B cell were not affected by anti-mu treatment. Similarly, educated thymus cells derived from suppressed mice could provide helper function when reconstituted in vitro with normal B cells. Exposure of normal bone marrow and spleen cells to anti-mu serum prior to passage through syngeneic x-irradiated recipients demonstrated that spleen cells were much more sensitive than were bone marrow cells to suppression by anti-mu antibodies. It is concluded that the target of anti-mu antibody is a mu-chain bearing B cell precursor to the IgM-, IgG-, and IgA-producing cell. PMID:805179

  7. Magnetic nanoparticles for oligodendrocyte precursor cell transplantation therapies: progress and challenges.

    PubMed

    Jenkins, Stuart I; Yiu, Humphrey H P; Rosseinsky, Matthew J; Chari, Divya M

    2014-01-01

    Oligodendrocyte precursor cells (OPCs) have shown high promise as a transplant population to promote regeneration in the central nervous system, specifically, for the production of myelin - the protective sheath around nerve fibers. While clinical trials for these cells have commenced in some areas, there are currently key barriers to the translation of neural cell therapies. These include the ability to (a) image transplant populations in vivo; (b) genetically engineer transplant cells to augment their repair potential; and (c) safely target cells to sites of pathology. Here, we review the evidence that magnetic nanoparticles (MNPs) are a 'multifunctional nanoplatform' that can aid in safely addressing these translational challenges in neural cell/OPC therapy: by facilitating real-time and post-mortem assessment of transplant cell biodistribution, and biomolecule delivery to transplant cells, as well as non-invasive 'magnetic cell targeting' to injury sites by application of high gradient fields. We identify key issues relating to the standardization and reporting of physicochemical and biological data in the field; we consider that it will be essential to systematically address these issues in order to fully evaluate the utility of the MNP platform for neural cell transplantation, and to develop efficacious neurocompatible particles for translational applications. PMID:26056590

  8. Vessel-associated myogenic precursors control macrophage activation and clearance of apoptotic cells.

    PubMed

    Bosurgi, L; Brunelli, S; Rigamonti, E; Monno, A; Manfredi, A A; Rovere-Querini, P

    2015-01-01

    Swift and regulated clearance of apoptotic cells prevents the accumulation of cell remnants in injured tissues and contributes to the shift of macrophages towards alternatively activated reparatory cells that sustain wound healing. Environmental signals, most of which are unknown, in turn control the efficiency of the clearance of apoptotic cells and as such determine whether tissues eventually heal. In this study we show that vessel-associated stem cells (mesoangioblasts) specifically modulate the expression of genes involved in the clearance of apoptotic cells and in macrophage alternative activation, including those of scavenger receptors and of molecules that bridge dying cells and phagocytes. Mesoangioblasts, but not immortalized myoblasts or neural precursor cells, enhance CD163 membrane expression in vitro as assessed by flow cytometry, indicating that the effect is specific. Mesoangioblasts transplanted in acutely or chronically injured skeletal muscles determine the expansion of the population of CD163(+) infiltrating macrophages and increase the extent of CD163 expression. Conversely, macrophages challenged with mesoangioblasts engulf significantly better apoptotic cells in vitro. Collectively, the data reveal a feed-forward loop between macrophages and vessel-associated stem cells, which has implications for the skeletal muscle homeostatic response to sterile injury and for diseases in which homeostasis is jeopardized, including muscle dystrophies and inflammatory myopathies. PMID:24749786

  9. Cloned mice derived from somatic cell nuclei.

    PubMed

    Hosaka, K; Ohi, S; Ando, A; Kobayashi, M; Sato, K

    2000-12-01

    In 1997, a cloned sheep "Dolly" was produced by nuclear transfer of somatic cell. The first birth of cloned mice derived from some somatic cells were succeeded in 1998. At present, it is shown that somatic cells, cumulus cells, fibroblasts and Sertoli cells can be used to the study of cloned animal as nuclear donor. In this study investigation was designed to compare with efficiency on the production of cloned embryos by using the microinjection and the electrofusion methods for nuclear transfer. Oocyte enucleation was performed with a micromanipulator. The oocyte was held by holding pipette, and was enucleated using a beveled pipette. Microinjection method: Cell's nucleus injection was carried out by piezo-micromanipulator. Cytochalasin B treated cumulus cell was aspirated into a injection pipette, and was broken its plasma membrane using the injection pipette. Then, the cumulus cell was injected into the enucleated ooplasm directly. Electrofusion method: The cell was aspirated into a beveled pipette, and then an aspirated cell was inserted into perivitelline space. Then, the pair of enucleated oocyte and cell was fused using electrical cell fusion apparatus. The reconstituted embryos were activated after nuclear transfer using St2+. Reconstituted embryos had been produced by the microinjection showed the embryonic development to over 8-cell stages. But, the rate of fragmentation of reconstituted embryos by the microinjection showed a little high rate in comparison with the electrofusion. When some reconstituted embryos by the microinjection were transplanted to pseudopregnant females' oviduct, 9 fetuses were observed at 14 days post coitum. PMID:11329940

  10. Melanin precursor 5,6-dihydroxyindol: protective effects and cytotoxicity on retinal cells in vitro and in vivo.

    PubMed

    Heiduschka, Peter; Blitgen-Heinecke, Petra; Tura, Aysegül; Kokkinou, Despina; Julien, Sylvie; Hofmeister, Sabine; Bartz-Schmidt, Karl Ulrich; Schraermeyer, Ulrich

    2007-12-01

    5,6-dihydroxyindole (DHI) is a melanin pigment precursor with antioxidant properties. In the light of a report about cytotoxicity of DHI, the aim of this study was to assess possible toxic effects of DHI on cells related to the eye, such as human ARPE-19 cells and mouse retinal explants. Moreover, DHI was tested on its effects on retinal function in vivo using electroretinography. We found cytotoxicity of DHI against ARPE-19 cells at 100 microM, but not at 10 microM. 10 microM DHI exhibited a slight, though not significant protective activity against UV-A damage in ARPE-19 cells. We found cytoprotection in cultured mouse retinas by 50 microM DHI or its diacetylated derivative 5,6-diacetoxyindole (DAI), respectively. In ERG measurements in vivo, amplitudes were decreased only slightly by 100 microM DHI compared to saline, whereas a better preservation of amplitudes was visible at 10 microM DHI, in particular with respect to cones. In histological sections, more cones were found at 10 microM DHI than at 100 microM DHI. As a conclusion, DHI shows a slight protective effect at 10 microM both in vitro and in vivo. At 100 microM, it shows a strong cytotoxicity in vitro, which is strongly reduced in vivo.

  11. Cytoplasmic p53 and Activated Bax Regulate p53-dependent, Transcription-independent Neural Precursor Cell Apoptosis

    PubMed Central

    Geng, Ying; Walls, K.C.; Ghosh, Arindam P.; Akhtar, Rizwan S.; Klocke, Barbara J.; Roth, Kevin A.

    2010-01-01

    The prodeath effects of p53 are typically mediated via its transcriptional upregulation of proapoptotic Bcl-2 family members, including PUMA, Noxa, and/or Bax. We previously reported that staurosporine (STS), a broad-spectrum kinase inhibitor and prototypical apoptosis-inducing agent, produced p53-dependent, Bax-dependent, neural precursor cell (NPC) apoptosis, but that this effect occurred independently of new gene transcription and PUMA expression. To further characterize the mechanism by which p53 regulates NPC death, we used primary cerebellar NPCs derived from wild-type, p53-deficient, and Bax-deficient neonatal mice and the mouse cerebellar neural stem cell line, C17.2. We found that STS rapidly increased p53 cytoplasmic immunoreactivity in neuritic-like processes in C17.2 cells, which preceded Bax activation and caspase-3 cleavage. Confocal microscopy analysis of STS-treated cells revealed partial colocalization of p53 with the mitochondrial marker pyruvate dehydrogenase as well as with conformationally altered “activated” Bax, suggesting an interaction between these proapoptotic molecules in triggering apoptotic death. Nucleophosmin (NPM), a CRM1-dependent nuclear chaperone, also exhibited partial colocalization with both activated Bax and p53 following STS treatment. These observations suggest that cytoplasmic p53 can trigger transcription-independent NPC apoptosis through its potential interaction with NPM and activated Bax. (J Histochem Cytochem 58:265–275, 2010) PMID:19901272

  12. Melatonin and its precursors in Y79 human retinoblastoma cells: Effect of sodium butyrate

    NASA Technical Reports Server (NTRS)

    Deng, Mei Hua; Coviella, Ignacio Lopez G.; Lynch, Harry J.; Wurtman, Richard J.

    1991-01-01

    The release of melatonin and the production of its precursors, S-hydroxytryptophan and serotonin, in cultured Y79 human retinoblastoma cells were studied. This biosynthetic capability was found to be dependent on cell differentiation, which was initiated by culturing Y79 cells for 7 days in dishes coated with poly-D-lysine to promote cell adhesion to the surface of the culture dishes. Differentiation was further induced by exposing the cell monolayer to sodium butyrate (3 mM) for 3 days. This protocol dramatically increased the release of melatonin, and the syntheses of 5-hydroxytryptophan and serotonin in response to forskolin stimulation. Exposure to dopamine (10 micro-M) or L-DOPA (100 micro-M) markedly diminished the forskolin-stimulated release of melatonin, as well as the production of 5-hydroxytryptophan and serotonin. These observations indicate that Y79 cells represent a primitive cell line which, following appropriate differentiation (e.g. treatment with sodium butyrate) can display biochemical characteristics similar to those of the human retina. Moreover, serotonin synthesis and melatonin release appear to be coupled in Y79 cells. The inhibition of melatonin release by dopamine supports the hypothesis that in these cells, melatonin and dopamine are components of a retinal feedback loop.

  13. Stabilized metal nanoparticles from organometallic precursors for low temperature fuel cells.

    PubMed

    Ramirez-Meneses, E; Dominguez-Crespo, M A; Torres-Huerta, A M

    2013-01-01

    In this work, a review of articles and patents related to the utilization of colloidal metal nanoparticles produced by the decomposition of organometallic precursors as supported electrocatalysts in different electrochemical reactions including hydrogen evolution reaction (HER), oxygen reduction reaction (ORR) and methanol oxidation reaction (MOR) is discussed. In the case of stabilized metal nanoparticles, the kind of functional group contained in the stabilizer as well as the metal/stabilizer ratio, to evaluate the effect of particle size on the electrochemical performance, were also debated. Potential applications and perspectives of these electrocatalysts in proton exchange membrane fuel cells (PEMFC) are contended with reference to the role played by the coordination compounds and costs.

  14. Alternative Splicing in the Differentiation of Human Embryonic Stem Cells into Cardiac Precursors

    PubMed Central

    Salomonis, Nathan; Nelson, Brandon; Vranizan, Karen; Pico, Alexander R.; Hanspers, Kristina; Kuchinsky, Allan; Ta, Linda; Mercola, Mark; Conklin, Bruce R.

    2009-01-01

    The role of alternative splicing in self-renewal, pluripotency and tissue lineage specification of human embryonic stem cells (hESCs) is largely unknown. To better define these regulatory cues, we modified the H9 hESC line to allow selection of pluripotent hESCs by neomycin resistance and cardiac progenitors by puromycin resistance. Exon-level microarray expression data from undifferentiated hESCs and cardiac and neural precursors were used to identify splice isoforms with cardiac-restricted or common cardiac/neural differentiation expression patterns. Splice events for these groups corresponded to the pathways of cytoskeletal remodeling, RNA splicing, muscle specification, and cell cycle checkpoint control as well as genes with serine/threonine kinase and helicase activity. Using a new program named AltAnalyze (http://www.AltAnalyze.org), we identified novel changes in protein domain and microRNA binding site architecture that were predicted to affect protein function and expression. These included an enrichment of splice isoforms that oppose cell-cycle arrest in hESCs and that promote calcium signaling and cardiac development in cardiac precursors. By combining genome-wide predictions of alternative splicing with new functional annotations, our data suggest potential mechanisms that may influence lineage commitment and hESC maintenance at the level of specific splice isoforms and microRNA regulation. PMID:19893621

  15. Laser ablation of persistent twist cells in Drosophila: muscle precursor fate is not segmentally restricted

    NASA Technical Reports Server (NTRS)

    Farrell, E. R.; Keshishian, H.

    1999-01-01

    In Drosophila the precursors of the adult musculature arise during embryogenesis. These precursor cells have been termed Persistent Twist Cells (PTCs), as they continue to express the transcription factor Twist after that gene ceases expression elsewhere in the mesoderm. In the larval abdomen, the PTCs are associated with peripheral nerves in stereotypic ventral, dorsal, and lateral clusters, which give rise, respectively, to the ventral, dorsal, and lateral muscle fiber groups of the adult. We tested the developmental potential of the PTCs by using a microbeam laser to ablate specific clusters in larvae. We found that the ablation of a single segmental PTC cluster does not usually result in the deletion of the corresponding adult fibers of that segment. Instead, normal or near normal numbers of adult fibers can form after the ablation. Examination of pupae following ablation showed that migrating PTCs from adjacent segments are able to invade the affected segment, replenishing the ablated cells. However, the ablation of homologous PTCs in multiple segments does result in the deletion of the corresponding adult muscle fibers. These data indicate that the PTCs in an abdominal segment can contribute to the formation of muscle fibers in adjacent abdominal segments, and thus are not inherently restricted to the formation of muscle fibers within their segment of origin.

  16. Stochastic specification of primordial germ cells from mesoderm precursors in axolotl embryos.

    PubMed

    Chatfield, Jodie; O'Reilly, Marie-Anne; Bachvarova, Rosemary F; Ferjentsik, Zoltan; Redwood, Catherine; Walmsley, Maggie; Patient, Roger; Loose, Mathew; Johnson, Andrew D

    2014-06-01

    A common feature of development in most vertebrate models is the early segregation of the germ line from the soma. For example, in Xenopus and zebrafish embryos primordial germ cells (PGCs) are specified by germ plasm that is inherited from the egg; in mice, Blimp1 expression in the epiblast mediates the commitment of cells to the germ line. How these disparate mechanisms of PGC specification evolved is unknown. Here, in order to identify the ancestral mechanism of PGC specification in vertebrates, we studied PGC specification in embryos from the axolotl (Mexican salamander), a model for the tetrapod ancestor. In the axolotl, PGCs develop within mesoderm, and classic studies have reported their induction from primitive ectoderm (animal cap). We used an axolotl animal cap system to demonstrate that signalling through FGF and BMP4 induces PGCs. The role of FGF was then confirmed in vivo. We also showed PGC induction by Brachyury, in the presence of BMP4. These conditions induced pluripotent mesodermal precursors that give rise to a variety of somatic cell types, in addition to PGCs. Irreversible restriction of the germ line did not occur until the mid-tailbud stage, days after the somatic germ layers are established. Before this, germline potential was maintained by MAP kinase signalling. We propose that this stochastic mechanism of PGC specification, from mesodermal precursors, is conserved in vertebrates.

  17. Generation of Dopamine Neurons from Rodent Fibroblasts through the Expandable Neural Precursor Cell Stage*

    PubMed Central

    Lim, Mi-Sun; Chang, Mi-Yoon; Kim, Sang-Mi; Yi, Sang-Hoon; Suh-Kim, Haeyoung; Jung, Sung Jun; Kim, Min Jung; Kim, Jin Hyuk; Lee, Yong-Sung; Lee, Soo Young; Kim, Dong-Wook; Lee, Sang-Hun; Park, Chang-Hwan

    2015-01-01

    Recent groundbreaking work has demonstrated that combined expression of the transcription factors Brn2, Ascl1, and Myt1L (BAM; also known as Wernig factors) convert mouse fibroblasts into postmitotic neuronal cells. However, questions remain regarding whether trans-conversion is achieved directly or involves an intermediary precursor stage. Trans-conversion toward expandable neural precursor cells (NPCs) is more useful than direct one-step neuron formation with respect to yielding a sufficient number of cells and the feasibility of manipulating NPC differentiation toward certain neuron subtypes. Here, we show that co-expression of Wernig factors and Bcl-xL induces fibroblast conversion into NPCs (induced NPCs (iNPCs)) that are highly expandable for >100 passages. Gene expression analyses showed that the iNPCs exhibited high expression of common NPC genes but not genes specific to defined embryonic brain regions. This finding indicated that a regional identity of iNPCs was not established. Upon induction, iNPCs predominantly differentiated into astrocytes. However, the differentiation potential was not fixed and could be efficiently manipulated into general or specific subtypes of neurons by expression of additional genes. Specifically, overexpression of Nurr1 and Foxa2, transcription factors specific for midbrain dopamine neuron development, drove iNPCs to yield mature midbrain dopamine neurons equipped with presynaptic DA neuronal functions. We further assessed the therapeutic potential of iNPCs in Parkinson disease model rats. PMID:26023233

  18. Stochastic specification of primordial germ cells from mesoderm precursors in axolotl embryos

    PubMed Central

    Chatfield, Jodie; O'Reilly, Marie-Anne; Bachvarova, Rosemary F.; Ferjentsik, Zoltan; Redwood, Catherine; Walmsley, Maggie; Patient, Roger; Loose, Mathew; Johnson, Andrew D.

    2014-01-01

    A common feature of development in most vertebrate models is the early segregation of the germ line from the soma. For example, in Xenopus and zebrafish embryos primordial germ cells (PGCs) are specified by germ plasm that is inherited from the egg; in mice, Blimp1 expression in the epiblast mediates the commitment of cells to the germ line. How these disparate mechanisms of PGC specification evolved is unknown. Here, in order to identify the ancestral mechanism of PGC specification in vertebrates, we studied PGC specification in embryos from the axolotl (Mexican salamander), a model for the tetrapod ancestor. In the axolotl, PGCs develop within mesoderm, and classic studies have reported their induction from primitive ectoderm (animal cap). We used an axolotl animal cap system to demonstrate that signalling through FGF and BMP4 induces PGCs. The role of FGF was then confirmed in vivo. We also showed PGC induction by Brachyury, in the presence of BMP4. These conditions induced pluripotent mesodermal precursors that give rise to a variety of somatic cell types, in addition to PGCs. Irreversible restriction of the germ line did not occur until the mid-tailbud stage, days after the somatic germ layers are established. Before this, germline potential was maintained by MAP kinase signalling. We propose that this stochastic mechanism of PGC specification, from mesodermal precursors, is conserved in vertebrates. PMID:24917499

  19. Stochastic specification of primordial germ cells from mesoderm precursors in axolotl embryos.

    PubMed

    Chatfield, Jodie; O'Reilly, Marie-Anne; Bachvarova, Rosemary F; Ferjentsik, Zoltan; Redwood, Catherine; Walmsley, Maggie; Patient, Roger; Loose, Mathew; Johnson, Andrew D

    2014-06-01

    A common feature of development in most vertebrate models is the early segregation of the germ line from the soma. For example, in Xenopus and zebrafish embryos primordial germ cells (PGCs) are specified by germ plasm that is inherited from the egg; in mice, Blimp1 expression in the epiblast mediates the commitment of cells to the germ line. How these disparate mechanisms of PGC specification evolved is unknown. Here, in order to identify the ancestral mechanism of PGC specification in vertebrates, we studied PGC specification in embryos from the axolotl (Mexican salamander), a model for the tetrapod ancestor. In the axolotl, PGCs develop within mesoderm, and classic studies have reported their induction from primitive ectoderm (animal cap). We used an axolotl animal cap system to demonstrate that signalling through FGF and BMP4 induces PGCs. The role of FGF was then confirmed in vivo. We also showed PGC induction by Brachyury, in the presence of BMP4. These conditions induced pluripotent mesodermal precursors that give rise to a variety of somatic cell types, in addition to PGCs. Irreversible restriction of the germ line did not occur until the mid-tailbud stage, days after the somatic germ layers are established. Before this, germline potential was maintained by MAP kinase signalling. We propose that this stochastic mechanism of PGC specification, from mesodermal precursors, is conserved in vertebrates. PMID:24917499

  20. Gene Signature of High White Blood Cell Count in B-Precursor Acute Lymphoblastic Leukemia

    PubMed Central

    Dombkowski, Alan A.; Caldwell, J. Timothy; Chu, Roland; Xavier, Ana C.; Thummel, Ryan; Neely, Melody; Matherly, Larry H.; Ge, Yubin; Taub, Jeffrey W.

    2016-01-01

    In this study we sought to identify genetic factors associated with the presenting white blood cell (WBC) count in B-precursor acute lymphoblastic leukemia (BP-ALL). Using ETV6-RUNX1-positive BP-ALL patient samples, a homogeneous subtype, we identified 16 differentially expressed genes based on the presenting WBC count (< 50,000/cumm vs > 50,000). We further confirmed that IL1R1, BCAR3, KCNH2, PIR, and ZDHHC23 were differentially expressed in a larger cohort of ETV6-RUNX1-negative BP-ALL patient samples. Statistical analysis demonstrated that expression levels of these genes could accurately categorize high and low WBC count subjects using two independent patient sets, representing positive and negative ETV6-RUNX1 cases. Further studies in leukemia cell line models will better delineate the role of these genes in regulating the white blood cell count and potentially identify new therapeutic targets. PMID:27536776

  1. ETOH inhibits embryonic neural stem/precursor cell proliferation via PLD signaling

    SciTech Connect

    Fujita, Yuko; Hiroyama, Masami; Sanbe, Atsushi Yamauchi, Junji; Murase, Shoko; Tanoue, Akito

    2008-05-23

    While a mother's excessive alcohol consumption during pregnancy is known to have adverse effects on fetal neural development, little is known about the underlying mechanism of these effects. In order to investigate these mechanisms, we investigated the toxic effect of ethanol (ETOH) on neural stem/precursor cell (NSC) proliferation. In cultures of NSCs, phospholipase D (PLD) is activated following stimulation with epidermal growth factor (EGF) and fibroblast growth factor 2 (FGF2). Exposure of NSCs to ETOH suppresses cell proliferation, while it has no effect on cell death. Phosphatidic acid (PA), which is a signaling messenger produced by PLD, reverses ETOH inhibition of NSC proliferation. Blocking the PLD signal by 1-butanol suppresses the proliferation. ETOH-induced suppression of NSC proliferation and the protective effect of PA for ETOH-induced suppression are mediated through extracellular signal-regulated kinase signaling. These results indicate that exposure to ETOH impairs NSC proliferation by altering the PLD signaling pathway.

  2. Gene Signature of High White Blood Cell Count in B-Precursor Acute Lymphoblastic Leukemia.

    PubMed

    Edwards, Holly; Rubenstein, Mara; Dombkowski, Alan A; Caldwell, J Timothy; Chu, Roland; Xavier, Ana C; Thummel, Ryan; Neely, Melody; Matherly, Larry H; Ge, Yubin; Taub, Jeffrey W

    2016-01-01

    In this study we sought to identify genetic factors associated with the presenting white blood cell (WBC) count in B-precursor acute lymphoblastic leukemia (BP-ALL). Using ETV6-RUNX1-positive BP-ALL patient samples, a homogeneous subtype, we identified 16 differentially expressed genes based on the presenting WBC count (< 50,000/cumm vs > 50,000). We further confirmed that IL1R1, BCAR3, KCNH2, PIR, and ZDHHC23 were differentially expressed in a larger cohort of ETV6-RUNX1-negative BP-ALL patient samples. Statistical analysis demonstrated that expression levels of these genes could accurately categorize high and low WBC count subjects using two independent patient sets, representing positive and negative ETV6-RUNX1 cases. Further studies in leukemia cell line models will better delineate the role of these genes in regulating the white blood cell count and potentially identify new therapeutic targets.

  3. Cell wall precursors are required to organize the chlamydial division septum

    PubMed Central

    Jacquier, Nicolas; Frandi, Antonio; Pillonel, Trestan; Viollier, Patrick; Greub, Gilbert

    2014-01-01

    Members of the Chlamydiales order are major bacterial pathogens that divide at mid-cell, without a sequence homologue of the FtsZ cytokinetic tubulin and without a classical peptidoglycan cell wall. Moreover, the spatiotemporal mechanisms directing constriction in Chlamydia are not known. Here we show that the MreB actin homologue and its conserved regulator RodZ localize to the division furrow in Waddlia chondrophila, a member of the Chlamydiales order implicated in human miscarriage. RodZ is recruited to the septal site earlier than MreB and in a manner that depends on biosynthesis of the peptidoglycan precursor lipid II by the MurA enzyme. By contrast, crosslinking of lipid II peptides by the Pbp3 transpeptidase disperses RodZ from the septum. Altogether, these findings provide a cytological framework for understanding chlamydial cytokinesis driven by septal cell wall synthesis. PMID:24709914

  4. Precursor ion scan driven fast untargeted screening and semi-determination of caffeoylquinic acid derivatives in Cynara scolymus L.

    PubMed

    Shen, Qing; Lu, Yanbin; Dai, Zhiyuan; Cheung, Hon-Yeung

    2015-01-01

    A precursor ion scan (PIS) technique based strategy was developed for rapid screening and semi-determination of caffeoylquinic acid derivatives (CADs) in artichoke (Cynara scolymus L.) using ultra-performance liquid chromatography (UPLC) coupled with tandem mass spectrometry. 1,5-Dicaffeoylquinic acid and 5-caffeoylquinic acid were used for studying the fragmentation behaviour of two classes of CADs, setting m/z 191 as a diagnostic moiety. When it was applied to artichoke sample, ten CADs were detected and elucidated in a single PIS run. Furthermore, method validation was implemented including: specificity (no interference), linearity (≥0.9993), limit of detection (LOD<0.12 ng mL(-1)) and limit of quantification (LOQ<0.25 ng mL(-1)), precision (RSD≤3.6), recovery (91.4-95.9%) and stability (at least 12 h). This approach was proven to be a powerful, selective and sensitive tool for rapid screening and semi-determination of untargeted components in natural products. PMID:25053078

  5. Precursor ion scan driven fast untargeted screening and semi-determination of caffeoylquinic acid derivatives in Cynara scolymus L.

    PubMed

    Shen, Qing; Lu, Yanbin; Dai, Zhiyuan; Cheung, Hon-Yeung

    2015-01-01

    A precursor ion scan (PIS) technique based strategy was developed for rapid screening and semi-determination of caffeoylquinic acid derivatives (CADs) in artichoke (Cynara scolymus L.) using ultra-performance liquid chromatography (UPLC) coupled with tandem mass spectrometry. 1,5-Dicaffeoylquinic acid and 5-caffeoylquinic acid were used for studying the fragmentation behaviour of two classes of CADs, setting m/z 191 as a diagnostic moiety. When it was applied to artichoke sample, ten CADs were detected and elucidated in a single PIS run. Furthermore, method validation was implemented including: specificity (no interference), linearity (≥0.9993), limit of detection (LOD<0.12 ng mL(-1)) and limit of quantification (LOQ<0.25 ng mL(-1)), precision (RSD≤3.6), recovery (91.4-95.9%) and stability (at least 12 h). This approach was proven to be a powerful, selective and sensitive tool for rapid screening and semi-determination of untargeted components in natural products.

  6. Myeloid derived suppressor cells and autoimmunity.

    PubMed

    Boros, Peter; Ochando, Jordi; Zeher, Margit

    2016-08-01

    Myeloid-derived suppressor cells are a heterogeneous group of immature myeloid cells with immunoregulatory function. When activated and expanded, these cells can suppress T cell functions via cell-to cell interactions as well as soluble mediators. Recent studies investigated the involvement of MDSC in autoimmune diseases. Some papers have described beneficial effect of MDSC during the course of autoimmune diseases, and suggest a potential role as a treatment option, while others failed to detect these effects. Their contributions to autoimmune diseases are not fully understood, and many questions and some controversies remain as to the expansion, activation, and inhibitory functions of MDSC. This review aims to summarize current knowledge of MDSC in autoimmune disorders. PMID:27240453

  7. In vitro and in vivo analyses of human embryonic stem cell-derived dopamine neurons.

    PubMed

    Park, Chang-Hwan; Minn, Yang-Ki; Lee, Ji-Yeon; Choi, Dong Ho; Chang, Mi-Yoon; Shim, Jae-Won; Ko, Ji-Yun; Koh, Hyun-Chul; Kang, Min Jeong; Kang, Jin Sun; Rhie, Duck-Joo; Lee, Yong-Sung; Son, Hyeon; Moon, Shin Yong; Kim, Kwang-Soo; Lee, Sang-Hun

    2005-03-01

    Human embryonic stem (hES) cells, due to their capacity of multipotency and self-renewal, may serve as a valuable experimental tool for human developmental biology and may provide an unlimited cell source for cell replacement therapy. The purpose of this study was to assess the developmental potential of hES cells to replace the selectively lost midbrain dopamine (DA) neurons in Parkinson's disease. Here, we report the development of an in vitro differentiation protocol to derive an enriched population of midbrain DA neurons from hES cells. Neural induction of hES cells co-cultured with stromal cells, followed by expansion of the resulting neural precursor cells, efficiently generated DA neurons with concomitant expression of transcriptional factors related to midbrain DA development, such as Pax2, En1 (Engrailed-1), Nurr1, and Lmx1b. Using our procedure, the majority of differentiated hES cells (> 95%) contained neuronal or neural precursor markers and a high percentage (> 40%) of TuJ1+ neurons was tyrosine hydroxylase (TH)+, while none of them expressed the undifferentiated ES cell marker, Oct 3/4. Furthermore, hES cell-derived DA neurons demonstrated functionality in vitro, releasing DA in response to KCl-induced depolarization and reuptake of DA. Finally, transplantation of hES-derived DA neurons into the striatum of hemi-parkinsonian rats failed to result in improvement of their behavioral deficits as determined by amphetamine-induced rotation and step-adjustment. Immunohistochemical analyses of grafted brains revealed that abundant hES-derived cells (human nuclei+ cells) survived in the grafts, but none of them were TH+. Therefore, unlike those from mouse ES cells, hES cell-derived DA neurons either do not survive or their DA phenotype is unstable when grafted into rodent brains. PMID:15715675

  8. Effects of insulin-like growth factor-1 on B-cell precursor acute lymphoblastic leukemia.

    PubMed

    Yamada, Hiroyuki; Iijima, Kazutoshi; Tomita, Osamu; Taguchi, Tomoko; Miharu, Masashi; Kobayashi, Kenichiro; Okita, Hajime; Saito, Masahiro; Shimizu, Toshiaki; Kiyokawa, Nobutaka

    2013-01-01

    Insulin-like growth factor-1 (IGF-1) is known to be a major growth factor with effects on various cell types, including hematopoietic cells, as well as neoplasms, and is regulated by IGF-binding proteins (IGFBPs). In this study, we investigated the effects of IGF-1 on B-cell precursor acute lymphoblastic leukemia (BCP-ALL) cells. When the expression of IGF-1R in clinical samples of BCP-ALL was examined, five of thirty-two cases showed IGF-1R expression, whereas IGF-1R was expressed in most BCP-ALL cell lines. We observed that IGF-1 enhanced the proliferation of BCP-ALL cell lines that can be partially inhibited by IGFBP-1, -3, and -4, but not other IGFBPs. IGF-1 also partially inhibited dexamethasone-induced apoptosis, but not apoptosis mediated by VP-16 and irradiation. Interestingly, the proliferative effect of IGF-1 was partially blocked by inhibitors of MAPK and AKT, whereas the inhibition of dexamethasone-induced apoptosis was completely blocked by both inhibitors. Our data indicate that IGF-1 is involved in cell proliferation and apoptosis regulation in BCP-ALL cells. Since some BCP-ALL cases express IGF-1R, it appears to be a plausible target for prognostic evaluation and may represent a new therapeutic strategy.

  9. Pluripotent Stem Cell-Derived Hepatocyte-Like Cells

    PubMed Central

    Schwartz, R. E.; Fleming, H.E.; Bhatia, S. N.

    2014-01-01

    Liver disease is an important clinical problem, impacting over 30 million Americans and over 600 million people worldwide. It is the 12th leading cause of death in the United States and the 16th worldwide. Due to a paucity of donor organs, several thousand Americans die yearly while waiting for liver transplantation. Unfortunately, alternative tissue sources such as fetal hepatocytes and hepatic cell lines are unreliable, difficult to reproduce, and do not fully recapitulate hepatocyte phenotype and function. As a consequence, alternative cell sources that do not have these limitations have been sought. Human embryonic stem (hES) cell- and induced pluripotent stem (iPS) cell-derived hepatocyte-like cells may enable cell based therapeutics, the study of the mechanisms of human disease and human development, and provide a platform for pharmacology and toxicology drug screening. iPS cells can be differentiated in a stepwise fashion with high efficiency and reproducibility into hepatocyte-like cells that exhibit morphologic and phenotypic characteristics of hepatocytes. In addition, iPS-derived hepatocyte-like cells possess some functional hepatic activity as they secrete urea, alpha-1-antitrypsin, and albumin. However, the combined phenotypic and functional traits exhibited by iPS-derived hepatocyte-like cells resemble a relatively immature hepatic phenotype that more closely resembles that of fetal hepatocytes rather than adult hepatocytes. Specifically, iPS-derived hepatocyte-like cells express fetal markers such as alpha fetoprotein and lack key mature hepatocyte functions, as reflected by drastically reduced activity (0.1%) of many detoxification enzymes (i.e. CYP2A6, CYP3A4). These key differences between iPS-derived hepatocyte-like cells and adult hepatocytes have limited the use of stem cells as a renewable source of functional adult human hepatocytes for in vitro and in vivo applications. Unfortunately, the developmental pathways that control hepatocyte

  10. Monitoring the differentiation and migration patterns of neural cells derived from human embryonic stem cells using a microfluidic culture system.

    PubMed

    Lee, Nayeon; Park, Jae Woo; Kim, Hyung Joon; Yeon, Ju Hun; Kwon, Jihye; Ko, Jung Jae; Oh, Seung-Hun; Kim, Hyun Sook; Kim, Aeri; Han, Baek Soo; Lee, Sang Chul; Jeon, Noo Li; Song, Jihwan

    2014-06-01

    Microfluidics can provide unique experimental tools to visualize the development of neural structures within a microscale device, which is followed by guidance of neurite growth in the axonal isolation compartment. We utilized microfluidics technology to monitor the differentiation and migration of neural cells derived from human embryonic stem cells (hESCs). We co-cultured hESCs with PA6 stromal cells, and isolated neural rosette-like structures, which subsequently formed neurospheres in suspension culture. Tuj1-positive neural cells, but not nestin-positive neural precursor cells (NPCs), were able to enter the microfluidics grooves (microchannels), suggesting that neural cell-migratory capacity was dependent upon neuronal differentiation stage. We also showed that bundles of axons formed and extended into the microchannels. Taken together, these results demonstrated that microfluidics technology can provide useful tools to study neurite outgrowth and axon guidance of neural cells, which are derived from human embryonic stem cells.

  11. Expression of mutant amyloid precursor proteins decreases adhesion and delays differentiation of Hep-1 cells.

    PubMed

    Kusiak, J W; Lee, L L; Zhao, B

    2001-03-30

    The amyloid precursor protein (APP) is a type I integral membrane protein and is processed to generate several intra-cellular and secreted fragments. The physiological role of APP and its processed fragments is unclear. Several mutations have been discovered in APP, which are causative of early-onset, familial, neurological disease, including Alzheimer's disease (FAD). These mutations alter the processing of APP and lead to excess production and extra-cellular deposition of A-beta peptide (Abeta). We have examined the role of APP in a cell culture model of endothelial cell function. The endothelial cell line, Hep-1, was stably transfected with wild-type (wt) and FAD mutant forms of APP (mAPP). Secretion of sAPPalpha was reduced in cell lines over-expressing mAPP when these cells were grown on several different substrates. Levels of secreted Abeta were increased as measured by ELISA in the mutant cell lines. Cell adhesion to laminin-, fibronectin-, collagen I-, and collagen IV-coated culture flasks was reduced in all mAPP-expressing cell lines, while in lines over-expressing wt-APP, adhesiveness was slightly increased. Cell lines over-expressing mAPP differentiated more slowly into capillary network-like structures on Matrigel than those expressing wt-APP. No differences were detected among all cell lines in a migration/invasion assay. The results suggest that APP may have a role in cell adhesiveness and maturation of endothelial cells into capillary-like networks. The reduction in adhesion and differentiation in mutant cell lines may be due to reduced amounts of sAPPalpha released into the culture media or toxic effects of increased extracellular Abeta.

  12. Amyloid precursor protein regulates migration and metalloproteinase gene expression in prostate cancer cells

    SciTech Connect

    Miyazaki, Toshiaki; Ikeda, Kazuhiro; Horie-Inoue, Kuniko; Inoue, Satoshi

    2014-09-26

    Highlights: • APP knockdown reduced proliferation and migration of prostate cancer cells. • APP knockdown reduced expression of metalloproteinase and EMT-related genes. • APP overexpression promoted LNCaP cell migration. • APP overexpression increased expression of metalloproteinase and EMT-related genes. - Abstract: Amyloid precursor protein (APP) is a type I transmembrane protein, and one of its processed forms, β-amyloid, is considered to play a central role in the development of Alzheimer’s disease. We previously showed that APP is a primary androgen-responsive gene in prostate cancer and that its increased expression is correlated with poor prognosis for patients with prostate cancer. APP has also been implicated in several human malignancies. Nevertheless, the mechanism underlying the pro-proliferative effects of APP on cancers is still not well-understood. In the present study, we explored a pathophysiological role for APP in prostate cancer cells using siRNA targeting APP (siAPP). The proliferation and migration of LNCaP and DU145 prostate cancer cells were significantly suppressed by siAPP. Differentially expressed genes in siAPP-treated cells compared to control siRNA-treated cells were identified by microarray analysis. Notably, several metalloproteinase genes, such as ADAM10 and ADAM17, and epithelial–mesenchymal transition (EMT)-related genes, such as VIM, and SNAI2, were downregulated in siAPP-treated cells as compared to control cells. The expression of these genes was upregulated in LNCaP cells stably expressing APP when compared with control cells. APP-overexpressing LNCaP cells exhibited enhanced migration in comparison to control cells. These results suggest that APP may contribute to the proliferation and migration of prostate cancer cells by modulating the expression of metalloproteinase and EMT-related genes.

  13. Derivation of Corneal Keratocyte-Like Cells from Human Induced Pluripotent Stem Cells

    PubMed Central

    Naylor, Richard W.; McGhee, Charles N. J.; Cowan, Chad A.; Davidson, Alan J.; Holm, Teresa M.; Sherwin, Trevor

    2016-01-01

    Corneal diseases such as keratoconus represent a relatively common disorder in the human population. However, treatment is restricted to corneal transplantation, which only occurs in the most advanced cases. Cell based therapies may offer an alternative approach given that the eye is amenable to such treatments and corneal diseases like keratoconus have been associated specifically with the death of corneal keratocytes. The ability to generate corneal keratocytes in vitro may enable a cell-based therapy to treat patients with keratoconus. Human induced pluripotent stem cells (hiPSCs) offer an abundant supply of cells from which any cell in the body can be derived. In the present study, hiPSCs were successfully differentiated into neural crest cells (NCCs), the embryonic precursor to keratocytes, and then cultured on cadaveric corneal tissue to promote keratocyte differentiation. The hiPSC-derived NCCs were found to migrate into the corneal stroma where they acquired a keratocyte-like morphology and an expression profile similar to corneal keratocytes in vivo. These results indicate that hiPSCs can be used to generate corneal keratocytes in vitro and lay the foundation for using these cells in cornea cell-based therapies. PMID:27792791

  14. A highly enriched niche of precursor cells with neuronal and glial potential within the hair follicle dermal papilla of adult skin.

    PubMed

    Hunt, David P J; Morris, Paul N; Sterling, Jane; Anderson, Jane A; Joannides, Alexis; Jahoda, Colin; Compston, Alastair; Chandran, Siddharthan

    2008-01-01

    Skin-derived precursor cells (SKPs) are multipotent neural crest-related stem cells that grow as self-renewing spheres and are capable of generating neurons and myelinating glial cells. SKPs are of clinical interest because they are accessible and potentially autologous. However, although spheres can be readily isolated from embryonic and neonatal skin, SKP frequency falls away sharply in adulthood, and primary sphere generation from adult human skin is more problematic. In addition, the culture-initiating cell population is undefined and heterogeneous, limiting experimental studies addressing important aspects of these cells such as the behavior of endogenous precursors in vivo and the molecular mechanisms of neural generation. Using a combined fate-mapping and microdissection approach, we identified and characterized a highly enriched niche of neural crest-derived sphere-forming cells within the dermal papilla of the hair follicle of adult skin. We demonstrated that the dermal papilla of the rodent vibrissal follicle is 1,000-fold enriched for sphere-forming neural crest-derived cells compared with whole facial skin. These "papillaspheres" share a phenotypic and developmental profile similar to that of SKPs, can be readily expanded in vitro, and are able to generate both neuronal and glial cells in response to appropriate cues. We demonstrate that papillaspheres can be efficiently generated and expanded from adult human facial skin by microdissection of a single hair follicle. This strategy of targeting a highly enriched niche of sphere-forming cells provides a novel and efficient method for generating neuronal and glial cells from an accessible adult somatic source that is both defined and minimally invasive.

