Science.gov

Sample records for precursor pathway engineering

  1. Engineering Bacillus subtilis for isobutanol production by heterologous Ehrlich pathway construction and the biosynthetic 2-ketoisovalerate precursor pathway overexpression.

    PubMed

    Li, Shanshan; Wen, Jianping; Jia, Xiaoqiang

    2011-08-01

    In the present work, Bacillus subtilis was engineered as the cell factory for isobutanol production due to its high tolerance to isobutanol. Initially, an efficient heterologous Ehrlich pathway controlled by the promoter P(43) was introduced into B. subtilis for the isobutanol biosynthesis. Further, investigation of acetolactate synthase of B. subtilis, ketol-acid reductoisomerase, and dihydroxy-acid dehydratase of Corynebacterium glutamicum responsible for 2-ketoisovalerate precursor biosynthesis showed that acetolactate synthase played an important role in isobutanol biosynthesis. The overexpression of acetolactate synthase led to a 2.8-fold isobutanol production compared with the control. Apart from isobutanol, alcoholic profile analysis also confirmed the existence of 1.21 g/L ethanol, 1.06 g/L 2-phenylethanol, as well as traces of 2-methyl-1-butanol and 3-methyl-1-butanol in the fermentation broth. Under microaerobic condition, the engineered B. subtilis produced up to 2.62 g/L isobutanol in shake-flask fed-batch fermentation, which was 21.3% higher than that in batch fermentation.

  2. Metabolic engineering of proanthocyanidin production by repressing the isoflavone pathways and redirecting anthocyanidin precursor flux in legume.

    PubMed

    Li, Penghui; Dong, Qiang; Ge, Shujun; He, Xianzhi; Verdier, Jerome; Li, Dongqin; Zhao, Jian

    2016-07-01

    MtPAR is a proanthocyanidin (PA) biosynthesis regulator; the mechanism underlying its promotion of PA biosynthesis is not fully understood. Here, we showed that MtPAR promotes PA production by a direct repression of biosynthesis of isoflavones, the major flavonoids in legume, and by redirecting immediate precursors, such as anthocyanidins, flux into PA pathway. Ectopic expression of MtPAR repressed isoflavonoid production by directly binding and suppressing isoflavone biosynthetic genes such as isoflavone synthase (IFS). Meanwhile, MtPAR up-regulated PA-specific genes and decreased the anthocyanin levels without altering the expression of anthocyanin biosynthetic genes. MtPAR may shift the anthocyanidin precursor flux from anthocyanin pathway to PA biosynthesis. MtPAR complemented PA-deficient phenotype of Arabidopsis tt2 mutant seeds, demonstrating their similar action on PA production. We showed the direct interactions between MtPAR, MtTT8 and MtWD40-1 proteins from Medicago truncatula and Glycine max, to form a ternary complex to trans-activate PA-specific ANR gene. Finally, MtPAR expression in alfalfa (Medicago sativa) hairy roots and whole plants only promoted the production of small amount of PAs, which was significantly enhanced by co-expression of MtPAR and MtLAP1. Transcriptomic and metabolite profiling showed an additive effect between MtPAR and MtLAP1 on the production of PAs, supporting that efficient PA production requires more anthocyanidin precursors. This study provides new insights into the role and mechanism of MtPAR in partitioning precursors from isoflavone and anthocyanin pathways into PA pathways for a specific promotion of PA production. Based on this, a strategy by combining MtPAR and MtLAP1 co-expression to effectively improve metabolic engineering performance of PA production in legume forage was developed.

  3. Designed biosynthesis of 36-methyl-FK506 by polyketide precursor pathway engineering

    PubMed Central

    Lechner, Anna; Wilson, Micheal C.; Ban, Yeon Hee; Hwang, Jae-yeon; Yoon, Yeo Joon; Moore, Bradley S.

    2012-01-01

    The polyketide synthase (PKS) biosynthetic code has recently expanded to include a newly recognized group of extender unit substrates derived from α,β-unsaturated acyl-CoA molecules that deliver diverse side chain chemistry to polyketide backbones. Herein we report the identification of a three-gene operon responsible for the biosynthesis of the PKS building block isobutyrylmalonyl-CoA associated with the macrolide ansalactam A from the marine bacterium Streptomyces sp. CNH189. Using a synthetic biology approach, we engineered the production of unnatural 36-methyl-FK506 in Streptomyces sp. KCTC 11604BP by incorporating the branched extender unit into FK506 biosynthesis in place of its natural C-21 allyl side chain, which has been shown to be critical for FK506’s potent immunosuppressant and neurite outgrowth activities. PMID:23654255

  4. Production of jet fuel precursor monoterpenoids from engineered Escherichia coli: Production of Jet Fuel Precursor Monoterpenoids

    DOE PAGES

    Mendez-Perez, Daniel; Alonso-Gutierrez, Jorge; Hu, Qijun; ...

    2017-05-18

    Monoterpenes (C10 isoprenoids) are the main components of essential oils and are possible precursors for many commodity chemicals and high energy density fuels. Monoterpenes are synthesized from geranyl diphosphate (GPP), which is also the precursor for the biosynthesis of farnesyl diphosphate (FPP). FPP biosynthesis diverts the carbon flux from monoterpene production to C 15 products and quinone biosynthesis. In this study, we tested a chromosomal mutation of Escherichia coli's native FPP synthase (IspA) to improve GPP availability for the production of monoterpenes using a heterologous mevalonate pathway. Monoterpene production at high levels required not only optimization of GPP production butmore » also a basal level of FPP to maintain growth. The optimized strains produced two jet fuel precursor monoterpenoids 1,8-cineole and linalool at the titer of 653 mg/L and 505 mg/L, respectively, in batch cultures with 1% glucose. The engineered strains developed in this work provide useful resources for the production of high-value monoterpenes.« less

  5. Precursors of Young Women's Family Formation Pathways

    ERIC Educational Resources Information Center

    Amato, Paul R.; Landale, Nancy S.; Havasevich-Brooks, Tara C.; Booth, Alan; Eggebeen, David J.; Schoen, Robert; McHale, Susan M.

    2008-01-01

    We used latent class analysis to create family formation pathways for women between the ages of 18 and 23. Input variables included cohabitation, marriage, parenthood, full-time employment, and attending school. Data (n = 2,290) came from Waves I and III of the National Longitudinal Study of Adolescent Health (Add Health). The analysis revealed…

  6. Precursors of Young Women's Family Formation Pathways

    ERIC Educational Resources Information Center

    Amato, Paul R.; Landale, Nancy S.; Havasevich-Brooks, Tara C.; Booth, Alan; Eggebeen, David J.; Schoen, Robert; McHale, Susan M.

    2008-01-01

    We used latent class analysis to create family formation pathways for women between the ages of 18 and 23. Input variables included cohabitation, marriage, parenthood, full-time employment, and attending school. Data (n = 2,290) came from Waves I and III of the National Longitudinal Study of Adolescent Health (Add Health). The analysis revealed…

  7. Protein design for pathway engineering.

    PubMed

    Eriksen, Dawn T; Lian, Jiazhang; Zhao, Huimin

    2014-02-01

    Design and construction of biochemical pathways has increased the complexity of biosynthetically-produced compounds when compared to single enzyme biocatalysis. However, the coordination of multiple enzymes can introduce a complicated set of obstacles to overcome in order to achieve a high titer and yield of the desired compound. Metabolic engineering has made great strides in developing tools to optimize the flux through a target pathway, but the inherent characteristics of a particular enzyme within the pathway can still limit the productivity. Thus, judicious protein design is critical for metabolic and pathway engineering. This review will describe various strategies and examples of applying protein design to pathway engineering to optimize the flux through the pathway. The proteins can be engineered for altered substrate specificity/selectivity, increased catalytic activity, reduced mass transfer limitations through specific protein localization, and reduced substrate/product inhibition. Protein engineering can also be expanded to design biosensors to enable high through-put screening and to customize cell signaling networks. These strategies have successfully engineered pathways for significantly increased productivity of the desired product or in the production of novel compounds.

  8. Protein Design for Pathway Engineering

    PubMed Central

    Eriksen, Dawn T.; Lian, Jiazhang; Zhao, Huimin

    2013-01-01

    Design and construction of biochemical pathways has increased the complexity of biosynthetically-produced compounds when compared to single enzyme biocatalysis. However, the coordination of multiple enzymes can introduce a complicated set of obstacles to overcome in order to achieve a high titer and yield of the desired compound. Metabolic engineering has made great strides in developing tools to optimize the flux through a target pathway, but the inherent characteristics of a particular enzyme within the pathway can still limit the productivity. Thus, judicious protein design is critical for metabolic and pathway engineering. This review will describe various strategies and examples of applying protein design to pathway engineering to optimize the flux through the pathway. The proteins can be engineered for altered substrate specificity/selectivity, increased catalytic activity, reduced mass transfer limitations through specific protein localization, and reduced substrate/product inhibition. Protein engineering can also be expanded to design biosensors to enable high through-put screening and to customize cell signaling networks. These strategies have successfully engineered pathways for significantly increased productivity of the desired product or in the production of novel compounds. PMID:23558037

  9. Protein design for pathway engineering

    SciTech Connect

    Eriksen, DT; Lian, JZ; Zhao, HM

    2014-02-01

    Design and construction of biochemical pathways has increased the complexity of biosynthetically-produced compounds when compared to single enzyme biocatalysis. However, the coordination of multiple enzymes can introduce a complicated set of obstacles to overcome in order to achieve a high titer and yield of the desired compound. Metabolic engineering has made great strides in developing tools to optimize the flux through a target pathway, but the inherent characteristics of a particular enzyme within the pathway can still limit the productivity. Thus, judicious protein design is critical for metabolic and pathway engineering. This review will describe various strategies and examples of applying protein design to pathway engineering to optimize the flux through the pathway. The proteins can be engineered for altered substrate specificity/selectivity, increased catalytic activity, reduced mass transfer limitations through specific protein localization, and reduced substrate/product inhibition. Protein engineering can also be expanded to design biosensors to enable high through-put screening and to customize cell signaling networks. These strategies have successfully engineered pathways for significantly increased productivity of the desired product or in the production of novel compounds. (C) 2013 Elsevier Inc. All rights reserved.

  10. Pathways to adulthood and their precursors and outcomes.

    PubMed

    Skogbrott Birkeland, Marianne; Leversen, Ingrid; Torsheim, Torbjørn; Wold, Bente

    2014-02-01

    Norway has an extensive welfare system which may provide adolescents with many options and high levels of flexibility in terms of pathways to adulthood. This study aimed to describe Norwegian developmental pathways to adulthood, including changes in role statuses (such as living situations, education, work, marriage/cohabitation and parenthood) from 16 to 30 years of age, and their precursors and outcomes. Repeated measures latent class analysis of longitudinal data from 998 Norwegian individuals indicated three main pathways to adulthood among women and men. In both sexes, most individuals undertook a long period of education and postponed family formation. However, some individuals started working early, a group of women established families with partners and children early, and a group of men remained primarily single between 16 and 30 years of age. Furthermore, the results show that pathways to adulthood in Norway are surprisingly similar to pathways in other countries such as the US, UK and Finland. The results indicate that pathways to adulthood are influenced by social reproduction factors in a country with high levels of welfare benefits as well. In addition, the results suggest that pathways involving living with a partner and either higher education or work are associated with high life satisfaction at age 30.

  11. Pathway Design, Engineering, and Optimization.

    PubMed

    Garcia-Ruiz, Eva; HamediRad, Mohammad; Zhao, Huimin

    2016-09-16

    The microbial metabolic versatility found in nature has inspired scientists to create microorganisms capable of producing value-added compounds. Many endeavors have been made to transfer and/or combine pathways, existing or even engineered enzymes with new function to tractable microorganisms to generate new metabolic routes for drug, biofuel, and specialty chemical production. However, the success of these pathways can be impeded by different complications from an inherent failure of the pathway to cell perturbations. Pursuing ways to overcome these shortcomings, a wide variety of strategies have been developed. This chapter will review the computational algorithms and experimental tools used to design efficient metabolic routes, and construct and optimize biochemical pathways to produce chemicals of high interest.

  12. Reverse Engineering Adverse Outcome Pathways

    SciTech Connect

    Perkins, Edward; Chipman, J.K.; Edwards, Stephen; Habib, Tanwir; Falciani, Francesco; Taylor, Ronald C.; Van Aggelen, Graham; Vulpe, Chris; Antczak, Philipp; Loguinov, Alexandre

    2011-01-30

    The toxicological effects of many stressors are mediated through unknown, or poorly characterized, mechanisms of action. We describe the application of reverse engineering complex interaction networks from high dimensional omics data (gene, protein, metabolic, signaling) to characterize adverse outcome pathways (AOPs) for chemicals that disrupt the hypothalamus-pituitary-gonadal endocrine axis in fathead minnows. Gene expression changes in fathead minnow ovaries in response to 7 different chemicals, over different times, doses, and in vivo versus in vitro conditions were captured in a large data set of 868 arrays. We examined potential AOPs of the antiandrogen flutamide using two mutual information theory methods, ARACNE and CLR to infer gene regulatory networks and potential adverse outcome pathways. Representative networks from these studies were used to predict a network path from stressor to adverse outcome as a candidate AOP. The relationship of individual chemicals to an adverse outcome can be determined by following perturbations through the network in response to chemical treatment leading to the nodes associated with the adverse outcome. Identification of candidate pathways allows for formation of testable hypotheses about key biologic processes, biomarkers or alternative endpoints, which could be used to monitor an adverse outcome pathway. Finally, we identify the unique challenges facing the application of this approach in ecotoxicology, and attempt to provide a road map for the utilization of these tools. Key Words: mechanism of action, toxicology, microarray, network inference

  13. Comparative Proteomics Analysis of Engineered Saccharomyces cerevisiae with Enhanced Biofuel Precursor Production

    PubMed Central

    Tang, Xiaoling; Feng, Huixing; Zhang, Jianhua; Chen, Wei Ning

    2013-01-01

    The yeast Saccharomyces cerevisiae was metabolically modified for enhanced biofuel precursor production by knocking out genes encoding mitochondrial isocitrate dehydrogenase and over-expression of a heterologous ATP-citrate lyase. A comparative iTRAQ-coupled 2D LC-MS/MS analysis was performed to obtain a global overview of ubiquitous protein expression changes in S. cerevisiae engineered strains. More than 300 proteins were identified. Among these proteins, 37 were found differentially expressed in engineered strains and they were classified into specific categories based on their enzyme functions. Most of the proteins involved in glycolytic and pyruvate branch-point pathways were found to be up-regulated and the proteins involved in respiration and glyoxylate pathway were however found to be down-regulated in engineered strains. Moreover, the metabolic modification of S. cerevisiae cells resulted in a number of up-regulated proteins involved in stress response and differentially expressed proteins involved in amino acid metabolism and protein biosynthesis pathways. These LC-MS/MS based proteomics analysis results not only offered extensive information in identifying potential protein-protein interactions, signal pathways and ubiquitous cellular changes elicited by the engineered pathways, but also provided a meaningful biological information platform serving further modification of yeast cells for enhanced biofuel production. PMID:24376832

  14. Selective overproduction of the proteasome inhibitor salinosporamide A via precursor pathway regulation

    PubMed Central

    Lechner, Anna; Eustáquio, Alessandra S.; Gulder, Tobias A. M.; Hafner, Mathias; Moore, Bradley S.

    2011-01-01

    The chlorinated natural product salinosporamide A is a potent 20S proteasome inhibitor currently in clinical trials as an anticancer agent. To deepen our understanding of salinosporamide biosynthesis, we investigated the function of a LuxR-type pathway-specific regulatory gene, salR2, and observed a selective effect on the production of salinosporamide A over its less active aliphatic analogs. SalR2 was shown to specifically activate genes involved in the biosynthesis of the halogenated precursor chloroethylmalonyl-CoA, which is a dedicated precursor of salinosporamide A. Specifically, SalR2 activates transcription of two divergent operons – one of which contains the unique S-adenosyl-L-methionine-dependent chlorinase encoding gene salL. By applying this knowledge towards rational engineering, we were able to selectively double salinosporamide A production. This study exemplifies the specialized regulation of a polyketide precursor pathway and its application to the selective overproduction of a specific natural product congener. PMID:22195555

  15. Reverse engineering adverse outcome pathways.

    PubMed

    Perkins, Edward J; Chipman, J Kevin; Edwards, Stephen; Habib, Tanwir; Falciani, Francesco; Taylor, Ronald; Van Aggelen, Graham; Vulpe, Chris; Antczak, Philipp; Loguinov, Alexandre

    2011-01-01

    The toxicological effects of many stressors are mediated through unknown, or incompletely characterized, mechanisms of action. The application of reverse engineering complex interaction networks from high dimensional omics data (gene, protein, metabolic, signaling) can be used to overcome these limitations. This approach was used to characterize adverse outcome pathways (AOPs) for chemicals that disrupt the hypothalamus-pituitary-gonadal endocrine axis in fathead minnows (FHM, Pimephales promelas). Gene expression changes in FHM ovaries in response to seven different chemicals, over different times, doses, and in vivo versus in vitro conditions, were captured in a large data set of 868 arrays. Potential AOPs of the antiandrogen flutamide were examined using two mutual information-based methods to infer gene regulatory networks and potential AOPs. Representative networks from these studies were used to predict network paths from stressor to adverse outcome as candidate AOPs. The relationship of individual chemicals to an adverse outcome can be determined by following perturbations through the network in response to chemical treatment, thus leading to the nodes associated with the adverse outcome. Identification of candidate pathways allows for formation of testable hypotheses about key biological processes, biomarkers, or alternative endpoints that can be used to monitor an AOP. Finally, the unique challenges facing the application of this approach in ecotoxicology were identified and a road map for the utilization of these tools presented.

  16. Pyrolysis pathways of sulfonated polyethylene, an alternative carbon fiber precursor.

    PubMed

    Younker, Jarod M; Saito, Tomonori; Hunt, Marcus A; Naskar, Amit K; Beste, Ariana

    2013-04-24

    Polyethylene is an emerging precursor material for the production of carbon fibers. Its sulfonated derivative yields ordered carbon when pyrolyzed under inert atmosphere. Here, we investigate its pyrolysis pathways by selecting n-heptane-4-sulfonic acid (H4S) as a model compound. Density functional theory and transition state theory were used to determine the rate constants of pyrolysis for H4S from 300 to 1000 K. Multiple reaction channels from two different mechanisms were explored: (1) internal five-centered elimination (Ei5) and (2) radical chain reaction. The pyrolysis of H4S was simulated with kinetic Monte Carlo (kMC) to obtain thermogravimetric (TGA) plots that compared favorably to experiment. We observed that at temperatures <550 K, the radical mechanism was dominant and yielded the trans-alkene, whereas cis-alkene was formed at higher temperatures from the internal elimination. The maximum rates of % mass loss became independent of initial ȮH radical concentration at 440-480 K. Experimentally, the maximum % mass loss occurred from 440 to 460 K (heating rate dependent). Activation energies derived from the kMC-simulated TGAs of H4S (26-29 kcal/mol) agreed with experiment for sulfonated polyethylene (~31 kcal/mol). The simulations revealed that in this region, decomposition of radical HOSȮ2 became competitive to α-H abstraction by HOSȮ2, making ȮH the carrying radical for the reaction chain. The maximum rate of % mass loss for internal elimination was observed at temperatures >600 K. Low-scale carbonization utilizes temperatures <620 K; thus, internal elimination will not be competitive. E(i)5 elimination has been studied for sulfoxides and sulfones, but this represents the first study of internal elimination in sulfonic acids.

  17. Men's and Women's Pathways to Adulthood and Their Adolescent Precursors

    ERIC Educational Resources Information Center

    Oesterle, Sabrina; Hawkins, J. David; Hill, Karl G.; Bailey, Jennifer A.

    2010-01-01

    This study compared men's and women's pathways to adulthood by examining how role transitions in education, work, marriage, and parenthood intersect and form developmental pathways from ages 18-30. The study investigated how sociodemographic factors and adolescent experiences were associated with these pathways. We used latent class analysis to…

  18. Pathways to an Engineering Career

    ERIC Educational Resources Information Center

    Pearson, Willie, Jr.; Miller, Jon D.

    2012-01-01

    Utilizing data from the 20-year record of the Longitudinal Study of American Youth (LSAY), this analysis uses a set of variables to predict employment in engineering for a national sample of adults aged 34 to 37. The LSAY is one of the longest longitudinal studies of the impact of secondary education and postsecondary education conducted in the…

  19. Pathways to an Engineering Career

    ERIC Educational Resources Information Center

    Pearson, Willie, Jr.; Miller, Jon D.

    2012-01-01

    Utilizing data from the 20-year record of the Longitudinal Study of American Youth (LSAY), this analysis uses a set of variables to predict employment in engineering for a national sample of adults aged 34 to 37. The LSAY is one of the longest longitudinal studies of the impact of secondary education and postsecondary education conducted in the…

  20. Combining metabolic and protein engineering of a terpenoid biosynthetic pathway for overproduction and selectivity control

    PubMed Central

    Leonard, Effendi; Ajikumar, Parayil Kumaran; Thayer, Kelly; Xiao, Wen-Hai; Mo, Jeffrey D.; Tidor, Bruce; Stephanopoulos, Gregory; Prather, Kristala L. J.

    2010-01-01

    A common strategy of metabolic engineering is to increase the endogenous supply of precursor metabolites to improve pathway productivity. The ability to further enhance heterologous production of a desired compound may be limited by the inherent capacity of the imported pathway to accommodate high precursor supply. Here, we present engineered diterpenoid biosynthesis as a case where insufficient downstream pathway capacity limits high-level levopimaradiene production in Escherichia coli. To increase levopimaradiene synthesis, we amplified the flux toward isopentenyl diphosphate and dimethylallyl diphosphate precursors and reprogrammed the rate-limiting downstream pathway by generating combinatorial mutations in geranylgeranyl diphosphate synthase and levopimaradiene synthase. The mutant library contained pathway variants that not only increased diterpenoid production but also tuned the selectivity toward levopimaradiene. The most productive pathway, combining precursor flux amplification and mutant synthases, conferred approximately 2,600-fold increase in levopimaradiene levels. A maximum titer of approximately 700 mg/L was subsequently obtained by cultivation in a bench-scale bioreactor. The present study highlights the importance of engineering proteins along with pathways as a key strategy in achieving microbial biosynthesis and overproduction of pharmaceutical and chemical products. PMID:20643967

  1. Precursors and metabolic pathway for guaiacol production by Alicyclobacillus acidoterrestris.

    PubMed

    Cai, Rui; Yuan, Yahong; Wang, Zhouli; Guo, Chunfeng; Liu, Bin; Liu, Laping; Wang, Yutang; Yue, Tianli

    2015-12-02

    Alicyclobacillus acidoterrestris has recently received much attention due to its implication in the spoilage of pasteurized fruit juices, which was manifested by the production of guaiacol. Vanillic acid and vanillin have been accepted as the biochemical precursors of guaiacol in fruit juices. The purpose of this study was to try to find other precursors and elucidate details about the conversion of vanillic acid and vanillin to guaiacol by A. acidoterrestris. Four potential substrates including ferulic acid, catechol, phenylalanine and tyrosine were analyzed, but they could not be metabolized to guaiacol by all the thirty A. acidoterrestris strains tested. Resting cell studies and enzyme assays demonstrated that vanillin was reduced to vanillyl alcohol by NADPH-dependent vanillin reductase and oxidized to vanillic acid by NAD(P)(+)-dependent vanillin dehydrogenases in A. acidoterrestris DSM 3923. Vanillic acid underwent a nonoxidative decarboxylation to guaiacol. The reversible vanillic acid decarboxylase involved was oxygen insensitive and pyridine nucleotide-independent. Copyright © 2015. Published by Elsevier B.V.

  2. Mineral catalyzed hydrothermal reactions as precursors to extant anabolic pathways

    NASA Astrophysics Data System (ADS)

    Cody, G. D.

    Investigations into hydrothermal reactions under conditions of moderate hydrostatic pressure and in the presence of transition metal sulfides reveal reaction pathways the bear remarkable similarity with extant anabolic reactions. First, it is seen that most common transition metal sulfides are capable of promoting all of the key reactions at the core of Acetyl Co-A synthesis. These include CO reduction to methyl groups and carbonyl insertion to form transferable acetyl groups. The synthesis of alpha-keto acids are also promoted, presumably by double carbonylation. A pathway starting with CO2 and H2 has been identified leading to the synthesis of citric acid. Citric acid provides a crucial abiotic, anabolic, branch point to the prebiotic synthesis of various amino acids, as well. As the pyrimidines, orotic acid and uracil. In many cases the abiotic reaction pathways differ slightly from extant anabolic pathways by shunting past particularly reactive intermediates, e.g. oxaloacetic acid. These reactions have the capacity to provide the prebiotic world with many, but not all, of the molecular constituents to aid the emergence of an RNA world.

  3. New developments in engineering plant metabolic pathways.

    PubMed

    Tatsis, Evangelos C; O'Connor, Sarah E

    2016-12-01

    Plants contain countless metabolic pathways that are responsible for the biosynthesis of complex metabolites. Armed with new tools in sequencing and bioinformatics, the genes that encode these plant biosynthetic pathways have become easier to discover, putting us in an excellent position to fully harness the wealth of compounds and biocatalysts (enzymes) that plants provide. For overproduction and isolation of high-value plant-derived chemicals, plant pathways can be reconstituted in heterologous hosts. Alternatively, plant pathways can be modified in the native producer to confer new properties to the plant, such as better biofuel production or enhanced nutritional value. This perspective highlights a range of examples that demonstrate how the metabolic pathways of plants can be successfully harnessed with a variety of metabolic engineering approaches.

  4. Phosphoketolase pathway engineering for carbon-efficient biocatalysis.

    PubMed

    Henard, Calvin Andrew; Freed, Emily Frances; Guarnieri, Michael Thomas

    2015-12-01

    Recent advances in metabolic engineering have facilitated the development of microbial biocatalysts capable of producing an array of bio-products, ranging from fuels to drug molecules. These bio-products are commonly generated through an acetyl-CoA intermediate, which serves as a key precursor in the biological conversion of carbon substrates. Conventional biocatalytic upgrading strategies proceeding through this route are limited by low carbon efficiencies, in large part due to carbon losses associated with pyruvate decarboxylation to acetyl-CoA. Bypass of pyruvate decarboxylation offers a means to dramatically enhance carbon yields and, in turn, bioprocess economics. Herein, we discuss recent advances and prospects for employing the phosphoketolase pathway for direct biosynthesis of acetyl-CoA from carbon substrates, and phosphoketolase-based metabolic engineering strategies for carbon efficient biocatalysis.

  5. Phosphoketolase pathway engineering for carbon-efficient biocatalysis

    SciTech Connect

    Henard, Calvin Andrew; Freed, Emily Frances; Guarnieri, Michael Thomas

    2015-12-01

    Recent advances in metabolic engineering have facilitated the development of microbial biocatalysts capable of producing an array of bio-products, ranging from fuels to drug molecules. These bio-products are commonly generated through an acetyl-CoA intermediate, which serves as a key precursor in the biological conversion of carbon substrates. Moreover, conventional biocatalytic upgrading strategies proceeding through this route are limited by low carbon efficiencies, in large part due to carbon losses associated with pyruvate decarboxylation to acetyl-CoA. Bypass of pyruvate decarboxylation offers a means to dramatically enhance carbon yields and, in turn, bioprocess economics. Here, we discuss recent advances and prospects for employing the phosphoketolase pathway for direct biosynthesis of acetyl-CoA from carbon substrates, and phosphoketolase-based metabolic engineering strategies for carbon efficient biocatalysis.

  6. Tissue engineering of corneal stroma with rabbit fibroblast precursors and gelatin hydrogels

    PubMed Central

    Amano, Shiro; Yokoo, Seiichi; Uchida, Saiko; Yamagami, Satoru; Usui, Tomohiko; Kimura, Yu; Tabata, Yasuhiko

    2008-01-01

    Purpose To isolate fibroblast precursors from rabbit corneal stroma using a sphere-forming assay, to engineer corneal stroma with the precursors and gelatin, and to establish the therapeutic application of precursors in a rabbit corneal stroma. Methods In the in vitro study, a sphere-forming assay was performed to produce precursors from rabbit corneal stroma. Corneal stroma was engineered by cultivating precursors in porous gelatin for one week. In the in vivo study, the engineered corneal stromal sheet with precursors (precursor/gelatin group) or with fibroblasts (fibroblast /gelatin group) or without cells (gelatin group) was transplanted to a pocket of rabbit corneal stroma. Gene expression and extracellular matrix production were examined immunohistochemically in each group one week and four weeks after surgery. Results In the in vitro study, cells in the spheres were BrdU-positive, and their progeny were keratocan-positive. The study also showed that the corneas transplanted with a porous gelatin sheet did not show any opacity four weeks after transplantation in any group. In the gelatin sheet of the precursor/gelatin group, a more intense expression of type I collagen was observed relative to the other two groups four weeks after the surgery. Conclusions Our findings demonstrate that the transplantation of fibroblast precursors combined with gelatin hydrogel into the corneal stroma is a possible treatment strategy for corneal stromal regeneration. PMID:18852871

  7. Tissue engineering of corneal stroma with rabbit fibroblast precursors and gelatin hydrogels.

    PubMed

    Mimura, Tatsuya; Amano, Shiro; Yokoo, Seiichi; Uchida, Saiko; Yamagami, Satoru; Usui, Tomohiko; Kimura, Yu; Tabata, Yasuhiko

    2008-01-01

    To isolate fibroblast precursors from rabbit corneal stroma using a sphere-forming assay, to engineer corneal stroma with the precursors and gelatin, and to establish the therapeutic application of precursors in a rabbit corneal stroma. In the in vitro study, a sphere-forming assay was performed to produce precursors from rabbit corneal stroma. Corneal stroma was engineered by cultivating precursors in porous gelatin for one week. In the in vivo study, the engineered corneal stromal sheet with precursors (precursor/gelatin group) or with fibroblasts (fibroblast /gelatin group) or without cells (gelatin group) was transplanted to a pocket of rabbit corneal stroma. Gene expression and extracellular matrix production were examined immunohistochemically in each group one week and four weeks after surgery. In the in vitro study, cells in the spheres were BrdU-positive, and their progeny were keratocan-positive. The study also showed that the corneas transplanted with a porous gelatin sheet did not show any opacity four weeks after transplantation in any group. In the gelatin sheet of the precursor/gelatin group, a more intense expression of type I collagen was observed relative to the other two groups four weeks after the surgery. Our findings demonstrate that the transplantation of fibroblast precursors combined with gelatin hydrogel into the corneal stroma is a possible treatment strategy for corneal stromal regeneration.

  8. Adolescent Precursors of Pathways from School to Work

    PubMed Central

    Vuolo, Mike; Mortimer, Jeylan T.; Staff, Jeremy

    2013-01-01

    Longitudinal data from the Youth Development Study is used to examine: (1) how young people establish work with self-identified career potential and how these patterns are linked to educational attainments; and (2) how adolescent achievement orientations, experiences in school and work, and sociodemographic background distinguish youth who establish themselves in careers and those who flounder during this transition. Multilevel latent class models reveal four school-to-work pathways from ages 18 to 31: two groups that attain careers through postsecondary education (via Bachelor’s or Associates-Vocational degrees) and two groups that do not (distinguished by attempting college). Multinomial logistic regression models demonstrate that academic orientations, socioeconomic background, and steady paid work during high school help adolescents avoid subsequent floundering during the school-to-work transition. PMID:24791132

  9. Pyrolysis Pathways of Sulfonated Polyethylene, an Alternative Carbon Fiber Precursor

    SciTech Connect

    Younker, Jarod M; Saito, Tomonori; Hunt, Marcus A; Beste, Ariana; Naskar, Amit K

    2013-01-01

    Sulfonated polyethylene is an emerging precursor for the production of carbon fibers. Pyrolysis of sulfonated polyethylene was characterized by thermogravimetric analysis (TGA). n-heptane-4-sulfonic acid (H4S) was selected as a model compound for the study of sulfonated polyethylene. Density functional theory and conventional transition state theory were used to determine the rate constants of pyrolysis for H4S from 300-1000 K. Multiple reaction channels from two different mechanisms were explored: 1) internal five-centered elimination (Ei 5) and 2) radical chain reaction. The pyrolysis of H4S was simulated with kinetic Monte Carlo (kMC) to obtain TGA plots that compared favorably to experiment. We observed that at tem- peratures < 550 K, the radical mechanism was dominant and yielded the trans-alkene, whereas cis-alkene was formed at higher temperatures from the internal elimination. The maximum rates of % mass loss became independent of initial OH radical concentration at 440-480 K. Experimentally, the maximum % mass loss occurred from 440-460 K (heating rate dependent). Activation energies derived from the kMC-simulated TGAs of H4S (26-29 kcal/mol) agreed with experiment for sulfonated polyethylene ( 31 kcal/mol). The simulations revealed that in this region, decomposition of radical HOSO2 became competitive to H abstraction by HOSO2, making OH the carrying radical for the reaction chain. The maximum rate of % mass loss for internal elimination was observed at temperatures > 600 K. Low-scale carbonization utilizes temperatures < 620 K; thus, internal elimination will not be competitive. Ei5 elimination has been studied for sulfoxides and sulfones, but this represents the first study of internal elimination in sulfonic acids. Nonlinear Arrhenius plots were found for all bimolecular reactions. The most significant nonlinear behavior was observed for reactions where the barrier was small. For reactions with low activation barriers, nonlinearity was traced to

  10. Engineering metabolic pathways in plants by multigene transformation.

    PubMed

    Zorrilla-López, Uxue; Masip, Gemma; Arjó, Gemma; Bai, Chao; Banakar, Raviraj; Bassie, Ludovic; Berman, Judit; Farré, Gemma; Miralpeix, Bruna; Pérez-Massot, Eduard; Sabalza, Maite; Sanahuja, Georgina; Vamvaka, Evangelia; Twyman, Richard M; Christou, Paul; Zhu, Changfu; Capell, Teresa

    2013-01-01

    Metabolic engineering in plants can be used to increase the abundance of specific valuable metabolites, but single-point interventions generally do not improve the yields of target metabolites unless that product is immediately downstream of the intervention point and there is a plentiful supply of precursors. In many cases, an intervention is necessary at an early bottleneck, sometimes the first committed step in the pathway, but is often only successful in shifting the bottleneck downstream, sometimes also causing the accumulation of an undesirable metabolic intermediate. Occasionally it has been possible to induce multiple genes in a pathway by controlling the expression of a key regulator, such as a transcription factor, but this strategy is only possible if such master regulators exist and can be identified. A more robust approach is the simultaneous expression of multiple genes in the pathway, preferably representing every critical enzymatic step, therefore removing all bottlenecks and ensuring completely unrestricted metabolic flux. This approach requires the transfer of multiple enzyme-encoding genes to the recipient plant, which is achieved most efficiently if all genes are transferred at the same time. Here we review the state of the art in multigene transformation as applied to metabolic engineering in plants, highlighting some of the most significant recent advances in the field.

  11. Engineering modular ester fermentative pathways in Escherichia coli.

    PubMed

    Layton, Donovan S; Trinh, Cong T

    2014-11-01

    Sensation profiles are observed all around us and are made up of many different molecules, such as esters. These profiles can be mimicked in everyday items for their uses in foods, beverages, cosmetics, perfumes, solvents, and biofuels. Here, we developed a systematic 'natural' way to derive these products via fermentative biosynthesis. Each ester fermentative pathway was designed as an exchangeable ester production module for generating two precursors- alcohols and acyl-CoAs that were condensed by an alcohol acyltransferase to produce a combinatorial library of unique esters. As a proof-of-principle, we coupled these ester modules with an engineered, modular, Escherichia coli chassis in a plug-and-play fashion to create microbial cell factories for enhanced anaerobic production of a butyrate ester library. We demonstrated tight coupling between the modular chassis and ester modules for enhanced product biosynthesis, an engineered phenotype useful for directed metabolic pathway evolution. Compared to the wildtype, the engineered cell factories yielded up to 48 fold increase in butyrate ester production from glucose.

  12. General low-temperature reaction pathway from precursors to monomers before nucleation of compound semiconductor nanocrystals

    NASA Astrophysics Data System (ADS)

    Yu, Kui; Liu, Xiangyang; Qi, Ting; Yang, Huaqing; Whitfield, Dennis M.; Y. Chen, Queena; Huisman, Erik J. C.; Hu, Changwei

    2016-08-01

    Little is known about the molecular pathway to monomers of semiconductor nanocrystals. Here we report a general reaction pathway, which is based on hydrogen-mediated ligand loss for the precursor conversion to `monomers' at low temperature before nucleation. We apply 31P nuclear magnetic resonance spectroscopy to monitor the key phosphorous-containing products that evolve from MXn+E=PPh2H+HY mixtures, where MXn, E=PPh2H, and HY are metal precursors, chalcogenide precursors, and additives, respectively. Surprisingly, the phosphorous-containing products detected can be categorized into two groups, Ph2P-Y and Ph2P(E)-Y. On the basis of our experimental and theoretical results, we propose two competing pathways to the formation of M2En monomers, each of which is accompanied by one of the two products. Our study unravels the pathway of precursor evolution into M2En monomers, the stoichiometry of which directly correlates with the atomic composition of the final compound nanocrystals.

  13. General low-temperature reaction pathway from precursors to monomers before nucleation of compound semiconductor nanocrystals

    PubMed Central

    Yu, Kui; Liu, Xiangyang; Qi, Ting; Yang, Huaqing; Whitfield, Dennis M.; Y. Chen, Queena; Huisman, Erik J. C.; Hu, Changwei

    2016-01-01

    Little is known about the molecular pathway to monomers of semiconductor nanocrystals. Here we report a general reaction pathway, which is based on hydrogen-mediated ligand loss for the precursor conversion to ‘monomers' at low temperature before nucleation. We apply 31P nuclear magnetic resonance spectroscopy to monitor the key phosphorous-containing products that evolve from MXn+E=PPh2H+HY mixtures, where MXn, E=PPh2H, and HY are metal precursors, chalcogenide precursors, and additives, respectively. Surprisingly, the phosphorous-containing products detected can be categorized into two groups, Ph2P–Y and Ph2P(E)–Y. On the basis of our experimental and theoretical results, we propose two competing pathways to the formation of M2En monomers, each of which is accompanied by one of the two products. Our study unravels the pathway of precursor evolution into M2En monomers, the stoichiometry of which directly correlates with the atomic composition of the final compound nanocrystals. PMID:27531507

  14. Production of the antimalarial drug precursor artemisinic acid in engineered yeast.

    PubMed

    Ro, Dae-Kyun; Paradise, Eric M; Ouellet, Mario; Fisher, Karl J; Newman, Karyn L; Ndungu, John M; Ho, Kimberly A; Eachus, Rachel A; Ham, Timothy S; Kirby, James; Chang, Michelle C Y; Withers, Sydnor T; Shiba, Yoichiro; Sarpong, Richmond; Keasling, Jay D

    2006-04-13

    Malaria is a global health problem that threatens 300-500 million people and kills more than one million people annually. Disease control is hampered by the occurrence of multi-drug-resistant strains of the malaria parasite Plasmodium falciparum. Synthetic antimalarial drugs and malarial vaccines are currently being developed, but their efficacy against malaria awaits rigorous clinical testing. Artemisinin, a sesquiterpene lactone endoperoxide extracted from Artemisia annua L (family Asteraceae; commonly known as sweet wormwood), is highly effective against multi-drug-resistant Plasmodium spp., but is in short supply and unaffordable to most malaria sufferers. Although total synthesis of artemisinin is difficult and costly, the semi-synthesis of artemisinin or any derivative from microbially sourced artemisinic acid, its immediate precursor, could be a cost-effective, environmentally friendly, high-quality and reliable source of artemisinin. Here we report the engineering of Saccharomyces cerevisiae to produce high titres (up to 100 mg l(-1)) of artemisinic acid using an engineered mevalonate pathway, amorphadiene synthase, and a novel cytochrome P450 monooxygenase (CYP71AV1) from A. annua that performs a three-step oxidation of amorpha-4,11-diene to artemisinic acid. The synthesized artemisinic acid is transported out and retained on the outside of the engineered yeast, meaning that a simple and inexpensive purification process can be used to obtain the desired product. Although the engineered yeast is already capable of producing artemisinic acid at a significantly higher specific productivity than A. annua, yield optimization and industrial scale-up will be required to raise artemisinic acid production to a level high enough to reduce artemisinin combination therapies to significantly below their current prices.

  15. Engineered Plants Make Potential Precursor to Raw Material for Plastics

    SciTech Connect

    Shanklin, John

    2010-11-02

    In a first step toward achieving industrial-scale green production, scientists from BNL and collaborators at Dow AgroSciences report engineering a plant that produces industrially relevant levels of chemicals that could potentially be used to make plastics.

  16. Engineered Plants Make Potential Precursor to Raw Material for Plastics

    ScienceCinema

    Shanklin, John

    2016-10-19

    In a first step toward achieving industrial-scale green production, scientists from BNL and collaborators at Dow AgroSciences report engineering a plant that produces industrially relevant levels of chemicals that could potentially be used to make plastics.

  17. Construction and engineering of large biochemical pathways via DNA assembler

    PubMed Central

    Shao, Zengyi; Zhao, Huimin

    2015-01-01

    Summary DNA assembler enables rapid construction and engineering of biochemical pathways in a one-step fashion by exploitation of the in vivo homologous recombination mechanism in Saccharomyces cerevisiae. It has many applications in pathway engineering, metabolic engineering, combinatorial biology, and synthetic biology. Here we use two examples including the zeaxanthin biosynthetic pathway and the aureothin biosynthetic gene cluster to describe the key steps in the construction of pathways containing multiple genes using the DNA assembler approach. Methods for construct design, pathway assembly, pathway confirmation, and functional analysis are shown. The protocol for fine genetic modifications such as site-directed mutagenesis for engineering the aureothin gene cluster is also illustrated. PMID:23996442

  18. Differential and directional estrogenic signaling pathways induced by enterolignans and their precursors

    PubMed Central

    Zhu, Yun; Kawaguchi, Kayoko; Kiyama, Ryoiti

    2017-01-01

    Mammalian lignans or enterolignans are metabolites of plant lignans, an important category of phytochemicals. Although they are known to be associated with estrogenic activity, cell signaling pathways leading to specific cell functions, and especially the differences among lignans, have not been explored. We examined the estrogenic activity of enterolignans and their precursor plant lignans and cell signaling pathways for some cell functions, cell cycle and chemokine secretion. We used DNA microarray-based gene expression profiling in human breast cancer MCF-7 cells to examine the similarities, as well as the differences, among enterolignans, enterolactone and enterodiol, and their precursors, matairesinol, pinoresinol and sesamin. The profiles showed moderate to high levels of correlation (R values: 0.44 to 0.81) with that of estrogen (17β-estradiol or E2). Significant correlations were observed among lignans (R values: 0.77 to 0.97), and the correlations were higher for cell functions related to enzymes, signaling, proliferation and transport. All the enterolignans/precursors examined showed activation of the Erk1/2 and PI3K/Akt pathways, indicating the involvement of rapid signaling through the non-genomic estrogen signaling pathway. However, when their effects on specific cell functions, cell cycle progression and chemokine (MCP-1) secretion were examined, positive effects were observed only for enterolactone, suggesting that signals are given in certain directions at a position closer to cell functions. We hypothesized that, while estrogen signaling is initiated by the enterolignans/precursors examined, their signals are differentially and directionally modulated later in the pathways, resulting in the differences at the cell function level. PMID:28152041

  19. Bacterial exopolysaccharides: biosynthesis pathways and engineering strategies

    PubMed Central

    Schmid, Jochen; Sieber, Volker; Rehm, Bernd

    2015-01-01

    Bacteria produce a wide range of exopolysaccharides which are synthesized via different biosynthesis pathways. The genes responsible for synthesis are often clustered within the genome of the respective production organism. A better understanding of the fundamental processes involved in exopolysaccharide biosynthesis and the regulation of these processes is critical toward genetic, metabolic and protein-engineering approaches to produce tailor-made polymers. These designer polymers will exhibit superior material properties targeting medical and industrial applications. Exploiting the natural design space for production of a variety of biopolymer will open up a range of new applications. Here, we summarize the key aspects of microbial exopolysaccharide biosynthesis and highlight the latest engineering approaches toward the production of tailor-made variants with the potential to be used as valuable renewable and high-performance products for medical and industrial applications. PMID:26074894

  20. Two distinct pathways supply anthranilate as a precursor of the Pseudomonas quinolone signal.

    PubMed

    Farrow, John M; Pesci, Everett C

    2007-05-01

    Pseudomonas aeruginosa is an opportunistic pathogen that causes serious infections in immunocompromised patients and those with cystic fibrosis (CF). This gram-negative bacterium uses multiple cell-to-cell signals to control numerous cellular functions and virulence. One of these signals is 2-heptyl-3-hydroxy-4-quinolone, which is referred to as the Pseudomonas quinolone signal (PQS). This signal functions as a coinducer for a transcriptional regulator (PqsR) to positively control multiple virulence genes and its own synthesis. PQS production is required for virulence in multiple models of infection, and it has been shown to be produced in the lungs of CF patients infected by P. aeruginosa. One of the precursor compounds from which PQS is synthesized is the metabolite anthranilate. This compound can be derived from the conversion of chorismate to anthranilate by an anthranilate synthase or through the degradation of tryptophan via the anthranilate branch of the kynurenine pathway. In this study, we present data which help to define the kynurenine pathway in P. aeruginosa and show that the kynurenine pathway serves as a critical source of anthranilate for PQS synthesis. We also show that the kyn pathway genes are induced during growth with tryptophan and that they are autoregulated by kynurenine. This study provides solid foundations for the understanding of how P. aeruginosa produces the anthranilate that serves as a precursor to PQS and other 4-quinolones.

  1. Potato plants with genetically engineered tropane alkaloid precursors.

    PubMed

    Küster, Nadine; Rosahl, Sabine; Dräger, Birgit

    2017-02-01

    Solanum tuberosum tropinone reductase I reduced tropinone in vivo. Suppression of tropinone reductase II strongly reduced calystegines in sprouts. Overexpression of putrescine N -methyltransferase did not alter calystegine accumulation. Calystegines are hydroxylated alkaloids formed by the tropane alkaloid pathway. They accumulate in potato (Solanum tuberosum L., Solanaceae) roots and sprouting tubers. Calystegines inhibit various glycosidases in vitro due to their sugar-mimic structure, but functions of calystegines in plants are not understood. Enzymes participating in or competing with calystegine biosynthesis, including putrescine N-methyltransferase (PMT) and tropinone reductases (TRI and TRII), were altered in their activity in potato plants by RNA interference (RNAi) and by overexpression. The genetically altered potato plants were investigated for the accumulation of calystegines and for intermediates of their biosynthesis. An increase in N-methylputrescine provided by DsPMT expression was not sufficient to increase calystegine accumulation. Overexpression and gene knockdown of StTRI proved that S. tuberosum TRI is a functional tropinone reductase in vivo, but no influence on calystegine accumulation was observed. When StTRII expression was suppressed by RNAi, calystegine formation was severely compromised in the transformed plants. Under phytochamber and green house conditions, the StTRII RNAi plants did not show phenotypic alterations. Further investigation of calystegines function in potato plants under natural conditions is enabled by the calystegine deprived StTRII RNAi plants.

  2. Pathway engineering strategies for production of beneficial carotenoids in microbial hosts.

    PubMed

    Ye, Victor M; Bhatia, Sujata K

    2012-08-01

    Carotenoids, such as lycopene, β-carotene, zeaxanthin, canthaxanthin and astaxanthin have many benefits for human health. In addition to the functional role of carotenoids as vitamin A precursors, adequate consumption of carotenoids prevents the development of a variety of serious diseases. Biosynthesis of carotenoids is a complex process and it starts with the common isoprene precursors. Condensation of these precursors and subsequent modifications, by introducing hydroxyl- and keto-groups, leads to the generation of diversified carotenoid structures. To improve carotenoid production, metabolic engineering has been explored in bacteria, yeast, and algae. The success of the pathway engineering effort depends on the host metabolism, specific enzymes used, the enzyme expression levels, and the strategies employed. Despite the difficulty of pathway engineering for carotenoid production, great progress has been made over the past decade. We review metabolic engineering approaches used in a variety of microbial hosts for carotenoid biosynthesis. These advances will greatly expedite our efforts to bring the health benefits of carotenoids and other nutritional compounds to our diet.

  3. Customized optimization of metabolic pathways by combinatorial transcriptional engineering.

    PubMed

    Yuan, Yongbo; Du, Jing; Zhao, Huimin

    2013-01-01

    Introduction of a heterologous metabolic pathway into a platform microorganism for applications in metabolic engineering and synthetic biology is often technically straightforward. However, the major challenge is to balance the flux in the pathway to obtain high yield and productivity in a target microorganism. To address this limitation, we recently developed a simple, efficient, and programmable approach named "customized optimization of metabolic pathways by combinatorial transcriptional engineering" (COMPACTER) for balancing the flux in a pathway under distinct metabolic backgrounds. Here we use two examples including a cellobiose-utilizing pathway and a xylose-utilizing pathway to illustrate the key steps in the COMPACTER method.

  4. The Engineering Development Array: A Low Frequency Radio Telescope Utilising SKA Precursor Technology

    NASA Astrophysics Data System (ADS)

    Wayth, Randall; Sokolowski, Marcin; Booler, Tom; Crosse, Brian; Emrich, David; Grootjans, Robert; Hall, Peter J.; Horsley, Luke; Juswardy, Budi; Kenney, David; Steele, Kim; Sutinjo, Adrian; Tingay, Steven J.; Ung, Daniel; Walker, Mia; Williams, Andrew; Beardsley, A.; Franzen, T. M. O.; Johnston-Hollitt, M.; Kaplan, D. L.; Morales, M. F.; Pallot, D.; Trott, C. M.; Wu, C.

    2017-08-01

    We describe the design and performance of the Engineering Development Array, which is a low-frequency radio telescope comprising 256 dual-polarisation dipole antennas working as a phased array. The Engineering Development Array was conceived of, developed, and deployed in just 18 months via re-use of Square Kilometre Array precursor technology and expertise, specifically from the Murchison Widefield Array radio telescope. Using drift scans and a model for the sky brightness temperature at low frequencies, we have derived the Engineering Development Array's receiver temperature as a function of frequency. The Engineering Development Array is shown to be sky-noise limited over most of the frequency range measured between 60 and 240 MHz. By using the Engineering Development Array in interferometric mode with the Murchison Widefield Array, we used calibrated visibilities to measure the absolute sensitivity of the array. The measured array sensitivity matches very well with a model based on the array layout and measured receiver temperature. The results demonstrate the practicality and feasibility of using Murchison Widefield Array-style precursor technology for Square Kilometre Array-scale stations. The modular architecture of the Engineering Development Array allows upgrades to the array to be rolled out in a staged approach. Future improvements to the Engineering Development Array include replacing the second stage beamformer with a fully digital system, and to transition to using RF-over-fibre for the signal output from first stage beamformers.

