Sample records for precursor column formation

  1. Sol-gel chemistry-based Ucon-coated columns for capillary electrophoresis.

    PubMed

    Hayes, J D; Malik, A

    1997-07-18

    A sol-gel chemistry-based novel approach for the preparation of a Ucon-coated fused-silica capillary column in capillary electrophoresis is presented. In this approach the sol-gel process is carried out inside 25 microm I.D. fused-silica capillaries. The sol solution contained appropriate quantities of an alkoxide-based sol-gel precursor, a polymeric coating material (Ucon), a crosslinking reagent, a surface derivatizing reagent, controlled amounts of water and a catalyst dissolved in a suitable solvent system. The coating procedure involves filling a capillary with the sol solution and allowing the sol-gel process to proceed for an optimum period. Hydrolysis of the alkoxide precursor and polycondensation of the hydrolyzed products with the surface silanol groups and the hydroxy-terminated Ucon molecules lead to the formation of a surface-bonded sol-gel coating on the inner walls of the capillary. The thickness of the coated film can be controlled by varying the reaction time, coating solution composition and experimental conditions. Commercial availability of high purity sol-gel precursors (e.g., TEOS 99.999%), the ease of coating, run-to-run and column-to-column reproducibility, and long column lifetimes make sol-gel coating chemistry very much suitable for being applied in analytical microseparations column technology. Test samples of basic proteins and nucleotides were used to evaluate the column performance. These results show that the sol-gel coating scheme has allowed for the generation of bio-compatible surfaces characterized by high separation efficiencies in CE. For different types of solutes, the sol-gel coated Ucon column consistently provided migration time R.S.D. values of the order of 0.5%.

  2. Timing Embryo Segmentation: Dynamics and Regulatory Mechanisms of the Vertebrate Segmentation Clock

    PubMed Central

    Resende, Tatiana P.; Andrade, Raquel P.; Palmeirim, Isabel

    2014-01-01

    All vertebrate species present a segmented body, easily observed in the vertebrate column and its associated components, which provides a high degree of motility to the adult body and efficient protection of the internal organs. The sequential formation of the segmented precursors of the vertebral column during embryonic development, the somites, is governed by an oscillating genetic network, the somitogenesis molecular clock. Herein, we provide an overview of the molecular clock operating during somite formation and its underlying molecular regulatory mechanisms. Human congenital vertebral malformations have been associated with perturbations in these oscillatory mechanisms. Thus, a better comprehension of the molecular mechanisms regulating somite formation is required in order to fully understand the origin of human skeletal malformations. PMID:24895605

  3. Preparation of open tubular capillary columns by in situ ring-opening polymerization and their applications in cLC-MS/MS analysis of tryptic digest.

    PubMed

    Wang, Hongwei; Yao, Yating; Li, Ya; Ma, Shujuan; Peng, Xiaojun; Ou, Junjie; Ye, Mingliang

    2017-08-01

    An open tubular (OT) column (25 μm i.d.) was prepared by in situ ring-opening polymerization of octaglycidyldimethylsilyl polyhedral oligomeric silsesquioxanes (POSS-epoxy) with 4-aminophenyl disulfide (APDS) in a binary porogenic system of ethanol/H 2 O. It was found that porogenic composition played an important role in the formation of OT stationary phases. The ratio of ethanol/H 2 O at 6/1 (v/v) would lead to the fabrication of hybrid monoliths, while the ratio of ethanol/H 2 O at 13/1 (v/v) would result in the synthesis of OT phases. In addition, the effects of precursor content and reaction duration on the thickness of OT stationary phases were investigated. Either lower precursor content or shorter reaction duration would produce thinner layer of OT column. The repeatability of OT columns was evaluated through relative standard deviation (RSD%) with benzene as the analyte. The run-to-run, column-to-column and batch-to-batch repeatabilities were 1.7%, 4.8% and 5.6%, respectively, exhibiting satisfactory repeatability of the OT column. Then tryptic digest of mouse liver proteins was used to evaluate the performance of the resulting OT columns (25 μm i.d. × 2.5 m in length) by cLC-MS/MS analysis, demonstrating their potential in proteome analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Evaluation of biogenic emission flux and its impact on oxidants and inorganic aerosols in East Asia

    NASA Astrophysics Data System (ADS)

    Han, K. M.; Song, C. H.; Park, R. S.; Woo, J.; Kim, H.

    2010-12-01

    As a major precursor during the summer season, biogenic species are of primary importance in the ozone and SOAs (secondary organic aerosols) formations. Isoprene and mono-terpene also influence the level of inorganic aerosols (i.e. sulfate and nitrate) by controlling OH radicals. However, biogenic emission fluxes are highly uncertain in East Asia. While isoprene emission fluxes from the GEIA (Global Emissions Inventory Activity) and POET (Precursors of Ozone and their Effects in the Troposphere) inventories estimate approximately 20 Tg yr-1 in East Asia, those from the MEGAN (Model of Emissions of Gases and Aerosols from Nature) and MOHYCAN (MOdel for Hydrocarbon emissions by the CANopy) estimate approximately 10 Tg yr-1 and 5 Tg yr-1, respectively. In order to evaluate and/or quantify the magnitude of biogenic emission fluxes over East Asia, the tropospheric HCHO columns obtained from the GOME (Global Ozone Monitoring Experiment) observations were compared with the HCHO columns from the CMAQ (Community Multi-scale Air Quality) simulations over East Asia. In this study, US EPA Models-3/CMAQ v4.5.1 model simulation using the ACE-ASIA (Asia Pacific Regional Aerosol Characterization Experiment) emission inventory for anthropogenic pollutants and GEIA, POET, MEGAN, and MOHYCAN emission inventories for biogenic species was carried out in conjunction with the Meteorological fields generated from the PSU/NCAR MM5 (Pennsylvania state University/National Center for Atmospheric Research Meso-scale Model 5) model for the summer episodes of the year 2002. In addition to an evaluation of the biogenic emission flux, we investigated the impact of the uncertainty in biogenic emission inventory on inorganic aerosol formations and variations of oxidants (OH, O3, and H2O2) in East Asia. In this study, when the GEIA and POET emission inventories are used, the CMAQ-derived HCHO columns are highly overestimated over East Asia, particularly South China compared with GOME-derived HCHO columns. The CMAQ-derived HCHO columns using the MOHYCAN emission inventory have similar values with the GOME-derived HCHO columns over East Asia. Also, differences in biogenic emission fluxes lead to changes in the levels of nitrates by changing the OH radical concentrations.

  5. In-situ formation of multiphase electron beam physical vapor deposited barrier coatings for turbine components

    DOEpatents

    Subramanian, Ramesh

    2001-01-01

    A turbine component (10), such as a turbine blade, is provided which is made of a metal alloy (22) and a base columnar thermal barrier coating (20) on the alloy surface, where a heat resistant ceramic oxide sheath material (32' or 34') covers the columns (28), and the sheath material is the reaction product of a precursor ceramic oxide sheath material and the base thermal barrier coating material.

  6. Planar cell polarity signaling coordinates oriented cell division and cell rearrangement in clonally expanding growth plate cartilage.

    PubMed

    Li, Yuwei; Li, Ang; Junge, Jason; Bronner, Marianne

    2017-10-10

    Both oriented cell divisions and cell rearrangements are critical for proper embryogenesis and organogenesis. However, little is known about how these two cellular events are integrated. Here we examine the linkage between these processes in chick limb cartilage. By combining retroviral-based multicolor clonal analysis with live imaging, the results show that single chondrocyte precursors can generate both single-column and multi-column clones through oriented division followed by cell rearrangements. Focusing on single column formation, we show that this stereotypical tissue architecture is established by a pivot-like process between sister cells. After mediolateral cell division, N-cadherin is enriched in the post-cleavage furrow; then one cell pivots around the other, resulting in stacking into a column. Perturbation analyses demonstrate that planar cell polarity signaling enables cells to pivot in the direction of limb elongation via this N-cadherin-mediated coupling. Our work provides new insights into the mechanisms generating appropriate tissue architecture of limb skeleton.

  7. Planar cell polarity signaling coordinates oriented cell division and cell rearrangement in clonally expanding growth plate cartilage

    PubMed Central

    Li, Yuwei; Li, Ang; Junge, Jason

    2017-01-01

    Both oriented cell divisions and cell rearrangements are critical for proper embryogenesis and organogenesis. However, little is known about how these two cellular events are integrated. Here we examine the linkage between these processes in chick limb cartilage. By combining retroviral-based multicolor clonal analysis with live imaging, the results show that single chondrocyte precursors can generate both single-column and multi-column clones through oriented division followed by cell rearrangements. Focusing on single column formation, we show that this stereotypical tissue architecture is established by a pivot-like process between sister cells. After mediolateral cell division, N-cadherin is enriched in the post-cleavage furrow; then one cell pivots around the other, resulting in stacking into a column. Perturbation analyses demonstrate that planar cell polarity signaling enables cells to pivot in the direction of limb elongation via this N-cadherin-mediated coupling. Our work provides new insights into the mechanisms generating appropriate tissue architecture of limb skeleton. PMID:28994649

  8. Anomalous low tropospheric column ozone over eastern India during the severe drought event of monsoon 2002: a case study.

    PubMed

    Ghude, Sachin D; Kulkarni, Santosh H; Kulkarni, Pavan S; Kanawade, Vijay P; Fadnavis, Suvarna; Pokhrel, Samir; Jena, Chinmay; Beig, G; Bortoli, D

    2011-09-01

    The present study is an attempt to examine some of the probable causes of the unusually low tropospheric column ozone observed over eastern India during the exceptional drought event in July 2002. We examined horizontal wind and omega (vertical velocity) anomalies over the Indian region to understand the large-scale dynamical processes which prevailed in July 2002. We also examined anomalies in tropospheric carbon monoxide (CO), an important ozone precursor, and observed low CO mixing ratio in the free troposphere in 2002 over eastern India. It was found that instead of a normal large-scale ascent, the air was descending in the middle and lower troposphere over a vast part of India. This configuration was apparently responsible for the less convective upwelling of precursors and likely caused less photochemical ozone formation in the free troposphere over eastern India in July 2002. The insight gained from this case study will hopefully provide a better understanding of the process controlling the distribution of the tropospheric ozone over the Indian region.

  9. Adsorption of N-nitrosodimethylamine precursors by powdered and granular activated carbon.

    PubMed

    Hanigan, David; Zhang, Jinwei; Herckes, Pierre; Krasner, Stuart W; Chen, Chao; Westerhoff, Paul

    2012-11-20

    Activated carbon (AC) has been shown to remove precursors of halogenated disinfection byproducts. Granular and powdered activated carbon (GAC, PAC) were investigated for their potential to adsorb N-nitrosodimethylamine (NDMA) precursors from blends of river water and effluent from a wastewater treatment plant (WWTP). At bench scale, waters were exposed to lignite or bituminous AC, either as PAC in bottle point experiments or as GAC in rapid small-scale column tests (RSSCTs). NDMA formation potential (FP) was used as a surrogate for precursor removal. NDMA FP was reduced by 37, 59, and 91% with 3, 8, and 75 mg/L of one PAC, respectively, with a 4-h contact time. In RSSCTs and in full-scale GAC contactors, NDMA FP removal always exceeded that of the bulk dissolved organic carbon (DOC) and UV absorbance at 254 nm. For example, whereas DOC breakthrough exceeded 90% of its influent concentration after 10,000 bed volumes of operation in an RSSCT, NDMA FP was less than 40% of influent concentration after the same bed life of the GAC. At full or pilot scale, high NDMA FP reduction ranging from >60 to >90% was achieved across GAC contactors, dependent upon the GAC bed life and/or use of a preoxidant (chlorine or ozone). In all experiments, NDMA formation was not reduced to zero, which suggests that although some precursors are strongly sorbed, others are not. This is among the first studies to show that AC is capable of adsorbing NDMA precursors, but further research is needed to better understand NDMA precursor chemical properties (e.g., hydrophobicity, molecular size) and evaluate how best to incorporate this finding into full-scale designs and practice.

  10. Determination of 15 N-nitrosodimethylamine precursors in different water matrices by automated on-line solid-phase extraction ultra-high-performance-liquid chromatography tandem mass spectrometry.

    PubMed

    Farré, Maria José; Insa, Sara; Mamo, Julian; Barceló, Damià

    2016-08-05

    A new methodology based on on-line solid-phase extraction (SPE) ultra-high-performance-liquid chromatography coupled to a triple quadrupole mass spectrometer (UHPLC-MS-MS) for the determination of 15 individual anthropogenic N-nitrosodimethylamine (NDMA) precursors was developed. On-line SPE was performed by passing 2mL of the water sample through a Hypersil GOLD aQ column and chromatographic separation was done using a Kinetex Biphenyl column using methanol and 0.1% formic acid aqueous solution as a mobile phase. For unequivocal identification and confirmation, two selected reaction monitoring (SRM) transitions were monitored per compound. Quantification was performed by internal standard approach and matrix match calibration. The main advantages of the developed method are high sensitivity (limits of detection in the sub ng/L range), selectivity due to the use of tandem mass spectrometry, precision and minimum sample manipulation as well as fast analytical response. Process efficiency and recovery were also evaluated for all the target compounds. As part of the validation procedure, the method was applied in a sampling campaign for the analysis of influent and secondary effluent of a wastewater treatment plant (WWTP) in Girona, Spain. Additionally, the effluent from a nanofiltration (NF) membrane system used for water recycling was monitored. The percentage of NDMA formation explained by the measured precursors was also quantified. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Conglomerate formative precursor of chiral drug timolol: 3-(4-Morpholino-1,2,5-thiadiazol-3-yloxy)-propane-1,2-diol

    NASA Astrophysics Data System (ADS)

    Bredikhin, Alexander A.; Zakharychev, Dmitry V.; Fayzullin, Robert R.; Bredikhina, Zemfira A.; Gubaidullin, Aidar T.

    2015-05-01

    Solid state properties of 3-(4-N-morpholino-1,2,5-thiadiazol-3-yloxy)-propane-1,2-diol 3, the synthetic precursor of popular drug timolol, have been investigated. The original solubility test, the data of X-ray diffraction and DSC methods indicate that the compound is prone to spontaneous resolution. Diol 3 crystallizing from both enantiopure or racemic feed material forms "guaifenesin-like" crystal packing in which the classic H-bonded bilayers, framed in both sides by hydrophobic molecular fragments, act as the basic supramolecular motif. The main chain conformation of the molecules in the crystals of diol 3 differs from that in the guaifenesin crystals, and this fact changes the absolute configuration of spiral columns formed by intermolecular hydrogen bonds in crystals of 3 as compared with guaifenesin crystals.

  12. [Separation and identification of 5 glycosidic flavor precursors in tobacco by ultra performance liquid chromatography-electrospray ionization tandem mass spectrometry].

    PubMed

    Wu, Xinhua; Zhu, Ruizhi; Ren, Zhuoying; Wang, Kai; Mou, Dingrong; Wei, Wanzhi; Miao, Mingming

    2009-11-01

    A qualitative method for the identification of 5 main glycosidic flavor precursors in tobacco was developed by using ultra performance liquid chromatography-electrospray ionization tandem mass spectrometry (UPLC-ESI MS/MS) and gas chromatography-mass spectrometry (GC-MS). The glycosidic flavor precursors in tobacco were extracted with methanol, cleaned up with an XAD-2 column. The aglycones were later released by enzyme-mediated hydrolysis under the condition of pH 5. The 5 volatile aglycone moieties were identified by GC-MS standard spectra library. The precursor ions of glycosides were determined by using electrospray ionization mass spectrometry in negative ion mode, then the 5 glycosidic flavor precursors were identified by using product ion scan (MS2) finally, using UPLC-ESI MS/MS, separation and identification of 5 glycosidic flavor precursors were accomplished on an RP-C,8 column in the multiple reaction monitoring (MRM) mode by using methanol and acetic acid-ammonium acetate aqueous solution as eluent. This work lays a foundation for the analysis of glycosidic flavor precursors without the standards by using liquid chromatography-mass spectrometry.

  13. Bound Volatile Precursors in Genotypes in the Pedigree of 'Marion' Blackberry (Rubus Sp.)

    USDA-ARS?s Scientific Manuscript database

    Glycosidically bound volatiles and precursors in genotypes representing the pedigree for 'Marion' blackberry were investigated over two growing seasons. The volatile precursors were isolated using a C18 solid-phase extraction column. After enzymatic hydrolysis, the released volatiles were analyzed u...

  14. Application of OMI Observations to a Space-Based Indicator of NOx and VOC Controls on Surface Ozone Formation

    NASA Technical Reports Server (NTRS)

    Duncan, Bryan N.; Yoshida, Yasuko; Olson, Jennifer R.; Sillman, Sanford; Martin, Randall V.; Lamsal, Lok; Hu, Yongtao; Pickering, Kenneth E.; Retscher, Christian; Allen, Dale J.; hide

    2010-01-01

    We investigated variations in the relative sensitivity of surface ozone formation in summer to precursor species concentrations of volatile organic compounds (VOCs) and nitrogen oxides (NOx) as inferred from the ratio of the tropospheric columns of formaldehyde to nitrogen dioxide (the "Ratio") from the Aura Ozone Monitoring Instrument (OMI). Our modeling study suggests that ozone formation decreases with reductions in VOCs at Ratios less than 1 and NOx at Ratios greater than 2; both NOx and VOC reductions may decrease ozone formation for Ratios between 1 and 2. Using this criteria. the OMI data indicate that ozone formation became: 1. more sensitive to NOx over most of the United States from 2005 to 2007 because of the substantial decrease in NOx emissions, primarily from stationary sources, and the concomitant decrease in the tropospheric column of NO2. and 2. more sensitive to NOx with increasing temperature, in part because emissions of highly reactive, biogenic isoprene increase with temperature, thus increasing the total VOC reactivity. In cities with relatively low isoprene emissions (e.g .. Chicago). the data clearly indicate that ozone formation became more sensitive to NOx from 2005 to 2007. In cities with relatively high isoprene emissions (e.g ., Atlanta), we found that the increase in the Ratio due to decreasing NOx emissions was not obvious as this signal was convolved with variations in the Ratio associated with the temperature dependence of isoprene emissions and, consequently, the formaldehyde concentration.

  15. How an improved implementation of H2 self-shielding influences the formation of massive stars and black holes

    NASA Astrophysics Data System (ADS)

    Hartwig, Tilman; Glover, Simon C. O.; Klessen, Ralf S.; Latif, Muhammad A.; Volonteri, Marta

    2015-09-01

    High-redshift quasars at z > 6 have masses up to ˜109 M⊙. One of the pathways to their formation includes direct collapse of gas, forming a supermassive star, precursor of the black hole seed. The conditions for direct collapse are more easily achievable in metal-free haloes, where atomic hydrogen cooling operates and molecular hydrogen (H2) formation is inhibited by a strong external (ultraviolet) UV flux. Above a certain value of UV flux (Jcrit), the gas in a halo collapses isothermally at ˜104 K and provides the conditions for supermassive star formation. However, H2 can self-shield, reducing the effect of photodissociation. So far, most numerical studies used the local Jeans length to calculate the column densities for self-shielding. We implement an improved method for the determination of column densities in 3D simulations and analyse its effect on the value of Jcrit. This new method captures the gas geometry and velocity field and enables us to properly determine the direction-dependent self-shielding factor of H2 against photodissociating radiation. We find a value of Jcrit that is a factor of 2 smaller than with the Jeans approach (˜2000 J21 versus ˜4000 J21). The main reason for this difference is the strong directional dependence of the H2 column density. With this lower value of Jcrit, the number of haloes exposed to a flux > Jcrit is larger by more than an order of magnitude compared to previous studies. This may translate into a similar enhancement in the predicted number density of black hole seeds.

  16. Deuterated methanol map towards L1544

    NASA Astrophysics Data System (ADS)

    Chacón-Tanarro, A.; Caselli, P.; Bizzocchi, L.; Pineda, J. E.; Spezzano, S.; Giuliano, B. M.; Lattanzi, V.; Punanova, A.

    Pre-stellar cores are self-gravitating starless dense cores with clear signs of contraction and chemical evolution (Crapsi et al. 2005), considered to represent the initial conditions in the process of star formation (Caselli & Ceccarelli 2012). Theoretical studies predict that CO is one of the precursors of complex organic molecules (COMs) during this cold and dense phase (Tielens et al. 1982; Watanabe et al. 2002). Moreover, when CO starts to deplete onto dust grains (at densities of a few 104 cm-3), the formation of deuterated species is enhanced, as CO accelerates the destruction of important precursors of deuterated molecules (Dalgarno & Lepp 1984). Here, we present the CH_2DOH/CH_3OH column density map toward the pre-stellar core L1544 (Chacón-Tanarro et al., in prep.), taken with the IRAM 30 m antenna. The results are compared with the C17O (1-0) distribution across L1544. As methanol is formed on dust grains via hydrogenation of frozen-out CO, this work allows us to measure the deuteration on surfaces and compared it with gas phase deuteration, as well as CO freeze-out and dust properties. This is important to shed light on the basic chemical processes just before the formation of a stellar system.

  17. The Sensitivity of U.S. Surface Ozone Formation to NOx, and VOCs as Viewed from Space

    NASA Technical Reports Server (NTRS)

    Duncan, Bryan N.; Yoshida, Yasuko; Sillman, Sanford; Retscher, Christian; Pickering, Kenneth E.; Martin, Randall V.; Celarier, Edward A.

    2009-01-01

    We investigated variations in the sensitivity of surface ozone formation in summer to precursor species concentrations of volatile organic compounds (VOCs) and nitrogen oxides (NO(x)) as inferred from the ratio of tropospheric columns of formaldehyde and nitrogen dioxide from the Aura Ozone Monitoring Instrument (OMI). The data indicate that ozone formation became: 1. more sensitive to NO(x) over most of the U.S, from 2005 to 2007 because of substantial decreases in NO(x) emissions primarily from stationary sources, and 2. more sensitive to NO(x) with increasing temperature, in part because emissions of highly reactive, biogenic isoprene increase with temperature, thus increasing the total VOC reactivity. Based on our interpretation of the data, current strategies implemented to reduce unhealthy levels of surface ozone should focus more on reducing NO(x) emissions, except in some downtown areas which have historically benefited from reductions in VOC emissions.

  18. Early Results from TROPOMI on the Copernicus Sentinel 5 Precursor

    NASA Astrophysics Data System (ADS)

    Veefkind, J. P.; Kleipool, Q.; Ludewig, A.; Stein-Zweers, D.; Aben, I.; De Vries, J.; Loyola, D. G.; Nett, H.; Richter, A.; Van Roozendael, M.; Siddans, R.; Wagner, T.; Dehn, A.; Zehner, C.; Levelt, P.

    2017-12-01

    The Copernicus Sentinel 5 Precursor (S5P) is the first of the European Sentinels satellites dedicated to monitoring of the atmospheric composition. S5P is planned for launch in the 3rd quarter of 2017. The mission objectives of S5P are to monitor air quality, climate and the ozone layer, in the time period between 2017 and 2023. S5P will fly in a Sun-synchronized polar orbit with a 13:30 hr local equator crossing time. The single payload of the S5P mission is TROPOspheric Monitoring Instrument (TROPOMI), which is developed by The Netherlands in cooperation with the European Space Agency (ESA). TROPOMI is a nadir viewing shortwave spectrometer that measures in the UV-visible wavelength range (267-499 nm), the near infrared (661-775 nm) and the shortwave infrared (2300-2389 nm). With a spatial resolution of better than 7x7 km2 at nadir and almost 20 million measurements per day, TROPOMI will be a major step forward compared to its predecessors OMI (Ozone Monitoring Instrument) and SCIAMACHY (Scanning Imaging Absorption Spectrometer for Atmospheric Chartography). The spatial resolution is combined with a wide swath to allow for daily global coverage. The TROPOMI/S5P geophysical (Level 2) operational data products include nitrogen dioxide, carbon monoxide, ozone (total column, tropospheric column & profile), methane, sulfur dioxide, formaldehyde and aerosol and cloud parameters. The S5P will fly in a so-called loose formation with the U.S. Suomi NPP (National Polar-orbiting Partnership) satellite. The primary objective for this formation flying is to use the cloud clearing capabilities of the VIIRS (Visible Infrared Imager Radiometer Suite). The temporal separation between TROPOMI and VIIRS will be less than 5 minutes. Once this formation has been established, it will enable synergistic data products and scientific research potentials.

  19. Natural attenuation of NDMA precursors in an urban, wastewater-dominated wash.

    PubMed

    Woods, Gwen C; Dickenson, Eric R V

    2016-02-01

    N-Nitrosodimethylamine (NDMA) is a disinfection by-product (DBP) that is potentially carcinogenic and has been found to occur in drinking water treatment systems impacted with treated wastewater. A major gap in NDMA research is an understanding of the persistence of wastewater-derived precursors within the natural environment. This research sought to fill this knowledge gap by surveying NDMA precursors across the length of a wastewater effluent-dominated wash. Significant precursor reduction (17%) was found to occur from introduction into the wash to a point 9 h downstream. This reduction translates into a half-life of roughly 32 h for bulk NDMA precursors. Further laboratory experiments examining rates of photolysis, biodegradation and loss to sediments, illustrated that both photolytic and biological degradation were effective removal mechanisms for NDMA precursors. Loss to sediments that were acquired from the wash did not appear to reduce NDMA precursors in the water column, although a control conducted with DI water provided evidence that significant NDMA precursors could be released from autoclaved sediments (suggesting that sorption does occur). Microbial experiments revealed that microbes associated with sediments were much more effective at degrading precursors than microbes within the water column. Overall, this study demonstrated that natural processes are capable of attenuating NDMA precursors relatively quickly within the environment, and that utilities might benefit from maximizing source water residency time in the environment, prior to introduction into treatment plants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. "Captive Column" Crash Tests : Crash Testing of a Light Standard Luminaire Pole

    DOT National Transportation Integrated Search

    1981-03-01

    Under contract No. DOT-FH-11-9606 the Nevada Department of Transportation (NDOT) conducted crash testing to study the capability of "Captive Column" light standard appurtenances under controlled conditions. The studies were precursors of actual on si...

  1. Metal Oxide Assisted Preparation of Core-Shell Beads with Dense Metal-Organic Framework Coatings for the Enhanced Extraction of Organic Pollutants.

    PubMed

    Del Rio, Mateo; Palomino Cabello, Carlos; Gonzalez, Veronica; Maya, Fernando; Parra, Jose B; Cerdà, Victor; Turnes Palomino, Gemma

    2016-08-08

    Dense and homogeneous metal-organic framework (MOF) coatings on functional bead surfaces are easily prepared by using intermediate sacrificial metal oxide coatings containing the metal precursor of the MOF. Polystyrene (PS) beads are coated with a ZnO layer to give ZnO@PS core-shell beads. The ZnO@PS beads are reactive in the presence of 2-methylimidazole to transform part of the ZnO coating into a porous zeolitic imidazolate framework-8 (ZIF-8) external shell positioned above the internal ZnO precursor shell. The obtained ZIF-8@ZnO@PS beads can be easily packed in column format for flow-through applications, such as the solid-phase extraction of trace priority-listed environmental pollutants. The prepared material shows an excellent permeance to flow when packed as a column to give high enrichment factors, facile regeneration, and excellent reusability for the extraction of the pollutant bisphenol A. It also shows an outstanding performance for the simultaneous enrichment of mixtures of endocrine disrupting chemicals (bisphenol A, 4-tert-octylphenol and 4-n-nonylphenol), facilitating their analysis when present at very low levels (<1 μg L(-1) ) in drinking waters. For the extraction of the pollutant bisphenol A, the prepared ZIF-8@ZnO@PS beads also show a superior extraction and preconcentration capacity to that of the PS beads used as precursors and the composite materials obtained by the direct growth of ZIF-8 on the surface of the PS beads in the absence of metal oxide intermediate coatings. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Estimating the recharge properties of the deep ocean using noble gases and helium isotopes

    NASA Astrophysics Data System (ADS)

    Loose, Brice; Jenkins, William J.; Moriarty, Roisin; Brown, Peter; Jullion, Loic; Naveira Garabato, Alberto C.; Torres Valdes, Sinhue; Hoppema, Mario; Ballentine, Chris; Meredith, Michael P.

    2016-08-01

    The distribution of noble gases and helium isotopes in the dense shelf waters of Antarctica reflects the boundary conditions near the ocean surface: air-sea exchange, sea ice formation, and subsurface ice melt. We use a nonlinear least squares solution to determine the value of the recharge temperature and salinity, as well as the excess air injection and glacial meltwater content throughout the water column and in the precursor to Antarctic Bottom Water. The noble gas-derived recharge temperature and salinity in the Weddell Gyre are -1.95°C and 34.95 psu near 5500 m; these cold, salty recharge values are a result of surface cooling as well as brine rejection during sea ice formation in Antarctic polynyas. In comparison, the global value for deep water recharge temperature is -0.44°C at 5500 m, which is 1.5°C warmer than the southern hemisphere deep water recharge temperature, reflecting a distinct contribution from the north Atlantic. The contrast between northern and southern hemisphere recharge properties highlights the impact of sea ice formation on setting the gas properties in southern sourced deep water. Below 1000 m, glacial meltwater averages 3.5‰ by volume and represents greater than 50% of the excess neon and argon found in the water column. These results indicate glacial melt has a nonnegligible impact on the atmospheric gas content of Antarctic Bottom Water.

  3. A photoautotrophic source for lycopane in marine water columns

    NASA Technical Reports Server (NTRS)

    Wakeham, Stuart G.; Freeman, Katherine H.; Pease, Tamara K.; Hayes, J. M.

    1993-01-01

    Suspended particulate matter and recent sediments from diverse oceanic sites have been investigated for their contents of lycopane. Lycopane was present in all samples, including both oxic and anoxic water column and sediments. The highest concentrations in the water column were found in surface waters of the central Pacific gyre (1.5 ng/L) and in the anoxic waters of the Cariaco Trench (1.1 ng/L) and the Black Sea (0.3 ng/L). Vertical concentration profiles suggest that lycopane is probably algal in origin. Moreover, biogeochemical conditions in anoxic zones apparently result in a secondary production of lycopane from an as yet unidentified precursor. Compound-specific carbon isotopic analyses have been carried out on lycopane from water column and sediment samples. Isotopic compositions of lycopane range between -23.6 and -32.9 percent and are consistent with a photoautotrophic origin. We postulate that some lycopane is produced in surface waters of the ocean, while additional lycopane is produced in anoxic zones by anaerobic microbial action on an algal precursor.

  4. Developing a Method for Resolving NOx Emission Inventory Biases Using Discrete Kalman Filter Inversion, Direct Sensitivities, and Satellite-Based Columns

    EPA Science Inventory

    An inverse method was developed to integrate satellite observations of atmospheric pollutant column concentrations and direct sensitivities predicted by a regional air quality model in order to discern biases in the emissions of the pollutant precursors.

  5. N-nitrosodimethylamine (NDMA) formation from the ozonation of model compounds.

    PubMed

    Marti, Erica J; Pisarenko, Aleksey N; Peller, Julie R; Dickenson, Eric R V

    2015-04-01

    Nitrosamines are a class of toxic disinfection byproducts commonly associated with chloramination, of which several were included on the most recent U.S. EPA Contaminant Candidate List. Nitrosamine formation may be a significant barrier to ozonation in water reuse applications, particularly for direct or indirect potable reuse, since recent studies show direct formation during ozonation of natural water and treated wastewaters. Only a few studies have identified precursors which react with ozone to form N-nitrosodimethylamine (NDMA). In this study, several precursor compound solutions, prepared in ultrapure water and treated wastewater, were subjected to a 10 M excess of ozone. In parallel experiments, the precursor solutions in ultrapure water were exposed to gamma radiation to determine NDMA formation as a byproduct of reactions of precursor compounds with hydroxyl radicals. The results show six new NDMA precursor compounds that have not been previously reported in the literature, including compounds with hydrazone and carbamate moieties. Molar yields in deionized water were 61-78% for 3 precursors, 12-23% for 5 precursors and <4% for 2 precursors. Bromide concentration was important for three compounds (1,1-dimethylhydrazine, acetone dimethylhydrazone and dimethylsulfamide), but did not enhance NDMA formation for the other precursors. NDMA formation due to chloramination was minimal compared to formation due to ozonation, suggesting distinct groups of precursor compounds for these two oxidants. Hydroxyl radical reactions with the precursors will produce NDMA, but formation is much greater in the presence of molecular ozone. Also, hydroxyl radical scavenging during ozonation leads to increased NDMA formation. Molar conversion yields were higher for several precursors in wastewater as compared to deionized water, which could be due to catalyzed reactions with constituents found in wastewater or hydroxyl radical scavenging. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Worldwide biogenic soil NOx emission estimates from OMI NO2 observations and the GEOS-Chem model

    NASA Astrophysics Data System (ADS)

    Vinken, Geert; Boersma, Folkert; Maasakkers, Bram; Martin, Randall

    2014-05-01

    Bacteria in soils are an important source of biogenic nitrogen oxides (NOx = NO + NO2), which are important precursors for ozone (O3) formation. Furthermore NOx emissions contribute to increased nitrogen deposition and particulate matter formation. Bottom-up estimates of global soil NOx emissions range from 4 to 27 Tg N / yr, reflecting our incomplete knowledge of emission factors and processes driving these emissions. In this study we used, for the first time, OMI NO2 columns on all continents to reduce the uncertainty in soil NOx emissions. Regions and months dominated by soil NOx emissions were identified using a filtering scheme in the GEOS-Chem chemistry transport model. Consequently, we compared OMI observed NO2 observed columns to GEOS-Chem simulated columns and provide constraints for these months in 11 regions. This allows us to provide a top-down emission inventory for 2005 for soil NOx emissions from all continents. Our total global soil NOx emission inventory amounts to 10 Tg N / yr. Our estimate is 4% higher than the GEOS-Chem a priori (Hudman et al., 2012), but substantial regional differences exist (e.g. +20% for Sahel and India; and -40% for mid-USA). We furthermore observed a stronger seasonal cycle in the Sahel region, indicating directions for possible future improvements to the parameterization currently used in GEOS-Chem. We validated NO2 concentrations simulated with this new top-down inventory against surface NO2 measurements from monitoring stations in Africa, the USA and Europe. On the whole, we conclude that simulations with our new top-down inventory better agree with measurements. Our work shows that satellite retrieved NO2 columns can improve estimates of soil NOx emissions over sparsely monitored remote rural areas. We show that the range in previous estimates of soil NOx emissions is too large, and global emissions are most likely around 10 Tg N/yr, in agreement with the most recent parameterizations.

  7. An integrated scheme for the simultaneous determination of biogenic amines, precursor amino acids, and related metabolites by liquid chromatography with electrochemical detection.

    PubMed

    Oka, K; Kojima, K; Togari, A; Nagatsu, T; Kiss, B

    1984-06-08

    A new method using high-performance liquid chromatography with electrochemical detection (HPLC-ED) for the simultaneous determination of monoamines, their precursor amino acids, and related major metabolites in small samples of brain tissue weighing from 0.5 to 50 mg is described. The method is based on the preliminary isolation of monoamines (dopamine, norepinephrine, epinephrine, and serotonin), their precursor amino acids (tyrosine, 3,4-dihydroxyphenylalanine, tryptophan and 5-hydroxytryptophan), and their major metabolites (3-methoxytyramine, normetanephrine, 3,4-dihydroxyphenylacetic acid, homovanillic acid, vanillylmandelic acid, 3-methoxy-4-hydroxyphenylethyleneglycol, and 5-hydroxyindoleacetic acid) by chromatography on small columns of Amberlite CG-50 and Dowex 50W, and by ethyl acetate extraction. All the compounds in the four isolated fractions were measured by HPLC-ED on a reversed-phase column under four different conditions. The sensitivity was from 0.1 to 40 pmol, depending on the substances analysed. This newly established method was applied to the study of the effects of an aromatic L-amino acid decarboxylase inhibitor (NSD-1015) and a monoamine oxidase inhibitor (pargyline) on the levels of monoamines, their precursor amino acids and their major metabolites in brain regions of mice.

  8. Evidence for gammacerane as an indicator of water column stratification

    NASA Astrophysics Data System (ADS)

    Sinninghe Damsté, Jaap S.; Kenig, Fabien; Koopmans, Martin P.; Köster, Jürgen; Schouten, Stefan; Hayes, J. M.; de Leeuw, Jan W.

    1995-05-01

    A new route for the formation of gammacerane from tetrahymanol is proposed; in addition to dehydration and hydrogenation, sulphurisation and early CS cleavage are shown to be important in the pathway of formation, especially in marine sediments. Evidence is twofold. First, relatively large amounts of the gammacerane skeleton are sequestered in S-rich macromolecular aggregates formed by natural sulphurisation of functionalised lipids. Selective cleavage of polysulphide linkages with MeLi/MeI led to formation of 3-methylthiogammacerane, indicating that the gammacerane skeleton is primarily bound via sulphur at position 3, consistent with the idea that tetrahymanol (or the corresponding ketone) is the precursor for gammacerane. Second, upon mild artificial maturation of two sediments using hydrous pyrolysis, gammacerane is released from S-rich macromolecular aggregates by cleavage of the relatively weak CS bonds. The stable carbon isotopic compositions of gammacerane and lipids derived from primary producers and green sulphur bacteria in both the Miocene Gessoso-solfifera and Upper Jurassic Allgäu Formations indicate that gammacerane is derived from bacterivorous ciliates which were partially feeding on green sulphur bacteria. This demonstrates that anaerobic ciliates living at or below the chemocline are important sources for gammacerane, consistent with the fact that ciliates only biosynthesize tetrahymanol if their diet is deprived of sterols. This leads to the conclusion that gammacerane is an indicator for water column stratification, which solves two current enigmas in gammacerane geochemistry. Firstly, it explains why gammacerane is often found in sediments deposited under hypersaline conditions but is not necessarily restricted to this type of deposits. Secondly, it explains why lacustrine deposits may contain abundant gammacerane since most lakes in the temperate climatic zones are stratified during summer.

  9. Evidence for gammacerane as an indicator of water column stratification

    NASA Technical Reports Server (NTRS)

    Sinninghe Damste, J. S.; Kenig, F.; Koopmans, M. P.; Koster, J.; Schouten, S.; Hayes, J. M.; de Leeuw, J. W.

    1995-01-01

    A new route for the formation of gammacerane from tetrahymanol is proposed; in addition to dehydration and hydrogenation, sulphurisation and early C-S cleavage are shown to be important in the pathway of formation, especially in marine sediments. Evidence is twofold. First, relatively large amounts of the gammacerane skeleton are sequestered in S-rich macromolecular aggregates formed by natural sulphurisation of functionalised lipids. Selective cleavage of polysulphide linkages with MeLi/MeI led to formation of 3-methylthiogammacerane, indicating that the gammacerane skeleton is primarily bound via sulphur at position 3, consistent with the idea that tetrahymanol (or the corresponding ketone) is the precursor for gammacerane. Second, upon mild artificial maturation of two sediments using hydrous pyrolysis, gammacerane is released from S-rich macromolecular aggregates by cleavage of the relatively weak C-S bonds. The stable carbon isotopic compositions of gammacerane and lipids derived from primary producers and green sulphur bacteria in both the Miocene Gessoso-solfifera and Upper Jurassic Allgau Formations indicate that gammacerane is derived from bacterivorous ciliates which were partially feeding on green sulphur bacteria. This demonstrates that anaerobic ciliates living at or below the chemocline are important sources for gammacerane, consistent with the fact that ciliates only biosynthesize tetrahymanol if their diet is deprived of sterols. This leads to the conclusion that gammacerane is an indicator for water column stratification, which solves two current enigmas in gammacerane geochemistry. Firstly, it explains why gammacerane is often found in sediments deposited under hypersaline conditions but is not necessarily restricted to this type of deposits. Secondly, it explains why lacustrine deposits may contain abundant gammacerane since most lakes in the temperate climatic zones are stratified during summer.

  10. Nitrosamine, dimethylnitramine, and chloropicrin formation during strong base anion-exchange treatment.

    PubMed

    Kemper, Jerome M; Westerhoff, Paul; Dotson, Aaron; Mitch, William A

    2009-01-15

    Strong base anion-exchange resins represent an important option for water utilities and homeowners to address growing concerns with nitrate, arsenate, and perchlorate contamination of source waters. Most commercially available anion-exchange resins employ quaternary amine functional groups. Previous research has provided contradictory evidence regarding whether these resins serve as sources of nitrosamines, considered as highly carcinogenic nitrogenous disinfection byproducts (N-DBPs), even without disinfectants. For three common varieties of commercial anion-exchange resins, we evaluated the importance of releases of nitrosamines, and two other N-DBPs (dimethylnitramine and chloropicrin), when the resins were subjected to typical column flow conditions with and without free chlorine or chloramine application upstream or downstream of the columns. In the absence of disinfectants, fresh trimethylamine- and tributylamine-based type 1 and dimethylethanolamine-based type 2 anion-exchange resins usually released 2-10 ng/L nitrosamines, likely due to shedding of manufacturing impurities, with excursions of up to 20 ng/L following regeneration. However, the lack of significant nitrosamine release in a full-scale anion-exchange treatment system after multiple regeneration cycles indicates that releases may eventually subside. Resins also shed organic precursors that might contribute to nitrosamine formation within distribution systems when chloramines are applied downstream. With free chlorine or chloramine application upstream, nitrosamine concentrations were more significant, at 20-100 ng/L for the type 1 resins and approximately 400 ng/L for the type 2 resin. However, chloropicrin formation was lowest for the type 2 resin. Dimethylnitramine formation was significant with free chlorine application upstream but negligible with chloramines. Although no N-DBPs were detected in cation-exchange-based consumer point-of-use devices exposed to chlorinated or chloraminated waters, our results indicate that inclusion of anion-exchange resins in these devices, as in laboratory deionized water systems, would likely be problematic.

  11. A key role for green rust in the Precambrian oceans and the genesis of iron formations

    NASA Astrophysics Data System (ADS)

    Halevy, I.; Alesker, M.; Schuster, E. M.; Popovitz-Biro, R.; Feldman, Y.

    2017-01-01

    Iron formations deposited in marine settings during the Precambrian represent large sinks of iron and silica, and have been used to reconstruct environmental conditions at the time of their formation. However, the observed mineralogy in iron formations, which consists of iron oxides, silicates, carbonates and sulfides, is generally thought to have arisen from diagenesis of one or more mineral precursors. Ferric iron hydroxides and ferrous carbonates and silicates have been identified as prime candidates. Here we investigate the potential role of green rust, a ferrous-ferric hydroxy salt, in the genesis of iron formations. Our laboratory experiments show that green rust readily forms in early seawater-analogue solutions, as predicted by thermodynamic calculations, and that it ages into minerals observed in iron formations. Dynamic models of the iron cycle further indicate that green rust would have precipitated near the iron redoxcline, and it is expected that when the green rust sank it transformed into stable phases within the water column and sediments. We suggest, therefore, that the precipitation and transformation of green rust was a key process in the iron cycle, and that the interaction of green rust with various elements should be included in any consideration of Precambrian biogeochemical cycles.

  12. Formaldehyde Column Density Measurements as a Suitable Pathway to Estimate Near-Surface Ozone Tendencies from Space

    NASA Technical Reports Server (NTRS)

    Schroeder, Jason R.; Crawford, James H.; Fried, Alan; Walega, James; Weinheimer, Andrew; Wisthaler, Armin; Mueller, Markus; Mikoviny, Tomas; Chen, Gao; Shook, Michael; hide

    2016-01-01

    In support of future satellite missions that aim to address the current shortcomings in measuring air quality from space, NASA's Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) field campaign was designed to enable exploration of relationships between column measurements of trace species relevant to air quality at high spatial and temporal resolution. In the DISCOVER-AQ data set, a modest correlation (r2 = 0.45) between ozone (O3) and formaldehyde (CH2O) column densities was observed. Further analysis revealed regional variability in the O3-CH2O relationship, with Maryland having a strong relationship when data were viewed temporally and Houston having a strong relationship when data were viewed spatially. These differences in regional behavior are attributed to differences in volatile organic compound (VOC) emissions. In Maryland, biogenic VOCs were responsible for approx.28% of CH2O formation within the boundary layer column, causing CH2O to, in general, increase monotonically throughout the day. In Houston, persistent anthropogenic emissions dominated the local hydrocarbon environment, and no discernable diurnal trend in CH2O was observed. Box model simulations suggested that ambient CH2O mixing ratios have a weak diurnal trend (+/-20% throughout the day) due to photochemical effects, and that larger diurnal trends are associated with changes in hydrocarbon precursors. Finally, mathematical relationships were developed from first principles and were able to replicate the different behaviors seen in Maryland and Houston. While studies would be necessary to validate these results and determine the regional applicability of the O3-CH2O relationship, the results presented here provide compelling insight into the ability of future satellite missions to aid in monitoring near-surface air quality.

  13. Thermal Stability of Jet Fuels: Kinetics of Forming Deposit Precursors

    NASA Technical Reports Server (NTRS)

    Naegeli, David W.

    1997-01-01

    The focus of this study was on the autoxidation kinetics of deposit precursor formation in jet fuels. The objectives were: (1) to demonstrate that laser-induced fluorescence is a viable kinetic tool for measuring rates of deposit precursor formation in jet fuels; (2) to determine global rate expressions for the formation of thermal deposit precursors in jet fuels; and (3) to better understand the chemical mechanism of thermal stability. The fuels were isothermally stressed in small glass ampules in the 120 to 180 C range. Concentrations of deposit precursor, hydroperoxide and oxygen consumption were measured over time in the thermally stressed fuels. Deposit precursors were measured using laser-induced fluorescence (LIF), hydroperoxides using a spectrophotometric technique, and oxygen consumption by the pressure loss in the ampule. The expressions, I.P. = 1.278 x 10(exp -11)exp(28,517.9/RT) and R(sub dp) = 2.382 x 10(exp 17)exp(-34,369.2/RT) for the induction period, I.P. and rate of deposit precursor formation R(sub dp), were determined for Jet A fuel. The results of the study support a new theory of deposit formation in jet fuels, which suggest that acid catalyzed ionic reactions compete with free radical reactions to form deposit precursors. The results indicate that deposit precursors form only when aromatics are present in the fuel. Traces of sulfur reduce the rate of autoxidation but increase the yield of deposit precursor. Free radical chemistry is responsible for hydroperoxide formation and the oxidation of sulfur compounds to sulfonic acids. Phenols are then formed by the acid catalyzed decomposition of benzylic hydroperoxides, and deposit precursors are produced by the reaction of phenols with aldehydes, which forms a polymer similar to Bakelite. Deposit precursors appear to have a phenolic resin-like structure because the LIF spectra of the deposit precursors were similar to that of phenolic resin dissolved in TAM.

  14. Computational investigation of intense short-wavelength laser interaction with rare gas clusters

    NASA Astrophysics Data System (ADS)

    Bigaouette, Nicolas

    Current Very High Temperature Reactor designs incorporate TRi-structural ISOtropic (TRISO) particle fuel, which consists of a spherical fissile fuel kernel surrounded by layers of pyrolytic carbon and silicon carbide. An internal sol-gel process forms the fuel kernel by dropping a cold precursor solution into a column of hot trichloroethylene (TCE). The temperature difference drives the liquid precursor solution to precipitate the metal solution into gel spheres before reaching the bottom of a production column. Over time, gelation byproducts inhibit complete gelation and the TCE must be purified or discarded. The resulting mixed-waste stream is expensive to dispose of or recycle, and changing the forming fluid to a non-hazardous alternative could greatly improve the economics of kernel production. Selection criteria for a replacement forming fluid narrowed a list of ~10,800 chemicals to yield ten potential replacements. The physical properties of the alternatives were measured as a function of temperature between 25 °C and 80 °C. Calculated terminal velocities and heat transfer rates provided an overall column height approximation. 1-bromotetradecane, 1-chlorooctadecane, and 1-iodododecane were selected for further testing, and surrogate yttria-stabilized zirconia (YSZ) kernels were produced using these selected fluids. The kernels were characterized for density, geometry, composition, and crystallinity and compared to a control group of kernels produced in silicone oil. Production in 1-bromotetradecane showed positive results, producing dense (93.8 %TD) and spherical (1.03 aspect ratio) kernels, but proper gelation did not occur in the other alternative forming fluids. With many of the YSZ kernels not properly gelling within the length of the column, this project further investigated the heat transfer properties of the forming fluids and precursor solution. A sensitivity study revealed that the heat transfer properties of the precursor solution have the strongest impact on gelation time. A COMSOL heat transfer model estimated an effective thermal diffusivity range for the YSZ precursor solution as 1.13x10 -8 m2/s to 3.35x10-8 m 2/s, which is an order of magnitude smaller than the value used in previous studies. 1-bromotetradecane is recommended for further investigation with the production of uranium-based kernels.

  15. TROPOMI on the Copernicus Sentinel 5 Precursor: Launched?

    NASA Astrophysics Data System (ADS)

    Levelt, P.; Veefkind, J. P.; Kleipool, Q.; Ludewig, A.; Aben, I.; De Vries, J.; Loyola, D. G.; Richter, A.; Van Roozendael, M.; Siddans, R.; Tamminen, J.; Wagner, T.; Nett, H.

    2016-12-01

    The Copernicus Sentinel 5 Precursor (S5P) is the first of the European Sentinels satellites dedicated to monitoring of the atmospheric composition. S5P is planned for launch in the 4thquarter of 2016; hopefully in time for the AGU Fall Meeting! The mission objectives of S5P are to monitor air quality, climate and the ozone layer, in the time period between 2017 and 2023. S5P will fly in a Sun-synchronized polar orbit with a 13:30 hr local equator crossing time. The single payload of the S5P mission is TROPOspheric Monitoring Instrument (TROPOMI), which is developed by The Netherlands in cooperation with the European Space Agency (ESA). TROPOMI is a nadir viewing shortwave spectrometer that measures in the UV-visible wavelength range (270-500 nm), the near infrared (710-770 nm) and the shortwave infrared (2314-2382 nm). TROPOMI will have an unprecedented spatial resolution of 7x7 km2at nadir. The spatial resolution is combined with a wide swath to allow for daily global coverage. The TROPOMI/S5P geophysical (Level 2) operational data products include nitrogen dioxide, carbon monoxide, ozone (total column, tropospheric column & profile), methane, sulfur dioxide, formaldehyde and aerosol and cloud parameters. The main heritage for TROPOMI comes from OMI on EOS Aura and SCIAMACHY on Envisat. Many of the lessons learned in these missions have resulted in design improvements for TROPOMI. One of the most striking features is the high spatial resolution of 7x7 km2at nadir. The high spatial resolution serves two goals: (1) emissions sources can be detected with a higher accuracy and (2) the number of cloud-free ground pixels will increase substantially. The higher spatial resolution is also combined with a significantly higher signal-to-noise ratio per ground pixel, compared to OMI. This will further enhance the capabilities of TROPOMI to detect small emissions sources. The S5P will fly in a so-called loose formation with the U.S. Suomi NPP (National Polar-orbiting Partnership) satellite. The primary objective for this formation flying is to use the cloud clearing capabilities of the VIIRS (Visible Infrared Imager Radiometer Suite). The temporal separation between TROPOMI and VIIRS will be less than 5 minutes. Once this formation has been established, it will enable synergistic data products and scientific research potentials.

  16. Numerical Investigation of the Formation of a Convective Column and a Fire Tornado by Forest Fires

    NASA Astrophysics Data System (ADS)

    Grishin, A. M.; Matvienko, O. V.

    2014-09-01

    Computational modeling of the formation of a convective column by forest fires has been carried out. It has been established that in the case of an unstable atmosphere stratification the basic factor influencing the thermal column formation is the intensification of the processes of turbulent mixing and that at a stable atmosphere stratification a more significant factor determining the convective column formation is the action of the buoyancy force. It has been shown that a swirling flow in the convective column is formed due to the appearance of a tangential velocity component as a consequence of the local circulation arising against the background of large-scale motion owing to the thermal and orographic inhomogeneities of the underlying surface.

  17. Investigation of phase evolution of CaCu{sub 3}Ti{sub 4}O{sub 12} (CCTO) by in situ synchrotron high-temperature powder diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ouyang, Xin; Huang, Saifang; School of Materials Science and Technology, China University of Geosciences

    2014-03-15

    In situ synchrotron X-ray powder diffraction was used to study the high-temperature phase evolution of CaCu{sub 3}Ti{sub 4}O{sub 12} (CCTO) precursors prepared via solid-state and sol–gel methods. After the precursors are heated to 1225 °C, the CCTO phase is the main phase observed in the calcined powder, with the presence of some minor impurities. Comparing the two precursors, we found that the onset temperature for the CCTO phase formation is 800 °C in the sol–gel precursor, lower than that in the solid-state precursor (875 °C). Intermediate phases were only observed in the sol–gel precursor. Both precursors are able to bemore » calcined to sub-micrometric sized powders. Based on the synchrotron data along with differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA), the phase formation sequence and mechanism during calcination are proposed in this study. -- Graphical abstract: The in situ synchrotron HT-XRD patterns of CCTO sol–gel and solid-state precursor. Highlights: • Phase formation sequence/mechanism in two CCTO precursors has been established. • Formation temperature of CCTO via sol–gel method is lower than solid-state method. • Intermediate phases are only observed in the sol–gel precursor. • Both precursors are able to be calcined into sub-micrometric sized powders.« less

  18. Biosynthesis of Ergothioneine from Endogenous Hercynine in Mycobacterium smegmatis

    PubMed Central

    Genghof, Dorothy S.; Van Damme, Olga

    1968-01-01

    Ergothioneine was synthesized and accumulated in growing cultures of Mycobacterium smegmatis when the medium was adequately supplied with sulfur. In a low sulfur medium, the accumulation was sharply limited although growth of the organism was apparently normal. Synthesis of hercynine, the precursor of ergothioneine, was unaffected by low sulfur levels and was markedly increased by addition of l-histidine, the precursor of hercynine. Resting-cell pellicle experiments, performed with cells grown on the low sulfur high histidine medium, showed that ergothioniene was synthesized from endogenous hercynine, when cysteine or compounds readily converted to cysteine (such as cystine, lanthionine, cystathionine, and thiazolidine carboxylic acid) were added. Homocysteine and djenkolic acid allowed for minimal synthesis of betaine, whereas methionine, S-methylcysteine, sodium sulfate, and sodium thiosulfate were unable to donate sulfur for ergothioniene synthesis under the experimental conditions employed. Addition of cysteine to a resting pellicle preparation caused the formation of 100 to 200 μg of ergothioneine per g of dry cells in 2.5 to 3 hr. A modified procedure for isolating ergothioneine and hercynine, employing a 75% ethyl alcohol extraction of wet organisms, followed by a single alumina column separation of the compounds, is described. PMID:5644441

  19. Formation by yeast of 2-furanmethanethiol and ethyl 2-mercaptopropionate aroma compounds in Japanese soy sauce.

    PubMed

    Meng, Qi; Hatakeyama, Makoto; Sugawara, Etsuko

    2014-01-01

    Two aroma compounds of volatile thiols, 2-furanmethanethiol (2FM) and ethyl 2-mercaptopropionate (ET2MP), were formed in five types of Japanese soy sauce during fermentation by yeast. The concentrations of 2FM and ET2MP in the soy sauce samples increased during alcoholic fermentation. The concentrations of 2FM and ET2MP were higher in the soy sauce fermented by Zygosaccharomyces rouxii than in that fermented by Candida versatilis. The enantiomers of ET2MP were separated by gas chromatography in a capillary column. The average enantiomeric ratio of ET2MP in the soy sauce was approximately 1:1. 2FM was formed by yeast in a medium prepared from cysteine and furfural, and cysteine is considered the key precursor of 2FM by yeast in soy sauce.

  20. Relationship between organic precursors and N-nitrosodimethylamine (NDMA) formation in tropical water sources.

    PubMed

    Qi, Wang; Fang Yee, Lim; Jiangyong, Hu

    2014-12-01

    The presence of organic compounds in water sources is one of the concerns in water treatment. They are potential precursors of disinfection byproducts (DBPs) and thus induce health problems in humans. Among the emerging DBPs, carcinogenic compound N-nitrosodimethylamine (NDMA) has been receiving attention during the last decade. This study examined the characteristics of organic components in various water sources and investigated their relationships with NDMA formation. Experiments were carried out on selected water samples from both natural water and wastewater. Results showed similar NDMA formation kinetics for both water sources. However, more contribution of NDMA precursors was found to be from the wastewater due to its higher organic nitrogen content. NDMA formation potential (NDMAFP) of secondary effluent ranged from 264 to 530 ng/L. A correlation study between organic compound characteristics and NDMAFP indicated that the majority of NDMA precursors came from dissolved organic nitrogen (DON) compound with small molecular weight (smaller than 500 Da), with correlation R(2) = 0.898. Although secondary treatment removed more than 90% of NDMA precursors, the remaining precursors in secondary effluent would still pose a challenge for water quality.

  1. N-nitrosamine formation by monochloramine, free chlorine, and peracetic acid disinfection with presence of amine precursors in drinking water system.

    PubMed

    West, Danielle M; Wu, Qihua; Donovan, Ariel; Shi, Honglan; Ma, Yinfa; Jiang, Hua; Wang, Jianmin

    2016-06-01

    In this study, the formation of eight N-nitrosamines, N-nitrosodimethylamine (NDMA), N-nitrosodiethylamine, N-nitrosomethylamine, N-nitrosodi-n-propylamine, N-nitrosodi-n-butylamine, N-Nitrosopiperidine, N-Nitrosopyrrolidine, N-Nitrosomorpholine, were systematically evaluated with respect to seven N-nitrosamine precursors (dimethylamine, trimethylamine, 3-(dimethylaminomethyl)indole, 4-dimethylaminoantipyrine, ethylmethylamine, diethylamine, dipropylamine) and three disinfectants (monochloramine, free chlorine, peracetic acid) under variable dosages, exposure times, and pH in a drinking water system. Without the presence of the seven selected N-nitrosamine precursors N-nitrosamine formation was not observed under any tested condition except very low levels of N-Nitrosopyrrolidine under some conditions. With selected N-nitrosamine precursors present N-nitrosamines formed at different levels under different conditions. The highest N-nitrosamine formation was NDMA with a maximum concentration of 1180 ng/L by monochloramine disinfection with precursors present; much lower levels of N-nitrosamines were formed by free chlorine disinfection; and no detectable level of N-nitrosamines were observed by peracetic acid disinfection except low level of N-Nitrosodi-n-propylamine under some conditions. NDMA formation was not affected by pH while four other N-nitrosamine formations were slightly affected by sample pH tested between 7 and 9, with formation decreasing with increasing pH. Monochloramine exposure time study displayed fast formation of N-nitrosamines, largely formed in four hours of exposure and maximized after seven days. This was a systematic study on the N-nitrosamine formation with the seven major N-nitrosamine precursors presence and absence under different conditions, including peracetic acid disinfection which has not been studied elsewhere. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Oxidation and formation of deposit precursors in hydrocarbon fuels

    NASA Technical Reports Server (NTRS)

    Mayo, F. R.; Lan, B.; Cotts, D. B.; Buttrill, S. E., Jr.; St.john, G. A.

    1983-01-01

    The oxidation of two jet turbine fuels and some pure hydrocarbons was studied at 130 C with and without the presence of small amounts of N-methyl pyrrole (NMP) or indene. Tendency to form solid-deposit precursors was studied by measuring soluble gum formation as well as dimer and trimer formation using field ionization mass spectrometry. Pure n-dodecane oxidized fastest and gave the smallest amount of procursors. An unstable fuel oil oxidized much slower but formed large amounts of precursors. Stable Jet A fuel oxidized slowest and gave little precursors. Indene either retarded or accelerated the oxidation of n-dodecane, depending on its concentration, but always caused more gum formation. The NMP greatly retarded n-dodecane oxidation but accelerated Jet A oxidation and greatly increased the latter's gum formation. In general, the additive reacted faster and formed most of the gum. Results are interpreted in terms of classical cooxidation theory. The effect of oxygen pressure on gum formation is also reported.

  3. Analysis and identification of astaxanthin and its carotenoid precursors from Xanthophyllomyces dendrorhous by high-performance liquid chromatography.

    PubMed

    Lu, Mingbo; Zhang, Yang'e; Zhao, Chunfang; Zhou, Pengpeng; Yu, Longjiang

    2010-01-01

    This study presents an HPLC method for simultaneous analysis of astaxanthin and its carotenoid precursors from Xanthophyllomyces dendrorhous. The HPLC method is accomplished by employing a C18 column and the mobile phase methanol/water/acetonitrile/ dichloromethane (70:4:13:13, v/v/v/v). Astaxanthin is quantified by detection at 480 nm. The carotenoid precursors are identified by LC-APCI-MS and UV-vis absorption spectra. Peaks showed in the HPLC chromatogram are identified as carotenoids in the monocyclic biosynthetic pathway or their derivatives. In the monocyclic carotenoid pathway, 3,3'-dihydroxy-beta,psi-carotene-4,4'-dione (DCD) is produced through gamma-carotene and torulene.

  4. Expression and purification of pheophorbidase, an enzyme catalyzing the formation of pyropheophorbide during chlorophyll degradation: comparison with the native enzyme.

    PubMed

    Suzuki, Yasuyo; Soga, Keiko; Yoshimatsu, Katsuhiko; Shioi, Yuzo

    2008-10-01

    Formation of pyropheophorbide (PyroPheid) during chlorophyll metabolism in some higher plants has been shown to involve the enzyme pheophorbidase (PPD). This enzyme catalyzes the conversion of pheophorbide (Pheid) a to a precursor of PyroPheid, C-13(2)-carboxylPyroPheid a, by demethylation, and then the precursor is decarboxylated non-enzymatically to yield PyroPheid a. In this study, expression, purification, and biochemical characterization of recombinant PPD from radish (Raphanus sativus L.) were performed, and its properties were compared with those of highly purified native PPD. Recombinant PPD was produced using a glutathione S-transferase (GST) fusion system. The PPD and GST genes were fused to a pGEX-2T vector and expressed in Escherichia coli under the control of a T7 promoter as a fusion protein. The recombinant PPD-GST was expressed as a 55 kDa protein as measured by SDS-PAGE and purified by single-step affinity chromatography through a GSTrap FF column. PPD-GST was purified to homogeneity with a yield of 0.42 mg L(-1) of culture. The protein purified by this method was confirmed to be PPD by measuring its activity. The purified PPD-GST fusion protein revealed potent catalytic activity for demethylation of the methoxycarbonyl group of Pheid a and showed a pH optimum, substrate specificity, and thermal stability quite similar to the native enzyme purified from radish, except for the Km values toward Pheid a: 95.5 microM for PPD-GST and about 15 microM for native PPDs.

  5. Cluster formation and drag reduction-proposed mechanism of particle recirculation within the partition column of the bottom spray fluid-bed coater.

    PubMed

    Wang, Li Kun; Heng, Paul Wan Sia; Liew, Celine Valeria

    2015-04-01

    Bottom spray fluid-bed coating is a common technique for coating multiparticulates. Under the quality-by-design framework, particle recirculation within the partition column is one of the main variability sources affecting particle coating and coat uniformity. However, the occurrence and mechanism of particle recirculation within the partition column of the coater are not well understood. The purpose of this study was to visualize and define particle recirculation within the partition column. Based on different combinations of partition gap setting, air accelerator insert diameter, and particle size fraction, particle movements within the partition column were captured using a high-speed video camera. The particle recirculation probability and voidage information were mapped using a visiometric process analyzer. High-speed images showed that particles contributing to the recirculation phenomenon were behaving as clustered colonies. Fluid dynamics analysis indicated that particle recirculation within the partition column may be attributed to the combined effect of cluster formation and drag reduction. Both visiometric process analysis and particle coating experiments showed that smaller particles had greater propensity toward cluster formation than larger particles. The influence of cluster formation on coating performance and possible solutions to cluster formation were further discussed. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  6. The effect of pre-oxidation on NDMA formation and the influence of pH.

    PubMed

    Selbes, Meric; Kim, Daekyun; Karanfil, Tanju

    2014-12-01

    N-nitrosodimethylamine (NDMA), a probable human carcinogen, is a disinfection by-product that has been detected in chloraminated drinking water systems. Pre-oxidation of the NDMA precursors prior to chloramination can be a viable approach for water utilities to control the NDMA levels. This study examined the effects of (i) commonly used oxidants (i.e., chlorine, chlorine dioxide and ozone) in water treatment, (ii) oxidant concentration and contact time (CT), and (iii) pre-oxidation pH on the formation of NDMA from subsequent chloramination. Fifteen model precursors with NDMA molar yields ranging from approximately 0.1%-90% were examined. Pre-chlorination reduced NDMA formation from most precursors by 10%-50% except quaternary amine polymers (i.e., PolyDADMAC, PolyACRYL, PolyAMINE). Pre-oxidation with chlorine dioxide and ozone achieved the same or higher deactivation of NDMA precursors (e.g., ranitidine) while increasing NDMA formation for some other precursors (e.g., daminozid). The increases with chlorine dioxide exposure were attributed to the release of oxidation products with dimethylamine (DMA) moiety, which may form more NDMA upon chloramination than the unoxidizied parent compound. On the other hand, chlorine dioxide was effective, if a precursors NDMA yield were higher than DMA. The ozone-triggered increases could be related to direct NDMA formation from DMA which are released by ozonation of amines with DMA moiety, amides or hydrazines. However, hydroxyl radicals formed from the decomposition of ozone would be also involved in decomposition of formed NDMA, reducing the overall NDMA levels at longer contact times. pH conditions influenced significantly the effectiveness of deactivation of precursors depending on the type of precursor and oxidant used. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Contribution of the Antibiotic Chloramphenicol and Its Analogues as Precursors of Dichloroacetamide and Other Disinfection Byproducts in Drinking Water.

    PubMed

    Chu, Wenhai; Krasner, Stuart W; Gao, Naiyun; Templeton, Michael R; Yin, Daqiang

    2016-01-05

    Dichloroacetamide (DCAcAm), a disinfection byproduct, has been detected in drinking water. Previous research showed that amino acids may be DCAcAm precursors. However, other precursors may be present. This study explored the contribution of the antibiotic chloramphenicol (CAP) and two of its analogues (thiamphenicol, TAP; florfenicol, FF) (referred to collectively as CAPs), which occur in wastewater-impacted source waters, to the formation of DCAcAm. Their formation yields were compared to free and combined amino acids, and they were investigated in filtered waters from drinking-water-treatment plants, heavily wastewater-impacted natural waters, and secondary effluents from wastewater treatment plants. CAPs had greater DCAcAm formation potential than two representative amino acid precursors. However, in drinking waters with ng/L levels of CAPs, they will not contribute as much to DCAcAm formation as the μg/L levels of amino acids. Also, the effect of advanced oxidation processes (AOPs) on DCAcAm formation from CAPs in real water samples during subsequent chlorination was evaluated. Preoxidation of CAPs with AOPs reduced the formation of DCAcAm during postchlorination. The results of this study suggest that CAPs should be considered as possible precursors of DCAcAm, especially in heavily wastewater-impacted waters.

  8. A novel assembly used for hot-shock consolidation

    NASA Astrophysics Data System (ADS)

    Chen, Pengwan; Zhou, Qiang; State Key Laboratory of Explosion Science and Technique Team

    2013-06-01

    A novel assembly characterized by an automatic set-up was developed for hot-shock consolidations of powders. The under-water shock wave and the high-temperature preheating, which are considered as two effective ways to eliminate cracks, were combined in the system. In this work, a SHS reaction mixture was used as chemical furnace to preheat the precursor powder, and the water column as well as the explosive attached to it was detached from the furnace by a solenoid valve fixed on the slide guide. When the precursor powders was preheated to the designed temperature, the solenoid valve was switched on, then the water column and the explosive slid down along the slide guide by gravity. At the moment the water container contacted with the lower part, the explosive was initiated, and the generated shock wave propagated through the water column to compact the powders. So the explosive and water column can be kept cool during the preheating process. The intensity of shock wave loading can be adjusted by changing the heights of water column. And the preheating temperature is controlled in the range of 700 ~1300 °C by changing the mass of the SHS mixture. In this work, pure tungsten powders and tungsten-copper mixture were separately compacted using this new assembly. The pure tungsten powder with a grain size of 2 μm were compacted to high density (96%T.D.) at 1300 °C, and the 90W-10Cu (wt pct) mixtures were compacted to nearly theoretical density at 1000 °C. The results showed that both samples were free of cracks. The consolidated specimens were then characterized by SEM analysis and micro-hardness testing.

  9. A novel assembly used for hot-shock consolidation

    NASA Astrophysics Data System (ADS)

    Chen, P.; Zhou, Q.

    2014-05-01

    A novel assembly was developed for hot-shock consolidations of powders. The under-water shock wave and the high-temperature preheating, which are considered as two effective ways to eliminate cracks, were combined in the system. In this work, a SHS (self-propagating high-temperature synthesis) reaction mixture was used as chemical furnace to preheat the precursor powder, and the water column as well as the explosive attached to it was detached from the furnace by a solenoid valve fixed on the slide guide. When the precursor powders were preheated to the designed temperature, the solenoid valve was switched on, and then the water column and the explosive slid down along the slide guide by gravity. At the moment the water container contacted with the lower part, the explosive was initiated, and the generated shock wave propagated through the water column to compact the powders. So the explosive and water column can be kept cool during the preheating process. The intensity of shock wave loading can be adjusted by changing the heights of water column. And the preheating temperature is controlled in the range of 700~1300 °C by changing the mass of the SHS mixture. In this work, pure tungsten powders and tungsten-copper mixture were separately compacted using this new assembly. The pure tungsten powder with a grain size of 2 μm were compacted to high density (96 %T.D.) at 1300 °C, and the 90W-10Cu (wt pct) mixtures were compacted to 95.3 %T.D. at 970 °C. The results showed that both samples were free of cracks. The consolidated specimens were then characterized using SEM analysis and micro-hardness testing.

  10. In Vivo Kinetics of Formate Metabolism in Folate-deficient and Folate-replete Rats*

    PubMed Central

    Morrow, Gregory P.; MacMillan, Luke; Lamarre, Simon G.; Young, Sara K.; MacFarlane, Amanda J.; Brosnan, Margaret E.; Brosnan, John T.

    2015-01-01

    It is now established that the mitochondrial production of formate is a major process in the endogenous generation of folate-linked one-carbon groups. We have developed an in vivo approach involving the constant infusion of [13C]formate until isotopic steady state is attained to measure the rate of endogenous formate production in rats fed on either a folate-replete or folate-deficient diet. Formate was produced at a rate of 76 μmol·h−1·100 g of body weight−1 in the folate-replete rats, and this was decreased by 44% in folate-deficient rats. This decreased formate production was confirmed in isolated rat liver mitochondria where formate production from serine, the principal precursor of one-carbon groups, was decreased by 85%, although formate production from sarcosine and dimethylglycine (choline metabolites) was significantly increased. We attribute this unexpected result to the demonstrated production of formaldehyde by sarcosine dehydrogenase and dimethylglycine dehydrogenase from their respective substrates in the absence of tetrahydrofolate and subsequent formation of formate by formaldehyde dehydrogenase. Comparison of formate production with the ingestion of dietary formate precursors (serine, glycine, tryptophan, histidine, methionine, and choline) showed that ∼75% of these precursors were converted to formate, indicating that formate is a significant, although underappreciated end product of choline and amino acid oxidation. Ingestion of a high protein diet did not result in increased production of formate, suggesting a regulation of the conversion of these precursors at the mitochondrial level to formate. PMID:25480787

  11. N-nitrosodimethylamine formation upon ozonation and identification of precursors source in a municipal wastewater treatment plant.

    PubMed

    Sgroi, Massimiliano; Roccaro, Paolo; Oelker, Gregg L; Snyder, Shane A

    2014-09-02

    Ozone doses normalized to the dissolved organic carbon concentration were applied to the primary influent, primary effluent, and secondary effluent of a wastewater treatment plant producing water destined for potable reuse. Results showed the most N-Nitrosodimethylamine (NDMA) production from primary effluent, and the recycle streams entering the primary clarifiers were identified as the main source of NDMA precursors. The degradation of aminomethylated polyacrylamide (Mannich) polymer used for sludge treatment was a significant cause of precursor occurrence. A strong correlation between NDMA formation and ammonia concentration was found suggesting an important role of ammonia oxidation on NDMA production. During ozonation tests in DI water using dimethylamine (DMA) as model precursor, the NDMA yield significantly increased in the presence of ammonia and bromide due to the formation of hydroxylamine and brominated nitrogenous oxidants. In addition, NDMA formation during ozonation of dimethylformamide (DMF), the other model precursor used in this study, occurred only in the presence of ammonia, and it was attributable to the oxidation of DMF by hydroxyl radicals. Filtered wastewater samples (0.7 μm) produced more NDMA than unfiltered samples, suggesting that ozone reacted with dissolved precursors and supporting the hypothesis of polymer degradation. Particularly, the total suspended solids content similarly affected NDMA formation and the UV absorbance decrease during ozonation due to the different ozone demand created in filtered and unfiltered samples.

  12. Kushenol A and 8-prenylkaempferol, tyrosinase inhibitors, derived from Sophora flavescens.

    PubMed

    Kim, Jang Hoon; Cho, In Sook; So, Yang Kang; Kim, Hyeong-Hwan; Kim, Young Ho

    2018-12-01

    Tyrosinase is known for an enzyme that plays a key role in producing the initial precursor of melanin biosynthesis. Inhibition of the catalytic reaction of this enzyme led to some advantage such as skin-whitening and anti-insect agents. To find a natural compound with inhibitory activity towards tyrosinase, the five flavonoids of kushenol A (1), 8-prenylkaempferol (2), kushenol C (3), formononetin (4) and 8-prenylnaringenin (5) were isolated by column chromatography from a 95% methanol extract of Sophora flavescens. The ability of these flavonoids to block the conversion of L-tyrosine to L-DOPA by tyrosinase was tested in vitro. Compounds 1 and 2 exhibited potent inhibitory activity, with IC50 values less than 10 µM. Furthermore, enzyme kinetics and molecular docking analysis revealed the formation of a binary encounter complex between compounds 1-4 and the enzyme. Also, all of the isolated compounds (1-5) were confirmed to possess antioxidant activity.

  13. One-pot facile synthesis of 4-amino-1,8-naphthalimide derived Tröger's bases via a nucleophilic displacement approach.

    PubMed

    Shanmugaraju, Sankarasekaran; McAdams, Deirdre; Pancotti, Francesca; Hawes, Chris S; Veale, Emma B; Kitchen, Jonathan A; Gunnlaugsson, Thorfinnur

    2017-09-13

    We report here a novel one-pot synthetic strategy for the synthesis of a family of N-alkyl-1,8-naphthalimide based Tröger's bases via a nucleophilic substitution reaction of a common 'precursor' (or a 'synthon') N-aryl-1,8-naphthalimide Tröger's base heated at 80 °C in neat aliphatic primary amine, in overall yield of 65-96%. This methodology provides an efficient and one-step facile route to design 1,8-naphthalimide derived Tröger's base structures in analytically pure form without the use of column chromatography purification, that can be used in medicinal chemistry and as supramolecular scaffolds. We also report the formation of the corresponding anhydride, and the crystallographic analysis of two of the resulting products, that of the N-phenyl-4-amino-1,8-naphthalimide and the anhydride derived Tröger's bases.

  14. The Expression and Function of the Achaete-Scute Genes in Tribolium castaneum Reveals Conservation and Variation in Neural Pattern Formation and Cell Fate Specification

    NASA Technical Reports Server (NTRS)

    Wheeler, Scott R.; Carrico, Michelle L.; Wilson, Beth A.; Brown, Susan J.; Skeath, James B.

    2003-01-01

    SUMMARY The study of achaete-scute (ac/sc) genes has recently become a paradigm to understand the evolution and development of the arthropod nervous system. We describe the identification and characterization of the ache genes in the coleopteran insect species Tribolium castaneum. We have identified two Tribolium ache genes - achaete-scute homolog (Tc-ASH) a proneural gene and asense (Tc-ase) a neural precursor gene that reside in a gene complex. Focusing on the embryonic central nervous system we fmd that Tc-ASH is expressed in all neural precursors and the proneural clusters from which they segregate. Through RNAi and misexpression studies we show that Tc-ASH is necessary for neural precursor formation in Triboliurn and sufficient for neural precursor formation in Drosophila. Comparison of the function of the Drosophila and Triboliurn proneural ac/sc genes suggests that in the Drosophila lineage these genes have maintained their ancestral function in neural precursor formation and have acquired a new role in the fate specification of individual neural precursors. Furthermore, we find that Tc-use is expressed in all neural precursors suggesting an important and conserved role for asense genes in insect nervous system development. Our analysis of the Triboliurn ache genes indicates significant plasticity in gene number, expression and function, and implicates these modifications in the evolution of arthropod neural development.

  15. The expression and function of the achaete-scute genes in Tribolium castaneum reveals conservation and variation in neural pattern formation and cell fate specification

    NASA Technical Reports Server (NTRS)

    Wheeler, Scott R.; Carrico, Michelle L.; Wilson, Beth A.; Brown, Susan J.; Skeath, James B.

    2003-01-01

    The study of achaete-scute (ac/sc) genes has recently become a paradigm to understand the evolution and development of the arthropod nervous system. We describe the identification and characterization of the ac/sc genes in the coleopteran insect species Tribolium castaneum. We have identified two Tribolium ac/sc genes - achaete-scute homolog (Tc-ASH) a proneural gene and asense (Tc-ase) a neural precursor gene that reside in a gene complex. Focusing on the embryonic central nervous system we find that Tc-ASH is expressed in all neural precursors and the proneural clusters from which they segregate. Through RNAi and misexpression studies we show that Tc-ASH is necessary for neural precursor formation in Tribolium and sufficient for neural precursor formation in Drosophila. Comparison of the function of the Drosophila and Tribolium proneural ac/sc genes suggests that in the Drosophila lineage these genes have maintained their ancestral function in neural precursor formation and have acquired a new role in the fate specification of individual neural precursors. Furthermore, we find that Tc-ase is expressed in all neural precursors suggesting an important and conserved role for asense genes in insect nervous system development. Our analysis of the Tribolium ac/sc genes indicates significant plasticity in gene number, expression and function, and implicates these modifications in the evolution of arthropod neural development.

  16. Determinants of disinfectant pretreatment efficacy for nitrosamine control in chloraminated drinking water.

    PubMed

    McCurry, Daniel L; Krasner, Stuart W; von Gunten, Urs; Mitch, William A

    2015-11-01

    Utilities using chloramines need strategies to mitigate nitrosamine formation to meet potential future nitrosamine regulations. The ability to reduce NDMA formation under typical post-chloramination conditions of pretreatment with ultraviolet light from a low pressure mercury lamp (LPUV), free chlorine (HOCl), ozone (O3), and UV light from a medium pressure mercury lamp (MPUV) were compared at exposures relevant to drinking water treatment. The order of efficacy after application to waters impacted by upstream wastewater discharges was O3 > HOCl ≈ MPUV > LPUV. NDMA precursor abatement generally did not correlate well between oxidants, and waters exhibited different behaviors with respect to pH and temperature, suggesting a variety of source-dependent NDMA precursors. For wastewater-impacted waters, the observed pH dependence for precursor abatement suggested the important role of secondary or tertiary amine precursors. Although hydroxyl radicals did not appear to be important for NDMA precursor abatement during O3 or MPUV pretreatment, the efficacy of MPUV correlated strongly with dissolved organic carbon concentration (p = 0.01), suggesting alternative indirect photochemical pathways. The temperature dependences during pre- and post-disinfection indicated that NDMA formation is likely to increase during warm seasons for O3 pretreatment, decrease for HOCl pretreatment, and remain unchanged for MPUV treatment, although seasonal changes in source water quality may counteract the temperature effects. For two waters impacted by relatively high polyDADMAC coagulant doses, pretreatment with HOCl, O3, and MPUV increased NDMA formation during post-chloramination. For O3 pretreatment, hydroxyl radicals likely led to precursor formation from the polymer in the latter tests. MPUV treatment of polymer-impacted water increased subsequent NDMA formation through an indirect photochemical process. Many factors may mitigate the importance of this increased NDMA formation, including the low polyDADMAC doses typically applied, and simultaneous degradation of watershed-associated precursors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. The Copernicus S5P Mission Performance Centre / Validation Data Analysis Facility for TROPOMI operational atmospheric data products

    NASA Astrophysics Data System (ADS)

    Compernolle, Steven; Lambert, Jean-Christopher; Langerock, Bavo; Granville, José; Hubert, Daan; Keppens, Arno; Rasson, Olivier; De Mazière, Martine; Fjæraa, Ann Mari; Niemeijer, Sander

    2017-04-01

    Sentinel-5 Precursor (S5P), to be launched in 2017 as the first atmospheric composition satellite of the Copernicus programme, carries as payload the TROPOspheric Monitoring Instrument (TROPOMI) developed by The Netherlands in close cooperation with ESA. Designed to measure Earth radiance and solar irradiance in the ultraviolet, visible and near infrared, TROPOMI will provide Copernicus with observational data on atmospheric composition at unprecedented geographical resolution. The S5P Mission Performance Center (MPC) provides an operational service-based solution for various QA/QC tasks, including the validation of S5P Level-2 data products and the support to algorithm evolution. Those two tasks are to be accomplished by the MPC Validation Data Analysis Facility (VDAF), one MPC component developed and operated at BIRA-IASB with support from S[&]T and NILU. The routine validation to be ensured by VDAF is complemented by a list of validation AO projects carried out by ESA's S5P Validation Team (S5PVT), with whom interaction is essential. Here we will introduce the general architecture of VDAF, its relation to the other MPC components, the generic and specific validation strategies applied for each of the official TROPOMI data products, and the expected output of the system. The S5P data products to be validated by VDAF are diverse: O3 (vertical profile, total column, tropospheric column), NO2 (total and tropospheric column), HCHO (tropospheric column), SO2 (column), CO (column), CH4 (column), aerosol layer height and clouds (fractional cover, cloud-top pressure and optical thickness). Starting from a generic validation protocol meeting community-agreed standards, a set of specific validation settings is associated with each data product, as well as the appropriate set of Fiducial Reference Measurements (FRM) to which it will be compared. VDAF collects FRMs from ESA's Validation Data Centre (EVDC) and from other sources (e.g., WMO's GAW, NDACC and TCCON). Data manipulations on satellite and FRM data (format conversion, filtering, co-location, regridding and vertical smoothing) are performed by the open source software HARP, while more specific manipulations apply in-house routines. The paper concludes with a short description of expected outputs of the system.

  18. New particle formation at ground level and in the vertical column over the Barcelona area

    NASA Astrophysics Data System (ADS)

    Minguillón, M. C.; Brines, M.; Pérez, N.; Reche, C.; Pandolfi, M.; Fonseca, A. S.; Amato, F.; Alastuey, A.; Lyasota, A.; Codina, B.; Lee, H.-K.; Eun, H.-R.; Ahn, K.-H.; Querol, X.

    2015-10-01

    The vertical profiles (up to 975 m a.s.l.) of ultrafine and micronic particles across the planetary boundary layer and the free troposphere over a Mediterranean urban environment were investigated. Measurements were carried out using a tethered balloon equipped with a miniaturized condensation particle counter, a miniaturized optical particle counter, a micro-aethalometer, a rotating impactor, and meteorological instrumentation. Simultaneous ground measurements were carried out at an urban and a regional background site. New particle formation episodes initiating in the urban area were observed under high insolation conditions. The precursors were emitted by the city and urban photochemically-activated nucleation occurred both at high atmospheric levels (tens to hundreds of meters) and at ground level. The new particle formation at ground level was limited by the high particulate matter concentrations recorded during the morning traffic rush hours that increase the condensation sink and prevent new particle formation, and therefore restricted to midday and early afternoon. The aloft new particle formation occurred earlier as the thermally ascending polluted air mass was diluted. The regional background was only affected from midday and early afternoon when sea and mountain breezes transported the urban air mass after particle growth. These events are different from most new particle formation events described in literature, characterized by a regionally originated nucleation, starting early in the morning in the regional background and persisting with a subsequent growth during a long period. An idealized and simplified model of the spatial and time occurrence of these two types of new particle formation episodes into, around and over the city was elaborated.

  19. Automated synthesis of N-(2-[18 F]Fluoropropionyl)-l-glutamic acid as an amino acid tracer for tumor imaging on a modified [18 F]FDG synthesis module.

    PubMed

    Liu, Shaoyu; Sun, Aixia; Zhang, Zhanwen; Tang, Xiaolan; Nie, Dahong; Ma, Hui; Jiang, Shende; Tang, Ganghua

    2017-06-15

    N-(2-[ 18 F]Fluoropropionyl)-l-glutamic acid ([ 18 F]FPGLU) is a potential amino acid tracer for tumor imaging with positron emission tomography. However, due to the complicated multistep synthesis, the routine production of [ 18 F]FPGLU presents many challenging laboratory requirements. To simplify the synthesis process of this interesting radiopharmaceutical, an efficient automated synthesis of [ 18 F]FPGLU was performed on a modified commercial fluorodeoxyglucose synthesizer via a 2-step on-column hydrolysis procedure, including 18 F-fluorination and on-column hydrolysis reaction. [ 18 F]FPGLU was synthesized in 12 ± 2% (n = 10, uncorrected) radiochemical yield based on [ 18 F]fluoride using the tosylated precursor 2. The radiochemical purity was ≥98%, and the overall synthesis time was 35 minutes. To further optimize the radiosynthesis conditions of [ 18 F]FPGLU, a brominated precursor 3 was also used for the preparation of [ 18 F]FPGLU, and the improved radiochemical yield was up to 20 ± 3% (n = 10, uncorrected) in 35 minutes. Moreover, all these results were achieved using the similar on-column hydrolysis procedure on the modified fluorodeoxyglucose synthesis module. Copyright © 2017 John Wiley & Sons, Ltd.