  15. A highly enriched niche of precursor cells with neuronal and glial potential within the hair follicle dermal papilla of adult skin.

    PubMed

    Hunt, David P J; Morris, Paul N; Sterling, Jane; Anderson, Jane A; Joannides, Alexis; Jahoda, Colin; Compston, Alastair; Chandran, Siddharthan

    2008-01-01

    Skin-derived precursor cells (SKPs) are multipotent neural crest-related stem cells that grow as self-renewing spheres and are capable of generating neurons and myelinating glial cells. SKPs are of clinical interest because they are accessible and potentially autologous. However, although spheres can be readily isolated from embryonic and neonatal skin, SKP frequency falls away sharply in adulthood, and primary sphere generation from adult human skin is more problematic. In addition, the culture-initiating cell population is undefined and heterogeneous, limiting experimental studies addressing important aspects of these cells such as the behavior of endogenous precursors in vivo and the molecular mechanisms of neural generation. Using a combined fate-mapping and microdissection approach, we identified and characterized a highly enriched niche of neural crest-derived sphere-forming cells within the dermal papilla of the hair follicle of adult skin. We demonstrated that the dermal papilla of the rodent vibrissal follicle is 1,000-fold enriched for sphere-forming neural crest-derived cells compared with whole facial skin. These "papillaspheres" share a phenotypic and developmental profile similar to that of SKPs, can be readily expanded in vitro, and are able to generate both neuronal and glial cells in response to appropriate cues. We demonstrate that papillaspheres can be efficiently generated and expanded from adult human facial skin by microdissection of a single hair follicle. This strategy of targeting a highly enriched niche of sphere-forming cells provides a novel and efficient method for generating neuronal and glial cells from an accessible adult somatic source that is both defined and minimally invasive. PMID:17901404

  16. Slit2 regulates the dispersal of oligodendrocyte precursor cells via Fyn/RhoA signaling.

    PubMed

    Liu, Xiujie; Lu, Yan; Zhang, Yong; Li, Yuanyuan; Zhou, Jiazhen; Yuan, Yimin; Gao, Xiaofei; Su, Zhida; He, Cheng

    2012-05-18

    Oligodendrocyte precursor cells (OPCs) are a unique type of glia that are responsible for the myelination of the central nervous system. OPC migration is important for myelin formation during central nervous system development and repair. However, the precise extracellular and intracellular mechanisms that regulate OPC migration remain elusive. Slits were reported to regulate neurodevelopmental processes such as migration, adhesion, axon guidance, and elongation through binding to roundabout receptors (Robos). However, the potential roles of Slits/Robos in oligodendrocytes remain unknown. In this study, Slit2 was found to be involved in regulating the dispersal of OPCs through the association between Robo1 and Fyn. Initially, we examined the expression of Robos in OPCs both in vitro and in vivo. Subsequently, the Boyden chamber assay showed that Slit2 could inhibit OPC migration. RoboN, a specific inhibitor of Robos, could significantly attenuate this effect. The effects were confirmed through the explant migration assay. Furthermore, treating OPCs with Slit2 protein deactivated Fyn and increased the level of activated RhoA-GTP. Finally, Fyn was found to form complexes with Robo1, but this association was decreased after Slit2 stimulation. Thus, we demonstrate for the first time that Slit2 regulates the dispersal of oligodendrocyte precursor cells through Fyn and RhoA signaling.

  17. Intracellular nitric oxide mediates neuroproliferative effect of neuropeptide y on postnatal hippocampal precursor cells.

    PubMed

    Cheung, Angela; Newland, Philip L; Zaben, Malik; Attard, George S; Gray, William P

    2012-06-01

    Neuropeptide Y (NPY) is widely expressed in the central and peripheral nervous systems and is proliferative for a range of cells types in vitro. NPY plays a key role in regulating adult hippocampal neurogenesis in vivo under both basal and pathological conditions, although the underlying mechanisms are largely unknown. We have investigated the role of nitric oxide (NO) on the neurogenic effects of NPY. Using postnatal rat hippocampal cultures, we show that the proliferative effect of NPY on nestin(+) precursor cells is NO-dependent. As well as the involvement of neuronal nitric-oxide synthase, the proliferative effect is mediated via an NO/cyclic guanosine monophosphate (cGMP)/cGMP-dependent protein kinase (PKG) and extracellular signal-regulated kinase (ERK) 1/2 signaling pathway. We show that NPY-mediated intracellular NO signaling results in an increase in neuroproliferation. By contrast, extracellular NO had an opposite, inhibitory effect on proliferation. The importance of the NO-cGMP-PKG signaling pathway in ERK1/2 activation was confirmed using Western blotting. This work unites two significant modulators of hippocampal neurogenesis within a common signaling framework and provides a mechanism for the independent extra- and intracellular regulation of postnatal neural precursors by NO.

  18. Early phosphorylation of MARCKS at Ser25 in migrating precursor cells and differentiating peripheral neurons.

    PubMed

    Ruiz-Perera, Lucía M; Arruti, Cristina; Zolessi, Flavio R

    2013-06-01

    MARCKS is a ubiquitous actin-binding protein, with special functions in the development of the central nervous system. We have previously described a neuronal-specific isoform, phosphorylated at serine 25 (S25p-MARCKS), which is present very early during neuronal differentiation in the chick retina. However, very little is known about MARCKS expression or functions in the peripheral nervous system (PNS). In the present work, we analyzed migrating PNS precursor cells in the chick embryo, particularly those originating from the neural crest, and found that they all express a high amount of MARCKS and that a subpopulation of them also contained S25p-MARCKS from early developmental stages. MARCKS protein was also found in dorsal root and trigeminal ganglia during embryo development. Not only is the protein present in these structures but it is also phosphorylated in differentiating neurons with a maximal signal on the ganglion periphery, where neurogenesis is occurring. In conclusion, MARCKS is present and phosphorylated at early stages during the differentiation of PNS cells and precursors, indicating that it might also be important for the differentiation of these tissues.

  19. Early phosphorylation of MARCKS at Ser25 in migrating precursor cells and differentiating peripheral neurons.

    PubMed

    Ruiz-Perera, Lucía M; Arruti, Cristina; Zolessi, Flavio R

    2013-06-01

    MARCKS is a ubiquitous actin-binding protein, with special functions in the development of the central nervous system. We have previously described a neuronal-specific isoform, phosphorylated at serine 25 (S25p-MARCKS), which is present very early during neuronal differentiation in the chick retina. However, very little is known about MARCKS expression or functions in the peripheral nervous system (PNS). In the present work, we analyzed migrating PNS precursor cells in the chick embryo, particularly those originating from the neural crest, and found that they all express a high amount of MARCKS and that a subpopulation of them also contained S25p-MARCKS from early developmental stages. MARCKS protein was also found in dorsal root and trigeminal ganglia during embryo development. Not only is the protein present in these structures but it is also phosphorylated in differentiating neurons with a maximal signal on the ganglion periphery, where neurogenesis is occurring. In conclusion, MARCKS is present and phosphorylated at early stages during the differentiation of PNS cells and precursors, indicating that it might also be important for the differentiation of these tissues. PMID:23470634

  20. Retinoic acid regulates the development of a gut homing precursor for intestinal dendritic cells

    PubMed Central

    Zeng, Ruizhu; Oderup, Cecilia; Yuan, Robert; Lee, Mike; Habtezion, Aida; Hadeiba, Husein; Butcher, Eugene C

    2012-01-01

    The vitamin A metabolite retinoic acid (RA) regulates intestinal immune responses through immunomodulatory actions on intestinal dendritic cells (DCs) and lymphocytes. Here, we show that retinoic acid also controls the generation of gut-tropic migratory DC precursors, referred to as pre-mucosal DCs (pre-μDCs). Pre-μDCs express the gut trafficking receptor α4β7 and home preferentially to the intestines. They develop in the bone marrow, can differentiate into CCR9+ plasmacytoid DCs as well as conventional DCs (cDCs), but preferentially give rise to CD103+ intestinal cDCs. Generation of pre-μDCs in vivo in the bone marrow or in vitro is regulated by RA and retinoic acid receptor α signaling. The frequency of pre-μDCs is reduced in vitamin A-deficient animals and in animals treated with retinoic acid receptor inhibitors. The results define a novel vitamin A-dependent, retinoic-acid-regulated developmental sequence for dendritic cells and identify a targeted precursor for CD103+ cDCs in the gut. PMID:23235743

  1. Melatonin and its precursors in Y79 human retinoblastoma cells - Effect of sodium butyrate

    NASA Technical Reports Server (NTRS)

    Deng, Mei H.; Lopez G.-Coviella, Ignacio; Lynch, Harry J.; Wurtman, Richard J.

    1991-01-01

    We studied the release of melatonin and the production of its precursors, 5-hydroxytryptophan and serotonin, in cultured Y79 human retinoblastoma cells. This biosynthetic capability was found to be dependent on cell differentiation, which was initiated by culturing Y79 cells for 7 days in dishes coated with poly-D-lysine to promote cell adhesion to the surface of the culture dishes. Differentiation was further induced by exposing the cell monolayer to sodium butyrate (3 mM) for three days. This protocol dramatically increased the release of melatonin, and the syntheses of 5-hydroxytryptophan and serotonin in response to forskolin stimulation. Exposure to dopamine or L-DOPA markedly diminished the forskolin-stimulated release of melatonin, as well as the production of 5-hydroxytryptophan and serotonin. These observations indicate that Y79 cells represent a primitive cell line which, following appropriate differentiation can display biochemical characteristics similar to those of the human retina. Moreover, serotonin synthesis and melatonin release appear to be coupled in Y79 ceils.

  2. Adult retinal pigment epithelium cells express neural progenitor properties and the neuronal precursor protein doublecortin.

    PubMed

    Engelhardt, Maren; Bogdahn, Ulrich; Aigner, Ludwig

    2005-04-01

    The adult mammalian retina is devoid of any detectable neurogenesis. However, different cell types have been suggested to potentially act as neural progenitors in the adult mammalian retina in vitro, such as ciliary body (CB), Muller glia, and retinal pigment epithelium (RPE) cells. In rodents and humans, strong evidence for neural stem or progenitor properties exists only for CB-derived cells, but not for other retinal cell types. Here, we provide a comparative analysis of adult rat CB- and RPE-derived cells suggesting that the two cell types share certain neural progenitor properties in vitro. CB and RPE cells expressed neural progenitor markers such as Nestin, Flk-1, Hes1, and Musashi. They proliferated under adherent and neurosphere conditions and showed limited self-renewal. Moreover, they differentiated into neuronal and glial cells based on the expression of differentiation markers such as the young neuronal marker beta-III tubulin and the glial and progenitor markers GFAP and NG2. Expression of beta-III tubulin was found in cells with neuronal and non-neuronal morphology. A subpopulation of RPE- and CB-derived progenitor cells expressed the neurogenesis-specific protein doublecortin (DCX). Interestingly, DCX expression defined a beta-III tubulin-positive CB and RPE fraction with a distinct neuronal morphology. In summary, the data suggest that RPE cells share with CB cells the potential to de-differentiate into a cell type with neural progenitor-like identity. In addition, DCX expression might define the neuronal-differentiating RPE- and CB-derived progenitor population. PMID:15804431

  3. Expression of Stromal Cell-Derived Factor-1 and of Its Receptor CXCR4 in Liver Regeneration from Oval Cells in Rat

    PubMed Central

    Mavier, Philippe; Martin, Nadine; Couchie, Dominique; Préaux, Anne-Marie; Laperche, Yannick; Zafrani, Elie Serge

    2004-01-01

    Stromal cell-derived factor-1 is a chemokine that plays a major role during embryogenesis. Since stromal cell-derived factor-1 and its unique receptor CXCR4 are involved in the differentiation of progenitor cells, we studied the expression of this chemokine and of its receptor in hepatic regeneration from precursor oval cells. Hepatic regeneration was induced by treating rats with 2-acetylaminofluorene, and followed by partial hepatectomy. Oval cell accumulation, which predominated in periportal regions, reached a maximum at days 9 to 14 after hepatectomy and declined thereafter. Oval cells strongly expressed stromal cell-derived factor-1 protein and mRNA. CXCR4 mRNA hepatic level paralleled the number of oval cells and in situ hybridization showed CXCR4 mRNA expression by these cells. Treatment of rats with fucoidan, a sulfated polysaccharide which binds to stromal cell-derived factor-1 and blocks its biological effects, markedly decreased oval cell accumulation in five of the seven treated rats. In conclusion, our data demonstrate an expression of stromal cell-derived factor-1 and of its receptor CXCR4 in oval cells during hepatic regeneration and strongly suggest that stromal cell-derived factor-1 stimulates the proliferation of these precursor cells through an autocrine/paracrine pathway. PMID:15579440

  4. Variability of doublecortin-associated dendrite maturation in adult hippocampal neurogenesis is independent of the regulation of precursor cell proliferation

    PubMed Central

    Plümpe, Tobias; Ehninger, Dan; Steiner, Barbara; Klempin, Friederike; Jessberger, Sebastian; Brandt, Moritz; Römer, Benedikt; Rodriguez, Gerardo Ramirez; Kronenberg, Golo; Kempermann, Gerd

    2006-01-01

    Background In the course of adult hippocampal neurogenesis most regulation takes place during the phase of doublecortin (DCX) expression, either as pro-proliferative effect on precursor cells or as survival-promoting effect on postmitotic cells. We here obtained quantitative data about the proliferative population and the dynamics of postmitotic dendrite development during the period of DCX expression. The question was, whether any indication could be obtained that the initiation of dendrite development is timely bound to the exit from the cell cycle. Alternatively, the temporal course of morphological maturation might be subject to additional regulatory events. Results We found that (1) 20% of the DCX population were precursor cells in cell cycle, whereas more than 70% were postmitotic, (2) the time span until newborn cells had reached the most mature stage associated with DCX expression varied between 3 days and several weeks, (3) positive or negative regulation of precursor cell proliferation did not alter the pattern and dynamics of dendrite development. Dendrite maturation was largely independent of close contacts to astrocytes. Conclusion These data imply that dendrite maturation of immature neurons is initiated at varying times after cell cycle exit, is variable in duration, and is controlled independently of the regulation of precursor cell proliferation. We conclude that in addition to the major regulatory events in cell proliferation and selective survival, additional micro-regulatory events influence the course of adult hippocampal neurogenesis. PMID:17105671

  5. Deriving human ENS lineages for cell therapy and drug discovery in Hirschsprung disease.

    PubMed

    Fattahi, Faranak; Steinbeck, Julius A; Kriks, Sonja; Tchieu, Jason; Zimmer, Bastian; Kishinevsky, Sarah; Zeltner, Nadja; Mica, Yvonne; El-Nachef, Wael; Zhao, Huiyong; de Stanchina, Elisa; Gershon, Michael D; Grikscheit, Tracy C; Chen, Shuibing; Studer, Lorenz

    2016-03-01

    The enteric nervous system (ENS) is the largest component of the autonomic nervous system, with neuron numbers surpassing those present in the spinal cord. The ENS has been called the 'second brain' given its autonomy, remarkable neurotransmitter diversity and complex cytoarchitecture. Defects in ENS development are responsible for many human disorders including Hirschsprung disease (HSCR). HSCR is caused by the developmental failure of ENS progenitors to migrate into the gastrointestinal tract, particularly the distal colon. Human ENS development remains poorly understood owing to the lack of an easily accessible model system. Here we demonstrate the efficient derivation and isolation of ENS progenitors from human pluripotent stem (PS) cells, and their further differentiation into functional enteric neurons. ENS precursors derived in vitro are capable of targeted migration in the developing chick embryo and extensive colonization of the adult mouse colon. The in vivo engraftment and migration of human PS-cell-derived ENS precursors rescue disease-related mortality in HSCR mice (Ednrb(s-l/s-l)), although the mechanism of action remains unclear. Finally, EDNRB-null mutant ENS precursors enable modelling of HSCR-related migration defects, and the identification of pepstatin A as a candidate therapeutic target. Our study establishes the first, to our knowledge, human PS-cell-based platform for the study of human ENS development, and presents cell- and drug-based strategies for the treatment of HSCR.

  6. Deriving human ENS lineages for cell therapy and drug discovery in Hirschsprung disease.

    PubMed

    Fattahi, Faranak; Steinbeck, Julius A; Kriks, Sonja; Tchieu, Jason; Zimmer, Bastian; Kishinevsky, Sarah; Zeltner, Nadja; Mica, Yvonne; El-Nachef, Wael; Zhao, Huiyong; de Stanchina, Elisa; Gershon, Michael D; Grikscheit, Tracy C; Chen, Shuibing; Studer, Lorenz

    2016-03-01

    The enteric nervous system (ENS) is the largest component of the autonomic nervous system, with neuron numbers surpassing those present in the spinal cord. The ENS has been called the 'second brain' given its autonomy, remarkable neurotransmitter diversity and complex cytoarchitecture. Defects in ENS development are responsible for many human disorders including Hirschsprung disease (HSCR). HSCR is caused by the developmental failure of ENS progenitors to migrate into the gastrointestinal tract, particularly the distal colon. Human ENS development remains poorly understood owing to the lack of an easily accessible model system. Here we demonstrate the efficient derivation and isolation of ENS progenitors from human pluripotent stem (PS) cells, and their further differentiation into functional enteric neurons. ENS precursors derived in vitro are capable of targeted migration in the developing chick embryo and extensive colonization of the adult mouse colon. The in vivo engraftment and migration of human PS-cell-derived ENS precursors rescue disease-related mortality in HSCR mice (Ednrb(s-l/s-l)), although the mechanism of action remains unclear. Finally, EDNRB-null mutant ENS precursors enable modelling of HSCR-related migration defects, and the identification of pepstatin A as a candidate therapeutic target. Our study establishes the first, to our knowledge, human PS-cell-based platform for the study of human ENS development, and presents cell- and drug-based strategies for the treatment of HSCR. PMID:26863197

  7. Isolation and transplantation of corneal endothelial cell-like cells derived from in-vitro-differentiated human embryonic stem cells.

    PubMed

    Zhang, Kai; Pang, Kunpeng; Wu, Xinyi

    2014-06-15

    The maintenance of corneal dehydration and transparency depends on barrier and pump functions of corneal endothelial cells (CECs). The human CECs have no proliferation capacity in vivo and the ability to divide in vitro under culture conditions is dramatically limited. Thus, the acquisition of massive cells analogous to normal human CECs is extremely necessary whether from the perspective of cellular basic research or from clinical applications. Here we report the derivation of CEC-like cells from human embryonic stem cells (hESCs) through the periocular mesenchymal precursor (POMP) phase. Using the transwell coculture system of hESCs with differentiated human corneal stromal cells, we induced hESCs to differentiate into POMPs. Then, CEC-like cells were derived from POMPs with lens epithelial cell-conditioned medium. Within 1 week, CEC-like cells that expressed the corneal endothelium (CE) differentiation marker N-cadherin and transcription factors FoxC1 and Pitx2 were detectable. Fluorescence-activated cell sorting (FACS)-based isolation of the N-cadherin/vimentin dual-positive population enriches for CEC-like cells. The isolated CEC-like cells were labeled with carboxyfluorescein diacetate, succinimidyl ester (CFDA SE) and seeded onto posterior acellular porcine corneal matrix lamellae to construct the CEC-like cell sheets. Pump function parameters of the CEC-like cell sheets approximated those of human donor corneas. Importantly, when the CEC-like cell sheets were transplanted into the eyes of rabbit CE dysfunction models, the corneal transparency was restored gradually. In conclusion, CEC-like cells derived from hESCs displayed characteristics of native human CECs. This renewable source of human CECs offers massive cells for further studies of human CEC biological characteristics and potential applications of replacement therapies as substitution for donor CECs in the future. PMID:24499373

  8. Generation of retinal pigment epithelial cells from human embryonic stem cell-derived spherical neural masses.

    PubMed

    Cho, Myung Soo; Kim, Sang Jin; Ku, Seung-Yup; Park, Jung Hyun; Lee, Haksup; Yoo, Dae Hoon; Park, Un Chul; Song, Seul Ae; Choi, Young Min; Yu, Hyeong Gon

    2012-09-01

    Dysfunction and loss of retinal pigment epithelium (RPE) are major pathologic changes observed in various retinal degenerative diseases such as aged-related macular degeneration. RPE generated from human pluripotent stem cells can be a good candidate for RPE replacement therapy. Here, we show the differentiation of human embryonic stem cells (hESCs) toward RPE with the generation of spherical neural masses (SNMs), which are pure masses of hESCs-derived neural precursors. During the early passaging of SNMs, cystic structures arising from opened neural tube-like structures showed pigmented epithelial morphology. These pigmented cells were differentiated into functional RPE by neuroectodermal induction and mechanical purification. Most of the differentiated cells showed typical RPE morphologies, such as a polygonal-shaped epithelial monolayer, and transmission electron microscopy revealed apical microvilli, pigment granules, and tight junctions. These cells also expressed molecular markers of RPE, including Mitf, ZO-1, RPE65, CRALBP, and bestrophin. The generated RPE also showed phagocytosis of isolated bovine photoreceptor outer segment and secreting pigment epithelium-derived factor and vascular endothelial growth factor. Functional RPE could be generated from SNM in our method. Because SNMs have several advantages, including the capability of expansion for long periods without loss of differentiation capability, easy storage and thawing, and no need for feeder cells, our method for RPE differentiation may be used as an efficient strategy for generating functional RPE cells for retinal regeneration therapy.

  9. Induction of maturation of human blood dendritic cell precursors by measles virus is associated with immunosuppression.

    PubMed

    Schnorr, J J; Xanthakos, S; Keikavoussi, P; Kämpgen, E; ter Meulen, V; Schneider-Schaulies, S

    1997-05-13

    As well as inducing a protective immune response against reinfection, acute measles is associated with a marked suppression of immune functions against superinfecting agents and recall antigens, and this association is the major cause of the current high morbidity and mortality rate associated with measles virus (MV) infections. Dendritic cells (DCs) are antigen-presenting cells crucially involved in the initiation of primary and secondary immune responses, so we set out to define the interaction of MV with these cells. We found that both mature and precursor human DCs generated from peripheral blood monocytic cells express the major MV protein receptor CD46 and are highly susceptible to infection with both MV vaccine (ED) and wild-type (WTF) strains, albeit with different kinetics. Except for the down-regulation of CD46, the expression pattern of functionally important surface antigens on mature DCs was not markedly altered after MV infection. However, precursor DCs up-regulated HLA-DR, CD83, and CD86 within 24 h of WTF infection and 72 h after ED infection, indicating their functional maturation. In addition, interleukin 12 synthesis was markedly enhanced after both ED and WTF infection in DCs. On the other hand, MV-infected DCs strongly interfered with mitogen-dependent proliferation of freshly isolated peripheral blood lymphocytes in vitro. These data indicate that the differentiation of effector functions of DCs is not impaired but rather is stimulated by MV infection. Yet, mature, activated DCs expressing MV surface antigens do give a negative signal to inhibit lymphocyte proliferation and thus contribute to MV-induced immunosuppression. PMID:9144236

  10. Topographical effects on fiber-mediated microRNA delivery to control oligodendroglial precursor cells development

    PubMed Central

    Diao, Hua Jia; Low, Wei Ching; Lu, Q. Richard; Chew, Sing Yian

    2016-01-01

    Effective remyelination in the central nervous system (CNS) facilitates the reversal of disability in patients with demyelinating diseases such as multiple sclerosis. Unfortunately until now, effective strategies of controlling oligodendrocyte (OL) differentiation and maturation remain limited. It is well known that topographical and biochemical signals play crucial roles in modulating cell fate commitment. Therefore, in this study, we explored the combined effects of scaffold topography and sustained gene silencing on oligodendroglial precursor cell (OPC) development. Specifically, microRNAs (miRs) were incorporated onto electrospun polycaprolactone (PCL) fiber scaffolds with different fiber diameters and orientations. Regardless of fiber diameter and orientation, efficient knockdown of differentiation inhibitory factors were achieved by either topography alone (up to 70%) or fibers integrated with miR-219 and miR-338 (up to 80%, p < 0.05). Small fiber promoted OPC differentiation by inducing more RIP+ cells (p < 0.05) while large fiber promoted OL maturation by inducing more MBP+ cells (p < 0.05). Random fiber enhanced more RIP+ cells than aligned fibers (p < 0.05), regardless of fiber diameter. Upon miR-219/miR-338 incorporation, 2 μm aligned fibers supported the most MBP+ cells (~17%). These findings indicated that the coupling of substrate topographic cues with efficient gene silencing by sustained microRNA delivery is a promising way for directing OPC maturation in neural tissue engineering and controlling remyelination in the CNS. PMID:26310106

  11. NFAT transcription factors regulate survival, proliferation, migration, and differentiation of neural precursor cells.

    PubMed

    Serrano-Pérez, María C; Fernández, Miriam; Neria, Fernando; Berjón-Otero, Mónica; Doncel-Pérez, Ernesto; Cano, Eva; Tranque, Pedro

    2015-06-01

    The study of factors that regulate the survival, proliferation, and differentiation of neural precursor cells (NPCs) is essential to understand neural development as well as brain regeneration. The Nuclear Factor of Activated T Cells (NFAT) is a family of transcription factors that can affect these processes besides playing key roles during development, such as stimulating axonal growth in neurons, maturation of immune system cells, heart valve formation, and differentiation of skeletal muscle and bone. Interestingly, NFAT signaling can also promote cell differentiation in adults, participating in tissue regeneration. The goal of the present study is to evaluate the expression of NFAT isoforms in NPCs, and to investigate its possible role in NPC survival, proliferation, migration, and differentiation. Our findings indicate that NFAT proteins are active not only in neurogenic brain regions such as hippocampus and subventricular zone (SVZ), but also in cultured NPCs. The inhibition of NFAT activation with the peptide VIVIT reduced neurosphere size and cell density in NPC cultures by decreasing proliferation and increasing cell death. VIVIT also decreased NPC migration and differentiation of astrocytes and neurons from NPCs. In addition, we identified NFATc3 as a predominant NFAT isoform in NPC cultures, finding that a constitutively-active form of NFATc3 expressed by adenoviral infection reduces NPC proliferation, stimulates migration, and is a potent inducer of NPC differentiation into astrocytes and neurons. In summary, our work uncovers active roles for NFAT signaling in NPC survival, proliferation and differentiation, and highlights its therapeutic potential for tissue regeneration.

  12. Notch signaling differentially regulates the cell fate of early endocrine precursor cells and their maturing descendants in the mouse pancreas and intestine.

    PubMed

    Li, Hui Joyce; Kapoor, Archana; Giel-Moloney, Maryann; Rindi, Guido; Leiter, Andrew B

    2012-11-15

    Notch signaling inhibits differentiation of endocrine cells in the pancreas and intestine. In a number of cases, the observed inhibition occurred with Notch activation in multipotential cells, prior to the initiation of endocrine differentiation. It has not been established how direct activation of Notch in endocrine precursor cells affects their subsequent cell fate. Using conditional activation of Notch in cells expressing Neurogenin3 or NeuroD1, we examined the effects of Notch in both organs, on cell fate of early endocrine precursors and maturing endocrine-restricted cells, respectively. Notch did not preclude the differentiation of a limited number of endocrine cells in either organ when activated in Ngn3(+) precursor cells. In addition, in the pancreas most Ngn3(+) cells adopted a duct but not acinar cell fate; whereas in intestinal Ngn3(+) cells, Notch favored enterocyte and goblet cell fates, while selecting against endocrine and Paneth cell differentiation. A small fraction of NeuroD1(+) cells in the pancreas retain plasticity to respond to Notch, giving rise to intraislet ductules as well as cells with no detectable pancreatic lineage markers that appear to have limited ultrastructural features of both endocrine and duct cells. These results suggest that Notch directly regulates cell fate decisions in multipotential early endocrine precursor cells. Some maturing endocrine-restricted NeuroD1(+) cells in the pancreas switch to the duct lineage in response to Notch, indicating previously unappreciated plasticity at such a late stage of endocrine differentiation.

  13. Bone marrow-derived mesenchymal cell differentiation toward myogenic lineages: facts and perspectives.

    PubMed

    Galli, Daniela; Vitale, Marco; Vaccarezza, Mauro

    2014-01-01

    Bone marrow-derived mesenchymal stem cells (BM-MSCs) are valuable platforms for new therapies based on regenerative medicine. BM-MSCs era is coming of age since the potential of these cells is increasingly demonstrated. In fact, these cells give origin to osteoblasts, chondroblasts, and adipocyte precursors in vitro, and they can also differentiate versus other mesodermal cell types like skeletal muscle precursors and cardiomyocytes. In our short review, we focus on the more recent manipulations of BM-MSCs toward skeletal and heart muscle differentiation, a growing field of obvious relevance considering the toll of muscle disease (i.e., muscular dystrophies), the heavier toll of heart disease in developed countries, and the still not completely understood mechanisms of muscle differentiation and repair. PMID:25054145

  14. Polyimide Precursor Solid Residuum

    NASA Technical Reports Server (NTRS)

    Weiser, Erik S. (Inventor); St.Clair, Terry L. (Inventor); Echigo, Yoshiaki (Inventor); Kaneshiro, Hisayasu (Inventor)

    2001-01-01

    A polyimide precursor solid residuum is an admixture of an aromatic dianhydride or derivative thereof and an aromatic diamine or derivative thereof plus a complexing agent, which is complexed with the admixture by hydrogen bonding. The polyimide precursor solid residuum is effectively employed in the preparation of polyimide foam and the fabrication of polyimide foam structures.

  15. Bone marrow origin of decidual cell precursors in the pseudopregnant mouse uterus

    SciTech Connect

    Kearns, M.; Lala, P.K.

    1982-05-01

    Decidual cells are considered to be the endproduct of a hormonally induced transformation of endometrial stromal cells of the uterus. However, the source of these precursors remains unknown. This study of evaluated the possibility of their bone marrow origin by an examination of the H-2 phenotype of decidual cells in pseudopregnant bone marrow chimeras. These chimeras were produced by repopulating lethally irradiated CBA/J female (H-2k) mice with bone marrow from (CBA/J x C57BL/6J) F1 female (H-2kb) mice. Pseudopregnancy was produced with a hormonal regimen followed by an oil-induced decidual stimulus. Chimerism was evaluated radioautographically by an identification of the donor-specific Kb phenotype on cells with an immunolabeling technique with monospecific anti-H-2 serum followed by radioiodinated protein A. The extent of chimerism as indicated by the degree of Kb labeling on decidual cells as well as macrophages contained within the decidual nodules was quantitatively compared with that seen on splenic lymphocytes. Fair to good chimerism, as reflected by labeling for the donor-specific marker (Kb), was seen on splenic lymphocytes and macrophages within the decidual nodules in 6 out of 11 animals. A similar level of chimerism was detected on decidual cells in all but one of these six, in which case this was low. One animal showed low chimerism in the spleen but good chimerism on the decidual cells. The remaining four mice were nonchimeric for all three cell types. These results indicate that decidual cells and macrophages appearing within the decidual nodules of pseudopregnant mice are ultimate descendants of bone marrow cells.

  16. [Effect of precursor on growth and accumulation of alkaloids of Lycoris radiata suspension cells].

    PubMed

    Zhang, Yuqiong; Li, Yong; Zhou, Jianhui; Chen, Na; Wang, Meifang; Dong, Zhaorong; Gao, Cuiyun; Zhong, Yanlong

    2014-02-01

    In order to investigate the effects of phenylalanine, tyrosine and tyramine on the growth of Lycoris radiata suspension cells and the accumulation of alkaloids, the growth quantity of the cells as well as the content of alkaloids in cells were determined, which were treated with above three kinds of precursors alone and phenylalanine combined with tyrosine respectively. The results indicate that the addition of phenylalanine alone and addition of phenylalanine on the basis of tyrosine at high concentration (200 micromol/L) had no significant effect on the growth of Lycoris radiata suspension cells and the content of alkaloids in cells; whereas tyrosine and tyramine promoted the growth of the cells and alkaloids accumulation. Treated with tyrosine at high concentration (200 micromol/L), the content of alkaloids of the cells was 2.56-fold higher than that of the control group, the amounts of lycoramine (3.77 mg/g) and galanthamine (4.46 mg/g) were 6.61-fold and 6.97-fold higher than that of the control group, respectively. When treated with tyramine (200 micromol/L), the amount of alkaloids in Lycoris radiata suspension cells was 2.63-fold higher than that of the control group, and the amounts of lycoramine (4.45 mg/g) and galanthamine (5.14 mg/g) were 9.08-fold and 9.18-fold higher than that of the control group, respectively. The above results demonstrate that adding tyrosine and tyramine in the media significantly promoted the growth of the Lycoris radiata suspension cells and alkaloids accumulation in the cells. PMID:24945053

  17. Severe anaemia due to haematopoietic precursor cell destruction in field cases of East Coast Fever in Tanzania.

    PubMed

    Mbassa, G K; Balemba, O; Maselle, R M; Mwaga, N V

    1994-04-01

    Examinations were made on erythrocytes, thrombocytes, leukocytes, lymph nodes, thymus, haemal nodes and bone marrow in field cases of East Coast Fever (ECF) in Tanzania. Seventy-six clinically sick short-horn Zebu and Taurine-Zebu crosses, positive for Theileria parva piroplasms and schizonts and 55 apparently healthy cattle were studied. The syndrome observed was characterised by severe pancytopenia, with massive normocytic, normochromic anaemia, panleukopenia and thrombocytopenia, but no reticulocytes in peripheral blood. The erythrocyte and leukocyte counts, haematocrit and haemoglobin concentrations were greatly decreased compared with those of the healthy cattle. The means +/- SD (with values of healthy cattle in parentheses) were 2.85 +/- 1.10 (6.04 +/- 1.58) x 10(12) l-1, 2.78 +/- 1.70 (10.59 +/- 4.16) x 10(9) l-1, 0.19 +/- 0.06 (0.31 +/- 0.054)1 l-1 and 4.07 +/- 1.62 (7.29 +/- 1.39) mmol l-1 respectively. Lymphoproliferation was low, while lymphocyte destruction (lymphocytolysis) was high. There were very few small schizonts in parotid and prescapular glands. Lymphocytes were extensively destroyed in medullary cords, germinal centres of lymph nodules in cortex and paracortical regions of lymph nodes and haemal nodes. The bone marrow was hypocellular, with only a few haematopoietic precursor erythroid, granulocytic and thrombopoietic cell series. All stages of prorubriblasts and rubricytes had granulated nuclei, some with schizonts. Infection of erythrocytes by merozoites appeared to take place in precursor stages. The destruction of erythroblasts, rubricytes and other haematopoietic cells resulted in anaemia without reticulocytosis, haemoglobinuria and jaundice, accompanied by panleukopenia of extreme neutropenia, lymphopenia and eosinopenia. This indicated that this T. parva strain differs from previously described buffalo- or cattle-derived T. parva infections in causing both haemoproliferation and lymphoproliferation by extensive haematopoietic cell

  18. Processing, Microstructure, and Mechanical Properties of Si3N4/SiC Nanocomposites from Precursor Derived Ceramics

    NASA Astrophysics Data System (ADS)

    Strong, Kevin Thomas, Jr.

    Polymer-derived ceramics (PDCs) provides a unique processing route to create Si3N4/SiC composites. Silazane precursor polyureasilazane (Ceraset PURS20) produce's an amorphous SiCN ceramic at temperatures of ~800 -- 1200 °C and crystallizes to a Si3N4/SiC nanocomposite at temperatures >1500 °C. A novel processing technique was developed where crosslinked polymers were heat-treated in a reactive NH3 atmosphere to control the stoichiometry of the pyrolyzed SiCN ceramic. Using this technique processing parameters were established to produce SiCN powders that resulted in nanocomposites with approximately 0, 5, 10, 20 and 30 vol. % SiC. Lu2O3 was added to these powders as a sintering aid and were densified using Hot Pressing and Field Assisted Sintering. The sintered nanocomposites resulted in microstructures with multiple-length scales. These length-scales included Si3N4 (0.1 -- 5 microm), SiC (10 -- 100 nm) and the intergranular grain boundary phase (<1 nm). Using a combination of SEM and TEM it was possible to quantify some of these microstructural features such as the size and location of the SiC. Hardness and fracture toughness testing was conducted to compared the room temperature mechanical properties of these resultant microstructures. This research was intended to develop robust processing approaches that can be used to control the nanostructures of Si3N4/SiC composites with significant structural features at multiple length scales. The control of their features and the investigation of their affect on the properties of composites can be used to simulate the affect of the structure on properties. These models can then be used to design optimal microstructures for specific applications.

  19. Nestin-Expressing Precursors Give Rise to Both Endothelial as well as Nonendothelial Lymph Node Stromal Cells.

    PubMed

    Koning, Jasper J; Konijn, Tanja; Lakeman, Kim A; O'Toole, Tom; Kenswil, Keane J G; Raaijmakers, Marc H G P; Michurina, Tatyana V; Enikolopov, Grigori; Mebius, Reina E

    2016-10-01

    During embryogenesis, lymph nodes form through intimate interaction between lymphoid tissue inducer and lymphoid tissue organizer (LTo) cells. Shortly after birth in mice, specialized stromal cell subsets arise that organize microenvironments within the lymph nodes; however, their direct precursors have not yet been identified. In the bone marrow, mesenchymal stem cells are labeled with GFP in nestin-GFP mice, and we show that during all stages of development, nestin(+) cells are present within lymph nodes of these mice. At day of birth, both mesenchymal CD31(-) and endothelial CD31(+) LTo cells were GFP(+), and only the population of CD31(-) LTo cells contained mesenchymal precursors. These CD31(-)nestin(+) cells are found in the T and B cell zones or in close association with high endothelial venules in adult lymph nodes. Fate mapping of nestin(+) cells unambiguously revealed the contribution of nestin(+) precursor cells to the mesenchymal as well as the endothelial stromal populations within lymph nodes. However, postnatal tamoxifen induced targeting of nestin(+) cells in nes-creER mice showed that most endothelial cells and only a minority of the nonendothelial cells were labeled. Overall our data show that nestin(+) cells contribute to all subsets of the complex stromal populations that can be found in lymph nodes. PMID:27574301

  20. Myeloid Derived Suppressor Cells in Breast Cancer

    PubMed Central

    Markowitz, Joseph; Wesolowski, Robert; Papenfuss, Tracey; Brooks, Taylor R.

    2013-01-01

    Myeloid Derived Suppressor Cells (MDSCs) are a population of immature myeloid cells defined by their suppressive actions on immune cells such as T cells, dendritic cells, and natural killer cells. MDSCs typically are positive for the markers CD33 and CD11b but express low levels of HLADR in humans. In mice, MDSCs are typically positive for both CD11b and Gr1. These cells exert their suppressive activity on the immune system via the production of reactive oxygen species, arginase, and cytokines. These factors subsequently inhibit the activity of multiple protein targets such as the T cell receptor, STAT1, and indoleamine-pyrrole 2,3-dioxygenase. The numbers of MDSCs tend to increase with cancer burden while inhibiting MDSCs improves disease outcome in murine models. MDSCs also inhibit immune cancer therapeutics. In light of the poor prognosis of metastatic breast cancer in women and the correlation of increasing levels of MDSCs with increasing disease burden, the purposes of this review are to 1) discuss why MDSCs may be important in breast cancer, 2) describe model systems used to study MDSCs in vitro and in vivo, 3) discuss mechanisms involved in MDSC induction/function in breast cancer, and 4) present pre-clinical and clinical studies that explore modulation of the MDSC-immune system interaction in breast cancer. MDSCs inhibit the host immune response in breast cancer patients and diminishing MDSC actions may improve therapeutic outcomes. PMID:23828498

  1. Endothelial cells derived from human embryonic stem cells

    NASA Astrophysics Data System (ADS)

    Levenberg, Shulamit; Golub, Justin S.; Amit, Michal; Itskovitz-Eldor, Joseph; Langer, Robert

    2002-04-01

    Human embryonic stem cells have the potential to differentiate into various cell types and, thus, may be useful as a source of cells for transplantation or tissue engineering. We describe here the differentiation steps of human embryonic stem cells into endothelial cells forming vascular-like structures. The human embryonic-derived endothelial cells were isolated by using platelet endothelial cell-adhesion molecule-1 (PECAM1) antibodies, their behavior was characterized in vitro and in vivo, and their potential in tissue engineering was examined. We show that the isolated embryonic PECAM1+ cells, grown in culture, display characteristics similar to vessel endothelium. The cells express endothelial cell markers in a pattern similar to human umbilical vein endothelial cells, their junctions are correctly organized, and they have high metabolism of acetylated low-density lipoprotein. In addition, the cells are able to differentiate and form tube-like structures when cultured on matrigel. In vivo, when transplanted into SCID mice, the cells appeared to form microvessels containing mouse blood cells. With further studies, these cells could provide a source of human endothelial cells that could be beneficial for potential applications such as engineering new blood vessels, endothelial cell transplantation into the heart for myocardial regeneration, and induction of angiogenesis for treatment of regional ischemia.