  5. Effect of Na-doped Mo on Selenization Pathways for CuGa/In Metallic Precursors

    SciTech Connect

    Krishnan, Rangarajan; Tong, Gabriel; Kim, Woo Kyoung; Payzant, E Andrew; Adelhelm, Christoph; Franzke, Enrico; Winkler, Jörg; Anderson, Timothy J

    2013-01-01

    Reaction pathways were followed for selenization of CuGa/In precursor structures using in-situ high temperature X-ray diffraction (HTXRD). Precursor films were deposited on Na-free and Na-doped Mo (3 and 5 at %)/Na-free glass. The precursor film was constituted with CuIn, In, Cu9Ga4, Cu3Ga, Cu16In9 and Mo. HTXRD measurements during temperature ramp selenization showed CIS formation occurs first, followed by CGS formation, and then mixing on the group III sub-lattice to form CIGS. CIGS formation was observed to be complete at ~450 C for samples deposited on 5 at % Na-doped Mo substrates. MoSe2 formation was evidenced after the CIGS synthesis reaction was complete. The Ga distribution in the annealed CIGS was determined by Rietveld refinement. Isothermal reaction studies were conducted for CIGS (112) formation in the temperature range 260-320 C to estimate the rate constants.

  6. Applied evolutionary theories for engineering of secondary metabolic pathways.

    PubMed

    Bachmann, Brian O

    2016-12-01

    An expanded definition of 'secondary metabolism' is emerging. Once the exclusive provenance of naturally occurring organisms, evolved over geological time scales, secondary metabolism increasingly encompasses molecules generated via human engineered biocatalysts and biosynthetic pathways. Many of the tools and strategies for enzyme and pathway engineering can find origins in evolutionary theories. This perspective presents an overview of selected proposed evolutionary strategies in the context of engineering secondary metabolism. In addition to the wealth of biocatalysts provided via secondary metabolic pathways, improving the understanding of biosynthetic pathway evolution will provide rich resources for methods to adapt to applied laboratory evolution. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Noninvasive PET Imaging and Tracking of Engineered Human Muscle Precursor Cells for Skeletal Muscle Tissue Engineering.

    PubMed

    Haralampieva, Deana; Betzel, Thomas; Dinulovic, Ivana; Salemi, Souzan; Stoelting, Meline; Krämer, Stefanie D; Schibli, Roger; Sulser, Tullio; Handschin, Christoph; Eberli, Daniel; Ametamey, Simon M

    2016-09-01

    Transplantation of human muscle precursor cells (hMPCs) is envisioned for the treatment of various muscle diseases. However, a feasible noninvasive tool to monitor cell survival, migration, and integration into the host tissue is still missing. In this study, we designed an adenoviral delivery system to genetically modify hMPCs to express a signaling-deficient form of human dopamine D2 receptor (hD2R). The gene expression levels of the receptor were evaluated by reverse transcriptase polymerase chain reaction, and infection efficiency was evaluated by fluorescent microscopy. The viability, proliferation, and differentiation capacity of the transduced cells, as well as their myogenic phenotype, were determined by flow cytometry analysis and fluorescent microscopy. (18)F-fallypride and (18)F-fluoromisonidazole, two well-established PET radioligands, were assessed for their potential to image engineered hMPCs in a mouse model and their uptakes were evaluated at different time points after cell inoculation in vivo. Biodistribution studies, autoradiography, and PET experiments were performed to determine the extent of signal specificity. To address feasibility for tracking hMPCs in an in vivo model, the safety of the adenoviral gene delivery was evaluated. Finally, the harvested tissues were histologically examined to determine whether survival of the transplanted cells was sustained at different time points. Adenoviral gene delivery was shown to be safe, with no detrimental effects on the primary human cells. The viability, proliferation, and differentiation capacity of the transduced cells were confirmed, and flow cytometry analysis and fluorescent microscopy showed that their myogenic phenotype was sustained. (18)F-fallypride and (18)F-fluoromisonidazole were successfully synthesized. Specific binding of (18)F-fallypride to hD2R hMPCs was demonstrated in vitro and in vivo. Furthermore, the (18)F-fluoromisonidazole signal was high at the early stages. Finally

  8. Putative disulfide-forming pathway of porcine insulin precursor during its refolding in vitro.

    PubMed

    Qiao, Z S; Guo, Z Y; Feng, Y M

    2001-03-06

    Although the structure of insulin has been well studied, the formation pathway of the three disulfide bridges during the refolding of insulin precursor is ambiguous. Here, we reported the in vitro disulfide-forming pathway of a recombinant porcine insulin precursor (PIP). In redox buffer containing L-arginine, the yield of native PIP from fully reduced/denatured PIP can reach 85%. The refolding process was quenched at different time points, and three distinct intermediates, including one with one disulfide linkage and two with two disulfide bridges, have been captured and characterized. An intra-A disulfide bridge was found in the former but not in the latter. The two intermediates with two disulfide bridges contain the common A20-B19 disulfide linkage and another inter-AB one. Based on the time-dependent formation and distribution of disulfide pairs in the trapped intermediates, two different forming pathways of disulfide bonds in the refolding process of PIP in vitro have been proposed. The first one involves the rapid formation of the intra-A disulfide bond, followed by the slower formation of one of the inter-AB disulfide bonds and then the pairing of the remaining cysteines to complete the refolding of PIP. The second pathway begins first with the formation of the A20-B19 disulfide bridge, followed immediately by another inter-AB one, possibly nonnative. The nonnative two-disulfide intermediates may then slowly rearrange between CysA6, CysA7, CysA11, and CysB7, until the native disulfide bond A6-A11 or A7-B7 is formed to complete the refolding of PIP. The proposed refolding behavior of PIP is compared with that of IGF-I and discussed.

  9. Enhancing the Community College Pathway to Engineering Careers

    ERIC Educational Resources Information Center

    Mattis, Mary C., Ed.; Sislin, John, Ed.

    2005-01-01

    Community colleges play an important role in starting students on the road to engineering careers, but students often face obstacles in transferring to four-year educational institutions to continue their education. "Enhancing the Community College Pathway to Engineering Careers," a new book from the National Academy of Engineering and the…

  10. Nicotine-induced plasticity in the retinocollicular pathway: Evidence for involvement of amyloid precursor protein.

    PubMed

    Gonçalves, R G J; Vasques, J F; Trindade, P; Serfaty, C A; Campello-Costa, P; Faria-Melibeu, A C

    2016-01-28

    During early postnatal development retinocollicular projections undergo activity-dependent synaptic refinement that results in the formation of precise topographical maps in the visual layers of the superior colliculus (SC). Amyloid Precursor Protein (APP) is a widely expressed transmembrane glycoprotein involved in the regulation of several aspects of neural development, such as neurite outgrowth, synapse formation and plasticity. Stimulation of cholinergic system has been found to alter the expression and processing of APP in different cell lines. Herein, we investigated the effect of nicotine on the development of retinocollicular pathway and on APP metabolism in the SC of pigmented rats. Animals were submitted to intracranial Elvax implants loaded with nicotine or phosphate-buffered saline (vehicle) at postnatal day (PND) 7. The ipsilateral retinocollicular pathway of control and experimental groups was anterogradely labeled either 1 or 3 weeks after surgery (PND 14 or PND 28). Local nicotine exposure produces a transitory sprouting of uncrossed retinal axons outside their main terminal zones. Nicotine also increases APP content and its soluble neurotrophic fragment sAPPα. Furthermore, nicotine treatment upregulates nicotinic acetylcholine receptor α7 and β2 subunits. Taken together, these data indicate that nicotine disrupts the ordering and topographic mapping of axons in the retinocollicular pathway and facilitates APP processing through the nonamyloidogenic pathway, suggesting that sAPPα may act as a trophic agent that mediates nicotine-induced morphological plasticity.

  11. Engineering the glycolytic pathway: A potential approach for improvement of biocatalyst performance

    PubMed Central

    Jojima, Toru; Inui, Masayuki

    2015-01-01

    The glycolytic pathway is a main driving force in the fermentation process as it produces energy, cell component precursors, and fermentation products. Given its importance, the glycolytic pathway can be considered as an attractive target for the metabolic engineering of industrial microorganisms. However, many attempts to enhance glycolytic flux, by overexpressing homologous or heterologous genes encoding glycolytic enzymes, have been unsuccessful. In contrast, significant enhancement in glycolytic flux has been observed in studies with bacteria, specifically, Corynebacterium glutamicum. Although there has been a recent increase in the number of successful applications of this technology, little is known about the mechanisms leading to the enhancement of glycolytic flux. To explore the rational applications of glycolytic pathway engineering in biocatalyst development, this review summarizes recent successful studies as well as past attempts. PMID:26513591

  12. Customized optimization of metabolic pathways by combinatorial transcriptional engineering.

    PubMed

    Du, Jing; Yuan, Yongbo; Si, Tong; Lian, Jiazhang; Zhao, Huimin

    2012-10-01

    A major challenge in metabolic engineering and synthetic biology is to balance the flux of an engineered heterologous metabolic pathway to achieve high yield and productivity in a target organism. Here, we report a simple, efficient and programmable approach named 'customized optimization of metabolic pathways by combinatorial transcriptional engineering (COMPACTER)' for rapid tuning of gene expression in a heterologous pathway under distinct metabolic backgrounds. Specifically, a library of mutant pathways is created by de novo assembly of promoter mutants of varying strengths for each pathway gene in a target organism followed by high-throughput screening/selection. To demonstrate this approach, a single round of COMPACTER was used to generate both a xylose utilizing pathway with near-highest efficiency and a cellobiose utilizing pathway with highest efficiency that were ever reported in literature for both laboratory and industrial yeast strains. Interestingly, these engineered xylose and cellobiose utilizing pathways were all host-specific. Therefore, COMPACTER represents a powerful approach to tailor-make metabolic pathways for different strain backgrounds, which is difficult if not impossible to achieve by existing pathway engineering methods.

  13. Customized optimization of metabolic pathways by combinatorial transcriptional engineering

    PubMed Central

    Du, Jing; Yuan, Yongbo; Si, Tong; Lian, Jiazhang; Zhao, Huimin

    2012-01-01

    A major challenge in metabolic engineering and synthetic biology is to balance the flux of an engineered heterologous metabolic pathway to achieve high yield and productivity in a target organism. Here, we report a simple, efficient and programmable approach named ‘customized optimization of metabolic pathways by combinatorial transcriptional engineering (COMPACTER)’ for rapid tuning of gene expression in a heterologous pathway under distinct metabolic backgrounds. Specifically, a library of mutant pathways is created by de novo assembly of promoter mutants of varying strengths for each pathway gene in a target organism followed by high-throughput screening/selection. To demonstrate this approach, a single round of COMPACTER was used to generate both a xylose utilizing pathway with near-highest efficiency and a cellobiose utilizing pathway with highest efficiency that were ever reported in literature for both laboratory and industrial yeast strains. Interestingly, these engineered xylose and cellobiose utilizing pathways were all host-specific. Therefore, COMPACTER represents a powerful approach to tailor-make metabolic pathways for different strain backgrounds, which is difficult if not impossible to achieve by existing pathway engineering methods. PMID:22718979

  14. Transcriptome analysis of bitter acid biosynthesis and precursor pathways in hop (Humulus lupulus)

    PubMed Central

    2013-01-01

    Background Bitter acids (e.g. humulone) are prenylated polyketides synthesized in lupulin glands of the hop plant (Humulus lupulus) which are important contributors to the bitter flavour and stability of beer. Bitter acids are formed from acyl-CoA precursors derived from branched-chain amino acid (BCAA) degradation and C5 prenyl diphosphates from the methyl-D-erythritol 4-phosphate (MEP) pathway. We used RNA sequencing (RNA-seq) to obtain the transcriptomes of isolated lupulin glands, cones with glands removed and leaves from high α-acid hop cultivars, and analyzed these datasets for genes involved in bitter acid biosynthesis including the supply of major precursors. We also measured the levels of BCAAs, acyl-CoA intermediates, and bitter acids in glands, cones and leaves. Results Transcripts encoding all the enzymes of BCAA metabolism were significantly more abundant in lupulin glands, indicating that BCAA biosynthesis and subsequent degradation occurs in these specialized cells. Branched-chain acyl-CoAs and bitter acids were present at higher levels in glands compared with leaves and cones. RNA-seq analysis showed the gland-specific expression of the MEP pathway, enzymes of sucrose degradation and several transcription factors that may regulate bitter acid biosynthesis in glands. Two branched-chain aminotransferase (BCAT) enzymes, HlBCAT1 and HlBCAT2, were abundant, with gene expression quantification by RNA-seq and qRT-PCR indicating that HlBCAT1 was specific to glands while HlBCAT2 was present in glands, cones and leaves. Recombinant HlBCAT1 and HlBCAT2 catalyzed forward (biosynthetic) and reverse (catabolic) reactions with similar kinetic parameters. HlBCAT1 is targeted to mitochondria where it likely plays a role in BCAA catabolism. HlBCAT2 is a plastidial enzyme likely involved in BCAA biosynthesis. Phylogenetic analysis of the hop BCATs and those from other plants showed that they group into distinct biosynthetic (plastidial) and catabolic (mitochondrial

  15. Metabolite Valves: Dynamic Control of Metabolic Flux for Pathway Engineering

    NASA Astrophysics Data System (ADS)

    Prather, Kristala

    2015-03-01

    Microbial strains have been successfully engineered to produce a wide variety of chemical compounds, several of which have been commercialized. As new products are targeted for biological synthesis, yield is frequently considered a primary driver towards determining feasibility. Theoretical yields can be calculated, establishing an upper limit on the potential conversion of starting substrates to target compounds. Such yields typically ignore loss of substrate to byproducts, with the assumption that competing reactions can be eliminated, usually by deleting the genes encoding the corresponding enzymes. However, when an enzyme encodes an essential gene, especially one involved in primary metabolism, deletion is not a viable option. Reducing gene expression in a static fashion is possible, but this solution ignores the metabolic demand needed for synthesis of the enzymes required for the desired pathway. We have developed Metabolite valves to address this challenge. The valves are designed to allow high flux through the essential enzyme during an initial period where growth is favored. Following an external perturbation, enzyme activity is then reduced, enabling a higher precursor pool to be diverted towards the pathway of interest. We have designed valves with control at both the transcriptional and post-translational levels. In both cases, key enzymes in glucose metabolism are regulated, and two different compounds are targeted for heterologous production. We have measured increased concentrations of intracellular metabolites once the valve is closed, and have demonstrated that these increased pools lead to increased product yields. These metabolite valves should prove broadly useful for dynamic control of metabolic flux, resulting in improvements in product yields.

  16. Combined metabolic engineering of precursor and co-factor supply to increase α-santalene production by Saccharomyces cerevisiae

    PubMed Central

    2012-01-01

    Background Sesquiterpenes are a class of natural products with a diverse range of attractive industrial proprieties. Due to economic difficulties of sesquiterpene production via extraction from plants or chemical synthesis there is interest in developing alternative and cost efficient bioprocesses. The hydrocarbon α-santalene is a precursor of sesquiterpenes with relevant commercial applications. Here, we construct an efficient Saccharomyces cerevisiae cell factory for α-santalene production. Results A multistep metabolic engineering strategy targeted to increase precursor and cofactor supply was employed to manipulate the yeast metabolic network in order to redirect carbon toward the desired product. To do so, genetic modifications were introduced acting to optimize the farnesyl diphosphate branch point, modulate the mevalonate pathway, modify the ammonium assimilation pathway and enhance the activity of a transcriptional activator. The approach employed resulted in an overall α-santalene yield of a 0.0052 Cmmol (Cmmol glucose)-1 corresponding to a 4-fold improvement over the reference strain. This strategy, combined with a specifically developed continuous fermentation process, led to a final α-santalene productivity of 0.036 Cmmol (g biomass)-1 h-1. Conclusions The results reported in this work illustrate how the combination of a metabolic engineering strategy with fermentation technology optimization can be used to obtain significant amounts of the high-value sesquiterpene α-santalene. This represents a starting point toward the construction of a yeast “sesquiterpene factory” and for the development of an economically viable bio-based process that has the potential to replace the current production methods. PMID:22938570

  17. Cyclosporin A enhances neural precursor cell survival in mice through a calcineurin-independent pathway.

    PubMed

    Sachewsky, Nadia; Hunt, Jessica; Cooke, Michael J; Azimi, Ashkan; Zarin, Taraneh; Miu, Carween; Shoichet, Molly S; Morshead, Cindi M

    2014-08-01

    Cyclosporin A (CsA) has direct effects on neural stem and progenitor cells (together termed neural precursor cells; NPCs) in the adult central nervous system. Administration of CsA in vitro or in vivo promotes the survival of NPCs and expands the pools of NPCs in mice. Moreover, CsA administration is effective in promoting NPC activation, tissue repair and functional recovery in a mouse model of cortical stroke. The mechanism(s) by which CsA mediates this cell survival effect remains unknown. Herein, we examined both calcineurin-dependent and calcineurin-independent pathways through which CsA might mediate NPC survival. To examine calcineurin-dependent pathways, we utilized FK506 (Tacrolimus), an immunosuppressive molecule that inhibits calcineurin, as well as drugs that inhibit cyclophilin A-mediated activation of calcineurin. To evaluate the calcineurin-independent pathway, we utilized NIM811, a non-immunosuppressive CsA analog that functions independently of calcineurin by blocking mitochondrial permeability transition pore formation. We found that only NIM811 can entirely account for the pro-survival effects of CsA on NPCs. Indeed, blocking signaling pathways downstream of calcineurin activation using nNOS mice did not inhibit CsA-mediated cell survival, which supports the proposal that the effects are calcinuerin-independent. In vivo studies revealed that NIM811 administration mimics the pro-survival effects of CsA on NPCs and promotes functional recovery in a model of cortical stroke, identical to the effects seen with CsA administration. We conclude that CsA mediates its effect on NPC survival through calcineurin-independent inhibition of mitochondrial permeability transition pore formation and suggest that this pathway has potential therapeutic benefits for developing NPC-mediated cell replacement strategies. © 2014. Published by The Company of Biologists Ltd.

  18. Amyloid precursor protein–mediated endocytic pathway disruption induces axonal dysfunction and neurodegeneration

    PubMed Central

    Xu, Wei; Weissmiller, April M.; White, Joseph A.; Fang, Fang; Wang, Xinyi; Wu, Yiwen; Pearn, Matthew L.; Zhao, Xiaobei; Chen, Shengdi; Gunawardena, Shermali; Ding, Jianqing; Mobley, William C.

    2016-01-01

    The endosome/lysosome pathway is disrupted early in the course of both Alzheimer’s disease (AD) and Down syndrome (DS); however, it is not clear how dysfunction in this pathway influences the development of these diseases. Herein, we explored the cellular and molecular mechanisms by which endosomal dysfunction contributes to the pathogenesis of AD and DS. We determined that full-length amyloid precursor protein (APP) and its β-C-terminal fragment (β-CTF) act though increased activation of Rab5 to cause enlargement of early endosomes and to disrupt retrograde axonal trafficking of nerve growth factor (NGF) signals. The functional impacts of APP and its various products were investigated in PC12 cells, cultured rat basal forebrain cholinergic neurons (BFCNs), and BFCNs from a mouse model of DS. We found that the full-length wild-type APP (APPWT) and β-CTF both induced endosomal enlargement and disrupted NGF signaling and axonal trafficking. β-CTF alone induced atrophy of BFCNs that was rescued by the dominant-negative Rab5 mutant, Rab5S34N. Moreover, expression of a dominant-negative Rab5 construct markedly reduced APP-induced axonal blockage in Drosophila. Therefore, increased APP and/or β-CTF impact the endocytic pathway to disrupt NGF trafficking and signaling, resulting in trophic deficits in BFCNs. Our data strongly support the emerging concept that dysregulation of Rab5 activity contributes importantly to early pathogenesis of AD and DS. PMID:27064279

  19. On the possible involvement of bovine serum albumin precursor in lipofection pathway.

    PubMed

    Mukherjee, Anubhab; Bhattacharyya, Jayanta; Chaudhuri, Arabinda

    2014-03-01

    Protein factors involved in lipofection pathways remain elusive. Using avidin-biotin affinity chromatography and mass finger printing analysis technique, herein we report the identification of a 70 kDa size protein (bovine serum albumin precursor, BSAP) which binds strongly with lipoplexes and may play role in lipofection pathway. Using multiple cultured animal cells and three structurally different cationic transfection lipids, we show that the efficiencies of liposomal transfection vectors get significantly enhanced (by ~2.5- to 5.0-fold) in cells pre-transfected with lipoplexes of reporter plasmid construct encoding BSAP. Findings in the cellular uptake experiments in A549 cells cultured in DMEM supplemented with 10 percent (w/w) BODIPY-labelled BSAP are consistent with the supposition that BSAP enters cell cytoplasm from the cell culture medium (DMEM supplemented with 10 percent FBS) used in lipofection. Cellular uptake studies by confocal microscopy using BODIPY-labelled BSAP and FITC-labelled plasmid DNA revealed co-localization of plasmid DNA and BSAP within the cell cytoplasm and nucleus. In summary, the present findings hint at the possible involvement of BSAP in lipofection pathway.

  20. Reaction pathways to CuInSe{sub 2} formation from electrodeposited precursors

    SciTech Connect

    Guillen, C.; Herrero, J.

    1995-06-01

    CuInSe{sub 2} thin films have been obtained from different precursors prepared by direct or sequential electrodeposition processes. The nature of the as-deposited layers and the evolution of the films during the heat-treatment in an inert (vacuum) or a reactive (elemental Se vapor) atmosphere have been studied by X-ray diffraction and X-ray photoelectron spectroscopy analysis. The chemistry of the different phase transformations occurring as a function of the annealing temperature has been examined, and possible reaction pathways for the formation of CuInSe{sub 2} are presented. The results show that high crystalline chalcopyrite CuInSe{sub 2} films with the desired composition can be obtained after annealing either direct or sequentially electrodeposited precursors at 400 C. An improvement in film quality can be gained by using an electrodeposited Cu layer as growth surface for the CuInSe{sub 2} formation. If elemental Se is also added during the heat-treatment, then a higher recrystallization of the films is observed.

  1. De novo genetic engineering of the camalexin biosynthetic pathway.

    PubMed

    Møldrup, Morten E; Salomonsen, Bo; Geu-Flores, Fernando; Olsen, Carl E; Halkier, Barbara A

    2013-09-10

    Camalexin is a tryptophan-derived phytoalexin that is induced in the model plant Arabidopsis thaliana upon pathogen attack. Only few genes in the biosynthetic pathway of camalexin remain unidentified, however, investigation of candidate genes for these steps has proven particularly difficult partly because of redundancy in the genome of Arabidopsis. Here we describe metabolic engineering of the camalexin biosynthetic pathway in the transient Nicotiana benthamiana expression system. Camalexin accumulated in levels corresponding to what is seen in induced Arabidopsis thaliana. We have used this system to evaluate candidate genes suggested to be involved in the camalexin pathway. This has provided biochemical evidence for CYP71A12 conducting same reaction as CYP71A13 in the pathway. We discuss the prospects of using metabolic engineering of camalexin, both with respect to engineering plant defense and as a tool for screening yet unidentified candidate genes in the camalexin pathway. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Differential Contribution of the First Two Enzymes of the MEP Pathway to the Supply of Metabolic Precursors for Carotenoid and Chlorophyll Biosynthesis in Carrot (Daucus carota)

    PubMed Central

    Simpson, Kevin; Quiroz, Luis F.; Rodriguez-Concepción, Manuel; Stange, Claudia R.

    2016-01-01

    Carotenoids and chlorophylls are photosynthetic pigments synthesized in plastids from metabolic precursors provided by the methylerythritol 4-phosphate (MEP) pathway. The first two steps in the MEP pathway are catalyzed by the deoxyxylulose 5-phosphate synthase (DXS) and reductoisomerase (DXR) enzymes. While DXS has been recently shown to be the main flux-controlling step of the MEP pathway, both DXS and DXR enzymes have been proven to be able to promote an increase in MEP-derived products when overproduced in diverse plant systems. Carrot (Daucus carota) produces photosynthetic pigments (carotenoids and chlorophylls) in leaves and in light-exposed roots, whereas only carotenoids (mainly α- and β-carotene) accumulate in the storage root in darkness. To evaluate whether DXS and DXR activities influence the production of carotenoids and chlorophylls in carrot leaves and roots, the corresponding Arabidopsis thaliana genes were constitutively expressed in transgenic carrot plants. Our results suggest that DXS is limiting for the production of both carotenoids and chlorophylls in roots and leaves, whereas the regulatory role of DXR appeared to be minor. Interestingly, increased levels of DXS (but not of DXR) resulted in higher transcript abundance of endogenous carrot genes encoding phytoene synthase, the main rate-determining enzyme of the carotenoid pathway. These results support a central role for DXS on modulating the production of MEP-derived precursors to synthesize carotenoids and chlorophylls in carrot, confirming the pivotal relevance of this enzyme to engineer healthier, carotenoid-enriched products. PMID:27630663

  3. Reverse Engineering Adverse Outcome Pathways in Ecotoxicology

    EPA Science Inventory

    The toxicological effects of many stressors are mediated through unknown, or incompletely characterized, mechanisms of action. We describe the application of reverse engineering complex interaction networks from high dimensional omics data (gene, protein, meabolic, signaling) t...

  4. Reverse Engineering Adverse Outcome Pathways in Ecotoxicology

    EPA Science Inventory

    The toxicological effects of many stressors are mediated through unknown, or incompletely characterized, mechanisms of action. We describe the application of reverse engineering complex interaction networks from high dimensional omics data (gene, protein, meabolic, signaling) t...

  5. Metabolic Engineering of a Novel Muconic Acid Biosynthesis Pathway via 4-Hydroxybenzoic Acid in Escherichia coli

    PubMed Central

    Sengupta, Sudeshna; Goonewardena, Lakshani; Juturu, Veeresh

    2015-01-01

    cis,cis-Muconic acid (MA) is a commercially important raw material used in pharmaceuticals, functional resins, and agrochemicals. MA is also a potential platform chemical for the production of adipic acid (AA), terephthalic acid, caprolactam, and 1,6-hexanediol. A strain of Escherichia coli K-12, BW25113, was genetically modified, and a novel nonnative metabolic pathway was introduced for the synthesis of MA from glucose. The proposed pathway converted chorismate from the aromatic amino acid pathway to MA via 4-hydroxybenzoic acid (PHB). Three nonnative genes, pobA, aroY, and catA, coding for 4-hydroxybenzoate hydrolyase, protocatechuate decarboxylase, and catechol 1,2-dioxygenase, respectively, were functionally expressed in E. coli to establish the MA biosynthetic pathway. E. coli native genes ubiC, aroFFBR, aroE, and aroL were overexpressed and the genes ptsH, ptsI, crr, and pykF were deleted from the E. coli genome in order to increase the precursors of the proposed MA pathway. The final engineered E. coli strain produced nearly 170 mg/liter of MA from simple carbon sources in shake flask experiments. The proposed pathway was proved to be functionally active, and the strategy can be used for future metabolic engineering efforts for production of MA from renewable sugars. PMID:26362984

  6. The arginine deiminase pathway of koji bacteria is involved in ethyl carbamate precursor production in soy sauce.

    PubMed

    Zhang, Jiran; Fang, Fang; Chen, Jian; Du, Guocheng

    2014-09-01

    Ethyl carbamate (EC) is a group 2A carcinogen generated from a few precursors in many fermented foods and alcoholic beverages. Citrulline, urea, carbamoyl phosphate, and ethanol are common precursors detected in fermented foods. In this study, citrulline was proved to be the main EC precursor in soy sauce, which was found to be accumulated in moromi mash period and correlated with the utilization of arginine by koji bacteria. Six koji isolates belonging to three genera were identified to be able to accumulate citrulline via the arginine deiminase (ADI) pathway. Among these strains, only Pediococcus acidilactici retained high activities in synthesis and accumulation of citrulline in the presence of high concentration of sodium chloride. These results suggested that P. acidilactici is responsible for the accumulation of citrulline, one of the EC precursors, in the process of soy sauce fermentation.

  7. Engineering terpene biosynthesis in Streptomyces for production of the advanced biofuel precursor bisabolene.

    PubMed

    Phelan, Ryan M; Sekurova, Olga N; Keasling, Jay D; Zotchev, Sergey B

    2015-04-17

    The past decade has witnessed a large influx of research toward the creation of sustainable, biologically derived fuels. While significant effort has been exerted to improve production capacity in common hosts, such as Escherichia coli or Saccharomyces cerevisiae, studies concerning alternate microbes comparatively lag. In an effort to expand the breadth of characterized hosts for fuel production, we map the terpene biosynthetic pathway in a model actinobacterium, Streptomyces venezuelae, and further alter secondary metabolism to afford the advanced biofuel precursor bisabolene. Leveraging information gained from study of the native isoprenoid pathway, we were able to increase bisabolene titer nearly 5-fold over the base production strain, more than 2 orders of magnitude greater than the combined terpene yield in the wild-type host. We also explored production on carbon sources of varying complexity to, notably, define this host as one able to perform consolidated bioprocessing.

  8. Effect of temperature on the reaction pathway of calcium carbonate formation via precursor phases

    NASA Astrophysics Data System (ADS)

    Purgstaller, Bettina; Mavromatis, Vasileios; Konrad, Florian; Dietzel, Martin

    2016-04-01

    It has been earlier postulated that some biogenic and sedimentary calcium carbonate (CaCO3) minerals (e.g. calcite and aragonite) are secondary in origin and have originally formed via a metastable calcium carbonate precursor phase (e.g. amorphous CaCO3, [1-2]). Such formation pathways are likely affected by various physicochemical parameters including aqueous Mg and temperature. In an effort to improve our understanding on the formation mechanism of CaCO3 minerals, precipitation experiments were carried out by the addition of a 0.6 M (Ca,Mg)Cl2 solution at distinct Mg/Ca ratios (1/4 and 1/8) into a 1 M NaHCO3 solution under constant pH conditions(8.3 ±0.1). The formation of CaCO3 was systematically examined as a function of temperature (6, 12, 18 and 25 ±0.3° C). During the experimental runs mineral precipitation was monitored by in situ Raman spectroscopy as well as by continuous sampling and analyzing of precipitates and reactive solutions. The results revealed two pathways of CaCO3 formation depending on the initial Mg/Ca ratio and temperature: (i) In experiments with a Mg/Ca ratio of 1/4 at ≤ 12° C as well as in experiments with a Mg/Ca ratio of 1/8 at ≤ 18° C, ikaite (CaCO3 6H2O) acts as a precursor phase for aragonite formation. (ii) In contrast higher temperatures induced the formation of Mg-rich amorphous CaCO3 (Mg-ACC) which was subsequently transformed to Mg-rich calcite. In situ Raman spectra showed that the transformation of Mg-ACC to Mg-calcite occurs at a higher rate (˜ 8 min) compared to that of ikaite to aragonite (> 2 h). Thus, the formation of aragonite rather than of Mg-calcite occurs due to the slower release of Ca2+and CO32- ions into the Mg-rich reactive solution during retarded ikaite dissolution. This behavior is generally consistent with the observation that calcite precipitation is inhibited at elevated aqueous Mg/Ca ratios. [1] Addadi L., Raz S. and Weiner S. (2003) Advanced Materials 15, 959-970. [2] Rodriguez-Blanco J. D

  9. Metabolic engineering of the shikimate pathway

    DOEpatents

    Juminaga, Darmawi; Keasling, Jay D.

    2017-01-10

    The present disclosure relates to engineered microorganisms that produce amino acids and amino acid intermediates. In particular, the disclosure relates to recombinant nucleic acids encoding operons that increase production of aromatic amino acids and the aromatic amino acid intermediate shikimate; microorganisms with increased production of aromatic amino acids and the aromatic amino acid intermediate shikimate; and methods related to the production of aromatic amino acids, the aromatic amino acid intermediate shikimate, and commodity chemicals derived therefrom.

  10. SOX2-LIN28/let-7 pathway regulates proliferation and neurogenesis in neural precursors.

    PubMed

    Cimadamore, Flavio; Amador-Arjona, Alejandro; Chen, Connie; Huang, Chun-Teng; Terskikh, Alexey V

    2013-08-06

    The transcription factor SRY (sex-determining region)-box 2 (SOX2) is an important functional marker of neural precursor cells (NPCs) and plays a critical role in self-renewal and neuronal differentiation; however, the molecular mechanisms underlying its functions are poorly understood. Using human embryonic stem cell-derived NPCs to model neurogenesis, we found that SOX2 is required to maintain optimal levels of LIN28, a well-characterized suppressor of let-7 microRNA biogenesis. Exogenous LIN28 expression rescued the NPC proliferation deficit, as well as the early but not the late stages of the neurogenic deficit associated with the loss of SOX2. We found that SOX2 binds to a proximal site in the LIN28 promoter region and regulates LIN28 promoter acetylation, likely through interactions with the histone acetyltransferase complex. Misexpression of let-7 microRNAs in NPCs reduced proliferation and inhibited neuronal differentiation, phenocopying the loss of SOX2. In particular, we identified let-7i as a novel and potent inhibitor of neuronal differentiation that targets MASH1 and NGN1, two well-characterized proneural genes. In conclusion, we discovered the SOX2-LIN28/let-7 pathway as a unique molecular mechanism governing NPC proliferation and neurogenic potential.

  11. SOX2–LIN28/let-7 pathway regulates proliferation and neurogenesis in neural precursors

    PubMed Central

    Cimadamore, Flavio; Amador-Arjona, Alejandro; Chen, Connie; Huang, Chun-Teng; Terskikh, Alexey V.

    2013-01-01

    The transcription factor SRY (sex-determining region)-box 2 (SOX2) is an important functional marker of neural precursor cells (NPCs) and plays a critical role in self-renewal and neuronal differentiation; however, the molecular mechanisms underlying its functions are poorly understood. Using human embryonic stem cell-derived NPCs to model neurogenesis, we found that SOX2 is required to maintain optimal levels of LIN28, a well-characterized suppressor of let-7 microRNA biogenesis. Exogenous LIN28 expression rescued the NPC proliferation deficit, as well as the early but not the late stages of the neurogenic deficit associated with the loss of SOX2. We found that SOX2 binds to a proximal site in the LIN28 promoter region and regulates LIN28 promoter acetylation, likely through interactions with the histone acetyltransferase complex. Misexpression of let-7 microRNAs in NPCs reduced proliferation and inhibited neuronal differentiation, phenocopying the loss of SOX2. In particular, we identified let-7i as a novel and potent inhibitor of neuronal differentiation that targets MASH1 and NGN1, two well-characterized proneural genes. In conclusion, we discovered the SOX2–LIN28/let-7 pathway as a unique molecular mechanism governing NPC proliferation and neurogenic potential. PMID:23884650

  12. APL-1, the Alzheimer's Amyloid precursor protein in Caenorhabditis elegans, modulates multiple metabolic pathways throughout development.

    PubMed

    Ewald, Collin Y; Raps, Daniel A; Li, Chris

    2012-06-01

    Mutations in the amyloid precursor protein (APP) gene or in genes that process APP are correlated with familial Alzheimer's disease (AD). The biological function of APP remains unclear. APP is a transmembrane protein that can be sequentially cleaved by different secretases to yield multiple fragments, which can potentially act as signaling molecules. Caenorhabditis elegans encodes one APP-related protein, APL-1, which is essential for viability. Here, we show that APL-1 signaling is dependent on the activity of the FOXO transcription factor DAF-16 and the nuclear hormone receptor DAF-12 and influences metabolic pathways such as developmental progression, body size, and egg-laying rate. Furthermore, apl-1(yn5) mutants, which produce high levels of the extracellular APL-1 fragment, show an incompletely penetrant temperature-sensitive embryonic lethality. In a genetic screen to isolate mutants in which the apl-1(yn5) lethality rate is modified, we identified a suppressor mutation in MOA-1/R155.2, a receptor-protein tyrosine phosphatase, and an enhancer mutation in MOA-2/B0495.6, a protein involved in receptor-mediated endocytosis. Knockdown of apl-1 in an apl-1(yn5) background caused lethality and molting defects at all larval stages, suggesting that apl-1 is required for each transitional molt. We suggest that signaling of the released APL-1 fragment modulates multiple metabolic states and that APL-1 is required throughout development.

  13. Synthetic metabolism: engineering biology at the protein and pathway scales.

    PubMed

    Martin, Collin H; Nielsen, David R; Solomon, Kevin V; Prather, Kristala L Jones

    2009-03-27

    Biocatalysis has become a powerful tool for the synthesis of high-value compounds, particularly so in the case of highly functionalized and/or stereoactive products. Nature has supplied thousands of enzymes and assembled them into numerous metabolic pathways. Although these native pathways can be use to produce natural bioproducts, there are many valuable and useful compounds that have no known natural biochemical route. Consequently, there is a need for both unnatural metabolic pathways and novel enzymatic activities upon which these pathways can be built. Here, we review the theoretical and experimental strategies for engineering synthetic metabolic pathways at the protein and pathway scales, and highlight the challenges that this subfield of synthetic biology currently faces.

  14. Strategies for metabolic pathway engineering with multiple transgenes.

    PubMed

    Bock, Ralph

    2013-09-01

    The engineering of metabolic pathways in plants often requires the concerted expression of more than one gene. While with traditional transgenic approaches, the expression of multiple transgenes has been challenging, recent progress has greatly expanded our repertoire of powerful techniques making this possible. New technological options include large-scale co-transformation of the nuclear genome, also referred to as combinatorial transformation, and transformation of the chloroplast genome with synthetic operon constructs. This review describes the state of the art in multigene genetic engineering of plants. It focuses on the methods currently available for the introduction of multiple transgenes into plants and the molecular mechanisms underlying successful transgene expression. Selected examples of metabolic pathway engineering are used to illustrate the attractions and limitations of each method and to highlight key factors that influence the experimenter's choice of the best strategy for multigene engineering.

  15. A comparison of chemical structures of soot precursor nanoparticles from liquid fuel combustion in flames and engine

    NASA Astrophysics Data System (ADS)

    Paul, Bireswar; Datta, Amitava; Datta, Aparna; Saha, Abhijit

    2013-04-01

    A comparative study of the chemical structures of soot precursor nanoparticles from the liquid fuel flame and engine exhaust has been performed in this work to establish an association between the particles from both the sources. Different ex-situ measurement techniques have been used to characterize the nanoparticles in samples collected from the laboratory petrol/air and iso-octane/air flames, as well as from a gasoline engine. The TEM images of the sampled material along with the EDS spectra corroborate the existence of carbonaceous nanoparticles. The nature of the UV absorption and fluorescence spectra of the samples from the iso-octane flame environment further confirms the sampled materials to be soot precursor nanoparticles. The DLS size distribution of the particles shows them to be below 10 nm size. FTIR spectrum of the precursor nanoparticles collected form the non-sooting zone of the flame and that of fully grown soot particles show few similarities and dissimilarities among them. The soot particles are found to be much more aromatized as compared to its precursor nanoparticles. The presence of carbonyl functional group (C=O) at around 1,720 cm-1 has been observed in soot precursor nanoparticles, while such oxygenated functional groups are not prominent in soot structure. The absorption (UV and IR) and fluorescence spectra of the carbonaceous material collected from the gasoline engine exhaust show many resemblances with those of soot precursor nanoparticles from flames. These spectroscopic resemblances of the soot precursor nanoparticles from the flame environment and engine exhaust gives the evidence that the in-cylinder combustion is the source of these particles in the engine exhaust.

  16. Metabolic engineering of folate and its precursors in Mexican common bean (Phaseolus vulgaris L.).

    PubMed

    Ramírez Rivera, Naty G; García-Salinas, Carolina; Aragão, Francisco J L; Díaz de la Garza, Rocío Isabel

    2016-10-01

    Folate (vitamin B9) deficiency causes several health problems globally. However, folate biofortification of major staple crops is one alternative that can be used to improve vitamin intakes in populations at risk. We increased the folate levels in common bean by engineering the pteridine branch required for their biosynthesis. GTP cyclohydrolase I from Arabidopsis (AtGchI) was stably introduced into three common bean Pinto cultivars by particle bombardment. Seed-specific overexpression of AtGCHI caused significant increases of up to 150-fold in biosynthetic pteridines in the transformed lines. The pteridine boost enhanced folate levels in raw desiccated seeds by up to threefold (325 μg in a 100 g portion), which would represent 81% of the adult recommended daily allowance. Unexpectedly, the engineering also triggered a general increase in PABA levels, the other folate precursor. This was not observed in previous engineering studies and was probably caused by a feedforward mechanism that remains to be elucidated. Results from this work also show that common bean grains accumulate considerable amounts of oxidized pteridines that might represent products of folate degradation in desiccating seeds. Our study uncovers a probable different regulation of folate homoeostasis in these legume grains than that observed in other engineering works. Legumes are good sources of folates, and this work shows that they can be engineered to accumulate even greater amounts of folate that, when consumed, can improve folate status. Biofortification of common bean with folates and other micronutrients represents a promising strategy to improve the nutritional status of populations around the world. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  17. Chemical mechanism for high temperature combustion of engine relevant fuels with emphasis on soot precursors

    SciTech Connect

    Blanquart, G.; Pepiot-Desjardins, P.; Pitsch, H.

    2009-03-15

    This article presents a chemical mechanism for the high temperature combustion of a wide range of hydrocarbon fuels ranging from methane to iso-octane. The emphasis is placed on developing an accurate model for the formation of soot precursors for realistic fuel surrogates for premixed and diffusion flames. Species like acetylene (C{sub 2}H{sub 2}), propyne (C{sub 3}H{sub 4}), propene (C{sub 3}H{sub 6}), and butadiene (C{sub 4}H{sub 6}) play a major role in the formation of soot as their decomposition leads to the production of radicals involved in the formation of Polycyclic Aromatic Hydrocarbons (PAH) and the further growth of soot particles. A chemical kinetic mechanism is developed to represent the combustion of these molecules and is validated against a series of experimental data sets including laminar burning velocities and ignition delay times. To correctly predict the formation of soot precursors from the combustion of engine relevant fuels, additional species should be considered. One normal alkane (n-heptane), one ramified alkane (iso-octane), and two aromatics (benzene and toluene) were chosen as chemical species representative of the components typically found in these fuels. A sub-mechanism for the combustion of these four species has been added, and the full mechanism has been further validated. Finally, the mechanism is supplemented with a sub-mechanism for the formation of larger PAH molecules up to cyclo[cd]pyrene. Laminar premixed and counterflow diffusion flames are simulated to assess the ability of the mechanism to predict the formation of soot precursors in flames. The final mechanism contains 149 species and 1651 reactions (forward and backward reactions counted separately). The mechanism is available with thermodynamic and transport properties as supplemental material. (author)

  18. 5-Aminolevulinic acid production from inexpensive glucose by engineering the C4 pathway in Escherichia coli.

    PubMed

    Ding, Wenwen; Weng, Huanjiao; Du, Guocheng; Chen, Jian; Kang, Zhen

    2017-08-01

    5-Aminolevulinic acid (ALA), the first committed intermediate for natural biosynthesis of tetrapyrrole compounds, has recently drawn intensive attention due to its broad potential applications. In this study, we describe the construction of recombinant Escherichia coli strains for ALA production from glucose via the C4 pathway. The hemA gene from Rhodobacter capsulatus was optimally overexpressed using a ribosome binding site engineering strategy, which enhanced ALA production substantially from 20 to 689 mg/L. Following optimization of biosynthesis pathways towards coenzyme A and precursor (glycine and succinyl-CoA), and downregulation of hemB expression, the production of ALA was further increased to 2.81 g/L in batch-fermentation.

  19. Effects of metabolic pathway precursors and polydimethylsiloxane (PDMS) on poly-(gamma)-glutamic acid production by Bacillus subtilis BL53.

    PubMed

    de Cesaro, Alessandra; da Silva, Suse Botelho; Ayub, Marco Antônio Záchia

    2014-09-01

    The aims of this study were to evaluate the effects of the addition of metabolic precursors and polydimethylsiloxane (PDMS) as an oxygen carrier to cultures of Bacillus subtilis BL53 during the production of γ-PGA. Kinetics analyses of cultivations of different media showed that B. subtilis BL53 is an exogenous glutamic acid-dependent strain. When the metabolic pathway precursors of γ-PGA synthesis, L-glutamine and a-ketoglutaric acid, were added to the culture medium, production of the biopolymer was increased by 20 % considering the medium without these precursors. The addition of 10 % of the oxygen carrier PDMS to cultures caused a two-fold increase in the volumetric oxygen mass transfer coefficient (kLa), improving γ-PGA production and productivity. Finally, bioreactor cultures of B. subtilis BL53 adopting the combination of optimized medium E, added of glutamine, α-ketoglutaric acid, and PDMS, showed a productivity of 1 g L(-1) h(-1) of g-PGA after only 24 h of cultivation. Results of this study suggest that the use of metabolic pathway precursors glutamine and a-ketolgutaric acid, combined with the addition of PDMS as an oxygen carrier in bioreactors, can improve γ-PGA production and productivity by Bacillus strains .

  20. Cofactor Engineering for Enhancing the Flux of Metabolic Pathways

    PubMed Central

    Akhtar, M. Kalim; Jones, Patrik R.

    2014-01-01

    The manufacture of a diverse array of chemicals is now possible with biologically engineered strains, an approach that is greatly facilitated by the emergence of synthetic biology. This is principally achieved through pathway engineering in which enzyme activities are coordinated within a genetically amenable host to generate the product of interest. A great deal of attention is typically given to the quantitative levels of the enzymes with little regard to their overall qualitative states. This highly constrained approach fails to consider other factors that may be necessary for enzyme functionality. In particular, enzymes with physically bound cofactors, otherwise known as holoenzymes, require careful evaluation. Herein, we discuss the importance of cofactors for biocatalytic processes and show with empirical examples why the synthesis and integration of cofactors for the formation of holoenzymes warrant a great deal of attention within the context of pathway engineering. PMID:25221776

  1. An Engineered Cardiac Reporter Cell Line Identifies Human Embryonic Stem Cell-Derived Myocardial Precursors

    PubMed Central

    Mihardja, Shirley S.; Liszewski, Walter; Erle, David J.; Lee, Randall J.; Bernstein, Harold S.

    2011-01-01

    Unlike some organs, the heart is unable to repair itself after injury. Human embryonic stem cells (hESCs) grow and divide indefinitely while maintaining the potential to develop into many tissues of the body. As such, they provide an unprecedented opportunity to treat human diseases characterized by tissue loss. We have identified early myocardial precursors derived from hESCs (hMPs) using an α-myosin heavy chain (αMHC)-GFP reporter line. We have demonstrated by immunocytochemistry and quantitative real-time PCR (qPCR) that reporter activation is restricted to hESC-derived cardiomyocytes (CMs) differentiated in vitro, and that hMPs give rise exclusively to muscle in an in vivo teratoma formation assay. We also demonstrate that the reporter does not interfere with hESC genomic stability. Importantly, we show that hMPs give rise to atrial, ventricular and specialized conduction CM subtypes by qPCR and microelectrode array analysis. Expression profiling of hMPs over the course of differentiation implicate Wnt and transforming growth factor-β signaling pathways in CM development. The identification of hMPs using this αMHC-GFP reporter line will provide important insight into the pathways regulating human myocardial development, and may provide a novel therapeutic reagent for the treatment of cardiac disease. PMID:21245908

  2. Metabolic Engineering of Plants to Produce Precursors (Phloroglucinol and 1,2,4-butanetriol) of Energetic Materials

    DTIC Science & Technology

    2015-01-02

    01-2015 2. REPORT TYPE Final DATES COVERED (From - To) 01-4-2008 to 30-9-2014 4. TITLE AND SUBTITLE Metabolic Engineering of Plants to Produce...release d^0[^O\\\\S(%S 13. SUPPLEMENTARY NOTES -\\ 14. ABSTRACT — The goal of this proposal was to engineer plants to produce butanetriol and... plants . The strategy was to introduce bacterial genes involved in synthesis of these chemicals in to plants . Synthesis of these precursors of

  3. Natural Variation in Epigenetic Pathways Affects the Specification of Female Gamete Precursors in Arabidopsis[OPEN

    PubMed Central

    Rodríguez-Leal, Daniel; León-Martínez, Gloria; Abad-Vivero, Ursula; Vielle-Calzada, Jean-Philippe

    2015-01-01

    In angiosperms, the transition to the female gametophytic phase relies on the specification of premeiotic gamete precursors from sporophytic cells in the ovule. In Arabidopsis thaliana, a single diploid cell is specified as the premeiotic female gamete precursor. Here, we show that ecotypes of Arabidopsis exhibit differences in megasporogenesis leading to phenotypes reminiscent of defects in dominant mutations that epigenetically affect the specification of female gamete precursors. Intraspecific hybridization and polyploidy exacerbate these defects, which segregate quantitatively in F2 populations derived from ecotypic hybrids, suggesting that multiple loci control cell specification at the onset of female meiosis. This variation in cell differentiation is influenced by the activity of ARGONAUTE9 (AGO9) and RNA-DEPENDENT RNA POLYMERASE6 (RDR6), two genes involved in epigenetic silencing that control the specification of female gamete precursors. The pattern of transcriptional regulation and localization of AGO9 varies among ecotypes, and abnormal gamete precursors in ovules defective for RDR6 share identity with ectopic gamete precursors found in selected ecotypes. Our results indicate that differences in the epigenetic control of cell specification lead to natural phenotypic variation during megasporogenesis. We propose that this mechanism could be implicated in the emergence and evolution of the reproductive alternatives that prevail in flowering plants. PMID:25829442

  4. RNase MRP is required for entry of 35S precursor rRNA into the canonical processing pathway.

    PubMed

    Lindahl, Lasse; Bommankanti, Ananth; Li, Xing; Hayden, Lauren; Jones, Adrienne; Khan, Miriam; Oni, Tolulope; Zengel, Janice M

    2009-07-01

    RNase MRP is a nucleolar RNA-protein enzyme that participates in the processing of rRNA during ribosome biogenesis. Previous experiments suggested that RNase MRP makes a nonessential cleavage in the first internal transcribed spacer. Here we report experiments with new temperature-sensitive RNase MRP mutants in Saccharomyces cerevisiae that show that the abundance of all early intermediates in the processing pathway is severely reduced upon inactivation of RNase MRP. Transcription of rRNA continues unabated as determined by RNA polymerase run-on transcription, but the precursor rRNA transcript does not accumulate, and appears to be unstable. Taken together, these observations suggest that inactivation of RNase MRP blocks cleavage at sites A0, A1, A2, and A3, which in turn, prevents precursor rRNA from entering the canonical processing pathway (35S > 20S + 27S > 18S + 25S + 5.8S rRNA). Nevertheless, at least some cleavage at the processing site in the second internal transcribed spacer takes place to form an unusual 24S intermediate, suggesting that cleavage at C2 is not blocked. Furthermore, the long form of 5.8S rRNA is made in the absence of RNase MRP activity, but only in the presence of Xrn1p (exonuclease 1), an enzyme not required for the canonical pathway. We conclude that RNase MRP is a key enzyme for initiating the canonical processing of precursor rRNA transcripts, but alternative pathway(s) might provide a backup for production of small amounts of rRNA.

  5. RNase MRP is required for entry of 35S precursor rRNA into the canonical processing pathway

    PubMed Central

    Lindahl, Lasse; Bommankanti, Ananth; Li, Xing; Hayden, Lauren; Jones, Adrienne; Khan, Miriam; Oni, Tolulope; Zengel, Janice M.