  20. Spatio-temporal assessment and seasonal variation of tropospheric ozone in Pakistan during the last decade.

    PubMed

    Noreen, Asma; Khokhar, Muhammad Fahim; Zeb, Naila; Yasmin, Naila; Hakeem, Khalid Rehman

    2018-03-01

    This study uses the tropospheric ozone data derived from combined observations of Ozone Monitoring Instrument/Microwave Limb Sounder instruments by using the tropospheric ozone residual method. The main objective was to study the spatial distribution and temporal evolution in the troposphere ozone columns over Pakistan during the time period of 2004 to 2014. Results showed an overall increase of 3.2 ± 1.1 DU in tropospheric ozone columns over Pakistan. Spatial distribution showed enhanced ozone columns in the Punjab and southern Sindh consistent to high population, urbanization, and extensive anthropogenic activities, and exhibited statistically significant temporal increase. Seasonal variations in tropospheric ozone columns are driven by various factors such as seasonality in UV-B fluxes, seasonality in ozone precursor gases such as NO x and volatile organic compounds (caused by temperature dependent biogenic emission) and agricultural fire activities in Pakistan. A strong correlation of 96% (r = 0.96) was found between fire events and tropospheric ozone columns in Pakistan.

  1. Nitrogen-Containing Low Volatile Compounds from Pinonaldehyde-Dimethylamine Reaction in the Atmosphere: A Laboratory and Field Study.

    PubMed

    Duporté, Geoffroy; Parshintsev, Jevgeni; Barreira, Luís M F; Hartonen, Kari; Kulmala, Markku; Riekkola, Marja-Liisa

    2016-05-03

    Pinonaldehyde, which is among the most abundant oxidation products of α-pinene, and dimethylamine were selected to study the formation of N-containing low volatile compounds from aldehyde-amine reactions in the atmosphere. Gas phase reactions took place in a Tedlar bag, which was connected to a mass spectrometer ionization source via a short deactivated fused silica column. In addition to on-line analysis, abundance of gaseous precursors and reaction products were monitored off-line. Condensable products were extracted from the bag's walls with a suitable solvent and analyzed by gas chromatography coupled to chemical ionization high-resolution quadrupole time-of-flight mass spectrometry and by ultra-high-performance liquid chromatography coupled to electrospray ionization Orbitrap mass spectrometry. The reactions carried out resulted in several mid-low vapor pressure nitrogen-containing compounds that are potentially important for the formation of secondary organic aerosols in the atmosphere. Further, the presence of brown carbon, confirmed by liquid chromatography-UV-vis-mass spectrometry, was observed. Some of the compounds identified in the laboratory study were also observed in aerosol samples collected at SMEAR II station (Hyytiälä, Finland) in August 2015 suggesting the importance of aldehyde-amine reactions for the aerosol formation and growth.

  2. Sources and characteristics of organic matter in the Clackamas River, Oregon, related to the formation of disinfection by-products in treated drinking water

    USGS Publications Warehouse

    Carpenter, Kurt D.; Kraus, Tamara E.C.; Goldman, Jami H.; Saraceno, John Franco; Downing, Bryan D.; Bergamaschi, Brian A.; McGhee, Gordon; Triplett, Tracy

    2013-01-01

    This study characterized the amount and quality of organic matter in the Clackamas River, Oregon, to gain an understanding of sources that contribute to the formation of chlorinated and brominated disinfection by-products (DBPs), focusing on regulated DBPs in treated drinking water from two direct-filtration treatment plants that together serve approximately 100,000 customers. The central hypothesis guiding this study was that natural organic matter leaching out of the forested watershed, in-stream growth of benthic algae, and phytoplankton blooms in the reservoirs contribute different and varying proportions of organic carbon to the river. Differences in the amount and composition of carbon derived from each source affects the types and concentrations of DBP precursors entering the treatment plants and, as a result, yield varying DBP concentrations and species in finished water. The two classes of DBPs analyzed in this study-trihalomethanes (THMs) and haloacetic acids (HAAs)-form from precursors within the dissolved and particulate pools of organic matter present in source water. The five principal objectives of the study were to (1) describe the seasonal quantity and character of organic matter in the Clackamas River; (2) relate the amount and composition of organic matter to the formation of DBPs; (3) evaluate sources of DBP precursors in the watershed; (4) assess the use of optical measurements, including in-situ fluorescence, for estimating dissolved organic carbon (DOC) concentrations and DBP formation; and (5) assess the removal of DBP precursors during treatment by conducting treatability "jar-test" experiments at one of the treatment plants. Data collection consisted of (1) monthly sampling of source and finished water at two drinking-water treatment plants; (2) event-based sampling in the mainstem, tributaries, and North Fork Reservoir; and (3) in-situ continuous monitoring of fluorescent dissolved organic matter (FDOM), turbidity, chlorophyll-a, and other constituents to continuously track source-water conditions in near real-time. Treatability tests were conducted during the four event-based surveys to determine the effectiveness of coagulant and powdered activated carbon (PAC) on the removal of DBP precursors. Sample analyses included DOC, total particulate carbon (TPC), total and dissolved nutrients, absorbance and fluorescence spectroscopy, and, for regulated DBPs, concentrations of THMs and HAAs in finished water and laboratory-based THM and HAA formation potentials (THMFP and HAAFP, respectively) for source water and selected locations throughout the watershed. The results of this study may not be typical given the record and near record amounts of precipitation that occurred during spring that produced streamflow much higher than average in 2010-11. Although there were algal blooms, lower concentrations of chlorophyll-a were observed in the water column during the study period compared to historical data. Concentrations of DBPs in finished (treated) water averaged 0.024 milligrams per liter (mg/L) for THMs and 0.022 mg/L for HAAs; maximum values were about 0.040 mg/L for both classes of DBPs. Although DBP concentrations were somewhat higher within the distribution system, none of the samples collected for this study or for the quarterly compliance monitoring by the water utilities exceeded levels permissible under existing U.S. Environmental Protection Agency (USEPA) regulations: 0.080 mg/L for THMs and 0.060 mg/L for HAAs. DOC concentrations were generally low in the Clackamas River, typically about 1.0-1.5 mg/L. Concentrations in the mainstem occasionally increased to nearly 2.5 mg/L during storms; DOC concentrations in tributaries were sometimes much higher (up to 7.8 mg/L). The continuous in-situ FDOM measurements indicated sharp rises in DOC concentrations in the mainstem following rainfall events; concentrations were relatively stable during summer base flow. Even though the first autumn storm mobilized appreciable quantities of carbon, higher concentrations of DBPs in finished water were observed 3-weeks later, after the ground was saturated from additional rainfall. The majority of the DOC in the lower Clackamas River appears to originate from the upper basin, suggesting terrestrial carbon was commonly the dominant source. Lower-basin tributaries typically contained the highest concentrations of DOC and DBP precursors and contributed substantially to the overall loads in the mainstem during storms. During low-flow periods, tributaries were not major sources of DOC or DBP precursors to the Clackamas River. Although the dissolved fraction of organic carbon contributed the majority of DBP precursors, at times the particulate fraction (inorganic sediment and organic particles including detritus and algal material) contributed a substantial fraction of DBP precursors. Considering just the main-stem sites, on average, 10 percent of THMFP and 32 percent of HAAFP were attributed to particulate carbon. This finding suggests water-treatment methods that remove particles prior to chlorination would reduce finished-water DBP concentrations to some degree. Overall, concentrations of THM and HAA precursors were closely linked to DOC concentrations; laboratory DBP formation potentials (DBPFPs) clearly showed that THMFP and HAAFP were greatest in the downstream tributaries that contained elevated carbon concentrations. However, carbon-normalized "specific" formation potentials for THMs and HAAs (STHMFP and SHAAFP, respectively) revealed changes in carbon character over time that affected the two types of DBP classes differently. HAA precursors were elevated in waters containing aromatic-rich soil-derived material arising from forested areas. In contrast, THM precursors were associated with carbon having a lower aromatic content; highest STHMFP occurred in autumn 2011 in the mainstem from North Fork Reservoir downstream to LO DWTP. This pattern suggests the potential for a link between THM precursors and algal-derived carbon. The highest STHMFP value was measured within North Fork Reservoir, indicating reservoir derived carbon may be important for this class of DBPs. Weak correlations between STHMFP and SHAAFP emphasize that precursor sources for these types of DBPs may be different. This highlights not only that different locations within the watershed produce carbon with different reactivity (specific DBPFP), but also that different management approaches for each class of DBP precursors could be required for control. Treatability tests conducted on source water during four basin-wide surveys demonstrated that an average of about 40 percent of DOC can be removed by coagulation. While the decrease in THMFP following coagulation was similar to DOC, the decrease in HAAFP was much greater (approximately 70 percent), indicating coagulation is particularly effective at removing HAA precursors'likely because of the aromatic nature of the carbon associated with HAA precursors. Several findings from this study have direct implications for managing drinking-water resources and for providing useful information that may help improve treatment-plant operations. For example, the use of in-situ fluorometers that measure FDOM provided an excellent proxy for DOC concentration in this system and revealed short-term, rapid changes in DOC concentration during storm events. In addition, the strong correlation between FDOM values measured in-situ and HAA5 concentrations in finished water may permit estimation of continuous HAA concentrations, as was done here. As part of this study, multiple in-situ FDOM sensors were deployed continuously and in real-time to characterize the composition of dissolved organic matter. Although the initial results were promising, additional research and engineering developments will be needed to demonstrate the full utility of these sensors for this purpose. In conclusion, although DBPFPs were strongly correlated to DOC concentration, some DBPs formed from particulate carbon, including terrestrial leaf material and algal material such as planktonic species of blue-green algae and sloughed filaments, stalks, and cells of benthic algae. Different precursor sources in the watershed were evident from the data, suggesting specific actions may be available to address some of these sources. In-situ measurements of FDOM proved to be an excellent proxy for DOC concentration as well as HAA formation during treatment, which suggests further development and refinement of these sensors have the potential to provide real-time information about complex watershed processes to operators at the drinking-water treatment plants. Follow-up studies could examine the relative roles that terrestrial and algal sources have on the DBP precursor pool to better understand how watershed-management activities may be affecting the transport of these compounds to Clackamas River drinking-water intakes. Given the low concentrations of algae in the water column during this study, additional surveys during more typical river conditions could provide a more complete understanding of how algae contribute DBP precursors. Further development of FDOM-sensor technology can improve our understanding of carbon dynamics in the river and how concentrations may be trending over time. This study was conducted in collaboration with Clackamas River Water and the City of Lake Oswego water utilities. Other research partners included Oregon Health and Science University in Hillsboro, Oregon, Alexin Laboratory in Tigard, Oregon, U.S. Geological Survey National Research Program Laboratory in Denver, Colorado, and the U.S. Geological Survey Water Science Centers in Portland, Oregon, and Sacramento, California. This project was supported with funding from Clackamas River Water, City of Lake Oswego, the U.S. Geological Survey, and the Water Research Foundation.

  3. N-Nitrosodimethylamine (NDMA) and its precursors in water and wastewater: A review on formation and removal.

    PubMed

    Sgroi, Massimiliano; Vagliasindi, Federico G A; Snyder, Shane A; Roccaro, Paolo

    2018-01-01

    This review summarizes major findings over the last decade related to N-Nitrosodimethylamine (NDMA) in water and wastewater. In particular, the review is focused on the removal of NDMA and of its precursors by conventional and advanced water and wastewater treatment processes. New information regarding formation mechanisms and precursors are discussed as well. NDMA precursors are generally of anthropogenic origin and their main source in water have been recognized to be wastewater discharges. Chloramination is the most common process that results in formation of NDMA during water and wastewater treatment. However, ozonation of wastewater or highly contaminated surface water can also generate significant levels of NDMA. Thus, NDMA formation control and remediation has become of increasing interest, particularly during treatment of wastewater-impacted water and during potable reuse application. NDMA formation has also been associated with the use of quaternary amine-based coagulants and anion exchange resins. UV photolysis with UV fluence far higher than typical disinfection doses is generally considered the most efficient technology for NDMA mitigation. However, recent studies on the optimization of biological processes offer a potentially lower-energy solution. Options for NDMA control include attenuation of precursor materials through physical removal, biological treatment, and/or deactivation by application of oxidants. Nevertheless, NDMA precursor identification and removal can be challenging and additional research and optimization is needed. As municipal wastewater becomes increasingly used as a source water for drinking, NDMA formation and mitigation strategies will become increasingly more important. The following review provides a summary of the most recent information available. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Modeling Initial Stage of Ablation Material Pyrolysis: Graphitic Precursor Formation and Interfacial Effects

    NASA Technical Reports Server (NTRS)

    Desai, Tapan G.; Lawson, John W.; Keblinski, Pawel

    2010-01-01

    Reactive molecular dynamics simulations are used to study initial stage of pyrolysis of ablation materials and their composites with carbon nanotubes and carbon fibers. The products formed during pyrolysis are characterized and water is found as the primary product in all cases. The water formation mechanisms are analyzed and the value of the activation energy for water formation is estimated. A detailed study on graphitic precursor formation reveals the presence of two temperature zones. In the lower temperature zone (less than 2000 K) polymerization occurs resulting in formation of large, stable graphitic precursors, and in the high temperature zone (greater than 2000 K) polymer scission results in formation of short polymer chains/molecules. Simulations performed in the high temperature zone on the phenolic resin composites (with carbon nanotubes and carbon fibers) shows that the presence of interfaces had no substantial effect on the chain scission rate or the activation energy value for water formation.

  5. Formation of halogen-induced secondary organic aerosol (XOA)

    NASA Astrophysics Data System (ADS)

    Kamilli, Katharina; Ofner, Johannes; Zetzsch, Cornelius; Held, Andreas

    2013-04-01

    Reactive halogen species (RHS) are very important due to their potential of stratospheric ozone depletion and surface ozone destruction. RHS seem to interact with precursors of secondary organic aerosol (SOA) similarly to common atmospheric oxidants like OH radicals and ozone. The potential interaction of RHS with preformed SOA has recently been studied (Ofner et al., 2012). Although aerosol formation from reaction of RHS with typical SOA precursors was previously studied (e.g. Cai et al., 2006), no data are available on bromine-induced aerosol formation from organic precursors yet. An aerosol smog-chamber was used to examine the halogen-induced secondary organic aerosol (XOA) formation under atmospheric conditions using simulated sunlight. With a concentration of 10 ppb for the organic precursor, 2 ppb for molecular chlorine, and 10 ppb for molecular bromine, the experimental setup is close to ambient conditions. By combined measurements of the aerosol size distribution, ozone and NOx mixing ratios, as well as the decay of the organic precursor, aerosol yields and aerosol growth rates were determined. The decay of the organic precursor was analyzed by capillary gas chromatography coupled with flame-ionization detection (GC-FID) and the aerosol size distribution was measured using a Scanning Mobility Particle Sizer (SMPS). Additionally, with the decay rate of the precursor and the calculated photolysis rates of molecular halogen species, based on the well-known spectrum of the solar simulator, mechanistic details on the XOA formation pathways can be determined. We observed XOA formation even at very low precursor and RHS concentrations with a diameter mode at 10-20 nm and a number concentration up to 1000000 particles cm-3. While the XOA formation from chlorine is very rapid, the interaction of bromine with the organic precursors is about five times slower. The aerosol yield reached maximum values of 0.01 for the reaction of chlorine with α-pinene and 0.0004 for bromine with α-pinene. This work was funded by German Research Foundation (DFG) under grants HE 5214/5-1 and ZE792/5-2. References: Cai, X., and Griffin, R. J.: Secondary aerosol formation from the oxidation of biogenic hydrocarbons by chlorine atoms, J. Geophys. Res., 111, D14206/14201-D14206/14214, 2006. Ofner, J. Balzer, N., Buxmann, J., Grothe, H., Schmitt-Kopplin, Ph., Platt, U., and Zetzsch, C., Halogenation processes of secondary organic aerosol and implications on halogen release mechanisms, Atmos. Chem. Phys. Discuss. 12, 2975-3017, 2012.

  6. Capability of cation exchange technology to remove proven N-nitrosodimethylamine precursors.

    PubMed

    Li, Shixiang; Zhang, Xulan; Bei, Er; Yue, Huihui; Lin, Pengfei; Wang, Jun; Zhang, Xiaojian; Chen, Chao

    2017-08-01

    N-nitrosodimethylamine (NDMA) precursors consist of a positively charged dimethylamine group and a non-polar moiety, which inspired us to develop a targeted cation exchange technology to remove NDMA precursors. In this study, we tested the removal of two representative NDMA precursors, dimethylamine (DMA) and ranitidine (RNTD), by strong acidic cation exchange resin. The results showed that pH greatly affected the exchange efficiency, with high removal (DMA>78% and RNTD>94%) observed at pHMg 2+ >RNTD + >K + >DMA + >NH 4 + >Na + . The partition coefficient of DMA + to Na + was 1.41±0.26, while that of RNTD + to Na + was 12.1±1.9. The pseudo second-order equation fitted the cation exchange kinetics well. Bivalent inorganic cations such as Ca 2+ were found to have a notable effect on NA precursor removal in softening column test. Besides DMA and RNTD, cation exchange process also worked well for removing other 7 model NDMA precursors. Overall, NDMA precursor removal can be an added benefit of making use of cation exchange water softening processes. Copyright © 2017. Published by Elsevier B.V.

  7. NDMA formation from amine-based pharmaceuticals--impact from prechlorination and water matrix.

    PubMed

    Shen, Ruqiao; Andrews, Susan A

    2013-05-01

    The presence of N-nitrosodimethylamine (NDMA) in drinking water is most commonly associated with the chloramination of amine-based precursors. One option to control the NDMA formation is to remove the precursors via pre-oxidation, and prechlorination is among the most effective options in reducing NDMA formation. However, most of the findings to-date are based on single-precursor scenarios using the model precursor dimethylamine (DMA) and natural organic matter (NOM), while few studies have considered the potential interactions between water matrix components and the target precursors when investigating the prechlorination impact. Specifically, little is known for the behaviour of amine-based pharmaceuticals which have recently been reported to contribute to NDMA formation upon chloramination. This work demonstrates that prechlorination can affect both the ultimate NDMA conversion and the reaction kinetics from selected pharmaceuticals, and the nature and extent of the impact was compound-specific and matrix-specific. In the absence of NOM, the NDMA formation from most pharmaceuticals was reduced upon prechlorination, except for sumatriptan which showed a consistent increase in NDMA formation with increasing free chlorine contact time. In the presence of NOM, prechlorination was shown to enhance initial reactions by reducing the binding between NOM and pharmaceuticals, but prolonged prechlorination broke down NOM into smaller products which could then form new bonds with pharmaceuticals and thus inhibit their further conversion into NDMA. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Electromigration induced high fraction of compound formation in SnAgCu flip chip solder joints with copper column

    NASA Astrophysics Data System (ADS)

    Xu, Luhua; Han, Jung-Kyu; Liang, Jarrett Jun; Tu, K. N.; Lai, Yi-Shao

    2008-06-01

    To overcome the effect of current crowding on electromigration-induced pancake-type void formation in flip chip solder joints, two types of Cu column in 90μm flip chip SnAgCu solder joints have been studied. They were (1) the solder contacts the Cu column at bottom and side walls and (2) the solder wets only the bottom surface of the copper column. With a current density of 1.6×104A/cm2 at 135°C, no failure was detected after 1290h. However, the resistance increased by about 10% due to the formation of a large fraction of intermetallic compounds. We found that electromigration has accelerated the consumption rate of copper column and converted almost the entire solder joint into intermetallic compound. Mechanically, drop impact test indicates a brittle fracture failure in the intermetallic. The electromigration critical product for the intermetallic is discussed.

  9. Suggested Format for Acute Toxicity Studies

    EPA Pesticide Factsheets

    This document suggests the format for final reports on pesticide studies (right column of the tables in the document) and provides instructions for the creation of PDF Version 1.3 electronic submission documents (left column of the tables).

  10. Formation of well-mixed warm water column in central Bohai Sea during summer: Role of high-frequency atmospheric forcing

    NASA Astrophysics Data System (ADS)

    Ma, Weiwei; Wan, Xiuquan; Wang, Zhankun; Liu, Yulong; Wan, Kai

    2017-12-01

    The influence of high-frequency atmospheric forcing on the formation of a well-mixed summer warm water column in the central Bohai Sea is investigated comparing model simulations driven by daily surface forcing and those using monthly forcing data. In the absence of high-frequency atmospheric forcing, numerical simulations have repeatedly failed to reproduce this vertically uniform column of warm water measured over the past 35 years. However, high-frequency surface forcing is found to strongly influence the structure and distribution of the well-mixed warm water column, and simulations are in good agreement with observations. Results show that high frequency forcing enhances vertical mixing over the central bank, intensifies downward heat transport, and homogenizes the water column to form the Bohai central warm column. Evidence presented shows that high frequency forcing plays a dominant role in the formation of the well-mixed warm water column in summer, even without the effects of tidal and surface wave mixing. The present study thus provides a practical and rational way of further improving the performance of oceanic simulations in the Bohai Sea and can be used to adjust parameterization schemes of ocean models.

  11. The role of chloramine species in NDMA formation.

    PubMed

    Selbes, Meric; Beita-Sandí, Wilson; Kim, Daekyun; Karanfil, Tanju

    2018-09-01

    N-nitrosodimethylamine (NDMA), a probable human carcinogen disinfection by-product, has been detected in chloraminated drinking water systems. Understanding its formation over time is important to control NDMA levels in distribution systems. The main objectives of this study were to investigate the role of chloramine species (i.e., monochloramine and dichloramine); and the factors such as pH, sulfate, and natural organic matter (NOM) influencing the formation of NDMA. Five NDMA precursors (i.e., dimethylamine (DMA), trimethylamine (TMA), N,N-dimethylisopropylamine (DMiPA), N,N-dimethylbenzylamine (DMBzA), and ranitidine (RNTD)) were carefully selected based on their chemical structures and exposed to varying ratios of monochloramine and dichloramine. All amine precursors reacted relatively fast to form NDMA and reached their maximum NDMA yields within 24 h in the presence of excess levels of chloramines (both mono- and dichloramine) or excess levels of dichloramine conditions (with limited monochloramine). When the formation of dichloramine was suppressed (i.e., only monochloramine existed in the system) over the 5 day contact time, NDMA formation from DMA, TMA, and DMiPA was drastically reduced (∼0%). Under monochloramine abundant conditions, however, DMBzA and RNTD showed 40% and 90% NDMA conversions at the end of 5 day contact time, respectively, with slow formation rates, indicating that while these amine precursors react preferentially with dichloramine to form NDMA, they can also react with monochloramine in the absence of dichloramine. NOM and pH influenced dichloramine levels that affected NDMA yields. NOM had an adverse effect on NDMA formation as it created a competition with NDMA precursors for dichloramine. Sulfate did not increase the NDMA formation from the two selected NDMA precursors. pH played a key role as it influenced both chloramine speciation and protonation state of amine precursors and the highest NDMA formation was observed at the pH range where dichloramine and deprotonated amines coexisted. In selected natural water and wastewater samples, dichloramine led to the formation of more NDMA than monochloramine. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Formation of NDMA from ranitidine and sumatriptan: the role of pH.

    PubMed

    Shen, Ruqiao; Andrews, Susan A

    2013-02-01

    N-nitrosodimethylamine (NDMA) is an emerging disinfection by-product (DBP) which can be formed via the chloramination of amine-based precursors. The formation of NDMA is mainly determined by the speciation of chloramines and the precursor amine groups, both of which are highly dependent on pH. The impact of pH on NDMA formation has been studied for the model precursor dimethylamine (DMA) and natural organic matter (NOM), but little is known for amine-based pharmaceuticals which have been newly identified as a group of potential NDMA precursors, especially in waters impacted by treated wastewater effluents. This study investigates the role of pH in the formation of NDMA from two amine-based pharmaceuticals, ranitidine and sumatriptan, under drinking water relevant conditions. The results indicate that pH affects both the ultimate NDMA formation as well as the reaction kinetics. The maximum NDMA formation typically occurs in the pH range of 7-8. At lower pH, the reaction is limited due to the lack of non-protonated amines. At higher pH, although the initial reaction is enhanced by the increasing amount of non-protonated amines, the ultimate NDMA formation is limited because of the lack of dichloramine. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Applying high-throughput methods to develop a purification process for a highly glycosylated protein.

    PubMed

    Sanaie, Nooshafarin; Cecchini, Douglas; Pieracci, John

    2012-10-01

    Micro-scale chromatography formats are becoming more routinely used in purification process development because of their ability to rapidly screen large number of process conditions at a time with minimal material. Given the usual constraints that exist on development timelines and resources, these systems can provide a means to maximize process knowledge and process robustness compared to traditional packed column formats. In this work, a high-throughput, 96-well filter plate format was used in the development of the cation exchange and hydrophobic interaction chromatography steps of a purification process designed to alter the glycoform distribution of a small protein. The significant input parameters affecting process performance were rapidly identified for both steps and preliminary operating conditions were identified. These ranges were verified in a packed chromatography column in order to assess the ability of the 96-well plate to predict packed column performance. In both steps, the 96-well plate format consistently led to underestimated glycoform-enrichment levels and to overestimated product recovery rates compared to the column-based approach. These studies demonstrate that the plate format can be used as a screening tool to narrow the operating ranges prior to further optimization on packed chromatography columns. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Relative Importance of Different Water Categories as Sources of N-Nitrosamine Precursors.

    PubMed

    Zeng, Teng; Glover, Caitlin M; Marti, Erica J; Woods-Chabane, Gwen C; Karanfil, Tanju; Mitch, William A; Dickenson, Eric R V

    2016-12-20

    A comparison of loadings of N-nitrosamines and their precursors from different source water categories is needed to design effective source water blending strategies. Previous research using Formation Potential (FP) chloramination protocols (high dose and prolonged contact times) raised concerns about precursor loadings from various source water categories, but differences in the protocols employed rendered comparisons difficult. In this study, we applied Uniform Formation Condition (UFC) chloramination and ozonation protocols mimicking typical disinfection practice to compare loadings of ambient specific and total N-nitrosamines as well as chloramine-reactive and ozone-reactive precursors in 47 samples, including 6 pristine headwaters, 16 eutrophic waters, 4 agricultural runoff samples, 9 stormwater runoff samples, and 12 municipal wastewater effluents. N-Nitrosodimethylamine (NDMA) formation from UFC and FP chloramination protocols did not correlate, with NDMA FP often being significant in samples where no NDMA formed under UFC conditions. N-Nitrosamines and their precursors were negligible in pristine headwaters. Conventional, and to a lesser degree, nutrient removal wastewater effluents were the dominant source of NDMA and its chloramine- and ozone-reactive precursors. While wastewater effluents were dominant sources of TONO and their precursors, algal blooms, and to a lesser degree agricultural or stormwater runoff, could be important where they affect a major fraction of the water supply.

  15. Precursor Mediated Synthesis of Nanostructured Silicas: From Precursor-Surfactant Ion Pairs to Structured Materials.

    PubMed

    Hesemann, Peter; Nguyen, Thy Phung; Hankari, Samir El

    2014-04-11

    The synthesis of nanostructured anionic-surfactant-templated mesoporous silica (AMS) recently appeared as a new strategy for the formation of nanostructured silica based materials. This method is based on the use of anionic surfactants together with a co-structure-directing agent (CSDA), mostly a silylated ammonium precursor. The presence of this CSDA is necessary in order to create ionic interactions between template and silica forming phases and to ensure sufficient affinity between the two phases. This synthetic strategy was for the first time applied in view of the synthesis of surface functionalized silica bearing ammonium groups and was then extended on the formation of materials functionalized with anionic carboxylate and bifunctional amine-carboxylate groups. In the field of silica hybrid materials, the "anionic templating" strategy has recently been applied for the synthesis of silica hybrid materials from cationic precursors. Starting from di- or oligosilylated imidazolium and ammonium precursors, only template directed hydrolysis-polycondensation reactions involving complementary anionic surfactants allowed accessing structured ionosilica hybrid materials. The mechanistic particularity of this approach resides in the formation of precursor-surfactant ion pairs in the hydrolysis-polycondensation mixture. This review gives a systematic overview over the various types of materials accessed from this cooperative ionic templating approach and highlights the high potential of this original strategy for the formation of nanostructured silica based materials which appears as a complementary strategy to conventional soft templating approaches.

  16. Disinfection by-product formation from the chlorination and chloramination of amines.

    PubMed

    Bond, Tom; Mokhtar Kamal, Nurul Hana; Bonnisseau, Thomas; Templeton, Michael R

    2014-08-15

    This study investigated the relative effect of chlorination and chloramination on DBP formation from seven model amine precursor compounds, representative of those commonly found in natural waters, at pH 6, 7 and 8. The quantified DBPs included chloroform, dichloroacetonitrile (DCAN), trichloroacetonitrile (TCAN) and chloropicrin (trichloronitromethane). The aggregate formation (i.e. the mass sum of the formation from the individual precursors) of chloroform, DCAN and TCAN from all precursors was reduced by respectively 75-87%, 66-90% and 89-93% when considering pre-formed monochloramine compared to chlorine. The formation of both haloacetonitriles decreased with increasing pH following chlorination, but formation after chloramination was relatively insensitive to pH change. The highest formation of chloropicrin was from chloramination at pH 7. These results indicate that, while chloramination is effective at reducing the concentrations of trihalomethanes and haloacetonitriles in drinking water compared with chlorination, the opposite is true for the halonitromethanes. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Investigation of phase evolution of CaCu3Ti4O12 (CCTO) by in situ synchrotron high-temperature powder diffraction

    NASA Astrophysics Data System (ADS)

    Ouyang, Xin; Huang, Saifang; Zhang, Weijun; Cao, Peng; Huang, Zhaohui; Gao, Wei

    2014-03-01

    In situ synchrotron X-ray powder diffraction was used to study the high-temperature phase evolution of CaCu3Ti4O12 (CCTO) precursors prepared via solid-state and sol-gel methods. After the precursors are heated to 1225 °C, the CCTO phase is the main phase observed in the calcined powder, with the presence of some minor impurities. Comparing the two precursors, we found that the onset temperature for the CCTO phase formation is 800 °C in the sol-gel precursor, lower than that in the solid-state precursor (875 °C). Intermediate phases were only observed in the sol-gel precursor. Both precursors are able to be calcined to sub-micrometric sized powders. Based on the synchrotron data along with differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA), the phase formation sequence and mechanism during calcination are proposed in this study.

  18. Photochemical metal organic deposition of metal oxides

    NASA Astrophysics Data System (ADS)

    Law, Wai Lung (Simon)

    This thesis pertains to the study of the deposition of metal oxide thin films via the process of Photochemical Metal Organic Deposition (PMOD). In this process, an amorphous metal organic precursor thin film is subjected to irradiation under ambient conditions. Fragmentation of the metal precursor results from the photoreaction, leading to the formation of metal oxide thin films in the presence of oxygen. The advantage of PMOD lies in its ability to perform lithography of metal oxide thin film without the application of photoresist. The metal organic precursor can be imaged directly by photolysis through a lithography mask under ambient conditions. Thus the PMOD process provides an attractive alternative to the conventional VLSI fabrication process. Metal carboxylates and metal acetylacetonates complexes were used as the precursors for PMOD process in this thesis. Transition metal carboxylate and metal acetylacetonate complexes have shown previously that when deposited as amorphous thin films, they will undergo fragmentation upon photolysis, leading to the formation of metal oxide thin films under ambient conditions. In this thesis, the formation of main group metal oxides of aluminum, indium and tin, as well as the formation of rare-earth metal oxides of cerium and europium by PMOD from its corresponding metal organic precursor will be presented. The nature of the photoreactions as well as the properties of the thin films deposited by PMOD will be investigated. Doped metal oxide thin films can also be prepared using the PMOD process. By mixing the metal precursors prior to deposition in the desired ratio, precursor films containing more than one metal precursor can be obtained. Mixed metal oxide thin films corresponding to the original metal ratio, in the precursor mixture, can be obtained upon photolysis under ambient conditions. In this thesis, the properties of doped metal oxide thin films of europium doped aluminum oxide as well as tin doped indium oxide thin films will also be presented.

  19. Precursors for formation of copper selenide, indium selenide, copper indium diselenide, and/or copper indium gallium diselenide films

    DOEpatents

    Curtis, Calvin J; Miedaner, Alexander; Van Hest, Maikel; Ginley, David S

    2014-11-04

    Liquid-based precursors for formation of Copper Selenide, Indium Selenide, Copper Indium Diselenide, and/or copper Indium Galium Diselenide include copper-organoselenides, particulate copper selenide suspensions, copper selenide ethylene diamine in liquid solvent, nanoparticulate indium selenide suspensions, and indium selenide ethylene diamine coordination compounds in solvent. These liquid-based precursors can be deposited in liquid form onto substrates and treated by rapid thermal processing to form crystalline copper selenide and indium selenide films.

  20. Surface micro-structuring of silicon by excimer-laser irradiation in reactive atmospheres

    NASA Astrophysics Data System (ADS)

    Pedraza, A. J.; Fowlkes, J. D.; Jesse, S.; Mao, C.; Lowndes, D. H.

    2000-12-01

    The formation mechanisms of cones and columns by pulsed-laser irradiation in reactive atmospheres were studied using scanning electron microscopy and profilometry. Deep etching takes place in SF6- and O2- rich atmospheres and consequently, silicon-containing molecules and clusters are released. Transport of silicon from the etched/ablated regions to the tip of columns and cones and to the side of the cones is required because both structures, columns and cones, protrude above the initial surface. The laser-induced micro-structure is influenced not only by the nature but also by the partial pressure of the reactive gas in the atmosphere. Irradiation in Ar following cone formation in SF6 produced no additional growth but rather melting and resolidification. Subsequent irradiation using again a SF6 atmosphere lead to cone restructuring and growth resumption. Thus the effects of etching plus re-deposition that produce column/cone formation and growth are clearly separated from the effects of just melting. On the other hand, irradiation continued in air after first performed in SF6 resulted in: (a) an intense etching of the cones and a tendency to transform them into columns; (b) growth of new columns on top of the existing cones and (c) filamentary nano-structures coating the sides of the columns and cones.

  1. Removal of disinfection by-products from contaminated water using a synthetic goethite catalyst via catalytic ozonation and a biofiltration system.

    PubMed

    Wang, Yu-Hsiang; Chen, Kuan-Chung

    2014-09-10

    The effects of synthetic goethite (α-FeOOH) used as the catalyst in catalytic ozonation for the degradation of disinfection by-product (DBP) precursors are investigated. A biofiltration column applied following the catalytic ozonation process is used to evaluate the efficiency of removing DBP precursors via biotreatment. Ozone can rapidly react with aromatic compounds and oxidize organic compounds, resulting in a decrease in the fluorescence intensity of dissolved organic matter (DOM). In addition, catalytic ozonation can break down large organic molecules, which causes a blue shift in the emission-excitation matrix spectra. Water treated with catalytic ozonation is composed of low-molecular structures, including soluble microbial products (SMPs) and other aromatic proteins (APs). The DOM in SMPs and APs is removed by subsequent biofiltration. Catalytic ozonation has a higher removal efficiency for dissolved organic carbon and higher ultraviolet absorbance at 254 nm compared to those of ozonation without a catalyst. The use of catalytic ozonation and subsequent biofiltration leads to a lower DBP formation potential during chlorination compared to that obtained using ozonation and catalytic ozonation alone. Regarding DBP species during chlorination, the bromine incorporation factor (BIF) of trihalomethanes and haloacetic acids increases with increasing catalyst dosage in catalytic ozonation. Moreover, the highest BIF is obtained for catalytic ozonation and subsequent biofiltration.

  2. Removal of Disinfection By-Products from Contaminated Water Using a Synthetic Goethite Catalyst via Catalytic Ozonation and a Biofiltration System·

    PubMed Central

    Wang, Yu-Hsiang; Chen, Kuan-Chung

    2014-01-01

    The effects of synthetic goethite (α-FeOOH) used as the catalyst in catalytic ozonation for the degradation of disinfection by-product (DBP) precursors are investigated. A biofiltration column applied following the catalytic ozonation process is used to evaluate the efficiency of removing DBP precursors via biotreatment. Ozone can rapidly react with aromatic compounds and oxidize organic compounds, resulting in a decrease in the fluorescence intensity of dissolved organic matter (DOM). In addition, catalytic ozonation can break down large organic molecules, which causes a blue shift in the emission-excitation matrix spectra. Water treated with catalytic ozonation is composed of low-molecular structures, including soluble microbial products (SMPs) and other aromatic proteins (APs). The DOM in SMPs and APs is removed by subsequent biofiltration. Catalytic ozonation has a higher removal efficiency for dissolved organic carbon and higher ultraviolet absorbance at 254 nm compared to those of ozonation without a catalyst. The use of catalytic ozonation and subsequent biofiltration leads to a lower DBP formation potential during chlorination compared to that obtained using ozonation and catalytic ozonation alone. Regarding DBP species during chlorination, the bromine incorporation factor (BIF) of trihalomethanes and haloacetic acids increases with increasing catalyst dosage in catalytic ozonation. Moreover, the highest BIF is obtained for catalytic ozonation and subsequent biofiltration. PMID:25211774

  3. Evaluating a Space-Based Indicator of Surface Ozone-NOx-VOC Sensitivity Over Midlatitude Source Regions and Application to Decadal Trends

    NASA Astrophysics Data System (ADS)

    Jin, Xiaomeng; Fiore, Arlene M.; Murray, Lee T.; Valin, Lukas C.; Lamsal, Lok N.; Duncan, Bryan; Folkert Boersma, K.; De Smedt, Isabelle; Abad, Gonzalo Gonzalez; Chance, Kelly; Tonnesen, Gail S.

    2017-10-01

    Determining effective strategies for mitigating surface ozone (O3) pollution requires knowledge of the relative ambient concentrations of its precursors, NOx, and VOCs. The space-based tropospheric column ratio of formaldehyde to NO2 (FNR) has been used as an indicator to identify NOx-limited versus NOx-saturated O3 formation regimes. Quantitative use of this indicator ratio is subject to three major uncertainties: (1) the split between NOx-limited and NOx-saturated conditions may shift in space and time, (2) the ratio of the vertically integrated column may not represent the near-surface environment, and (3) satellite products contain errors. We use the GEOS-Chem global chemical transport model to evaluate the quantitative utility of FNR observed from the Ozone Monitoring Instrument over three northern midlatitude source regions. We find that FNR in the model surface layer is a robust predictor of the simulated near-surface O3 production regime. Extending this surface-based predictor to a column-based FNR requires accounting for differences in the HCHO and NO2 vertical profiles. We compare four combinations of two OMI HCHO and NO2 retrievals with modeled FNR. The spatial and temporal correlations between the modeled and satellite-derived FNR vary with the choice of NO2 product, while the mean offset depends on the choice of HCHO product. Space-based FNR indicates that the spring transition to NOx-limited regimes has shifted at least a month earlier over major cities (e.g., New York, London, and Seoul) between 2005 and 2015. This increase in NOx sensitivity implies that NOx emission controls will improve O3 air quality more now than it would have a decade ago.

  4. Evaluating a Space-Based Indicator of Surface Ozone-NO x -VOC Sensitivity Over Midlatitude Source Regions and Application to Decadal Trends.

    PubMed

    Jin, Xiaomeng; Fiore, Arlene M; Murray, Lee T; Valin, Lukas C; Lamsal, Lok N; Duncan, Bryan; Boersma, K Folkert; De Smedt, Isabelle; Abad, Gonzalo Gonzalez; Chance, Kelly; Tonnesen, Gail S

    2017-10-16

    Determining effective strategies for mitigating surface ozone (O 3 ) pollution requires knowledge of the relative ambient concentrations of its precursors, NO x , and VOCs. The space-based tropospheric column ratio of formaldehyde to NO 2 (FNR) has been used as an indicator to identify NO x -limited versus NO x -saturated O 3 formation regimes. Quantitative use of this indicator ratio is subject to three major uncertainties: (1) the split between NO x -limited and NO x -saturated conditions may shift in space and time, (2) the ratio of the vertically integrated column may not represent the near-surface environment, and (3) satellite products contain errors. We use the GEOS-Chem global chemical transport model to evaluate the quantitative utility of FNR observed from the Ozone Monitoring Instrument over three northern midlatitude source regions. We find that FNR in the model surface layer is a robust predictor of the simulated near-surface O 3 production regime. Extending this surface-based predictor to a column-based FNR requires accounting for differences in the HCHO and NO 2 vertical profiles. We compare four combinations of two OMI HCHO and NO 2 retrievals with modeled FNR. The spatial and temporal correlations between the modeled and satellite-derived FNR vary with the choice of NO 2 product, while the mean offset depends on the choice of HCHO product. Space-based FNR indicates that the spring transition to NO x -limited regimes has shifted at least a month earlier over major cities (e.g., New York, London, and Seoul) between 2005 and 2015. This increase in NO x sensitivity implies that NO x emission controls will improve O 3 air quality more now than it would have a decade ago.

  5. Method for maximizing shale oil recovery from an underground formation

    DOEpatents

    Sisemore, Clyde J.

    1980-01-01

    A method for maximizing shale oil recovery from an underground oil shale formation which has previously been processed by in situ retorting such that there is provided in the formation a column of substantially intact oil shale intervening between adjacent spent retorts, which method includes the steps of back filling the spent retorts with an aqueous slurry of spent shale. The slurry is permitted to harden into a cement-like substance which stabilizes the spent retorts. Shale oil is then recovered from the intervening column of intact oil shale by retorting the column in situ, the stabilized spent retorts providing support for the newly developed retorts.

  6. Rapid regulation of brain-derived neurotrophic factor mRNA within eye-specific circuits during ocular dominance column formation.

    PubMed

    Lein, E S; Shatz, C J

    2000-02-15

    The neurotrophin brain-derived neurotrophic factor (BDNF) has emerged as a candidate retrograde signaling molecule for geniculocortical axons during the formation of ocular dominance columns. Here we examined whether neuronal activity can regulate BDNF mRNA in eye-specific circuits in the developing cat visual system. Dark-rearing throughout the critical period for ocular dominance column formation decreases levels of BDNF mRNA within primary visual cortex, whereas short-term (2 d) binocular blockade of retinal activity with tetrodotoxin (TTX) downregulates BDNF mRNA within the lateral geniculate nucleus (LGN) and visual cortical areas. Brief (6 hr to 2 d) monocular TTX blockade during the critical period and also in adulthood causes downregulation in appropriate eye-specific laminae in the LGN and ocular dominance columns within primary visual cortex. Monocular TTX blockade at postnatal day 23 also downregulates BDNF mRNA in a periodic fashion, consistent with recent observations that ocular dominance columns can be detected at these early ages by physiological methods. In contrast, 10 d monocular TTX during the critical period does not cause a lasting decrease in BDNF mRNA expression in columns pertaining to the treated eye, consistent with the nearly complete shift in physiological response properties of cortical neurons in favor of the unmanipulated eye known to result from long-term monocular deprivation. These observations demonstrate that BDNF mRNA levels can provide an accurate "molecular readout" of the activity levels of cortical neurons and are consistent with a highly local action of BDNF in strengthening and maintaining active synapses during ocular dominance column formation.

  7. Precursor Mediated Synthesis of Nanostructured Silicas: From Precursor-Surfactant Ion Pairs to Structured Materials

    PubMed Central

    Hesemann, Peter; Nguyen, Thy Phung; Hankari, Samir El

    2014-01-01

    The synthesis of nanostructured anionic-surfactant-templated mesoporous silica (AMS) recently appeared as a new strategy for the formation of nanostructured silica based materials. This method is based on the use of anionic surfactants together with a co-structure-directing agent (CSDA), mostly a silylated ammonium precursor. The presence of this CSDA is necessary in order to create ionic interactions between template and silica forming phases and to ensure sufficient affinity between the two phases. This synthetic strategy was for the first time applied in view of the synthesis of surface functionalized silica bearing ammonium groups and was then extended on the formation of materials functionalized with anionic carboxylate and bifunctional amine-carboxylate groups. In the field of silica hybrid materials, the “anionic templating” strategy has recently been applied for the synthesis of silica hybrid materials from cationic precursors. Starting from di- or oligosilylated imidazolium and ammonium precursors, only template directed hydrolysis-polycondensation reactions involving complementary anionic surfactants allowed accessing structured ionosilica hybrid materials. The mechanistic particularity of this approach resides in the formation of precursor-surfactant ion pairs in the hydrolysis-polycondensation mixture. This review gives a systematic overview over the various types of materials accessed from this cooperative ionic templating approach and highlights the high potential of this original strategy for the formation of nanostructured silica based materials which appears as a complementary strategy to conventional soft templating approaches. PMID:28788602

  8. Evaluating a Space-Based Indicator of Surface Ozone-NOx-VOC Sensitivity Over Midlatitude Source Regions and Application to Decadal Trends

    EPA Science Inventory

    Determining effective strategies for mitigating surface ozone (O3) pollution requires knowledge of the relative ambient concentrations of its precursors, NOx, and VOCs. The space-based tropospheric column ratio of formaldehyde to NO2 (FNR) has been used as an indicator to identif...

  9. Effects of expected-value information and display format on recognition of aircraft subsystem abnormalities

    NASA Technical Reports Server (NTRS)

    Palmer, Michael T.; Abbott, Kathy H.

    1994-01-01

    This study identifies improved methods to present system parameter information for detecting abnormal conditions and to identify system status. Two workstation experiments were conducted. The first experiment determined if including expected-value-range information in traditional parameter display formats affected subject performance. The second experiment determined if using a nontraditional parameter display format, which presented relative deviation from expected value, was better than traditional formats with expected-value ranges included. The inclusion of expected-value-range information onto traditional parameter formats was found to have essentially no effect. However, subjective results indicated support for including this information. The nontraditional column deviation parameter display format resulted in significantly fewer errors compared with traditional formats with expected-value-ranges included. In addition, error rates for the column deviation parameter display format remained stable as the scenario complexity increased, whereas error rates for the traditional parameter display formats with expected-value ranges increased. Subjective results also indicated that the subjects preferred this new format and thought that their performance was better with it. The column deviation parameter display format is recommended for display applications that require rapid recognition of out-of-tolerance conditions, especially for a large number of parameters.

  10. On Soot Inception in Nonpremixed Flames and the Effects of Flame Structure

    NASA Technical Reports Server (NTRS)

    Chao, B. H.; Liu, S.; Axelbaum, R. L.; Gokoglu, Suleyman (Technical Monitor)

    1998-01-01

    A simplified three-step model of soot inception has been employed with high activation energy asymptotics to study soot inception in nonpremixed counterflow systems with emphasis on understanding the effects of hydrodynamics and transport. The resulting scheme yields three zones: (1) a fuel oxidation zone wherein the fuel and oxidizer react to form product as well as a radical R, (e.g., H), (2) a soot/precursor formation zone where the radical R reacts with fuel to form "soot/precursor" S, and (3) a soot/precursor consumption zone where S reacts with the oxidizer to form product. The kinetic scheme, although greatly simplified, allows the coupling between soot inception and flame structure to be assessed. The results yield flame temperature, flame location, and a soot/precursor index S(sub I) as functions of Damkohler number for S formation. The soot/precursor index indicates the amount of S at the boundary of the formation region. The flame temperature indirectly indicates the total amount of S integrated over the formation region because as S is formed less heat release is available. The results show that unlike oxidation reactions, an extinction turning-point behavior does not exist for soot. Instead, the total amount of S slowly decreases with decreasing Damkohler number (increasing strain rate), which is consistent with counterflow flame experiments. When the Lewis number of the radical is decreased from unity, the total S reduces due to reduced residence time for the radical in the soot formation region. Similarly, when the Lewis number of the soot/precursor is increased from unity the amount of S increases for all Damkohler numbers. In addition to studying fuel-air (low stoichiometric mixture fraction) flames, the air-side nitrogen was substituted into the fuel, yielding diluted fuel-oxygen (high stoichiometric mixture fraction) flames with the same flame temperature as the fuel - air flames. The relative flame locations were different however, and, consistent with counterflow flame experiments, this difference was found to dramatically reduce the total amount of S generated because the change in stoichiometric mixture fraction affects residence times, temperatures and concentrations in the soot/precursor formation and consumption zones. Furthermore, while the soot/precursor consumption reaction had a negligible effect on the soot process for fuel-air flames it was very important to diluted fuel - oxygen flames.

  11. Development of a polyclonal antibody with broad epitope specificity for advanced glycation endproducts and localization of these epitopes in Bruch's membrane of the aging eye.

    PubMed

    Farboud, B; Aotaki-Keen, A; Miyata, T; Hjelmeland, L M; Handa, J T

    1999-07-14

    To develop an antibody that recognizes a variety of advanced glycation endproduct (AGE) epitopes. Glycolaldehyde was used to modify bovine serum albumin and HPLC analysis was used to measure pentosidine formation as an indicator of AGE formation. A polyclonal anti-AGE antibody was synthesized by injecting glycolaldehyde-incubated keyhole limpet hemocyanin into rabbits, affinity purified using AGE modified bovine serum albumin coupled to an affinity resin column, and characterized by immunoblot analysis. HPLC analysis of glycolaldehyde treated bovine serum albumin detected high levels of pentosidine formation, suggesting that glycolaldehyde is a potent precursor for pentosidine. By immunoblot analysis, our antibody recognized carboxymethyllysine and pentosidine, two well-characterized AGEs, as well as other AGE epitopes. Immunohistochemical evaluation showed evidence of AGEs in Bruch's membrane (including basal laminar deposits and drusen), choroidal extracellular matrix, and vessel walls in an 82 year old nondiabetic globe. A similar staining pattern was observed in an age-matched diabetic control. In contrast, no staining was seen with the antibody in a 20 month old nondiabetic globe. A unique anti-AGE antibody was synthesized that recognizes a variety of AGE epitopes including carboxymethyllysine and pentosidine. Its best use might be in broad surveys of the age-dependent accumulation of a large number of AGE epitopes that might not be revealed by antibodies to pentosidine or CML.

  12. Investigating the Formation Mechanisms and Inorganic Precursors of Formate and Acetate in Lost City Hydrothermal Fluids

    NASA Astrophysics Data System (ADS)

    Lang, S. Q.; Bernasconi, S. M.; Früh-Green, G.

    2010-12-01

    Fluids from the Lost City Hydrothermal Field are rich in hydrogen and methane, with high pHs (9 - 11), as a result of serpentinization reactions at moderate temperatures of approximately 120-200°C. It has been predicted that organic carbon compounds would form abiologically under these chemical and thermal conditions from inorganic precursors, in the form of hydrocarbons and organic acids. Previous work has demonstrated the presence of high concentrations of both formate and acetate in the Lost City fluids [Lang et al., 2010, GCA]. Formate is the second most prevalent carbon species in the fluids and may provide local microbial communities with a necessary carbon source in the face of low dissolved inorganic carbon concentrations. The goals of this study are to constrain the formation mechanisms of these organic acids (abiotic vs. biotic) and to identify their inorganic precursors. Formate and acetate were isolated from multiple fluid samples by preparative high-performance liquid chromatography for isotopic analysis. The δ13C of formate is similar to that of Lost City methane, and consistent with an abiological origin. The isotopic signature of acetate is significantly different from these values, and may be indicative of a biological source. Radiocarbon measurements of the isolated formate are in progress and should allow us to determine if the precursor carbon is derived from a mantle or deep-seawater source. Alkaline hydrothermal systems have been proposed as potential sites to the origin of life and formate has been proposed as a critical intermediate towards the kinds of reduced carbon species found in biochemistry. Evidence of an abiological formation mechanism of formate at Lost City may significantly further our understanding of prebiotic chemistry.

  13. Top-down NOX emissions over European cities from LOTOS-EUROS simulated and OMI observed tropospheric NO2 columns using the Exponentially Modified Gaussian approach

    NASA Astrophysics Data System (ADS)

    Verstraeten, Willem W.; Folkert Boersma, K.; Douros, John; Williams, Jason E.; Eskes, Henk H.; Delcloo, Andy

    2017-04-01

    High nitrogen oxides concentrations at the surface (NOX = NO + NO2) impact humans and ecosystem badly and play a key role in tropospheric chemistry. Surface NOX emissions drive major processes in regional and global chemistry transport models (CTM). NOX contributes to the formation of acid rain, act as aerosol precursors and is an important trace gas for the formation of tropospheric ozone (O3). Via tropospheric O3, NOX indirectly affects the production of the hydroxyl radical which controls the chemical lifetime of key atmospheric pollutants and reactive greenhouse gases. High NOX emissions are mainly observed in polluted regions produced by anthropogenic combustion from industrial, traffic and household activities typically observed in large and densely populated urban areas. Accurate NOX inventories are essential, but state-of the- art emission databases may vary substantially and uncertainties are high since reported emissions factors may differ in order of magnitude and more. To date, the modelled NO2 concentrations and lifetimes have large associated uncertainties due to the highly non-linear small-scale chemistry that occurs in urban areas and uncertainties in the reaction rate data, missing nitrogen (N) species and volatile organic compounds (VOC) emissions, and incomplete knowledge of nitrogen oxides chemistry. Any overestimation in the chemical lifetime may mask missing NOX chemistry in current CTM's. By simultaneously estimating both the NO2 lifetime and concentrations, for instance by using the Exponentially Modified Gaussian (EMG), a better surface NOX emission flux estimate can be obtained. Here we evaluate if the EMG methodology can reproduce the emissions input from the tropospheric NO2 columns simulated by the LOTOS-EUROS (Long Term Ozone Simulation-European Ozone Simulation) CTM model. We apply the EMG methodology on LOTOS-EUROS simulated tropospheric NO2 columns for the period April-September 2013 for 21 selected European urban areas under windy conditions (surface wind speeds > 3 m s-1). We then compare the top-down derived surface NOX emissions with the 2011 MACC-III emission inventory, used in the LOTOS-EUROS model as input to simulate the NO2 columns. We also apply the EMG methodology on OMI (Ozone Monitoring Instrument) tropospheric NO2 column data, providing us with real-time observation-based estimates of midday NO2 lifetime and NOX emissions over 21 European cities in 2013. Results indicate that the top-down derived NOX emissions from LOTOS-EUROS (respectively OMI) are comparable with the MACC-III inventory with a R2 of 0.99 (respectively R2 = 0.79). For St-Petersburg and Moscow the top-down NOX estimates from 2013 OMI data are biased low compared to the MACC-III inventory which uses a 2011 NOX emissions update.

  14. On-fiber furan formation from volatile precursors: a critical example of artefact formation during Solid-Phase Microextraction.

    PubMed

    Adams, An; Van Lancker, Fien; De Meulenaer, Bruno; Owczarek-Fendor, Agnieszka; De Kimpe, Norbert

    2012-05-15

    For the analysis of furan, a possible carcinogen formed during thermal treatment of food, Solid-Phase Microextraction (SPME) is a preferred and validated sampling method. However, when volatile furan precursors are adsorbed on the carboxen/PDMS fiber, additional amounts of furan can be formed on the fiber during thermal desorption, as shown here for 2-butenal and furfural. No significant increase in furan amounts was found upon heating the furan precursor 2-butenal, indicating that the furan amounts formed during precursor heating experiments are negligible as compared to the additional amounts of furan formed during fiber desorption. This artefactual furan formation increased with increasing desorption time, but especially with increasing desorption temperature. Although this effect was most pronounced on the Carboxen/PDMS SPME-fiber, it was also noted on two other SPME-fibers tested (PDMS and DVB/Carboxen/PDMS). The general impact on furan data from food and model systems in literature will depend on the amounts of volatile precursors present, but will probably remain limited. However, considering the importance of this worldwide food contaminant, special care has to be taken during SPME-analysis of furan. Especially when performing precursor studies, static headspace sampling should preferably be applied for furan analysis. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Formation and Human Risk of Carcinogenic Heterocyclic Amines Formed from Natural Precursors in Meat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knize, M G; Felton, J S

    2004-11-22

    A group of heterocyclic amines that are mutagens and rodent carcinogens form when meat is cooked to medium and well-done states. The precursors of these compounds are natural meat components: creatinine, amino acids and sugars. Defined model systems of dry-heated precursors mimic the amounts and proportions of heterocyclic amines found in meat. Results from model systems and cooking experiments suggest ways to reduce their formation and, thus, to reduce human intake. Human cancer epidemiology studies related to consumption of well-done meat products are listed and compared.

  16. GetData: A filesystem-based, column-oriented database format for time-ordered binary data

    NASA Astrophysics Data System (ADS)

    Wiebe, Donald V.; Netterfield, Calvin B.; Kisner, Theodore S.

    2015-12-01

    The GetData Project is the reference implementation of the Dirfile Standards, a filesystem-based, column-oriented database format for time-ordered binary data. Dirfiles provide a fast, simple format for storing and reading data, suitable for both quicklook and analysis pipelines. GetData provides a C API and bindings exist for various other languages. GetData is distributed under the terms of the GNU Lesser General Public License.

  17. Detection of carbon monoxide pollution from cities and wildfires on regional and urban scales: the benefit of CO column retrievals from SCIAMACHY 2.3 µm measurements under cloudy conditions

    NASA Astrophysics Data System (ADS)

    Borsdorff, Tobias; Andrasec, Josip; aan de Brugh, Joost; Hu, Haili; Aben, Ilse; Landgraf, Jochen

    2018-05-01

    In the perspective of the upcoming TROPOMI Sentinel-5 Precursor carbon monoxide data product, we discuss the benefit of using CO total column retrievals from cloud-contaminated SCIAMACHY 2.3 µm shortwave infrared spectra to detect atmospheric CO enhancements on regional and urban scales due to emissions from cities and wildfires. The study uses the operational Sentinel-5 Precursor algorithm SICOR, which infers the vertically integrated CO column together with effective cloud parameters. We investigate its capability to detect localized CO enhancements distinguishing between clear-sky observations and observations with low (< 1.5 km) and medium-high clouds (1.5-5 km). As an example, we analyse CO enhancements over the cities Paris, Los Angeles and Tehran as well as the wildfire events in Mexico-Guatemala 2005 and Alaska-Canada 2004. The CO average of the SCIAMACHY full-mission data set of clear-sky observations can detect weak CO enhancements of less than 10 ppb due to air pollution in these cities. For low-cloud conditions, the CO data product performs similarly well. For medium-high clouds, the observations show a reduced CO signal both over Tehran and Los Angeles, while for Paris no significant CO enhancement can be detected. This indicates that information about the vertical distribution of CO can be obtained from the SCIAMACHY measurements. Moreover, for the Mexico-Guatemala fires, the low-cloud CO data captures a strong outflow of CO over the Gulf of Mexico and the Pacific Ocean and so provides complementary information to clear-sky retrievals, which can only be obtained over land. For both burning events, enhanced CO values are even detectable with medium-high-cloud retrievals, confirming a distinct vertical extension of the pollution. The larger number of additional measurements, and hence the better spatial coverage, significantly improve the detection of wildfire pollution using both the clear-sky and cloudy CO retrievals. Due to the improved instrument performance of the TROPOMI instrument with respect to its precursor SCIAMACHY, the upcoming Sentinel-5 Precursor CO data product will allow improved detection of CO emissions and their vertical extension over cities and fires, making new research applications possible.

  18. Spectra, chromatograms, Metadata: mzML-the standard data format for mass spectrometer output.

    PubMed

    Turewicz, Michael; Deutsch, Eric W

    2011-01-01

    This chapter describes Mass Spectrometry Markup Language (mzML), an XML-based and vendor-neutral standard data format for storage and exchange of mass spectrometer output like raw spectra and peak lists. It is intended to replace its two precursor data formats (mzData and mzXML), which had been developed independently a few years earlier. Hence, with the release of mzML, the problem of having two different formats for the same purposes is solved, and with it the duplicated effort of maintaining and supporting two data formats. The new format has been developed by a broad-based consortium of major instrument vendors, software vendors, and academic researchers under the aegis of the Human Proteome Organisation (HUPO), Proteomics Standards Initiative (PSI), with full participation of the main developers of the precursor formats. This comprehensive approach helped mzML to become a generally accepted standard. Furthermore, the collaborative development insured that mzML has adopted the best features of its precursor formats. In this chapter, we discuss mzML's development history, its design principles and use cases, as well as its main building components. We also present the available documentation, an example file, and validation software for mzML.

  19. Casingless down-hole for sealing an ablation volume and obtaining a sample for analysis

    DOEpatents

    Noble, Donald T.; Braymen, Steven D.; Anderson, Marvin S.

    1996-10-01

    A casing-less down hole sampling system for acquiring a subsurface sample for analysis using an inductively coupled plasma system is disclosed. The system includes a probe which is pushed into the formation to be analyzed using a hydraulic ram system. The probe includes a detachable tip member which has a soil point mad a barb, with the soil point aiding the penetration of the earth, and the barb causing the tip member to disengage from the probe and remain in the formation when the probe is pulled up. The probe is forced into the formation to be tested, and then pulled up slightly, to disengage the tip member and expose a column of the subsurface formation to be tested. An instrumentation tube mounted in the probe is then extended outward from the probe to longitudinally extend into the exposed column. A balloon seal mounted on the end of the instrumentation tube allows the bottom of the column to be sealed. A source of laser radiation is emitted from the instrumentation tube to ablate a sample from the exposed column. The instrumentation tube can be rotated in the probe to sweep the laser source across the surface of the exposed column. An aerosol transport system carries the ablated sample from the probe to the surface for testing in an inductively coupled plasma system. By testing at various levels in the down-hole as the probe is extracted from the soil, a profile of the subsurface formation may be obtained.

  20. Uncontrolled angiogenic precursor expansion causes coronary artery anomalies in mice lacking Pofut1.

    PubMed

    Wang, Yidong; Wu, Bingruo; Lu, Pengfei; Zhang, Donghong; Wu, Brian; Varshney, Shweta; Del Monte-Nieto, Gonzalo; Zhuang, Zhenwu; Charafeddine, Rabab; Kramer, Adam H; Sibinga, Nicolas E; Frangogiannis, Nikolaos G; Kitsis, Richard N; Adams, Ralf H; Alitalo, Kari; Sharp, David J; Harvey, Richard P; Stanley, Pamela; Zhou, Bin

    2017-09-18

    Coronary artery anomalies may cause life-threatening cardiac complications; however, developmental mechanisms underpinning coronary artery formation remain ill-defined. Here we identify an angiogenic cell population for coronary artery formation in mice. Regulated by a DLL4/NOTCH1/VEGFA/VEGFR2 signaling axis, these angiogenic cells generate mature coronary arteries. The NOTCH modulator POFUT1 critically regulates this signaling axis. POFUT1 inactivation disrupts signaling events and results in excessive angiogenic cell proliferation and plexus formation, leading to anomalous coronary arteries, myocardial infarction and heart failure. Simultaneous VEGFR2 inactivation fully rescues these defects. These findings show that dysregulated angiogenic precursors link coronary anomalies to ischemic heart disease.Though coronary arteries are crucial for heart function, the mechanisms guiding their formation are largely unknown. Here, Wang et al. identify a unique, endocardially-derived angiogenic precursor cell population for coronary artery formation in mice and show that a DLL4/NOTCH1/VEGFA/VEGFR2 signaling axis is key for coronary artery development.

  1. Formation, precursors, control, and occurrence of nitrosamines in drinking water: a review.

    PubMed

    Krasner, Stuart W; Mitch, William A; McCurry, Daniel L; Hanigan, David; Westerhoff, Paul

    2013-09-01

    This review summarizes major findings over the last decade related to nitrosamines in drinking water, with a particular focus on N-nitrosodimethylamine (NDMA), because it is among the most widely detected nitrosamines in drinking waters. The reaction of inorganic dichloramine with amine precursors is likely the dominant mechanism responsible for NDMA formation in drinking waters. Even when occurrence surveys found NDMA formation in chlorinated drinking waters, it is unclear whether chloramination resulted from ammonia in the source waters. NDMA formation has been associated with the use of quaternary amine-based coagulants and anion exchange resins, and wastewater-impaired source waters. Specific NDMA precursors in wastewater-impacted source waters may include tertiary amine-containing pharmaceuticals or other quaternary amine-containing constituents of personal care products. Options for nitrosamine control include physical removal of precursors by activated carbon or precursor deactivation by application of oxidants, particularly ozone or chlorine, upstream of chloramination. Although NDMA has been the most prevalent nitrosamine detected in worldwide occurrence surveys, it may account for only ≈ 5% of all nitrosamines in chloraminated drinking waters. Other significant contributors to total nitrosamines are poorly characterized. However, high levels of certain low molecular weight nitrosamines have been detected in certain Chinese waters suspected to be impaired by industrial effluents. The review concludes by identifying research needs that should be addressed over the next decade. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Attrition resistant bulk iron catalysts and processes for preparing and using same

    DOEpatents

    Jothimurugesan, Kandaswamy [Ponca City, OK; Goodwin, Jr., James G.; Gangwal, Santosh K [Cary, NC

    2007-08-21

    An attrition resistant precipitated bulk iron catalyst is prepared from iron oxide precursor and a binder by spray drying. The catalysts are preferably used in carbon monoxide hydrogenation processes such as Fischer-Tropsch synthesis. These catalysts are suitable for use in fluidized-bed reactors, transport reactors and, especially, slurry bubble column reactors.

  3. Formation of Copper Catalysts for CO 2 Reduction with High Ethylene/Methane Product Ratio Investigated with In Situ X-ray Absorption Spectroscopy

    DOE PAGES

    Eilert, André; Roberts, F. Sloan; Friebel, Daniel; ...

    2016-04-04

    Nanostructured copper cathodes are among the most efficient and selective catalysts to date for making multicarbon products from the electrochemical carbon dioxide reduction reaction (CO 2RR). We report an in situ X-ray absorption spectroscopy investigation of the formation of a copper nanocube CO 2RR catalyst with high activity that highly favors ethylene over methane production. The results show that the precursor for the copper nanocube formation is copper(I)-oxide, not copper(I)-chloride as previously assumed. A second route to an electrochemically similar material via a copper(II)–carbonate/hydroxide is also reported. In conclusion, this study highlights the importance of using oxidized copper precursors formore » constructing selective CO 2 reduction catalysts and shows the precursor oxidation state does not affect the electrocatalyst selectivity toward ethylene formation.« less

  4. Oxidation of N-nitrosodimethylamine (NDMA) precursors with ozone and chlorine dioxide: kinetics and effect on NDMA formation potential.

    PubMed

    Lee, Changha; Schmidt, Carsten; Yoon, Jeyong; von Gunten, Urs

    2007-03-15

    The oxidation of N-nitrosodimethylamine (NDMA) precursors chlorine dioxide (ClO2). Second-order rate constants for the reactions of model NDMA precursors (dimethylamine (DMA) and 7 tertiary amines) with ozone (kapp at pH 7 = 2.4 x 10(-1) to 2.3 x 10(9) M(-1) s(-1)), ClO2 (kapp at pH 7 = 6.7 x 10(-3) to 3.0 x 10(7) M(-1) s(-1)), and hydroxyl radical (*OH) (kapp at pH 7 = 6.2 x 10(7) to 1.4 x 10(10) M(-1) s(-1)) were determined, which showed that the selected NDMA precursors, with the exception of dimethylformamide (DMFA) can be completely transformed via their direct reaction with ozone. During ozonation, DMFA may be partially transformed through oxidation by the secondary oxidant *OH. ClO2 was also shown to effectively transform most of the precursors, with the exceptions of DMA and DMFA. In the second part of the study, the NDMA formation potentials (NDMA-FP) in synthetic and natural waters were measured with and without pre-oxidation with ozone and ClO2. A significant reduction in the NDMA-FPs was observed after complete transformation of the model NDMA precursors. Ozonation generally led to more effective reduction of the NDMA-FP than ClO2. For most of the precursors, the formation of DMA could account for the NDMA-FPs remaining after complete transformation of the model NDMA precursors. In contrast, dimethylethanolamine and dimethyldithiocarbamate yielded other NDMA precursors (not DMA) as their oxidation products. Pre-oxidation by ozone and ClO2 of several natural waters showed behavior similar to that of the oxidation of model NDMA precursors with a reduction of the NDMA-FP by 32-94% for various natural water sources.

  5. Technical Note: Methionine, a precursor of methane in living plants

    NASA Astrophysics Data System (ADS)

    Lenhart, K.; Althoff, F.; Greule, M.; Keppler, F.

    2015-03-01

    When terrestrial plants were identified as producers of the greenhouse gas methane, much discussion and debate ensued not only about their contribution to the global methane budget but also with regard to the validity of the observation itself. Although the phenomenon has now become more accepted for both living and dead plants, the mechanism of methane formation in living plants remains to be elucidated and its precursor compounds to be identified. We made use of stable isotope techniques to verify the in vivo formation of methane, and, in order to identify the carbon precursor, 13C positionally labeled organic compounds were employed. Here we show that the amino acid L-methionine acts as a methane precursor in living plants. Employing 13C-labeled methionine clearly identified the sulfur-bound methyl group of methionine as a carbon precursor of methane released from lavender (Lavandula angustifolia). Furthermore, when lavender plants were stressed physically, methane release rates and the stable carbon isotope values of the emitted methane greatly increased. Our results provide additional support that plants possess a mechanism for methane production and suggest that methionine might play an important role in the formation of methane in living plants, particularly under stress conditions.

  6. Technical note: Methionine, a precursor of methane in living plants

    NASA Astrophysics Data System (ADS)

    Lenhart, K.; Althoff, F.; Greule, M.; Keppler, F.

    2014-11-01

    When terrestrial plants were identified as producers of the greenhouse gas methane, much discussion and debate ensued, not only about their contribution to the global methane budget, but also with regard to the validity of the observation itself. Although the phenomenon has now become more accepted for both living and dead plants, the mechanism of methane formation in living plants remains to be elucidated and its precursor compounds identified. We made use of stable isotope techniques to verify in vivo formation of methane and, in order to identify the carbon precursor, 13C-positionally labelled organic compounds were employed. Here we show that the amino acid L-methionine acts as a methane precursor in living plants. Employing 13C-labelled methionine clearly identified the sulphur-bound methyl group of methionine as a carbon precursor of methane released from lavender (Lavandula angustifolia). Furthermore, when lavender plants were stressed physically, methane release rates and the stable carbon isotope values of the emitted methane greatly increased. Our results provide additional support that plants possess a mechanism for methane production and suggest that methionine might play an important role in the formation of methane in living plants, particularly under stress conditions.

  7. Supramolecular structure formation of Langmuir-Blodgett films of comblike precursor and polyimide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goloudina, S. I., E-mail: goloudina@mail.ru; Luchinin, V. V.; Rozanov, V. V.

    2013-03-15

    The surface structure of Langmuir-Blodgett films of a comblike polyimide precursor-a rigid-chain polyamic acid alkylamine salt bearing multichains of tertiary amine-and films of the corresponding polyimide were studied by atomic force microscopy (AFM). An analysis of the images of the surface of three-layer films revealed a domain structure. It was found that the Langmuir-Blodgett film formation of the precursor occurs as a result of the layer-by-layer deposition of two-dimensional domains (composed of polyamic acid salt molecules on the water surface) onto a substrate. The formation of domains in a monolayer is associated with the chemical structure of the precursor, tomore » be more precise, with the rigidity of the main chain and the presence of closely spaced aliphatic side chains in the polymer chain, whose total cross-section area is close to the surface area of the projection onto the plane of the repeating unit of the main chain. Polyimide films inherit the domain structure of the precursor films; the inhomogeneity of the film thickness substantially decreases, whereas the domain size and character of their distribution in the film remain unchanged.« less

  8. Synthesis and characterization of nanometric zinc oxide for a stationary phase in liquid chromatography

    NASA Astrophysics Data System (ADS)

    Gordillo-Delgado, F.; Soto-Barrera, C. C.; Plazas-Saldaña, J.

    2017-01-01

    The increasing demand for equipment to remove organic compounds in industry and research activity has led to evaluate nanometric zinc oxide (ZnO). In this work, we present the ZnO nanoparticles synthesis for reusing of discarded columns, as a low-cost alternative. The compound was obtained by sol-gel technique using zinc chloride and sodium hydroxide as precursors and a drying temperature of 169°C. An X-ray diffractometer was used to estimate the average particle size at 20.3±0.2nm the adsorption capacity was 0.0144L/g and the chemical resistance was tested with HCl and NaOH. The ZnO nanopowder was packed with 100psi pressure in an empty C-18 column cavity. The column packing resolution was evaluated using a high performance liquid chromatographer (HPLC-Thermo Scientific Dionex UltiMate 3000); using a caffeine standard, the following parameters were established: solvent flow: 1.2mL/min, average column temperature: 40°C, running time: 10 minutes, mobile phase acetonitrile-water composition (9:1). These results validate the potential of ZnO nanopowder as a column packing material in HPLC technique.

  9. Carbon-11 choline: synthesis, purification, and brain uptake inhibition by 2-dimethylaminoethanol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosen, M.A.; Jones, R.M.; Yano, Y.

    We report an improved method for the synthesis and purification of (11C)methylcholine from the precursors (11C)methyliodide and 2-dimethylaminoethanol (deanol). Preparation time, including purification, is 35 min postbombardment. Forty millicuries of purified injectable (11C)choline were produced with a measured specific activity of greater than 300 Ci/mmol and a radiochemical purity greater than 98%. The decay corrected radiochemical yield for the synthesis and purification was approximately 50%. Residual precursor deanol, which inhibits brain uptake of choline, is removed by a rapid preparative high performance liquid chromatography (HPLC) method using a reverse phase cyano column with a biologically compatible 100% water eluent. Evaporationmore » alone did not completely remove the deanol precursor. Brain uptake of the (11C)choline product was six times greater after HPLC removal of deanol because doses of less than 1 microgram/kg significantly inhibit (14C)choline brain uptake.« less

  10. Comparison of lactate, formate, and propionate as hydrogen donors for the reductive dehalogenation of trichloroethene in a continuous-flow column.

    PubMed

    Azizian, Mohammad F; Marshall, Ian P G; Behrens, Sebastian; Spormann, Alfred M; Semprini, Lewis

    2010-04-01

    A continuous-flow column study was conducted to analyze the reductive dehalogenation of trichloroethene (TCE) with aquifer material with high content of iron oxides. The column was bioaugmented with the Point Mugu (PM) culture, which is a mixed microbial enrichment culture capable of completely transforming TCE to ethene (ETH). We determined whether lactate, formate, or propionate fermentation resulted in more effective dehalogenation. Reductive dehalogenation, fermentation, and sulfate, Fe(III), and Mn(IV) reduction were all exhibited within the column. Different steady-states of dehalogenation were achieved based on the concentration of substrates added, with effective transformation to ETH obtained when ample electron donor equivalents were provided. Most of the metabolic reducing equivalents were channeled to sulfate, Fe(III), and Mn(IV) reduction. When similar electron reducing equivalents were added, the most effective dehalogenation was achieved with formate, with 14% of the electron equivalents going towards dehalogenation reactions, compared to 6.5% for lactate and 9.6% for propionate. Effective dehalogenation was maintained over 1000 days of column operation. Over 90% of electron equivalents added could be accounted for by the different electron accepting processes in the column, with 50% associated with soluble and precipitated Fe(II) and Mn(II). Bulk Fe(III) and Mn(IV) reduction was rather associated with lactate and propionate addition than formate addition. Sulfate reduction was a competing electron acceptor reaction with all three electron donors. DNA was extracted from solid coupon samples obtained during the course of the experiment and analyzed using 16S rRNA gene clone libraries and quantitative PCR. Lactate and propionate addition resulted in a significant increase in Geobacter, Spirochaetes, and Desulfitobacterium phylotypes relative to "Dehalococcoides" when compared to formate addition. Results from the molecular biological analyses support chemical observations that a greater percentage of the electron donor addition was channeled to Fe(III) reduction when lactate and propionate were added compared to formate, and formate was more effective than lactate in supporting dehalogenation. The results demonstrate the importance of electron donor selection and competing electron acceptor reactions when implementing reductive dehalogenation remediation technologies. Published by Elsevier B.V.

  11. Comparison of lactate, formate, and propionate as hydrogen donors for the reductive dehalogenation of trichloroethene in a continuous-flow column

    NASA Astrophysics Data System (ADS)

    Azizian, Mohammad F.; Marshall, Ian P. G.; Behrens, Sebastian; Spormann, Alfred M.; Semprini, Lewis

    2010-04-01

    A continuous-flow column study was conducted to analyze the reductive dehalogenation of trichloroethene (TCE) with aquifer material with high content of iron oxides. The column was bioaugmented with the Point Mugu (PM) culture, which is a mixed microbial enrichment culture capable of completely transforming TCE to ethene (ETH). We determined whether lactate, formate, or propionate fermentation resulted in more effective dehalogenation. Reductive dehalogenation, fermentation, and sulfate, Fe(III), and Mn(IV) reduction were all exhibited within the column. Different steady-states of dehalogenation were achieved based on the concentration of substrates added, with effective transformation to ETH obtained when ample electron donor equivalents were provided. Most of the metabolic reducing equivalents were channeled to sulfate, Fe(III), and Mn(IV) reduction. When similar electron reducing equivalents were added, the most effective dehalogenation was achieved with formate, with 14% of the electron equivalents going towards dehalogenation reactions, compared to 6.5% for lactate and 9.6% for propionate. Effective dehalogenation was maintained over 1000 days of column operation. Over 90% of electron equivalents added could be accounted for by the different electron accepting processes in the column, with 50% associated with soluble and precipitated Fe(II) and Mn(II). Bulk Fe(III) and Mn(IV) reduction was rather associated with lactate and propionate addition than formate addition. Sulfate reduction was a competing electron acceptor reaction with all three electron donors. DNA was extracted from solid coupon samples obtained during the course of the experiment and analyzed using 16S rRNA gene clone libraries and quantitative PCR. Lactate and propionate addition resulted in a significant increase in Geobacter, Spirochaetes, and Desulfitobacterium phylotypes relative to " Dehalococcoides" when compared to formate addition. Results from the molecular biological analyses support chemical observations that a greater percentage of the electron donor addition was channeled to Fe(III) reduction when lactate and propionate were added compared to formate, and formate was more effective than lactate in supporting dehalogenation. The results demonstrate the importance of electron donor selection and competing electron acceptor reactions when implementing reductive dehalogenation remediation technologies.

  12. Precursor soot synthesis of fullerenes and nanotubes without formation of carbonaceous soot

    DOEpatents

    Reilly, Peter T. A.

    2007-03-20

    The present invention is a method for the synthesis of fullerenes and/or nanotubes from precursor soot without the formation of carbonaceous soot. The method comprises the pyrolysis of a hydrocarbon fuel source by heating the fuel source at a sufficient temperature to transform the fuel source to a condensed hydrocarbon. The condensed hydrocarbon is a reaction medium comprising precursor soot wherein hydrogen exchange occurs within the reaction medium to form reactive radicals which cause continuous rearrangement of the carbon skeletal structure of the condensed hydrocarbon. Then, inducing dehydrogenation of the precursor soot to form fullerenes and/or nanotubes free from the formation of carbonaceous soot by continued heating at the sufficient temperature and by regulating the carbon to hydrogen ratio within the reaction medium. The dehydrogenation process produces hydrogen gas as a by-product. The method of the present invention in another embodiment is also a continuous synthesis process having a continuous supply of the fuel source. The method of the present invention can also be a continuous cyclic synthesis process wherein the reaction medium is fed back into the system as a fuel source after extraction of the fullerenes and/or nanotube products. The method of the present invention is also a method for producing precursor soot in bulk quantity, then forming fullerenes and/or nanotubes from the precursor bulk.

  13. Methods for controlling pore morphology in aerogels using electric fields and products thereof

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Worsley, Marcus A.; Baumann, Theodore F.; Satcher, Jr., Joe H.

    In one embodiment, an aerogel or xerogel includes column structures of a material having minor pores therein and major pores devoid of the material positioned between the column structures, where longitudinal axes of the major pores are substantially parallel to one another. In another embodiment, a method includes heating a sol including aerogel or xerogel precursor materials to cause gelation thereof to form an aerogel or xerogel and exposing the heated sol to an electric field, wherein the electric field causes orientation of a microstructure of the sol during gelation, which is retained by the aerogel or xerogel. In onemore » approach, an aerogel has elongated pores extending between a material arranged in column structures having structural characteristics of being formed from a sol exposed to an electric field that causes orientation of a microstructure of the sol during gelation which is retained by the elongated pores of the aerogel.« less

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eilert, André; Roberts, F. Sloan; Friebel, Daniel

    Nanostructured copper cathodes are among the most efficient and selective catalysts to date for making multicarbon products from the electrochemical carbon dioxide reduction reaction (CO 2RR). We report an in situ X-ray absorption spectroscopy investigation of the formation of a copper nanocube CO 2RR catalyst with high activity that highly favors ethylene over methane production. The results show that the precursor for the copper nanocube formation is copper(I)-oxide, not copper(I)-chloride as previously assumed. A second route to an electrochemically similar material via a copper(II)–carbonate/hydroxide is also reported. In conclusion, this study highlights the importance of using oxidized copper precursors formore » constructing selective CO 2 reduction catalysts and shows the precursor oxidation state does not affect the electrocatalyst selectivity toward ethylene formation.« less

  15. Sol-gel open tubular ODS columns with reversed electroosmotic flow for capillary electrochromatography.

    PubMed

    Hayes, J D; Malik, A

    2001-03-01

    Sol-gel chemistry was successfully used for the fabrication of open tubular columns with surface-bonded octadecylsilane (ODS) stationary-phase coating for capillary electrochromatography (OT-CEC). Following column preparations, a series of experiments were performed to investigate the performance of the sol-gel coated ODS columns in OT-CEC. The incorporation of N-octadecyldimethyl[3-(trimethoxysilyl)propyl]ammonium chloride as one of the sol-gel precursors played an important role in the electrochromatographic performance of the prepared columns. This chemical reagent possesses a chromatographically favorable, bonded ODS moiety, in conjunction with three methoxy groups allowing for sol-gel reactivity. In addition, a positively charged nitrogen atom is present in the molecular structure of this reagent and provides a positively charged capillary surface responsible for the reversed electroosmotic flow (EOF) in the columns during CEC operation. Comparative studies involving the EOF within such sol-gel ODS coated and uncoated capillaries were performed using acetonitrile and methanol as the organic modifiers in the mobile phase. The use of a deactivating reagent, phenyldimethylsilane, in the sol-gel solution was evaluated. Efficiency values of over 400,000 theoretical plates per meter were achieved in CEC on a 64 cm x 25 microm i.d. sol-gel ODS open tubular column. Test mixtures of polycyclic aromatic hydrocarbons, benzene derivatives, and aromatic aldehydes and ketones were used to evaluate the CEC performances of both nondeactivated and deactivated open tubular sol-gel columns. The effects of mobile-phase organic modifier contents and pH on EOF in such columns were evaluated. The prepared sol-gel ODS columns are characterized by switchable electroosmotic flow. A pH value of approximately 8.5 was found correspond to the isoelectric point for the prepared sol-gel ODS coatings.

  16. Methods of making copper selenium precursor compositions with a targeted copper selenide content and precursor compositions and thin films resulting therefrom

    DOEpatents

    Curtis, Calvin J [Lakewood, CO; Miedaner, Alexander [Boulder, CO; van Hest, Marinus Franciscus Antonius Maria; Ginley, David S [Evergreen, CO; Leisch, Jennifer [Denver, CO; Taylor, Matthew [West Simsbury, CT; Stanbery, Billy J [Austin, TX

    2011-09-20

    Precursor compositions containing copper and selenium suitable for deposition on a substrate to form thin films suitable for semi-conductor applications. Methods of forming the precursor compositions using primary amine solvents and methods of forming the thin films wherein the selection of temperature and duration of heating controls the formation of a targeted species of copper selenide.

  17. Evolution of Iodoplumbate Complexes in Methylammonium Lead Iodide Perovskite Precursor Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharenko, Alexander; Mackeen, Cameron; Jewell, Leila

    Here in this study we investigate the local structure present in single-step precursor solutions of methylammonium lead iodide (MAPbI 3) perovskite as a function of organic and inorganic precursor ratio, as well as with hydriodic acid (HI), using X-ray absorption spectroscopy. An excess of organic precursor as well as the use of HI as a processing additive has been shown to lead to the formation of smooth, continuous, pinhole free MAPbI 3 films, whereas films produced from precursor solutions containing molar equivalents of methylammonium iodide (MAI) and PbI 2 lead to the formation of a discontinuous, needlelike morphology. We nowmore » show that as the amount of excess MAI in the precursor solution is increased, the iodide coordination of iodoplumbate complexes present in solution increases. The use of HI results in a similar increase in iodide coordination. We therefore offer insight into how solution chemistry can be used to control MAPbI 3 thin film morphology by revealing a strong correlation between the lead coordination chemistry in precursor solutions and the surface coverage and morphology of the resulting MAPbI 3 film.« less

  18. Evolution of Iodoplumbate Complexes in Methylammonium Lead Iodide Perovskite Precursor Solutions

    DOE PAGES

    Sharenko, Alexander; Mackeen, Cameron; Jewell, Leila; ...