  2. Limited ethanol exposure selectively alters the proliferation of precursor cells in the cerebral cortex.

    PubMed

    Miller, M W

    1996-02-01

    The present in vivo study tests the hypothesis that limited (4-day) exposure to ethanol differentially affects the proliferation of cortical precursors in the two cortical germinal zones [the ventricular zone (VZ) and the subventricular zone (SZ)] and their descendants in the mature brain. The offspring of pregnant rats fed a liquid diet containing 6.7% (v/v) ethanol when prosencephalic stem cells [gestation day (G) 6-69], VZ cells (G12-G15), and SZ cells were proliferating (G18- G21) throughout much of gestation (G6-G21). In addition, the offspring of rats pair-fed a liquid control diet or fed chow were examined. The pregnant dams were administered with bromodeoxyuridine (BrdU) on either G15 or G21. The ratio of the number of cells that incorporated BrdU to the total number (the labeling index) was determined 1-hr postinjection (i.e., on G15 or G21) or on postnatal day 60, Ethanol treatment between G6 and G21 reduced the ratio of cells labeled by an injection of BrdU on G15 in the fetus and in the adult, and increased the ratio of cells labeled on G21. Regardless of when the injection was placed, ethanol treatment between G6 and G9 had no effect upon the ratio of BrdU-labeled cells in the fetus or mature cortex. Exposure from G12 to G15 decreased the number of VZ cells in the fetus and the number of immunolabeled cells in the adult cortex labeled by an injection on G15. This exposure had no effect on the incorporation by SZ cells. In contrast, ethanol exposure from G18 to G21 increased the labeling indices for fetal SZ cells and for cells in the adult, but it had no effect on the ratio of labeled VZ cells. Although ethanol had no apparent effect on the proliferation of stem cells, it did alter the proliferation of cells in the VZ and SZ. These effects are time-dependent and underlie the ethanol-induced changes in the number of cells in the adult.

  3. OTX2 exhibits cell-context-dependent effects on cellular and molecular properties of human embryonic neural precursors and medulloblastoma cells

    PubMed Central

    Kaur, Ravinder; Aiken, Christopher; Morrison, Ludivine Coudière; Rao, Radhika; Del Bigio, Marc R.; Rampalli, Shravanti; Werbowetski-Ogilvie, Tamra

    2015-01-01

    ABSTRACT Medulloblastoma (MB) is the most common malignant primary pediatric brain tumor and is currently divided into four subtypes based on different genomic alterations, gene expression profiles and response to treatment: WNT, Sonic Hedgehog (SHH), Group 3 and Group 4. This extensive heterogeneity has made it difficult to assess the functional relevance of genes to malignant progression. For example, expression of the transcription factor Orthodenticle homeobox2 (OTX2) is frequently dysregulated in multiple MB variants; however, its role may be subtype specific. We recently demonstrated that neural precursors derived from transformed human embryonic stem cells (trans-hENs), but not their normal counterparts (hENs), resemble Groups 3 and 4 MB in vitro and in vivo. Here, we tested the utility of this model system as a means of dissecting the role of OTX2 in MB using gain- and loss-of-function studies in hENs and trans-hENs, respectively. Parallel experiments with MB cells revealed that OTX2 exerts inhibitory effects on hEN and SHH MB cells by regulating growth, self-renewal and migration in vitro and tumor growth in vivo. This was accompanied by decreased expression of pluripotent genes, such as SOX2, and was supported by overexpression of SOX2 in OTX2+ SHH MB and hENs that resulted in significant rescue of self-renewal and cell migration. By contrast, OTX2 is oncogenic and promotes self-renewal of trans-hENs and Groups 3 and 4 MB independent of pluripotent gene expression. Our results demonstrate a novel role for OTX2 in self-renewal and migration of hENs and MB cells and reveal a cell-context-dependent link between OTX2 and pluripotent genes. Our study underscores the value of human embryonic stem cell derivatives as alternatives to cell lines and heterogeneous patient samples for investigating the contribution of key developmental regulators to MB progression. PMID:26398939

  4. OTX2 exhibits cell-context-dependent effects on cellular and molecular properties of human embryonic neural precursors and medulloblastoma cells.

    PubMed

    Kaur, Ravinder; Aiken, Christopher; Morrison, Ludivine Coudière; Rao, Radhika; Del Bigio, Marc R; Rampalli, Shravanti; Werbowetski-Ogilvie, Tamra

    2015-10-01

    Medulloblastoma (MB) is the most common malignant primary pediatric brain tumor and is currently divided into four subtypes based on different genomic alterations, gene expression profiles and response to treatment: WNT, Sonic Hedgehog (SHH), Group 3 and Group 4. This extensive heterogeneity has made it difficult to assess the functional relevance of genes to malignant progression. For example, expression of the transcription factor Orthodenticle homeobox2 (OTX2) is frequently dysregulated in multiple MB variants; however, its role may be subtype specific. We recently demonstrated that neural precursors derived from transformed human embryonic stem cells (trans-hENs), but not their normal counterparts (hENs), resemble Groups 3 and 4 MB in vitro and in vivo. Here, we tested the utility of this model system as a means of dissecting the role of OTX2 in MB using gain- and loss-of-function studies in hENs and trans-hENs, respectively. Parallel experiments with MB cells revealed that OTX2 exerts inhibitory effects on hEN and SHH MB cells by regulating growth, self-renewal and migration in vitro and tumor growth in vivo. This was accompanied by decreased expression of pluripotent genes, such as SOX2, and was supported by overexpression of SOX2 in OTX2+ SHH MB and hENs that resulted in significant rescue of self-renewal and cell migration. By contrast, OTX2 is oncogenic and promotes self-renewal of trans-hENs and Groups 3 and 4 MB independent of pluripotent gene expression. Our results demonstrate a novel role for OTX2 in self-renewal and migration of hENs and MB cells and reveal a cell-context-dependent link between OTX2 and pluripotent genes. Our study underscores the value of human embryonic stem cell derivatives as alternatives to cell lines and heterogeneous patient samples for investigating the contribution of key developmental regulators to MB progression. PMID:26398939

  5. Neuregulin-1/ErbB4 signaling controls the migration of oligodendrocyte precursor cells during development.

    PubMed

    Ortega, M Cristina; Bribián, Ana; Peregrín, Sandra; Gil, M Trinidad; Marín, Oscar; de Castro, Fernando

    2012-06-01

    During embryonic development, the oligodendrocyte precursors (OPCs) are generated in specific oligodendrogliogenic sites within the neural tube and migrate to colonize the entire CNS. Different factors have been shown to influence the OPC migration and differentiation, including morphogens, growth factors, chemotropic molecules, and extracellular matrix proteins. Neuregulins have been shown to influence the migration of neuronal precursors as well as the movement and differentiation of Schwann cells for peripheral myelination, but their role in the motility of OPCs has not been explored. In the present study, we have used the optic nerve as an experimental model to examine the function of Nrg1 and its ErbB4 receptor in the migration of OPCs in the developing embryo. In vitro experiments revealed that Nrg1 is a potent chemoattractant for the first wave of OPCs, and that this effect is mediated via ErbB4 receptor. In contrast, OPCs colonizing the optic nerve at postnatal stages (PDGFRα(+)-OPCs) does not respond to Nrg1-chemoattraction. We also found that mouse embryos lacking ErbB4 display deficits in early OPC migration away from different oligodendrogliogenic regions in vivo. The present findings reveal a new role for Nrg1/ErbB4 signaling in regulating OPC migration selectively during early stages of CNS development.

  6. Degradation of algal organic matter using microbial fuel cells and its association with trihalomethane precursor removal.

    PubMed

    Wang, Huan; Liu, Dongmei; Lu, Lu; Zhao, Zhiwei; Xu, Yongpeng; Cui, Fuyi

    2012-07-01

    In order to provide an alternative for removal of algal organic matter (AOM) produced during algal blooms in aquatic environment, microbial fuel cell (MFC) was used to study AOM degradation and its association with THM precursor removal. The chemical oxygen demand (COD) removals in MFCs were 81 ± 6% and 73 ± 3% for AOM from Microcystis aeruginosa (AOM(M)) and Chlorella vulgaris (AOM(C)), respectively. THM precursor was also effectively degraded (AOM(M) 85 ± 2%, AOM(C) 72 ± 4%). The major AOM components (proteins, lipids, and carbohydrates) were obviously removed in MFCs. The contribution of each component to the THM formation potential (THMFP) was obtained based on calculation. The THMFP produced from soluble microbial products was very low. If the energy input during operation process was not considered, MFCs treatment could recover electrical energy of 0.29 ± 0.02 kWh/kg COD (AOM(M)) and 0.35 ± 0.06 kWh/kg COD (AOM(C)).

  7. Overexpression of amyloid precursor protein increases copper content in HEK293 cells

    SciTech Connect

    Suazo, Miriam; Hodar, Christian; Morgan, Carlos; Cerpa, Waldo; Cambiazo, Veronica; Inestrosa, Nibaldo C.; Gonzalez, Mauricio

    2009-05-15

    Amyloid precursor protein (APP) is a transmembrane glycoprotein widely expressed in mammalian tissues and plays a central role in Alzheimer's disease. However, its physiological function remains elusive. Cu{sup 2+} binding and reduction activities have been described in the extracellular APP135-156 region, which might be relevant for cellular copper uptake and homeostasis. Here, we assessed Cu{sup 2+} reduction and {sup 64}Cu uptake in two human HEK293 cell lines overexpressing APP. Our results indicate that Cu{sup 2+} reduction increased and cells accumulated larger levels of copper, maintaining cell viability at supra-physiological levels of Cu{sup 2+} ions. Moreover, wild-type cells exposed to both Cu{sup 2+} ions and APP135-155 synthetic peptides increased copper reduction and uptake. Complementation of function studies in human APP751 transformed Fre1 defective Saccharomyces cerevisiae cells rescued low Cu{sup 2+} reductase activity and increased {sup 64}Cu uptake. We conclude that Cu{sup 2+} reduction activity of APP facilitates copper uptake and may represent an early step in cellular copper homeostasis.

  8. PERK Activation Promotes Medulloblastoma Tumorigenesis by Attenuating Premalignant Granule Cell Precursor Apoptosis.

    PubMed

    Ho, Yeung; Li, Xiting; Jamison, Stephanie; Harding, Heather P; McKinnon, Peter J; Ron, David; Lin, Wensheng

    2016-07-01

    Evidence suggests that activation of pancreatic endoplasmic reticulum kinase (PERK) signaling in response to endoplasmic reticulum stress negatively or positively influences cell transformation by regulating apoptosis. Patched1 heterozygous deficient (Ptch1(+/-)) mice reproduce human Gorlin's syndrome and are regarded as the best animal model to study tumorigenesis of the sonic hedgehog subgroup of medulloblastomas. It is believed that medulloblastomas in Ptch1(+/-) mice results from the transformation of granule cell precursors (GCPs) in the developing cerebellum. Here, we determined the role of PERK signaling on medulloblastoma tumorigenesis by assessing its effects on premalignant GCPs and tumor cells. We found that PERK signaling was activated in both premalignant GCPs in young Ptch1(+/-) mice and medulloblastoma cells in adult mice. We demonstrated that PERK haploinsufficiency reduced the incidence of medulloblastomas in Ptch1(+/-) mice. Interestingly, PERK haploinsufficiency enhanced apoptosis of premalignant GCPs in young Ptch1(+/-) mice but had no significant effect on medulloblastoma cells in adult mice. Moreover, we showed that the PERK pathway was activated in medulloblastomas in humans. These results suggest that PERK signaling promotes medulloblastoma tumorigenesis by attenuating apoptosis of premalignant GCPs during the course of malignant transformation. PMID:27181404

  9. TIP30 inhibits oligodendrocyte precursor cell differentiation via cytoplasmic sequestration of Olig1.

    PubMed

    Yang, Wenjing; Xiao, Lin; Li, Cui; Liu, Xiuyun; Liu, Mingdong; Shao, Qi; Wang, Dan; Huang, Aijun; He, Cheng

    2015-04-01

    Differentiation of oligodendrocyte precursor cells (OPCs) is a prerequisite for both developmental myelination and adult remyelination in the central nervous system. The molecular mechanisms underlying OPC differentiation remain largely unknown. Here, we show that the thirty-kDa HIV-1 Tat interacting protein (TIP30) is a negative regulator in oligodendrocyte development. The TIP30(-/-) mice displayed an increased myelin protein level at postnatal day 14 and 21. By using a primary OPC culture system, we demonstrated that overexpression of TIP30 dramatically inhibited the stage progression of differentiating OPCs, while knockdown of TIP30 enhanced the differentiation of oligodendroglial cells remarkably. Moreover, overexpression of TIP30 was found to sequester the transcription factor Olig1 in the cytoplasm and weaken its nuclear translocation due to the interaction between TIP30 and Olig1, whereas knockdown of TIP30 led to more Olig1 localized in the nucleus in the initiation stage during OPC differentiation. In the cuprizone-induced demyelination model, there was a dramatic increase in NG2-expressing cells with nuclear location of Olig1 in the corpus callosum during remyelination. In contrast, within chronic demyelinated lesions in multiple sclerosis, TIP30 was abnormally expressed in NG2-expressing cells, and few nuclear Olig1 was observed in these cells. Taken together, our findings suggest that TIP30 plays a negative regulatory role in oligodendroglial differentiation.

  10. Transformation of quiescent adult oligodendrocyte precursor cells into malignant glioma through a multistep reactivation process.

    PubMed

    Galvao, Rui Pedro; Kasina, Anita; McNeill, Robert S; Harbin, Jordan E; Foreman, Oded; Verhaak, Roel G W; Nishiyama, Akiko; Miller, C Ryan; Zong, Hui

    2014-10-01

    How malignant gliomas arise in a mature brain remains a mystery, hindering the development of preventive and therapeutic interventions. We previously showed that oligodendrocyte precursor cells (OPCs) can be transformed into glioma when mutations are introduced perinatally. However, adult OPCs rarely proliferate compared with their perinatal counterparts. Whether these relatively quiescent cells have the potential to transform is unknown, which is a critical question considering the late onset of human glioma. Additionally, the premalignant events taking place between initial mutation and a fully developed tumor mass are particularly poorly understood in glioma. Here we used a temporally controllable Cre transgene to delete p53 and NF1 specifically in adult OPCs and demonstrated that these cells consistently give rise to malignant gliomas. To investigate the transforming process of quiescent adult OPCs, we then tracked these cells throughout the premalignant phase, which revealed a dynamic multistep transformation, starting with rapid but transient hyperproliferative reactivation, followed by a long period of dormancy, and then final malignant transformation. Using pharmacological approaches, we discovered that mammalian target of rapamycin signaling is critical for both the initial OPC reactivation step and late-stage tumor cell proliferation and thus might be a potential target for both glioma prevention and treatment. In summary, our results firmly establish the transforming potential of adult OPCs and reveal an actionable multiphasic reactivation process that turns slowly dividing OPCs into malignant gliomas.

  11. Transformation of quiescent adult oligodendrocyte precursor cells into malignant glioma through a multistep reactivation process.

    PubMed

    Galvao, Rui Pedro; Kasina, Anita; McNeill, Robert S; Harbin, Jordan E; Foreman, Oded; Verhaak, Roel G W; Nishiyama, Akiko; Miller, C Ryan; Zong, Hui

    2014-10-01

    How malignant gliomas arise in a mature brain remains a mystery, hindering the development of preventive and therapeutic interventions. We previously showed that oligodendrocyte precursor cells (OPCs) can be transformed into glioma when mutations are introduced perinatally. However, adult OPCs rarely proliferate compared with their perinatal counterparts. Whether these relatively quiescent cells have the potential to transform is unknown, which is a critical question considering the late onset of human glioma. Additionally, the premalignant events taking place between initial mutation and a fully developed tumor mass are particularly poorly understood in glioma. Here we used a temporally controllable Cre transgene to delete p53 and NF1 specifically in adult OPCs and demonstrated that these cells consistently give rise to malignant gliomas. To investigate the transforming process of quiescent adult OPCs, we then tracked these cells throughout the premalignant phase, which revealed a dynamic multistep transformation, starting with rapid but transient hyperproliferative reactivation, followed by a long period of dormancy, and then final malignant transformation. Using pharmacological approaches, we discovered that mammalian target of rapamycin signaling is critical for both the initial OPC reactivation step and late-stage tumor cell proliferation and thus might be a potential target for both glioma prevention and treatment. In summary, our results firmly establish the transforming potential of adult OPCs and reveal an actionable multiphasic reactivation process that turns slowly dividing OPCs into malignant gliomas. PMID:25246577

  12. Molecular precursor derived silicon boron carbonitride/carbon nanotube and silicon oxycarbide/carbon nanotube composite nanowires for energy based applications

    NASA Astrophysics Data System (ADS)

    Bhandavat, Romil

    Molecular precursor derived ceramics (also known as polymer-derived ceramics or PDCs) are high temperature glasses that have been studied for applications involving operation at elevated temperatures. Prepared from controlled thermal degradation of liquid-phase organosilicon precursors, these ceramics offer remarkable engineering properties such as resistance to crystallization up to 1400 °C, semiconductor behavior at high temperatures and intense photoluminescence. These properties are a direct result of their covalent bonded amorphous network and free (-sp2) carbon along with mixed Si/B/C/N/O bonds, which otherwise can not be obtained through conventional ceramic processing techniques. This thesis demonstrates synthesis of a unique core/shell type nanowire structure involving either siliconboroncarbonitride (SiBCN) or siliconoxycarbide (SiOC) as the shell with carbon nanotube (CNT) acting as the core. This was made possible by liquid phase functionalization of CNT surfaces with respective polymeric precursor (e.g., home-made boron-modified polyureamethylvinylsilazane for SiBCN/CNT and commercially obtained polysiloxane for SiOC/CNT), followed by controlled pyrolysis in inert conditions. This unique architecture has several benefits such as high temperature oxidation resistance (provided by the ceramic shell), improved electrical conductivity and mechanical toughness (attributed to the CNT core) that allowed us to explore its use in energy conversion and storage devices. The first application involved use of SiBCN/CNT composite as a high temperature radiation absorbant material for laser thermal calorimeter. SiBCN/CNT spray coatings on copper substrate were exposed to high energy laser beams (continuous wave at 10.6 mum 2.5 kW CO2 laser, 10 seconds) and resulting change in its microstructure was studied ex-situ. With the aid of multiple techniques we ascertained the thermal damage resistance to be 15 kW/cm -2 with optical absorbance exceeding 97%. This represents

  13. The influence of precursor structure on the development of porosity in polymer-derived SiC

    SciTech Connect

    Nebo, J.F.; Scotto, C.S.; Bennett, C.A.; Brinker, C.J. |

    1996-07-01

    Polymer-based routes to ceramic oxides take advantage of precursor chemistry and structure to produce materials with a range of pore sizes. Polymer precursor routes to non-oxide ceramics offer products with superior thermal and chemical stability in many cases. Polymethylsilane (PMS), a versatile cross linked SiC precursor, [(MeHSi){sub x}(MeSi){sub y}], was synthesized using published procedures to yield fluid precursors with a low (20--40%) degree of cross linking. Unique, highly cross linked (60--70%), solid polymers were produced under reaction conditions which carefully conserve the volatile monomer. These two polymers were converted to SiC to determine the relative importance of the various contributions to porosity, and to assess the role of precursor structure on porosity development in non-oxides. Initial results indicate that precursor structure has little effect on porosity. The development of the porosity appears to be dominated by high temperature thermochemistry and/or microstructural changes.

  14. Pro-gliogenic effect of IL-1alpha in the differentiation of embryonic neural precursor cells in vitro.

    PubMed

    Ajmone-Cat, Maria Antonietta; Cacci, Emanuele; Ragazzoni, Ylenia; Minghetti, Luisa; Biagioni, Stefano

    2010-05-01

    Inflammation is regarded as a main obstacle to brain regeneration. Major detrimental effects are attributed to microglial/macrophagic products, such as TNF-alpha and interleukin (IL)-6. The role of cytokines of the IL-1 family, particularly of IL-1alpha, in the modulation of neural precursor cell (NPC) properties is less characterized. IL-1alpha is one of the most abundant cytokines released upon acute stimulation of microglia with lipopolysaccharide and is down-regulated upon chronic stimulation. As we recently demonstrated, acutely activated microglia reduces NPC survival, prevent neuronal differentiation and promote glial differentiation. Chronically activated microglia are instead permissive to NPC survival and neuronal differentiation, and less effective in promoting astrocytic differentiation. We thus investigated whether IL-1alpha could contribute to the effects of acutely activated microglia on NPC. We found that NPC express functional IL-1 receptors and that exposure to recombinant IL-1alpha strongly enhances NPC differentiation into astrocytes, without affecting cell viability and neuronal differentiation. In the same conditions, recombinant IL-1beta has pro-gliogenic effects at concentrations 10-fold higher than those found in activated microglial conditioned media. Interestingly, immunodepletion of IL-1alpha in activated microglial conditioned media fails to revert microglial pro-gliogenic action and slightly enhances neuronal differentiation, revealing that other microglial-derived factors contribute to the modulation of NPC properties. PMID:20236219

  15. Kinesin Light Chain 1 Suppression Impairs Human Embryonic Stem Cell Neural Differentiation and Amyloid Precursor Protein Metabolism

    PubMed Central

    Killian, Rhiannon L.; Flippin, Jessica D.; Herrera, Cheryl M.; Almenar-Queralt, Angels; Goldstein, Lawrence S. B.

    2012-01-01

    The etiology of sporadic Alzheimer disease (AD) is largely unknown, although evidence implicates the pathological hallmark molecules amyloid beta (Aβ) and phosphorylated Tau. Work in animal models suggests that altered axonal transport caused by Kinesin-1 dysfunction perturbs levels of both Aβ and phosphorylated Tau in neural tissues, but the relevance of Kinesin-1 dependent functions to the human disease is unknown. To begin to address this issue, we generated human embryonic stem cells (hESC) expressing reduced levels of the kinesin light chain 1 (KLC1) Kinesin-1 subunit to use as a source of human neural cultures. Despite reduction of KLC1, undifferentiated hESC exhibited apparently normal colony morphology and pluripotency marker expression. Differentiated neural cultures derived from KLC1-suppressed hESC contained neural rosettes but further differentiation revealed obvious morphological changes along with reduced levels of microtubule-associated neural proteins, including Tau and less secreted Aβ, supporting the previously established connection between KLC1, Tau and Aβ. Intriguingly, KLC1-suppressed neural precursors (NPs), isolated using a cell surface marker signature known to identify cells that give rise to neurons and glia, unlike control cells, failed to proliferate. We suggest that KLC1 is required for normal human neural differentiation, ensuring proper metabolism of AD-associated molecules APP and Tau and for proliferation of NPs. Because impaired APP metabolism is linked to AD, this human cell culture model system will not only be a useful tool for understanding the role of KLC1 in regulating the production, transport and turnover of APP and Tau in neurons, but also in defining the essential function(s) of KLC1 in NPs and their progeny. This knowledge should have important implications for human neurodevelopmental and neurodegenerative diseases. PMID:22272245

  16. Intrauterine Growth Restriction: Effects on Neural Precursor Cell Proliferation and Angiogenesis in the Foetal Subventricular Zone.

    PubMed

    Tolcos, Mary; Markwick, Rachel; O'Dowd, Rachael; Martin, Veronica; Turnley, Ann; Rees, Sandra

    2015-01-01

    Exposure to adverse prenatal factors can result in abnormal brain development, contributing to the aetiology of several neurological disorders. Intrauterine insults could occur during neurogenesis and gliogenesis, disrupting these events. Here we investigate the effects of chronic placental insufficiency (CPI) on cell proliferation and the microenvironment in the subventricular zone (SVZ). At 30 days of gestation (DG; term ∼67 DG), CPI was induced in pregnant guinea pigs via unilateral uterine artery ligation to produce growth-restricted (GR) foetuses (n = 7); controls (n = 6) were from the unoperated horn. At 60 DG, foetal brains were stained immunohistochemically to identify proliferating cells (Ki67), immature neurons (polysialylated neuronal cell adhesion molecule), astrocytes (glial fibrillary acidic protein), microglia (ionised calcium-binding adaptor molecule-1, Iba-1) and the microvasculature (von Willebrand factor) in the SVZ. There was no overall difference (p > 0.05) in the total number of Ki67-immunoreactive (IR) cells, the percentage of SVZ occupied by blood vessels or the density of Iba-1-IR microglia in control versus GR foetuses. However, regression analysis across both groups revealed that both the number of Ki67-IR cells and the percentage of SVZ occupied by blood vessels in the ventral SVZ were negatively correlated (p < 0.05) with brain weight. Furthermore, in the SVZ (dorsal and ventral) the density of blood vessels positively correlated (p < 0.05) with the number of Ki67-IR cells. Double-labelling immunofluorescence suggested that the majority of proliferating cells were likely to be neural precursor cells. Thus, we have demonstrated an association between angiogenesis and neurogenesis in the foetal neurogenic niche and have identified a window of opportunity for the administration of trophic support to enhance a neuroregenerative response.

  17. Different Mechanisms Must Be Considered to Explain the Increase in Hippocampal Neural Precursor Cell Proliferation by Physical Activity

    PubMed Central

    Overall, Rupert W.; Walker, Tara L.; Fischer, Tim J.; Brandt, Moritz D.; Kempermann, Gerd

    2016-01-01

    The number of proliferating neural precursor cells in the adult hippocampus is strongly increased by physical activity. The mechanisms through which this behavioral stimulus induces cell proliferation, however, are not yet understood. In fact, even the mode of proliferation of the stem and progenitor cells is not exactly known. Evidence exists for several mechanisms including cell cycle shortening, reduced cell death and stem cell recruitment, but as yet no model can account for all observations. An appreciation of how the cells proliferate, however, is crucial to our ability to model the neurogenic process and predict its behavior in response to pro-neurogenic stimuli. In a recent study, we addressed modulation of the cell cycle length as one possible mode of regulation of precursor cell proliferation in running mice. Our results indicated that the observed increase in number of proliferating cells could not be explained through a shortening of the cell cycle. We must therefore consider other mechanisms by which physical activity leads to enhanced precursor cell proliferation. Here we review the evidence for and against several different hypotheses and discuss the implications for future research in the field. PMID:27536215

  18. Immunotherapy of human neuroblastoma using umbilical cord blood-derived effector cells.

    PubMed

    Joshi, Avadhut D; Clark, Erin M; Wang, Peng; Munger, Corey M; Hegde, Ganapati V; Sanderson, Sam; Dave, Harish P G; Joshi, Shantaram S

    2007-06-01

    Tumors of the nervous system, including neuroblastoma and glioblastoma, are difficult to treat with current therapies. Despite the advances in cancer therapeutics, the outcomes in these patients remain poor and, therefore, new modalities are required. Recent literature demonstrates that cytotoxic effector cells can effectively kill tumors of the nervous system. In addition, we have previously shown that umbilical cord blood (UCB) contains precursors of antitumor cytotoxic effector cells. Therefore, to evaluate the antitumor potential of UCB-derived effector cells, studies were designed to compare the in vitro and in vivo antitumor effects of UCB- and peripheral blood (PB)-derived antigen-nonspecific and antigen-specific effector cells against tumors of the nervous system. Mononuclear cells (MNCs) from UCB were used to generate both interleukin-2 (IL-2)-activated killer (LAK) cells and tumor-specific cytotoxic T lymphocytes (CTLs). UCB-derived LAK cells showed a significant in vitro cytotoxicity against IMR-32, SK-NMC, and U-87 human neuroblastoma and glioblastoma, respectively. In addition, the CTLs generated using dendritic cells primed with IMR-32 tumor cell lysate showed a selective cytotoxicity in vitro against IMR-32 cells, but not against U-87 or MDA-231 cells. Furthermore, treatment of SCID mice bearing IMR-32 neuroblastoma with tumor-specific CTLs resulted in a significant (p < 0.01) inhibition of tumor growth and increased overall survival. Thus, these results demonstrate the potential of UCB-derived effector cells against human neuroblastoma and warrant further preclinical studies.

  19. Altered neutrophil immunophenotypes in childhood B-cell precursor acute lymphoblastic leukemia

    PubMed Central

    Oliveira, Elen; Bacelar, Thiago S.; Ciudad, Juana; Ribeiro, Maria Cecília M.; Garcia, Daniela R.N.; Sedek, Lukasz; Maia, Simone F.; Aranha, Daniel B.; Machado, Indyara C.; Ikeda, Arissa; Baglioli, Bianca F.; Lopez-Duarte, Nathalia; Teixeira, Lisandra A. C.; Szczepanski, Tomasz; Silva, Maria Luiza M.; Land, Marcelo G.P.

    2016-01-01

    An increasing number of evidences suggest a genetic predisposition in acute lymphoblastic leukemia (ALL) that might favor the occurrence of the driver genetic alterations. Such genetic background might also translate into phenotypic alterations of residual hematopoietic cells. Whether such phenotypic alterations are present in bone marrow (BM) cells from childhood B-cell precursor (BCP)-ALL remains to be investigated. Here we analyzed the immunophenotypic profile of BM and peripheral blood (PB) maturing/matured neutrophils from 118 children with BCP-ALL and their relationship with the features of the disease. Our results showed altered neutrophil phenotypes in most (77%) BCP-ALL cases. The most frequently altered marker was CD10 (53%), followed by CD33 (34%), CD13 (15%), CD15/CD65 (10%) and CD123 (7%). Of note, patients with altered neutrophil phenotypes had younger age (p = 0.03) and lower percentages of BM maturing neutrophils (p = 0.004) together with greater BM lymphocyte (p = 0.04), and mature B-cell (p = 0.03) counts. No significant association was found between an altered neutrophil phenotype and other disease features. These findings point out the potential existence of an altered residual hematopoiesis in most childhood BCP-ALL cases. PMID:27028865

  20. Oligodendrocyte precursor cells are accurate sensors of local K+ in mature gray matter.

    PubMed

    Maldonado, Paloma P; Vélez-Fort, Mateo; Levavasseur, Françoise; Angulo, María Cecilia

    2013-02-01

    Oligodendrocyte precursor cells (OPCs) are the major source of myelinating oligodendrocytes during development. These progenitors are highly abundant at birth and persist in the adult where they are distributed throughout the brain. The large abundance of OPCs after completion of myelination challenges their unique role as progenitors in the healthy adult brain. Here we show that adult OPCs of the barrel cortex sense fine extracellular K(+) increases generated by neuronal activity, a property commonly assigned to differentiated astrocytes rather than to progenitors. Biophysical, pharmacological, and single-cell RT-PCR analyses demonstrate that this ability of OPCs establishes itself progressively through the postnatal upregulation of Kir4.1 K(+) channels. In animals with advanced cortical myelination, extracellular stimulation of layer V axons induces slow K(+) currents in OPCs, which amplitude correlates with presynaptic action potential rate. Moreover, using paired recordings, we demonstrate that the discharge of a single neuron can be detected by nearby adult OPCs, indicating that these cells are strategically located to detect local changes in extracellular K(+) concentration during physiological neuronal activity. These results identify a novel unitary neuron-OPC connection, which transmission does not rely on neurotransmitter release and appears late in development. Beyond their abundance in the mature brain, the postnatal emergence of a physiological response of OPCs to neuronal network activity supports the view that in the adult these cells are not progenitors only.

  1. Oral citrulline as arginine precursor may be beneficial in sickle cell disease: early phase two results.

    PubMed Central

    Waugh, W. H.; Daeschner, C. W.; Files, B. A.; McConnell, M. E.; Strandjord, S. E.

    2001-01-01

    L-Arginine may be a conditionally essential amino acid in children and adolescents with sickle cell disease, particularly as required substrate in the arginine-nitric oxide pathway for endogenous nitrovasodilation and vasoprotection. Vasoprotection by arginine is mediated partly by nitric oxide-induced inhibition of endothelial damage and inhibition of adhesion and activation of leukocytes. Activated leukocytes may trigger many of the complications, including vasoocclusive events and intimal hyperplasias. High blood leukocyte counts during steady states in the absence of infection are significant laboratory risk factors for adverse complications. L-Citrulline as precursor amino acid was given orally twice daily in daily doses of approximately 0.1 g/kg in a pilot Phase II clinical trial during steady states in four homozygous sickle cell disease subjects and one sickle cell-hemoglobin C disease patient (ages 10-18). There soon resulted dramatic improvements in symptoms of well-being, raised plasma arginine levels, and reductions in high total leukocyte and high segmented neutrophil counts toward or to within normal limits. Continued L-citrulline supplementation in compliant subjects continued to lessen symptomatology, to maintain plasma arginine concentrations greater than control levels, and to maintain nearly normal total leukocyte and neutrophil counts. Side effects or toxicity from citrulline were not experienced. Oral L-citrulline may portend very useful for palliative therapy in sickle cell disease. Placebo-controlled, long-term trials are now indicated. PMID:11688916

  2. Langerhans cell precursors acquire RANK/CD265 in prenatal human skin.

    PubMed

    Schöppl, Alice; Botta, Albert; Prior, Marion; Akgün, Johnnie; Schuster, Christopher; Elbe-Bürger, Adelheid

    2015-01-01

    The skin is the first barrier against foreign pathogens and the prenatal formation of a strong network of various innate and adaptive cells is required to protect the newborn from perinatal infections. While many studies about the immune system in healthy and diseased adult human skin exist, our knowledge about the cutaneous prenatal/developing immune system and especially about the phenotype and function of antigen-presenting cells such as epidermal Langerhans cells (LCs) in human skin is still scarce. It has been shown previously that LCs in healthy adult human skin express receptor activator of NF-κB (RANK), an important molecule prolonging their survival. In this study, we investigated at which developmental stage LCs acquire this important molecule. Immunofluorescence double-labeling of cryostat sections revealed that LC precursors in prenatal human skin either do not yet [10-11 weeks of estimated gestational age (EGA)] or only faintly (13-15 weeks EGA) express RANK. LCs express RANK at levels comparable to adult LCs by the end of the second trimester. Comparable with adult skin, dermal antigen-presenting cells at no gestational age express this marker. These findings indicate that epidermal leukocytes gradually acquire RANK during gestation - a phenomenon previously observed also for other markers on LCs in prenatal human skin.

  3. Langerhans cell precursors acquire RANK/CD265 in prenatal human skin

    PubMed Central

    Schöppl, Alice; Botta, Albert; Prior, Marion; Akgün, Johnnie; Schuster, Christopher; Elbe-Bürger, Adelheid

    2015-01-01

    The skin is the first barrier against foreign pathogens and the prenatal formation of a strong network of various innate and adaptive cells is required to protect the newborn from perinatal infections. While many studies about the immune system in healthy and diseased adult human skin exist, our knowledge about the cutaneous prenatal/developing immune system and especially about the phenotype and function of antigen-presenting cells such as epidermal Langerhans cells (LCs) in human skin is still scarce. It has been shown previously that LCs in healthy adult human skin express receptor activator of NF-κB (RANK), an important molecule prolonging their survival. In this study, we investigated at which developmental stage LCs acquire this important molecule. Immunofluorescence double-labeling of cryostat sections revealed that LC precursors in prenatal human skin either do not yet [10–11 weeks of estimated gestational age (EGA)] or only faintly (13–15 weeks EGA) express RANK. LCs express RANK at levels comparable to adult LCs by the end of the second trimester. Comparable with adult skin, dermal antigen-presenting cells at no gestational age express this marker. These findings indicate that epidermal leukocytes gradually acquire RANK during gestation – a phenomenon previously observed also for other markers on LCs in prenatal human skin. PMID:25722033

  4. The capsaicin receptor TRPV1 as a novel modulator of neural precursor cell proliferation.

    PubMed

    Stock, Kristin; Garthe, Alexander; de Almeida Sassi, Felipe; Glass, Rainer; Wolf, Susanne A; Kettenmann, Helmut

    2014-12-01

    The capsaicin receptor (TRPV1, transient receptor potential vanilloid type 1) was first discovered in the peripheral nervous system as a detector of noxious chemical and thermal stimuli including the irritant chili pepper. Recently, there has been increasing evidence of TRPV1 expression in the central nervous system. Here, we show that TRPV1 is expressed in neural precursor cells (NPCs) during postnatal development, but not in the adult. However, expression of TRPV1 is induced in the adult in paradigms linked to an increase in neurogenesis, such as spatial learning in the Morris water maze or voluntary exercise. Loss of TRPV1 expression in knockout mice leads to an increase in NPC proliferation. Functional TRPV1 expression has been confirmed in cultured NPCs. Our results indicate that TRPV1 expression influences both postnatal and activity-induced neurogenesis in adulthood. PMID:25092424

  5. Efficiency Enhancement of Perovskite Solar Cells by Pumping Away the Solvent of Precursor Film Before Annealing.

    PubMed

    Xu, Qing-Yang; Yuan, Da-Xing; Mu, Hao-Ran; Igbari, Femi; Bao, Qiaoliang; Liao, Liang-Sheng

    2016-12-01

    A new approach to improve the quality of MAPbI3 - x Cl x perovskite film was demonstrated. It involves annealing the precursor film after pumping away the solvent, which can decrease the influence of solvent evaporation rate for the growth of the MAPbI3 - x Cl x perovskite film. The resulting film showed improved morphology, stronger absorption, fewer crystal defects, and smaller charge transfer resistance. The corresponding device demonstrated enhanced performance when compared with a reference device. The averaged value of power conversion efficiency increased from 10.61 to 12.56 %, and a champion efficiency of 14.0 % was achieved. This work paves a new way to improve the efficiency of perovskite solar cells. PMID:27173677

  6. Efficiency Enhancement of Perovskite Solar Cells by Pumping Away the Solvent of Precursor Film Before Annealing

    NASA Astrophysics Data System (ADS)

    Xu, Qing-Yang; Yuan, Da-Xing; Mu, Hao-Ran; Igbari, Femi; Bao, Qiaoliang; Liao, Liang-Sheng

    2016-05-01

    A new approach to improve the quality of MAPbI3 - x Cl x perovskite film was demonstrated. It involves annealing the precursor film after pumping away the solvent, which can decrease the influence of solvent evaporation rate for the growth of the MAPbI3 - x Cl x perovskite film. The resulting film showed improved morphology, stronger absorption, fewer crystal defects, and smaller charge transfer resistance. The corresponding device demonstrated enhanced performance when compared with a reference device. The averaged value of power conversion efficiency increased from 10.61 to 12.56 %, and a champion efficiency of 14.0 % was achieved. This work paves a new way to improve the efficiency of perovskite solar cells.

  7. Efficiency Enhancement of Perovskite Solar Cells by Pumping Away the Solvent of Precursor Film Before Annealing.

    PubMed

    Xu, Qing-Yang; Yuan, Da-Xing; Mu, Hao-Ran; Igbari, Femi; Bao, Qiaoliang; Liao, Liang-Sheng

    2016-12-01

    A new approach to improve the quality of MAPbI3 - x Cl x perovskite film was demonstrated. It involves annealing the precursor film after pumping away the solvent, which can decrease the influence of solvent evaporation rate for the growth of the MAPbI3 - x Cl x perovskite film. The resulting film showed improved morphology, stronger absorption, fewer crystal defects, and smaller charge transfer resistance. The corresponding device demonstrated enhanced performance when compared with a reference device. The averaged value of power conversion efficiency increased from 10.61 to 12.56 %, and a champion efficiency of 14.0 % was achieved. This work paves a new way to improve the efficiency of perovskite solar cells.