    2009-01-01

    RNase MRP is a nucleolar RNA–protein enzyme that participates in the processing of rRNA during ribosome biogenesis. Previous experiments suggested that RNase MRP makes a nonessential cleavage in the first internal transcribed spacer. Here we report experiments with new temperature-sensitive RNase MRP mutants in Saccharomyces cerevisiae that show that the abundance of all early intermediates in the processing pathway is severely reduced upon inactivation of RNase MRP. Transcription of rRNA continues unabated as determined by RNA polymerase run-on transcription, but the precursor rRNA transcript does not accumulate, and appears to be unstable. Taken together, these observations suggest that inactivation of RNase MRP blocks cleavage at sites A0, A1, A2, and A3, which in turn, prevents precursor rRNA from entering the canonical processing pathway (35S > 20S + 27S > 18S + 25S + 5.8S rRNA). Nevertheless, at least some cleavage at the processing site in the second internal transcribed spacer takes place to form an unusual 24S intermediate, suggesting that cleavage at C2 is not blocked. Furthermore, the long form of 5.8S rRNA is made in the absence of RNase MRP activity, but only in the presence of Xrn1p (exonuclease 1), an enzyme not required for the canonical pathway. We conclude that RNase MRP is a key enzyme for initiating the canonical processing of precursor rRNA transcripts, but alternative pathway(s) might provide a backup for production of small amounts of rRNA. PMID:19465684

  6. Pathway swapping: Toward modular engineering of essential cellular processes

    PubMed Central

    Kuijpers, Niels G. A.; Solis-Escalante, Daniel; Luttik, Marijke A. H.; Bisschops, Markus M. M.; Boonekamp, Francine J.; van den Broek, Marcel; Pronk, Jack T.; Daran, Jean-Marc

    2016-01-01

    Recent developments in synthetic biology enable one-step implementation of entire metabolic pathways in industrial microorganisms. A similarly radical remodelling of central metabolism could greatly accelerate fundamental and applied research, but is impeded by the mosaic organization of microbial genomes. To eliminate this limitation, we propose and explore the concept of “pathway swapping,” using yeast glycolysis as the experimental model. Construction of a “single-locus glycolysis” Saccharomyces cerevisiae platform enabled quick and easy replacement of this yeast’s entire complement of 26 glycolytic isoenzymes by any alternative, functional glycolytic pathway configuration. The potential of this approach was demonstrated by the construction and characterization of S. cerevisiae strains whose growth depended on two nonnative glycolytic pathways: a complete glycolysis from the related yeast Saccharomyces kudriavzevii and a mosaic glycolysis consisting of yeast and human enzymes. This work demonstrates the feasibility and potential of modular, combinatorial approaches to engineering and analysis of core cellular processes. PMID:27956602

  7. Metabolic engineering of biosynthetic pathway for production of renewable biofuels.

    PubMed

    Singh, Vijai; Mani, Indra; Chaudhary, Dharmendra Kumar; Dhar, Pawan Kumar

    2014-02-01

    Metabolic engineering is an important area of research that involves editing genetic networks to overproduce a certain substance by the cells. Using a combination of genetic, metabolic, and modeling methods, useful substances have been synthesized in the past at industrial scale and in a cost-effective manner. Currently, metabolic engineering is being used to produce sufficient, economical, and eco-friendly biofuels. In the recent past, a number of efforts have been made towards engineering biosynthetic pathways for large scale and efficient production of biofuels from biomass. Given the adoption of metabolic engineering approaches by the biofuel industry, this paper reviews various approaches towards the production and enhancement of renewable biofuels such as ethanol, butanol, isopropanol, hydrogen, and biodiesel. We have also identified specific areas where more work needs to be done in the future.

  8. Engineering of Penicillium chrysogenum for fermentative production of a novel carbamoylated cephem antibiotic precursor.

    PubMed

    Harris, Diana M; Westerlaken, Ilja; Schipper, Dick; van der Krogt, Zita A; Gombert, Andreas K; Sutherland, John; Raamsdonk, Leonie M; van den Berg, Marco A; Bovenberg, Roel A L; Pronk, Jack T; Daran, Jean-Marc

    2009-03-01

    Penicillium chrysogenum was successfully engineered to produce a novel carbamoylated cephalosporin that can be used as a synthon for semi-synthetic cephalosporins. To this end, genes for Acremonium chrysogenum expandase/hydroxylase and Streptomyces clavuligerus carbamoyltransferase were expressed in a penicillinG high-producing strain of P.chrysogenum. Growth of the engineered strain in the presence of adipic acid resulted in production of adipoyl-7-amino-3-carbamoyloxymethyl-3-cephem-4-carboxylic acid (ad7-ACCCA) and of several adipoylated pathway intermediates. A combinatorial chemostat-based transcriptome study, in which the ad7-ACCCA-producing strain and a strain lacking key genes in beta-lactam synthesis were grown in the presence and absence of adipic acid, enabled the dissection of transcriptional responses to adipic acid per se and to ad7-ACCCA production. Transcriptome analysis revealed that adipate catabolism in P.chrysogenum occurs via beta-oxidation and enabled the identification of putative genes for enzymes involved in mitochondrial and peroxisomal beta-oxidation pathways. Several of the genes that showed a specifically altered transcript level in ad7-ACCCA-producing cultures were previously implicated in oxidative stress responses.

  9. Metabolic engineering of microbial pathways for advanced biofuels production.

    PubMed

    Zhang, Fuzhong; Rodriguez, Sarah; Keasling, Jay D

    2011-12-01

    Production of biofuels from renewable resources such as cellulosic biomass provides a source of liquid transportation fuel to replace petroleum-based fuels. This endeavor requires the conversion of cellulosic biomass into simple sugars, and the conversion of simple sugars into biofuels. Recently, microorganisms have been engineered to convert simple sugars into several types of biofuels, such as alcohols, fatty acid alkyl esters, alkanes, and terpenes, with high titers and yields. Here, we review recently engineered biosynthetic pathways from the well-characterized microorganisms Escherichia coli and Saccharomyces cerevisiae for the production of several advanced biofuels. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Optimization of Engineered Production of the Glucoraphanin Precursor Dihomomethionine in Nicotiana benthamiana

    PubMed Central

    Crocoll, Christoph; Mirza, Nadia; Reichelt, Michael; Gershenzon, Jonathan; Halkier, Barbara Ann

    2016-01-01

    Glucosinolates are natural products characteristic of the Brassicales order, which include vegetables such as cabbages and the model plant Arabidopsis thaliana. Glucoraphanin is the major glucosinolate in broccoli and associated with the health-promoting effects of broccoli consumption. Toward our goal of creating a rich source of glucoraphanin for dietary supplements, we have previously reported the feasibility of engineering glucoraphanin in Nicotiana benthamiana through transient expression of glucoraphanin biosynthetic genes from A. thaliana (Mikkelsen et al., 2010). As side-products, we obtained fivefold to eightfold higher levels of chain-elongated leucine-derived glucosinolates, not found in the native plant. Here, we investigated two different strategies to improve engineering of the methionine chain elongation part of the glucoraphanin pathway in N. benthamiana: (1) coexpression of the large subunit (LSU1) of the heterodimeric isopropylmalate isomerase and (2) coexpression of BAT5 transporter for efficient transfer of intermediates across the chloroplast membrane. We succeeded in raising dihomomethionine (DHM) levels to a maximum of 432 nmol g−1 fresh weight that is equivalent to a ninefold increase compared to the highest production of this intermediate, as previously reported (Mikkelsen et al., 2010). The increased DHM production without increasing leucine-derived side-product levels provides new metabolic engineering strategies for improved glucoraphanin production in a heterologous host. PMID:26909347

  11. Processing pathway of Escherichia coli 16S precursor rRNA.

    PubMed Central

    Srivastava, A K; Schlessinger, D

    1989-01-01

    Immediate precursors of 16S rRNA are processed by endonucleolytic cleavage at both 5' and 3' mature termini, with the concomitant release of precursor fragments which are further metabolized by both exo- and endonucleases. In wild-type cells rapid cleavages by RNase III in precursor-specific sequences precede the subsequent formation of the mature ends; mature termini can, however, be formed directly from pre-16S rRNA with no intermediate species. The direct maturation is most evident in a strain deficient in RNase III, and the results in whole cells are consistent with results from maturation reactions in vitro. Thus, maturation does not require cleavages within the double-stranded stems that enclose mature rRNA sequences in the pre-16S rRNA. Images PMID:2646597

  12. The biosynthetic pathway of curcuminoid in turmeric (Curcuma longa) as revealed by 13C-labeled precursors.

    PubMed

    Kita, Tomoko; Imai, Shinsuke; Sawada, Hiroshi; Kumagai, Hidehiko; Seto, Haruo

    2008-07-01

    In order to investigate the biosynthesis of curcuminoid in rhizomes of turmeric (Curcuma longa), we established an in vitro culture system of turmeric plants for feeding (13)C-labeled precursors. Analyses of labeled desmethoxycurcumin (DMC), an unsymmetrical curcuminoid, by (13)C-NMR, revealed that one molecule of acetic acid or malonic acid and two molecules of phenylalanine or phenylpropanoids, but not tyrosine, were incorporated into DMC. The incorporation efficiencies of the same precursors into DMC and curcumin were similar, and were in the order malonic acid > acetic acid, and cinnamic acid > p-coumaric acid > ferulic acid. These results suggest the possibility that the pathway to curcuminoids utilized two cinnamoyl CoAs and one malonyl CoA, and that hydroxy- and methoxy-functional groups on the aromatic rings were introduced after the formation of the curcuminoid skeleton.

  13. Debottlenecking the 1,3-propanediol pathway by metabolic engineering.

    PubMed

    Celińska, E

    2010-01-01

    The history of 1,3-propanediol (1,3-PD) conversion from being a specialty chemical to being a bulk chemical illustrates that the concerted effort of different metabolic engineering approaches brings the most successful results. In order to metabolically tailor the 1,3-PD production pathway multiple strategies have been pursued. Knocking-out genes responsible for by-products formation, intergeneric transfer and overexpression of the genes directly involved in the pathway, manipulation with internal redox balance, introduction of a synthetic flux control point, and modification of the substrate mechanism of transport are some of the strategies applied. The metabolic engineering of the microbial 1,3-PD production exploits both native producers and microorganisms with acquired ability to produce the diol via genetic manipulations. Combination of the appropriate genes from homologous and heterologous hosts is expected to bring a desired objective of production of 1,3-PD cheaply, efficiently and independently from non-renewable resources. The state-of-the-art of the 1,3-PD pathway metabolic engineering is reviewed in this paper.

  14. Engineering dynamic pathway regulation using stress-response promoters.

    PubMed

    Dahl, Robert H; Zhang, Fuzhong; Alonso-Gutierrez, Jorge; Baidoo, Edward; Batth, Tanveer S; Redding-Johanson, Alyssa M; Petzold, Christopher J; Mukhopadhyay, Aindrila; Lee, Taek Soon; Adams, Paul D; Keasling, Jay D

    2013-11-01

    Heterologous pathways used in metabolic engineering may produce intermediates toxic to the cell. Dynamic control of pathway enzymes could prevent the accumulation of these metabolites, but such a strategy requires sensors, which are largely unknown, that can detect and respond to the metabolite. Here we applied whole-genome transcript arrays to identify promoters that respond to the accumulation of toxic intermediates, and then used these promoters to control accumulation of the intermediate and improve the final titers of a desired product. We apply this approach to regulate farnesyl pyrophosphate (FPP) production in the isoprenoid biosynthetic pathway in Escherichia coli. This strategy improved production of amorphadiene, the final product, by twofold over that from inducible or constitutive promoters, eliminated the need for expensive inducers, reduced acetate accumulation and improved growth. We extended this approach to another toxic intermediate to demonstrate the broad utility of identifying novel sensor-regulator systems for dynamic regulation.

  15. Murine Muscle Engineered from Dermal Precursors: An In Vitro Model for Skeletal Muscle Generation, Degeneration, and Fatty Infiltration

    PubMed Central

    García-Parra, Patricia; Naldaiz-Gastesi, Neia; Maroto, Marcos; Padín, Juan Fernando; Goicoechea, María; Aiastui, Ana; Fernández-Morales, José Carlos; García-Belda, Paula; Lacalle, Jaione; Álava, Jose Iñaki; García-Verdugo, José Manuel; García, Antonio G.

    2014-01-01

    Skeletal muscle can be engineered by converting dermal precursors into muscle progenitors and differentiated myocytes. However, the efficiency of muscle development remains relatively low and it is currently unclear if this is due to poor characterization of the myogenic precursors, the protocols used for cell differentiation, or a combination of both. In this study, we characterized myogenic precursors present in murine dermospheres, and evaluated mature myotubes grown in a novel three-dimensional culture system. After 5–7 days of differentiation, we observed isolated, twitching myotubes followed by spontaneous contractions of the entire tissue-engineered muscle construct on an extracellular matrix (ECM). In vitro engineered myofibers expressed canonical muscle markers and exhibited a skeletal (not cardiac) muscle ultrastructure, with numerous striations and the presence of aligned, enlarged mitochondria, intertwined with sarcoplasmic reticula (SR). Engineered myofibers exhibited Na+- and Ca2+-dependent inward currents upon acetylcholine (ACh) stimulation and tetrodotoxin-sensitive spontaneous action potentials. Moreover, ACh, nicotine, and caffeine elicited cytosolic Ca2+ transients; fiber contractions coupled to these Ca2+ transients suggest that Ca2+ entry is activating calcium-induced calcium release from the SR. Blockade by d-tubocurarine of ACh-elicited inward currents and Ca2+ transients suggests nicotinic receptor involvement. Interestingly, after 1 month, engineered muscle constructs showed progressive degradation of the myofibers concomitant with fatty infiltration, paralleling the natural course of muscular degeneration. We conclude that mature myofibers may be differentiated on the ECM from myogenic precursor cells present in murine dermospheres, in an in vitro system that mimics some characteristics found in aging and muscular degeneration. PMID:23631552

  16. Engineering cytosolic acetyl-coenzyme A supply in Saccharomyces cerevisiae: Pathway stoichiometry, free-energy conservation and redox-cofactor balancing.

    PubMed

    van Rossum, Harmen M; Kozak, Barbara U; Pronk, Jack T; van Maris, Antonius J A

    2016-07-01

    Saccharomyces cerevisiae is an important industrial cell factory and an attractive experimental model for evaluating novel metabolic engineering strategies. Many current and potential products of this yeast require acetyl coenzyme A (acetyl-CoA) as a precursor and pathways towards these products are generally expressed in its cytosol. The native S. cerevisiae pathway for production of cytosolic acetyl-CoA consumes 2 ATP equivalents in the acetyl-CoA synthetase reaction. Catabolism of additional sugar substrate, which may be required to generate this ATP, negatively affects product yields. Here, we review alternative pathways that can be engineered into yeast to optimize supply of cytosolic acetyl-CoA as a precursor for product formation. Particular attention is paid to reaction stoichiometry, free-energy conservation and redox-cofactor balancing of alternative pathways for acetyl-CoA synthesis from glucose. A theoretical analysis of maximally attainable yields on glucose of four compounds (n-butanol, citric acid, palmitic acid and farnesene) showed a strong product dependency of the optimal pathway configuration for acetyl-CoA synthesis. Moreover, this analysis showed that combination of different acetyl-CoA production pathways may be required to achieve optimal product yields. This review underlines that an integral analysis of energy coupling and redox-cofactor balancing in precursor-supply and product-formation pathways is crucial for the design of efficient cell factories.

  17. Standardized Markerless Gene Integration for Pathway Engineering in Yarrowia lipolytica.

    PubMed

    Schwartz, Cory; Shabbir-Hussain, Murtaza; Frogue, Keith; Blenner, Mark; Wheeldon, Ian

    2017-03-17

    The yeast Yarrowia lipolytica is a promising microbial host due to its native capacity to produce lipid-based chemicals. Engineering stable production strains requires genomic integration of modified genes, avoiding episomal expression that requires specialized media to maintain selective pressures. Here, we develop a CRISPR-Cas9-based tool for targeted, markerless gene integration into the Y. lipolytica genome. A set of genomic loci was screened to identify sites that were accepting of gene integrations without impacting cell growth. Five sites were found to meet these criteria. Expression levels from a GFP expression cassette were consistent when inserted into AXP, XPR2, A08, and D17, with reduced expression from MFE1. The standardized tool is comprised of five pairs of plasmids (one homologous donor plasmid and a CRISPR-Cas9 expression plasmid), with each pair targeting gene integration into one of the characterized sites. To demonstrate the utility of the tool we rapidly engineered a semisynthetic lycopene biosynthesis pathway by integrating four different genes at different loci. The capability to integrate multiple genes without the need for marker recovery and into sites with known expression levels will enable more rapid and reliable pathway engineering in Y. lipolytica.

  18. Engineering Clostridium acetobutylicum for production of kerosene and diesel blendstock precursors.

    PubMed

    Bormann, Sebastian; Baer, Zachary C; Sreekumar, Sanil; Kuchenreuther, Jon M; Dean Toste, F; Blanch, Harvey W; Clark, Douglas S

    2014-09-01

    Processes for the biotechnological production of kerosene and diesel blendstocks are often economically unattractive due to low yields and product titers. Recently, Clostridium acetobutylicum fermentation products acetone, butanol, and ethanol (ABE) were shown to serve as precursors for catalytic upgrading to higher chain-length molecules that can be used as fuel substitutes. To produce suitable kerosene and diesel blendstocks, the butanol:acetone ratio of fermentation products needs to be increased to 2-2.5:1, while ethanol production is minimized. Here we show that the overexpression of selected proteins changes the ratio of ABE products relative to the wild type ATCC 824 strain. Overexpression of the native alcohol/aldehyde dehydrogenase (AAD) has been reported to primarily increase ethanol formation in C. acetobutylicum. We found that overexpression of the AAD(D485G) variant increased ethanol titers by 294%. Catalytic upgrading of the 824(aad(D485G)) ABE products resulted in a blend with nearly 50wt%≤C9 products, which are unsuitable for diesel. To selectively increase butanol production, C. beijerinckii aldehyde dehydrogenase and C. ljungdhalii butanol dehydrogenase were co-expressed (strain designate 824(Cb ald-Cl bdh)), which increased butanol titers by 27% to 16.9gL(-1) while acetone and ethanol titers remained essentially unaffected. The solvent ratio from 824(Cb ald-Cl bdh) resulted in more than 80wt% of catalysis products having a carbon chain length≥C11 which amounts to 9.8gL(-1) of products suitable as kerosene or diesel blendstock based on fermentation volume. To further increase solvent production, we investigated expression of both native and heterologous chaperones in C. acetobutylicum. Expression of a heat shock protein (HSP33) from Bacillus psychrosaccharolyticus increased the total solvent titer by 22%. Co-expression of HSP33 and aldehyde/butanol dehydrogenases further increased ABE formation as well as acetone and butanol yields. HSP33 was

  19. Exploring the Engineering Student Experience: Findings from the Academic Pathways of People Learning Engineering Survey (APPLES). TR-10-01

    ERIC Educational Resources Information Center

    Sheppard, Sheri; Gilmartin, Shannon; Chen, Helen L.; Donaldson, Krista; Lichtenstein, Gary; Eris, Ozgur; Lande, Micah; Toye, George

    2010-01-01

    This report is based on data from the Academic Pathways of People Learning Engineering Survey (APPLES), administered to engineering students at 21 U.S. engineering colleges and schools in the spring of 2008. The first comprehensive set of analyses completed on the APPLES dataset presented here looks at how engineering students experience their…

  20. Engineering Heteromaterials to Control Lithium Ion Transport Pathways

    SciTech Connect

    Liu, Yang; Vishniakou, Siarhei; Yoo, Jinkyoung; Dayeh, Shadi A.

    2015-12-21

    Safe and efficient operation of lithium ion batteries requires precisely directed flow of lithium ions and electrons to control the first directional volume changes in anode and cathode materials. Understanding and controlling the lithium ion transport in battery electrodes becomes crucial to the design of high performance and durable batteries. Recent work revealed that the chemical potential barriers encountered at the surfaces of heteromaterials play an important role in directing lithium ion transport at nanoscale. Here, we utilize in situ transmission electron microscopy to demonstrate that we can switch lithiation pathways from radial to axial to grain-by-grain lithiation through the systematic creation of heteromaterial combinations in the Si-Ge nanowire system. Lastly, our systematic studies show that engineered materials at nanoscale can overcome the intrinsic orientation-dependent lithiation, and open new pathways to aid in the development of compact, safe, and efficient batteries.

  1. Engineering Heteromaterials to Control Lithium Ion Transport Pathways

    DOE PAGES

    Liu, Yang; Vishniakou, Siarhei; Yoo, Jinkyoung; ...

    2015-12-21

    Safe and efficient operation of lithium ion batteries requires precisely directed flow of lithium ions and electrons to control the first directional volume changes in anode and cathode materials. Understanding and controlling the lithium ion transport in battery electrodes becomes crucial to the design of high performance and durable batteries. Recent work revealed that the chemical potential barriers encountered at the surfaces of heteromaterials play an important role in directing lithium ion transport at nanoscale. Here, we utilize in situ transmission electron microscopy to demonstrate that we can switch lithiation pathways from radial to axial to grain-by-grain lithiation through themore » systematic creation of heteromaterial combinations in the Si-Ge nanowire system. Lastly, our systematic studies show that engineered materials at nanoscale can overcome the intrinsic orientation-dependent lithiation, and open new pathways to aid in the development of compact, safe, and efficient batteries.« less

  2. Engineering Heteromaterials to Control Lithium Ion Transport Pathways

    SciTech Connect

    Liu, Yang; Vishniakou, Siarhei; Yoo, Jinkyoung; Dayeh, Shadi A.

    2015-12-21

    Safe and efficient operation of lithium ion batteries requires precisely directed flow of lithium ions and electrons to control the first directional volume changes in anode and cathode materials. Understanding and controlling the lithium ion transport in battery electrodes becomes crucial to the design of high performance and durable batteries. Some recent work revealed that the chemical potential barriers encountered at the surfaces of heteromaterials play an important role in directing lithium ion transport at nanoscale. We utilize in situ transmission electron microscopy to demonstrate that we can switch lithiation pathways from radial to axial to grain-by-grain lithiation through the systematic creation of heteromaterial combinations in the Si-Ge nanowire system. Furthermore, our systematic studies show that engineered materials at nanoscale can overcome the intrinsic orientation-dependent lithiation, and open new pathways to aid in the development of compact, safe, and efficient batteries.

  3. Engineering Heteromaterials to Control Lithium Ion Transport Pathways

    DOE PAGES

    Liu, Yang; Vishniakou, Siarhei; Yoo, Jinkyoung; ...

    2015-12-21

    Safe and efficient operation of lithium ion batteries requires precisely directed flow of lithium ions and electrons to control the first directional volume changes in anode and cathode materials. Understanding and controlling the lithium ion transport in battery electrodes becomes crucial to the design of high performance and durable batteries. Some recent work revealed that the chemical potential barriers encountered at the surfaces of heteromaterials play an important role in directing lithium ion transport at nanoscale. We utilize in situ transmission electron microscopy to demonstrate that we can switch lithiation pathways from radial to axial to grain-by-grain lithiation through themore » systematic creation of heteromaterial combinations in the Si-Ge nanowire system. Furthermore, our systematic studies show that engineered materials at nanoscale can overcome the intrinsic orientation-dependent lithiation, and open new pathways to aid in the development of compact, safe, and efficient batteries.« less

  4. Engineering Heteromaterials to Control Lithium Ion Transport Pathways

    PubMed Central

    Liu, Yang; Vishniakou, Siarhei; Yoo, Jinkyoung; Dayeh, Shadi A.

    2015-01-01

    Safe and efficient operation of lithium ion batteries requires precisely directed flow of lithium ions and electrons to control the first directional volume changes in anode and cathode materials. Understanding and controlling the lithium ion transport in battery electrodes becomes crucial to the design of high performance and durable batteries. Recent work revealed that the chemical potential barriers encountered at the surfaces of heteromaterials play an important role in directing lithium ion transport at nanoscale. Here, we utilize in situ transmission electron microscopy to demonstrate that we can switch lithiation pathways from radial to axial to grain-by-grain lithiation through the systematic creation of heteromaterial combinations in the Si-Ge nanowire system. Our systematic studies show that engineered materials at nanoscale can overcome the intrinsic orientation-dependent lithiation, and open new pathways to aid in the development of compact, safe, and efficient batteries. PMID:26686655

  5. Identifying precursors and aqueous organic aerosol formation pathways during the SOAS campaign

    NASA Astrophysics Data System (ADS)

    Sareen, Neha; Carlton, Annmarie G.; Surratt, Jason D.; Gold, Avram; Lee, Ben; Lopez-Hilfiker, Felipe D.; Mohr, Claudia; Thornton, Joel A.; Zhang, Zhenfa; Lim, Yong B.; Turpin, Barbara J.

    2016-11-01

    Aqueous multiphase chemistry in the atmosphere can lead to rapid transformation of organic compounds, forming highly oxidized, low-volatility organic aerosol and, in some cases, light-absorbing (brown) carbon. Because liquid water is globally abundant, this chemistry could substantially impact climate, air quality, and health. Gas-phase precursors released from biogenic and anthropogenic sources are oxidized and fragmented, forming water-soluble gases that can undergo reactions in the aqueous phase (in clouds, fogs, and wet aerosols), leading to the formation of secondary organic aerosol (SOAAQ). Recent studies have highlighted the role of certain precursors like glyoxal, methylglyoxal, glycolaldehyde, acetic acid, acetone, and epoxides in the formation of SOAAQ. The goal of this work is to identify additional precursors and products that may be atmospherically important. In this study, ambient mixtures of water-soluble gases were scrubbed from the atmosphere into water at Brent, Alabama, during the 2013 Southern Oxidant and Aerosol Study (SOAS). Hydroxyl (OH⚫) radical oxidation experiments were conducted with the aqueous mixtures collected from SOAS to better understand the formation of SOA through gas-phase followed by aqueous-phase chemistry. Total aqueous-phase organic carbon concentrations for these mixtures ranged from 92 to 179 µM-C, relevant for cloud and fog waters. Aqueous OH-reactive compounds were primarily observed as odd ions in the positive ion mode by electrospray ionization mass spectrometry (ESI-MS). Ultra high-resolution Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) spectra and tandem MS (MS-MS) fragmentation of these ions were consistent with the presence of carbonyls and tetrols. Products were observed in the negative ion mode and included pyruvate and oxalate, which were confirmed by ion chromatography. Pyruvate and oxalate have been found in the particle phase in many locations (as salts and complexes). Thus

  6. Constrained Multistate Sequence Design for Nucleic Acid Reaction Pathway Engineering.

    PubMed

    Wolfe, Brian R; Porubsky, Nicholas J; Zadeh, Joseph N; Dirks, Robert M; Pierce, Niles A

    2017-03-01

    We describe a framework for designing the sequences of multiple nucleic acid strands intended to hybridize in solution via a prescribed reaction pathway. Sequence design is formulated as a multistate optimization problem using a set of target test tubes to represent reactant, intermediate, and product states of the system, as well as to model crosstalk between components. Each target test tube contains a set of desired "on-target" complexes, each with a target secondary structure and target concentration, and a set of undesired "off-target" complexes, each with vanishing target concentration. Optimization of the equilibrium ensemble properties of the target test tubes implements both a positive design paradigm, explicitly designing for on-pathway elementary steps, and a negative design paradigm, explicitly designing against off-pathway crosstalk. Sequence design is performed subject to diverse user-specified sequence constraints including composition constraints, complementarity constraints, pattern prevention constraints, and biological constraints. Constrained multistate sequence design facilitates nucleic acid reaction pathway engineering for diverse applications in molecular programming and synthetic biology. Design jobs can be run online via the NUPACK web application.

  7. Evaluation of Biosynthetic Pathway and Engineered Biosynthesis of Alkaloids.

    PubMed

    Kishimoto, Shinji; Sato, Michio; Tsunematsu, Yuta; Watanabe, Kenji

    2016-08-18

    Varieties of alkaloids are known to be produced by various organisms, including bacteria, fungi and plants, as secondary metabolites that exhibit useful bioactivities. However, understanding of how those metabolites are biosynthesized still remains limited, because most of these compounds are isolated from plants and at a trace level of production. In this review, we focus on recent efforts in identifying the genes responsible for the biosynthesis of those nitrogen-containing natural products and elucidating the mechanisms involved in the biosynthetic processes. The alkaloids discussed in this review are ditryptophenaline (dimeric diketopiperazine alkaloid), saframycin (tetrahydroisoquinoline alkaloid), strictosidine (monoterpene indole alkaloid), ergotamine (ergot alkaloid) and opiates (benzylisoquinoline and morphinan alkaloid). This review also discusses the engineered biosynthesis of these compounds, primarily through heterologous reconstitution of target biosynthetic pathways in suitable hosts, such as Escherichia coli, Saccharomyces cerevisiae and Aspergillus nidulans. Those heterologous biosynthetic systems can be used to confirm the functions of the isolated genes, economically scale up the production of the alkaloids for commercial distributions and engineer the biosynthetic pathways to produce valuable analogs of the alkaloids. In particular, extensive involvement of oxidation reactions catalyzed by oxidoreductases, such as cytochrome P450s, during the secondary metabolite biosynthesis is discussed in details.

  8. Rational engineering of antibody therapeutics targeting multiple oncogene pathways

    PubMed Central

    Fitzgerald, Jonathan

    2011-01-01

    Monoclonal antibodies have significantly advanced our ability to treat cancer, yet clinical studies have shown that many patients do not adequately respond to monospecific therapy. This is in part due to the multifactorial nature of the disease, where tumors rely on multiple and often redundant pathways for proliferation. Bi- or multi-specific antibodies capable of blocking multiple growth and survival pathways at once have a potential to better meet the challenge of blocking cancer growth, and indeed many of them are advancing in clinical development.1 However, bispecific antibodies present significant design challenges mostly due to the increased number of variables to consider. In this perspective we describe an innovative integrated approach to the discovery of bispecific antibodies with optimal molecular properties, such as affinity, avidity, molecular format and stability. This approach combines simulations of potential inhibitors using mechanistic models of the disease-relevant biological system to reveal optimal inhibitor characteristics with antibody engineering techniques that yield manufacturable therapeutics with robust pharmaceutical properties. We illustrate how challenges of meeting the optimal design criteria and chemistry, manufacturing and control concerns can be addressed simultaneously in the context of an accelerated therapeutic design cycle. Finally, to demonstrate how this rational approach can be applied, we present a case study where the insights from mechanistic modeling were used to guide the engineering of an IgG-like bispecific antibody. PMID:21393992

  9. Engineered Biosynthesis of Plant Polyketides: Structure-Based and Precursor-Directed Approach

    NASA Astrophysics Data System (ADS)

    Abe, Ikuro

    benzoyl-CoA as a starter substrate. These results suggested that the engineered biosynthesis of plant polyketides by combination of the structure-based and the precursor-directed approach would lead to further production of chemically and structurally divergent unnatural novel polyketides.

  10. Engineered biosynthesis of plant polyketides: structure-based and precursor-directed approach.

    PubMed

    Abe, Ikuro

    2010-01-01

    benzoyl-CoA as a starter substrate. These results suggested that the engineered biosynthesis of plant polyketides by combination of the structure-based and the precursor-directed approach would lead to further production of chemically and structurally divergent unnatural novel polyketides.

  11. Career Pursuit Pathways among Emerging Adult Men and Women: Psychosocial Correlates and Precursors

    ERIC Educational Resources Information Center

    Shulman, Shmuel; Barr, Tamuz; Livneh, Yaara; Nurmi, Jari-Erik; Vasalampi, Kati; Pratt, Michael

    2015-01-01

    The present study examined career pursuit pathways in 100 Israeli emerging adults (54 men) who were followed from age 22 to 29. Employing a semi-structured interview at the age of 29, participants were asked about current work and educational status, work and educational goals and status changes in recent years, and to reflect on the meaning of…

  12. Extending shikimate pathway for the production of muconic acid and its precursor salicylic acid in Escherichia coli.

    PubMed

    Lin, Yuheng; Sun, Xinxiao; Yuan, Qipeng; Yan, Yajun

    2014-05-01

    cis,cis-Muconic acid (MA) and salicylic acid (SA) are naturally-occurring organic acids having great commercial value. MA is a potential platform chemical for the manufacture of several widely-used consumer plastics; while SA is mainly used for producing pharmaceuticals (for example, aspirin and lamivudine) and skincare and haircare products. At present, MA and SA are commercially produced by organic chemical synthesis using petro-derived aromatic chemicals, such as benzene, as starting materials, which is not environmentally friendly. Here, we report a novel approach for efficient microbial production of MA via extending shikimate pathway by introducing the hybrid of an SA biosynthetic pathway with its partial degradation pathway. First, we engineered a well-developed phenylalanine producing Escherichia coli strain into an SA overproducer by introducing isochorismate synthase and isochorismate pyruvate lyase. The engineered strain is able to produce 1.2g/L of SA from simple carbon sources, which is the highest titer reported so far. Further, the partial SA degradation pathway involving salicylate 1-monoxygenase and catechol 1,2-dioxygenase is established to achieve the conversion of SA to MA. Finally, a de novo MA biosynthetic pathway is assembled by integrating the established SA biosynthesis and degradation modules. Modular optimization enables the production of up to 1.5g/L MA within 48h in shake flasks. This study not only establishes an efficient microbial platform for the production of SA and MA, but also demonstrates a generalizable pathway design strategy for the de novo biosynthesis of valuable degradation metabolites. Copyright © 2014. Published by Elsevier Inc.

  13. Engineering central metabolic pathways for high-level flavonoid production in Escherichia coli.

    PubMed

    Leonard, Effendi; Lim, Kok-Hong; Saw, Phan-Nee; Koffas, Mattheos A G

    2007-06-01

    The identification of optimal genotypes that result in improved production of recombinant metabolites remains an engineering conundrum. In the present work, various strategies to reengineer central metabolism in Escherichia coli were explored for robust synthesis of flavanones, the common precursors of plant flavonoid secondary metabolites. Augmentation of the intracellular malonyl coenzyme A (malonyl-CoA) pool through the coordinated overexpression of four acetyl-CoA carboxylase (ACC) subunits from Photorhabdus luminescens (PlACC) under a constitutive promoter resulted in an increase in flavanone production up to 576%. Exploration of macromolecule complexes to optimize metabolic efficiency demonstrated that auxiliary expression of PlACC with biotin ligase from the same species (BirAPl) further elevated flavanone synthesis up to 1,166%. However, the coexpression of PlACC with Escherichia coli BirA (BirAEc) caused a marked decrease in flavanone production. Activity improvement was reconstituted with the coexpression of PlACC with a chimeric BirA consisting of the N terminus of BirAEc and the C terminus of BirAPl. In another approach, high levels of flavanone synthesis were achieved through the amplification of acetate assimilation pathways combined with the overexpression of ACC. Overall, the metabolic engineering of central metabolic pathways described in the present work increased the production of pinocembrin, naringenin, and eriodictyol in 36 h up to 1,379%, 183%, and 373%, respectively, over production with the strains expressing only the flavonoid pathway, which corresponded to 429 mg/liter, 119 mg/liter, and 52 mg/liter, respectively.

  14. Characterization and engineering of the ethylmalonyl-CoA pathway towards the improved heterologous production of polyketides in Streptomyces venezuelae.

    PubMed

    Jung, Won Seok; Kim, Eunji; Yoo, Young Ji; Ban, Yeon Hee; Kim, Eun Ji; Yoon, Yeo Joon

    2014-04-01

    Streptomyces venezuelae has an inherent advantage as a heterologous host for polyketide production due to its fast rate of growth that cannot be endowed easily through metabolic engineering. However, the utility of S. venezuelae as a host has been limited thus far due to its inadequate intracellular reserves of the (2S)-ethylmalonyl-CoA building block needed to support the biosynthesis of polyketides preventing the efficient production of the desired metabolite, such as tylactone. Here, via precursor supply engineering, we demonstrated that S. venezuelae can be developed into a more efficient general heterologous host for the quick production of polyketides. We first identified and functionally characterized the ethylmalonyl-CoA pathway which plays a major role in supplying the (2S)-ethylmalonyl-CoA extender unit in S. venezuelae. Next, S. venezuelae was successfully engineered to increase the intracellular ethylmalonyl-CoA concentration by the deletion of the meaA gene encoding coenzyme B₁₂-dependent ethylmalonyl-CoA mutase in combination with ethylmalonate supplementation and was engineered to upregulate the expression of the heterologous tylosin PKS by overexpression of the pathway specific regulatory gene pikD. Thus, a dramatic increase (∼10-fold) in tylactone production was achieved. In addition, the detailed insights into the role of the ethylmalonyl-CoA pathway, which is present in most streptomycetes, provides a general strategy to increase the ethylmalonyl-CoA supply for polyketide biosynthesis in the most prolific family of polyketide-producing bacteria.

  15. Lycopene overproduction in Saccharomyces cerevisiae through combining pathway engineering with host engineering.

    PubMed

    Chen, Yan; Xiao, Wenhai; Wang, Ying; Liu, Hong; Li, Xia; Yuan, Yingjin

    2016-06-21

    Microbial production of lycopene, a commercially and medically important compound, has received increasing concern in recent years. Saccharomyces cerevisiae is regarded as a safer host for lycopene production than Escherichia coli. However, to date, the lycopene yield (mg/g DCW) in S. cerevisiae was lower than that in E. coli and did not facilitate downstream extraction process, which might be attributed to the incompatibility between host cell and heterologous pathway. Therefore, to achieve lycopene overproduction in S. cerevisiae, both host cell and heterologous pathway should be delicately engineered. In this study, lycopene biosynthesis pathway was constructed by integration of CrtE, CrtB and CrtI in S. cerevisiae CEN.PK2. When YPL062W, a distant genetic locus, was deleted, little acetate was accumulated and approximately 100 % increase in cytosolic acetyl-CoA pool was achieved relative to that in parental strain. Through screening CrtE, CrtB and CrtI from diverse species, an optimal carotenogenic enzyme combination was obtained, and CrtI from Blakeslea trispora (BtCrtI) was found to have excellent performance on lycopene production as well as lycopene proportion in carotenoid. Then, the expression level of BtCrtI was fine-tuned and the effect of cell mating types was also evaluated. Finally, potential distant genetic targets (YJL064W, ROX1, and DOS2) were deleted and a stress-responsive transcription factor INO2 was also up-regulated. Through the above modifications between host cell and carotenogenic pathway, lycopene yield was increased by approximately 22-fold (from 2.43 to 54.63 mg/g DCW). Eventually, in fed-batch fermentation, lycopene production reached 55.56 mg/g DCW, which is the highest reported yield in yeasts. Saccharomyces cerevisiae was engineered to produce lycopene in this study. Through combining host engineering (distant genetic loci and cell mating types) with pathway engineering (enzyme screening and gene fine-tuning), lycopene yield was

  16. Phenotypic Changes, Signaling Pathway, and Functional Correlates of GPR17-expressing Neural Precursor Cells during Oligodendrocyte Differentiation*

    PubMed Central

    Fumagalli, Marta; Daniele, Simona; Lecca, Davide; Lee, Philip R.; Parravicini, Chiara; Fields, R. Douglas; Rosa, Patrizia; Antonucci, Flavia; Verderio, Claudia; Trincavelli, M. Letizia; Bramanti, Placido; Martini, Claudia; Abbracchio, Maria P.

    2011-01-01

    The developing and mature central nervous system contains neural precursor cells expressing the proteoglycan NG2. Some of these cells continuously differentiate to myelin-forming oligodendrocytes; knowledge of the destiny of NG2+ precursors would benefit from the characterization of new key functional players. In this respect, the G protein-coupled membrane receptor GPR17 has recently emerged as a new timer of oligodendrogliogenesis. Here, we used purified oligodendrocyte precursor cells (OPCs) to fully define the immunophenotype of the GPR17-expressing cells during OPC differentiation, unveil its native signaling pathway, and assess the functional consequences of GPR17 activation by its putative endogenous ligands, uracil nucleotides and cysteinyl leukotrienes (cysLTs). GPR17 presence was restricted to very early differentiation stages and completely segregated from that of mature myelin. Specifically, GPR17 decorated two subsets of slowly proliferating NG2+ OPCs: (i) morphologically immature cells expressing other early proteins like Olig2 and PDGF receptor-α, and (ii) ramified preoligodendrocytes already expressing more mature factors, like O4 and O1. Thus, GPR17 is a new marker of these transition stages. In OPCs, GPR17 activation by either uracil nucleotides or cysLTs resulted in potent inhibition of intracellular cAMP formation. This effect was counteracted by GPR17 antagonists and receptor silencing with siRNAs. Finally, uracil nucleotides promoted and GPR17 inhibition, by either antagonists or siRNAs, impaired the normal program of OPC differentiation. These data have implications for the in vivo behavior of NG2+ OPCs and point to uracil nucleotides and cysLTs as main extrinsic local regulators of these cells under physiological conditions and during myelin repair. PMID:21209081

  17. Per- and polyfluoroalkyl substances (PFASs) in San Francisco Bay wildlife: Temporal trends, exposure pathways, and notable presence of precursor compounds.

    PubMed

    Sedlak, Margaret D; Benskin, Jonathan P; Wong, Adam; Grace, Richard; Greig, Denise J

    2017-10-01

    Concentrations of perfluorooctane sulfonate (PFOS) in San Francisco Bay (SF Bay) wildlife have historically been among the highest reported globally. To track continuing exposures to PFASs and assess the impact of the 2002 phase-out of production of PFOS and related chemicals in the US, nine perfluoroalkyl carboxylic acids (PFCAs; C4-C12), three perfluoroalkyl sulfonic acids (PFSAs; C4, C6, C8) and perfluorooctane sulfonamide (PFOSA, a PFOS precursor) were measured in SF Bay cormorant eggs in 2012 and harbor seal serum sampled between 2009 and 2014. PFOS remained the dominant perfluoroalkyl acid (PFAA) in both cormorant eggs (36.1-466 ng/g) and seals (12.6-796 ng/g) from 2012 and 2014, respectively. Concentrations in seal and bird eggs from the South Bay have declined approximately 70% in both matrices. To elucidate potential pathways of exposure, prey fish, sediments and wastewater effluent were analyzed for PFASs, and in the case of sediment and effluent, a suite of PFAA precursors. PFOS was the dominant PFAA in prey fish and sediment. In effluent, different mixtures of PFAAs were measured, with PFOS, PFHxA, and PFOA detected in the highest concentrations. Polyfluoroalkyl phosphate diesters (PFCA-precursors) were observed at concentrations over an order of magnitude higher than PFCAs in sediment, highlighting their importance as a potential, on-going source of PFCAs to SF Bay wildlife. These findings suggest that the PFOS phase-out has resulted in reduced burdens to wildlife in SF Bay, but that exposure to diverse and incompletely characterized PFASs continues. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Engineering of a xylose metabolic pathway in Rhodococcus strains.

    PubMed

    Xiong, Xiaochao; Wang, Xi; Chen, Shulin

    2012-08-01

    The two metabolically versatile actinobacteria Rhodococcus opacus PD630 and R. jostii RHA1 can efficiently convert diverse organic substrates into neutral lipids mainly consisting of triacylglycerol (TAG), the precursor of energy-rich hydrocarbon. Neither, however, is able to utilize xylose, the important component present in lignocellulosic biomass, as the carbon source for growth and lipid accumulation. In order to broaden their substrate utilization range, the metabolic pathway of d-xylose utilization was introduced into these two strains. This was accomplished by heterogenous expression of two well-selected genes, xylA, encoding xylose isomerase, and xylB, encoding xylulokinase from Streptomyces lividans TK23, under the control of the tac promoter with an Escherichia coli-Rhodococcus shuttle vector. The recombinant R. jostii RHA1 bearing xylA could grow on xylose as the sole carbon source, and additional expression of xylB further improved the biomass yield. The recombinant could consume both glucose and xylose in the sugar mixture, although xylose metabolism was still affected by the presence of glucose. The xylose metabolic pathway was also introduced into the high-lipid-producing strain R. opacus PD630 by expression of xylA and xylB. Under nitrogen-limited conditions, the fatty acid composition was determined, and lipid produced from xylose by recombinants of R. jostii RHA1 and R. opacus PD630 carrying xylA and xylB represented up to 52.5% and 68.3% of the cell dry weight (CDW), respectively. This work demonstrates that it is feasible to produce lipid from the sugars, including xylose, derived from renewable feedstock by genetic modification of rhodococcus strains.

  19. Engineering the leucine biosynthetic pathway for isoamyl alcohol overproduction in Saccharomyces cerevisiae.

    PubMed

    Yuan, Jifeng; Mishra, Pranjul; Ching, Chi Bun

    2017-01-01

    Isoamyl alcohol can be used not only as a biofuel, but also as a precursor for various chemicals. Saccharomyces cerevisiae inherently produces a small amount of isoamyl alcohol via the leucine degradation pathway, but the yield is very low. In the current study, several strategies were devised to overproduce isoamyl alcohol in budding yeast. The engineered yeast cells with the cytosolic isoamyl alcohol biosynthetic pathway produced significantly higher amounts of isobutanol over isoamyl alcohol, suggesting that the majority of the metabolic flux was diverted to the isobutanol biosynthesis due to the broad substrate specificity of Ehrlich pathway enzymes. To channel the key intermediate 2-ketosiovalerate (KIV) towards α-IPM biosynthesis, we introduced an artificial protein scaffold to pull dihydroxyacid dehydratase and α-IPM synthase into the close proximity, and the resulting strain yielded more than twofold improvement of isoamyl alcohol. The best isoamyl alcohol producer yielded 522.76 ± 38.88 mg/L isoamyl alcohol, together with 540.30 ± 48.26 mg/L isobutanol and 82.56 ± 8.22 mg/L 2-methyl-1-butanol. To our best knowledge, our work represents the first study to bypass the native compartmentalized α-IPM biosynthesis pathway for the isoamyl alcohol overproduction in budding yeast. More importantly, artificial protein scaffold based on the feature of quaternary structure of enzymes would be useful in improving the catalytic efficiency and the product specificity of other enzymatic reactions.

  20. Combinatorial pathway optimization in Escherichia coli by directed co-evolution of rate-limiting enzymes and modular pathway engineering.

    PubMed

    Lv, Xiaomei; Gu, Jiali; Wang, Fan; Xie, Wenping; Liu, Min; Ye, Lidan; Yu, Hongwei

    2016-12-01

    Metabolic engineering of microorganisms for heterologous biosynthesis is a promising route to sustainable chemical production which attracts increasing research and industrial interest. However, the efficiency of microbial biosynthesis is often restricted by insufficient activity of pathway enzymes and unbalanced utilization of metabolic intermediates. This work presents a combinatorial strategy integrating modification of multiple rate-limiting enzymes and modular pathway engineering to simultaneously improve intra- and inter-pathway balance, which might be applicable for a range of products, using isoprene as an example product. For intra-module engineering within the methylerythritol-phosphate (MEP) pathway, directed co-evolution of DXS/DXR/IDI was performed adopting a lycopene-indicated high-throughput screening method developed herein, leading to 60% improvement of isoprene production. In addition, inter-module engineering between the upstream MEP pathway and the downstream isoprene-forming pathway was conducted via promoter manipulation, which further increased isoprene production by 2.94-fold compared to the recombinant strain with solely protein engineering and 4.7-fold compared to the control strain containing wild-type enzymes. These results demonstrated the potential of pathway optimization in isoprene overproduction as well as the effectiveness of combining metabolic regulation and protein engineering in improvement of microbial biosynthesis. Biotechnol. Bioeng. 2016;113: 2661-2669. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  1. Pathway engineering to improve ethanol production by thermophilic bacteria

    SciTech Connect

    Lynd, L.R.

    1998-12-31

    Continuation of a research project jointly funded by the NSF and DOE is proposed. The primary project goal is to develop and characterize strains of C. thermocellum and C. thermosaccharolyticum having ethanol selectivity similar to more convenient ethanol-producing organisms. An additional goal is to document the maximum concentration of ethanol that can be produced by thermophiles. These goals build on results from the previous project, including development of most of the genetic tools required for pathway engineering in the target organisms. As well, we demonstrated that the tolerance of C. thermosaccharolyticum to added ethanol is sufficiently high to allow practical utilization should similar tolerance to produced ethanol be demonstrated, and that inhibition by neutralizing agents may explain the limited concentrations of ethanol produced in studies to date. Task 1 involves optimization of electrotransformation, using either modified conditions or alternative plasmids to improve upon the low but reproducible transformation, frequencies we have obtained thus far.

  2. Engineered Synthetic Pathway for Isopropanol Production in Escherichia coli▿ †

    PubMed Central

    Hanai, T.; Atsumi, S.; Liao, J. C.

    2007-01-01

    A synthetic pathway was engineered in Escherichia coli to produce isopropanol by expressing various combinations of genes from Clostridium acetobutylicum ATCC 824, E. coli K-12 MG1655, Clostridium beijerinckii NRRL B593, and Thermoanaerobacter brockii HTD4. The strain with the combination of C. acetobutylicum thl (acetyl-coenzyme A [CoA] acetyltransferase), E. coli atoAD (acetoacetyl-CoA transferase), C. acetobutylicum adc (acetoacetate decarboxylase), and C. beijerinckii adh (secondary alcohol dehydrogenase) achieved the highest titer. This strain produced 81.6 mM isopropanol in shake flasks with a yield of 43.5% (mol/mol) in the production phase. To our knowledge, this work is the first to produce isopropanol in E. coli, and the titer exceeded that from the native producers. PMID:17933911

  3. Microbial chemical factories: recent advances in pathway engineering for synthesis of value added chemicals.

    PubMed

    Dhamankar, Himanshu; Prather, Kristala L J

    2011-08-01

    The dwindling nature of petroleum and other fossil reserves has provided impetus towards microbial synthesis of fuels and value added chemicals from biomass-derived sugars as a renewable resource. Microbes have naturally evolved enzymes and pathways that can convert biomass into hundreds of unique chemical structures, a property that can be effectively exploited for their engineering into Microbial Chemical Factories (MCFs). De novo pathway engineering facilitates expansion of the repertoire of microbially synthesized compounds beyond natural products. In this review, we visit some recent successes in such novel pathway engineering and optimization, with particular emphasis on the selection and engineering of pathway enzymes and balancing of their accessory cofactors.

  4. Biosynthesis and pathway engineering of antifungal polyene macrolides in actinomycetes.

    PubMed

    Kong, Dekun; Lee, Mi-Jin; Lin, Shuangjun; Kim, Eung-Soo

    2013-06-01

    Polyene macrolides are a large family of natural products typically produced by soil actinomycetes. Polyene macrolides are usually biosynthesized by modular and large type I polyketide synthases (PKSs), followed by several steps of sequential post-PKS modifications such as region-specific oxidations and glycosylations. Although known as powerful antibiotics containing potent antifungal activities (along with additional activities against parasites, enveloped viruses and prion diseases), their high toxicity toward mammalian cells and poor distribution in tissues have led to the continuous identification and structural modification of polyene macrolides to expand their general uses. Advances in in-depth investigations of the biosynthetic mechanism of polyene macrolides and the genetic manipulations of the polyene biosynthetic pathways provide great opportunities to generate new analogues. Recently, a novel class of polyene antibiotics was discovered (a disaccharide-containing NPP) that displays better pharmacological properties such as improved water-solubility and reduced hemolysis. In this review, we summarize the recent advances in the biosynthesis, pathway engineering, and regulation of polyene antibiotics in actinomycetes.