    2017-02-02

    Here in this study we investigate the local structure present in single-step precursor solutions of methylammonium lead iodide (MAPbI 3) perovskite as a function of organic and inorganic precursor ratio, as well as with hydriodic acid (HI), using X-ray absorption spectroscopy. An excess of organic precursor as well as the use of HI as a processing additive has been shown to lead to the formation of smooth, continuous, pinhole free MAPbI 3 films, whereas films produced from precursor solutions containing molar equivalents of methylammonium iodide (MAI) and PbI 2 lead to the formation of a discontinuous, needlelike morphology. We nowmore » show that as the amount of excess MAI in the precursor solution is increased, the iodide coordination of iodoplumbate complexes present in solution increases. The use of HI results in a similar increase in iodide coordination. We therefore offer insight into how solution chemistry can be used to control MAPbI 3 thin film morphology by revealing a strong correlation between the lead coordination chemistry in precursor solutions and the surface coverage and morphology of the resulting MAPbI 3 film.« less

  19. Contribution of citrulline to the formation of ethyl carbamate during Chinese rice wine production.

    PubMed

    Wang, Peihong; Sun, Junyong; Li, Xiaomin; Wu, Dianhui; Li, Tong; Lu, Jian; Chen, Jian; Xie, Guangfa

    2014-04-01

    Ethyl carbamate is a well-known carcinogen and widely occurs in Chinese rice wine. To provide more clues to minimise ethyl carbamate accumulation, the levels of possible precursors of ethyl carbamate in Chinese rice wine were investigated by HPLC. Studies of the possible precursors of ethyl carbamate in Chinese raw rice wine with various additives and treatments indicated that significant amounts of urea can account for ethyl carbamate formation. It was also recognised that citrulline is another important precursor that significantly affects ethyl carbamate production during the boiling procedure used in the Chinese rice wine manufacturing process. Besides urea and citrulline, arginine was also found to be an indirect ethyl carbamate precursor due to its ability to form urea and citrulline by microorganism metabolism.

  20. Seal Formation Mechanism Beneath Animal Waste Holding Ponds

    NASA Astrophysics Data System (ADS)

    Cihan, A.; Tyner, J. S.; Wright, W. C.

    2005-12-01

    Infiltration of animal waste from holding ponds can cause contamination of groundwater. Typically, the initial flux from a pond decreases rapidly as a seal of animal waste particulates is deposited at the base of the pond. The purpose of this study was to investigate the mechanism of the seal formation. Twenty-four soil columns (10-cm diameter by 43-cm long) were hand-packed with sand, silty loam or clay soils. A 2.3 m column of dairy or swine waste was applied to the top of the each column. The leakage rate from each column was measured with respect to time to analyze the effect of seal formation on different soil textures and animal waste types. We tested our hypothesis that seal growth and the subsequent decrease of leachate production adheres to a filter cake growth model. Said model predicts that the cumulative leakage rate is proportional to the square root of time and to the square root of the height of the waste.

  1. Casingless down-hole for sealing an ablation volume and obtaining a sample for analysis

    DOEpatents

    Noble, D.T.; Braymen, S.D.; Anderson, M.S.

    1996-10-01

    A casing-less down hole sampling system for acquiring a subsurface sample for analysis using an inductively coupled plasma system is disclosed. The system includes a probe which is pushed into the formation to be analyzed using a hydraulic ram system. The probe includes a detachable tip member which has a soil point and a barb, with the soil point aiding the penetration of the earth, and the barb causing the tip member to disengage from the probe and remain in the formation when the probe is pulled up. The probe is forced into the formation to be tested, and then pulled up slightly, to disengage the tip member and expose a column of the subsurface formation to be tested. An instrumentation tube mounted in the probe is then extended outward from the probe to longitudinally extend into the exposed column. A balloon seal mounted on the end of the instrumentation tube allows the bottom of the column to be sealed. A source of laser radiation is emitted from the instrumentation tube to ablate a sample from the exposed column. The instrumentation tube can be rotated in the probe to sweep the laser source across the surface of the exposed column. An aerosol transport system carries the ablated sample from the probe to the surface for testing in an inductively coupled plasma system. By testing at various levels in the down-hole as the probe is extracted from the soil, a profile of the subsurface formation may be obtained. 9 figs.

  2. The Effects of Subsurface Bioremediation on Soil Structure, Colloid Formation, and Contaminant Transport

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Liang, X.; Zhuang, J.; Radosevich, M.

    2016-12-01

    Anaerobic bioremediation is widely applied to create anaerobic subsurface conditions designed to stimulate microorganisms that degrade organic contaminants and immobilize toxic metals in situ. Anaerobic conditions that accompany such techniques also promotes microbially mediated Fe(III)-oxide mineral reduction. The reduction of Fe(III) could potentially cause soil structure breakdown, formation of clay colloids, and alternation of soil surface chemical properties. These processes could then affect bioremediation and the migration of contaminants. Column experiments were conducted to investigate the impact of anaerobic bioreduction on soil structure, hydraulic properties, colloid formation, and transport of three tracers (bromide, DFBA, and silica shelled silver nanoparticles). Columns packed with inoculated water stable soil aggregates were placed in anaerobic glovebox, and artificial groundwater media was pumped into the columns to simulate anaerobic bioreduction process for four weeks. Decent amount of soluble Fe(II) accompanied by colloids were detected in the effluent from bioreduction columns a week after initiation of bioreduction treatment, which demonstrated bioreduction of Fe(III) and formation of colloids. Transport experiments were performed in the columns before and after bioreduction process to assess the changes of hydraulic and surface chemical properties through bioreduction treatment. Earlier breakthrough of bromide and DFBA after treatment indicated alterations in flow paths (formation of preferential flow paths). Less dispersion of bromide and DFBA, and less tailing of DFBA after treatment implied breakdown of soil aggregates. Dramatically enhanced transport and early breakthrough of silica shelled silver nanoparticles after treatment supported the above conclusion of alterations in flow paths, and indicated changes of soil surface chemical properties.

  3. Fallon FORGE Well Temp data

    DOE Data Explorer

    Doug Blankenship

    2016-03-01

    x,y,z downhole temperature data for wells in and around the Fallon FORGE site. Data for the following wells are included: 82-36, 82-19, 84.31, 61-36, 88-24, FOH-3D, FDU-1, and FDU-2. Data are formatted in txt format and in columns for importing into Earthvision Software. Column headers and coordinate system information is stored in the file header.

  4. Functional integrins from normal and glycosylation-deficient baby hamster kidney cells. Terminal processing of asparagine-linked oligosaccharides is not correlated with fibronectin-binding activity.

    PubMed

    Koyama, T; Hughes, R C

    1992-12-25

    We have examined the properties of the alpha 5 beta 1 integrin of baby hamster kidney (BHK) cells, a ricin-resistant variant Ric14 lacking N-acetylglucosaminyl transferase I, and hence unable to complete assembly of hybrid- or complex-type N-glycans, and BHK cells treated with 1-deoxymannojirimycin (dMM), an inhibitor of Golgi mannosidases involved in the initial processing of N-glycan precursors. Comparable amounts of alpha 5 beta 1 integrin were isolated from these cells by chromatography of detergent extracts on a fibronectin cell-binding fragment affinity column and elution with EDTA. The alpha 5 beta 1 integrin obtained from normal BHK cells by fibronectin affinity chromatography contained mainly endoglycosidase H-resistant oligosaccharides, whereas in RicR14 cells or dMM-treated BHK cells these were entirely endoglycosidase H-sensitive. Analysis of lactoperoxidase labeled or long term biosynthetically 35S-labeled proteins from cultures of normal or glycosylation deficient cells showed similar steady state levels of alpha 5 beta 1 integrin and expression at the cell surface. Pulse-chase experiments in normal BHK cells showed rapid conversion of the alpha 5 subunit into a mature form containing oligosaccharides resistant to endoglycosidase H and slower maturation of a precursor beta 1 subunit, as in other cell types. In Ric14 cells the precursor beta 1 subunit was found to carry glycans larger than the fully processed Man5GlcNAc2 glycan of the mature subunit, indicating that the bulk precursor pool had not been translocated into the cis-Golgi compartment containing mannosidase I. We conclude that in BHK cells terminal oligosaccharide processing of alpha 5 beta 1 integrin subunits is not required for dimer formation, surface expression, and fibronectin binding, and that expression of the glycosylation defect of Ric14 cells on the alpha 5 beta 1 integrin does not account for the reduced adhesiveness of these cells on fibronectin compared with normal and dMM-treated BHK cells.

  5. Gallium metal affinity capture tandem mass spectrometry for the selective detection of phosphopeptides in complex mixtures

    PubMed Central

    Blacken, Grady R.; Sadílek, Martin; Tureček, František

    2008-01-01

    Metal affinity capture tandem mass spectrometry (MAC-MSMS) is evaluated in a comparative study of a lysine-derived nitrilotriacetic acid (Nα, Nα-bis-(carboxymethyl)lysine, LysNTA) and an aspartic-acid-related iminodiacetic acid (N-(4-aminobutyl)aspartic acid, AspIDA) as selective phosphopeptide detection reagents. Both LysNTA and AspIDA spontaneously form ternary complexes with GaIII and phosphorylated amino acids and phosphopeptides upon mixing in solution. Collision-induced dissociation of positive complex ions produced by electrospray produces common fragments (LysNTA + H)+ or (AspIDA + H)+ at m/z 263 and 205, respectively. MSMS precursor scans using these fragments as reporter ions allow one to selectively detect multiple charge states of phosphopeptides in mixtures. It follows from this comparative study that LysNTA is superior to AspIDA in detecting phosphopeptides, possibly because of the higher coordination number and greater stability constant for GaIII – phosphopeptide complexation of the former reagent. In a continuing development of MAC-MSMS for proteomics applications, we demonstrate its utility in a post-column reaction format. Using a simple post-column-reaction ‘T’ and syringe pump to deliver our chelating reagents, α-casein tryptic phosphopeptides can be selectively analyzed from a solution containing a twofold molar excess of bovine serum albumin. The MAC-MSMS method is shown to be superior to the commonly used neutral loss scan for the common loss of phosphoric acid. PMID:18265438

  6. Laser ablation and column formation in silicon under oxygen-rich atmospheres

    NASA Astrophysics Data System (ADS)

    Pedraza, A. J.; Fowlkes, J. D.; Lowndes, D. H.

    2000-11-01

    The microstructure formed at the surface of silicon by cumulative pulsed-laser irradiation in oxygen-rich atmospheres consists of an array of microcolumns surrounded by microcanyons and microholes. Formation of SiOx at the exposed surface of silicon is most likely responsible for the occurrence of etching/ablation that causes the continuous deepening of canyons and holes. The growth mechanism of columns that is supported by the experimental evidence presented here is a process in which the columns are fed at their tips by the silicon-rich ablation plasma produced during pulsed-laser irradiation.

  7. Anaerobic degradation of vinyl chloride in aquifer microcosms.

    PubMed

    Smits, Theo H M; Assal, Antoine; Hunkeler, Daniel; Holliger, Christof

    2011-01-01

    The anaerobic degradation potential at a chloroethene-contaminated site was investigated by operating two anoxic column aquifer microcosms enriched in iron(III). One column was fed with vinyl chloride (VC) only (column A) and one with VC and acetate (column B). In column A, after about 600 pore volume exchanges (PVEs), VC started to disappear and reached almost zero VC recovery in the effluent after 1000 PVEs. No formation of ethene was observed. In column B, effluent VC was almost always only a fraction of influent VC. Formation of ethene was observed after 800 PVEs and started to become an important degradation product after 1550 PVEs. However, ethene was never observed in stoichiometric amounts compared with disappeared VC. The average stable isotope enrichment factor for VC disappearance in column A was determined to be -4.3‰. In column B, the isotope enrichment factor shifted from -10.7 to -18.5‰ concurrent with an increase in ethene production. Batch microcosms inoculated with column material showed similar isotope enrichment factors as the column microcosms. These results indicated that two degradation processes occurred, one in column A and two in parallel in column B with increasing importance of reductive dechlorination with time. This study suggests that in addition to reductive dechlorination, other degradation processes such as anaerobic oxidation should be taken into account when evaluating natural attenuation of VC and that isotope analysis can help to differentiate between different pathways of VC removal. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.

  8. Seasonal in situ observations of glyoxal and methylglyoxal over the temperate oceans of the Southern Hemisphere

    NASA Astrophysics Data System (ADS)

    Lawson, S. J.; Selleck, P. W.; Galbally, I. E.; Keywood, M. D.; Harvey, M. J.; Lerot, C.; Helmig, D.; Ristovski, Z.

    2014-08-01

    Dicarbonyls glyoxal and methylglyoxal have been measured with 2,4-dinitrophenylhydrazine (2,4-DNPH) cartridges and high performance liquid chromatography (HPLC), optimised for dicarbonyl detection, in clean marine air over the temperate Southern Hemisphere (SH) oceans. Measurements of a range of dicarbonyl precursors (volatile organic compounds, VOCs) were made in parallel. These are the first in situ measurements of glyoxal and methylglyoxal over the remote temperate oceans. Six 24 h samples were collected in late summer (February-March) over the Chatham Rise in the South West Pacific Ocean during the Surface Ocean Aerosol Production (SOAP) voyage in 2012, while 34 24 h samples were collected at Cape Grim Baseline Air Pollution Station in late winter (August-September) 2011. Average glyoxal mixing ratios in clean marine air were 7 ppt at Cape Grim, and 24 ppt over Chatham Rise. Average methylglyoxal mixing ratios in clean marine air were 28 ppt at Cape Grim and 12 ppt over Chatham Rise. The mixing ratios of glyoxal at Cape Grim are the lowest observed over the remote oceans, while mixing ratios over Chatham Rise are in good agreement with other temperate and tropical observations, including concurrent MAX-DOAS observations. Methylglyoxal mixing ratios at both sites are comparable to the only other marine methylglyoxal observations available over the tropical Northern Hemisphere (NH) ocean. Ratios of glyoxal : methylglyoxal > 1 over Chatham Rise but < 1 at Cape Grim, suggesting different formation and/or loss processes or rates dominate at each site. Dicarbonyl precursor VOCs, including isoprene and monoterpenes, are used to calculate an upper estimate yield of glyoxal and methylglyoxal in the remote marine boundary layer and explain at most 1-3 ppt of dicarbonyls observed, corresponding to 11 and 17% of the observed glyoxal and 28 and 10% of the methylglyoxal at Chatham Rise and Cape Grim, respectively, highlighting a significant but as yet unknown production mechanism. Glyoxal surface observations from both sites were converted to vertical columns and compared to average vertical column densities (VCDs) from GOME-2 satellite retrievals. Both satellite columns and in situ observations are higher in summer than winter, however satellite vertical column densities exceeded the surface observations by more than 1.5 × 1014 molecules cm-2 at both sites. This discrepancy may be due to the incorrect assumption that all glyoxal observed by satellite is within the boundary layer, or may be due to challenges retrieving low VCDs of glyoxal over the oceans due to interferences by liquid water absorption, or use of an inappropriate normalisation reference value in the retrieval algorithm. This study provides much needed data to verify the presence of these short lived gases over the remote ocean and provide further evidence of an as yet unidentified source of both glyoxal and also methylglyoxal over the remote oceans.

  9. Seasonal in situ observations of glyoxal and methylglyoxal over the temperate oceans of the Southern Hemisphere

    NASA Astrophysics Data System (ADS)

    Lawson, S. J.; Selleck, P. W.; Galbally, I. E.; Keywood, M. D.; Harvey, M. J.; Lerot, C.; Helmig, D.; Ristovski, Z.

    2015-01-01

    The dicarbonyls glyoxal and methylglyoxal have been measured with 2,4-dinitrophenylhydrazine (2,4-DNPH) cartridges and high-performance liquid chromatography (HPLC), optimised for dicarbonyl detection, in clean marine air over the temperate Southern Hemisphere (SH) oceans. Measurements of a range of dicarbonyl precursors (volatile organic compounds, VOCs) were made in parallel. These are the first in situ measurements of glyoxal and methylglyoxal over the remote temperate oceans. Six 24 h samples were collected in summer (February-March) over the Chatham Rise in the south-west Pacific Ocean during the Surface Ocean Aerosol Production (SOAP) voyage in 2012, while 34 24 h samples were collected at Cape Grim Baseline Air Pollution Station in the late winter (August-September) of 2011. Average glyoxal mixing ratios in clean marine air were 7 ppt at Cape Grim and 23 ppt over Chatham Rise. Average methylglyoxal mixing ratios in clean marine air were 28 ppt at Cape Grim and 10 ppt over Chatham Rise. The mixing ratios of glyoxal at Cape Grim are the lowest observed over the remote oceans, while mixing ratios over Chatham Rise are in good agreement with other temperate and tropical observations, including concurrent Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) observations. Methylglyoxal mixing ratios at both sites are comparable to the only other marine methylglyoxal observations available over the tropical Northern Hemisphere (NH) ocean. Ratios of glyoxal : methylglyoxal > 1 over Chatham Rise but < 1 at Cape Grim suggest that a different formation and/or loss processes or rates dominate at each site. Dicarbonyl precursor VOCs, including isoprene and monoterpenes, are used to calculate an upper-estimate yield of glyoxal and methylglyoxal in the remote marine boundary layer and explain at most 1-3 ppt of dicarbonyls observed, corresponding to 10% and 17% of the observed glyoxal and 29 and 10% of the methylglyoxal at Chatham Rise and Cape Grim, respectively, highlighting a significant but as yet unknown production mechanism. Surface-level glyoxal observations from both sites were converted to vertical columns and compared to average vertical column densities (VCDs) from GOME-2 satellite retrievals. Both satellite columns and in situ observations are higher in summer than winter; however, satellite vertical column densities exceeded the surface observations by more than 1.5 × 1014 molecules cm-2 at both sites. This discrepancy may be due to the incorrect assumption that all glyoxal observed by satellite is within the boundary layer, or it may be due to challenges retrieving low VCDs of glyoxal over the oceans due to interferences by liquid water absorption or the use of an inappropriate normalisation reference value in the retrieval algorithm. This study provides much-needed data to verify the presence of these short-lived gases over the remote ocean and provide further evidence of an as yet unidentified source of both glyoxal and also methylglyoxal over the remote oceans.

  10. Effects of the diet on brain function

    NASA Technical Reports Server (NTRS)

    Fernstrom, J. D.

    1981-01-01

    The rates of synthesis by brain neurons of the neurotransmitters serotonin, acetylcholine, and the catecholamines depend on the brain levels of the respective precursor molecules. Brain levels of each precursor are influenced by their blood concentration, and for the amino acid precursors, by the blood levels of other amino acids as well. Since diet readily alters blood concentrations of each of these precursors, it thereby also influences the brain formation of their neutrotransmitter products.

  11. Recent Changes in Tropospheric Ozone in the Tropics

    NASA Technical Reports Server (NTRS)

    Chandra, S.; Ziemke, J. R.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    This paper presents a detailed characterization of tropical tropospheric column ozone variability on time scales varying from a few days to a solar cycle. The study is based on more than 20 years (1979 to the present) of tropospheric column ozone time series derived from the convective cloud differential (CCD) method using total ozone mapping spectrometer (TOMS) data. Results indicate three distinct regions in the tropics with distinctly three different zonal characteristics related to seasonal, interannual and solar variabilities. These three regions are the eastern Pacific, Atlantic, and western Pacific. Tropospheric column ozone in the Atlantic region peaks at about the same time (September-October) from 20 N to 20 S. The amplitude of the annual cycle, however, varies from about 3 to 6 Dobson unit (DU) from north to south of the equator. In comparison, the annual cycle in both the eastern and western Pacific is generally week and the phase varies from peak values in March and April in the northern hemisphere to September and October in the southern hemisphere. The interannual pattern in the three regions are also very different. The Atlantic region indicates a quasi biennial oscillation in the tropospheric column ozone which is out of phase with the stratospheric ozone. This is consistent with the photochemical control of this region caused by high pollution and high concentration of ozone producing precursors. The observed pattern, however, does not seem to be related to the interannual variability in ozone precursors related to biomass burning. Instead, it appears to be a manifestation of the UV modulation of upper tropospheric chemistry on a QBO time scale caused by stratospheric ozone. During El Nino events, there is anomalously low ozone in the eastern Pacific and high values in the western Pacific indicating the effects of convectively driven transport. The observed increase of 10-20 DU in tropospheric column ozone in the Indonesian region in the western Pacific during the recent 1997-1998 El Nino was associated with large-scale forest fires which may have contributed 5-10 DU of the total increase.

  12. ‘Column on column’ structures as indicators of lava/ice interaction, Ruapehu andesite volcano, New Zealand

    NASA Astrophysics Data System (ADS)

    Spörli, K. B.; Rowland, J. V.

    2006-10-01

    Lava flows of the Mangawhero Formation (ca. 15-60 ka) on Ruapehu volcano erupted during the last glaciation. In a distal flow lobe at Tukino, on the east side of the mountain, small secondary columns (10-20 cm thick) have formed on the sides of large, rectangular, primary (0.5-3 m thick) cooling columns. Thick (10 m+) zones of such small columns form a lateral and basal outer rind of the lobe. As they do not mark glassy zones of quenching, these secondary columns are interpreted as being formed by a second cooling event at temperatures below the boundary between the low creep and elastic regimes (˜ 600 °C) by rapid influx of copious amounts of water. Temperature drops deduced from extensional strains of the two sets of columns were used to gauge the viability of such a two-stage process. Absence of reliable data on andesite contraction coefficients was overcome by using a sliding scale to assess a large range of values. The estimates indicate that two-stage chilling is feasible. After flowing across relatively ice-poor terrain, the lava flow must have interacted with a valley glacier that provided water for further chilling the already formed primary columns and formation of the outer rind small columns. Given this evidence for lava/ice interaction, it is likely that prominent, thick flows elsewhere in the Mangawhero Formation may have been constrained to their ridge-top locations by ice conditions similar to those described by Lescinsky and Sisson [Lescinsky, D.T., Sisson, T.W., 1998. Ridge-forming, ice-bounded lava flows at Mount Rainier, Washington. Geology, 26, 351-354].

  13. Mineralogical signatures of stone formation mechanisms.

    PubMed

    Gower, Laurie B; Amos, Fairland F; Khan, Saeed R

    2010-08-01

    The mechanisms involved in biomineralization are modulated through interactions with organic matrix. In the case of stone formation, the role of the organic macromolecules in the complex urinary environment is not clear, but the presence of mineralogical 'signatures' suggests that some aspects of stone formation may result from a non-classical crystallization process that is induced by acidic proteins. An amorphous precursor has been detected in many biologically controlled mineralization reactions, which is thought to be regulated by non-specific interactions between soluble acidic proteins and mineral ions. Using in vitro model systems, we find that a liquid-phase amorphous mineral precursor induced by acidic polypeptides can lead to crystal textures that resemble those found in Randall's plaque and kidney stones. This polymer-induced liquid-precursor process leads to agglomerates of coalesced mineral spherules, dense-packed spherulites with concentric laminations, mineral coatings and 'cements', and collagen-associated mineralization. Through the use of in vitro model systems, the mechanisms involved in the formation of these crystallographic features may be resolved, enhancing our understanding of the potential role(s) that proteins play in stone formation.

  14. Monodisperse Iron Oxide Nanoparticles by Thermal Decomposition: Elucidating Particle Formation by Second-Resolved in Situ Small-Angle X-ray Scattering

    PubMed Central

    2017-01-01

    The synthesis of iron oxide nanoparticles (NPs) by thermal decomposition of iron precursors using oleic acid as surfactant has evolved to a state-of-the-art method to produce monodisperse, spherical NPs. The principles behind such monodisperse syntheses are well-known: the key is a separation between burst nucleation and growth phase, whereas the size of the population is set by the precursor-to-surfactant ratio. Here we follow the thermal decomposition of iron pentacarbonyl in the presence of oleic acid via in situ X-ray scattering. This method allows reaction kinetics and precursor states to be followed with high time resolution and statistical significance. Our investigation demonstrates that the final particle size is directly related to a phase of inorganic cluster formation that takes place between precursor decomposition and particle nucleation. The size and concentration of clusters were shown to be dependent on precursor-to-surfactant ratio and heating rate, which in turn led to differences in the onset of nucleation and concentration of nuclei after the burst nucleation phase. This first direct observation of prenucleation formation of inorganic and micellar structures in iron oxide nanoparticle synthesis by thermal decomposition likely has implications for synthesis of other NPs by similar routes. PMID:28572705

  15. InSAR Measurement of Precursor and Post-Collapse Sinkhole Subsidence

    NASA Astrophysics Data System (ADS)

    Holley, Rachel; McCormack, Harry; Larkin, Hayley; Wooster, Michael; Thomas, Adam

    2016-08-01

    Sinkholes occur across the world, often posing an obvious hazard to communities, infrastructure and the environment. Regions prone to sinkhole formation can often be identified; however prediction of exact sinkhole locations and occurrences is exceedingly difficult. This case study from Wink, in the Permian Basin of Texas, demonstrates how InSAR can measure both precursor and post-collapse deformation associated with sinkholes. ERS, ALOS PALSAR and Sentinel-1A datasets are used to show precursor signals at least nine years before sinkhole formation, and post-collapse effects continuing over several decades. The rate of deformation is variable, but reaches many tens of centimetres per year during some periods.

  16. Quality degradation: Implications for DBP formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krasner, S.W.; Sclimenti, M.J.; Means, E.G.

    1994-06-01

    During development of the draft Disinfectants-Disinfection By-products (D-DBP) Rule, the issue of watershed management for DBP precursor control was discussed but not included in the rule. This article focuses on a major California watershed, describing examples of the types of studies that utilities can use to determine precursor sources and develop solutions for control. In addition, a chlorination and ozonation study of a five-by-five matrix of total organic carbon and bromide levels--which spanned a wide range of concentrations that can be expected in many US waters--provided insights into the effects of organic and inorganic precursors and disinfectants in DBP formation.

  17. Density functional theory study of HfCl4, ZrCl4, and Al(CH3)3 decomposition on hydroxylated SiO2: Initial stage of high-k atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Jeloaica, L.; Estève, A.; Djafari Rouhani, M.; Estève, D.

    2003-07-01

    The initial stage of atomic layer deposition of HfO2, ZrO2, and Al2O3 high-k films, i.e., the decomposition of HfCl4, ZrCl4, and Al(CH3)3 precursor molecules on an OH-terminated SiO2 surface, is investigated within density functional theory. The energy barriers are determined using artificial activation of vibrational normal modes. For all precursors, reaction proceeds through the formation of intermediate complexes that have equivalent formation energies (˜-0.45 eV), and results in HCl and CH4 formation with activation energies of 0.88, 0.91, and 1.04 eV for Hf, Zr, and Al based precursors, respectively. The reaction product of Al(CH3)3 decomposition is found to be more stable (by -1.45 eV) than the chemisorbed intermediate complex compared to the endothermic decomposition of HfCl4 and ZrCl4 chemisorbed precursors (0.26 and 0.29 eV, respectively).

  18. Characterization of soluble microbial products as precursors of disinfection byproducts in drinking water supply.

    PubMed

    Liu, Jin-Lin; Li, Xiao-Yan; Xie, Yue-Feng; Tang, Hao

    2014-02-15

    Water pollution by wastewater discharge can cause the problem of disinfection byproducts (DBPs) in drinking water supply. In this study, DBP formation characteristics of soluble microbial products (SMPs) as the main products of wastewater organic biodegradation were investigated. The results show that SMPs can act as DBP precursors in simulated wastewater biodegradation process. Under the experimental conditions, stabilized SMPs had DBPFP (DBP formation potential) yield of around 5.6 μmol mmol(-1)-DOC (dissolved organic carbon) and DBP speciation profile different from that of the conventional precursor, natural organic matter (NOM). SMPs contained polysaccharides, proteins, and humic-like substances, and the latter two groups can act as reactive DBP precursors. SMP fraction with molecular weight of <1 kDa accounted for 85% of the organic carbon and 65% of the DBP formation. As small SMP molecules are more difficult to remove by conventional water treatment processes, more efforts are needed to control wastewater-derived DBP problem in water resource management. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Galactic cold cores. VIII. Filament formation and evolution: Filament properties in context with evolutionary models

    NASA Astrophysics Data System (ADS)

    Rivera-Ingraham, A.; Ristorcelli, I.; Juvela, M.; Montillaud, J.; Men'shchikov, A.; Malinen, J.; Pelkonen, V.-M.; Marston, A.; Martin, P. G.; Pagani, L.; Paladini, R.; Paradis, D.; Ysard, N.; Ward-Thompson, D.; Bernard, J.-P.; Marshall, D. J.; Montier, L.; Tóth, L. V.

    2017-05-01

    Context. The onset of star formation is intimately linked with the presence of massive unstable filamentary structures. These filaments are therefore key for theoretical models that aim to reproduce the observed characteristics of the star formation process in the Galaxy. Aims: As part of the filament study carried out by the Herschel Galactic Cold Cores Key Programme, here we study and discuss the filament properties presented in GCC VII (Paper I) in context with theoretical models of filament formation and evolution. Methods: A conservatively selected sample of filaments located at a distance D< 500 pc was extracted from the GCC fields with the getfilaments algorithm. The physical structure of the filaments was quantified according to two main components: the central (Gaussian) region of the filament (core component), and the power-law-like region dominating the filament column density profile at larger radii (wing component). The properties and behaviour of these components relative to the total linear mass density of the filament and the column density of its environment were compared with the predictions from theoretical models describing the evolution of filaments under gravity-dominated conditions. Results: The feasibility of a transition from a subcritical to supercritical state by accretion at any given time is dependent on the combined effect of filament intrinsic properties and environmental conditions. Reasonably self-gravitating (high Mline,core) filaments in dense environments (AV≳ 3 mag) can become supercritical on timescales of t 1 Myr by accreting mass at constant or decreasing width. The trend of increasing Mline,tot (Mline,core and Mline,wing) and ridge AV with background for the filament population also indicates that the precursors of star-forming filaments evolve coevally with their environment. The simultaneous increase of environment and filament AV explains the observed association between dense environments and high Mline,core values, and it argues against filaments remaining in constant single-pressure equilibrium states. The simultaneous growth of filament and background in locations with efficient mass assembly, predicted in numerical models of filaments in collapsing clouds, presents a suitable scenario for the fulfillment of the combined filament mass-environment criterium that is in quantitative agreement with Herschel observations. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  20. Water column particulate matter: A key contributor to phosphorus regeneration in a coastal eutrophic environment, the Chesapeake Bay: Particulate phosphorus in the Chesapeake Bay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jiying; Reardon, Patrick; McKinley, James P.

    Particulate phosphorus (PP) in the water column is an essential component of phosphorus (P) cycling in aquatic ecosystems yet its composition and transformations remain largely uncharacterized. To understand the roles of suspended particulates on regeneration of inorganic P (Pi) into the water column as well as sequestration into more stable mineral precipitates, we studied seasonal variation in both organic and inorganic P speciation in suspended particles in three sites in the Chesapeake Bay using sequential P extraction, 1D (31P) and 2D (1H-31P) nuclear magnetic resonance (NMR) spectroscopies, and electron microprobe analyses (EMPA). Remineralization efficiency of particulate P average 8% andmore » 56% in shallow and deep sites respectively, suggesting the importance of PP remineralization is in resupplying water column Pi. Strong temporal and spatial variability of organic P composition, distributions, and remineralization efficiency were observed relating to water column parameters such as temperature and redox conditions: concentration of orthophosphate monoesters and diesters, and diester-to-monoester (D/M) ratios decreased with depth. Both esters and the D/M ratios were lower in the hypoxic July and September. In contrast, pyrophosphate and orthophosphate increased with depth, and polyphosphates was high in the anoxic water column. Sequential extraction and EMPA analyses of the suspended particles suggest presence of Ca-bound phosphate in the water column. We hypothesize authigenic precipitation of carbonate fluorapatite and/or its precursor mineral(s) in Pi rich water column, supported by our thermodynamic calculations. Our results, overall, reveal the important role suspended particles play in P remineralization and P sequestration in the Chesapeake Bay water column, provide important implications on P bioavailability and P sinks in similar eutrophic coastal environments.« less

  1. Nanocrystalline CuInS2 And CuInSe2 via Low-Temperature Pyrolysis Of Single-Source Molecular Precursors

    NASA Technical Reports Server (NTRS)

    Castro, Stephanie L.; Bailey, Sheila G.; Raffaelle, Ryne P.; Banger, Kulbinder K.; Hepp, Aloysius F.

    2002-01-01

    Single-source precursors are molecules which contain all the necessary elements for synthesis of a desired material. Thermal decomposition of the precursor results in the formation of the material with the correct stoichiometry, as a nanocrystalline powder or a thin film. Nanocrystalline materials hold potential as components of next-generation Photovoltaic (PV) devices. Presented here are the syntheses of CuInS2 and CuInSe2 nanocrystals from the precursors (PPh3)2CuIn(SEt)4 and (PPh3)2CuIn(SePh)4, respectively. The size of the nanocrystals varies with the reaction temperature; a minimum of 200 C is required for the formation of the smallest CuInS2 crystals (approximately 1.6 nm diameter); at 300 C, crystals are approximately 7 nm.

  2. Determination of secondary and tertiary amines as N-nitrosamine precursors in drinking water system using ultra-fast liquid chromatography-tandem mass spectrometry.

    PubMed

    Wu, Qihua; Shi, Honglan; Ma, Yinfa; Adams, Craig; Eichholz, Todd; Timmons, Terry; Jiang, Hua

    2015-01-01

    N-Nitrosamines are potent mutagenic and carcinogenic emerging water disinfection by-products (DBPs). The most effective strategy to control the formation of these DBPs is minimizing their precursors from source water. Secondary and tertiary amines are dominating precursors of N-nitrosamines formation during drinking water disinfection process. Therefore, the screening and removal of these amines in source water are very essential for preventing the formation of N-nitrosamines. A rapid, simple, and sensitive ultrafast liquid chromatography-tandem mass spectrometry (UFLC-MS/MS) method has been developed in this study to determine seven amines, including dimethylamine, ethylmethylamine, diethylamine, dipropylamine, trimethylamine, 3-(dimethylaminomethyl)indole, and 4-dimethylaminoantipyrine, as major precursors of N-nitrosamines in drinking water system. No sample preparation process is needed except a simple filtration. Separation and detection can be achieved in 11 min per sample. The method detection limits of selected amines are ranging from 0.02 μg/L to 1 μg/L except EMA (5 μg/L), and good calibration linearity was achieved. The developed method was applied to determine the selected precursors in source water and drinking water samples collected from Midwest area of the United States. In most of water samples, the concentrations of selected precursors of N-nitrosamines were below their method detection limits. Dimethylamine was detected in some of water samples at the concentration up to 25.4 μg/L. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Occurrence of THM and NDMA precursors in a watershed: Effect of seasons and anthropogenic pollution.

    PubMed

    Aydin, Egemen; Yaman, Fatma Busra; Ates Genceli, Esra; Topuz, Emel; Erdim, Esra; Gurel, Melike; Ipek, Murat; Pehlivanoglu-Mantas, Elif

    2012-06-30

    In pristine watersheds, natural organic matter is the main source of disinfection by-product (DBP) precursors. However, the presence of point or non-point pollution sources in watersheds may lead to increased levels of DBP precursors which in turn form DBPs in the drinking water treatment plant upon chlorination or chloramination. In this study, water samples were collected from a lake used to obtain drinking water for Istanbul as well as its tributaries to investigate the presence of the precursors of two disinfection by-products, trihalomethanes (THM) and N-nitrosodimethylamine (NDMA). In addition, the effect of seasons and the possible relationships between these precursors and water quality parameters were evaluated. The concentrations of THM and NDMA precursors measured as total THM formation potential (TTHMFP) and NDMA formation potential (NDMAFP) ranged between 126 and 1523μg/L THM and <2 and 1648ng/L NDMA, respectively. Such wide ranges imply that some of the tributaries are affected by anthropogenic pollution sources, which is also supported by high DOC, Cl(-) and NH(3) concentrations. No significant correlation was found between the water quality parameters and DBP formation potential, except for a weak correlation between NDMAFP and DOC concentrations. The effect of the sampling location was more pronounced than the seasonal variation due to anthropogenic pollution in some tributaries and no significant correlation was obtained between the seasons and water quality parameters. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. The Battle of the Printers.

    ERIC Educational Resources Information Center

    Muller, Douglas; Pettibone, Timothy

    This paper compares the characteristics of dot-matrix and daisy wheel printers using a two-column format. In the first section, the left column is used to point out the advantages of dot-matrix printers, while the daisy wheel printer is praised in the right-hand column. Examples of various capabilities are included. Advantages of the dot-matrix…

  5. Developmental mechanisms of intervertebral disc and vertebral column formation.

    PubMed

    Lawson, Lisa Y; Harfe, Brian D

    2017-11-01

    The vertebral column consists of repeating units of ossified vertebrae that are adjoined by fibrocartilagenous intervertebral discs. These structures form from the embryonic notochord and somitic mesoderm. In humans, congenital malformations of the vertebral column include scoliosis, kyphosis, spina bifida, and Klippel Feil syndrome. In adulthood, a common malady affecting the vertebral column includes disc degeneration and associated back pain. Indeed, recent reports estimate that low back pain is the number one cause of disability worldwide. Our review provides an overview of the molecular mechanisms underlying vertebral column morphogenesis and intervertebral disc development and maintenance, with an emphasis on what has been gleaned from recent genetic studies in mice. The aim of this review is to provide a developmental framework through which vertebral column formation can be understood so that ultimately, research scientists and clinicians alike can restore disc health with appropriately designed gene and cell-based therapies. WIREs Dev Biol 2017, 6:e283. doi: 10.1002/wdev.283 For further resources related to this article, please visit the WIREs website. © 2017 Wiley Periodicals, Inc.

  6. Rapid screening and identification of illicit drugs by IR absorption spectroscopy and gas chromatography

    NASA Astrophysics Data System (ADS)

    Mengali, Sandro; Liberatore, Nicola; Luciani, Domenico; Viola, Roberto; Cardinali, Gian Carlo; Elmi, Ivan; Poggi, Antonella; Zampolli, Stefano; Biavardi, Elisa; Dalcanale, Enrico; Bonadio, Federica; Delemont, Olivier; Esseiva, Pierre; Romolo, Francesco S.

    2013-01-01

    Analytical instruments based on InfraRed Absorption Spectroscopy (IRAS) and Gas Chromatography (GC) are today available only as bench-top instrumentation for forensic labs and bulk analysis. Within the 'DIRAC' project funded by the European Commission, we are developing an advanced portable sensor, that combines miniaturized GC as its key chemical separation tool, and IRAS in a Hollow Fiber (HF) as its key analytical tool, to detect and recognize illicit drugs and key precursors, as bulk and as traces. The HF-IRAS module essentially consists of a broadly tunable External Cavity (EC) Quantum Cascade Laser (QCL), thermo-electrically cooled MCT detectors, and an infrared hollow fiber at controlled temperature. The hollow fiber works as a miniaturized gas cell, that can be connected to the output of the GC column with minimal dead volumes. Indeed, the module has been coupled to GC columns of different internal diameter and stationary phase, and with a Vapour Phase Pre-concentrator (VPC) that selectively traps target chemicals from the air. The presentation will report the results of tests made with amphetamines and precursors, as pure substances, mixtures, and solutions. It will show that the sensor is capable of analyzing all the chemicals of interest, with limits of detection ranging from a few nanograms to about 100-200 ng. Furthermore, it is suitable to deal with vapours directly trapped from the headspace of a vessel, and with salts treated in a basic solution. When coupled to FAST GC columns, the module can analyze multi-components mixes in less than 5 minutes.

  7. Effect of a constructed wetland on disinfection byproducts: Removal processes and production of precursors

    USGS Publications Warehouse

    Rostad, C.E.; Martin, B.S.; Barber, L.B.; Leenheer, J.A.; Daniel, S.R.

    2000-01-01

    The fate of halogenated disinfection byproducts (DBPs) in treatment wetlands and the changes in the DBP formation potential as wastewater treatment plant (WWTP)-derived water moves through the wetlands were investigated. Wetland inlet and outlet samples were analyzed for total organic halide (TOX), trihalomethanes (TH M), haloacetic acids (HAA), dissolved organic carbon (DOC), and UV absorbance. Removal of DBPs by the wetland ranged from 13 to 55% for TOX, from 78 to 97% for THM, and from 67 to 96% for HAA. The 24-h and 7-day nonpurgeable total organic halide (NPTOX), THM, and HAA formation potential yields were determined at the inlet and outlet of these wetlands. The effect of wetlands on the production of DBP precursors and their DBP-formation potential yield from wastewater was dramatic. The wetlands increased DBP yield up to a factor of almost 30. Specific changes in the DOC precursors were identified using 13C NMR spectroscopy.The fate of halogenated disinfection byproducts (DBPs) in treatment wetlands and the changes in the DBP formation potential as wastewater treatment plant (WWTP)-derived water moves through the wetlands were investigated. Wetland inlet and outlet samples were analyzed for total organic halide (TOX), trihalomethanes (THM), haloacetic acids (HAA), dissolved organic carbon (DOC), and UV absorbance. Removal of DBPs by the wetland ranged from 13 to 55% for TOX, from 78 to 97% for THM, and from 67 to 96% for HAA. The 24-h and 7-day nonpurgeable total organic halide (NPTOX), THM, and HAA formation potential yields were determined at the inlet and outlet of these wetlands. The effect of wetlands on the production of DBP precursors and their DBP-formation potential yield from wastewater was dramatic. The wetlands increased DBP yield up to a factor of almost 30. Specific changes in the DOC precursors were identified using 13C NMR spectroscopy.

  8. Effect of Sn Content in a CuSnZn Metal Precursor on Formation of MoSe2 Film during Selenization in Se+SnSe Vapor

    PubMed Central

    Yao, Liyong; Ao, Jianping; Jeng, Ming-Jer; Bi, Jinlian; Gao, Shoushuai; Sun, Guozhong; He, Qing; Zhou, Zhiqiang; Sun, Yun; Chang, Liann-Be

    2016-01-01

    The preparation of Cu2ZnSnSe4 (CZTSe) thin films by the selenization of an electrodeposited copper–tin–zinc (CuSnZn) precursor with various Sn contents in low-pressure Se+SnSex vapor was studied. Scanning electron microscope (SEM) and energy dispersive spectroscopy (EDS) measurements revealed that the Sn content of the precursor that is used in selenization in a low-pressure Se+SnSex vapor atmosphere only slightly affects the elemental composition of the formed CZTSe films. However, the Sn content of the precursor significantly affects the grain size and surface morphology of CZTSe films. A metal precursor with a very Sn-poor composition produces CZTSe films with large grains and a rough surface, while a metal precursor with a very Sn-rich composition procures CZTSe films with small grains and a compact surface. X-ray diffraction (XRD) and SEM revealed that the metal precursor with a Sn-rich composition can grow a thicker MoSe2 thin film at CZTSe/Mo interface than one with a Sn-poor composition, possibly because excess Sn in the precursor may catalyze the formation of MoSe2 thin film. A CZTSe solar cell with an efficiency of 7.94%was realized by using an electrodeposited metal precursor with a Sn/Cu ratio of 0.5 in selenization in a low-pressure Se+SnSex vapor. PMID:28773366

  9. Wnt/β-catenin signaling in dermal condensates is required for hair follicle formation

    PubMed Central

    Tsai, Su-Yi; Sennett, Rachel; Rezza, Amélie; Clavel, Carlos; Grisanti, Laura; Zemla, Roland; Najam, Sara; Rendl, Michael

    2014-01-01

    Broad dermal Wnt signaling is required for patterned induction of hair follicle placodes and subsequent Wnt signaling in placode stem cells is essential for induction of dermal condensates, cell clusters of precursors for the hair follicle dermal papilla (DP). Progression of hair follicle formation then requires coordinated signal exchange between dermal condensates and placode stem cells. However, it remains unknown whether continued Wnt signaling in DP precursor cells plays a role in this process, largely due to the long-standing inability to specifically target dermal condensates for gene ablation. Here we use the Tbx18Cre knockin mouse line to ablate the Wnt-responsive transcription factor β-catenin specifically in these cells at E14.5 during the first wave of guard hair follicle formation. In the absence of β-catenin, canonical Wnt signaling is effectively abolished in these cells. Sox2+ dermal condensates initiate normally, however by E16.5 guard hair follicle numbers are strongly reduced and by E18.5 most whiskers and guard hair follicles are absent, suggesting that active Wnt signaling in dermal condensates is important for hair follicle formation to proceed after induction. To explore the molecular mechanisms by which Wnt signaling in dermal condensates regulates hair follicle formation, we analyze genome-wide the gene expression changes in embryonic β-catenin null DP precursor cells. We find altered expression of several signaling pathway genes, including Fgfs and Activin, both previously implicated in hair follicle formation. In summary, these data reveal a functional role of Wnt signaling in DP precursors for embryonic hair follicle formation and identify Fgf and Activin signaling as potential effectors of Wnt signaling-regulated events. PMID:24309208

  10. Advanced Precursor Reaction Processing for Cu(InGa)(SeS)2 Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shafarman, William N.

    This project “Advanced Precursor Reaction Processing for Cu(InGa)(SeS)2 Solar Cells”, completed by the Institute of Energy Conversion (IEC) at the University of Delaware in collaboration with the Department of Chemical Engineering at the University of Florida, developed the fundamental understanding and technology to increase module efficiency and improve the manufacturability of Cu(InGa)(SeS)2 films using the precursor reaction approach currently being developed by a number of companies. Key results included: (1) development of a three-step H2Se/Ar/H2S reaction process to control Ga distribution through the film and minimizes back contact MoSe2 formation; (2) Ag-alloying to improve precursor homogeneity by avoiding In phasemore » agglomeration, faster reaction and improved adhesion to allow wider reaction process window; (3) addition of Sb, Bi, and Te interlayers at the Mo/precursor junction to produce more uniform precursor morphology and improve adhesion with reduced void formation in reacted films; (4) a precursor structure containing Se and a reaction process to reduce processing time to 5 minutes and eliminate H2Se usage, thereby increasing throughput and reducing costs. All these results were supported by detailed characterization of the film growth, reaction pathways, thermodynamic assessment and device behavior.« less

  11. Degradation of typical N-nitrosodimethylamine (NDMA) precursors and its formation potential in anoxic-aerobic (AO) activated sludge system.

    PubMed

    Wang, Lin; Li, Yongmei; He, Guodong

    2014-01-01

    N-nitrosodimethylamine (NDMA) is an emerging disinfection byproduct. Removal of its potential precursors is considered as an effective method to control NDMA. In this study, four typical NDMA precursors (dimethylamine (DMA), trimethylamine (TMA), dimethylformamide (DMFA) and dimethylaminobenzene (DMAB)) were selected, and their removal capacities by activated sludge were investigated. Batch experiments indicated that removal of NDMA precursors was better under aerobic condition than anoxic condition; and their specific degradation rates follow the order of DMA > TMA > DMFA > DMAB. In anoxic-aerobic (AO) activated sludge system, the optimal hydraulic retention time and sludge retention time were 10 h and 20 d, respectively, for the removal of both NDMA precursors (four selected NDMA precursors and NDMA formation potential (NDMA FP)) and nutrients. Our results also suggested that there was a positive correlation between NDMA FP and dissolved organic nitrogen (DON) in wastewater. The removal efficiency of NDMA FP was in the range of 46.8-72.5% in the four surveyed wastewater treatment plants except the one which adopted chemically enhanced primary process. The results revealed that the AO system had the advantage of removing NDMA FP. Our results are helpful for the knowledge of the removals of NDMA precursors during activated sludge treatment processes.

  12. Identification of Ind transcription activation and repression domains required for dorsoventral patterning of the CNS.

    PubMed

    Von Ohlen, Tonia L; Moses, Cade

    2009-07-01

    Specification of cell fates across the dorsoventral axis of the central nervous system in Drosophila involves the subdivision of the neuroectoderm into three domains that give rise to three columns of neural precursor cells called neuroblasts. Ventral nervous system defective (Vnd), intermediate neuroblasts defective (Ind) and muscle segment homeobox (Msh) are expressed in the three columns from ventral to dorsal, respectively. The products of these genes play multiple important roles in formation and specification of the embryonic nervous system. Ind, for example, is known to play roles in two important processes. First, Ind is essential for formation of neuroblasts conjunction with SoxB class transcription factors. Sox class transcription factors are known to specify neural stem cells in vertebrates. Second, Ind plays an important role in patterning the CNS in conjunction with, vnd and msh, which is also similar to how vertebrates pattern their neural tube. This work focuses two important aspects of Ind function. First, we used multiple approaches to identify and characterize specific domains within the protein that confer repressor or activator ability. Currently, little is known about the presence of activation or repression domains within Ind. Here, we show that transcriptional repression by Ind requires multiple conserved domains within the protein, and that Ind has a transcriptional activation domain. Specifically, we have identified a novel domain, the Pst domain, that has transcriptional repression ability and appears to act independent of interaction with the co-repressor Groucho. This domain is highly conserved among insect species, but is not found in vertebrate Gsh class homeodomain proteins. Second, we show that Ind can and does repress vnd expression, but does so in a stage specific manner. We conclude from this that the function of Ind in regulating vnd expression is one of refinement and maintenance of the dorsal border.

  13. Shadows and Dust: Mid-Infrared Extinction Mapping of the Initial Conditions of Massive Star and Star Cluster Formation

    NASA Astrophysics Data System (ADS)

    Tan, Jonathan

    We describe a research plan to develop and extend the mid-infrared (MIR) extinction mapping technique presented by Butler & Tan (2009), who studied Infrared Dark Clouds (IRDCs) using Spitzer Space Telescope Infrared Array Camera (IRAC) 8 micron images. This method has the ability to probe the detailed spatial structure of very high column density regions, i.e. the gas clouds thought to represent the initial conditions for massive star and star cluster formation. We will analyze the data Spitzer obtained at other wavelengths, i.e. the IRAC bands at 3.6, 4.5 and 5.8 microns, and the Multiband Imaging Photometer (MIPS) bands, especially at 24 microns. This will allow us to measure the dust extinction law across the MIR and search for evidence of dust grain evolution, e.g. grain growth and ice mantle formation, as a function of gas density and column density. We will also study the detailed structure of the extinction features, including individual cores that may form single stars or close binaries, especially focusing on those cores that may form massive stars. By studying independent dark cores in a given IRDC, we will be able to test if they have a common minimum observed intensity, which we will then attribute to the foreground. This is a new method that should allow us to more accurately map distant, high column density IRDCs, probing more extreme regimes of star formation. We will combine MIR extinction mapping, which works best at high column densities, with near- IR mapping based on 2MASS images of star fields, which is most useful at lower columns that probe the extended giant molecular cloud structure. This information is crucial to help understand the formation process of IRDCs, which may be the rate limiting step for global galactic star formation rates. We will use our new extinction mapping methods to analyze large samples of IRDCs and thus search the Galaxy for the most extreme examples of high column density cores and assess the global star formation efficiency in dense gas. We will estimate the ability of future NASA missions, such as JWST, to carry out MIR extinction mapping science. We will develop the results of this research into an E/PO presentation to be included in the various public outreach events organized and courses taught by the PI.

  14. High efficiency capillary column-gas chromatography mass spectrometry: analysis of the lipoxygenase pathway in eukaryot cells.

    PubMed

    Rabinovitch-Chable, H; Durand, J; Aldigier, J C; Chebroux, P; Gualde, N; Beneytout, J L; Rigaud, M

    1984-01-01

    Lipoxygenases are ubiquitous enzymes able to oxygenate polyunsaturated fatty acids. This metabolic pathway leads to hydroperoxides, hydroxyepoxyene compounds and leukotrienes. Using high performance gas chromatography prior to mass spectrometry, we studied the activity of the lipoxygenases from mouse peritoneal macrophages. Further studies on mechanism of biosynthesis of hydroxyepoxyene compounds were successfully carried out using 18O2 labelled precursors.

  15. Large-Scale Structure of the Molecular Gas in Taurus Revealed by High Spatial Dynamic Range Spectral Line Mapping

    NASA Technical Reports Server (NTRS)

    Goldsmith, Paul F.

    2008-01-01

    Viewgraph topics include: optical image of Taurus; dust extinction in IR has provided a new tool for probing cloud morphology; observations of the gas can contribute critical information on gas temperature, gas column density and distribution, mass, and kinematics; the Taurus molecular cloud complex; average spectra in each mask region; mas 2 data; dealing with mask 1 data; behavior of mask 1 pixels; distribution of CO column densities; conversion to H2 column density; variable CO/H2 ratio with values much less than 10(exp -4) at low N indicated by UV results; histogram of N(H2) distribution; H2 column density distribution in Taurus; cumulative distribution of mass and area; lower CO fractional abundance in mask 0 and 1 regions greatly increases mass determined in the analysis; masses determined with variable X(CO) and including diffuse regions agrees well with the found from L(CO); distribution of young stars as a function of molecular column density; star formation efficiency; star formation rate and gas depletion; and enlarged images of some of the regions with numerous young stars. Additional slides examine the origin of the Taurus molecular cloud, evolution from HI gas, kinematics as a clue to its origin, and its relationship to star formation.

  16. The role of aromatic precursors in the formation of haloacetamides by chloramination of dissolved organic matter.

    PubMed

    Le Roux, Julien; Nihemaiti, Maolida; Croué, Jean-Philippe

    2016-01-01

    Water treatment utilities are diversifying their water sources and often rely on waters enriched in nitrogen-containing compounds (e.g., ammonia, organic nitrogen such as amino acids). The disinfection of waters exhibiting high levels of nitrogen has been associated with the formation of nitrogenous disinfection byproducts (N-DBPs) such as haloacetonitriles (HANs) and haloacetamides (HAcAms). While the potential precursors of HANs have been extensively studied, only few investigations are available regarding the nature of HAcAm precursors. Previous research has suggested that HAcAms are hydrolysis products of HANs. Nevertheless, it has been recently suggested that HAcAms can be formed independently, especially during chloramination of humic substances. When used as a disinfectant, monochloramine can also be a source of nitrogen for N-DBPs. This study investigated the role of aromatic organic matter in the formation of N-DBPs (HAcAms and HANs) upon chloramination. Formation kinetics were performed from various fractions of organic matter isolated from surface waters or treated wastewater effluents. Experiments were conducted with (15)N-labeled monochloramine ((15)NH2Cl) to trace the origin of nitrogen. N-DBP formation showed a two-step profile: (1) a rapid formation following second-order reaction kinetics and incorporating nitrogen atom originating from the organic matrix (e.g., amine groups); and (2) a slower and linear increase correlated with exposure to chloramines, incorporating inorganic nitrogen ((15)N) from (15)NH2Cl into aromatic moieties. Organic matter isolates showing high aromatic character (i.e., high SUVA) exhibited high reactivity characterized by a major incorporation of (15)N in N-DBPs. A significantly lower incorporation was observed for low-aromatic-content organic matter. (15)N-DCAcAm and (15)N-DCAN formations exhibited a linear correlation, suggesting a similar behavior of (15)N incorporation as SUVA increases. Chloramination of aromatic model compounds (i.e., phenol and resorcinol) showed higher HAcAm and HAN formation potentials than nitrogenous precursors (i.e., amino acids) usually considered as main precursors of these N-DBPs. These results demonstrate the importance of aromatic organic compounds in the formation of N-DBPs, which is of significant importance for water treatment facilities using chloramines as final disinfectant. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. New Polymeric Precursors of Silicon Carbide

    NASA Technical Reports Server (NTRS)

    Litt, M.; Kumar, K.

    1987-01-01

    Silicon carbide made by pyrolizing polymers. Method conceived for preparation of poly(decamethylcyclohexasilanes) as precursors for preparation of silicon carbide at high yield. Technical potential of polysilanes as precursors of SiC ceramics being explored. Potential limited by intractability of some polysilanes; formation of small, cyclic polycarbosilane fragments during pyrolysis; and overall low char yield and large shrinkage in conversion to ceramics.

  18. Engineered biofiltration for the removal of disinfection by-product precursors and genotoxicity.

    PubMed

    McKie, Michael J; Taylor-Edmonds, Liz; Andrews, Susan A; Andrews, Robert C

    2015-09-15

    Disinfection by-products (DBPs) are formed when naturally occurring organic matter reacts with chlorine used in drinking water treatment, and DBPs formed in chlorinated drinking water samples have been shown to cause a genotoxic response. The objective of the current study was to further understand the principles of biofiltration and the resulting impacts on the formation of DBPs and genotoxicity. Pilot-scale systems were utilized to assess the performance of engineered biofilters enhanced with hydrogen peroxide, in-line coagulants, and nutrients when compared to passively operated biofilters and conventional treatment (coagulation, flocculation, sedimentation, non-biological filtration). Organic fractionation was completed using liquid chromatography-organic carbon detection (LC-OCD). Water samples were chlorinated after collection and examined for the removal of trihalomethane (THM), haloacetic acid (HAA), and adsorbable organic halide (AOX) precursors. Additionally, the formation potential of two halogenated furanones, 3-chloro-4(dichloromethyl)-2(5H)-furanone (MX) and mucochloric acid (MCA), and genotoxicity was determined. Biofiltration was shown to preferentially remove more DBP precursors than dissolved organic carbon (DOC). Formation potential of the unregulated DBPs, including MX and MCA, and genotoxic response was shown to be correlated to THM formation. These results infer that monitoring for THMs and HAAs provide insight to the formation of more mutagenic DBPs such as halogenated furanones, and that biofiltration may preferentially remove precursors to DBPs at a rate exceeding the removal of DOC. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Real-time observation of Cu2ZnSn(S,Se)4 solar cell absorber layer formation from nanoparticle precursors.

    PubMed

    Mainz, Roland; Walker, Bryce C; Schmidt, Sebastian S; Zander, Ole; Weber, Alfons; Rodriguez-Alvarez, Humberto; Just, Justus; Klaus, Manuela; Agrawal, Rakesh; Unold, Thomas

    2013-11-07

    The selenization of Cu-Zn-Sn-S nanocrystals is a promising route for the fabrication of low-cost thin film solar cells. However, the reaction pathway of this process is not completely understood. Here, the evolution of phase formation, grain size, and elemental distributions is investigated during the selenization of Cu-Zn-Sn-S nanoparticle precursor thin films by synchrotron-based in situ energy-dispersive X-ray diffraction and fluorescence analysis as well as by ex situ electron microscopy. The precursor films are heated in a closed volume inside a vacuum chamber in the presence of selenium vapor while diffraction and fluorescence signals are recorded. The presented results reveal that during the selenization the cations diffuse to the surface to form large grains on top of the nanoparticle layer and the selenization of the film takes place through two simultaneous reactions: (1) a direct and fast formation of large grained selenides, starting with copper selenide which is subsequently transformed into Cu2ZnSnSe4; and (2) a slower selenization of the remaining nanoparticles. As a consequence of the initial formation of copper selenides at the surface, the subsequent formation of CZTSe starts under Cu-rich conditions despite an overall Cu-poor composition of the film. The implications of this process path for the film quality are discussed. Additionally, the proposed growth model provides an explanation for the previously observed accumulation of carbon from the nanoparticle precursor beneath the large grained layer.

  20. Synthesis of t-Butyl (2R)-Hydroxyisovalerate, A Precursor of Aureobasidin B

    NASA Astrophysics Data System (ADS)

    Maharani, R.; Puspitasari, D.; Taufiqqurahman; Huspa, D. H. P.; Hidayat, A. T.; Sumiarsa, D.; Hidayat, I. W.

    2017-02-01

    Aureobasidins are a family of cyclodepsipeptides have antifungal properties. They were isolated from the black yeast Aureobasidium pullulans R106 and over 30 derivatives have been successfully characterized. There are few publications reporting the total synthesis of aureobasidins. The limited reports of the synthesis of the aureobasidin derivatives are due to the difficult access to the preparations of precursors. The aim of this research is to synthesise a precursor of aureobasidin B, t-butyl (2R)-hydroxyisovalerate (t-Bu-Hiv), that is prepared for the total synthesis of aureobasidin B. The synthesis of AbB is planned to be undertaken by using a solid phase method, so the ester formation between t-Bu-Hiv and the Fmoc-β-hydroxymethylvaline will be carried out in solution phase to form depsidipeptide. The t-butyl group was used as protecting agent that is due to the straightforward elimination of the protecting group from the Fmoc-depsidipeptide. The t-Bu-Hiv acid was prepared from D-valine through diazotisation to form (2R)-acetyloxyisovaleric acid in 62.7% yield. Product of the first step was then protected by t-butyl group by using Boc-anhydride in t-butanol to give t-butil (2R)-acetyloxyisovalerate in 44% yield. In the last step, the acetyloxy group was eliminated by using potassium carbonate in methanol/water to give the desired product, t-Bu-Hiv in 33.5% yield. The t-Bu-Hiv is ready to be combined with Fmoc-β-hydroxymethylvaline to result in depsidipeptide that will be attached to the resin in the total synthesis of AbB. Each stage of this synthesis was controlled by thin layer chromatography and all products were purified by open column chromatography. All the synthesized products were characterized by various spectroscopic techniques, including infrared spectrophotometer, mass spectroscopy (ESI-MS), 1H-NMR and 13C-NMR.

  1. Spatial structures arising along a surface wave produced plasma column: an experimental study

    NASA Astrophysics Data System (ADS)

    Atanassov, V.; Mateev, E.

    2007-04-01

    The formation of spatial structures in high-frequency and microwave discharges has been known for several decades. Nevertheless it still raises increased interest, probably due to the variety of the observed phenomena and the lack of adequate and systematic theoretical interpretation. In this paper we present preliminary results on observation of spatial structures appearing along a surface wave sustained plasma column. The experiments have been performed in noble gases (xenon and neon) at low to intermediate pressure and the surface wave has been launched by a surfatron. Under these conditions we have observed and documented: i) appearance of stationary plasma rings; ii) formation of standing-wave striationlike patterns; iii) contraction of the plasma column; iv) plasma column transition into moving plasma balls and filaments. Some of the existing theoretical considerations of these phenomena are reviewed and discussed.

  2. Carbon and oxygen dynamics on the Louisiana continental shelf: role of water column primary production and respiration

    EPA Science Inventory

    We conducted a multi-year study of the Louisiana continental shelf (LCS) to better understand the linkages between water column net metabolism and the formation of hypoxia (dissolved oxygen <2 ml O2 L-1) in the region. Rates of water column community respiration (R) and primary p...

  3. Total N-nitrosamine Precursor Adsorption with Carbon Nanotubes: Elucidating Controlling Physiochemical Properties and Developing a Size-Resolved Precursor Surrogate

    NASA Astrophysics Data System (ADS)

    Needham, Erin Michelle

    As drinking water sources become increasingly impaired with nutrients and wastewater treatment plant (WWTP) effluent, formation of disinfection byproducts (DBPs)--such as trihalomethanes (THMs), dihaloacetonitriles (DHANs), and N-nitrosamines--during water treatment may also increase. N-nitrosamines may comprise the bulk of the chronic toxicity in treated drinking waters despite forming at low ng/L levels. This research seeks to elucidate physicochemical properties of carbon nanotubes (CNTs) for removal of DBP precursors, with an emphasis on total N-nitrosamines (TONO). Batch experiments with CNTs were completed to assess adsorption of THM, DHAN, and TONO precursors; physiochemical properties of CNTs were quantified through gas adsorption isotherms and x-ray photoelectron spectroscopy. Numerical modeling was used to elucidate characteristics of CNTs controlling DBP precursor adsorption. Multivariate models developed with unmodified CNTs revealed that surface carboxyl groups and, for TONO precursors, cumulative pore volume (CPV), controlled DBP precursor adsorption. Models developed with modified CNTs revealed that specific surface area controlled adsorption of THM and DHAN precursors while CPV and surface oxygen content were significant for adsorption of TONO precursors. While surrogates of THM and DHAN precursors leverage metrics from UV absorbance and fluorescence spectroscopy, a TONO precursor surrogate has proved elusive. This is important as measurements of TONO formation potential (TONOFP) require large sample volumes and long processing times, which impairs development of treatment processes. TONO precursor surrogates were developed using samples that had undergone oxidative or sorption treatments. Precursors were analyzed with asymmetric flow field-flow fractionation (AF4) with inline fluorescence detection (FLD) and whole water fluorescence excitation-emission matrices (EEMs). TONO precursor surrogates were discovered, capable of predicting changes in TONOFP in WWTP samples that have undergone oxidation (R2 = 0.996) and sorption (R2 = 0.576). Importantly, both surrogates only require just 2 mL of sample volume to measure and take only 1 hour. Application of the sorption precursor surrogate revealed that DBP precursor adsorption was feasible with freeform CNT microstructures with various dimensions and surface chemistries, establishing a framework for development of this novel CNT application for drinking water treatment.

  4. Formation of crystalline InGaO₃(ZnO)n nanowires via the solid-phase diffusion process using a solution-based precursor.

    PubMed

    Guo, Yujie; Van Bilzen, Bart; Locquet, Jean Pierre; Seo, Jin Won

    2015-12-11

    One-dimensional single crystalline InGaO3(ZnO)n (IGZO) nanostructures have great potential for various electrical and optical applications. This paper demonstrates for the first time, to our knowledge, a non-vacuum route for the synthesis of IGZO nanowires by annealing ZnO nanowires covered with solution-based IGZO precursor. This method results in nanowires with highly periodic IGZO superlattice structure. The phase transition of IGZO precursor during thermal treatment was systematically studied. Transmission electron microscopy studies reveal that the formation of the IGZO structure is driven by anisotropic inter-diffusion of In, Ga, and Zn atoms, and also by the crystallization of the IGZO precursor. Optical measurements using cathodoluminescence and UV-vis spectroscopy confirm that the nanowires consist of the IGZO compound with wide optical band gap and suppressed luminescence.

  5. Nanoscale Transforming Mineral Phases in Fresh Nacre.

    PubMed

    DeVol, Ross T; Sun, Chang-Yu; Marcus, Matthew A; Coppersmith, Susan N; Myneni, Satish C B; Gilbert, Pupa U P A

    2015-10-21

    Nacre, or mother-of-pearl, the iridescent inner layer of many mollusk shells, is a biomineral lamellar composite of aragonite (CaCO3) and organic sheets. Biomineralization frequently occurs via transient amorphous precursor phases, crystallizing into the final stable biomineral. In nacre, despite extensive attempts, amorphous calcium carbonate (ACC) precursors have remained elusive. They were inferred from non-nacre-forming larval shells, or from a residue of amorphous material surrounding mature gastropod nacre tablets, and have only once been observed in bivalve nacre. Here we present the first direct observation of ACC precursors to nacre formation, obtained from the growth front of nacre in gastropod shells from red abalone (Haliotis rufescens), using synchrotron spectromicroscopy. Surprisingly, the abalone nacre data show the same ACC phases that are precursors to calcite (CaCO3) formation in sea urchin spicules, and not proto-aragonite or poorly crystalline aragonite (pAra), as expected for aragonitic nacre. In contrast, we find pAra in coral.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeVol, Ross T.; Sun, Chang-Yu; Marcus, Matthew A.

    Nacre, or mother-of-pearl, the iridescent inner layer of many mollusk shells, is a biomineral lamellar composite of aragonite (CaCO 3) and organic sheets. Biomineralization frequently occurs via transient amorphous precursor phases, crystallizing into the final stable biomineral. In nacre, despite extensive attempts, amorphous calcium carbonate (ACC) precursors have remained elusive. They were inferred from non-nacre-forming larval shells, or from a residue of amorphous material surrounding mature gastropod nacre tablets, and have only once been observed in bivalve nacre. Here we present the first direct observation of ACC precursors to nacre formation, obtained from the growth front of nacre in gastropodmore » shells from red abalone (Haliotis rufescens), using synchrotron spectromicroscopy. Surprisingly, the abalone nacre data show the same ACC phases that are precursors to calcite (CaCO 3) formation in sea urchin spicules, and not proto-aragonite or poorly crystalline aragonite (pAra), as expected for aragonitic nacre. In contrast, we find pAra in coral.« less

  7. Collapse of tall granular columns in fluid

    NASA Astrophysics Data System (ADS)

    Kumar, Krishna; Soga, Kenichi; Delenne, Jean-Yves

    2017-06-01

    Avalanches, landslides, and debris flows are geophysical hazards, which involve rapid mass movement of granular solids, water, and air as a multi-phase system. In order to describe the mechanism of immersed granular flows, it is important to consider both the dynamics of the solid phase and the role of the ambient fluid. In the present study, the collapse of a granular column in fluid is studied using 2D LBM - DEM. The flow kinematics are compared with the dry and buoyant granular collapse to understand the influence of hydrodynamic forces and lubrication on the run-out. In the case of tall columns, the amount of material destabilised above the failure plane is larger than that of short columns. Therefore, the surface area of the mobilised mass that interacts with the surrounding fluid in tall columns is significantly higher than the short columns. This increase in the area of soil - fluid interaction results in an increase in the formation of turbulent vortices thereby altering the deposit morphology. It is observed that the vortices result in the formation of heaps that significantly affects the distribution of mass in the flow. In order to understand the behaviour of tall columns, the run-out behaviour of a dense granular column with an initial aspect ratio of 6 is studied. The collapse behaviour is analysed for different slope angles: 0°, 2.5°, 5° and 7.5°.

  8. The Cellular Chaperone Heat Shock Protein 90 Is Required for Foot-and-Mouth Disease Virus Capsid Precursor Processing and Assembly of Capsid Pentamers.

    PubMed

    Newman, Joseph; Asfor, Amin S; Berryman, Stephen; Jackson, Terry; Curry, Stephen; Tuthill, Tobias J

    2018-03-01

    Productive picornavirus infection requires the hijacking of host cell pathways to aid with the different stages of virus entry, synthesis of the viral polyprotein, and viral genome replication. Many picornaviruses, including foot-and-mouth disease virus (FMDV), assemble capsids via the multimerization of several copies of a single capsid precursor protein into a pentameric subunit which further encapsidates the RNA. Pentamer formation is preceded by co- and posttranslational modification of the capsid precursor (P1-2A) by viral and cellular enzymes and the subsequent rearrangement of P1-2A into a structure amenable to pentamer formation. We have developed a cell-free system to study FMDV pentamer assembly using recombinantly expressed FMDV capsid precursor and 3C protease. Using this assay, we have shown that two structurally different inhibitors of the cellular chaperone heat shock protein 90 (hsp90) impeded FMDV capsid precursor processing and subsequent pentamer formation. Treatment of FMDV permissive cells with the hsp90 inhibitor prior to infection reduced the endpoint titer by more than 10-fold while not affecting the activity of a subgenomic replicon, indicating that translation and replication of viral RNA were unaffected by the drug. IMPORTANCE FMDV of the Picornaviridae family is a pathogen of huge economic importance to the livestock industry due to its effect on the restriction of livestock movement and necessary control measures required following an outbreak. The study of FMDV capsid assembly, and picornavirus capsid assembly more generally, has tended to be focused upon the formation of capsids from pentameric intermediates or the immediate cotranslational modification of the capsid precursor protein. Here, we describe a system to analyze the early stages of FMDV pentameric capsid intermediate assembly and demonstrate a novel requirement for the cellular chaperone hsp90 in the formation of these pentameric intermediates. We show the added complexity involved for this process to occur, which could be the basis for a novel antiviral control mechanism for FMDV. Copyright © 2018 Newman et al.

  9. IRS Spectral Maps of Photoevaporative Columns in M16, Carina, and the Galactic Center

    NASA Astrophysics Data System (ADS)

    Cotera, Angela; Healy, Kevin; Hester, Jeff; Sellgren, Kris; Simpson, Janet; Stolovy, Susan

    2008-03-01

    Photoevaporated columns of dust and gas - also called elephant trunks, pillars or fingers - are found in the periphery of H II regions, and have been observed within the Galaxy, the SMC and the LMC. These features are sites of current star formation, but the question remains whether the columns persist because stars formed in the denser regions prior to interactions with the UV radiation and stellar winds of nearby massive stars, or because of core collapse resulting from these interactions. Mapping the distribution of the physical states of the dust and gas in these columns is a necessary step towards understanding the possible star formation mechanisms within these dynamic objects. We propose to obtain IRS spectral maps of columns within M 16, the Carina nebula, and the Galactic center (GC) to understand the effects on these pillars from different stellar populations and initial conditions, and to better understand star formation in the GC. Within the spectral range of the high resolution IRS modes (9.9-37.2 micron) there are a wealth of molecular, atomic and PAH emission lines that will enable us to determine the excitation state, dust and gas temperatures, and probe the shock characteristics within the columns. Using the IRS spectral mapping mode, in conjunction with the CUBISM tool and the CLOUDY H II region model code, we will be able to construct detailed maps of the accessible emission lines and derived parameters for each column. IRS mapping of elephant trunks has not been done to date, yet provides a wealth of information unobtainable for the foreseeable future once Cycle 5 is completed.

  10. Coordinated Regulation of Niche and Stem Cell Precursors by Hormonal Signaling

    PubMed Central

    Gancz, Dana; Lengil, Tamar; Gilboa, Lilach

    2011-01-01

    Stem cells and their niches constitute units that act cooperatively to achieve adult body homeostasis. How such units form and whether stem cell and niche precursors might be coordinated already during organogenesis are unknown. In fruit flies, primordial germ cells (PGCs), the precursors of germ line stem cells (GSCs), and somatic niche precursors develop within the larval ovary. Together they form the 16–20 GSC units of the adult ovary. We show that ecdysone receptors are required to coordinate the development of niche and GSC precursors. At early third instar, ecdysone receptors repress precocious differentiation of both niches and PGCs. Early repression is required for correct morphogenesis of the ovary and for protecting future GSCs from differentiation. At mid-third instar, ecdysone signaling is required for niche formation. Finally, and concurrent with the initiation of wandering behavior, ecdysone signaling initiates PGC differentiation by allowing the expression of the differentiation gene bag of marbles in PGCs that are not protected by the newly formed niches. All the ovarian functions of ecdysone receptors are mediated through early repression, and late activation, of the ecdysone target gene broad. These results show that, similar to mammals, a brain-gland-gonad axis controls the initiation of oogenesis in insects. They further exemplify how a physiological cue coordinates the formation of a stem cell unit within an organ: it is required for niche establishment and to ensure that precursor cells to adult stem cells remain undifferentiated until the niches can accommodate them. Similar principles might govern the formation of additional stem cell units during organogenesis. PMID:22131903

  11. Automated Oligopeptide Formation Under Simple Programmable Conditions

    NASA Astrophysics Data System (ADS)

    Suárez-Marina, I.; Rodriguez-Garcia, M.; Surman, A. J.; Cooper, G. J. T.; Cronin, L.

    2017-07-01

    Traditionally, prebiotic chemistry has investigated the formation of life's precursors under very specific conditions thought to be "plausible". Herein, we explore peptide formation studying several parameters at once by using an automated platform.

  12. Non-thermal plasma conversion of hydrocarbons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strohm, James J.; Skoptsov, George L.; Musselman, Evan T.

    A non-thermal plasma is generated to selectively convert a precursor to a product. More specifically, plasma forming material and a precursor material are provided to a reaction zone of a vessel. The reaction zone is exposed to microwave radiation, including exposing the plasma forming material and the precursor material to the microwave radiation. The exposure of the plasma forming material to the microwave radiation selectively converts the plasma forming material to a non-thermal plasma including formation of one or more streamers. The precursor material is mixed with the plasma forming material and the precursor material is exposed to the non-thermalmore » plasma including exposing the precursor material to the one or more streamers. The exposure of the precursor material to the streamers and the microwave radiation selectively converts the precursor material to a product.« less

  13. Chromatography of blood-clotting factors and serum proteins on columns of diatomaceous earth.

    PubMed

    MILSTONE, J H

    1955-07-20

    1. In batch adsorptions with prothrombin solutions, hyflo was the weakest adsorbent, standard super-cel intermediate, and filter-cel strongest. Of these three grades of diatomaceous earth, hyflo has the smallest surface area per gram and filter-cel the largest. In parallel breakthrough experiments, a column of standard super-cel had a capacity almost six times that of a hyflo column. 2. After partial removal of impurities by diatomaceous earth, prothrombin preparations contained less thrombokinase, were more stable, and displayed less tendency to form thrombin "spontaneously." Thrombokinase (or its precursor) was removed from a preparation of prothrombin by passage through a filter cake of standard super-cel. The specific activity of the prothrombin was increased; and 62 per cent of the activity was recovered. 3. Prothrombin was adsorbed from an ammonium sulfate solution at pH 5.26 by columns of hyflo or standard super-cel. When eluted by phosphate solutions, the protein moved down the columns more readily at higher pH and higher concentration of phosphate salts, within the pH range 5.0 to 6.6, and within the phosphate range 0.1 to 1.0 M. 4. Thrombin was adsorbed on a column of standard super-cel at pH 5.11. As successive eluents passed through the column, the thrombin emerged between two bands of impurities. The specific activity of the thrombin was raised; and 83 per cent of the activity was recovered. 5. With a column of standard super-cel, and with a series of eluents within the pH range 5.1 to 6.3, total serum proteins were separated into four major bands. About 94 per cent of the protein was recovered.

  14. CHROMATOGRAPHY OF BLOOD-CLOTTING FACTORS AND SERUM PROTEINS ON COLUMNS OF DIATOMACEOUS EARTH

    PubMed Central

    Milstone, J. H.

    1955-01-01

    1. In batch adsorptions with prothrombin solutions, hyflo was the weakest adsorbent, standard super-cel intermediate, and filter-cel strongest. Of these three grades of diatomaceous earth, hyflo has the smallest surface area per gram and filter-cel the largest. In parallel breakthrough experiments, a column of standard super-cel had a capacity almost six times that of a hyflo column. 2. After partial removal of impurities by diatomaceous earth, prothrombin preparations contained less thrombokinase, were more stable, and displayed less tendency to form thrombin "spontaneously." Thrombokinase (or its precursor) was removed from a preparation of prothrombin by passage through a filter cake of standard super-cel. The specific activity of the prothrombin was increased; and 62 per cent of the activity was recovered. 3. Prothrombin was adsorbed from an ammonium sulfate solution at pH 5.26 by columns of hyflo or standard super-cel. When eluted by phosphate solutions, the protein moved down the columns more readily at higher pH and higher concentration of phosphate salts, within the pH range 5.0 to 6.6, and within the phosphate range 0.1 to 1.0 M. 4. Thrombin was adsorbed on a column of standard super-cel at pH 5.11. As successive eluents passed through the column, the thrombin emerged between two bands of impurities. The specific activity of the thrombin was raised; and 83 per cent of the activity was recovered. 5. With a column of standard super-cel, and with a series of eluents within the pH range 5.1 to 6.3, total serum proteins were separated into four major bands. About 94 per cent of the protein was recovered. PMID:13242761

  15. Quarternary Amines as Nitrosamine Precursors: A Role for Consumer Products?

    USDA-ARS?s Scientific Manuscript database

    Nitrosamine formation is associated with wastewater-impacted water supplies, but the specific precursors within municipal wastewater effluents have not been identified. Quaternary amines are significant constituents of consumer products, including shampoos, detergents and fabric softeners. Experimen...

  16. Graphitic carbon stabilized silver nanoparticles synthesized by a simple chemical precursor method

    NASA Astrophysics Data System (ADS)

    Soni, Bhasker; Biswas, Somnath

    2018-04-01

    Monodispersed graphitic carbon stabilized silver nanoparticles (AgNPs) were synthesized following a simple chemical precursor method. The precursor was obtained by a controlled reduction of Ag+ in aqueous solution of poly-vinyl alcohol (PVA) and sucrose. The process allows precise control over the morphology of the AgNPs along with in situ formation of a surface stabilization layer of graphitic carbon.

  17. Deactivation of wastewater-derived N-nitrosodimethylamine precursors with chlorine dioxide oxidation and the effect of pH.

    PubMed

    Uzun, Habibullah; Kim, Daekyun; Karanfil, Tanju

    2018-09-01

    In this study, the effect of chlorine dioxide (ClO 2 ) oxidation on the deactivation of wastewater (WW)-derived N-nitrosodimethylamine (NDMA) precursors was investigated under various conditions (i.e., ClO 2 application pH, dose and contact time). At pH 6.0, decreases in NDMA formation potentials (FPs) or occurrences (under uniform formation conditions [UFC]) were relatively low (<25%) with ClO 2 oxidation regardless of WW-impact. A negative removal was also observed after ClO 2 oxidation in some of the non-impacted waters. However, NDMA FP removals were significant (up to ~85%) under the same oxidation conditions in WW-impacted waters at pH 7.8. This indicates that the majority of WW-derived NDMA precursors can be deactivated with ClO 2 oxidation above neutral pH. This was attributed to the better oxidative reaction of ClO 2 with amines that have lone pair electrons to be shared at higher oxidation pH conditions. In addition, relatively short oxidation periods with ClO 2 (i.e., ≤10 min) or low Ct (concentration × time, ~10 mg ∗ min/L) values were sufficient for the deactivation of WW-derived NDMA precursors. ClO 2 oxidation was effective in freshly WW-impacted waters. Natural attenuation processes (e.g., sorption, biodegradation, etc.) can change the reactivity of WW-derived NDMA precursors for oxidation with ClO 2 . The effect of ClO 2 on the removal of THM precursors was low (<25%) and independent of oxidation conditions. Given the low formation of regulated THMs and HAAs, ClO 2 oxidation presents a viable option for the simultaneous control of NDMA and regulated DBP formation during water treatment, especially for utilities treating WW-impacted water sources. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Perfluorocarboxylic acid (PFCA) atmospheric formation and transport to the Arctic.

    NASA Astrophysics Data System (ADS)

    Pike-thackray, C.; Selin, N. E.

    2015-12-01

    Perfluorocarboxylic acids (PFCAs) are highly persistent and toxic environmental contaminants that have been found in remote locations such as the Arctic, far from emission sources. These persistent organic pollutants are emitted directly to the atmosphere as well as being produced by the degradation of precursor compounds in the atmosphere, but recent trends towards increasing precursor emissions and decreasing direct emissions raise the importance of production in the atmosphere. Our work aims to improve understanding of the atmospheric degradation of fluorotelomer precursor compounds to form the long-chain PFCAs PFOA (C8) and PFNA (C9).Using the atmospheric chemical transport model GEOS-Chem, which uses assimilated meteorology to simulate the atmospheric transport of trace gas species, we investigate the interaction of the atmospheric formation of PFCAs and the atmospheric transport of their precursor species. Our simulations are a first application of the GEOS-Chem framework to PFCA chemistry. We highlight the importance of the spatial and temporal variability of background atmospheric chemical conditions experienced during transport. We find that yields and formation times of PFOA and PFNA respond differently and strongly to the photochemical conditions of the atmosphere, such as the abundance of NO, HO2, and other photochemical species.

  19. ERDDAP - RESTful Web Services

    Science.gov Websites

    , graphs, or information about datasets). A RESTful web service (external link) - a URL that computer to get the same information in a more computer-program-friendly format like JSON (external link .jsonlKVP, where column names are on every row): Each column has a column name and one type of information

  20. Oxidation of suspected N-nitrosodimethylamine (NDMA) precursors by ferrate (VI): kinetics and effect on the NDMA formation potential of natural waters.

    PubMed

    Lee, Changha; Lee, Yunho; Schmidt, Carsten; Yoon, Jeyong; Von Gunten, Urs

    2008-01-01

    The potential of ferrate (Fe(VI)) oxidation to remove N-nitrosodimethylamine (NDMA) precursors during water treatment was assessed. Apparent second-order rate constants (k(app)) for the reactions of NDMA and its suspected precursors (dimethylamine (DMA) and 7 tertiary amines with DMA functional group) with Fe(VI) were determined in the range of pH 6-12. Four model NDMA precursors (dimethyldithiocarbamate, dimethylaminobenzene, 3-(dimethylaminomethyl)indole and 4-dimethylaminoantipyrine) showed high reactivity toward Fe(VI) with k(app) values at pH 7 between 2.6 x 10(2) and 3.2 x 10(5)M(-1)s(-1). The other NDMA precursors (DMA, trimethylamine, dimethylethanolamine, dimethylformamide) and NDMA had k(app) values ranging from 0.55 to 9.1M(-1)s(-1) at pH 7. In the second part of the study, the NDMA formation potentials (NDMA-FP) of the model NDMA precursors and natural waters were measured with and without pre-oxidation by Fe(VI). For most of the NDMA precursors with the exception of DMA, a significant reduction of the NDMA-FP (>95%) was observed after complete transformation of the NDMA precursor. This result was supported by low yields of DMA from the Fe(VI) oxidation of tertiary amine NDMA precursors. Pre-oxidation of several natural waters (rivers Rhine, Neckar and Pfinz) with a high dose of Fe(VI) (0.38 mM = 21 mg L(-1) as Fe) led to removals of the NDMA-FP of 46-84%. This indicates that the NDMA precursors in these waters have a low reactivity toward Fe(VI) because it has been shown that for fast-reacting NDMA precursors Fe(VI) doses of 20 microM (1.1 mg L(-1) as Fe) are sufficient to completely oxidize the precursors.

  1. [Estimate of the formation potential of secondary organic aerosol in Beijing summertime].

    PubMed

    Lü, Zi-Feng; Hao, Ji-Ming; Duan, Jing-Chun; Li, Jun-Hua

    2009-04-15

    Fractional aerosol coefficients (FAC) are used in conjunction with measurements of volatile organic compounds (VOC) during ozone episodes to estimate the formation potential of secondary organic aerosols (SOA) in the summertime of Beijing. The estimation is based on the actual atmospheric conditions of Beijing, and benzene and isoprene are considered as the precursors of SOA. The results show that 31 out of 70 measured VOC species are SOA precursors, and the total potential SOA formation is predicted to be 8.48 microg/m3, which accounts for 30% of fine organic particle matter. Toluene, xylene, pinene, ethylbenzene and n-undecane are the 5 largest contributors to SOA production and account for 20%, 22%, 14%, 9% and 4% of total SOA production, respectively. The anthropogenic aromatic compounds, which yield 76% of the calculated SOA, are the major source of SOA. The biogenic alkenes, alkanes and carbonyls produce 16%, 7% and 1% of SOA formation, respectively. The major components of produced SOA are expected to be aromatic compounds, aliphatic acids, carbonyls and aliphatic nitrates, which contribute to 72%, 14%, 11% and 3% of SOA mass, respectively. The SOA precursors have relatively low atmospheric concentrations and low ozone formation potential. Hence, SOA formation potential of VOC species, in addition to their atmospheric concentrations and ozone formation potential, should be considered in policy making process of VOCs control.