  8. Apolipoprotein A-1 regulates osteoblast and lipoblast precursor cells in mice.

    PubMed

    Blair, Harry C; Kalyvioti, Elena; Papachristou, Nicholaos I; Tourkova, Irina L; Syggelos, Spryros A; Deligianni, Despina; Orkoula, Malvina G; Kontoyannis, Christos G; Karavia, Eleni A; Kypreos, Kyriakos E; Papachristou, Dionysios J

    2016-07-01

    Imbalances in lipid metabolism affect bone homeostasis, altering bone mass and quality. A link between bone mass and high-density lipoprotein (HDL) has been proposed. Indeed, it has been recently shown that absence of the HDL receptor scavenger receptor class B type I (SR-B1) causes dense bone mediated by increased adrenocorticotropic hormone (ACTH). In the present study we aimed at further expanding the current knowledge as regards the fascinating bone-HDL connection studying bone turnover in apoA-1-deficient mice. Interestingly, we found that bone mass was greatly reduced in the apoA-1-deficient mice compared with their wild-type counterparts. More specifically, static and dynamic histomorphometry showed that the reduced bone mass in apoA-1(-/-) mice reflect decreased bone formation. Biochemical composition and biomechanical properties of ApoA-1(-/-) femora were significantly impaired. Mesenchymal stem cell (MSC) differentiation from the apoA-1(-/-) mice showed reduced osteoblasts, and increased adipocytes, relative to wild type, in identical differentiation conditions. This suggests a shift in MSC subtypes toward adipocyte precursors, a result that is in line with our finding of increased bone marrow adiposity in apoA-1(-/-) mouse femora. Notably, osteoclast differentiation in vitro and osteoclast surface in vivo were unaffected in the knock-out mice. In whole bone marrow, PPARγ was greatly increased, consistent with increased adipocytes and committed precursors. Further, in the apoA-1(-/-) mice marrow, CXCL12 and ANXA2 levels were significantly decreased, whereas CXCR4 were increased, consistent with reduced signaling in a pathway that supports MSC homing and osteoblast generation. In keeping, in the apoA-1(-/-) animals the osteoblast-related factors Runx2, osterix, and Col1a1 were also decreased. The apoA-1(-/-) phenotype also included augmented CEPBa levels, suggesting complex changes in growth and differentiation that deserve further investigation. We

  9. Immunogenicity of umbilical cord tissue derived cells.

    PubMed

    Cho, Patricia S; Messina, Darin J; Hirsh, Erica L; Chi, Nina; Goldman, Stephanie N; Lo, Diana P; Harris, Ian R; Popma, Sicco H; Sachs, David H; Huang, Christene A

    2008-01-01

    Umbilical cord tissue provides a unique source of cells with potential for tissue repair. Umbilical cord tissue-derived cells (UTCs) are MHC class I (MHCI) dull and negative for MHC class II (MHCII), but can be activated to increase MHCI and to express MHCII with IFN-gamma stimulation. Mesenchymal stem cells with similar characteristics have been inferred to be nonimmunogenic; however, in most cases, immunogenicity was not directly assessed. Using UTC from Massachusetts General Hospital MHC-defined miniature swine, we assessed immunogenicity across a full MHC barrier. Immunogenicity was assessed by in vitro assays including mixed lymphocyte reaction (MLR) and flow cytometry to detect serum alloantibody. A single injection of MHC-mismatched unactivated UTCs did not induce a detectable immune response. When injected in an inflamed region, injected repeatedly in the same region or stimulated with IFN-gamma prior to injection, UTCs were immunogenic. As clinical cellular repair strategies may involve injection of allogeneic cells into inflamed regions of damaged tissue or repeated doses of cells to achieve the desired benefit, our results on the immunogenicity of these cells in these circumstances may have important implications for optimal success and functional improvement for this cellular treatment strategy for diseased tissues. PMID:17909081

  10. Cell surface glycopeptides from human intestinal epithelial cell lines derived from normal colon and colon adenocarcinomas

    SciTech Connect

    Youakim, A.; Herscovics, A.

    1985-11-01

    The cell surface glycopeptides from an epithelial cell line (CCL 239) derived from normal human colon were compared with those from three cell lines (HCT-8R, HCT-15, and CaCo-2) derived independently from human colonic adenocarcinomas. Cells were incubated with D-(2-TH)mannose or L-(5,6-TH)fucose for 24 h and treated with trypsin to release cell surface components which were then digested exhaustively with Pronase and fractionated on Bio-Gel P-6 before and after treatment with endo-beta-N-acetylglucosaminidase H. The most noticeable difference between the labeled glycopeptides from the tumor and CCL 239 cells was the presence in the former of an endo-beta-N-acetylglucosaminidase H-resistant high molecular weight glycopeptide fraction which was eluted in the void volume of Bio-Gel P-6. This fraction was obtained with both labeled mannose and fucose as precursors. However, acid hydrolysis of this fraction obtained after incubation with (2-TH)mannose revealed that as much as 60-90% of the radioactivity was recovered as fucose. Analysis of the total glycopeptides (cell surface and cell pellet) obtained after incubation with (2-TH)mannose showed that from 40-45% of the radioactivity in the tumor cells and less than 10% of the radioactivity in the CCL 239 cells was recovered as fucose. After incubation of the HCT-8R cells with D-(1,6-TH)glucosamine and L-(1- UC)fucose, strong acid hydrolysis of the labeled glycopeptide fraction excluded from Bio-Gel P-6 produced TH-labeled N-acetylglucosamine and N-acetylgalactosamine.

  11. Activated T cells sustain myeloid-derived suppressor cell-mediated immune suppression

    PubMed Central

    Damuzzo, Vera; Francescato, Samuela; Pozzuoli, Assunta; Berizzi, Antonio; Mocellin, Simone; Rossi, Carlo Riccardo; Bronte, Vincenzo; Mandruzzato, Susanna

    2016-01-01

    The expansion of myeloid derived suppressor cells (MDSCs), a suppressive population able to hamper the immune response against cancer, correlates with tumor progression and overall survival in several cancer types. We have previously shown that MDSCs can be induced in vitro from precursors present in the bone marrow and observed that these cells are able to actively proliferate in the presence of activated T cells, whose activation level is critical to drive the suppressive activity of MDSCs. Here we investigated at molecular level the mechanisms involved in the interplay between MDSCs and activated T cells. We found that activated T cells secrete IL-10 following interaction with MDSCs which, in turn, activates STAT3 phosphorylation on MDSCs then leading to B7-H1 expression. We also demonstrated that B7-H1+ MDSCs are responsible for immune suppression through a mechanism involving ARG-1 and IDO expression. Finally, we show that the expression of ligands B7-H1 and MHC class II both on in vitro-induced MDSCs and on MDSCs in the tumor microenvironment of cancer patients is paralleled by an increased expression of their respective receptors PD-1 and LAG-3 on T cells, two inhibitory molecules associated with T cell dysfunction. These findings highlight key molecules and interactions responsible for the extensive cross-talk between MDSCs and activated T cells that are at the basis of immune suppression. PMID:26700461

  12. Activated T cells sustain myeloid-derived suppressor cell-mediated immune suppression.

    PubMed

    Pinton, Laura; Solito, Samantha; Damuzzo, Vera; Francescato, Samuela; Pozzuoli, Assunta; Berizzi, Antonio; Mocellin, Simone; Rossi, Carlo Riccardo; Bronte, Vincenzo; Mandruzzato, Susanna

    2016-01-12

    The expansion of myeloid derived suppressor cells (MDSCs), a suppressive population able to hamper the immune response against cancer, correlates with tumor progression and overall survival in several cancer types. We have previously shown that MDSCs can be induced in vitro from precursors present in the bone marrow and observed that these cells are able to actively proliferate in the presence of activated T cells, whose activation level is critical to drive the suppressive activity of MDSCs. Here we investigated at molecular level the mechanisms involved in the interplay between MDSCs and activated T cells. We found that activated T cells secrete IL-10 following interaction with MDSCs which, in turn, activates STAT3 phosphorylation on MDSCs then leading to B7-H1 expression. We also demonstrated that B7-H1+ MDSCs are responsible for immune suppression through a mechanism involving ARG-1 and IDO expression. Finally, we show that the expression of ligands B7-H1 and MHC class II both on in vitro-induced MDSCs and on MDSCs in the tumor microenvironment of cancer patients is paralleled by an increased expression of their respective receptors PD-1 and LAG-3 on T cells, two inhibitory molecules associated with T cell dysfunction. These findings highlight key molecules and interactions responsible for the extensive cross-talk between MDSCs and activated T cells that are at the basis of immune suppression.

  13. Cell-derived microparticles and the lung.

    PubMed

    Nieri, Dario; Neri, Tommaso; Petrini, Silvia; Vagaggini, Barbara; Paggiaro, Pierluigi; Celi, Alessandro

    2016-09-01

    Cell-derived microparticles are small (0.1-1 μm) vesicles shed by most eukaryotic cells upon activation or during apoptosis. Microparticles carry on their surface, and enclose within their cytoplasm, molecules derived from the parental cell, including proteins, DNA, RNA, microRNA and phospholipids. Microparticles are now considered functional units that represent a disseminated storage pool of bioactive effectors and participate both in the maintenance of homeostasis and in the pathogenesis of diseases. The mechanisms involved in microparticle generation include intracellular calcium mobilisation, cytoskeleton rearrangement, kinase phosphorylation and activation of the nuclear factor-κB. The role of microparticles in blood coagulation and inflammation, including airway inflammation, is well established in in vitro and animal models. The role of microparticles in human pulmonary diseases, both as pathogenic determinants and biomarkers, is being actively investigated. Microparticles of endothelial origin, suggestive of apoptosis, have been demonstrated in the peripheral blood of patients with emphysema, lending support to the hypothesis that endothelial dysfunction and apoptosis are involved in the pathogenesis of the disease and represent a link with cardiovascular comorbidities. Microparticles also have potential roles in patients with asthma, diffuse parenchymal lung disease, thromboembolism, lung cancer and pulmonary arterial hypertension. PMID:27581826

  14. Effect of oxygen tension on bioenergetics and proteostasis in young and old myoblast precursor cells.

    PubMed

    Konigsberg, M; Pérez, V I; Ríos, C; Liu, Y; Lee, S; Shi, Y; Van Remmen, H

    2013-01-01

    In the majority of studies using primary cultures of myoblasts, the cells are maintained at ambient oxygen tension (21% O2), despite the fact that physiological O2 at the tissue level in vivo is much lower (~1-5% O2). We hypothesized that the cellular response in presence of high oxygen concentration might be particularly important in studies comparing energetic function or oxidative stress in cells isolated from young versus old animals. To test this, we asked whether oxygen tension plays a role in mitochondrial bioenergetics (oxygen consumption, glycolysis and fatty acid oxidation) or oxidative damage to proteins (protein disulfides, carbonyls and aggregates) in myoblast precursor cells (MPCs) isolated from young (3-4 m) and old (29-30 m) C57BL/6 mice. MPCs were grown under physiological (3%) or ambient (21%) O2 for two weeks prior to exposure to an acute oxidative insult (H2O2). Our results show significantly higher basal mitochondrial respiration in young versus old MPCs, an increase in basal respiration in young MPCs maintained at 3% O2 compared to cells maintained at 21% O2, and a shift toward glycolytic metabolism in old MPCs grown at 21% O2. H2O2 treatment significantly reduced respiration in old MPCs grown at 3% O2 but did not further repress respiration at 21% O2 in old MPCs. Oxidative damage to protein was higher in cells maintained at 21% O2 and increased in response to H2O2 in old MPCs. These data underscore the importance of understanding the effect of ambient oxygen tension in cell culture studies, in particular studies measuring oxidative damage and mitochondrial function. PMID:24191243

  15. Circulating dendritic cell precursors in chronic kidney disease: a cross-sectional study

    PubMed Central

    2013-01-01

    Background Dendritic cells (DC) are professional antigen-presenting cells in the immune system. They patrol the blood as circulating dendritic cell precursors (DCP). Decreased blood DCP count has been shown to be related to atherosclerotic plaque burden. Since chronic kidney disease (CKD) is associated with chronic inflammation and increased cardiovascular risk, the aim of our study was to investigate a potential effect of CKD on circulating DCP numbers especially in patients with a history of cardiovascular disease. Methods The number of circulating myeloid (mDCP), plasmacytoid (pDCP), and total DCP (tDCP) was analysed by flow cytometry in 245 patients with CKD stage 3 (with and without known cardiovascular events) and 85 coronary healthy controls. In addition, data were compared with a historical group of 130 patients with known coronary artery disease (CAD). Results Compared to controls, patients with CKD 3 revealed a significant decrease in circulating mDCP (-29%), pDCP (-43%), and tDCP (-38%) (P < 0.001, respectively). Compared with CAD-patients, the decrease in circulating DCP in CKD was comparable or even more pronounced indicating a potential role for DCP in cardiovascular risk potentiation due to CKD. Conclusions Based on previous findings in CAD, the marked decrease of DCP in CKD implicates a potential role for DCP as a mediator of cardiovascular disease. Whether DCP in CKD may act as new cardiovascular biomarkers needs to be established in future prospective trials. PMID:24325304

  16. WIP1 modulates responsiveness to Sonic Hedgehog signaling in neuronal precursor cells and medulloblastoma

    PubMed Central

    Wen, Jing; Lee, Juhyun; Malhotra, Anshu; Nahta, Rita; Arnold, Amanda R.; Buss, Meghan C.; Brown, Briana D.; Maier, Caroline; Kenney, Anna M.; Remke, Marc; Ramaswamy, Vijay; Taylor, Michael D.; Castellino, Robert C.

    2016-01-01

    High-level amplification of the protein phosphatase PPM1D (WIP1) is present in a subset of medulloblastomas (MBs) that have an expression profile consistent with active Sonic Hedgehog (SHH) signaling. We found that WIP1 overexpression increased expression of Shh target genes and cell proliferation in response to Shh stimulation in NIH3T3 and cerebellar granule neuron precursor (cGNP) cells in a p53-independent manner. Thus, we developed a mouse in which WIP1 is expressed in the developing brain under control of the Neurod2 promoter (ND2:WIP1). The external granule layer in early post-natal ND2:WIP1 mice exhibited increased proliferation and expression of Shh downstream targets. MB incidence increased and survival decreased when ND2:WIP1 mice were crossed with a Shh-activated MB mouse model. Conversely, Wip1 knock out significantly suppressed MB formation in two independent mouse models of Shh-activated MB. Furthermore, Wip1 knock-down or treatment with a WIP1 inhibitor suppressed the effects of Shh stimulation and potentiated the growth inhibitory effects of SHH pathway-inhibiting drugs in Shh-activated MB cells in vitro. This suggests an important cross-talk between SHH and WIP1 pathways that accelerates tumorigenesis and supports WIP1 inhibition as a potential treatment strategy for MB. PMID:27086929

  17. Abnormal expression of TIP30 and arrested nucleocytoplasmic transport within oligodendrocyte precursor cells in multiple sclerosis

    PubMed Central

    Nakahara, Jin; Kanekura, Kohsuke; Nawa, Mikiro; Aiso, Sadakazu; Suzuki, Norihiro

    2008-01-01

    Oligodendrocyte precursor cells (OPCs) persist near the demyelinated axons arising in MS but inefficiently differentiate into oligodendrocytes and remyelinate these axons. The pathogenesis of differentiation failure remains elusive. We initially hypothesized that injured axons fail to present Contactin, a positive ligand for the oligodendroglial Notch1 receptor to induce myelination, and thus tracked axoglial Contactin/Notch1 signaling in situ, using immunohistochemistry in brain tissue from MS patients containing chronic demyelinated lesions. Instead, we found that Contactin was saturated on demyelinated axons, Notch1-positive OPCs accumulated in Contactin-positive lesions, and the receptor was engaged, as demonstrated by cleavage to Notch1-intracellular domain (NICD). However, nuclear translocalization of NICD, required for myelinogenesis, was virtually absent in these cells. NICD and related proteins carrying nuclear localization signals were associated with the nuclear transporter Importin but were trapped in the cytoplasm. Abnormal expression of TIP30, a direct inhibitor of Importin, was observed in these OPCs. Overexpression of TIP30 in a rat OPC cell line resulted in cytoplasmic entrapment of NICD and arrest of differentiation upon stimulation with Contactin-Fc. Our results suggest that extracellular inhibitory factors as well as an intrinsic nucleocytoplasmic transport blockade within OPCs may be involved in the pathogenesis of remyelination failure in MS. PMID:19104151

  18. Oligodendrocyte Precursor Cells Support Blood-Brain Barrier Integrity via TGF-β Signaling

    PubMed Central

    Maeda, Mitsuyo; Miyamoto, Nobukazu; Liang, Anna C.; Hayakawa, Kazuhide; Pham, Loc-Duyen D.; Suwa, Fumihiko; Taguchi, Akihiko; Matsuyama, Tomohiro; Ihara, Masafumi; Kim, Kyu-Won; Lo, Eng H.; Arai, Ken

    2014-01-01

    Trophic coupling between cerebral endothelium and their neighboring cells is required for the development and maintenance of blood-brain barrier (BBB) function. Here we report that oligodendrocyte precursor cells (OPCs) secrete soluble factor TGF-β1 to support BBB integrity. Firstly, we prepared conditioned media from OPC cultures and added them to cerebral endothelial cultures. Our pharmacological experiments showed that OPC-conditioned media increased expressions of tight-junction proteins and decreased in vitro BBB permeability by activating TGB-β-receptor-MEK/ERK signaling pathway. Secondly, our immuno-electron microscopic observation revealed that in neonatal mouse brains, OPCs attach to cerebral endothelial cells via basal lamina. And finally, we developed a novel transgenic mouse line that TGF-β1 is knocked down specifically in OPCs. Neonates of these OPC-specific TGF-β1 deficient mice (OPC-specific TGF-β1 partial KO mice: PdgfraCre/Tgfb1flox/wt mice or OPC-specific TGF-β1 total KO mice: PdgfraCre/Tgfb1flox/flox mice) exhibited cerebral hemorrhage and loss of BBB function. Taken together, our current study demonstrates that OPCs increase BBB tightness by upregulating tight junction proteins via TGF-β signaling. Although astrocytes and pericytes are well-known regulators of BBB maturation and maintenance, these findings indicate that OPCs also play a pivotal role in promoting BBB integrity. PMID:25078775

  19. Viable transgenic goats derived from skin cells.

    PubMed

    Behboodi, Esmail; Memili, Erdogan; Melican, David T; Destrempes, Margaret M; Overton, Susan A; Williams, Jennifer L; Flanagan, Peter A; Butler, Robin E; Liem, Hetty; Chen, Li How; Meade, Harry M; Gavin, William G; Echelard, Yann

    2004-06-01

    The current study was undertaken to evaluate the possibility of expanding transgenic goat herds by means of somatic cell nuclear transfer (NT) using transgenic goat cells as nucleus donors. Skin cells from adult, transgenic goats were first synchronized at quiescent stage (G0) by serum starvation and then induced to exit G0 and proceed into G1. Oocytes collected from superovulated donors were enucleated, karyoplast-cytoplast couplets were constructed, and then fused and activated simultaneously by a single electrical pulse. Fused couplets were either co-cultured with oviductal cells in TCM-199 medium (in vitro culture) or transferred to intermediate recipient goat oviducts (in vivo culture) until final transfer. The resulting morulae and blastocysts were transferred to the final recipients. Pregnancies were confirmed by ultrasonography 25-30 days after embryo transfer. In vitro cultured NT embryos developed to morulae and blastocyst stages but did not produce any pregnancies while 30% (6/20) of the in vivo derived morulae and blastocysts produced pregnancies. Two of these pregnancies were resorbed early in gestation. Of the four recipients that maintained pregnancies to term, two delivered dead fetuses 2-3 days after their due dates, and two recipients gave birth to healthy kids at term. Fluorescence in situ hybridization (FISH) analysis confirmed that both kids were transgenic and had integration sites consistent with those observed in the adult cell line.

  20. DERIVING HUMAN ENS LINEAGES FOR CELL THERAPY AND DRUG DISCOVERY IN HIRSCHSPRUNG'S DISEASE

    PubMed Central

    Fattahi, Faranak; Steinbeck, Julius A; Kriks, Sonja; Tchieu, Jason; Zimmer, Bastian; Kishinevsky, Sarah; Zeltner, Nadja; Mica, Yvonne; El-Nachef, Wael; Zhao, Huiyong; de Stanchina, Elisa; Gershon, Michael D.; Grikscheit, Tracy C.; Chen, Shuibing; Studer, Lorenz

    2015-01-01

    The enteric nervous system (ENS) is the largest component of the autonomic nervous system with neuron numbers surpassing those present in the spinal cord1. The ENS has been called the “second brain”1 given its autonomy, remarkable neurotransmitter diversity and complex cytoarchitecture. Defects in ENS development are responsible for many human disorders including Hirschsprung's disease (HSCR). HSCR is a caused by the developmental failure of ENS progenitors to migrate into the GI tract in particular the distal colon2. Human ENS development remains poorly understood due to the lack of an easily accessible model system. Here we demonstrate the efficient derivation and isolation of ENS progenitors from human pluripotent stem cells (hPSCs) and their further differentiation into functional enteric neurons. In vitro derived ENS precursors are capable of targeted migration in the developing chick embryo and extensive colonization of the adult mouse colon. In vivo engraftment and migration of hPSC-derived ENS precursors rescues disease-related mortality in HSCR mice (EDNRBs-l/s-l), though mechanism of action remains unclear. Finally, EDNRB null mutant ENS precursors enable modeling of HSCR-related migration defects and the identification of Pepstatin A as candidate therapeutics. Our study establishes the first hPSC-based platform for the study of human ENS development and presents cell and drug-based strategies for the treatment of HSCR. PMID:26863197

  1. Post-embryonic nerve-associated precursors to adult pigment cells: genetic requirements and dynamics of morphogenesis and differentiation.

    PubMed

    Budi, Erine H; Patterson, Larissa B; Parichy, David M

    2011-05-01

    The pigment cells of vertebrates serve a variety of functions and generate a stunning variety of patterns. These cells are also implicated in human pathologies including melanoma. Whereas the events of pigment cell development have been studied extensively in the embryo, much less is known about morphogenesis and differentiation of these cells during post-embryonic stages. Previous studies of zebrafish revealed genetically distinct populations of embryonic and adult melanophores, the ectotherm homologue of amniote melanocytes. Here, we use molecular markers, vital labeling, time-lapse imaging, mutational analyses, and transgenesis to identify peripheral nerves as a niche for precursors to adult melanophores that subsequently migrate to the skin to form the adult pigment pattern. We further identify genetic requirements for establishing, maintaining, and recruiting precursors to the adult melanophore lineage and demonstrate novel compensatory behaviors during pattern regulation in mutant backgrounds. Finally, we show that distinct populations of latent precursors having differential regenerative capabilities persist into the adult. These findings provide a foundation for future studies of post-embryonic pigment cell precursors in development, evolution, and neoplasia.

  2. A comprehensive negative regulatory program controlled by Brn3b to ensure ganglion cell specification from multipotential retinal precursors.

    PubMed

    Qiu, Feng; Jiang, Haisong; Xiang, Mengqing

    2008-03-26

    The retinal ganglion cells (RGCs) are the sole output neurons in the retina that form the optic nerve and convey light signals detected by photoreceptors to the higher visual system. Their degeneration and damage caused by glaucoma and injury can lead to blindness. During retinogenesis, RGCs are specified from a population of multipotential precursors capable of generating RGC, amacrine, horizontal, and cone cells. How the RGC fate is selected from these multiple neuron fates is unknown at present. Here we show that the previously unsuspected POU domain transcription factor Brn3b (brain-specific homeobox/POU domain protein 3b) plays such a critical role. Loss of Brn3b function in mice leads to misspecification of early RGC precursors as late-born RGC, amacrine, and horizontal cells, whereas misexpressed Brn3b suppresses non-RGC cell fates but promotes the RGC fate. Microarray profiling and other molecular analyses reveal that, in RGC precursors, Brn3b normally represses the expression of a network of retinogenic factor genes involved in fate commitment and differentiation of late-born RGC, amacrine, horizontal, and cone cells. Our data suggest that Brn3b specifies the RGC fate from multipotential precursors not only by promoting RGC differentiation but also by suppressing non-RGC differentiation programs as a safeguard mechanism. PMID:18367606

  3. Co-expression of metalloproteinases 11 and 12 in cervical scrapes cells from cervical precursor lesions

    PubMed Central

    Valdivia, Alejandra; Peralta, Raúl; Matute-González, Manuel; García Cebada, Juan Manuel; Casasola, Ivonne; Jiménez-Medrano, Cristina; Aguado-Pérez, Rogelio; Villegas, Vanessa; González-Bonilla, Cesar; Manuel-Apolinar, Leticia; Ibáñez, Miguel; Salcedo, Mauricio

    2011-01-01

    The metalloproteinases (MMP) 11 and 12 have been shown to be expressed in cervical cancer (CC). In order to extend our previous results, these MMPs were evaluated in cervical precursor lesions. One hundred seventeen cervical scrapes: thirty-six normal, thirty-six Low grade squamous lesions (LSIL), thirty-six High grade (HSIL), nine CC; and, also ninety-nine paraffin-embedded cervical lesions: fifteen normal cervices, thirty eight LSIL, sixteen HSIL, and five CC were collected. The samples were analyzed for relative expression by real time RT-PCR or immunohistochemistry assay. We were able to identify a relative increased expression of MMP11 in 75% and 78% from LSIL and HSIL samples, respectively. While MMP12 expression was 64% and 75% in LSIL and HSIL, respectively. Positive samples for MMP11 expression were also positive for MMP12 expression and also increased according to illness progression. In the tissues, MMP11 or MMP12 expression was observed in the cytoplasm of the neoplastic cells, while in the normal epithelium was absent. The reaction was always stronger for MMP12 than MMP11. MMP11 expression was present in 77% and 66% of LSIL and HSIL, while MMP12 expression was 73% and 68%. There was a relationship between MMP11 or MMP12 expression and HPV infection. Our data are showing a relationship between diagnostic of precursor lesions and the MMP11 and 12 expressions, suggesting that their expression could be an early event in the neoplastic lesions of the cervix and could have clinical significance. PMID:22076168

  4. Co-expression of metalloproteinases 11 and 12 in cervical scrapes cells from cervical precursor lesions.

    PubMed

    Valdivia, Alejandra; Peralta, Raúl; Matute-González, Manuel; García Cebada, Juan Manuel; Casasola, Ivonne; Jiménez-Medrano, Cristina; Aguado-Pérez, Rogelio; Villegas, Vanessa; González-Bonilla, Cesar; Manuel-Apolinar, Leticia; Ibáñez, Miguel; Salcedo, Mauricio

    2011-01-01

    The metalloproteinases (MMP) 11 and 12 have been shown to be expressed in cervical cancer (CC). In order to extend our previous results, these MMPs were evaluated in cervical precursor lesions. One hundred seventeen cervical scrapes: thirty-six normal, thirty-six low grade squamous lesions (LSIL), thirty-six high grade (HSIL), nine CC; and, also ninety-nine paraffin-embedded cervical lesions: fifteen normal cervices, thirty eight LSIL, sixteen HSIL, and five CC were collected. The samples were analyzed for relative expression by real time RT-PCR or immunohistochemistry assay. We were able to identify a relative increased expression of MMP11 in 75% and 78% from LSIL and HSIL samples, respectively. While MMP12 expression was 64% and 75% in LSIL and HSIL, respectively. Positive samples for MMP11 expression were also positive for MMP12 expression and also increased according to illness progression. In the tissues, MMP11 or MMP12 expression was observed in the cytoplasm of the neoplastic cells, while in the normal epithelium was absent. The reaction was always stronger for MMP12 than MMP11. MMP11 expression was present in 77% and 66% of LSIL and HSIL, while MMP12 expression was 73% and 68%. There was a relationship between MMP11 or MMP12 expression and HPV infection. Our data are showing a relationship between diagnostic of precursor lesions and the MMP11 and 12 expressions, suggesting that their expression could be an early event in the neoplastic lesions of the cervix and could have clinical significance.

  5. On the Origin of Cells and Derivation of Thyroid Cancer: C Cell Story Revisited.

    PubMed

    Nilsson, Mikael; Williams, Dillwyn

    2016-07-01

    We will highlight and put into perspective new lineage tracing data from genetic studies in mice indicating that the genuine progenitors to C cells arise in the endoderm germ layer. This overturns the current concept of a neural crest origin of thyroid C cells referred to in every textbook and dedicated paper to this very day. As will become apparent, except for a single experiment, the neural crest theory has little or no support when the evolution and development of calcitonin-producing cells in the entire chordate family are considered. Instead, a unifying origin of all cells of the ultimobranchial bodies reopens questions on the histogenesis of certain thyroid pathologies previously difficult to explain. On this aspect, medullary thyroid cancer shows a stronger connection to gut neuroendocrine tumours than previously recognized. It is envisaged that novel factors implicated in C cell-derived tumour growth and progression will be discovered as the mechanisms that regulate lineage expansion of embryonic C cell precursors from pharyngeal endoderm are uncovered. We will not discuss why C cells go to the bother of burying themselves in the thyroid - this remains a mystery.

  6. Modeling and analysis of retinoic acid induced differentiation of uncommitted precursor cells.

    PubMed

    Tasseff, Ryan; Nayak, Satyaprakash; Song, Sang Ok; Yen, Andrew; Varner, Jeffrey D

    2011-05-01

    Manipulation of differentiation programs has therapeutic potential in a spectrum of human cancers and neurodegenerative disorders. In this study, we integrated computational and experimental methods to unravel the response of a lineage uncommitted precursor cell-line, HL-60, to Retinoic Acid (RA). HL-60 is a human myeloblastic leukemia cell-line used extensively to study human differentiation programs. Initially, we focused on the role of the BLR1 receptor in RA-induced differentiation and G1/0-arrest in HL-60. BLR1, a putative G protein-coupled receptor expressed following RA exposure, is required for RA-induced cell-cycle arrest and differentiation and causes persistent MAPK signaling. A mathematical model of RA-induced cell-cycle arrest and differentiation was formulated and tested against BLR1 wild-type (wt) knock-out and knock-in HL-60 cell-lines with and without RA. The current model described the dynamics of 729 proteins and protein complexes interconnected by 1356 interactions. An ensemble strategy was used to compensate for uncertain model parameters. The ensemble of HL-60 models recapitulated the positive feedback between BLR1 and MAPK signaling. The ensemble of models also correctly predicted Rb and p47phox regulation and the correlation between p21-CDK4-cyclin D formation and G1/0-arrest following exposure to RA. Finally, we investigated the robustness of the HL-60 network architecture to structural perturbations and generated experimentally testable hypotheses for future study. Taken together, the model presented here was a first step toward a systematic framework for analysis of programmed differentiation. These studies also demonstrated that mechanistic network modeling can help prioritize experimental directions by generating falsifiable hypotheses despite uncertainty.

  7. Cytotoxicity of Gold Nanorods and Nanowires on Cultivated Neural Precursor Cells.

    PubMed

    Kim, Yong-Jung; Yoo, Chan-Jong; Lee, Uhn; Yoo, Young-Mi

    2015-08-01

    Given the emergence of nanotherapeutics and nanodiagnostics as key tools in today's medicine, it has become of critical importance to define the interactions of nanomaterials with biological systems. The biomedical applications of nanoparticles (NPs) in chemical sensing, biological imaging, drug delivery, photothermal therapy and cancer treatment have been demonstrated. Gold NPs as new biomedical tools are the focus of research due to their ease of synthesis, chemical stability and unique optical properties. Therefore, there is a need to establish the toxicity, side effects and safety of gold NPs for human applications. To study the in vitro cytotoxicity of gold NPs, we performed MTT assay using two types of gold NPs such as gold nanorods (GNRs) and gold nanowires (GNWs). The percentage cytotoxicity of damaged neural precursor cells (NPCs) that were treated with 100 mg GNRs was 97.5±3.9%; and proportion of damaged NPCs following the administration of the same dose of GNWs was 98.8±0.3%. The cytotoxicity of 10 mg GNRs in NPCs was 54.4±8.3%, whereas it was 98.7±0.6% for the same dose of GNWs. Then, to verify that gold NPs induced apoptotic cell death in NPCs, the LIVE/DEAD Viability/Cytotoxicity assay was performed. We observed that cell death of NPCs increased with an increase in quantity of both types of gold NPs. Cell viability assessed the overall dose-dependent toxicity of NPs in cultured cells. As the results suggest, this study demonstrated that treatment with gold NPs resulted in cellular toxicity in a dose-dependent manner in cultured NPCs.

  8. Comparison of osteoclast precursors in peripheral blood mononuclear cells from rheumatoid arthritis and osteoporosis patients.

    PubMed

    Nose, Michinari; Yamazaki, Hidetoshi; Hagino, Hiroshi; Morio, Yasuo; Hayashi, Shin-Ichi; Teshima, Ryota

    2009-01-01

    Osteolytic disorders cause serious problems for quality of life with aging. Osteolysis is performed by osteoclasts of the hematopoietic lineage that share some characteristics with monocytes and macrophages. As osteoclast precursors (pOCs) are present in peripheral blood, their characterization in osteolytic diseases may help us to understand risk factors. Although essential factors for osteoclastogenesis have been reported, the effective induction from pOCs in human peripheral blood mononuclear cells (PBMCs) to mature osteoclasts in culture requires further improvement. The aim of this study was development of an efficient culture system for human osteoclastogenesis and providing a simple system for the enrichment of pOCs from PBMCs. We employed coculturing of human PBMCs with a mouse stromal cell line. Significant numbers of tartrate-resistant acid phosphatase-positive (TRAP(+)) multinucleated osteoclasts (MNCs), which could resorb dentine slices, were efficiently induced in this culture condition. pOCs were enriched in an anti-CD16 antibody column-passed anti-CD14 antibody-bound cell population isolated by magnetic cell sorting. We compared the percentage of the CD14(high) CD16(dull) cell population, which mainly contained pOCs in PBMCs, from age-matched patients with rheumatoid arthritis (RA) and osteoporosis (OP), but it was comparable. However, the mean number of TRAP(+) MNCs generated in cultures from PBMCs of RA was higher. In contrast, the frequency of pOCs in PBMCs from OP was relatively higher. These results suggest the characteristics of pOCs from RA and OP may be different, because single pOCs from OP gave rise to lower numbers of osteoclasts than those from RA. PMID:19082778

  9. Comparison of osteoclast precursors in peripheral blood mononuclear cells from rheumatoid arthritis and osteoporosis patients.

    PubMed

    Nose, Michinari; Yamazaki, Hidetoshi; Hagino, Hiroshi; Morio, Yasuo; Hayashi, Shin-Ichi; Teshima, Ryota

    2009-01-01

    Osteolytic disorders cause serious problems for quality of life with aging. Osteolysis is performed by osteoclasts of the hematopoietic lineage that share some characteristics with monocytes and macrophages. As osteoclast precursors (pOCs) are present in peripheral blood, their characterization in osteolytic diseases may help us to understand risk factors. Although essential factors for osteoclastogenesis have been reported, the effective induction from pOCs in human peripheral blood mononuclear cells (PBMCs) to mature osteoclasts in culture requires further improvement. The aim of this study was development of an efficient culture system for human osteoclastogenesis and providing a simple system for the enrichment of pOCs from PBMCs. We employed coculturing of human PBMCs with a mouse stromal cell line. Significant numbers of tartrate-resistant acid phosphatase-positive (TRAP(+)) multinucleated osteoclasts (MNCs), which could resorb dentine slices, were efficiently induced in this culture condition. pOCs were enriched in an anti-CD16 antibody column-passed anti-CD14 antibody-bound cell population isolated by magnetic cell sorting. We compared the percentage of the CD14(high) CD16(dull) cell population, which mainly contained pOCs in PBMCs, from age-matched patients with rheumatoid arthritis (RA) and osteoporosis (OP), but it was comparable. However, the mean number of TRAP(+) MNCs generated in cultures from PBMCs of RA was higher. In contrast, the frequency of pOCs in PBMCs from OP was relatively higher. These results suggest the characteristics of pOCs from RA and OP may be different, because single pOCs from OP gave rise to lower numbers of osteoclasts than those from RA.

  10. Studies of lymphokine-activated killer (LAK) cells. I. Evidence using novel monoclonal antibodies that most human LAK precursor cells share a common surface marker

    PubMed Central

    1989-01-01

    Separation of LAK precursor (LAKp) cells (as defined by LAK effector generation after incubation with IL-2 for 7 d) from cells with NK activity/LGL morphology was achieved on Percoll gradients using a longer, slower centrifugation than that used for optimal NK enrichment. mAb were generated using the various Percoll fractions as the immunizing cells and used for separation and depletion studies. Two mAbs DM-1 (IgM,k) and DM-2 (IgM,k) recognizing 2-15% and 15-30% of PBL, respectively, abrogated a large proportion of LAK generative potential after complement depletion, but had little effect on NK or LAK effector activity. Cell sorting experiments indicated that the majority of LAKp cells are found within the DM-1+ population and that DM-1+ cells are not simply an accessory cell required for LAKp generation. Further, these two mAbs do not recognize cells that are responsible for generating cytotoxicity during MLC or co-culture with the PR-1 EBV lymphoblastoid cell line. Western blot analysis indicated that DM-1 and DM-2 recognize a 38,000 and 44,000 dalton moiety, respectively. The frequency of cells bearing these antigens and the intensity of cell surface staining decreased during the 7-d culture period, suggesting that these antibodies recognize determinants found only at the precursor level. These findings indicate that cells other than NK effectors or mature T cells are capable of generating a LAK cell response. These LAK precursor cells share a common differentiation surface antigen and are different from AK or antigen-specific CTL precursors. The possibility exists that these cells are identical to, or include, the NK precursor cell. PMID:2784480

  11. Oligodendrocyte Precursor Cells in Spinal Cord Injury: A Review and Update

    PubMed Central

    Li, Ning; Leung, Gilberto K. K.