  5. Mining and engineering natural-product biosynthetic pathways.

    PubMed

    Wilkinson, Barrie; Micklefield, Jason

    2007-07-01

    Natural products continue to fulfill an important role in the development of therapeutic agents. In addition, with the advent of chemical genetics and high-throughput screening platforms, these molecules have become increasingly valuable as tools for interrogating fundamental aspects of biological systems. To access the vast portion of natural-product structural diversity that remains unexploited for these and other applications, genome mining and microbial metagenomic approaches are proving particularly powerful. When these are coupled with recombineering and related genetic tools, large biosynthetic gene clusters that remain intractable or cryptic in the native host can be more efficiently cloned and expressed in a suitable heterologous system. For lead optimization and the further structural diversification of natural-product libraries, combinatorial biosynthetic engineering has also become indispensable. However, our ability to rationally redesign biosynthetic pathways is often limited by our lack of understanding of the structure, dynamics and interplay between the many enzymes involved in complex biosynthetic pathways. Despite this, recent structures of fatty acid synthases should allow a more accurate prediction of the likely architecture of related polyketide synthase and nonribosomal peptide synthetase multienzymes.

  6. Nomenclature, Molecular Genetics and Clinical Significance of the Precursor Lesions in the Serrated Polyp Pathway of Colorectal Carcinoma

    PubMed Central

    Liang, John J; Alrawi, Sadir; Tan, Dongfeng

    2008-01-01

    Serrated adenomas (SAs) are part of the distinct serrated polyp pathway of colorectal carcinogenesis characterized by microsatellite instability and deficiency in DNA mismatch repair. Sessile SA is a recently recognized lesion that typically presents as a large sessile polyp, but lacks the conventional dysplasia. It is more frequently found on the right side than on the left side of the colon, and is thought to represent an intermediate form in the hyperplastic polyp to sessile SA, traditional SA, and colon cancer sequence. Many terms have been used and are still in use in the literature to describe this lesion, such as “hyperplastic polyposis”, “giant hyperplastic polyposis,” “large hyperplastic polyps,” “hyperplastic-adenomatous polyposis syndrome,” “giant hyperplastic polyp,” and “mixed epithelial polyp.” The purpose of this paper is to review and clarify the confusing nomenclature, and to provide a framework for understanding the genetic alterations and clinical significance of these precursor lesions in the serrated polyp pathway of colorectal caner. PMID:18787610

  7. Nrt1 and Tna1-Independent Export of NAD+ Precursor Vitamins Promotes NAD+ Homeostasis and Allows Engineering of Vitamin Production

    PubMed Central

    Belenky, Peter; Stebbins, Rebecca; Bogan, Katrina L.; Evans, Charles R.; Brenner, Charles

    2011-01-01

    NAD+ is both a co-enzyme for hydride transfer enzymes and a substrate of sirtuins and other NAD+ consuming enzymes. NAD+ biosynthesis is required for two different regimens that extend lifespan in yeast. NAD+ is synthesized from tryptophan and the three vitamin precursors of NAD+: nicotinic acid, nicotinamide and nicotinamide riboside. Supplementation of yeast cells with NAD+ precursors increases intracellular NAD+ levels and extends replicative lifespan. Here we show that both nicotinamide riboside and nicotinic acid are not only vitamins but are also exported metabolites. We found that the deletion of the nicotinamide riboside transporter, Nrt1, leads to increased export of nicotinamide riboside. This discovery was exploited to engineer a strain to produce high levels of extracellular nicotinamide riboside, which was recovered in purified form. We further demonstrate that extracellular nicotinamide is readily converted to extracellular nicotinic acid in a manner that requires intracellular nicotinamidase activity. Like nicotinamide riboside, export of nicotinic acid is elevated by the deletion of the nicotinic acid transporter, Tna1. The data indicate that NAD+ metabolism has a critical extracellular element in the yeast system and suggest that cells regulate intracellular NAD+ metabolism by balancing import and export of NAD+ precursor vitamins. PMID:21589930

  8. Nrt1 and Tna1-independent export of NAD+ precursor vitamins promotes NAD+ homeostasis and allows engineering of vitamin production.

    PubMed

    Belenky, Peter; Stebbins, Rebecca; Bogan, Katrina L; Evans, Charles R; Brenner, Charles

    2011-05-11

    NAD(+) is both a co-enzyme for hydride transfer enzymes and a substrate of sirtuins and other NAD(+) consuming enzymes. NAD(+) biosynthesis is required for two different regimens that extend lifespan in yeast. NAD(+) is synthesized from tryptophan and the three vitamin precursors of NAD(+): nicotinic acid, nicotinamide and nicotinamide riboside. Supplementation of yeast cells with NAD(+) precursors increases intracellular NAD(+) levels and extends replicative lifespan. Here we show that both nicotinamide riboside and nicotinic acid are not only vitamins but are also exported metabolites. We found that the deletion of the nicotinamide riboside transporter, Nrt1, leads to increased export of nicotinamide riboside. This discovery was exploited to engineer a strain to produce high levels of extracellular nicotinamide riboside, which was recovered in purified form. We further demonstrate that extracellular nicotinamide is readily converted to extracellular nicotinic acid in a manner that requires intracellular nicotinamidase activity. Like nicotinamide riboside, export of nicotinic acid is elevated by the deletion of the nicotinic acid transporter, Tna1. The data indicate that NAD(+) metabolism has a critical extracellular element in the yeast system and suggest that cells regulate intracellular NAD(+) metabolism by balancing import and export of NAD(+) precursor vitamins.

  9. Hybrid halide perovskite solar cell precursors: colloidal chemistry and coordination engineering behind device processing for high efficiency.

    PubMed

    Yan, Keyou; Long, Mingzhu; Zhang, Tiankai; Wei, Zhanhua; Chen, Haining; Yang, Shihe; Xu, Jianbin

    2015-04-08

    The precursor of solution-processed perovskite thin films is one of the most central components for high-efficiency perovskite solar cells. We first present the crucial colloidal chemistry visualization of the perovskite precursor solution based on analytical spectra and reveal that perovskite precursor solutions for solar cells are generally colloidal dispersions in a mother solution, with a colloidal size up to the mesoscale, rather than real solutions. The colloid is made of a soft coordination complex in the form of a lead polyhalide framework between organic and inorganic components and can be structurally tuned by the coordination degree, thereby primarily determining the basic film coverage and morphology of deposited thin films. By utilizing coordination engineering, particularly through employing additional methylammonium halide over the stoichiometric ratio for tuning the coordination degree and mode in the initial colloidal solution, along with a thermal leaching for the selective release of excess methylammonium halides, we achieved full and even coverage, the preferential orientation, and high purity of planar perovskite thin films. We have also identified that excess organic component can reduce the colloidal size of and tune the morphology of the coordination framework in relation to final perovskite grains and partial chlorine substitution can accelerate the crystalline nucleation process of perovskite. This work demonstrates the important fundamental chemistry of perovskite precursors and provides genuine guidelines for accurately controlling the high quality of hybrid perovskite thin films without any impurity, thereby delivering efficient planar perovskite solar cells with a power conversion efficiency as high as 17% without distinct hysteresis owing to the high quality of perovskite thin films.

  10. Systematic molecular engineering of Zn-ketoiminates for application as precursors in atomic layer depositions of zinc oxide.

    PubMed

    O' Donoghue, Richard; Peeters, Daniel; Rogalla, Detlef; Becker, Hans-Werner; Rechmann, Julian; Henke, Sebastian; Winter, Manuela; Devi, Anjana

    2016-12-21

    Molecular engineering of seven closely related zinc ketoiminates, namely, [Zn(dapki)2], [Zn(daeki)2], [Zn(epki)2], [Zn(eeki)2], [Zn(mpki)2], [Zn(meki)2], and [Zn((n)pki)2], leads to the optimisation of precursor thermal properties in terms of volatilisation rate, onset of volatilisation, reactivity and thermal stability. The influence of functional groups at the imine side chain of the ligands on the precursor properties is studied with regard to their viability as precursors for atomic layer deposition (ALD) of ZnO. The synthesis of [Zn(eeki)2], [Zn(epki)2] and [Zn(dapki)2] and the crystal structures of [Zn(mpki)2], [Zn(eeki)2], [Zn(dapki)2] and [Zn((n)pki)2] are presented. From the investigation of the physico-chemical characteristics, it was inferred that all compounds are monomeric, volatile and exhibit high thermal stability, all of which make them promising ALD precursors. Compound [Zn(eeki)2] is in terms of thermal properties the most promising Zn-ketoiminate. It is reactive towards water, possesses a melting point of 39 °C, is stable up to 24 days at 220 °C and has an extended volatilisation rate compared to the literature known Zn-ketoiminates. It demonstrated self-saturated, water assisted growth of zinc oxide (ZnO) with growth rates in the order of 1.3 Å per cycle. Moreover, it displayed a broad temperature window from TDep = 175-300 °C and is the first report of a stable high temperature (>200 °C) ALD process for ZnO returning highly promising growth rates.

  11. Engineering a monolignol 4-O-methyltransferase with high selectivity for the condensed lignin precursor coniferyl alcohol.

    PubMed

    Cai, Yuanheng; Bhuiya, Mohammad-Wadud; Shanklin, John; Liu, Chang-Jun

    2015-10-30

    Lignin, a rigid biopolymer in plant cell walls, is derived from the oxidative polymerization of three monolignols. The composition of monolignol monomers dictates the degree of lignin condensation, reactivity, and thus the degradability of plant cell walls. Guaiacyl lignin is regarded as the condensed structural unit. Polymerization of lignin is initiated through the deprotonation of the para-hydroxyl group of monolignols. Therefore, preferentially modifying the para-hydroxyl of a specific monolignol to deprive its dehydrogenation propensity would disturb the formation of particular lignin subunits. Here, we test the hypothesis that specific remodeling the active site of a monolignol 4-O-methyltransferase would create an enzyme that specifically methylates the condensed guaiacyl lignin precursor coniferyl alcohol. Combining crystal structural information with combinatorial active site saturation mutagenesis and starting with the engineered promiscuous enzyme, MOMT5 (T133L/E165I/F175I/F166W/H169F), we incrementally remodeled its substrate binding pocket by the addition of four substitutions, i.e. M26H, S30R, V33S, and T319M, yielding a mutant enzyme capable of discriminately etherifying the para-hydroxyl of coniferyl alcohol even in the presence of excess sinapyl alcohol. The engineered enzyme variant has a substantially reduced substrate binding pocket that imposes a clear steric hindrance thereby excluding bulkier lignin precursors. The resulting enzyme variant represents an excellent candidate for modulating lignin composition and/or structure in planta.

  12. Engineering a Monolignol 4-O-Methyltransferase with High Selectivity for the Condensed Lignin Precursor Coniferyl Alcohol*

    PubMed Central

    Cai, Yuanheng; Bhuiya, Mohammad-Wadud; Shanklin, John; Liu, Chang-Jun

    2015-01-01

    Lignin, a rigid biopolymer in plant cell walls, is derived from the oxidative polymerization of three monolignols. The composition of monolignol monomers dictates the degree of lignin condensation, reactivity, and thus the degradability of plant cell walls. Guaiacyl lignin is regarded as the condensed structural unit. Polymerization of lignin is initiated through the deprotonation of the para-hydroxyl group of monolignols. Therefore, preferentially modifying the para-hydroxyl of a specific monolignol to deprive its dehydrogenation propensity would disturb the formation of particular lignin subunits. Here, we test the hypothesis that specific remodeling the active site of a monolignol 4-O-methyltransferase would create an enzyme that specifically methylates the condensed guaiacyl lignin precursor coniferyl alcohol. Combining crystal structural information with combinatorial active site saturation mutagenesis and starting with the engineered promiscuous enzyme, MOMT5 (T133L/E165I/F175I/F166W/H169F), we incrementally remodeled its substrate binding pocket by the addition of four substitutions, i.e. M26H, S30R, V33S, and T319M, yielding a mutant enzyme capable of discriminately etherifying the para-hydroxyl of coniferyl alcohol even in the presence of excess sinapyl alcohol. The engineered enzyme variant has a substantially reduced substrate binding pocket that imposes a clear steric hindrance thereby excluding bulkier lignin precursors. The resulting enzyme variant represents an excellent candidate for modulating lignin composition and/or structure in planta. PMID:26378240

  13. Engineering a monolignol 4-O-methyltransferase with high selectivity for the condensed lignin precursor coniferyl alchohol

    SciTech Connect

    Cai, Yuanheng; Shanklin, John; Mohammad -Wadud Bhuiya; Liu, Chang -Jun

    2015-09-16

    Lignin, a rigid biopolymer in plant cell walls, is derived from the oxidative polymerization of three monolignols. The composition of monolignol monomers dictates the degree of lignin condensation, reactivity, and thus the degradability of plant cell walls. Guaiacyl lignin is regarded as the condensed structural unit. Polymerization of lignin is initiated through the deprotonation of the para-hydroxyl group of monolignols. Therefore, preferentially modifying the para-hydroxyl of a specific monolignol to deprive its dehydrogenation propensity would disturb the formation of particular lignin subunits. Here, we test the hypothesis that specific remodeling the active site of a monolignol 4-O-methyltransferase would create an enzyme that specifically methylates the condensed guaiacyl lignin precursor coniferyl alcohol. Combining crystal structural information with combinatorial active site saturation mutagenesis and starting with the engineered promiscuous enzyme, MOMT5 (T133L/E165I/F175I/F166W/H169F), we incrementally remodeled its substrate binding pocket by the addition of four substitutions, i.e. M26H, S30R, V33S, and T319M, yielding a mutant enzyme capable of discriminately etherifying the para-hydroxyl of coniferyl alcohol even in the presence of excess sinapyl alcohol. The engineered enzyme variant has a substantially reduced substrate binding pocket that imposes a clear steric hindrance thereby excluding bulkier lignin precursors. Lastly, the resulting enzyme variant represents an excellent candidate for modulating lignin composition and/or structure in planta.

  14. Engineering a monolignol 4-O-methyltransferase with high selectivity for the condensed lignin precursor coniferyl alchohol

    DOE PAGES

    Cai, Yuanheng; Shanklin, John; Mohammad -Wadud Bhuiya; ...

    2015-09-16

    Lignin, a rigid biopolymer in plant cell walls, is derived from the oxidative polymerization of three monolignols. The composition of monolignol monomers dictates the degree of lignin condensation, reactivity, and thus the degradability of plant cell walls. Guaiacyl lignin is regarded as the condensed structural unit. Polymerization of lignin is initiated through the deprotonation of the para-hydroxyl group of monolignols. Therefore, preferentially modifying the para-hydroxyl of a specific monolignol to deprive its dehydrogenation propensity would disturb the formation of particular lignin subunits. Here, we test the hypothesis that specific remodeling the active site of a monolignol 4-O-methyltransferase would create anmore » enzyme that specifically methylates the condensed guaiacyl lignin precursor coniferyl alcohol. Combining crystal structural information with combinatorial active site saturation mutagenesis and starting with the engineered promiscuous enzyme, MOMT5 (T133L/E165I/F175I/F166W/H169F), we incrementally remodeled its substrate binding pocket by the addition of four substitutions, i.e. M26H, S30R, V33S, and T319M, yielding a mutant enzyme capable of discriminately etherifying the para-hydroxyl of coniferyl alcohol even in the presence of excess sinapyl alcohol. The engineered enzyme variant has a substantially reduced substrate binding pocket that imposes a clear steric hindrance thereby excluding bulkier lignin precursors. Lastly, the resulting enzyme variant represents an excellent candidate for modulating lignin composition and/or structure in planta.« less

  15. New Biosynthetic Step in the Melanin Pathway of Wangiella (Exophiala) dermatitidis: Evidence for 2-Acetyl-1,3,6,8-Tetrahydroxynaphthalene as a Novel Precursor

    USDA-ARS?s Scientific Manuscript database

    The predominant cell wall melanin of Wangiella dermatitidis, a black fungal pathogen of humans, is synthesized from 1,8-dihydroxynaphthalene (D2HN). An early precursor, 1,3,6,8-tetrahydroxynaphthalene (T4HN), in the pathway leading to D2HN is reportedly produced as a pentaketide directly by an iter...

  16. Scaling up: Taking the Academic Pathways of People Learning Engineering Survey (APPLES) National. Research Brief

    ERIC Educational Resources Information Center

    Donaldson, Krista M.; Chen, Helen L.; Toye, George; Clark, Mia; Sheppard, Sheri D.

    2008-01-01

    The Academic Pathways of People Learning Engineering Survey (APPLES) was deployed for a second time in spring 2008 to undergraduate engineering students at 21 US universities. The goal of the second deployment of APPLES was to corroborate and extend findings from the Academic Pathways Study (APS; 2003-2007) and the first deployment of APPLES…

  17. Precursor-directed biosynthesis of 5-hydroxytryptophan using metabolically engineered E. coli.

    PubMed

    Sun, Xinxiao; Lin, Yuheng; Yuan, Qipeng; Yan, Yajun

    2015-05-15

    A novel biosynthetic pathway was designed and verified reversely leading to the production of 5-hydroxytryptophan (5-HTP) from glucose. This pathway takes advantage of the relaxed substrate selectivities of relevant enzymes without employing the unstable tryptophan 5-hydroxylase. First, high-titer of 5-HTP was produced from 5-hydroxyanthranilate (5-HI) by the catalysis of E. coli TrpDCBA. Then, a novel salicylate 5-hydroxylase was used to convert the non-natural substrate anthranilate to 5-HI. After that, the production of 5-HI from glucose was achieved and optimized with modular optimization. In the end, we combined the full pathway and adopted a two-stage strategy to realize the de novo production of 5-HTP. This work demonstrated the application of enzyme promiscuity in non-natural pathway design.

  18. Engineering a metabolic pathway for isobutanol biosynthesis in Bacillus subtilis.

    PubMed

    Jia, Xiaoqiang; Li, Shanshan; Xie, Sha; Wen, Jianping

    2012-09-01

    Isobutanol can be biosynthesized via α-ketoisovalerate catalyzed by heterologous keto acid decarboxylase (KDC) and alcohol dehydrogenase (ADH). In this work, isobutanol biosynthesis pathway was designed in Bacillus subtilis, a notable solvent-tolerant host. In order to do that, a plasmid pPKA expressing KDC and ADH under the control of a B. subtilis strong promoter P(43) was constructed. Isobutanol was detected in the products of the recombinant B. subtilis harboring pPKA plasmid, whereas none was detected by the wild-type strain. Effects of the medium ingredients such as glucose concentration and valine addition, and operating parameters such as initial pH, inoculation volume, and medium work volume on isobutanol production were also investigated. Isobutanol production reached to the maximum of 0.607 g/L after 35-h cultivation under the conditions: glucose concentration of 3%, valine addition of 2%, initial pH of 7.0, inoculum of 1%, and work volume of 50 mL/250 mL. Though the isobutanol production by the recombinant was low, it was the first successful attempt to produce isobutanol in engineered B. subtilis, and the results showed its great potential as an isobutanol-producing cell factory.

  19. APL-1, the Alzheimer’s Amyloid Precursor Protein in Caenorhabditis elegans, Modulates Multiple Metabolic Pathways Throughout Development

    PubMed Central

    Ewald, Collin Y.; Raps, Daniel A.; Li, Chris

    2012-01-01

    Mutations in the amyloid precursor protein (APP) gene or in genes that process APP are correlated with familial Alzheimer’s disease (AD). The biological function of APP remains unclear. APP is a transmembrane protein that can be sequentially cleaved by different secretases to yield multiple fragments, which can potentially act as signaling molecules. Caenorhabditis elegans encodes one APP-related protein, APL-1, which is essential for viability. Here, we show that APL-1 signaling is dependent on the activity of the FOXO transcription factor DAF-16 and the nuclear hormone receptor DAF-12 and influences metabolic pathways such as developmental progression, body size, and egg-laying rate. Furthermore, apl-1(yn5) mutants, which produce high levels of the extracellular APL-1 fragment, show an incompletely penetrant temperature-sensitive embryonic lethality. In a genetic screen to isolate mutants in which the apl-1(yn5) lethality rate is modified, we identified a suppressor mutation in MOA-1/R155.2, a receptor-protein tyrosine phosphatase, and an enhancer mutation in MOA-2/B0495.6, a protein involved in receptor-mediated endocytosis. Knockdown of apl-1 in an apl-1(yn5) background caused lethality and molting defects at all larval stages, suggesting that apl-1 is required for each transitional molt. We suggest that signaling of the released APL-1 fragment modulates multiple metabolic states and that APL-1 is required throughout development. PMID:22466039

  20. Amyloid precursor protein modulates Nav1.6 sodium channel currents through a Go-coupled JNK pathway

    PubMed Central

    Li, Shao; Wang, Xi; Ma, Quan-Hong; Yang, Wu-lin; Zhang, Xiao-Gang; Dawe, Gavin S.; Xiao, Zhi-Cheng

    2016-01-01

    Amyloid precursor protein (APP), commonly associated with Alzheimer’s disease, also marks axonal degeneration. In the recent studies, we demonstrated that APP aggregated at nodes of Ranvier (NORs) in myelinated central nervous system (CNS) axons and interacted with Nav1.6. However, the physiological function of APP remains unknown. In this study, we described reduced sodium current densities in APP knockout hippocampal neurons. Coexpression of APP or its intracellular domains containing a VTPEER motif with Nav1.6 sodium channels in Xenopus oocytes resulted in an increase in peak sodium currents, which was enhanced by constitutively active Go mutant and blocked by a dominant negative mutant. JNK and CDK5 inhibitor attenuated increases in Nav1.6 sodium currents induced by overexpression of APP. Nav1.6 sodium currents were increased by APPT668E (mutant Thr to Glu) and decreased by T668A (mutant Thr to ALa) mutant, respectively. The cell surface expression of Nav1.6 sodium channels in the white matter of spinal cord and the spinal conduction velocity is decreased in APP, p35 and JNK3 knockout mice. Therefore, APP modulates Nav1.6 sodium channels through a Go-coupled JNK pathway, which is dependent on phosphorylation of APP at Thr668. PMID:28008944

  1. The lymphocyte production pathway in bone marrow: possible significance of the size spectrum of lymphocytes and their precursors.

    PubMed

    Patinkin, D; Grover, N B; Yoffey, J M

    1979-03-01

    It is now generally accepted that transitional ('lymphoid') cells are the precursors of small lymphocytes. Such cells have a heterogeneous size spectrum and show high proliferative capacity. To facilitate the study of the kinetics of lymphocyte production, a detailed investigation of cell sizes of the transitional cell-lymphocyte compartment was carried out using a Coulter counter modified to permit a very rapid and accurate examination of cells in suspension. Enriched populations of 'lymphoid' cells, obtained after 10 d rebound from hypoxia at half an atmosphere, were enriched further by bovine albumin and Ficoll gradients to give density fractions containing two types of cells. Differential counts of stained smears of these fractions enabled a comparison to be made between the size distribution and the specific cell types. Four distinct cell types were characterized in terms of volume and density: small and intermediate-sized lymphocytes (volume 53-59 fl, albumin fractions 19-23%), small transitional cells (154-160 fl, 21-23%), medium transitional cells (206-218 fl, 17-19%) and large transitional cells (350-400 fl, 21-27%). These findings are consistent with the view that there are at least three mitoses in the course of the lymphocyte production pathway in the bone marrow.

  2. Substrate-Favored Lysosomal and Proteasomal Pathways Participate in the Normal Balance Control of Insulin Precursor Maturation and Disposal in β-Cells

    PubMed Central

    Gu, Jingyu; Osei, Kwame; Wang, Jie

    2011-01-01

    Our recent studies have uncovered that aggregation-prone proinsulin preserves a low relative folding rate and maintains a homeostatic balance of natively and non-natively folded states (i.e., proinsulin homeostasis, PIHO) in β-cells as a result of the integration of maturation and disposal processes. Control of precursor maturation and disposal is thus an early regulative mechanism in the insulin production of β-cells. Herein, we show pathways involved in the disposal of endogenous proinsulin at the early secretory pathway. We conducted metabolic-labeling, immunoblotting, and immunohistochemistry studies to examine the effects of selective proteasome and lysosome or autophagy inhibitors on the kinetics of proinsulin and control proteins in various post-translational courses. Our metabolic-labeling studies found that the main lysosomal and ancillary proteasomal pathways participate in the heavy clearance of insulin precursor in mouse islets/β-cells cultured at the mimic physiological glucose concentrations. Further immunoblotting and immunohistochemistry studies in cloned β-cells validated that among secretory proteins, insulin precursor is heavily and preferentially removed. The rapid disposal of a large amount of insulin precursor after translation is achieved mainly through lysosomal autophagy and the subsequent basal disposals are carried out by both lysosomal and proteasomal pathways within a 30 to 60-minute post-translational process. The findings provide the first clear demonstration that lysosomal and proteasomal pathways both play roles in the normal maintenance of PIHO for insulin production, and defined the physiological participation of lysosomal autophagy in the protein quality control at the early secretory pathway of pancreatic β-cells. PMID:22102916

  3. Engine gaseous, aerosol precursor and particulate at simulated flight altitude conditions. Technical memo

    SciTech Connect

    Wey, C.C.

    1998-10-01

    The overall objective of the NASA Atmospheric Effects of Aviation Project (AEAP) is to develop scientific bases for assessing atmospheric impacts of the exhaust emissions by both current and future fleets of subsonic and supersonic aircraft. Among the six primary elements of the AEAP is Emissions Characterization. The objective of the Emission Characterization effort is to determine the exhaust emission constituents and concentrations at the engine exit plane. The specific objective of this engine test is to obtain a database of gaseous and particulate emissions as a function of fuel sulfur and engine operating conditions. The database of the particulate emission properties is to be used as a comparative baseline with subsequent flight measurement. The engine used in this test was a Pratt and Whitney F100-200E turbofan engine. Aviation fuel (Jet A) with a range of fuel sulfur was used. Low and high sulfur values are limited by commercially available fuels and by fuel specification limits of 0.3% by weight. Test matrix was set by parametrically varying the combustor inlet temperature (T3) between idle and maximum power setting at simulated SLS and up to five other altitudes for each fuel. Four diagnostic systems, extractive and non-intrusive, were assembled for the gaseous and particulate emissions characterization measurements study. NASA extractive system includes smoke meter and analyzers for measurement of CO, CO{sub 2}, NO, NOx, O{sub 2}, total unburnt hydrocarbons (THC), and SO{sub 2}. Particulate emissions were characterized by University of Missouri-Rolla Mobile Aerosol Sampling System.

  4. Combining chemoinformatics with bioinformatics: in silico prediction of bacterial flavor-forming pathways by a chemical systems biology approach "reverse pathway engineering".

    PubMed

    Liu, Mengjin; Bienfait, Bruno; Sacher, Oliver; Gasteiger, Johann; Siezen, Roland J; Nauta, Arjen; Geurts, Jan M W

    2014-01-01

    The incompleteness of genome-scale metabolic models is a major bottleneck for systems biology approaches, which are based on large numbers of metabolites as identified and quantified by metabolomics. Many of the revealed secondary metabolites and/or their derivatives, such as flavor compounds, are non-essential in metabolism, and many of their synthesis pathways are unknown. In this study, we describe a novel approach, Reverse Pathway Engineering (RPE), which combines chemoinformatics and bioinformatics analyses, to predict the "missing links" between compounds of interest and their possible metabolic precursors by providing plausible chemical and/or enzymatic reactions. We demonstrate the added-value of the approach by using flavor-forming pathways in lactic acid bacteria (LAB) as an example. Established metabolic routes leading to the formation of flavor compounds from leucine were successfully replicated. Novel reactions involved in flavor formation, i.e. the conversion of alpha-hydroxy-isocaproate to 3-methylbutanoic acid and the synthesis of dimethyl sulfide, as well as the involved enzymes were successfully predicted. These new insights into the flavor-formation mechanisms in LAB can have a significant impact on improving the control of aroma formation in fermented food products. Since the input reaction databases and compounds are highly flexible, the RPE approach can be easily extended to a broad spectrum of applications, amongst others health/disease biomarker discovery as well as synthetic biology.

  5. Enhanced production of fatty alcohols by engineering the TAGs synthesis pathway in Saccharomyces cerevisiae.

    PubMed

    Tang, Xiaoling; Chen, Wei Ning

    2015-02-01

    The production of fatty acid-derived chemicals has received a great deal of attention in recent years. In yeast cells, the main storage forms of fatty acids are TAGs. However, the conversion of TAGs into fatty acid derivatives suffers from a practical standpoint. Herein, a more direct strategy was applied to accumulate cellular fatty acyl-CoAs in Saccharomyces cerevisiae, which are the activated forms of fatty acids and used as important precursors for various converting enzymes. The dga1 gene was deleted to block the fatty acyl-CoAs dependent pathway of TAGs synthesis and a significant decrease in lipid content was observed. The FAR gene was cloned and overexpressed in the wild type strain and gene disrupted strain, to convert the fatty acyl-CoAs to the corresponding fatty acid derivatives. The metabolic engineered pathway resulted in enhanced production of fatty alcohols. Compared with the wild type strain with overexpressed FAR gene, the yield of fatty alcohols in the Δdga1 strain with FAR was dramatically increased: the intracellular fatty alcohols increased from 26 mg/L to 45 mg/L, while the extracellular fatty alcohols increased from 2.2 mg/L to 4.3 mg/L. By optimizing the culture medium with increased carbon concentration and limited nitrogen concentration, the fatty alcohols yield in the Δdga1 strain with FAR was further increased to 84 mg/L in cells and 14 mg/L secreted in broth. The results in this study demonstrated the feasibility of using the designed strategy to solve the bottleneck in utilizing TAGs for fatty acid derivatives production.

  6. Engineering bacterial phenylalanine 4-hydroxylase for microbial synthesis of human neurotransmitter precursor 5-hydroxytryptophan.

    PubMed

    Lin, Yuheng; Sun, Xinxiao; Yuan, Qipeng; Yan, Yajun

    2014-07-18

    5-Hydroxytryptophan (5-HTP) is a drug that is clinically effective against depression, insomnia, obesity, chronic headaches, etc. It is only commercially produced by the extraction from the seeds of Griffonia simplicifolia because of a lack of synthetic methods. Here, we report the efficient microbial production of 5-HTP via combinatorial protein and metabolic engineering approaches. First, we reconstituted and screened prokaryotic phenylalanine 4-hydroxylase activity in Escherichia coli. Then, sequence- and structure-based protein engineering dramatically shifted its substrate preference, allowing for efficient conversion of tryptophan to 5-HTP. Importantly, E. coli endogenous tetrahydromonapterin (MH4) could be utilized as the coenzyme, when a foreign MH4 recycling mechanism was introduced. Whole-cell bioconversion allowed the high-level production of 5-HTP (1.1-1.2 g/L) from tryptophan in shake flasks. On this basis, metabolic engineering efforts were further made to achieve the de novo 5-HTP biosynthesis from glucose. This work not only holds great scale-up potential but also demonstrates a strategy for expanding the native metabolism of microorganisms.

  7. Zinc Deficiency Induces Apoptosis via Mitochondrial p53- and Caspase-Dependent Pathways in Human Neuronal Precursor Cells

    ERIC Educational Resources Information Center

    Seth, Rohit; Corniola, Rikki S.; Gower-Winter, Shannon D.; Morgan, Thomas J., Jr.; Bishop, Brian; Levenson, Cathy W.

    2015-01-01

    Previous studies have shown that zinc deficiency leads to apoptosis of neuronal precursor cells in vivo and in vitro. In addition to the role of p53 as a nuclear transcription factor in zinc deficient cultured human neuronal precursors (NT-2), we have now identified the translocation of phosphorylated p53 to the mitochondria and p53-dependent…

  8. Dual-tagged amyloid-β precursor protein reveals distinct transport pathways of its N- and C-terminal fragments.

    PubMed

    Villegas, Christine; Muresan, Virgil; Ladescu Muresan, Zoia

    2014-03-15

    The amyloid-β precursor protein (APP), a type I transmembrane protein genetically associated with Alzheimer's disease, has a complex biology that includes proteolytic processing into potentially toxic fragments, extensive trafficking and multiple, yet poorly-defined functions. We recently proposed that a significant fraction of APP is proteolytically cleaved in the neuronal soma into N- and C-terminal fragments (NTFs and CTFs), which then target independently of each other to separate destinations in the cell. Here, we prove this concept with live imaging and immunolocalization of two dual, N- and C-termini-tagged APP constructs: CFP-APP-YFP [containing the fluorescent tags, cyan fluorescent protein (CFP) and yellow fluorescent protein (YFP)] and FLAG-APP-Myc. When expressed at low levels in neuronal cells, these constructs are processed into differently tagged NTFs and CTFs that reveal distinct distributions and characteristics of transport. Like the endogenous N- and C-terminal epitopes of APP, the FLAG-tagged NTFs are present in trains of vesicles and tubules that localize to short filaments, which often immunostain for acetylated tubulin, whereas the Myc-tagged CTFs are detected on randomly distributed vesicle-like structures. The experimental treatments that selectively destabilize the acetylated microtubules abrogate the distribution of NTFs along filaments, without altering the random distribution of CTFs. These results indicate that the NTFs and CTFs are recruited to distinct transport pathways and reach separate destinations in neurons, where they likely accomplish functions independent of the parental, full-length APP. They also point to a compartment associated with acetylated microtubules in the neuronal soma--not the neurite terminals--as a major site of APP cleavage, and segregation of NTFs from CTFs.

  9. Dual-tagged amyloid-β precursor protein reveals distinct transport pathways of its N- and C-terminal fragments

    PubMed Central

    Villegas, Christine; Muresan, Virgil; Ladescu Muresan, Zoia

    2014-01-01

    The amyloid-β precursor protein (APP), a type I transmembrane protein genetically associated with Alzheimer's disease, has a complex biology that includes proteolytic processing into potentially toxic fragments, extensive trafficking and multiple, yet poorly-defined functions. We recently proposed that a significant fraction of APP is proteolytically cleaved in the neuronal soma into N- and C-terminal fragments (NTFs and CTFs), which then target independently of each other to separate destinations in the cell. Here, we prove this concept with live imaging and immunolocalization of two dual, N- and C-termini-tagged APP constructs: CFP-APP-YFP [containing the fluorescent tags, cyan fluorescent protein (CFP) and yellow fluorescent protein (YFP)] and FLAG-APP-Myc. When expressed at low levels in neuronal cells, these constructs are processed into differently tagged NTFs and CTFs that reveal distinct distributions and characteristics of transport. Like the endogenous N- and C-terminal epitopes of APP, the FLAG-tagged NTFs are present in trains of vesicles and tubules that localize to short filaments, which often immunostain for acetylated tubulin, whereas the Myc-tagged CTFs are detected on randomly distributed vesicle-like structures. The experimental treatments that selectively destabilize the acetylated microtubules abrogate the distribution of NTFs along filaments, without altering the random distribution of CTFs. These results indicate that the NTFs and CTFs are recruited to distinct transport pathways and reach separate destinations in neurons, where they likely accomplish functions independent of the parental, full-length APP. They also point to a compartment associated with acetylated microtubules in the neuronal soma—not the neurite terminals—as a major site of APP cleavage, and segregation of NTFs from CTFs. PMID:24203698

  10. Directed evolution of a cellobiose utilization pathway in Saccharomyces cerevisiae by simultaneously engineering multiple proteins

    PubMed Central

    2013-01-01

    Background The optimization of metabolic pathways is critical for efficient and economical production of biofuels and specialty chemicals. One such significant pathway is the cellobiose utilization pathway, identified as a promising route in biomass utilization. Here we describe the optimization of cellobiose consumption and ethanol productivity by simultaneously engineering both proteins of the pathway, the β-glucosidase (gh1-1) and the cellodextrin transporter (cdt-1), in an example of pathway engineering through directed evolution. Results The improved pathway was assessed based on the strain specific growth rate on cellobiose, with the final mutant exhibiting a 47% increase over the wild-type pathway. Metabolite analysis of the engineered pathway identified a 49% increase in cellobiose consumption (1.78 to 2.65 g cellobiose/(L · h)) and a 64% increase in ethanol productivity (0.611 to 1.00 g ethanol/(L · h)). Conclusions By simultaneously engineering multiple proteins in the pathway, cellobiose utilization in S. cerevisiae was improved. This optimization can be generally applied to other metabolic pathways, provided a selection/screening method is available for the desired phenotype. The improved in vivo cellobiose utilization demonstrated here could help to decrease the in vitro enzyme load in biomass pretreatment, ultimately contributing to a reduction in the high cost of biofuel production. PMID:23802545

  11. Synthetic biology of secondary metabolite biosynthesis in actinomycetes: Engineering precursor supply as a way to optimize antibiotic production.

    PubMed

    Wohlleben, Wolfgang; Mast, Yvonne; Muth, Günther; Röttgen, Marlene; Stegmann, Evi; Weber, Tilmann

    2012-07-16

    Actinomycetes are a rich source for the synthesis of medically and technically useful natural products. The genes encoding the enzymes for their biosynthesis are normally organized in gene clusters, which include also the information for resistance (in the case of antibacterial compounds), regulation, and transport. This facilitates the manipulation of such pathways by molecular genetic techniques. Recent advances in DNA sequencing and analytical chemistry revealed that not only new strains isolated from yet unexplored habitats, but also already known strains possess a large potential for the synthesis of novel compounds. Synthetic Biology now offers a new perspective to exploit this potential further by generating novel pathways, and thereby novel products, by combining different biosynthetic steps originating from different bacteria. The supply of precursors, which are subsequently incorporated into the final product, is often already organized in a modular manner in nature and may directly be exploited for Synthetic Biology. Here we report examples for the synthesis of building blocks and possibilities to modify and optimize antibiotic biosynthesis, exemplary for the synthesis of the manipulation of the synthesis of the glycopeptide antibiotic balhimycin. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  12. Targeting Undergraduate Students for Surveys: Lessons from the Academic Pathways of People Learning Engineering Survey (APPLES). Research Brief

    ERIC Educational Resources Information Center

    Donaldson, Krista M.; Chen, Helen L.; Toye, George; Sheppard, Sheri D.

    2007-01-01

    The Academic Pathways of People Learning Engineering Survey (APPLES or APPLE survey) is a component of the Academic Pathways Study (APS) of the Center for the Advancement of Engineering Education (CAEE). The APS aims to provide a comprehensive account of how people become engineers by exploring key questions around the engineering learning…

  13. Partitioning the effects of an ecosystem engineer: kangaroo rats control community structure via multiple pathways.

    PubMed

    Prugh, Laura R; Brashares, Justin S

    2012-05-01

    1. Ecosystem engineers impact communities by altering habitat conditions, but they can also have strong effects through consumptive, competitive and other non-engineering pathways. 2. Engineering effects can lead to fundamentally different community dynamics than non-engineering effects, but the relative strengths of these interactions are seldom quantified. 3. We combined structural equation modelling and exclosure experiments to partition the effects of a keystone engineer, the giant kangaroo rat (Dipodomys ingens), on plants, invertebrates and vertebrates in a semi-arid California grassland. 4. We separated the effects of burrow creation from kangaroo rat density and found that kangaroo rats increased the diversity and abundance of other species via both engineering and non-engineering pathways. 5. Engineering was the primary factor structuring plant and small mammal communities, whereas non-engineering effects structured invertebrate communities and increased lizard abundance. 6. These results highlight the importance of the non-engineering effects of ecosystem engineers and shed new light on the multiple pathways by which strong-interactors shape communities. © 2011 The Authors. Journal of Animal Ecology © 2011 British Ecological Society.

  14. Pathways to Engineering: The Validation Experiences of Transfer Students

    ERIC Educational Resources Information Center

    Zhang, Yi; Ozuna, Taryn

    2015-01-01

    Community college engineering transfer students are a critical student population of engineering degree recipients and technical workforce in the United States. Focusing on this group of students, we adopted Rendón's (1994) validation theory to explore the students' experiences in community colleges prior to transferring to a four-year…

  15. Career Pathways of Science, Engineering and Technology Research Postgraduates

    ERIC Educational Resources Information Center

    Giles, Marnie; Ski, Chantal; Vrdoljak, Davorin

    2009-01-01

    Suitably qualified scientists and engineers are essential for research and development, innovation and, in turn, the growth of the economy. Science, engineering and technology skills are therefore necessary for Australia to remain competitive in a global market. This article reports findings from a nationwide study investigating the career…

  16. Pathways to Engineering: The Validation Experiences of Transfer Students

    ERIC Educational Resources Information Center

    Zhang, Yi; Ozuna, Taryn

    2015-01-01

    Community college engineering transfer students are a critical student population of engineering degree recipients and technical workforce in the United States. Focusing on this group of students, we adopted Rendón's (1994) validation theory to explore the students' experiences in community colleges prior to transferring to a four-year…

  17. Detection of greenhouse gas precursors from diesel engines using electrochemical and photoacoustic sensors.

    PubMed

    Mothé, Geórgia; Castro, Maria; Sthel, Marcelo; Lima, Guilherme; Brasil, Laisa; Campos, Layse; Rocha, Aline; Vargas, Helion

    2010-01-01

    Atmospheric pollution is one of the worst threats to modern society. The consequences derived from different forms of atmospheric pollution vary from the local to the global scale, with deep impacts on climate, environment and human health. Several gaseous pollutants, even when present in trace concentrations, play a fundamental role in important processes that occur in atmosphere. Phenomena such as global warming, photochemical smog formation, acid rain and the depletion of the stratospheric ozone layer are strongly related to the increased concentration of certain gaseous species in the atmosphere. The transport sector significantly produces atmospheric pollution, mainly when diesel oil is used as fuel. Therefore, new methodologies based on selective and sensitive gas detection schemes must be developed in order to detect and monitor pollutant gases from this source. In this work, CO(2) Laser Photoacoustic Spectroscopy was used to evaluate ethylene emissions and electrochemical analyzers were used to evaluate the emissions of CO, NO(x) and SO(2) from the exhaust of diesel powered vehicles (rural diesel with 5% of biodiesel, in this paper called only diesel) at different engine rotation speeds. Concentrations in the range 6 to 45 ppmV for ethylene, 109 to 1,231 ppmV for carbon monoxide, 75 to 868 ppmV for nitrogen oxides and 3 to 354 ppmV for sulfur dioxide were obtained. The results indicate that the detection techniques used were sufficiently selective and sensitive to detect the gaseous species mentioned above in the ppmV range.

  18. Detection of Greenhouse Gas Precursors from Diesel Engines Using Electrochemical and Photoacoustic Sensors

    PubMed Central

    Mothé, Geórgia; Castro, Maria; Sthel, Marcelo; Lima, Guilherme; Brasil, Laisa; Campos, Layse; Rocha, Aline; Vargas, Helion

    2010-01-01

    Atmospheric pollution is one of the worst threats to modern society. The consequences derived from different forms of atmospheric pollution vary from the local to the global scale, with deep impacts on climate, environment and human health. Several gaseous pollutants, even when present in trace concentrations, play a fundamental role in important processes that occur in atmosphere. Phenomena such as global warming, photochemical smog formation, acid rain and the depletion of the stratospheric ozone layer are strongly related to the increased concentration of certain gaseous species in the atmosphere. The transport sector significantly produces atmospheric pollution, mainly when diesel oil is used as fuel. Therefore, new methodologies based on selective and sensitive gas detection schemes must be developed in order to detect and monitor pollutant gases from this source. In this work, CO2 Laser Photoacoustic Spectroscopy was used to evaluate ethylene emissions and electrochemical analyzers were used to evaluate the emissions of CO, NOx and SO2 from the exhaust of diesel powered vehicles (rural diesel with 5% of biodiesel, in this paper called only diesel) at different engine rotation speeds. Concentrations in the range 6 to 45 ppmV for ethylene, 109 to 1,231 ppmV for carbon monoxide, 75 to 868 ppmV for nitrogen oxides and 3 to 354 ppmV for sulfur dioxide were obtained. The results indicate that the detection techniques used were sufficiently selective and sensitive to detect the gaseous species mentioned above in the ppmV range. PMID:22163437

  19. LWRS Fuels Pathway: Engineering Design and Fuels Pathway Initial Testing of the Hot Water Corrosion System

    SciTech Connect

    Dr. John Garnier; Dr. Kevin McHugh

    2012-09-01

    The Advanced LWR Nuclear Fuel Development R&D pathway performs strategic research focused on cladding designs leading to improved reactor core economics and safety margins. The research performed is to demonstrate the nuclear fuel technology advancements while satisfying safety and regulatory limits. These goals are met through rigorous testing and analysis. The nuclear fuel technology developed will assist in moving existing nuclear fuel technology to an improved level that would not be practical by industry acting independently. Strategic mission goals are to improve the scientific knowledge basis for understanding and predicting fundamental nuclear fuel and cladding performance in nuclear power plants, and to apply this information in the development of high-performance, high burn-up fuels. These will result in improved safety, cladding, integrity, and nuclear fuel cycle economics. To achieve these goals various methods for non-irradiated characterization testing of advanced cladding systems are needed. One such new test system is the Hot Water Corrosion System (HWCS) designed to develop new data for cladding performance assessment and material behavior under simulated off-normal reactor conditions. The HWCS is capable of exposing prototype rodlets to heated, high velocity water at elevated pressure for long periods of time (days, weeks, months). Water chemistry (dissolved oxygen, conductivity and pH) is continuously monitored. In addition, internal rodlet heaters inserted into cladding tubes are used to evaluate repeated thermal stressing and heat transfer characteristics of the prototype rodlets. In summary, the HWCS provides rapid ex-reactor evaluation of cladding designs in normal (flowing hot water) and off-normal (induced cladding stress), enabling engineering and manufacturing improvements to cladding designs before initiation of the more expensive and time consuming in-reactor irradiation testing.

  20. A Survey of Career Pathways of Engineering Deans in the United States: Strategies for Leadership Development

    ERIC Educational Resources Information Center

    Hargrove, S. Keith

    2015-01-01

    The career pathways of deans in higher education seem to follow the traditional model in academia from a senior faculty position and/or department chair. This however may be different from deans in engineering education. The goal of this survey research is to assess the career paths of current Deans of Colleges/Schools of Engineering in the United…

  1. Single-step production of the simvastatin precursor monacolin J by engineering of an industrial strain of Aspergillus terreus.

    PubMed

    Huang, Xuenian; Liang, Yajing; Yang, Yong; Lu, Xuefeng

    2017-07-01

    Monacolin J is a key precursor for the synthesis of simvastatin (Zocor), an important drug for treating hypercholesterolemia. Industrially, monacolin J is manufactured through alkaline hydrolysis of lovastatin, a fungal polyketide produced by Aspergillus terreus. Multistep chemical processes for the conversion of lovastatin to simvastatin are laborious, cost expensive and environmentally unfriendly. A biocatalysis process for monacolin J conversion to simvastatin has been developed. However, direct bioproduction of monacolin J has not yet been achieved. Here, we identified a lovastatin hydrolase from Penicillium chrysogenum, which displays a 232-fold higher catalytic efficiency for the in vitro hydrolysis of lovastatin compared to a previously patented hydrolase, but no activity for simvastatin. Furthermore, we showed that an industrial A. terreus strain heterologously expressing this lovastatin hydrolase can produce monacolin J through single-step fermentation with high efficiency, approximately 95% of the biosynthesized lovastatin was hydrolyzed to monacolin J. Our results demonstrate a simple and green technical route for the production of monacolin J, which makes complete bioproduction of the cholesterol-lowering drug simvastatin feasible and promising. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  2. Tuning crystallization pathways through sequence engineering of biomimetic polymers

    NASA Astrophysics Data System (ADS)

    Ma, Xiang; Zhang, Shuai; Jiao, Fang; Newcomb, Christina J.; Zhang, Yuliang; Prakash, Arushi; Liao, Zhihao; Baer, Marcel D.; Mundy, Christopher J.; Pfaendtner, James; Noy, Aleksandr; Chen, Chun-Long; de Yoreo, James J.

    2017-07-01

    Two-step nucleation pathways in which disordered, amorphous, or dense liquid states precede the appearance of crystalline phases have been reported for a wide range of materials, but the dynamics of such pathways are poorly understood. Moreover, whether these pathways are general features of crystallizing systems or a consequence of system-specific structural details that select for direct versus two-step processes is unknown. Using atomic force microscopy to directly observe crystallization of sequence-defined polymers, we show that crystallization pathways are indeed sequence dependent. When a short hydrophobic region is added to a sequence that directly forms crystalline particles, crystallization instead follows a two-step pathway that begins with the creation of disordered clusters of 10-20 molecules and is characterized by highly non-linear crystallization kinetics in which clusters transform into ordered structures that then enter the growth phase. The results shed new light on non-classical crystallization mechanisms and have implications for the design of self-assembling polymer systems.

  3. Modular electron transfer circuits for synthetic biology: insulation of an engineered biohydrogen pathway.

    PubMed

    Agapakis, Christina M; Silver, Pamela A

    2010-01-01

    Electron transfer is central to a wide range of essential metabolic pathways, from photosynthesis to fermentation. The evolutionary diversity and conservation of proteins that transfer electrons makes these pathways a valuable platform for engineered metabolic circuits in synthetic biology. Rational engineering of electron transfer pathways containing hydrogenases has the potential to lead to industrial scale production of hydrogen as an alternative source of clean fuel and experimental assays for understanding the complex interactions of multiple electron transfer proteins in vivo. We designed and implemented a synthetic hydrogen metabolism circuit in Escherichia coli that creates an electron transfer pathway both orthogonal to and integrated within existing metabolism. The design of such modular electron transfer circuits allows for facile characterization of in vivo system parameters with applications toward further engineering for alternative energy production.

  4. Engineering specialized metabolic pathways--is there a room for enzyme improvements?

    PubMed

    Bar-Even, Arren; Salah Tawfik, Dan

    2013-04-01

    Recent advances in enzyme engineering enable dramatic improvements in catalytic efficiency and/or selectivity, as well as de novo engineering of enzymes to catalyze reactions where natural enzymes are not available. Can these capabilities be utilized to transform biosynthesis pathways? Metabolic engineering is traditionally based on combining existing enzymes to give new, or modified, pathways, within a new context and/or organism. How efficient, however, are the individual enzyme components? Is there room to improve pathway performance by enzyme engineering? We discuss the differences between enzymes in central versus specialized, or secondary metabolism and highlight unique features of specialized metabolism enzymes participating in the synthesis of natural products. We argue that, for the purpose of metabolic engineering, the catalytic efficiency and selectivity of many enzymes can be improved with the aim of achieving higher rates, yields and product purities. We also note the relative abundance of spontaneous reactions in specialized metabolism, and the potential advantage of engineering enzymes that will catalyze these steps. Specialized metabolism therefore offers new opportunities to integrate enzyme and pathway engineering, thereby achieving higher metabolic efficiencies, enhanced production rates and improved product purities.

  5. An engineered pathway for the biosynthesis of renewable propane

    PubMed Central

    Kallio, Pauli; Pásztor, András; Thiel, Kati; Akhtar, M. Kalim; Jones, Patrik R.