  2. Preparative electrophoresis with on-column optical fiber monitoring and direct elution into a minimized volume.

    PubMed

    Jackson, George W; Willson, Richard

    2005-11-01

    A "column-format" preparative electrophoresis device which obviates the need for gel extraction or secondary electro-elution steps is described. Separated biomolecules are continuously detected and eluted directly into a minimal volume of free solution for subsequent use. An optical fiber allows the species of interest to be detected just prior to elution from the gel column, and a small collection volume is created by addition of an ion-exchange membrane near the end of the column.

  3. Nanocrystalline Precursors for the Co-Assembly of Crack-Free Metal Oxide Inverse Opals.

    PubMed

    Phillips, Katherine R; Shirman, Tanya; Shirman, Elijah; Shneidman, Anna V; Kay, Theresa M; Aizenberg, Joanna

    2018-05-01

    Inorganic microstructured materials are ubiquitous in nature. However, their formation in artificial self-assembly systems is challenging as it involves a complex interplay of competing forces during and after assembly. For example, colloidal assembly requires fine-tuning of factors such as the size and surface charge of the particles and electrolyte strength of the solvent to enable successful self-assembly and minimize crack formation. Co-assembly of templating colloidal particles together with a sol-gel matrix precursor material helps to release stresses that accumulate during drying and solidification, as previously shown for the formation of high-quality inverse opal (IO) films out of amorphous silica. Expanding this methodology to crystalline materials would result in microscale architectures with enhanced photonic, electronic, and catalytic properties. This work describes tailoring the crystallinity of metal oxide precursors that enable the formation of highly ordered, large-area (mm 2 ) crack-free titania, zirconia, and alumina IO films. The same bioinspired approach can be applied to other crystalline materials as well as structures beyond IOs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. [Case of positive identification by digital superimposed comparison between photograph of the thoracic vertebrae front and thorax roentgenograph].

    PubMed

    Watanabe, Satoshi; Terazawa, Koichi

    2004-09-01

    We reported an autopsy case in which an antemortem thorax roentgenograph and a postmortem photograph of thoracic vertebrae front were available for digital superimposed comparison of contour of the vertebral column and provided a positive identification by the characteristic osteophyte formation. In the elderly, the thorax roentgenograph is often stored in medical institution. Osteophyte formation of the vertebral column has individual features with the aging and formed characteristic profiles of the vertebral column. Photographing of a cadaver's thoracic vertebrae front after removing of the thoracic and abdominal organ should be carried out to make a material for future comparison examination in personal identification.

  5. Lu2O3-SiO2-ZrO2 Coatings for Environmental Barrier Application by Solution Precursor Plasma Spraying and Influence of Precursor Chemistry

    NASA Astrophysics Data System (ADS)

    Darthout, Émilien; Quet, Aurélie; Braidy, Nadi; Gitzhofer, François

    2014-02-01

    As environmental barrier coatings are subjected to thermal stress in gas turbine engines, the introduction of a secondary phase as zircon (ZrSiO4) is likely to increase the stress resistance of Lu2Si2O7 coatings generated by induction plasma spraying using liquid precursors. In a first step, precursor chemistry effect is investigated by the synthesis of ZrO2-SiO2 nanopowders by induction plasma nanopowder synthesis technique. Tetraethyl orthosilicate (TEOS) as silicon precursor and zirconium oxynitrate and zirconium ethoxide as zirconium precursors are mixed in ethanol and produce a mixture of tetragonal zirconia and amorphous silica nanoparticles. The use of zirconium ethoxide precursor results in zirconia particles with diameter below 50 nm because of exothermic thermal decomposition of the ethoxide and its high boiling point with respect to solvent, while larger particles are formed when zirconium oxynitrate is employed. The formation temperature of zircon from zirconia and silica oxides is found at 1425 °C. Second, coatings are synthesized in Lu2O3-ZrO2-SiO2 system. After heat treatment, the doping effect of lutetium on zirconia grains totally inhibits the zircon formation. Dense coatings are obtained with the use of zirconium ethoxide because denser particles with a homogeneous diameter distribution constitute the coating.

  6. Monolithic stationary phases with a longitudinal gradient of porosity.

    PubMed

    Urban, Jiří; Hájek, Tomáš; Svec, Frantisek

    2017-04-01

    The duration of the hypercrosslinking reaction has been used to control the extent of small pores formation in polymer-based monolithic stationary phases. Segments of five columns hypercrosslinked for 30-360 min were coupled via zero-volume unions to prepare columns with segmented porosity gradients. The steepness of the porosity gradient affected column efficiency, mass transfer resistance, and separation of both small-molecule alkylbenzenes and high-molar-mass polystyrene standards. In addition, the segmented column with the steepest porosity gradient was prepared as a single column with a continuous porosity gradient. The steepness of porosity gradient in this type column was tuned. Compared to a completely hypercrosslinked column, the column with the shallower gradient produced comparable size-exclusion separation of polystyrene standards but allowed higher column permeability. The completely hypercrosslinked column and the column with porosity gradient were successfully coupled in online two-dimensional liquid chromatography of polymers. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Investigating the formation of acid mine drainage of Toledo pyrite concentrate using column cells

    NASA Astrophysics Data System (ADS)

    Aguila, Diosa Marie

    2018-01-01

    Acid mine drainage (AMD) is an inevitable problem in mining and has adverse effects in water quality. Studying AMD formation will be valuable in controlling the composition of mine waters and in planning the rehabilitation method for a mine. In this research, kinetics of AMD formation of Toledo pyrite was studied using two column experiments. The mechanisms of AMD formation and the effects of various factors on pH drop were first studied. Another column test was done for validation and to study the role of Fe2+/Fe3+ ratio in the change of leachate pH. The first experiment revealed that time and particle size are the most significant factors. It was also observed that the sudden pH drop during the starting hours was due to cracks formed from beneficiation, and the formation of Fe(OH)3. The laddered behavior of pH thereafter was due to decrease in formation of Fe(OH)3, and the precipitates in pyrite surface that lowered the surface area available for pyrite oxidation. The results of the second experiment validated the laddered behavior of pH. It was also observed that particle size distribution and pyrite surface were affected by the change in pH. Fe2+/Fe3+ ratio of leachate generally decreased as pH dropped.

  8. Aroma Precursors in Grapes and Wine: Flavor Release during Wine Production and Consumption.

    PubMed

    Parker, Mango; Capone, Dimitra L; Francis, I Leigh; Herderich, Markus J

    2018-03-14

    Pioneering investigations into precursors of fruity and floral flavors established the importance of terpenoid and C 13 -norisoprenoid glycosides to the flavor of aromatic wines. Nowadays flavor precursors in grapes and wine are known to be structurally diverse, encompassing glycosides, amino acid conjugates, odorless volatiles, hydroxycinnamic acids, and many others. Flavor precursors mainly originate in the grape berry but also from oak or other materials involved in winemaking. Flavors are released from precursors during crushing and subsequent production steps by enzymatic and nonenzymatic transformations, via microbial glycosidases, esterases, C-S lyases, and decarboxylases, and through acid-catalyzed hydrolysis and chemical rearrangements. Flavors can also be liberated from glycosides and amino acid conjugates by oral microbiota. Hence, it is increasingly likely that flavor precursors contribute to retronasal aroma formation through in-mouth release during consumption, prompting a shift in focus from identifying aroma precursors in grapes to understanding aroma precursors present in bottled wine.

  9. FY 2010 Fourth Quarter Report: Evaluation of the Dependency of Drizzle Formation on Aerosol Properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, W; McGraw, R; Liu, Y

    Metric for Quarter 4: Report results of implementation of composite parameterization in single-column model (SCM) to explore the dependency of drizzle formation on aerosol properties. To better represent VOCALS conditions during a test flight, the Liu-Duam-McGraw (LDM) drizzle parameterization is implemented in the high-resolution Weather Research and Forecasting (WRF) model, as well as in the single-column Community Atmosphere Model (CAM), to explore this dependency.

  10. The wavefield of acoustic logging in a cased hole with a single casing—Part II: a dipole tool

    NASA Astrophysics Data System (ADS)

    Wang, Hua; Fehler, Michael

    2018-02-01

    The acoustic method, being the most effective method for cement bond evaluation, has been used by industry for more than a half century. However, the methods currently used are almost always focused on the first arrival (especially for sonic logging), which has limitations. We use a 3-D finite-difference method to numerically simulate the wavefields from a dipole source in a single-cased hole with different cement conditions. By using wavefield snapshots and dispersion curves, we interpret the characteristics of the modes in the models. We investigate the effect of source frequency, the thickness and location of fluid columns on different modes. The dipole wavefield in a single-cased hole consists of a leaky P (for frequency >10 kHz) from formation, formation flexural, and also some casing modes. Depending on the mode, their behaviour is sometimes sensitive to the existence of fluid between the cement and formation and sometimes sensitive to the existence of fluid between the casing and cement. The formation S velocity can be obtained from the formation flexural mode at low frequency. However, interference from high-order casing modes makes the leaky P invisible and P velocity determination difficult when the casing is not well cemented. The dispersion curve of the formation flexural mode is sensitive to the fluid thickness when fluid exists only at the interface between casing and cement. The fundamental casing dipole mode is only sensitive to the total fluid thickness in the annulus between casing and formation. Either the arrival time or amplitude of the high-order casing dipole mode is sensitive to the fluid column when the fluid column is next to the casing. We provide a table that summarizes the ability of different modes to detect fluid columns between various layers of casing, cement and formation. Based on the results, we suggest a data processing flow for field application, which will highly improve cement evaluation.

  11. N-nitrosodimethylamine (NDMA) formation during ozonation of N,N-dimethylhydrazine compounds: Reaction kinetics, mechanisms, and implications for NDMA formation control.

    PubMed

    Lim, Sungeun; Lee, Woongbae; Na, Soyoung; Shin, Jaedon; Lee, Yunho

    2016-11-15

    Compounds with N,N-dimethylhydrazine moieties ((CH 3 ) 2 N-N-) form N-nitrosodimethylamine (NDMA) during ozonation, but the relevant reaction chemistry is hitherto poorly understood. This study investigated the reaction kinetics and mechanisms of NDMA formation during ozonation of unsymmetrical dimethylhydrazine (UDMH) and daminozide (DMZ) as structural model N,N-dimethylhydrazine compounds. The reaction of ozone with these NDMA precursor compounds was fast, and k O3 at pH 7 was 2 × 10 6  M -1  s -1 for UDMH and 5 × 10 5  M -1  s -1 for DMZ. Molar NDMA yields (i.e., Δ[NDMA]/Δ[precursor] × 100) were 84% and 100% for UDMH and DMZ, respectively, determined at molar ozone dose ratio ([O 3 ] 0 /[precursor] 0 ) of ≥4 in the presence of tert-butanol as hydroxyl radical (OH) scavenger. The molar NDMA yields decreased significantly in the absence of tert-butanol, indicating OH formation and its subsequent reaction with the parent precursors forming negligible NDMA. The k OH at pH 7 was 4.9 × 10 9  M -1  s -1 and 3.4 × 10 9  M -1  s -1 for UDMH and DMZ, respectively. Reaction mechanisms are proposed in which an ozone adduct is formed at the nitrogen next to N,N-dimethylamine which decomposes via homolytic and heterolytic cleavages of the -N + -O-O-O - bond, forming NDMA as a final product. The heterolytic cleavage pathway explains the significant OH formation via radical intermediates. Overall, significant NDMA formation was found to be unavoidable during ozonation or even O 3 /H 2 O 2 treatment of waters containing N,N-dimethylhydrazine compounds due to their rapid reaction with ozone forming NDMA with high yield. Thus, source control or pre-treatment of N,N-dimethylhydrazine precursors and post-treatment of NDMA are proposed as the mitigation options. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. On the abiotic formation of amino acids. I - HCN as a precursor of amino acids detected in extracts of lunar samples. II - Formation of HCN and amino acids from simulated mixtures of gases released from lunar samples

    NASA Technical Reports Server (NTRS)

    Yuasa, S.; Flory, D.; Basile, B.; Oro, J.

    1984-01-01

    Two studies on the abiotic formation of amino acids are presented. The first study demonstrates the role of hydrogen cyanide as a precursor of amino acids detected in extracts of lunar samples. The formation of several amino acids, including glycine, alanine, aspartic acid, and glutamic acid, under conditions similar to those used for the analysis of lunar samples is demonstrated. The second study investigates the formation of hydrogen cyanide as well as amino acids from lunar-sample gas mixtures under electrical discharge conditions. These results extend the possibility of synthesis of amino acids to planetary bodies with primordial atmospheres less reducing than a mixture of methane, ammonia, hydrogen and water.

  13. Interfacial stability of CoSi2/Si structures grown by molecular beam epitaxy

    NASA Technical Reports Server (NTRS)

    George, T.; Fathauer, R. W.

    1992-01-01

    The stability of CoSi2/Si interfaces was examined in this study using columnar silicide structures grown on (111) Si substrates. In the first set of experiments, Co and Si were codeposited using MBE at 800 C and the resulting columnar silicide layer was capped by epitaxial Si. Deposition of Co on the surface of the Si capping layer at 800 C results in the growth of the buried silicide columns. The buried columns grow by subsurface diffusion of the deposited Co, suppressing the formation of surface islands of CoSi2. The column sidewalls appear to be less stable than the top and bottom interfaces, resulting in preferential lateral growth and ultimately in the coalescence of the columns to form a continuous buried CoSi2 layer. In the second set of experiments, annealing of a 250 nm-thick buried columnar layer at 1000 C under a 100 nm-thick Si capping layer results in the formation of a surface layer of CoSi2 with a reduction in the sizes of the CoSi2 columns. For a sample having a thicker Si capping layer the annealing leads to Ostwald ripening producing buried equiaxed columns. The high CoSi2/Si interfacial strain could provide the driving force for the observed behavior of the buried columns under high-temperature annealing.

  14. Effect of phase assemblage of precursor on the fabrication process and properties of Bi2223 tape sheathed with Ag-alloy

    NASA Astrophysics Data System (ADS)

    Nakamura, Y.; Shioiri, T.; Kurihara, C.; Machida, T.; Inada, R.; Oota, A.

    2008-09-01

    The use of alloy sheath is effective to increase the strength of Ag-sheathed Bi2223 tapes. However, the Jc value of alloy sheathed tapes was not high enough since the undesired reaction to form impurity phases and the change in formation rate of Bi2223 were disturbed by the microstructure of the filaments . In this study, the effect of 2223 contents in precursor on the formation and property of Bi2223 tapes sheathed with Ag-Mg alloy was investigated. The conversion rate of Bi2223 from Bi2212 was increased by the addition of Bi2223 phase in precursor but the conversion rate in Ag-Mg alloy sheathed tapes was slower than that in the Ag-Cu alloy sheathed tapes. This reduction of conversion speed of Bi2223 may be attributed to the decrease in the growth rate of Bi2223 crystals in Ag-Mg alloy sheath. Since the tapes with small Bi2223 crystals after first sintering showed many outgrowths after final sintering, the formation of outgrowth would be caused in the case of small crystal size. The Jc value of 2.2 × 10 4 A/cm 2 was achieved in the samples using the precursor with 10 wt.% 2223. The high Jc value can be achieved by the proper control of precursor condition including the contents of Bi2223 and corresponding heat treatment pattern in Ag-Mg alloy sheathed tapes.

  15. Experimental investigation of cesium mobility in the course of secondary mineral formations in Hanford sediment columns at 50 degrees C.

    PubMed

    Mashal, Kholoud Y; Cetiner, Ziya S

    2010-10-01

    Formation of secondary minerals and Cs mobility in Hanford sediments were investigated under conditions similar to the Hanford tank leak in a dynamic flow system at 50 degrees C. The objectives were to (1) examine the nature and locations of secondary mineral phases precipitated in the sediments and (2) quantify the amount of Cs retained by the sediment matrix at 50 degrees C. To this end, Hanford sediments were packed into 10-cm long columns and leached with simulated tank waste consisting of 1.4 M NaOH, 0.125 M NaAlO(2), 3.7 M NaNO(3), and 1.3 x 10(-4) M Cs at 50 degrees C. Compositions of outflow solution were monitored with time for up to 25 days, and the columns were then segmented into four 2.5-cm long layers. The colloidal fraction in these segments was characterized in terms of mineralogy, particle morphology, Cs content, and short-range Al and Si structure. It was observed that cancrinite and sodalite precipitated at 50 degrees C. Approximately 53% Cs was retained in the column treated by the simulated tank waste at this temperature. Cesium retention in the column was lowered in the high ionic strength solution due to competition from Na for the exchange sites. This can be explained by alteration of distribution and number of sorption sites which reduces the selectivity of Cs for Na, and through the formation of cancrinite and sodalite. The formation of hydroxide complexes in highly alkaline solutions could also contribute to relatively poor retention of Cs by hindering ion exchange mechanism.

  16. Synthesis, Antiplasmodial Activity, and β-Hematin Inhibition of Hydroxypyridone–Chloroquine Hybrids

    PubMed Central

    2013-01-01

    A series of noncytotoxic 4-aminoquinoline-3-hydroxypyridin-4-one hybrids were synthesized on the basis of a synergistic in vitro combination of a precursor N-alkyl-3-hydroxypyridin-4-one with chloroquine (CQ) and tested in vitro against CQ resistant (K1 and W2) and sensitive (3D7) strains of Plasmodium falciparum. In vitro antiplasmodial activity of the precursors was negated by blocking the chelator moiety via complexation with gallium(III) or benzyl protection. None of the precursors inhibited β-hematin formation. Most hybrids were more potent inhibitors of β-hematin formation than CQ, and a correlation between antiplasmodial activity and inhibition of β-hematin formation was observed. Potent hybrids against K1, 3D7, and W2, respectively, were 8c (0.13, 0.004, and 0.1 μM); 8d (0.08, 0.01, and 0.02 μM); and 7g (0.07, 0.03, and 0.08 μM). PMID:24900724

  17. Allium discoloration: precursors involved in onion pinking and garlic greening.

    PubMed

    Kubec, Roman; Hrbácová, Marcela; Musah, Rabi A; Velísek, Jan

    2004-08-11

    Precursors involved in the formation of pink and green-blue pigments generated during onion and garlic processing, respectively, have been studied. It has been confirmed that the formations of both pigments are of very similar natures, with (E)-S-(1-propenyl)cysteine sulfoxide (isoalliin) serving as the primary precursor. Upon disruption of the tissue, isoalliin and other S-alk(en)ylcysteine sulfoxides are enzymatically cleaved, yielding 1-propenyl-containing thiosulfinates [CH3CH=CHS(O)SR; R = methyl, allyl, propyl, 1-propenyl] among others. The latter compounds have been shown to subsequently react with amino acids to produce the pigments. Whereas the propyl, 1-propenyl, and methyl derivatives form pink, pink-red, and magenta compounds, those containing the allyl group give rise to blue products after reacting with glycine at pH 5.0. The role of other thiosulfinates [RS(O)SR'] (R, R' = methyl, allyl, propyl) and (Z)-thiopropanal S-oxide (the onion lachrymatory principle) in the formation of the pigments is also discussed.

  18. Development and Application of an Oxidation Flow Reactor to Study Secondary Organic Aerosol Formation from Ambient Air

    NASA Astrophysics Data System (ADS)

    Palm, Brett Brian

    Secondary organic aerosols (SOA) in the atmosphere play an important role in air quality, human health, and climate. However, the sources, formation pathways, and fate of SOA are poorly constrained. In this dissertation, I present development and application of the oxidation flow reactor (OFR) technique for studying SOA formation from OH, O3, and NO3 oxidation of ambient air. With a several-minute residence time and a portable design with no inlet, OFRs are particularly well-suited for this purpose. I first introduce the OFR concept, and discuss several advances I have made in performing and interpreting OFR experiments. This includes estimating oxidant exposures, modeling the fate of low-volatility gases in the OFR (wall loss, condensation, and oxidation), and comparing SOA yields of single precursors in the OFR with yields measured in environmental chambers. When these experimental details are carefully considered, SOA formation in an OFR can be more reliably compared with ambient SOA formation processes. I then present an overview of what OFR measurements have taught us about SOA formation in the atmosphere. I provide a comparison of SOA formation from OH, O3, and NO3 oxidation of ambient air in a wide variety of environments, from rural forests to urban air. In a rural forest, the SOA formation correlated with biogenic precursors (e.g., monoterpenes). In urban air, it correlated instead with reactive anthropogenic tracers (e.g., trimethylbenzene). In mixed-source regions, the SOA formation did not correlate well with any single precursor, but could be predicted by multilinear regression from several precursors. Despite these correlations, the concentrations of speciated ambient VOCs could only explain approximately 10-50% of the total SOA formed from OH oxidation. In contrast, ambient VOCs could explain all of the SOA formation observed from O3 and NO3 oxidation. Evidence suggests that lower-volatility gases (semivolatile and intermediate-volatility organic compounds; S/IVOCs) were present in ambient air and were the likely source of SOA formation that could not be explained by VOCs. These measurements show that S/IVOCs likely play an important intermediary role in ambient SOA formation in all of the sampled locations, from rural forests to urban air.

  19. BENCH-SCALE STUDIES ON THE FORMATION OF ENDOCRINE DISRUPTING CHEMICALS FROM COMBUSTION SOURCES

    EPA Science Inventory

    The paper discusses the formsation of endocrine disrupting compounds (EDCs) from precursors, such as phenol and chlorobenzens, under various combustion conditions. It gives results of an exploration of the effects of precursor and catalysys composition on homologue production an...

  20. Experimental identification of the kink instability as a poloidal flux amplification mechanism for coaxial gun spheromak formation.

    PubMed

    Hsu, S C; Bellan, P M

    2003-05-30

    The magnetohydrodynamic kink instability is observed and identified experimentally as a poloidal flux amplification mechanism for coaxial gun spheromak formation. Plasmas in this experiment fall into three distinct regimes which depend on the peak gun current to magnetic flux ratio, with (I) low values resulting in a straight plasma column with helical magnetic field, (II) intermediate values leading to kinking of the column axis, and (III) high values leading immediately to a detached plasma. Onset of column kinking agrees quantitatively with the Kruskal-Shafranov limit, and the kink acts as a dynamo which converts toroidal to poloidal flux. Regime II clearly leads to both poloidal flux amplification and the development of a spheromak configuration.

  1. Nanoscale Transforming Mineral Phases in Fresh Nacre

    DOE PAGES

    DeVol, Ross T.; Sun, Chang-Yu; Marcus, Matthew A.; ...

    2015-09-24

    Nacre, or mother-of-pearl, the iridescent inner layer of many mollusk shells, is a biomineral lamellar composite of aragonite (CaCO 3) and organic sheets. Biomineralization frequently occurs via transient amorphous precursor phases, crystallizing into the final stable biomineral. In nacre, despite extensive attempts, amorphous calcium carbonate (ACC) precursors have remained elusive. They were inferred from non-nacre-forming larval shells, or from a residue of amorphous material surrounding mature gastropod nacre tablets, and have only once been observed in bivalve nacre. Here we present the first direct observation of ACC precursors to nacre formation, obtained from the growth front of nacre in gastropodmore » shells from red abalone (Haliotis rufescens), using synchrotron spectromicroscopy. Surprisingly, the abalone nacre data show the same ACC phases that are precursors to calcite (CaCO 3) formation in sea urchin spicules, and not proto-aragonite or poorly crystalline aragonite (pAra), as expected for aragonitic nacre. In contrast, we find pAra in coral.« less

  2. Multidimensional High-Resolution Gas Chromatographic Investigations of Hydrocarbon Fuels and Various Turbine Engine Fuel Precursors.

    DTIC Science & Technology

    1985-08-01

    time were spurious transits observed during the recording of the chromatographic output data. *Packaged gas purification filters supplied by Alltech ... Alltech ) that were needed for these unusual installations. When the column diameters were small and of comparable size, the assembly attach- ments at...into an MDGC system has definite advantages as separations can be made faster and with greater detectability. However, specific precautions must be

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wildfire, Christina; Sabolsky, Edward M.; Spencer, Michael J.

    The rapid synthesis of yttrium aluminum garnet (Y 3Al 15O 12, YAG) powder was investigated through the use of microwave irradiation of the oxide precursor system. For this investigation, an external hybrid heating source was not used. Instead, the rapid heating of the precursor materials (yttria and alumina powders, which are typically transparent to 2.45 GHz microwaves) was initiated by mixing an intrinsic absorbing material (carbon) into the original oxide precursors. The effect of the carbon characteristics, such as carbon source, concentration, particle size, and agglomerate microstructure were evaluated on the efficiency of coupling and resultant oxide reaction. The microwavemore » power was varied to optimize the YAG conversion and eliminate intermediate phase formation. Interactions between the conductive carbon particles and the dielectric oxides within the microwave exposure produced local arching and micro-plasma formation within the powder bed, resulting in the rapid formation of the refractory YAG composition. This optimal conduction led to temperatures of 1000°C that could be achieved in less than 5 min resulting in the formation of > 90 vol% YAG. The understanding of a conductor/dielectric particulate system here, provided insight into possible application of similar systems where microwave irradiation could be used for enhanced solid-state formation, local melting events, and gas phase reactions with a composite powder media.« less

  4. Atmospheric new particle formation at the research station Melpitz, Germany: connection with gaseous precursors and meteorological parameters

    NASA Astrophysics Data System (ADS)

    Größ, Johannes; Hamed, Amar; Sonntag, André; Spindler, Gerald; Elina Manninen, Hanna; Nieminen, Tuomo; Kulmala, Markku; Hõrrak, Urmas; Plass-Dülmer, Christian; Wiedensohler, Alfred; Birmili, Wolfram

    2018-02-01

    This paper revisits the atmospheric new particle formation (NPF) process in the polluted Central European troposphere, focusing on the connection with gas-phase precursors and meteorological parameters. Observations were made at the research station Melpitz (former East Germany) between 2008 and 2011 involving a neutral cluster and air ion spectrometer (NAIS). Particle formation events were classified by a new automated method based on the convolution integral of particle number concentration in the diameter interval 2-20 nm. To study the relevance of gaseous sulfuric acid as a precursor for nucleation, a proxy was derived on the basis of direct measurements during a 1-month campaign in May 2008. As a major result, the number concentration of freshly produced particles correlated significantly with the concentration of sulfur dioxide as the main precursor of sulfuric acid. The condensation sink, a factor potentially inhibiting NPF events, played a subordinate role only. The same held for experimentally determined ammonia concentrations. The analysis of meteorological parameters confirmed the absolute need for solar radiation to induce NPF events and demonstrated the presence of significant turbulence during those events. Due to its tight correlation with solar radiation, however, an independent effect of turbulence for NPF could not be established. Based on the diurnal evolution of aerosol, gas-phase, and meteorological parameters near the ground, we further conclude that the particle formation process is likely to start in elevated parts of the boundary layer rather than near ground level.

  5. Comparison of formation and fluid-column logs in a heterogeneous basalt aquifer

    USGS Publications Warehouse

    Paillet, F.L.; Williams, J.H.; Oki, D.S.; Knutson, K.D.

    2002-01-01

    Deep observation boreholes in the vicinity of active production wells in Honolulu, Hawaii, exhibit the anomalous condition that fluid-column electrical conductivity logs and apparent profiles of pore-water electrical conductivity derived from induction conductivity logs are nearly identical if a formation factor of 12.5 is assumed. This condition is documented in three boreholes where fluid-column logs clearly indicate the presence of strong borehole flow induced by withdrawal from partially penetrating water-supply wells. This result appears to contradict the basic principles of conductivity-log interpretation. Flow conditions in one of these boreholes was investigated in detail by obtaining flow profiles under two water production conditions using the electromagnetic flowmeter. The flow-log interpretation demonstrates that the fluid-column log resembles the induction log because the amount of inflow to the borehole increases systematically upward through the transition zone between deeper salt water and shallower fresh water. This condition allows the properties of the fluid column to approximate the properties of water entering the borehole as soon as the upflow stream encounters that producing zone. Because this condition occurs in all three boreholes investigated, the similarity of induction and fluid-column logs is probably not a coincidence, and may relate to aquifer response under the influence of pumping from production wells.

  6. Comparison of formation and fluid-column logs in a heterogeneous basalt aquifer.

    PubMed

    Paillet, F L; Williams, J H; Oki, D S; Knutson, K D

    2002-01-01

    Deep observation boreholes in the vicinity of active production wells in Honolulu, Hawaii, exhibit the anomalous condition that fluid-column electrical conductivity logs and apparent profiles of pore-water electrical conductivity derived from induction conductivity logs are nearly identical if a formation factor of 12.5 is assumed. This condition is documented in three boreholes where fluid-column logs clearly indicate the presence of strong borehole flow induced by withdrawal from partially penetrating water-supply wells. This result appears to contradict the basic principles of conductivity-log interpretation. Flow conditions in one of these boreholes was investigated in detail by obtaining flow profiles under two water production conditions using the electromagnetic flowmeter. The flow-log interpretation demonstrates that the fluid-column log resembles the induction log because the amount of inflow to the borehole increases systematically upward through the transition zone between deeper salt water and shallower fresh water. This condition allows the properties of the fluid column to approximate the properties of water entering the borehole as soon as the upflow stream encounters that producing zone. Because this condition occurs in all three boreholes investigated, the similarity of induction and fluid-column logs is probably not a coincidence, and may relate to aquifer response under the influence of pumping from production wells.

  7. The role of phytoplankton as pre-cursors for disinfection by-product formation upon chlorination.

    PubMed

    Tomlinson, Adam; Drikas, Mary; Brookes, Justin D

    2016-10-01

    Water quality remains one of the greatest concerns with regards to human health. Advances in science and technology have resulted in highly efficient water treatment plants, significantly reducing diseases related to waterborne pathogenic microorganisms. While disinfection is critical to mitigate pathogen risk to humans, the reactions between the disinfectant and dissolved organic compounds can lead to the formation of chemical contaminants called disinfection by-products (DBPs). DBPs have been related to numerous health issues including birth defects and cancer. The formation of disinfection by-products occurs due to the reaction of oxidants and natural organic matter. DBP precursors are derived from anthropogenic sources including pharmaceuticals and chemical waste, the breakdown of vegetation from external catchment sources (allochthonous) and internally derived sources including phytoplankton (autochthonous). Current literature focuses on the contribution of allochthonous sources towards the formation of DBPs, however, the recalcitrant nature of hydrophilic phytoplankton derived organic matter indicates that autochthonous derived organic carbon can significantly contribute to total DBP concentrations. The contribution of phytoplankton to the formation of DBPs is also influenced by cellular exudation rates, chemical composition, environmental conditions and the physical and chemical conditions of the solution upon disinfection. Formation of DBPs is further influenced by the presence of cyanobacteria phyla due to their notoriety for forming dense blooms. Management of DBP formation can potentially be improved by reducing cyanobacteria as well as DBP precursors derived from other phytoplankton. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. N-nitrosodimethylamine (NDMA) formation at an indirect potable reuse facility.

    PubMed

    Sgroi, Massimiliano; Roccaro, Paolo; Oelker, Gregg L; Snyder, Shane A

    2015-03-01

    Full-scale experiments to evaluate N-nitrosodimethylamine (NDMA) formation and attenuation were performed within an advanced indirect potable reuse (IPR) treatment system, which includes, sequentially: chloramination for membrane fouling control, microfiltration (MF), reverse osmosis (RO), ultraviolet irradiation with hydrogen peroxide (UV/H₂O₂), final chloramination, and pH stabilization. Results of the study demonstrate that while RO does effectively remove the vast majority of NDMA precursors, RO permeate can still contain significant concentrations of NDMA precursors resulting in additional NDMA formation during chloramination. Thus, it is possible for this advanced treatment system to produce water with NDMA levels higher than regional requirements for potable applications (10 ng/L). The presence of H2O2 during UV oxidation reduced NDMA photolysis efficiency and increased NDMA formation (∼22 ng/L) during the secondary chloramination and lime stabilization. This is likely due to formation of UV/H₂O₂ degradation by-products with higher NDMA formation rate than the parent compounds. However, this effect was diminished with higher UV doses. Bench-scale experiments confirmed an enhanced NDMA formation during chloramination after UV/H2O2 treatment of dimethylformamide, a compound detected in RO permeate and used as model precursor in this study. The effect of pre-ozonation for membrane fouling control on NDMA formation was also evaluated at pilot- (ozone-MF-RO) and bench-scale. Relatively large NDMA formation (117-227 ng/L) occurred through ozone application that was dose dependent, whereas chloramination under typical dosages and contact times of IPR systems resulted in only a relatively small increase of NDMA (∼20 ng/L). Thus, this research shows that NDMA formation within a potable water reuse facility can be challenging and must be carefully evaluated and controlled. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Dynamical and Radiative Properties of X-Ray Pulsar Accretion Columns: Phase-averaged Spectra

    NASA Astrophysics Data System (ADS)

    West, Brent F.; Wolfram, Kenneth D.; Becker, Peter A.

    2017-02-01

    The availability of the unprecedented spectral resolution provided by modern X-ray observatories is opening up new areas for study involving the coupled formation of the continuum emission and the cyclotron absorption features in accretion-powered X-ray pulsar spectra. Previous research focusing on the dynamics and the associated formation of the observed spectra has largely been confined to the single-fluid model, in which the super-Eddington luminosity inside the column decelerates the flow to rest at the stellar surface, while the dynamical effect of gas pressure is ignored. In a companion paper, we have presented a detailed analysis of the hydrodynamic and thermodynamic structure of the accretion column obtained using a new self-consistent model that includes the effects of both gas and radiation pressures. In this paper, we explore the formation of the associated X-ray spectra using a rigorous photon transport equation that is consistent with the hydrodynamic and thermodynamic structure of the column. We use the new model to obtain phase-averaged spectra and partially occulted spectra for Her X-1, Cen X-3, and LMC X-4. We also use the new model to constrain the emission geometry, and compare the resulting parameters with those obtained using previously published models. Our model sheds new light on the structure of the column, the relationship between the ionized gas and the photons, the competition between diffusive and advective transport, and the magnitude of the energy-averaged cyclotron scattering cross-section.

  10. Dynamical and Radiative Properties of X-Ray Pulsar Accretion Columns: Phase-averaged Spectra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, Brent F.; Wolfram, Kenneth D.; Becker, Peter A., E-mail: bwest@usna.edu, E-mail: kswolfram@gmail.com, E-mail: pbecker@gmu.edu

    The availability of the unprecedented spectral resolution provided by modern X-ray observatories is opening up new areas for study involving the coupled formation of the continuum emission and the cyclotron absorption features in accretion-powered X-ray pulsar spectra. Previous research focusing on the dynamics and the associated formation of the observed spectra has largely been confined to the single-fluid model, in which the super-Eddington luminosity inside the column decelerates the flow to rest at the stellar surface, while the dynamical effect of gas pressure is ignored. In a companion paper, we have presented a detailed analysis of the hydrodynamic and thermodynamicmore » structure of the accretion column obtained using a new self-consistent model that includes the effects of both gas and radiation pressures. In this paper, we explore the formation of the associated X-ray spectra using a rigorous photon transport equation that is consistent with the hydrodynamic and thermodynamic structure of the column. We use the new model to obtain phase-averaged spectra and partially occulted spectra for Her X-1, Cen X-3, and LMC X-4. We also use the new model to constrain the emission geometry, and compare the resulting parameters with those obtained using previously published models. Our model sheds new light on the structure of the column, the relationship between the ionized gas and the photons, the competition between diffusive and advective transport, and the magnitude of the energy-averaged cyclotron scattering cross-section.« less

  11. Partitioning Tungsten between Matrix Precursors and Chondrule Precursors through Relative Settling

    NASA Astrophysics Data System (ADS)

    Hubbard, Alexander

    2016-08-01

    Recent studies of chondrites have found a tungsten isotopic anomaly between chondrules and matrix. Given the refractory nature of tungsten, this implies that W was carried into the solar nebula by at least two distinct families of pre-solar grains. The observed chondrule/matrix split requires that the distinct families were kept separate during the dust coagulation process, and that the two families of grain interacted with the chondrule formation mechanism differently. We take the co-existence of different families of solids in the same general orbital region at the chondrule-precursor size as given, and explore the requirements for them to have interacted with the chondrule formation process at significantly different rates. We show that this sorting of families of solids into chondrule- and matrix-destined dust had to have been at least as powerful a sorting mechanism as the relative settling of aerodynamically distinct grains at least two scale heights above the midplane. The requirement that the chondrule formation mechanism was correlated in some fashion with a dust-grain sorting mechanism argues strongly for spatially localized chondrule formation mechanisms such as turbulent dissipation in non-thermally ionized disk surface layers, and argues against volume-filling mechanisms such as planetesimal bow shocks.

  12. Tentative characterization of precursor compounds and co-factors of pigment formation in production of 'wu mi' from Vaccinium bracteatum Thunb. Leaves.

    PubMed

    Fan, Mingcong; Fan, Yihui; Huang, Weiping; Wang, Li; Li, Yan; Qian, Haifeng; Zhang, Hui; Qi, Xiguang

    2018-10-01

    Vaccinium bracteatum leaves (VBTL) are traditionally used in China to dye rice grains, which assume a deep blue color, named 'Wu mi'. Information on the mechanism of pigment formation is limited. In this study, CIELAB color space parameters were used to represent the color of 'Wu mi'. Precursor compounds of pigments formed during the dyeing process were identified by UPLC Q-TOF MS analysis. The changes in co-factors for pigment formation in VBTL were measured at different growth stages. The L ∗ and b ∗ values of dyed rice increased as the leaves aged, whereas a ∗ values showed irregular changes. Six compounds were tentatively identified as pigment precursors by UPLC Q-TOF MS analysis. The pH and β-glucosidase activity at different growth stages of VBTL were indicated to be crucial co-factors for pigment formation. A tentative hypothesis is presented that iridoid glycosides are hydrolyzed by acids and β-glucosidases to form a dialdehyde structure that binds covalently with amino residues of lysine side chains in rice protein molecules. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Evaluation of the relationship between bulk organic precursors and disinfection byproduct formation for advanced oxidation processes.

    PubMed

    Mayer, Brooke K; Daugherty, Erin; Abbaszadegan, Morteza

    2015-02-01

    Advanced oxidation processes (AOPs) are gaining traction as they offer mineralization potential rather than transferring contaminants between media. However, AOPs operated with limited energy and/or chemical inputs can exacerbate disinfection byproduct (DBP) formation, even as precursors such as dissolved organic carbon, UV254, and specific UV absorbance (SUVA) decrease. This study examined the relationship between DBP precursors and formation using TiO2 photocatalysis experiments, external AOP and non-AOP data, and predictive DBP models. The top-performing indicator, SUVA, generally correlated positively with trihalomethanes and haloacetic acids, but limited-energy photocatalysis yielded contrasting negative correlations. The accuracy of predicted DBP values from models based on bulk parameters was generally poor, regardless of use and extent of AOP treatment and type of source water. Though performance improved for scenarios bounded by conditions used in model development, only 0.5% of the model/dataset pairings satisfied all measured parameter boundary conditions, thereby introducing skepticism toward model usefulness. Study findings suggest that caution should be employed when using bulk indicators and/or models as a metric for AOP mitigation of DBP formation potential, particularly for limited-energy/chemical inputs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Observations and Explicit Modeling of Summertime Carbonyl Formation in Beijing: Identification of Key Precursor Species and Their Impact on Atmospheric Oxidation Chemistry

    NASA Astrophysics Data System (ADS)

    Yang, Xue; Xue, Likun; Wang, Tao; Wang, Xinfeng; Gao, Jian; Lee, Shuncheng; Blake, Donald R.; Chai, Fahe; Wang, Wenxing

    2018-01-01

    Carbonyls are an important group of volatile organic compounds (VOCs) that play critical roles in tropospheric chemistry. To better understand the formation mechanisms of carbonyl compounds, extensive measurements of carbonyls and related parameters were conducted in Beijing in summer 2008. Formaldehyde (11.17 ± 5.32 ppbv), acetone (6.98 ± 3.01 ppbv), and acetaldehyde (5.27 ± 2.24 ppbv) were the most abundant carbonyl species. Two dicarbonyls, glyoxal (0.68 ± 0.26 ppbv) and methylglyoxal (MGLY; 1.10 ± 0.44 ppbv), were also present in relatively high concentrations. An observation-based chemical box model was used to simulate the in situ production of formaldehyde, acetaldehyde, glyoxal, and MGLY and quantify their contributions to ozone formation and ROx budget. All four carbonyls showed similar formation mechanisms but exhibited different precursor distributions. Alkenes (mainly isoprene and ethene) were the dominant precursors of formaldehyde, while both alkenes (e.g., propene, i-butene, and cis-2-pentene) and alkanes (mainly i-pentane) were major precursors of acetaldehyde. For dicarbonyls, both isoprene and aromatic VOCs were the dominant parent hydrocarbons of glyoxal and MGLY. Photolysis of oxygenated VOCs was the dominant source of ROx radicals (approximately >80% for HO2 and approximately >70% for RO2) in Beijing. Ozone production occurred under a mixed-control regime with carbonyls being the key VOC species. Overall, this study provides some new insights into the formation mechanisms of carbonyls, especially their parent hydrocarbon species, and underlines the important role of carbonyls in radical chemistry and ozone pollution in Beijing. Reducing the emissions of alkenes and aromatics would be an effective way to mitigate photochemical pollution in Beijing.

  15. ­­Secondary organic aerosol formation from photo-oxidation of wood combustion emissions: Characterization of gas phase precursors and their link to SOA budget

    NASA Astrophysics Data System (ADS)

    Bhattu, D.; Stefenelli, G.; Zotter, P.; Zhou, J.; Nussbaumer, T.; Bertrand, A.; Marchand, N.; Termine-Roussel, B.; Baltensperger, U.; Slowik, J.; Prevot, A. S.; El-Haddad, I.; Dommen, J.

    2016-12-01

    Current legislation limits the emission of particulate matter, but does not regulate the precursors potentially forming secondary organic aerosol (SOA). Recent literature has shown that only 22 non-traditional SOA precursors from residential wood combustion explains 84-116% of the observed SOA mass whereas traditional precursors in the models account for only 3-27% of the SOA mass (Bruns et al., 2016). Investigation of gas phase emissions from wood combustion and their SOA formation potential have largely focused on single combustion devices with limited operating conditions. As, both primary emissions and SOA formation is a strong function of device type, load, fuel and operating conditions, we have performed a detailed chamber study investigating the gas-phase precursors from beech wood using three combustion devices namely a pellet boiler (combustion conditions: optimum, lack and excess of oxygen), an industrial wood chip grate boiler (30% and 100% power), and a log wood stove (varying fuel load and moisture content) using a potential aerosol mass reactor (PAM) with varying OH exposure. The short residence time in the reactor allowed a time resolved picture of SOA production potential and reduced wall losses. The main aim of this study is to characterize the primary and aged gaseous emissions and investigate their SOA formation potential depending on their mass yield, molecular structures, functional groups and OH reactivity in order to ascertain the contribution of residential wood burning in total carbonaceous OA budget. The physical and chemical effects of different OA aging conditions were monitored using an SMPS, an Aethalometer, an HR-ToF-AMS, as well as a PTR-ToF-MS and other gas monitors. In pellet boiler, significant SOA mass enhancement is observed in excess oxygen conditions compared to optimum and oxygen deprived conditions. Highest gas phase emissions from wood stove are observed at cold start (start of each burn cycle) and lowest in burn out phase (end of each burn cycle). Despite of the comparable total gas phase emissions, the compositional space of wood stove emissions is largely occupied by SOA precursors compared to pellet boiler. Finally we will determine effective SOA mass yield of the speciated and unspeciated precursors and assess the extent to which SOA mass closure can be achieved.

  16. NDMA formation during chlorination and chloramination of aqueous diuron solutions.

    PubMed

    Chen, Wei-Hsiang; Young, Thomas M

    2008-02-15

    Formation of the potent carcinogen N-nitrosodimethylamine (NDMA) during chlorine disinfection of water containing secondary amines is now generally acknowledged. The phenylurea herbicide diuron is one of the most widely used herbicides in California, has been frequently detected in California's water sources with a transient nature of appearance, and has a structure that suggests it might be an NDMA precursor. This study sought to quantify the potential for NDMA formation from aqueous diuron solutions under varied chlorine and chloramine conditions. NDMA formation was consistently observed even in the absence of added ammonia, which has usually been the source of the nitroso-nitrogen during chloramination of other precursors. It appears that both nitrogen atoms in NDMA are donated by diuron during chlorination in the absence of added ammonia. For a given chlorine and diuron dose, NDMA formation increased in the order OCl- < NH2Cl < NHCl2, a result consistentwith previous NDMAformation studies. Significant quantities of NDMA (170 ng/L) were produced during dichloramination of diuron using a low dichloramine concentration and a diuron concentration at the upper end of typically detected concentrations in California (20 microg/L), suggesting a need for further investigation to accurately assess the human health risks posed by diuron with respect to NDMA formation potential. A reaction pathway is proposed to provide a possible explanation for NDMA formation from diuron during chlorination or chloramination. The findings in this study identify a specific potential precursor of NDMA formation, one that arises from nonpoint sources. This further highlights the difficulties associated with determining the environmental safety of chemicals and their associated byproducts.

  17. Seasonal behavior and long-term trends of tropospheric ozone, its precursors and chemical conditions over Iran: A view from space

    NASA Astrophysics Data System (ADS)

    Choi, Yunsoo; Souri, Amir Hossein

    2015-04-01

    To identify spatial and temporal variations over the Iranian region, this study analyzed tropospheric formaldehyde (HCHO) and nitrogen dioxide (NO2) columns from Ozone Monitoring Instrument (OMI), carbon monoxide (CO) columns from the Measurement of Pollution in the Troposphere (MOPITT), and tropospheric column O3 (TCO) from OMI/MLS (Microwave Limb Sounder) satellites from 2005 to 2012. The study discovered high levels of HCHO (∼12 × 1015 molec./cm2) from plant isoprene emissions in the air above parts of the northern forest of Iran during the summer and from the oxidation of HCHO precursors emitted from petrochemical industrial facilities and biomass burning in South West Iran. This study showed that maximum NO2 levels (∼18 × 1015 molec./cm2) were concentrated in urban cities, indicating the predominance of anthropogenic sources. The results indicate that maximum concentrations were found in the winter, mainly because of weaker local winds and higher heating fuel consumption, in addition to lower hydroxyl radicals (OH). The high CO concentrations (∼2 × 1018 molec./cm2) in the early spring were inferred to mainly originate from a strong continental air mass from anthropogenic CO "hotspots" including regions around Caspian Sea, Europe, and North America, although the external sources of CO were partly suppressed by the Arabian anticyclone and topographic barriers. Variations in the TCO were seen to peak during the summer (∼40 DU), due to intensive solar radiation and stratospheric sources. This study also examined long-term trends in TCO and its precursors over a period of eight years in five urban cities in Iran. To perform the analysis, we estimated seasonal changes and inter-seasonal variations using least-squares harmonic estimation (LS-HE), which reduced uncertainty in the trend by 5-15%. The results showed significant increases in the levels of HCHO (∼0.08 ± 0.06 × 1015 molec./cm2 yr-1), NO2 (∼0.08 ± 0.02 × 1015 molec./cm2 yr-1), and peak annual TCO (∼0.59 ± 0.56 DU yr-1) but decreases in minimum annual TCO (∼-0.42 ± 0.60 DU yr-1) caused by an increase in NO2 species and annual CO (∼-0.95 ± 0.41 × 1016 molec./cm2 yr-1) partly resulting from the transport of reduced CO. The time series of the HCHO/NO2 column ratio (a proxy for the chemical conditions) indicated that during the last decade, the cities of Tehran, Ahvaz, and Isfahan exhibited steady chemical conditions while Tabriz and Mashhad exhibited a change from NOx-saturated/mixed to more NOx-sensitive chemical conditions.

  18. Ensuring repeatability and robustness of poly(glycidyl methacrylate-co-ethylene dimethacrylate) HPLC monolithic columns of 3 mm id through covalent bonding to the column wall.

    PubMed

    Laaniste, Asko; Kruve, Anneli; Leito, Ivo

    2013-08-01

    Two different methods to reinforce the poly(glycidyl methacrylate-co-ethylene dimethacrylate) HPLC monolithic columns of 3 mm id in a glass column reservoir were studied: composite columns with polymeric particles in the monolith and surface treatment of the reservoir wall. Of the two methods used to counter the mechanical instability and formation of flow channels (composite columns and column wall surface treatment), we demonstrated that proper column wall surface treatment was sufficient to solve both problems. Our study also indicated that no surface treatment is efficient, and of the methods studied silanization in acidified ethanol solution and constant renewal of the reaction mixture (dynamic mode) proved to be the most effective. As a result of this study, we have been able to prepare repeatable and durable methacrylate HPLC columns with good efficiencies. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Microbial-Induced Heterogeneity in the Acoustic Properties of Porous Media

    EPA Science Inventory

    Acoustic wave data were acquired over a two-dimensional region of a microbial-stimulated sand column and an unstimulated sand column to assess the spatiotemporal changes in a porous medium caused by microbial growth and biofilm formation. The acoustic signals from the unstimulate...

  20. The formation mechanism of binary semiconductor nanomaterials: shared by single-source and dual-source precursor approaches.

    PubMed

    Yu, Kui; Liu, Xiangyang; Zeng, Qun; Yang, Mingli; Ouyang, Jianying; Wang, Xinqin; Tao, Ye

    2013-10-11

    One thing in common: The formation of binary colloidal semiconductor nanocrystals from single- (M(EEPPh2 )n ) and dual-source precursors (metal carboxylates M(OOCR)n and phosphine chalcogenides such as E=PHPh2 ) is found to proceed through a common mechanism. For CdSe as a model system (31) P NMR spectroscopy and DFT calculations support a reaction mechanism which includes numerous metathesis equilibriums and Se exchange reactions. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Method of fabricating free-form, high-aspect ratio components for high-current, high-speed microelectrics

    DOEpatents

    Maxwell, James L; Rose, Chris R; Black, Marcie R; Springer, Robert W

    2014-03-11

    Microelectronic structures and devices, and method of fabricating a three-dimensional microelectronic structure is provided, comprising passing a first precursor material for a selected three-dimensional microelectronic structure into a reaction chamber at temperatures sufficient to maintain said precursor material in a predominantly gaseous state; maintaining said reaction chamber under sufficient pressures to enhance formation of a first portion of said three-dimensional microelectronic structure; applying an electric field between an electrode and said microelectronic structure at a desired point under conditions whereat said first portion of a selected three-dimensional microelectronic structure is formed from said first precursor material; positionally adjusting either said formed three-dimensional microelectronic structure or said electrode whereby further controlled growth of said three-dimensional microelectronic structure occurs; passing a second precursor material for a selected three-dimensional microelectronic structure into a reaction chamber at temperatures sufficient to maintain said precursor material in a predominantly gaseous state; maintaining said reaction chamber under sufficient pressures whereby a second portion of said three-dimensional microelectronic structure formation is enhanced; applying an electric field between an electrode and said microelectronic structure at a desired point under conditions whereat said second portion of a selected three-dimensional microelectronic structure is formed from said second precursor material; and, positionally adjusting either said formed three-dimensional microelectronic structure or said electrode whereby further controlled growth of said three-dimensional microelectronic structure occurs.

  2. BROMIDE'S EFFECT ON DBP FORMATION, SPECIATION, AND CONTROL: PART 1, OZONATION

    EPA Science Inventory

    The effect of variable ozone dosage and bromide concentration on the formation of organic disinfection byproducts (DBPs) and bromate were evaluated. Low ozone dosages resulted in oxidation of organic precursors, yielding decreases in the formation potential for total trihalometha...

  3. Cluster self-organization of TR-containing germanate systems: Suprapolyhedral precursors and self-assembly of the crystal structures of the LiNdGeO{sub 4} and CeGeO{sub 4} compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ilyushin, G. D., E-mail: ilyushin@nc.cryst.ras.ru; Dem'yanets, L. N.

    2007-07-15

    A combinatorial-topological analysis of the orthogermanates LiNdGeO{sub 4} (space group Pbcn) and CeGeO{sub 4} (space group I 4{sub 1}/a, the scheelite structure type), which have MT frameworks composed of polyhedral structural units in the form of M dodecahedra (NdO{sub 8} and CeO{sub 8}) and T tetrahedra (GeO{sub 4}), is performed using the method of coordination sequences with the TOPOS program package. It is established that the structures of both orthogermanates are characterized by equivalent crystal-forming nets 4444. The cluster precursors of the M{sub 2}T{sub 2} cyclic type are identified by the method of two-color decomposition. The local symmetry of four-polyhedralmore » clusters corresponds to the point group 2. In the precursor of the LiNdGeO{sub 4} orthogermanate, the Li atom is located above the M{sub 2}T{sub 2} ring. The number of Li-O bonds in this precursor is 4. The cluster precursors M{sub 2}T{sub 2} and LiM{sub 2}T{sub 2} are responsible for the formation of crystal-forming clusters of a higher level according to the mechanism of matrix self-assembly. The coordination numbers of the cluster precursors in two-dimensional nets for these structures are found to be equal to 4. The equivalent bilayer TR,Ge stacks that consist of eight cluster precursors are revealed in the structures under investigation. It is demonstrated that there exist three types of translational interlayer arrangements of cluster precursors upon the formation of macrostructures of the orthogermanates.« less

  4. Twist functions in vertebral column formation in medaka, Oryzias latipes.

    PubMed

    Yasutake, Junichi; Inohaya, Keiji; Kudo, Akira

    2004-07-01

    Medaka twist, a basic helix-loop-helix (bHLH) transcription factor, is expressed in the sclerotome during embryogenesis. We previously established a line of twist-EGFP transgenic medaka, whose EGFP expression is regulated by the twist promoter; therefore, we could observe the behavior of sclerotomal cells in vivo. In the transgenic medaka embryos, EGFP-positive sclerotomal cells migrated dorsally around the notochord and the neural tube, where at a later stage the vertebral column would be formed. This finding strongly suggests that twist-expressing sclerotomal cells participate in vertebral column formation in medaka. To clarify the function of twist gene in the sclerotome, we performed knockdown analysis of twist by using two kinds of morpholino antisense oligonucleotides targeted against twist (MO1 and MO2). Both the MO1 and MO2 morphants exhibited absence of neural arches, which are bilaterally paired, dorsomedially oriented bones on the dorsal aspect of the centrum. In addition, MO2, which blocks translation of only endogenous twist mRNA in the twist-EGFP transgenic medaka, did not affect the migration pattern of EGFP-positive cells, revealing that the migration of sclerotome-derived cells were normal in the absence of twist gene function. These results demonstrate that medaka twist functions in vertebral column formation by regulating the sclerotomal cell differentiation.

  5. Long-term behavior of passively aerated compost methanotrophic biofilter columns.

    PubMed

    Wilshusen, J H; Hettiaratchi, J P A; Stein, V B

    2004-01-01

    The methane oxidation potential of several types of compost methanotrophic biofilter columns were compared in the laboratory over a period of 220 days. The results indicate an increase in methanotrophic activity over a period of about 100 days, up to a maximum of 400 g m(-2) day(-1), and a gradual decline to about 100 g m(-2) day(-1) within the next 120 days. High methane oxidation rates appear to be restricted to a small area of the column, 10-15 cm thick. Based on the laboratory investigations carried out to determine the cause for the decline in methane oxidation rate, it was concluded that the formation of exopolymeric substances (EPS), at the zones of maximum methane oxidation, was responsible for this decline. In monitoring methane oxidation in a column for up to 600 days, it was observed that mixing of the medium after formation of EPS enabled the column to temporarily recover high performance. The results suggest that stable, homogenous compost, with a low C/N and low ammonium content, mixed on a regular basis, could achieve and maintain high methane oxidation efficiencies. Copyright 2004 Elsevier Ltd.

  6. High-resolution measurements from the airborne Atmospheric Nitrogen Dioxide Imager (ANDI)

    NASA Astrophysics Data System (ADS)

    Lawrence, J. P.; Anand, J. S.; Vande Hey, J. D.; Leigh, R. R.; Monks, P. S.; Leigh, R. J.

    2015-06-01

    Nitrogen Dioxide is both a primary pollutant with direct health effects and a key precursor of the secondary pollutant ozone. This paper reports on the development, characterisation and test flight of the Atmospheric Nitrogen Dioxide Imager (ANDI) remote sensing system. The ANDI system includes an imaging (UV)-vis grating spectrometer able to capture scattered sunlight spectra for the determination of tropospheric nitrogen dioxide (NO2) concentrations by way of DOAS slant column density and vertical column density measurements. Results are shown for an ANDI test flight over Leicester City in the UK. Retrieved NO2 columns at a surface resolution of 80 m x 20 m revealed hot spots in a series of locations around Leicester City, including road junctions, the train station, major car parks, areas of heavy industry, a nearby airport (East Midlands) and a power station (Ratcliffe-on-Soar). In the city centre the dominant source of NO2 emissions was identified as road traffic, contributing to a background concentration as well as producing localised hot spots. Quantitative analysis revealed a significant urban increment over the city centre which increased throughout the flight.

  7. Mechanisms for Development and Function of Foxp3+ Regulatory T Cells

    DTIC Science & Technology

    2008-04-04

    of the immunological synapse (studies by our group - Thomas et al, 2003); Cholesterol 9 synthesis and thereby the cholesterol amount in CD4 T-cells...precursor of cholesterol synthesis (studies by our group - Brumeanu et al, 2007). At present, it is generally accepted that lipid rafts play a...mice induces a fulminate diabetes within 10-14 days. T-regs and diabetogenic T-cells were isolated on CD4 columns followed by CD25 Ab-magnetic

  8. Low temperature photochemical vapor deposition of alloy and mixed metal oxide films

    DOEpatents

    Liu, David K.

    1992-01-01

    Method and apparatus for formation of an alloy thin film, or a mixed metal oxide thin film, on a substrate at relatively low temperatures. Precursor vapor(s) containing the desired thin film constituents is positioned adjacent to the substrate and irradiated by light having wavelengths in a selected wavelength range, to dissociate the gas(es) and provide atoms or molecules containing only the desired constituents. These gases then deposit at relatively low temperatures as a thin film on the substrate. The precursor vapor(s) is formed by vaporization of one or more precursor materials, where the vaporization temperature(s) is selected to control the ratio of concentration of metals present in the precursor vapor(s) and/or the total precursor vapor pressure.

  9. Influence of the order of reagent addition on NDMA formation during chloramination.

    PubMed

    Schreiber, I Marie; Mitch, William A

    2005-05-15

    The formation of the potent carcinogen, N-nitrosodimethylamine (NDMA), during chlorine disinfection has caused significant concern among drinking water and wastewater recycling utilities practicing intentional or unintentional chloramination. Previous research modeled NDMA formation as arising from a reaction between monochloramine and organic nitrogen precursors, such as dimethylamine, via an unsymmetrical dimethylhydrazine (UDMH) intermediate. Contrary to the importance of monochloramine indicated by previous studies, hypochlorite formed an order of magnitude more NDMA than monochloramine when applied to a secondary municipal wastewater effluent containing excess ammonia. Experiments involving variation of the order that each reagent (i.e., hypochlorite, ammonium chloride, and dimethylamine) was added to solution suggest two factors that may be more important for NDMA formation than the presence of monochloramine: (i) the chlorination state of organic nitrogen precursors and (ii) the partial formation of dichloramine. Although dichloramine formation was most influenced by the pH conditions under which inorganic chloramine formation was performed, mixing effects related to the order of reagent addition may be important at full-scale plants. Chloramination strategies are suggested that may reduce NDMA formation by nearly an order of magnitude.

  10. Determination of ambroxol in human plasma using LC-MS/MS.

    PubMed

    Kim, Hohyun; Yoo, Jeong-Yeon; Han, Sang Beom; Lee, Hee Joo; Lee, Kyung Ryul

    2003-06-01

    A sensitive and selective liquid chromatographic method coupled with tandem mass spectrometry (LC-MS/MS) was developed for the quantification of ambroxol in human plasma. Domperidone was used as internal standard, with plasma samples extracted using diethyl ether under basic condition. A centrifuged upper layer was then evaporated and reconstituted with 200 microl methanol. The reconstituted samples were injected into a C(18) XTerra MS column (2.1 x 30 mm) with 3.5 microm particle size. The analytical column lasted for at least 600 injections. The mobile phase was composed of 20 mM ammonium acetate in 90% acetonitrile (pH 8.8), with flow rate at 250 microl/min. The mass spectrometer was operated in positive ion mode using turbo electrospray ionization. Nitrogen was used as the nebulizer, curtain, collision, and auxiliary gases. Using MS/MS with multiple reaction monitoring (MRM) mode, ambroxol was detected without severe interferences from plasma matrix. Ambroxol produced a protonated precursor ion ([M+H](+)) at m/z 379 and a corresponding product ion at m/z 264. And internal standard (domperidone) produced a protonated precursor ion ([M+H](+)) at m/z 426 and a corresponding product ion at m/z 174. Detection of ambroxol in human plasma was accurate and precise, with quantification limit at 0.2 ng/ml. This method has been successfully applied to a study of ambroxol in human specimens.

  11. Concerted action of neuroepithelial basal shrinkage and active epithelial migration ensures efficient optic cup morphogenesis

    PubMed Central

    Sidhaye, Jaydeep; Norden, Caren

    2017-01-01

    Organ formation is a multi-scale event that involves changes at the intracellular, cellular and tissue level. Organogenesis often starts with the formation of characteristically shaped organ precursors. However, the cellular mechanisms driving organ precursor formation are often not clear. Here, using zebrafish, we investigate the epithelial rearrangements responsible for the development of the hemispherical retinal neuroepithelium (RNE), a part of the optic cup. We show that in addition to basal shrinkage of RNE cells, active migration of connected epithelial cells into the RNE is a crucial player in its formation. This cellular movement is driven by progressive cell-matrix contacts and actively translocates prospective RNE cells to their correct location before they adopt neuroepithelial fate. Failure of this migration during neuroepithelium formation leads to ectopic determination of RNE cells and consequently impairs optic cup formation. Overall, this study illustrates how spatiotemporal coordination between morphogenic movements and fate determination critically influences organogenesis. DOI: http://dx.doi.org/10.7554/eLife.22689.001 PMID:28372636

  12. The effects of physical refining on the formation of 3-monochloropropane-1,2-diol esters in relation to palm oil minor components.

    PubMed

    Zulkurnain, Musfirah; Lai, Oi Ming; Latip, Razam Abdul; Nehdi, Imededdine Arbi; Ling, Tau Chuan; Tan, Chin Ping

    2012-11-15

    The formation of 3-monochloropropane-1,2-diol (3-MCPD) esters in refined palm oil during deodorisation is attributed to the intrinsic composition of crude palm oil. Utilising D-optimal design, the effects of the degumming and bleaching processes on the reduction in 3-MCPD ester formation in refined palm oil from poor-quality crude palm oil were studied relative to the palm oil minor components that are likely to be their precursors. Water degumming remarkably reduced 3-MCPD ester formation by up to 84%, from 9.79 mg/kg to 1.55 mg/kg. Bleaching with synthetic magnesium silicate caused a further 10% reduction, to 0.487 mg/kg. The reduction in 3-MCPD ester formation could be due to the removal of related precursors prior to the deodorisation step. The phosphorus content of bleached palm oil showed a significant correlation with 3-MCPD ester formation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Combinatorial Characterization of TiO2 Chemical Vapor Deposition Utilizing Titanium Isopropoxide.

    PubMed

    Reinke, Michael; Ponomarev, Evgeniy; Kuzminykh, Yury; Hoffmann, Patrik

    2015-07-13

    The combinatorial characterization of the growth kinetics in chemical vapor deposition processes is challenging because precise information about the local precursor flow is usually difficult to access. In consequence, combinatorial chemical vapor deposition techniques are utilized more to study functional properties of thin films as a function of chemical composition, growth rate or crystallinity than to study the growth process itself. We present an experimental procedure which allows the combinatorial study of precursor surface kinetics during the film growth using high vacuum chemical vapor deposition. As consequence of the high vacuum environment, the precursor transport takes place in the molecular flow regime, which allows predicting and modifying precursor impinging rates on the substrate with comparatively little experimental effort. In this contribution, we study the surface kinetics of titanium dioxide formation using titanium tetraisopropoxide as precursor molecule over a large parameter range. We discuss precursor flux and temperature dependent morphology, crystallinity, growth rates, and precursor deposition efficiency. We conclude that the surface reaction of the adsorbed precursor molecules comprises a higher order reaction component with respect to precursor surface coverage.

  14. 20 Years of Total and Tropical Ozone Time Series Based on European Satellite Observations

    NASA Astrophysics Data System (ADS)

    Loyola, D. G.; Heue, K. P.; Coldewey-Egbers, M.

    2016-12-01

    Ozone is an important trace gas in the atmosphere, while the stratospheric ozone layer protects the earth surface from the incident UV radiation, the tropospheric ozone acts as green house gas and causes health damages as well as crop loss. The total ozone column is dominated by the stratospheric column, the tropospheric columns only contributes about 10% to the total column.The ozone column data from the European satellite instruments GOME, SCIAMACHY, OMI, GOME-2A and GOME-2B are available within the ESA Climate Change Initiative project with a high degree of inter-sensor consistency. The tropospheric ozone columns are based on the convective cloud differential algorithm. The datasets encompass a period of more than 20 years between 1995 and 2015, for the trend analysis the data sets were harmonized relative to one of the instruments. For the tropics we found an increase in the tropospheric ozone column of 0.75 ± 0.12 DU decade^{-1} with local variations between 1.8 and -0.8. The largest trends were observed over southern Africa and the Atlantic Ocean. A seasonal trend analysis led to the assumption that the increase is caused by additional forest fires.The trend for the total column was not that certain, based on model predicted trend data and the measurement uncertainty we estimated that another 10 to 15 years of observations will be required to observe a statistical significant trend. In the mid latitudes the trends are currently hidden in the large variability and for the tropics the modelled trends are low. Also the possibility of diverging trends at different altitudes must be considered; an increase in the tropospheric ozone might be accompanied by decreasing stratospheric ozone.The European satellite data record will be extended over the next two decades with the atmospheric satellite missions Sentinel 5 Precursor (launch end of 2016), Sentinel 4 and Sentinel 5.

  15. E-beam and UV induced fabrication of CeO2, Eu2O3 and their mixed oxides with UO2

    NASA Astrophysics Data System (ADS)

    Pavelková, Tereza; Vaněček, Vojtěch; Jakubec, Ivo; Čuba, Václav

    2016-07-01

    CeO2, Eu2O3 and mixed oxides of CeO2-UO2, Eu2O3-UO2 were fabricated. The preparative method was based on the irradiation of aqueous solutions containing cerium/europium (and uranyl) nitrates and ammonium formate. In the course of irradiation, the solid phase (precursor) was precipitated. The composition of irradiated solutions significantly affected the properties of precursor formed in the course of the irradiation. However, subsequent heat treatment of (amorphous) precursors at temperatures ≤650 °C invariably resulted in the formation of powder oxides with well-developed nanocrystals with linear crystallite size 13-27 nm and specific surface area 10-46 m2 g-1. The applicability of both ionizing (e-beam) and non-ionizing (UV) radiation was studied.

  16. RhoGTPase Regulators Orchestrate Distinct Stages of Synaptic Development

    PubMed Central

    Martin-Vilchez, Samuel; Whitmore, Leanna; Asmussen, Hannelore; Zareno, Jessica; Horwitz, Rick; Newell-Litwa, Karen

    2017-01-01

    Small RhoGTPases regulate changes in post-synaptic spine morphology and density that support learning and memory. They are also major targets of synaptic disorders, including Autism. Here we sought to determine whether upstream RhoGTPase regulators, including GEFs, GAPs, and GDIs, sculpt specific stages of synaptic development. The majority of examined molecules uniquely regulate either early spine precursor formation or later maturation. Specifically, an activator of actin polymerization, the Rac1 GEF β-PIX, drives spine precursor formation, whereas both FRABIN, a Cdc42 GEF, and OLIGOPHRENIN-1, a RhoA GAP, regulate spine precursor elongation. However, in later development, a novel Rac1 GAP, ARHGAP23, and RhoGDIs inactivate actomyosin dynamics to stabilize mature synapses. Our observations demonstrate that specific combinations of RhoGTPase regulatory proteins temporally balance RhoGTPase activity during post-synaptic spine development. PMID:28114311

  17. Mechanochemical approach for synthesis of layered double hydroxides

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoqing; Li, Shuping

    2013-06-01

    In this paper, a mechanochemical approach is used to prepare layered double hydroxides (LDHs). This approach involves manually grinding the precursor, nitrates and then the hydrothermal treatment. The study indicates that grinding leads to the incomplete formation of LDHs phase, LDHs-M. The reaction degree of precursor salts to LDHs after grinding depends on the melting points of the precursors. As expected, hydrothermal treatment is beneficial for the good crystallization and regularity of LDHs. Especially, the effect of hydrothermal treatment has been emphatically explored. The hydration of LDHs-M, increment of zeta potentials and the complete exchange of NO3- by CO32- anions occur successively or in parallel during the hydrothermal treatment. It can be found that combination of grinding and hydrothermal treatment gives rise to the formation of uniform and monodispersed particles of LDHs.

  18. Facile preparation of SiO2/TiO2 composite monolithic capillary column and its application in enrichment of phosphopeptides.

    PubMed

    Wang, Shao-Ting; Wang, Meng-Ya; Su, Xin; Yuan, Bi-Feng; Feng, Yu-Qi

    2012-09-18

    A novel SiO(2)/TiO(2) composite monolithic capillary column was prepared by sol-gel technology and successfully applied to enrich phosphopeptides as a metal oxide affinity chromatography (MOAC) material. For the monolith preparation, tetramethoxysilane (TMOS) and tetrabutoxytitanium (TBOT) were used as silica and titania source, respectively, and glycerol was introduced to attenuate the activity of titanium precursor, which provided a mild synthetic condition. The prepared monolith was characterized by energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD). The results revealed an approximate 1/2 molar ratio of titanium to silica as well as an atom-scale homogeneity in the framework. The scanning electron microscopy (SEM) results demonstrated an excellent anchorage between the column and the inner capillary wall, and nitrogen adsorption-desorption experiments showed a bimodal porosity with a narrow mesopore distribution around 3.6 nm. The prepared monolith was then applied for selective enrichment of phosphopeptides from the digestion mixture of phosphoproteins and bovine serum albumin (BSA) as well as human blood serum, nonfat milk, and egg white using an in-tube solid phase microextraction (SPME) system. Our results showed that SiO(2)/TiO(2) composite monolithic capillary column could efficiently enrich the phosphopeptides from complex matrixes. To the best of our knowledge, this is the first attempt for preparing the silica-metal composite monolithic capillary column, which offers the promising application of the monolith on phosphoproteomics study.

  19. A Madden-Julian Oscillation in Tropospheric Ozone

    NASA Technical Reports Server (NTRS)

    Ziemke, J. R.; Chandra, S.

    2003-01-01

    This is the first study to indicate a Madden-Julian Oscillation (MJO) in tropospheric ozone. Tropospheric ozone is derived using differential measurements of total column ozone and stratospheric column ozone measured from total ozone mapping spectrometer (TOMS) and microwave limb sounder (MLS) instruments. Two broad regions of significant MJO signal are identified in the tropics, one in the western Pacific and the other in the eastern Pacific. Over both regions, MJO variations in tropospheric ozone represent 5-10 Dobson Unit (DU) peak-to-peak anomalies. These variations are significant compared to mean background amounts of 20 DU or less over most of the tropical Pacific. MJO signals of this magnitude would need to be considered when investigating and interpreting particular pollution events since ozone is a precursor of the hydroxyl (OH) radical, the main oxidizing agent of pollutants in the lower atmosphere.

  20. Mesoporous-silica films, fibers, and powders by evaporation

    DOEpatents

    Bruinsma, Paul J.; Baskaran, Suresh; Bontha, Jagannadha R.; Liu, Jun

    2008-05-06

    This invention pertains to surfactant-templated nanometer-scale porosity of a silica precursor solution and forming a mesoporous material by first forming the silica precursor solution into a preform having a high surface area to volume ratio, then rapid drying or evaporating a solvent from the silica precursor solution. The mesoporous material may be in any geometric form, but is preferably in the form of a film, fiber, powder or combinations thereof. The rapid drying or evaporation of solvent from the solution is accomplished by layer thinning, for example spin casting, liquid drawing, and liquid spraying respectively. Production of a film is by layer thinning, wherein a layer of the silica precursor solution is formed on a surface followed by removal of an amount of the silica precursor solution and leaving a geometrically thinner layer of the silica precursor solution from which the solvent quickly escapes via evaporation. Layer thinning may be by any method including but not limited to squeegeeing and/or spin casting. In powder formation by spray drying, the same conditions of fast drying exists as in spin-casting (as well as in fiber spinning) because of the high surface-area to volume ratio of the product. When a powder is produced by liquid spraying, the particles or micro-bubbles within the powder are hollow spheres with walls composed of mesoporous silica. Mesoporous fiber formation starts with a similar silica precursor solution but with an added pre-polymer making a pituitous mixture that is drawn into a thin strand from which solvent is evaporated leaving the mesoporous fiber(s).

  1. Mesoporous-silica films, fibers, and powders by evaporation

    DOEpatents

    Bruinsma, Paul J.; Baskaran, Suresh; Bontha, Jagannadha R.; Liu, Jun

    1999-01-01

    This invention pertains to surfactant-templated nanometer-scale porosity of a silica precursor solution and forming a mesoporous material by first forming the silica precursor solution into a preform having a high surface area to volume ratio, then rapid drying or evaporating a solvent from the silica precursor solution. The mesoporous material may be in any geometric form, but is preferably in the form of a film, fiber, powder or combinations thereof. The rapid drying or evaporation of solvent from the solution is accomplished by layer thinning, for example spin casting, liquid drawing, and liquid spraying respectively. Production of a film is by layer thinning, wherein a layer of the silica precursor solution is formed on a surface followed by removal of an amount of the silica precursor solution and leaving a geometrically thinner layer of the silica precursor solution from which the solvent quickly escapes via evaporation. Layer thinning may be by any method including but not limited to squeegeeing and/or spin casting. In powder formation by spray drying, the same conditions of fast drying exists as in spin-casting (as well as in fiber spinning) because of the high surface-area to volume ratio of the product. When a powder is produced by liquid spraying, the particles or micro-bubbles within the powder are hollow spheres with walls composed of mesoporous silica. Mesoporous fiber formation starts with a similar silica precursor solution but with an added pre-polymer making a pituitous mixture that is drawn into a thin strand from which solvent is evaporated leaving the mesoporous fiber(s).

  2. Mesoporous-silica films, fibers, and powders by evaporation

    DOEpatents

    Bruinsma, P.J.; Baskaran, S.; Bontha, J.R.; Liu, J.

    1999-07-13

    This invention pertains to surfactant-templated nanometer-scale porosity of a silica precursor solution and forming a mesoporous material by first forming the silica precursor solution into a preform having a high surface area to volume ratio, then rapid drying or evaporating a solvent from the silica precursor solution. The mesoporous material may be in any geometric form, but is preferably in the form of a film, fiber, powder or combinations thereof. The rapid drying or evaporation of solvent from the solution is accomplished by layer thinning, for example spin casting, liquid drawing, and liquid spraying respectively. Production of a film is by layer thinning, wherein a layer of the silica precursor solution is formed on a surface followed by removal of an amount of the silica precursor solution and leaving a geometrically thinner layer of the silica precursor solution from which the solvent quickly escapes via evaporation. Layer thinning may be by any method including but not limited to squeegeeing and/or spin casting. In powder formation by spray drying, the same conditions of fast drying exists as in spin-casting (as well as in fiber spinning) because of the high surface-area to volume ratio of the product. When a powder is produced by liquid spraying, the particles or micro-bubbles within the powder are hollow spheres with walls composed of mesoporous silica. Mesoporous fiber formation starts with a similar silica precursor solution but with an added pre-polymer making a pituitous mixture that is drawn into a thin strand from which solvent is evaporated leaving the mesoporous fiber(s). 24 figs.

  3. Bed morphological features associated with an optimal slurry concentration for reproducible preparation of efficient capillary ultrahigh pressure liquid chromatography columns.

    PubMed

    Reising, Arved E; Godinho, Justin M; Jorgenson, James W; Tallarek, Ulrich

    2017-06-30

    Column wall effects and the formation of larger voids in the bed during column packing are factors limiting the achievement of highly efficient columns. Systematic variation of packing conditions, combined with three-dimensional bed reconstruction and detailed morphological analysis of column beds, provide valuable insights into the packing process. Here, we study a set of sixteen 75μm i.d. fused-silica capillary columns packed with 1.9μm, C18-modified, bridged-ethyl hybrid silica particles slurried in acetone to concentrations ranging from 5 to 200mg/mL. Bed reconstructions for three of these columns (representing low, optimal, and high slurry concentrations), based on confocal laser scanning microscopy, reveal morphological features associated with the implemented slurry concentration, that lead to differences in column efficiency. At a low slurry concentration, the bed microstructure includes systematic radial heterogeneities such as particle size-segregation and local deviations from bulk packing density near the wall. These effects are suppressed (or at least reduced) with higher slurry concentrations. Concomitantly, larger voids (relative to the mean particle diameter) begin to form in the packing and increase in size and number with the slurry concentration. The most efficient columns are packed at slurry concentrations that balance these counteracting effects. Videos are taken at low and high slurry concentration to elucidate the bed formation process. At low slurry concentrations, particles arrive and settle individually, allowing for rearrangements. At high slurry concentrations, they arrive and pack as large patches (reflecting particle aggregation in the slurry). These processes are discussed with respect to column packing, chromatographic performance, and bed microstructure to help reinforce general trends previously described. Conclusions based on this comprehensive analysis guide us towards further improvement of the packing process. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Potential of secondary aerosol formation from Chinese gasoline engine exhaust.

    PubMed

    Du, Zhuofei; Hu, Min; Peng, Jianfei; Guo, Song; Zheng, Rong; Zheng, Jing; Shang, Dongjie; Qin, Yanhong; Niu, He; Li, Mengren; Yang, Yudong; Lu, Sihua; Wu, Yusheng; Shao, Min; Shuai, Shijin

    2018-04-01

    Light-duty gasoline vehicles have drawn public attention in China due to their significant primary emissions of particulate matter and volatile organic compounds (VOCs). However, little information on secondary aerosol formation from exhaust for Chinese vehicles and fuel conditions is available. In this study, chamber experiments were conducted to quantify the potential of secondary aerosol formation from the exhaust of a port fuel injection gasoline engine. The engine and fuel used are common in the Chinese market, and the fuel satisfies the China V gasoline fuel standard. Substantial secondary aerosol formation was observed during a 4-5hr simulation, which was estimated to represent more than 10days of equivalent atmospheric photo-oxidation in Beijing. As a consequence, the extreme case secondary organic aerosol (SOA) production was 426±85mg/kg-fuel, with high levels of precursors and OH exposure. The low hygroscopicity of the aerosols formed inside the chamber suggests that SOA was the dominant chemical composition. Fourteen percent of SOA measured in the chamber experiments could be explained through the oxidation of speciated single-ring aromatics. Unspeciated precursors, such as intermediate-volatility organic compounds and semi-volatile organic compounds, might be significant for SOA formation from gasoline VOCs. We concluded that reductions of emissions of aerosol precursor gases from vehicles are essential to mediate pollution in China. Copyright © 2017. Published by Elsevier B.V.

  5. Role of Chlorine Dioxide in N-Nitrosodimethylamine Formation from Oxidation of Model Amines.

    PubMed

    Gan, Wenhui; Bond, Tom; Yang, Xin; Westerhoff, Paul

    2015-10-06

    N-Nitrosodimethylamine (NDMA) is an emerging disinfection byproduct, and we show that use of chlorine dioxide (ClO2) has the potential to increase NDMA formation in waters containing precursors with hydrazine moieties. NDMA formation was measured after oxidation of 13 amines by monochloramine and ClO2 and pretreatment with ClO2 followed by postmonochloramination. Daminozide, a plant growth regulator, was found to yield 5.01 ± 0.96% NDMA upon reaction with ClO2, although no NDMA was recorded during chloramination. The reaction rate was estimated to be ∼0.0085 s(-1), and on the basis of our identification by mass spectrometry of the intermediates, the reaction likely proceeds via the hydrolytic release of unsymmetrical dimethylhydrazine (UDMH), with the hydrazine structure a key intermediate in NDMA formation. The presence of UDMH was confirmed by gas chromatography-mass spectrometry analysis. For 10 of the 13 compounds, ClO2 preoxidation reduced NDMA yields compared with monochloramination alone, which is explained by our measured release of dimethylamine. This work shows potential preoxidation strategies to control NDMA formation may not impact all organic precursors uniformly, so differences might be source specific depending upon the occurrence of different precursors in source waters. For example, daminozide is a plant regulator, so drinking water that is heavily influenced by upstream agricultural runoff could be at risk.

  6. Solid-state synthesis of YAG powders through microwave coupling of oxide/carbon particulate mixtures

    DOE PAGES

    Wildfire, Christina; Sabolsky, Edward M.; Spencer, Michael J.; ...

    2017-06-14

    The rapid synthesis of yttrium aluminum garnet (Y 3Al 15O 12, YAG) powder was investigated through the use of microwave irradiation of the oxide precursor system. For this investigation, an external hybrid heating source was not used. Instead, the rapid heating of the precursor materials (yttria and alumina powders, which are typically transparent to 2.45 GHz microwaves) was initiated by mixing an intrinsic absorbing material (carbon) into the original oxide precursors. The effect of the carbon characteristics, such as carbon source, concentration, particle size, and agglomerate microstructure were evaluated on the efficiency of coupling and resultant oxide reaction. The microwavemore » power was varied to optimize the YAG conversion and eliminate intermediate phase formation. Interactions between the conductive carbon particles and the dielectric oxides within the microwave exposure produced local arching and micro-plasma formation within the powder bed, resulting in the rapid formation of the refractory YAG composition. This optimal conduction led to temperatures of 1000°C that could be achieved in less than 5 min resulting in the formation of > 90 vol% YAG. The understanding of a conductor/dielectric particulate system here, provided insight into possible application of similar systems where microwave irradiation could be used for enhanced solid-state formation, local melting events, and gas phase reactions with a composite powder media.« less

  7. A Self-Propagating Foaming Process of Porous Al-Ni Intermetallics Assisted by Combustion Reactions

    PubMed Central

    Kobashi, Makoto; Kanetake, Naoyuki

    2009-01-01

    The self-propagating foaming process of porous Al-Ni intermetallics was investigated. Aluminum and nickel powders were blended, and titanium and boron carbide powders were added as reactive exothermic agents. The blended powder was extruded to make a rod-shape precursor. Only one end of the rod precursor was heated to ignite the reaction. The reaction propagated spontaneously throughout the precursor. Pore formation took place at the same time as the reaction occurred. Adding the exothermic agent was effective to increase the porosity. Preheating the precursor before the ignition was also very effective to produce porous Al-Ni intermetallics with high porosity.

  8. A thermal and chemical degradation approach to decipher pristane and phytane precursors in sedimentary organic matter

    USGS Publications Warehouse

    Koopmans, M.P.; Rijpstra, W.I.C.; Klapwijk, M.M.; De Leeuw, J. W.; Lewan, M.D.; Sinninghe, Damste J.S.

    1999-01-01

    A thermal and chemical degradation approach was followed to determine the precursors of pristane (Pr) and phytane (Ph) in samples from the Gessoso-solfifera, Ghareb and Green River Formations. Hydrous pyrolysis of these samples yields large amounts of Pr and Ph carbon skeletons, indicating that their precursors are predominantly sequestered in high-molecular-weight fractions. However, chemical degradation of the polar fraction and the kerogen of the unheated samples generally does not release large amounts of Pr and Ph. Additional information on the precursors of Pr and Ph is obtained from flash pyrolysis analyses of kerogens and residues after hydrous pyrolysis and after chemical degradation. Multiple precursors for Pr and Ph are recognised in these three samples. The main increase of the Pr/Ph ratio with increasing maturation temperature, which is associated with strongly increasing amounts of Pr and Ph, is probably due to the higher amount of precursors of Pr compared to Ph, and not to the different timing of generation of Pr and Ph.A thermal and chemical degradation approach was followed to determine the precursors of pristane (Pr) and phytane (Ph) in samples from the Gessoso-solfifera, Ghareb and Green River Formations. Hydrous pyrolysis of these samples yields large amounts of Pr and Ph carbon skeletons, indicating that their precursors are predominantly sequestered in high-molecular-weight fractions. However, chemical degradation of the polar fraction and the kerogen of the unheated samples generally does not release large amounts of Pr and Ph. Additional information on the precursors of Pr and Ph is obtained from flash pyrolysis analyses of kerogens and residues after hydrous pyrolysis and after chemical degradation. Multiple precursors for Pr and Ph are recognised in these three samples. The main increase of the Pr/Ph ratio with increasing maturation temperature, which is associated with strongly increasing amounts of Pr and Ph, is probably due to the higher amount of precursors of Pr compared to Ph, and not to the different timing of generation of Pr and Ph.

  9. Geometrical appearance and spatial arrangement of structural blocks of the Malan loess in NW China: implications for the formation of loess columns

    NASA Astrophysics Data System (ADS)

    Li, Yanrong; Zhang, Tao; Zhang, Yongbo; Xu, Qiang

    2018-06-01

    Loess, as one of the main Quaternary deposits, covers approximately 6% of the land surface of the Earth. Although loess is loose and fragile, loess columns are popular and they can stand stably for hundreds of years, thereby forming a spectacular landform. The formation of such special column-shaped soil structures is puzzling, and the underlying fundamentals remain unclear. The present study focuses on quantifying and examining the geometrical shape and spatial alignment of structural blocks of the Malan loess at different locations in the Loess Plateau of China. The structural blocks under investigation include clay- and silt-sized particles, aggregates, fragments, lumps, and columns, which vary in size from microns to tens of meters. Regardless of their size, the structural blocks of the Malan loess are found to be similar in shape, i.e., elongated with a length-to-width ratio of approximately 2.6. The aggregates, fragments, lumps, columns, and macropores between aggregates exhibit strong concentration in the vertical or subvertical alignment. These phenomena imply that the Malan loess is anisotropic and it is composed of a combination of vertically aligned strong units and vertically aligned weak segments. Based on this, "vertiloess" structure is proposed to denote this combination. The vertiloess structure prevents horizontal erosion, but favors spalling, peeling, toppling, falling and cracking-sliding of vertical loess pieces, thereby forming loess columns.