    2015-01-01

    Spinal cord injury (SCI) is a devastating condition to individuals, families, and society. Oligodendrocyte loss and demyelination contribute as major pathological processes of secondary damages after injury. Oligodendrocyte precursor cells (OPCs), a subpopulation that accounts for 5 to 8% of cells within the central nervous system, are potential sources of oligodendrocyte replacement after SCI. OPCs react rapidly to injuries, proliferate at a high rate, and can differentiate into myelinating oligodendrocytes. However, posttraumatic endogenous remyelination is rarely complete, and a better understanding of OPCs' characteristics and their manipulations is critical to the development of novel therapies. In this review, we summarize known characteristics of OPCs and relevant regulative factors in both health and demyelinating disorders including SCI. More importantly, we highlight current evidence on post-SCI OPCs transplantation as a potential treatment option as well as the impediments against regeneration. Our aim is to shed lights on important knowledge gaps and to provoke thoughts for further researches and the development of therapeutic strategies. PMID:26491661

  12. Potential interactions between pericytes and oligodendrocyte precursor cells in perivascular regions of cerebral white matter

    PubMed Central

    Maki, Takakuni; Maeda, Mitsuyo; Uemura, Maiko; Lo, Evan K.; Terasaki, Yasukazu; Liang, Anna C.; Shindo, Akihiro; Choi, Yoon Kyung; Taguchi, Akihiko; Matsuyama, Tomohiro; Takahashi, Ryosuke; Ihara, Masafumi; Arai, Ken

    2015-01-01

    Pericytes are embedded within basal lamina and play multiple roles in the perivascular niche in brain. Recently, oligodendrocyte precursor cells (OPCs) have also been reported to associate with cerebral endothelium. Is it possible that within this gliovascular locus, there may also exist potential spatial and functional interactions between pericytes and OPCs? Here, we demonstrated that in the perivascular region of cerebral white matter, pericytes and OPCs may attach and support each other. Immunostaining showed that pericytes and OPCs are localized in close contact with each other in mouse white matter at postnatal days 0, 60 and 240. Electron microscopic analysis confirmed that pericytes attached to OPCs via basal lamina in the perivascular region. The close proximity between these two cell types was also observed in postmortem human brains. Functional interaction between pericytes and OPCs was assessed by in vitro media transfer experiments. When OPC cultures were treated with pericyte-conditioned media, OPC number increased. Similarly, pericyte number increased when pericytes were maintained in OPC-conditioned media. Taken together, our data suggest a potential anatomical and functional interaction between pericytes and OPCs in cerebral white matter. PMID:25936593

  13. CD73 protein as a source of extracellular precursors for sustained NAD+ biosynthesis in FK866-treated tumor cells.

    PubMed

    Grozio, Alessia; Sociali, Giovanna; Sturla, Laura; Caffa, Irene; Soncini, Debora; Salis, Annalisa; Raffaelli, Nadia; De Flora, Antonio; Nencioni, Alessio; Bruzzone, Santina

    2013-09-01

    NAD(+) is mainly synthesized in human cells via the "salvage" pathways starting from nicotinamide, nicotinic acid, or nicotinamide riboside (NR). The inhibition with FK866 of the enzyme nicotinamide phosphoribosyltransferase (NAMPT), catalyzing the first reaction in the "salvage" pathway from nicotinamide, showed potent antitumor activity in several preclinical models of solid and hematologic cancers. In the clinical studies performed with FK866, however, no tumor remission was observed. Here we demonstrate that low micromolar concentrations of extracellular NAD(+) or NAD(+) precursors, nicotinamide mononucleotide (NMN) and NR, can reverse the FK866-induced cell death, this representing a plausible explanation for the failure of NAMPT inhibition as an anti-cancer therapy. NMN is a substrate of both ectoenzymes CD38 and CD73, with generation of NAM and NR, respectively. In this study, we investigated the roles of CD38 and CD73 in providing ectocellular NAD(+) precursors for NAD(+) biosynthesis and in modulating cell susceptibility to FK866. By specifically silencing or overexpressing CD38 and CD73, we demonstrated that endogenous CD73 enables, whereas CD38 impairs, the conversion of extracellular NMN to NR as a precursor for intracellular NAD(+) biosynthesis in human cells. Moreover, cell viability in FK866-treated cells supplemented with extracellular NMN was strongly reduced in tumor cells, upon pharmacological inhibition or specific down-regulation of CD73. Thus, our study suggests that genetic or pharmacologic interventions interfering with CD73 activity may prove useful to increase cancer cell sensitivity to NAMPT inhibitors. PMID:23880765

  14. Enriched retinal ganglion cells derived from human embryonic stem cells.

    PubMed

    Gill, Katherine P; Hung, Sandy S C; Sharov, Alexei; Lo, Camden Y; Needham, Karina; Lidgerwood, Grace E; Jackson, Stacey; Crombie, Duncan E; Nayagam, Bryony A; Cook, Anthony L; Hewitt, Alex W; Pébay, Alice; Wong, Raymond C B

    2016-01-01

    Optic neuropathies are characterised by a loss of retinal ganglion cells (RGCs) that lead to vision impairment. Development of cell therapy requires a better understanding of the signals that direct stem cells into RGCs. Human embryonic stem cells (hESCs) represent an unlimited cellular source for generation of human RGCs in vitro. In this study, we present a 45-day protocol that utilises magnetic activated cell sorting to generate enriched population of RGCs via stepwise retinal differentiation using hESCs. We performed an extensive characterization of these stem cell-derived RGCs by examining the gene and protein expressions of a panel of neural/RGC markers. Furthermore, whole transcriptome analysis demonstrated similarity of the hESC-derived RGCs to human adult RGCs. The enriched hESC-RGCs possess long axons, functional electrophysiological profiles and axonal transport of mitochondria, suggestive of maturity. In summary, this RGC differentiation protocol can generate an enriched population of functional RGCs from hESCs, allowing future studies on disease modeling of optic neuropathies and development of cell therapies. PMID:27506453

  15. Enriched retinal ganglion cells derived from human embryonic stem cells

    PubMed Central

    Gill, Katherine P.; Hung, Sandy S. C.; Sharov, Alexei; Lo, Camden Y.; Needham, Karina; Lidgerwood, Grace E.; Jackson, Stacey; Crombie, Duncan E.; Nayagam, Bryony A.; Cook, Anthony L.; Hewitt, Alex W.; Pébay, Alice; Wong, Raymond C. B.

    2016-01-01

    Optic neuropathies are characterised by a loss of retinal ganglion cells (RGCs) that lead to vision impairment. Development of cell therapy requires a better understanding of the signals that direct stem cells into RGCs. Human embryonic stem cells (hESCs) represent an unlimited cellular source for generation of human RGCs in vitro. In this study, we present a 45-day protocol that utilises magnetic activated cell sorting to generate enriched population of RGCs via stepwise retinal differentiation using hESCs. We performed an extensive characterization of these stem cell-derived RGCs by examining the gene and protein expressions of a panel of neural/RGC markers. Furthermore, whole transcriptome analysis demonstrated similarity of the hESC-derived RGCs to human adult RGCs. The enriched hESC-RGCs possess long axons, functional electrophysiological profiles and axonal transport of mitochondria, suggestive of maturity. In summary, this RGC differentiation protocol can generate an enriched population of functional RGCs from hESCs, allowing future studies on disease modeling of optic neuropathies and development of cell therapies. PMID:27506453

  16. Herpes Simplex Virus Dances with Amyloid Precursor Protein while Exiting the Cell

    PubMed Central

    Cheng, Shi-Bin; Ferland, Paulette; Webster, Paul; Bearer, Elaine L.

    2011-01-01

    Herpes simplex type 1 (HSV1) replicates in epithelial cells and secondarily enters local sensory neuronal processes, traveling retrograde to the neuronal nucleus to enter latency. Upon reawakening newly synthesized viral particles travel anterograde back to the epithelial cells of the lip, causing the recurrent cold sore. HSV1 co-purifies with amyloid precursor protein (APP), a cellular transmembrane glycoprotein and receptor for anterograde transport machinery that when proteolyzed produces A-beta, the major component of senile plaques. Here we focus on transport inside epithelial cells of newly synthesized virus during its transit to the cell surface. We hypothesize that HSV1 recruits cellular APP during transport. We explore this with quantitative immuno-fluorescence, immuno-gold electron-microscopy and live cell confocal imaging. After synchronous infection most nascent VP26-GFP-labeled viral particles in the cytoplasm co-localize with APP (72.8+/−6.7%) and travel together with APP inside living cells (81.1+/−28.9%). This interaction has functional consequences: HSV1 infection decreases the average velocity of APP particles (from 1.1+/−0.2 to 0.3+/−0.1 µm/s) and results in APP mal-distribution in infected cells, while interplay with APP-particles increases the frequency (from 10% to 81% motile) and velocity (from 0.3+/−0.1 to 0.4+/−0.1 µm/s) of VP26-GFP transport. In cells infected with HSV1 lacking the viral Fc receptor, gE, an envelope glycoprotein also involved in viral axonal transport, APP-capsid interactions are preserved while the distribution and dynamics of dual-label particles differ from wild-type by both immuno-fluorescence and live imaging. Knock-down of APP with siRNA eliminates APP staining, confirming specificity. Our results indicate that most intracellular HSV1 particles undergo frequent dynamic interplay with APP in a manner that facilitates viral transport and interferes with normal APP transport and distribution. Such dynamic

  17. Functionalized derivatives of 1,4-dimethylnaphthalene as precursors for biomedical applications: synthesis, structures, spectroscopy and photochemical activation in the presence of dioxygen.

    PubMed

    Posavec, Damir; Zabel, Manfred; Bogner, Udo; Bernhardt, Günther; Knör, Günther

    2012-09-21

    Decomposition of endoperoxide containing molecules is an attractive approach for the delayed release of singlet oxygen under mild reaction conditions. Here we describe a new method for the adaptation of the corresponding decay times by controlling the supramolecular functional structure of the surrounding matrix in the immediate vicinity of embedded singlet oxygen precursors. Thus, a significant prolongation of the lifetime of the endoperoxide species is possible by raising the energy barrier of the thermal (1)O(2)-releasing step via a restriction of the free volume of the applied carrier material. Enabling such a prolonged decomposition period is crucial for potential biomedical applications of endoperoxide containing molecules, since sufficient time for appropriate cell uptake and transport to the desired target region must be available under physiological conditions before the tissue damaging-power of the reactive oxygen species formed is completely exhausted. Two novel polyaromatic systems for the intermediate storage and transport of endoperoxides and the controlled release of singlet oxygen in the context of anticancer and antibiotic activity have been prepared and characterized. These compounds are based on functionalized derivatives of the 1,4-dimethylnaphthalene family which are readily forming metastable endoperoxide species in the presence of dioxygen, a photosensitizer molecule such as methylene blue and visible light. In contrast to previously known systems of similar photoreactivity, the endoperoxide carrying molecules have been designed with optimized molecular properties in terms of potential chemotherapeutic applications. These include modifications of polarity to improve their incorporation into various biocompatible carrier materials, the introduction of hydrogen bonding motifs to additionally influence the endoperoxide decay kinetics, and the synthesis of bifunctional derivatives to enable synergistic effects of multiple singlet oxygen binding

  18. Integrative proteomic profiling of ovarian cancer cell lines reveals precursor cell associated proteins and functional status

    PubMed Central

    Coscia, F.; Watters, K. M.; Curtis, M.; Eckert, M. A.; Chiang, C. Y.; Tyanova, S.; Montag, A.; Lastra, R. R.; Lengyel, E.; Mann, M.

    2016-01-01

    A cell line representative of human high-grade serous ovarian cancer (HGSOC) should not only resemble its tumour of origin at the molecular level, but also demonstrate functional utility in pre-clinical investigations. Here, we report the integrated proteomic analysis of 26 ovarian cancer cell lines, HGSOC tumours, immortalized ovarian surface epithelial cells and fallopian tube epithelial cells via a single-run mass spectrometric workflow. The in-depth quantification of >10,000 proteins results in three distinct cell line categories: epithelial (group I), clear cell (group II) and mesenchymal (group III). We identify a 67-protein cell line signature, which separates our entire proteomic data set, as well as a confirmatory publicly available CPTAC/TCGA tumour proteome data set, into a predominantly epithelial and mesenchymal HGSOC tumour cluster. This proteomics-based epithelial/mesenchymal stratification of cell lines and human tumours indicates a possible origin of HGSOC either from the fallopian tube or from the ovarian surface epithelium. PMID:27561551

  19. Derivation of epithelial-like cells from eyelid fat-derived stem cells in thermosensitive hydrogel.

    PubMed

    Heidari Keshel, Saeed; Rostampour, Maryam; Khosropour, Golbahar; Bandbon B, Atefehsadat; Baradaran-Rafii, Alireza; Biazar, Esmaeil

    2016-01-01

    Injectable hydrogel is one of the great interests for tissue engineering and cell encapsulation. In the study, the thermosensitive chitosan/gelatin/β-glycerol phosphate (C/G/GP) disodium salt hydrogels were designed and investigated by different analyses. The eye fat-derived stem cells were used to evaluate the biocompatibility of hydrogels based on their phenotypic profile, viability, proliferation, and attachment ability. The results show that the sol/gel transition temperature of the C/G/GP hydrogel was in the range of 31.1-33.8 °C at neutral pH value, the gelation time was shortened, and the gel strength also improved at body temperature when compared with the C/GP hydrogel. In vitro cell culture experiments with eyelid fat-derived stem cells in hydrogel showed beneficial effects on the cell phenotypic morphology, proliferation, and differentiation. Microscopic figures showed that the eyelid fat stem cell were firmly anchored to the substrates and were able to retain a normal stem cell phenotype. Immunocytochemistry (ICC) and real-time-PCR results revealed change in the expression profile of eyelid fat stem cells grown with hydrogels when compared to those grown on control in epithelial induction condition. This study indicates that using chitosan/gelatin/β-glycerol phosphate hydrogel for cell culture is feasible and may apply in minimal invasive surgery in the future.

  20. Autophagy Protects Against Aminochrome-Induced Cell Death in Substantia Nigra-Derived Cell Line

    PubMed Central

    Paris, Irmgard; Muñoz, Patricia; Huenchuguala, Sandro; Couve, Eduardo; Sanders, Laurie H.; Greenamyre, John Timothy; Caviedes, Pablo; Segura-Aguilar, Juan

    2011-01-01

    Aminochrome, the precursor of neuromelanin, has been proposed to be involved in the neurodegeneration neuromelanin-containing dopaminergic neurons in Parkinson’s disease. We aimed to study the mechanism of aminochrome-dependent cell death in a cell line derived from rat substantia nigra. We found that aminochrome (50μM), in the presence of NAD(P)H-quinone oxidoreductase, EC 1.6.99.2 (DT)-diaphorase inhibitor dicoumarol (DIC) (100μM), induces significant cell death (62 ± 3%; p < 0.01), increase in caspase-3 activation (p < 0.001), release of cytochrome C, disruption of mitochondrial membrane potential (p < 0.01), damage of mitochondrial DNA, damage of mitochondria determined with transmission electron microscopy, a dramatic morphological change characterized as cell shrinkage, and significant increase in number of autophagic vacuoles. To determine the role of autophagy on aminochrome-induced cell death, we incubated the cells in the presence of vinblastine and rapamycin. Interestingly, 10μM vinblastine induces a 5.9-fold (p < 0.001) and twofold (p < 0.01) significant increase in cell death when the cells were incubated with 30μM aminochrome in the absence and presence of DIC, respectively, whereas 10μM rapamycin preincubated 24 h before addition of 50μM aminochrome in the absence and the presence of 100μM DIC induces a significant decrease (p < 0.001) in cell death. In conclusion, autophagy seems to be an important protective mechanism against two different aminochrome-induced cell deaths that initially showed apoptotic features. The cell death induced by aminochrome when DT-diaphorase is inhibited requires activation of mitochondrial pathway, whereas the cell death induced by aminochrome alone requires inhibition of autophagy-dependent degrading of damaged organelles and recycling through lysosomes. PMID:21427056

  1. Evidence of a novel dipeptidyl aminopeptidase in mammalian GH(3) cells: new insights into the processing of peptide hormone precursors.

    PubMed

    Cheong, Kwang Ho; Lee, Myung Ae; Han, Sang Yeol; Shields, Dennis; Park, Sang Dai; Hong, Seung Hwan

    2002-06-01

    We investigated whether yeast signals could regulate hormone processing in mammalian cells. Chmeric genes coding for the prepro region of yeast alpha-factor and the functional hormone region of anglerfish somatostatin was expressed in rat pituitary GH(3) cells. The nascent prepro-alpha-factor-somatostatin peptides disappeared from cells with a half-life of 30 min, and about 20% of unprocessed precursors remained intracellular after a 2 h chase period. Disappearance of propeptide was insensitive to lysosomotropic agents, but was inhibited at 15 degrees C or 20 degrees C, suggesting that the hybrid propeptides were not degraded in the secretory pathway to the trans Golgi network or in lysosomes. It appeared that while most unprocessed precursors were constitutively secreted into the medium, a small portion were processed at their paired dibasic sites by prohormone-processing enzymes located in trans Golgi network/secretory vesicles, resulting in the production of mature somatostatin peptides. To test this hypothesis, we investigated the processing pattern of two different hybrid precursors: the 52-1 hybrid precursor, which has a Glu-Ala spacer between the prepro region of alpha-factor and somatostatin, and the 58-1 hybrid precursor, which lacks the Glu-Ala spacer. Processing of metabolically labeled hybrid propeptides to smaller somatostatin peptides was assessed by HPLC. When pulse-labeled cells were chased for up to 2 h, 68% of the initially synthesized propeptides were secreted constitutively. About 22% of somatostatin-related products were proteolytically processed to mature somatostatin, of which 38.7% were detected intracellularly after 2 h. From N-terminal peptide sequence determination of somatostatin-related products in GH(3)-52 and GH(3)-58 cells, we found that both hybrid precursors were accurately cleaved at their dibasic amino acid sites. Notably, we also observed that the Glu-Ala spacer sequence was removed from 52-1 hybrid precursors. The latter result

  2. Contribution of G-CSF to the acute mobilization of endothelial precursor cells by vascular disrupting agents

    PubMed Central

    Shaked, Yuval; Tang, Terence; Woloszynek, Jill; Daenen, Laura G.; Man, Shan; Xu, Ping; Cai, Shi-Rong; Arbeit, Jeffrey M.; Voest, Emile E.; Chaplin, David; Smythe, Jon; Harris, Adrian; Nathan, Paul; Judson, Ian; Rustin, Gordon; Bertolini, Francesco; Link, Daniel C.; Kerbel, Robert S.

    2009-01-01

    Vascular disrupting agents (VDAs) cause acute shutdown of abnormal established tumor vasculature, followed by massive intratumoral hypoxia and necrosis. However, a viable rim of tumor tissue invariably remains from which tumor regrowth rapidly resumes. We have recently shown that an acute systemic mobilization and homing of bone marrow derived circulating endothelial precursor cells (CEPs) can promote tumor regrowth following treatment with either a VDA or certain chemotherapy drugs. The molecular mediators of this systemic reactive host process are unknown. Here we show that following treatment of mice with OXi-4503, a second generation potent pro-drug derivative of combretastatin-A 4 phosphate (CA4P), rapid increases in circulating plasma VEGF, SDF-1, and G-CSF levels are detected. With the aim of determining whether G-CSF is involved in VDA-induced CEP mobilization, mutant G-CSF-R−/− mice were treated with OXI-4503. We found that as opposed to wildtype controls, G-CSF-R−/− mice failed to mobilize CEPs or show induction of SDF-1 plasma levels. Furthermore, Lewis lung carcinomas grown in such mice treated with OXi-4503 showed greater levels of necrosis compared to tumors treated in wildtype mice. Evidence for rapid elevations in circulating plasma G-CSF, VEGF, and SDF-1 were also observed in VDA (CA4P) treated cancer patients. These results highlight the possible impact of drug-induced G-CSF on tumor re-growth following certain cytotoxic drug therapies, in this case using a VDA, and hence G-CSF as a possible therapeutic target. PMID:19738066

  3. Characterization of oligodendrocyte lineage precursor cells in the mouse cerebral cortex: a confocal microscopy approach to demyelinating diseases.

    PubMed

    Girolamo, Francesco; Strippoli, Maurizio; Errede, Mariella; Benagiano, Vincenzo; Roncali, Luisa; Ambrosi, Glauco; Virgintino, Daniela

    2010-01-01

    The identification of stem cells resident in the adult central nervous system has redirected the focus of research into demyelinating diseases, such as multiple sclerosis, mainly affecting the brain white matter. This immunocytochemical and morphometrical study was carried out by confocal microscopy in the adult mouse cerebral cortex, with the aim of analysing, in the brain grey matter, the characteristics of the oligodendrocyte lineage cells, whose capability to remyelinate is still controversial. The observations demonstrated the presence in all the cortex layers of glial restricted progenitors, reactive to A2B5 marker, oligodendrocyte precursor cells, expressing the NG2 proteoglycan, and pre-oligodendrocytes and pre-myelinating oligodendrocytes, reactive to the specific marker O4. NG2 expressing cells constitute the major immature population of the cortex, since not only oligodendrocyte precursor cells and pre-oligodendrocytes but also a part of the glial restrict progenitors express the NG2 proteoglycan. Together with the population of these immature cells, a larger population of mature oligodendrocytes was revealed by the classical oligodendrocyte and myelin markers, 2',3'-cyclic nucleotide 3'-phosphodiesterase, myelin basic protein and myelin oligodendrocyte glycoprotein. The results indicate that oligodendrocyte precursors committed to differentiate into myelin forming oligodendrocytes are present through all layers of the adult cortex and that their phenotypic features exactly recall those of the oligodendroglial lineage cells during development.

  4. Fluorine-18 labeling of small molecules: the use of 18F-labeled aryl fluorides derived from no-carrier-added [18F]fluoride as labeling precursors.

    PubMed

    Wuest, F

    2007-01-01

    The favourable long-half life, the ease of production and the low energy of the emitted positron make 18F an ideal radionuclide for PET imaging. Radiochemistry of 18F basically relies on two distinctive types of reactions: nucleophilic and electrophilic reactions. All syntheses of 18F-labeled radiotracers are based on either [18F]fluoride ion or [18F]fluorine gas as simple primary labeling precursors which are obtained directly from the cyclotron. They can be applied either directly to the radiosynthesis or they can be transformed into more complex labeling precursors enabling the multi-step build-up of organic tracer molecules. The topic of this review is a survey on the application of several 18F-labeled aryl fluorides as building blocks derived from no-carrier-added (n.c.a.) [18F] fluoride to build up small monomeric PET radiotracers at high specific radioactivity by multi-step synthesis procedures.

  5. Proliferation and differentiation of oligodendrocyte progenitor cells induced from rat embryonic neural precursor cells followed by flow cytometry.

    PubMed

    Lü, He-Zuo; Wang, Yan-Xia; Li, Ying; Fu, Sai-Li; Hang, Qin; Lu, Pei-Hua

    2008-08-01

    Previous studies have shown that a cell-intrinsic timer might determine when oligodendrocyte progenitor cells (OPCs) isolated from the central nervous system (CNS) stop dividing and initiate differentiation in a defined environment. In this report, the proliferation and differentiation of OPCs induced from neural precursor cells (NPCs) were analyzed by flow cytometry combined with carboxyfluorescein diacetate succinimidyl ester labeling and propidium iodide staining, respectively. When OPCs were cultured in OPC-medium, more than 30% of cells were in S- and G2/M-phases, and continuously self-renewed without differentiation. After exposure to thyroid hormone, there was an obvious decrease in the fraction of cells in both S- and G2/M-phases (<10%). Furthermore, the OPCs no longer proliferated, but differentiated into oligodendrocytes. The dynamic proliferation and differentiation characteristics of OPCs induced from NPCs and analyzed by flow cytometry were similar to those of OPCs isolated from the CNS and analyzed by other methods. These studies indicated that the proliferation and differentiation of OPCs can be followed simply and rapidly by flow cytometry. PMID:18473382

  6. LKB1 Regulates Cerebellar Development by Controlling Sonic Hedgehog-mediated Granule Cell Precursor Proliferation and Granule Cell Migration

    PubMed Central

    Men, Yuqin; Zhang, Aizhen; Li, Haixiang; Jin, Yecheng; Sun, Xiaoyang; Li, Huashun; Gao, Jiangang

    2015-01-01

    The Liver Kinase B1 (LKB1) gene plays crucial roles in cell differentiation, proliferation and the establishment of cell polarity. We created LKB1 conditional knockout mice (LKB1Atoh1 CKO) to investigate the function of LKB1 in cerebellar development. The LKB1Atoh1 CKO mice displayed motor dysfunction. In the LKB1Atoh1 CKO cerebellum, the overall structure had a larger volume and morelobules. LKB1 inactivationled to an increased proliferation of granule cell precursors (GCPs), aberrant granule cell migration and overproduction of unipolar brush cells. To investigate the mechanism underlying the abnormal foliation, we examined sonic hedgehog signalling (Shh) by testing its transcriptional mediators, the Gli proteins, which regulate the GCPs proliferation and cerebellar foliation during cerebellar development. The expression levels of Gli genes were significantly increased in the mutant cerebellum. In vitro assays showed that the proliferation of cultured GCPs from mutant cerebellum significantly increased, whereas the proliferation of mutant GCPs significantly decreased in the presence of a Shh inhibitor GDC-0049. Thus, LKB1 deficiency in the LKB1Atoh1 CKO mice enhanced Shh signalling, leading to the excessive GCP proliferation and the formation of extra lobules. We proposed that LKB1 regulates cerebellar development by controlling GCPs proliferation through Shh signalling during cerebellar development. PMID:26549569

  7. The basic leucine zipper transcription factor NFIL3 directs the development of a common innate lymphoid cell precursor.

    PubMed

    Yu, Xiaofei; Wang, Yuhao; Deng, Mi; Li, Yun; Ruhn, Kelly A; Zhang, Cheng Cheng; Hooper, Lora V

    2014-10-13

    Innate lymphoid cells (ILCs) are recently identified lymphocytes that limit infection and promote tissue repair at mucosal surfaces. However, the pathways underlying ILC development remain unclear. Here we show that the transcription factor NFIL3 directs the development of a committed bone marrow precursor that differentiates into all known ILC lineages. NFIL3 was required in the common lymphoid progenitor (CLP), and was essential for the differentiation of αLP, a bone marrow cell population that gives rise to all known ILC lineages. Clonal differentiation studies revealed that CXCR6(+) cells within the αLP population differentiate into all ILC lineages but not T- and B-cells. We further show that NFIL3 governs ILC development by directly regulating expression of the transcription factor TOX. These findings establish that NFIL3 directs the differentiation of a committed ILC precursor that gives rise to all ILC lineages and provide insight into the defining role of NFIL3 in ILC development.

  8. Primary cutaneous precursor B cell lymphoblastic lymphoma in a child, complicated by fatal disseminated varicella zoster virus.

    PubMed

    Rashidghamat, E; Robson, A

    2015-12-01

    Precursor B-cell lymphoblastic lymphoma (PBLL) is a rare subtype of childhood non-Hodgkin lymphoma (NHL). Most lymphoblastic lymphomas have a T-cell immunophenotype, but a small distinct proportion is of precursor B-cell origin. Skin and bone involvement is seen more commonly in this clinical variant. Primary cutaneous PBLL is rare. We describe an 8-year-old girl who presented with an asymptomatic nodule on the left upper arm. Histopathological features were consistent with pre-B-cell lymphoblastic lymphoma, and staging investigations excluded extracutaneous disease, resulting in a diagnosis of primary cutaneous PBLL. The child was started on induction chemotherapy, UKALL 2003 regimen B. She developed disseminated varicella zoster virus and died despite treatment. We discuss previously reported cases of primary cutaneous PBLL and their outcomes. PMID:25959984

  9. Hodgkin and Reed-Sternberg cells in Hodgkin's disease represent the outgrowth of a dominant tumor clone derived from (crippled) germinal center B cells

    PubMed Central

    1996-01-01

    In Hodgkin's disease (HD), the Hodgkin and Reed-Sternberg (HRS) cells represent only a minute population in the diseased tissue. The investigation of lineage derivation and clonal origin of these cells has yielded conflicting results. We have analyzed HRS cells micromanipulated from infiltrated tissue sections of 10 primary HD patients for rearranged V genes, extending a previous study. Clonally related rearrangements were found in nine cases, indicating that HRS cells represent a dominant clone of B lineage-derived cells in at least a large fraction of cases of HD. Rearranged VH genes from HRS cells carried a high load of somatic mutation, indicating that HRS cells are derived from germinal center (GC) cells or their progeny. Stop codons in some in-frame V gene rearrangements suggest that the HRS cell precursors reside inside GCs, have acquired crippling mutations that prevent antigenic selection, but escape apoptosis through some transforming event. PMID:8879220

  10. Arborisidine and Arbornamine, Two Monoterpenoid Indole Alkaloids with New Polycyclic Carbon-Nitrogen Skeletons Derived from a Common Pericine Precursor.

    PubMed

    Wong, Suet-Pick; Chong, Kam-Weng; Lim, Kuan-Hon; Lim, Siew-Huah; Low, Yun-Yee; Kam, Toh-Seok

    2016-04-01

    Two new monoterpene indole alkaloids, characterized by previously unencountered natural product skeletons, viz., arborisidine (1), incorporating indolizidine and cyclohexanone moieties fused to an indole unit, and arbornamine (2), incorporating an unprecedented 6/5/6/5/6 "arbornane" skeleton (distinct from the eburnan or tacaman skeleton), were isolated from a Malayan Kopsia arborea. The structures of the alkaloids were determined based on analysis of the NMR and MS data. Possible biogenetic pathways to these alkaloids from a common pericine precursor (3) are presented.

  11. Novel Cryptic Rearrangements in Adult B-Cell Precursor Acute Lymphoblastic Leukemia Involving the MLL Gene

    PubMed Central

    Othman, Moneeb A. K.; Grygalewicz, Beata; Pienkowska-Grela, Barbara; Rincic, Martina; Rittscher, Katharina; Melo, Joana B.; Carreira, Isabel M.; Meyer, Britta; Marzena, Watek

    2015-01-01

    MLL (mixed-lineage-leukemia) gene rearrangements are typical for acute leukemia and are associated with an aggressive course of disease, with a worse outcome than comparable case, and thus require intensified treatment. Here we describe a 69-year-old female with adult B cell precursor acute lymphoblastic leukemia (BCP-ALL) with hyperleukocytosis and immunophenotype CD10- and CD19+ with cryptic MLL rearrangements. G-banding at the time of diagnosis showed a normal karyotype: 46,XX. Molecular cytogenetics using multitude multicolor banding (mMCB) revealed a complex rearrangement of the two copies of chromosome 11. However, a locus-specific probe additionally identified that the MLL gene at 11q23.3 was disrupted, and that the 5′ region was inserted into the chromosomal sub-band 4q21; thus the aberration involved three chromosomes and five break events. Unfortunately, the patient died six months after the initial diagnosis from serious infections and severe complications. Overall, the present findings confirm that, by far not all MLL aberrations are seen by routine chromosome banding techniques and that fluorescence in situ hybridization (FISH) should be regarded as standard tool to access MLL rearrangements in patients with BCP-ALL. PMID:25699572

  12. Differential microRNA expression in childhood B-cell precursor acute lymphoblastic leukemia.

    PubMed

    Ju, Xiuli; Li, Dong; Shi, Qing; Hou, Huaishui; Sun, Nianzheng; Shen, Baijun

    2009-01-01

    MiRNAs play important roles in the development of both hematopoiesis and leukemogenesis. The analysis of differential microRNA expression profiles may be a powerful tool to allow us insight on the mechanisms of childhood B-cell precursor acute lymphoblastic leukemia (pre-B-ALL). The present study provides an informative profile of the expression of miRNAs in pre-B-ALL using two independent and quantitative methods: miRNA chip and qRT-PCR of mature miRNA from 40 newly diagnosed pre-B-ALL children. Additionally, putative hematopoiesis-specific target genes were analyzed with informatics technique. Both approaches showed that miR-222, miR-339, and miR-142-3p were dramatically overexpressed in pre-B-ALL patients, and downregulation of hsa-miR-451 and hsa-miR-373* was confirmed. The results of this study offer a comprehensive and quantitative profile of miRNA expression in pre-B-ALL and their healthy counterpart, suggesting that miRNAs could play a primary role in the disease itself.

  13. Novel Cryptic Rearrangements in Adult B-Cell Precursor Acute Lymphoblastic Leukemia Involving the MLL Gene.

    PubMed

    Othman, Moneeb A K; Grygalewicz, Beata; Pienkowska-Grela, Barbara; Rincic, Martina; Rittscher, Katharina; Melo, Joana B; Carreira, Isabel M; Meyer, Britta; Marzena, Watek; Liehr, Thomas

    2015-05-01

    MLL (mixed-lineage-leukemia) gene rearrangements are typical for acute leukemia and are associated with an aggressive course of disease, with a worse outcome than comparable case, and thus require intensified treatment. Here we describe a 69-year-old female with adult B cell precursor acute lymphoblastic leukemia (BCP-ALL) with hyperleukocytosis and immunophenotype CD10- and CD19+ with cryptic MLL rearrangements. G-banding at the time of diagnosis showed a normal karyotype: 46,XX. Molecular cytogenetics using multitude multicolor banding (mMCB) revealed a complex rearrangement of the two copies of chromosome 11. However, a locus-specific probe additionally identified that the MLL gene at 11q23.3 was disrupted, and that the 5' region was inserted into the chromosomal sub-band 4q21; thus the aberration involved three chromosomes and five break events. Unfortunately, the patient died six months after the initial diagnosis from serious infections and severe complications. Overall, the present findings confirm that, by far not all MLL aberrations are seen by routine chromosome banding techniques and that fluorescence in situ hybridization (FISH) should be regarded as standard tool to access MLL rearrangements in patients with BCP-ALL. PMID:25699572

  14. Osteoprotegerin Induces Apoptosis of Osteoclasts and Osteoclast Precursor Cells via the Fas/Fas Ligand Pathway.

    PubMed

    Liu, Wei; Xu, Chao; Zhao, Hongyan; Xia, Pengpeng; Song, Ruilong; Gu, Jianhong; Liu, Xuezhong; Bian, Jianchun; Yuan, Yan; Liu, Zongping

    2015-01-01

    Osteoprotegerin (OPG) is known to inhibit differentiation and activation of osteoclasts (OCs) by functioning as a decoy receptor blocking interactions between RANK and RANKL. However, the exact role of OPG in the survival/apoptosis of OCs remains unclear. OPG caused increased rates of apoptosis of both OCs and osteoclast precursor cells (OPCs). The expression of Fas and activated caspase-8 was increased by both 20 ng/mL and 40 ng/mL of OPG, but was markedly decreased at 80 ng/mL. Interestingly, we noted that while levels of Fas ligand (FasL) increased with increasing doses of OPG, the soluble form of FasL in the supernatant decreased. The results of a co-immunoprecipitation assay suggested that the decrease of sFasL might be caused by the binding of OPG. This would block the inhibition of the apoptosis of OCs and OPCs. Furthermore, changes in expression levels of Bax/Bcl-2, cleaved-caspase-9, cleaved-caspased-3 and the translocation of cytochrome c, illustrated that OPG induced apoptosis of OCs and OPCs via the classic Fas/FasL apoptosis pathway, and was mediated by mitochondria. Altogether, our results demonstrate that OPG induces OCs and OPCs apoptosis partly by the Fas/FasL signaling pathway.

  15. Comparison of human adipose-derived stem cells and bone marrow-derived stem cells in a myocardial infarction model.

    PubMed

    Rasmussen, Jeppe Grøndahl; Frøbert, Ole; Holst-Hansen, Claus; Kastrup, Jens; Baandrup, Ulrik; Zachar, Vladimir; Fink, Trine; Simonsen, Ulf

    2014-02-01

    Treatment of myocardial infarction (MI) with bone marrow-derived mesenchymal stem cells and recently also adipose-derived stem cells has shown promising results. In contrast to clinical trials and their use of autologous bone marrow-derived cells from the ischemic patient, the animal MI models are often using young donors and young, often immune-compromised, recipient animals. Our objective was to compare bone marrow-derived mesenchymal stem cells with adipose-derived stem cells from an elderly ischemic patient in the treatment of MI using a fully grown non-immune-compromised rat model. Mesenchymal stem cells were isolated from adipose tissue and bone marrow and compared with respect to surface markers and proliferative capability. To compare the regenerative potential of the two stem cell populations, male Sprague-Dawley rats were randomized to receive intramyocardial injections of adipose-derived stem cells, bone marrow-derived mesenchymal stem cells, or phosphate-buffered saline 1 week following induction of MI. After 4 weeks, left ventricular ejection fraction (LVEF) was improved in the adipose-derived stem cell group, and scar wall thickness was greater compared with the saline group. Adipose-derived as well as bone marrow-derived mesenchymal stem cells prevented left ventricular end diastolic dilation. Neither of the cell groups displayed increased angiogenesis in the myocardium compared with the saline group. Adipose-derived stem cells from a human ischemic patient preserved cardiac function following MI, whereas this could not be demonstrated for bone marrow-derived mesenchymal stem cells, with only adipose-derived stem cells leading to an improvement in LVEF. Neither of the stem cell types induced myocardial angiogenesis, raising the question whether donor age and health have an effect on the efficacy of stem cells used in the treatment of MI.

  16. Comparison of human adipose-derived stem cells and bone marrow-derived stem cells in a myocardial infarction model.

    PubMed

    Rasmussen, Jeppe Grøndahl; Frøbert, Ole; Holst-Hansen, Claus; Kastrup, Jens; Baandrup, Ulrik; Zachar, Vladimir; Fink, Trine; Simonsen, Ulf

    2014-02-01

    Treatment of myocardial infarction (MI) with bone marrow-derived mesenchymal stem cells and recently also adipose-derived stem cells has shown promising results. In contrast to clinical trials and their use of autologous bone marrow-derived cells from the ischemic patient, the animal MI models are often using young donors and young, often immune-compromised, recipient animals. Our objective was to compare bone marrow-derived mesenchymal stem cells with adipose-derived stem cells from an elderly ischemic patient in the treatment of MI using a fully grown non-immune-compromised rat model. Mesenchymal stem cells were isolated from adipose tissue and bone marrow and compared with respect to surface markers and proliferative capability. To compare the regenerative potential of the two stem cell populations, male Sprague-Dawley rats were randomized to receive intramyocardial injections of adipose-derived stem cells, bone marrow-derived mesenchymal stem cells, or phosphate-buffered saline 1 week following induction of MI. After 4 weeks, left ventricular ejection fraction (LVEF) was improved in the adipose-derived stem cell group, and scar wall thickness was greater compared with the saline group. Adipose-derived as well as bone marrow-derived mesenchymal stem cells prevented left ventricular end diastolic dilation. Neither of the cell groups displayed increased angiogenesis in the myocardium compared with the saline group. Adipose-derived stem cells from a human ischemic patient preserved cardiac function following MI, whereas this could not be demonstrated for bone marrow-derived mesenchymal stem cells, with only adipose-derived stem cells leading to an improvement in LVEF. Neither of the stem cell types induced myocardial angiogenesis, raising the question whether donor age and health have an effect on the efficacy of stem cells used in the treatment of MI. PMID:23211469

  17. Detection of Bone Marrow Derived Lung Epithelial Cells

    PubMed Central

    Kassmer, Susannah H.; Krause, Diane S.

    2010-01-01

    Studies on the ability of bone marrow derived cells to adopt the morphology and protein expression of epithelial cells in vivo have expanded rapidly over the last decade, and hundreds of publications report that bone marrow derived cells can become epithelial cells of multiple organs including lung, liver, GI tract, skin, pancreas and others. In this review, we critically evaluate the literature related to engraftment of bone marrow derived cells as epithelial cells in the lung. Over 40 manuscripts focused on whether bone marrow cells can differentiate into lung epithelial cells have been published, nearly all of which claim to identify marrow derived epithelial cells. A few investigations have concluded that no such cells are present and that the phenomenon of marrow derived epithelial cells is based on detection artifacts. Here we discuss the problems that exist in published papers identifying marrow derived epithelial cells, and propose standards for detection methods that provide the most definitive data. Identification of BM derived epithelial cells requires reliable and sensitive techniques for their detection, which must include cell identification based on the presence of an epithelial marker and the absence of blood cell markers as well as a marker for donor BM origin. In order for these studies to be rigorous, they must also use approaches to rule out cell overlap by microscopy or single cell isolation. Once these stringent criteria for identification of marrow derived epithelial cells are used universally, then the field can move forward to address the critical questions regarding which bone marrow derived cells are responsible for engraftment as epithelial cells, the mechanisms by which this occurs, whether these cells play a role in normal tissue repair, and whether specific cell subsets can be used for therapeutic benefit. PMID:20447442

  18. High mobility group nucleosome-binding family proteins promote astrocyte differentiation of neural precursor cells.

    PubMed

    Nagao, Motoshi; Lanjakornsiripan, Darin; Itoh, Yasuhiro; Kishi, Yusuke; Ogata, Toru; Gotoh, Yukiko

    2014-11-01

    Astrocytes are the most abundant cell type in the mammalian brain and are important for the functions of the central nervous system. Although previous studies have shown that the STAT signaling pathway or its regulators promote the generation of astrocytes from multipotent neural precursor cells (NPCs) in the developing mammalian brain, the molecular mechanisms that regulate the astrocytic fate decision have still remained largely unclear. Here, we show that the high mobility group nucleosome-binding (HMGN) family proteins, HMGN1, 2, and 3, promote astrocyte differentiation of NPCs during brain development. HMGN proteins were expressed in NPCs, Sox9(+) glial progenitors, and GFAP(+) astrocytes in perinatal and adult brains. Forced expression of either HMGN1, 2, or 3 in NPCs in cultures or in the late embryonic neocortex increased the generation of astrocytes at the expense of neurons. Conversely, knockdown of either HMGN1, 2, or 3 in NPCs suppressed astrocyte differentiation and promoted neuronal differentiation. Importantly, overexpression of HMGN proteins did not induce the phosphorylation of STAT3 or activate STAT reporter genes. In addition, HMGN family proteins did not enhance DNA demethylation and acetylation of histone H3 around the STAT-binding site of the gfap promoter. Moreover, knockdown of HMGN family proteins significantly reduced astrocyte differentiation induced by gliogenic signal ciliary neurotrophic factor, which activates the JAK-STAT pathway. Therefore, we propose that HMGN family proteins are novel chromatin regulatory factors that control astrocyte fate decision/differentiation in parallel with or downstream of the JAK-STAT pathway through modulation of the responsiveness to gliogenic signals. PMID:25069414

  19. An injectable hydrogel incorporating mesenchymal precursor cells and pentosan polysulphate for intervertebral disc regeneration.