    2014-01-01

    The deployment of next-generation renewable biofuels can be enhanced by improving their compatibility with the current infrastructure for transportation, storage and utilization. Propane, the bulk component of liquid petroleum gas, is an appealing target as it already has a global market. In addition, it is a gas under standard conditions, but can easily be liquefied. This allows the fuel to immediately separate from the biocatalytic process after synthesis, yet does not preclude energy-dense storage as a liquid. Here we report, for the first time, a synthetic metabolic pathway for producing renewable propane. The pathway is based on a thioesterase specific for butyryl-acyl carrier protein (ACP), which allows native fatty acid biosynthesis of the Escherichia coli host to be redirected towards a synthetic alkane pathway. Propane biosynthesis is markedly stimulated by the introduction of an electron-donating module, optimizing the balance of O2 supply and removal of native aldehyde reductases. PMID:25181600

  6. An engineered pathway for the biosynthesis of renewable propane.

    PubMed

    Kallio, Pauli; Pásztor, András; Thiel, Kati; Akhtar, M Kalim; Jones, Patrik R

    2014-09-02

    The deployment of next-generation renewable biofuels can be enhanced by improving their compatibility with the current infrastructure for transportation, storage and utilization. Propane, the bulk component of liquid petroleum gas, is an appealing target as it already has a global market. In addition, it is a gas under standard conditions, but can easily be liquefied. This allows the fuel to immediately separate from the biocatalytic process after synthesis, yet does not preclude energy-dense storage as a liquid. Here we report, for the first time, a synthetic metabolic pathway for producing renewable propane. The pathway is based on a thioesterase specific for butyryl-acyl carrier protein (ACP), which allows native fatty acid biosynthesis of the Escherichia coli host to be redirected towards a synthetic alkane pathway. Propane biosynthesis is markedly stimulated by the introduction of an electron-donating module, optimizing the balance of O2 supply and removal of native aldehyde reductases.

  7. Genome-scale consequences of cofactor balancing in engineered pentose utilization pathways in Saccharomyces cerevisiae.

    PubMed

    Ghosh, Amit; Zhao, Huimin; Price, Nathan D

    2011-01-01

    Biofuels derived from lignocellulosic biomass offer promising alternative renewable energy sources for transportation fuels. Significant effort has been made to engineer Saccharomyces cerevisiae to efficiently ferment pentose sugars such as D-xylose and L-arabinose into biofuels such as ethanol through heterologous expression of the fungal D-xylose and L-arabinose pathways. However, one of the major bottlenecks in these fungal pathways is that the cofactors are not balanced, which contributes to inefficient utilization of pentose sugars. We utilized a genome-scale model of S. cerevisiae to predict the maximal achievable growth rate for cofactor balanced and imbalanced D-xylose and L-arabinose utilization pathways. Dynamic flux balance analysis (DFBA) was used to simulate batch fermentation of glucose, D-xylose, and L-arabinose. The dynamic models and experimental results are in good agreement for the wild type and for the engineered D-xylose utilization pathway. Cofactor balancing the engineered D-xylose and L-arabinose utilization pathways simulated an increase in ethanol batch production of 24.7% while simultaneously reducing the predicted substrate utilization time by 70%. Furthermore, the effects of cofactor balancing the engineered pentose utilization pathways were evaluated throughout the genome-scale metabolic network. This work not only provides new insights to the global network effects of cofactor balancing but also provides useful guidelines for engineering a recombinant yeast strain with cofactor balanced engineered pathways that efficiently co-utilizes pentose and hexose sugars for biofuels production. Experimental switching of cofactor usage in enzymes has been demonstrated, but is a time-consuming effort. Therefore, systems biology models that can predict the likely outcome of such strain engineering efforts are highly useful for motivating which efforts are likely to be worth the significant time investment.

  8. Genome-Scale Consequences of Cofactor Balancing in Engineered Pentose Utilization Pathways in Saccharomyces cerevisiae

    PubMed Central

    Ghosh, Amit; Zhao, Huimin; Price, Nathan D.

    2011-01-01

    Biofuels derived from lignocellulosic biomass offer promising alternative renewable energy sources for transportation fuels. Significant effort has been made to engineer Saccharomyces cerevisiae to efficiently ferment pentose sugars such as D-xylose and L-arabinose into biofuels such as ethanol through heterologous expression of the fungal D-xylose and L-arabinose pathways. However, one of the major bottlenecks in these fungal pathways is that the cofactors are not balanced, which contributes to inefficient utilization of pentose sugars. We utilized a genome-scale model of S. cerevisiae to predict the maximal achievable growth rate for cofactor balanced and imbalanced D-xylose and L-arabinose utilization pathways. Dynamic flux balance analysis (DFBA) was used to simulate batch fermentation of glucose, D-xylose, and L-arabinose. The dynamic models and experimental results are in good agreement for the wild type and for the engineered D-xylose utilization pathway. Cofactor balancing the engineered D-xylose and L-arabinose utilization pathways simulated an increase in ethanol batch production of 24.7% while simultaneously reducing the predicted substrate utilization time by 70%. Furthermore, the effects of cofactor balancing the engineered pentose utilization pathways were evaluated throughout the genome-scale metabolic network. This work not only provides new insights to the global network effects of cofactor balancing but also provides useful guidelines for engineering a recombinant yeast strain with cofactor balanced engineered pathways that efficiently co-utilizes pentose and hexose sugars for biofuels production. Experimental switching of cofactor usage in enzymes has been demonstrated, but is a time-consuming effort. Therefore, systems biology models that can predict the likely outcome of such strain engineering efforts are highly useful for motivating which efforts are likely to be worth the significant time investment. PMID:22076150

  9. Engineering a functional 1-deoxy-D-xylulose 5-phosphate (DXP) pathway in Saccharomyces cerevisiae.

    PubMed

    Kirby, James; Dietzel, Kevin L; Wichmann, Gale; Chan, Rossana; Antipov, Eugene; Moss, Nathan; Baidoo, Edward E K; Jackson, Peter; Gaucher, Sara P; Gottlieb, Shayin; LaBarge, Jeremy; Mahatdejkul, Tina; Hawkins, Kristy M; Muley, Sheela; Newman, Jack D; Liu, Pinghua; Keasling, Jay D; Zhao, Lishan

    2016-10-27

    Isoprenoids are used in many commercial applications and much work has gone into engineering microbial hosts for their production. Isoprenoids are produced either from acetyl-CoA via the mevalonate pathway or from pyruvate and glyceraldehyde 3-phosphate via the 1-deoxy-D-xylulose 5-phosphate (DXP) pathway. Saccharomyces cerevisiae exclusively utilizes the mevalonate pathway to synthesize native isoprenoids and in fact the alternative DXP pathway has never been found or successfully reconstructed in the eukaryotic cytosol. There are, however, several advantages to isoprenoid synthesis via the DXP pathway, such as a higher theoretical yield, and it has long been a goal to transplant the pathway into yeast. In this work, we investigate and address barriers to DXP pathway functionality in S. cerevisiae using a combination of synthetic biology, biochemistry and metabolomics. We report, for the first time, functional expression of the DXP pathway in S. cerevisiae. Under low aeration conditions, an engineered strain relying solely on the DXP pathway for isoprenoid biosynthesis achieved an endpoint biomass 80% of that of the same strain using the mevalonate pathway. Copyright © 2016. Published by Elsevier Inc.

  10. Engineering a functional 1-deoxy-D-xylulose 5-phosphate (DXP) pathway in Saccharomyces cerevisiae

    SciTech Connect

    Kirby, James; Dietzel, Kevin L.; Wichmann, Gale; Chan, Rossana; Antipov, Eugene; Moss, Nathan; Baidoo, Edward E. K.; Jackson, Peter; Gaucher, Sara P.; Gottlieb, Shayin; LaBarge, Jeremy; Mahatdejkul, Tina; Hawkins, Kristy M.; Muley, Sheela; Newman, Jack D.; Liu, Pinghua; Keasling, Jay D.; Zhao, Lishan

    2016-10-27

    Isoprenoids are made by all free-living organisms and range from essential metabolites like sterols and quinones to more complex compounds like pinene and rubber. They are used in many commercial applications and much work has gone into engineering microbial hosts for their production. Isoprenoids are produced either from acetyl-CoA via the mevalonate pathway or from pyruvate and glyceraldehyde 3-phosphate via the 1-deoxy-D-xylulose 5-phosphate (DXP) pathway. Saccharomyces cerevisiae exclusively utilizes the mevalonate pathway to synthesize native isoprenoids and in fact the alternative DXP pathway has never been found or successfully reconstructed in the eukaryotic cytosol. There are, however, several advantages to isoprenoid synthesis via the DXP pathway, such as a higher theoretical yield, and it has long been a goal to transplant the pathway into yeast. In this work, we investigate and address barriers to DXP pathway functionality in S. cerevisiae using a combination of synthetic biology, biochemistry and metabolomics. We report, for the first time, functional expression of the DXP pathway in S. cerevisiae. Under low aeration conditions, an engineered strain relying solely on the DXP pathway for isoprenoid biosynthesis achieved an endpoint biomass 80% of that of the same strain using the mevalonate pathway.

  11. Metabolic engineering of a synergistic pathway for n-butanol production in Saccharomyces cerevisiae

    PubMed Central

    Shi, Shuobo; Si, Tong; Liu, Zihe; Zhang, Hongfang; Ang, Ee Lui; Zhao, Huimin

    2016-01-01

    n-Butanol has several favourable properties as an advanced fuel or a platform chemical. Bio-based production of n-butanol is becoming increasingly important for sustainable chemical industry. Synthesis of n-butanol can be achieved via more than one metabolic pathway. Here we report the metabolic engineering of Saccharomyces cerevisiae to produce n-butanol through a synergistic pathway: the endogenous threonine pathway and the introduced citramalate pathway. Firstly, we characterized and optimized the endogenous threonine pathway; then, a citramalate synthase (CimA) mediated pathway was introduced to construct the synergistic pathway; next, the synergistic pathway was optimized by additional overexpression of relevant genes identified previously; meanwhile, the n-butanol production was also improved by overexpression of keto-acid decarboxylases (KDC) and alcohol dehydrogenase (ADH). After combining these strategies with co-expression of LEU1 (two copies), LEU4, LEU2 (two copies), LEU5, CimA, NFS1, ADH7 and ARO10*, we achieved an n-butanol production of 835 mg/L in the final engineered strain, which is almost 7-fold increase compared to the initial strain. Furthermore, the production showed a 3-fold of the highest titer ever reported in yeast. Therefore, the engineered yeast strain represents a promising alternative platform for n-butanol production. PMID:27161023

  12. Enhanced isoprene biosynthesis in Saccharomyces cerevisiae by engineering of the native acetyl-CoA and mevalonic acid pathways with a push-pull-restrain strategy.

    PubMed

    Lv, Xiaomei; Xie, Wenping; Lu, Wenqiang; Guo, Fei; Gu, Jiali; Yu, Hongwei; Ye, Lidan

    2014-09-30

    To explore the capacity of isoprene production in Saccharomyces cerevisiae, a rational push-pull-restrain strategy was proposed to engineer the mevalonic acid (MVA) and acetyl-CoA pathways. The strategy can be decomposed into the up-regulation of precursor supply in the acetyl-CoA module and the MVA pathway (push-strategy), increase of the isoprene branch flux (pull-strategy), and down-regulation of the competing pathway (restrain-strategy). Furthermore, to reduce the production cost arising from galactose addition and meanwhile maintain the high expression of Gal promoters, the galactose regulatory network was modulated by Gal80p deletion. Finally, the engineered strain YXM10-ispS-ispS could accumulate up to 37 mg/L isoprene (about 782-fold increase compared to the parental strain) under aerobic conditions with glycerol-sucrose as carbon source. In this way, a new potential platform for isoprene production was established via metabolic engineering of the yeast native pathways. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Neurotoxic mechanisms caused by the Alzheimer's disease-linked Swedish amyloid precursor protein mutation: oxidative stress, caspases, and the JNK pathway.

    PubMed

    Marques, Celio A; Keil, Uta; Bonert, Astrid; Steiner, Barbara; Haass, Christian; Muller, Walter E; Eckert, Anne

    2003-07-25

    Autosomal dominant forms of familial Alzheimer's disease (FAD) are caused by mutations of the amyloid precursor protein (APP) gene and by mutations of the genes encoding for presenilin 1 or presenilin 2. Simultaneously, evidence is provided that increased oxidative stress might play a crucial role in the rapid progression of the Swedish FAD. Here we investigated the effect of the Swedish double mutation (K670M/N671L) in the beta-amyloid precursor protein on oxidative stress-induced cell death mechanisms in PC12 cells. Western blot analysis and cleavage studies of caspase substrates revealed an elevated activity of the executor caspase 3 after treatment with hydrogen peroxide in cells containing the Swedish APP mutation. This elevated activity is the result of the enhanced activation of both intrinsic and extrinsic apoptosis pathways, including activation of caspase 2 and caspase 8. Furthermore, we observed an enhanced activation of JNK pathway and an attenuation of apoptosis by SP600125, a JNK inhibitor, through protection of mitochondrial dysfunction and reduction of caspase 9 activity. Our findings provide evidence that the massive neurodegeneration in early age of FAD patients could be a result of an increased vulnerability of neurons through activation of different apoptotic pathways as a consequence of elevated levels of oxidative stress.

  14. Rapid Optimization of Engineered Metabolic Pathways with Serine Integrase Recombinational Assembly (SIRA).

    PubMed

    Merrick, C A; Wardrope, C; Paget, J E; Colloms, S D; Rosser, S J

    2016-01-01

    Metabolic pathway engineering in microbial hosts for heterologous biosynthesis of commodity compounds and fine chemicals offers a cheaper, greener, and more reliable method of production than does chemical synthesis. However, engineering metabolic pathways within a microbe is a complicated process: levels of gene expression, protein stability, enzyme activity, and metabolic flux must be balanced for high productivity without compromising host cell viability. A major rate-limiting step in engineering microbes for optimum biosynthesis of a target compound is DNA assembly, as current methods can be cumbersome and costly. Serine integrase recombinational assembly (SIRA) is a rapid DNA assembly method that utilizes serine integrases, and is particularly applicable to rapid optimization of engineered metabolic pathways. Using six pairs of orthogonal attP and attB sites with different central dinucleotide sequences that follow SIRA design principles, we have demonstrated that ΦC31 integrase can be used to (1) insert a single piece of DNA into a substrate plasmid; (2) assemble three, four, and five DNA parts encoding the enzymes for functional metabolic pathways in a one-pot reaction; (3) generate combinatorial libraries of metabolic pathway constructs with varied ribosome binding site strengths or gene orders in a one-pot reaction; and (4) replace and add DNA parts within a construct through targeted postassembly modification. We explain the mechanism of SIRA and the principles behind designing a SIRA reaction. We also provide protocols for making SIRA reaction components and practical methods for applying SIRA to rapid optimization of metabolic pathways.

  15. Using decision pathway surveys to inform climate engineering policy choices

    PubMed Central

    Gregory, Robin; Satterfield, Terre; Hasell, Ariel

    2016-01-01

    Over the coming decades citizens living in North America and Europe will be asked about a variety of new technological and behavioral initiatives intended to mitigate the worst impacts of climate change. A common approach to public input has been surveys whereby respondents’ attitudes about climate change are explained by individuals’ demographic background, values, and beliefs. In parallel, recent deliberative research seeks to more fully address the complex value tradeoffs linked to novel technologies and difficult ethical questions that characterize leading climate mitigation alternatives. New methods such as decision pathway surveys may offer important insights for policy makers by capturing much of the depth and reasoning of small-group deliberations while meeting standard survey goals including large-sample stakeholder engagement. Pathway surveys also can help participants to deepen their factual knowledge base and arrive at a more complete understanding of their own values as they apply to proposed policy alternatives. The pathway results indicate more fully the conditional and context-specific nature of support for several “upstream” climate interventions, including solar radiation management techniques and carbon dioxide removal technologies. PMID:26729883

  16. Engineering key components in a synthetic eukaryotic signal transduction pathway

    PubMed Central

    Antunes, Mauricio S; Morey, Kevin J; Tewari-Singh, Neera; Bowen, Tessa A; Smith, J Jeff; Webb, Colleen T; Hellinga, Homme W; Medford, June I

    2009-01-01

    Signal transduction underlies how living organisms detect and respond to stimuli. A goal of synthetic biology is to rewire natural signal transduction systems. Bacteria, yeast, and plants sense environmental aspects through conserved histidine kinase (HK) signal transduction systems. HK protein components are typically comprised of multiple, relatively modular, and conserved domains. Phosphate transfer between these components may exhibit considerable cross talk between the otherwise apparently linear pathways, thereby establishing networks that integrate multiple signals. We show that sequence conservation and cross talk can extend across kingdoms and can be exploited to produce a synthetic plant signal transduction system. In response to HK cross talk, heterologously expressed bacterial response regulators, PhoB and OmpR, translocate to the nucleus on HK activation. Using this discovery, combined with modification of PhoB (PhoB-VP64), we produced a key component of a eukaryotic synthetic signal transduction pathway. In response to exogenous cytokinin, PhoB-VP64 translocates to the nucleus, binds a synthetic PlantPho promoter, and activates gene expression. These results show that conserved-signaling components can be used across kingdoms and adapted to produce synthetic eukaryotic signal transduction pathways. PMID:19455134

  17. Using decision pathway surveys to inform climate engineering policy choices.

    PubMed

    Gregory, Robin; Satterfield, Terre; Hasell, Ariel

    2016-01-19

    Over the coming decades citizens living in North America and Europe will be asked about a variety of new technological and behavioral initiatives intended to mitigate the worst impacts of climate change. A common approach to public input has been surveys whereby respondents' attitudes about climate change are explained by individuals' demographic background, values, and beliefs. In parallel, recent deliberative research seeks to more fully address the complex value tradeoffs linked to novel technologies and difficult ethical questions that characterize leading climate mitigation alternatives. New methods such as decision pathway surveys may offer important insights for policy makers by capturing much of the depth and reasoning of small-group deliberations while meeting standard survey goals including large-sample stakeholder engagement. Pathway surveys also can help participants to deepen their factual knowledge base and arrive at a more complete understanding of their own values as they apply to proposed policy alternatives. The pathway results indicate more fully the conditional and context-specific nature of support for several "upstream" climate interventions, including solar radiation management techniques and carbon dioxide removal technologies.

  18. [Genetic engineering of microbial metabolic pathway for production of advanced biodiesel].

    PubMed

    Fu, Ai-Si; Liu, Ran; Zhu, Jing; Liu, Tian-Gang

    2011-10-01

    Biodiesel is a renewable biofuel and alternative diesel, but the first generation of biodiesel, which has many defects in properties and in production methods, mainly comes from the chemical transesterification of triglyceride from plant oil. With the fast development in the field of synthetic biology and metabolic engineer-ing, the researchers can choose suitable microbes and engineer its metabolic pathways, such as fatty acid bio-synthesis pathway and isoprenoid biosynthesis pathway, to directly produce the second generation of advanced biodiesel---long chain hydrocarbons, which have better properties and quality using the newest biotechnology techniques. In this review, we summarized the research progress about microbial production of advanced bio-diesel and also pointed the deficiencies and future direction in this new field.

  19. Metabolic Engineering of the Purine Pathway for Riboflavin Production in Ashbya gossypii†

    PubMed Central

    Jiménez, Alberto; Santos, María A.; Pompejus, Markus; Revuelta, José L.

    2005-01-01

    Purine nucleotides are essential precursors for living organisms because they are involved in many important processes, such as nucleic acid synthesis, energy supply, and the biosynthesis of several amino acids and vitamins such as riboflavin. GTP is the immediate precursor for riboflavin biosynthesis, and its formation through the purine pathway is subject to several regulatory mechanisms in different steps. Extracellular purines repress the transcription of most genes required for de novo ATP and GTP synthesis. Additionally, three enzymes of the pathway, phosphoribosyl pyrophosphate (PRPP) amidotransferase, adenylosuccinate synthetase, and IMP dehydrogenase, are subject to feedback inhibition by their end products. Here we report the characterization and manipulation of the committed step in the purine pathway of the riboflavin overproducer Ashbya gossypii. We report that phosphoribosylamine biosynthesis in A. gossypii is negatively regulated at the transcriptional level by extracellular adenine. Furthermore, we show that ATP and GTP exert a strong inhibitory effect on the PRPP amidotransferase from A. gossypii. We constitutively overexpressed the AgADE4 gene encoding PRPP amidotransferase in A. gossypii, thereby abolishing the adenine-mediated transcriptional repression. In addition, we replaced the corresponding residues (aspartic acid310, lysine333, and alanine417) that have been described to be important for PRPP amidotransferase feedback inhibition in other organisms by site-directed mutagenesis. With these manipulations, we managed to enhance metabolic flow through the purine pathway and to increase the production of riboflavin in the triple mutant strain 10-fold (228 mg/liter). PMID:16204483

  20. Genetic engineering, high resolution mass spectrometry and nuclear magnetic resonance spectroscopy elucidate the bikaverin biosynthetic pathway in Fusarium fujikuroi.

    PubMed

    Arndt, Birgit; Studt, Lena; Wiemann, Philipp; Osmanov, Helena; Kleigrewe, Karin; Köhler, Jens; Krug, Isabel; Tudzynski, Bettina; Humpf, Hans-Ulrich

    2015-11-01

    Secondary metabolites of filamentous fungi can be highly bioactive, ranging from antibiotic to cancerogenic properties. In this study we were able to identify a new, yet unknown metabolite produced by Fusarium fujikuroi, an ascomycetous rice pathogen. With the help of genomic engineering and high-performance liquid chromatography (HPLC) coupled to high resolution mass spectrometry (HRMS) followed by isolation and detailed structure elucidation, the new substance could be designated as an unknown bikaverin precursor, missing two methyl- and one hydroxy group, hence named oxo-pre-bikaverin. Though the bikaverin gene cluster has been extensively studied in the past, elucidation of the biosynthetic pathway remained elusive due to a negative feedback loop that regulates the genes within the cluster. To decipher the bikaverin biosynthetic pathway and to overcome these negative regulation circuits, the structural cluster genes BIK2 and BIK3 were overexpressed independently in the ΔΔBIK2/BIK3+OE::BIK1 mutant background by using strong constitutive promoters. Using the software tool MZmine 2, the metabolite profile of the generated mutants obtained by HPLC-HRMS was compared, revealing further intermediates.

  1. Proteome Profiling Reveals Potential Toxicity and Detoxification Pathways Following Exposure of BEAS-2B Cells to Engineered Titanium Dioxide Nanoparticles

    EPA Science Inventory

    Oxidative stress is known to play important roles in engineered nanomaterial induced cellular toxicity. However, the proteins and signaling pathways associated with the engineered nanomaterial mediated oxidative stress and toxicity are largely unknown. To identify these toxicity ...

  2. Proteome Profiling Reveals Potential Toxicity and Detoxification Pathways Following Exposure of BEAS-2B Cells to Engineered Titanium Dioxide Nanoparticles

    EPA Science Inventory

    Oxidative stress is known to play important roles in engineered nanomaterial induced cellular toxicity. However, the proteins and signaling pathways associated with the engineered nanomaterial mediated oxidative stress and toxicity are largely unknown. To identify these toxicity ...

  3. Photosynthetic biomaterials: a pathway towards autotrophic tissue engineering.

    PubMed

    Schenck, Thilo Ludwig; Hopfner, Ursula; Chávez, Myra Noemi; Machens, Hans-Günther; Somlai-Schweiger, Ian; Giunta, Riccardo Enzo; Bohne, Alexandra Viola; Nickelsen, Jörg; Allende, Miguel L; Egaña, José Tomás

    2015-03-01

    Engineered tissues are highly limited by poor vascularization in vivo, leading to hypoxia. In order to overcome this challenge, we propose the use of photosynthetic biomaterials to provide oxygen. Since photosynthesis is the original source of oxygen for living organisms, we suggest that this could be a novel approach to provide a constant source of oxygen supply independently of blood perfusion. In this study we demonstrate that bioartificial scaffolds can be loaded with a solution containing the photosynthetic microalgae Chlamydomonas reinhardtii, showing high biocompatibility and photosynthetic activity in vitro. Furthermore, when photosynthetic biomaterials were engrafted in a mouse full skin defect, we observed that the presence of the microalgae did not trigger a native immune response in the host. Moreover, the analyses showed that the algae survived for at least 5 days in vivo, generating chimeric tissues comprised of algae and murine cells. The results of this study represent a crucial step towards the establishment of autotrophic tissue engineering approaches and suggest the use of photosynthetic cells to treat a broad spectrum of hypoxic conditions. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  4. Analysis and Engineering of Metabolic Pathway Fluxes in Corynebacterium glutamicum

    NASA Astrophysics Data System (ADS)

    Wittmann, Christoph

    The Gram-positive soil bacterium Corynebacterium glutamicum was discovered as a natural overproducer of glutamate about 50 years ago. Linked to the steadily increasing economical importance of this microorganism for production of glutamate and other amino acids, the quest for efficient production strains has been an intense area of research during the past few decades. Efficient production strains were created by applying classical mutagenesis and selection and especially metabolic engineering strategies with the advent of recombinant DNA technology. Hereby experimental and computational approaches have provided fascinating insights into the metabolism of this microorganism and directed strain engineering. Today, C. glutamicum is applied to the industrial production of more than 2 million tons of amino acids per year. The huge achievements in recent years, including the sequencing of the complete genome and efficient post genomic approaches, now provide the basis for a new, fascinating era of research - analysis of metabolic and regulatory properties of C. glutamicum on a global scale towards novel and superior bioprocesses.

  5. Xylan catabolism is improved by blending bioprospecting and metabolic pathway engineering in Saccharomyces cerevisiae.

    PubMed

    Lee, Sun-Mi; Jellison, Taylor; Alper, Hal S

    2015-04-01

    Complete utilization of all available carbon sources in lignocellulosic biomass still remains a challenge in engineering Saccharomyces cerevisiae. Even with efficient heterologous xylose catabolic pathways, S. cerevisiae is unable to utilize xylose in lignocellulosic biomass unless xylan is depolymerized to xylose. Here we demonstrate that a blended bioprospecting approach along with pathway engineering and evolutionary engineering can be used to improve xylan catabolism in S. cerevisiae. Specifically, we perform whole genome sequencing-based bioprospecting of a strain with remarkable pentose catabolic potential that we isolated and named Ustilago bevomyces. The heterologous expression of xylan catabolic genes enabled S. cerevisiae to grow on xylan as a single carbon source in minimal medium. A combination of bioprospecting and metabolic pathway evolution demonstrated that the xylan catabolic pathway could be further improved. Ultimately, engineering efforts were able to achieve xylan conversion into ethanol of up to 0.22 g/L on minimal medium compositions with xylan. This pathway provides a novel starting point for improving lignocellulosic conversion by yeast.

  6. Novel pathway engineering design of the anaerobic central metabolic pathway in Escherichia coli to increase succinate yield and productivity.

    PubMed

    Sánchez, Ailen M; Bennett, George N; San, Ka-Yiu

    2005-05-01

    A novel in vivo method of producing succinate has been developed. A genetically engineered Escherichia coli strain has been constructed to meet the NADH requirement and carbon demand to produce high quantities and yield of succinate by strategically implementing metabolic pathway alterations. Currently, the maximum theoretical succinate yield under strictly anaerobic conditions through the fermentative succinate biosynthesis pathway is limited to one mole per mole of glucose due to NADH limitation. The implemented strategic design involves the construction of a dual succinate synthesis route, which diverts required quantities of NADH through the traditional fermentative pathway and maximizes the carbon converted to succinate by balancing the carbon flux through the fermentative pathway and the glyoxylate pathway (which has less NADH requirement). The synthesis of succinate uses a combination of the two pathways to balance the NADH. Consequently, experimental results indicated that these combined pathways gave the most efficient conversion of glucose to succinate with the highest yield using only 1.25 moles of NADH per mole of succinate in contrast to the sole fermentative pathway, which uses 2 moles of NADH per mole of succinate. A recombinant E. coli strain, SBS550MG, was created by deactivating adhE, ldhA and ack-pta from the central metabolic pathway and by activating the glyoxylate pathway through the inactivation of iclR, which encodes a transcriptional repressor protein of the glyoxylate bypass. The inactivation of these genes in SBS550MG increased the succinate yield from glucose to about 1.6 mol/mol with an average anaerobic productivity rate of 10 mM/h (approximately 0.64 mM/h-OD600). This strain is capable of fermenting high concentrations of glucose in less than 24 h. Additional derepression of the glyxoylate pathway by inactivation of arcA, leading to a strain designated as SBS660MG, did not significantly increase the succinate yield and it decreased

  7. Channeling in native microbial pathways: Implications and challenges for metabolic engineering.

    PubMed

    Abernathy, Mary H; He, Lian; Tang, Yinjie J

    2017-11-01

    Intracellular enzymes can be organized into a variety of assemblies, shuttling intermediates from one active site to the next. Eukaryotic compartmentalization within mitochondria and peroxisomes and substrate tunneling within multi-enzyme complexes have been well recognized. Intriguingly, the central pathways in prokaryotes may also form extensive channels, including the heavily branched glycolysis pathway. In vivo channeling through cascade enzymes is difficult to directly measure, but can be inferred from in vitro tests, reaction thermodynamics, transport/reaction modeling, analysis of molecular diffusion and protein interactions, or steady state/dynamic isotopic labeling. Channeling presents challenges but also opportunities for metabolic engineering applications. It rigidifies fluxes in native pathways by trapping or excluding metabolites for bioconversions, causing substrate catabolite repressions or inferior efficiencies in engineered pathways. Channeling is an overlooked regulatory mechanism used to control flux responses under environmental/genetic perturbations. The heterogeneous distribution of intracellular enzymes also confounds kinetic modeling and multiple-omics analyses. Understanding the scope and mechanisms of channeling in central pathways may improve our interpretation of robust fluxomic topology throughout metabolic networks and lead to better design and engineering of heterologous pathways. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Engineering Emergency: African Americans and Hispanics Lack Pathways to Engineering. Vital Signs: Reports on the Condition of STEM Learning in the U.S.

    ERIC Educational Resources Information Center

    Change the Equation, 2014

    2014-01-01

    A quality education that leads to good jobs offers a reliable pathway to economic security, yet the first step on that pathway remains inaccessible to far too many Americans, especially Americans of color. Nowhere is this inequity more apparent than in engineering. On average, people with engineering bachelor's degrees earn higher salaries than…

  9. Engineering of Metabolic Pathways by Artificial Enzyme Channels

    PubMed Central

    Pröschel, Marlene; Detsch, Rainer; Boccaccini, Aldo R.; Sonnewald, Uwe

    2015-01-01

    Application of industrial enzymes for production of valuable chemical compounds has greatly benefited from recent developments in Systems and Synthetic Biology. Both, in vivo and in vitro systems have been established, allowing conversion of simple into complex compounds. Metabolic engineering in living cells needs to be balanced which is achieved by controlling gene expression levels, translation, scaffolding, compartmentation, and flux control. In vitro applications are often hampered by limited protein stability/half-life and insufficient rates of substrate conversion. To improve stability and catalytic activity, proteins are post-translationally modified and arranged in artificial metabolic channels. Within the review article, we will first discuss the supramolecular organization of enzymes in living systems and second summarize current and future approaches to design artificial metabolic channels by additive manufacturing for the efficient production of desired products. PMID:26557643

  10. Genetic engineering of the complete carotenoid pathway towards enhanced astaxanthin formation in Xanthophyllomyces dendrorhous starting from a high-yield mutant.

    PubMed

    Gassel, Sören; Breitenbach, Jürgen; Sandmann, Gerhard

    2014-01-01

    The yeast Xanthophyllomyces dendrorhous is one of the rare organisms which can synthesize the commercially interesting carotenoid astaxanthin. However, astaxanthin yield in wild-type and also in classical mutants is still too low for an attractive bioprocess. Therefore, we combined classical mutagenesis with genetic engineering of the complete pathway covering improved precursor supply for carotenogenesis, enhanced metabolite flow into the pathway, and efficient conversion of intermediates into the desired end product astaxanthin. We also constructed new transformation plasmids for the stepwise expression of the genes of 3-hydroxymethyl-3-glutaryl coenzyme A reductase, geranylgeranyl pyrophosphate synthase, phytoene synthase/lycopene cyclase, and astaxanthin synthase. Starting from two mutants with a 15-fold higher astaxanthin, we obtained transformants with an additional 6-fold increase in the final step of pathway engineering. Thus, a maximum astaxanthin content of almost 9 mg per g dry weight was reached in shaking cultures. Under optimized fermenter conditions, astaxanthin production with these engineered transformants should be comparable to Haematococcus pluvialis, the leading commercial producer of natural astaxanthin.

  11. Hexameric assembly of the bifunctional methylerythritol 2,4-cyclodiphosphate synthase and protein-protein associations in the deoxy-xylulose-dependent pathway of isoprenoid precursor biosynthesis.

    PubMed

    Gabrielsen, Mads; Bond, Charles S; Hallyburton, Irene; Hecht, Stefan; Bacher, Adelbert; Eisenreich, Wolfgang; Rohdich, Felix; Hunter, William N

    2004-12-10

    The bifunctional methylerythritol 4-phosphate cytidylyltransferase methylerythritol 2,4-cyclodiphosphate synthase (IspDF) is unusual in that it catalyzes nonconsecutive reactions in the 1-deoxy-D-xylulose 5-phosphate (DOXP) pathway of isoprenoid precursor biosynthesis. The crystal structure of IspDF from the bacterial pathogen Campylobacter jejuni reveals an elongated hexamer with D3 symmetry compatible with the dimeric 2C-methyl-D-erythritol-4-phosphate cytidylyltransferase and trimeric 2C-methyl-D-erythritol-2,4-cyclodiphosphate synthase monofunctional enzymes. Complex formation of IspDF with 4-diphosphocytidyl-2C-methyl-D-erythritol kinase (IspE), the intervening enzyme activity in the pathway, has been observed in solution for the enzymes from C. jejuni and Agrobacterium tumefaciens. The monofunctional enzymes (2C-methyl-D-erythritol-4-phosphate cytidylyltransferase, IspE, and 2C-methyl-D-erythritol-2,4-cyclodiphosphate synthase) involved in the DOXP biosynthetic pathway of Escherichia coli also show physical associations. We propose that complex formation of the three enzymes at the core of the DOXP pathway can produce an assembly localizing 18 catalytic centers for the early stages of isoprenoid biosynthesis.

  12. Production of Aromatic Compounds by Metabolically Engineered Escherichia coli with an Expanded Shikimate Pathway

    PubMed Central

    Yamanaka, Hayato; Moriyoshi, Kunihiko; Ohmoto, Takashi; Sakai, Kiyofumi

    2012-01-01

    Escherichia coli was metabolically engineered by expanding the shikimate pathway to generate strains capable of producing six kinds of aromatic compounds, phenyllactic acid, 4-hydroxyphenyllactic acid, phenylacetic acid, 4-hydroxyphenylacetic acid, 2-phenylethanol, and 2-(4-hydroxyphenyl)ethanol, which are used in several fields of industries including pharmaceutical, agrochemical, antibiotic, flavor industries, etc. To generate strains that produce phenyllactic acid and 4-hydroxyphenyllactic acid, the lactate dehydrogenase gene (ldhA) from Cupriavidus necator was introduced into the chromosomes of phenylalanine and tyrosine overproducers, respectively. Both the phenylpyruvate decarboxylase gene (ipdC) from Azospirillum brasilense and the phenylacetaldehyde dehydrogenase gene (feaB) from E. coli were introduced into the chromosomes of phenylalanine and tyrosine overproducers to generate phenylacetic acid and 4-hydroxyphenylacetic acid producers, respectively, whereas ipdC and the alcohol dehydrogenase gene (adhC) from Lactobacillus brevis were introduced to generate 2-phenylethanol and 2-(4-hydroxyphenyl)ethanol producers, respectively. Expression of the respective introduced genes was controlled by the T7 promoter. While generating the 2-phenylethanol and 2-(4-hydroxyphenyl)ethanol producers, we found that produced phenylacetaldehyde and 4-hydroxyphenylacetaldehyde were automatically reduced to 2-phenylethanol and 2-(4-hydroxyphenyl)ethanol by endogenous aldehyde reductases in E. coli encoded by the yqhD, yjgB, and yahK genes. Cointroduction and cooverexpression of each gene with ipdC in the phenylalanine and tyrosine overproducers enhanced the production of 2-phenylethanol and 2-(4-hydroxyphenyl)ethanol from glucose. Introduction of the yahK gene yielded the most efficient production of both aromatic alcohols. During the production of 2-phenylethanol, 2-(4-hydroxyphenyl)ethanol, phenylacetic acid, and 4-hydroxyphenylacetic acid, accumulation of some by

  13. Engineering a Streptomyces coelicolor biosynthesis pathway into Escherichia coli for high yield triglyceride production.

    PubMed

    Comba, Santiago; Sabatini, Martín; Menendez-Bravo, Simón; Arabolaza, Ana; Gramajo, Hugo

    2014-01-01

    Microbial lipid production represents a potential alternative feedstock for the biofuel and oleochemical industries. Since Escherichia coli exhibits many genetic, technical, and biotechnological advantages over native oleaginous bacteria, we aimed to construct a metabolically engineered E. coli strain capable of accumulating high levels of triacylglycerol (TAG) and evaluate its neutral lipid productivity during high cell density fed-batch fermentations. The Streptomyces coelicolor TAG biosynthesis pathway, defined by the acyl-CoA:diacylglycerol acyltransferase (DGAT) Sco0958 and the phosphatidic acid phosphatase (PAP) Lppβ, was successfully reconstructed in an E. coli diacylglycerol kinase (dgkA) mutant strain. TAG production in this genetic background was optimized by increasing the levels of the TAG precursors, diacylglycerol and long-chain acyl-CoAs. For this we carried out a series of stepwise optimizations of the chassis by 1) fine-tuning the expression of the heterologous SCO0958 and lppβ genes, 2) overexpression of the S. coelicolor acetyl-CoA carboxylase complex, and 3) mutation of fadE, the gene encoding for the acyl-CoA dehydrogenase that catalyzes the first step of the β-oxidation cycle in E. coli. The best producing strain, MPS13/pET28-0958-ACC/pBAD-LPPβ rendered a cellular content of 4.85% cell dry weight (CDW) TAG in batch cultivation. Process optimization of fed-batch fermentation in a 1-L stirred-tank bioreactor resulted in cultures with an OD600nm of 80 and a product titer of 722.1 mg TAG L(-1) at the end of the process. This study represents the highest reported fed-batch productivity of TAG reached by a model non-oleaginous bacterium. The organism used as a platform was an E. coli BL21 derivative strain containing a deletion in the dgkA gene and containing the TAG biosynthesis genes from S. coelicolor. The genetic studies carried out with this strain indicate that diacylglycerol (DAG) availability appears to be one of the main limiting

  14. Production of aromatic compounds by metabolically engineered Escherichia coli with an expanded shikimate pathway.

    PubMed

    Koma, Daisuke; Yamanaka, Hayato; Moriyoshi, Kunihiko; Ohmoto, Takashi; Sakai, Kiyofumi

    2012-09-01

    Escherichia coli was metabolically engineered by expanding the shikimate pathway to generate strains capable of producing six kinds of aromatic compounds, phenyllactic acid, 4-hydroxyphenyllactic acid, phenylacetic acid, 4-hydroxyphenylacetic acid, 2-phenylethanol, and 2-(4-hydroxyphenyl)ethanol, which are used in several fields of industries including pharmaceutical, agrochemical, antibiotic, flavor industries, etc. To generate strains that produce phenyllactic acid and 4-hydroxyphenyllactic acid, the lactate dehydrogenase gene (ldhA) from Cupriavidus necator was introduced into the chromosomes of phenylalanine and tyrosine overproducers, respectively. Both the phenylpyruvate decarboxylase gene (ipdC) from Azospirillum brasilense and the phenylacetaldehyde dehydrogenase gene (feaB) from E. coli were introduced into the chromosomes of phenylalanine and tyrosine overproducers to generate phenylacetic acid and 4-hydroxyphenylacetic acid producers, respectively, whereas ipdC and the alcohol dehydrogenase gene (adhC) from Lactobacillus brevis were introduced to generate 2-phenylethanol and 2-(4-hydroxyphenyl)ethanol producers, respectively. Expression of the respective introduced genes was controlled by the T7 promoter. While generating the 2-phenylethanol and 2-(4-hydroxyphenyl)ethanol producers, we found that produced phenylacetaldehyde and 4-hydroxyphenylacetaldehyde were automatically reduced to 2-phenylethanol and 2-(4-hydroxyphenyl)ethanol by endogenous aldehyde reductases in E. coli encoded by the yqhD, yjgB, and yahK genes. Cointroduction and cooverexpression of each gene with ipdC in the phenylalanine and tyrosine overproducers enhanced the production of 2-phenylethanol and 2-(4-hydroxyphenyl)ethanol from glucose. Introduction of the yahK gene yielded the most efficient production of both aromatic alcohols. During the production of 2-phenylethanol, 2-(4-hydroxyphenyl)ethanol, phenylacetic acid, and 4-hydroxyphenylacetic acid, accumulation of some by

  15. A search engine to identify pathway genes from expression data on multiple organisms

    PubMed Central

    Chen, Chunnuan; Weirauch, Matthew T; Powell, Corey C; Zambon, Alexander C; Stuart, Joshua M

    2007-01-01

    Background The completion of several genome projects showed that most genes have not yet been characterized, especially in multicellular organisms. Although most genes have unknown functions, a large collection of data is available describing their transcriptional activities under many different experimental conditions. In many cases, the coregulatation of a set of genes across a set of conditions can be used to infer roles for genes of unknown function. Results We developed a search engine, the Multiple-Species Gene Recommender (MSGR), which scans gene expression datasets from multiple organisms to identify genes that participate in a genetic pathway. The MSGR takes a query consisting of a list of genes that function together in a genetic pathway from one of six organisms: Homo sapiens, Drosophila melanogaster, Caenorhabditis elegans, Saccharomyces cerevisiae, Arabidopsis thaliana, and Helicobacter pylori. Using a probabilistic method to merge searches, the MSGR identifies genes that are significantly coregulated with the query genes in one or more of those organisms. The MSGR achieves its highest accuracy for many human pathways when searches are combined across species. We describe specific examples in which new genes were identified to be involved in a neuromuscular signaling pathway and a cell-adhesion pathway. Conclusion The search engine can scan large collections of gene expression data for new genes that are significantly coregulated with a pathway of interest. By integrating searches across organisms, the MSGR can identify pathway members whose coregulation is either ancient or newly evolved. PMID:17477880

  16. Studies on xylitol production by metabolic pathway engineered Debaryomyces hansenii.

    PubMed

    Pal, Suksham; Choudhary, Vikas; Kumar, Anil; Biswas, Dipanwita; Mondal, Alok K; Sahoo, Debendra K

    2013-11-01

    Debaryomyces hansenii is one of the most promising natural xylitol producers. As the conversion of xylitol to xylulose mediated by NAD(+) cofactor dependent xylitol dehydrogenase (XDH) reduces its xylitol yield, xylitol dehydrogenase gene (DhXDH)-disrupted mutant of D. hansenii having potential for xylose assimilating pathway stopping at xylitol, was used to study the effects of co-substrates, xylose and oxygen availability on xylitol production. Compared to low cell growth and xylitol production in cultivation medium containing xylose as the only substrate, XDH disrupted mutants grown on glycerol as co-substrate accumulated 2.5-fold increased xylitol concentration over those cells grown on glucose as co-substrate. The oxygen availability, in terms of volumetric oxygen transfer coefficient, kLa (23.86-87.96 h(-1)), affected both xylitol productivity and yield, though the effect is more pronounced on the former. The addition of extra xylose at different phases of xylitol fermentation did not enhance xylitol productivity under experimental conditions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Metabolic engineering of cottonseed oil biosynthesis pathway via RNA interference

    PubMed Central

    Xu, Zhongping; Li, Jingwen; Guo, Xiaoping; Jin, Shuangxia; Zhang, Xianlong

    2016-01-01

    Cottonseed oil is recognized as an important oil in food industry for its unique characters: low flavor reversion and the high level of antioxidants (VitaminE) as well as unsaturated fatty acid. However, the cottonseed oil content of cultivated cotton (Gossypium hirsutum) is only around 20%. In this study, we modified the accumulation of oils by the down-regulation of phosphoenolpyruvate carboxylase 1 (GhPEPC1) via RNA interference in transgenic cotton plants. The qRT-PCR and enzyme activity assay revealed that the transcription and expression of GhPEPC1 was dramatically down-regulated in transgenic lines. Consequently, the cottonseed oil content in several transgenic lines showed a significant (P < 0.01) increase (up to 16.7%) without obvious phenotypic changes under filed condition when compared to the control plants. In order to elucidate the molecular mechanism of GhPEPC1 in the regulation of seed oil content, we quantified the expression of the carbon metabolism related genes of transgenic GhPEPC1 RNAi lines by transcriptome analysis. This analysis revealed the decrease of GhPEPC1 expression led to the increase expression of triacylglycerol biosynthesis-related genes, which eventually contributed to the lipid biosynthesis in cotton. This result provides a valuable information for cottonseed oil biosynthesis pathway and shows the potential of creating high cottonseed oil germplasm by RNAi strategy for cotton breeding. PMID:27620452

  18. Engineering the central biosynthetic and secondary metabolic pathways of Pseudomonas aeruginosa strain PA1201 to improve phenazine-1-carboxylic acid production.

    PubMed

    Jin, Kaiming; Zhou, Lian; Jiang, Haixia; Sun, Shuang; Fang, Yunling; Liu, Jianhua; Zhang, Xuehong; He, Ya-Wen

    2015-11-01

    The secondary metabolite phenazine-1-carboxylic acid (PCA) is an important component of the newly registered biopesticide Shenqinmycin. We used a combined method involving gene, promoter, and protein engineering to modify the central biosynthetic and secondary metabolic pathways in the PCA-producing Pseudomonas aeruginosa strain PA1201. The PCA yield of the resulting strain PA-IV was increased 54.6-fold via the following strategies: (1) blocking PCA conversion and enhancing PCA efflux pumping; (2) increasing metabolic flux towards the PCA biosynthetic pathway through the over-production of two DAHP synthases and blocking the synthesis of 21 secondary metabolites; (3) increasing the PCA precursor supply through the engineering of five chorismate-utilizing enzymes; (4) engineering the promoters of two PCA biosynthetic gene clusters. Strain PA-IV produced 9882 mg/L PCA in fed-batch fermentation, which is twice as much as that produced by the current industrial strain. Strain PA-IV was also genetically stable and comparable to Escherichia coli in cytotoxicity. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  19. Development and application of efficient pathway enumeration algorithms for metabolic engineering applications.

    PubMed

    Liu, F; Vilaça, P; Rocha, I; Rocha, M

    2015-02-01

    Metabolic Engineering (ME) aims to design microbial cell factories towards the production of valuable compounds. In this endeavor, one important task relates to the search for the most suitable heterologous pathway(s) to add to the selected host. Different algorithms have been developed in the past towards this goal, following distinct approaches spanning constraint-based modeling, graph-based methods and knowledge-based systems based on chemical rules. While some of these methods search for pathways optimizing specific objective functions, here the focus will be on methods that address the enumeration of pathways that are able to convert a set of source compounds into desired targets and their posterior evaluation according to different criteria. Two pathway enumeration algorithms based on (hyper)graph-based representations are selected as the most promising ones and are analyzed in more detail: the Solution Structure Generation and the Find Path algorithms. Their capabilities and limitations are evaluated when designing novel heterologous pathways, by applying these methods on three case studies of synthetic ME related to the production of non-native compounds in E. coli and S. cerevisiae: 1-butanol, curcumin and vanillin. Some targeted improvements are implemented, extending both methods to address limitations identified that impair their scalability, improving their ability to extract potential pathways over large-scale databases. In all case-studies, the algorithms were able to find already described pathways for the production of the target compounds, but also alternative pathways that can represent novel ME solutions after further evaluation.

  20. Improving Metabolic Pathway Efficiency by Statistical Model-Based Multivariate Regulatory Metabolic Engineering.

    PubMed

    Xu, Peng; Rizzoni, Elizabeth Anne; Sul, Se-Yeong; Stephanopoulos, Gregory

    2017-01-20

    Metabolic engineering entails target modification of cell metabolism to maximize the production of a specific compound. For empowering combinatorial optimization in strain engineering, tools and algorithms are needed to efficiently sample the multidimensional gene expression space and locate the desirable overproduction phenotype. We addressed this challenge by employing design of experiment (DoE) models to quantitatively correlate gene expression with strain performance. By fractionally sampling the gene expression landscape, we statistically screened the dominant enzyme targets that determine metabolic pathway efficiency. An empirical quadratic regression model was subsequently used to identify the optimal gene expression patterns of the investigated pathway. As a proof of concept, our approach yielded the natural product violacein at 525.4 mg/L in shake flasks, a 3.2-fold increase from the baseline strain. Violacein production was further increased to 1.31 g/L in a controlled benchtop bioreactor. We found that formulating discretized gene expression levels into logarithmic variables (Linlog transformation) was essential for implementing this DoE-based optimization procedure. The reported methodology can aid multivariate combinatorial pathway engineering and may be generalized as a standard procedure for accelerating strain engineering and improving metabolic pathway efficiency.

  1. ePathBrick: a synthetic biology platform for engineering metabolic pathways in E. coli.

    PubMed

    Xu, Peng; Vansiri, Amerin; Bhan, Namita; Koffas, Mattheos A G

    2012-07-20

    Harnessing cell factories for producing biofuel and pharmaceutical molecules has stimulated efforts to develop novel synthetic biology tools customized for modular pathway engineering and optimization. Here we report the development of a set of vectors compatible with BioBrick standards and its application in metabolic engineering. The engineered ePathBrick vectors comprise four compatible restriction enzyme sites allocated on strategic positions so that different regulatory control signals can be reused and manipulation of expression cassette can be streamlined. Specifically, these vectors allow for fine-tuning gene expression by integrating multiple transcriptional activation or repression signals into the operator region. At the same time, ePathBrick vectors support the modular assembly of pathway components and combinatorial generation of pathway diversities with three distinct configurations. We also demonstrated the functionality of a seven-gene pathway (~9 Kb) assembled on one single ePathBrick vector. The ePathBrick vectors presented here provide a versatile platform for rapid design and optimization of metabolic pathways in E. coli.

  2. Improved succinate production in Corynebacterium glutamicum by engineering glyoxylate pathway and succinate export system.

    PubMed

    Zhu, Nianqing; Xia, Huihua; Yang, Jiangang; Zhao, Xueming; Chen, Tao

    2014-03-01

    A dual route for anaerobic succinate production was engineered into Corynebacterium glutamicum. The glyoxylate pathway was reconstructed by overexpressing isocitrate lyase, malate synthase and citrate synthase. The engineered strain produced succinate with a yield of 1.34 mol (mol glucose)(-1). Further overexpression of succinate exporter, SucE, increased succinate yield to 1.43 mol (mol glucose)(-1). Metabolic flux analysis revealed that the glyoxylate pathway was further activated by engineering succinate export system. Using an anaerobic fed-batch fermentation process, the final strain produced 926 mM succinate (= 109 g l(-1)) with an overall volumetric productivity of 9.4 mM h(-1) and an average yield of 1.32 mol (mol glucose)(-1).