  10. Environmental Education Manual for Grades I to XII.

    ERIC Educational Resources Information Center

    Houghton, J. R.

    This manual focuses on the interdisciplinary approach to environmental education for grades 1 to 12 by providing curriculum models for each grade level. Models, presented in a three-column format, display relationships between concepts and ideas with an environmental focus and various subjects/disciplines. The central column (headed Environmental…

  11. Secondary Social Studies: Alaska Curriculum Guide. Second Edition.

    ERIC Educational Resources Information Center

    Alaska State Dept. of Education, Juneau. Office of Curriculum Services.

    A secondary social studies model curriculum guide for Alaska is presented. The body of the guide lists topics/concepts, learning outcomes/objectives, and sample learning activities in a 3 column format. The first column, topics/concepts, describes the content area, defining the subject broadly and listing subconcepts or associated vocabulary. The…

  12. Ascorbate as a Biosynthetic Precursor in Plants

    PubMed Central

    Debolt, Seth; Melino, Vanessa; Ford, Christopher M.

    2007-01-01

    Background and Aims l-Ascorbate (vitamin C) has well-documented roles in many aspects of redox control and anti-oxidant activity in plant cells. This Botanical Briefing highlights recent developments in another aspect of l-ascorbate metabolism: its function as a precursor for specific processes in the biosynthesis of organic acids. Scope The Briefing provides a summary of recent advances in our understanding of l-ascorbate metabolism, covering biosynthesis, translocation and functional aspects. The role of l-ascorbate as a biosynthetic precursor in the formation of oxalic acid, l-threonic acid and l-tartaric acid is described, and progress in elaborating the mechanisms of the formation of these acids is reviewed. The potential conflict between the two roles of l-ascorbate in plant cells, functional and biosynthetic, is highlighted. Conclusions Recent advances in the understanding of l-ascorbate catabolism and the formation of oxalic and l-tartaric acids provide compelling evidence for a major role of l-ascorbate in plant metabolism. Combined experimental approaches, using classic biochemical and emerging ‘omics’ technologies, have provided recent insight to previously under-investigated areas. PMID:17098753

  13. Reliability assessment of slender concrete columns at the stability failure

    NASA Astrophysics Data System (ADS)

    Valašík, Adrián; Benko, Vladimír; Strauss, Alfred; Täubling, Benjamin

    2018-01-01

    The European Standard for designing concrete columns within the use of non-linear methods shows deficiencies in terms of global reliability, in case that the concrete columns fail by the loss of stability. The buckling failure is a brittle failure which occurs without warning and the probability of its formation depends on the columns slenderness. Experiments with slender concrete columns were carried out in cooperation with STRABAG Bratislava LTD in Central Laboratory of Faculty of Civil Engineering SUT in Bratislava. The following article aims to compare the global reliability of slender concrete columns with slenderness of 90 and higher. The columns were designed according to methods offered by EN 1992-1-1 [1]. The mentioned experiments were used as basis for deterministic nonlinear modelling of the columns and subsequent the probabilistic evaluation of structural response variability. Final results may be utilized as thresholds for loading of produced structural elements and they aim to present probabilistic design as less conservative compared to classic partial safety factor based design and alternative ECOV method.

  14. The Determination of Rate-Limiting Steps during Soot Formation

    DTIC Science & Technology

    1990-06-08

    and a CH3N precursor of acetonitrile such as 2H-aziridine although other intermediates of lower energy such as ketenimine have been identified on the...precursor of acetonitrile such as 2H-aziridine or ketenimine . Experimentally it was found that the overall rate of disappearance of pyrrole is first order

  15. Amyloid-like aggregation of provasopressin in diabetes insipidus and secretory granule sorting.

    PubMed

    Beuret, Nicole; Hasler, Franziska; Prescianotto-Baschong, Cristina; Birk, Julia; Rutishauser, Jonas; Spiess, Martin

    2017-01-26

    Aggregation of peptide hormone precursors in the trans-Golgi network is an essential process in the biogenesis of secretory granules in endocrine cells. It has recently been proposed that this aggregation corresponds to the formation of functional amyloids. Our previous finding that dominant mutations in provasopressin, which cause cell degeneration and diabetes insipidus, prevent native folding and produce fibrillar aggregates in the endoplasmic reticulum (ER) might thus reflect mislocalized amyloid formation by sequences that evolved to mediate granule sorting. Here we identified two sequences responsible for fibrillar aggregation of mutant precursors in the ER: the N-terminal vasopressin nonapeptide and the C-terminal glycopeptide. To test their role in granule sorting, the glycopeptide was deleted and/or vasopressin mutated to inactivate ER aggregation while still permitting precursor folding and ER exit. These mutations strongly reduced sorting into granules and regulated secretion in endocrine AtT20 cells. The same sequences - vasopressin and the glycopeptide - mediate physiological aggregation of the wild-type hormone precursor into secretory granules and the pathological fibrillar aggregation of disease mutants in the ER. These findings support the amyloid hypothesis for secretory granule biogenesis.

  16. Ultrasmall Zeolite L Crystals Prepared from Highly-Interdispersed Alkali-Silicate Precursors.

    PubMed

    Li, Rui; Linares, Noemi; Sutjianto, James G; Chawla, Aseem; Garcia Martinez, Javier; Rimer, Jeffrey D

    2018-06-19

    The preparation of nanosized zeolites is critical for applications where mass transport limitations within microporous networks hinder their performance. Oftentimes the ability to generate ultrasmall zeolite crystals is dependent upon the use of expensive organics with limited commercial relevance. Here, we report the generation of zeolite L crystals with uniform sizes less than 30 nm using a facile, organic-free method. Time-resolved analysis of precursor assembly and evolution during nonclassical crystallization highlights key differences among silicon sources. Our findings reveal that a homogenous dispersion of potassium ions throughout silicate precursors is critical to enhancing the rate of nucleation and facilitating the formation of ultrasmall crystals. Intimate contact between the inorganic structure-directing agent and silica leads to the formation of a metastable nonporous phase, identified as KAlSi2O6, which undergoes an intercrystalline transformation to zeolite L. The presence of highly-interdispersed alkali-silicate precursors is seemingly integral to a reduced zeolite induction time and may facilitate the development of ultrasmall crystals. Given the general difficulty of achieving nanosized crystals in zeolite synthesis, it is likely that using well-dispersed precursors does not have the same effect on all framework types; however, in select cases it may provide an alternative strategy for optimizing zeolite synthesis. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Synthesis of stable TiO2 nanotubes: effect of hydrothermal treatment, acid washing and annealing temperature.

    PubMed

    López Zavala, Miguel Ángel; Lozano Morales, Samuel Alejandro; Ávila-Santos, Manuel

    2017-11-01

    Effect of hydrothermal treatment, acid washing and annealing temperature on the structure and morphology of TiO 2 nanotubes during the formation process was assessed. X-ray diffraction, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy analysis were conducted to describe the formation and characterization of the structure and morphology of nanotubes. Hydrothermal treatment of TiO 2 precursor nanoparticles and acid washing are fundamental to form and define the nanotubes structure. Hydrothermal treatment causes a change in the crystallinity of the precursor nanoparticles from anatase phase to a monoclinic phase, which characterizes the TiO 2 nanosheets structure. The acid washing promotes the formation of high purity nanotubes due to Na + is exchanged from the titanate structure to the hydrochloric acid (HCl) solution. The annealing temperature affects the dimensions, structure and the morphology of the nanotubes. Annealing temperatures in the range of 400 °C and 600 °C are optimum to maintain a highly stable tubular morphology of nanotubes. Additionally, nanotubes conserve the physicochemical properties of the precursor Degussa P25 nanoparticles. Temperatures greater than 600 °C alter the morphology of nanotubes from tubular to an irregular structure of nanoparticles, which are bigger than those of the precursor material, i.e., the crystallinity turn from anatase phase to rutile phase inducing the collapse of the nanotubes.

  18. Mechanisms leading to oligomers and SOA through aqueous photooxidation: insights from OH radical oxidation of acetic acid

    NASA Astrophysics Data System (ADS)

    Tan, Y.; Lim, Y. B.; Altieri, K. E.; Seitzinger, S. P.; Turpin, B. J.

    2011-06-01

    Previous experiments have demonstrated that the aqueous OH radical oxidation of methylglyoxal produces low volatility products including oxalate and oligomers. These products are found predominantly in the particle phase in the atmosphere, suggesting that methylglyoxal is a precursor of secondary organic aerosol (SOA). Acetic acid is an important intermediate in aqueous methylglyoxal oxidation and a ubiquitous product of gas phase photochemistry, making it a potential "aqueous" SOA precursor in its own right. Altieri et al. (2008) proposed that acetic acid was the precursor of oligoesters observed in methylglyoxal oxidation. However, the fate of acetic acid upon aqueous-phase oxidation is not well understood. In this research, acetic acid at concentrations relevant to atmospheric waters (20 μM-10 mM) was oxidized by OH radical. Products were analyzed by ion chromatography (IC), electrospray ionization mass spectrometry (ESI-MS), and IC-ESI-MS. The formation of glyoxylic, glycolic, and oxalic acids were observed. In contrast to methylglyoxal oxidation, succinic acid and oligomers were not detected. Using results from these and methylglyoxal + OH radical experiments, radical mechanisms responsible for oligomer formation from methylglyoxal oxidation in clouds and wet aerosols are proposed. The importance of acetic acid/acetate as an SOA precursor is also discussed. We hypothesize that this and similar chemistry is central to the daytime formation of oligomers in wet aerosols.

  19. Trihalomethane formation potential of aquatic and terrestrial fulvic and humic acids: Sorption on activated carbon.

    PubMed

    Abouleish, Mohamed Y Z; Wells, Martha J M

    2015-07-15

    Humic substances (HSs) are precursors for the formation of hazardous disinfection by-products (DBPs) during chlorination of water. Various surrogate parameters have been used to investigate the generation of DBPs by HS precursors and the removal of these precursors by activated carbon treatment. Dissolved organic carbon (DOC)- and ultraviolet absorbance (UVA254)-based isotherms are commonly reported and presumed to be good predictors of the trihalomethane formation potential (THMFP). However, THMFP-based isotherms are rarely published such that the three types of parameters have not been compared directly. Batch equilibrium experiments on activated carbon were used to generate constant-initial-concentration sorption isotherms for well-characterized samples obtained from the International Humic Substances Society (IHSS). HSs representing type (fulvic acid [FA], humic acid [HA]), origin (aquatic, terrestrial), and geographical source (Nordic, Suwannee, Peat, Soil) were examined at pH6 and pH9. THMFP-based isotherms were generated and compared to determine if DOC- and UVA254-based isotherms were good predictors of the THMFP. The sorption process depended on the composition of the HSs and the chemical nature of the activated carbon, both of which were influenced by pH. Activated carbon removal of THM-precursors was pH- and HS-dependent. In some instances, the THMFP existed after UVA254 was depleted. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Earthquake chemical precursors in groundwater: a review

    NASA Astrophysics Data System (ADS)

    Paudel, Shukra Raj; Banjara, Sushant Prasad; Wagle, Amrita; Freund, Friedemann T.

    2018-03-01

    We review changes in groundwater chemistry as precursory signs for earthquakes. In particular, we discuss pH, total dissolved solids (TDS), electrical conductivity, and dissolved gases in relation to their significance for earthquake prediction or forecasting. These parameters are widely believed to vary in response to seismic and pre-seismic activity. However, the same parameters also vary in response to non-seismic processes. The inability to reliably distinguish between changes caused by seismic or pre-seismic activities from changes caused by non-seismic activities has impeded progress in earthquake science. Short-term earthquake prediction is unlikely to be achieved, however, by pH, TDS, electrical conductivity, and dissolved gas measurements alone. On the other hand, the production of free hydroxyl radicals (•OH), subsequent reactions such as formation of H2O2 and oxidation of As(III) to As(V) in groundwater, have distinctive precursory characteristics. This study deviates from the prevailing mechanical mantra. It addresses earthquake-related non-seismic mechanisms, but focused on the stress-induced electrification of rocks, the generation of positive hole charge carriers and their long-distance propagation through the rock column, plus on electrochemical processes at the rock-water interface.

  1. Homeotic shift at the dawn of the turtle evolution

    NASA Astrophysics Data System (ADS)

    Szczygielski, Tomasz

    2017-04-01

    All derived turtles are characterized by one of the strongest reductions of the dorsal elements among Amniota, and have only 10 dorsal and eight cervical vertebrae. I demonstrate that the Late Triassic turtles, which represent successive stages of the shell evolution, indicate that the shift of the boundary between the cervical and dorsal sections of the vertebral column occurred over the course of several million years after the formation of complete carapace. The more generalized reptilian formula of at most seven cervicals and at least 11 dorsals is thus plesiomorphic for Testudinata. The morphological modifications associated with an anterior homeotic change of the first dorsal vertebra towards the last cervical vertebra in the Triassic turtles are partially recapitulated by the reduction of the first dorsal vertebra in crown-group Testudines, and they resemble the morphologies observed under laboratory conditions resulting from the experimental changes of Hox gene expression patterns. This homeotic shift hypothesis is supported by the, unique to turtles, restriction of Hox-5 expression domains, somitic precursors of scapula, and brachial plexus branches to the cervical region, by the number of the marginal scute-forming placodes, which was larger in the Triassic than in modern turtles, and by phylogenetic analyses.

  2. Hydrophilic interaction chromatography combined with dispersive liquid-liquid microextraction as a preconcentration tool for the simultaneous determination of the panel of underivatized neurotransmitters in human urine samples.

    PubMed

    Konieczna, Lucyna; Roszkowska, Anna; Niedźwiecki, Maciej; Bączek, Tomasz

    2016-01-29

    A simple and sensitive method using dispersive liquid-liquid microextraction (DLLME) followed by liquid chromatography coupled to mass spectrometry (LC-MS) with a hydrophilic interaction chromatography (HILIC) column was developed for the simultaneous determination of 13 compounds of different polarities, comprising monoamine neurotransmitters (dopamine, norepinephrine, epinephrine and serotonin) along with their respective precursors and metabolites, in human urine samples. The microextraction procedure was based on the fast injection of a mixture of ethanol (disperser solvent) and dichloromethane (extraction solvent) into a human urine sample, forming a cloudy solution in the Eppendorf tube. After centrifugation, the sedimented phase was collected and subsequently analyzed by LC-HILIC-MS in about 12min without a derivatization step. The separation was performed on an XBridge Amide™ BEH column 3.0×100mm, 3.5mm and the mobile phase consisted of phase A: 10mM ammonium formate buffer in water pH 3.0 and phase B: 10 mM ammonium formate buffer in acetonitrile, under gradient program elution. Tyrosine, tryptophan, 5-hydroxytryptophan, dopamine, epinephrine, norepinephrine, serotonin, 3-methoxytyramine, 5-hydroxyindole-3-acetic acid, 3,4-dihydroxy-l-phenylalanine and norvaline (internal standard) were detected in the positive ionization mode. While vanillylmandelic acid, homovanillic acid, 3,4-dihydroxyphenylacetic acid and 3,4-dihydroxybenzylamine (internal standard) were detected in the negative ionization mode. Parameters influencing DLLME and LC-HILIC-MS were investigated. Under the optimum conditions, the proposed method exhibited a low detection limit (5-10ngmL(-1)), and good linearity with R between 0.9991 and 0.9998. The recoveries in human urine samples were 99.0%±3.6%. for the 13 studied biogenic amines with intra- and inter-day RSDs of 0.24-9.55% and 0.31-10.0%, respectively. The developed DLLME-LC-MS method could be successfully applied for the determination of trace amounts of polar endogenous compounds, such as neurotransmitters, in human urine samples, including samples with a reduced volume obtained from pediatric patients. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Secondary organic aerosol formation from ambient air in an oxidation flow reactor in central Amazonia

    DOE PAGES

    Palm, Brett B.; de Sá, Suzane S.; Day, Douglas A.; ...

    2018-01-17

    Secondary organic aerosol (SOA) formation from ambient air was studied using an oxidation flow reactor (OFR) coupled to an aerosol mass spectrometer (AMS) during both the wet and dry seasons at the Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) field campaign. Measurements were made at two sites downwind of the city of Manaus, Brazil. Ambient air was oxidized in the OFR using variable concentrations of either OH or O 3, over ranges from hours to days (O 3) or weeks (OH) of equivalent atmospheric aging. The amount of SOA formed in the OFR ranged from 0 to asmore » much as 10 μg m -3, depending on the amount of SOA precursor gases in ambient air. Typically, more SOA was formed during nighttime than daytime, and more from OH than from O 3 oxidation. SOA yields of individual organic precursors under OFR conditions were measured by standard addition into ambient air, and confirmed to be consistent with published environmental chamber-derived SOA yields. Positive matrix factorization of organic aerosol (OA) after OH oxidation showed formation of typical oxidized OA factors and a loss of primary OA factors as OH aging increased. After OH oxidation in the OFR, the hygroscopicity of the OA increased with increasing elemental O : C up to O : C ~ 1.0, and then decreased as O : C increased further. Some possible reasons for this decrease are discussed. The measured SOA formation was compared to the amount predicted from the concentrations of measured ambient SOA precursors and their SOA yields. And while measured ambient precursors were sufficient to explain the amount of SOA formed from O 3, they could only explain 10–50 % of the SOA formed from OH. This is consistent with previous OFR studies which showed that typically unmeasured semivolatile and intermediate volatility gases (that tend to lack C = C bonds) are present in ambient air and can explain such additional SOA formation. To investigate the sources of the unmeasured SOA-forming gases during this campaign, multilinear regression analysis was performed between measured SOA formation and the concentration of gas-phase tracers representing different precursor sources. The majority of SOA-forming gases present during both seasons were of biogenic origin. Urban sources also contributed substantially in both seasons, while biomass burning sources were more important during the dry season. Our study enables a better understanding of SOA formation in environments with diverse emission sources.« less

  4. Secondary organic aerosol formation from ambient air in an oxidation flow reactor in central Amazonia

    NASA Astrophysics Data System (ADS)

    Palm, Brett B.; de Sá, Suzane S.; Day, Douglas A.; Campuzano-Jost, Pedro; Hu, Weiwei; Seco, Roger; Sjostedt, Steven J.; Park, Jeong-Hoo; Guenther, Alex B.; Kim, Saewung; Brito, Joel; Wurm, Florian; Artaxo, Paulo; Thalman, Ryan; Wang, Jian; Yee, Lindsay D.; Wernis, Rebecca; Isaacman-VanWertz, Gabriel; Goldstein, Allen H.; Liu, Yingjun; Springston, Stephen R.; Souza, Rodrigo; Newburn, Matt K.; Lizabeth Alexander, M.; Martin, Scot T.; Jimenez, Jose L.

    2018-01-01

    Secondary organic aerosol (SOA) formation from ambient air was studied using an oxidation flow reactor (OFR) coupled to an aerosol mass spectrometer (AMS) during both the wet and dry seasons at the Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) field campaign. Measurements were made at two sites downwind of the city of Manaus, Brazil. Ambient air was oxidized in the OFR using variable concentrations of either OH or O3, over ranges from hours to days (O3) or weeks (OH) of equivalent atmospheric aging. The amount of SOA formed in the OFR ranged from 0 to as much as 10 µg m-3, depending on the amount of SOA precursor gases in ambient air. Typically, more SOA was formed during nighttime than daytime, and more from OH than from O3 oxidation. SOA yields of individual organic precursors under OFR conditions were measured by standard addition into ambient air and were confirmed to be consistent with published environmental chamber-derived SOA yields. Positive matrix factorization of organic aerosol (OA) after OH oxidation showed formation of typical oxidized OA factors and a loss of primary OA factors as OH aging increased. After OH oxidation in the OFR, the hygroscopicity of the OA increased with increasing elemental O : C up to O : C ˜ 1.0, and then decreased as O : C increased further. Possible reasons for this decrease are discussed. The measured SOA formation was compared to the amount predicted from the concentrations of measured ambient SOA precursors and their SOA yields. While measured ambient precursors were sufficient to explain the amount of SOA formed from O3, they could only explain 10-50 % of the SOA formed from OH. This is consistent with previous OFR studies, which showed that typically unmeasured semivolatile and intermediate volatility gases (that tend to lack C = C bonds) are present in ambient air and can explain such additional SOA formation. To investigate the sources of the unmeasured SOA-forming gases during this campaign, multilinear regression analysis was performed between measured SOA formation and the concentration of gas-phase tracers representing different precursor sources. The majority of SOA-forming gases present during both seasons were of biogenic origin. Urban sources also contributed substantially in both seasons, while biomass burning sources were more important during the dry season. This study enables a better understanding of SOA formation in environments with diverse emission sources.

  5. Secondary organic aerosol formation from ambient air in an oxidation flow reactor in central Amazonia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palm, Brett B.; de Sá, Suzane S.; Day, Douglas A.

    Secondary organic aerosol (SOA) formation from ambient air was studied using an oxidation flow reactor (OFR) coupled to an aerosol mass spectrometer (AMS) during both the wet and dry seasons at the Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) field campaign. Measurements were made at two sites downwind of the city of Manaus, Brazil. Ambient air was oxidized in the OFR using variable concentrations of either OH or O 3, over ranges from hours to days (O 3) or weeks (OH) of equivalent atmospheric aging. The amount of SOA formed in the OFR ranged from 0 to asmore » much as 10 μg m -3, depending on the amount of SOA precursor gases in ambient air. Typically, more SOA was formed during nighttime than daytime, and more from OH than from O 3 oxidation. SOA yields of individual organic precursors under OFR conditions were measured by standard addition into ambient air, and confirmed to be consistent with published environmental chamber-derived SOA yields. Positive matrix factorization of organic aerosol (OA) after OH oxidation showed formation of typical oxidized OA factors and a loss of primary OA factors as OH aging increased. After OH oxidation in the OFR, the hygroscopicity of the OA increased with increasing elemental O : C up to O : C ~ 1.0, and then decreased as O : C increased further. Some possible reasons for this decrease are discussed. The measured SOA formation was compared to the amount predicted from the concentrations of measured ambient SOA precursors and their SOA yields. And while measured ambient precursors were sufficient to explain the amount of SOA formed from O 3, they could only explain 10–50 % of the SOA formed from OH. This is consistent with previous OFR studies which showed that typically unmeasured semivolatile and intermediate volatility gases (that tend to lack C = C bonds) are present in ambient air and can explain such additional SOA formation. To investigate the sources of the unmeasured SOA-forming gases during this campaign, multilinear regression analysis was performed between measured SOA formation and the concentration of gas-phase tracers representing different precursor sources. The majority of SOA-forming gases present during both seasons were of biogenic origin. Urban sources also contributed substantially in both seasons, while biomass burning sources were more important during the dry season. Our study enables a better understanding of SOA formation in environments with diverse emission sources.« less

  6. Secondary organic aerosol formation from ambient air in an oxidation flow reactor in central Amazonia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palm, Brett B.; de Sá, Suzane S.; Day, Douglas A.

    Secondary organic aerosol (SOA) formation from ambient air was studied using an oxidation flow reactor (OFR) coupled to an aerosol mass spectrometer (AMS) during both the wet and dry seasons at the Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) field campaign. Measurements were made at two sites downwind of the city of Manaus, Brazil. Ambient air was oxidized in the OFR using variable concentrations of either OH or O 3, over ranges from hours to days (O 3) or weeks (OH) of equivalent atmospheric aging. The amount of SOA formed in the OFR ranged from 0 to asmore » much as 10 µg m −3, depending on the amount of SOA precursor gases in ambient air. Typically, more SOA was formed during nighttime than daytime, and more from OH than from O 3 oxidation. SOA yields of individual organic precursors under OFR conditions were measured by standard addition into ambient air and were confirmed to be consistent with published environmental chamber-derived SOA yields. Positive matrix factorization of organic aerosol (OA) after OH oxidation showed formation of typical oxidized OA factors and a loss of primary OA factors as OH aging increased. After OH oxidation in the OFR, the hygroscopicity of the OA increased with increasing elemental O : C up to O : C ∼ 1.0, and then decreased as O : C increased further. Possible reasons for this decrease are discussed. The measured SOA formation was compared to the amount predicted from the concentrations of measured ambient SOA precursors and their SOA yields. While measured ambient precursors were sufficient to explain the amount of SOA formed from O 3, they could only explain 10–50 % of the SOA formed from OH. This is consistent with previous OFR studies, which showed that typically unmeasured semivolatile and intermediate volatility gases (that tend to lack C = C bonds) are present in ambient air and can explain such additional SOA formation. To investigate the sources of the unmeasured SOA-forming gases during this campaign, multilinear regression analysis was performed between measured SOA formation and the concentration of gas-phase tracers representing different precursor sources. The majority of SOA-forming gases present during both seasons were of biogenic origin. Urban sources also contributed substantially in both seasons, while biomass burning sources were more important during the dry season. This study enables a better understanding of SOA formation in environments with diverse emission sources.« less

  7. Photochemically consumed hydrocarbons and their relationship with ozone formation in two megacities of China

    NASA Astrophysics Data System (ADS)

    Chang, C.; Wang, J.; Liu, S.; Shao, M.; Zhang, Y.; Zhu, T.; Shiu, C.; Lai, C.

    2010-12-01

    Two on-site continuous measurements of ozone and its precursors in two megacities of China were carried out in an urban site of Beijing and a suburban site near Guangzhou in the Pearl River Delta (PRD) to estimate precursor consumption and to assess its relationship with oxidant (O3+NO2) formation level. An observation-based method (OBM) with the precursor consumption concept was adopted to assess the relationship between oxidant production and amounts of photochemically consumed non-methane hydrocarbons (NMHCs). In this approach, the ratio of ethylbenzene to m,p-xylenes was used to estimate the degree of photochemical processing, as well as the amounts of photochemically consumed NMHCs by reacting with OH. By trying to correlate the observed oxidant with the observed NMHC concentration, the two areas both revealed nearly no to low correlation between them. However, it existed fair to good correlations (R2=0.68 for Beijing, 0.53 for PRD) between the observed oxidant level and the degree of photochemical processing (ethylbenzene/m,p-xylenes). Furthermore, after taking the approach of consumption to estimate the consumed amounts of NMHCs, an interesting finding reveals that the definite correlation existed between the observed oxidant level and the total consumed NMHCs. The good correlations (R2=0.83 for Beijing, 0.81 for PRD) implies that the ambient oxidant level correlated to the amount of consumed NMHCs. The results of the two megacities in China by using the OBM with the precursor consumption concept can provide another pathway to explore the relationship between photochemically produced oxidant and consumed precursors, and will be helpful to validate model results and to reduce uncertainty of model predictions. However, the method has some room for uncertainty, as injection of fresh precursor emissions and additional boundary ozone involved, etc. could affect the estimation of consumed NMHCs and observed oxidant levels. Assistance of approaches in assessing the influence of the interfering factors would be helpful to acquire more reliable inferences of relationship between oxidant formation and precursor consumption.

  8. The application of multiple analyte adduct formation in the LC-MS3 analysis of valproic acid in human serum.

    PubMed

    Dziadosz, Marek

    2017-01-01

    LC-MS using electrospray ionisation (negative ion mode) and low-energy collision-induced dissociation tandem mass spectrometric (CID-MS/MS) analysis, together with the multiple analyte adduct formation with the components of the mobile phase, were applied to analyse valproic acid in human serum with LC-MS 3 . The CID-fragmentation of the precursor analyte adduct [M+2CH 3 COONa-H] - was applied in the method validation (307.1/225.1/143.0). Chromatographic separation was performed with a Luna 5μm C18 (2) 100A, 150mm×2mm column and the elution with a mobile phase consisting of A (H 2 O/methanol=95/5, v/v) and B (H 2 O/methanol=3/97, v/v), both with 10mM ammonium acetate and 0.1% acetic acid. A binary flow pumping mode with a total flow rate of 0.400mL/min was used. The calculated limit of detection/quantification of the method calibrated in the range of 10-200μg/mL was 0.31/1.0μg/mL. The sample preparation based on protein precipitation with 1mL of H 2 O/methanol solution (3/97, v/v) with 10mM sodium acetate and 100mM acetic acid. On the basis of the experiments performed could be demonstrated, that multiple analyte adduct formation can be applied to generate MS 3 quantitation of analytes with problematic fragmentation. The presented new strategy makes the analysis of small drugs, which do not produce any stable product ions at all, on the basis of LC-MS 3 possible. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. The purification and properties of human liver ketohexokinase. A role for ketohexokinase and fructose-bisphosphate aldolase in the metabolic production of oxalate from xylitol.

    PubMed Central

    Bais, R; James, H M; Rofe, A M; Conyers, R A

    1985-01-01

    Ketohexokinase (EC 2.7.1.3) was purified to homogeneity from human liver, and fructose-bisphosphate aldolase (EC 4.1.2.13) was partially purified from the same source. Ketohexokinase was shown, by column chromatography and polyacrylamide-gel electrophoresis, to be a dimer of Mr 75000. Inhibition studies with p-chloromercuribenzoate and N-ethylmaleimide indicate that ketohexokinase contains thiol groups, which are required for full activity. With D-xylulose as substrate, ketohexokinase and aldolase can catalyse a reaction sequence which forms glycolaldehyde, a known precursor of oxalate. The distribution of both enzymes in human tissues indicates that this reaction sequence occurs mainly in the liver, to a lesser extent in the kidney, and very little in heart, brain and muscle. The kinetic properties of ketohexokinase show that this enzyme can phosphorylate D-xylulose as readily as D-fructose, except that higher concentrations of D-xylulose are required. The kinetic properties of aldolase show that the enzyme has a higher affinity for D-xylulose 1-phosphate than for D-fructose 1-phosphate. These findings support a role for ketohexokinase and aldolase in the formation of glycolaldehyde. The effect of various metabolites on the activity of the two enzymes was tested to determine the conditions that favour the formation of glycolaldehyde from xylitol. The results indicate that few of these metabolites affect the activity of ketohexokinase, but that aldolase can be inhibited by several phosphorylated compounds. This work suggests that, although the formation of oxalate from xylitol is normally a minor pathway, under certain conditions of increased xylitol metabolism oxalate production can become significant and may result in oxalosis. Images Fig. 1. PMID:2996495

  10. MECHANICAL VIBRATION INHIBITS OSTEOCLAST FORMATION BY REDUCING DC-STAMP RECEPTOR EXPRESSION IN OSTEOCLAST PRECURSOR CELLS

    PubMed Central

    Kulkarni, R.N.; Voglewede, P.A.; Liu, D.

    2014-01-01

    It is well known that physical inactivity leads to loss of muscle mass, but it also causes bone loss. Mechanistically, osteoclastogenesis and bone resorption have recently been shown to be regulated by vibration. However, the underlying mechanism behind the inhibition of osteoclast formation is yet unknown. Therefore, we investigated whether mechanical vibration of osteoclast precursor cells affects osteoclast formation by the involvement of fusion-related molecules such as dendritic cell-specific transmembrane protein (DC-STAMP), and P2X7 receptor (P2X7R). RAW264.7 (a murine osteoclastic-like cell line) cells were treated with 20 ng/ml receptor activator of NF-κB ligand (RANKL). For 3 consecutive days, the cells were subjected to 1 hour of mechanical vibration with 20 µm displacement at a frequency of 4 Hz and compared to the control cells that were treated under the same condition but without the vibration. After 5 days of culture, osteoclast formation was determined. Gene expression of DC-STAMP and P2X7R by RAW264.7 cells were determined after 1 hour mechanical vibration, while protein production of the DC-STAMP was determined after 6 hours of post incubation after vibration. As a result, mechanical vibration of RAW264.7 cells inhibited the formation of osteoclasts. Vibration down-regulated DC-STAMP gene expression by 1.6-fold in the presence of RANKL and by 1.4-fold in the absence of RANKL. Additionally, DC-STAMP protein production was also down-regulated by 1.4-fold in the presence of RANKL and by 1.2-fold in the absence of RANKL in RAW264.7 cells in response to mechanical vibration. However, vibration did not affect P2X7R gene expression. Mouse anti-DC-STAMP antibody inhibited osteoclast formation in the absence of vibration. Our results suggest that mechanical vibration of osteoclast precursor cells reduce DC-STAMP expression in osteoclast precursor cells leading to the inhibition of osteoclast formation. PMID:23994170

  11. Formation of N-nitrosodimethylamine (NDMA) from humic substances in natural water.

    PubMed

    Chen, Zhuo; Valentine, Richard L

    2007-09-01

    N-nitrosodimethylamine (NDMA)formation in chloraminated Iowa River water (IRW) is primarily attributed to reactions with natural organic matter (NOM) generally classified as humic substances. Experiments were conducted to determine the contribution of various NOM humic fractions to the NDMA formation potential (NDMA FP) in this drinking water source. NOM was concentrated by reverse osmosis (RO) and humic fractions were obtained by a series of resin elution procedures. Mass balances showed that nearly 90% of the NDMA formation potential could be recovered in the NOM concentrate and in water reconstituted using additions of the various humic fractions. Generally, the hydrophilic fractions tended to form more NDMA than hydrophobic fractions, and basic fractions tend to form more NDMA than acid fractions when normalized to a carbon basis. Overall, the hydrophobic acid fraction was the dominant source of NDMA when both formation efficiency and water composition were considered. The amount of NDMA formed in a sample was found to correlate linearly with an oxidation-induced decrease in specific UV absorbance (SUVA) value at 272 nm. This is consistent with a mechanism in which precursors are formed as the direct consequence of the oxidation of NOM. The NDMA FP estimated using the slope of this relationship and the initial SUVA value compared closely to the value obtained by measuring the NDMA formed in solutions dosed with excess concentrations of monochloramine that presumably exhaust all potential precursor sources. However, the NOMA FP could not be correlated to the SUVA value of the individual humic fractions indicating that the relationship of the NDMA FP to SUVA value is probably a water-specific parameter dependent on the exact composition of humic fractions. It is hypothesized that either specific NDMA precursors are distributed among the various humic fractions or that the humic material itself represents a "generic" nonspecific precursor source that requires some degree of oxidation to eventually produce NDMA. The nonmonotonic behavior of NOM fluorescence spectra during chloramination and lack of correlation between NOM fluorescence characteristics and NDMA formation limited the usage of fluorescence spectra into probing NDMA formation.

  12. PARTITIONING TUNGSTEN BETWEEN MATRIX PRECURSORS AND CHONDRULE PRECURSORS THROUGH RELATIVE SETTLING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hubbard, Alexander, E-mail: ahubbard@amnh.org

    2016-08-01

    Recent studies of chondrites have found a tungsten isotopic anomaly between chondrules and matrix. Given the refractory nature of tungsten, this implies that W was carried into the solar nebula by at least two distinct families of pre-solar grains. The observed chondrule/matrix split requires that the distinct families were kept separate during the dust coagulation process, and that the two families of grain interacted with the chondrule formation mechanism differently. We take the co-existence of different families of solids in the same general orbital region at the chondrule-precursor size as given, and explore the requirements for them to have interactedmore » with the chondrule formation process at significantly different rates. We show that this sorting of families of solids into chondrule- and matrix-destined dust had to have been at least as powerful a sorting mechanism as the relative settling of aerodynamically distinct grains at least two scale heights above the midplane. The requirement that the chondrule formation mechanism was correlated in some fashion with a dust-grain sorting mechanism argues strongly for spatially localized chondrule formation mechanisms such as turbulent dissipation in non-thermally ionized disk surface layers, and argues against volume-filling mechanisms such as planetesimal bow shocks.« less

  13. Influence of Aerosol Acidity on the Formation of Secondary Organic Aerosol from Biogenic Precursor Hydrocarbons

    EPA Science Inventory

    Secondary organic aerosol (SOA) formation and dynamics may be important factors for the role of aerosols in adverse health effects, visibility and climate change. Formation of SOA occurs when a parent volatile organic compound is oxidized to create products that form in a conden...

  14. CuInSe₂ thin-film solar cells with 7.72 % efficiency prepared via direct coating of a metal salts/alcohol-based precursor solution.

    PubMed

    Ahn, Sejin; Son, Tae Hwa; Cho, Ara; Gwak, Jihye; Yun, Jae Ho; Shin, Keeshik; Ahn, Seoung Kyu; Park, Sang Hyun; Yoon, Kyunghoon

    2012-09-01

    A simple direct solution coating process for forming CuInSe₂ (CIS) thin films was described, employing a low-cost and environmentally friendly precursor solution. The precursor solution was prepared by mixing metal acetates, ethanol, and ethanolamine. The facile formation of a precursor solution without the need to prefabricate nanoparticles enables a rapid and easy processing, and the high stability of the solution in air further ensures the precursor preparation and the film deposition in ambient conditions without a glove box. The thin film solar cell fabricated with the absorber film prepared by this route showed an initial conversion efficiency of as high as 7.72 %. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Synthesis, characterization, microstructure, optical and magnetic properties of strontium cobalt carbonate precursor and Sr2Co2O5 oxide material

    NASA Astrophysics Data System (ADS)

    Agilandeswari, K.; Ruban Kumar, A.

    2014-04-01

    Sr2Co2O5 ceramic synthesized by the coprecipitation of strontium cobalt carbonate method. XRD analysis shows the single phase strontianite precursor and decomposed oxide product as orthorhombic structure of Sr2Co2O5. Thermal analysis proves the Sr2Co2O5 phase formation temperature of 800 °C. SEM image indicates crystalline rod shaped carbonate precursor transformed to oxide as porous diffused sphere shape particles. Optical band gap it reveals the strontium cobalt carbonate precursor as insulating material and the Sr2Co2O5 as semiconducting nature. The room temperature magnetic study indicates the carbonate precursor as paramagnetic but its oxide Sr2Co2O5 as superparamagnetic behavior.

  16. Low temperature photochemical vapor deposition of alloy and mixed metal oxide films

    DOEpatents

    Liu, D.K.

    1992-12-15

    Method and apparatus are described for formation of an alloy thin film, or a mixed metal oxide thin film, on a substrate at relatively low temperatures. Precursor vapor(s) containing the desired thin film constituents is positioned adjacent to the substrate and irradiated by light having wavelengths in a selected wavelength range, to dissociate the gas(es) and provide atoms or molecules containing only the desired constituents. These gases then deposit at relatively low temperatures as a thin film on the substrate. The precursor vapor(s) is formed by vaporization of one or more precursor materials, where the vaporization temperature(s) is selected to control the ratio of concentration of metals present in the precursor vapor(s) and/or the total precursor vapor pressure. 7 figs.

  17. Eph regulates dorsoventral asymmetry of the notochord plate and convergent extension-mediated notochord formation.

    PubMed

    Oda-Ishii, Izumi; Ishii, Yasuo; Mikawa, Takashi

    2010-10-29

    The notochord is a signaling center required for the patterning of the vertebrate embryonic midline, however, the molecular and cellular mechanisms involved in the formation of this essential embryonic tissue remain unclear. The urochordate Ciona intestinalis develops a simple notochord from 40 specific postmitotic mesodermal cells. The precursors intercalate mediolaterally and establish a single array of disk-shaped notochord cells along the midline. However, the role that notochord precursor polarization, particularly along the dorsoventral axis, plays in this morphogenetic process remains poorly understood. Here we show that the notochord preferentially accumulates an apical cell polarity marker, aPKC, ventrally and a basement membrane marker, laminin, dorsally. This asymmetric accumulation of apicobasal cell polarity markers along the embryonic dorsoventral axis was sustained in notochord precursors during convergence and extension. Further, of several members of the Eph gene family implicated in cellular and tissue morphogenesis, only Ci-Eph4 was predominantly expressed in the notochord throughout cell intercalation. Introduction of a dominant-negative Ci-Eph4 to notochord precursors diminished asymmetric accumulation of apicobasal cell polarity markers, leading to defective intercalation. In contrast, misexpression of a dominant-negative mutant of a planar cell polarity gene Dishevelled preserved asymmetric accumulation of aPKC and laminin in notochord precursors, although their intercalation was incomplete. Our data support a model in which in ascidian embryos Eph-dependent dorsoventral polarity of notochord precursors plays a crucial role in mediolateral cell intercalation and is required for proper notochord morphogenesis.

  18. Mapping Isoprene Emissions over North America using Formaldehyde Column Observations from Space

    NASA Technical Reports Server (NTRS)

    Palmer, Paul I.; Jacob, Daniel J.; Fiore, Arlene M.; Martin, Randall V.; Chance, Kelly; Kurosu, Thomas P.

    2004-01-01

    I] We present a methodology for deriving emissions of volatile organic compounds (VOC) using space-based column observations of formaldehyde (HCHO) and apply it to data from the Global Ozone Monitoring Experiment (GOME) satellite instrument over North America during July 1996. The HCHO column is related to local VOC emissions, with a spatial smearing that increases with the VOC lifetime. lsoprene is the dominant HCHO precursor over North America in summer, and its lifetime (approx. = 1 hour) is sufficiently short that the smearing can be neglected. We use the Goddard Earth Observing System global 3-D model of tropospheric chemistry (GEOS-CHEM) to derive the relationship between isoprene emissions and HCHO columns over North America and use these relationships to convert the GOME HCHO columns to isoprene emissions. We also use the GEOS-CHEM model as an intermediary to validate the GOME HCHO column measurements by comparison with in situ observations. The GEOS-CHEM model including the Global Emissions Inventory Activity (GEIA) isoprene emission inventory provides a good simulation of both the GOME data (r(sup 2) = 0.69, n = 756, bias = +l1 %) and the in situ summertime HCHO measurements over North America (r(sup 2) = 0.47, n = 10, bias = -3%). The GOME observations show high values over regions of known high isoprene emissions and a day-to-day variability that is consistent with the temperature dependence of isoprene emission. Isoprene emissions inferred from the GOME data are 20% less than GEIA on average over North America and twice those from the U S . EPA Biogenic Emissions Inventory System (BEIS2) inventory. The GOME isoprene inventory when implemented in the GEOS-CHEM model provides a better simulation of the HCHO in situ measurements thaneitherGEIAorBEIS2 (r(sup 2) = 0.71,n= 10, bias = -10 %).

  19. Purchase of Microwave Reactors for Implementation of Small-scale Microwave-accelerated Organic Chemistry Laboratory Program in Undergraduate Curriculum and Synthetic Chemistry Research at HU

    DTIC Science & Technology

    2015-05-16

    synthesis of iron magnetic nanoparticles is being investigated (Appendix A; Scheme IV). In the first step, precursor iron(III) chloride nanoparticles...and other methods. Currently, we are developing a two-step scheme for the synthesis of esters that will require distillation and/or column...recognize the link between them. We are developing for the above purpose, the microwave-assisted, two-step synthesis of high boiling point esters. The

  20. Photogeneration of active formate decomposition catalysts to produce hydrogen from formate and water

    DOEpatents

    King, Jr., Allen D.; King, Robert B.; Sailers, III, Earl L.

    1983-02-08

    A process for producing hydrogen from formate and water by photogenerating an active formate decomposition catalyst from transition metal carbonyl precursor catalysts at relatively low temperatures and otherwise mild conditions is disclosed. Additionally, this process may be expanded to include the generation of formate from carbon monoxide and hydroxide such that the result is the water gas shift reaction.

  1. A fundamental study of gas formation and migration during leakage of stored carbon dioxide in subsurface formations

    NASA Astrophysics Data System (ADS)

    Sakaki, T.; Plampin, M. R.; Lassen, R. N.; Pawar, R. J.; Komatsu, M.; Jensen, K. H.; Illangasekare, T. H.

    2011-12-01

    Geologic sequestration of CO2 has received significant attention as a potential method for reducing the release of greenhouse gases into the atmosphere. Potential risk of leakage of the stored CO2 to the shallow zones of the subsurface is one of the critical issues that is needed to be addressed to design effective field storage systems. If a leak occurs, gaseous CO2 reaching shallow zones of the subsurface can potentially impact the surface and groundwater sources and vegetation. With a goal of developing models that can predict these impacts, a research study is underway to improve our understanding of the fundamental processes of gas-phase formation and multi-phase flow dynamics during CO2 migration in shallow porous media. The approach involves conducting a series of highly controlled experiments in soil columns and tanks to study the effects of soil properties, temperature, pressure gradients and heterogeneities on gas formation and migration. This paper presents the results from a set of column studies. A 3.6m long column was instrumented with 16 soil moisture sensors, 15 of which were capable of measuring electrical conductivity (EC) and temperature, eight water pressure, and two gas pressure sensors. The column was filled with test sands with known hydraulic and retention characteristics with predetermined packing configurations. Deionized water saturated with CO2 under ~0.3 kPa (roughly the same as the hydrostatic pressure at the bottom of the column) was injected at the bottom of the column using a peristaltic pump. Water and gas outflow at the top of the column were monitored continuously. The results, in general, showed that 1) gas phase formation can be triggered by multiple factors such as water pressure drop, temperature rise, and heterogeneity, 2) transition to gas phase tends to occur rather within a short period of time, 3) gas phase fraction was as high as ~40% so that gas flow was not via individual bubble movement but two-phase flow, 4) water outflow that was initially equal to the inflow rate increased when gas-phase started to form (i.e., water gets displaced), and 5) gas starts to flow upward after gas phase fraction stabilizes (i.e., buoyant force overcomes). These results suggest that the generation and migration processes of gas phase CO2 can be modelled as a traditional two-phase flow with source (when CO2 gas exsolved due to complex factors) as well as sink (when gas dissolved) terms. The experimental data will be used to develop and test the conceptual models that will guide the development of numerical simulators for applications involving CO2 storage and leakage.

  2. An Assessment of Ozone Photochemistry in the Extratropical Western North Pacific: Impact of Continental Outflow During the Late Winter/Early Spring

    NASA Technical Reports Server (NTRS)

    Crawford, J.; Davis, D.; Chen, G.; Bradshaw, J.; Sandholm, S.; Kondo, Y.; Liu, S.; Browell, E.; Gregory, G.; Anderson, B.; hide

    1997-01-01

    This study examines the influence of photochemical processes on tropospheric ozone distributions over the extratropical western North Pacific. The analysis presented here is based on data collected during the Pacific Exploratory Mission-West Phase B (PEM-West B) field study conducted in February-March 1994. Sampling in the study region involved altitudes of 0-12 km and latitudes of 10deg S to 50deg N. The extratropical component of the data set (i.e., 20-50deg N) was defined by markedly different photochemical environments north and south of 30deg N. This separation was clearly defined by an abrupt decrease in the tropopause height near 30deg N and a concomitant increase in total O3 column density. This shift in overhead O3 led to highly reduced rates of O3 formation and destruction for the 30-50deg N latitude regime. Both latitude ranges, however, still exhibited net O3 production at all altitudes. Of special significance was the finding that net O3 production prevailed even at boundary layer and lower free tropospheric altitudes (e.g., less than 4 km), a condition uncommon to Pacific marine environments. These results reflect the strong impact of continental Outflow of O3 precursors (e.g., NO and NMHCS) into the northwestern Pacific Basin. Comparisons with PEM-West A, which sampled the same region in a different season (September-October), revealed major differences at altitudes below 4 km, the altitude range most influenced by continental outflow. The resulting net rate of increase in the tropospheric O3 column for PEM-West B was 1-3 % per day, while for PEM-West A it was approximately zero. Unique to the PEM-West B study is the finding that even under wintertime conditions substantial column production of tropospheric O3 can occur at subtropical and mid-latitudes. While such impacts may not be totally unexpected at near coast locations, the present study suggests that the impact from continental outflow on the marine BL could extend out to distances of more than 2000 km from the Asian Pacific Rim.

  3. Antarctic new particle formation from continental biogenic precursors

    NASA Astrophysics Data System (ADS)

    Kyrö, E.-M.; Kerminen, V.-M.; Virkkula, A.; Dal Maso, M.; Parshintsev, J.; Ruíz-Jimenez, J.; Forsström, L.; Manninen, H. E.; Riekkola, M.-L.; Heinonen, P.; Kulmala, M.

    2012-12-01

    Over Antarctica, aerosol particles originate almost entirely from marine areas, with minor contribution from long-range transported dust or anthropogenic material. The Antarctic continent itself, unlike all other continental areas, has been thought to be practically free of aerosol sources. Here we present evidence of local aerosol production associated with melt-water ponds in the continental Antarctica. We show that in air masses passing such ponds, new aerosol particles are efficiently formed and these particles grow up to sizes where they may act as cloud condensation nuclei (CCN). The precursor vapours responsible for aerosol formation and growth originate very likely from highly abundant cyanobacteria Nostoc commune (Vaucher) communities of local ponds. This is the first time when freshwater vegetation has been identified as an aerosol precursor source. The influence of the new source on clouds and climate may increase in future Antarctica, and possibly elsewhere undergoing accelerating summer melting of semi-permanent snow cover.

  4. Antarctic new particle formation from continental biogenic precursors

    NASA Astrophysics Data System (ADS)

    Kyrö, E.-M.; Kerminen, V.-M.; Virkkula, A.; Dal Maso, M.; Parshintsev, J.; Ruíz-Jimenez, J.; Forsström, L.; Manninen, H. E.; Riekkola, M.-L.; Heinonen, P.; Kulmala, M.

    2013-04-01

    Over Antarctica, aerosol particles originate almost entirely from marine areas, with minor contribution from long-range transported dust or anthropogenic material. The Antarctic continent itself, unlike all other continental areas, has been thought to be practically free of aerosol sources. Here we present evidence of local aerosol production associated with melt-water ponds in continental Antarctica. We show that in air masses passing such ponds, new aerosol particles are efficiently formed and these particles grow up to sizes where they may act as cloud condensation nuclei (CCN). The precursor vapours responsible for aerosol formation and growth originate very likely from highly abundant cyanobacteria Nostoc commune (Vaucher) communities of local ponds. This is the first time freshwater vegetation has been identified as an aerosol precursor source. The influence of the new source on clouds and climate may increase in future Antarctica, and possibly elsewhere undergoing accelerating summer melting of semi-permanent snow cover.

  5. Formation and reduction of 3-monochloropropane-1,2-diol esters in peanut oil during physical refining.

    PubMed

    Li, Chang; Li, Linyan; Jia, Hanbing; Wang, Yuting; Shen, Mingyue; Nie, Shaoping; Xie, Mingyong

    2016-05-15

    In the present study, lab-scale physical refining processes were investigated for their effects on the formation of 3-monochloropropane-1,2-diol (3-MCPD) esters. The potential precursors, partial acylglycerols and chlorines were determined before each refining step. 3-MCPD esters were not detected in degummed and bleached oil when the crude oils were extracted by solvent. While in the hot squeezed crude oils, 3-MCPD esters were detected with low amounts. 3-MCPD esters were generated with maximum values in 1-1.5h at a certain deodorizing temperature (220-260°C). Chlorine seemed to be more effective precursor than partial acylglycerol. By washing bleached oil before deodorization with ethanol solution, the precursors were removed partially and the content of 3-MCPD esters decreased to some extent accordingly. Diacetin was found to reduce 3-MCPD esters effectively. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Sam37 is crucial for formation of the mitochondrial TOM-SAM supercomplex, thereby promoting β-barrel biogenesis.

    PubMed

    Wenz, Lena-Sophie; Ellenrieder, Lars; Qiu, Jian; Bohnert, Maria; Zufall, Nicole; van der Laan, Martin; Pfanner, Nikolaus; Wiedemann, Nils; Becker, Thomas

    2015-09-28

    Biogenesis of mitochondrial β-barrel proteins requires two preprotein translocases, the general translocase of the outer membrane (TOM) and the sorting and assembly machinery (SAM). TOM and SAM form a supercomplex that promotes transfer of β-barrel precursors. The SAM core complex contains the channel protein Sam50, which cooperates with Sam35 in precursor recognition, and the peripheral membrane protein Sam37. The molecular function of Sam37 has been unknown. We report that Sam37 is crucial for formation of the TOM-SAM supercomplex. Sam37 interacts with the receptor domain of Tom22 on the cytosolic side of the mitochondrial outer membrane and links TOM and SAM complexes. Sam37 thus promotes efficient transfer of β-barrel precursors to the SAM complex. We conclude that Sam37 functions as a coupling factor of the translocase supercomplex of the mitochondrial outer membrane. © 2015 Wenz et al.

  7. SOA precursors at the T0 site during the 2010 CARES campaign

    NASA Astrophysics Data System (ADS)

    Wallace, H. W.; Jobson, B. T.; Erickson, M. H.

    2010-12-01

    Continuous measurements of C5 to C12 Volatile Organic Compounds (VOC) have been made using the Washington State University Mobile Atmospheric Chemistry Laboratory (MACL), at the T0 site during the month of June 2010 Carbonaceous Aerosol Carbonaceous Aerosols and Radiative Effects Study (CARES). These measurements were made to better understand aerosol formation and growth in Sacramento, CA and the surrounding areas. Using a sorbent based preconcentration sampling technique for our quadrupole ion trap gas chromatography mass spectrometer (GCMS), we have measured anthropogenic and biogenic secondary organic aerosol (SOA) precursors. Major biogenic VOCs identified include: α-pinene, limonene, isoprene, phellanderene and β-pinene. Diurnal profiles of the concentrations will be presented. Monoterpenes were highest in the mornings while isoprene was highest in the afternoon. In addition to understanding the diurnal profiles the SOA precursors at the T0 site, the relative contributions of biogenic and anthropogenic compounds to SOA formation will be presented.

  8. Characteristic Structure of Star-forming Clouds

    NASA Astrophysics Data System (ADS)

    Myers, Philip C.

    2015-06-01

    This paper presents a new method to diagnose the star-forming potential of a molecular cloud region from the probability density function of its column density (N-pdf). This method provides expressions for the column density and mass profiles of a symmetric filament having the same N-pdf as a filamentary region. The central concentration of this characteristic filament can distinguish regions and can quantify their fertility for star formation. Profiles are calculated for N-pdfs which are pure lognormal, pure power law, or a combination. In relation to models of singular polytropic cylinders, characteristic filaments can be unbound, bound, or collapsing depending on their central concentration. Such filamentary models of the dynamical state of N-pdf gas are more relevant to star-forming regions than are spherical collapse models. The star formation fertility of a bound or collapsing filament is quantified by its mean mass accretion rate when in radial free fall. For a given mass per length, the fertility increases with the filament mean column density and with its initial concentration. In selected regions the fertility of their characteristic filaments increases with the level of star formation.

  9. Analysis of interstellar cloud structure based on IRAS images

    NASA Technical Reports Server (NTRS)

    Scalo, John M.

    1992-01-01

    The goal of this project was to develop new tools for the analysis of the structure of densely sampled maps of interstellar star-forming regions. A particular emphasis was on the recognition and characterization of nested hierarchical structure and fractal irregularity, and their relation to the level of star formation activity. The panoramic IRAS images provided data with the required range in spatial scale, greater than a factor of 100, and in column density, greater than a factor of 50. In order to construct densely sampled column density maps of star-forming clouds, column density images of four nearby cloud complexes were constructed from IRAS data. The regions have various degrees of star formation activity, and most of them have probably not been affected much by the disruptive effects of young massive stars. The largest region, the Scorpius-Ophiuchus cloud complex, covers about 1000 square degrees (it was subdivided into a few smaller regions for analysis). Much of the work during the early part of the project focused on an 80 square degree region in the core of the Taurus complex, a well-studied region of low-mass star formation.

  10. The Multifaceted Osteoclast; Far and Beyond Bone Resorption.

    PubMed

    Drissi, Hicham; Sanjay, Archana

    2016-08-01

    The accepted function of the bone resorbing cell, osteoclast, has been linked to bone remodeling and pathological osteolysis. Emerging evidence points to novel functions of osteoclasts in controlling bone formation and angiogenesis. Thus, while the concept of a "clastokine" with the potential to regulate osteogenesis during remodeling did not come as a surprise, new evidence provided unique insight into the mechanisms underlying osteoclastic control of bone formation. The question still remains as to whether osteoclast precursors or a unique trap positive mononuclear cell, can govern any aspect of bone formation. The novel paradigm eloquently proposed by leaders in the field brings together the concept of clastokines and osteoclast precursor-mediated bone formation, potentially though enhanced angiogenesis. These fascinating advances in osteoclast biology have motivated this short review, in which we discuss these new roles of osteoclasts. J. Cell. Biochem. 117: 1753-1756, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. Investigations on the Maillard reaction of dextrins during aging of Pilsner type beer.

    PubMed

    Rakete, Stefan; Klaus, Alexander; Glomb, Marcus A

    2014-10-08

    Although Maillard reaction plays a pivotal role during preparation of food, only few investigations concerning the role of carbohydrate degradation in beer aging have been carried out. The formation of Maillard specific precursor structures and their follow-up products during degradation of low molecular carbohydrate dextrins in the presence of proline and lysine was studied in model incubations and in beer. Twenty-one α-dicarbonyl compounds were identified and quantitated as reactive intermediates. The oxidative formation of 3-deoxypentosone as the precursor of furfural from oligosaccharides was verified. N-Carboxymethylproline and N-formylproline were established as novel proline derived Maillard advanced glycation end products. Formation of N-carboxymethylproline and furfural responded considerably to the presence of oxygen and was positively correlated to aging of Pilsner type beer. The present study delivers an in-depth view on the mechanisms behind the formation of beer relevant aging parameters.

  12. Plankton community respiration, net ecosystem metabolism, and oxygen dynamics on the Louisiana continental shelf: implications for hypoxia

    EPA Science Inventory

    We conducted a multi-year study of the Louisiana continental shelf (LCS) to better understand the linkages between water column metabolism and the formation of hypoxia (dissolved oxygen <2 mg L-1) in the region. Water column community respiration rates (WR) were measured on 10 cr...

  13. High-capacity cation-exchange column for enhanced resolution of adjacent peaks of cations in ion chromatography.

    PubMed

    Rey, M A

    2001-06-22

    One of the advantages of ion chromatography [Anal Chem. 47 (1975) 1801] as compared to other analytical techniques is that several ions may be analyzed simultaneously. One of the most important contributions of cation-exchange chromatography is its sensitivity to ammonium ion, which is difficult to analyze by other techniques [J. Weiss, in: E.L. Johnson (Ed.), Handbook of Ion Chromatography, Dionex, Sunnyvale, CA, USA]. The determination of low concentrations of ammonium ion in the presence of high concentrations of sodium poses a challenge in cation-exchange chromatography [J. Weiss, Ion Chromatography, VCH, 2nd Edition, Weinheim, 1995], as both cations have similar selectivities for the common stationary phases containing either sulfonate or carboxylate functional groups. The task was to develop a new cation-exchange stationary phase (for diverse concentration ratios of adjacent peaks) to overcome limitations experienced in previous trails. Various cation-exchange capacities and column body formats were investigated to optimize this application and others. The advantages and disadvantages of two carboxylic acid columns of different cation-exchange capacities and different column formats will be discussed.

  14. Tropospheric NO2 retrieved from OMI, GOME(-2), and SCIAMACHY within the Quality Assurance For Essential Climate Variables (QA4ECV) project: retrieval improvement, harmonization, and quality assurance

    NASA Astrophysics Data System (ADS)

    Folkert Boersma, K.

    2017-04-01

    One of the prime targets of the EU-project Quality Assurance for Essential Climate Variables (QA4ECV, www.qa4ecv.eu) is the generation and subsequent quality assurance of harmonized, long-term data records of ECVs or precursors thereof. Here we report on a new harmonized and improved retrieval algorithm for NO2 columns and its application to spectra measured by the GOME, SCIAMACHY, OMI, and GOME-2(A) sensors over the period 1996-2016. Our community 'best practices' algorithm is based on the classical 3-step DOAS method. It benefits from a thorough comparison and iteration of spectral fitting and air mass factor calculation approaches between IUP Bremen, BIRA, Max Planck Institute for Chemistry, KNMI, WUR, and a number of external partners. For step 1 of the retrieval, we show that improved spectral calibration and the inclusion of liquid water and intensity-offset correction terms in the fitting procedure, lead to 10-30% smaller NO2 slant columns, in better agreement with independent measurements. Moreover, the QA4ECV NO2 slant columns show 15-35% lower uncertainties relative to earlier versions of the spectral fitting algorithm. For step 2, the stratospheric correction, the algorithm relies on the assimilation of NO2 slant columns over remote regions in the Tracer Model 5 (TM5-MP) chemistry transport model. The representation of stratospheric NOy in the model is improved by nudging towards ODIN HNO3:O3 ratios, leading to more realistic NO2 concentrations in the free-running mode, which is relevant at high latitudes near the terminator. The coupling to TM5-Mass Parallel also allows the calculation of air mass factors (AMFs, step 3) from a priori NO2 vertical profiles simulated at a spatial resolution of 1°×1°, so that hotspot gradients are better resolved in the a priori profile shapes. Other AMF improvements include the use of improved cloud information, and a correction for photon scattering in a spherical atmosphere. Preliminary comparisons indicate that the new QA4ECV tropospheric NO2 columns are ±10% lower than operational products, and provide more spatial detail on the horizontal distribution of NO2 in the troposphere. Our comparisons provide more insight in the origin and nature of the retrieval uncertainties. The final QAECV NO2 product therefore contains overall uncertainty estimates for every measurement, but also information on the contribution of uncertainties of each retrieval sub-step to the overall uncertainty budget. We conclude with a presentation of the data format and a verification of the QA4ECV NO2 columns using the traceable quality assurance methodologies developed in the QA4ECV-project, and via validation against independent measurements (using the online QA4ECV Atmospheric Validation Server tool).

  15. Formative Assessment Probes: Mountaintop Fossil: A Puzzling Phenomenon

    ERIC Educational Resources Information Center

    Keeley, Page

    2015-01-01

    This column focuses on promoting learning through assessment. This month's issue describes using formative assessment probes to uncover several ways of thinking about the puzzling discovery of a marine fossil on top of a mountain.

  16. Formative Assessment Probes: Is It Erosion or Weathering?

    ERIC Educational Resources Information Center

    Keeley, Page

    2016-01-01

    This column focuses on promoting learning through assessment. The formative assessment probe in this month's issue can be used as an initial elicitation before students are introduced to the formal concepts of weathering and erosion.

  17. Ceramic oxide powders and the formation thereof

    DOEpatents

    Katz, Joseph L.; Hung, Cheng-Hung

    1993-01-01

    Ceramic oxide powders and a method for their preparation. Ceramic oxide powders are obtained using a flame process whereby two or more precursors of ceramic oxides are introduced into a counterflow diffusion flame burner wherein said precursors are converted into ceramic oxide powders. The morphology, particle size, and crystalline form of the ceramic oxide powders are determined by process conditions.

  18. Seasonal and spatial variability of nitrosamines and their precursor sources at a large-scale urban drinking water system.

    PubMed

    Woods, Gwen C; Trenholm, Rebecca A; Hale, Bruce; Campbell, Zeke; Dickenson, Eric R V

    2015-07-01

    Nitrosamines are considered to pose greater health risks than currently regulated DBPs and are subsequently listed as a priority pollutant by the EPA, with potential for future regulation. Denver Water, as part of the EPA's Unregulated Contaminant Monitoring Rule 2 (UCMR2) monitoring campaign, found detectable levels of N-nitrosodimethylamine (NDMA) at all sites of maximum residency within the distribution system. To better understand the occurrence of nitrosamines and nitrosamine precursors, Denver Water undertook a comprehensive year-long monitoring campaign. Samples were taken every two weeks to monitor for NDMA in the distribution system, and quarterly sampling events further examined 9 nitrosamines and nitrosamine precursors throughout the treatment and distribution systems. NDMA levels within the distribution system were typically low (>1.3 to 7.2 ng/L) with a remote distribution site (frequently >200 h of residency) experiencing the highest concentrations found. Eight other nitrosamines (N-nitrosomethylethylamine, N-nitrosodiethylamine, N-nitroso-di-n-propylamine, N-nitroso-di-n-butylamine, N-nitroso-di-phenylamine, N-nitrosopyrrolidine, N-nitrosopiperidine, N-nitrosomorpholine) were also monitored but none of these 8, or precursors of these 8 [as estimated with formation potential (FP) tests], were detected anywhere in raw, partially-treated or distribution samples. Throughout the year, there was evidence that seasonality may impact NDMA formation, such that lower temperatures (~5-10°C) produced greater NDMA than during warmer months. The year of sampling further provided evidence that water quality and weather events may impact NDMA precursor loads. Precursor loading estimates demonstrated that NDMA precursors increased during treatment (potentially from cationic polymer coagulant aids). The precursor analysis also provided evidence that precursors may have increased further within the distribution system itself. This comprehensive study of a large-scale drinking water system provides insight into the variability of NDMA occurrence in a chloraminated system, which may be impacted by seasonality, water quality changes and/or the varied origins of NDMA precursors within a given system. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. [Simultaneous determination of nine perfluorinated compound precursors in atmospheric precipitation by solid phase extraction and ultra performance liquid chromatography with tandem mass spectrometry].

    PubMed

    Zhang, Ming; Tang, Fangliang; Xu, Jianfen; Yu, Bo; Zhang, Wei; Yao, Jianliang; Hu, Minhua

    2017-10-08

    A high-throughput detection method has been developed for the determination of nine perfluorinated compound precursors (PFCPs) in atmospheric precipitation by solid phase extraction-ultra performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry (SPE-UPLC-ESI-MS/MS). The atmospheric precipitation samples were concentrated and purified with HLB solid phase extraction cartridges. The UPLC separation was performed on an HSS T 3 column (100 mm×2.1 mm, 1.7 μm) utilizing a gradient elution program of methanol and water as the mobile phases at a flow rate of 0.2 mL/min. The MS/MS detection was performed under negative electrospray ionization (ESI - ) in multiple reaction monitoring (MRM) mode. Good linearity was observed in the range of 0.05-5.00 μg/L, 0.50-50.0 μg/L or 5.00-500 μg/L with correlation coefficients from 0.9921 to 0.9995. The limits of detection (LODs) for the nine perfluorinated compound precursors were in the ranges of 0.05-7.9 ng/L. The recoveries ranged from 76.0% to 106% with the relative standard deviations between 0.72% and 13.7%. This method is characterized by high sensitivity and precision, extensive analytical range and quick analytical rate, and can be applied for the analysis of perfluorinated compound precursors in atmospheric precipitation.

  20. Effect of chain length on thermal conversion of alkoxy-substituted copper phthalocyanine precursors.

    PubMed

    Fukuda, Takamitsu; Kikukawa, Yuu; Tsuruya, Ryota; Fuyuhiro, Akira; Ishikawa, Naoto; Kobayashi, Nagao

    2011-11-21

    A series of dialkoxy-substituted copper phthalocyanine (CuPc) precursors (4a-4d) have been prepared by treating phthalonitrile with the corresponding lithium alkoxide under mild conditions. The precursors exhibited high solubilities in common organic solvents, including acetone, toluene, tetrahydrofuran (THF), CH(2)Cl(2), and CHCl(3). Elongation of the alkoxy chains improved the solubilities of the precursors effectively, and accordingly, the butoxy-substituted derivative (4d) showed the highest solubility among 4a-4d. X-ray crystallography clarified that the conjugated skeletons of 4a-4d are all isostructural, and have two alkoxy groups in a syn-conformation fashion, leading to highly bent structures. Thermal conversions of the precursors examined by thermogravimetry (TG) and differential thermal analysis (DTA) demonstrate that 4a was converted into CuPc via two distinct exothermic processes in the 200-250 °C temperature range, while 4d exhibits only one exothermic signal in the DTA. In the field emission scanning electron microscopy (FESEM) images of 4a, the presence of two types of distinct crystal morphology (prismatic and plate-like crystals) can be recognized, implying that the two observed exothermic processes in the DTA can be attributed to the different crystal morphologies of the samples rather than the step-by-step elimination of the alkoxy groups. The thermal formation of CuPc from the precursors has been unambiguously confirmed by X-ray powder diffraction, UV-vis spectroscopy, and elemental analysis. The precursors were converted into CuPc at lower temperature with increasing chain length, presumably because of the increased void volume in the crystals. Thermal conversion performed in the solution phase results in a bright blue-colored solution with prominent absorption bands in the 650-700 nm region, strongly supporting the formation of CuPc.

  1. UFO (UnFold Operator) default data format

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kissel, L.; Biggs, F.; Marking, T.R.

    The default format for the storage of x,y data for use with the UFO code is described. The format assumes that the data stored in a file is a matrix of values; two columns of this matrix are selected to define a function of the form y = f(x). This format is specifically designed to allow for easy importation of data obtained from other sources, or easy entry of data using a text editor, with a minimum of reformatting. This format is flexible and extensible through the use of inline directives stored in the optional header of the file. Amore » special extension of the format implements encoded data which significantly reduces the storage required as compared wth the unencoded form. UFO supports several extensions to the file specification that implement execute-time operations, such as, transformation of the x and/or y values, selection of specific columns of the matrix for association with the x and y values, input of data directly from other formats (e.g., DAMP and PFF), and a simple type of library-structured file format. Several examples of the use of the format are given.« less

  2. Ultra-thin microporous/hybrid materials

    DOEpatents

    Jiang, Ying-Bing [Albuquerque, NM; Cecchi, Joseph L [Albuquerque, NM; Brinker, C Jeffrey [Albuquerque, NM

    2012-05-29

    Ultra-thin hybrid and/or microporous materials and methods for their fabrication are provided. In one embodiment, the exemplary hybrid membranes can be formed including successive surface activation and reaction steps on a porous support that is patterned or non-patterned. The surface activation can be performed using remote plasma exposure to locally activate the exterior surfaces of porous support. Organic/inorganic hybrid precursors such as organometallic silane precursors can be condensed on the locally activated exterior surfaces, whereby ALD reactions can then take place between the condensed hybrid precursors and a reactant. Various embodiments can also include an intermittent replacement of ALD precursors during the membrane formation so as to enhance the hybrid molecular network of the membranes.

  3. New particle formation and growth from methanesulfonic acid, trimethylamine and water.

    PubMed

    Chen, Haihan; Ezell, Michael J; Arquero, Kristine D; Varner, Mychel E; Dawson, Matthew L; Gerber, R Benny; Finlayson-Pitts, Barbara J

    2015-05-28

    New particle formation from gas-to-particle conversion represents a dominant source of atmospheric particles and affects radiative forcing, climate and human health. The species involved in new particle formation and the underlying mechanisms remain uncertain. Although sulfuric acid is commonly recognized as driving new particle formation, increasing evidence suggests the involvement of other species. Here we study particle formation and growth from methanesulfonic acid, trimethylamine and water at reaction times from 2.3 to 32 s where particles are 2-10 nm in diameter using a newly designed and tested flow system. The flow system has multiple inlets to facilitate changing the mixing sequence of gaseous precursors. The relative humidity and precursor concentrations, as well as the mixing sequence, are varied to explore their effects on particle formation and growth in order to provide insight into the important mechanistic steps. We show that water is involved in the formation of initial clusters, greatly enhancing their formation as well as growth into detectable size ranges. A kinetics box model is developed that quantitatively reproduces the experimental data under various conditions. Although the proposed scheme is not definitive, it suggests that incorporating such mechanisms into atmospheric models may be feasible in the near future.

  4. Chemistry of Volatile Organic Compounds in the Los Angeles Basin: Formation of Oxygenated Compounds and Determination of Emission Ratios

    NASA Astrophysics Data System (ADS)

    de Gouw, J. A.; Gilman, J. B.; Kim, S.-W.; Alvarez, S. L.; Dusanter, S.; Graus, M.; Griffith, S. M.; Isaacman-VanWertz, G.; Kuster, W. C.; Lefer, B. L.; Lerner, B. M.; McDonald, B. C.; Rappenglück, B.; Roberts, J. M.; Stevens, P. S.; Stutz, J.; Thalman, R.; Veres, P. R.; Volkamer, R.; Warneke, C.; Washenfelder, R. A.; Young, C. J.

    2018-02-01

    We analyze an expanded data set of oxygenated volatile organic compounds (OVOCs) in air measured by several instruments at a surface site in Pasadena near Los Angeles during the National Oceanic and Atmospheric Administration California Nexus study in 2010. The contributions of emissions, chemical formation, and removal are quantified for each OVOC using CO as a tracer of emissions and the OH exposure of the sampled air masses calculated from hydrocarbon ratios. The method for separating emissions from chemical formation is evaluated using output for Pasadena from the Weather Research and Forecasting-Chemistry model. The model is analyzed by the same method as the measurement data, and the emission ratios versus CO calculated from the model output agree for ketones with the inventory used in the model but overestimate aldehydes by 70%. In contrast with the measurements, nighttime formation of OVOCs is significant in the model and is attributed to overestimated precursor emissions and overestimated rate coefficients for the reactions of the precursors with ozone and NO3. Most measured aldehydes correlated strongly with CO at night, suggesting a contribution from motor vehicle emissions. However, the emission ratios of most aldehydes versus CO are higher than those reported in motor vehicle emissions and the aldehyde sources remain unclear. Formation of several OVOCs is investigated in terms of the removal of specific precursors. Direct emissions of alcohols and aldehydes contribute significantly to OH reactivity throughout the day, and these emissions should be accurately represented in models describing ozone formation.

  5. Aqueous citrato-oxovanadate(IV) precursor solutions for VO2: synthesis, spectroscopic investigation and thermal analysis.

    PubMed

    Peys, Nick; Adriaensens, Peter; Van Doorslaer, Sabine; Gielis, Sven; Peeters, Ellen; De Dobbelaere, Christopher; De Gendt, Stefan; Hardy, An; Van Bael, Marlies K

    2014-09-07

    An aqueous precursor solution, containing citrato-VO(2+) complexes, is synthesized for the formation of monoclinic VO2. With regard to the decomposition of the VO(2+) complexes towards vanadium oxide formation, it is important to gain insights into the chemical structure and transformations of the precursor during synthesis and thermal treatment. Hence, the conversion of the cyclic [V4O12](4-) ion to the VO(2+) ion in aqueous solution, using oxalic acid as an acidifier and a reducing agent, is studied by (51)Vanadium nuclear magnetic resonance spectroscopy. The citrate complexation of this VO(2+) ion and the differentiation between a solution containing citrato-oxalato-VO(2+) and citrato-VO(2+) complexes are studied by electron paramagnetic resonance and Fourier transform infra-red spectroscopy. In both solutions, the VO(2+) containing complex is mononuclear and has a distorted octahedral geometry with a fourfold R-CO2(-) ligation at the equatorial positions and likely a fifth R-CO2(-) ligation at the axial position. Small differences in the thermal decomposition pathway between the gel containing citrato-oxalato-VO(2+) complexes and the oxalate-free gel containing citrato-VO(2+) complexes are observed between 150 and 200 °C in air and are assigned to the presence of (NH4)2C2O4 in the citrato-oxalato-VO(2+) solution. Both precursor solutions are successfully used for the formation of crystalline vanadium oxide nanostructures on SiO2, after thermal annealing at 500 °C in a 0.1% O2 atmosphere. However, the citrato-oxalato-VO(2+) and the oxalate-free citrato-VO(2+) solution result in the formation of monoclinic V6O13 and monoclinic VO2, respectively.

  6. Azo compound degradation kinetics and halonitromethane formation kinetics during chlorination.

    PubMed

    Fu, Jing; Wang, Xiaomao; Bai, Weiliang; Yang, Hongwei; Xie, Yuefeng F

    2017-05-01

    The chlorination of azo compounds can produce halonitromethanes (HNMs), which have attracted increasing concern due to their high genotoxicity. By impacting the speciation of chlorine and azo compounds, pH impacts apparent second-order rate constants of Methyl Orange (MO, 27.5-1.4 × 10 3  M -1  s -1 ), Acid Orange II (AO, 16.7-99.3 M -1  s -1 ), and Acid Red 1 (AR 1, 3.7-72.5 M -1  s -1 ) (pH range 6.3-9.0). The two-compartment first-order model successfully described the chloropicrin (TCNM) formation kinetics, suggesting that both fast- and slow-reacting precursors of TCNM are generated from the chlorination of azo compounds. The ratios between fast and slow formation rate constants for MO and AO were 15.6-5.4 × 10 2 , while that of AR 1 was 9.8-19.4 (pH range 6.5-9.0). The fraction of the fast-reacting TCNM precursors decreased with increasing pH for MO and AO; while that for AR 1 decreased when pH increased from 6.5 to 8.0, and then increased when pH increased from 8.0 to 9.0. The impact of pH on TCNM formation was also precursor-specific. The highest molar yields of TCNM predicted from the model in this study were 2.4%, 2.5%, and 1.5% for MO, AO, and AR 1, respectively. The study demonstrates that azo compounds are important HNM precursors, and pose a potential threat to drinking water safety. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Nonlinear Influence of Background Rotation on Iceberg Melting

    NASA Astrophysics Data System (ADS)

    Meroni, A. N.; McConnochie, C. D.; Cenedese, C.; Sutherland, B. R.; Snow, K.

    2017-12-01

    The Antarctic and Greenland Ice Sheets lose mass through direct melting from ice shelves and from the calving of icebergs. Once icebergs have calved they will drift in ocean currents and gradually melt. Where and how rapidly they melt will determine where the freshwater and nutrients contained in the iceberg will be released which can then affect sea ice formation and biological activity. Standard parameterizations of iceberg melting consider the fluid velocity and temperature but not the effect of planetary rotation. Particularly for large icebergs, such as that which recently calved from the Larson C ice shelf, rotation may also be important due to the formation of Taylor columns.We present the results of laboratory experiments investigating the effect of rotation on the melting of icebergs. In particular, the possible formation of Taylor columns underneath an iceberg is investigated. At high Rossby numbers, when rotation is weak compared to advection, iceberg melting is unaffected by the background rotation rate. However, as the Rossby number is decreased, the melt rate initially increases before decreasing as the Rossby number is further decreased.This non-monotonic dependence of iceberg melting on the Rossby number is explained by considering the integrated horizontal velocity under the iceberg. For moderate Rossby numbers the Taylor column that forms only occupies a small fraction of the iceberg bottom area. Although there is near-zero relative flow in the Taylor column, which reduces the melt rate, the effective blocking by the Taylor column causes an acceleration of the flow under the remainder of the iceberg and increases the total melt rate. However, for low Rossby numbers the Taylor column occupies a larger fraction of the iceberg bottom area and the flow acceleration no longer occurs underneath the iceberg, hence it is unable to increase the melt rate. We suggest an improved parameterization of iceberg melt that includes the effects of rotation.

  8. Formation of protocell-like vesicles in a thermal diffusion column.

    PubMed

    Budin, Itay; Bruckner, Raphael J; Szostak, Jack W

    2009-07-22

    Many of the properties of bilayer membranes composed of simple single-chain amphiphiles seem to be well-suited for a potential role as primitive cell membranes. However, the spontaneous formation of membranes from such amphiphiles is a concentration-dependent process in which a significant critical aggregate concentration (cac) must be reached. Since most scenarios for the prebiotic synthesis of fatty acids and related amphiphiles would result in dilute solutions well below the cac, the identification of mechanisms that would lead to increased local amphiphile concentrations is an important aspect of defining reasonable conditions for the origin of cellular life. Narrow, vertically oriented channels within the mineral precipitates of hydrothermal vent towers have previously been proposed to act as natural Clusius-Dickel thermal diffusion columns, in which a strong transverse thermal gradient concentrates dilute molecules through the coupling of thermophoresis and convection. Here we experimentally demonstrate that a microcapillary acting as a thermal diffusion column can concentrate a solution of oleic acid. Upon concentration, self-assembly of large vesicles occurs in regions where the cac is exceeded. We detected vesicle formation by fluorescence microscopy of encapsulated dye cargoes, which simultaneously concentrated in our channels. Our findings suggest a novel means by which simple physical processes could have led to the spontaneous formation of cell-like structures from a dilute prebiotic reservoir.

  9. Incremental Reactivity Effects on Secondary Organic Aerosol Formation in Urban Atmospheres with and without Biogenic Influence

    NASA Astrophysics Data System (ADS)

    Kacarab, Mary; Li, Lijie; Carter, William P. L.; Cocker, David R., III

    2016-04-01

    Two different surrogate mixtures of anthropogenic and biogenic volatile organic compounds (VOCs) were developed to study secondary organic aerosol (SOA) formation at atmospheric reactivities similar to urban regions with varying biogenic influence levels. Environmental chamber simulations were designed to enable the study of the incremental aerosol formation from select anthropogenic (m-Xylene, 1,2,4-Trimethylbenzene, and 1-Methylnaphthalene) and biogenic (α-pinene) precursors under the chemical reactivity set by the two different surrogate mixtures. The surrogate reactive organic gas (ROG) mixtures were based on that used to develop the maximum incremental reactivity (MIR) factors for evaluation of O3 forming potential. Multiple incremental aerosol formation experiments were performed in the University of California Riverside (UCR) College of Engineering Center for Environmental Research and Technology (CE-CERT) dual 90m3 environmental chambers. Incremental aerosol yields were determined for each of the VOCs studied and compared to yields found from single precursor studies. Aerosol physical properties of density, volatility, and hygroscopicity were monitored throughout experiments. Bulk elemental chemical composition from high-resolution time of flight aerosol mass spectrometer (HR-ToF-AMS) data will also be presented. Incremental yields and SOA chemical and physical characteristics will be compared with data from previous single VOC studies conducted for these aerosol precursors following traditional VOC/NOx chamber experiments. Evaluation of the incremental effects of VOCs on SOA formation and properties are paramount in evaluating how to best extrapolate environmental chamber observations to the ambient atmosphere and provides useful insights into current SOA formation models. Further, the comparison of incremental SOA from VOCs in varying surrogate urban atmospheres (with and without strong biogenic influence) allows for a unique perspective on the impacts different compounds have on aerosol formation in different urban regions.

  10. Explosive decomposition of hydrazine by rapid compression of a gas volume

    NASA Technical Reports Server (NTRS)

    Bunker, R. L.; Baker, D. L.; Lee, J. H. S.

    1991-01-01

    In the present investigation of the initiation mechanism and the explosion mode of hydrazine decomposition, a 20 cm-long column of liquid hydrazine was accelerated into a column of gaseous nitrogen, from which it was separated by a thin Teflon diaphragm, in a close-ended cylindrical chamber. Video data obtained reveal the formation of a froth generated by the acceleration of hydrazine into nitrogen at the liquid hydrazine-gaseous nitrogen interface. The explosive hydrazine decomposition had as its initiation mechanism the formation of a froth at a critical temperature; the explosion mode of hydrazine is a confined thermal runaway reaction.

  11. Investigations of temporal and spatial distribution of precursors SO2 and NO2 vertical columns in the North China Plain using mobile DOAS

    NASA Astrophysics Data System (ADS)

    Wu, Fengcheng; Xie, Pinhua; Li, Ang; Mou, Fusheng; Chen, Hao; Zhu, Yi; Zhu, Tong; Liu, Jianguo; Liu, Wenqing

    2018-02-01

    Recently, Chinese cities have suffered severe events of haze air pollution, particularly in the North China Plain (NCP). Investigating the temporal and spatial distribution of pollutants, emissions, and pollution transport is necessary to better understand the effect of various sources on air quality. We report on mobile differential optical absorption spectroscopy (mobile DOAS) observations of precursors SO2 and NO2 vertical columns in the NCP in the summer of 2013 (from 11 June to 7 July) in this study. The different temporal and spatial distributions of SO2 and NO2 vertical column density (VCD) over this area are characterized under various wind fields. The results show that transport from the southern NCP strongly affects air quality in Beijing, and the transport route, particularly SO2 transport on the route of Shijiazhuang-Baoding-Beijing, is identified. In addition, the major contributors to SO2 along the route of Shijiazhuang-Baoding-Beijing are elevated sources compared to low area sources for the route of Dezhou-Cangzhou-Tianjin-Beijing; this is found using the interrelated analysis between in situ and mobile DOAS observations during the measurement periods. Furthermore, the discussions on hot spots near the city of JiNan show that average observed width of polluted air mass is 11.83 and 17.23 km associated with air mass diffusion, which is approximately 60 km away from emission sources based on geometrical estimation. Finally, a reasonable agreement exists between the Ozone Monitoring Instrument (OMI) and mobile DOAS observations, with a correlation coefficient (R2) of 0.65 for NO2 VCDs. Both datasets also have a similar spatial pattern. The fitted slope of 0.55 is significantly less than unity, which can reflect the contamination of local sources, and OMI observations are needed to improve the sensitivities to the near-surface emission sources through improvements of the retrieval algorithm or the resolution of satellites.

  12. Influence of amorphous structure on polymorphism in vanadia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stone, Kevin H.; Schelhas, Laura T.; Garten, Lauren M.

    Normally we think of the glassy state as a single phase and therefore crystallization from chemically identical amorphous precursors should be identical. Here we show that the local structure of an amorphous precursor is distinct depending on the initial deposition conditions, resulting in significant differences in the final state material. Using grazing incidence total x-ray scattering, we have determined the local structure in amorphous thin films of vanadium oxide grown under different conditions using pulsed laser deposition (PLD). Here we show that the subsequent crystallization of films deposited using different initial PLD conditions result in the formation of different polymorphsmore » of VO 2. Ultimately this suggests the possibility of controlling the formation of metastable polymorphs by tuning the initial amorphous structure to different formation pathways.« less

  13. Influence of amorphous structure on polymorphism in vanadia

    DOE PAGES

    Stone, Kevin H.; Schelhas, Laura T.; Garten, Lauren M.; ...