    PubMed

    Frith, Jessica E; Cameron, Andrew R; Menzies, Donna J; Ghosh, Peter; Whitehead, Darryl L; Gronthos, Stan; Zannettino, Andrew C W; Cooper-White, Justin J

    2013-12-01

    Intervertebral disc (IVD) degeneration is one of the leading causes of lower back pain and a major health problem worldwide. Current surgical treatments include excision or immobilisation, with neither approach resulting in the repair of the degenerative disc. As such, a tissue engineering-based approach in which stem cells, coupled with an advanced delivery system, could overcome this deficiency and lead to a therapy that encourages functional fibrocartilage generation in the IVD. In this study, we have developed an injectable hydrogel system based on enzymatically-crosslinked polyethylene glycol and hyaluronic acid. We examined the effects of adding pentosan polysulphate (PPS), a synthetic glycosaminoglycan-like factor that has previously been shown (in vitro and in vivo) to this gel system in order to induce chondrogenesis in mesenchymal precursor cells (MPCs) when added as a soluble factor, even in the absence of additional growth factors such as TGF-β. We show that both the gelation rate and mechanical strength of the resulting hydrogels can be tuned in order to optimise the conditions required to produce gels with the desired combination of properties for an IVD scaffold. Human immunoselected STRO-1+ MPCs were then incorporated into the hydrogels. They were shown to retain good viability after both the initial formation of the gel and for longer-term culture periods in vitro. Furthermore, MPC/hydrogel composites formed cartilage-like tissue which was significantly enhanced by the incorporation of PPS into the hydrogels, particularly with respect to the deposition of type-II-collagen. Finally, using a wild-type rat subcutaneous implantation model, we examined the extent of any immune reaction and confirmed that this matrix is well tolerated by the host. Together these data provide evidence that such a system has significant potential as both a delivery vehicle for MPCs and as a matrix for fibrocartilage tissue engineering applications.

  20. Anosmin-1 over-expression regulates oligodendrocyte precursor cell proliferation, migration and myelin sheath thickness.

    PubMed

    Murcia-Belmonte, Verónica; Esteban, Pedro F; Martínez-Hernández, José; Gruart, Agnès; Luján, Rafael; Delgado-García, José María; de Castro, Fernando

    2016-04-01

    During development of the central nervous system, anosmin-1 (A1) works as a chemotropic cue contributing to axonal outgrowth and collateralization, as well as modulating the migration of different cell types, fibroblast growth factor receptor 1 (FGFR1) being the main receptor involved in all these events. To further understand the role of A1 during development, we have analysed the over-expression of human A1 in a transgenic mouse line. Compared with control mice during development and in early adulthood, A1 over-expressing transgenic mice showed an enhanced oligodendrocyte precursor cell (OPC) proliferation and a higher number of OPCs in the subventricular zone and in the corpus callosum (CC). The migratory capacity of OPCs from the transgenic mice is increased in vitro due to a higher basal activation of ERK1/2 mediated through FGFR1 and they also produced more myelin basic protein (MBP). In vivo, the over-expression of A1 resulted in an elevated number of mature oligodendrocytes with higher levels of MBP mRNA and protein, as well as increased levels of activation of the ERK1/2 proteins, while electron microscopy revealed thicker myelin sheaths around the axons of the CC in adulthood. Also in the mature CC, the nodes of Ranvier were significantly longer and the conduction velocity of the nerve impulse in vivo was significantly increased in the CC of A1 over-expressing transgenic mice. Altogether, these data confirmed the involvement of A1 in oligodendrogliogenesis and its relevance for myelination.

  1. Fibroblast growth factor 2-stimulated proliferation is lower in muscle precursor cells from old rats.

    PubMed

    Jump, Seth S; Childs, Tom E; Zwetsloot, Kevin A; Booth, Frank W; Lees, Simon J

    2009-06-01

    In aged skeletal muscle, impairments in regrowth and regeneration may be explained by a decreased responsiveness of muscle precursor cells (MPCs) to environmental cues such as growth factors. We hypothesized that impaired responsiveness to fibroblast growth factor 2 (FGF2) in MPCs from old animals would be explained by impaired FGF2 signalling. We determined that 5-bromo-2'-deoxyuridine (BrdU) incorporation and cell number increase less in MPCs from 32- compared with 3-month-old rats. In the presence of FGF2, we demonstrated that there were age-associated differential expression patterns for FGF receptor 1 and 2 mRNAs. Measurement of downstream signalling revealed that that mitogen-activated protein kinase/ERK kinase 1/2 (MEK1/2)-extracellular signal-regulated kinase 1/2, protein kinase C and p38 were FGF2-driven pathways in MPCs. Uniquely, protein kinase C signalling was shown to play the largest role in FGF2-stimulated proliferation in MPCs. c-Jun N-terminal kinase (JNK) signalling was ruled out as an FGF2-stimulated proliferation pathway in MPCs. Inhibition of JNK had no effect on FGF2 signalling to BrdU incorporation, and FGF2 treatment was associated with increased phosphorylation of p38, which inhibits, rather than stimulates, BrdU incorporation in MPCs. Surprisingly, the commonly used vehicle, dimethyl sulphoxide, rescued proliferation in MPCs from old animals. These findings provide insight for the development of effective treatment strategies that target the age-related impairments of MPC proliferation in old skeletal muscle. PMID:19270036

  2. Myeloid-derived cells are key targets of tumor immunotherapy

    PubMed Central

    Medina-Echeverz, José; Aranda, Fernando; Berraondo, Pedro

    2014-01-01

    Tumors are composed of heterogeneous cell populations recruited by cancer cells to promote growth and metastasis. Among cells comprising the tumor stroma, myeloid-derived cells play pleiotropic roles in supporting tumorigenesis at distinct stages of tumor development. The tumor-infiltrating myeloid cell contingent is composed of mast cells, neutrophils, dendritic cells, macrophages, and myeloid-derived suppressor cells. Such cells are capable of evading the hostile tumor environment typically prone to immune cell destruction and can even promote angiogenesis, chronic inflammation, and invasion. This paper briefly summarizes the different myeloid-derived subsets that promote tumor development and the strategies that have been used to counteract the protumorigenic activity of these cells. These strategies include myeloid cell depletion, reduction of recruitment, and inactivation or remodeling of cell phenotype. Combining drugs designed to target tumor myeloid cells with immunotherapies that effectively trigger antitumor adaptive immune responses holds great promise in the development of novel cancer treatments. PMID:25050208

  3. Functional and molecular clues reveal precursor-like cells and immature neurones in the turtle spinal cord

    PubMed Central

    Russo, Raúl E; Fernández, Anabel; Reali, Cecilia; Radmilovich, Milka; Trujillo-Cenóz, Omar

    2004-01-01

    In lower vertebrates, some cells contacting the central canal (CC) retain the ability to proliferate, leading the reconstruction of the spinal cord after injury. A better understanding about the nature of these cells could contribute to the development of novel strategies for spinal cord repair. Here, by combining light and electron microscopy, immunocytochemistry and patch-clamp recordings, we provide evidence supporting the presence of precursor-like cells and immature neurones contacting the CC of juvenile turtles. A class of cells expressed the ependymal and glial cell marker S100 and displayed morphological and electrophysiological features of radial glia: relatively low input resistance, high resting potential, lack of active membrane properties and extensive dye-coupling. A second class of S100 reactive cells were characterized by a higher input resistance and outward rectification. Finally, some CC-contacting cells expressed HuC/D – a marker of immature neurones – and fired action potentials. The coexistence of cells with functional properties of precursor-like cells and immature neurones suggests that the region surrounding the CC is a site of active neurogenesis. It remains to be demonstrated by lineage analysis whether, as in the embryonic cerebral cortex, radial glia are the progenitor cells in the turtle spinal cord. PMID:15331672

  4. Soluble silylated polyacetylene derivatives, their preparation and their use as precursors to novel polyacetylene-type polymers

    DOEpatents

    Zeigler, J.M.

    1985-07-30

    Polymerization of acetylenic monomers is achieved by using a catalyst which is the reaction product of a tungsten compound and a reducing agent effective to reduce W(VI) to W(III and/or IV), e.g., WCl/sub 6/ x (organo-Li, organo-Mg or polysilanes). The resultant silylated polymers are of heretofore unachievable, high molecular weight and can be used as precursors to a wide variety of new acetylenic polymers by application of substitution reactions. They can be used as electrodes in batteries.

  5. Planar Cell Polarity Breaks the Symmetry of PAR Protein Distribution prior to Mitosis in Drosophila Sensory Organ Precursor Cells.

    PubMed

    Besson, Charlotte; Bernard, Fred; Corson, Francis; Rouault, Hervé; Reynaud, Elodie; Keder, Alyona; Mazouni, Khalil; Schweisguth, François

    2015-04-20

    During development, cell-fate diversity can result from the unequal segregation of fate determinants at mitosis. Polarization of the mother cell is essential for asymmetric cell division (ACD). It often involves the formation of a cortical domain containing the PAR complex proteins Par3, Par6, and atypical protein kinase C (aPKC). In the fly notum, sensory organ precursor cells (SOPs) divide asymmetrically within the plane of the epithelium and along the body axis to generate two distinct cells. Fate asymmetry depends on the asymmetric localization of the PAR complex. In the absence of planar cell polarity (PCP), SOPs divide with a random planar orientation but still asymmetrically, showing that PCP is dispensable for PAR asymmetry at mitosis. To study when and how the PAR complex localizes asymmetrically, we have used a quantitative imaging approach to measure the planar polarization of the proteins Bazooka (Baz, fly Par3), Par6, and aPKC in living pupae. By using imaging of functional GFP-tagged proteins with image processing and computational modeling, we find that Baz, Par6, and aPKC become planar polarized prior to mitosis in a manner independent of the AuroraA kinase and that PCP is required for the planar polarization of Baz, Par6, and aPKC during interphase. This indicates that a "mitosis rescue" mechanism establishes asymmetry at mitosis in PCP mutants. This study therefore identifies PCP as the initial symmetry-breaking signal for the planar polarization of PAR proteins in asymmetrically dividing SOPs.

  6. Planar Cell Polarity Breaks the Symmetry of PAR Protein Distribution prior to Mitosis in Drosophila Sensory Organ Precursor Cells.

    PubMed

    Besson, Charlotte; Bernard, Fred; Corson, Francis; Rouault, Hervé; Reynaud, Elodie; Keder, Alyona; Mazouni, Khalil; Schweisguth, François

    2015-04-20

    During development, cell-fate diversity can result from the unequal segregation of fate determinants at mitosis. Polarization of the mother cell is essential for asymmetric cell division (ACD). It often involves the formation of a cortical domain containing the PAR complex proteins Par3, Par6, and atypical protein kinase C (aPKC). In the fly notum, sensory organ precursor cells (SOPs) divide asymmetrically within the plane of the epithelium and along the body axis to generate two distinct cells. Fate asymmetry depends on the asymmetric localization of the PAR complex. In the absence of planar cell polarity (PCP), SOPs divide with a random planar orientation but still asymmetrically, showing that PCP is dispensable for PAR asymmetry at mitosis. To study when and how the PAR complex localizes asymmetrically, we have used a quantitative imaging approach to measure the planar polarization of the proteins Bazooka (Baz, fly Par3), Par6, and aPKC in living pupae. By using imaging of functional GFP-tagged proteins with image processing and computational modeling, we find that Baz, Par6, and aPKC become planar polarized prior to mitosis in a manner independent of the AuroraA kinase and that PCP is required for the planar polarization of Baz, Par6, and aPKC during interphase. This indicates that a "mitosis rescue" mechanism establishes asymmetry at mitosis in PCP mutants. This study therefore identifies PCP as the initial symmetry-breaking signal for the planar polarization of PAR proteins in asymmetrically dividing SOPs. PMID:25843034

  7. Titanocene-phosphine derivatives as precursors to cytotoxic heterometallic TiAu2 and TiM (M = Pd, Pt) compounds. Studies of their interactions with DNA.

    PubMed

    González-Pantoja, Jose F; Stern, Michael; Jarzecki, Andrzej A; Royo, Eva; Robles-Escajeda, Elisa; Varela-Ramírez, Armando; Aguilera, Renato J; Contel, María

    2011-11-01

    A series of tri- and bimetallic titanium-gold, titanium-palladium, and titanium-platinum derivatives of the general formulas [Ti{η(5)-C(5)H(4)(CH(2))(n)PPh(2)(AuCl)}(2)]·2THF [n = 0 (1); n = 2 (2); n = 3 (3)] and [TiCl(2){η(5)-C(5)H(4)κ-(CH(2))(n)PPh(2)}(2)(MCl(2))]·2THF [M = Pd, n = 0 (4); n = 2 (5); n = 3 (6) ; M = Pt, n = 0 (7); n = 2 (8); n = 3 (9)] have been synthesized and characterized by different spectroscopic techniques and mass spectrometry. The molecular structures of compounds 1-9 have been investigated by means of density functional theory calculations. The calculated IR spectra of the optimized structures fit well with the experimental IR data obtained for 1-9. The stability of the heterometallic compounds in deuterated solvents [CDCl(3), dimethyl sulfoxide (DMSO)-d(6), and mixtures 50:50 DMSO-d(6)/D(2)O and 1:99 DMSO-d(6)/D(2)O at acidic and neutral pH] has been evaluated by (31)P and (1)H NMR spectroscopy showing a higher stability for these compounds than for Cp(2)TiCl(2) or precursors [Ti{η(5)-C(5)H(4)(CH(2))(n)PPh(2)}(2)]. The new compounds display a lower acidity (1-2 units) than Cp(2)TiCl(2). The decomposition products have been identified over time. Complexes 1-9 have been tested as potential anticancer agents, and their cytotoxicity properties were evaluated in vitro against HeLa human cervical carcinoma and DU-145 human prostate cancer cells. TiAu(2) and TiPd compounds were highly cytotoxic for these two cell lines. The interactions of the compounds with calf thymus DNA have been evaluated by thermal denaturation (1-9) and by circular dichroism (1, 3, 4, and 7) spectroscopic methods. All of these complexes show a stronger interaction with DNA than that displayed by Cp(2)TiCl(2) at neutral pH. The data are consistent with electrostatic interactions with DNA for TiAu(2) compounds and for a covalent binding mode for TiM (M = Pd, Pt) complexes.

  8. Advanced Precursor Reaction Processing for Cu(InGa)(SeS)2 Solar Cells

    SciTech Connect

    Shafarman, William N.

    2015-10-12

    This project “Advanced Precursor Reaction Processing for Cu(InGa)(SeS)2 Solar Cells”, completed by the Institute of Energy Conversion (IEC) at the University of Delaware in collaboration with the Department of Chemical Engineering at the University of Florida, developed the fundamental understanding and technology to increase module efficiency and improve the manufacturability of Cu(InGa)(SeS)2 films using the precursor reaction approach currently being developed by a number of companies. Key results included: (1) development of a three-step H2Se/Ar/H2S reaction process to control Ga distribution through the film and minimizes back contact MoSe2 formation; (2) Ag-alloying to improve precursor homogeneity by avoiding In phase agglomeration, faster reaction and improved adhesion to allow wider reaction process window; (3) addition of Sb, Bi, and Te interlayers at the Mo/precursor junction to produce more uniform precursor morphology and improve adhesion with reduced void formation in reacted films; (4) a precursor structure containing Se and a reaction process to reduce processing time to 5 minutes and eliminate H2Se usage, thereby increasing throughput and reducing costs. All these results were supported by detailed characterization of the film growth, reaction pathways, thermodynamic assessment and device behavior.

  9. The Transcription Factor DLX3 Regulates the Osteogenic Differentiation of Human Dental Follicle Precursor Cells

    PubMed Central

    Viale-Bouroncle, Sandra; Felthaus, Oliver; Schmalz, Gottfried; Brockhoff, Gero; Reichert, Torsten E

    2012-01-01

    The transcription factor DLX3 plays a decisive role in bone development of vertebrates. In neural-crest derived stem cells from the dental follicle (DFCs), DLX3 is differentially expressed during osteogenic differentiation, while other osteogenic transcription factors such as DLX5 or RUNX2 are not highly induced. DLX3 has therefore a decisive role in the differentiation of DFCs, but its actual biological effects and regulation are unknown. This study investigated the DLX3-regulated processes in DFCs. After DLX3 overexpression, DFCs acquired a spindle-like cell shape with reorganized actin filaments. Here, marker genes for cell morphology, proliferation, apoptosis, and osteogenic differentiation were significantly regulated as shown in a microarray analysis. Further experiments showed that DFCs viability is directly influenced by the expression of DLX3, for example, the amount of apoptotic cells was increased after DLX3 silencing. This transcription factor stimulates the osteogenic differentiation of DFCs and regulates the BMP/SMAD1-pathway. Interestingly, BMP2 did highly induce DLX3 and reverse the inhibitory effect of DLX3 silencing in osteogenic differentiation. However, after DLX3 overexpression in DFCs, a BMP2 supplementation did not improve the expression of DLX3 and the osteogenic differentiation. In conclusion, DLX3 influences cell viability and regulates osteogenic differentiation of DFCs via a BMP2-dependent pathway and a feedback control. PMID:22107079

  10. Functional and phenotypic characterization of distinct porcine dendritic cells derived from peripheral blood monocytes

    PubMed Central

    Paillot, R; Laval, F; Audonnet, J-C; Andreoni, C; Juillard, V

    2001-01-01

    Dendritic cells (DCs) are bone marrow-derived antigen-presenting cells that have an exquisite capacity to interact with T cells and modulate their responses. Little is known about porcine DCs despite the fact that they represent an important target in strategies that are aimed at modulating resistance to infection in pigs and may be of major importance in transplantation biology. We generated immature monocyte-derived porcine dendritic cells (MoDCs) directly from adherent peripheral blood cells treated with porcine granulocyte–macrophage colony-stimulating factor (GM-CSF) and interleukin-4 (IL-4). The cells were observed via electron microscopy and their phenotype was characterized using monoclonal antibodies. The functionality of the porcine MoDCs was demonstrated showing that the cells were capable of different specialized functions relevant to antigen capture and were potent stimulators in a primary allo-mixed leucocyte reaction. Treatment of the MoDCs with porcine cell line-derived necrotic factors resulted in the phenotypic and functional maturation of MoDCs. We confirmed also that monocyte-derived DCs were differentially regulated by cytokines, showing that transforming growth factor-β1 (TGF-β1) is able to redirect monocytic precursors into the differentiation pathway of Langerhans' cells presenting typical Birbeck granules. Interestingly, and in contrast to the human and murine model, we showed that the monocyte-derived porcine Langerhans'-type cells (MoLCs) were much more potent activators of allogeneic T cells than MoDCs obtained without TGF-β1. PMID:11328373

  11. Inflammation, vitamin D and dendritic cell precursors in chronic kidney disease.

    PubMed

    Paul, K; Franke, S; Nadal, J; Schmid, M; Yilmaz, A; Kretzschmar, D; Bärthlein, B; Titze, S; Koettgen, A; Wolf, G; Busch, M

    2016-10-01

    Decreased blood dendritic cell precursors (DCP) count is linked with atherosclerotic disease, while reduction of circulating DCP is also seen in patients with chronic kidney disease (CKD). As poor vitamin D status could be linked to a compromised innate immune response, we hypothesized that vitamin D status might be involved in the decrease in circulating DCP in CKD. Moreover, the potential role of inflammation was considered. Circulating myeloid (mDCP), plasmacytoid (pDCP) and total DCP (tDCP) were analysed using flow cytometry in 287 patients with CKD stage 3. Serum 25(OH)D and 1,25(OH)2D levels were measured using enzyme-linked immunosorbent assays (ELISA), interleukin (IL)-6, IL-10 and tumour necrosis factor (TNF)-α using cytometric bead array, C-reactive protein (CRP) using a high-sensitivity (hs) ELISA. Contrary to our hypothesis, there was no association between vitamin D levels and DCP, although their number was decreased significantly in CKD (P < 0·001). Instead, mDCP (r = -0·211) and tDCP (r = -0·188,) were associated slightly negatively with hsCRP but positively with the estimated glomerular filtration rate (eGFR, r = 0·314 for tDCP). According to multivariate linear regression, only higher hsCRP concentration and the presence of diabetes mellitus had a significant negative influence on DCP count (P < 0·03, respectively) but not vitamin D, age and eGFR. A significant impact of vitamin D on the reduction of circulating DCP in CKD 3 patients can be neglected. Instead, inflammation as a common phenomenon in CKD and diabetes mellitus had the main influence on the decrease in DCP. Thus, a potential role for DCP as a sensitive marker of inflammation and cardiovascular risk should be elucidated in future studies.

  12. Kinetic mechanism and characterization of human beta-galactosidase precursor secreted by permanently transfected Chinese hamster ovary cells.

    PubMed

    Zhang, S; McCarter, J D; Okamura-Oho, Y; Yaghi, F; Hinek, A; Withers, S G; Callahan, J W

    1994-11-15

    Chinese hamster ovary cell clones permanently transfected with the cDNA for human lysosomal beta-galactosidase secrete the enzyme precursor into the cell medium, from which it is purified to apparent homogeneity in a single step by affinity chromatography. The purified precursor is fully active, displays the same pH optimum and Km values as the mature placental enzyme, and has an intact C-terminus. The intact enzyme when chromatographed on a Sephacryl S-200 molecular-sieve column elutes as a 105,500 Da monomer, whereas on SDS/PAGE gels the polypeptide migrates as an 88 kDa polypeptide. A time course of digestion with glycopeptide-N-glycanase shows the gradual conversion of the precursor from an 88 to a 72 kDa protein, suggesting the presence of five N-linked oligosaccharides in the protein. The precursor is readily taken up in a mannose-6-phosphate-dependent manner into beta-galactosidase-deficient, GM1-gangliosidosis fibroblasts, and the enzyme activity is returned to normal levels. We show that the stereochemical course of enzymic hydrolysis involves the retention of the beta-configuration at the anomeric centre, suggesting a double-displacement mechanism. Furthermore, the enzyme is rapidly and irreversibly inactivated in the presence of the mechanism-based inactivator 2,4-dinitrophenyl-2-deoxy-2-fluoro-beta-D-galactopyranoside, which implicates a covalent intermediate. The enzyme is also inactivated by 1-ethyl-3(3-dimethylamino-propyl)carbodi-imide and by phenylglyoxal, which implicates carboxylate and arginine residues respectively in the active site. We conclude that the beta-galactosidase precursor is functionally identical to the mature lysosomal form of the enzyme and serves as an excellent enzyme source for investigation of structure-function relationships in the protein.

  13. Recognition of Vitamin B Precursors and Byproducts by Mucosal Associated Invariant T Cells.

    PubMed

    Eckle, Sidonia B G; Corbett, Alexandra J; Keller, Andrew N; Chen, Zhenjun; Godfrey, Dale I; Liu, Ligong; Mak, Jeffrey Y W; Fairlie, David P; Rossjohn, Jamie; McCluskey, James

    2015-12-18

    Vitamin B2 (riboflavin) is essential for metabolic functions and is synthesized by many bacteria, yeast, and plants, but not by mammals and other animals, which must acquire it from the diet. In mammals, modified pyrimidine intermediates from the microbial biosynthesis of riboflavin are recognized as signature biomarkers of microbial infection. This recognition occurs by specialized lymphocytes known as mucosal associated invariant T (MAIT) cells. The major histocompatibility class I-like antigen-presenting molecule, MR1, captures these pyrimidine intermediates, but only after their condensation with small molecules derived from glycolysis and other metabolic pathways to form short-lived antigens. The resulting MR1-Ag complexes are recognized by MAIT cell antigen receptors (αβ T cell receptors (TCRs)), and the subsequent MAIT cell immune responses are thought to protect the host from pathogens at mucosal surfaces. Here, we review our understanding of how these novel antigens are generated and discuss their interactions with MR1 and MAIT TCRs. PMID:26468291

  14. Inter-microcarrier transfer and phenotypic stability of stem cell-derived Schwann cells in stirred suspension bioreactor culture.

    PubMed

    Shakhbazau, Antos; Mirfeizi, Leila; Walsh, Tylor; Wobma, Holly M; Kumar, Ranjan; Singh, Bhagat; Kallos, Michael S; Midha, Rajiv

    2016-02-01

    Emerging bioreactor technologies offer an effective way for scaled-up production of large numbers of cells for cell therapy applications. One of the clinical paradigms where cell therapy can be an asset is restorative neurosciences. Nerve repair can benefit from the injections of stem cells and/or Schwann cells, acting as a source for axon myelination, myelin debris clearance, and trophic support. We have adapted microcarrier-based suspension bioreactor culture for Schwann cells (SCs) differentiated from a new stem cell source - skin-derived precursors (SKPs). SKP-derived SCs attach and grow on different types of microcarriers in both static and stirred culture, with Cytodex 3 and CultiSpher-S found most effective. Inter-microcarrier migration of SKP-SCs represents a key mechanism for rapid expansion and colonization in stirred suspension culture. We have shown that microcarrier-expanded SKP-SCs cells express Schwann cell markers p75-NTR, GFAP and S100 and retain their key ability to myelinate axons both in vitro and in vivo. Scaled-up microcarrier-based production of SKP-SCs in suspension bioreactors appears feasible for timely generation of sufficient cell numbers for nerve repair strategies.

  15. Single-Cell Expression Profiling Reveals a Dynamic State of Cardiac Precursor Cells in the Early Mouse Embryo

    PubMed Central

    Kokkinopoulos, Ioannis; Ishida, Hidekazu; Saba, Rie; Ruchaya, Prashant; Cabrera, Claudia; Struebig, Monika; Barnes, Michael; Terry, Anna; Kaneko, Masahiro; Shintani, Yasunori; Coppen, Steven; Shiratori, Hidetaka; Ameen, Torath; Mein, Charles; Hamada, Hiroshi; Suzuki, Ken; Yashiro, Kenta

    2015-01-01

    In the early vertebrate embryo, cardiac progenitor/precursor cells (CPs) give rise to cardiac structures. Better understanding their biological character is critical to understand the heart development and to apply CPs for the clinical arena. However, our knowledge remains incomplete. With the use of single-cell expression profiling, we have now revealed rapid and dynamic changes in gene expression profiles of the embryonic CPs during the early phase after their segregation from the cardiac mesoderm. Progressively, the nascent mesodermal gene Mesp1 terminated, and Nkx2-5+/Tbx5+ population rapidly replaced the Tbx5low+ population as the expression of the cardiac genes Tbx5 and Nkx2-5 increased. At the Early Headfold stage, Tbx5-expressing CPs gradually showed a unique molecular signature with signs of cardiomyocyte differentiation. Lineage-tracing revealed a developmentally distinct characteristic of this population. They underwent progressive differentiation only towards the cardiomyocyte lineage corresponding to the first heart field rather than being maintained as a progenitor pool. More importantly, Tbx5 likely plays an important role in a transcriptional network to regulate the distinct character of the FHF via a positive feedback loop to activate the robust expression of Tbx5 in CPs. These data expands our knowledge on the behavior of CPs during the early phase of cardiac development, subsequently providing a platform for further study. PMID:26469858

  16. Single-Cell Expression Profiling Reveals a Dynamic State of Cardiac Precursor Cells in the Early Mouse Embryo.

    PubMed

    Kokkinopoulos, Ioannis; Ishida, Hidekazu; Saba, Rie; Ruchaya, Prashant; Cabrera, Claudia; Struebig, Monika; Barnes, Michael; Terry, Anna; Kaneko, Masahiro; Shintani, Yasunori; Coppen, Steven; Shiratori, Hidetaka; Ameen, Torath; Mein, Charles; Hamada, Hiroshi; Suzuki, Ken; Yashiro, Kenta

    2015-01-01

    In the early vertebrate embryo, cardiac progenitor/precursor cells (CPs) give rise to cardiac structures. Better understanding their biological character is critical to understand the heart development and to apply CPs for the clinical arena. However, our knowledge remains incomplete. With the use of single-cell expression profiling, we have now revealed rapid and dynamic changes in gene expression profiles of the embryonic CPs during the early phase after their segregation from the cardiac mesoderm. Progressively, the nascent mesodermal gene Mesp1 terminated, and Nkx2-5+/Tbx5+ population rapidly replaced the Tbx5low+ population as the expression of the cardiac genes Tbx5 and Nkx2-5 increased. At the Early Headfold stage, Tbx5-expressing CPs gradually showed a unique molecular signature with signs of cardiomyocyte differentiation. Lineage-tracing revealed a developmentally distinct characteristic of this population. They underwent progressive differentiation only towards the cardiomyocyte lineage corresponding to the first heart field rather than being maintained as a progenitor pool. More importantly, Tbx5 likely plays an important role in a transcriptional network to regulate the distinct character of the FHF via a positive feedback loop to activate the robust expression of Tbx5 in CPs. These data expands our knowledge on the behavior of CPs during the early phase of cardiac development, subsequently providing a platform for further study.

  17. Pluripotent stem cell-derived radial glia-like cells as stable intermediate for efficient generation of human oligodendrocytes.

    PubMed

    Gorris, Raphaela; Fischer, Julia; Erwes, Kim Lina; Kesavan, Jaideep; Peterson, Daniel A; Alexander, Michael; Nöthen, Markus M; Peitz, Michael; Quandel, Tamara; Karus, Michael; Brüstle, Oliver

    2015-12-01

    Neural precursor cells (NPCs) derived from human pluripotent stem cells (hPSCs) represent an attractive tool for the in vitro generation of various neural cell types. However, the developmentally early NPCs emerging during hPSC differentiation typically show a strong propensity for neuronal differentiation, with more limited potential for generating astrocytes and, in particular, for generating oligodendrocytes. This phenomenon corresponds well to the consecutive and protracted generation of neurons and GLIA during normal human development. To obtain a more gliogenic NPC type, we combined growth factor-mediated expansion with pre-exposure to the differentiation-inducing agent retinoic acid and subsequent immunoisolation of CD133-positive cells. This protocol yields an adherent and self-renewing population of hindbrain/spinal cord radial glia (RG)-like neural precursor cells (RGL-NPCs) expressing typical neural stem cell markers such as nestin, ASCL1, SOX2, and PAX6 as well as RG markers BLBP, GLAST, vimentin, and GFAP. While RGL-NPCs maintain the ability for tripotential differentiation into neurons, astrocytes, and oligodendrocytes, they exhibit greatly enhanced propensity for oligodendrocyte generation. Under defined differentiation conditions promoting the expression of the major oligodendrocyte fate-determinants OLIG1/2, NKX6.2, NKX2.2, and SOX10, RGL-NPCs efficiently convert into NG2-positive oligodendroglial progenitor cells (OPCs) and are subsequently capable of in vivo myelination. Representing a stable intermediate between PSCs and OPCs, RGL-NPCs expedite the generation of PSC-derived oligodendrocytes with O4-, 4860-, and myelin basic protein (MBP)-positive cells that already appear within 7 weeks following growth factor withdrawal-induced differentiation. Thus, RGL-NPCs may serve as robust tool for time-efficient generation of human oligodendrocytes from embryonic and induced pluripotent stem cells.

  18. PPARβ/δ and PPARγ maintain undifferentiated phenotypes of mouse adult neural precursor cells from the subventricular zone

    PubMed Central

    Bernal, Carolina; Araya, Claudia; Palma, Verónica; Bronfman, Miguel

    2015-01-01

    The subventricular zone (SVZ) is one of the main niches of neural stem cells in the adult mammalian brain. Stem and precursor cells in this region are the source for neurogenesis and oligodendrogesis, mainly in the olfactory bulb and corpus callosum, respectively. The identification of the molecular components regulating the decision of these cells to differentiate or maintain an undifferentiated state is important in order to understand the modulation of neurogenic processes in physiological and pathological conditions. PPARs are a group of transcription factors, activated by lipid ligands, with important functions in cellular differentiation and proliferation in several tissues. In this work, we demonstrate that mouse adult neural precursor cells (NPCs), in situ and in vitro, express PPARβ/δ and PPARγ. Pharmacological activation of both PPARs isoforms induces proliferation and maintenance of the undifferentiated phenotype. Congruently, inhibition of PPARβ/δ and PPARγ results in a decrease of proliferation and loss of the undifferentiated phenotype. Interestingly, PPARγ regulates the level of EGFR in adult NPCs, concurrent with it is function described in embryonic NPCs. Furthermore, we describe for the first time that PPARβ/δ regulates SOX2 level in adult NPCs, probably through a direct transcriptional regulation, as we identified two putative PPAR response elements in the promoter region of Sox2. EGFR and SOX2 are key players in neural stem/precursor cells self-renewal. Finally, rosiglitazone, a PPARγ ligand, increases PPARβ/δ level, suggesting a possible cooperation between these two PPARs in the control of cell fate behavior. Our work contributes to the understanding of the molecular mechanisms associated to neural cell fate decision and places PPARβ/δ and PPARγ as interesting new targets of modulation of mammalian brain homeostasis. PMID:25852474

  19. PPARβ/δ and PPARγ maintain undifferentiated phenotypes of mouse adult neural precursor cells from the subventricular zone.

    PubMed

    Bernal, Carolina; Araya, Claudia; Palma, Verónica; Bronfman, Miguel

    2015-01-01

    The subventricular zone (SVZ) is one of the main niches of neural stem cells in the adult mammalian brain. Stem and precursor cells in this region are the source for neurogenesis and oligodendrogesis, mainly in the olfactory bulb and corpus callosum, respectively. The identification of the molecular components regulating the decision of these cells to differentiate or maintain an undifferentiated state is important in order to understand the modulation of neurogenic processes in physiological and pathological conditions. PPARs are a group of transcription factors, activated by lipid ligands, with important functions in cellular differentiation and proliferation in several tissues. In this work, we demonstrate that mouse adult neural precursor cells (NPCs), in situ and in vitro, express PPARβ/δ and PPARγ. Pharmacological activation of both PPARs isoforms induces proliferation and maintenance of the undifferentiated phenotype. Congruently, inhibition of PPARβ/δ and PPARγ results in a decrease of proliferation and loss of the undifferentiated phenotype. Interestingly, PPARγ regulates the level of EGFR in adult NPCs, concurrent with it is function described in embryonic NPCs. Furthermore, we describe for the first time that PPARβ/δ regulates SOX2 level in adult NPCs, probably through a direct transcriptional regulation, as we identified two putative PPAR response elements in the promoter region of Sox2. EGFR and SOX2 are key players in neural stem/precursor cells self-renewal. Finally, rosiglitazone, a PPARγ ligand, increases PPARβ/δ level, suggesting a possible cooperation between these two PPARs in the control of cell fate behavior. Our work contributes to the understanding of the molecular mechanisms associated to neural cell fate decision and places PPARβ/δ and PPARγ as interesting new targets of modulation of mammalian brain homeostasis. PMID:25852474

  20. PPARβ/δ and PPARγ maintain undifferentiated phenotypes of mouse adult neural precursor cells from the subventricular zone.

    PubMed

    Bernal, Carolina; Araya, Claudia; Palma, Verónica; Bronfman, Miguel

    2015-01-01

    The subventricular zone (SVZ) is one of the main niches of neural stem cells in the adult mammalian brain. Stem and precursor cells in this region are the source for neurogenesis and oligodendrogesis, mainly in the olfactory bulb and corpus callosum, respectively. The identification of the molecular components regulating the decision of these cells to differentiate or maintain an undifferentiated state is important in order to understand the modulation of neurogenic processes in physiological and pathological conditions. PPARs are a group of transcription factors, activated by lipid ligands, with important functions in cellular differentiation and proliferation in several tissues. In this work, we demonstrate that mouse adult neural precursor cells (NPCs), in situ and in vitro, express PPARβ/δ and PPARγ. Pharmacological activation of both PPARs isoforms induces proliferation and maintenance of the undifferentiated phenotype. Congruently, inhibition of PPARβ/δ and PPARγ results in a decrease of proliferation and loss of the undifferentiated phenotype. Interestingly, PPARγ regulates the level of EGFR in adult NPCs, concurrent with it is function described in embryonic NPCs. Furthermore, we describe for the first time that PPARβ/δ regulates SOX2 level in adult NPCs, probably through a direct transcriptional regulation, as we identified two putative PPAR response elements in the promoter region of Sox2. EGFR and SOX2 are key players in neural stem/precursor cells self-renewal. Finally, rosiglitazone, a PPARγ ligand, increases PPARβ/δ level, suggesting a possible cooperation between these two PPARs in the control of cell fate behavior. Our work contributes to the understanding of the molecular mechanisms associated to neural cell fate decision and places PPARβ/δ and PPARγ as interesting new targets of modulation of mammalian brain homeostasis.

  1. Use of Microfluidic Technology to Monitor the Differentiation and Migration of Human ESC-Derived Neural Cells.

    PubMed

    Bae, Jiwoo; Lee, Nayeon; Choi, Wankyu; Lee, Suji; Ko, Jung Jae; Han, Baek Soo; Lee, Sang Chul; Jeon, Noo Li; Song, Jihwan

    2016-01-01

    Microfluidics forms the basis of unique experimental approaches that visualize the development of neural structure using micro-scale devices and aids the guidance of neurite growth in an axonal isolation compartment. We utilized microfluidics technology to monitor the differentiation and migration of neural cells derived from human embryonic stems cells (hESC). We cocultured hESC with PA6 stromal cells and isolated neural rosette-like structures, which subsequently formed neurospheres in a suspension culture. We found that Tuj1-positive neural cells but not nestin-positive neural precursor cells (NPC) were able to enter the microfluidics grooves (microchannels), suggesting a neural cell-migratory capacity that was dependent on neuronal differentiation. We also showed that bundles of axons formed and extended into the microchannels.Taken together, these results demonstrated that microfluidics technology can provide useful tools to study neurite outgrowth and axon guidance of neural cells, which are derived from human embryonic stem cells. PMID:27062598

  2. Amnion-derived stem cells: in quest of clinical applications.

    PubMed

    Miki, Toshio

    2011-05-19

    In the promising field of regenerative medicine, human perinatal stem cells are of great interest as potential stem cells with clinical applications. Perinatal stem cells could be isolated from normally discarded human placentae, which are an ideal cell source in terms of availability, the fewer number of ethical concerns, less DNA damage, and so on. Numerous studies have demonstrated that some of the placenta-derived cells possess stem cell characteristics like pluripotent differentiation ability, particularly in amniotic epithelial (AE) cells. Term human amniotic epithelium contains a relatively large number of stem cell marker-positive cells as an adult stem cell source. In this review, we introduce a model theory of why so many AE cells possess stem cell characteristics. We also describe previous work concerning the therapeutic applications and discuss the pluripotency of the AE cells and potential pitfalls for amnion-derived stem cell research.

  3. Hybrid halide perovskite solar cell precursors: colloidal chemistry and coordination engineering behind device processing for high efficiency.

    PubMed

    Yan, Keyou; Long, Mingzhu; Zhang, Tiankai; Wei, Zhanhua; Chen, Haining; Yang, Shihe; Xu, Jianbin

    2015-04-01

    The precursor of solution-processed perovskite thin films is one of the most central components for high-efficiency perovskite solar cells. We first present the crucial colloidal chemistry visualization of the perovskite precursor solution based on analytical spectra and reveal that perovskite precursor solutions for solar cells are generally colloidal dispersions in a mother solution, with a colloidal size up to the mesoscale, rather than real solutions. The colloid is made of a soft coordination complex in the form of a lead polyhalide framework between organic and inorganic components and can be structurally tuned by the coordination degree, thereby primarily determining the basic film coverage and morphology of deposited thin films. By utilizing coordination engineering, particularly through employing additional methylammonium halide over the stoichiometric ratio for tuning the coordination degree and mode in the initial colloidal solution, along with a thermal leaching for the selective release of excess methylammonium halides, we achieved full and even coverage, the preferential orientation, and high purity of planar perovskite thin films. We have also identified that excess organic component can reduce the colloidal size of and tune the morphology of the coordination framework in relation to final perovskite grains and partial chlorine substitution can accelerate the crystalline nucleation process of perovskite. This work demonstrates the important fundamental chemistry of perovskite precursors and provides genuine guidelines for accurately controlling the high quality of hybrid perovskite thin films without any impurity, thereby delivering efficient planar perovskite solar cells with a power conversion efficiency as high as 17% without distinct hysteresis owing to the high quality of perovskite thin films.