  3. Knowledge-driven approaches for engineering complex metabolic pathways in plants.

    PubMed

    Farré, Gemma; Twyman, Richard M; Christou, Paul; Capell, Teresa; Zhu, Changfu

    2015-04-01

    Plant metabolic pathways are complex and often feature multiple levels of regulation. Until recently, metabolic engineering in plants relied on the laborious testing of ad hoc modifications to achieve desirable changes in the metabolic profile. However, technological advances in data mining, modeling, multigene engineering and genome editing are now taking away much of the guesswork by allowing the impact of modifications to be predicted more accurately. In this review we discuss recent developments in knowledge-based metabolic engineering strategies, that is the gathering and mining of genomic, transcriptomic, proteomic and metabolomic data to generate models of metabolic pathways that help to define and refine optimal intervention strategies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Phosphorylation Mechanism of Phosphomevalonate Kinase: Implications for Rational Engineering of Isoprenoid Biosynthetic Pathway Enzymes.

    PubMed

    Huang, Meilan; Wei, Kexin; Li, Xiao; McClory, James; Hu, Guixiang; Zou, Jian-Wei; Timson, David

    2016-10-11

    The mevalonate pathway is of important clinical, pharmaceutical, and biotechnological relevance. However, lack of the understanding of the phosphorylation mechanism of the kinases in this pathway has limited rationally engineering the kinases in industry. Here the phosphorylation reaction mechanism of a representative kinase in the mevalonate pathway, phosphomevalonate kinase, was studied by using molecular dynamics and hybrid QM/MM methods. We find that a conserved residue (Ser106) is reorientated to anchor ATP via a stable H-bond interaction. In addition, Ser213 located on the α-helix at the catalytic site is repositioned to further approach the substrate, facilitating the proton transfer during the phosphorylation. Furthermore, we elucidate that Lys101 functions to neutralize the negative charge developed at the β-, γ-bridging oxygen atom of ATP during phosphoryl transfer. We demonstrate that the dissociative catalytic reaction occurs via a direct phosphorylation pathway. This is the first study on the phosphorylation mechanism of a mevalonate pathway kinase. The elucidation of the catalytic mechanism not only sheds light on the common catalytic mechanism of the GHMP kinase superfamily but also provides the structural basis for engineering the mevalonate pathway kinases to further exploit their applications in the production of a wide range of fine chemicals such as biofuels or pharmaceuticals.

  5. A death receptor 6-amyloid precursor protein pathway regulates synapse density in the mature CNS but does not contribute to Alzheimer's disease-related pathophysiology in murine models.

    PubMed

    Kallop, Dara Y; Meilandt, William J; Gogineni, Alvin; Easley-Neal, Courtney; Wu, Tiffany; Jubb, Adrian M; Yaylaoglu, Murat; Shamloo, Mehrdad; Tessier-Lavigne, Marc; Scearce-Levie, Kimberly; Weimer, Robby M

    2014-05-07

    Recent studies implicate death receptor 6 (DR6) in an amyloid precursor protein (APP)-dependent pathway regulating developmental axon pruning, and in a pruning pathway operating during plastic rearrangements in adult brain. DR6 has also been suggested to mediate toxicity in vitro of Aβ peptides derived from APP. Given the link between APP, Aβ, and Alzheimer's disease (AD), these findings have raised the possibility that DR6 contributes to aspects of neurodegeneration in AD. To test this possibility, we have used mouse models to characterize potential function(s) of DR6 in the adult CNS and in AD-related pathophysiology. We show that DR6 is broadly expressed within the adult CNS and regulates the density of excitatory synaptic connections onto pyramidal neurons in a genetic pathway with APP. DR6 knock-out also gives rise to behavioral abnormalities, some of which are similar to those previously documented in APP knock-out animals. However, in two distinct APP transgenic models of AD, we did not observe any alteration in the formation of amyloid plaques, gliosis, synaptic loss, or cognitive behavioral deficits with genetic deletion of DR6, though we did observe a transient reduction in the degree of microglial activation in one model. Our results support the view that DR6 functions with APP to modulate synaptic density in the adult CNS, but do not provide evidence for a role of DR6 in the pathophysiology of AD.

  6. Developmental hypothyroxinemia and hypothyroidism reduce proliferation of cerebellar granule neuron precursors in rat offspring by downregulation of the sonic hedgehog signaling pathway.

    PubMed

    Wang, Yuan; Wang, Yi; Dong, Jing; Wei, Wei; Song, Binbin; Min, Hui; Yu, Ye; Lei, Xibing; Zhao, Ming; Teng, Weiping; Chen, Jie

    2014-06-01

    Iodine deficiency (ID)-induced hypothyroxinemia and hypothyroidism during development result in dysfunction of the central nervous system, affecting psychomotor and motor function, although the underlying mechanisms causing these alterations are still unclear. Therefore, our aim is to study the effects of developmental hypothyroxinemia, caused by mild ID, and developmental hypothyroidism, caused by severe ID or methimazole (MMZ), on the proliferation of cerebellar granule neuron precursors (CGNPs), an excellent experimental model of cerebellar development and function. The sonic hedgehog (Shh) signaling pathway is essential for CGNP proliferation, and as such, its activation is also investigated here. A maternal hypothyroxinemia model was established in Wistar rats by administrating a mild ID diet, and two maternal hypothyroidism models were developed either by administrating a severe ID diet or MMZ water. Our results showed that hypothyroxinemia and hypothyroidism reduced proliferation of CGNPs on postnatal day (PN) 7, PN14, and PN21. Accordingly, the mean intensity of proliferating cell nuclear antigen and Ki67 nuclear antigen immunofluorescence was reduced in the mild ID, severe ID, and MMZ groups. Moreover, maternal hypothyroxinemia and hypothyroidism reduced expression of the Shh signaling pathway on PN7, PN14, and PN21. Our study supports the hypothesis that developmental hypothyroxinemia induced by mild ID, and hypothyroidism induced by severe ID or MMZ, reduce the proliferation of CGNPs, which may be ascribed to the downregulation of the Shh signaling pathway.

  7. Non-invasive Imaging and Tracking of Engineered Human Muscle Precursor Cells for Skeletal Muscle Tissue Engineering Using Positron Emission Tomography

    PubMed Central

    Haralampieva, Deana; Betzel, Thomas; Dinulovic, Ivana; Salemi, Souzan; Stoelting, Meline; Kraemer, Stefanie; Schibli, Roger; Sulser, Tullio; Handschin, Christoph; Eberli, Daniel; Ametamey, Simon M.

    2016-01-01

    Transplantation of human muscle precursor cells (hMPCs) is envisioned for the treatment of various muscle diseases. However, a feasible non-invasive tool to monitor cell survival, migration and integration into the host tissue is still missing. Methods In this study, we designed an adenoviral delivery system to genetically modify hMPCs to express a signaling-deficient form of a human dopamine D2 receptor (hD2R). The gene expression levels of the receptor were evaluated by Reverse Transcriptase Polymerase Chain Reaction (RTPCR) and infection efficiency was visualized by fluorescent microscopy. Viability, proliferation and differentiation capacity of the transduced cells were confirmed and their sustained myogenic phenotype was shown by flow cytometry analysis and fluorescent microscopy. 18F-Fallypride and 18F-FMISO, two well-established PET radioligands, were successfully synthesized and evaluated for their potential to image engineered hMPCs in a mouse model. Furthermore, biodistribution studies and autoradiography were also performed to determine the extent of signal specificity. Results To address the feasibility of the presented approach for tracking of hMPCs in an in vivo model, we first evaluated the safety of the adenoviral gene-delivery, which showed no detrimental effects on the primary human cells. Specific binding of 18F-Fallypride to hD2R_hMPCs was demonstrated in vitro, as well as in vivo, by performing autoradiography, biodistribution and PET experiments, respectively. Furthermore, 18F-FMISO uptake was evaluated at different time-points after cell inoculation in vivo, showing high signal only at the early stages. Finally, histological assessment of the harvested tissues confirmed the sustained survival of the transplanted cells at different time-points with formation of muscle tissue at the site of injection. Conclusion We here propose a signaling-deficient human D2R as a potent reporter for in vivo hMPCs PET tracking by 18F-Fallypride. This approach

  8. Harnessing biodiesel-producing microbes: from genetic engineering of lipase to metabolic engineering of fatty acid biosynthetic pathway.

    PubMed

    Yan, Jinyong; Yan, Yunjun; Madzak, Catherine; Han, Bingnan

    2017-02-01

    Microbial production routes, notably whole-cell lipase-mediated biotransformation and fatty-acids-derived biosynthesis, offer new opportunities for synthesizing biodiesel. They compare favorably to immobilized lipase and chemically catalyzed processes. Genetically modified whole-cell lipase-mediated in vitro route, together with in vivo and ex vivo microbial biosynthesis routes, constitutes emerging and rapidly developing research areas for effective production of biodiesel. This review presents recent advances in customizing microorganisms for producing biodiesel, via genetic engineering of lipases and metabolic engineering (including system regulation) of fatty-acids-derived pathways. Microbial hosts used include Escherichia coli, Saccharomyces cerevisiae, Pichia pastoris and Aspergillus oryzae. These microbial cells can be genetically modified to produce lipases under different forms: intracellularly expressed, secreted or surface-displayed. They can be metabolically redesigned and systematically regulated to obtain balanced biodiesel-producing cells, as highlighted in this study. Such genetically or metabolically modified microbial cells can support not only in vitro biotransformation of various common oil feedstocks to biodiesel, but also de novo biosynthesis of biodiesel from glucose, glycerol or even cellulosic biomass. We believe that the genetically tractable oleaginous yeast Yarrowia lipolytica could be developed to an effective biodiesel-producing microbial cell factory. For this purpose, we propose several engineered pathways, based on lipase and wax ester synthase, in this promising oleaginous host.

  9. Temporal gene expression profile of human precursor B leukemia cells induced by adhesion receptor: identification of pathways regulating B-cell survival.

    PubMed

    Astier, Anne Laurence; Xu, Ronghui; Svoboda, Marek; Hinds, Esther; Munoz, Olivier; de Beaumont, Rosalie; Crean, Colin Daniel; Gabig, Theodore; Freedman, Arnold Stephen

    2003-02-01

    The physical interactions between B cells and stromal cells from the lymphoid tissue microenvironment are critical to the survival of normal and malignant B cells. They are principally mediated by integrins expressed on B cells and counterreceptors on stromal cells. Specifically, alpha4beta1 integrin engagement rescues B cells from physiological or drug-induced apoptosis. Therefore, in order to understand the mechanisms by which integrins prevent apoptosis in leukemia B cells, we compared the temporal gene expression profiles induced by beta1-integrin ligation with fibronectin (Fn) or adhesion by poly-L-Lysine in serum-starved precursor B leukemia cells. Among the 38 selected differentially expressed genes, 6 genes involved in adhesion (VAV2, EPB41L1, CORO1A), proliferation (FRAP1, CCT4), and intercellular communication (GJB3) were validated by real-time quantitative polymerase chain reaction (RT-Q-PCR). Gene expression modulation could also be validated at the protein level for 5 other genes. We show that integrin stimulation up-regulated FBI-1 expression but inhibited CD79a, Requiem, c-Fos, and caspase 7 induction when the cells underwent apoptosis. We further demonstrate that Fn stimulation also inhibits caspase 3 activation but increases XIAP and survivin expression. Moreover, integrin stimulation also prevents caspase activation induced by doxorubicin. Therefore, we identified genes modulated by adhesion of human precursor B leukemia cells that regulate proliferation and apoptosis, highlighting new pathways that might provide insights into future therapy aiming at targeting apoptosis of leukemia cells.

  10. Engineering a novel biosynthetic pathway in Escherichia coli for production of renewable ethylene glycol.

    PubMed

    Pereira, Brian; Zhang, Haoran; De Mey, Marjan; Lim, Chin Giaw; Li, Zheng-Jun; Stephanopoulos, Gregory

    2016-02-01

    Ethylene glycol (EG) is an important commodity chemical with broad industrial applications. It is presently produced from petroleum or natural gas feedstocks in processes requiring consumption of significant quantities of non-renewable resources. Here, we report a novel pathway for biosynthesis of EG from the renewable sugar glucose in metabolically engineered Escherichia coli. Serine-to-EG conversion was first achieved through a pathway comprising serine decarboxylase, ethanolamine oxidase, and glycolaldehyde reductase. Serine provision in E. coli was then enhanced by overexpression of the serine-biosynthesis pathway. The integration of these two parts into the complete EG-biosynthesis pathway in E. coli allowed for production of 4.1 g/L EG at a cumulative yield of 0.14 g-EG/g-glucose, establishing a foundation for a promising biotechnology. © 2015 Wiley Periodicals, Inc.

  11. Biosynthesis of β-carotene in engineered E. coli using the MEP and MVA pathways.

    PubMed

    Yang, Jianming; Guo, Lizhong

    2014-11-18

    β-carotene is a carotenoid compound that has been widely used not only in the industrial production of pharmaceuticals but also as nutraceuticals, animal feed additives, functional cosmetics, and food colorants. Currently, more than 90% of commercial β-carotene is produced by chemical synthesis. Due to the growing public concern over food safety, the use of chemically synthesized β-carotene as food additives or functional cosmetic agents has been severely controlled in recent years. This has reignited the enthusiasm for seeking natural β-carotene in large-scale fermentative production by microorganisms. To increase β-carotene production by improving the isopentenyl pyrophosphate (IPP) and geranyl diphospate (GPP) concentration in the cell, the optimized MEP (methylerythritol 4-phosphate) pathway containing 1-deoxy-D-xylulose-5-phosphate synthase (DXS) and isopentenyl pyrophosphate isomerase (FNI) from Bacillus subtilis, geranyl diphosphate synthase (GPPS2) from Abies grandis have been co-expressed in an engineered E. coli strain. To further enhance the production of β-carotene, the hybrid MVA (mevalonate) pathway has been introduced into an engineered E. coli strain, co-expressed with the optimized MEP pathway and GPPS2. The final genetically modified strain, YJM49, can accumulate 122.4±6.2 mg/L β-carotene in flask culture, approximately 113-fold and 1.7 times greater than strain YJM39, which carries the native MEP pathway, and YJM45, which harbors the MVA pathway and the native MEP pathway, respectively. Subsequently, the fermentation process was optimized to enhance β-carotene production with a maximum titer of 256.8±10.4 mg/L. Finally, the fed-batch fermentation of β-carotene was evaluated using the optimized culture conditions. After induction for 56 h, the final engineered strain YJM49 accumulated 3.2 g/L β-carotene with a volumetric productivity of 0.37 mg/(L · h · OD600) in aerobic fed-batch fermentation, and the conversion efficiency

  12. Improving fatty acids production by engineering dynamic pathway regulation and metabolic control

    PubMed Central

    Xu, Peng; Li, Lingyun; Zhang, Fuming; Stephanopoulos, Gregory; Koffas, Mattheos

    2014-01-01

    Global energy demand and environmental concerns have stimulated increasing efforts to produce carbon-neutral fuels directly from renewable resources. Microbially derived aliphatic hydrocarbons, the petroleum-replica fuels, have emerged as promising alternatives to meet this goal. However, engineering metabolic pathways with high productivity and yield requires dynamic redistribution of cellular resources and optimal control of pathway expression. Here we report a genetically encoded metabolic switch that enables dynamic regulation of fatty acids (FA) biosynthesis in Escherichia coli. The engineered strains were able to dynamically compensate the critical enzymes involved in the supply and consumption of malonyl-CoA and efficiently redirect carbon flux toward FA biosynthesis. Implementation of this metabolic control resulted in an oscillatory malonyl-CoA pattern and a balanced metabolism between cell growth and product formation, yielding 15.7- and 2.1-fold improvement in FA titer compared with the wild-type strain and the strain carrying the uncontrolled metabolic pathway. This study provides a new paradigm in metabolic engineering to control and optimize metabolic pathways facilitating the high-yield production of other malonyl-CoA–derived compounds. PMID:25049420

  13. Improving fatty acids production by engineering dynamic pathway regulation and metabolic control.

    PubMed

    Xu, Peng; Li, Lingyun; Zhang, Fuming; Stephanopoulos, Gregory; Koffas, Mattheos

    2014-08-05

    Global energy demand and environmental concerns have stimulated increasing efforts to produce carbon-neutral fuels directly from renewable resources. Microbially derived aliphatic hydrocarbons, the petroleum-replica fuels, have emerged as promising alternatives to meet this goal. However, engineering metabolic pathways with high productivity and yield requires dynamic redistribution of cellular resources and optimal control of pathway expression. Here we report a genetically encoded metabolic switch that enables dynamic regulation of fatty acids (FA) biosynthesis in Escherichia coli. The engineered strains were able to dynamically compensate the critical enzymes involved in the supply and consumption of malonyl-CoA and efficiently redirect carbon flux toward FA biosynthesis. Implementation of this metabolic control resulted in an oscillatory malonyl-CoA pattern and a balanced metabolism between cell growth and product formation, yielding 15.7- and 2.1-fold improvement in FA titer compared with the wild-type strain and the strain carrying the uncontrolled metabolic pathway. This study provides a new paradigm in metabolic engineering to control and optimize metabolic pathways facilitating the high-yield production of other malonyl-CoA-derived compounds.

  14. Autophagosomes cooperate in the degradation of intracellular C-terminal fragments of the amyloid precursor protein via the MVB/lysosomal pathway.

    PubMed

    González, Alexis E; Muñoz, Vanessa C; Cavieres, Viviana A; Bustamante, Hianara A; Cornejo, Víctor-Hugo; Januário, Yunan C; González, Ibeth; Hetz, Claudio; daSilva, Luis L; Rojas-Fernández, Alejandro; Hay, Ronald T; Mardones, Gonzalo A; Burgos, Patricia V

    2017-03-02

    Brain regions affected by Alzheimer disease (AD) display well-recognized early neuropathologic features in the endolysosomal and autophagy systems of neurons, including enlargement of endosomal compartments, progressive accumulation of autophagic vacuoles, and lysosomal dysfunction. Although the primary causes of these disturbances are still under investigation, a growing body of evidence suggests that the amyloid precursor protein (APP) intracellular C-terminal fragment β (C99), generated by cleavage of APP by β-site APP cleaving enzyme 1 (BACE-1), is the primary cause of the endosome enlargement in AD and the earliest initiator of synaptic plasticity and long-term memory impairment. The aim of the present study was to evaluate the possible relationship between the endolysosomal degradation pathway and autophagy on the proteolytic processing and turnover of C99. We found that pharmacologic treatments that either inhibit autophagosome formation or block the fusion of autophagosomes to endolysosomal compartments caused an increase in C99 levels. We also found that inhibition of autophagosome formation by depletion of Atg5 led to higher levels of C99 and to its massive accumulation in the lumen of enlarged perinuclear, lysosomal-associated membrane protein 1 (LAMP1)-positive organelles. In contrast, activation of autophagosome formation, either by starvation or by inhibition of the mammalian target of rapamycin, enhanced lysosomal clearance of C99. Altogether, our results indicate that autophagosomes are key organelles to help avoid C99 accumulation preventing its deleterious effects.-González, A. E., Muñoz, V. C., Cavieres, V. A., Bustamante, H. A., Cornejo, V.-H., Januário, Y. C., González, I., Hetz, C., daSilva, L. L., Rojas-Fernández, A., Hay, R. T., Mardones, G. A., Burgos, P. V. Autophagosomes cooperate in the degradation of intracellular C-terminal fragments of the amyloid precursor protein via the MVB/lysosomal pathway.

  15. Gene expression profiling of precursor T-cell lymphoblastic leukemia/lymphoma identifies oncogenic pathways that are potential therapeutic targets

    PubMed Central

    Lin, Ying-Wei; Aplan, Peter D.

    2007-01-01

    We compared the gene expression pattern of thymic tumors from precursor T-cell lymphoblastic lymphoma/leukemia (pre-T LBL) that arose in transgenic mice which over-expressed SCL, LMO1, or NUP98-HOXD13 (NHD13) with that of thymocytes from normal littermates. Only two genes, Ccl8 and Mrpl38, were consistently more than 4-fold over-expressed in pre-T LBL from all three genotypes analyzed, and a single gene, Prss16 was consistently under-expressed. However, we identified a number of genes, such as Cfl1, Tcra, Tcrb, Pbx3, Eif4a, Eif4b, and Cox8b that were over or under-expressed in pre-T LBL that arose in specific transgenic lines. Similar to the situation seen with human pre-T LBL, the SCL/LMO1 leukemias displayed an expression profile consistent with mature, late cortical thymocytes, whereas the NHD13 leukemias displayed an expression profile more consistent with immature thymocytes. We evaluated two of the most differentially regulated genes as potential therapeutic targets. Cfl1 was specifically over-expressed in SCL-LMO1 tumors; inactivation of Cfl1 using Okadaic acid resulted in suppression of leukemic cell growth. Overexpression of Ccl8 was a consistent finding in all 3 transgenic lines, and an antagonist for the Ccl8 receptor induced death of leukemic cell lines, suggesting a novel therapeutic approach. PMID:17429429

  16. From PIE to APPLES: The Evolution of a Survey Instrument to Explore Engineering Student Pathways. Research Brief

    ERIC Educational Resources Information Center

    Chen, Helen; Donaldson, Krista; Eris, Ozgur; Chachra, Debbie; Lichtenstein, Gary; Sheppard, Sheri; Toye, George

    2008-01-01

    The Academic Pathways Study (APS) of the NSF-funded Center for the Advancement of Engineering Education (CAEE) is a cross-university study that systematically examines how engineering students navigate their education, and how engineering skills and identity develop during their undergraduate careers. The APS has utilized a variety of methods…

  17. More to Say: Analyzing Open-Ended Student Responses to the Academic Pathways of People Learning Engineering Survey. Research Brief

    ERIC Educational Resources Information Center

    Lande, Micah; Parikh, Sarah; Sheppard, Sheri; Toye, George; Chen, Helen; Donaldson, Krista

    2009-01-01

    The Academic Pathways of People Learning Engineering Survey (APPLES2) was administered in Spring 2008 to undergraduate engineering students at 21 American universities. Students took the 10-minute online survey that asked mainly multiple choice questions related to their undergraduate engineering experience. A final optional open-ended question…

  18. Metabolic engineering of Escherichia coli for production of salvianic acid A via an artificial biosynthetic pathway.

    PubMed

    Yao, Yuan-Feng; Wang, Chang-Song; Qiao, Jianjun; Zhao, Guang-Rong

    2013-09-01

    Salvianic acid A, a valuable derivative from L-tyrosine biosynthetic pathway of the herbal plant Salvia miltiorrhiza, is well known for its antioxidant activities and efficacious therapeutic potential on cardiovascular diseases. Salvianic acid A was traditionally isolated from plant root or synthesized by chemical methods, both of which had low efficiency. Herein, we developed an unprecedented artificial biosynthetic pathway of salvianic acid A in E. coli, enabling its production from glucose directly. In this pathway, 4-hydroxyphenylpyruvate was converted to salvianic acid A via D-lactate dehydrogenase (encoding by d-ldh from Lactobacillus pentosus) and hydroxylase complex (encoding by hpaBC from E. coli). Furthermore, we optimized the pathway by a modular engineering approach and deleting genes involved in the regulatory and competing pathways. The metabolically engineered E. coli strain achieved high productivity of salvianic acid A (7.1g/L) with a yield of 0.47mol/mol glucose. © 2013 Elsevier Inc. All rights reserved.

  19. Alternative pathways of galactose assimilation: could inverse metabolic engineering provide an alternative to galactosemic patients?

    PubMed

    Lai, Kent; Klapa, Maria I

    2004-07-01

    The galactose assimilation pathway has been extensively studied as an example of a genetic regulatory switch. Besides the importance of this pathway as a tool in basic biological research, unraveling its structure and regulation is also of major medical importance. Impairment of galactose assimilation is the cause of the genetic metabolic disease known as "galactosemia", while the in vivo activity of the pathway affects the production of glycans. The latter have been connected to tumor metastasis, anti-cancer drug resistance and various cardiovascular diseases. Despite the vast amount of studies, however, galactose assimilation and its interaction with other parts of the metabolic network have not been fully elucidated yet. In yeast and higher eukaryotes, it is still being studied as comprising only the linear Leloir pathway. Recent observations, however, indicate that alternative pathways of galactose assimilation identified in prokaryotes and fungi might also be present in yeast. Such a result is valuable per se, because it could lead to the discovery of these pathways in humans. Even more importantly, these pathways provide alternative phenotypes with known genetic fingerprints that can be used in the context of classical and inverse metabolic engineering to examine and treat the mechanisms of defects of galactose assimilation.

  20. Engineering and comparison of non-natural pathways for microbial phenol production.

    PubMed

    Thompson, Brian; Machas, Michael; Nielsen, David R

    2016-08-01

    The non-renewable petrochemical phenol is used as a precursor to produce numerous fine and commodity chemicals, including various pharmaceuticals and phenolic resins. Microbial phenol biosynthesis has previously been established, stemming from endogenous tyrosine via tyrosine phenol lyase (TPL). TPL, however, suffers from feedback inhibition and equilibrium limitations, both of which contribute to reduced flux through the overall pathway. To address these limitations, two novel and non-natural phenol biosynthesis pathways, both stemming instead from chorismate, were constructed and comparatively evaluated. The first proceeds to phenol in one heterologous step via the intermediate p-hydroxybenzoic acid, while the second involves two heterologous steps and the associated intermediates isochorismate and salicylate. Maximum phenol titers achieved via these two alternative pathways reached as high as 377 ± 14 and 259 ± 31 mg/L in batch shake flask cultures, respectively. In contrast, under analogous conditions, phenol production via the established TPL-dependent route reached 377 ± 23 mg/L, which approaches the maximum achievable output reported to date under batch conditions. Additional strain development and optimization of relevant culture conditions with respect to each individual pathway is ultimately expected to result in further improved phenol production. Biotechnol. Bioeng. 2016;113: 1745-1754. © 2016 Wiley Periodicals, Inc.

  1. Engineering biosynthetic pathways for deoxysugars: branched-chain sugar pathways and derivatives from the antitumor tetracenomycin.

    PubMed

    Lombó, Felipe; Gibson, Miranda; Greenwell, Lisa; Braña, Alfredo F; Rohr, Jürgen; Salas, José A; Méndez, Carmen

    2004-12-01

    Sugar biosynthesis cassette genes have been used to construct plasmids directing the biosynthesis of branched-chain deoxysugars: pFL942 (NDP-L-mycarose), pFL947 (NDP-4-deacetyl-L-chromose B), and pFL946/pFL954 (NDP-2,3,4-tridemethyl-L-nogalose). Expression of pFL942 and pFL947 in S. lividans 16F4, which harbors genes for elloramycinone biosynthesis and the flexible ElmGT glycosyltransferase of the elloramycin biosynthetic pathway, led to the formation of two compounds: 8-alpha-L-mycarosyl-elloramycinone and 8-demethyl-8-(4-deacetyl)-alpha-L-chromosyl-tetracenomycin C, respectively. Expression of pFL946 or pFL954 failed to produce detectable amounts of a novel glycosylated tetracenomycin derivative. Formation of these two compounds represents examples of the sugar cosubstrate flexibility of the ElmGT glycosyltransferase. The use of these cassette plasmids also provided insights into the substrate flexibility of deoxysugar biosynthesis enzymes as the C-methyltransferases EryBIII and MtmC, the epimerases OleL and EryBVII, and the 4-ketoreductases EryBIV and OleU.

  2. Efficacy of JAK/STAT pathway inhibition in murine xenograft models of early T-cell precursor (ETP) acute lymphoblastic leukemia.

    PubMed

    Maude, Shannon L; Dolai, Sibasish; Delgado-Martin, Cristina; Vincent, Tiffaney; Robbins, Alissa; Selvanathan, Arthavan; Ryan, Theresa; Hall, Junior; Wood, Andrew C; Tasian, Sarah K; Hunger, Stephen P; Loh, Mignon L; Mullighan, Charles G; Wood, Brent L; Hermiston, Michelle L; Grupp, Stephan A; Lock, Richard B; Teachey, David T

    2015-03-12

    Early T-cell precursor (ETP) acute lymphoblastic leukemia (ALL) is a recently described subtype of T-ALL characterized by a unique immunophenotype and genomic profile, as well as a high rate of induction failure. Frequent mutations in cytokine receptor and Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling pathways led us to hypothesize that ETP-ALL is dependent on JAK/STAT signaling. Here we demonstrate aberrant activation of the JAK/STAT pathway in ETP-ALL blasts relative to non-ETP T-ALL. Moreover, ETP-ALL showed hyperactivation of STAT5 in response to interleukin-7, an effect that was abrogated by the JAK1/2 inhibitor ruxolitinib. In vivo, ruxolitinib displayed activity in 6 of 6 patient-derived murine xenograft models of ETP-ALL, with profound single-agent efficacy in 5 models. Ruxolitinib treatment decreased peripheral blast counts relative to pretreatment levels and compared with control (P < .01) in 5 of 6 ETP-ALL xenografts, with marked reduction in mean splenic blast counts (P < .01) in 6 of 6 samples. Surprisingly, both JAK/STAT pathway activation and ruxolitinib efficacy were independent of the presence of JAK/STAT pathway mutations, raising the possibility that the therapeutic potential of ruxolitinib in ETP-ALL extends beyond those cases with JAK mutations. These findings establish the preclinical in vivo efficacy of ruxolitinib in ETP-ALL, a biologically distinct subtype for which novel therapies are needed. © 2015 by The American Society of Hematology.

  3. An Amphipathic Alpha-Helix in the Prodomain of Cocaine and Amphetamine Regulated Transcript Peptide Precursor Serves as Its Sorting Signal to the Regulated Secretory Pathway

    PubMed Central

    Blanco, Elías H.; Lagos, Carlos F.; Andrés, María Estela; Gysling, Katia

    2013-01-01

    Cocaine and Amphetamine Regulated Transcript (CART) peptides are anorexigenic neuropeptides. The L34F mutation in human CART peptide precursor (proCART) has been linked to obesity (Yanik et al. Endocrinology 147: 39, 2006). Decrease in CART peptide levels in individuals carrying the L34F mutation was attributed to proCART subcellular missorting. We studied proCART features required to enter the regulated secretory pathway. The subcellular localization and the secretion mode of monomeric EGFP fused to the full-length or truncated forms of human proCART transiently transfected in PC12 cells were analyzed. Our results showed that the N-terminal 1–41 fragment of proCART was necessary and sufficient to sort proCART to the regulated secretory pathway. In silico modeling predicted an alpha-helix structure located between residues 24–37 of proCART. Helical wheel projection of proCART alpha-helix showed an amphipathic configuration. The L34F mutation does not modify the amphipathicity of proCART alpha-helix and consistently proCARTL34F was efficiently sorted to the regulated secretory pathway. However, four additional mutations to proCARTL34F that reduced its alpha-helix amphipathicity resulted in the missorting of the mutated proCART toward the constitutive secretory pathway. These findings show that an amphipathic alpha-helix is a key cis-structure for the proCART sorting mechanism. In addition, our results indicate that the association between L34F mutation and obesity is not explained by proCART missorting. PMID:23527253

  4. Identification of Wnt Pathway Target Genes Regulating the Division and Differentiation of Larval Seam Cells and Vulval Precursor Cells in Caenorhabditis elegans

    PubMed Central

    Gorrepati, Lakshmi; Krause, Michael W.; Chen, Weiping; Brodigan, Thomas M.; Correa-Mendez, Margarita; Eisenmann, David M.

    2015-01-01

    The evolutionarily conserved Wnt/β-catenin signaling pathway plays a fundamental role during metazoan development, regulating numerous processes including cell fate specification, cell migration, and stem cell renewal. Wnt ligand binding leads to stabilization of the transcriptional effector β-catenin and upregulation of target gene expression to mediate a cellular response. During larval development of the nematode Caenorhabditis elegans, Wnt/β-catenin pathways act in fate specification of two hypodermal cell types, the ventral vulval precursor cells (VPCs) and the lateral seam cells. Because little is known about targets of the Wnt signaling pathways acting during larval VPC and seam cell differentiation, we sought to identify genes regulated by Wnt signaling in these two hypodermal cell types. We conditionally activated Wnt signaling in larval animals and performed cell type–specific "mRNA tagging" to enrich for VPC and seam cell–specific mRNAs, and then used microarray analysis to examine gene expression compared to control animals. Two hundred thirty-nine genes activated in response to Wnt signaling were identified, and we characterized 50 genes further. The majority of these genes are expressed in seam and/or vulval lineages during normal development, and reduction of function for nine genes caused defects in the proper division, fate specification, fate execution, or differentiation of seam cells and vulval cells. Therefore, the combination of these techniques was successful at identifying potential cell type–specific Wnt pathway target genes from a small number of cells and at increasing our knowledge of the specification and behavior of these C. elegans larval hypodermal cells. PMID:26048561

  5. Utilization of economical substrate-derived carbohydrates by solventogenic clostridia: pathway dissection, regulation and engineering.

    PubMed

    Gu, Yang; Jiang, Yu; Yang, Sheng; Jiang, Weihong

    2014-10-01

    Solventogenic clostridia can produce acetone, butanol and ethanol (ABE) by using different carbohydrates. For economical reasons, the utilization of cheap and renewable biomass in clostridia-based ABE fermentation has recently attracted increasing interests. With the study of molecular microbiology and development of genetic tools, the understanding of carbohydrate metabolism in clostridia has increased in recent years. Here, we review the pioneering work in this field, with a focus on dissecting the pathways and describing the regulation of the metabolism of economical substrate-derived carbohydrates by clostridia. Recent progress in the metabolic engineering of carbohydrate utilization pathways is also described.

  6. Fc gammaRII (CD32) is linked to apoptotic pathways in murine granulocyte precursors and mature eosinophils.

    PubMed

    de Andrés, B; Mueller, A L; Blum, A; Weinstock, J; Verbeek, S; Sandor, M; Lynch, R G

    1997-08-01

    Murine granulocytes and precursors express low-affinity IgG Fc receptors (Fc gammaR). We investigated the effects of FcyR ligation on the development of eosinophils in cultures of normal murine bone marrow. Eosinophilopoiesis was induced by culture of bone marrow cells in the presence of cytokines (granulocyte-macrophage colony-stimulating factor [GM-CSF], interleukin-3 [IL-3], and IL-5). Addition to the cultures of 2.4G2, a rat monoclonal antibody (mAb) that reacts with Fc gammaRII (CD32) and Fc gammaRIII (CD16), induced granulocyte apoptosis within 24 hours. Granulocytes in cultures that contained 2.4G2 showed chromatin condensation, binding of Annexin-V, and fas induction, and by electron microscopy, apoptosis was most commonly observed in cells of the eosinophil lineage. Since murine granulocytes can express both Fc gammaRII (CD32) and Fc gammaRIII (CD16), we investigated the effect of 2.4G2 on cultures of bone marrow obtained from Fc gammaRIII (CD16) gene-disrupted mice and found that the apoptosis induced with 2.4G2 was CD16-independent. Studies with bone marrow cultures from B6MLR-lpr/lpr and C3H/HEJ-gld/gld mice established that the Fc gammaRII (CD32)-triggered apoptosis was fas-fasL-dependent. When mature eosinophils isolated from hepatic granulomas of Schistosoma mansoni-infected mice were cultured in cytokines in the presence of 2.4G2, the eosinophils underwent apoptosis within 24 hours. These findings identify a previously unknown linkage between Fc gammaR on eosinophils and fas-mediated apoptosis, a connection that could be relevant to mechanisms by which eosinophils mediate tissue injury and antibody-dependent cellular cytotoxicity reactions.

  7. [Engineering of the xylose metabolic pathway for microbial production of bio-based chemicals].

    PubMed

    Liu, Weixi; Fu, Jing; Zhang, Bo; Chen, Tao

    2013-08-01

    As the rapid development of economy necessitates a large number of oil, the contradiction between energy supply and demand is further exacerbated by the dwindling reserves of petroleum resource. Therefore, the research of the renewable cellulosic biomass resources is gaining unprecedented momentum. Because xylose is the second most abundant monosaccharide after glucose in lignocellulose hydrolyzes, high-efficiency bioconversion of xylose becomes one of the vital factors that affect the industrial prospects of lignocellulose application. According to the research progresses in recent years, this review summarized the advances in bioconversion of xylose, which included identification and redesign of the xylose metabolic pathway, engineering the xylose transport pathway and bio-based chemicals production. In order to solve the energy crisis and environmental pollution issues, the development of advanced bio-fuel technology, especially engineering the microbe able to metabolize xylose and produce ethanol by synthetic biology, is environmentally benign and sustainable.

  8. Protein design and engineering of a de novo pathway for microbial production of 1,3-propanediol from glucose.

    PubMed

    Chen, Zhen; Geng, Feng; Zeng, An-Ping

    2015-02-01

    Protein engineering to expand the substrate spectrum of native enzymes opens new possibilities for bioproduction of valuable chemicals from non-natural pathways. No natural microorganism can directly use sugars to produce 1,3-propanediol (PDO). Here, we present a de novo route for the biosynthesis of PDO from sugar, which may overcome the mentioned limitations by expanding the homoserine synthesis pathway. The accomplishment of pathway from homoserine to PDO is achieved by protein engineering of glutamate dehydrogenase (GDH) and pyruvate decarboxylase to sequentially convert homoserine to 4-hydroxy-2-ketobutyrate and 3-hydroxypropionaldehyde. The latter is finally converted to PDO by using a native alcohol dehydrogenase. In this work, we report on experimental accomplishment of this non-natural pathway, especially by protein engineering of GDH for the key step of converting homoserine to 4-hydroxy-2-ketobutyrate. These results show the feasibility and significance of protein engineering for de novo pathway design and overproduction of desired industrial products.

  9. GZD824 suppresses the growth of human B cell precursor acute lymphoblastic leukemia cells by inhibiting the SRC kinase and PI3K/AKT pathways.

    PubMed

    Ye, Wei; Jiang, Zhiwu; Lu, Xiaoyun; Ren, Xiaomei; Deng, Manman; Lin, Shouheng; Xiao, Yiren; Lin, Simiao; Wang, Suna; Li, Baiheng; Zheng, Yi; Lai, Peilong; Weng, Jianyu; Wu, Donghai; Ma, Yuguo; Chen, Xudong; Wen, Zhesheng; Chen, Yaoyu; Feng, Xiaoyan; Li, Yangqiu; Liu, Pentao; Du, Xin; Pei, Duanqing; Yao, Yao; Xu, Bing; Ding, Ke; Li, Peng

    2016-07-28

    Available therapeutic options for advanced B cell precursor acute lymphoblastic leukemia (pre-B ALL) are limited. Many lead to neutropenia, leaving patients at risk of life-threatening infections and result in bad outcomes. New treatment options are needed to improve overall survival. We previously showed that GZD824, a novel BCR-ABL tyrosine kinase inhibitor, has anti-tumor activity in Philadelphia chromosome-positive (Ph+) chronic myeloid leukemia cells and tumor models. Here, we show that GZD824 decreases cell viability, induces cell-cycle arrest, and causes apoptosis in pre-B ALL cells. Furthermore, Ph- pre-B ALL cells were more sensitive to GZD824 than Ph+ pre-B ALL cells. GZD824 consistently reduced tumor loads in Ph- pre-B ALL xenografts but failed to suppress Ph+ pre-B ALL xenografts. GZD824 decreased phosphorylation of SRC kinase, STAT3, RB and C-myc. It also downregulated the expression of BCL-XL, CCND1 and CDK4 and upregulated expression of CCKN1A. Expression of IRS1 was decreased in GZD824-treated pre-B ALL cells, blocking the PI3K/AKT pathway. These data demonstrate that GZD824 suppresses pre-B ALL cells through inhibition of the SRC kinase and PI3K/AKT pathways and may be a potential therapeutic agent for the management of pre-B ALL.

  10. Crystal-facet engineering of ferric giniite by using ionic-liquid precursors and their enhanced photocatalytic performances under visible-light irradiation.

    PubMed

    Duan, Xiaochuan; Li, Di; Zhang, Huili; Ma, Jianmin; Zheng, Wenjun

    2013-05-27

    In the work presented here, well-dispersed ferric giniite microcrystals with controlled sizes and shapes are solvothermally synthesized from ionic-liquid precursors by using 1-n-butyl-3-methylimidazolium dihydrogenphosphate ([Bmim][H2PO4]) as phosphate source. The success of this synthesis relies on the concentration and composition of the ionic-liquid precursors. By adjusting the molar ratios of Fe(NO3)3·9H2O to [Bmim][H2PO4] as well as the composition of ionic-liquid precursors, we obtained uniform microstructures such as bipyramids exposing {111} facets, plates exposing {001} facets, hollow spheres, tetragonal hexadecahedron exposing {441} and {111} facets, and truncated bipyamids with carved {001} facets. The crystalline structure of the ferric giniite microcrystals is disclosed by various characterization techniques. It was revealed that [Bmim][H2PO4] played an important role in stabilizing the {111} facets of ferric giniite crystals, leading to the different morphologies in the presence of ionic-liquid precursors with different compositions. Furthermore, since these ferric giniite crystals were characterized by different facets, they could serve as model Fenton-like catalysts to uncover the correlation between the surface and the catalytic performance for the photodegradation of organic dyes under visible-light irradiation. Our measurements indicate that the photocatalytic activity of as-prepared Fenton-like catalysts is highly dependent on the exposed facets, and the surface area has essentially no obvious effect on the photocatalytic degradation of organic dyes in the present study. It is highly expected that these findings are useful in understanding the photocatalytic activity of Fenton-like catalysts with different morphologies, and suggest a promising new strategy for crystal-facet engineering of photocatalysts for wastewater treatment based on heterogeneous Fenton-like process. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. A portable expression resource for engineering cross-species genetic circuits and pathways

    PubMed Central

    Kushwaha, Manish; Salis, Howard M.

    2015-01-01

    Genetic circuits and metabolic pathways can be reengineered to allow organisms to process signals and manufacture useful chemicals. However, their functions currently rely on organism-specific regulatory parts, fragmenting synthetic biology and metabolic engineering into host-specific domains. To unify efforts, here we have engineered a cross-species expression resource that enables circuits and pathways to reuse the same genetic parts, while functioning similarly across diverse organisms. Our engineered system combines mixed feedback control loops and cross-species translation signals to autonomously self-regulate expression of an orthogonal polymerase without host-specific promoters, achieving nontoxic and tuneable gene expression in diverse Gram-positive and Gram-negative bacteria. Combining 50 characterized system variants with mechanistic modelling, we show how the cross-species expression resource's dynamics, capacity and toxicity are controlled by the control loops' architecture and feedback strengths. We also demonstrate one application of the resource by reusing the same genetic parts to express a biosynthesis pathway in both model and non-model hosts. PMID:26184393

  12. Engineering of a butyraldehyde dehydrogenase of Clostridium saccharoperbutylacetonicum to fit an engineered 1,4-butanediol pathway in Escherichia coli.

    PubMed

    Hwang, Hee Jin; Park, Jin Hwan; Kim, Jin Ho; Kong, Min Kyung; Kim, Jin Won; Park, Jin Woo; Cho, Kwang Myung; Lee, Pyung Cheon

    2014-07-01

    1,4-Butanediol (1,4-BDO) is currently produced from succinate via six enzymatic reactions in an engineered Escherichia coli strain. Butyraldehyde dehydrogenase (Bld) and butanol dehydrogenase of Clostridium saccharoperbutylacetonicum were selected based on their activities of catalyzing the final two reactions in the 1,4-BDO pathway. To fit Bld into the non-natural 1,4-BDO pathway, we engineered it through random mutagenesis. Five Bld mutants were then isolated using a colorimetric Schiff's reagent-based method. Subsequent site-directed mutagenesis of Bld generated the two best Bld mutants, L273I and L273T, which produced 1,4-BDO titers fourfold greater than those of wild-type Bld. The enhanced 1,4-BDO titers obtained using L273I and L273T clearly correlated with their enhanced activities, which were caused by amino acid mutations at position 273 of Bld. The highest titer of 1,4-BDO (660 ± 40 mg/L) was obtained in a knock-out E. coli strain [ΔldhA ΔpflB ΔadhE ΔlpdA::K. lpd(E354K) Δmdh ΔarcA gltA(R164L)] coexpressing Bld273T+Bdh. © 2014 Wiley Periodicals, Inc.

  13. Engineering rTCA pathway and C4-dicarboxylate transporter for L-malic acid production.

    PubMed

    Chen, Xiulai; Wang, Yuancai; Dong, Xiaoxiang; Hu, Guipeng; Liu, Liming

    2017-02-22

    L-Malic acid is an important component of a vast array of food additives, antioxidants, disincrustants, pharmaceuticals, and cosmetics. Here, we presented a pathway optimization strategy and a transporter modification approach to reconstruct the L-malic acid biosynthesis pathway and transport system, respectively. First, pyruvate carboxylase (pyc) and malate dehydrogenase (mdh) from Aspergillus flavus and Rhizopus oryzae were combinatorially overexpressed to construct the reductive tricarboxylic acid (rTCA) pathway for L-malic acid biosynthesis. Second, the L-malic acid transporter (Spmae) from Schizosaccharomyces pombe was engineered by removing the ubiquitination motification to enhance the L-malic acid efflux system. Finally, the L-malic acid pathway was optimized by controlling gene expression levels, and the final L-malic acid concentration, yield, and productivity were up to 30.25 g L(-1), 0.30 g g(-1), and 0.32 g L(-1) h(-1) in the resulting strain W4209 with CaCO3 as a neutralizing agent, respectively. In addition, these corresponding parameters of pyruvic acid remained at 30.75 g L(-1), 0.31 g g(-1), and 0.32 g L(-1) h(-1), respectively. The metabolic engineering strategy used here will be useful for efficient production of L-malic acid and other chemicals.

  14. Validation of RetroPath, a computer-aided design tool for metabolic pathway engineering.

    PubMed

    Fehér, Tamás; Planson, Anne-Gaëlle; Carbonell, Pablo; Fernández-Castané, Alfred; Grigoras, Ioana; Dariy, Ekaterina; Perret, Alain; Faulon, Jean-Loup

    2014-11-01

    Metabolic engineering has succeeded in biosynthesis of numerous commodity or high value compounds. However, the choice of pathways and enzymes used for production was many times made ad hoc, or required expert knowledge of the specific biochemical reactions. In order to rationalize the process of engineering producer strains, we developed the computer-aided design (CAD) tool RetroPath that explores and enumerates metabolic pathways connecting the endogenous metabolites of a chassis cell to the target compound. To experimentally validate our tool, we constructed 12 top-ranked enzyme combinations producing the flavonoid pinocembrin, four of which displayed significant yields. Namely, our tool queried the enzymes found in metabolic databases based on their annotated and predicted activities. Next, it ranked pathways based on the predicted efficiency of the available enzymes, the toxicity of the intermediate metabolites and the calculated maximum product flux. To implement the top-ranking pathway, our procedure narrowed down a list of nine million possible enzyme combinations to 12, a number easily assembled and tested. One round of metabolic network optimization based on RetroPath output further increased pinocembrin titers 17-fold. In total, 12 out of the 13 enzymes tested in this work displayed a relative performance that was in accordance with its predicted score. These results validate the ranking function of our CAD tool, and open the way to its utilization in the biosynthesis of novel compounds. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Genome Engineering of the 2,3-Butanediol Biosynthetic Pathway for Tight Regulation in Cyanobacteria.

    PubMed

    Nozzi, Nicole E; Atsumi, Shota

    2015-11-20

    Cyanobacteria have gained popularity among the metabolic engineering community as a tractable photosynthetic host for renewable chemical production. However, though a number of successfully engineered production systems have been reported, long-term genetic stability remains an issue for cyanobacterial systems. The genetic engineering toolbox for cyanobacteria is largely lacking inducible systems for expression control. The characterization of tight regulation systems for use in cyanobacteria may help to alleviate this problem. In this work we explore the function of the IPTG inducible promoter P(L)lacO1 in the model cyanobacterium Synechococcus elongatus PCC 7942 as well as the effect of gene order within an operon on pathway expression. According to our experiments, P(L)lacO1 functions well as an inducible promoter in S. elongatus. Additionally, we found that gene order within an operon can strongly influence control of expression of each gene.

  16. Cytoplasmic fragment of Alcadein α generated by regulated intramembrane proteolysis enhances amyloid β-protein precursor (APP) transport into the late secretory pathway and facilitates APP cleavage.

    PubMed

    Takei, Norio; Sobu, Yuriko; Kimura, Ayano; Urano, Satomi; Piao, Yi; Araki, Yoichi; Taru, Hidenori; Yamamoto, Tohru; Hata, Saori; Nakaya, Tadashi; Suzuki, Toshiharu

    2015-01-09

    The neural type I membrane protein Alcadein α (Alcα), is primarily cleaved by amyloid β-protein precursor (APP) α-secretase to generate a membrane-associated carboxyl-terminal fragment (Alcα CTF), which is further cleaved by γ-secretase to secrete p3-Alcα peptides and generate an intracellular cytoplasmic domain fragment (Alcα ICD) in the late secretory pathway. By association with the neural adaptor protein X11L (X11-like), Alcα and APP form a ternary complex that suppresses the cleavage of both Alcα and APP by regulating the transport of these membrane proteins into the late secretory pathway where secretases are active. However, it has not been revealed how Alcα and APP are directed from the ternary complex formed largely in the Golgi into the late secretory pathway to reach a nerve terminus. Using a novel transgenic mouse line expressing excess amounts of human Alcα CTF (hAlcα CTF) in neurons, we found that expression of hAlcα CTF induced excess production of hAlcα ICD, which facilitated APP transport into the nerve terminus and enhanced APP metabolism, including Aβ generation. In vitro cell studies also demonstrated that excess expression of Alcα ICD released both APP and Alcα from the ternary complex. These results indicate that regulated intramembrane proteolysis of Alcα by γ-secretase regulates APP trafficking and the production of Aβ in vivo. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Moving from Pipeline Thinking to Understanding Pathways: Findings from the Academic Pathways Study of Engineering Undergraduates. Research Brief

    ERIC Educational Resources Information Center

    Atman, Cindy; Sheppard, Sheri; Fleming, Lorraine; Miller, Ron; Smith, Karl; Stevens, Reed; Streveler, Ruth; Loucks-Jaret, Tina; Lund, Dennis

    2008-01-01

    While engineering educators have engaged in many endeavors aimed at advancing engineering education and practice, much of this work has focused on broad curricular issues. Few studies focus on what it means to be an engineer or the process of what it takes to learn to engineer. In the last decade engineering educators have begun to focus on…

  18. Moving from Pipeline Thinking to Understanding Pathways: Findings from the Academic Pathways Study of Engineering Undergraduates. Research Brief

    ERIC Educational Resources Information Center

    Atman, Cindy; Sheppard, Sheri; Fleming, Lorraine; Miller, Ron; Smith, Karl; Stevens, Reed; Streveler, Ruth; Loucks-Jaret, Tina; Lund, Dennis

    2008-01-01

    While engineering educators have engaged in many endeavors aimed at advancing engineering education and practice, much of this work has focused on broad curricular issues. Few studies focus on what it means to be an engineer or the process of what it takes to learn to engineer. In the last decade engineering educators have begun to focus on…

  19. Pathway engineering for the production of heterologous aromatic chemicals and their derivatives in Saccharomyces cerevisiae: bioconversion from glucose.