    2016-07-13

    Normally we think of the glassy state as a single phase and therefore crystallization from chemically identical amorphous precursors should be identical. Here we show that the local structure of an amorphous precursor is distinct depending on the initial deposition conditions, resulting in significant differences in the final state material. Using grazing incidence total x-ray scattering, we have determined the local structure in amorphous thin films of vanadium oxide grown under different conditions using pulsed laser deposition (PLD). Here we show that the subsequent crystallization of films deposited using different initial PLD conditions result in the formation of different polymorphsmore » of VO 2. Ultimately this suggests the possibility of controlling the formation of metastable polymorphs by tuning the initial amorphous structure to different formation pathways.« less

  14. Recent Advances in Understanding the Sources of Methylmercury to Coastal Waters

    NASA Astrophysics Data System (ADS)

    Mason, R. P.; Balcom, P.; Chen, C.; Gosnell, K. J.; Jonsson, S.; Mazrui, N.; Ortiz, V.; Seelen, E.; Schartup, A. T.; Sunderland, E. M.

    2015-12-01

    Understanding the sources of methylmercury (MeHg) to the food chain in coastal waters is important given the related health concerns from consumption of seafood containing elevated MeHg. While water column dissolved or particulate MeHg is the best predictor of bioaccumulation into pelagic organisms in coastal waters, there is debate concerning the dominant sources of MeHg to the water column, and how the relative importance of these sources vary with ecosystem characteristics. Potential sources include both external inputs from the watershed and offshore waters and internal sources (net methylation in sediments and the associated flux of MeHg to the water column and/or net MeHg production in the water column). We will report the results from our various studies in estuarine and coastal waters which have examined the distribution and partitioning of sediment and water column MeHg, and its formation and degradation, across a geographic range from Labrador, Canada to the Chesapeake Bay, USA. The ecosystems studied vary from shallow estuarine bays to deeper systems, and from salt wedge to tidally-dynamic systems. Additionally, both pristine and contaminated environments were examined. The studies examined the factors controlling the net production of MeHg in sediments, and in our more recent work, the potential formation of MeHg in the oxic water column of coastal waters. Sediment measurements (core and grab samples) included both solid phase and porewater MeHg and total mercury (HgT) and important ancillary parameters. Water column parameters included dissolved and particulate MeHg and HgT, TSS, nutrients, and DOC. Stable Hg isotope tracer incubations were used to assess the degree of methylation and demethylation in sediments and surface waters. Average suspended particle MeHg ranged from <5 to 120 pmol/g, and was 1-8% of HgT across sites. Mass balance estimates provide insights into the importance of external MeHg sources to coastal waters. We will use the information to evaluate the following questions: 1) what conditions favor external sources of MeHg over internal production? 2) what conditions enhance net in situ water column formation of MeHg? and 3) what conditions enhance the exchange of MeHg at the sediment/water interface in coastal waters?

  15. A revisit of the role of gas entrapment on the stability conditions of explosive volcanic columns

    NASA Astrophysics Data System (ADS)

    Michaud-Dubuy, Audrey; Carazzo, Guillaume; Kaminski, Edouard; Girault, Frédéric

    2018-05-01

    Explosive volcanic eruptions produce high-velocity turbulent jets that can form either a stable buoyant Plinian column or a collapsing fountain producing pyroclastic density currents (PDC). Determining the source conditions leading to these extreme regimes is a major goal in physical volcanology. Classically, the regime boundary is defined as the critical eruptive mass discharge rate (MDR) before collapse for a given amount of free gas in the eruptive mixture (free gas + pyroclasts) at the vent. Previous studies have shown that an agreement between theory and field data can be achieved in two different frameworks: (i) by accounting for the effect of gas entrapment in large pumice fragments, which lowers the effective gas content, depending on the total grain-size distribution (TGSD) of pyroclastic fragments, or (ii) by accounting for the reduction of turbulent entrainment at the base of the volcanic column due to its negative buoyancy. Here, we aim at combining these two using a 1D model of volcanic column that includes sedimentation to follow the evolution of the TGSD. In powerful (≥ 107 kg s-1) Plinian eruptions, the loss of particles by sedimentation acts as to decrease the load of particles during the plume rise, which favors the formation of a stable column. In this case, we obtain that coarse TGSD promote the formation of stable plumes, a result at odds with the predictions of models considering gas entrapment in large pyroclastic fragments. To interpret this conclusion, we reconsider the effect of gas entrapment and show that in general, it has a dominant role on column collapse compared to particle sedimentation, and hinders the formation of buoyant columns. This drastic effect is reduced when incorporating open porosity, e.g. by considering that some bubbles inside a fragment are connected to the exterior. The characteristics of the PDC produced by column collapse are then predicted as a function of the TGSD and MDR at the source. We further test the model using two well-documented historical events, the ≈186 CE Taupo and 79 CE Vesuvius eruptions. Our model predictions are consistent with the Taupo eruption record, but not with the Vesuvius one. In this latter case, we suggest that the characteristics of the TGSD imply to take into account the thermal disequilibrium between gas and pyroclasts.

  16. Analysis of Ozone in Cloudy Versus Clear Sky Conditions

    NASA Technical Reports Server (NTRS)

    Strode, Sarah; Douglass, Anne; Ziemke, Jerald

    2016-01-01

    Convection impacts ozone concentrations by transporting ozone vertically and by lofting ozone precursors from the surface, while the clouds and lighting associated with convection affect ozone chemistry. Observations of the above-cloud ozone column (Ziemke et al., 2009) derived from the OMI instrument show geographic variability, and comparison of the above-cloud ozone with all-sky tropospheric ozone columns from OMI indicates important regional differences. We use two global models of atmospheric chemistry, the GMI chemical transport model (CTM) and the GEOS-5 chemistry climate model, to diagnose the contributions of transport and chemistry to observed differences in ozone between areas with and without deep convection, as well as differences in clean versus polluted convective regions. We also investigate how the above-cloud tropospheric ozone from OMI can provide constraints on the relationship between ozone and convection in a free-running climate simulation as well as a CTM.

  17. An improved biofilter to control the dissolved organic nitrogen concentration during drinking water treatment.

    PubMed

    Zhang, Huining; Gu, Li; Liu, Bing; Gan, Huihui; Zhang, Kefeng; Jin, Huixia; Yu, Xin

    2016-09-01

    Dissolved organic nitrogen (DON) is a key precursor of numerous disinfection by-products (DBPs), especially nitrogenous DBPs (N-DBPs) formed during disinfection in drinking water treatment. To effectively control DBPs, reduction of the DON concentration before the disinfection process is critical. Traditional biofilters can increase the DON concentration in the effluent, so an improved biofilter is needed. In this study, an improved biofilter was set up with two-layer columns using activated carbon and quartz sand under different influent patterns. Compared with the single-layer filter, the two-layer biofilter controlled the DON concentration more efficiently. The two-point influent biofilter controlled the DON concentration more effectively than the single-point influent biofilter. The improved biofilter resulted in an environment (including matrix, DO, and pH) suitable for microbial growth. Along the depth of the biofilter column, the environment affected the microbial biomass and microbial activity and thus affected the DON concentration.

  18. Programming a hillslope water movement model on the MPP

    NASA Technical Reports Server (NTRS)

    Devaney, J. E.; Irving, A. R.; Camillo, P. J.; Gurney, R. J.

    1987-01-01

    A physically based numerical model was developed of heat and moisture flow within a hillslope on a parallel architecture computer, as a precursor to a model of a complete catchment. Moisture flow within a catchment includes evaporation, overland flow, flow in unsaturated soil, and flow in saturated soil. Because of the empirical evidence that moisture flow in unsaturated soil is mainly in the vertical direction, flow in the unsaturated zone can be modeled as a series of one dimensional columns. This initial version of the hillslope model includes evaporation and a single column of one dimensional unsaturated zone flow. This case has already been solved on an IBM 3081 computer and is now being applied to the massively parallel processor architecture so as to make the extension to the one dimensional case easier and to check the problems and benefits of using a parallel architecture machine.

  19. Variations in dissolved organic nitrogen concentration in biofilters with different media during drinking water treatment.

    PubMed

    Zhang, Huining; Zhang, Kefeng; Jin, Huixia; Gu, Li; Yu, Xin

    2015-11-01

    Dissolved organic nitrogen (DON) is potential precursor of disinfection byproducts (DBPs), especially nitrogenous DBPs. In this study, we investigated the impact of biofilters on DON concentration changes in a drinking water plant. A small pilot plant was constructed next to a sedimentation tank in a drinking water plant and included activated carbon, quartz sand, anthracite, and ceramsite biofilters. As the biofilter layer depth increased, the DON concentration first decreased and then increased, and the variation in DON concentration differed among the biofilters. In the activated carbon biofilter, the DON concentration was reduced by the largest amount in the first part of the column and increased by the largest amount in the second part of the column. The biomass in the activated carbon filter was less than that in the quartz sand filter in the upper column. The heterotrophic bacterial proportion among bacterial flora in the activated carbon biofilter was the largest, which might be due to the significant reduction in DON in the first part of the column. Overall, the results indicate that the DON concentration in biofiltered water can be controlled via the selection of appropriate biofilter media. We propose that a two-layer biofilter with activated carbon in the upper layer and another media type in the lower layer could best reduce the DON concentration. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Identifying precursors and aqueous organic aerosol formation pathways during the SOAS campaign

    NASA Astrophysics Data System (ADS)

    Sareen, Neha; Carlton, Annmarie G.; Surratt, Jason D.; Gold, Avram; Lee, Ben; Lopez-Hilfiker, Felipe D.; Mohr, Claudia; Thornton, Joel A.; Zhang, Zhenfa; Lim, Yong B.; Turpin, Barbara J.

    2016-11-01

    Aqueous multiphase chemistry in the atmosphere can lead to rapid transformation of organic compounds, forming highly oxidized, low-volatility organic aerosol and, in some cases, light-absorbing (brown) carbon. Because liquid water is globally abundant, this chemistry could substantially impact climate, air quality, and health. Gas-phase precursors released from biogenic and anthropogenic sources are oxidized and fragmented, forming water-soluble gases that can undergo reactions in the aqueous phase (in clouds, fogs, and wet aerosols), leading to the formation of secondary organic aerosol (SOAAQ). Recent studies have highlighted the role of certain precursors like glyoxal, methylglyoxal, glycolaldehyde, acetic acid, acetone, and epoxides in the formation of SOAAQ. The goal of this work is to identify additional precursors and products that may be atmospherically important. In this study, ambient mixtures of water-soluble gases were scrubbed from the atmosphere into water at Brent, Alabama, during the 2013 Southern Oxidant and Aerosol Study (SOAS). Hydroxyl (OH⚫) radical oxidation experiments were conducted with the aqueous mixtures collected from SOAS to better understand the formation of SOA through gas-phase followed by aqueous-phase chemistry. Total aqueous-phase organic carbon concentrations for these mixtures ranged from 92 to 179 µM-C, relevant for cloud and fog waters. Aqueous OH-reactive compounds were primarily observed as odd ions in the positive ion mode by electrospray ionization mass spectrometry (ESI-MS). Ultra high-resolution Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) spectra and tandem MS (MS-MS) fragmentation of these ions were consistent with the presence of carbonyls and tetrols. Products were observed in the negative ion mode and included pyruvate and oxalate, which were confirmed by ion chromatography. Pyruvate and oxalate have been found in the particle phase in many locations (as salts and complexes). Thus, formation of pyruvate/oxalate suggests the potential for aqueous processing of these ambient mixtures to form SOAAQ.

  1. Rapid Formation of Microbe-Oil Aggregates and Changes in Community Composition in Coastal Surface Water Following Exposure to Oil and the Dispersant Corexit.

    PubMed

    Doyle, Shawn M; Whitaker, Emily A; De Pascuale, Veronica; Wade, Terry L; Knap, Anthony H; Santschi, Peter H; Quigg, Antonietta; Sylvan, Jason B

    2018-01-01

    During the Deepwater Horizon (DWH) oil spill, massive quantities of oil were deposited on the seafloor via a large-scale marine oil-snow sedimentation and flocculent accumulation (MOSSFA) event. The role of chemical dispersants (e.g., Corexit) applied during the DWH oil spill clean-up in helping or hindering the formation of this MOSSFA event are not well-understood. Here, we present the first experiment related to the DWH oil spill to specifically investigate the relationship between microbial community structure, oil and Corexit®, and marine oil-snow in coastal surface waters. We observed the formation of micron-scale aggregates of microbial cells around droplets of oil and dispersant and found that their rate of formation was directly related to the concentration of oil within the water column. These micro-aggregates are potentially important precursors to the formation of larger marine oil-snow particles. Therefore, our observation that Corexit® significantly enhanced their formation suggests dispersant application may play a role in the development of MOSSFA events. We also observed that microbial communities in marine surface waters respond to oil and oil plus Corexit® differently and much more rapidly than previously measured, with major shifts in community composition occurring within only a few hours of experiment initiation. In the oil-amended treatments without Corexit®, this manifested as an increase in community diversity due to the outgrowth of several putative aliphatic- and aromatic-hydrocarbon degrading genera, including phytoplankton-associated taxa. In contrast, microbial community diversity was reduced in mesocosms containing chemically dispersed oil. Importantly, different consortia of hydrocarbon degrading bacteria responded to oil and chemically dispersed oil, indicating that functional redundancy in the pre-spill community likely results in hydrocarbon consumption in both undispersed and dispersed oils, but by different bacterial taxa. Taken together, these data improve our understanding of how dispersants influence the degradation and transport of oil in marine surface waters following an oil spill and provide valuable insight into the early response of complex microbial communities to oil exposure.

  2. Rapid Formation of Microbe-Oil Aggregates and Changes in Community Composition in Coastal Surface Water Following Exposure to Oil and the Dispersant Corexit

    PubMed Central

    Doyle, Shawn M.; Whitaker, Emily A.; De Pascuale, Veronica; Wade, Terry L.; Knap, Anthony H.; Santschi, Peter H.; Quigg, Antonietta; Sylvan, Jason B.

    2018-01-01

    During the Deepwater Horizon (DWH) oil spill, massive quantities of oil were deposited on the seafloor via a large-scale marine oil-snow sedimentation and flocculent accumulation (MOSSFA) event. The role of chemical dispersants (e.g., Corexit) applied during the DWH oil spill clean-up in helping or hindering the formation of this MOSSFA event are not well-understood. Here, we present the first experiment related to the DWH oil spill to specifically investigate the relationship between microbial community structure, oil and Corexit®, and marine oil-snow in coastal surface waters. We observed the formation of micron-scale aggregates of microbial cells around droplets of oil and dispersant and found that their rate of formation was directly related to the concentration of oil within the water column. These micro-aggregates are potentially important precursors to the formation of larger marine oil-snow particles. Therefore, our observation that Corexit® significantly enhanced their formation suggests dispersant application may play a role in the development of MOSSFA events. We also observed that microbial communities in marine surface waters respond to oil and oil plus Corexit® differently and much more rapidly than previously measured, with major shifts in community composition occurring within only a few hours of experiment initiation. In the oil-amended treatments without Corexit®, this manifested as an increase in community diversity due to the outgrowth of several putative aliphatic- and aromatic-hydrocarbon degrading genera, including phytoplankton-associated taxa. In contrast, microbial community diversity was reduced in mesocosms containing chemically dispersed oil. Importantly, different consortia of hydrocarbon degrading bacteria responded to oil and chemically dispersed oil, indicating that functional redundancy in the pre-spill community likely results in hydrocarbon consumption in both undispersed and dispersed oils, but by different bacterial taxa. Taken together, these data improve our understanding of how dispersants influence the degradation and transport of oil in marine surface waters following an oil spill and provide valuable insight into the early response of complex microbial communities to oil exposure. PMID:29696005

  3. Formation of water disinfection byproduct 2,6-dichloro-1,4-benzoquinone from chlorination of green algae.

    PubMed

    Ge, Fei; Xiao, Yao; Yang, Yixuan; Wang, Wei; Moe, Birget; Li, Xing-Fang

    2018-01-01

    We report that green algae in lakes and rivers can serve as precursors of halobenzoquinone (HBQ) disinfection byproducts (DBPs) produced during chlorination. Chlorination of a common green alga, Chlorella vulgaris, produced 2,6-dichloro-1,4-benzoquinone (2,6-DCBQ), the most prevalent HBQ DBP in disinfected water. Under varying pH conditions (pH6.0-9.0), 2,6-DCBQ formation ranged from 0.3 to 2.1μg/mg C with maximum formation at pH8.0. To evaluate the contribution of organic components of C. vulgaris to 2,6-DCBQ formation, we separated the organics into two fractions, the protein-rich fraction of intracellular organic matter (IOM) and the polysaccharide-laden fraction of extracellular organic matter (EOM). Chlorination of IOM and EOM produced 1.4μg/mg C and 0.7μg/mg C of 2,6-DCBQ, respectively. The IOM generated a two-fold higher 2,6-DCBQ formation potential than the EOM fraction, suggesting that proteins are potent 2,6-DCBQ precursors. This was confirmed by the chlorination of proteins extracted from C. vulgaris: the amount of 2,6-DCBQ produced is linearly correlated with the concentration of total algal protein (R 2 =0.98). These results support that proteins are the primary precursors of 2,6-DCBQ in algae, and control of green algal bloom outbreaks in source waters is important for management of HBQ DBPs. Copyright © 2017. Published by Elsevier B.V.

  4. Chemical characterization of organosulfates in secondary organic aerosol derived from the photooxidation of alkanes

    NASA Astrophysics Data System (ADS)

    Riva, Matthieu; Da Silva Barbosa, Thais; Lin, Ying-Hsuan; Stone, Elizabeth A.; Gold, Avram; Surratt, Jason D.

    2016-09-01

    We report the formation of aliphatic organosulfates (OSs) in secondary organic aerosol (SOA) from the photooxidation of C10-C12 alkanes. The results complement those from our laboratories reporting the formation of OSs and sulfonates from gas-phase oxidation of polycyclic aromatic hydrocarbons (PAHs). Both studies strongly support the formation of OSs from the gas-phase oxidation of anthropogenic precursors, as hypothesized on the basis of recent field studies in which aromatic and aliphatic OSs were detected in fine aerosol collected from several major urban locations. In this study, dodecane, cyclodecane and decalin, considered to be important SOA precursors in urban areas, were photochemically oxidized in an outdoor smog chamber in the presence of either non-acidified or acidified ammonium sulfate seed aerosol. Effects of acidity and relative humidity on OS formation were examined. Aerosols collected from all experiments were characterized by ultra performance liquid chromatography coupled to electrospray ionization high-resolution quadrupole time-of-flight mass spectrometry (UPLC/ESI-HR-QTOFMS). Most of the OSs identified could be explained by formation of gaseous epoxide precursors with subsequent acid-catalyzed reactive uptake onto sulfate aerosol and/or heterogeneous reactions of hydroperoxides. The OSs identified here were also observed and quantified in fine urban aerosol samples collected in Lahore, Pakistan, and Pasadena, CA, USA. Several OSs identified from the photooxidation of decalin and cyclodecane are isobars of known monoterpene organosulfates, and thus care must be taken in the analysis of alkane-derived organosulfates in urban aerosol.

  5. Analysis of interstellar fragmentation structure based on IRAS images

    NASA Technical Reports Server (NTRS)

    Scalo, John M.

    1989-01-01

    The goal of this project was to develop new tools for the analysis of the structure of densely sampled maps of interstellar star-forming regions. A particular emphasis was on the recognition and characterization of nested hierarchical structure and fractal irregularity, and their relation to the level of star formation activity. The panoramic IRAS images provided data with the required range in spatial scale, greater than a factor of 100, and in column density, greater than a factor of 50. In order to construct a densely sampled column density map of a cloud complex which is both self-gravitating and not (yet?) stirred up much by star formation, a column density image of the Taurus region has been constructed from IRAS data. The primary drawback to using the IRAS data for this purpose is that it contains no velocity information, and the possible importance of projection effects must be kept in mind.

  6. Single-larger-portion-size and dual-column nutrition labeling may help consumers make more healthful food choices.

    PubMed

    Lando, Amy M; Lo, Serena C

    2013-02-01

    The Food and Drug Administration is considering changes to the Nutrition Facts label to help consumers make more healthful choices. To examine the effects of modifications to the Nutrition Facts label on foods that can be listed as having 1 or 2 servings per container, but are reasonably consumed at a single eating occasion. Participants were randomly assigned to study conditions that varied on label format, product, and nutrition profile. Data were collected via an online consumer panel. Adults aged 18 years and older were recruited from Synovate's online household panel. Data were collected during August 2011. A total of 32,897 invitations were sent for a final sample of 9,493 interviews. Participants were randomly assigned to one of 10 label formats classified into three groups: listing 2 servings per container with a single column, listing 2 servings per container with a dual column, and listing a single serving per container. Within these groups there were versions that enlarged the font size for "calories," removed "calories from fat," and changed the wording for serving size declaration. The single product task measured product healthfulness, the amount of calories and various nutrients per serving and per container, and label perceptions. The product comparison task measured ability to identify the healthier product and the product with fewer calories per container and per serving. Analysis of covariance models with Tukey-Kramer tests were used. Covariates included general label use, age, sex, level of education, and race/ethnicity. Single-serving and dual-column formats performed better and scored higher on most outcome measures. For products that contain 2 servings but are customarily consumed at a single eating occasion, using a single-serving or dual-column labeling approach may help consumers make healthier food choices. Published by Elsevier Inc.

  7. Soil Overconsolidation Changes Caused by Dynamic Replacement

    NASA Astrophysics Data System (ADS)

    Piotr, Kanty; Sławomir, Kwiecień; Jerzy, Sękowski

    2017-10-01

    In the dynamic replacement method (DR) the soil is improved by initially dropping a large weight (typically 8-20 t) pounder from a significant height up to 25 m. The created crater is filled with a stronger material (gravel, rubble, stone aggregate, debris), and the pounder is dropped once or multiple times again. The construction of dynamic replacement pillars influences the parameters of the adjacent soil. It results from the energy generated by dropping a pounder into the soil. In the current practice, these changes are not taken into the account during the design. This paper focuses on the changes of overconsolidation ratio (OCR) and in situ coefficient of lateral earth pressure (K) values estimated base on cone penetration test (CPTU) and Dilatometric test (DMT) performed at a test site. A single column was constructed and the ground around the column was examined using CPTU and DMT, performed at different distances from the column centre (2, 3, 4 and 6 m) and at different time intervals (during construction and 1, 8, 30 days later). The column was constructed in so-called transition soils (between cohesive and non-cohesive). While interpreting the results of the research, the authors addressed the matter of choosing the procedure of OCR and K indication for transition soils (in this case described as silts and/or sandy silts). Overconsolidation changes may differ depending on the chosen analysis procedure (for cohesive or non-cohesive soils). On the basis of the analysis presented in the paper and the observation of soil (acknowledged as cohesive according to macroscopic observations) during column excavation, it was decided that for more detailed analyses methods dedicated to cohesive soils should be applied. Generally, it can be stated that although the changes were complex, DR pillar formation process resulted in the increase of these parameters. The average increases of OCR and K values were 25% and 10% respectively. The post installation values are not significant from the engineering point of view, but they represent the influence of the formation process of only a single column. The described results indicate that Priebe’s column dimensioning method should be applied with caution, as it assumes the value K=1 which was not obtained in the described research. The results from the conducted tests indicate that different mechanisms occur during stone column formation with vibro-replacement and dynamic replacement. As the authors did not manage to find literature describing the results of K tests in the surrounding of a DR column, the presented results should be acknowledged as significant for designers who will apply the dynamic replacement method.

  8. Bearing capacity and rigidity of short plastic-concrete-tubal vertical columns under transverse load

    NASA Astrophysics Data System (ADS)

    Dolzhenko, A. V.; Naumov, A. E.; Shevchenko, A. E.

    2018-03-01

    The results of mathematical modeling in determining strain-stress distribution parameters of a short plastic-concrete-tubal vertical column under horizontal load as those in vertical constructions are described. Quantitative parameters of strain-stress distribution during vertical and horizontal loads and horizontal stiffness were determined by finite element modeling. The internal stress in the concrete column core was analyzed according to equivalent stress in Mohr theory of failure. It was determined that the bearing capacity of a short plastic- concrete-tubal vertical column is 25% higher in resistibility and 15% higher in rigidness than those of the caseless concrete columns equal in size. Cracks formation in the core of a short plastic-concrete-tubal vertical column happens under significantly bigger horizontal loads with less amount of concrete spent than that in caseless concrete columns. The significant increase of bearing capacity and cracking resistance of a short plastic-concrete-tubal vertical column under vertical and horizontal loads allows recommending them as highly effective and highly reliable structural wall elements in civil engineering.

  9. Identification of nitrosamine precursors from urban drainage during storm events: A case study in southern China.

    PubMed

    Bei, Er; Liao, Xiaobin; Meng, Xiangting; Li, Shixiang; Wang, Jun; Sheng, Deyang; Chao, Meng; Chen, Zhuohua; Zhang, Xiaojian; Chen, Chao

    2016-10-01

    The drinking water sources of many cities in southern China are frequently contaminated by upstream urban drainage during storm events, which brings high concentrations of N-nitrosamine (NA) precursors and poses a threat to the safety of drinking water. We conducted two sampling campaigns during the heavy rain season in 2015 in one representative city in southern China. We detected that the concentration of N-nitrosodimethylamine formation potential (NDMA FP) in urban drainage during two storm events was 80-115 ng/L and the total formation potential concentration of nine nitrosamines (TNA9 FP) was 145-165 ng/L. To address the deteriorated water quality, 30 mg/L of powdered activated carbon (PAC) was fed into the water intake. PAC adsorption alone could remove 52% of NDMA FP and 52% of TNA FP, while the subsequent conventional process only removed 8% of TNA FP. We isolated six chemicals (N,N-benzyldimethylamine, 5-[(dimethylamino)methyl]-2-furanmethanol, N,N-dimethyl-3-aminophenol, N,N-dimethylethylamine, Ziram, and N,N-dimethylaniline) and confirmed them to be NA precursors. Among these NA precursors, Ziram was identified for the first time as a NA precursor that is formed via chloramination; its molar yield for NDMA was 6.73 ± 0.40%. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Polymer/Nanocrystal Hybrid Solar Cells: Influence of Molecular Precursor Design on Film Nanomorphology, Charge Generation and Device Performance

    PubMed Central

    MacLachlan, Andrew J; Rath, Thomas; Cappel, Ute B; Dowland, Simon A; Amenitsch, Heinz; Knall, Astrid-Caroline; Buchmaier, Christine; Trimmel, Gregor; Nelson, Jenny; Haque, Saif A

    2015-01-01

    In this work, molecular tuning of metal xanthate precursors is shown to have a marked effect on the heterojunction morphology of hybrid poly(3-hexylthiophene-2,5-diyl) (P3HT)/CdS blends and, as a result, the photochemical processes and overall performance of in situ fabricated hybrid solar cells. A series of cadmium xanthate complexes is synthesized for use as in situ precursors to cadmium sulfide nanoparticles in hybrid P3HT/CdS solar cells. The formation of CdS domains is studied by simultaneous GIWAXS (grazing incidence wide-angle X-ray scattering) and GISAXS (grazing incidence small-angle X-ray scattering), revealing knowledge about crystal growth and the formation of different morphologies observed using TEM (transmission electron microscopy). These measurements show that there is a strong relationship between precursor structure and heterojunction nanomorphology. A combination of TAS (transient absorption spectroscopy) and photovoltaic device performance measurements is used to show the intricate balance required between charge photogeneration and percolated domains in order to effectively extract charges to maximize device power conversion efficiencies. This study presents a strong case for xanthate complexes as a useful route to designing optimal heterojunction morphologies for use in the emerging field of hybrid organic/inorganic solar cells, due to the fact that the nanomorphology can be tuned via careful design of these precursor materials. PMID:25866496

  11. Fire emissions constrained by the synergistic use of formaldehyde and glyoxal SCIAMACHY columns in a two-compound inverse modelling framework

    NASA Astrophysics Data System (ADS)

    Stavrakou, T.; Muller, J.; de Smedt, I.; van Roozendael, M.; Vrekoussis, M.; Wittrock, F.; Richter, A.; Burrows, J.

    2008-12-01

    Formaldehyde (HCHO) and glyoxal (CHOCHO) are carbonyls formed in the oxidation of volatile organic compounds (VOCs) emitted by plants, anthropogenic activities, and biomass burning. They are also directly emitted by fires. Although this primary production represents only a small part of the global source for both species, yet it can be locally important during intense fire events. Simultaneous observations of formaldehyde and glyoxal retrieved from the SCIAMACHY satellite instrument in 2005 and provided by the BIRA/IASB and the Bremen group, respectively, are compared with the corresponding columns simulated with the IMAGESv2 global CTM. The chemical mechanism has been optimized with respect to HCHO and CHOCHO production from pyrogenically emitted NMVOCs, based on the Master Chemical Mechanism (MCM) and on an explicit profile for biomass burning emissions. Gas-to-particle conversion of glyoxal in clouds and in aqueous aerosols is considered in the model. In this study we provide top-down estimates for fire emissions of HCHO and CHOCHO precursors by performing a two- compound inversion of emissions using the adjoint of the IMAGES model. The pyrogenic fluxes are optimized at the model resolution. The two-compound inversion offers the advantage that the information gained from measurements of one species constrains the sources of both compounds, due to the existence of common precursors. In a first inversion, only the burnt biomass amounts are optimized. In subsequent simulations, the emission factors for key individual NMVOC compounds are also varied.

  12. Methods for synthesizing alane without the formation of adducts and free of halides

    DOEpatents

    Zidan, Ragaiy; Knight, Douglas A; Dinh, Long V

    2013-02-19

    A process is provided to synthesize an alane without the formation of alane adducts as a precursor. The resulting product is a crystallized .alpha.-alane and is a highly stable product and is free of halides.

  13. The Preparation of (Al2O3)x(SiO2)y Thin Films Using (Al(OSiEt3)3)2 as a Single Source Precursor

    DTIC Science & Technology

    1992-05-12

    point AI(OSiEt 3)3(NH3 ) cannot itself readily be used as a volatile precursor. If, however, NH 3 is used as the carrier gas [AI(OSiEt3)3]2 rapidly melts ...situ formation of the low melting Lewis acid-base adduct Al(OSiEt 3)3(NH 3), however, no nitrogen incorporation was observed in these deposited films...in situ formation of the low melting Lewis acid-base adduct AI(OSiEt3)3(NH3), however, no nitrogen incorporation was observed in these deposited

  14. Detailed Visualization of Phase Evolution during Rapid Formation of Cu(InGa)Se2 Photovoltaic Absorber from Mo/CuGa/In/Se Precursors.

    PubMed

    Koo, Jaseok; Kim, Sammi; Cheon, Taehoon; Kim, Soo-Hyun; Kim, Woo Kyoung

    2018-03-02

    Amongst several processes which have been developed for the production of reliable chalcopyrite Cu(InGa)Se 2 photovoltaic absorbers, the 2-step metallization-selenization process is widely accepted as being suitable for industrial-scale application. Here we visualize the detailed thermal behavior and reaction pathways of constituent elements during commercially attractive rapid thermal processing of glass/Mo/CuGa/In/Se precursors on the basis of the results of systematic characterization of samples obtained from a series of quenching experiments with set-temperatures between 25 and 550 °C. It was confirmed that the Se layer crystallized and then melted between 250 and 350 °C, completely disappearing at 500 °C. The formation of CuInSe 2 and Cu(InGa)Se 2 was initiated at around 450 °C and 550 °C, respectively. It is suggested that pre-heat treatment to control crystallization of Se layer should be designed at 250-350 °C and Cu(InGa)Se 2 formation from CuGa/In/Se precursors can be completed within a timeframe of 6 min.

  15. Ceramic oxide powders and the formation thereof

    DOEpatents

    Katz, J.L.; Chenghung Hung.

    1993-12-07

    Ceramic oxide powders and a method for their preparation. Ceramic oxide powders are obtained using a flame process whereby two or more precursors of ceramic oxides are introduced into a counterflow diffusion flame burner wherein said precursors are converted into ceramic oxide powders. The morphology, particle size, and crystalline form of the ceramic oxide powders are determined by process conditions. 14 figures.

  16. Integration of coagulation and adsorption for removal of N-nitrosodimethylamine (NDMA) precursors from biologically treated municipal wastewater.

    PubMed

    Wang, Miaomiao; Meng, Yingjie; Ma, Defang; Wang, Yan; Li, Fengli; Xu, Xing; Xia, Chufan; Gao, Baoyu

    2017-05-01

    This study investigated the N-nitrosodimethylamine (NDMA) formation potential of various dissolved organic matter (DOM) fractions in biologically treated municipal wastewater by UF fractionation, XAD-8 resin adsorption isolation, and excitation and emission matrix (EEM) fluorescence spectroscopy. Removal of various NDMA precursor fractions was also analyzed to evaluate the efficiency of traditional water treatment processes (coagulation, adsorption, and coagulation-adsorption). Results showed that NDMA were mainly formed by low molecular weight (MW) fractions (<30 kDa) and hydrophilic fractions (HiS) in biologically treated municipal wastewater. Integrated coagulation-adsorption treatments showed the highest reduction capacity for NDMA formation potential (57%), followed by isolated adsorption treatment (50%) and isolated coagulation treatment (28%). The powdered activated carbon (PAC) adsorption process could reduce the high MW precursors (>30 kDa) by 48%, which was higher than other treatments. In contrast, the highest uptake (66%) of low MW precursors (<30 kDa) was achieved by the coagulation-adsorption process. All treatments preferentially removed the hydrophobic acids (HoA) fraction compared to other fractions. Coagulation could remove more fulvic acid-like substances and adsorption could remove more microbial by-products and aromatic proteins.

  17. Synthesis and Characterization of Some Alkaline-Earth-Oxide Nanoparticles

    NASA Astrophysics Data System (ADS)

    Singh, Jitendra Pal; Lim, Weon Cheol; Won, Sung Ok; Song, Jonghan; Chae, Keun Hwa

    2018-04-01

    The present work reports the synthesis of MgO and CaO nanoparticles by using the sol-gel autocombustion method. The annealing of the precursor at 1200 °C was observed to lead the formation of MgO nanoparticles having average crystallite size of 31 nm. Annealing the precursor at same temperature produced materials having a CaO phase with a minor impure phase of calcium carbonate ( 3%). The crystallite size corresponding to the CaO phase was 38 nm. A change of thermal history in the precursor was observed not to result in an improvement of the CaO phase. The change of thermal history in the precursor gave rise to mixed phases of CaCO3 and Ca(OH)2 rather than the phase of CaO. Further, annealing at 1200 °C for 12 h resulted in the formation of the CaO phase along with almost 1 - 5% of calcium hydroxide as an impurity phase. X-ray absorption spectroscopic measurements carried out on these materials revealed that the local electronic/atomic structure of these oxides was not only affected by the impurity phases but also influenced by the carbaneous impurities attached to the crystallites.

  18. High-resolution measurements from the airborne Atmospheric Nitrogen Dioxide Imager (ANDI)

    NASA Astrophysics Data System (ADS)

    Lawrence, J. P.; Anand, J. S.; Vande Hey, J. D.; White, J.; Leigh, R. R.; Monks, P. S.; Leigh, R. J.

    2015-11-01

    Nitrogen dioxide is both a primary pollutant with direct health effects and a key precursor of the secondary pollutant ozone. This paper reports on the development, characterisation and test flight of the Atmospheric Nitrogen Dioxide Imager (ANDI) remote sensing system. The ANDI system includes an imaging UV/Vis grating spectrometer able to capture scattered sunlight spectra for the determination of tropospheric nitrogen dioxide (NO2) concentrations by way of DOAS slant column density and vertical column density measurements. Results are shown for an ANDI test flight over Leicester City in the UK on a cloud-free winter day in February 2013. Retrieved NO2 columns gridded to a surface resolution of 80 m × 20 m revealed hotspots in a series of locations around Leicester City, including road junctions, the train station, major car parks, areas of heavy industry, a nearby airport (East Midlands) and a power station (Ratcliffe-on-Soar). In the city centre the dominant source of NO2 emissions was identified as road traffic, contributing to a background concentration as well as producing localised hotspots. Quantitative analysis revealed a significant urban increment over the city centre which increased throughout the flight.

  19. Understanding star formation in molecular clouds. II. Signatures of gravitational collapse of IRDCs

    NASA Astrophysics Data System (ADS)

    Schneider, N.; Csengeri, T.; Klessen, R. S.; Tremblin, P.; Ossenkopf, V.; Peretto, N.; Simon, R.; Bontemps, S.; Federrath, C.

    2015-06-01

    We analyse column density and temperature maps derived from Herschel dust continuum observations of a sample of prominent, massive infrared dark clouds (IRDCs) i.e. G11.11-0.12, G18.82-0.28, G28.37+0.07, and G28.53-0.25. We disentangle the velocity structure of the clouds using 13CO 1→0 and 12CO 3→2 data, showing that these IRDCs are the densest regions in massive giant molecular clouds (GMCs) and not isolated features. The probability distribution function (PDF) of column densities for all clouds have a power-law distribution over all (high) column densities, regardless of the evolutionary stage of the cloud: G11.11-0.12, G18.82-0.28, and G28.37+0.07 contain (proto)-stars, while G28.53-0.25 shows no signs of star formation. This is in contrast to the purely log-normal PDFs reported for near and/or mid-IR extinction maps. We only find a log-normal distribution for lower column densities, if we perform PDFs of the column density maps of the whole GMC in which the IRDCs are embedded. By comparing the PDF slope and the radial column density profile of three of our clouds, we attribute the power law to the effect of large-scale gravitational collapse and to local free-fall collapse of pre- and protostellar cores for the highest column densities. A significant impact on the cloud properties from radiative feedback is unlikely because the clouds are mostly devoid of star formation. Independent from the PDF analysis, we find infall signatures in the spectral profiles of 12CO for G28.37+0.07 and G11.11-0.12, supporting the scenario of gravitational collapse. Our results are in line with earlier interpretations that see massive IRDCs as the densest regions within GMCs, which may be the progenitors of massive stars or clusters. At least some of the IRDCs are probably the same features as ridges (high column density regions with N> 1023 cm-2 over small areas), which were defined for nearby IR-bright GMCs. Because IRDCs are only confined to the densest (gravity dominated) cloud regions, the PDF constructed from this kind of a clipped image does not represent the (turbulence dominated) low column density regime of the cloud. The column density maps (FITS files) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/578/A29

  20. Suitability of Organic Matter Surrogates to Predict Trihalomethane Formation in Drinking Water Sources

    PubMed Central

    Pifer, Ashley D.; Fairey, Julian L.

    2014-01-01

    Abstract Broadly applicable disinfection by-product (DBP) precursor surrogate parameters could be leveraged at drinking water treatment plants (DWTPs) to curb formation of regulated DBPs, such as trihalomethanes (THMs). In this study, dissolved organic carbon (DOC), ultraviolet absorbance at 254 nm (UV254), fluorescence excitation/emission wavelength pairs (IEx/Em), and the maximum fluorescence intensities (FMAX) of components from parallel factor (PARAFAC) analysis were evaluated as total THM formation potential (TTHMFP) precursor surrogate parameters. A diverse set of source waters from eleven DWTPs located within watersheds underlain by six different soil orders were coagulated with alum at pH 6, 7, and 8, resulting in 44 sample waters. DOC, UV254, IEx/Em, and FMAX values were measured to characterize dissolved organic matter in raw and treated waters and THMs were quantified following formation potential tests with free chlorine. For the 44 sample waters, the linear TTHMFP correlation with UV254 was stronger (r2=0.89) than I240/562 (r2=0.81, the strongest surrogate parameter from excitation/emission matrix pair picking), FMAX from a humic/fulvic acid-like PARAFAC component (r2=0.78), and DOC (r2=0.75). Results indicate that UV254 was the most accurate TTHMFP precursor surrogate parameter assessed for a diverse group of raw and alum-coagulated waters. PMID:24669183

  1. Effect of alkali ions (Na+, K+, Cs+) on reaction mechanism of CZTS nano-particles synthesis

    NASA Astrophysics Data System (ADS)

    Kumar, Suresh; Altosaar, Mare; Grossberg, Maarja; Mikli, Valdek

    2018-04-01

    The control of morphology, elemental composition and phase composition of Cu2ZnSnS4 (CZTS) nano-crystals depends on the control of complex formation and surface stabilization of nano-particles in solution-based synthesis in oleylamine. At temperatures ≥280 °C, the control of nano-crystal's morphology and homogenous growth is difficult because of fast poly-nuclear growth occurring at higher temperatures. In the present work the effect of oleylamine complex formation with different alkali ions (Na+, K+ and Cs+) on nano-crystals growth at synthesis temperature of 280 °C was studied. It was found that nano-powders synthesized in the presence of Na+ and K+ ions showed the formation of crystals of different sizes - small nano-particles (18 nm-30 nm), large aggregated crystals (few nm to 1 μm) and large single crystals (1 μm - 4 μm). The presence of Cs+ ions in the nano-powder synthesis in oleylamine-metal precursor-CsOH solution promoted growth of nano-crystals of homogenous size. It is proposed that the formed oleylamine-Cs complexes a) enhance the formation and stabilization of oleylamine-metal (Cu, Zn and Sn) complexes before the injection of sulphur precursor into the oleylamine-metal precursor solution and b) after addition of sulphur stabilize the fast nucleated nano-particles and promote diffusion limited growth.

  2. Reverse Osmosis Shifts Chloramine Speciation Causing Re-Formation of NDMA during Potable Reuse of Wastewater.

    PubMed

    McCurry, Daniel L; Ishida, Kenneth P; Oelker, Gregg L; Mitch, William A

    2017-08-01

    UV-based advanced oxidation processes (AOPs) effectively degrade N-nitrosodimethylamine (NDMA) passing through reverse osmosis (RO) units within advanced treatment trains for the potable reuse of municipal wastewater. However, certain utilities have observed the re-formation of NDMA after the AOP from reactions between residual chloramines and NDMA precursors in the AOP product water. Using kinetic modeling and bench-scale RO experiments, we demonstrate that the low pH in the RO permeate (∼5.5) coupled with the effective rejection of NH 4 + promotes conversion of the residual monochloramine (NH 2 Cl) in the permeate to dichloramine (NHCl 2 ) via the reaction: 2 NH 2 Cl + H + ↔ NHCl 2 + NH 4 + . Dichloramine is the chloramine species known to react with NDMA precursors to form NDMA. After UV/AOP, utilities generally use lime or other techniques to increase the pH of the finished water to prevent distribution system corrosion. Modeling indicated that, while the increase in pH halts dichloramine formation, it converts amine-based NDMA precursors to their more reactive, neutral forms. With modeling, and experiments at both bench-scale and field-scale, we demonstrate that reducing the time interval between RO treatment and final pH adjustment can significantly reduce NDMA re-formation by minimizing the amount of dichloramine formed prior to reaching the final target pH.

  3. Formation of graphitic carbon nitride and boron carbon nitride film on sapphire substrate

    NASA Astrophysics Data System (ADS)

    Kosaka, Maito; Urakami, Noriyuki; Hashimoto, Yoshio

    2018-02-01

    As a novel production method of boron carbon nitride (BCN) films, in this paper, we present the incorporation of B into graphitic carbon nitride (g-C3N4). First, we investigated the formation of g-C3N4 films via chemical vapor deposition (CVD) using melamine powder as the precursor. The formation of g-C3N4 films on a c-plane sapphire substrate was confirmed by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and Raman spectroscopy measurements. The deposition temperature of g-C3N4 films was found to be suitable between 550 and 600 °C since the degradation and desorption of hexagonal C-N bonds should be suppressed. As for BCN films, we prepared BCN films via two-zone extended CVD using ammonia borane as the B precursor. Several XPS signals from B, C, and N core levels were detected from B-incorporated g-C3N4 films. While the N composition was almost constant, the marked tendencies for increasing B composition and decreasing C composition were achieved with the increase in the B incorporation, indicating the incorporation of B atoms by the substitution for C atoms. Optical absorptions were shifted to the high-energy side by B incorporation, which indicates the successful formation of BCN films using melamine and ammonia borane powders as precursors.

  4. Microstructure investigation on micropore formation in microporous silica materials prepared via a catalytic sol-gel process by small angle X-ray scattering.

    PubMed

    Shimizu, Wataru; Hokka, Junsuke; Sato, Takaaki; Usami, Hisanao; Murakami, Yasushi

    2011-08-04

    The so-called sol-gel technique has been shown to be a template-free, efficient way to create functional porous silica materials having uniform micropores. This appears to be closely linked with a postulation that the formation of weakly branched polymer-like aggregates in a precursor solution is a key to the uniform micropore generation. However, how such a polymer-like structure can precisely be controlled, and further, how the generated low-fractal dimension solution structure is imprinted on the solid silica materials still remain elusive. Here we present fabrication of microporous silica from tetramethyl orthosilicate (TMOS) using a recently developed catalytic sol-gel process based on a nonionic hydroxyacetone (HA) catalyst. Small angle X-ray scattering (SAXS), nitrogen adsorption porosimetry, and transmission electron microscope (TEM) allowed us to observe the whole structural evolution, ranging from polymer-like aggregates in the precursor solution to agglomeration with heat treatment and microporous morphology of silica powders after drying and hydrolysis. Using the HA catalyst with short chain monohydric alcohols (methanol or ethanol) in the precursor solution, polymer-like aggregates having microscopic correlation length (or mesh-size) < 2 nm and low fractal dimensions ∼2, which is identical to that of an ideal coil polymer, can selectively be synthesized, yielding the uniform micropores with diameters <2 nm in the solid materials. In contrast, the absence of HA or substitution of 1-propanol led to considerably different scattering behavior reflecting the particle-like aggregate formation in the precursor solution, which resulted in the formation of mesopores (diameter >2 nm) in the solid product due to apertures between the particle-like aggregates. The data demonstrate that the extremely fine porous silica architecture comes essentially from a gaussian polymer-like nature of the silica aggregates in the precursor having the microscopic mesh-size and their successful imprint on the solid product. The result offers a general but significantly efficient route to creating precisely designed fine porous silica materials under mild condition that serve as low refractive index and efficient thermal insulation materials in their practical applications.

  5. Surface defects on the Gd{sub 2}Zr{sub 2}O{sub 7} oxide films grown on textured NiW technical substrates by chemical solution method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Y., E-mail: yuezhao@sjtu.edu.cn

    2017-02-15

    Epitaxial growth of oxide thin films has attracted much interest because of their broad applications in various fields. In this study, we investigated the microstructure of textured Gd{sub 2}Zr{sub 2}O{sub 7} films grown on (001)〈100〉 orientated NiW alloy substrates by a chemical solution deposition (CSD) method. The aging effect of precursor solution on defect formation was thoroughly investigated. A slight difference was observed between the as-obtained and aged precursor solutions with respect to the phase purity and global texture of films prepared using these solutions. However, the surface morphologies are different, i.e., some regular-shaped regions (mainly hexagonal or dodecagonal) weremore » observed on the film prepared using the as-obtained precursor, whereas the film prepared using the aged precursor exhibits a homogeneous structure. Electron backscatter diffraction and scanning electron microscopy analyses showed that the Gd{sub 2}Zr{sub 2}O{sub 7} grains present within the regular-shaped regions are polycrystalline, whereas those present in the surrounding are epitaxial. Some polycrystalline regions ranging from several micrometers to several tens of micrometers grew across the NiW grain boundaries underneath. To understand this phenomenon, the properties of the precursors and corresponding xerogel were studied by Fourier transform infrared spectroscopy and coupled thermogravimetry/differential thermal analysis. The results showed that both the solutions mainly contain small Gd−Zr−O clusters obtained by the reaction of zirconium acetylacetonate with propionic acid during the precursor synthesis. The regular-shaped regions were probably formed by large Gd−Zr−O frameworks with a metastable structure in the solution with limited aging time. This study demonstrates the importance of the precise control of chemical reaction path to enhance the stability and homogeneity of the precursors of the CSD route. - Highlights: •We investigate microstructure of Gd{sub 2}Zr{sub 2}O{sub 7} films grown by a chemical solution route. •The aging effect of precursor solution on formation of surface defect was thoroughly studied. •Gd−Zr−O clusters are present in the precursor solutions.« less

  6. FORMATION OF CHLORINATED ORGANICS DURING SOLID WASTE COMBUSTION

    EPA Science Inventory

    The formation mechanisms of the precursors of polychlorinated dibenzo-p-dioxin (PCDD) and polychlorinated dibenzofuran (PCDF) were examined in a laboratory reactor. Both homogeneous and heterogeneous reactions were studied between 200 and 800°C with HCl, Cl2, and pheno...

  7. Glyoxal Vertical Column Retrievals from the GOME-2/METOP-A European Spaceborne Sensor and Comparisons with the IMAGESv2 CT Model

    NASA Astrophysics Data System (ADS)

    Lerot, C.; Stavrakou, T.; de Smedt, I.; Muller, J. J.; van Roozendael, M.

    2010-12-01

    Glyoxal is mostly formed in our atmosphere as an intermediate product in the oxidation of non-methane volatile organic compounds (NMVOC). To a lesser extent, it is also directly emitted from biomass burning events and from fossil- and bio-fuel combustion processes. Several studies have estimated its atmospheric lifetime to 2-3 hours, which makes of glyoxal a good indicator for short-lived NMVOC emissions. Glyoxal is also known to be a precursor for secondary organic aerosols and could help to reduce the gap between observations and models for organic aerosol abundances. The three absorption bands of glyoxal in the visible region allow applying the DOAS (Differential Optical Absorption Spectroscopy) technique to retrieve its vertical column densities from the nadir backscattered light measurements performed by the GOME-2 satellite sensor. This instrument has been launched in October 2006 on board of the METOP-A platform and is characterized by a spatial resolution of 80 km x 40 km and by a large scan-width (1920 km) leading to a global coverage reached in 1.5 day. The GOME-2 glyoxal retrieval algorithm developed at BIRA-IASB accounts for the liquid water absorption and provides geophysically sound column measurements not only over lands but also over oceanic regions where spectral interferences between glyoxal and liquid water have been shown to be significant. The a-priori glyoxal vertical distribution required for the slant to vertical column conversion is provided by the global chemical transport model IMAGESv2. The highest glyoxal vertical column densities are mainly observed in continental tropical regions, while the mid-latitude columns strongly depend on the season with maximum values during warm months. An anthropogenic signature is also observed in highly populated regions of Asia. Comparisons with glyoxal columns simulated with IMAGESv2 in different regions of the world generally point to a missing glyoxal source in current models. As already reported from previous analysis with the SCIAMACHY instrument, significant glyoxal columns are also observed over tropical oceans, which remains unexplained so far.

  8. Seismic Tremors and Three-Dimensional Magma Wagging

    NASA Astrophysics Data System (ADS)

    Liao, Y.; Bercovici, D.

    2015-12-01

    Seismic tremor is a feature shared by many silicic volcanoes and is a precursor of volcanic eruption. Many of the characteristics of tremors, including their frequency band from 0.5 Hz to 7 Hz, are common for volcanoes with very different geophysical and geochemical properties. The ubiquitous characteristics of tremor imply that it results from some generation mechanism that is common to all volcanoes, instead of being unique to each volcano. Here we present new analysis on the magma-wagging mechanism that has been proposed to generate tremor. The model is based on the suggestion given by previous work (Jellinek & Bercovici 2011; Bercovici et.al. 2013) that the magma column is surrounded by a compressible, bubble-rich foam annulus while rising inside the volcanic conduit, and that the lateral oscillation of the magma inside the annulus causes observable tremor. Unlike the previous two-dimensional wagging model where the displacement of the magma column is restricted to one vertical plane, the three-dimensional model we employ allows the magma column to bend in different directions and has angular motion as well. Our preliminary results show that, without damping from viscous deformation of the magma column, the system retains angular momentum and develops elliptical motion (i.e., the horizontal displacement traces an ellipse). In this ''inviscid'' limit, the magma column can also develop instabilities with higher frequencies than what is found in the original two-dimensional model. Lateral motion can also be out of phase for various depths in the magma column leading to a coiled wagging motion. For the viscous-magma model, we predict a similar damping rate for the uncoiled magma column as in the two-dimensional model, and faster damping for the coiled magma column. The higher damping thus requires the existence of a forcing mechanism to sustain the oscillation, for example the gas-driven Bernoulli effect proposed by Bercovici et al (2013). Finally, using our new 3-D model, the spectrum of displacement and unsynchronized cross-correlation between displacements measured from different locations can be calculated, and this can be compared to more detailed seismic measurements on well monitored volcanoes.

  9. Narrowing the diversification of supramolecular assemblies by preorganization.

    PubMed

    Wang, Zhongyan; Liang, Chunhui; Shang, Yuna; He, Shuangshuang; Wang, Ling; Yang, Zhimou

    2018-03-13

    We designed and synthesized three phosphorylated peptides as precursors of the same peptide Nap-YYY. We found that different precursors led to different materials with almost identical chemical compositions at the final stages. Only Nap-YpYY could form very uniform nanofibers in a stable supramolecular hydrogel by enzyme-instructed self-assembly (EISA) at the physiological temperature (37 °C). In contrast, de-phosphorylation of the other two precursors (Nap-pYYY and Nap-YYpY) resulted in diverse nanostructures in metastable hydrogels with precipitates. The formation of uniform nanomaterials in the stable hydrogels was due to the preorganization property of the precursor Nap-YpYY, which facilitated rapid folding and accelerated the kinetics of hydrogelation of the resulting peptide Nap-YYY generated by the EISA process. Our study demonstrated the importance of the precursor for the self-assembly of nanomaterials and provided a useful strategy to manipulate them.

  10. Preparation of TiO2-SiO2 via sol-gel method: Effect of Silica precursor on Catalytic and Photocatalytic properties

    NASA Astrophysics Data System (ADS)

    Fatimah, I.

    2017-02-01

    TiO2-SiO2have been synthesized by the sol-gel method from titanium isopropoxide and varied silica precursors: tetraethyl orthosilicate and tetra methyl ortho silicate. To study the effect of the precursor, prepared materials were characterized by X-ray diffraction, scanning electron microscopy, Diffuse Reflectance UV-vis optical absorption, and also gas sorption analysis. XRD patterns showed the formation of TiO2 anatase in the TiO2-SiO2 composite with different crystallite size from different silica precursor as well as the different surface morphology. The DRUV-vis absorption spectra exhibit similar band gap energy correspond to 3.21eV value while the surface area, pore volume and pore radius of the materials seems to be affected by the precursor. The higher specific surface area contributes to give the enhanced activity in phenol hydroxylation and methylene blue photodegradation.

  11. Preparation of superconductor precursor powders

    DOEpatents

    Bhattacharya, R.

    1998-08-04

    A process for the preparation of a precursor metallic powder composition for use in the subsequent formation of a superconductor. The process comprises the steps of providing an electrodeposition bath comprising an electrolyte medium and a cathode substrate electrode, and providing to the bath one or more soluble salts of one or more respective metals which are capable of exhibiting superconductor properties upon subsequent appropriate treatment. The bath is continually energized to cause the metallic and/or reduced particles formed at the electrode to drop as a powder from the electrode into the bath, and this powder, which is a precursor powder for superconductor production, is recovered from the bath for subsequent treatment. The process permits direct inclusion of all metals in the preparation of the precursor powder, and yields an amorphous product mixed on an atomic scale to thereby impart inherent high reactivity. Superconductors which can be formed from the precursor powder include pellet and powder-in-tube products. 7 figs.

  12. Preparation of superconductor precursor powders

    DOEpatents

    Bhattacharya, Raghunath

    1998-01-01

    A process for the preparation of a precursor metallic powder composition for use in the subsequent formation of a superconductor. The process comprises the steps of providing an electrodeposition bath comprising an electrolyte medium and a cathode substrate electrode, and providing to the bath one or more soluble salts of one or more respective metals which are capable of exhibiting superconductor properties upon subsequent appropriate treatment. The bath is continually energized to cause the metallic and/or reduced particles formed at the electrode to drop as a powder from the electrode into the bath, and this powder, which is a precursor powder for superconductor production, is recovered from the bath for subsequent treatment. The process permits direct inclusion of all metals in the preparation of the precursor powder, and yields an amorphous product mixed on an atomic scale to thereby impart inherent high reactivity. Superconductors which can be formed from the precursor powder include pellet and powder-in-tube products.

  13. Column bioleaching copper and its kinetics of waste printed circuit boards (WPCBs) by Acidithiobacillus ferrooxidans.

    PubMed

    Chen, Shu; Yang, Yuankun; Liu, Congqiang; Dong, Faqin; Liu, Bijun

    2015-12-01

    Application of bioleaching process for metal recovery from electronic waste has received an increasing attention in recent years. In this work, a column bioleaching of copper from waste printed circuit boards (WPCBs) by Acidithiobacillus ferrooxidans has been investigated. After column bioleaching for 28d, the copper recovery reached at 94.8% from the starting materials contained 24.8% copper. Additionally, the concentration of Fe(3+) concentration varied significantly during bioleaching, which inevitably will influence the Cu oxidation, thus bioleaching process. Thus the variation in Fe(3+) concentration should be taken into consideration in the conventional kinetic models of bioleaching process. Experimental results show that the rate of copper dissolution is controlled by external diffusion rather than internal one because of the iron hydrolysis and formation of jarosite precipitates at the surface of the material. The kinetics of column bioleaching WPCBs remains unchanged because the size and morphology of precipitates are unaffected by maintaining the pH of solution at 2.25 level. In bioleaching process, the formation of jarosite precipitate can be prevented by adding dilute sulfuric acid and maintaining an acidic condition of the leaching medium. In such way, the Fe(2)(+)-Fe(3+) cycle process can kept going and create a favorable condition for Cu bioleaching. Our experimental results show that column Cu bioleaching from WPCBs by A. ferrooxidans is promising. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Synthesis and Characterization of the First Liquid Single Source Precursors for the Deposition of Ternary Chalcopyrite (CuInS2) Thin Film Materials

    NASA Technical Reports Server (NTRS)

    Banger, Kulbinder K.; Cowen, Jonathan; Hepp, Aloysius

    2002-01-01

    Molecular engineering of ternary single source precursors based on the [{PBu3}2Cu(SR')2In(SR')2] architecture have afforded the first liquid CIS ternary single source precursors (when R = Et, n-Pr), which are suitable for low temperature deposition (< 350 C). Thermogravimetric analyses (TGA) and modulated-differential scanning calorimetry (DSC) confirm their liquid phase and reduced stability. X-ray diffraction studies, energy dispersive analyzer (EDS), and scanning electron microscopy (SEM) support the formation of the single-phase chalcopyrite CuInS2 at low temperatures.

  15. Initial stage of atomic layer deposition of 2D-MoS2 on a SiO2 surface: a DFT study.

    PubMed

    Shirazi, M; Kessels, W M M; Bol, A A

    2018-06-20

    In this study, we investigate the reactions involving Atomic Layer Deposition (ALD) of 2D-MoS2 from the heteroleptic precursor Mo(NMe2)2(NtBu)2 and H2S as the co-reagent on a SiO2(0001) surface by means of density functional theory (DFT). All dominant reaction pathways from the early stage of adsorption of each ALD reagent to the formation of bulk-like Mo and S at the surface are identified. In the metal pulse, proton transfer from terminal OH groups on the SiO2 to the physisorbed metal precursor increases the Lewis acidity of Mo and Lewis basicity of O, which gives rise to the chemical adsorption of the metal precursor. Proton transfer from the surface to the dimethylamido ligands leads to the formation and desorption of dimethylamine. In contrast, the formation and desorption of tert-butylamine is not energetically favorable. The tert-butylimido ligand can only be partially protonated in the metal pulse. In the sulphur pulse, co-adsorption and dissociation of H2S molecules give rise to the formation and desorption of tert-butylamine. Through the calculated activation energies, the cooperation between H2S molecules ('cooperative' mechanism) is shown to have a profound influence on the formation and desorption of tert-butylamine, which are crucial steps in the initial ALD deposition of 2D-MoS2 on SiO2. The cyclic ALD reactions give rise to the formation of a buffer layer which might have important consequences for the electrical and optical properties on the 2D layer formed in the subsequent homodeposition.

  16. Control of aliphatic halogenated DBP precursors with multiple drinking water treatment processes: Formation potential and integrated toxicity.

    PubMed

    Zhang, Yimeng; Chu, Wenhai; Yao, Dechang; Yin, Daqiang

    2017-08-01

    The comprehensive control efficiency for the formation potentials (FPs) of a range of regulated and unregulated halogenated disinfection by-products (DBPs) (including carbonaceous DBPs (C-DBPs), nitrogenous DBPs (N-DBPs), and iodinated DBPs (I-DBPs)) with the multiple drinking water treatment processes, including pre-ozonation, conventional treatment (coagulation-sedimentation, pre-sand filtration), ozone-biological activated carbon (O 3 -BAC) advanced treatment, and post-sand filtration, was investigated. The potential toxic risks of DBPs by combing their FPs and toxicity values were also evaluated. The results showed that the multiple drinking water treatment processes had superior performance in removing organic/inorganic precursors and reducing the formation of a range of halogenated DBPs. Therein, ozonation significantly removed bromide and iodide, and thus reduced the formation of brominated and iodinated DBPs. The removal of organic carbon and nitrogen precursors by the conventional treatment processes was substantially improved by O 3 -BAC advanced treatment, and thus prevented the formation of chlorinated C-DBPs and N-DBPs. However, BAC filtration leads to the increased formation of brominated C-DBPs and N-DBPs due to the increase of bromide/DOC and bromide/DON. After the whole multiple treatment processes, the rank order for integrated toxic risk values caused by these halogenated DBPs was haloacetonitriles (HANs)≫haloacetamides (HAMs)>haloacetic acids (HAAs)>trihalomethanes (THMs)>halonitromethanes (HNMs)≫I-DBPs (I-HAMs and I-THMs). I-DBPs failed to cause high integrated toxic risk because of their very low FPs. The significant higher integrated toxic risk value caused by HANs than other halogenated DBPs cannot be ignored. Copyright © 2017. Published by Elsevier B.V.

  17. Investigating the role of biofilms in trihalomethane formation in water distribution systems with a multicomponent model.

    PubMed

    Abokifa, Ahmed A; Yang, Y Jeffrey; Lo, Cynthia S; Biswas, Pratim

    2016-11-01

    Biofilms are ubiquitous in the pipes of drinking water distribution systems (DWDSs), and recent experimental studies revealed that the chlorination of the microbial carbon associated with the biofilm contributes to the total disinfection by-products (DBPs) formation with distinct mechanisms from those formed from precursors derived from natural organic matter (NOM). A multiple species reactive-transport model was developed to explain the role of biofilms in DBPs formation by accounting for the simultaneous transport and interactions of disinfectants, organic compounds, and biomass. Using parameter values from experimental studies in the literature, the model equations were solved to predict chlorine decay and microbial regrowth dynamics in an actual DWDS, and trihalomethanes (THMs) formation in a pilot-scale distribution system simulator. The model's capability of reproducing the measured concentrations of free chlorine, suspended biomass, and THMs under different hydrodynamic and temperature conditions was demonstrated. The contribution of bacteria-derived precursors to the total THMs production was found to have a significant dependence on the system's hydraulics, seasonal variables, and the quality of the treated drinking water. Under system conditions that promoted fast bacterial re-growth, the transformation of non-microbial into microbial carbon DBP precursors by the biofilms showed a noticeable effect on the kinetics of THMs formation, especially when a high initial chlorine dose was applied. These conditions included elevated water temperature and high concentrations of nutrients in the influent water. The fraction of THMs formed from microbial sources was found to reach a peak of 12% of the total produced THMs under the investigated scenarios. The results demonstrated the importance of integrating bacterial regrowth dynamics in predictive DBPs formation models. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Effects of UV 254 irradiation on residual chlorine and DBPs in chlorination of model organic-N precursors in swimming pools.

    PubMed

    Weng, ShihChi; Li, Jing; Blatchley, Ernest R

    2012-05-15

    Ultraviolet (UV) irradiation is commonly applied as a secondary disinfection process in chlorinated pools. UV-based systems have been reported to yield improvements in swimming pool water and air chemistry, but to date these observations have been largely anecdotal. The objectives of this investigation were to evaluate the effects of UV irradiation on chlorination of important organic-N precursors in swimming pools. Creatinine, L-arginine, L-histidine, glycine, and urea, which comprise the majority of the organic-N in human sweat and urine, were selected as precursors for use in conducting batch experiments to examine the time-course behavior of several DBPs and residual chlorine, with and without UV(254) irradiation. In addition, water samples from two natatoria were subjected to monochromatic UV irradiation at wavelengths of 222 nm and 254 nm to evaluate changes of liquid-phase chemistry. UV(254) irradiation promoted formation and/or decay of several chlorinated N-DBPs and also increased the rate of free chlorine consumption. UV exposure resulted in loss of inorganic chloramines (e.g., NCl(3)) from solution. Dichloromethylamine (CH(3)NCl(2)) formation from creatinine was promoted by UV exposure, when free chlorine was present in solution; however, when free chlorine was depleted, CH(3)NCl(2) photodecay was observed. Dichloroacetonitrile (CNCHCl(2)) formation (from L-histidine and L-arginine) was promoted by UV(254) irradiation, as long as free chlorine was present in solution. Likewise, UV exposure was observed to amplify cyanogen chloride (CNCl) formation from chlorination of L-histidine, L-arginine, and glycine, up to the point of free chlorine depletion. The results from experiments involving UV irradiation of chlorinated swimming pool water were qualitatively consistent with the results of model experiments involving UV/chlorination of precursors in terms of the behavior of residual chlorine and DBPs measured in this study. The results indicate that UV(254) irradiation promotes several reactions that are involved in the formation and/or destruction of chlorinated N-DBPs in pool settings. Enhancement of DBP formation was consistent with a mechanism whereby a rate-limiting step in DBP formation was promoted by UV exposure. Promotion of these reactions also resulted in increases of free chlorine consumption rates. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Formation and growth mechanisms of single-walled metal oxide nanotubes

    NASA Astrophysics Data System (ADS)

    Yucelen, Gulfem Ipek

    In this thesis, main objectives are to discover the first molecular-level mechanistic framework governing the formation and growth of single-walled metal-oxide nanotubes, apply this framework to demonstrate the engineering of nanotubular materials of controlled dimensions, and to progress towards a quantitative multiscale understanding of nanotube formation. In Chapter 2, the identification and elucidation of the mechanistic role of molecular precursors and nanoscale (1-3 nm) intermediates with intrinsic curvature, in the formation of single-walled aluminosilicate nanotubes is reported. The structural and compositional evolution of molecular and nanoscale species over a length scale of 0.1-100 nm, are characterized by electrospray ionization (ESI) mass spectrometry, and nuclear magnetic resonance (NMR) spectroscopy. DFT calculations revealed the intrinsic curvature of nanoscale intermediates with bonding environments similar to the structure of the final nanotube product. It is shown that curved nano-intermediates form in aqueous synthesis solutions immediately after initial hydrolysis of reactants at 25 °C, disappear from the solution upon heating to 95 °C due to condensation, and finally rearrange to form ordered single-walled aluminosilicate nanotubes. Integration of all results leads to the construction of the first molecular-level mechanism of single-walled metal oxide nanotube formation, incorporating the role of monomeric and polymeric aluminosilicate species as well as larger nanoparticles. Then, in Chapter 3, new molecular-level concepts for constructing nanoscopic metal oxide objects are demonstrated. The diameters of metal oxide nanotubes are shaped with Angstrom-level precision by controlling the shape of nanometer-scale precursors. The subtle relationships between precursor shape and structure and final nanotube curvature are measured (at the molecular level). Anionic ligands (both organic and inorganic) are used to exert fine control over precursor shapes, allowing assembly into nanotubes whose diameters relate directly to the curvatures of shaped precursors. Having obtained considerable insight into aluminosilicate nanotube formation, in Chapter 4 the complex aqueous chemistry of nanotube-forming aluminogermanate solutions are examined. The aluminogermanate system is particularly interesting since it forms ultra-short nanotubes of lengths as small as ˜20 nm. Insights into the underlying important mechanistic differences between aluminogermanate and aluminosilicate nanotube growth as well as structural differences in the final nanotube dimensions are provided. Furthermore, an experimental example of control over nanotube length is shown, using the understanding of the mechanistic differences, along with further suggestions for possible ways of controlling nanotube lengths. In Chapter 5, a generalized kinetic model is formulated to describe the reactions leading to formation and growth of single-walled metal oxide nanotubes. This model is capable of explaining and predicting the evolution of nanotube populations as a function of kinetic parameters. It also allows considerable insight into meso/microscale nanotube growth processes. For example, it shows that two different mechanisms operate during nanotube growth: (1) growth by precursor addition, and (2) by oriented attachment of nanotubes to each other. In Chapter 6, a study of the structure of the nanotube walls is presented. A detailed investigation of the defect structures in aluminosilicate single-walled nanotubes via multiple advanced solid-state NMR techniques is reported. A combination of 1H-29Si and 1H- 27Al FSLG-HETCOR, 1H CRAMPS, and 1H- 29Si CP/MAS NMR experiments were employed to evaluate the proton environments around Al and Si atoms during nanotube synthesis and in the final structure. The HETCOR experiments allowed to track the evolving Si and Al environments during the formation of the nanotubes from precursor species, and relate them to the Si and Al coordination environments found in the final nanotube structure. (Abstract shortened by UMI.).

  20. Item Order, Response Format, and Examinee Sex and Handedness and Performance on a Multiple-Choice Test.

    ERIC Educational Resources Information Center

    Kleinke, David J.

    Four forms of a 36-item adaptation of the Stanford Achievement Test were administered to 484 fourth graders. External factors potentially influencing test performance were examined, namely: (1) item order (easy-to-difficult vs. uniform); (2) response location (left column vs. right column); (3) handedness which may interact with response location;…

  1. Federal Income Tax on Timber: A Key to Your Most Frequently Asked Questions

    Treesearch

    Harry L. Haney; William C. Siegel; Larry M. Bishop

    2001-01-01

    This publication examines the most common situations noncorporate taxpayers. face when calculating Federal income tax on their timber holdings. It addresses aspects of each situation using a three-column format. The columns are: Type of Forest Activity, How to Qualify for Best Tax Treatment, and Reporting and Tax Forms. The responses are necessarily brief, and...

  2. Precursors of Halobenzoquinones and Their Removal During Drinking Water Treatment Processes.

    PubMed

    Wang, Wei; Qian, Yichao; Jmaiff, Lindsay K; Krasner, Stuart W; Hrudey, Steve E; Li, Xing-Fang

    2015-08-18

    Halobenzoquinones (HBQs) widely occur in drinking water treatment plant (DWTP) effluents; however, HBQ precursors and their removal by treatments remain unclear. Thus, we have investigated HBQ precursors in plant influents and their removal by each treatment before chlorination in nine DWTPs. The levels of HBQ precursors were determined using formation potential (FP) tests for 2,6-dichloro-1,4-benzoquinone (DCBQ), 2,3,6-trichloro-1,4-benzoquinone (TCBQ), 2,6-dichloro-3-methyl-1,4-benzoquinone (DCMBQ), and 2,6-dibromo-1,4-benzoquinone (DBBQ). HBQ precursors were present in all plant influents. DCBQ precursors were the most abundant (DCBQ FP up to 205 ng/L). Coagulation removed dissolved organic carbon (DOC) (up to 56%) and HBQ precursors (up to 39% for DCBQ). The level of removal of DOC was significantly greater than the level of removal of HBQ FP, suggesting that organic matter removed by coagulation had a high proportion of non-HBQ-precursor material. Granular activated carbon (GAC) decreased the level of HBQ FPs by 10-20%, where DOC removal was only 0.2-4.7%, suggesting that the GAC was not in the adsorption mode and biodegradation of HBQ precursors may have been occurring. Ozonation destroyed/transformed HBQ FPs by 10-30%, whereas anthracite/sand filtration and UV irradiation appeared to have no impact. The results demonstrated that the combined treatments did not substantially reduce HBQ precursor levels in water.

  3. Laboratory controls of precursor and temperature on the kinetics and isotopic fractionations of microbial methane for deep subsurface environments

    NASA Astrophysics Data System (ADS)

    Ling, Y.; Lin, L.; Wang, P.; Sun, C.

    2009-12-01

    In subsurface environments, the mineralization of organic carbon involves complex interactions among geological and microbial processes. As the most reduced form and the shortest hydrocarbon chain, methane, is the final product of both microbial degradation and thermal-cracking of organic matter, it serves as the connection of carbon cycles between different reservoirs. Of various mechanisms for methane formation, microbial methane constitutes 85% of the total methane inventory investigated by far. However, the mechanisms and resultant carbon isotope fingerprints of methanogenesis in environments still remained largely unknown. The types of precursors and temperature might be the most critical factors governing methanogenesis. Lots of studies have been investigating the mechanisms responsible for methanogenesis by pure cultures, but it still remains obscure with regard to which precursors are predominantly utilized by methanogens in natural settings. The effect of temperature is especially prominent for anoxic sediments within which the temperature increases with depth in accordance with the local geotherm. Commonly observed temperatures for methanogenesis span from ambient temperature to 90OC, a temperature range for most diagenetic reactions. In order to address how different precursors would be activated for microbially catalytic methane formation upon different temperatures, we incubated the sediments collected from Kuan-Tzu-Ling hot spring at temperatures up to 90OC. Five precursors including acetate, formate, methanol, methylamine, and hydrogen were added with the inocula to stimulate methanogenesis and inhibit fermentation, and were monitored together with methane production through time. Results of this experiments indicated that methanogenesis was positive at temperatures from room temperature to 80OC and precursors investigated despite substantial variations in the maximum rates and yields. In the experiment supplied with hydrogen and formate, methanogenic rates were rapid at all temperatures. Maximum methane production rates occurred at 40~50OC for incubations with methanol, 40~60OC for incubation with acetate, and 50OC for those with methylamine. The patterns of carbon isotopic compositions on methane were either consistent with the prediction of the Rayleigh fractionation in a closed system, trending toward more depleted through time or invariant through time, suggesting variable physiological responses and microbial assemblages to precursor additions. The obtained ɛ values were 0~-12‰ for incubations with acetate, -16~-45‰ for incubations with hydrogen, -50~-80‰ for incubations with methanol, and -87~-115‰ for incubations with methylamine. Acetoclastic methanogenesis appears to fractionate carbon isotopes at the smallest magnitude. This when combined with the results from positive controls and the field observation suggests that acetoclastic methanogenesis produced methane with isotopic signatures comparable with those with thermogenic in origin and contributed significantly to the total methane inventory in the Kuan-Tzu-Ling hotspring area.

  4. Formation of copper-indium-selenide and/or copper-indium-gallium-selenide films from indium selenide and copper selenide precursors

    DOEpatents

    Curtis, Calvin J [Lakewood, CO; Miedaner, Alexander [Boulder, CO; Van Hest, Maikel [Lakewood, CO; Ginley, David S [Evergreen, CO; Nekuda, Jennifer A [Lakewood, CO

    2011-11-15

    Liquid-based indium selenide and copper selenide precursors, including copper-organoselenides, particulate copper selenide suspensions, copper selenide ethylene diamine in liquid solvent, nanoparticulate indium selenide suspensions, and indium selenide ethylene diamine coordination compounds in solvent, are used to form crystalline copper-indium-selenide, and/or copper indium gallium selenide films (66) on substrates (52).

  5. Effects of ozonation, powdered activated carbon adsorption, and coagulation on the removal of disinfection by-product precursors in reservoir water.

    PubMed

    Wang, Feng; Gao, Baoyu; Yue, Qinyan; Bu, Fan; Shen, Xue

    2017-07-01

    Effects of ozonation and powdered activated carbon on removal of dissolved organic matter (DOM) and disinfection by-product (DBP) in reservoir water were intensively investigated in this study. Both the formation of carbonaceous DBP (C-DBP) and nitrogenous DBP (N-DBP) as well as their speciation were analyzed. Results exhibited that the addition of powdered activated carbon (PAC) greatly improved the removal of aromatic protein. Trihalomethanes (THMs) and haloacetonitriles (HANs) were the dominant species in C-DBP and N-DBP. The integrated coagulation and PAC processes could remove more than 70% of THMs and 93% of HANs precursors, while only 10.5 and 45% of capture were achieved by the single coagulation. The added ozone lowered the yields of HANs but synchronously increased the more toxic bromine-containing THMs from 78.5 to 128.1 μg/L. Kinetics parameters for THM formation indicated that the precursor creating the THMs fast could be easily removed by both the coagulation and PAC adsorption.

  6. Complex supramolecular interfacial tessellation through convergent multi-step reaction of a dissymmetric simple organic precursor

    NASA Astrophysics Data System (ADS)

    Zhang, Yi-Qi; Paszkiewicz, Mateusz; Du, Ping; Zhang, Liding; Lin, Tao; Chen, Zhi; Klyatskaya, Svetlana; Ruben, Mario; Seitsonen, Ari P.; Barth, Johannes V.; Klappenberger, Florian

    2018-03-01

    Interfacial supramolecular self-assembly represents a powerful tool for constructing regular and quasicrystalline materials. In particular, complex two-dimensional molecular tessellations, such as semi-regular Archimedean tilings with regular polygons, promise unique properties related to their nontrivial structures. However, their formation is challenging, because current methods are largely limited to the direct assembly of precursors, that is, where structure formation relies on molecular interactions without using chemical transformations. Here, we have chosen ethynyl-iodophenanthrene (which features dissymmetry in both geometry and reactivity) as a single starting precursor to generate the rare semi-regular (3.4.6.4) Archimedean tiling with long-range order on an atomically flat substrate through a multi-step reaction. Intriguingly, the individual chemical transformations converge to form a symmetric alkynyl-Ag-alkynyl complex as the new tecton in high yields. Using a combination of microscopy and X-ray spectroscopy tools, as well as computational modelling, we show that in situ generated catalytic Ag complexes mediate the tecton conversion.

  7. Preparation of plutonium-bearing ceramics via mechanically activated precursor

    NASA Astrophysics Data System (ADS)

    Chizhevskaya, S. V.; Stefanovsky, S. V.

    2000-07-01

    The problem of excess weapons plutonium disposition is suggested to be solved by means of its incorporation in stable ceramics with high chemical durability and radiation resistivity. The most promising host phases for plutonium as well as uranium and neutron poisons (gadolinium, hafnium) are zirconolite, pyrochlore, zircon, zirconia [1,2], and murataite [3]. Their production requires high temperatures and a fine-grained homogeneous precursor to reach final waste form with high quality and low leachability. Currently various routes to homogeneous products preparation such as sol-gel technology, wet-milling, and grinding in a ball or planetary mill are used. The best result demonstrates sol-gel technology but this route is very complicated. An alternative technology for preparation of ceramic precursors is the treatment of the oxide batch with high mechanical energy [4]. Such a treatment produces combination of mechanical (fine milling with formation of various defects, homogenization) and chemical (split bonds with formation of active centers—free radicals, ion-radicals, etc.) effects resulting in higher reactivity of the activated batch.

  8. Molecular cloning and expression of a gene for a factor which stabilizes formation of inhibitor-mitochondrial ATPase complex from Saccharomyces cerevisiae.

    PubMed

    Akashi, A; Yoshida, Y; Nakagoshi, H; Kuroki, K; Hashimoto, T; Tagawa, K; Imamoto, F

    1988-10-01

    Stabilizing factor, a 9 kDa protein, stabilizes and facilitates formation of the complex between mitochondrial ATP synthase and its intrinsic inhibitor protein. A clone containing the gene encoding the 9 kDa protein was selected from a yeast genomic library to determine the structure of its precursor protein. As deduced from the nucleotide sequence, the precursor of the yeast 9 kDa stabilizing factor contains 86 amino acid residues and has a molecular weight of 10,062. From the predicted sequence we infer that the stabilizing factor precursor contains a presequence of 23 amino acid residues at its amino terminus. We also used S1 mapping to determine the initiation site of transcription under glucose-repressed or derepressed conditions. These experiments suggest that transcription of this gene starts at three different sites and that only one of them is not affected by the presence of glucose.

  9. Multi-Step Crystallization of Barium Carbonate: Rapid Interconversion of Amorphous and Crystalline Precursors.

    PubMed

    Whittaker, Michael L; Smeets, Paul J M; Asayesh-Ardakani, Hasti; Shahbazian-Yassar, Reza; Joester, Derk

    2017-12-11

    The direct observation of amorphous barium carbonate (ABC), which transforms into a previously unknown barium carbonate hydrate (herewith named gortatowskite) within a few hundred milliseconds of formation, is described. In situ X-ray scattering, cryo-, and low-dose electron microscopy were used to capture the transformation of nanoparticulate ABC into gortatowskite crystals, highly anisotropic sheets that are up to 1 μm in width, yet only about 10 nm in thickness. Recrystallization of gortatowskite to witherite starts within 30 seconds. We describe a bulk synthesis and report a first assessment of the composition, vibrational spectra, and structure of gortatowskite. Our findings indicate that transient amorphous and crystalline precursors can play a role in aqueous precipitation pathways that may often be overlooked owing to their extremely short lifetimes and small dimensions. However, such transient precursors may be integral to the formation of more stable phases. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. The effect of natural organic matter polarity and molecular weight on NDMA formation from two antibiotics containing dimethylamine functional groups.

    PubMed

    Leavey-Roback, Shannon L; Krasner, Stuart W; Suffet, Irwin H Mel

    2016-12-01

    N-nitrosodimethylamine (NDMA) is a disinfection byproduct preferentially formed in chloraminated water. NDMA may be formed from certain chemicals containing dimethylamine (DMA) functional groups. This reaction may be slowed by the presence of natural organic matter (NOM). In this study, NOM fractionated by size or polarity was tested for its ability to slow or impede the formation of NDMA from two DMA-containing precursors, the antibiotics tetracycline and spiramycin. The high molecular weight NOM fractions (>10KDa) were shown to be the most effective in reducing the amount of NDMA formed from the precursor chemicals. The filtrate of a C-18 non-polar cartridge was also effective at reducing NDMA formation from tetracycline (spyramycin not tested). Therefore, polar and charged NOM components may be responsible for the reduction in NDMA formation. A possible mechanism for the reduction of NDMA formation from tetracycline is complexation due to the hydrogen bonding of the DMA functional group on tetracycline to polar phenolic functional groups in the NOM. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Detection, identification and formation of new iodinated disinfection byproducts in chlorinated saline wastewater effluents.

    PubMed

    Gong, Tingting; Zhang, Xiangru

    2015-01-01

    The use of seawater for toilet flushing introduces high levels of inorganic ions, including iodide ions, into a city's wastewater treatment systems, resulting in saline wastewater effluents. Chlorination is widely used in disinfecting wastewater effluents owing to its low cost and high efficiency. During chlorination of saline wastewater effluents, iodide may be oxidized to hypoiodous acid, which may further react with effluent organic matter to form iodinated disinfection byproducts (DBPs). Iodinated DBPs show significantly higher toxicity than their brominated and chlorinated analogues and thus have been drawing increasing concerns. In this study, polar iodinated DBPs were detected in chlorinated saline wastewater effluents using a novel precursor ion scan method. The major polar iodinated DBPs were identified and quantified, and their organic precursors and formation pathways were investigated. The formation of iodinated DBPs under different chlorine doses and contact times was also studied. The results indicated that a few polar iodinated DBPs were generated in the chlorinated saline primary effluent, but few were generated in the chlorinated saline secondary effluent. Several major polar iodinated DBPs in the chlorinated saline primary effluent were proposed with structures, among which a new group of polar iodinated DBPs, iodo-trihydroxybenzenesulfonic acids, were identified and quantified. The organic precursors of this new group of DBPs were found to be 4-hydroxybenzenesulfonic acid and 1,2,3-trihydroxybenzene, and the formation pathways of these new DBPs were tentatively proposed. Both chlorine dose and contact time affected the formation of iodinated DBPs in the chlorinated saline wastewater effluents.

  12. Formative Assessment Probes: Big and Small Seeds. Linking Formative Assessment Probes to the Scientific Practices

    ERIC Educational Resources Information Center

    Keeley, Page

    2016-01-01

    This column focuses on promoting learning through assessment. Formative assessment probes are designed to uncover students' ideas about objects, events, and processes in the natural world. This assessment information is then used throughout instruction to move students toward an understanding of the scientific ideas behind the probes. During the…

  13. 75 FR 1712 - Approval and Promulgation of Air Quality Implementation Plans; Mississippi; Update to Materials...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-13

    ... their EPA-approved SIP revisions. These changes revised the format for the identification of the SIP in... Section 2 is revised to read ``2/4/72.'' 2. Revising the date format listed in paragraphs 52.1270(c). Revise the date format in the ``State effective date,'' and ``EPA approval date,'' columns for...

  14. Enantioseparation on cellulose dimethylphenylcarbamate-modified zirconia monolithic columns by reversed-phase capillary electrochromatography.

    PubMed

    Kumar, Avvaru Praveen; Park, Jung Hag

    2010-06-25

    This work reports the preparation of monolithic zirconia chiral columns for separation of enantiomeric compounds by capillary electrochromatography (CEC). Using sol-gel technology, a porous monolith having interconnected globular-like structure with through-pores is synthesized in the capillary column as a first step in the synthesis of monolithic zirconia chiral capillary columns. In the second step, the surface of the monolith is modified by coating with cellulose tris(3,5-dimethylphenylcarbamate) (CDMPC) as the chiral stationary phase to obtain a chiral column (CDMPCZM). The process of the preparation of the zirconia monolithic capillary column was investigated by varying the concentrations of the components of the sol solution including polyethylene glycol, water and acetic acid. CDMPCZM is mechanically stable and no bubble formation was detected with the applied current of up to 30 microA. The enantioseparation behavior of the CDMPCZM columns was investigated by separating a set of 10 representative chiral compounds by varying the applied voltage and pH and organic composition of the aqueous organic mobile phases. Copyright 2010 Elsevier B.V. All rights reserved.