  4. Roles of lipid rafts in integrin-dependent adhesion and gp130 signalling pathway in mouse embryonic neural precursor cells.

    PubMed

    Yanagisawa, Makoto; Nakamura, Kazuo; Taga, Tetsuya

    2004-09-01

    Neuronal and glial cells organizing the central nervous system are generated from common neural precursor cells present in the neuroepithelium during development. We tried to clarify functions of a cell surface microdomain, lipid raft, in neuroepithelial cells (NECs). NECs are suggested to adhere to fibronectin substratum dependently on integrin molecules. We found that beta1 integrin, a component of fibronectin receptors, was distributed in lipid rafts. Methyl-beta-cyclodextrin (MBCD), an inhibitor of lipid raft formation, inhibited the integrin-fibronectin interaction-dependent adhesion of NECs. However, inhibition of synthesis of glycosphingolipids (GSL), components of lipid rafts, did not affect NEC adhesion. Leukaemia inhibitory factor (LIF), an interleukin 6 type cytokine, induces astrocyte differentiation of NECs via activation of a transcription factor STAT3. We detected gp130, JAK1 and Ras but not STAT3 and ERK2 molecules in lipid rafts of NECs. Disruption of lipid rafts by MBCD inhibited LIF-induced ERK activation but not STAT3 activation. It is thus suggested that LIF-downstream molecules have differential lipid raft-dependency in terms of activation upon LIF-stimulation. In this study, we found functions of lipid rafts in cell adhesion and signal transduction in NECs. This is the first report that characterized functions of lipid rafts in embryonic neural precursor cells.

  5. Neuropeptide Y (NPY) synthesis in lymphoblasts and increased plasma NPY in pediatric B-cell precursor leukemia.

    PubMed

    Kogner, P; Ericsson, A; Barbany, G; Persson, H; Theodorsson, E; Björk, O

    1992-09-01

    Neuropeptide Y (NPY), a regulatory peptide in both the central and peripheral nervous systems, has recently been found in neuroendocrine tumors as well as in the bone marrow of rat and certain autoimmune mice, but not in human bone marrow. To investigate a possible role for NPY in the human hematopoietic system, we have prospectively studied NPY-like immunoreactivity in plasma (P-NPY-LI) and NPY mRNA in bone marrow from children with acute leukemia. Northern blot showed high levels of NPY mRNA in bone marrow and peripheral lymphoblasts from children with B-cell precursor leukemia. In situ hybridization showed NPY mRNA in malignant B-cell precursor lymphoblasts. No NPY mRNA was detected in the bone marrow of children with T-cell leukemia. P-NPY-LI was higher (P less than .001) in 51 children with leukemia (200:50 to 385 pmol/L, median:interquartile range) compared to 51 age-matched healthy controls (37:20 to 52 pmol/L). P-NPY-LI was higher (P less than .001) in those with favorable clinical risk classification. Elevated P-NPY-LI, compared with the upper age-adjusted reference limit, was only found in children with B-cell precursor leukemia (31 of 40), whereas all children with B-cell, T-cell, or myeloid leukemia (n = 11) had normal P-NPY-LI (P less than .001). During the 2- to 46-month follow-up, children with elevated P-NPY-LI had better (P less than .001) outcome compared to those with normal P-NPY-LI (79.4% v 34.6% probability for event-free survival).

  6. BDNF Increases Survival and Neuronal Differentiation of Human Neural Precursor Cells Cotransplanted with a Nanofiber Gel to the Auditory Nerve in a Rat Model of Neuronal Damage

    PubMed Central

    Jiao, Yu; Palmgren, Björn; Novozhilova, Ekaterina; Englund Johansson, Ulrica; Spieles-Engemann, Anne L.; Kale, Ajay; Stupp, Samuel I.; Olivius, Petri

    2014-01-01

    Objectives. To study possible nerve regeneration of a damaged auditory nerve by the use of stem cell transplantation. Methods. We transplanted HNPCs to the rat AN trunk by the internal auditory meatus (IAM). Furthermore, we studied if addition of BDNF affects survival and phenotypic differentiation of the grafted HNPCs. A bioactive nanofiber gel (PA gel), in selected groups mixed with BDNF, was applied close to the implanted cells. Before transplantation, all rats had been deafened by a round window niche application of β-bungarotoxin. This neurotoxin causes a selective toxic destruction of the AN while keeping the hair cells intact. Results. Overall, HNPCs survived well for up to six weeks in all groups. However, transplants receiving the BDNF-containing PA gel demonstrated significantly higher numbers of HNPCs and neuronal differentiation. At six weeks, a majority of the HNPCs had migrated into the brain stem and differentiated. Differentiated human cells as well as neurites were observed in the vicinity of the cochlear nucleus. Conclusion. Our results indicate that human neural precursor cells (HNPC) integration with host tissue benefits from additional brain derived neurotrophic factor (BDNF) treatment and that these cells appear to be good candidates for further regenerative studies on the auditory nerve (AN). PMID:25243135

  7. Transgenic Enrichment of Mouse Embryonic Stem Cell-derived Progenitor Motor Neurons

    PubMed Central

    McCreedy, Dylan A.; Rieger, Cara R.; Gottlieb, David I.; Sakiyama-Elbert, Shelly E.

    2011-01-01

    Embryonic stem cells (ESCs) hold great potential for replacing neurons following injury or disease. The therapeutic and diagnostic potential of ESCs may be hindered by heterogeneity in ESC-derived populations. Drug selection has been used to purify ESC-derived cardiomyocytes and endothelial cells but has not been applied to specific neural lineages. In this study we investigated positive selection of progenitor motor neurons (pMNs) through transgenic expression of the puromycin resistance enzyme, puromycin N-acetyl-transferase (PAC), under the Olig2 promoter. The protein-coding region in one allele of Olig2 was replaced with PAC to generate the P-Olig2 cell line. This cell line provided specific puromycin resistance in cells that express Olig2, while Olig2− cells were killed by puromycin. Positive selection significantly enriched populations of Olig2+ pMNs. Committed motoneurons (MNs) expressing Hb9, a common progeny of pMNs, were also enriched by the end of the selection period. Selected cells remained viable and differentiated into mature cholinergic MNs and oligodendrocyte precursor cells. Drug resistance may provide a scalable and inexpensive method for enriching desired neural cell types for use in research applications. PMID:22297157

  8. The precursors of the xylene ring in riboflavine

    PubMed Central

    Ali, S. N.; Al-Khalidi, U. A. S.

    1966-01-01

    1. The nature of the precursors of the xylene ring in riboflavine was reinvestigated with growing as well as resting cells of Eremothecium ashbyii. 2. The incorporation of acetoin into riboflavine was very low; further, [2-14C]pyruvate and [1-14C]acetate were equally effective as precursors of lumichrome, and pyruvate was much more active as a precursor of acetoin. These results exclude acetoin as a direct precursor of riboflavine. 3. Addition of unlabelled glucose decreased the incorporation of [14C]acetate into riboflavine more than it decreased the conversion of acetate into carbon dioxide, indicating that acetate is not a direct riboflavine precursor. 4. The incorporation of various sugars and dilution experiments suggest that a derivative of the intermediates of the pentose phosphate cycle is the precursor of the xylene ring in riboflavine. PMID:5938640

  9. Specific interactions of clausin, a new lantibiotic, with lipid precursors of the bacterial cell wall.

    PubMed

    Bouhss, Ahmed; Al-Dabbagh, Bayan; Vincent, Michel; Odaert, Benoit; Aumont-Nicaise, Magalie; Bressolier, Philippe; Desmadril, Michel; Mengin-Lecreulx, Dominique; Urdaci, Maria C; Gallay, Jacques

    2009-09-01

    We investigated the specificity of interaction of a new type A lantibiotic, clausin, isolated from Bacillus clausii, with lipid intermediates of bacterial envelope biosynthesis pathways. Isothermal calorimetry and steady-state fluorescence anisotropy (with dansylated derivatives) identified peptidoglycan lipids I and II, embedded in dodecylphosphocholine micelles, as potential targets. Complex formation with dissociation constants of approximately 0.3 muM and stoichiometry of approximately 2:1 peptides/lipid intermediate was observed. The interaction is enthalpy-driven. For the first time, to our knowledge, we evidenced the interaction between a lantibiotic and C(55)-PP-GlcNAc, a lipid intermediate in the biosynthesis of other bacterial cell wall polymers, including teichoic acids. The pyrophosphate moiety of these lipid intermediates was crucial for the interaction because a strong binding with undecaprenyl pyrophosphate, accounting for 80% of the free energy of binding, was observed. No binding occurred with the undecaprenyl phosphate derivative. The pentapeptide and the N-acetylated sugar moieties strengthened the interaction, but their contributions were weaker than that of the pyrophosphate group. The lantibiotic decreased the mobility of the pentapeptide. Clausin did not interact with the water-soluble UDP-MurNAc- and pyrophosphoryl-MurNAc-pentapeptides, pointing out the importance of the hydrocarbon chain of the lipid target. PMID:19720027

  10. Novel Strategy for Phenotypic Characterization of Human B Lymphocytes from Precursors to Effector Cells by Flow Cytometry

    PubMed Central

    Vettier, Claire; Laurin, David; Pernollet, Martine; Raskovalova, Tatiana; Cesbron, Jean-Yves; Dumestre-Pérard, Chantal; Jacob, Marie-Christine

    2016-01-01

    A precise identification and phenotypic characterization of human B-cell subsets is of crucial importance in both basic research and medicine. In the literature, flow cytometry studies for the phenotypic characterization of B-lymphocytes are mainly focused on the description of a particular cell stage, or of specific cell stages observed in a single type of sample. In the present work, we propose a backbone of 6 antibodies (CD38, CD27, CD10, CD19, CD5 and CD45) and an efficient gating strategy to identify, in a single analysis tube, a large number of B-cell subsets covering the whole B-cell differentiation from precursors to memory and plasma cells. Furthermore, by adding two antibodies in an 8-color combination, our approach allows the analysis of the modulation of any cell surface marker of interest along B-cell differentiation. We thus developed a panel of seven 8-colour antibody combinations to phenotypically characterize B-cell subpopulations in bone marrow, peripheral blood, lymph node and cord blood samples. Beyond qualitative information provided by biparametric representations, we also quantified antigen expression on each of the identified B-cell subsets and we proposed a series of informative curves showing the modulation of seventeen cell surface markers along B-cell differentiation. Our approach by flow cytometry provides an efficient tool to obtain quantitative data on B-cell surface markers expression with a relative easy-to-handle technique that can be applied in routine explorations. PMID:27657694

  11. Preparation and CO2 adsorption properties of soft-templated mesoporous carbons derived from chestnut tannin precursors

    SciTech Connect

    Nelson, Kimberly M.; Mahurin, Shannon Mark; Mayes, Richard T.; Teague, Craig M.; Binder, Andrew J.; Baggetto, Loic; Veith, Gabriel M.; Dai, Sheng; Williamson, Ben

    2015-10-09

    This paper presents a soft templating approach for mesoporous carbon using the polyphenolic heterogeneous biomass, chestnut tannin, as the carbon precursor. By varying synthesis parameters such as tannin:surfactant ratio, cross-linker, reaction time and acid catalyst, the pore structure could be controllably modulated from lamellar to a more ordered hexagonal array. Carbonization at 600 °C under nitrogen produced a bimodal micro-mesoporous carbonaceous material exhibiting enhanced hydrogen bonding with the soft template, similar to that shown by soft-templating of phenolic-formaldehyde resins, allowing for a tailorable pore size. By utilizing the acidic nature of chestnut tannin (i.e. gallic and ellagic acid), hexagonal-type mesostructures were formed without the use of an acid catalyst. The porous carbon materials were activated with ammonia to increase the available surface area and incorporate nitrogen-containing functionality which led to a maximum CO2 adsorption capacity at 1 bar of 3.44 mmol/g and 2.27 mmol/g at 0 °C and 25 °C, respectively. The ammonia-activated carbon exhibited multiple peaks in the adsorption energy distribution which indicates heterogeneity of adsorption sites for CO2 capture.

  12. Preparation and CO2 adsorption properties of soft-templated mesoporous carbons derived from chestnut tannin precursors

    DOE PAGES

    Nelson, Kimberly M.; Mahurin, Shannon Mark; Mayes, Richard T.; Teague, Craig M.; Binder, Andrew J.; Baggetto, Loic; Veith, Gabriel M.; Dai, Sheng; Williamson, Ben

    2015-10-09

    This paper presents a soft templating approach for mesoporous carbon using the polyphenolic heterogeneous biomass, chestnut tannin, as the carbon precursor. By varying synthesis parameters such as tannin:surfactant ratio, cross-linker, reaction time and acid catalyst, the pore structure could be controllably modulated from lamellar to a more ordered hexagonal array. Carbonization at 600 °C under nitrogen produced a bimodal micro-mesoporous carbonaceous material exhibiting enhanced hydrogen bonding with the soft template, similar to that shown by soft-templating of phenolic-formaldehyde resins, allowing for a tailorable pore size. By utilizing the acidic nature of chestnut tannin (i.e. gallic and ellagic acid), hexagonal-type mesostructuresmore » were formed without the use of an acid catalyst. The porous carbon materials were activated with ammonia to increase the available surface area and incorporate nitrogen-containing functionality which led to a maximum CO2 adsorption capacity at 1 bar of 3.44 mmol/g and 2.27 mmol/g at 0 °C and 25 °C, respectively. The ammonia-activated carbon exhibited multiple peaks in the adsorption energy distribution which indicates heterogeneity of adsorption sites for CO2 capture.« less

  13. Deposition of solid oxide fuel cell electrodes by solution precursor plasma spray

    NASA Astrophysics Data System (ADS)

    Wang, Youliang

    Porous La1-xSrxMnO3 (LSM) perovskite cathodes and Yttria Stabilized Zirconia (YSZ)-Nickel (Ni) anodes were successfully deposited by direct current arc solution precursor plasma spray (DC-SPPS), in which a solution precursor of the product material was injected into DC plasma jet. The deposition mechanisms, such as the changes in the solution precursor with the increase of temperature and the evolution of the droplet as it moved along the plasma jet, as well as the impact of the synthesized particles onto the substrate, were investigated. The effects of processing parameters on the microstructure and phase composition of the fabricated LSM cathode and Ni-YSZ anode were examined systematically using TGA/TDA, XRD and SEM. Coating deposition efficiencies and porosities as a function of processing parameters were analyzed by statistical experimental design techniques, based on which the deposition processes were optimized. In addition, the hardness and electrical resistance of the fabricated coatings were measured. From the theoretical and experimental analyses conducted, a comprehensive description of the DC-SPPS process was developed. The precursor solution droplets undergo breakup; solvent evaporation and precursor salt precipitation and crystallization; precursor salt melting and decomposition; nucleation and growth of particles of the product phase; agglomeration, sintering, and perhaps melting of these particles; and impact onto the substrate. The breakup of droplets can only occur in the short period of time after the droplets are injected into the plasma jet. Agglomeration of droplets or particles may occur at any point along the plasma plume. This work has clearly established: (a) the critical importance of droplet breakup and the agglomeration of precursors or synthesized particles in-flight in the plasma jet in determining the structure of the deposited coating, and (b) the basis of the low deposition efficiencies obtained in DC-SPPS. The microstructure and

  14. Organic derivatives of Mg(BH4)2 as precursors towards MgB2 and novel inorganic mixed-cation borohydrides.

    PubMed

    Wegner, W; Jaroń, T; Dobrowolski, M A; Dobrzycki, Ł; Cyrański, M K; Grochala, W

    2016-09-28

    A series of organic derivatives of magnesium borohydride, including Mg(BH4)2·1.5DME (DME = 1,2-dimethoxyethane) and Mg(BH4)2·3THF (THF = tetrahydrofuran) solvates and three mixed-cation borohydrides, [Cat]2[Mg(BH4)4], [Cat] = [Me4N], [nBu4N], [Ph4P], have been characterized. The phosphonium derivative has been tested as a precursor for synthesis of inorganic mixed-metal borohydrides of magnesium, Mx[Mg(BH4)2+x], M = Li-Cs, via a metathetic method. The synthetic procedure has yielded two new derivatives of heavier alkali metals M3Mg(BH4)5 (M = Rb, Cs) mixed with amorphous Mg(BH4)2. Thermal decomposition has been studied for both the organic and inorganic magnesium borohydride derivatives. Amorphous MgB2 has been detected among the products of the thermal decomposition of the solvates studied, together with organic and inorganic impurities.

  15. The Alzheimer Amyloid Precursor Protein (APP) and Fe65, an APP-Binding Protein, Regulate Cell Movement

    PubMed Central

    Sabo, Shasta L.; Ikin, Annat F.; Buxbaum, Joseph D.; Greengard, Paul

    2001-01-01

    FE65 binds to the Alzheimer amyloid precursor protein (APP), but the function of this interaction has not been identified. Here, we report that APP and FE65 are involved in regulation of cell movement. APP and FE65 colocalize with actin and Mena, an Abl-associated signaling protein thought to regulate actin dynamics, in lamellipodia. APP and FE65 specifically concentrate with β1-integrin in dynamic adhesion sites known as focal complexes, but not in more static adhesion sites known as focal adhesions. Overexpression of APP accelerates cell migration in an MDCK cell wound–healing assay. Coexpression of APP and FE65 dramatically enhances the effect of APP on cell movement, probably by regulating the amount of APP at the cell surface. These data are consistent with a role for FE65 and APP, possibly in a Mena-containing macromolecular complex, in regulation of actin-based motility. PMID:11425871

  16. Nanoparticle derived contacts for photovoltaic cells

    SciTech Connect

    Ginley, D.S.

    1999-10-20

    Contacts are becoming increasingly important as PV devices move to higher efficiency and lower cost. The authors present an approach to developing contacts using nanoparticle-based precursors. Both elemental, alloy and compound nanoparticles can be employed for contacts. Ink based approaches can be utilized at low temperatures and utilize direct write techniques such as ink jet and screen printing. The ability to control the composition of the nanoparticle allows improved control of the contact metallurgy and the potential for thermodynamically stable interfaces. A key requirement is the ability to control the interface between particles and between particles and the substrate. The authors illustrate some of these principals with recent results on Al, Cu and (Hg,Cu)Te. They show that for the elemental materials control of the surface can prevent oxide formation and act as glue to control the reactivity of the nanoparticles.

  17. The essentiality of folate for the maintenance of deoxynucleotide precursor pools, DNA synthesis, and cell cycle progression in PHA-stimulated lymphocytes.

    PubMed Central

    James, S J; Miller, B J; Cross, D R; McGarrity, L J; Morris, S M

    1993-01-01

    The fidelity and progression of DNA synthesis is critically dependent on the correct balance and availability of the deoxynucleoside triphosphate (dNTP) precursors for the polymerases involved in DNA replication and repair. Because folate-derived one-carbon groups are essential for the de novo synthesis of both purines and pyrimidines, the purpose of this study was to determine the effect of folate deprivation on deoxynucleotide pool levels and cell cycle progression. Primary cultures of phytohemagglutin (PHA)-stimulated splenocytes were used as the cellular model. T-cells and macrophages were purified from spleen cell suspensions obtained from F344 rats and recombined in culture. The cells were harvested after a 66-hr incubation with PHA and analyzed for nucleotide levels by reverse-phase HPLC with diode array detection. The proportion of cells in the different phases of the cell cycle was determined by bivariate flow cytometric measurement of bromodeoxyuridine (BrdU) incorporation and DNA content (propidium iodide staining). PHA-stimulated T-cells cultured in medium lacking folate and methionine manifested significant decreases in the deoxynucleotides dCTP, dTMP, dGTP, and dATP relative to cells cultured in complete medium. The reduction in dNTP pools was associated with a decrease in the corresponding ribonucleotide pools. Flow cytometric analysis revealed a 2-fold increase in S and G2/mitosis (G2/M) DNA content in PHA-stimulated cells cultured in the medium lacking folate and methionine, which suggests a delay in cell cycle progression. These alterations in DNA content were accompanied by a 5-fold decrease in BrdU incorporation relative to PHA-stimulated cells cultured in complete medium.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8013406

  18. Adipose-derived stem cells: current findings and future perspectives.

    PubMed

    Tobita, Morikuni; Orbay, Hakan; Mizuno, Hiroshi

    2011-02-01

    Adipose tissue is an abundant source of mesenchymal stem cells, which have shown promise in the field of regenerative medicine. Furthermore, these cells can be readily harvested in large numbers with low donor-site morbidity. During the past decade, numerous studies have provided preclinical data on the safety and efficacy of adipose-derived stem cells, supporting the use of these cells in future clinical applications. Various clinical trials have shown the regenerative capability of adipose-derived stem cells in subspecialties of medical fields such as plastic surgery, orthopedic surgery, oral and maxillofacial surgery, and cardiac surgery. In addition, a great deal of knowledge concerning the harvesting, characterization, and culture of adipose-derived stem cells has been reported. This review will summarize data from in vitro studies, pre-clinical animal models, and recent clinical trials concerning the use of adipose-derived stem cells in regenerative medicine.

  19. Human pluripotent stem cell-derived neural constructs for predicting neural toxicity

    PubMed Central

    Schwartz, Michael P.; Hou, Zhonggang; Propson, Nicholas E.; Zhang, Jue; Engstrom, Collin J.; Costa, Vitor Santos; Jiang, Peng; Nguyen, Bao Kim; Bolin, Jennifer M.; Daly, William; Wang, Yu; Stewart, Ron; Page, C. David; Murphy, William L.; Thomson, James A.

    2015-01-01

    Human pluripotent stem cell-based in vitro models that reflect human physiology have the potential to reduce the number of drug failures in clinical trials and offer a cost-effective approach for assessing chemical safety. Here, human embryonic stem (ES) cell-derived neural progenitor cells, endothelial cells, mesenchymal stem cells, and microglia/macrophage precursors were combined on chemically defined polyethylene glycol hydrogels and cultured in serum-free medium to model cellular interactions within the developing brain. The precursors self-assembled into 3D neural constructs with diverse neuronal and glial populations, interconnected vascular networks, and ramified microglia. Replicate constructs were reproducible by RNA sequencing (RNA-Seq) and expressed neurogenesis, vasculature development, and microglia genes. Linear support vector machines were used to construct a predictive model from RNA-Seq data for 240 neural constructs treated with 34 toxic and 26 nontoxic chemicals. The predictive model was evaluated using two standard hold-out testing methods: a nearly unbiased leave-one-out cross-validation for the 60 training compounds and an unbiased blinded trial using a single hold-out set of 10 additional chemicals. The linear support vector produced an estimate for future data of 0.91 in the cross-validation experiment and correctly classified 9 of 10 chemicals in the blinded trial. PMID:26392547

  20. Human pluripotent stem cell-derived neural constructs for predicting neural toxicity.

    PubMed

    Schwartz, Michael P; Hou, Zhonggang; Propson, Nicholas E; Zhang, Jue; Engstrom, Collin J; Santos Costa, Vitor; Jiang, Peng; Nguyen, Bao Kim; Bolin, Jennifer M; Daly, William; Wang, Yu; Stewart, Ron; Page, C David; Murphy, William L; Thomson, James A

    2015-10-01

    Human pluripotent stem cell-based in vitro models that reflect human physiology have the potential to reduce the number of drug failures in clinical trials and offer a cost-effective approach for assessing chemical safety. Here, human embryonic stem (ES) cell-derived neural progenitor cells, endothelial cells, mesenchymal stem cells, and microglia/macrophage precursors were combined on chemically defined polyethylene glycol hydrogels and cultured in serum-free medium to model cellular interactions within the developing brain. The precursors self-assembled into 3D neural constructs with diverse neuronal and glial populations, interconnected vascular networks, and ramified microglia. Replicate constructs were reproducible by RNA sequencing (RNA-Seq) and expressed neurogenesis, vasculature development, and microglia genes. Linear support vector machines were used to construct a predictive model from RNA-Seq data for 240 neural constructs treated with 34 toxic and 26 nontoxic chemicals. The predictive model was evaluated using two standard hold-out testing methods: a nearly unbiased leave-one-out cross-validation for the 60 training compounds and an unbiased blinded trial using a single hold-out set of 10 additional chemicals. The linear support vector produced an estimate for future data of 0.91 in the cross-validation experiment and correctly classified 9 of 10 chemicals in the blinded trial.

  1. Human pluripotent stem cell-derived neural constructs for predicting neural toxicity.

    PubMed

    Schwartz, Michael P; Hou, Zhonggang; Propson, Nicholas E; Zhang, Jue; Engstrom, Collin J; Santos Costa, Vitor; Jiang, Peng; Nguyen, Bao Kim; Bolin, Jennifer M; Daly, William; Wang, Yu; Stewart, Ron; Page, C David; Murphy, William L; Thomson, James A

    2015-10-01

    Human pluripotent stem cell-based in vitro models that reflect human physiology have the potential to reduce the number of drug failures in clinical trials and offer a cost-effective approach for assessing chemical safety. Here, human embryonic stem (ES) cell-derived neural progenitor cells, endothelial cells, mesenchymal stem cells, and microglia/macrophage precursors were combined on chemically defined polyethylene glycol hydrogels and cultured in serum-free medium to model cellular interactions within the developing brain. The precursors self-assembled into 3D neural constructs with diverse neuronal and glial populations, interconnected vascular networks, and ramified microglia. Replicate constructs were reproducible by RNA sequencing (RNA-Seq) and expressed neurogenesis, vasculature development, and microglia genes. Linear support vector machines were used to construct a predictive model from RNA-Seq data for 240 neural constructs treated with 34 toxic and 26 nontoxic chemicals. The predictive model was evaluated using two standard hold-out testing methods: a nearly unbiased leave-one-out cross-validation for the 60 training compounds and an unbiased blinded trial using a single hold-out set of 10 additional chemicals. The linear support vector produced an estimate for future data of 0.91 in the cross-validation experiment and correctly classified 9 of 10 chemicals in the blinded trial. PMID:26392547

  2. Sorting for storage in myeloid cells of nonmyeloid proteins and chimeras with the propeptide of myeloperoxidase precursor.

    PubMed

    Bülow, E; Nauseef, W M; Goedken, M; McCormick, S; Calafat, J; Gullberg, U; Olsson, I

    2002-02-01

    During formation of polymorphonuclear neutrophils, proteins are synthesized for storage in granules. Whereas sorting of proteins into distinct subtypes of cytoplasmic granules may reflect the coordinated expression of the proteins contained in them, still the mechanism(s) for the retrieval of proteins from the constitutive secretion is unknown. To investigate the mechanisms of retrieval, nonmyeloid secretory proteins were expressed in myeloid cell lines, and their subcellular fate was assessed. The contribution of the propeptide (MPOpro) of the myeloperoxidase (MPO) precursor was investigated by determining the fate of chimeras containing MPOpro. The nonmyeloid protein alpha(1)-microglobulin (alpha(1)-m) was targeted to storage organelles in 32D cells and colocalized with the lysosomal marker LAMP-1, whereas soluble TNF receptor 1 (sTNFR1) was secreted without granule targeting. Fusion of MPOpro to alpha(1)-m delayed exit from endoplasmic reticulum (ER), but subsequent targeting to dense organelles was indistinguishable from that of alpha(1)-m alone. Fusion proteins between MPOpro and sTNFR1 or green fluorescent protein expressed in myeloid 32D, K562, or PLB-985 cells did not associate stably with calreticulin or calnexin, molecular chaperones that normally interact transiently with the MPO precursor, but were still efficiently retained in the ER followed by degradation. We conclude that normally secreted, nonmyeloid proteins can be targeted efficiently to storage organelles in myeloid cells, that myeloid cells selectively target some proteins for storage but not others, and that MPOpro may contribute to the prolonged ER retention of the MPO precursor independent of the ER-molecular chaperones calreticulin and calnexin.

  3. Asymmetric cell division in the Drosophila bristle lineage: from the polarization of sensory organ precursor cells to Notch-mediated binary fate decision.

    PubMed

    Schweisguth, François

    2015-01-01

    Asymmetric cell division (ACD) is a simple and evolutionary conserved process whereby a mother divides to generate two daughter cells with distinct developmental potentials. This process can generate cell fate diversity during development. Fate asymmetry may result from the unequal segregation of molecules and/or organelles between the two daughter cells. Here, I will review how fate asymmetry is regulated in the sensory bristle lineage in Drosophila and focus on the molecular mechanisms underlying ACD of the sensory organ precursor cells (SOPs). For further resources related to this article, please visit the WIREs website.

  4. Endogenous diterpenes derived from ent-kaurene, a common gibberellin precursor, regulate protonema differentiation of the moss Physcomitrella patens.

    PubMed

    Hayashi, Ken-ichiro; Horie, Keisuke; Hiwatashi, Yuji; Kawaide, Hiroshi; Yamaguchi, Shinjiro; Hanada, Atsushi; Nakashima, Tamotsu; Nakajima, Masatoshi; Mander, Lewis N; Yamane, Hisakazu; Hasebe, Mitsuyasu; Nozaki, Hiroshi

    2010-07-01

    Gibberellins (GAs) are a group of diterpene-type plant hormones biosynthesized from ent-kaurene via ent-kaurenoic acid. GAs are ubiquitously present in seed plants. The GA signal is perceived and transduced by the GID1 GA receptor/DELLA repressor pathway. The lycopod Selaginella moellendorffii biosynthesizes GA and has functional GID1-DELLA signaling components. In contrast, no GAs or functionally orthologous GID1-DELLA components have been found in the moss Physcomitrella patens. However, P. patens produces ent-kaurene, a common precursor for GAs, and possesses a functional ent-kaurene synthase, PpCPS/KS. To assess the biological role of ent-kaurene in P. patens, we generated a PpCPS/KS disruption mutant that does not accumulate ent-kaurene. Phenotypic analysis demonstrates that the mutant has a defect in the protonemal differentiation of the chloronemata to caulonemata. Gas chromatography-mass spectrometry analysis shows that P. patens produces ent-kaurenoic acid, an ent-kaurene metabolite in the GA biosynthesis pathway. The phenotypic defect of the disruptant was recovered by the application of ent-kaurene or ent-kaurenoic acid, suggesting that ent-kaurenoic acid, or a downstream metabolite, is involved in protonemal differentiation. Treatment with uniconazole, an inhibitor of ent-kaurene oxidase in GA biosynthesis, mimics the protonemal phenotypes of the PpCPS/KS mutant, which were also restored by ent-kaurenoic acid treatment. Interestingly, the GA(9) methyl ester, a fern antheridiogen, rescued the protonemal defect of the disruption mutant, while GA(3) and GA(4), both of which are active GAs in angiosperms, did not. Our results suggest that the moss P. patens utilizes a diterpene metabolite from ent-kaurene as an endogenous developmental regulator and provide insights into the evolution of GA functions in land plants.

  5. Efficient amidation of C-peptide deleted NPY precursors by non-endocrine cells is affected by the presence of Lys-Arg at the C-terminus.

    PubMed

    Wulff, B S; Catipovic, B; Okamoto, H; Gether, U; Schwartz, T W; Johansen, T E

    1993-02-01

    Post-translational processing of peptide precursors producing amidated, biologically active peptides generally occurs in specially differentiated endocrine or neural cells. However, we have previously shown that a C-peptide-deleted precursor of neuropeptide Y (NPY1-39) in which the precursor terminates in the sequence Gly-Lys-Arg was partially amidated by the non-endocrine cell line, CHO. In the present study we show that two other non-endocrine cell lines, NIH 3T3 and BHK, also possess amidating activities and that the NPY1-39 precursor was completely converted to NPY1-36 amide by the NIH 3T3 cell line. The role of the two basic residues (Lys-Arg) in the C-terminus was studied by transfection of a construct encoding a NPY precursor terminating with glycine alone. Both the CHO and NIH 3T3 cell lines, transfected with this construct, secreted a significantly smaller fraction of NPY reactive material as amidated NPY compared to the fraction of amidated NPY secreted by the cells transfected with the NPY1-39 precursor. It is concluded that the capacity to perform C-terminal amidation appears to be a universal feature of eukaryotic cells and that the carboxypeptidase E-like enzyme influences the amidation process, beyond its known ability to remove the C-terminal basic residues.

  6. Potential for Cell-Transplant Therapy with Human Neuronal Precursors to Treat Neuropathic Pain in Models of PNS and CNS Injury: Comparison of hNT2.17 and hNT2.19 Cell Lines

    PubMed Central

    Eaton, Mary J.; Berrocal, Yerko; Wolfe, Stacey Q.

    2012-01-01

    Effective treatment of sensory neuropathies in peripheral neuropathies and spinal cord injury (SCI) is one of the most difficult problems in modern clinical practice. Cell therapy to release antinociceptive agents near the injured spinal cord is a logical next step in the development of treatment modalities. But few clinical trials, especially for chronic pain, have tested the potential of transplant of cells to treat chronic pain. Cell lines derived from the human neuronal NT2 cell line parentage, the hNT2.17 and hNT2.19 lines, which synthesize and release the neurotransmitters gamma-aminobutyric acid (GABA) and serotonin (5HT), respectively, have been used to evaluate the potential of cell-based release of antinociceptive agents near the lumbar dorsal (horn) spinal sensory cell centers to relieve neuropathic pain after PNS (partial nerve and diabetes-related injury) and CNS (spinal cord injury) damage in rat models. Both cell lines transplants potently and permanently reverse behavioral hypersensitivity without inducing tumors or other complications after grafting. Functioning as cellular minipumps for antinociception, human neuronal precursors, like these NT2-derived cell lines, would likely provide a useful adjuvant or replacement for current pharmacological treatments for neuropathic pain. PMID:22619713

  7. A sintering study on the β-spodumene-based glass ceramics prepared from gel-derived precursor powders with LiF additive

    NASA Astrophysics Data System (ADS)

    Wang, Moo-Chin; Wu, Nan-Chung; Yang, Sheng; Wen, Shaw-Bing

    2002-01-01

    Beta-spodumene (Li2O·Al2O3·4SiO2, LAS) powders were prepared by a sol-gel process using Si(OC2H5)4, Al(OC4H9)3, and LiNO3 as precursors and LiF as a sintering aid agent. Dilatometry, X-ray diffraction (XRD), scanning electron microscopy (SEM), scanning transmission electron microscopy (STEM), and electron diffraction (ED) were utilized to study the sintering, phase transformation, microstructure, and properties of the β-spodumene glass-ceramics prepared from the gel-derived precursor powders with and without LiF additives. For the LAS precursor powders containing no LiF, the only crystalline phase obtained was β-spodumene. For the pellets containing less than 4 wt pct LiF and sintered at 1050 °C for 5 hours the crystalline phases were β-spodumene and β-eucryptite (Li2O·Al2O3·2SiO2). When the LiF content was 5 wt pct and the sintering process was carried out at 1050 °C for 5 hours, the crystalline phases were β-spodumene, β-eucryptite (triclinic), and eucryptite (rhombohedral (hex.)) phases. With the LiF additive increased from 0.5 to 4 wt pct and sintering at 1050 °C for 5 hours, the open porosity of the sintered bodies decrease from 30 to 2.1 pct. The grains size is about to 4 to 5 µm when pellect LAS compact contains LiF 3 wt pct as sintered at 1050 °C for 5 hours. The grains size grew to 8 to 25 µm with a remarkable discontinuous grain growth for pellet LAS compact contain LiF 5 wt pct sintered at 1050 °C for 5 hours. Relative densities greater than 90 pct could be obtained for the LAS precursor powders with LiF > 2 wt pct when sintered at 1050 °C for 5 hours. The coefficient of thermal expansion of the sintered bodies decreased from 8.3 × 10-7 to 5.2 × 10-7/°C (25 °C to 900 °C) as the LiF addition increased from 0 to 5 wt pct.

  8. Genetic and epigenetic changes in vulvar squamous cell carcinoma and its precursor lesions: a review of the current literature.

    PubMed

    Trietsch, Marjolijn D; Nooij, Linda S; Gaarenstroom, Katja N; van Poelgeest, Mariette I E

    2015-01-01

    Vulvar cancer is a relatively rare gynecologic malignancy with an annual incidence in developed countries of approximately 2 per 100,000 women. Vulvar squamous cell carcinoma (VSCC) has two etiological pathways: a high risk human papillomavirus (HPV)-dependent route, which has usual vulvar intraepithelial neoplasia (uVIN) as a precursor lesion, and an HPV-independent route, which is associated with differentiated VIN (dVIN), lichen sclerosus, and genetic alterations, such as TP53 mutations. Research on the molecular etiology of vulvar cancer has increased in the past years, not only regarding genetic alterations, but also epigenetic changes. In genetic alterations, a mutation irreversibly changes the nucleotide sequence of the DNA, or the number of copies of chromosomes per cell is altered. In epigenetics, the nucleotide sequence remains the same but genes can be 'switched' on or off by, for example, DNA methylation or histone modification. We searched the current literature on genetic and epigenetic alterations in VSCC and its precursor lesions. Many studies have reported a higher incidence of somatic mutations in HPV-negative tumors compared to HPV-positive tumors, with TP53 mutations being the most frequent. Allelic imbalances or loss of heterozygosity are more frequently found in higher stages of dysplasia and in invasive carcinomas, but it is not exclusive to HPV-negative tumors. A limited number of studies are available on epigenetic changes in vulvar lesions, with hypermethylation of CDKN2A being the most frequently investigated change. For most genes, hypermethylation occurs more frequently in vulvar squamous cell carcinomas than in precursor lesions. As most studies have focused on HPV infection and TP53 mutations, we suggest that more research should be performed using whole genome or next generation sequencing to determine the true landscape of genetic and epigenetic alterations in vulvar squamous cell carcinoma.

  9. Acute effects of wheel running on adult hippocampal precursor cells in mice are not caused by changes in cell cycle length or S phase length

    PubMed Central

    Fischer, Tim J.; Walker, Tara L.; Overall, Rupert W.; Brandt, Moritz D.; Kempermann, Gerd

    2014-01-01

    Exercise stimulates cellular brain plasticity by extending the pool of proliferating neural precursor cells in the adult hippocampus. This effect has been investigated extensively, but the most immediate cellular effect induced by exercise that results in this acute increase in the number of cycling cells remained unclear. In the developing brain as well as adult pathological models, cell cycle alterations have a major influence on the balance between proliferative and neurogenic divisions. In this study we investigated whether this might also apply to the acute physiological pro-neurogenic stimulus of physical exercise in adulthood. Do changes in cell cycle precede the measurable increase in proliferation? After 5 days of voluntary wheel running, however, we measured only a very small, statistically not significant acceleration in cell cycle, which could not quantitatively explain the observed increase in proliferating cells after exercise. Thus, at this acute stage, changes at the level of cell cycle control is not the primary causal mechanism for the expansion of the precursor cell population, although with time after the stimulus changes in cell cycle of the entire population of labeled cells might be the result of the expanded pool of cells that have progressed to the advanced neurogenic stages with shorter cell cycle length. PMID:25339861

  10. Methanol synthesis from CO2 hydrogenation over La-M-Cu-Zn-O (M = Y, Ce, Mg, Zr) catalysts derived from perovskite-type precursors

    NASA Astrophysics Data System (ADS)

    Zhan, Haijuan; Li, Feng; Gao, Peng; Zhao, Ning; Xiao, Fukui; Wei, Wei; Zhong, Liangshu; Sun, Yuhan

    2014-04-01

    A series of La-M-Cu-Zn-O (M = Y, Ce, Mg, Zr) based perovskite-type catalysts are prepared by sol-gel method and characterized by XRD, BET, TPR, N2O-adsorption, XPS and TPD techniques. The results indicate that all the catalysts exhibit La2CuO4 perovskite structure. The addition of Ce, Mg and Zr lead to smaller particles, lower reduction temperature, higher Cu dispersion, larger amount of hydrogen desorption at low temperature and more amount of basic sites. However, Y has less affects on the physicochemical properties. The catalysts derived from perovskite-type precursors show high selectivity for methanol, which is correlated with the Cuα+ species that exists in the reduced catalysts. More exposed Cu surface area is favorable for high CO2 conversion.