    PubMed

    Gottardi, Manuela; Reifenrath, Mara; Boles, Eckhard; Tripp, Joanna

    2017-06-01

    Saccharomyces cerevisiae has been extensively engineered for optimising its performance as a microbial cell factory to produce valuable aromatic compounds and their derivatives as bulk and fine chemicals. The production of heterologous aromatic molecules in yeast is achieved via engineering of the aromatic amino acid biosynthetic pathway. This pathway is connected to two pathways of the central carbon metabolism, and is highly regulated at the gene and protein level. These characteristics impose several challenges for tailoring it, and various modifications need to be applied in order to redirect the carbon flux towards the production of the desired compounds. This minireview addresses the metabolic engineering approaches targeting the central carbon metabolism, the shikimate pathway and the tyrosine and phenylalanine biosynthetic pathway of S. cerevisiae for biosynthesis of aromatic chemicals and their derivatives from glucose. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Implication of the calcium sensing receptor and the Phosphoinositide 3-kinase/Akt pathway in the extracellular calcium-mediated migration of RAW 264.7 osteoclast precursor cells.

    PubMed

    Boudot, Cédric; Saidak, Zuzana; Boulanouar, Abdel Krim; Petit, Laurent; Gouilleux, Fabrice; Massy, Ziad; Brazier, Michel; Mentaverri, Romuald; Kamel, Saïd

    2010-05-01

    While the processes involved in the formation, maturation and apoptosis of osteoclasts have been investigated extensively in previous studies, little is known about the mechanisms responsible for the localization and homing of osteoclast precursor cells to the bone environment in order to initiate the bone remodeling process. Recent studies have suggested that the extracellular Ca(2+) (Ca(2+)(o)) concentration gradient present near the bone environment may be one of the participating factors, producing a chemoattractant effect on osteoclast precursors. Using the murine osteoclast precursor cells of the monocyte-macrophage lineage, the RAW 264.7 cell line, we have shown that Ca(2+)(o) increases the migration of these cells in a directional manner. The participation of the calcium sensing receptor (CaR) in this effect was tested by knocking down its expression through RNA interference, which resulted in an abolition of the migratory response. By the use of specific pathway inhibitors and western blot analysis, the phosphoinositide 3-kinase (PI3K)/Akt and phospholipase Cbeta pathways were shown to be implicated in the migratory effect. The implication of the Akt pathway in the Ca(2+)(o)-induced chemoattraction of RAW 264.7 cells was also confirmed by transducing the cells with the fusion protein TAT-dominant negative-Akt, which decreased the migratory effect. In contrast, the MAPK pathways (ERK1/2, p38 and JNK) were not involved in the production of the migratory effect. We conclude that through the activation of the CaR and subsequent signaling via the PI3K/Akt pathway, Ca(2+)(o) produces a chemoattractant effect on the osteoclast precursor RAW 264.7 cells. These results suggest that the Ca(2+)(o) gradient present near the bone may be one of the initiating factors for the homing of osteoclast precursors to bone, thus possibly playing a role in the initiation of bone remodeling. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  1. Applying pathway engineering to enhance production of alpha-ketoglutarate in Yarrowia lipolytica.

    PubMed

    Guo, Hongwei; Su, Shaojie; Madzak, Catherine; Zhou, Jingwen; Chen, Hongwen; Chen, Guo

    2016-12-01

    α-Ketoglutarate (α-KG), one of short-chain carboxylates of high commercial relevance, has been widely used in food, medicine, chemical, and cosmetic fields. Compared to other carboxylates, α-KG occupies key positions in the tricarboxylate cycle (TCA cycle) and amino acid metabolic pathway, the over-accumulation of α-KG is restricted both by tighter carbon and nitrogen regulation process. Biotechnology production of α-KG on large industrial level has been impeded by many obstacles. This review aims at highlighting and stating recent efforts toward improving the yield and titer of α-KG in the strains of Yarrowia lipolytica to reach industrial relevance. Fermentation process optimization concerning feedstock utilization, dissolved oxygen controlling, pH manipulation and establishment of fed-batch process, have been assessed and evaluated. Moreover, pathway engineering routes have been applied for enhancing carbon commitment to α-KG, blocking competing pathways, regenerating of co-factors and regulating of carboxylate transporters to facilitate production and accumulation of α-KG. Although no engineered strain can satisfy the requirements of industrial production relevance to date, these strategies provide many clues for accelerating strain development for α-KG production.

  2. Engineering oxidative stress defense pathways to build a robust lipid production platform in Yarrowia lipolytica.

    PubMed

    Xu, Peng; Qiao, Kangjian; Stephanopoulos, Gregory

    2017-07-01

    Microbially derived lipids have recently attracted renewed interests due to their broad applications in production of green diesels, cosmetic additives, and oleochemicals. Metabolic engineering efforts have targeted a large portfolio of biosynthetic pathways to efficiently convert sugar to lipids in oleaginous yeast. In the engineered overproducing strains, endogenous cell metabolism typically generates harmful electrophilic molecules that compromise cell fitness and productivity. Lipids, particularly unsaturated fatty acids, are highly susceptible to oxygen radical attack and the resulting oxidative species are detrimental to cell metabolism and limit lipid productivity. In this study, we investigated cellular oxidative stress defense pathways in Yarrowia lipolytica to further improve the lipid titer, yield, and productivity. Specifically, we determined that coupling glutathione disulfide reductase and glucose-6-phosphate dehydrogenase along with aldehyde dehydrogenase are efficient solutions to combat reactive oxygen and aldehyde stress in Y. lipolytica. With the reported engineering strategies, we were able to synchronize cell growth and lipid production, improve cell fitness and morphology, and achieved industrially-relevant level of lipid titer (72.7 g/L), oil content (81.4%) and productivity (0.97 g/L/h) in controlled bench-top bioreactors. The strategies reported here represent viable steps in the development of sustainable biorefinery platforms that potentially upgrade low value carbons to high value oleochemicals and biofuels. Biotechnol. Bioeng. 2017;114: 1521-1530. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  3. Rational engineering of multiple module pathways for the production of L-phenylalanine in Corynebacterium glutamicum.

    PubMed

    Zhang, Chuanzhi; Zhang, Junli; Kang, Zhen; Du, Guocheng; Chen, Jian

    2015-05-01

    Microbial production of L-phenylalanine (L-Phe) from renewable sources has attracted much attention recently. In the present study, Corynebacterium glutamicum 13032 was rationally engineered to produce L-Phe from inexpensive glucose. First, all the L-Phe biosynthesis pathway genes were investigated and the results demonstrated that in addition to AroF and PheA, the native PpsA, TktA, AroE and AroA, and the heterologous AroL and TyrB were also the key enzymes for L-Phe biosynthesis. Through combinational expression of these key enzymes, the L-Phe production was increased to 6.33 ± 0.13 g l(-1) which was about 1.48-fold of that of the parent strain C. glutamicum (pXM-pheA (fbr)-aroF (fbr)) (fbr, feedback-inhibition resistance). Furthermore, the production of L-Phe was improved to 9.14 ± 0.21 g l(-1) by modifying the glucose and L-Phe transport systems and blocking the acetate and lactate biosynthesis pathways. Eventually, the titer of L-Phe was enhanced to 15.76 ± 0.23 g l(-1) with a fed-batch fermentation strategy. To the best of our knowledge, this was the highest value reported in rationally engineered C. glutamicum 13032 strains. The results obtained will also contribute to rational engineering of C. glutamicum for production of other valuable aromatic compounds.

  4. Global Metabolic Engineering of Glycolytic Pathway via Multicopy Integration in Saccharomyces cerevisiae.

    PubMed

    Yamada, Ryosuke; Wakita, Kazuki; Ogino, Hiroyasu

    2017-01-23

    The use of renewable feedstocks for producing biofuels and biobased chemicals by engineering metabolic pathways of yeast Saccharomyces cerevisiae has recently become an attractive option. Many researchers attempted to increase glucose consumption rate by overexpressing some glycolytic enzymes because most target biobased chemicals are derived through glycolysis. However, these attempts have met with little success. In this study, to create a S. cerevisiae strain with high glucose consumption rate, we used multicopy integration to develop a global metabolic engineering strategy. Among approximately 350 metabolically engineered strains, YPH499/dPdA3-34 exhibited the highest glucose consumption rate. This strain showed 1.3-fold higher cell growth rate and glucose consumption rate than the control strain. Real-time PCR analysis revealed that transcription levels of glycolysis-related genes such as HXK2, PFK1, PFK2, PYK2, PGI1, and PGK1 in YPH499/dPdA3-34 were increased. Our strategy is thus a promising approach to optimize global metabolic pathways in S. cerevisiae.

  5. Exogenous ornithine is an effective precursor and the δ-ornithine amino transferase pathway contributes to proline accumulation under high N recycling in salt-stressed cashew leaves.

    PubMed

    da Rocha, Iza Marineves Almeida; Vitorello, Victor Alexandre; Silva, Jamille Santos; Ferreira-Silva, Sérgio Luiz; Viégas, Ricardo Almeida; Silva, Evandro Nascimento; Silveira, Joaquim Albenisio Gomes

    2012-01-01

    The role of the δ-ornithine amino transferase (OAT) pathway in proline synthesis is still controversial and was assessed in leaves of cashew plants subjected to salinity. The activities of enzymes and the concentrations of metabolites involved in proline synthesis were examined in parallel with the capacity of exogenous ornithine and glutamate to induce proline accumulation. Proline accumulation was best correlated with OAT activity, which increased 4-fold and was paralleled by NADH oxidation coupled to the activities of OAT and Δ(1)-pyrroline-5-carboxylate reductase (P5CR), demonstrating the potential of proline synthesis via OAT/P5C. Overall, the activities of GS, GOGAT and aminating GDH remained practically unchanged under salinity. The activity of P5CR did not respond to NaCl whereas Δ(1)-pyrroline-5-carboxylate dehydrogenase was sharply repressed by salinity. We suggest that if the export of P5C from the mitochondria to the cytosol is possible, its subsequent conversion to proline by P5CR may be important. In a time-course experiment, proline accumulation was associated with disturbances in amino acid metabolism as indicated by large increases in the concentrations of ammonia, free amino acids, glutamine, arginine and ornithine. Conversely, glutamate concentrations increased moderately and only within the first 24h. Exogenous feeding of ornithine as a precursor was very effective in inducing proline accumulation in intact plants and leaf discs, in which proline concentrations were several times higher than glutamate-fed or salt-treated plants. Our data suggest that proline accumulation might be a consequence of salt-induced increase in N recycling, resulting in increased levels of ornithine and other metabolites involved with proline synthesis and OAT activity. Under these metabolic circumstances the OAT pathway might contribute significantly to proline accumulation in salt-stressed cashew leaves. Copyright © 2011 Elsevier GmbH. All rights reserved.

  6. Hyperglycemia diverts dividing osteoblastic precursor cells to an adipogenic pathway and induces synthesis of a hyaluronan matrix that is adhesive for monocytes.

    PubMed

    Wang, Aimin; Midura, Ronald J; Vasanji, Amit; Wang, Andrew J; Hascall, Vincent C

    2014-04-18

    Isolated rat bone marrow stromal cells cultured in osteogenic medium in which the normal 5.6 mm glucose is changed to hyperglycemic 25.6 mm glucose greatly increase lipid formation between 21-31 days of culture that is associated with decreased biomineralization, up-regulate expression of cyclin D3 and two adipogenic markers (CCAAT/enhancer binding protein α and peroxisome proliferator-activated receptor γ) within 5 days of culture, increase neutral and polar lipid synthesis within 5 days of culture, and form a monocyte-adhesive hyaluronan matrix through an endoplasmic reticulum stress-induced autophagic mechanism. Evidence is also provided that, by 4 weeks after diabetes onset in the streptozotocin-induced diabetic rat model, there is a large loss of trabecular bone mineral density without apparent proportional changes in underlying collagen matrices, a large accumulation of a hyaluronan matrix within the trabecular bone marrow, and adipocytes and macrophages embedded in this hyaluronan matrix. These results support the hypothesis that hyperglycemia in bone marrow diverts dividing osteoblastic precursor cells (bone marrow stromal cells) to a metabolically stressed adipogenic pathway that induces synthesis of a hyaluronan matrix that recruits inflammatory cells and establishes a chronic inflammatory process that demineralizes trabecular cancellous bone.

  7. Synthetic metabolic engineering-a novel, simple technology for designing a chimeric metabolic pathway.

    PubMed

    Ye, Xiaoting; Honda, Kohsuke; Sakai, Takaaki; Okano, Kenji; Omasa, Takeshi; Hirota, Ryuichi; Kuroda, Akio; Ohtake, Hisao

    2012-09-06

    The integration of biotechnology into chemical manufacturing has been recognized as a key technology to build a sustainable society. However, the practical applications of biocatalytic chemical conversions are often restricted due to their complexities involving the unpredictability of product yield and the troublesome controls in fermentation processes. One of the possible strategies to overcome these limitations is to eliminate the use of living microorganisms and to use only enzymes involved in the metabolic pathway. Use of recombinant mesophiles producing thermophilic enzymes at high temperature results in denaturation of indigenous proteins and elimination of undesired side reactions; consequently, highly selective and stable biocatalytic modules can be readily prepared. By rationally combining those modules together, artificial synthetic pathways specialized for chemical manufacturing could be designed and constructed. A chimeric Embden-Meyerhof (EM) pathway with balanced consumption and regeneration of ATP and ADP was constructed by using nine recombinant E. coli strains overproducing either one of the seven glycolytic enzymes of Thermus thermophilus, the cofactor-independent phosphoglycerate mutase of Pyrococcus horikoshii, or the non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase of Thermococcus kodakarensis. By coupling this pathway with the Thermus malate/lactate dehydrogenase, a stoichiometric amount of lactate was produced from glucose with an overall ATP turnover number of 31. In this study, a novel and simple technology for flexible design of a bespoke metabolic pathway was developed. The concept has been testified via a non-ATP-forming chimeric EM pathway. We designated this technology as "synthetic metabolic engineering". Our technology is, in principle, applicable to all thermophilic enzymes as long as they can be functionally expressed in the host, and thus would be potentially applicable to the biocatalytic manufacture of any chemicals

  8. Reverse engineering the mechanical and molecular pathways in stem cell morphogenesis.

    PubMed

    Lu, Kai; Gordon, Richard; Cao, Tong

    2015-03-01

    The formation of relevant biological structures poses a challenge for regenerative medicine. During embryogenesis, embryonic cells differentiate into somatic tissues and undergo morphogenesis to produce three-dimensional organs. Using stem cells, we can recapitulate this process and create biological constructs for therapeutic transplantation. However, imperfect imitation of nature sometimes results in in vitro artifacts that fail to recapitulate the function of native organs. It has been hypothesized that developing cells may self-organize into tissue-specific structures given a correct in vitro environment. This proposition is supported by the generation of neo-organoids from stem cells. We suggest that morphogenesis may be reverse engineered to uncover its interacting mechanical pathway and molecular circuitry. By harnessing the latent architecture of stem cells, novel tissue-engineering strategies may be conceptualized for generating self-organizing transplants. Copyright © 2013 John Wiley & Sons, Ltd.

  9. Systems pathway engineering of Corynebacterium crenatum for improved L-arginine production

    PubMed Central

    Man, Zaiwei; Xu, Meijuan; Rao, Zhiming; Guo, Jing; Yang, Taowei; Zhang, Xian; Xu, Zhenghong

    2016-01-01

    L-arginine is an important amino acid in food and pharmaceutical industries. Until now, the main production method of L-arginine in China is the highly polluting keratin acid hydrolysis. The industrial level L-arginine production by microbial fermentation has become an important task. In previous work, we obtained a new L-arginine producing Corynebacterium crenatum (subspecies of Corynebacterium glutamicum) through screening and mutation breeding. In this work, we performed systems pathway engineering of C. crenatum for improved L-arginine production, involving amplification of L-arginine biosynthetic pathway flux by removal of feedback inhibition and overexpression of arginine operon; optimization of NADPH supply by modulation of metabolic flux distribution between glycolysis and pentose phosphate pathway; increasing glucose consumption by strengthening the preexisting glucose transporter and exploitation of new glucose uptake system; channeling excess carbon flux from glycolysis into tricarboxylic acid cycle to alleviate the glucose overflow metabolism; redistribution of carbon flux at α-ketoglutarate metabolic node to channel more flux into L-arginine biosynthetic pathway; minimization of carbon and cofactor loss by attenuation of byproducts formation. The final strain could produce 87.3 g L−1 L-arginine with yield up to 0.431 g L-arginine g−1 glucose in fed-batch fermentation. PMID:27338253

  10. Metabolic Engineering of the Phenylpropanoid Pathway Enhances the Antioxidant Capacity of Saussurea involucrata

    PubMed Central

    Li, Chonghui; Han, Xiaoyan; Zhao, Qiao; Zhao, Dexiu; Hua, Xuejun; Pang, Yongzhen

    2013-01-01

    The rare wild species of snow lotus Saussurea involucrata is a commonly used medicinal herb with great pharmacological value for human health, resulting from its uniquely high level of phenylpropanoid compound production. To gain information on the phenylpropanid biosynthetic pathway genes in this critically important medicinal plant, global transcriptome sequencing was performed. It revealed that the phenylpropanoid pathway genes were well represented in S. involucrata. In addition, we introduced two key phenylpropanoid pathway inducing transcription factors (PAP1 and Lc) into this medicinal plant. Transgenic S. involucrata co-expressing PAP1 and Lc exhibited purple pigments due to a massive accumulation of anthocyanins. The over-expression of PAP1 and Lc largely activated most of the phenylpropanoid pathway genes, and increased accumulation of several phenylpropanoid compounds significantly, including chlorogenic acid, syringin, cyanrine and rutin. Both ABTS (2,2′-azinobis-3-ethylbenzotiazo-line-6-sulfonic acid) and FRAP (ferric reducing anti-oxidant power) assays revealed that the antioxidant capacity of transgenic S. involucrata lines was greatly enhanced over controls. In addition to providing a deeper understanding of the molecular basis of phenylpropanoid metabolism, our results potentially enable an alternation of bioactive compound production in S. involucrata through metabolic engineering. PMID:23976949

  11. A Decade of Molecular Understanding of Withanolide Biosynthesis and In vitro Studies in Withania somnifera (L.) Dunal: Prospects and Perspectives for Pathway Engineering

    PubMed Central

    Dhar, Niha; Razdan, Sumeer; Rana, Satiander; Bhat, Wajid W.; Vishwakarma, Ram; Lattoo, Surrinder K.

    2015-01-01

    Withania somnifera, a multipurpose medicinal plant is a rich reservoir of pharmaceutically active triterpenoids that are steroidal lactones known as withanolides. Though the plant has been well-characterized in terms of phytochemical profiles as well as pharmaceutical activities, limited attempts have been made to decipher the biosynthetic route and identification of key regulatory genes involved in withanolide biosynthesis. This scenario limits biotechnological interventions for enhanced production of bioactive compounds. Nevertheless, recent emergent trends vis-à-vis, the exploration of genomic, transcriptomic, proteomic, metabolomics, and in vitro studies have opened new vistas regarding pathway engineering of withanolide production. During recent years, various strategic pathway genes have been characterized with significant amount of regulatory studies which allude toward development of molecular circuitries for production of key intermediates or end products in heterologous hosts. Another pivotal aspect covering redirection of metabolic flux for channelizing the precursor pool toward enhanced withanolide production has also been attained by deciphering decisive branch point(s) as robust targets for pathway modulation. With these perspectives, the current review provides a detailed overview of various studies undertaken by the authors and collated literature related to molecular and in vitro approaches employed in W. somnifera for understanding various molecular network interactions in entirety. PMID:26640469

  12. Optimization of an acetate reduction pathway for producing cellulosic ethanol by engineered yeast.

    PubMed

    Zhang, Guo-Chang; Kong, In Iok; Wei, Na; Peng, Dairong; Turner, Timothy L; Sung, Bong Hyun; Sohn, Jung-Hoon; Jin, Yong-Su

    2016-12-01

    Xylose fermentation by engineered Saccharomyces cerevisiae expressing NADPH-linked xylose reductase (XR) and NAD(+) -linked xylitol dehydrogenase (XDH) suffers from redox imbalance due to cofactor difference between XR and XDH, especially under anaerobic conditions. We have demonstrated that coupling of an NADH-dependent acetate reduction pathway with surplus NADH producing xylose metabolism enabled not only efficient xylose fermentation, but also in situ detoxification of acetate in cellulosic hydrolysate through simultaneous co-utilization of xylose and acetate. In this study, we report the highest ethanol yield from xylose (0.463 g ethanol/g xylose) by engineered yeast with XR and XDH through optimization of the acetate reduction pathway. Specifically, we constructed engineered yeast strains exhibiting various levels of the acetylating acetaldehyde dehydrogenase (AADH) and acetyl-CoA synthetase (ACS) activities. Engineered strains exhibiting higher activities of AADH and ACS consumed more acetate and produced more ethanol from a mixture of 20 g/L of glucose, 80 g/L of xylose, and 8 g/L of acetate. In addition, we performed environmental and genetic perturbations to further improve the acetate consumption. Glucose-pulse feeding to continuously provide ATPs under anaerobic conditions did not affect acetate consumption. Promoter truncation of GPD1 and gene deletion of GPD2 coding for glycerol-3-phosphate dehydrogenase to produce surplus NADH also did not lead to improved acetate consumption. When a cellulosic hydrolysate was used, the optimized yeast strain (SR8A6S3) produced 18.4% more ethanol and 41.3% less glycerol and xylitol with consumption of 4.1 g/L of acetate than a control strain without the acetate reduction pathway. These results suggest that the major limiting factor for enhanced acetate reduction during the xylose fermentation might be the low activities of AADH and ACS, and that the redox imbalance problem of XR/XDH pathway can be exploited

  13. Pathway engineering of Bacillus subtilis for microbial production of N-acetylglucosamine.

    PubMed

    Liu, Yanfeng; Liu, Long; Shin, Hyun-dong; Chen, Rachel R; Li, Jianghua; Du, Guocheng; Chen, Jian

    2013-09-01

    Glucosamine (GlcN) and its acetylated derivative, N-acetylglucosamine (GlcNAc), are widely used in nutraceutical and pharmaceutical industries. Currently, GlcN and GlcNAc are mainly produced by hydrolysis from crab and shrimp shells, which can cause severe environmental pollution and carries the potential risk of allergic reactions. In this study, we attempted to achieve microbial production of GlcNAc by pathway engineering of Bacillus subtilis 168. Specifically, glmS (encoding GlcN-6-phosphate synthase) from B. subtilis 168 and GNA1 (encoding GlcNAc-6-phosphate N-acetyltransferase) from Saccharomyces cerevisiae S288C were firstly co-overexpressed in B. subtilis; the level of GlcNAc reached 240mg/L in shake flask culture. Next, nagP, encoding the GlcNAc-specific enzyme of phosphotransferase system, was deleted to block the importation of extracellular GlcNAC, thus improving GlcNAc production to 615mg/L in shake flask culture. Then, nagA (encoding GlcNAc-6-phosphate deacetylase), gamA (encoding GlcN-6-phosphate deaminase), and nagB (encoding GlcN-6-phosphate deaminase) were deleted to block the catabolism of intracellular GlcNAc, thereby further increasing the GlcNAc titer to 1.85g/L in shake flask culture. Finally, microbial production of GlcNAc by the engineered B. subtilis 168 was conducted in a 3-L fed-batch bioreactor, and the GlcNAc titer reached 5.19g/L, which was 2.8-fold of that in shake flask culture. This is the first report regarding the pathway engineering of B. subtilis for microbial production of GlcNAc, and provides a good starting point for further metabolic engineering to achieve the industrial production of GlcNAc by a generally regarded as safe strain. © 2013 Elsevier Inc. All rights reserved.

  14. Gram-Scale Synthesis of Chiral Cyclopropane-Containing Drugs and Drug Precursors with Engineered Myoglobin Catalysts Featuring Complementary Stereoselectivity.

    PubMed

    Bajaj, Priyanka; Sreenilayam, Gopeekrishnan; Tyagi, Vikas; Fasan, Rudi

    2016-12-23

    Engineered hemoproteins have recently emerged as promising systems for promoting asymmetric cyclopropanations, but variants featuring predictable, complementary stereoselectivity in these reactions have remained elusive. In this study, a rationally driven strategy was implemented and applied to engineer myoglobin variants capable of providing access to 1-carboxy-2-aryl-cyclopropanes with high trans-(1R,2R) selectivity and catalytic activity. The stereoselectivity of these cyclopropanation biocatalysts complements that of trans-(1S,2S)-selective variants developed here and previously. In combination with whole-cell biotransformations, these stereocomplementary biocatalysts enabled the multigram synthesis of the chiral cyclopropane core of four drugs (Tranylcypromine, Tasimelteon, Ticagrelor, and a TRPV1 inhibitor) in high yield and with excellent diastereo- and enantioselectivity (98-99.9% de; 96-99.9% ee). These biocatalytic strategies outperform currently available methods to produce these drugs. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Metabolic Engineering of a Novel Propionate-Independent Pathway for the Production of Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate) in Recombinant Salmonella enterica Serovar Typhimurium

    PubMed Central

    Aldor, Ilana S.; Kim, Seon-Won; Jones Prather, Kristala L.; Keasling, Jay D.

    2002-01-01

    A pathway was metabolically engineered to produce poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), a biodegradable thermoplastic with proven commercial applications, from a single, unrelated carbon source. An expression system was developed in which a prpC strain of Salmonella enterica serovar Typhimurium, with a mutation in the ability to metabolize propionyl coenzyme A (propionyl-CoA), served as the host for a plasmid harboring the Acinetobacter polyhydroxyalkanoate synthesis operon (phaBCA) and a second plasmid with the Escherichia coli sbm and ygfG genes under an independent promoter. The sbm and ygfG genes encode a novel (2R)-methylmalonyl-CoA mutase and a (2R)-methylmalonyl-CoA decarboxylase, respectively, which convert succinyl-CoA, derived from the tricarboxylic acid cycle, to propionyl-CoA, an essential precursor of 3-hydroxyvalerate (HV). The S. enterica system accumulated PHBV with significant HV incorporation when the organism was grown aerobically with glycerol as the sole carbon source. It was possible to vary the average HV fraction in the copolymer by adjusting the arabinose or cyanocobalamin (precursor of coenzyme B12) concentration in the medium. PMID:12147480

  16. Improved oxytetracycline production in Streptomyces rimosus M4018 by metabolic engineering of the G6PDH gene in the pentose phosphate pathway.

    PubMed

    Tang, Zhenyu; Xiao, Ciying; Zhuang, Yingping; Chu, Ju; Zhang, Siliang; Herron, Paul R; Hunter, Iain S; Guo, Meijin

    2011-06-10

    The aromatic polyketide antibiotic, oxytetracycline (OTC), is produced by Streptomyces rimosus as an important secondary metabolite. High level production of antibiotics in Streptomycetes requires precursors and cofactors which are derived from primary metabolism; therefore it is exigent to engineer the primary metabolism. This has been demonstrated by targeting a key enzyme in the oxidative pentose phosphate pathway (PPP) and nicotinamide adenine dinucleotide phosphate (NADPH) generation, glucose-6-phosphate dehydrogenase (G6PDH), which is encoded by zwf1 and zwf2. Disruption of zwf1 or zwf2 resulted in a higher production of OTC. The disrupted strain had an increased carbon flux through glycolysis and a decreased carbon flux through PPP, as measured by the enzyme activities of G6PDH and phosphoglucose isomerase (PGI), and by the levels of ATP, which establishes G6PDH as a key player in determining carbon flux distribution. The increased production of OTC appeared to be largely due to the generation of more malonyl-CoA, one of the OTC precursors, as observed in the disrupted mutants. We have studied the effect of zwf modification on metabolite levels, gene expression, and secondary metabolite production to gain greater insight into flux distribution and the link between the fluxes in the primary and secondary metabolisms.

  17. Systematic approach to engineer Escherichia coli pathways for co-utilization of a glucose-xylose mixture.

    PubMed

    Chiang, Chung-Jen; Lee, Hong Min; Guo, Hong Jhih; Wang, Zei Wen; Lin, Li-Jen; Chao, Yun-Peng

    2013-08-07

    Glucose and xylose are two major sugars of lignocellulosic hydrolysate. The regulatory program of catabolite repression in Escherichia coli dictates the preferred utilization of glucose over xylose, which handicaps the development of the lignocellulose-based fermentation process. To co-utilize a glucose-xylose mixture, the E. coli strain was manipulated by pathway engineering in a systematic way. The approach included (1) blocking catabolite repression, (2) enhancing glucose transport, (3) increasing the activity of the pentose phosphate pathway, and (4) eliminating undesirable pathways. Moreover, the ethanol synthetic pathway from Zymomonas mobilis was introduced into the engineered strain. As a consequence, the resulting strain was able to simultaneously metabolize glucose and xylose and consume all sugars (30 g/L each) in 16 h, leading to 97% of the theoretical ethanol yield. Overall, this indicates that this approach is effective and straightforward to engineer E. coli for the desired trait.

  18. Metabolic engineering to simultaneously activate anthocyanin and proanthocyanidin biosynthetic pathways in Nicotiana spp.

    PubMed Central

    Fresquet-Corrales, Sandra; Roque, Edelín; Sarrión-Perdigones, Alejandro; Rochina, Maricruz; López-Gresa, María P.; Díaz-Mula, Huertas M.; Bellés, José M.; Tomás-Barberán, Francisco; Beltrán, José P.

    2017-01-01

    Proanthocyanidins (PAs), or condensed tannins, are powerful antioxidants that remove harmful free oxygen radicals from cells. To engineer the anthocyanin and proanthocyanidin biosynthetic pathways to de novo produce PAs in two Nicotiana species, we incorporated four transgenes to the plant chassis. We opted to perform a simultaneous transformation of the genes linked in a multigenic construct rather than classical breeding or retransformation approaches. We generated a GoldenBraid 2.0 multigenic construct containing two Antirrhinum majus transcription factors (AmRosea1 and AmDelila) to upregulate the anthocyanin pathway in combination with two Medicago truncatula genes (MtLAR and MtANR) to produce the enzymes that will derivate the biosynthetic pathway to PAs production. Transient and stable transformation of Nicotiana benthamiana and Nicotiana tabacum with the multigenic construct were respectively performed. Transient expression experiments in N. benthamiana showed the activation of the anthocyanin pathway producing a purple color in the agroinfiltrated leaves and also the effective production of 208.5 nmol (-) catechin/g FW and 228.5 nmol (-) epicatechin/g FW measured by the p-dimethylaminocinnamaldehyde (DMACA) method. The integration capacity of the four transgenes, their respective expression levels and their heritability in the second generation were analyzed in stably transformed N. tabacum plants. DMACA and phoroglucinolysis/HPLC-MS analyses corroborated the activation of both pathways and the effective production of PAs in T0 and T1 transgenic tobacco plants up to a maximum of 3.48 mg/g DW. The possible biotechnological applications of the GB2.0 multigenic approach in forage legumes to produce “bloat-safe” plants and to improve the efficiency of conversion of plant protein into animal protein (ruminal protein bypass) are discussed. PMID:28902886

  19. Metabolic engineering to simultaneously activate anthocyanin and proanthocyanidin biosynthetic pathways in Nicotiana spp.

    PubMed

    Fresquet-Corrales, Sandra; Roque, Edelín; Sarrión-Perdigones, Alejandro; Rochina, Maricruz; López-Gresa, María P; Díaz-Mula, Huertas M; Bellés, José M; Tomás-Barberán, Francisco; Beltrán, José P; Cañas, Luis A

    2017-01-01

    Proanthocyanidins (PAs), or condensed tannins, are powerful antioxidants that remove harmful free oxygen radicals from cells. To engineer the anthocyanin and proanthocyanidin biosynthetic pathways to de novo produce PAs in two Nicotiana species, we incorporated four transgenes to the plant chassis. We opted to perform a simultaneous transformation of the genes linked in a multigenic construct rather than classical breeding or retransformation approaches. We generated a GoldenBraid 2.0 multigenic construct containing two Antirrhinum majus transcription factors (AmRosea1 and AmDelila) to upregulate the anthocyanin pathway in combination with two Medicago truncatula genes (MtLAR and MtANR) to produce the enzymes that will derivate the biosynthetic pathway to PAs production. Transient and stable transformation of Nicotiana benthamiana and Nicotiana tabacum with the multigenic construct were respectively performed. Transient expression experiments in N. benthamiana showed the activation of the anthocyanin pathway producing a purple color in the agroinfiltrated leaves and also the effective production of 208.5 nmol (-) catechin/g FW and 228.5 nmol (-) epicatechin/g FW measured by the p-dimethylaminocinnamaldehyde (DMACA) method. The integration capacity of the four transgenes, their respective expression levels and their heritability in the second generation were analyzed in stably transformed N. tabacum plants. DMACA and phoroglucinolysis/HPLC-MS analyses corroborated the activation of both pathways and the effective production of PAs in T0 and T1 transgenic tobacco plants up to a maximum of 3.48 mg/g DW. The possible biotechnological applications of the GB2.0 multigenic approach in forage legumes to produce "bloat-safe" plants and to improve the efficiency of conversion of plant protein into animal protein (ruminal protein bypass) are discussed.

  20. Metabolic engineering of light-driven cytochrome P450 dependent pathways into Synechocystis sp. PCC 6803.

    PubMed

    Wlodarczyk, Artur; Gnanasekaran, Thiyagarajan; Nielsen, Agnieszka Zygadlo; Zulu, Nodumo Nokolunga; Mellor, Silas Busck; Luckner, Manja; Thøfner, Jens Frederik Bang; Olsen, Carl Erik; Mottawie, Mohammed Saddik; Burow, Meike; Pribil, Mathias; Feussner, Ivo; Møller, Birger Lindberg; Jensen, Poul Erik

    2016-01-01

    Solar energy provides the energy input for the biosynthesis of primary and secondary metabolites in plants and other photosynthetic organisms. Some secondary metabolites are high value compounds, and typically their biosynthesis requires the involvement of cytochromes P450s. In this proof of concept work, we demonstrate that the cyanobacterium Synechocystis sp. PCC 6803 is an eminent heterologous host for expression of metabolically engineered cytochrome P450-dependent pathways exemplified by the dhurrin pathway from Sorghum bicolor comprising two membrane bound cytochromes P450s (CYP79A1 and CYP71E1) and a soluble glycosyltransferase (UGT85B1). We show that it is possible to express multiple genes incorporated into a bacterial-like operon by using a self-replicating expression vector in cyanobacteria. We demonstrate that eukaryotic P450s that typically reside in the endoplasmic reticulum membranes can be inserted in the prokaryotic membranes without affecting thylakoid membrane integrity. Photosystem I and ferredoxin replaces the native P450 oxidoreductase enzyme as an efficient electron donor for the P450s both in vitro and in vivo. The engineered strains produced up to 66mg/L of p-hydroxyphenylacetaldoxime and 5mg/L of dhurrin in lab-scale cultures after 3 days of cultivation and 3mg/L of dhurrin in V-shaped photobioreactors under greenhouse conditions after 9 days cultivation. All the metabolites were found to be excreted to the growth media facilitating product isolation.

  1. Upregulation of PGC-1α expression by Alzheimer’s disease-associated pathway: presenilin 1/amyloid precursor protein (APP)/intracellular domain of APP

    PubMed Central

    Robinson, Ari; Grösgen, Sven; Mett, Janine; Zimmer, Valerie C; Haupenthal, Viola J; Hundsdörfer, Benjamin; P Stahlmann, Christoph; Slobodskoy, Yulia; Müller, Ulrike C; Hartmann, Tobias; Stein, Reuven; Grimm, Marcus O W

    2014-01-01

    Cleavage of amyloid precursor protein (APP) by β- and γ-secretase generates amyloid-β (Aβ) and APP intracellular domain (AICD) peptides. Presenilin (PS) 1 or 2 is the catalytic component of the γ-secretase complex. Mitochondrial dysfunction is an established phenomenon in Alzheimer’s disease (AD), but the causes and role of PS1, APP, and APP’s cleavage products in this process are largely unknown. We studied the effect of these AD-associated molecules on mitochondrial features. Using cells deficient in PSs expression, expressing human wild-type PS1, or PS1 familial AD (FAD) mutants, we found that PS1 affects mitochondrial energy metabolism (ATP levels and oxygen consumption) and expression of mitochondrial proteins. These effects were associated with enhanced expression of the mitochondrial master transcriptional coactivator PGC-1α and its target genes. Importantly, PS1-FAD mutations decreased PS1’s ability to enhance PGC-1α mRNA levels. Analyzing the effect of APP and its γ-secretase-derived cleavage products Aβ and AICD on PGC-1α expression showed that APP and AICD increase PGC-1α expression. Accordingly, PGC-1α mRNA levels in cells deficient in APP/APLP2 or expressing APP lacking its last 15 amino acids were lower than in control cells, and treatment with AICD, but not with Aβ, enhanced PGC-1α mRNA levels in these and PSs-deficient cells. In addition, knockdown of the AICD-binding partner Fe65 reduced PGC-1α mRNA levels. Importantly, APP/AICD increases PGC-1α expression also in the mice brain. Our results therefore suggest that APP processing regulates mitochondrial function and that impairments in the newly discovered PS1/APP/AICD/PGC-1α pathway may lead to mitochondrial dysfunction and neurodegeneration. PMID:24304563

  2. Disruption of kif3a results in defective osteoblastic differentiation in dental mesenchymal stem/precursor cells via the Wnt signaling pathway

    PubMed Central

    Jiang, Sicong; Chen, Guoqing; Feng, Lian; Jiang, Zongting; Yu, Mei; Bao, Jinku; Tian, Weidong

    2016-01-01

    The anterograde intraflagellar transport motor protein, kif3a, regulates the integrity of primary cilia and various cellular functions, however, the role of kif3a in dental mesenchymal stem/precursor cell differentiation remains to be fully elucidated. In the present study, the expression of kif3a was knocked down in human dental follicle cells (hDFCs) and human dental pulp cells (hDPCs) using short hairpin RNA. The results of subsequent immunofluorescence revealed that knocking down kif3a resulted in the loss of primary cilia, which led to impairment of substantial mineralization and expression of the differentiation-associated markers, including alkaline phosphatase, Runt-related transcription factor 2, dentin matrix protein 1 and dentin sialophosphoprotein in the hDFCs and hDPCs. The results of reverse transcription-quantitative polymerase chain reaction and western blot analyses showed that the expression levels of Wnt3a-mediated active β-catenin and lymphoid enhancer-binding factor 1 were attenuated, whereas the expression of phosphorylated glycogen synthase kinase 3β was enhanced, in the kif3a-knockdown cells. In addition, exogenous Wnt3a partially rescued osteoblastic differentiation in the hDFCs and hDPCs. These results demonstrated that inhibition of kif3a in the hDFCs and hDPCs disrupted primary cilia formation and/or function, and indicated that kif3a is important in the differentiation of hDFCs and hDPCs through the Wnt pathway. These findings not only enhance current understanding of tooth development and diseases of tooth mineralization, but also indicate possible strategies to regulate mineralization during tooth repair and regeneration. PMID:27432616

  3. Epicardium and Myocardium Separate From a Common Precursor Pool by Crosstalk Between Bone Morphogenetic Protein– and Fibroblast Growth Factor–Signaling Pathways

    PubMed Central

    van Wijk, Bram; van den Berg, Gert; Abu-Issa, Radwan; Barnett, Phil; van der Velden, Saskia; Schmidt, Martina; Ruijter, Jan M.; Kirby, Margaret L.; Moorman, Antoon F.M.; van den Hoff, Maurice J.B.

    2010-01-01

    Rationale The epicardium contributes to the majority of nonmyocardial cells in the adult heart. Recent studies have reported that the epicardium is derived from Nkx2.5-positive progenitors and can differentiate into cardiomyocytes. Not much is known about the relation between the myocardial and epicardial lineage during development, whereas insights into these embryonic mechanisms could facilitate the design of future regenerative strategies. Objective Acquiring insight into the signaling pathways involved in the lineage separation leading to the differentiation of myocardial and (pro)epicardial cells at the inflow of the developing heart. Methods and Results We made 3D reconstructions of Tbx18 gene expression patterns to give insight into the developing epicardium in relation to the developing myocardium. Next, using DiI tracing, we show that the (pro)epicardium separates from the same precursor pool as the inflow myocardium. In vitro, we show that this lineage separation is regulated by a crosstalk between bone morphogenetic protein (BMP) signaling and fibroblast growth factor (FGF) signaling. BMP signaling via Smad drives differentiation toward the myocardial lineage, which is inhibited by FGF signaling via mitogen-activated protein kinase kinase (Mek)1/2. Embryos exposed to recombinant FGF2 in vivo show enhanced epicardium formation, whereas a misbalance between FGF and BMP by Mek1/2 inhibition and BMP stimulation causes a developmental arrest of the epicardium and enhances myocardium formation at the inflow of the heart. Conclusion Our data show that FGF signaling via Mek1/2 is dominant over BMP signaling via Smad and is required to separate the epicardial lineage from precardiac mesoderm. Consequently, myocardial differentiation requires BMP signaling via Smad and inhibition of FGF signaling at the level of Mek1/2. These findings are of clinical interest for the development of regeneration-based therapies for heart disease. PMID:19628790

  4. L-Arginine promotes protein synthesis and cell growth in brown adipocyte precursor cells via the mTOR signal pathway.

    PubMed

    Ma, Xi; Han, Meng; Li, Defa; Hu, Shengdi; Gilbreath, Kyler R; Bazer, Fuller W; Wu, Guoyao

    2017-05-01

    L-Arginine has been reported to enhance brown adipose tissue developments in fetal lambs of obese ewes, but the underlying mechanism is unknown. The present study tested the hypothesis that L-arginine stimulates growth and development of brown adipocyte precursor cells (BAPCs) through activation of mammalian target of rapamycin cell signaling. BAPCs isolated from fetal lambs at day 90 of gestation were incubated   for 6 h in arginine-free DMEM, and then cultured in DMEM with concentrations of 50, 100, 200, 500 or 1000 μmol L-arginine/L for 24-96 h. Cell proliferation, protein turnover, the mammalian target of rapamycin (mTOR) signaling pathway and pre-adipocyte differentiation markers were determined. L-arginine treatment enhanced (P < 0.05) BAPC growth and protein synthesis, while inhibiting proteolysis in a dose-dependent manner. Compared with 50 and 100 μmol/L (the concentrations of arginine in the maternal plasma of obese ewes), 200 μmol L-arginine/L (the concentrations of arginine in the maternal plasma of obese ewes receiving arginine supplementation) increased (P < 0.05) the abundances of phosphorylated mTOR, P70(S6K) and 4EBP1, as well as the abundances of PGC1α, UCP1, BMP7 and PRDM16. These novel findings indicate that increasing extra-cellular arginine concentration from 50 to 200 µmol/L activates mTOR cell signaling in BAPCs and enhances their growth and development in a dose-dependent manner. Our results provide a mechanism for arginine supplementation to enhance the development of brown adipose tissue in fetal lambs.

  5. Impacts of genetically engineered alterations in carbon sink pathways on photosynthetic performance

    SciTech Connect

    Holland, Steven C.; Artier, Juliana; Miller, Neil T.; Cano, Melissa; Yu, Jianping; Ghirardi, Maria L.; Burnap, Robert L.

    2016-10-05

    Genetic engineering of photosynthetic organisms typically redirects native metabolism towards desirable products, which thereby represent new metabolic sinks. There is limited information on how these modifications impact the evolved mechanisms of photosynthetic energy metabolism and cellular growth. Two engineered strains of Synechocystis sp. PCC 6803 with altered carbon sink capacity were assayed for their photosynthetic and CO2 concentrating mechanism properties in conditions of high and low inorganic carbon (Ci) availability. In the ΔglgC mutant, glycogen cannot be synthesized and a carbon sink pathway has been effectively removed. The JU547 strain has been engineered by integration of the Pseudomonas syringae ethylene forming enzyme and provides a new sink. When cultured under high carbon conditions, ΔglgC displayed diminished photochemical efficiency, a more reduced NADPH pool, delayed initiation of the Calvin-Benson-Bassham cycle, and impairment of linear and cyclic electron flows. It also exhibited a large decrease in photochemical quenching indicative of the accumulation of QA-, normally associated with a reduced PQ pool, but appears instead to be the result of an undefined dissipative mechanism to spill excess energy. In the case of carbon sink integration, JU547 displayed slightly more oxidized PQ and NADPH pools and increased rates of cyclic electron flow and an enhanced demand for inorganic carbon as suggested by increase in the expression of the bicarbonate transporter, SbtA. Overall, the results highlight the importance of the native regulatory network of autotrophic metabolism in governing photosynthetic performance and provide cogent examples of both predicable and difficult to predict phenotypic consequences upon installation of new pathways in autotrophs.

  6. Impacts of genetically engineered alterations in carbon sink pathways on photosynthetic performance

    DOE PAGES

    Holland, Steven C.; Artier, Juliana; Miller, Neil T.; ...

    2016-10-05

    Genetic engineering of photosynthetic organisms typically redirects native metabolism towards desirable products, which thereby represent new metabolic sinks. There is limited information on how these modifications impact the evolved mechanisms of photosynthetic energy metabolism and cellular growth. Two engineered strains of Synechocystis sp. PCC 6803 with altered carbon sink capacity were assayed for their photosynthetic and CO2 concentrating mechanism properties in conditions of high and low inorganic carbon (Ci) availability. In the ΔglgC mutant, glycogen cannot be synthesized and a carbon sink pathway has been effectively removed. The JU547 strain has been engineered by integration of the Pseudomonas syringae ethylenemore » forming enzyme and provides a new sink. When cultured under high carbon conditions, ΔglgC displayed diminished photochemical efficiency, a more reduced NADPH pool, delayed initiation of the Calvin-Benson-Bassham cycle, and impairment of linear and cyclic electron flows. It also exhibited a large decrease in photochemical quenching indicative of the accumulation of QA-, normally associated with a reduced PQ pool, but appears instead to be the result of an undefined dissipative mechanism to spill excess energy. In the case of carbon sink integration, JU547 displayed slightly more oxidized PQ and NADPH pools and increased rates of cyclic electron flow and an enhanced demand for inorganic carbon as suggested by increase in the expression of the bicarbonate transporter, SbtA. Overall, the results highlight the importance of the native regulatory network of autotrophic metabolism in governing photosynthetic performance and provide cogent examples of both predicable and difficult to predict phenotypic consequences upon installation of new pathways in autotrophs.« less

  7. Pathway engineering of Propionibacterium jensenii for improved production of propionic acid

    PubMed Central

    Liu, Long; Guan, Ningzi; Zhu, Gexin; Li, Jianghua; Shin, Hyun-dong; Du, Guocheng; Chen, Jian

    2016-01-01

    Propionic acid (PA) is an important chemical building block widely used in the food, pharmaceutical, and chemical industries. In our previous study, a shuttle vector was developed as a useful tool for engineering Propionibacterium jensenii, and two key enzymes—glycerol dehydrogenase and malate dehydrogenase—were overexpressed to improve PA titer. Here, we aimed to improve PA production further via the pathway engineering of P. jensenii. First, the phosphoenolpyruvate carboxylase gene (ppc) from Klebsiella pneumoniae was overexpressed to access the one-step synthesis of oxaloacetate directly from phosphoenolpyruvate without pyruvate as intermediate. Next, genes encoding lactate dehydrogenase (ldh) and pyruvate oxidase (poxB) were deleted to block the synthesis of the by-products lactic acid and acetic acid, respectively. Overexpression of ppc and deleting ldh improved PA titer from 26.95 ± 1.21 g·L−1 to 33.21 ± 1.92 g·L−1 and 30.50 ± 1.63 g·L−1, whereas poxB deletion decreased it. The influence of this pathway engineering on gene transcription, enzyme expression, NADH/NAD+ ratio, and metabolite concentration was also investigated. Finally, PA production in P. jensenii with ppc overexpression as well as ldh deletion was investigated, which resulted in further increases in PA titer to 34.93 ± 2.99 g·L−1 in a fed-batch culture. PMID:26814976

  8. Pathway engineering of Propionibacterium jensenii for improved production of propionic acid.

    PubMed

    Liu, Long; Guan, Ningzi; Zhu, Gexin; Li, Jianghua; Shin, Hyun-Dong; Du, Guocheng; Chen, Jian

    2016-01-27

    Propionic acid (PA) is an important chemical building block widely used in the food, pharmaceutical, and chemical industries. In our previous study, a shuttle vector was developed as a useful tool for engineering Propionibacterium jensenii, and two key enzymes-glycerol dehydrogenase and malate dehydrogenase-were overexpressed to improve PA titer. Here, we aimed to improve PA production further via the pathway engineering of P. jensenii. First, the phosphoenolpyruvate carboxylase gene (ppc) from Klebsiella pneumoniae was overexpressed to access the one-step synthesis of oxaloacetate directly from phosphoenolpyruvate without pyruvate as intermediate. Next, genes encoding lactate dehydrogenase (ldh) and pyruvate oxidase (poxB) were deleted to block the synthesis of the by-products lactic acid and acetic acid, respectively. Overexpression of ppc and deleting ldh improved PA titer from 26.95 ± 1.21 g·L(-1) to 33.21 ± 1.92 g·L(-1) and 30.50 ± 1.63 g·L(-1), whereas poxB deletion decreased it. The influence of this pathway engineering on gene transcription, enzyme expression, NADH/NAD(+) ratio, and metabolite concentration was also investigated. Finally, PA production in P. jensenii with ppc overexpression as well as ldh deletion was investigated, which resulted in further increases in PA titer to 34.93 ± 2.99 g·L(-1) in a fed-batch culture.

  9. Impacts of genetically engineered alterations in carbon sink pathways on photosynthetic performance

    SciTech Connect

    Holland, Steven C.; Artier, Juliana; Miller, Neil T.; Cano, Melissa; Yu, Jianping; Ghirardi, Maria L.; Burnap, Robert L.

    2016-10-05

    Genetic engineering of photosynthetic organisms typically redirects native metabolism towards desirable products, which thereby represent new metabolic sinks. There is limited information on how these modifications impact the evolved mechanisms of photosynthetic energy metabolism and cellular growth. Two engineered strains of Synechocystis sp. PCC 6803 with altered carbon sink capacity were assayed for their photosynthetic and CO2 concentrating mechanism properties in conditions of high and low inorganic carbon (Ci) availability. In the ΔglgC mutant, glycogen cannot be synthesized and a carbon sink pathway has been effectively removed. The JU547 strain has been engineered by integration of the Pseudomonas syringae ethylene forming enzyme and provides a new sink. When cultured under high carbon conditions, ΔglgC displayed diminished photochemical efficiency, a more reduced NADPH pool, delayed initiation of the Calvin-Benson-Bassham cycle, and impairment of linear and cyclic electron flows. It also exhibited a large decrease in photochemical quenching indicative of the accumulation of QA-, normally associated with a reduced PQ pool, but appears instead to be the result of an undefined dissipative mechanism to spill excess energy. In the case of carbon sink integration, JU547 displayed slightly more oxidized PQ and NADPH pools and increased rates of cyclic electron flow and an enhanced demand for inorganic carbon as suggested by increase in the expression of the bicarbonate transporter, SbtA. Overall, the results highlight the importance of the native regulatory network of autotrophic metabolism in governing photosynthetic performance and provide cogent examples of both predicable and difficult to predict phenotypic consequences upon installation of new pathways in autotrophs.