  15. Enhanced light element imaging in atomic resolution scanning transmission electron microscopy.

    PubMed

    Findlay, S D; Kohno, Y; Cardamone, L A; Ikuhara, Y; Shibata, N

    2014-01-01

    We show that an imaging mode based on taking the difference between signals recorded from the bright field (forward scattering region) in atomic resolution scanning transmission electron microscopy provides an enhancement of the detectability of light elements over existing techniques. In some instances this is an enhancement of the visibility of the light element columns relative to heavy element columns. In all cases explored it is an enhancement in the signal-to-noise ratio of the image at the light column site. The image formation mechanisms are explained and the technique is compared with earlier approaches. Experimental data, supported by simulation, are presented for imaging the oxygen columns in LaAlO₃. Case studies looking at imaging hydrogen columns in YH₂ and lithium columns in Al₃Li are also explored through simulation, particularly with respect to the dependence on defocus, probe-forming aperture angle and detector collection aperture angles. © 2013 Elsevier B.V. All rights reserved.

  16. A Continuous Flow Column Study of the Anaerobic Transformation of a CAH Mixture of Tetrachloroethene and Carbon Tetrachloride Using Formate as an Electron Donor

    NASA Astrophysics Data System (ADS)

    Semprini, L.; Azizian, M. F.; Kim, Y.

    2011-12-01

    Many groundwater sites are contaminated with mixtures of chlorinated aliphatic hydrocarbons (CAHs) that represent a challenge when biological remediation processes are being considered. This is especially challenging when high concentrations of CAHs are present.Trichloromethane (CF), for example, has been observed to inhibit and potentially exert toxicity on reductive dehalogenation of tetrachloroethene (PCE) and trichloroethene (TCE). Results will be presented from a continuous flow column study where the simultaneous transformation of PCE and carbon tetrachloride (CT) was achieved. The column was packed with a quartz sand and bioaugmented with the Evanite Culture (EV) that is capable of transforming PCE to ethene. The column was fed a synthetic groundwater that was amended with PCE to achieve an influent concentration near its solubility limit (0.10 mM) and formate (1.5 mM) that reacts to produce hydrogen as the ultimate electron donor. The column was operated for over 1600 days prior to the addition of CT. During this period PCE was transformed mainly to vinyl chloride (VC) and ethene (ETH) and minor amounts of cis-dichloroethene (cis-DCE) and TCE. The transformation extent achieved based on the column effluent concentrations ranged from about 50% ETH, 30% VC, and 20 cis-DCE up to 80% ETH and 20% VC. When the column was fed sulfate, it was completely transformed via sulfate reduction. Ferrous iron production from ferric iron reduction was observed early in the study. Acetate was also formed as a result of homoacetogenesis from hydrogen utilization. CT addition (0.015 mM) was started at 1600 days while PCE addition was continued. During the first 25 days of CT addition, CT concentrations gradually increased to 50% of the injection concentration and chloromethane (CM) and CF were observed as transformation products. CT concentrations then decreased with over 98% transformation achieved.CM was removed to below the detection limit and CF concentration decreases to about 0.003 mM, representing 20% of the CT transformed. Other transformation products have not been identified. Neither methane nor carbon monoxide have been detected as transformation products. The transformation of PCE to ethene actually improved after the addition of CT. Thus, neither CT nor CF are inhibiting the reductive dehalogenation of PCE. The improvement in PCE transformation extent coincided with an increase in the aqueous hydrogen concentration from 5 nM, prior to CT addition, to 150 nM after CT addition. This increase in hydrogen was associated with the inhibition in acetate production and the increase in formate concentrations from below detection to 1.0 mM after CT addition. The results indicate that there are likely benefits in adding formate to produce hydrogen when contaminants are present that can inhibit fermentation. The results from the column study are consistent with our observations in batch reactors using the EV culture.

  17. Isoprenoid hydrocarbons produced by thermal alteration of Nostoc muscorum and Rhodopseudomonas spheroides

    NASA Technical Reports Server (NTRS)

    Philp, R. P.; Brown, S.; Calvin, M.

    1978-01-01

    The potential of algae and photosynthetic bacteria to serve as precursors of kerogen was studied to determine what factors affect the relative rates of formation of precursor hydrocarbons. Cells of Nostoc muscorum and Rhodopseudomonas spheroides were subjected to thermal alteration (by heating samples in glass tubes sealed under nitrogen) for two, four, and twelve weeks. Both unextracted and extracted cells in the absence and presence of montmorillonite were investigated, and the isoprenoid hydrocarbons produced in these experiments were determined. Phytane and five isomeric phytenes were the main hydrocarbons observed; their relative rates of formation in the different experimental conditions are described. No phytadienes, pristane, or pristenes were detected.

  18. Pd-Pt and Fe-Ni nanoparticles formed by covalent molecular assembly in supercritical carbon dioxide.

    PubMed

    Puniredd, Sreenivasa Reddy; Weiyi, Seah; Srinivasan, M P

    2008-04-01

    We report the formation of Pd-Pt nanoparticles within a dendrimer-laden ultrathin film matrix immobilized on a solid support and constructed by covalent layer-by-layer (LbL) assembly using supercritical carbon dioxide (SCCO2) as the processing medium. Particle size distribution and composition were controlled by precursor composition. The precursor compositions are optimized for Pd-Pt nanoparticles and later extended to the formation of Fe-Ni nanoparticles. As an example of the application of nanoparticles in tribology, Fe-Ni nanoparticle-laden films were observed to exhibit better tribological properties than those containing the monometallic species, thereby suggesting that combination of nanoparticles can be used to derive greater benefits.

  19. Quercetin prevents protein nitration and glycolytic block of proliferation in hydrogen peroxide insulted cultured neuronal precursor cells (NPCs): Implications on CNS regeneration.

    PubMed

    Sajad, Mir; Zargan, Jamil; Zargar, Mohammad Afzal; Sharma, Jyoti; Umar, Sadiq; Arora, Rajesh; Khan, Haider A

    2013-05-01

    Survival along with optimal proliferation of neuronal precursors determines the outcomes of the endogenous cellular repair in CNS. Cellular-oxidation based cell death has been described in several neurodegenerative disorders. Therefore, this study was aimed at the identification of the potent targets of oxidative damage to the neuronal precursors and its effective prevention by a natural flavonoid, Quercetin. Neuronal precursor cells (NPCs), Nestin+ and GFAP (Glial fibrillary acidic protein)+ were isolated and cultured from adult rat SVZ (subventricular zone). These cells were challenged with a single dose of H2O2 (50μM) and/or pre-treated with different concentrations of Quercetin. H2O2 severely limited the cellular viability and expansion of the neurospheres. Cellular-oxidation studies revealed reduction in glutathione dependent redox buffering along with depletion of enzymatic cellular antioxidants that might potentiate the nitrite (NO2(-)) and superoxide anion (O2(-)) mediated peroxynitrite (ONOO(-)) formation and irreversible protein nitration. We identified depleted PK-M2 (M2 isoform of pyruvate kinase) activity and apoptosis of NPCs revealed by the genomic DNA fragmentation and elevated PARP (poly ADP ribose polymerase) activity along with increased Caspase activity initiated by severely depolarised mitochondrial membranes. However, the pre-treatment of Quercetin in a dose-response manner prevented these changes and restored the expansion of neurospheres preferably by neutralizing the oxidative conditions and thereby reducing peroxynitrite formation, protein nitration and PK-M2 depletion. Our results unravel the potential interactions of oxidative environment and respiration in the survival and activation of precursors and offer a promise shown by a natural flavonoid in the protective strategy for neuronal precursors of adult brain. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Assessing the contribution of wetlands and subsided islands to dissolved organic matter and disinfection byproduct precursors in the Sacramento-San Joaquin River Delta: A geochemical approach

    USGS Publications Warehouse

    Kraus, T.E.C.; Bergamaschi, B.A.; Hernes, P.J.; Spencer, R.G.M.; Stepanauskas, R.; Kendall, C.; Losee, R.F.; Fujii, R.

    2008-01-01

    This study assesses how rivers, wetlands, island drains and open water habitats within the Sacramento-San Joaquin River Delta affect dissolved organic matter (DOM) content and composition, and disinfection byproduct (DBP) formation. Eleven sites representative of these habitats were sampled on six dates to encompass seasonal variability. Using a suite of qualitative analyses, including specific DBP formation potential, absorbance, fluorescence, lignin content and composition, C and N stable isotopic compositions, and structural groupings determined using CPMAS (cross polarization, magic angle spinning) 13C NMR, we applied a geochemical fingerprinting approach to characterize the DOM from different Delta habitats, and infer DOM and DBP precursor sources and estimate the relative contribution from different sources. Although river input was the predominant source of dissolved organic carbon (DOC), we observed that 13-49% of the DOC exported from the Delta originated from sources within the Delta, depending on season. Interaction with shallow wetlands and subsided islands significantly increased DOC and DBP precursor concentrations and affected DOM composition, while deep open water habitats had little discernable effect. Shallow wetlands contributed the greatest amounts of DOM and DBP precursors in the spring and summer, in contrast to island drains which appeared to be an important source during winter months. The DOM derived from wetlands and island drains had greater haloacetic acid precursor content relative to incoming river water, while two wetlands contributed DOM with greater propensity to form trihalomethanes. These results are pertinent to restoration of the Delta. Large scale introduction of shallow wetlands, a proposed restoration strategy, could alter existing DOC and DBP precursor concentrations, depending on their hydrologic connection to Delta channels. ?? 2008 Elsevier Ltd.

  1. Observational discrimination between modes of shock propagation in interstellar clouds: Predictions of CH+ and SH+ column densities in diffuse clouds

    NASA Technical Reports Server (NTRS)

    Flower, D. R.; Desforets, G. P.; Roueff, E.; Hartquist, T. W.

    1986-01-01

    Considerable effort in recent years has been devoted to the study of shocks in the diffuse interstellar medium. This work has been motivated partly by the observations of rotationally excited states of H2, and partly by the realization that species such as CH(+), OH and H2O might be formed preferentially in hot, post-shock gas. The problem of CH(+) and the difficulties encountered when trying to explain the high column densities, observed along lines of sight to certain hot stars, have been reviewed earlier. The importance of a transverse magnetic field on the structure of an interstellar shock was also demonstrated earlier. Transverse magnetic fields above a critical strength give rise to an acceleration zone or precursor, in which the parameters on the flow vary continuously. Chemical reactions, which change the degree of ionization of the gas, also modify the structure of the shock considerably. Recent work has shown that large column densities of CH(+) can be produced in magnetohydrodynamic shock models. Shock speeds U sub s approx. = 10 km/s and initial magnetic field strengths of a few micro G are sufficient to produce ion-neutral drift velocities which can drive the endothermic C(+)(H2,H)CH(+) reaction. It was also shown that single-fluid hydrodynamic models do not generate sufficiently large column densities of CH(+) unless unacceptably high shock velocities (u sub s approx. 20 km/s) are assumed in the models. Thus, the observed column densities of CH(+) provide a constraint on the mode of shock propagation in diffuse clouds. More precisely, they determine a lower limit to the ion-neutral drift velocity.

  2. Template-assisted mineral formation via an amorphous liquid phase precursor route

    NASA Astrophysics Data System (ADS)

    Amos, Fairland F.

    The search for alternative routes to synthesize inorganic materials has led to the biomimetic route of producing ceramics. In this method, materials are manufactured at ambient temperatures and in aqueous solutions with soluble additives and insoluble matrix, similar to the biological strategy for the formation of minerals by living organisms. Using this approach, an anionic polypeptide additive was used to induce an amorphous liquid-phase precursor to either calcium carbonate or calcium phosphate. This precursor was then templated on either organic or inorganic substrates. Non-equilibrium morphologies, such as two-dimensional calcium carbonate films, one-dimensional calcium carbonate mesostructures and "molten" calcium phosphate spherulites were produced, which are not typical of the traditional (additive-free) solution grown crystals in the laboratory. In the study of calcium carbonate, the amorphous calcium carbonate mineral formed via the liquid-phase precursor, either underwent a dissolution-recrystallization event or a pseudo-solid-state transformation to produce different morphologies and polymorphs of the mineral. Discrete or aggregate calcite crystals were formed via the dissolution of the amorphous phase to allow the reprecipitation of the stable crystal. Non-equilibrium morphologies, e.g., films, mesotubules and mesowires were templated using organic and inorganic substrates and compartments. These structures were generated via an amorphous solid to crystalline solid transformation. Single crystalline tablets and mesowires of aragonite, which are reported to be found only in nature as skeletal structures of marine organisms, such as mollusk nacre and echinoderm teeth, were successfully synthesized. These biomimetic structures were grown via the polymer-induced liquid-phase precursor route in the presence of magnesium. Only low magnesium-bearing calcite was formed in the absence of the polymer. A similar approach of using a polymeric additive was implemented in calcium phosphate. Spherulitic crystals and films, seemingly formed from a molten state, were produced. These structures served as nucleating surfaces for the radial formation of calcium oxalate minerals. The composite calcium phosphate-calcium oxalate assemblies are similar to the core-shell structures found in certain kidney stones.

  3. Development of a microcapillary column for detecting targeted messenger RNA molecules.

    PubMed

    Ohnishi, Michihiro

    2006-03-24

    A capillary column in a rapid-flow system has been developed for detecting targeted messenger RNA (mRNA) molecules. The column has a structure made of two beds-one bed of porous microbeads and one bed of microbeads with a polythymidine base sequence. The targeted eukaryotic mRNA molecules are detected by two-step hybridization (sandwich hybridization) composed of polyadenosine selection of mRNA molecules and formation of a probe-target (targeted mRNA) hybrid. The sandwich hybridization, which is accomplished within 1 h, was tested using synthetic polydeoxynucleotides. Ten picomoles of the targeted polydeoxynucleotide were detected.

  4. Formative Assessment Probes: Representing Microscopic Life

    ERIC Educational Resources Information Center

    Keeley, Page

    2011-01-01

    This column focuses on promoting learning through assessment. The author discusses the formative assessment probe "Pond Water," which reveals how elementary children will often apply what they know about animal structures to newly discovered microscopic organisms, connecting their knowledge of the familiar to the unfamiliar through…

  5. Using RSSCTs to predict field-scale GAC control of DBP formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cummings, L.; Summers, R.S.

    1994-06-01

    The primary objective of this study was to evaluate the use of the rapid small-scale column test (RSSCT) for predicting the control of disinfection by-product (DBP) formation by granular activated carbon (GAC). DBP formation was assessed by using a simulated distribution system (SDS) test and measuring trihalomethanes and total organic halide in the influent and effluent of the laboratory- and field-scale columns. It was observed that for the water studied, the RSSCTs effectively predicted the nonabsorbable fraction, time to 50 percent breakthrough, and the shape of the breakthrough curve for DBP formation. The advantage of RSSCTs is that conclusions aboutmore » the amenability of a GAC for DBP control can be reached in a short time period instead of at the end of a long-term pilot study. The authors recommend that similar studies be conducted with a range of source waters because the effectiveness of GAC is site-specific.« less

  6. Vortex formation through inertial wave focusing

    NASA Astrophysics Data System (ADS)

    Duran-Matute, Matias; Flor, Jan-Bert; Godeferd, Fabien

    2011-11-01

    We present a novel experimental and numerical study on the formation of columnar vortical structures by inertial waves in a rotating fluid. Two inertial-wave cones are generated by a vertically oscillating torus in a fluid in solid body rotation At the tip of the cones, there is a singular point towards which the energy of the waves gets focused. The particularity of this configuration, as compared to those of previous experiments (e.g. oscillating sphere or disc), is that the singular point's position within the fluid leads to complex non-linear wave interaction, which may lead to the formation of a localized vortex that expands in the vertical in the form of a Taylor column. Using detailed PIV measurements we consider the flow evolution from the localized wave overturning motion to the Taylor column formation as well as the inertial wave dynamics during this process, The results are discussed in the context of turbulence in rotating fluids. We acknowledge financial support from projects ANR ANISO and CIBLE.

  7. Two-dimensional high-performance liquid chromatographic method to assay p-hydroxyphenylphenylhydantoin enantiomers in biological fluids and stereoselectivity of enzyme induction in phenytoin metabolism.

    PubMed

    Hsieh, C Y; Huang, J D

    1992-03-13

    A two-dimensional high-performance liquid chromatographic method was developed to assay the enantiomers of a major phenytoin metabolite, p-hydroxyphenylphenylhydantoin (p-HPPH). Racemic p-HPPH was first separated from phenytoin and other interfering peaks by a reversed-phase column and monitored by an ultraviolet detector. At the retention time of p-HPPH, the racemic p-HPPH peak was automatically transferred to a chiral ligand-exchange column to separate R-p-HPPH and S-p-HPPH by a time-programmed column-switching valve. The ratio of enantiomers was measured by a second ultraviolet detector. The method can be used to assay R- and S-p-HPPH enantiomers with reasonable sensitivity and reproducibility. By using this method, the stereoselectivity of enzyme induction and inhibition of phenytoin metabolism was investigated. Male rats were treated with phenobarbital, 3-methylcholanthrene, acetone, Aroclor 1254, pregnenolone-16 alpha-carbonitrile, dexamethasone and isosafrole. Microsomes were prepared from the rat liver and phenytoin hydroxylation was measured. Pretreatment with phenobarbital, pregnenolone-16 alpha-carbonitrile or acetone induced phenytoin metabolism non-stereoselectively. Pretreatment with dexamethasone decreased R-p-HPPH formation without affecting the formation of S-p-HPPH. Liver microsomes from female rats showed a higher S-p-HPPH formation, whereas R-p-HPPH formation remained the same. Various inhibitors were added to inhibit phenytoin metabolism by control microsomes. Sulphaphenazole, ketoconazole, 4,4-di(p-methoxyphenyl)hydantoin, cimetidine and diazepam inhibited the formation of R- and S-p-HPPH. Quinidine, tolbutamide and mephenytoin showed no significant inhibitory activity. None of these inhibitors showed stereoselectivity.

  8. A sensitive LC-MS/MS method for the quantification of febuxostat in human plasma and its pharmacokinetic application.

    PubMed

    Vaka, Venkata Rami Reddy; Inamadugu, Jaswanth Kumar; Pilli, Nageswara Rao; Ramesh, Mullangi; Katreddi, Hussain Reddy

    2013-11-01

    An improved, simple and highly sensitive LC-MS/MS method has been developed and validated for quantification of febuxostat with 100 μL human plasma using febuxostat-d7 as an internal standard (IS) according to regulatory guidelines. The analyte and IS were extracted from human plasma via liquid-liquid extraction using diethyl ether. The chromatographic separation was achieved on a Zorbax C18 column using a mixture of acetonitrile and 5 mm ammonium formate (60:40, v/v) as the mobile phase at a flow rate of 0.5 mL/min. The total run time was 5.0 min and the elution of febuxostat and IS occurred at 1.0 and 1.5 min, respectively. A linear response function was established for the range of concentrations 1-6000 ng/mL (r > 0.99). The precursor to product ion transitions monitored for febuxostat and IS were m/z 317.1 → 261.1 and 324.2 → 262.1, respectively. The intra- and inter-day precisions (%RSD) were within 1.29-9.19 and 2.85-7.69%, respectively. The proposed method was successfully applied to pharmacokinetic studies in humans. Copyright © 2013 John Wiley & Sons, Ltd.

  9. Mass Balance of Perfluoroalkyl Acids in the Baltic Sea

    PubMed Central

    2013-01-01

    A mass balance was assembled for perfluorohexanoic acid (PFHxA), perfluorooctanoic acid (PFOA), perfluorodecanoic acid (PFDA), and perfluorooctanesulfonic acid (PFOS) in the Baltic Sea. Inputs (from riverine discharge, atmospheric deposition, coastal wastewater discharges, and the North Sea) and outputs (to sediment burial, transformation of the chemical, and the North Sea), as well as the inventory in the Baltic Sea, were estimated from recently published monitoring data. Formation of the chemicals in the water column from precursors was not considered. River inflow and atmospheric deposition were the dominant inputs, while wastewater treatment plant (WWTP) effluents made a minor contribution (<5%). A mass balance of the Oder River watershed was assembled to explore the sources of the perfluoroalkyl acids (PFAAs) in the river inflow. It indicated that WWTP effluents made only a moderate contribution to riverine discharge (21% for PFOA, 6% for PFOS), while atmospheric deposition to the watershed was 1–2 orders of magnitude greater than WWTP discharges. The input to the Baltic Sea exceeded the output for all four PFAAs, suggesting that inputs were higher during 2005–2010 than during the previous 20 years despite efforts to reduce emissions of PFAAs. One possible explanation is the retention and delayed release of PFAAs from atmospheric deposition in the soils and groundwater of the watershed. PMID:23528236

  10. NO ICE HYDROGENATION: A SOLID PATHWAY TO NH{sub 2}OH FORMATION IN SPACE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Congiu, Emanuele; Dulieu, Francois; Chaabouni, Henda

    2012-05-01

    Icy dust grains in space act as catalytic surfaces onto which complex molecules form. These molecules are synthesized through exothermic reactions from precursor radicals and, mostly, hydrogen atom additions. Among the resulting products are species of biological relevance, such as hydroxylamine-NH{sub 2}OH-a precursor molecule in the formation of amino acids. In this Letter, laboratory experiments are described that demonstrate NH{sub 2}OH formation in interstellar ice analogs for astronomically relevant temperatures via successive hydrogenation reactions of solid nitric oxide (NO). Inclusion of the experimental results in an astrochemical gas-grain model proves the importance of a solid-state NO+H reaction channel as amore » starting point for prebiotic species in dark interstellar clouds and adds a new perspective to the way molecules of biological importance may form in space.« less

  11. Model compound study of the pathways for aromatic hydrocarbon formation in soot.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomczyk, N. A.; Hunt, J. E.; Winans, R. E.

    2002-04-29

    To explore the mechanisms for formation of aromatic hydrocarbons as precursors to soot, a model system using combustion of biphenyl in a fuel rich flame is studied. The soots acquired at three different temperatures are solvent extracted and the extract characterized by both GCMS and high resolution mass spectrometry. A description of the NMR results for the whole soots has been published (1). The production of most products could be rationalized from the coupling of biphenyls and subsequent aromatic species and the addition of acetylenes to existing aromatic molecules. Early work by Badger on pyrolysis of hydrocarbons is used inmore » developing these schemes (2). The reaction schemes to produce larger aromatic hydrocarbons will be discussed. Richter and Howard have discussed in detail potential reaction mechanisms in the formation of aromatics as precursors to soot (3).« less

  12. Fullerene-like WS(2) nanoparticles and nanotubes by the vapor-phase synthesis of WCl(n) and H(2)S.

    PubMed

    Margolin, A; Deepak, F L; Popovitz-Biro, R; Bar-Sadan, M; Feldman, Y; Tenne, R

    2008-03-05

    Inorganic fullerene-like (IF) nanoparticles and nanotubes of WS(2) were synthesized by a gas phase reaction starting from WCl(n) (n = 4, 5, 6) and H(2)S. The effect of the various metal chloride precursors on the formation of the products was investigated during the course of the study. Various parameters have been studied to understand the growth and formation of the IF-WS(2) nanoparticles and nanotubes. The parameters that have been studied include flow rates of the various carrier gases, heating of the precursor metal chlorides and the temperature at which the reactions were carried out. The best set of conditions wherein maximum yields of the high quality pure-phase IF-WS(2) nanoparticles and nanotubes are obtained have been identified. A detailed growth mechanism has been outlined to understand the course of formation of the various products of WS(2).

  13. Fullerene-like WS2 nanoparticles and nanotubes by the vapor-phase synthesis of WCln and H2S

    NASA Astrophysics Data System (ADS)

    Margolin, A.; Deepak, F. L.; Popovitz-Biro, R.; Bar-Sadan, M.; Feldman, Y.; Tenne, R.

    2008-03-01

    Inorganic fullerene-like (IF) nanoparticles and nanotubes of WS2 were synthesized by a gas phase reaction starting from WCln (n = 4, 5, 6) and H2S. The effect of the various metal chloride precursors on the formation of the products was investigated during the course of the study. Various parameters have been studied to understand the growth and formation of the IF-WS2 nanoparticles and nanotubes. The parameters that have been studied include flow rates of the various carrier gases, heating of the precursor metal chlorides and the temperature at which the reactions were carried out. The best set of conditions wherein maximum yields of the high quality pure-phase IF-WS2 nanoparticles and nanotubes are obtained have been identified. A detailed growth mechanism has been outlined to understand the course of formation of the various products of WS2.

  14. TOO MANY MOUTHS promotes cell fate progression in stomatal development of Arabidopsis stems.

    PubMed

    Bhave, Neela S; Veley, Kira M; Nadeau, Jeanette A; Lucas, Jessica R; Bhave, Sanjay L; Sack, Fred D

    2009-01-01

    Mutations in TOO MANY MOUTHS (TMM), which encodes a receptor-like protein, cause stomatal patterning defects in Arabidopsis leaves but eliminate stomatal formation in stems. Stomatal development in wild-type and tmm stems was analyzed to define TMM function. Epidermal cells in young tmm stems underwent many asymmetric divisions characteristic of entry into the stomatal pathway. The resulting precursor cells, meristemoids, appropriately expressed cell fate markers such as pTMM:GFP. However, instead of progressing developmentally by forming a guard mother cell, the meristemoids arrested, dedifferentiated, and enlarged. Thus asymmetric divisions are necessary but not sufficient for stomatal formation in stems, and TMM promotes the fate and developmental progression of early precursor cells. Comparable developmental and mature stomatal phenotypes were also found in tmm hypocotyls and in the proximal flower stalk. TMM is also a positive regulator of meristemoid division in leaves suggesting that TMM generally promotes meristemoid activity. Our results are consistent with a model in which TMM interacts with other proteins to modulate precursor cell fate and progression in an organ and domain-specific manner. Finally, the consistent presence of a small number of dedifferentiated meristemoids in mature wild-type stems suggests that precursor cell arrest is a normal feature of Arabidopsis stem development.

  15. Low Thermal Conductivity Yttrium Aluminum Garnet Thermal Barrier Coatings Made by the Solution Precursor Plasma Spray: Part II—Planar Pore Formation and CMAS Resistance

    NASA Astrophysics Data System (ADS)

    Kumar, Rishi; Jiang, Chen; Wang, Jiwen; Cietek, Drew; Roth, Jeffery; Gell, Maurice; Jordan, Eric H.

    2018-06-01

    Low thermal conductivity in yttrium aluminum garnet (YAG)-based thermal barrier coatings (TBCs) made by solution precursor plasma spray (SPPS) can be achieved by creating planar arrays of porosity called inter-pass boundaries (IPBs) as shown in Part I. In the current work, the mechanism of IPBs formation is studied through analysis of precursor entrainment and collection of single/raster step deposition patterns. It is concluded that the IPBs are formed by trapping precursor that under/over penetrates the plasma jet. CMAS interaction tests on SPPS YAG TBCs with heavy IPBs show an improvement of 123X and 15X over APS YSZ and SPPS YAG-light IPBs TBCs, respectively. It is demonstrated that the exceptional coating performance is because of the engineered heavy IPBs which branch out from the vertical cracks and run parallel to the surface. The CMAS melt gets drawn in the IPBs due to the capillary forces, leading to a shallow infiltration depth. The IPBs have a porosity of 70%, thus act as reservoirs for CMAS. Based on the favorable results, an alternate CMAS mitigation strategy is proposed that solely relies on microstructural features instead of the conventional approach where a vigorous reaction between CMAS-TBCs is desirable to form secondary phases.

  16. Product Distribution from Precursor Bite Angle Variation in Multitopic Alkyne Metathesis: Evidence for a Putative Kinetic Bottleneck.

    PubMed

    Moneypenny, Timothy P; Yang, Anna; Walter, Nathan P; Woods, Toby J; Gray, Danielle L; Zhang, Yang; Moore, Jeffrey S

    2018-05-02

    In the dynamic synthesis of covalent organic frameworks and molecular cages, the typical synthetic approach involves heuristic methods of discovery. While this approach has yielded many remarkable products, the ability to predict the structural outcome of subjecting a multitopic precursor to dynamic covalent chemistry (DCC) remains a challenge in the field. The synthesis of covalent organic cages is a prime example of this phenomenon, where precursors designed with the intention of affording a specific product may deviate dramatically when the DCC synthesis is attempted. As such, rational design principles are needed to accelerate discovery in cage synthesis using DCC. Herein, we test the hypothesis that precursor bite angle contributes significantly to the energy landscape and product distribution in multitopic alkyne metathesis (AM). By subjecting a series of precursors with varying bite angles to AM, we experimentally demonstrate that the product distribution, and convergence toward product formation, is strongly dependent on this geometric attribute. Surprisingly, we discovered that precursors with the ideal bite angle (60°) do not afford the most efficient pathway to the product. The systematic study reported here illustrates how seemingly minor adjustments in precursor geometry greatly affect the outcome of DCC systems. This research illustrates the importance of fine-tuning precursor geometric parameters in order to successfully realize desirable targets.

  17. Impact of Nitrification on the Formation of N-Nitrosamines and Halogenated Disinfection Byproducts within Distribution System Storage Facilities.

    PubMed

    Zeng, Teng; Mitch, William A

    2016-03-15

    Distribution system storage facilities are a critical, yet often overlooked, component of the urban water infrastructure. This study showed elevated concentrations of N-nitrosodimethylamine (NDMA), total N-nitrosamines (TONO), regulated trihalomethanes (THMs) and haloacetic acids (HAAs), 1,1-dichloropropanone (1,1-DCP), trichloroacetaldehyde (TCAL), haloacetonitriles (HANs), and haloacetamides (HAMs) in waters with ongoing nitrification as compared to non-nitrifying waters in storage facilities within five different chloraminated drinking water distribution systems. The concentrations of NDMA, TONO, HANs, and HAMs in the nitrifying waters further increased upon application of simulated distribution system chloramination. The addition of a nitrifying biofilm sample collected from a nitrifying facility to its non-nitrifying influent water led to increases in N-nitrosamine and halogenated DBP formation, suggesting the release of precursors from nitrifying biofilms. Periodic treatment of two nitrifying facilities with breakpoint chlorination (BPC) temporarily suppressed nitrification and reduced precursor levels for N-nitrosamines, HANs, and HAMs, as reflected by lower concentrations of these DBPs measured after re-establishment of a chloramine residual within the facilities than prior to the BPC treatment. However, BPC promoted the formation of halogenated DBPs while a free chlorine residual was maintained. Strategies that minimize application of free chlorine while preventing nitrification are needed to control DBP precursor release in storage facilities.

  18. Advanced glycoxidation and lipoxidation end products (AGEs and ALEs): an overview of their mechanisms of formation.

    PubMed

    Vistoli, G; De Maddis, D; Cipak, A; Zarkovic, N; Carini, M; Aldini, G

    2013-08-01

    Advanced lipoxidation end products (ALEs) and advanced glycation end products (AGEs) have a pathogenetic role in the development and progression of different oxidative-based diseases including diabetes, atherosclerosis, and neurological disorders. AGEs and ALEs represent a quite complex class of compounds that are formed by different mechanisms, by heterogeneous precursors and that can be formed either exogenously or endogenously. There is a wide interest in AGEs and ALEs involving different aspects of research which are essentially focused on set-up and application of analytical strategies (1) to identify, characterize, and quantify AGEs and ALEs in different pathophysiological conditions; (2) to elucidate the molecular basis of their biological effects; and (3) to discover compounds able to inhibit AGEs/ALEs damaging effects not only as biological tools aimed at validating AGEs/ALEs as drug target, but also as promising drugs. All the above-mentioned research stages require a clear picture of the chemical formation of AGEs/ALEs but this is not simple, due to the complex and heterogeneous pathways, involving different precursors and mechanisms. In view of this intricate scenario, the aim of the present review is to group the main AGEs and ALEs and to describe, for each of them, the precursors and mechanisms of formation.

  19. The enhanced removal of carbonaceous and nitrogenous disinfection by-product precursors using integrated permanganate oxidation and powdered activated carbon adsorption pretreatment.

    PubMed

    Chu, Wenhai; Yao, Dechang; Gao, Naiyun; Bond, Tom; Templeton, Michael R

    2015-12-01

    Pilot-scale tests were performed to reduce the formation of a range of carbonaceous and nitrogenous disinfection by-products (C-, N-DBPs), by removing or transforming their precursors, with an integrated permanganate oxidation and powdered activated carbon adsorption (PM-PAC) treatment process before conventional water treatment processes (coagulation-sedimentation-filtration, abbreviated as CPs). Compared with the CPs, PM-PAC significantly enhanced the removal of DOC, DON, NH3(+)-N, and algae from 52.9%, 31.6%, 71.3%, and 83.6% to 69.5%, 61.3%, 92.5%, and 97.5%, respectively. PM pre-oxidation alone and PAC pre-adsorption alone did not substantially reduce the formation of dichloroacetonitrile, trichloroacetonitrile, N-nitrosodimethylamine and dichloroacetamide. However, the PM-PAC integrated process significantly reduced the formation of both C-DBPs and N-DBPs by 60-90% for six C-DBPs and 64-93% for six N-DBPs, because PM oxidation chemically altered the molecular structures of nitrogenous organic compounds and increased the adsorption capacity of the DBP precursors, thus highlighting a synergistic effect of PM and PAC. PM-PAC integrated process is a promising drinking water technology for the reduction of a broad spectrum of C-DBPs and N-DBPs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. The structure-directed effect of Al-based metal–organic frameworks on fabrication of alumina by thermal treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Dandan, E-mail: liudandan_upc@126.com; Dai, Fangna, E-mail: fndai@upc.edu.cn; Collage of Science, China University of Petroleum

    2015-05-15

    Highlights: • We use Al-MOFs as precursor in the fabrication process of mesoporous alumina by thermal treatment. • The obtained mesoporous alumina has dual pore system and five-fold aluminum. • The aluminum building units in the precursor show structure-directed effect on the formation of alumina. - Abstract: In this work, the block-shaped Al-based metal–organic frameworks (Al-MOFs) MIL-53 have been synthesized by hydrothermal method. To detect the correlation between the structure of Al-MOFs and the formation of alumina, the ligands are eliminated by thermal treatment. MIL-53 and the calcination products were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR),more » scanning electron microscope (SEM), transmission electron microscopy (TEM), nitrogen adsorption–desorption and solid-state {sup 27}Al nuclear magnetic resonance ({sup 27}Al NMR). It was found that after calcination, the block-shaped Al-MOFs precursor turns into high-crystallinity mesoporous alumina nanosheets, and the thermal treatment product γ-alumina possesses a dual pore system and a large surface area (146 m{sup 2}/g), with five-fold aluminum. During the thermal treatment process, the structure of MIL-53 and its secondary building units have structure-directed effect in the formation of alumina.« less

  1. Review of Urban Secondary Organic Aerosol Formation from Gasoline and Diesel Motor Vehicle Emissions.

    PubMed

    Gentner, Drew R; Jathar, Shantanu H; Gordon, Timothy D; Bahreini, Roya; Day, Douglas A; El Haddad, Imad; Hayes, Patrick L; Pieber, Simone M; Platt, Stephen M; de Gouw, Joost; Goldstein, Allen H; Harley, Robert A; Jimenez, Jose L; Prévôt, André S H; Robinson, Allen L

    2017-02-07

    Secondary organic aerosol (SOA) is formed from the atmospheric oxidation of gas-phase organic compounds leading to the formation of particle mass. Gasoline- and diesel-powered motor vehicles, both on/off-road, are important sources of SOA precursors. They emit complex mixtures of gas-phase organic compounds that vary in volatility and molecular structure-factors that influence their contributions to urban SOA. However, the relative importance of each vehicle type with respect to SOA formation remains unclear due to conflicting evidence from recent laboratory, field, and modeling studies. Both are likely important, with evolving contributions that vary with location and over short time scales. This review summarizes evidence, research needs, and discrepancies between top-down and bottom-up approaches used to estimate SOA from motor vehicles, focusing on inconsistencies between molecular-level understanding and regional observations. The effect of emission controls (e.g., exhaust aftertreatment technologies, fuel formulation) on SOA precursor emissions needs comprehensive evaluation, especially with international perspective given heterogeneity in regulations and technology penetration. Novel studies are needed to identify and quantify "missing" emissions that appear to contribute substantially to SOA production, especially in gasoline vehicles with the most advanced aftertreatment. Initial evidence suggests catalyzed diesel particulate filters greatly reduce emissions of SOA precursors along with primary aerosol.

  2. N-nitrosodimethylamine and trihalomethane formation and minimisation in Southeast Queensland drinking water.

    PubMed

    Knight, Nicole; Watson, Kalinda; Farré, Maria José; Shaw, Glen

    2012-07-01

    This study assesses the prevalence of disinfection by-product (DBP) precursors in some Southeast Queensland drinking water sources by conducting formation potential experiments for the four regulated trihalomethanes (THMs), and the potent carcinogen, N-nitrosodimethylamine (NDMA). NDMA formation potentials were consistently low (<5-21 ng/L), and total THM (tTHM) formation potentials were consistently below the Australian Drinking Water Guideline (250 μg/L). NDMA concentration of finished drinking waters was also monitored and found to be <5 ng/L in all cases. The effect of coagulation and advanced oxidation on the formation of NDMA and THMs is also reported. UV/H(2)O(2) pre-treatment was effective in producing water with very low THMs concentrations, and UV irradiation was an effective method for NDMA degradation. H(2)O(2) was not required for the observed NDMA degradation to occur. Coagulation using alum, ferric chloride or poly(diallyldimethylammonium chloride) (polyDADMAC) was ineffective in removing DBPs precursors from the source water studied, irrespective of the low dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) attained. Rather, coagulation with polyDADMAC caused an increase in NDMA formation potential upon chloramination, and all coagulants led to an increased tTHM formation potential upon chlorination due to the high bromide concentration of the source water studied.

  3. Seasonal cycles of secondary organic aerosol tracers in rural Guangzhou, Southern China: The importance of atmospheric oxidants.

    PubMed

    Yuan, Qi; Lai, Senchao; Song, Junwei; Ding, Xiang; Zheng, Lishan; Wang, Xinming; Zhao, Yan; Zheng, Junyu; Yue, Dingli; Zhong, Liuju; Niu, Xiaojun; Zhang, Yingyi

    2018-05-21

    Thirteen secondary organic aerosol (SOA) tracers of isoprene (SOA I ), monoterpenes (SOA M ), sesquiterpenes (SOA S ) and aromatics (SOA A ) in fine particulate matter (PM 2.5 ) were measured at a Pearl River Delta (PRD) regional site for one year. The characteristics including their seasonal cycles and the factors influencing their formation in this region were studied. The seasonal patterns of SOA I , SOA M and SOA S tracers were characterized over three enhancement periods in summer (I), autumn (II) and winter (III), while the elevations of SOA A tracer (i.e., 2,3-dihydroxy-4-oxopentanoic acid, DHOPA) were observed in Periods II and III. We found that SOA formed from different biogenic precursors could be driven by several factors during a one-year seasonal cycle. Isoprene emission controlled SOA I formation throughout the year, while monoterpene and sesquiterpene emissions facilitated SOA M and SOA S formation in summer rather than in other seasons. The influence of atmospheric oxidants (O x ) was found to be an important factor of the formation of SOA M tracers during the enhancement periods in autumn and winter. The formation of SOA S tracer was influenced by the precursor emissions in summer, atmospheric oxidation in autumn and probably also by biomass burning in both summer and winter. In this study, we could not see the strong contribution of biomass burning to DHOPA as suggested by previous studies in this region. Instead, good correlations between observed DHOPA and O x as well as [NO 2 ][O 3 ] suggest the involvement of both ozone (O 3 ) and nitrogen dioxide (NO 2 ) in the formation of DHOPA. The results showed that regional air pollution may not only increase the emissions of aromatic precursors but also can greatly promote the formation processes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Spinel formation for stabilizing simulated nickel-laden sludge with aluminum-rich ceramic precursors.

    PubMed

    Shih, Kaimin; White, Tim; Leckie, James O

    2006-08-15

    The feasibility of stabilizing nickel-laden sludge from commonly available Al-rich ceramic precursors was investigated and accomplished with high nickel incorporation efficiency. To simulate the process, nickel oxide was mixed alternatively with gamma-alumina, corundum, kaolinite, and mullite and was sintered from 800 to 1480 degrees C. The nickel aluminate spinel (NiAl2O4) was confirmed as the stabilization phase for nickel and crystallized with efficiencies greater than 90% for all precursors above 1250 degrees C and 3-h sintering. The nickel-incorporation reaction pathways with these precursors were identified, and the microstructure and spinel yield were investigated as a function of sintering temperature with fixed sintering time. This study has demonstrated a promising process for forming nickel spinel to stabilize nickel-laden sludge from a wide range of inexpensive ceramic precursors, which may provide an avenue for economically blending waste metal sludges via the building industry processes to reduce the environmental hazards of toxic metals. The correlation of product textures and nickel incorporation efficiencies through selection of different precursors also provides the option of tailoring property-specific products.

  5. Kinetic and Surface Study of Single-Walled Aluminosilicate Nanotubes and Their Precursors

    PubMed Central

    Arancibia-Miranda, Nicolás; Escudey, Mauricio; Molina, Mauricio; García-González, María Teresa

    2013-01-01

    The structural and surface changes undergone by the different precursors that are produced during the synthesis of imogolite are reported. The surface changes that occur during the synthesis of imogolite were determined by electrophoretic migration (EM) measurements, which enabled the identification of the time at which the critical precursor of the nanoparticles was generated. A critical parameter for understanding the evolution of these precursors is the isoelectric point (IEP), of which variation revealed that the precursors modify the number of active ≡Al-OH and ≡Si-OH sites during the formation of imogolite. We also found that the IEP is displaced to a higher pH level as a consequence of the surface differentiation that occurs during the synthesis. At the same time, we established that the pH of the reaction (pHrx) decreases with the evolution and condensation of the precursors during aging. Integration of all of the obtained results related to the structural and surface properties allows an overall understanding of the different processes that occur and the products that are formed during the synthesis of imogolite. PMID:28348326

  6. Kinetic and Surface Study of Single-Walled Aluminosilicate Nanotubes and Their Precursors.

    PubMed

    Arancibia-Miranda, Nicolás; Escudey, Mauricio; Molina, Mauricio; García-González, María Teresa

    2013-03-01

    The structural and surface changes undergone by the different precursors that are produced during the synthesis of imogolite are reported. The surface changes that occur during the synthesis of imogolite were determined by electrophoretic migration (EM) measurements, which enabled the identification of the time at which the critical precursor of the nanoparticles was generated. A critical parameter for understanding the evolution of these precursors is the isoelectric point (IEP), of which variation revealed that the precursors modify the number of active ≡Al-OH and ≡Si-OH sites during the formation of imogolite. We also found that the IEP is displaced to a higher pH level as a consequence of the surface differentiation that occurs during the synthesis. At the same time, we established that the pH of the reaction (pH rx ) decreases with the evolution and condensation of the precursors during aging. Integration of all of the obtained results related to the structural and surface properties allows an overall understanding of the different processes that occur and the products that are formed during the synthesis of imogolite.

  7. The route of liquid precursor to ZnO nanoparticles in premixed combustion spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Widiyastuti, W.; Machmudah, Siti; Nurtono, Tantular; Winardi, Sugeng

    2018-04-01

    Zinc oxide nanoparticles had been successfully synthesized by premixed combustion spray pyrolysis. Zinc acetate was dissolved in distilled water was selected as a liquid precursor. Zinc nitrate was also used for comparison the effect of precursor type on the generated particles morphology and the crystallinity. The premixed combustion reaction used liquefied petroleum gas (LPG) mainly consisting of butane and propane as a fuel and compressed air used as an oxidizer. The liquid precursor was atomized using a custom two fluid nozzle to generate droplets. Then, the droplets were sprayed by the flow of air as a carrier gas into the premixed combustion reactor. The zinc precursor was decomposed to zinc oxide due to the high temperature as a result of combustion reaction inside the reactor resulting in nanoparticles formation. The particle size decreased with the increase of the fuel flow rate. In addition, it can be found that at the same flow rate of fuel, the particle size of zinc oxide synthesized using zinc nitrate is larger than that of the use of zinc acetate as a precursor.

  8. A Comparative Study on Ozone Photochemical Formation in the Megacities of Tianjin and Shanghai, China

    NASA Astrophysics Data System (ADS)

    Ran, L.; Zhao, C.; Xu, W.; Geng, F.; Lu, X.; Han, M.; Lin, W.; Xu, X.

    2011-12-01

    As one of the most widespread and stubborn environmental issues, the ozone problem has been of particular concern for many years, given the potential adverse effects of high ozone concentrations on public health and agricultural productivity. In the past decades, rapid urbanization and industrialization have given rise to a significant increase in ozone precursor emissions in many regions of China, especially in the densely populated megacities. Due to the highly nonlinear impacts of ozone precursors including nitrogen oxides (NOx) and various volatile organic compounds (VOCs) on ozone photochemistry, formation of ozone affected by different precursor emission patterns in those megacities has exhibited different characteristics. A comparative analysis of ozone photochemical production in the megacities of Tianjin and Shanghai has thus been carried out, using the data sets of surface ozone and its precursors measured respectively at an urban and a suburban site of the two megacities during the summertime. Observation-based analysis indicated an elevated ozone daily peak under photochemistry dominant conditions from the urban center to the suburb in both regions, nevertheless bearing different reasons. Ozone production was generally sensitive to VOCs in the Tianjin region, leading to a relatively higher level of ozone in the suburb where reactive VOCs were abundantly released from a number of industrial facilities, whereas a sensitivity of ozone production to NOx was found in Shanghai. The high level of NOx emitted mainly by motor vehicles in urban Shanghai largely inhibited ozone formation and resulted in a much more rapid decrease in ozone concentrations after reaching the daily maximum around midday compared with the other three areas. Ozone pollution in the megacity of Tianjin was more representative of the regional condition, implying that combined efforts would be needed to bring the ozone problem under control within this region. Improved understanding of ozone formation in the two megacities would be quite imperative and critical to provide a solid scientific basis for designing effective ozone control strategies.

  9. Probing Coagulation Behavior of Individual Aluminum Species for Removing Corresponding Disinfection Byproduct Precursors: The Role of Specific Ultraviolet Absorbance

    PubMed Central

    Zhao, He; Hu, Chengzhi; Zhang, Di; Liu, Huijuan; Qu, Jiuhui

    2016-01-01

    Coagulation behavior of aluminum chloride and polyaluminum chloride (PACl) for removing corresponding disinfection byproduct (DBP) precursors was discussed in this paper. CHCl3, bromine trihalomethanes (THM-Br), dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA) formation potential yields were correlated with specific ultraviolet absorbance (SUVA) values in different molecular weight (MW) fractions of humic substances (HS), respectively. Correlation analyses and principal component analysis were performed to examine the relationships between SUVA and different DBP precursors. To acquire more structural characters of DBP precursors and aluminum speciation, freeze-dried precipitates were analyzed by fourier transform infrared (FTIR) and C 1s, Al 2p X-ray photoelectron spectroscopy (XPS). The results indicated that TCAA precursors (no MW limits), DCAA and CHCl3 precursors in low MW fractions (MW<30 kDa) had a relatively good relations with SUVA values. These DBP precursors were coagulated more easily by in situ Al13 of AlCl3 at pH 5.0. Due to relatively low aromatic content and more aliphatic structures, THM-Br precursors (no MW limits) and CHCl3 precursors in high MW fractions (MW>30 kDa) were preferentially removed by PACl coagulation with preformed Al13 species at pH 5.0. Additionally, for DCAA precursors in high MW fractions (MW>30 kDa) with relatively low aromatic content and more carboxylic structures, the greatest removal occurred at pH 6.0 through PACl coagulation with aggregated Al13 species. PMID:26824243

  10. Theoretical modeling of the urinary supersaturation of calcium salts in healthy individuals and kidney stone patients: Precursors, speciation and therapeutic protocols for decreasing its value

    NASA Astrophysics Data System (ADS)

    Rodgers, Allen L.; Allie-Hamdulay, Shameez; Jackson, Graham E.; Durbach, Ian

    2013-11-01

    BackgroundSupersaturation (SS) of urinary salts has been extensively invoked for assessing the risk of renal stone formation, but precursors have often been ignored. Our objectives were to establish by computer modeling, which urinary components are essential for calculating reliable SS values, to investigate whether unique equilibrium processes occur in the urine of stone formers (SF) which might account for their higher SS levels relative to healthy controls (N), to determine the relative efficacies of three different, widely-used protocols for lowering urinary SS of calcium salts and to examine the influence of precursors.

  11. Amyloid Beta Mediates Memory Formation

    ERIC Educational Resources Information Center

    Garcia-Osta, Ana; Alberini, Cristina M.

    2009-01-01

    The amyloid precursor protein (APP) undergoes sequential cleavages to generate various polypeptides, including the amyloid [beta] (1-42) peptide (A[beta][1-42]), which is believed to play a major role in amyloid plaque formation in Alzheimer's disease (AD). Here we provide evidence that, in contrast with its pathological role when accumulated,…

  12. THE EFFECT OF METAL CATALYSTS ON THE FORMATION OF POLYCHLORINATED DIBENZO-P-DIOXIN AND POLYCHLORINATED DIBENZOFURAN PRECURSORS

    EPA Science Inventory

    The catalytic effects of copper and iron compounds were examined for their behavior in promoting formation of chlorine (Cl2), the major chlorinating agent of polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs), in an environment simulati...

  13. Enhancing the Properties of Carbon and Gold Substrates by Surface Modification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harnisch, Jennifer Anne

    2001-01-01

    The properties of both carbon and gold substrates are easily affected by the judicious choice of a surface modification protocol. Several such processes for altering surface composition have been published in literature. The research presented in this thesis primarily focuses on the development of on-column methods to modify carbon stationary phases used in electrochemically modulated liquid chromatography (EMLC). To this end, both porous graphitic carbon (PGC) and glassy carbon (GC) particles have been modified on-column by the electroreduction of arenediazonium salts and the oxidation of arylacetate anions (the Kolbe reaction). Once modified, the carbon stationary phases show enhanced chromatographic performancemore » both in conventional liquid chromatographic columns and EMLC columns. Additionally, one may also exploit the creation of aryl films to by electroreduction of arenediazonium salts in the creation of nanostructured materials. The formation of mercaptobenzene film on the surface of a GC electrode provides a linking platform for the chemisorption of gold nanoparticles. After deposition of nanoparticles, the surface chemistry of the gold can be further altered by self-assembled monolayer (SAM) formation via the chemisorption of a second thiol species. Finally, the properties of gold films can be altered such that they display carbon-like behavior through the formation of benzenehexathiol (BHT) SAMs. BHT chemisorbs to the gold surface in a previously unprecedented planar fashion. Carbon and gold substrates can be chemically altered by several methodologies resulting in new surface properties. The development of modification protocols and their application in the analytical arena is considered herein.« less

  14. In situ Dynamics of O2, pH, Light, and Photosynthesis in Ikaite Tufa Columns (Ikka Fjord, Greenland)-A Unique Microbial Habitat.

    PubMed

    Trampe, Erik C L; Larsen, Jens E N; Glaring, Mikkel A; Stougaard, Peter; Kühl, Michael

    2016-01-01

    The Ikka Fjord (SW Greenland) harbors a unique microbial habitat in the form of several hundred submarine tufa columns composed of ikaite, a special hexahydrate form of calcium carbonate that precipitates when alkaline phosphate- and carbonate-enriched spring water seeping out of the sea floor meets cold seawater. While several unique heterotrophic microbes have been isolated from the tufa columns, the microbial activity, and the boundary conditions for microbial growth in ikaite have remained unexplored. We present the first detailed in situ characterization of the physico-chemical microenvironment and activity of oxygenic phototrophs thriving within the ikaite columns. In situ underwater microsensor measurements of pH, temperature, and irradiance in the porous ikaite crystal matrix, revealed an extreme microenvironment characterized by low temperatures, strong light attenuation, and gradients of pH changing from pH 9 at the outer column surface to above pH 10 over the first 1-2 cm of the ikaite. This outer layer of the freshly deposited ikaite matrix contained densely pigmented yellow and green zones harboring a diverse phototrophic community dominated by diatoms and cyanobacteria, respectively, as shown by amplicon sequencing. In situ O2 measurements, as well as underwater variable chlorophyll fluorescence measurements of photosynthetic activity, demonstrated high levels of oxygenic photosynthesis in this extreme gradient environment with strong irradiance-driven O2 dynamics ranging from anoxia to hyperoxic conditions in the ikaite matrix, albeit the local formation of gas bubbles buffered the day-night dynamics of O2 in the tufa columns. The microbial phototrophs in the ikaite matrix are embedded in exopolymers forming endolithic biofilms that may interact with mineral formation and cementing of ikaite crystals.

  15. In situ Dynamics of O2, pH, Light, and Photosynthesis in Ikaite Tufa Columns (Ikka Fjord, Greenland)—A Unique Microbial Habitat

    PubMed Central

    Trampe, Erik C. L.; Larsen, Jens E. N.; Glaring, Mikkel A.; Stougaard, Peter; Kühl, Michael

    2016-01-01

    The Ikka Fjord (SW Greenland) harbors a unique microbial habitat in the form of several hundred submarine tufa columns composed of ikaite, a special hexahydrate form of calcium carbonate that precipitates when alkaline phosphate- and carbonate-enriched spring water seeping out of the sea floor meets cold seawater. While several unique heterotrophic microbes have been isolated from the tufa columns, the microbial activity, and the boundary conditions for microbial growth in ikaite have remained unexplored. We present the first detailed in situ characterization of the physico-chemical microenvironment and activity of oxygenic phototrophs thriving within the ikaite columns. In situ underwater microsensor measurements of pH, temperature, and irradiance in the porous ikaite crystal matrix, revealed an extreme microenvironment characterized by low temperatures, strong light attenuation, and gradients of pH changing from pH 9 at the outer column surface to above pH 10 over the first 1–2 cm of the ikaite. This outer layer of the freshly deposited ikaite matrix contained densely pigmented yellow and green zones harboring a diverse phototrophic community dominated by diatoms and cyanobacteria, respectively, as shown by amplicon sequencing. In situ O2 measurements, as well as underwater variable chlorophyll fluorescence measurements of photosynthetic activity, demonstrated high levels of oxygenic photosynthesis in this extreme gradient environment with strong irradiance-driven O2 dynamics ranging from anoxia to hyperoxic conditions in the ikaite matrix, albeit the local formation of gas bubbles buffered the day-night dynamics of O2 in the tufa columns. The microbial phototrophs in the ikaite matrix are embedded in exopolymers forming endolithic biofilms that may interact with mineral formation and cementing of ikaite crystals. PMID:27242741

  16. Removal of both N-nitrosodimethylamine and trihalomethanes precursors in a single treatment using ion exchange resins.

    PubMed

    Beita-Sandí, Wilson; Karanfil, Tanju

    2017-11-01

    Drinking water utilities are relying more than ever on water sources impacted by wastewater effluents. Disinfection/oxidation of these waters during water treatment may lead to the formation of several disinfection by-products, including the probable human carcinogen N-nitrosodimethylamine (NDMA) and the regulated trihalomethanes (THMs). In this study, the potential of ion exchange resins to control both NDMA and THMs precursors in a single treatment is presented. Two ion exchange resins were examined, a cation exchange resin (Plus) to target NDMA precursors and an anion exchange resin (MIEX) for THMs precursors control. We applied the resins, individually and combined, in the treatment of surface and wastewater effluent samples. The treatment with both resins removed simultaneously NDMA (43-85%) and THMs (39-65%) precursors. However, no removal of NDMA precursors was observed in the surface water with low initial NDMA FP (14 ng/L). The removals of NDMA FP and THMs FP with Plus and MIEX resins applied alone were (49-90%) and (41-69%), respectively. These results suggest no interaction between the resins, and thus the feasibility of effectively controlling NDMA and THMs precursors concomitantly. Additionally, the effects of the wastewater impact and the natural attenuation of precursors were studied. The results showed that neither the wastewater content nor the attenuation of the precursor affected the removals of NDMA and THMs precursors. Finally, experiments using a wastewater effluent sample showed that an increase in the calcium concentration resulted in a reduction in the removal of NDMA precursors of about 50%. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Ionization compression impact on dense gas distribution and star formation. Probability density functions around H II regions as seen by Herschel

    NASA Astrophysics Data System (ADS)

    Tremblin, P.; Schneider, N.; Minier, V.; Didelon, P.; Hill, T.; Anderson, L. D.; Motte, F.; Zavagno, A.; André, Ph.; Arzoumanian, D.; Audit, E.; Benedettini, M.; Bontemps, S.; Csengeri, T.; Di Francesco, J.; Giannini, T.; Hennemann, M.; Nguyen Luong, Q.; Marston, A. P.; Peretto, N.; Rivera-Ingraham, A.; Russeil, D.; Rygl, K. L. J.; Spinoglio, L.; White, G. J.

    2014-04-01

    Aims: Ionization feedback should impact the probability distribution function (PDF) of the column density of cold dust around the ionized gas. We aim to quantify this effect and discuss its potential link to the core and initial mass function (CMF/IMF). Methods: We used Herschel column density maps of several regions observed within the HOBYS key program in a systematic way: M 16, the Rosette and Vela C molecular clouds, and the RCW 120 H ii region. We computed the PDFs in concentric disks around the main ionizing sources, determined their properties, and discuss the effect of ionization pressure on the distribution of the column density. Results: We fitted the column density PDFs of all clouds with two lognormal distributions, since they present a "double-peak" or an enlarged shape in the PDF. Our interpretation is that the lowest part of the column density distribution describes the turbulent molecular gas, while the second peak corresponds to a compression zone induced by the expansion of the ionized gas into the turbulent molecular cloud. Such a double peak is not visible for all clouds associated with ionization fronts, but it depends on the relative importance of ionization pressure and turbulent ram pressure. A power-law tail is present for higher column densities, which are generally ascribed to the effect of gravity. The condensations at the edge of the ionized gas have a steep compressed radial profile, sometimes recognizable in the flattening of the power-law tail. This could lead to an unambiguous criterion that is able to disentangle triggered star formation from pre-existing star formation. Conclusions: In the context of the gravo-turbulent scenario for the origin of the CMF/IMF, the double-peaked or enlarged shape of the PDF may affect the formation of objects at both the low-mass and the high-mass ends of the CMF/IMF. In particular, a broader PDF is required by the gravo-turbulent scenario to fit the IMF properly with a reasonable initial Mach number for the molecular cloud. Since other physical processes (e.g., the equation of state and the variations among the core properties) have already been said to broaden the PDF, the relative importance of the different effects remains an open question. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  18. Methane and water spectroscopic database for TROPOMI/Sentinel-5 Precursor in the 2.3 μm region

    NASA Astrophysics Data System (ADS)

    Birk, Manfred; Wagner, Georg; Loos, Joep; Wilzewski, Jonas; Mondelain, Didier; Campargue, Alain; Hase, Frank; Orphal, Johannes; Perrin, Agnes; Tran, Ha; Daumont, Ludovic; Rotger-Languereau, Maud; Bigazzi, Alberto; Zehner, Claus

    2017-04-01

    The ESA project „SEOM-Improved Atmospheric Spectroscopy Databases (IAS)" will improve the spectroscopic database for retrieval of the data products CO, CH4, O3 and SO2 column amounts measured by the TROPOMI instrument (TROPOspheric Monitoring Instrument) aboard the Sentinel-5 Precursor. The project was launched in February 2014 with 3 years duration extended to 4 years recently. The spectroscopy of CO, CH4 and O3 in the 2.3 μm region is covered first while UV measurements of SO2 and UV/FIR/IR measurements of ozone will be carried out later. Measurements were mainly taken with a high resolution Fourier Transform spectrometer combined with a coolable multi reflection cell. Cavity ring down measurements served for validation. The analysis has been completed. A clear improvement can be seen when using the new data for CH4, H2O and CO retrieval from ground-based high resolution solar occultation measurements obtained with instrumentation in the TCCON and NDACC network.

  19. Influence of Natural Organic Matter (NOM) Character on the Distribution of Chlorinated and Chloraminated Disinfection By-Products (DBPs) at Rand Water

    NASA Astrophysics Data System (ADS)

    Marais, Savia S.; Ncube, Esper J.; Haarhoff, Johannes; Msagati, Titus AM; Mamba, Bhekie B.; Nkambule, Thabo I.

    2016-04-01

    Certain disinfection by-products (DBPs) are likely human carcinogens or present mutagenic effects while many DBPs are unidentified. Considering the possibility of DBPs being harmful to human health and the fact that trihalomethanes (THMs) are the only regulated DBP in the South African National Standard (SANS:241) for drinking water, special interest in the precursors to these DBPs' formation is created. It is essential to understand the reactivity and character of the precursors responsible for the formation of DBPs in order to enhance precursor removal strategies during the treatment of drinking water. In this study the character of NOM within surface water and the subsequent distribution of THMs formed in the drinking water from Rand Waters' full scale treatment plant were investigated. Molecular size distribution (MSD) of NOM within the surface water was determined by high performance size exclusion chromatography (HPSEC). Specific ultraviolet absorbance (SUVA) and UV254 measurements formed part of the NOM character study as they provide an indication of the aromaticity of organic matter. The four THMs; bromoform, chloroform, dibromochloromethane (DBCM) and bromodichloromethane (BDCM)were measured by gas chromatography. The sum of these four THMs was expressed as total trihalomethane (TTHM). On average the chloroform constituted 76.2% of the total TTHM, BDCM 22.5% while DBCM and bromoform measured below the detection limit. THM speciation after chlorination and chloramination concentrations increased in the sequence bromoform < DBCM < BDCM < chloroform. Results of the MSD showed a significant correlation between NOM of high molecular size (peak I) and TTHM formation specifically during the summer months (R2= 0.971, p < 0.05). High molecular weight (HMW) NOM also related well to chloroform formation (R2 = 0.963, p < 0.05) however, the formation of BDCM was not due to HWM fraction as indicated by weak regression coefficient. A positive correlation existed between SUVA and UV254 removal percentage (R2 = 0.937, p < 0.05). Seasonal variability in NOM character was evident in the source water in summer when high temperatures and rainfall occurred. The results displayed are an indication that aromatic NOM were the main precursor to TTHM formation, more prominently during summer. Keywords: disinfection by-products, molecular size distribution, natural organic matter, UV254

  20. Dogs lap using acceleration-driven open pumping

    PubMed Central

    Gart, Sean; Socha, John J.; Vlachos, Pavlos P.; Jung, Sunghwan

    2015-01-01

    Dogs lap because they have incomplete cheeks and cannot suck. When lapping, a dog’s tongue pulls a liquid column from the bath, suggesting that the hydrodynamics of column formation are critical to understanding how dogs drink. We measured lapping in 19 dogs and used the results to generate a physical model of the tongue’s interaction with the air–fluid interface. These experiments help to explain how dogs exploit the fluid dynamics of the generated column. The results demonstrate that effects of acceleration govern lapping frequency, which suggests that dogs curl the tongue to create a larger liquid column. Comparing lapping in dogs and cats reveals that, despite similar morphology, these carnivores lap in different physical regimes: an unsteady inertial regime for dogs and steady inertial regime for cats. PMID:26668382

  1. Products of BVOC oxidation: ozone and organic aerosols

    NASA Astrophysics Data System (ADS)

    Wildt, Jürgen; Andres, Stefanie; Carriero, Giulia; Ehn, Mikael; Fares, Silvano; Hoffmann, Thorsten; Hacker, Lina; Kiendler-Scharr, Astrid; Kleist, Einhard; Paoletti, Elena; Pullinen, Iida; Rohrer, Franz; Rudich, Yinon; Springer, Monika; Tillmann, Ralf; Wahner, Andreas; Wu, Cheng; Mentel, Thomas

    2015-04-01

    Biogenic Volatile Organic Compounds (BVOC) are important precursors in photochemical O3 and secondary organic aerosol (SOA) formation. We conducted a series of laboratory experiments with OH-induced oxidation of monoterpenes to elucidate pathways and efficiencies of O3 and SOA formation. At high NOx conditions ([BVOC] / [NOx] < 7 ppbC / ppb) photochemical ozone formation was observed. For -pinene as individual BVOC as well as for the monoterpene mixes emitted from different plant species we observed increasing ozone formation with increasing [NOX]. Between 2 and 3 O3-molecules were formed from 1 monoterpene when ozone formation was BVOC limited. Under such high NOX conditions, new particle formation was suppressed. Increasing [BVOC] / [NOX] ratios caused increasing efficiency of new particle formation indicating that peroxy radicals are the key intermediates in both, photochemical ozone- and new particle formation. The classical chemistry of peroxy radicals is well established (e.g. Master Chemical Mechanism). Peroxy radicals are produced by addition of molecular oxygen to the alkyl radical formed after OH attack at the BVOC. They either react with NO which leads to ozone formation or they react with other peroxy radicals and form chemically stable products (hydroperoxides, alkoholes and ketones). Much less knowledge exists on such reactions for Highly Oxidized Peroxy Radicals, (HOPR). Such HOPR were observed during ozonolysis of several volatiles and, in case of monoterpenes as precursors, they can contain more than 12 Oxygen atoms (Mentel et al., 2015). Although the OH-initiated formation of HOPR is yet not fully understood, their basic gas phase reactions seem to follow classical photochemical rules. In reactions with NO they can act as precursor for O3 and in reactions with other HOPR or with classical less oxidized peroxy radicals they can form highly oxidized stable products and alkoxy radicals. In addition, HOPR-HOPR reactions lead to the formation of dimers that, in case of monoterpenes as reactants, consist of a skeleton with 20 carbon atoms. These dimers seem to play a major role in new particle formation and their existence may explain the observations of Wildt et al. (2014) who found power law dependence with an exponent approaching -2 between new particle formation and ozone formation. The monomer products of HOPR-HOPR reactions play a dominant role in SOA mass formation because their vapour pressures are low enough to allow condensation on pre-existing particulate matter (Ehn et al., 2014). Furthermore, the minor impacts of NOX on particle mass formation (Wildt et al., 2014) are explainable by similar yields of alkoxy radicals in HOPR-HOPR and HOPR-NO reactions, respectively.

  2. A multifrequency study of star formation in the blue compact dwarf galaxy IZw 36

    NASA Technical Reports Server (NTRS)

    Viallefond, F.; Thuan, T. X.

    1983-01-01

    Radio, near IR, optical, and UV observations of I Zw 36 = Mrk 209 = Haro 29 are reported. The H I distribution shows a core-halo structure, the core containing half of the mass and showing systematic motions; the halo is diffuse and contains several H I clumps. The visible star formation region is associated with the core but is shifted slightly with respect to the H I peak column density; and the virial mass is 5 to 7 times the H I mass. Star formation models with an initial mass function of slope 1.5 (the Salpeter value being 1.35) and a burst age or duration of a few million years fit well the optical spectrophotometric measurements. The data also suggest that the column density of molecular hydrogen in I Zw 36 is 6 + or - 3 times that of the neutral hydrogen, about the right amount to account for the virial mass.

  3. Acrylamide in Caribbean foods - residual levels and their relation to reducing sugar and asparagine content.

    PubMed

    Bent, Grace-Anne; Maragh, Paul; Dasgupta, Tara

    2012-07-15

    The acrylamide levels in commercial and homemade Caribbean foods were determined by pre-derivatisation of acrylamide to 2-bromopropenamide and analysed by gas chromatography with mass spectrometric (GC/MS) detection. Over 100 Caribbean food samples were analysed for the presence of acrylamide. These samples include: biscuits, breakfast cereals, banana chips and home-prepared foods: breadfruit; Artocarpus altilis, banana fritters, and dumplings. The limit of detection (LOD) for the GC/MS method was found to be dependent on the type of column used for the GC/MS analysis. The DB-1701 and the DB-VRX columns gave LODs of 20 and 4 μg/kg, respectively. Acrylamide has not been found in raw foods or foods which have been cooked by boiling. Its content in all other foods had concentrations in the range, 65-3,640 μg/kg. The relationship between acrylamide levels and precursor concentration as well as the health implications of our findings are discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. A Madden-Julian Oscillation in Tropospheric Ozone

    NASA Technical Reports Server (NTRS)

    Ziemke, J. R.; Chandra, S.

    2004-01-01

    This is the first study to indicate a Madden-Julian Oscillation (MJO) in tropospheric ozone. Tropospheric ozone is derived using differential measurements of total column ozone and stratospheric column ozone measured from total ozone mapping spectrometer (TOMS) and microwave limb sounder (MLS) instruments. Two broad regions of significant MJO signal are identified in the tropics, one in the western Pacific and the other in the eastern Pacific. Over both regions, MJO variations in tropospheric ozone represent 5- 10 DU peak-to-peak anomalies. These variations are significant compared to mean background amounts of 20 DU or less over most of the tropical Pacific. The implications of these results are: (1) model values of TCO in the tropical Pacific region, when accounted for the MJO may be highly variable depending upon the phase of the MJO, and (2) MJO signals of this magnitude would need to be considered when investigating and interpreting particular pollution events since ozone is a precursor of the hydroxyl (OH) radical, the main oxidizing agent of pollutants in the lower atmosphere.

  5. NDMA formation during drinking water treatment: A multivariate analysis of factors influencing formation.

    PubMed

    Leavey-Roback, Shannon L; Sugar, Catherine A; Krasner, Stuart W; Suffet, Irwin H Mel

    2016-05-15

    The formation of the carcinogen N-nitrosodimethylamine (NDMA) during drinking water treatment has raised concerns in the drinking water industry. Many bench-scale laboratory tests and pilot plant studies have been completed to try to determine which factors during water treatment increase or decrease the amount of NDMA formed in drinking water. This study used data from over 20 drinking water treatment plants in the United States and Canada to determine which factors are most highly correlated with the NDMA concentration in delivered water using a mixed effects model with a random intercept. This type of analysis has not been used previously with trihalomethane (THM) models due to the fact that those studies did not sample such a large number and range of plants as was done in this NDMA study. Ultraviolet absorbance at 254 nm (UV254) in the plant influent and pre-chlorination time used at the plant were highly correlated in all models with NDMA concentration in finished water as well as the percentage change between NDMA formation potential in the plant influent and actual formation in the finished water. Specifically, an increase in UV254 absorbance in a model was associated with an increase in NDMA and an increase in pre-chlorination time in a model was associated with a decrease in NDMA. Other water quality parameters including sucralose concentration in the plant influent, polyDADMAC polymer dose, pH, and chlorine-to-ammonia weight ratio used in the plant were also correlated with NDMA concentration in the distribution system. Lastly, NDMA precursor loading was correlated with the use of polyDADMAC (where precursors were added) and the use of ozone and granular activated carbon (GAC) treatment (where precursors were removed). Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. VizieR Online Data Catalog: Bessel (1825) calculation for geodesic measurements (Karney+, 2010)

    NASA Astrophysics Data System (ADS)

    Karney, C. F. F.; Deakin, R. E.

    2010-06-01

    The solution of the geodesic problem for an oblate ellipsoid is developed in terms of series. Tables are provided to simplify the computation. Included here are the tables that accompanied Bessel's paper (with corrections). The tables were crafted by Bessel to be minimize the labor of hand calculations. To this end, he adjusted the intervals in the tables, the number of terms included in the series, and the number of significant digits given so that the final results are accurate to about 8 places. For that reason, the most useful form of the tables is as the PDF file which provides the tables in a layout close to the original. Also provided is the LaTeX source file for the PDF file. Finally, the data has been put into a format so that it can be read easily by computer programs. All the logarithms are in base 10 (common logarithms). The characteristic and the mantissa should be read separately (indicated as x.c and x.m in the file description). Thus the first entry in the table, -4.4, should be parsed as "-4" (the characteristic) and ".4" (the mantissa); the anti-log for this entry is 10(-4+0.4)=2.5e-4. The "Delta" columns give the first difference of the preceding column, i.e., the difference of the preceding column in the next row and the preceding column in the current row. In the printed tables these are expressed as "units in the last place" and the differences are of the rounded representations in the preceding columns (to minimize interpolation errors). In table1.dat these are given scaled to a match the format used for the preceding column, as indicated by the units given for these columns. The unit log(") (in the description within square brackets [arcsec]) means the logarithm of a quantity expressed in arcseconds. (3 data files).

  7. Precursors and factors affecting formation of haloacetonitriles and chloropicrin during chlor(am)ination of nitrogenous organic compounds in drinking water.

    PubMed

    Jia, Aiyin; Wu, Chunde; Duan, Yan

    2016-05-05

    This study investigated the precursors and factors affecting formation of haloacetonitriles (HANs) and chloropicrin (TCNM) during chlorination/chloramination of eight amino acids in the effluent water of V-type clarifying filtration from a drinking water treatment plant. The yields of trichloroacetonitrile (TCAN), dichloroacetonitrile (DCAN) and TCNM were higher during chlorination than during chloramination. Tyrosine and tryptophan produced the greatest amount of DCAN and also generated a small amount of TCAN during chlorination process. Besides, the yields of DCAN were higher than TCNM during chlorination/chloramination. Contact time, Cl2:org-N molar ratios, pH, temperature and bromide ion affected nitrogenous disinfection by-products (N-DBPs) formation during chlorination of tryptophan in different degrees. TCAN, DCAN and TCNM formation showed the increasing and then decreasing with prolonged contact time. Higher Cl2:org-N molar ratios improved N-DBPs formation within a certain range. The pH affected N-DBPs formation differently. HANs increased with increasing pH from 5 to 6 and decreased with increasing pH from 6 to 9, while TCNM increased with increasing pH from 5 to 9. Higher temperatures enhanced TCNM formation, but reduced the formation of TCAN and DCAN. The presence of bromide ions improved the yields of HANs and TCNM and shifted N-DBPs to more brominated ones. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Sonic hedgehog in the notochord is sufficient for patterning of the intervertebral discs

    PubMed Central

    Choi, Kyung-Suk; Lee, Chanmi; Harfe, Brian D.

    2012-01-01

    The intervertebral discs, located between adjacent vertebrae, are required for stability of the spine and distributing mechanical load throughout the vertebral column. All cell types located in thes middle regions of the discs, called nuclei pulposi, are derived from the embryonic notochord. Recently, it was shown that the hedgehog signaling pathway plays an essential role during formation of nuclei pulposi. However, during the time that nuclei pulposi are forming, Shh is expressed in both the notochord and the nearby floor plate. To determine the source of SHH protein sufficient for formation of nuclei pulposi we removed Shh from either the floor plate or the notochord using tamoxifen-inducible Cre alleles. Removal of Shh from the floor plate resulted in phenotypically normal intervertebral discs, indicating that Shh expression in this tissue is not required for disc patterning. In addition, embryos that lacked Shh in the floor plate had normal vertebral columns, demonstrating that Shh expression in the notochord is sufficient for pattering the entire vertebral column. Removal of Shh from the notochord resulted in the absence of Shh in the floor plate, loss of intervertebral discs and vertebral structures. These data indicate that Shh expression in the notochord is sufficient for patterning of the intervertebral discs and the vertebral column. PMID:22841806

  9. Sonic hedgehog in the notochord is sufficient for patterning of the intervertebral discs.

    PubMed

    Choi, Kyung-Suk; Lee, Chanmi; Harfe, Brian D

    2012-01-01

    The intervertebral discs, located between adjacent vertebrae, are required for stability of the spine and distributing mechanical load throughout the vertebral column. All cell types located in the middle regions of the discs, called nuclei pulposi, are derived from the embryonic notochord. Recently, it was shown that the hedgehog signaling pathway plays an essential role during formation of nuclei pulposi. However, during the time that nuclei pulposi are forming, Shh is expressed in both the notochord and the nearby floor plate. To determine the source of SHH protein sufficient for formation of nuclei pulposi we removed Shh from either the floor plate or the notochord using tamoxifen-inducible Cre alleles. Removal of Shh from the floor plate resulted in phenotypically normal intervertebral discs, indicating that Shh expression in this tissue is not required for disc patterning. In addition, embryos that lacked Shh in the floor plate had normal vertebral columns, demonstrating that Shh expression in the notochord is sufficient for pattering the entire vertebral column. Removal of Shh from the notochord resulted in the absence of Shh in the floor plate, loss of intervertebral discs and vertebral structures. These data indicate that Shh expression in the notochord is sufficient for patterning of the intervertebral discs and the vertebral column. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  10. Degradation of Highly Alloyed Metal Halide Perovskite Precursor Inks: Mechanism and Storage Solutions

    DOE PAGES

    Dou, Benjia; Wheeler, Lance M.; Christians, Jeffrey A.; ...

    2018-03-14

    Whereas the promise of metal halide perovskite (MHP) photovoltaics (PV) is that they can combine high efficiency with solution-processability, the chemistry occurring in precursor inks is largely unexplored. Herein, we investigate the degradation of MHP solutions based on the most widely used solvents, dimethylformamide (DMF) and dimethyl sulfoxide (DMSO). For the MHP inks studied, which contain formamidinium (FA+), methylammonium (MA+), cesium (Cs+), lead (Pb2+), bromide (Br-), and iodide (I-), dramatic compositional changes are observed following storage of the inks in nitrogen in the dark. We show that hydrolysis of DMF in the precursor solution forms dimethylammonium formate, which subsequently incorporatesmore » into the MHP film to compromise the ability of Cs+ and MA+ to stabilize FA+-based MHP. The changes in solution chemistry lead to a modification of the perovskite film stoichiometry, band gap, and structure. The solid precursor salts are stable when ball-milled into a powder, allowing for the storage of large quantities of stoichiometric precursor materials.« less

  11. Preparation of superconductor precursor powders

    DOEpatents

    Bhattacharya, Raghunath; Blaugher, Richard D.

    1995-01-01

    A process for the preparation of a precursor metallic powder composition for use in the subsequent formation of a superconductor. The process comprises the steps of providing an electrodeposition bath comprising an electrolyte medium and a cathode substrate electrode, and providing to the bath one or more soluble salts of one or more respective metals, such as nitrate salts of thallium, barium, calcium, and copper, which are capable of exhibiting superconductor properties upon subsequent appropriate treatment. The bath is continually energized to cause the metallic particles formed at the electrode to drop as a powder from the electrode into the bath, and this powder, which is a precursor powder for superconductor production, is recovered from the bath for subsequent treatment. The process permits direct inclusion of thallium in the preparation of the precursor powder, and yields an amorphous product mixed on an atomic scale to thereby impart inherent high reactivity. Superconductors which can be formed from the precursor powder include pellet and powder-in-tube products.

  12. General low-temperature reaction pathway from precursors to monomers before nucleation of compound semiconductor nanocrystals

    PubMed Central

    Yu, Kui; Liu, Xiangyang; Qi, Ting; Yang, Huaqing; Whitfield, Dennis M.; Y. Chen, Queena; Huisman, Erik J. C.; Hu, Changwei

    2016-01-01

    Little is known about the molecular pathway to monomers of semiconductor nanocrystals. Here we report a general reaction pathway, which is based on hydrogen-mediated ligand loss for the precursor conversion to ‘monomers' at low temperature before nucleation. We apply 31P nuclear magnetic resonance spectroscopy to monitor the key phosphorous-containing products that evolve from MXn+E=PPh2H+HY mixtures, where MXn, E=PPh2H, and HY are metal precursors, chalcogenide precursors, and additives, respectively. Surprisingly, the phosphorous-containing products detected can be categorized into two groups, Ph2P–Y and Ph2P(E)–Y. On the basis of our experimental and theoretical results, we propose two competing pathways to the formation of M2En monomers, each of which is accompanied by one of the two products. Our study unravels the pathway of precursor evolution into M2En monomers, the stoichiometry of which directly correlates with the atomic composition of the final compound nanocrystals. PMID:27531507

  13. InAs Colloidal Quantum Dots Synthesis via Aminopnictogen Precursor Chemistry.

    PubMed

    Grigel, Valeriia; Dupont, Dorian; De Nolf, Kim; Hens, Zeger; Tessier, Mickael D

    2016-10-05

    Despite their various potential applications, InAs colloidal quantum dots have attracted considerably less attention than more classical II-VI materials because of their complex syntheses that require hazardous precursors. Recently, amino-phosphine has been introduced as a cheap, easy-to-use and efficient phosphorus precursor to synthesize InP quantum dots. Here, we use aminopnictogen precursors to implement a similar approach for synthesizing InAs quantum dots. We develop a two-step method based on the combination of aminoarsine as the arsenic precursor and aminophosphine as the reducing agent. This results in state-of-the-art InAs quantum dots with respect to the size dispersion and band-gap range. Moreover, we present shell coating procedures that lead to the formation of InAs/ZnS(e) core/shell quantum dots that emit in the infrared region. This innovative synthesis approach can greatly facilitate the research on InAs quantum dots and may lead to synthesis protocols for a wide range of III-V quantum dots.

  14. Degradation of Highly Alloyed Metal Halide Perovskite Precursor Inks: Mechanism and Storage Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dou, Benjia; Wheeler, Lance M.; Christians, Jeffrey A.

    Whereas the promise of metal halide perovskite (MHP) photovoltaics (PV) is that they can combine high efficiency with solution-processability, the chemistry occurring in precursor inks is largely unexplored. Herein, we investigate the degradation of MHP solutions based on the most widely used solvents, dimethylformamide (DMF) and dimethyl sulfoxide (DMSO). For the MHP inks studied, which contain formamidinium (FA+), methylammonium (MA+), cesium (Cs+), lead (Pb2+), bromide (Br-), and iodide (I-), dramatic compositional changes are observed following storage of the inks in nitrogen in the dark. We show that hydrolysis of DMF in the precursor solution forms dimethylammonium formate, which subsequently incorporatesmore » into the MHP film to compromise the ability of Cs+ and MA+ to stabilize FA+-based MHP. The changes in solution chemistry lead to a modification of the perovskite film stoichiometry, band gap, and structure. The solid precursor salts are stable when ball-milled into a powder, allowing for the storage of large quantities of stoichiometric precursor materials.« less

  15. Optimisation of a sol-gel synthesis route for the preparation of MgF2 particles for a large scale coating process.

    PubMed

    Scheurell, K; Noack, J; König, R; Hegmann, J; Jahn, R; Hofmann, Th; Löbmann, P; Lintner, B; Garcia-Juan, P; Eicher, J; Kemnitz, E

    2015-12-07

    A synthesis route for the preparation of optically transparent magnesium fluoride sols using magnesium acetate tetrahydrate as precursor is described. The obtained magnesium fluoride sols are stable for several months and can be applied for antireflective coatings on glass substrates. Reaction parameters in the course of sol synthesis are described in detail. Thus, properties of the precursor materials play a crucial role in the formation of the desired magnesium fluoride nanoparticles, this is drying the precursor has to be performed under defined mild conditions, re-solvation of the dried precursor has to be avoided and addition of water to the final sol-system has to be controlled strictly. Important properties of the magnesium fluoride sols like viscosity, particle size distribution, and structural information are presented as well.

  16. Method of forming a spacer for field emission flat panel displays

    DOEpatents

    Bernhardt, A.F.; Contolini, R.J.

    1997-08-19

    Spacers are disclosed for applications such as field emission flat panel displays and vacuum microelectronics, and which involves the application of aerogel/xerogel technology to the formation of the spacer. In a preferred approach the method uses a mold and mold release agent wherein the gel precursor is a liquid which can be applied to the mold filling holes which expose the substrate (either the baseplate or the faceplate). A release agent is applied to the mold prior to precursor application to ease removal of the mold after formation of the dielectric spacer. The shrinkage of the gel during solvent extraction also improves mold removal. The final spacer material is a good dielectric, such as silica, secured to the substrate. 3 figs.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seinfeld, John H.

    This project addressed the following research need in the Atmospheric System Research (ASR) Science and Program Plan: "Measurements downwind of urban sources of aerosol particles and precursor gases have shown that the mass concentration of secondary organic aerosol (SOA) can be several-fold greater than can be explained on the basis of current model calculations using observed precursor concentrations. ASR will continue conducting laboratory experiments on both gas-phase and aqueous-phase SOA formation to characterize the particle formation and the organic gases that react to form new organic aerosol material on aerosol seeds. ASR will use these experiments to guide the developmentmore » of comprehensive chemical mechanisms... to guide the development of parameterizations that are simple enough to be applied to aerosol life cycle models."« less

  18. Method of forming a spacer for field emission flat panel displays

    DOEpatents

    Bernhardt, Anthony F.; Contolini, Robert J.

    1997-01-01

    Spacers for applications such as field emission flat panel displays and vacuum microelectronics, and which involves the application of aerogel/xerogel technology to the formation of the spacer. In a preferred approach the method uses a mold and mold release agent wherein the gel precursor is a liquid which can be applied to the mold filling holes which expose the substrate (either the baseplate or the faceplate). A release agent is applied to the mold prior to precursor application to ease removal of the mold after formation of the dielectric spacer. The shrinkage of the gel during solvent extraction also improves mold removal. The final spacer material is a good dielectric, such as silica, secured to the substrate.

  19. Characterization of MCSF-induced proliferation and subsequent osteoclast formation in murine marrow culture.

    PubMed

    Biskobing, D M; Fan, X; Rubin, J

    1995-07-01

    To clarify events involved in 1,25(OH)2D3-stimulated osteoclast-like cell (OCLC) formation in primary murine marrow culture, we have characterized kinetics of precursor proliferation and fusion and their dependence on macrophage colony-stimulating factor (MCSF). 3H-thymidine nuclear incorporation in tartrate-resistant acid phosphatase positive multinucleated cells (TRAP+ MNCs) was assessed: 3H-thymidine incorporation was greatest when tracer was added during day 4 or 5, with labeled nuclei in 81% (day 4) and 90% (day 5) of the TRAP+ MNCs counted at the end of day 7. The percentage of total nuclei labeled was highest when 3H-thymidine was dosed on day 4 (58%), decreasing to 2% by day 7. Final TRAP+ MNC numbers were depleted by 80% when treated for 24 h with hydroxyurea on either day 3 or 4; this inhibition dropped to 57% and 12% when hydroxyurea was pulsed during days 5 or 6, respectively. The absence of 1,25(OH)2D3 during days 1-4 caused 70% attenuation of TRAP+ MNC formation; however, exposure to 3H-thymidine during day 4 in this experiment resulted in subsequent labeling of 81% of the TRAP+ MNCs formed, indicating that precursor proliferation occurred in the absence of 1,25(OH)2D3. To demonstrate that proliferation required MCSF, cultures were exposed to a monoclonal anti-MCSF antibody during days 3, 4, 5, 6, or 7. Inhibition of TRAP+ MNC formation was 85% when antibody was added during day 3. Antibody treatment after day 5 had little effect on the OCLC number. Fusion of precursors showed steady progression with OCLCs containing 4.8 +/- 0.3 nuclei at the end of day 4, 8.3 +/- 0.5 nuclei after day 5, 12.0 +/- 1.3 after day 6, and 13.7 +/- 1.5 at the end of day 7. This steady accretion of nuclei was unaffected by doses of MCSF antibody which blocked proliferation. In conclusion, we have shown that OCLCs arise from an MCSF-dependent expansion of the precursor pool occurring during days 3 and 4. Fusion of these precursors, which begins as proliferation diminishes, is able to progress in the presence of anti-MCSF antibody. These results should help refine the analysis of factors affecting proliferation and fusion of osteoclasts in murine marrow culture.