  11. Enhanced proliferation and dopaminergic differentiation of ventral mesencephalic precursor cells by synergistic effect of FGF2 and reduced oxygen tension

    SciTech Connect

    Jensen, Pia; Gramsbergen, Jan-Bert; Zimmer, Jens; Widmer, Hans R.; Meyer, Morten

    2011-07-15

    Effective numerical expansion of dopaminergic precursors might overcome the limited availability of transplantable cells in replacement strategies for Parkinson's disease. Here we investigated the effect of fibroblast growth factor-2 (FGF2) and FGF8 on expansion and dopaminergic differentiation of rat embryonic ventral mesencephalic neuroblasts cultured at high (20%) and low (3%) oxygen tension. More cells incorporated bromodeoxyuridine in cultures expanded at low as compared to high oxygen tension, and after 6 days of differentiation there were significantly more neuronal cells in low than in high oxygen cultures. Low oxygen during FGF2-mediated expansion resulted also in a significant increase in tyrosine hydroxylase-immunoreactive (TH-ir) dopaminergic neurons as compared to high oxygen tension, but no corresponding effect was observed for dopamine release into the culture medium. However, switching FGF2-expanded cultures from low to high oxygen tension during the last two days of differentiation significantly enhanced dopamine release and intracellular dopamine levels as compared to all other treatment groups. In addition, the short-term exposure to high oxygen enhanced in situ assessed TH enzyme activity, which may explain the elevated dopamine levels. Our findings demonstrate that modulation of oxygen tension is a recognizable factor for in vitro expansion and dopaminergic differentiation of rat embryonic midbrain precursor cells.

  12. Glycosphingolipid synthesis inhibitor represses cytokine-induced activation of the Ras-MAPK pathway in embryonic neural precursor cells.

    PubMed

    Yanagisawa, Makoto; Nakamura, Kazuo; Taga, Tetsuya

    2005-09-01

    Neuronal and glial cells in the central nervous system are generated from common neural precursor cells during development. To evaluate the functions of glycosphingolipids (GSLs) in neural precursor cells, neuroepithelial cells (NECs) were prepared from mouse embryos (E14.5), and the effects of an inhibitor of glucosylceramide synthesis, D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP), on NECs was investigated. In PDMP-treated NECs, the expression of GD3, a major ganglioside of NECs, disappeared. We found that basic fibroblast growth factor (bFGF)-induced proliferation and extracellular signal-regulated kinase (ERK) activation were repressed in PDMP-treated NECs. Leukemia inhibitory factor (LIF)-induced ERK activation was also abolished in PDMP-treated NECs, suggesting that PDMP specifically represses the Ras-MAPK pathway. bFGF-induced activation of the Ras-MAPK pathway in NECs is dependent on GSL-enriched microdomains, lipid rafts. The organization of lipid rafts and the distribution of Ras and Grb2-SOS in the microdomains were not affected. However, Ras activation was repressed in PDMP-treated NECs. In PDMP-treated NECs, some neuronal genes were up-regulated and glial genes were down-regulated. These results suggest that GSLs might be involved in the proliferation, survival, signal transduction and differentiation of NECs.

  13. A complex between contactin-1 and the protein tyrosine phosphatase PTPRZ controls the development of oligodendrocyte precursor cells

    SciTech Connect

    Lamprianou, Smaragda; Chatzopoulou, Elli; Thomas, Jean-Léon; Bouyain, Samuel; Harroch, Sheila

    2013-09-23

    The six members of the contactin (CNTN) family of neural cell adhesion molecules are involved in the formation and maintenance of the central nervous system (CNS) and have been linked to mental retardation and neuropsychiatric disorders such as autism. Five of the six CNTNs bind to the homologous receptor protein tyrosine phosphatases gamma (PTPRG) and zeta (PTPRZ), but the biological roles of these interactions remain unclear. We report here the cocrystal structure of the carbonic anhydrase-like domain of PTPRZ bound to tandem Ig repeats of CNTN1 and combine these structural data with binding assays to show that PTPRZ binds specifically to CNTN1 expressed at the surface of oligodendrocyte precursor cells. Furthermore, analyses of glial cell populations in wild-type and PTPRZ-deficient mice show that the binding of PTPRZ to CNTN1 expressed at the surface of oligodendrocyte precursor cells inhibits their proliferation and promotes their development into mature oligodendrocytes. Overall, these results implicate the PTPRZ/CNTN1 complex as a previously unknown modulator of oligodendrogenesis.

  14. Signaling Networks among Stem Cell Precursors, Transit-Amplifying Progenitors, and their Niche in Developing Hair Follicles.

    PubMed

    Rezza, Amélie; Wang, Zichen; Sennett, Rachel; Qiao, Wenlian; Wang, Dongmei; Heitman, Nicholas; Mok, Ka Wai; Clavel, Carlos; Yi, Rui; Zandstra, Peter; Ma'ayan, Avi; Rendl, Michael

    2016-03-29

    The hair follicle (HF) is a complex miniorgan that serves as an ideal model system to study stem cell (SC) interactions with the niche during growth and regeneration. Dermal papilla (DP) cells are required for SC activation during the adult hair cycle, but signal exchange between niche and SC precursors/transit-amplifying cell (TAC) progenitors that regulates HF morphogenetic growth is largely unknown. Here we use six transgenic reporters to isolate 14 major skin and HF cell populations. With next-generation RNA sequencing, we characterize their transcriptomes and define unique molecular signatures. SC precursors, TACs, and the DP niche express a plethora of ligands and receptors. Signaling interaction network analysis reveals a bird's-eye view of pathways implicated in epithelial-mesenchymal interactions. Using a systematic tissue-wide approach, this work provides a comprehensive platform, linked to an interactive online database, to identify and further explore the SC/TAC/niche crosstalk regulating HF growth. PMID:27009580

  15. α-Ketoacids as precursors for phenylalanine and tyrosine labelling in cell-based protein overexpression.

    PubMed

    Lichtenecker, Roman J; Weinhäupl, Katharina; Schmid, Walther; Konrat, Robert

    2013-12-01

    (13)C-α-ketoacid metabolic precursors of phenylalanine and tyrosine effectively enter the metabolism of a protein overexpressing E. coli strain to label Phe- and Tyr-residues devoid of any cross-labelling. The methodology gives access to highly selective labelling patterns as valuable tools in protein NMR spectroscopy without the need of (15)N-chiral amino acid synthesis using organic chemistry.

  16. Derivation of human embryonic stem cells in defined conditions.

    PubMed

    Ludwig, Tenneille E; Levenstein, Mark E; Jones, Jeffrey M; Berggren, W Travis; Mitchen, Erika R; Frane, Jennifer L; Crandall, Leann J; Daigh, Christine A; Conard, Kevin R; Piekarczyk, Marian S; Llanas, Rachel A; Thomson, James A

    2006-02-01

    We have previously reported that high concentrations of basic fibroblast growth factor (bFGF) support feeder-independent growth of human embryonic stem (ES) cells, but those conditions included poorly defined serum and matrix components. Here we report feeder-independent human ES cell culture that includes protein components solely derived from recombinant sources or purified from human material. We describe the derivation of two new human ES cell lines in these defined culture conditions.

  17. Enhanced Performance of PbS-quantum-dot-sensitized Solar Cells via Optimizing Precursor Solution and Electrolytes

    PubMed Central

    Tian, Jianjun; Shen, Ting; Liu, Xiaoguang; Fei, Chengbin; Lv, Lili; Cao, Guozhong

    2016-01-01

    This work reports a PbS-quantum-dot-sensitized solar cell (QDSC) with power conversion efficiency (PCE) of 4%. PbS quantum dots (QDs) were grown on mesoporous TiO2 film using a successive ion layer absorption and reaction (SILAR) method. The growth of QDs was found to be profoundly affected by the concentration of the precursor solution. At low concentrations, the rate-limiting factor of the crystal growth was the adsorption of the precursor ions, and the surface growth of the crystal became the limiting factor in the high concentration solution. The optimal concentration of precursor solution with respect to the quantity and size of synthesized QDs was 0.06 M. To further increase the performance of QDSCs, the 30% deionized water of polysulfide electrolyte was replaced with methanol to improve the wettability and permeability of electrolytes in the TiO2 film, which accelerated the redox couple diffusion in the electrolyte solution and improved charge transfer at the interfaces between photoanodes and electrolytes. The stability of PbS QDs in the electrolyte was also improved by methanol to reduce the charge recombination and prolong the electron lifetime. As a result, the PCE of QDSC was increased to 4.01%. PMID:26975216

  18. Hepatic cancer stem cell marker granulin-epithelin precursor and β-catenin expression associate with recurrence in hepatocellular carcinoma

    PubMed Central

    Cheung, Phyllis F.Y.; Cheung, Tan To; Yip, Chi Wai; Ng, Linda W.C.; Fung, Sze Wai; Lo, Chung Mau; Fan, Sheung Tat; Cheung, Siu Tim

    2016-01-01

    Granulin-epithelin precursor (GEP) has been demonstrated to confer enhanced cancer stem-like cell properties in hepatocellular carcinoma (HCC) cell line models in our previous studies. Here, we aimed to examine the GEP-expressing cells in relation to the stem cell related molecules and stem-like cell properties in the prospective HCC clinical cohort. GEP protein levels were significantly higher in HCCs than the paralleled non-tumor liver tissues, and associated with venous infiltration. GEPhigh cells isolated from clinical HCC samples exhibited higher levels of stem cell marker CD133, pluripotency-associated signaling molecules β-catenin, Oct4, SOX2, Nanog, and chemodrug transporter ABCB5. In addition, GEPhigh cells possessed preferential ability to form colonies and spheroids, and enhanced in vivo tumor-initiating ability while their xenografts were able to be serially subpassaged into secondary mouse recipients. Expression levels of GEP and pluripotency-associated genes were further examined in the retrospective HCC cohort and demonstrated significant correlation of GEP with β-catenin. Notably, HCC patients with high GEP and β-catenin levels demonstrated poor recurrence-free survival. In summary, GEP-positive HCC cells directly isolated from clinical specimens showed β-catenin elevation and cancer stem-like cell properties. PMID:26942873

  19. Derivation of human embryonic stem cell lines, towards clinical quality.

    PubMed

    Hovatta, Outi

    2006-01-01

    Human embryonic stem (hES) cells offer an excellent source of cells for transplantation in the treatment of severe diseases. To be clinically safe, the lines have to be derived using strict quality criteria and good manufacturing practice. Animal proteins are immunogenic and may contain microbes, and they should not be used in establishing or propagating hES cells. Derivation systems have been improved towards clinical quality by establishing all 25 hES cell lines using human skin fibroblasts as feeder cells instead of mouse fibroblasts. A further 21 cell lines have been established using synthetic serum instead of fetal calf serum in the medium. In the five latest derivations, the inner cell mass was isolated mechanically instead of by immunosurgery (animal antibodies). Feeder-free derivation would be optimal, but it is not yet considered safe. Clinical-quality lines can be derived by establishing the skin fibroblast feeders in the good manufacturing practice laboratory with human serum in the medium, and by establishing the hES cells on such feeders. In this process, a serum replacement that contains only human protein can be used, the inner cell mass has to be isolated mechanically, and the colonies have to be split mechanically for passaging. Somatic cell nuclear transfer would help to overcome rejection of transplanted cells. PMID:17147930

  20. mTOR masters monocytic myeloid-derived suppressor cells in mice with allografts or tumors

    PubMed Central

    Wu, Tingting; Zhao, Yang; Wang, Hao; Li, yang; Shao, Lijuan; Wang, Ruoyu; Lu, Jun; Yang, Zhongzhou; Wang, Junjie; Zhao, Yong

    2016-01-01

    CD11b+ Gr1+ myeloid-derived suppressor cells (MDSCs) play critical roles in controlling the processes of tumors, infections, autoimmunity and graft rejection. Immunosuppressive drug rapamycin (RPM), targeting on the key cellular metabolism molecule mTOR, is currently used in clinics to treat patients with allo-grafts, autoimmune diseases and tumors. However, the effect of RPM on MDSCs has not been studied. RPM significantly decreases the cell number and the immunosuppressive ability on T cells of CD11b+ Ly6Chigh monocytic MDSCs (M-MDSCs) in both allo-grafts-transplanted and tumor-bearing mice respectively. Mice with a myeloid-specific deletion of mTOR have poor M-MDSCs after grafting with allo-skin tissue or a tumor. Grafting of allo-skin or tumors significantly activates glycolysis pathways in myeloid precursor cells in bone marrow, which is inhibited by RPM or mTOR deletion. 2-deoxyglucose (2-DG), an inhibitor of the glycolytic pathway, inhibits M-MDSC differentiation from precursors, while enhancing glycolysis by metformin significantly rescues the RPM-caused deficiency of M-MDSCs. Therefore, we offer evidence supporting that mTOR is an intrinsic factor essential for the differentiation and immunosuppressive function of M-MDSCs and that these metabolism-relevant medicines may impact MDSCs-mediated immunosuppression or immune tolerance induction, which is of considerable clinical importance in treating graft rejection, autoimmune diseases and cancers. PMID:26833095

  1. Technical Challenges in the Derivation of Human Pluripotent Cells

    PubMed Central

    Noisa, Parinya; Parnpai, Rangsun

    2011-01-01

    It has long been discovered that human pluripotent cells could be isolated from the blastocyst state of embryos and called human embryonic stem cells (ESCs). These cells can be adapted and propagated indefinitely in culture in an undifferentiated manner as well as differentiated into cell representing the three major germ layers: endoderm, mesoderm, and ectoderm. However, the derivation of human pluripotent cells from donated embryos is limited and restricted by ethical concerns. Therefore, various approaches have been explored and proved their success. Human pluripotent cells can also be derived experimentally by the nuclear reprogramming of somatic cells. These techniques include somatic cell nuclear transfer (SCNT), cell fusion and overexpression of pluripotent genes. In this paper, we discuss the technical challenges of these approaches for nuclear reprogramming, involving their advantages and limitations. We will also highlight the possible applications of these techniques in the study of stem cell biology. PMID:21776284

  2. Derivation of three new human embryonic stem cell lines.

    PubMed

    Bradley, Cara K; Chami, Omar; Peura, Teija T; Bosman, Alexis; Dumevska, Biljana; Schmidt, Uli; Stojanov, Tomas

    2010-04-01

    Human embryonic stem cells are pluripotent cells capable of extensive self-renewal and differentiation to all cells of the embryo proper. Here, we describe the derivation and characterization of three Sydney IVF human embryonic stem cell lines not already reported elsewhere, designated SIVF001, SIVF002, and SIVF014. The cell lines display typical compact colony morphology of embryonic stem cells, have stable growth rates over more than 40 passages and are cytogenetically normal. Furthermore, the cell lines express pluripotency markers including Nanog, Oct4, SSEA3 and Tra-1-81, and are capable of generating teratoma cells derived from each of the three germ layers in immunodeficient mice. These experiments show that the cell lines constitute pluripotent stem cell lines. PMID:20198447

  3. Effect of immunization with polyvinylpyrrolidone on the counts of stromal precursor cells in bone marrow and spleen of CBA and CBA/N mice and cytokine gene expression in primary cultures of these cells.

    PubMed

    Gorskaya, U F; Danilova, T A; Mezentzeva, M V; Shapoval, M M; Nesterenko, V G

    2012-05-01

    Injection of polyvinylpyrrolidone (synthetic type 2 T-independent antigen) stimulated the efficiency of clone-forming efficiency and the content of stromal precursor cells in CBA mice in the femoral bone marrow (almost 3-fold) and in the spleen (by 1.7 times) with the peak within 24 h and normalization by day 3 after immunization. The expression of IL-6, IL-8, and TNF-α genes in bone marrow and spleen cultures from immunized animals appeared on day 1 and disappeared on day 3. Hence, stimulation of stromal tissue in response to polyvinylpyrrolidone immunization was significantly less pronounced in comparison with immunization with S. typhimurium antigens. The counts of stromal precursor cells in these organs did not increase in CBA/N mice not responding to polyvinylpyrrolidone because they had no xid-mutation in Brutton's tyrosine kinase (Btk) gene, and the proinflammatory cytokine genes expression in primary cultures derived from these animals did not increase either. These data indicated that the degree of stromal tissue stimulation in immunized mice correlated with the immune response intensity. This indicated a close relationship between the stromal tissue and immune system. Stromal tissue seemed to be stimulated not only and not so much through the stromal cell Toll-like receptors, but mainly through interactions of immunocompetent and stromal cells, the former presumably playing the leading role in this process.

  4. miR expression profiling at diagnosis predicts relapse in pediatric precursor B-cell acute lymphoblastic leukemia.

    PubMed

    Avigad, Smadar; Verly, Iedan R N; Lebel, Asaf; Kordi, Oshrit; Shichrur, Keren; Ohali, Anat; Hameiri-Grossman, Michal; Kaspers, Gertjan J L; Cloos, Jacqueline; Fronkova, Eva; Trka, Jan; Luria, Drorit; Kodman, Yona; Mirsky, Hadar; Gaash, Dafna; Jeison, Marta; Avrahami, Galia; Elitzur, Sarah; Gilad, Gil; Stark, Batia; Yaniv, Isaac

    2016-04-01

    Our aim was to identify miRNAs that can predict risk of relapse in pediatric patients with acute lymphoblastic leukemia (ALL). Following high-throughput miRNA expression analysis (48 samples), five miRs were selected for further confirmation performed by real time quantitative PCR on a cohort of precursor B-cell ALL patients (n = 138). The results were correlated with clinical parameters and outcome. Low expression of miR-151-5p, and miR-451, and high expression of miR-1290 or a combination of all three predicted inferior relapse free survival (P = 0.007, 0.042, 0.025, and <0.0001, respectively). Cox regression analysis identified aberrant expression of the three miRs as an independent prognostic marker with a 10.5-fold increased risk of relapse (P = 0.041) in PCR-MRD non-high risk patients. Furthermore, following exclusion of patients harboring IKZF1 deletion, the aberrant expression of all three miRs could identify patients with a 24.5-fold increased risk to relapse (P < 0.0001). The prognostic relevance of the three miRNAs was evaluated in a non-BFM treated precursor B-cell ALL cohort (n = 33). A significant correlation between an aberrant expression of at least one of the three miRs and poor outcome was maintained (P < 0.0001). Our results identify an expression profile of miR-151-5p, miR-451, and miR-1290 as a novel biomarker for outcome in pediatric precursor B-cell ALL patients, regardless of treatment protocol. The use of these markers may lead to improved risk stratification at diagnosis and allow early therapeutic interventions in an attempt to improve survival of high risk patients. PMID:26684414

  5. A novel role for β2-microglobulin: a precursor of antibacterial chemokine in respiratory epithelial cells.

    PubMed

    Chiou, Shean-Jaw; Wang, Chan-Chi; Tseng, Yan-Shen; Lee, Yen-Jung; Chen, Shih-Chieh; Chou, Chi-Hsien; Chuang, Lea-Yea; Hong, Yi-Ren; Lu, Chi-Yu; Chiu, Chien-Chih; Chignard, Michel

    2016-01-01

    We analyzed a panel of cationic molecules secreted in the culture medium of human respiratory epithelial cells (REC) upon activation by IL-1β and different pathogen-associated molecular patterns. A 9 kDa fragment derived from β2-microglobulin (B2M) was identified and named shed 9 kDa B2M (sB2M-9). The primary structure of sB2M-9 was revealed to increase its pI value that potentially could play an important role in innate defense. sB2M-9 exhibits antibacterial activity against Gram positive Staphylococcus aureus (SA) but not against Gram negative Klebsiella pneumonia (KP). Upon its binding to SA, sB2M-9 induces clumps, a phenomenon not observed with B2M. Migration of THP-1 monocytes exposed to SA clumps was significantly greater than that to SA without clumps. sB2M-9 binds to SA, more likely as a chemokine, to facilitate THP-1 migration. As a whole, we demonstrated that REC release a novel chemokine with antibacterial activity that is shed from B2M to facilitate THP-1 migration. PMID:27503241

  6. A novel role for β2-microglobulin: a precursor of antibacterial chemokine in respiratory epithelial cells

    PubMed Central

    Chiou, Shean-Jaw; Wang, Chan-Chi; Tseng, Yan-Shen; Lee, Yen-Jung; Chen, Shih-Chieh; Chou, Chi-Hsien; Chuang, Lea-Yea; Hong, Yi-Ren; Lu, Chi-Yu; Chiu, Chien-Chih; Chignard, Michel

    2016-01-01

    We analyzed a panel of cationic molecules secreted in the culture medium of human respiratory epithelial cells (REC) upon activation by IL-1β and different pathogen-associated molecular patterns. A 9 kDa fragment derived from β2-microglobulin (B2M) was identified and named shed 9 kDa B2M (sB2M-9). The primary structure of sB2M-9 was revealed to increase its pI value that potentially could play an important role in innate defense. sB2M-9 exhibits antibacterial activity against Gram positive Staphylococcus aureus (SA) but not against Gram negative Klebsiella pneumonia (KP). Upon its binding to SA, sB2M-9 induces clumps, a phenomenon not observed with B2M. Migration of THP-1 monocytes exposed to SA clumps was significantly greater than that to SA without clumps. sB2M-9 binds to SA, more likely as a chemokine, to facilitate THP-1 migration. As a whole, we demonstrated that REC release a novel chemokine with antibacterial activity that is shed from B2M to facilitate THP-1 migration. PMID:27503241

  7. Red blood cell-derived microparticles: An overview.

    PubMed

    Westerman, Maxwell; Porter, John B

    2016-07-01

    The red blood cell (RBC) is historically the original parent cell of microparticles (MPs). In this overview, we describe the discovery and the early history of red cell-derived microparticles (RMPs) and present an overview of the evolution of RMP. We report the formation, characteristics, effects of RMP and factors which may affect RMP evaluation. The review examines RMP derived from both normal and pathologic RBC. The pathologic RBC studies include sickle cell anemia (SCA), sickle cell trait (STr), thalassemia intermedia (TI), hereditary spherocytosis (HS), hereditary elliptocytosis (HE), hereditary stomatocytosis (HSt) and glucose-6-phosphate dehydrogenase deficiency (G6PD). PMID:27282583

  8. Glial-Restricted Precursors Protect Neonatal Brain Slices from Hypoxic-Ischemic Cell Death Without Direct Tissue Contact.

    PubMed

    Sweda, Romy; Phillips, Andre W; Marx, Joel; Johnston, Michael V; Wilson, Mary Ann; Fatemi, Ali

    2016-07-01

    Glial-Restricted Precursors (GRPs) are tripotential progenitors that have been shown to exhibit beneficial effects in several preclinical models of neurological disorders, including neonatal brain injury. The mechanisms of action of these cells, however, require further study, as do clinically relevant questions such as timing and route of cell administration. Here, we explored the effects of GRPs on neonatal hypoxia-ischemia during acute and subacute stages, using an in vitro transwell co-culture system with organotypic brain slices exposed to oxygen-glucose deprivation (OGD). OGD-exposed slices that were then co-cultured with GRPs without direct cell contact had decreased tissue injury and cortical cell death, as evaluated by lactate dehydrogenase (LDH) release and propidium iodide (PI) staining. This effect was more pronounced when cells were added during the subacute phase of the injury. Furthermore, GRPs reduced the amount of glutamate in the slice supernatant and changed the proliferation pattern of endogenous progenitor cells in brain slices. In summary, we show that GRPs exert a neuroprotective effect on neonatal hypoxia-ischemia without the need for direct cell-cell contact, thus confirming the rising view that beneficial actions of stem cells are more likely attributable to trophic or immunomodulatory support rather than to long-term integration. PMID:27149035

  9. Structure-activity relationships for novel drug precursor N-substituted-6-acylbenzothiazolon derivatives: A theoretical approach

    NASA Astrophysics Data System (ADS)

    Sıdır, Yadigar Gülseven; Sıdır, İsa

    2013-08-01

    In this study, the twelve new modeled N-substituted-6-acylbenzothiazolon derivatives having analgesic analog structure have been investigated by quantum chemical methods using a lot of electronic parameters and structure-activity properties; such as molecular polarizability (α), dipole moment (μ), EHOMO, ELUMO, q-, qH+, molecular volume (Vm), ionization potential (IP), electron affinity (EA), electronegativity (χ), molecular hardness (η), molecular softness (S), electrophilic index (ω), heat of formation (HOF), molar refractivity (MR), octanol-water partition coefficient (log P), thermochemical properties (entropy (S), capacity of heat (Cv)); as to investigate activity relationships with molecular structure. The correlations of log P with Vm, MR, ω, EA, EHOMO - ELUMO (ΔE), HOF in aqueous phase, χ, μ, S, η parameters, respectively are obtained, while the linear relation of log P with IP, Cv, HOF in gas phase are not observed. The log P parameter is obtained to be depending on different properties of compounds due to their complexity.

  10. Atomic layer deposition precursor step repetition and surface plasma pretreatment influence on semiconductor–insulator–semiconductor heterojunction solar cell

    SciTech Connect

    Talkenberg, Florian Illhardt, Stefan; Schmidl, Gabriele; Schleusener, Alexander; Sivakov, Vladimir; Radnóczi, György Zoltán; Pécz, Béla; Dikhanbayev, Kadyrjan; Mussabek, Gauhar; Gudovskikh, Alexander

    2015-07-15

    Semiconductor–insulator–semiconductor heterojunction solar cells were prepared using atomic layer deposition (ALD) technique. The silicon surface was treated with oxygen and hydrogen plasma in different orders before dielectric layer deposition. A plasma-enhanced ALD process was applied to deposit dielectric Al{sub 2}O{sub 3} on the plasma pretreated n-type Si(100) substrate. Aluminum doped zinc oxide (Al:ZnO or AZO) was deposited by thermal ALD and serves as transparent conductive oxide. Based on transmission electron microscopy studies the presence of thin silicon oxide (SiO{sub x}) layer was detected at the Si/Al{sub 2}O{sub 3} interface. The SiO{sub x} formation depends on the initial growth behavior of Al{sub 2}O{sub 3} and has significant influence on solar cell parameters. The authors demonstrate that a hydrogen plasma pretreatment and a precursor dose step repetition of a single precursor improve the initial growth behavior of Al{sub 2}O{sub 3} and avoid the SiO{sub x} generation. Furthermore, it improves the solar cell performance, which indicates a change of the Si/Al{sub 2}O{sub 3} interface states.

  11. [Expression of MicroRNAs of An Interneuron Precursor Cell Line GE6 in Various Differentiation Conditions].

    PubMed

    Ge, Xinxu; Liu, Qian; Yin, Shu; Li, Hedong

    2015-12-01

    The purpose of this study was to identify specific microRNAs (miRNAs) during differentiation and maturation of interneurons and to predict their possible functions by analyzing the expression of miRNAs during in vitro differentiation of the rat interneuron precursor cell line GE6. In the experiment, the interneuron precursor cell line GE6 was cultured under three different conditions, i. e. the first was that had not added growth factors and the normal differentiation cultured for 4 days (Ge6_4d); the second was that cultured with bone morphogenetic protein-2 (BMP2) for 4 days (Ge6_bmp2); and the third was that cultured with sonic hedgehog (SHH) for 4 days (Ge6_ shh). In addition, another group of undifferentiated GE6 (Ge6_u) was applied as a control. We found in this study that the expression levels of a large number of miRNAs changed significantly during GE6 differentiation. The expression levels of miR-710, miR-290-5p and miR-3473 increased in the GE6 cells with secreted factor BMP2. These miRNAs may play important regulatory roles during interneuron differentiation. PMID:27079100

  12. Adrenomedullin promotes differentiation of oligodendrocyte precursor cells into myelin-basic-protein expressing oligodendrocytes under pathological conditions in vitro.

    PubMed

    Maki, Takakuni; Takahashi, Yoko; Miyamoto, Nobukazu; Liang, Anna C; Ihara, Masafumi; Lo, Eng H; Arai, Ken

    2015-07-01

    Oligodendrocytes, which are the main cell type in cerebral white matter, are generated from their precursor cells (oligodendrocyte precursor cells: OPCs). However, the differentiation from OPCs to oligodendrocytes is disturbed under stressed conditions. Therefore, drugs that can improve oligodendrocyte regeneration may be effective for white matter-related diseases. Here we show that a vasoactive peptide adrenomedullin (AM) promotes the in vitro differentiation of OPCs under pathological conditions. Primary OPCs were prepared from neonatal rat brains, and differentiated into myelin-basic-protein expressing oligodendrocytes over time. This in vitro OPC differentiation was inhibited by prolonged chemical hypoxic stress induced by non-lethal CoCl(2) treatment. However, AM promoted the OPC differentiation under the hypoxic stress conditions, and the AM receptor antagonist AM(22-52) canceled the AM-induced OPC differentiation. In addition, AM treatment increased the phosphorylation level of Akt in OPC cultures, and correspondingly, the PI3K/Akt inhibitor LY294002 blocked the AM-induced OPC differentiation. Taken together, AM treatment rescued OPC maturation under pathological conditions via an AM-receptor-PI3K/Akt pathway. Oligodendrocytes play critical roles in white matter by forming myelin sheath. Therefore, AM signaling may be a promising therapeutic target to boost oligodendrocyte regeneration in CNS disorders.

  13. Derivation of stromal (skeletal and mesenchymal) stem-like cells from human embryonic stem cells.

    PubMed

    Mahmood, Amer; Harkness, Linda; Abdallah, Basem M; Elsafadi, Mona; Al-Nbaheen, May S; Aldahmash, Abdullah; Kassem, Moustapha

    2012-11-20

    Derivation of bone forming cells (osteoblasts) from human embryonic stem cells (hESCs) is a prerequisite for their use in clinical applications. However, there is no standard protocol for differentiating hESCs into osteoblastic cells. The aim of this study was to identify the emergence of a human stromal (mesenchymal and skeletal) stem cell (hMSC)-like population, known to be osteoblastic cell precursors and to test their osteoblastic differentiation capacity in ex vivo cultures and in vivo. We cultured hESCs in a feeder-free environment using serum replacement and as suspension aggregates (embryoid bodies; hEBs). Over a 20 day developmental period, the hEBs demonstrated increasing enrichment for cells expressing hMSC markers: CD29, CD44, CD63, CD56, CD71, CD73, CD105, CD106, and CD166 as revealed by immunohistochemical staining and flow cytometry (fluorescence-activated cell sorting) analysis. Ex vivo differentiation of hEBs using bone morphogenic protein 2 (BMP2) combined with standard osteoblast induction medium led to weak osteoblastic induction. Conversely, subcutaneous in vivo implantation of day 20 hEBs in immune deficient mice, mixed with hydroxyapatite/tricalcium phosphate (HA/TCP) as an osteoconductive scaffold, revealed bone and cartilage, and fibrous tissue elements after 8 weeks. These tissues were of human origin and there was no evidence of differentiation to nonmesodermal tissues. hEBs implanted in the absence of HA/TCP formed vacuolated tissue containing glandular, fibrous and muscle-like tissue elements. Conversely, implantation of undifferentiated hESCs resulted in the formation of a teratoma containing a mixture of endodermal, mesodermal, and ectodermal tissues. Our study demonstrates that hMSC-like cells can be obtained from hESCs and they can be induced to form skeletal tissues in vivo when combined with HA/TCP. These findings are relevant for tissue engineering and suggest that differentiated hEBs can provide an unlimited source for

  14. Osteoclast precursors in murine bone marrow express CD27 and are impeded in osteoclast development by CD70 on activated immune cells.

    PubMed

    Xiao, Yanling; Song, Ji-Ying; de Vries, Teun J; Fatmawati, Christien; Parreira, Diana B; Langenbach, Geerling E J; Babala, Nikolina; Nolte, Martijn A; Everts, Vincent; Borst, Jannie

    2013-07-23

    Osteoclasts (OCs) are bone-resorbing cells that are formed from hematopoietic precursors. OCs ordinarily maintain bone homeostasis, but they can also cause major pathology in autoimmune and inflammatory diseases. Under homeostatic conditions, receptor activator of nuclear factor kappa-B (RANK) ligand on osteoblasts drives OC differentiation by interaction with its receptor RANK on OC precursors. During chronic immune activation, RANK ligand on activated immune cells likewise drives pathogenic OC differentiation. We here report that the related TNF family member CD70 and its receptor CD27 can also mediate cross-talk between immune cells and OC precursors. We identified CD27 on a rare population (0.3%) of B220(-)c-Kit(+)CD115(+)CD11b(low) cells in the mouse bone marrow (BM) that are highly enriched for osteoclastogenic potential. We dissected this population into CD27(high) common precursors of OC, dendritic cells (DCs) and macrophages and CD27(low/neg) downstream precursors that could differentiate into OC and macrophages, but not DC. In a recombinant mouse model of chronic immune activation, sustained CD27/CD70 interactions caused an accumulation of OC precursors and a reduction in OC activity. These events were due to a CD27/CD70-dependent inhibition of OC differentiation from the OC precursors by BM-infiltrating, CD70(+)-activated immune cells. DC numbers in BM and spleen were increased, suggesting a skewing of the OC precursors toward DC differentiation. The impediment in OC differentiation culminated in a high trabecular bone mass pathology. Mice additionally presented anemia, leukopenia, and splenomegaly. Thus, under conditions of constitutive CD70 expression reflecting chronic immune activation, the CD27/CD70 system inhibits OC differentiation and favors DC differentiation.

  15. Lost in translation: pluripotent stem cell-derived hematopoiesis

    PubMed Central

    Ackermann, Mania; Liebhaber, Steffi; Klusmann, Jan-Henning; Lachmann, Nico

    2015-01-01

    Pluripotent stem cells (PSCs) such as embryonic stem cells or induced pluripotent stem cells represent a promising cell type to gain novel insights into human biology. Understanding the differentiation process of PSCs in vitro may allow for the identification of cell extrinsic/intrinsic factors, driving the specification process toward all cell types of the three germ layers, which may be similar to the human in vivo scenario. This would not only lay the ground for an improved understanding of human embryonic development but would also contribute toward the generation of novel cell types used in cell replacement therapies. In this line, especially the developmental process of mesodermal cells toward the hematopoietic lineage is of great interest. Therefore, this review highlights recent progress in the field of hematopoietic specification of pluripotent stem cell sources. In addition, we would like to shed light on emerging factors controlling primitive and definitive hematopoietic development and to highlight recent approaches to improve the differentiation potential of PSC sources toward hematopoietic stem/progenitor cells. While the generation of fully defined hematopoietic stem cells from PSCs remains challenging in vitro, we here underline the instructive role of cell extrinsic factors such as cytokines for the generation of PSC-derived mature hematopoietic cells. Thus, we have comprehensively examined the role of cytokines for the derivation of mature hematopoietic cell types such as macrophages, granulocytes, megakaryocytes, erythrocytes, dendritic cells, and cells of the B- and T-cell lineage. PMID:26174486

  16. Differentiation and Molecular Properties of Mesenchymal Stem Cells Derived from Murine Induced Pluripotent Stem Cells Derived on Gelatin or Collagen

    PubMed Central

    Obara, Chizuka; Takizawa, Kazuya; Tomiyama, Kenichi; Hazawa, Masaharu; Saotome-Nakamura, Ai; Gotoh, Takaya; Yasuda, Takeshi

    2016-01-01

    The generation of induced-pluripotential stem cells- (iPSCs-) derived mesenchymal stem cells (iMSCs) is an attractive and promising approach for preparing large, uniform batches of applicable MSCs that can serve as an alternative cell source of primary MSCs. Appropriate culture surfaces may influence their growth and differentiation potentials during iMSC derivation. The present study compared molecular properties and differentiation potential of derived mouse iPS-MSCs by deriving on gelatin or collagen-coated surfaces. The cells were derived by a one-step method and expressed CD73 and CD90, but CD105 was downregulated in iMSCs cultured only on gelatin-coated plates with increasing numbers of passages. A pairwise scatter analysis revealed similar expression of MSC-specific genes in iMSCs derived on gelatin and on collagen surfaces as well as in primary mouse bone marrow MSCs. Deriving iMSCs on gelatin and collagen dictated their osteogenic and adipose differentiation potentials, respectively. Derived iMSCs on gelatin upregulated Bmp2 and Lif prior to induction of osteogenic or adipose differentiation, while PPARγ was upregulated by deriving on collagen. Our results suggest that extracellular matrix components such as gelatin biases generated iMSC differentiation potential towards adipose or bone tissue in their derivation process via up- or downregulation of these master genes. PMID:27642306

  17. Differentiation and Molecular Properties of Mesenchymal Stem Cells Derived from Murine Induced Pluripotent Stem Cells Derived on Gelatin or Collagen.

    PubMed

    Obara, Chizuka; Takizawa, Kazuya; Tomiyama, Kenichi; Hazawa, Masaharu; Saotome-Nakamura, Ai; Gotoh, Takaya; Yasuda, Takeshi; Tajima, Katsushi

    2016-01-01

    The generation of induced-pluripotential stem cells- (iPSCs-) derived mesenchymal stem cells (iMSCs) is an attractive and promising approach for preparing large, uniform batches of applicable MSCs that can serve as an alternative cell source of primary MSCs. Appropriate culture surfaces may influence their growth and differentiation potentials during iMSC derivation. The present study compared molecular properties and differentiation potential of derived mouse iPS-MSCs by deriving on gelatin or collagen-coated surfaces. The cells were derived by a one-step method and expressed CD73 and CD90, but CD105 was downregulated in iMSCs cultured only on gelatin-coated plates with increasing numbers of passages. A pairwise scatter analysis revealed similar expression of MSC-specific genes in iMSCs derived on gelatin and on collagen surfaces as well as in primary mouse bone marrow MSCs. Deriving iMSCs on gelatin and collagen dictated their osteogenic and adipose differentiation potentials, respectively. Derived iMSCs on gelatin upregulated Bmp2 and Lif prior to induction of osteogenic or adipose differentiation, while PPARγ was upregulated by deriving on collagen. Our results suggest that extracellular matrix components such as gelatin biases generated iMSC differentiation potential towards adipose or bone tissue in their derivation process via up- or downregulation of these master genes. PMID:27642306

  18. Stem Cell-Derived Extracellular Vesicles and Immune-Modulation

    PubMed Central

    Burrello, Jacopo; Monticone, Silvia; Gai, Chiara; Gomez, Yonathan; Kholia, Sharad; Camussi, Giovanni

    2016-01-01

    Extra-cellular vesicles (EVs) are bilayer membrane structures enriched with proteins, nucleic acids, and other active molecules and have been implicated in many physiological and pathological processes over the past decade. Recently, evidence suggests EVs to play a more dichotomic role in the regulation of the immune system, whereby an immune response may be enhanced or supressed by EVs depending on their cell of origin and its functional state. EVs derived from antigen (Ag)-presenting cells for instance, have been involved in both innate and acquired (or adaptive) immune responses, as Ag carriers or presenters, or as vehicles for delivering active signaling molecules. On the other hand, tumor and stem cell derived EVs have been identified to exert an inhibitory effect on immune responses by carrying immuno-modulatory effectors, such as transcriptional factors, non-coding RNA (Species), and cytokines. In addition, stem cell-derived EVs have also been reported to impair dendritic cell maturation and to regulate the activation, differentiation, and proliferation of B cells. They have been shown to control natural killer cell activity and to suppress the innate immune response (IIR). Studies reporting the role of EVs on T lymphocyte modulation are controversial. Discrepancy in literature may be due to stem cell culture conditions, methods of EV purification, EV molecular content, and functional state of both parental and target cells. However, mesenchymal stem cell-derived EVs were shown to play a more suppressive role by shifting T cells from an activated to a T regulatory phenotype. In this review, we will discuss how stem cell-derived EVs may contribute toward the modulation of the immune response. Collectively, stem cell-derived EVs mainly exhibit an inhibitory effect on the immune system.

  19. Stem Cell-Derived Extracellular Vesicles and Immune-Modulation

    PubMed Central

    Burrello, Jacopo; Monticone, Silvia; Gai, Chiara; Gomez, Yonathan; Kholia, Sharad; Camussi, Giovanni

    2016-01-01

    Extra-cellular vesicles (EVs) are bilayer membrane structures enriched with proteins, nucleic acids, and other active molecules and have been implicated in many physiological and pathological processes over the past decade. Recently, evidence suggests EVs to play a more dichotomic role in the regulation of the immune system, whereby an immune response may be enhanced or supressed by EVs depending on their cell of origin and its functional state. EVs derived from antigen (Ag)-presenting cells for instance, have been involved in both innate and acquired (or adaptive) immune responses, as Ag carriers or presenters, or as vehicles for delivering active signaling molecules. On the other hand, tumor and stem cell derived EVs have been identified to exert an inhibitory effect on immune responses by carrying immuno-modulatory effectors, such as transcriptional factors, non-coding RNA (Species), and cytokines. In addition, stem cell-derived EVs have also been reported to impair dendritic cell maturation and to