  20. The early stages of massive star formation: tracing the physical and chemical conditions in hot cores

    NASA Astrophysics Data System (ADS)

    Calcutt, Hannah

    2015-04-01

    Molecules are essential to the formation of stars, by allowing radiation to escape the cloud and cooling to occur. Over 180 molecules have been detected in interstellar environments, ranging from comets to interstellar clouds. Their spectra are useful probes of the conditions in which these molecules form. Comparison of rest frequencies to observed frequencies can provide information about the velocity of gas and indicate physical structures. The density, temperature, and excitation conditions of gas can be determined directly from the spectra of molecules. Furthermore, by taking a chemical inventory of a particular object, one can gain an understanding of the chemical processes occurring within a cloud. The class of molecules known as complex molecules (>6 atoms), are of particular interest when probing the conditions in massive starforming environments, as they are observed to trace a more compact region than smaller molecules. This thesis details the work of my PhD, to explore how complex molecules can be used to trace the physical and chemical conditions in hot cores (HCs), one of the earliest stages of massive star formation. This work combines both the observations and chemical modelling of several different massive star-forming regions. We identify molecular transitions observed in the spectra of these regions, and calculate column densities and rotation temperatures of these molecules (Chapters 2 and 3). In Chapter 4, we chemically model the HCs, and perform a comparison between observational column densities and chemical modelling column densities. In Chapter 5, we look at the abundance ratio of three isomers, acetic acid, glycolaldehyde, and methyl formate, to ascertain whether this ratio can be used as an indicator of HC evolution. Finally, we explore the chemistry of the HC IRAS 17233-3606, to identify emission features in the spectra, and determine column densities and rotation temperatures of the detected molecules.

  1. Transport of strontium and cesium in simulated hanford tank waste leachate through quartz sand under saturated and unsaturated flow.

    PubMed

    Rod, Kenton A; Um, Wooyong; Flury, Markus

    2010-11-01

    We investigated the effects of water saturation and secondary precipitate formation on Sr and Cs transport through quartz sand columns under saturated and unsaturated flow. Column experiments were conducted at effective water saturation ranging from 0.2 to 1.0 under steady-state flow using either 0.1 M NaNO(3) or simulated tank waste leachate (STWL; 1 M NaNO(3) and 1 M NaOH) mimicking Hanford (Washington, USA) tank waste. In 0.1 M NaNO(3) columns, Sr transported like a conservative tracer, whereas Cs was retarded relative to Sr. The transport of Sr and Cs in the 0.1 M NaNO(3) columns under all water saturations could be described with the equilibrium convection-dispersion equation (CDE). In STWL columns, Sr mobility was significantly reduced compared to the 0.1 M NaNO(3) column, because Sr was incorporated into or sorbed to neo-formed secondary precipitates. Strontium sequestration by precipitates was confirmed by additional batch and electron micrograph analyses. In contrast(,) the transport of Cs was less affected by the STWL; retardation of Cs in STWL columns was similar to that found in 0.1 M NaNO(3) columns. Analysis of STWL column data revealed that both Sr and Cs breakthrough curves showed nonideal behavior that suggest nonequilibrium conditions, although nonlinear geochemical behavior cannot be ruled out.

  2. Volatile nanoparticle formation and growth within a diluting diesel car exhaust.

    PubMed

    Uhrner, Ulrich; Zallinger, Michael; von Löwis, Sibylle; Vehkamäki, Hanna; Wehner, Birgit; Stratmann, Frank; Wiedensohler, Alfred

    2011-04-01

    A major source of particle number emissions is road traffic. However, scientific knowledge concerning secondary particle formation and growth of ultrafine particles within vehicle exhaust plumes is still very limited. Volatile nanoparticle formation and subsequent growth conditions were analyzed here to gain a better understanding of "real-world" dilution conditions. Coupled computational fluid dynamics and aerosol microphysics models together with measured size distributions within the exhaust plume of a diesel car were used. The impact of soot particles on nucleation, acting as a condensational sink, and the possible role of low-volatile organic components in growth were assessed. A prescribed reduction of soot particle emissions by 2 orders of magnitude (to capture the effect of a diesel particle filter) resulted in concentrations of nucleation-mode particles within the exhaust plume that were approximately 1 order of magnitude larger. Simulations for simplified sulfuric acid-water vapor gas-oil containing nucleation-mode particles show that the largest particle growth is located in a recirculation zone in the wake of the car. Growth of particles within the vehicle exhaust plume up to detectable size depends crucially on the relationship between the mass rate of gaseous precursor emissions and rapid dilution. Chassis dynamometer measurements indicate that emissions of possible hydrocarbon precursors are significantly enhanced under high engine load conditions and high engine speed. On the basis of results obtained for a diesel passenger car, the contributions from light diesel vehicles to the observed abundance of measured nucleation-mode particles near busy roads might be attributable to the impact of two different time scales: (1) a short one within the plume, marked by sufficient precursor emissions and rapid dilution; and (2) a second and comparatively long time scale resulting from the mix of different precursor sources and the impact of atmospheric chemistry.

  3. Speciation and formation of iodinated trihalomethane from microbially derived organic matter during the biological treatment of micro-polluted source water.

    PubMed

    Wei, Yuanyuan; Liu, Yan; Ma, Luming; Wang, Hongwu; Fan, Jinhong; Liu, Xiang; Dai, Rui-Hua

    2013-09-01

    Water sources are micro-polluted by the increasing range of anthropogenic activities around them. Disinfection byproduct (DBP) precursors in water have gradually expanded from humic acid (HA) and fulvic acid to other important sources of potential organic matter. This study aimed to provide further insights into the effects of microbially derived organic matter as precursors on iodinated trihalomethane (I-THM) speciation and formation during the biological treatment of micro-polluted source water. The occurrence of I-THMs in drinking water treated by biological processes was investigated. The results showed for the first time that CHCl2I and CHBrClI are emerging DBPs in China. Biological pre-treatment and biological activated carbon can increase levels of microbes, which could serve as DBP precursors. Chlorination experiments with bovine serum albumin (BSA), starch, HA, deoxyribonucleic acid (DNA), and fish oil, confirmed the close correlation between the I-THM species identified during the treatment processes and those predicted from the model compounds. The effects of iodide and bromide on the I-THM speciation and formation were related to the biochemical composition of microbially derived organic precursors. Lipids produced up to 16.98μgL(-1) of CHCl2I at an initial iodide concentration of 2mgL(-1). HA and starch produced less CHCl2I at 3.88 and 3.54μgL(-1), respectively, followed by BSA (1.50μgL(-1)) and DNA (1.35μgL(-1)). Only fish oil produced I-THMs when iodide and bromide were both present in solution; the four other model compounds formed brominated species. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Dissolved Organic Carbon and Disinfection By-Product Precursor Release from Managed Peat Soils

    USGS Publications Warehouse

    Fleck, J.A.; Bossio, D.A.; Fujii, R.

    2004-01-01

    A wetland restoration demonstration project examined the effects of a permanently flooded wetland on subsidence of peat soils. The project, started in 1997, was done on Twitchell Island, in the Sacramento-San Joaquin Delta of California. Conversion of agricultural land to a wetland has changed many of the biogeochemical processes controlling dissolved organic carbon (DOC) release from the peat soils, relative to the previous land use. Dissolved organic C in delta waters is a concern because it reacts with chlorine, added as a disinfectant in municipal drinking waters, to form carcinogenic disinfection byproducts (DBPs), including trihalomethanes (THMs) and haloacetic acids (HAAs). This study explores the effects of peat soil biogeochemistry on DOC and DBP release under agricultural and wetland management. Results indicate that organic matter source, extent of soil organic matter decomposition, and decomposition pathways all are factors in THM formation. The results show that historical management practices dominate the release of DOC and THM precursors. However, within-site differences indicate that recent management decisions can contribute to changes in DOC quality and THM precursor formation. Not all aromatic forms of carbon are highly reactive and certain environmental conditions produce the specific carbon structures that form THMs. Both HAA and THM precursors are elevated in the DOC released under wetland conditions. The findings of this study emphasize the need to further investigate the roles of organic matter sources, microbial decomposition pathways, and decomposition status of soil organic matter in the release of DOC and DBP precursors from delta soils under varying land-use practices.

  5. Fate of NDMA precursors through an MBR-NF pilot plant for urban wastewater reclamation and the effect of changing aeration conditions.

    PubMed

    Mamo, Julian; Insa, Sara; Monclús, Hèctor; Rodríguez-Roda, Ignasi; Comas, Joaquim; Barceló, Damià; Farré, Maria José

    2016-10-01

    The removal of N-nitrosodimethylamine (NDMA) formation potential through a membrane bioreactor (MBR) coupled to a nanofiltration (NF) pilot plant that treats urban wastewater is investigated. The results are compared to the fate of the individual NDMA precursors detected: azithromycin, citalopram, erythromycin, clarithromycin, ranitidine, venlafaxine and its metabolite o-desmethylvenlafaxine. Specifically, the effect of dissolved oxygen in the aerobic chamber of the MBR pilot plant on the removal of NDMA formation potential (FP) and individual precursors is studied. During normal aerobic operation, implying a fully nitrifying system, the MBR was able to reduce NDMA precursors above 94%, however this removal percentage was reduced to values as low as 72% when changing the conditions to minimize nitrification. Removal decreased also for azithromycin (68-59%), citalopram (31-17%), venlafaxine (35-15%) and erythromycin (61-16%) on average during nitrifying versus non-nitrifying conditions. The removal of clarithromycin, o-desmethylvenlafaxine and ranitidine could not be correlated with the nitrification inhibition, as it varied greatly during the experiment time. The MBR pilot plant is coupled to a nanofiltration (NF) system and the results on the rejection of both, NDMA FP and individual precursors, through this system was above 90%. Finally, results obtained for the MBR pilot plant are compared to the percentage of removal by a conventional full scale biological wastewater treatment plant (WWTP) fed with the same influent. During aerobic operation, the removal of NDMA FP by the MBR pilot plant was similar to the full scale WWTP. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Possibility of heliotropical response from inclination of columnar stromatolites, Socheong island, Korea

    NASA Astrophysics Data System (ADS)

    KONG, Dal Yong; LEE, Seong Joo; Golubic, Stjepko

    2014-05-01

    Socheong island is a unique island containing Precambrian stromatolites in South Korea. Most of Socheong stromatolites are domes and columns, occurring as 10 cm to 1 meter thick stromatolite beds. Lower parts of stromatolite beds are predominantly composed of domal stromatolites, while columns increase toward the upper level of stromatolite beds. In many of stromatolite beds, inclined columns are easily identifiable, which is generally considered as a result of heliotropism. From general lithology, sedimentary structures, inclined angles and distributional pattern, and structural deformation of sedimentary rocks of Socheong island, the inclination of Socheong stromatolites could be better interpreted as a secondary structural deformation probably after formation of stromatolite columns, rather than as a result of heliotropism. However, at this moment, we do not clearly reject heliotropism interpretation for inclined columns of Socheong stromatolites. This is because the original position of stromatolite columns were also lost if structural deformation would have affected throughout the whole sedimentary rocks of Socheong island. [Acknowledgments] This research was financially supported by the National Research Institute of Cultural Heritage.

  7. Atrazine remediation in wetland microcosms.

    PubMed

    Runes, H B; Bottomley, P J; Lerch, R N; Jenkins, J J

    2001-05-01

    Laboratory wetland microcosms were used to study treatment of atrazine in irrigation runoff by a field-scale-constructed wetland under controlled conditions. Three experiments, in which 1 ppm atrazine was added to the water column of three wetland, one soil control, and one water control microcosm, were conducted. Atrazine dissipation from the water column and degradate formation (deethylatrazine [DEA]; deisopropylatrazine [DIA]; and hydroxyatrazine [HA]) were monitored. Atrazine dissipation from the water column of wetland microcosms was biphasic. Less than 12% of the atrazine applied to wetland microcosms remained in the water column on day 56. Atrazine degradates were observed in water and sediment, with HA the predominant degradate. Analysis of day 56 sediment samples indicated that a significant portion of the initial application was detected as the parent compound and HA. Most probable number (MPN) assays demonstrated that atrazine degrader populations were small in wetland sediment. Wetland microcosms were able to reduce atrazine concentration in the water column via sorption and degradation. Based on results from this study, it is hypothesized that plant uptake contributed to atrazine dissipation from the water column.

  8. Soot formation and burnout in flames

    NASA Technical Reports Server (NTRS)

    Prado, B.; Bittner, J. D.; Neoh, K.; Howard, J. B.

    1980-01-01

    The amount of soot formed when burning a benzene/hexane mixture in a turbulent combustor was examined. Soot concentration profiles in the same combustor for kerosene fuel are given. The chemistry of the formation of soot precursors, the nucleation, growth and subsequent burnout of soot particles, and the effect of mixing on the previous steps were considered.

  9. Precursors of Young Women's Family Formation Pathways

    ERIC Educational Resources Information Center

    Amato, Paul R.; Landale, Nancy S.; Havasevich-Brooks, Tara C.; Booth, Alan; Eggebeen, David J.; Schoen, Robert; McHale, Susan M.

    2008-01-01

    We used latent class analysis to create family formation pathways for women between the ages of 18 and 23. Input variables included cohabitation, marriage, parenthood, full-time employment, and attending school. Data (n = 2,290) came from Waves I and III of the National Longitudinal Study of Adolescent Health (Add Health). The analysis revealed…

  10. The Curious Case of NH_2OH: Hunting a Direct Amino Acid Precursor Species in the Interstellar Medium

    NASA Astrophysics Data System (ADS)

    McGuire, Brett A.; Carroll, Brandon; Dollhopf, Niklaus M.; Crockett, Nathan; Blake, Geoffrey; Remijan, Anthony

    2015-06-01

    Despite the detection of amino acids, the building blocks of the proteins that support life, in cometary and meteoritic samples, we do not yet understand the conditions under which these life-essential species have formed. Hydroxylamine (NH_2OH) is potentially a direct precursor to the formation of the amino acids glycine and alanine in the ISM, through reaction with acetic and propionic acids. Recent laboratory and modeling work has shown that there are a variety of pathways to the formation of NH_2OH in interstellar ices both efficiently and in high abundance. Here, we present the result of a deep, multi-telescope search for NH_2OH in the shocked, complex molecular source L1157. We find no evidence suggesting the presence of this important precursor, and discuss the implications of this non-detection on the reactivity of NH_2OH both within the ices, and in the gas-phase ISM. We will also discuss how these observations should inform the direction of future studies, both in the laboratory and with state-of-the-art telescopes such as ALMA.

  11. Migrating Interneurons Secrete Fractalkine to Promote Oligodendrocyte Formation in the Developing Mammalian Brain.

    PubMed

    Voronova, Anastassia; Yuzwa, Scott A; Wang, Beatrix S; Zahr, Siraj; Syal, Charvi; Wang, Jing; Kaplan, David R; Miller, Freda D

    2017-05-03

    During development, newborn interneurons migrate throughout the embryonic brain. Here, we provide evidence that these interneurons act in a paracrine fashion to regulate developmental oligodendrocyte formation. Specifically, we show that medial ganglionic eminence (MGE) interneurons secrete factors that promote genesis of oligodendrocytes from glially biased cortical precursors in culture. Moreover, when MGE interneurons are genetically ablated in vivo prior to their migration, this causes a deficit in cortical oligodendrogenesis. Modeling of the interneuron-precursor paracrine interaction using transcriptome data identifies the cytokine fractalkine as responsible for the pro-oligodendrocyte effect in culture. This paracrine interaction is important in vivo, since knockdown of the fractalkine receptor CX3CR1 in embryonic cortical precursors, or constitutive knockout of CX3CR1, causes decreased numbers of oligodendrocyte progenitor cells (OPCs) and oligodendrocytes in the postnatal cortex. Thus, in addition to their role in regulating neuronal excitability, interneurons act in a paracrine fashion to promote the developmental genesis of oligodendrocytes. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Spectroscopic Identification of p-CHLORO-α-METHYLBENZYL Radical in the Gas Phase

    NASA Astrophysics Data System (ADS)

    Lee, Seung Woon; Lee, Gi Woo; Lee, Sang Kuk

    2009-06-01

    We report the first spectroscopic identification of the p-fluoro-α-methylbenzyl radical in the gas phase. Precursor p-fluoro-ethylbenzene seeded in a large amount of inert carrier gas helium was electrically discharged to produce the benzyl-type radicals in a corona excited supersonic expansion using a pinhole-type glass nozzle, from which the vibronic emission spectrum was recorded in the visible region using a long path monochromator. From an analysis of the spectrum observed, we found the formation of p-fluoro-α-methylbenzyl radical as well as p-fluorobenzyl radical in the jet from the precursor. After eliminating the bands belonging to p-fluorobenzyl radical using the known data, we identified spectroscopically the formation of the p-fluoro-α-methylbenzyl radical, in which the energy of the D_1 → D_0 electronic transition and a few vibrational mode frequencies in the ground electronic state were determined by comparison with those from an ab initio calculation and with those from the known data of the precursor. S. K. Lee and D. Y. Baek Chem. Phys. Lett. 301(3-4), 407-412 (1999).

  13. The usability of ark clam shell (Anadara granosa) as calcium precursor to produce hydroxyapatite nanoparticle via wet chemical precipitate method in various sintering temperature.

    PubMed

    Khiri, Mohammad Zulhasif Ahmad; Matori, Khamirul Amin; Zainuddin, Norhazlin; Abdullah, Che Azurahanim Che; Alassan, Zarifah Nadakkavil; Baharuddin, Nur Fadilah; Zaid, Mohd Hafiz Mohd

    2016-01-01

    This paper reported the uses of ark clam shell calcium precursor in order to form hydroxyapatite (HA) via the wet chemical precipitation method. The main objective of this research is to acquire better understanding regarding the effect of sintering temperature in the fabrication of HA. Throughout experiment, the ratio of Ca:P were constantly controlled, between 1.67 and 2.00. The formation of HA at these ratio was confirmed by means of energy-dispersive X-ray spectroscopy analysis. In addition, the effect of sintering temperature on the formation of HA was observed using X-ray diffraction analysis, while the structural and morphology was determined by means of field emission scanning electron microscopy. The formation of HA nanoparticle was recorded (~35-69 nm) in the form of as-synthesize HA powder. The bonding compound appeared in the formation of HA was carried out using Fourier transform infrared spectroscopy such as biomaterials that are expected to find potential applications in orthopedic and biomedical industries .

  14. Liquid phase products and solid deposit formation from thermally stressed model jet fuels

    NASA Technical Reports Server (NTRS)

    Kim, W. S.; Bittker, D. A.

    1984-01-01

    The relationship between solid deposit formation and liquid degradation product concentration was studied for the high temperature (400 C) stressing of three hydrocarbon model fuels. A Jet Fuel Thermal Oxidation Tester was used to simulate actual engine fuel system conditions. The effects of fuel type, dissolved oxygen concentration, and hot surface contact time (reaction time) were studied. Effects of reaction time and removal of dissolved oxygen on deposit formation were found to be different for n-dodecane and for 2-ethylnaphthalene. When ten percent tetralin is added to n-dodecane to give a simpler model of an actual jet fuel, the tetralin inhibits both the deposit formation and the degradation of n-dodecane. For 2-ethylnaphthalene primary product analyses indicate a possible self-inhibition at long reaction times of the secondary reactions which form the deposit precursors. The mechanism of the primary breakdown of these fuels is suggested and the primary products which participate in these precursor-forming reactions are identified. Some implications of the results to the thermal degradation of real jet fuels are given.

  15. LC/QTOF-MS fragmentation of N-nitrosodimethylamine precursors in drinking water supplies is predictable and aids their identification.

    PubMed

    Hanigan, David; Ferrer, Imma; Thurman, E Michael; Herckes, Pierre; Westerhoff, Paul

    2017-02-05

    N-Nitrosodimethylamine (NDMA) is carcinogenic in rodents and occurs in chloraminated drinking water and wastewater effluents. NDMA forms via reactions between chloramines and mostly unidentified, N-containing organic matter. We developed a mass spectrometry technique to identify NDMA precursors by analyzing 25 model compounds with LC/QTOF-MS. We searched isolates of 11 drinking water sources and 1 wastewater using a custom MATLAB ® program and extracted ion chromatograms for two fragmentation patterns that were specific to the model compounds. Once a diagnostic fragment was discovered, we conducted MS/MS during a subsequent injection to confirm the precursor ion. Using non-target searches and two diagnostic fragmentation patterns, we discovered 158 potential NDMA precursors. Of these, 16 were identified using accurate mass combined with fragment and retention time matches of analytical standards when available. Five of these sixteen NDMA precursors were previously unidentified in the literature, three of which were metabolites of pharmaceuticals. Except methadone, the newly identified precursors all had NDMA molar yields of less than 5%, indicating that NDMA formation could be additive from multiple compounds, each with low yield. We demonstrate that the method is applicable to other disinfection by-product precursors by predicting and verifying the fragmentation patterns for one nitrosodiethylamine precursor. Copyright © 2016. Published by Elsevier B.V.

  16. Dynamic model evaluation for secondary inorganic aerosol and its precursors over Europe between 1990 and 2009

    NASA Astrophysics Data System (ADS)

    Banzhaf, S.; Schaap, M.; Kranenburg, R.; Manders, A. M. M.; Segers, A. J.; Visschedijk, A. J. H.; Denier van der Gon, H. A. C.; Kuenen, J. J. P.; van Meijgaard, E.; van Ulft, L. H.; Cofala, J.; Builtjes, P. J. H.

    2015-04-01

    In this study we present a dynamic model evaluation of chemistry transport model LOTOS-EUROS (LOng Term Ozone Simulation - EURopean Operational Smog) to analyse the ability of the model to reproduce observed non-linear responses to emission changes and interannual variability of secondary inorganic aerosol (SIA) and its precursors over Europe from 1990 to 2009. The 20 year simulation was performed using a consistent set of meteorological data provided by RACMO2 (Regional Atmospheric Climate MOdel). Observations at European rural background sites have been used as a reference for the model evaluation. To ensure the consistency of the used observational data, stringent selection criteria were applied, including a comprehensive visual screening to remove suspicious data from the analysis. The LOTOS-EUROS model was able to capture a large part of the seasonal and interannual variability of SIA and its precursors' concentrations. The dynamic evaluation has shown that the model is able to simulate the declining trends observed for all considered sulfur and nitrogen components following the implementation of emission abatement strategies for SIA precursors over Europe. Both the observations and the model show the largest part of the decline in the 1990s, while smaller concentration changes and an increasing number of non-significant trends are observed and modelled between 2000 and 2009. Furthermore, the results confirm former studies showing that the observed trends in sulfate and total nitrate concentrations from 1990 to 2009 are lower than the trends in precursor emissions and precursor concentrations. The model captured well these non-linear responses to the emission changes. Using the LOTOS-EUROS source apportionment module, trends in the formation efficiency of SIA have been quantified for four European regions. The exercise has revealed a 20-50% more efficient sulfate formation in 2009 compared to 1990 and an up to 20% more efficient nitrate formation per unit nitrogen oxide emission, which added to the explanation of the non-linear responses. However, we have also identified some weaknesses in the model and the input data. LOTOS-EUROS underestimates the observed nitrogen dioxide concentrations throughout the whole time period, while it overestimates the observed nitrogen dioxide concentration trends. Moreover, model results suggest that the emission information of the early 1990s used in this study needs to be improved concerning magnitude and spatial distribution.

  17. Dynamic model evaluation for secondary inorganic aerosol and its precursors over Europe between 1990 and 2009

    NASA Astrophysics Data System (ADS)

    Banzhaf, S.; Schaap, M.; Kranenburg, R.; Manders, A. M. M.; Segers, A. J.; Visschedijk, A. H. J.; Denier van der Gon, H. A. C.; Kuenen, J. J. P.; van Meijgaard, E.; van Ulft, L. H.; Cofala, J.; Builtjes, P. J. H.

    2014-07-01

    In this study we present a dynamic model evaluation of the chemistry transport model LOTOS-EUROS to analyse the ability of the model to reproduce observed non-linear responses to emission changes and interannual variability of secondary inorganic aerosol (SIA) and its precursors over Europe from 1990 to 2009. The 20 year simulation was performed using a consistent set of meteorological data provided by the regional climate model RACMO2. Observations at European rural background sites have been used as reference for the model evaluation. To ensure the consistency of the used observational data stringent selection criteria were applied including a comprehensive visual screening to remove suspicious data from the analysis. The LOTOS-EUROS model was able to capture a large part of the day-to-day, seasonal and interannual variability of SIA and its precursors' concentrations. The dynamic evaluation has shown that the model is able to simulate the declining trends observed for all considered sulphur and nitrogen components following the implementation of emission abatement strategies for SIA precursors over Europe. Both, the observations and the model show the largest part of the decline in the 1990's while smaller concentration changes and an increasing number of non-significant trends are observed and modelled between 2000-2009. Furthermore, the results confirm former studies showing that the observed trends in sulphate and total nitrate concentrations from 1990 to 2009 are significantly lower than the trends in precursor emissions and precursor concentrations. The model captured these non-linear responses to the emission changes well. Using the LOTOS-EUROS source apportionment module trends in formation efficiency of SIA have been quantified for four European regions. The exercise has revealed a 20-50% more efficient sulphate formation in 2009 compared to 1990 and an up to 20% more efficient nitrate formation per unit nitrogen oxide emission, which added to the explanation of the non-linear responses. However, we have also identified some weaknesses to the model and the input data. LOTOS-EUROS underestimates the observed nitrogen dioxide concentrations throughout the whole time period, while it overestimates the observed nitrogen dioxide concentration trends. Moreover, model results suggest that the emission information of the early 1990's used in this study needs to be improved concerning magnitude and spatial distribution.

  18. Quantification of a potent mutagenic 4-amino-3,3'-dichloro-5,4'-dinitrobiphenyl (ADDB) and the related chemicals in water from the Waka River in Wakayama, Japan.

    PubMed

    Mizuno, Tomoko; Takamura-Enya, Takeji; Watanabe, Tetsushi; Hasei, Tomohiro; Wakabayashi, Keiji; Ohe, Takeshi

    2007-06-15

    4-Amino-3,3'-dichloro-5,4'-dinitrobiphenyl (ADDB) is a novel chemical exerting strong mutagenicity, especially in the absence of metabolic activation. In addition to mutagenicity, ADDB may also disrupt the endocrine system in vitro. ADDB may be discharged from chemical plants near the Waka River and could be unintentionally formed via post-emission modification of drainage water containing 3,3'-dichlorobenzidine (DCB), which is a precursor in the manufacture of polymers and dye intermediates in chemical plants. The main purpose of this study was to make a comprehensive survey of the behaviour and levels of ADDB and suspected starting material or intermediates of ADDB, i.e., DCB, 3,3'-dichloro-4,4'-dinitrobiphenyl (DDB), and 4-amino-3,3'-dichloro-4'-nitrobipheny (ADNB) in Waka River water samples. We also postulated the formation pathway of ADDB. Water samples were collected at five sampling sites from the Waka River four times between March 2003 and December 2004. Samples were passed through Supelpak2 columns, and adsorbed materials were then extracted with methanol. Extracts were used for quantification of ADDB and the related chemicals by HPLC on reverse-phase columns; mutagenicity was evaluated in the Salmonella assay using the O-acetyltransferase-overexpressing strain YG1024. High levels of ADDB, DCB, DDB, and ADNB (12.0, 20,400, 134.8, and 149.4ng/L-equivalent) were detected in the samples collected at the site where wastewater was discharged from chemical plants into the river. These water samples also showed stronger mutagenicity in YG1024 both with and without S9 mix than the other water samples collected from upstream and downstream sites. The results suggest that ADDB is unintentionally formed from DCB via ADNB in the process of wastewater treatment of drainage water containing DCB from chemical plants.

  19. SOA formation from photooxidation of naphthalene and methylnaphthalenes with m-xylene and surrogate mixtures

    NASA Astrophysics Data System (ADS)

    Chen, Chia-Li; Li, Lijie; Tang, Ping; Cocker, David R.

    2018-05-01

    SOA formation is not well predicted in current models in urban area. The interaction among multiple anthropogenic volatile organic compounds is essential for the SOA formation in the complex urban atmosphere. Secondary organic aerosol (SOA) from the photooxidation of naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene as well as individual polycyclic aromatic hydrocarbons (PAHs) mixed with m-xylene or an atmospheric surrogate mixture was explored in the UCR CE-CERT environmental chamber under urban relevant low NOx and extremely low NOx (H2O2) conditions. Addition of m-xylene suppressed SOA formation from the individual PAH precursor. A similar suppression effect on SOA formation was observed during the surrogate mixture photooxidation suggesting the importance of gas-phase chemical reactivity to SOA formation. The SOA growth rate for different PAH-m-xylene mixtures was strongly correlated with initial [HO2]/[RO2] ratio but negatively correlated with initial m-xylene/NO ratio. Decreasing SOA formation was observed for increasing m-xylene/PAHs ratios and increasing initial m-xylene/NO ratio. The SOA chemical composition characteristics such as f44 versus f43, H/C ratio, O/C ratio, and the oxidation state of the carbon OSbarc were consistent with a continuously aging with the SOA exhibiting characteristics of both individual precursors. SOA formation from PAHs was also suppressed within an atmospheric surrogate mixture compared to the SOA formed from individual PAHs, indicating that atmospheric reactivity directly influences SOA formation from PAHs.

  20. Dual function catalysts. Dehydrogenation and asymmetric intramolecular Diels-Alder cycloaddition of N-hydroxy formate esters and hydroxamic acids: evidence for a ruthenium-acylnitroso intermediate.

    PubMed

    Chow, Chun P; Shea, Kenneth J

    2005-03-23

    The chiral ruthenium salen complex, 13b, functions as an efficient catalyst for the sequential oxidation and asymmetric Diels-Alder cycloaddition of hydroxamic acids and N-hydroxy formate esters. This result provides evidence for the formation of a ruthenium-nitroso formate (acyl nitroso) intermediate. The Diels-Alder precursors are prepared from simple building blocks, and the cycloadducts, bridged oxazinolactams, can serve as useful intermediates in organic synthesis.

  1. Beyond the Electrostatic Ionosphere: Dynamic Coupling of the Magnetosphere and Ionosphere

    NASA Astrophysics Data System (ADS)

    Lysak, R. L.; Song, Y.

    2017-12-01

    Many models of magnetospheric dynamics treat the ionosphere as a height-integrated slab in which the electric fields are electrostatic. However, in dynamic situations, the coupling between magnetosphere and ionosphere is achieved by the propagation of shear Alfvén waves. Hall effects lead to a coupling of shear Alfvén and fast mode waves, resulting in an inductive electric field and a compressional component of the magnetic field. It is in fact this compressional magnetic field that is largely responsible for the magnetic fields seen on the ground. A fully inductive ionosphere model is required to describe this situation. The shear Alfvén waves are affected by the strong gradient in the Alfvén speed above the ionosphere, setting up the ionospheric Alfvén resonator with wave periods in the 1-10 second range. These waves develop a parallel electric field on small scales that can produce a broadband acceleration of auroral electrons, which form the Alfvénic aurora. Since these electrons are relatively low in energy (hundreds of eV to a few keV), they produce auroral emissions as well as ionization at higher altitudes. Therefore, they can produce localized columns of ionization that lead to structuring in the auroral currents due to phase mixing or feedback interactions. This implies that the height-integrated description of the ionosphere is not appropriate in these situations. These considerations suggest that the Alfvénic aurora may, at least in some cases, act as a precursor to the development of a quasi-static auroral arc. The acceleration of electrons and ions produces a density cavity at higher altitudes that favors the formation of parallel electric fields. Furthermore, the precipitating electrons will produce secondary and backscattered electrons that provide a necessary population for the formation of double layers. These interactions strongly suggest that the simple electrostatic boundary condition often assumed is inadequate to describe auroral arc formation.

  2. Physical properties of Southern infrared dark clouds

    NASA Astrophysics Data System (ADS)

    Vasyunina, T.; Linz, H.; Henning, Th.; Stecklum, B.; Klose, S.; Nyman, L.-Å.

    2009-05-01

    Context: What are the mechanisms by which massive stars form? What are the initial conditions for these processes? It is commonly assumed that cold and dense Infrared Dark Clouds (IRDCs) represent the birth-sites of massive stars. Therefore, these clouds have been receiving an increasing amount of attention, and their analysis offers the opportunity to tackle the afore mentioned questions. Aims: To enlarge the sample of well-characterised IRDCs in the southern hemisphere, where ALMA will play a major role in the near future, we have developed a program to study the gas and dust of southern infrared dark clouds. The present paper attempts to characterize the continuum properties of this sample of IRDCs. Methods: We cross-correlated 1.2 mm continuum data from SIMBA bolometer array mounted on SEST telescope with Spitzer/GLIMPSE images to establish the connection between emission sources at millimeter wavelengths and the IRDCs that we observe at 8 μm in absorption against the bright PAH background. Analysing the dust emission and extinction enables us to determine the masses and column densities, which are important quantities in characterizing the initial conditions of massive star formation. We also evaluated the limitations of the emission and extinction methods. Results: The morphology of the 1.2 mm continuum emission is in all cases in close agreement with the mid-infrared extinction. The total masses of the IRDCs were found to range from 150 to 1150 M_⊙ (emission data) and from 300 to 1750 M_⊙ (extinction data). We derived peak column densities of between 0.9 and 4.6 × 1022 cm-2 (emission data) and 2.1 and 5.4 × 1022 cm-2 (extinction data). We demonstrate that the extinction method is unreliable at very high extinction values (and column densities) beyond AV values of roughly 75 mag according to the Weingartner & Draine (2001) extinction relation RV = 5.5 model B (around 200 mag when following the common Mathis (1990, ApJ, 548, 296) extinction calibration). By taking the spatial resolution effects into account and restoring the column densities derived from the dust emission to a linear resolution of 0.01 pc, peak column densities of 3-19 × 1023 cm-2 are obtained, which are much higher than typical values for low-mass cores. Conclusions: Taking into account the spatial resolution effects, the derived column densities are beyond the column density threshold of 3.0 × 1023 cm-2 required by theoretical considerations for massive star formation. We conclude that the values of column densities derived for the selected IRDC sample imply that these objects are excellent candidates for objects in the earliest stages of massive star formation.

  3. Atomic layer deposition of a high-k dielectric on MoS2 using trimethylaluminum and ozone.

    PubMed

    Cheng, Lanxia; Qin, Xiaoye; Lucero, Antonio T; Azcatl, Angelica; Huang, Jie; Wallace, Robert M; Cho, Kyeongjae; Kim, Jiyoung

    2014-08-13

    We present an Al2O3 dielectric layer on molybdenum disulfide (MoS2), deposited using atomic layer deposition (ALD) with ozone/trimethylaluminum (TMA) and water/TMA as precursors. The results of atomic force microscopy and low-energy ion scattering spectroscopy show that using TMA and ozone as precursors leads to the formation of uniform Al2O3 layers, in contrast to the incomplete coverage we observe when using TMA/H2O as precursors. Our Raman and X-ray photoelectron spectroscopy measurements indicate minimal variations in the MoS2 structure after ozone treatment at 200 °C, suggesting its excellent chemical resistance to ozone.

  4. Spectroscopic evidence of jet-cooled p-methyl-α-methylbenzyl radical

    NASA Astrophysics Data System (ADS)

    Chae, Sang Youl; Yoon, Young Wook; Lim, Manho; Lee, Sang Kuk

    2015-08-01

    We report spectroscopic evidence of the jet-cooled p-methyl-α-methylbenzyl radical in corona discharge. The visible vibronic emission spectra were recorded from the corona discharge of three precursors, p-xylene, p-ethyltoluene, and p-isopropyltoluene seeded in a large amount of carrier gas helium using a pinhole-type glass nozzle. From the analysis of the vibronic spectra observed from each precursor and the bond dissociation energies of precursor molecules, we are able to confirm the formation of the jet-cooled p-methyl-α-methylbenzyl radical in corona discharge, and determine the energy of the D1 → D0 transition and a few vibrational mode frequencies in the D0 state.

  5. Synthesis of Energetic Polymers.

    DTIC Science & Technology

    1981-10-15

    demonstrated by a single peak in the gc analysis (injector temperature 2500 C). The reaction will be repeated in a different solvent to avoid the formation of...glass column packed with 10% OV-101 on chrom Q, with n-decane as an internal standard. Rates of polymerization were calculated using the assumption...the Kelen-Tudos method. The disappearance of monomer was monitored by gas chromatography, using a glass column packed with 10% OV-101 on Chrom Q

  6. Chondrules and the Protoplanetary Disk

    NASA Astrophysics Data System (ADS)

    Hewins, R. H.; Jones, Rhian; Scott, Ed

    2011-03-01

    Part I. Introduction: 1. Chondrules and the protoplanetary disk: An overview R. H. Hewins; Part. II. Chonrules, Ca-Al-Rich Inclusions and Protoplanetary Disks: 2. Astronomical observations of phenomena in protostellar disks L. Hartmann; 3. Overview of models of the solar nebula: potential chondrule-forming environments P. Cassen; 4. Large scale processes in the solar nebula A. P. Boss; 5. Turbulence, chondrules and planetisimals J. N. Cuzzi, A. R. Dobrovolskis and R. C. Hogan; 6. Chondrule formation: energetics and length scales J. T. Wasson; 7. Unresolved issues in the formation of chondrules and chondrites J. A. Wood; 8. Thermal processing in the solar nebula: constraints from refractory inclusions A. M. Davis and G. J. MacPherson; 9. Formation times of chondrules and Ca-Al-Rich inclusions: constraints from short-lived radionuclides T. D. Swindle, A. M. Davis, C. M. Hohenberg, G. J. MacPherson and L. E. Nyquist; 10. Formation of chondrules and chondrites in the protoplanetary nebula E. R. D. Scott, S. G. Love and A. N. Krot; Part III. Chondrule precursors and multiple melting: 11. Origin of refractory precursor components of chondrules K. Misawa and N. Nakamura; 12. Mass-independent isotopic effects in chondrites: the role of chemical processes M. H. Thiemens; 13. Agglomeratic chondrules: implications for the nature of chondrule precursors and formation by incomplete melting M. K. Weisberg and M. Prinz; 14. Constraints on chondrule precursors from experimental Data H. C. Connolly Jr. and R. H. Hewins; 15. Nature of matrix in unequilibrated chondrites and its possible relationship to chondrules A. J. Brearly; 16. Constraints on chondrite agglomeration from fine-grained chondrule Rims K. Metzler and A. Bischoff; 17. Relict grains in chondrules: evidence for chondrule recycling R. H. Jones; 18. Multiple heating of chondrules A. E. Rubin and A. N. Krot; 19. Microchondrule-bearing chondrule rims: constraints on chondrule formation A. N. Krot and A. E. Rubin; Part IV. Heating, Cooling and Volatiles: 20. A dynamic crystallization model for chondrule melts G. E. Lofgren; 21. Peak temperatures of flash-melted chondrules R. H. Hewins and H. C. Connolly Jr.; 22. Congruent melting kinetics: constraints on chondrule formation J. P. Greenwood and P. C. Hess; 23. Sodium and sulfur in chondrules: heating time and cooling curves Y. Yu, R. H. Hewins and B. Zanda; 24. Open-system behaviour during chondrule formation D. W. G. Sears, S. Huang and P. H. Benoit; 25. Recycling and volatile loss in chondrule formation C. M. O'D. Alexander; 26. Chemical fractionations of chondrites: signatures of events before chondrule formation J. N. Grossmann; Part V. Models of Chondrule Formation: 27. A concise guide to chondrule formation models A. P. Boss; 28. Models for multiple heating mechanisms L. L. Hood and D. A. Kring; 29. Chondrule formation in the accretional shock T. V. Ruzmaikina and W. H. Ip; 30. The protostellar jet model of chondrule formation K. Liffman and M. Brown; 31. Chondrule formation in lightning discharges: status of theory and experiments M. Horanyi and S. Robertson; 32. Chondrules and their associates in ordinary chondrites: a planetary connection? R. Hutchinson; 33. Collision of icy and slightly differentiated bodies as an origin for unequilibriated ordinary chondrites M. Kitamura and A. Tsuchiyama; 34. A chondrule-forming scenario involving molten planetisimals I. S. Sanders.

  7. Identification of DSB-1, a Protein Required for Initiation of Meiotic Recombination in Caenorhabditis elegans, Illuminates a Crossover Assurance Checkpoint

    PubMed Central

    Stamper, Ericca L.; Rodenbusch, Stacia E.; Rosu, Simona; Ahringer, Julie; Villeneuve, Anne M.; Dernburg, Abby F.

    2013-01-01

    Meiotic recombination, an essential aspect of sexual reproduction, is initiated by programmed DNA double-strand breaks (DSBs). DSBs are catalyzed by the widely-conserved Spo11 enzyme; however, the activity of Spo11 is regulated by additional factors that are poorly conserved through evolution. To expand our understanding of meiotic regulation, we have characterized a novel gene, dsb-1, that is specifically required for meiotic DSB formation in the nematode Caenorhabditis elegans. DSB-1 localizes to chromosomes during early meiotic prophase, coincident with the timing of DSB formation. DSB-1 also promotes normal protein levels and chromosome localization of DSB-2, a paralogous protein that plays a related role in initiating recombination. Mutations that disrupt crossover formation result in prolonged DSB-1 association with chromosomes, suggesting that nuclei may remain in a DSB-permissive state. Extended DSB-1 localization is seen even in mutants with defects in early recombination steps, including spo-11, suggesting that the absence of crossover precursors triggers the extension. Strikingly, failure to form a crossover precursor on a single chromosome pair is sufficient to extend the localization of DSB-1 on all chromosomes in the same nucleus. Based on these observations we propose a model for crossover assurance that acts through DSB-1 to maintain a DSB-permissive state until all chromosome pairs acquire crossover precursors. This work identifies a novel component of the DSB machinery in C. elegans, and sheds light on an important pathway that regulates DSB formation for crossover assurance. PMID:23990794

  8. Adsorption of natural organic matter and disinfection byproduct precursors from surface water onto TiO2 nanoparticles: pH effects, isotherm modelling and implications for using TiO2 for drinking water treatment.

    PubMed

    Gora, Stephanie L; Andrews, Susan A

    2017-05-01

    Titanium dioxide is a photocatalyst that can remove organic contaminants of interest to the drinking water treatment industry, including natural organic matter (NOM) and disinfection byproduct (DBP) precursors. The photocatalytic reaction occurs in two steps: adsorption of the contaminant followed by degradation of the adsorbed contaminant upon irradiation with UV light. The second part of this process can lead to the formation of reactive intermediates and negative impacts on treated water quality, such as increased DBP formation potential (DBPfp). Adsorption alone does not result in the formation of reactive intermediates and thus may prove to be a safe way to incorporate TiO 2 into drinking water treatment processes. The goal of this study was to expand on the current understanding of NOM adsorption on TiO 2 and examine it in a drinking water context by observing NOM adsorption from real water sources and evaluating the effects of the resulting reductions on the DBPfp of the treated water. Bottle point isotherm tests were conducted with raw water from two Canadian water treatment plants adjusted to pH 4, pH 6 and pH 8 and dosed with TiO 2 nanoparticles. The DOC results were a good fit to a modified Freundlich isotherm. DBP precursors and liquid chromatography with organic carbon detection NOM fractions associated with DBP formation were removed to some extent at all pHs, but most effectively at pH 4. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Growth behavior and properties of atomic layer deposited tin oxide on silicon from novel tin(II)acetylacetonate precursor and ozone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kannan Selvaraj, Sathees; Feinerman, Alan; Takoudis, Christos G., E-mail: takoudis@uic.edu

    In this work, a novel liquid tin(II) precursor, tin(II)acetylacetonate [Sn(acac){sub 2}], was used to deposit tin oxide films on Si(100) substrate, using a custom-built hot wall atomic layer deposition (ALD) reactor. Three different oxidizers, water, oxygen, and ozone, were tried. Resulting growth rates were studied as a function of precursor dosage, oxidizer dosage, reactor temperature, and number of ALD cycles. The film growth rate was found to be 0.1 ± 0.01 nm/cycle within the wide ALD temperature window of 175–300 °C using ozone; no film growth was observed with water or oxygen. Characterization methods were used to study the composition, interface quality, crystallinity, microstructure,more » refractive index, surface morphology, and resistivity of the resulting films. X-ray photoelectron spectra showed the formation of a clean SnO{sub x}–Si interface. The resistivity of the SnO{sub x} films was calculated to be 0.3 Ω cm. Results of this work demonstrate the possibility of introducing Sn(acac){sub 2} as tin precursor to deposit conducting ALD SnO{sub x} thin films on a silicon surface, with clean interface and no formation of undesired SiO{sub 2} or other interfacial reaction products, for transparent conducting oxide applications.« less

  10. Preparation of UO2, ThO2 and (Th,U)O2 pellets from photochemically-prepared nano-powders

    NASA Astrophysics Data System (ADS)

    Pavelková, Tereza; Čuba, Václav; de Visser-Týnová, Eva; Ekberg, Christian; Persson, Ingmar

    2016-02-01

    Photochemically-induced preparation of nano-powders of crystalline uranium and/or thorium oxides and their subsequent pelletizing has been investigated. The preparative method was based on the photochemically induced formation of amorphous solid precursors in aqueous solution containing uranyl and/or thorium nitrate and ammonium formate. The EXAFS analyses of the precursors shown that photon irradiation of thorium containing solutions yields a compound with little long-range order but likely "ThO2 like" and the irradiation of uranium containing solutions yields the mixture of U(IV) and U(VI) compounds. The U-containing precursors were carbon free, thus allowing direct heat treatment in reducing atmosphere without pre-treatment in the air. Subsequent heat treatment of amorphous solid precursors at 300-550 °C yielded nano-crystalline UO2, ThO2 or solid (Th,U)O2 solutions with high purity, well-developed crystals with linear crystallite size <15 nm. The prepared nano-powders of crystalline oxides were pelletized without any binder (pressure 500 MPa), the green pellets were subsequently sintered at 1300 °C under an Ar:H2 (20:1) mixture (UO2 and (Th,U)O2 pellets) or at 1600 °C in ambient air (ThO2 pellets). The theoretical density of the sintered pellets varied from 91 to 97%.

  11. Oxidation Induced Doping of Nanoparticles Revealed by in Situ X-ray Absorption Studies.

    PubMed

    Kwon, Soon Gu; Chattopadhyay, Soma; Koo, Bonil; Dos Santos Claro, Paula Cecilia; Shibata, Tomohiro; Requejo, Félix G; Giovanetti, Lisandro J; Liu, Yuzi; Johnson, Christopher; Prakapenka, Vitali; Lee, Byeongdu; Shevchenko, Elena V

    2016-06-08

    Doping is a well-known approach to modulate the electronic and optical properties of nanoparticles (NPs). However, doping at nanoscale is still very challenging, and the reasons for that are not well understood. We studied the formation and doping process of iron and iron oxide NPs in real time by in situ synchrotron X-ray absorption spectroscopy. Our study revealed that the mass flow of the iron triggered by oxidation is responsible for the internalization of the dopant (molybdenum) adsorbed at the surface of the host iron NPs. The oxidation induced doping allows controlling the doping levels by varying the amount of dopant precursor. Our in situ studies also revealed that the dopant precursor substantially changes the reaction kinetics of formation of iron and iron oxide NPs. Thus, in the presence of dopant precursor we observed significantly faster decomposition rate of iron precursors and substantially higher stability of iron NPs against oxidation. The same doping mechanism and higher stability of host metal NPs against oxidation was observed for cobalt-based systems. Since the internalization of the adsorbed dopant at the surface of the host NPs is driven by the mass transport of the host, this mechanism can be potentially applied to introduce dopants into different oxidized forms of metal and metal alloy NPs providing the extra degree of compositional control in material design.

  12. Reconciliation of Halogen-Induced Ozone Loss with the Total-Column Ozone Record

    NASA Technical Reports Server (NTRS)

    Shepherd, T. G.; Plummer, D. A.; Scinocca, J. F.; Hegglin, M. I.; Fioletov, V. E.; Reader, M. C.; Remsberg, E.; von Clarmann, T.; Wang, H. J.

    2014-01-01

    The observed depletion of the ozone layer from the 1980s onwards is attributed to halogen source gases emitted by human activities. However, the precision of this attribution is complicated by year-to-year variations in meteorology, that is, dynamical variability, and by changes in tropospheric ozone concentrations. As such, key aspects of the total-column ozone record, which combines changes in both tropospheric and stratospheric ozone, remain unexplained, such as the apparent absence of a decline in total-column ozone levels before 1980, and of any long-term decline in total-column ozone levels in the tropics. Here we use a chemistry-climate model to estimate changes in halogen-induced ozone loss between 1960 and 2010; the model is constrained by observed meteorology to remove the eects of dynamical variability, and driven by emissions of tropospheric ozone precursors to separate out changes in tropospheric ozone. We show that halogen-induced ozone loss closely followed stratospheric halogen loading over the studied period. Pronounced enhancements in ozone loss were apparent in both hemispheres following the volcanic eruptions of El Chichon and, in particular, Mount Pinatubo, which significantly enhanced stratospheric aerosol loads. We further show that approximately 40% of the long-term non-volcanic ozone loss occurred before 1980, and that long-term ozone loss also occurred in the tropical stratosphere. Finally, we show that halogeninduced ozone loss has declined by over 10% since stratospheric halogen loading peaked in the late 1990s, indicating that the recovery of the ozone layer is well underway.

  13. Brominated flame retardants and the formation of dioxins and furans in fires and combustion.

    PubMed

    Zhang, Mengmei; Buekens, Alfons; Li, Xiaodong

    2016-03-05

    The widespread use and increasing inventory of brominated flame retardants (BFRs) have caused considerable concern, as a result of BFRs emissions to the environment and of the formation of both polybrominated dibenzo-p-dioxins and dibenzofurans (PBDD/Fs) and mixed polybromochloro-dibenzo-p-dioxins and dibenzofurans (PBCDD/Fs or PXDD/Fs). Structural similarities between PBDD/Fs and polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) suggest the existence of comparable formation pathways of both PBDD/Fs and PCDD/Fs, yet BFRs also act as specific precursors to form additional PBDD/Fs. Moreover, elementary bromine (Br2) seems to facilitate chlorination by bromination of organics, followed by Br/Cl-exchange based on displacement through the more reactive halogen. Overall, PBDD/Fs form through three possible pathways: precursor formation, de novo formation, and dispersion of parts containing BFRs as impurities and surviving a fire or other events. The present review summarises the formation mechanisms of both brominated (PBDD/Fs) and mixed dioxins (PXDD/Fs with X=Br or Cl) from BFRs, recaps available emissions data of PBDD/Fs and mixed PXDD/Fs from controlled waste incineration, uncontrolled combustion sources and accidental fires, and identifies and analyses the effects of several local factors of influence, affecting the formation of PBDD/Fs and mixed PXDD/Fs during BFRs combustion. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Enhanced coagulation with powdered activated carbon or MIEX secondary treatment: a comparison of disinfection by-product formation and precursor removal.

    PubMed

    Watson, Kalinda; Farré, Maria José; Knight, Nicole

    2015-01-01

    The removal of both organic and inorganic disinfection by-product (DBP) precursors prior to disinfection is important in mitigating DBP formation, with halide removal being particularly important in salinity-impacted water sources. A matrix of waters of variable alkalinity, halide concentration and dissolved organic carbon (DOC) concentration were treated with enhanced coagulation (EC) followed by anion exchange (MIEX resin) or powdered activated carbon (PAC) and the subsequent disinfection by-product formation potentials (DBP-FPs) assessed and compared to DBP-FPs for untreated samples. Halide and DOC removal were also monitored for both treatment processes. Bromide and iodide adsorption by MIEX treatment ranged from 0 to 53% and 4-78%, respectively. As expected, EC and PAC treatments did not remove halides. DOC removal by EC/PAC was 70 ± 10%, while EC/MIEX enabled a DOC removal of 66 ± 12%. Despite the halide removals achieved by MIEX, increases in brominated disinfection by-product (Br-DBP) formation were observed relative to untreated samples, when favourable Br:DOC ratios were created by the treatment. However, the increases in formation were less than what was observed for the EC/PAC treated waters, which caused large increases in Br-DBP formation when high Br-DBP-forming water quality conditions occurred. The formation potential of fully chlorinated DBPs decreased after treatment in all cases.

  15. Lipocalin-2 inhibits osteoclast formation by suppressing the proliferation and differentiation of osteoclast lineage cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Hyun-Ju, E-mail: biohjk@knu.ac.kr; Yoon, Hye-Jin; Yoon, Kyung-Ae

    Lipocalin-2 (LCN2) is a member of the lipocalin superfamily and plays a critical role in the regulation of various physiological processes, such as inflammation and obesity. In this study, we report that LCN2 negatively modulates the proliferation and differentiation of osteoclast precursors, resulting in impaired osteoclast formation. The overexpression of LCN2 in bone marrow-derived macrophages or the addition of recombinant LCN2 protein inhibits the formation of multinuclear osteoclasts. LCN2 suppresses macrophage colony-stimulating factor (M-CSF)-induced proliferation of osteoclast precursor cells without affecting their apoptotic cell death. Interestingly, LCN2 decreases the expression of the M-CSF receptor, c-Fms, and subsequently blocks its downstreammore » signaling cascades. In addition, LCN2 inhibits RANKL-induced osteoclast differentiation and attenuates the expression of c-Fos and nuclear factor of activated T cells c1 (NFATc1), which are important modulators in osteoclastogenesis. Mechanistically, LCN2 inhibits NF-κB signaling pathways, as demonstrated by the suppression of IκBα phosphorylation, nuclear translocation of p65, and NF-κB transcriptional activity. Thus, LCN2 is an anti-osteoclastogenic molecule that exerts its effects by retarding the proliferation and differentiation of osteoclast lineage cells. - Highlights: • LCN2 expression is regulated during osteoclast development. • LCN2 suppresses M-CSF-mediated osteoclast precursor proliferation. • LCN2 inhibits RANKL-induced osteoclast differentiation.« less

  16. Target Plate Material Influence on Fullerene-C60 Laser Desorption/Ionization Efficiency

    NASA Astrophysics Data System (ADS)

    Zeegers, Guido P.; Günthardt, Barbara F.; Zenobi, Renato

    2016-04-01

    Systematic laser desorption/ionization (LDI) experiments of fullerene-C60 on a wide range of target plate materials were conducted to gain insight into the initial ion formation in matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. The positive and negative ion signal intensities of precursor, fragment, and cluster ions were monitored, varying both the laser fluence (0-3.53 Jcm-2) and the ion extraction delay time (0-950 ns). The resulting species-specific ion signal intensities are an indication for the ionization mechanisms that contribute to LDI and the time frames in which they operate, providing insight in the (MA)LDI primary ionization. An increasing electrical resistivity of the target plate material increases the fullerene-C60 precursor and fragment anion signal intensity. Inconel 625 and Ti90/Al6/V4, both highly electrically resistive, provide the highest anion signal intensities, exceeding the cation signal intensity by a factor ~1.4 for the latter. We present a mechanism based on transient electrical field strength reduction to explain this trend. Fullerene-C60 cluster anion formation is negligible, which could be due to the high extraction potential. Cluster cations, however, are readily formed, although for high laser fluences, the preferred channel is formation of precursor and fragment cations. Ion signal intensity depends greatly on the choice of substrate material, and careful substrate selection could, therefore, allow for more sensitive (MA)LDI measurements.

  17. Investigating the physics and environment of Lyman limit systems in cosmological simulations

    NASA Astrophysics Data System (ADS)

    Erkal, Denis

    2015-07-01

    In this work, I investigate the properties of Lyman limit systems (LLSs) using state-of-the-art zoom-in cosmological galaxy formation simulations with on the fly radiative transfer, which includes both the cosmic UV background (UVB) and local stellar sources. I compare the simulation results to observations of the incidence frequency of LLSs and the H I column density distribution function over the redshift range z = 2-5 and find good agreement. I explore the connection between LLSs and their host haloes and find that LLSs reside in haloes with a wide range of halo masses with a nearly constant covering fraction within a virial radius. Over the range z = 2-5, I find that more than half of the LLSs reside in haloes with M < 1010 h-1 M⊙, indicating that absorption line studies of LLSs can probe these low-mass galaxies which H2-based star formation models predict to have very little star formation. I study the physical state of individual LLSs and test a simple model which encapsulates many of their properties. I confirm that LLSs have a characteristic absorption length given by the Jeans length and that they are in photoionization equilibrium at low column densities. Finally, I investigate the self-shielding of LLSs to the UVB and explore how the non-sphericity of LLSs affects the photoionization rate at a given N_{H I}. I find that at z ≈ 3, LLSs have an optical depth of unity at a column density of ˜1018 cm-2 and that this is the column density which characterizes the onset of self-shielding.

  18. Variations in the formation of the human caudal spinal cord.

    PubMed

    Saraga-Babić, M; Sapunar, D; Wartiovaara, J

    1995-01-01

    Collection of 15 human embryos between 4-8 developmental weeks was used to histologically investigate variations in the development of the caudal part of the spinal cord and the neighboring axial organs (notochord and vertebral column). In the 4-week embryo, two types of neurulation were parallelly observed along the anteroposterior body axis: primary in the areas cranial to the neuroporus caudalis and secondary in the more caudal tail regions. In the 5-week embryos, both parts of the neural tube fused, forming only one continuous lumen in the developing spinal cord. In the three examined embryos we found anomalous pattern of spinal cord formation. Caudal parts of these spinal cords displayed division of their central canal into two or three separate lumina, each surrounded by neuroepithelial layer. In the caudal area of the spinal cord, derived by secondary neurulation, formation of separate lumina was neither connected to any anomalous notochord or vertebral column formation, nor the appearance of any major axial disturbances. We suggest that development of the caudal part of the spinal cord differs from its cranial region not only in the type of neurulation, but also in the destiny of its derivatives and possible modes of abnormality formation.

  19. The 2-D Ion Chromatography Development and Application: Determination of Sulfate in Formation Water at Pre-Salt Region

    NASA Astrophysics Data System (ADS)

    Tonietto, G. B.; Godoy, J. M.; Almeida, A. C.; Mendes, D.; Soluri, D.; Leite, R. S.; Chalom, M. Y.

    2015-12-01

    Formation water is the naturally-occurring water which is contained within the geological formation itself. The quantity and quality of the formation water can both be problematic. Over time, the water volume should decrease as the gas volumes increase. Formation water has been found to contain high levels of Cl, As, Fe, Ba, Mn, PAHs and may even contain naturally occurring radioactive materials. Chlorides in some cases have been found to be in excess of four-five times the level of concentrations found in the ocean. Within the management of well operation, there is sulfate between the analytes of greatest importance due to the potential for hydrogen sulphide formation and consequent corrosion of pipelines. As the concentration of sulfate in these waters can be less than n times that of chloride, a quantitative determination, using the technique of ion chromatography, constitutes an analytical challenge. This work aimed to develop and validate a method for the determination of sulphate ions in hyper-saline waters coming from the oil wells of the pre-salt, using 2D IC. In 2D IC the first column can be understood as a separating column, in which the species with retention times outside a preset range are discarded, while those belonging to this range are retained in a pre-concentrator column to further injecting a second column, the second dimension in which occurs the separation and quantification of the analytes of interest. As the chloride ions have a retention time lower than that of sulfate, a method was developed a for determining sulfate in very low range (mg L-1) by 2D IC, applicable to hypersaline waters, wherein the first dimension is used to the elimination of the matrix, ie, chloride ions, and the second dimension utilized in determining sulfate. For sulphate in a concentration range from 1.00 mg L-1 was obtained an accuracy of 1.0%. The accuracy of the method was tested by the standard addition method different samples of formation water in the pre-salt region, having been a relative error less than 1.0% at a concentration of 5.0 mg L-1.This work allowed the expected achievement of sulfate results for hyper-saline samples such as those found in the pre-salt exploration. Studies are being developed in order to validate the determination of bromide in the pre-salt water, using the 2D liquid chromatography.

  20. Peering into the heart of galactic star formation: A detailed characterization of infrared-dark clouds

    NASA Astrophysics Data System (ADS)

    Ragan, Sarah E.

    2009-09-01

    Everything we know about other galaxies is based on light from massive stars, yet, in our own Galaxy, it's the formation of massive stars that is the least understood. Star formation studies to date have focused on nearby, low-mass regions, but the bulk of star formation takes place in massive clusters, which takes place primarily in the inner-Galaxy, where the bulk of the molecular gas resides. To learn about the conditions under which massive clusters form, we seek out their precursors, called infrared-dark clouds (IRDCs). We present the results of a high-resolution multi-wavelength observational study of IRDCs, which vastly improves our knowledge of the initial conditions of cluster formation. Beginning with IRDC candidates identified with Midcourse Science Experiment (MSX) survey data, we map 41 IRDCs in the N 2 H + 1 [arrow right] 0, CS 2 [arrow right] 1 and C 18 O 1 [arrow right] 0 molecular transitions using the Five College Radio Astronomy Observatory. We examine the stellar content and absorption structure with Spitzer Space Telescope observations of eleven IRDCs, and we use Very Large Array NH 3 observations to probe the kinematics and chemistry of six IRDCs. Our comprehensive high-resolution study of IRDCs confirms that these objects are cold and dense precursors to massive stars and clusters. For the first time. we quantify IRDC sub-structure on sub-parsec scales and show the kinematic structure of IRDCs is diverse and depends on associated local star- formation activity. Overall, IRDCs exhibit non-thermal dynamics, suggesting that turbulence and systematic motions dominate. IRDC temperatures are between 8 and 16 K and are mostly flat with hints of a rise near the edges due to external heating. This study shows that IRDCs are a unique star-forming environment, one that dominates the star formation in the Milky Way. Using high-resolution observations, we have quantified the structure, star formation, kinematics, and chemistry of infrared-dark clouds. Our study of sub- structure in particular shows that IRDCs are undergoing fragmentation and are the precursors to star clusters, and thus we have placed IRDCs in context with Galactic star formation. The characterization presented here offers new constraints on theories of molecular cloud fragmentation and clustered star formation.

  1. Circulation, retention, and mixing of waters within the Weddell-Scotia Confluence, Southern Ocean: The role of stratified Taylor columns

    NASA Astrophysics Data System (ADS)

    Meredith, Michael P.; Meijers, Andrew S.; Naveira Garabato, Alberto C.; Brown, Peter J.; Venables, Hugh J.; Abrahamsen, E. Povl; Jullion, Loïc.; Messias, Marie-José

    2015-01-01

    The waters of the Weddell-Scotia Confluence (WSC) lie above the rugged topography of the South Scotia Ridge in the Southern Ocean. Meridional exchanges across the WSC transfer water and tracers between the Antarctic Circumpolar Current (ACC) to the north and the subpolar Weddell Gyre to the south. Here, we examine the role of topographic interactions in mediating these exchanges, and in modifying the waters transferred. A case study is presented using data from a free-drifting, intermediate-depth float, which circulated anticyclonically over Discovery Bank on the South Scotia Ridge for close to 4 years. Dimensional analysis indicates that the local conditions are conducive to the formation of Taylor columns. Contemporaneous ship-derived transient tracer data enable estimation of the rate of isopycnal mixing associated with this column, with values of O(1000 m2/s) obtained. Although necessarily coarse, this is of the same order as the rate of isopycnal mixing induced by transient mesoscale eddies within the ACC. A picture emerges of the Taylor column acting as a slow, steady blender, retaining the waters in the vicinity of the WSC for lengthy periods during which they can be subject to significant modification. A full regional float data set, bathymetric data, and a Southern Ocean state estimate are used to identify other potential sites for Taylor column formation. We find that they are likely to be sufficiently widespread to exert a significant influence on water mass modification and meridional fluxes across the southern edge of the ACC in this sector of the Southern Ocean.

  2. Brillouin precursors in Debye media

    NASA Astrophysics Data System (ADS)

    Macke, Bruno; Ségard, Bernard

    2015-05-01

    We theoretically study the formation of Brillouin precursors in Debye media. We point out that the precursors are visible only at propagation distances such that the impulse response of the medium is essentially determined by the frequency dependence of its absorption and is practically Gaussian. By simple convolution, we then obtain explicit analytical expressions of the transmitted waves generated by reference incident waves, distinguishing precursor and main signal by a simple examination of the long-time behavior of the overall signal. These expressions are in good agreement with the signals obtained in numerical or real experiments performed on water in the radio-frequency domain and explain in particular some observed shapes of the precursor. Results are obtained for other remarkable incident waves. In addition, we show quite generally that the shape of the Brillouin precursor appearing alone at sufficiently large propagation distance and the law giving its amplitude as a function of this distance do not depend on the precise form of the incident wave but only on its integral properties. The incidence of a static conductivity of the medium is also examined and explicit analytical results are again given in the limit of weak and strong conductivities.

  3. Formation of CuAlO2 Film by Ultrasonic Spray Pyrolysis

    NASA Astrophysics Data System (ADS)

    Iping, S.; Lockman, Zainovia; Hutagalung, S. D.; Kamsul, A.; Matsuda, Atsunori

    2011-10-01

    Smooth, crack free and homogenous CuAlO2 film was produced by chemical solution deposition process via spray pyrolysis technique on a cleaned Si substrate. The precursor solution used was comprised of a mixture of 45.87 mmol Cu(NO3)2.3H2O and 90 mmol Al(NO3)3.9H2O at ratio of Cu:Al = 1.2:1. The precursor solution was placed in a mist chamber and was atomized by a nebulizer to produce precursor mist. The precursor mist was then carried out by Ar gas and was sprayed onto a heated Si. Two main parameters were studied: the distance between the nozzle of the precursor mist chamber and the Si and the temperature of the Si substrate. It appears that from the XRD data, CuAlO2 can be detected for samples prepared by spraying the precursor mist at temperature of > 550 °C with distance between the nozzle and the substrate of 3cm. Reaction of the Cu and Al ions in the mist near the substrate may have promoted the crystallisation of CuAlO2.

  4. The effect of porous lead iodide precursor film on perovskite film formation and its photovoltaic property after an effective pretreatment

    NASA Astrophysics Data System (ADS)

    Yan, Jian-Jun; Li, Yan; Chang, Yin; Jiang, Pan; Wang, Cheng-Wei

    2016-06-01

    An effective solvent sealed natural drying (SND) pretreatment was introduced for forming a satisfactory crystalline porous iodide (PbI2) precursor film, which could help to generate excellent CH3NH3PbI3 perovskite films for high performance of planar heterojunction perovskite solar cells. And the influence of SND pretreated time on the device performance was investigated in detail. We found that the PbI2 precursor film after 10 min pretreatment could make the perovskite device achieve the optimal power conversion efficiency (PCE) of 8.6%, significantly increased up to 95.5% and 28.4% compared to without pretreatment or traditional treatment. The results show that the time of SND pretreatment is critical to forming large grain size and good crystallinity for PbI2 precursor film, which would markedly improve the efficiency of planar heterojunction perovskite solar cells.

  5. Formative Assessment Probes: When Is the Next Full Moon? Using K-2 Concept Cartoons

    ERIC Educational Resources Information Center

    Keeley, Page

    2013-01-01

    This column focuses on promoting learning through assessment. This month's issue uses concept cartoons to assess students' ideas about the moon. Concept cartoons, formative assessment tools that reveal students' preconceptions and probe for conceptual understanding, have recently become popular in the United States, with teachers…

  6. Instrument Formatting with Computer Data Entry in Mind.

    ERIC Educational Resources Information Center

    Boser, Judith A.; And Others

    Different formats for four types of research items were studied for ease of computer data entry. The types were: (1) numeric response items; (2) individual multiple choice items; (3) multiple choice items with the same response items; and (4) card column indicator placement. Each of the 13 experienced staff members of a major university's Data…

  7. A comparison among several P300 brain-computer interface speller paradigms.

    PubMed

    Fazel-Rezai, Reza; Gavett, Scott; Ahmad, Waqas; Rabbi, Ahmed; Schneider, Eric

    2011-10-01

    Since the brain-computer interface (BCI) speller was first proposed by Farwell and Donchin, there have been modifications in the visual aspects of P300 paradigms. Most of the changes are based on the original matrix format such as changes in the number of rows and columns, font size, flash/ blank time, and flash order. The improvement in the resulting accuracy and speed of such systems has always been the ultimate goal. In this study, we have compared several different speller paradigms including row-column, single character flashing, and two region-based paradigms which are not based on the matrix format. In the first region-based paradigm, at the first level, characters and symbols are distributed over seven regions alphabetically, while in the second region-based paradigm they are distributed in the most frequently used order. At the second level, each one of the regions is further subdivided into seven subsets. The experimental results showed that the average accuracy and user acceptability for two region-based paradigms were higher than those for traditional paradigms such as row/column and single character.

  8. Counterpropagating Radiative Shock Experiments on the Orion Laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki-Vidal, F.; Clayson, T.; Stehlé, C.

    We present new experiments to study the formation of radiative shocks and the interaction between two counterpropagating radiative shocks. The experiments are performed at the Orion laser facility, which is used to drive shocks in xenon inside large aspect ratio gas cells. The collision between the two shocks and their respective radiative precursors, combined with the formation of inherently three-dimensional shocks, provides a novel platform particularly suited for the benchmarking of numerical codes. The dynamics of the shocks before and after the collision are investigated using point-projection x-ray backlighting while, simultaneously, the electron density in the radiative precursor was measuredmore » via optical laser interferometry. Modeling of the experiments using the 2D radiation hydrodynamic codes nym and petra shows very good agreement with the experimental results.« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arendt, Paul N.; DePaula, Ramond F.; Zhu, Yuntian T.

    An array of carbon nanotubes is prepared by exposing a catalyst structure to a carbon nanotube precursor. Embodiment catalyst structures include one or more trenches, channels, or a combination of trenches and channels. A system for preparing the array includes a heated surface for heating the catalyst structure and a cooling portion that cools gas above the catalyst structure. The system heats the catalyst structure so that the interaction between the precursor and the catalyst structure results in the formation of an array of carbon nanotubes on the catalyst structure, and cools the gas near the catalyst structure and alsomore » cools any carbon nanotubes that form on the catalyst structure to prevent or at least minimize the formation of amorphous carbon. Arrays thus formed may be used for spinning fibers of carbon nanotubes.« less

  10. Inhibition of trihalomethane formation in city water by radiation-ozone treatment and rapid composting of radiation disinfected sewage sludge

    NASA Astrophysics Data System (ADS)

    Takehisa, M.; Arai, H.; Arai, M.; Miyata, T.; Sakumoto, A.; Hashimoto, S.; Nishimura, K.; Watanabe, H.; Kawakami, W.; Kuriyama, I.

    Humic acid and Fulvic acid in natural water are precursors of carcinogenic THM which is formed during chlorine disinfection in city water processing. The radiation-oxidation process in the presence of ozone is effective to remove the precursors. The THM formation was reduced more than the decrease in TOC by the combination treatment. This is mainly due to a change in the chemical structure of the oxidation products. A composting of radiation disinfected sludge cake for agricultural reuse could be achieved within 3 days primary fermentation in a sewage plant. The rapid fermentation with use of radiation is effective to scale down of a fermentor of composting plant and the process reduces a health risk from the workers as well as final users.

  11. Counterpropagating Radiative Shock Experiments on the Orion Laser.

    PubMed

    Suzuki-Vidal, F; Clayson, T; Stehlé, C; Swadling, G F; Foster, J M; Skidmore, J; Graham, P; Burdiak, G C; Lebedev, S V; Chaulagain, U; Singh, R L; Gumbrell, E T; Patankar, S; Spindloe, C; Larour, J; Kozlova, M; Rodriguez, R; Gil, J M; Espinosa, G; Velarde, P; Danson, C

    2017-08-04

    We present new experiments to study the formation of radiative shocks and the interaction between two counterpropagating radiative shocks. The experiments are performed at the Orion laser facility, which is used to drive shocks in xenon inside large aspect ratio gas cells. The collision between the two shocks and their respective radiative precursors, combined with the formation of inherently three-dimensional shocks, provides a novel platform particularly suited for the benchmarking of numerical codes. The dynamics of the shocks before and after the collision are investigated using point-projection x-ray backlighting while, simultaneously, the electron density in the radiative precursor was measured via optical laser interferometry. Modeling of the experiments using the 2D radiation hydrodynamic codes nym and petra shows very good agreement with the experimental results.

  12. Counterpropagating Radiative Shock Experiments on the Orion Laser

    DOE PAGES

    Suzuki-Vidal, F.; Clayson, T.; Stehlé, C.; ...

    2017-08-02

    We present new experiments to study the formation of radiative shocks and the interaction between two counterpropagating radiative shocks. The experiments are performed at the Orion laser facility, which is used to drive shocks in xenon inside large aspect ratio gas cells. The collision between the two shocks and their respective radiative precursors, combined with the formation of inherently three-dimensional shocks, provides a novel platform particularly suited for the benchmarking of numerical codes. The dynamics of the shocks before and after the collision are investigated using point-projection x-ray backlighting while, simultaneously, the electron density in the radiative precursor was measuredmore » via optical laser interferometry. Modeling of the experiments using the 2D radiation hydrodynamic codes nym and petra shows very good agreement with the experimental results.« less

  13. Molecular variation of the nonribosomal peptide-polyketide siderophore yersiniabactin through biosynthetic and metabolic engineering.

    PubMed

    Ahmadi, Mahmoud Kamal; Fawaz, Samar; Fang, Lei; Yu, Zhipeng; Pfeifer, Blaine A

    2016-05-01

    The production of the mixed nonribosomal peptide-polyketide natural product yersiniabactin (Ybt) has been established using E. coli as a heterologous host. In this study, precursor-directed biosynthesis was used to generate five new analogs of Ybt, demonstrating the flexibility of the heterologous system and the biosynthetic process in allowing compound diversity. A combination of biosynthetic and cellular engineering was then used to influence the production metrics of the resulting analogs. First, the cellular levels and activity of FadL, a hydrocarbon transport protein, were tested for subsequent influence upon exogenous precursor uptake and Ybt analog production with a positive correlation observed between FadL over-production and analog formation. Next, a Ybt biosynthetic editing enzyme was removed from the heterologous system which decreased native compound production but increased analog formation. A final series of experiments enhanced endogenous anthranilate towards complete pathway formation of the associated analog which showed a selective ability to bind gold. © 2015 Wiley Periodicals, Inc.

  14. Benzaldehyde in cherry flavour as a precursor of benzene formation in beverages.

    PubMed

    Loch, Christine; Reusch, Helmut; Ruge, Ingrid; Godelmann, Rolf; Pflaum, Tabea; Kuballa, Thomas; Schumacher, Sandra; Lachenmeier, Dirk W

    2016-09-01

    During sampling and analysis of alcohol-free beverages for food control purposes, a comparably high contamination of benzene (up to 4.6μg/L) has been detected in cherry-flavoured products, even when they were not preserved using benzoic acid (which is a known precursor of benzene formation). There has been some speculation in the literature that formation may occur from benzaldehyde, which is contained in natural and artificial cherry flavours. In this study, model experiments were able to confirm that benzaldehyde does indeed degrade to benzene under heating conditions, and especially in the presence of ascorbic acid. Analysis of a large collective of authentic beverages from the market (n=170) further confirmed that benzene content is significantly correlated to the presence of benzaldehyde (r=0.61, p<0.0001). In the case of cherry flavoured beverages, industrial best practices should include monitoring for benzene. Formulations containing either benzoic acid or benzaldehyde in combination with ascorbic acid should be avoided. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Keeping the Vimentin Network under Control: Cell–Matrix Adhesion–associated Plectin 1f Affects Cell Shape and Polarity of Fibroblasts

    PubMed Central

    Burgstaller, Gerald; Gregor, Martin; Winter, Lilli

    2010-01-01

    Focal adhesions (FAs) located at the ends of actin/myosin-containing contractile stress fibers form tight connections between fibroblasts and their underlying extracellular matrix. We show here that mature FAs and their derivative fibronectin fibril-aligned fibrillar adhesions (FbAs) serve as docking sites for vimentin intermediate filaments (IFs) in a plectin isoform 1f (P1f)-dependent manner. Time-lapse video microscopy revealed that FA-associated P1f captures mobile vimentin filament precursors, which then serve as seeds for de novo IF network formation via end-to-end fusion with other mobile precursors. As a consequence of IF association, the turnover of FAs is reduced. P1f-mediated IF network formation at FbAs creates a resilient cage-like core structure that encases and positions the nucleus while being stably connected to the exterior of the cell. We show that the formation of this structure affects cell shape with consequences for cell polarization. PMID:20702585

  16. AN INITIAL ASSESSMENT OF THE CLIMATE IMPACT OF SECONDARY ORGANIC AEROSOLS

    NASA Astrophysics Data System (ADS)

    O'Donnell, D.; Feichter, J.

    2009-12-01

    Atmospheric aerosols influence the Earth’s climate by absorbing and scattering solar radiation (the direct effect) and by altering the properties of clouds (indirect effects). Measurements have shown that a substantial fraction of the tropospheric aerosol burden consists of organic compounds. Hundreds of different organic species have been identified. While progress has been made in the understanding of the role of certain aerosol types in the climate system, that of organic aerosols remains poorly understood and the climate influences resulting from their presence poorly constrained. Organic aerosols are emitted directly from the surface (primary organic aerosols, POA) and are also formed in the atmosphere from gaseous precursors by oxidation reactions (secondary organic aerosols, SOA). Both biogenic and anthropogenic precursors have been identified. Biogenic emissions of aerosol precursors are known to be climate-dependent. Thus, a bi-directional dependency exists between the biosphere and the atmosphere, whereby aerosols of biogenic origin influence the climate system, which in turn affects biogenic aerosol precursor production. This study builds upon the global aerosol-climate model ECHAM5/HAM and adds techniques to model SOA as well as the necessary global emission inventories. Emission of biogenic precursors is calculated online. Formation of SOA is modeled by the well-known two-product model of SOA formation. SOA is subject to the same aerosol microphysics and sink processes as other modeled species (sulphate, black carbon, primary organic carbon, sea salt and dust). The aerosol radiative effects are calculated on a size resolved basis, and the aerosol scheme is coupled to the model cloud microphysics, permitting estimation of both direct and indirect aerosol effects. The following results will be discussed: (i) Estimation of the direct and indirect effects of biogenic and anthropogenic SOA, (ii) Estimation of the sign and magnitude of the biospheric feedback (through biogenic aerosol precursor emission) on the climate system, and (iii) Identification of physical processes and aerosol physical properties that need further experimental investigation in order to improve our understanding of the climate impact of SOA

  17. TCE degradation in groundwater by chelators-assisted Fenton-like reaction of magnetite: Sand columns demonstration.

    PubMed

    Jia, Daqing; Sun, Sheng-Peng; Wu, Zhangxiong; Wang, Na; Jin, Yaoyao; Dong, Weiyang; Chen, Xiao Dong; Ke, Qiang

    2018-03-15

    Trichloroethylene (TCE) degradation in sand columns has been investigated to evaluate the potential of chelates-enhanced Fenton-like reaction with magnetite as iron source for in situ treatment of TCE-contaminated groundwater. The results showed that successful degradation of TCE in sand columns was obtained by nitrilotriacetic acid (NTA)-assisted Fenton-like reaction of magnetite. Addition of ethylenediaminedisuccinic acid (EDDS) resulted in an inhibitory effect on TCE degradation in sand columns. Similar to EDDS, addition of ethylenediaminetetraacetic acid (EDTA) also led to an inhibition of TCE degradation in sand column with small content of magnetite (0.5 w.t.%), but enhanced TCE degradation in sand column with high content of magnetite (7.0 w.t.%). Additionally, the presence of NTA, EDDS and EDTA greatly decreased H 2 O 2 uptake in sand columns due to the competition between chelates and H 2 O 2 for surface sites on magnetite (and sand). Furthermore, the presented results show that magnetite in sand columns remained stable in a long period operation of 230 days without significant loss of performance in terms of TCE degradation and H 2 O 2 uptake. Moreover, it was found that TCE was degraded mainly to formic acid and chloride ion, and the formation of chlorinated organic intermediates was minimal by this process. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Formation of Cosmic Carbon Dust Analogues in Plasma Reactors

    NASA Technical Reports Server (NTRS)

    Salama, Farid

    2016-01-01

    Cosmic carbon dust analogs are produced, processed and analyzed in the laboratory using NASA's COSmIC (COSmIC Simulation Chamber) Facility. These experiments can be used to derive information on the most efficient molecular precursors in the chemical pathways that eventually lead to the formation of carbonaceous grains in the stellar envelopes of carbon stars.

  19. Interaction between Nbp35 and Cfd1 Proteins of Cytosolic Fe-S Cluster Assembly Reveals a Stable Complex Formation in Entamoeba histolytica

    PubMed Central

    Anwar, Shadab; Dikhit, Manas Ranjan; Singh, Krishn Pratap; Kar, Rajiv Kumar; Zaidi, Amir; Sahoo, Ganesh Chandra; Roy, Awadh Kishore; Nozaki, Tomoyoshi; Das, Pradeep; Ali, Vahab

    2014-01-01

    Iron-Sulfur (Fe-S) proteins are involved in many biological functions such as electron transport, photosynthesis, regulation of gene expression and enzymatic activities. Biosynthesis and transfer of Fe-S clusters depend on Fe-S clusters assembly processes such as ISC, SUF, NIF, and CIA systems. Unlike other eukaryotes which possess ISC and CIA systems, amitochondriate Entamoeba histolytica has retained NIF & CIA systems for Fe-S cluster assembly in the cytosol. In the present study, we have elucidated interaction between two proteins of E. histolytica CIA system, Cytosolic Fe-S cluster deficient 1 (Cfd1) protein and Nucleotide binding protein 35 (Nbp35). In-silico analysis showed that structural regions ranging from amino acid residues (P33-K35, G131-V135 and I147-E151) of Nbp35 and (G5-V6, M34-D39 and G46-A52) of Cfd1 are involved in the formation of protein-protein complex. Furthermore, Molecular dynamic (MD) simulations study suggested that hydrophobic forces surpass over hydrophilic forces between Nbp35 and Cfd1 and Van-der-Waal interaction plays crucial role in the formation of stable complex. Both proteins were separately cloned, expressed as recombinant fusion proteins in E. coli and purified to homogeneity by affinity column chromatography. Physical interaction between Nbp35 and Cfd1 proteins was confirmed in vitro by co-purification of recombinant Nbp35 with thrombin digested Cfd1 and in vivo by pull down assay and immunoprecipitation. The insilico, in vitro as well as in vivo results prove a stable interaction between these two proteins, supporting the possibility of its involvement in Fe-S cluster transfer to target apo-proteins through CIA machinery in E. histolytica. Our study indicates that initial synthesis of a Fe-S precursor in mitochondria is not necessary for the formation of Cfd1-Nbp35 complex. Thus, Cfd1 and Nbp35 with the help of cytosolic NifS and NifU proteins can participate in the maturation of non-mitosomal Fe-S proteins without any apparent assistance of mitosomes. PMID:25271645

  20. Re–Os geochronology of the lacustrine Green River Formation: Insights into direct depositional dating of lacustrine successions, Re–Os systematics and paleocontinental weathering

    USGS Publications Warehouse

    Cumming, Vivien M.; Selby, David; Lillis, Paul G.

    2012-01-01

    Lacustrine sedimentary successions provide exceptionally high-resolution records of continental geological processes, responding to tectonic, climatic and magmatic influences. These successions are therefore essential for correlating geological and climatic phenomena across continents and furthermore the globe. Producing accurate geochronological frameworks within lacustrine strata is challenging because the stratigraphy is often bereft of biostratigraphy and directly dateable tuff horizons. The rhenium–osmium (Re–Os) geochronometer is a well-established tool for determining precise and accurate depositional ages of marine organic-rich rocks. Lake systems with stratified water columns are predisposed to the preservation of organic-rich rocks and thus should permit direct Re–Os geochronology of lacustrine strata. We present Re–Os systematics from one of the world's best documented lacustrine systems, the Eocene Green River Formation, providing accurate Re–Os depositional dates that are supported by Ar–Ar and U–Pb ages of intercalated tuff horizons. Precision of the Green River Formation Re–Os dates is controlled by the variation in initial 187Os/188Os and the range of 187Re/188Os ratios, as also documented in marine systems. Controls on uptake and fractionation of Re and Os are considered to relate mainly to depositional setting and the type of organic matter deposited, with the need to further understand the chelating precursors of Re and Os in organic matter highlighted. In addition to geochronology, the Re–Os data records the 187Os/188Os composition of lake water (1.41–1.54) at the time of deposition, giving an insight into continental runoff derived from weathering of the geological hinterland of the Green River Formation. Such insights enable us to evaluate fluctuations in continental climatic, tectonic and magmatic processes and provide the ability for chemostratigraphic correlation combined with direct depositional dates. Furthermore, initial 187Os/188Os values can be used as a diagnostic tool to distinguish between lacustrine and marine depositional settings when compared to known oceanic 187Os/188Os values.

Top