  10. Pathway engineering of Enterobacter aerogenes to improve acetoin production by reducing by-products formation.

    PubMed

    Jang, Ji-Woong; Jung, Hwi-Min; Im, Dae-Kyun; Jung, Moo-Young; Oh, Min-Kyu

    2017-11-01

    Enterobacter aerogenes was metabolically engineered for acetoin production. To remove the pathway enzymes that catalyzed the formation of by-products, the three genes encoding a lactate dehydrogenase (ldhA) and two 2,3-butanediol dehydrogenases (budC, and dhaD), respectively, were deleted from the genome. The acetoin production was higher under highly aerobic conditions. However, an extracellular glucose oxidative pathway in E. aerogenes was activated under the aerobic conditions, resulting in the accumulation of 2-ketogluconate. To decrease the accumulation of this by-product, the gene encoding a glucose dehydrogenase (gcd) was also deleted. The resulting strain did not produce 2-ketogluconate but produced significant amounts of acetoin, with concentration reaching 71.7g/L with 2.87g/L/h productivity in fed-batch fermentation. This result demonstrated the importance of blocking the glucose oxidative pathway under highly aerobic conditions for acetoin production using E. aerogenes. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Enhancing GDP-fucose production in recombinant Escherichia coli by metabolic pathway engineering.

    PubMed

    Zhai, Yafei; Han, Donglei; Pan, Ying; Wang, Shuaishuai; Fang, Junqiang; Wang, Peng; Liu, Xian-wei

    2015-02-01

    Guanosine 5'-diphosphate (GDP)-fucose is the indispensible donor substrate for fucosyltransferase-catalyzed synthesis of fucose-containing biomolecules, which have been found involving in various biological functions. In this work, the salvage pathway for GDP-fucose biosynthesis from Bacterioides fragilis was introduced into Escherichia coli. Besides, the biosynthesis of guanosine 5'-triphosphate (GTP), an essential substrate for GDP-fucose biosynthesis, was enhanced via overexpression of enzymes involved in the salvage pathway of GTP biosynthesis. The production capacities of metabolically engineered strains bearing different combinations of recombinant enzymes were compared. The shake flask fermentation of the strain expressing Fkp, Gpt, Gmk and Ndk obtained the maximum GDP-fucose content of 4.6 ± 0.22 μmol/g (dry cell mass), which is 4.2 fold that of the strain only expressing Fkp. Through fed-batch fermentation, the GDP-fucose content further rose to 6.6 ± 0.14 μmol/g (dry cell mass). In addition to a better productivity than previous fermentation processes based on the de novo pathway for GDP-fucose biosynthesis, the established schemes in this work also have the advantage to be a potential avenue to GDP-fucose analogs encompassing chemical modification on the fucose residue.

  12. Engineered tobacco etch virus (TEV) protease active in the secretory pathway of mammalian cells.

    PubMed

    Cesaratto, Francesca; López-Requena, Alejandro; Burrone, Oscar R; Petris, Gianluca

    2015-10-20

    Tobacco etch virus protease (TEVp) is a unique endopeptidase with stringent substrate specificity. TEVp has been widely used as a purified protein for in vitro applications, but also as a biological tool directly expressing it in living cells. To adapt the protease to diverse applications, several TEVp mutants with different stability and enzymatic properties have been reported. Herein we describe the development of a novel engineered TEVp mutant designed to be active in the secretory pathway. While wild type TEVp targeted to the secretory pathway of mammalian cells is synthetized as an N-glycosylated and catalytically inactive enzyme, a TEVp mutant with selected mutations at two verified N-glycosylation sites and at an exposed cysteine was highly efficient. This mutant was very active in the endoplasmic reticulum (ER) of living cells and can be used as a biotechnological tool to cleave proteins within the secretory pathway. As an immediate practical application we report the expression of a complete functional monoclonal antibody expressed from a single polypeptide, which was cleaved by our TEVp mutant into the two antibody chains and secreted as an assembled and functional molecule. In addition, we show active TEVp mutants lacking auto-cleavage activity.

  13. MAR-Mediated transgene integration into permissive chromatin and increased expression by recombination pathway engineering.

    PubMed

    Kostyrko, Kaja; Neuenschwander, Samuel; Junier, Thomas; Regamey, Alexandre; Iseli, Christian; Schmid-Siegert, Emanuel; Bosshard, Sandra; Majocchi, Stefano; Le Fourn, Valérie; Girod, Pierre-Alain; Xenarios, Ioannis; Mermod, Nicolas

    2017-02-01

    Untargeted plasmid integration into mammalian cell genomes remains a poorly understood and inefficient process. The formation of plasmid concatemers and their genomic integration has been ascribed either to non-homologous end-joining (NHEJ) or homologous recombination (HR) DNA repair pathways. However, a direct involvement of these pathways has remained unclear. Here, we show that the silencing of many HR factors enhanced plasmid concatemer formation and stable expression of the gene of interest in Chinese hamster ovary (CHO) cells, while the inhibition of NHEJ had no effect. However, genomic integration was decreased by the silencing of specific HR components, such as Rad51, and DNA synthesis-dependent microhomology-mediated end-joining (SD-MMEJ) activities. Genome-wide analysis of the integration loci and junction sequences validated the prevalent use of the SD-MMEJ pathway for transgene integration close to cellular genes, an effect shared with matrix attachment region (MAR) DNA elements that stimulate plasmid integration and expression. Overall, we conclude that SD-MMEJ is the main mechanism driving the illegitimate genomic integration of foreign DNA in CHO cells, and we provide a recombination engineering approach that increases transgene integration and recombinant protein expression in these cells. Biotechnol. Bioeng. 2017;114: 384-396. © 2016 The Authors. Biotechnology and Bioengineering published by Wiley Periodicals, Inc.

  14. Multiplex iterative plasmid engineering for combinatorial optimization of metabolic pathways and diversification of protein coding sequences.

    PubMed

    Li, Yifan; Gu, Qun; Lin, Zhenquan; Wang, Zhiwen; Chen, Tao; Zhao, Xueming

    2013-11-15

    Engineering complex biological systems typically requires combinatorial optimization to achieve the desired functionality. Here, we present Multiplex Iterative Plasmid Engineering (MIPE), which is a highly efficient and customized method for combinatorial diversification of plasmid sequences. MIPE exploits ssDNA mediated λ Red recombineering for the introduction of mutations, allowing it to target several sites simultaneously and generate libraries of up to 10(7) sequences in one reaction. We also describe "restriction digestion mediated co-selection (RD CoS)", which enables MIPE to produce enhanced recombineering efficiencies with greatly simplified coselection procedures. To demonstrate this approach, we applied MIPE to fine-tune gene expression level in the 5-gene riboflavin biosynthetic pathway and successfully isolated a clone with 2.67-fold improved production in less than a week. We further demonstrated the ability of MIPE for highly multiplexed diversification of protein coding sequence by simultaneously targeting 23 codons scattered along the 750 bp sequence. We anticipate this method to benefit the optimization of diverse biological systems in synthetic biology and metabolic engineering.

  15. Improved Precursor Directed Biosynthesis in E. coli via Directed Evolution

    PubMed Central

    Lee, Ho Young; Harvey, Colin J.B.; Cane, David E.; Khosla, Chaitan

    2010-01-01

    Erythromycin and related macrolide antibiotics are widely used polyketide natural products. We have evolved an engineered biosynthetic pathway in Escherichia coli that yields erythromycin analogs from simple synthetic precursors. Multiple rounds of mutagenesis and screening led to the identification of new mutant strains with improved efficiency for precursor directed biosynthesis. Genetic and biochemical analysis suggested that the phenotypically relevant alterations in these mutant strains were localized exclusively to the host-vector system, and not to the polyketide synthase. We also demonstrate the utility of this improved system through engineered biosynthesis of a novel alkynyl erythromycin derivative with comparable antibacterial activity to its natural counterpart. In addition to reinforcing the power of directed evolution for engineering macrolide biosynthesis, our studies have identified a new lead substance for investigating structure-function relationships in the bacterial ribosome. PMID:21081955

  16. Improved poly-γ-glutamic acid production in Bacillus amyloliquefaciens by modular pathway engineering.

    PubMed

    Feng, Jun; Gu, Yanyan; Quan, Yufen; Cao, Mingfeng; Gao, Weixia; Zhang, Wei; Wang, Shufang; Yang, Chao; Song, Cunjiang

    2015-11-01

    A Bacillus amyloliquefaciens strain with enhanced γ-PGA production was constructed by metabolically engineering its γ-PGA synthesis-related metabolic networks: by-products synthesis, γ-PGA degradation, glutamate precursor synthesis, γ-PGA synthesis and autoinducer synthesis. The genes involved in by-products synthesis were firstly deleted from the starting NK-1 strain. The obtained NK-E7 strain with deletions of the epsA-O (responsible for extracellular polysaccharide synthesis), sac (responsible for levan synthesis), lps (responsible for lipopolysaccharide synthesis) and pta (encoding phosphotransacetylase) genes, showed increased γ-PGA purity and slight increase of γ-PGA titer from 3.8 to 4.15 g/L. The γ-PGA degrading genes pgdS (encoding poly-gamma-glutamate depolymerase) and cwlO (encoding cell wall hydrolase) were further deleted. The obtained NK-E10 strain showed further increased γ-PGA production from 4.15 to 9.18 g/L. The autoinducer AI-2 synthetase gene luxS was deleted in NK-E10 strain and the resulting NK-E11 strain showed comparable γ-PGA titer to NK-E10 (from 9.18 to 9.54 g/L). In addition, we overexpressed the pgsBCA genes (encoding γ-PGA synthetase) in NK-E11 strain; however, the overexpression of these genes led to a decrease in γ-PGA production. Finally, the rocG gene (encoding glutamate dehydrogenase) and the glnA gene (glutamine synthetase) were repressed by the expression of synthetic small regulatory RNAs in NK-E11 strain. The rocG-repressed NK-anti-rocG strain exhibited the highest γ-PGA titer (11.04 g/L), which was 2.91-fold higher than that of the NK-1 strain. Fed-batch cultivation of the NK-anti-rocG strain resulted in a final γ-PGA titer of 20.3g/L, which was 5.34-fold higher than that of the NK-1 strain in shaking flasks. This work is the first report of a systematically metabolic engineering approach that significantly enhanced γ-PGA production in a B. amyloliquefaciens strain. The engineering strategies explored here are

  17. Enhanced production of coenzyme Q10 by self-regulating the engineered MEP pathway in Rhodobacter sphaeroides.

    PubMed

    Lu, Wenqiang; Ye, Lidan; Xu, Haoming; Xie, Wenping; Gu, Jiali; Yu, Hongwei

    2014-04-01

    Fine-tuning the expression level of an engineered pathway is crucial for the metabolic engineering of a host toward a desired phenotype. However, most engineered hosts suffer from nonfunctional protein expression, metabolic imbalance, cellular burden or toxicity from intermediates when an engineered pathway is first introduced, which can decrease production of the desired product. To circumvent these obstacles, we developed a self-regulation system utilizing the trc/tac promoter, LacI(q) protein and ribosomal binding sites (RBS). With the purpose of improving coenzyme Q10 (CoQ10 ) production by increasing the decaprenyl diphosphate supplement, enzymes DXS, DXR, IDI, and IspD were constitutively overexpressed under the control of the trc promoter in Rhodobacter sphaeroides. Then, a self-regulation system combining a set of RBSs for adjusting the expression of the LacI(q) protein was applied to tune the expression of the four genes, resulting in improved CoQ10 production. Finally, another copy of the tac promoter with the UbiG gene (involved in the ubiquinone pathway of CoQ10 biosynthesis) was introduced into the engineered pathway. By optimizing the expression level of both the upstream and downstream pathway, CoQ10 production in the mutants was improved up to 93.34 mg/L (7.16 mg/g DCW), about twofold of the wild-type (48.25 mg/L, 3.24 mg/g DCW).

  18. Induction of multiple pleiotropic drug resistance genes in yeast engineered to produce an increased level of anti-malarial drug precursor, artemisinic acid

    PubMed Central

    Ro, Dae-Kyun; Ouellet, Mario; Paradise, Eric M; Burd, Helcio; Eng, Diana; Paddon, Chris J; Newman, Jack D; Keasling, Jay D

    2008-01-01

    Background Due to the global occurrence of multi-drug-resistant malarial parasites (Plasmodium falciparum), the anti-malarial drug most effective against malaria is artemisinin, a natural product (sesquiterpene lactone endoperoxide) extracted from sweet wormwood (Artemisia annua). However, artemisinin is in short supply and unaffordable to most malaria patients. Artemisinin can be semi-synthesized from its precursor artemisinic acid, which can be synthesized from simple sugars using microorganisms genetically engineered with genes from A. annua. In order to develop an industrially competent yeast strain, detailed analyses of microbial physiology and development of gene expression strategies are required. Results Three plant genes coding for amorphadiene synthase, amorphadiene oxidase (AMO or CYP71AV1), and cytochrome P450 reductase, which in concert divert carbon flux from farnesyl diphosphate to artemisinic acid, were expressed from a single plasmid. The artemisinic acid production in the engineered yeast reached 250 μg mL-1 in shake-flask cultures and 1 g L-1 in bio-reactors with the use of Leu2d selection marker and appropriate medium formulation. When plasmid stability was measured, the yeast strain synthesizing amorphadiene alone maintained the plasmid in 84% of the cells, whereas the yeast strain synthesizing artemisinic acid showed poor plasmid stability. Inactivation of AMO by a point-mutation restored the high plasmid stability, indicating that the low plasmid stability is not caused by production of the AMO protein but by artemisinic acid synthesis or accumulation. Semi-quantitative reverse-transcriptase (RT)-PCR and quantitative real time-PCR consistently showed that pleiotropic drug resistance (PDR) genes, belonging to the family of ATP-Binding Cassette (ABC) transporter, were massively induced in the yeast strain producing artemisinic acid, relative to the yeast strain producing the hydrocarbon amorphadiene alone. Global transcriptional analysis by

  19. Pathways to space: A mission to foster the next generation of scientists and engineers

    NASA Astrophysics Data System (ADS)

    Dougherty, Kerrie; Oliver, Carol; Fergusson, Jennifer

    2014-06-01

    The first education project funded under the Australian Government's Australian Space Research Program (ASRP), Pathways to Space was a unique project combining education, science communication research and research in astrobiology and robotics. It drew upon the challenges of space exploration to inspire students to consider study and careers in science and engineering. A multi-faceted program, Pathways to Space provided hands-on opportunities for high school and university students to participate in realistic simulations of a robotic Mars exploration mission for astrobiology. Its development was a collaboration between the Australian Centre for Astrobiology (University of New South Wales), the Australian Centre for Field Robotics (University of Sydney), the Powerhouse Museum and industry partner, Cisco. Focused on students in Years 9-10 (15-16 years of age), this program provided them with the opportunity to engage directly with space engineers and astrobiologists, while carrying out a simulated Mars mission using the digital learning facilities available at the Powerhouse Museum. As a part of their program, the students operated robotic mini-rovers in the Powerhouse Museum's “Mars Yard”, a highly accurate simulation of the Martian surface, where university students also carry out the development and testing of experimental Mars roving vehicles. This aspect of the program has brought real science and engineering research into the public space of the museum. As they undertook the education program, the students participated in a research study aimed at understanding the effectiveness of the project in achieving its key objective - encouraging students to consider space related courses and careers. This paper outlines the development and operation of the Pathways to Space project over its 3-year funding period, during which it met and exceeded all the requirements of its ASRP grant. It will look at the goals of the project, the rationale behind the education and

  20. Heading in the right direction: thermodynamics-based network analysis and pathway engineering.

    PubMed

    Ataman, Meric; Hatzimanikatis, Vassily

    2015-12-01

    Thermodynamics-based network analysis through the introduction of thermodynamic constraints in metabolic models allows a deeper analysis of metabolism and guides pathway engineering. The number and the areas of applications of thermodynamics-based network analysis methods have been increasing in the last ten years. We review recent applications of these methods and we identify the areas that such analysis can contribute significantly, and the needs for future developments. We find that organisms with multiple compartments and extremophiles present challenges for modeling and thermodynamics-based flux analysis. The evolution of current and new methods must also address the issues of the multiple alternatives in flux directionalities and the uncertainties and partial information from analytical methods. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Modeling of coupled differential equations for cellular chemical signaling pathways: Implications for assay protocols utilized in cellular engineering.

    PubMed

    O'Clock, George D

    2016-08-01

    Cellular engineering involves modification and control of cell properties, and requires an understanding of fundamentals and mechanisms of action for cellular derived product development. One of the keys to success in cellular engineering involves the quality and validity of results obtained from cell chemical signaling pathway assays. The accuracy of the assay data cannot be verified or assured if the effect of positive feedback, nonlinearities, and interrelationships between cell chemical signaling pathway elements are not understood, modeled, and simulated. Nonlinearities and positive feedback in the cell chemical signaling pathway can produce significant aberrations in assay data collection. Simulating the pathway can reveal potential instability problems that will affect assay results. A simulation, using an electrical analog for the coupled differential equations representing each segment of the pathway, provides an excellent tool for assay validation purposes. With this approach, voltages represent pathway enzyme concentrations and operational amplifier feedback resistance and input resistance values determine pathway gain and rate constants. The understanding provided by pathway modeling and simulation is strategically important in order to establish experimental controls for assay protocol structure, time frames specified between assays, and assay concentration variation limits; to ensure accuracy and reproducibility of results.

  2. Pathway construction and metabolic engineering for fermentative production of ectoine in Escherichia coli.

    PubMed

    Ning, Yike; Wu, Xuejiao; Zhang, Chenglin; Xu, Qingyang; Chen, Ning; Xie, Xixian

    2016-07-01

    Ectoine is a protective agent and stabilizer whose synthesis pathway exclusively exists in select moderate halophiles. A novel established process called "bacterial milking" efficiently synthesized ectoine in moderate halophiles, however, this method places high demands on equipment and is cost prohibitive. In this study, we constructed an ectoine producing strain by introducing the ectoine synthesis pathway into Escherichia coli and improved its production capacity. Firstly, the ectABC gene cluster from Halomonas elongata was introduced into E. coli W3110 and the resultant strain synthesized 4.9g/L ectoine without high osmolarity. Subsequently, thrA encoding the bifunctional aspartokinase/homoserine dehydrogenase was deleted to weaken the competitive l-threonine branch, resulting in an increase of ectoine titer by 109%. Furthermore, a feedback resistant lysC from Corynebacterium glutamicum encoding the aspartate kinase was introduced to complement the enzymatic activity deficiency caused by thrA deletion and a 9% increase of ectoine titer was obtained. Finally, the promoter of ppc that encodes phosphoenolpyruvate carboxylase was replaced by a trc promoter, and iclR, a glyoxylate shunt transcriptional repressor gene, was deleted. The oxaloacetate pool, was thus reinforced and ectoine titer increased by 21%. The final engineered strain ECT05 (pTrcECT, pSTVLysC-CG) produced 25.1g/L ectoine by fed-batch fermentation in low salt concentration with glucose as a carbon source. The specific ectoine production and productivity was 0.8g/g DCW and 0.84gL(-)(1)h(-)(1) respectively. The overall ectoine yield was 0.11g/g of glucose. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  3. Recombinant protein expression in Pichia pastoris strains with an engineered methanol utilization pathway

    PubMed Central

    2012-01-01

    Βackground The methylotrophic yeast Pichia pastoris has become an important host organism for recombinant protein production and is able to use methanol as a sole carbon source. The methanol utilization pathway describes all the catalytic reactions, which happen during methanol metabolism. Despite the importance of certain key enzymes in this pathway, so far very little is known about possible effects of overexpressing either of these key enzymes on the overall energetic behavior, the productivity and the substrate uptake rate in P. pastoris strains. Results A fast and easy-to-do approach based on batch cultivations with methanol pulses was used to characterize different P. pastoris strains. A strain with MutS phenotype was found to be superior over a strain with Mut+ phenotype in both the volumetric productivity and the efficiency in expressing recombinant horseradish peroxidase C1A. Consequently, either of the enzymes dihydroxyacetone synthase, transketolase or formaldehyde dehydrogenase, which play key roles in the methanol utilization pathway, was co-overexpressed in MutS strains harboring either of the reporter enzymes horseradish peroxidase or Candida antarctica lipase B. Although the co-overexpression of these enzymes did not change the stoichiometric yields of the recombinant MutS strains, significant changes in the specific growth rate, the specific substrate uptake rate and the specific productivity were observed. Co-overexpression of dihydroxyacetone synthase yielded a 2- to 3-fold more efficient conversion of the substrate methanol into product, but also resulted in a reduced volumetric productivity. Co-overexpression of formaldehyde dehydrogenase resulted in a 2-fold more efficient conversion of the substrate into product and at least similar volumetric productivities compared to strains without an engineered methanol utilization pathway, and thus turned out to be a valuable strategy to improve recombinant protein production. Conclusions Co

  4. Modular pathway engineering of Bacillus subtilis for improved N-acetylglucosamine production.

    PubMed

    Liu, Yanfeng; Zhu, Yanqiu; Li, Jianghua; Shin, Hyun-dong; Chen, Rachel R; Du, Guocheng; Liu, Long; Chen, Jian

    2014-05-01

    In previous work, we constructed a recombinant Bacillus subtilis strain for microbial production of N-acetylglucosamine (GlcNAc), which has applications in nutraceuticals and pharmaceuticals. In this work, we improve GlcNAc production through modular engineering of B. subtilis. Specifically, the GlcNAc synthesis-related metabolic network in B. subtilis was divided into three modules-GlcNAc synthesis, glycolysis, and peptidoglycan synthesis. First, two-promoter systems with different promoter types and strengths were used for combinatorial assembly of expression cassettes of glmS (encoding GlcN-6-phosphate synthase) and GNA1 (encoding GlcNAc-6-phosphate N-acetyltransferase) at transcriptional levels in the GlcNAc synthesis module, resulting in a 32.4% increase in GlcNAc titer (from 1.85g/L to 2.45g/L) in shake flasks. In addition, lactate and acetate synthesis were blocked by knockout of ldh (encoding lactate dehydrogenase) and pta (encoding phosphotransacetylase), leading to a 44.9% increase in GlcNAc production (from 2.45g/L to 3.55g/L) in shake flasks. Then, various strengths of the glycolysis and peptidoglycan synthesis modules were constructed by repressing the expression of pfk (encoding 6-phosphofructokinase) and glmM (encoding phosphoglucosamine mutase) via the expression of various combinations of synthetic small regulatory RNAs and Hfq protein. Next, GlcNAc, glycolysis, and peptidoglycan synthesis modules with various strengths were assembled and optimized via a module engineering approach, and the GlcNAc titer was improved to 8.30g/L from 3.55g/L in shake flasks. Finally, the GlcNAc titer was further increased to 31.65g/L, which was 3.8-fold that in the shake flask, in a 3-L fed-batch bioreactor. This work significantly enhanced GlcNAc production through modular pathway engineering of B. subtilis, and the engineering strategies used herein may be useful for the construction of versatile B. subtilis cell factories for the production of other industrially

  5. In vivo activation of the p53 tumor suppressor pathway by an engineered cyclotide

    PubMed Central

    Neamati, Nouri; Shekhtman, Alexander; Camarero, Julio A.

    2013-01-01

    The overexpression of Hdm2 and HdmX is a common mechanism used by many tumor cells to inactive the p53 tumor suppressor pathway promoting cell survival. Targeting Hdm2 and HdmX has emerged as a validated therapeutic strategy for treating cancers with wild-type p53. Small linear peptides mimicking the N-terminal fragment of p53 have been shown to be potent Hdm2/HdmX antagonists. The potential therapeutic use of these peptides, however, is limited by their poor stability and bioavailability. Here, we report the engineering of the cyclotide MCoTI-I to efficiently antagonize intracellular p53 degradation. The resulting cyclotide MCo-PMI was able to bind with low nanomolar affinity to both Hdm2 and HdmX, showed high stability in human serum and was cytotoxic to wild-type p53 cancer cell lines by activating the p53 tumor suppressor pathway both in vitro and in vivo. These features make the cyclotide MCoTI-I an optimal scaffold for targeting intracellular protein-protein interactions. PMID:23848581

  6. Engineering of the glycerol decomposition pathway and cofactor regulation in an industrial yeast improves ethanol production.

    PubMed

    Zhang, Liang; Tang, Yan; Guo, Zhongpeng; Shi, Guiyang

    2013-10-01

    Glycerol is a major by-product of industrial ethanol production and its formation consumes up to 4 % of the sugar substrate. This study modified the glycerol decomposition pathway of an industrial strain of Saccharomyces cerevisiae to optimize the consumption of substrate and yield of ethanol. This study is the first to couple glycerol degradation with ethanol formation, to the best of our knowledge. The recombinant strain overexpressing GCY1 and DAK1, encoding glycerol dehydrogenase and dihydroxyacetone kinase, respectively, in glycerol degradation pathway, exhibited a moderate increase in ethanol yield (2.9 %) and decrease in glycerol yield (24.9 %) compared to the wild type with the initial glucose concentration of 15 % under anaerobic conditions. However, when the mhpF gene, encoding acetylating NAD⁺-dependent acetaldehyde dehydrogenase from Escherichia coli, was co-expressed in the aforementioned recombinant strain, a further increase in ethanol yield by 5.5 % and decrease in glycerol yield by 48 % were observed for the resultant recombinant strain GDMS1 when acetic acid was added into the medium prior to inoculation compared to the wild type. The process outlined in this study which enhances glycerol consumption and cofactor regulation in an industrial yeast is a promising metabolic engineering strategy to increase ethanol production by reducing the formation of glycerol.

  7. Evidence for Improved Encapsulated Pathway Behavior in a Bacterial Microcompartment through Shell Protein Engineering.

    PubMed

    Slininger Lee, Marilyn F; Jakobson, Christopher M; Tullman-Ercek, Danielle

    2017-06-21

    Bacterial microcompartments are a class of proteinaceous organelles comprising a characteristic protein shell enclosing a set of enzymes. Compartmentalization can prevent escape of volatile or toxic intermediates, prevent off-pathway reactions, and create private cofactor pools. Encapsulation in synthetic microcompartment organelles will enhance the function of heterologous pathways, but to do so, it is critical to understand how to control diffusion in and out of the microcompartment organelle. To this end, we explored how small differences in the shell protein structure result in changes in the diffusion of metabolites through the shell. We found that the ethanolamine utilization (Eut) protein EutM properly incorporates into the 1,2-propanediol utilization (Pdu) microcompartment, altering native metabolite accumulation and the resulting growth on 1,2-propanediol as the sole carbon source. Further, we identified a single pore-lining residue mutation that confers the same phenotype as substitution of the full EutM protein, indicating that small molecule diffusion through the shell is the cause of growth enhancement. Finally, we show that the hydropathy index and charge of pore amino acids are important indicators to predict how pore mutations will affect growth on 1,2-propanediol, likely by controlling diffusion of one or more metabolites. This study highlights the use of two strategies to engineer microcompartments to control metabolite transport: altering the existing shell protein pore via mutation of the pore-lining residues, and generating chimeras using shell proteins with the desired pores.

  8. Systematic pathway engineering of Corynebacterium glutamicum S9114 for L-ornithine production.

    PubMed

    Zhang, Bin; Yu, Miao; Zhou, Ying; Li, Yixue; Ye, Bang-Ce

    2017-09-22

    L-Ornithine is a non-protein amino acid with extensive applications in medicine and the food industry. Currently, L-ornithine production is based on microbial fermentation, and few microbes are used for producing L-ornithine owing to unsatisfactory production titer. In this study, Corynebacterium glutamicum S9114, a high glutamate-producing strain, was developed for L-ornithine production by pathway engineering. First, argF was deleted to block L-ornithine to citrulline conversion. To improve L-ornithine production, ncgl1221 encoding glutamate transporter, argR encoding arginine repressor, and putP encoding proline transporter were disrupted. This base strain was further engineered by attenuating oxoglutarate dehydrogenase to increase L-ornithine production. Plasmid-based overexpression of argCJBD operon and lysine/arginine transport protein LysE was tested to strengthen L-ornithine synthesis and transportation. This resulted in efficient L-ornithine production at a titer of 18.4 g/L. These results demonstrate the potential of Corynebacterium glutamicum S9114 for efficient L-ornithine production and provide new targets for strain development.

  9. Expanding the docosahexaenoic acid food web for sustainable production: engineering lower plant pathways into higher plants

    PubMed Central

    Petrie, James R.; Singh, Surinder P.

    2011-01-01

    Background Algae are becoming an increasingly important component of land plant metabolic engineering projects. Land plants and algae have similar enough genetics to allow relatively straightforward gene transfer and they also share enough metabolic similarities that algal enzymes often function in a plant cell environment. Understanding metabolic systems in algae can provide insights into homologous systems in land plants. As examples, algal models are currently being used by several groups to better understand starch and lipid metabolism and catabolism, fields which have relevance in land plants. Importantly, land plants and algae also have enough metabolic divergence that algal genes can often provide new metabolic traits to plants. Furthermore, many algal genomes have now been sequenced, with many more in progress, and this easy access to genome-wide information has revealed that algal genomes are often relatively simple when compared with plants. Scope One example of the importance of algal, and in particular microalgal, resources to land plant research is the metabolic engineering of long-chain polyunsaturated fatty acids into oilseed crops which typically uses microalgal genes to extend existing natural plant biosynthetic pathways. This review describes both recent progress and remaining challenges in this field. PMID:22476481

  10. A structured approach for the engineering of biochemical network models, illustrated for signalling pathways.

    PubMed

    Breitling, Rainer; Gilbert, David; Heiner, Monika; Orton, Richard

    2008-09-01

    Quantitative models of biochemical networks (signal transduction cascades, metabolic pathways, gene regulatory circuits) are a central component of modern systems biology. Building and managing these complex models is a major challenge that can benefit from the application of formal methods adopted from theoretical computing science. Here we provide a general introduction to the field of formal modelling, which emphasizes the intuitive biochemical basis of the modelling process, but is also accessible for an audience with a background in computing science and/or model engineering. We show how signal transduction cascades can be modelled in a modular fashion, using both a qualitative approach--qualitative Petri nets, and quantitative approaches--continuous Petri nets and ordinary differential equations (ODEs). We review the major elementary building blocks of a cellular signalling model, discuss which critical design decisions have to be made during model building, and present a number of novel computational tools that can help to explore alternative modular models in an easy and intuitive manner. These tools, which are based on Petri net theory, offer convenient ways of composing hierarchical ODE models, and permit a qualitative analysis of their behaviour. We illustrate the central concepts using signal transduction as our main example. The ultimate aim is to introduce a general approach that provides the foundations for a structured formal engineering of large-scale models of biochemical networks.

  11. Alternative Pathways to Engineering Success--Using Academic and Social Integration to Understand Two-Year Engineering Student Success

    ERIC Educational Resources Information Center

    Marra, Rose M.; Tsai, Chia-Lin; Bogue, Barbara; Pytel, Jean Landa

    2015-01-01

    The need for educating engineers in the United States continues as the projected demand is rising the number of high school seniors planning to enter engineering careers has remained relatively stable (Sargent, 2014). Additionally, figures show that attrition rates in undergraduate engineering continue to be an area of concern, (Sargent, 2014;…

  12. Engineering of Serine-Deamination pathway, Entner-Doudoroff pathway and pyruvate dehydrogenase complex to improve poly(3-hydroxybutyrate) production in Escherichia coli.

    PubMed

    Zhang, Yan; Lin, Zhenquan; Liu, Qiaojie; Li, Yifan; Wang, Zhiwen; Ma, Hongwu; Chen, Tao; Zhao, Xueming

    2014-12-16

    Poly(3-hydroxybutyrate) (PHB), a biodegradable bio-plastic, is one of the most common homopolymer of polyhydroxyalkanoates (PHAs). PHB is synthesized by a variety of microorganisms as intracellular carbon and energy storage compounds in response to environmental stresses. Bio-based production of PHB from renewable feedstock is a promising and sustainable alternative to the petroleum-based chemical synthesis of plastics. In this study, a novel strategy was applied to improve the PHB biosynthesis from different carbon sources. In this research, we have constructed E. coli strains to produce PHB by engineering the Serine-Deamination (SD) pathway, the Entner-Doudoroff (ED) pathway, and the pyruvate dehydrogenase (PDH) complex. Firstly, co-overexpression of sdaA (encodes L-serine deaminase), L-serine biosynthesis genes and pgk (encodes phosphoglycerate kinase) activated the SD Pathway, and the resulting strain SD02 (pBHR68), harboring the PHB biosynthesis genes from Ralstonia eutropha, produced 4.86 g/L PHB using glucose as the sole carbon source, representing a 2.34-fold increase compared to the reference strain. In addition, activating the ED pathway together with overexpressing the PDH complex further increased the PHB production to 5.54 g/L with content of 81.1% CDW. The intracellular acetyl-CoA concentration and the [NADPH]/[NADP(+)] ratio were enhanced after the modification of SD pathway, ED pathway and the PDH complex. Meanwhile, these engineering strains also had a significant increase in PHB concentration and content when xylose or glycerol was used as carbon source. Significant levels of PHB biosynthesis from different kinds of carbon sources can be achieved by engineering the Serine-Deamination pathway, Entner-Doudoroff pathway and pyruvate dehydrogenase complex in E. coli JM109 harboring the PHB biosynthesis genes from Ralstonia eutropha. This work demonstrates a novel strategy for improving PHB production in E. coli. The strategy reported here should be

  13. Functional Characterization of Proanthocyanidin Pathway Enzymes from Tea and Their Application for Metabolic Engineering1[W][OA

    PubMed Central

    Pang, Yongzhen; Abeysinghe, I. Sarath B.; He, Ji; He, Xianzhi; Huhman, David; Mewan, K. Mudith; Sumner, Lloyd W.; Yun, Jianfei; Dixon, Richard A.

    2013-01-01

    Tea (Camellia sinensis) is rich in specialized metabolites, especially polyphenolic proanthocyanidins (PAs) and their precursors. To better understand the PA pathway in tea, we generated a complementary DNA library from leaf tissue of the blister blight-resistant tea cultivar TRI2043 and functionally characterized key enzymes responsible for the biosynthesis of PA precursors. Structural genes encoding enzymes involved in the general phenylpropanoid/flavonoid pathway and the PA-specific branch pathway were well represented in the library. Recombinant tea leucoanthocyanidin reductase (CsLAR) expressed in Escherichia coli was active with leucocyanidin as substrate to produce the 2R,3S-trans-flavan-ol (+)-catechin in vitro. Two genes encoding anthocyanidin reductase, CsANR1 and CsANR2, were also expressed in E. coli, and the recombinant proteins exhibited similar kinetic properties. Both converted cyanidin to a mixture of (+)-epicatechin and (−)-catechin, although in different proportions, indicating that both enzymes possess epimerase activity. These epimers were unexpected based on the belief that tea PAs are made from (−)-epicatechin and (+)-catechin. Ectopic expression of CsANR2 or CsLAR led to the accumulation of low levels of PA precursors and their conjugates in Medicago truncatula hairy roots and anthocyanin-overproducing tobacco (Nicotiana tabacum), but levels of oligomeric PAs were very low. Surprisingly, the expression of CsLAR in tobacco overproducing anthocyanin led to the accumulation of higher levels of epicatechin and its glucoside than of catechin, again highlighting the potential importance of epimerization in flavan-3-ol biosynthesis. These data provide a resource for understanding tea PA biosynthesis and tools for the bioengineering of flavanols. PMID:23288883

  14. Engineering and systems-level analysis of Saccharomyces cerevisiae for production of 3-hydroxypropionic acid via malonyl-CoA reductase-dependent pathway.

    PubMed

    Kildegaard, Kanchana R; Jensen, Niels B; Schneider, Konstantin; Czarnotta, Eik; Özdemir, Emre; Klein, Tobias; Maury, Jérôme; Ebert, Birgitta E; Christensen, Hanne B; Chen, Yun; Kim, Il-Kwon; Herrgård, Markus J; Blank, Lars M; Forster, Jochen; Nielsen, Jens; Borodina, Irina

    2016-03-15

    In the future, oil- and gas-derived polymers may be replaced with bio-based polymers, produced from renewable feedstocks using engineered cell factories. Acrylic acid and acrylic esters with an estimated world annual production of approximately 6 million tons by 2017 can be derived from 3-hydroxypropionic acid (3HP), which can be produced by microbial fermentation. For an economically viable process 3HP must be produced at high titer, rate and yield and preferably at low pH to minimize downstream processing costs. Here we describe the metabolic engineering of baker's yeast Saccharomyces cerevisiae for biosynthesis of 3HP via a malonyl-CoA reductase (MCR)-dependent pathway. Integration of multiple copies of MCR from Chloroflexus aurantiacus and of phosphorylation-deficient acetyl-CoA carboxylase ACC1 genes into the genome of yeast increased 3HP titer fivefold in comparison with single integration. Furthermore we optimized the supply of acetyl-CoA by overexpressing native pyruvate decarboxylase PDC1, aldehyde dehydrogenase ALD6, and acetyl-CoA synthase from Salmonella enterica SEacs (L641P). Finally we engineered the cofactor specificity of the glyceraldehyde-3-phosphate dehydrogenase to increase the intracellular production of NADPH at the expense of NADH and thus improve 3HP production and reduce formation of glycerol as by-product. The final strain produced 9.8 ± 0.4 g L(-1) 3HP with a yield of 13% C-mol C-mol(-1) glucose after 100 h in carbon-limited fed-batch cultivation at pH 5. The 3HP-producing strain was characterized by (13)C metabolic flux analysis and by transcriptome analysis, which revealed some unexpected consequences of the undertaken metabolic engineering strategy, and based on this data, future metabolic engineering directions are proposed. In this study, S. cerevisiae was engineered for high-level production of 3HP by increasing the copy numbers of biosynthetic genes and improving flux towards precursors and redox cofactors. This strain represents

  15. Microbial production of natural and non-natural flavonoids: Pathway engineering, directed evolution and systems/synthetic biology.

    PubMed

    Pandey, Ramesh Prasad; Parajuli, Prakash; Koffas, Mattheos A G; Sohng, Jae Kyung

    2016-01-01

    In this review, we address recent advances made in pathway engineering, directed evolution, and systems/synthetic biology approaches employed in the production and modification of flavonoids from microbial cells. The review is divided into two major parts. In the first, various metabolic engineering and system/synthetic biology approaches used for production of flavonoids and derivatives are discussed broadly. All the manipulations/engineering accomplished on the microorganisms since 2000 are described in detail along with the biosynthetic pathway enzymes, their sources, structures of the compounds, and yield of each product. In the second part of the review, post-modifications of flavonoids by four major reactions, namely glycosylations, methylations, hydroxylations and prenylations using recombinant strains are described. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Structural basis for precursor protein-directed ribosomal peptide macrocyclization

    PubMed Central

    Li, Kunhua; Condurso, Heather L.; Li, Gengnan; Ding, Yousong; Bruner, Steven D.

    2016-01-01

    Macrocyclization is a common feature of natural product biosynthetic pathways including the diverse family of ribosomal peptides. Microviridins are architecturally complex cyanobacterial ribosomal peptides whose members target proteases with potent reversible inhibition. The product structure is constructed by three macrocyclizations catalyzed sequentially by two members of the ATP-grasp family, a unique strategy for ribosomal peptide macrocyclization. Here, we describe the detailed structural basis for the enzyme-catalyzed macrocyclizations in the microviridin J pathway of Microcystis aeruginosa. The macrocyclases, MdnC and MdnB, interact with a conserved α-helix of the precursor peptide using a novel precursor peptide recognition mechanism. The results provide insight into the unique protein/protein interactions key to the chemistry, suggest an origin of the natural combinatorial synthesis of microviridin peptides and provide a framework for future engineering efforts to generate designed compounds. PMID:27669417

  17. Structural basis for precursor protein-directed ribosomal peptide macrocyclization

    SciTech Connect

    Li, Kunhua; Condurso, Heather L.; Li, Gengnan; Ding, Yousong; Bruner, Steven D.

    2016-11-11

    Macrocyclization is a common feature of natural product biosynthetic pathways including the diverse family of ribosomal peptides. Microviridins are architecturally complex cyanobacterial ribosomal peptides that target proteases with potent reversible inhibition. The product structure is constructed via three macrocyclizations catalyzed sequentially by two members of the ATP-grasp family, a unique strategy for ribosomal peptide macrocyclization. Here we describe in detail the structural basis for the enzyme-catalyzed macrocyclizations in the microviridin J pathway of Microcystis aeruginosa. The macrocyclases MdnC and MdnB interact with a conserved α-helix of the precursor peptide using a novel precursor-peptide recognition mechanism. The results provide insight into the unique protein–protein interactions that are key to the chemistry, suggest an origin for the natural combinatorial synthesis of microviridin peptides, and provide a framework for future engineering efforts to generate designed compounds.

  18. Structural basis for precursor protein-directed ribosomal peptide macrocyclization.

    PubMed

    Li, Kunhua; Condurso, Heather L; Li, Gengnan; Ding, Yousong; Bruner, Steven D

    2016-11-01

    Macrocyclization is a common feature of natural product biosynthetic pathways including the diverse family of ribosomal peptides. Microviridins are architecturally complex cyanobacterial ribosomal peptides that target proteases with potent reversible inhibition. The product structure is constructed via three macrocyclizations catalyzed sequentially by two members of the ATP-grasp family, a unique strategy for ribosomal peptide macrocyclization. Here we describe in detail the structural basis for the enzyme-catalyzed macrocyclizations in the microviridin J pathway of Microcystis aeruginosa. The macrocyclases MdnC and MdnB interact with a conserved α-helix of the precursor peptide using a novel precursor-peptide recognition mechanism. The results provide insight into the unique protein-protein interactions that are key to the chemistry, suggest an origin for the natural combinatorial synthesis of microviridin peptides, and provide a framework for future engineering efforts to generate designed compounds.

  19. Engineering and Dissecting the Glycosylation Pathway of a Streptococcal Serine-rich Repeat Adhesin*

    PubMed Central

    Zhu, Fan; Zhang, Hua; Yang, Tiandi; Haslam, Stuart M.; Dell, Anne; Wu, Hui

    2016-01-01

    Serine-rich repeat glycoproteins (SRRPs) are conserved in Gram-positive bacteria. They are crucial for modulating biofilm formation and bacterial-host interactions. Glycosylation of SRRPs plays a pivotal role in the process; thus understanding the glycosyltransferases involved is key to identifying new therapeutic drug targets. The glycosylation of Fap1, an SRRP of Streptococcus parasanguinis, is mediated by a gene cluster consisting of six genes: gtf1, gtf2, gly, gtf3, dGT1, and galT2. Mature Fap1 glycan possesses the sequence of Rha1–3Glc1-(Glc1–3GlcNAc1)-2,6-Glc1–6GlcNAc. Gtf12, Gtf3, and dGT1 are responsible for the first four steps of the Fap1 glycosylation, catalyzing the transfer of GlcNAc, Glc, Glc, and GlcNAc residues to the protein backbone sequentially. The role of GalT2 and Gly in the Fap1 glycosylation is unknown. In the present study, we synthesized the fully modified Fap1 glycan in Escherichia coli by incorporating all six genes from the cluster. This study represents the first reconstitution of an exogenous stepwise O-glycosylation synthetic pathway in E. coli. In addition, we have determined that GalT2 mediates the fifth step of the Fap1 glycosylation by adding a rhamnose residue, and Gly mediates the final glycosylation step by transferring glucosyl residues. Furthermore, inactivation of each glycosyltransferase gene resulted in differentially impaired biofilms of S. parasanguinis, demonstrating the importance of Fap1 glycosylation in the biofilm formation. The Fap1 glycosylation system offers an excellent model to engineer glycans using different permutations of glycosyltransferases and to investigate biosynthetic pathways of SRRPs because SRRP genetic loci are highly conserved. PMID:28039332

  20. 5-Aminolevulinic acid production in engineered Corynebacterium glutamicum via C5 biosynthesis pathway.

    PubMed

    Ramzi, Ahmad Bazli; Hyeon, Jeong Eun; Kim, Seung Wook; Park, Chulhwan; Han, Sung Ok

    2015-12-01

    ALA (5-aminolevulinic acid) is an important intermediate in the synthesis of tetrapyrroles and the use of ALA has been gradually increasing in many fields, including medicine and agriculture. In this study, improved biological production of ALA in Corynebacterium glutamicum was achieved by overexpressing glutamate-initiated C5 pathway. For this purpose, copies of the glutamyl t-RNA reductase HemA from several bacteria were mutated by site-directed mutagenesis of which a HemA version from Salmonella typhimurium exhibited the highest ALA production. Cultivation of the HemA-expressing strain produced approximately 204 mg/L of ALA, while co-expression with HemL (glutamate-1-semialdehyde aminotransferase) increased ALA concentration to 457 mg/L, representing 11.6- and 25.9-fold increases over the control strain (17 mg/L of ALA). Further effects of metabolic perturbation were investigated, leading to penicillin addition that further improves ALA production to 584 mg/L. In an optimized flask fermentation, engineered C. glutamicum strains expressing the HemA and hemAL operon produced up to 1.1 and 2.2g/L ALA, respectively, under glutamate-producing conditions. The final yields represent 10.7- and 22.0-fold increases over the control strain (0.1g/L of ALA). From these findings, ALA biosynthesis from glucose was successfully demonstrated and this study is the first to report ALA overproduction in C. glutamicum via metabolic engineering. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. An Evaluation of Active Learning Causal Discovery Methods for Reverse-Engineering Local Causal Pathways of Gene Regulation

    PubMed Central

    Ma, Sisi; Kemmeren, Patrick; Aliferis, Constantin F.; Statnikov, Alexander

    2016-01-01

    Reverse-engineering of causal pathways that implicate diseases and vital cellular functions is a fundamental problem in biomedicine. Discovery of the local causal pathway of a target variable (that consists of its direct causes and direct effects) is essential for effective intervention and can facilitate accurate diagnosis and prognosis. Recent research has provided several active learning methods that can leverage passively observed high-throughput data to draft causal pathways and then refine the inferred relations with a limited number of experiments. The current study provides a comprehensive evaluation of the performance of active learning methods for local causal pathway discovery in real biological data. Specifically, 54 active learning methods/variants from 3 families of algorithms were applied for local causal pathways reconstruction of gene regulation for 5 transcription factors in S. cerevisiae. Four aspects of the methods’ performance were assessed, including adjacency discovery quality, edge orientation accuracy, complete pathway discovery quality, and experimental cost. The results of this study show that some methods provide significant performance benefits over others and therefore should be routinely used for local causal pathway discovery tasks. This study also demonstrates the feasibility of local causal pathway reconstruction in real biological systems with significant quality and low experimental cost. PMID:26939894

  2. An Evaluation of Active Learning Causal Discovery Methods for Reverse-Engineering Local Causal Pathways of Gene Regulation.

    PubMed

    Ma, Sisi; Kemmeren, Patrick; Aliferis, Constantin F; Statnikov, Alexander

    2016-03-04

    Reverse-engineering of causal pathways that implicate diseases and vital cellular functions is a fundamental problem in biomedicine. Discovery of the local causal pathway of a target variable (that consists of its direct causes and direct effects) is essential for effective intervention and can facilitate accurate diagnosis and prognosis. Recent research has provided several active learning methods that can leverage passively observed high-throughput data to draft causal pathways and then refine the inferred relations with a limited number of experiments. The current study provides a comprehensive evaluation of the performance of active learning methods for local causal pathway discovery in real biological data. Specifically, 54 active learning methods/variants from 3 families of algorithms were applied for local causal pathways reconstruction of gene regulation for 5 transcription factors in S. cerevisiae. Four aspects of the methods' performance were assessed, including adjacency discovery quality, edge orientation accuracy, complete pathway discovery quality, and experimental cost. The results of this study show that some methods provide significant performance benefits over others and therefore should be routinely used for local causal pathway discovery tasks. This study also demonstrates the feasibility of local causal pathway reconstruction in real biological systems with significant quality and low experimental cost.

  3. Metabolic engineering of the nonmevalonate isopentenyl diphosphate synthesis pathway in Escherichia coli enhances lycopene production.

    PubMed

    Kim, S W; Keasling, J D

    2001-02-20

    Isopentenyl diphosphate (IPP) is the common, five-carbon building block in the biosynthesis of all carotenoids. IPP in Escherichia coli is synthesized through the nonmevalonate pathway, which has not been completely elucidated. The first reaction of IPP biosynthesis in E. coli is the formation of 1-deoxy-D-xylulose-5-phosphate (DXP), catalyzed by DXP synthase and encoded by dxs. The second reaction in the pathway is the reduction of DXP to 2-C-methyl-D-erythritol-4-phos- phate, catalyzed by DXP reductoisomerase and encoded by dxr. To determine if one or more of the reactions in the nonmevalonate pathway controlled flux to IPP, dxs and dxr were placed on several expression vectors under the control of three different promoters and transformed into three E. coli strains (DH5alpha, XL1-Blue, and JM101) that had been engineered to produce lycopene. Lycopene production was improved significantly in strains transformed with the dxs expression vectors. When the dxs gene was expressed from the arabinose-inducible araBAD promoter (P(BAD)) on a medium-copy plasmid, lycopene production was twofold higher than when dxs was expressed from the IPTG-inducible trc and lac promoters (P(trc) and P(lac), respectively) on medium-copy and high-copy plasmids. Given the low final densities of cells expressing dxs from IPTG-inducible promoters, the low lycopene production was probably due to the metabolic burden of plasmid maintenance and an excessive drain of central metabolic intermediates. At arabinose concentrations between 0 and 1.33 mM, cells expressing both dxs and dxr from P(BAD) on a medium-copy plasmid produced 1.4-2.0 times more lycopene than cells expressing dxs only. However, at higher arabinose concentrations lycopene production in cells expressing both dxs and dxr was lower than in cells expressing dxs only. A comparison of the three E. coli strains transformed with the arabinose-inducible dxs on a medium-copy plasmid revealed that lycopene production was highest in XL1

  4. Pathways to Science and Engineering Bachelor’s Degrees for Men and Women

    PubMed Central

    Legewie, Joscha; DiPrete, Thomas A.

    2014-01-01

    Despite the striking reversal of the gender gap in educational attainment and the near–gender parity in math performance, women pursue science and engineering (S/E) degrees at much lower rates than their male peers do. Current efforts to increase the number of women in these fields focus on different life-course periods but lack a clear understanding of the importance of these periods and how orientations toward S/E fields develop over time. In this article, we examine the gendered pathways to a S/E bachelor’s degree from middle school to high school and college based on a representative sample from the 1973 to 1974 birth cohort. Using a counterfactual decomposition analysis, we determine the relative importance of these different life-course periods and thereby inform the direction of future research and policy. Our findings confirm previous research that highlights the importance of early encouragement for gender differences in S/E degrees, but our findings also attest to the high school years as a decisive period for the gender gap, while challenging the focus on college in research and policy. Indeed, if female high school seniors had the same orientation toward and preparation for S/E fields as their male peers, the gender gap in S/E degrees would be closed by as much as 82 percent. PMID:25089284

  5. Metabolic engineering of Saccharomyces cerevisiae for the production of 2-phenylethanol via Ehrlich pathway.

    PubMed

    Kim, Bosu; Cho, Bo-Ram; Hahn, Ji-Sook

    2014-01-01

    2-Phenylethanol (2-PE), a fragrance compound with a rose-like odor, is widely used in perfumery and cosmetics. Here, we report the first metabolic engineering approach for 2-PE production in Saccharomyces cerevisiae. 2-PE can be produced from the catabolism of L-phenylalanine via Ehrlich pathway, consisting of transamination to phenylpyruvate by Aro9, decarboxylation to phenylacetaldehyde by Aro10, and reduction to 2-PE by alcohol dehydrogenases. We demonstrated that Ald3 is mainly responsible for phenylacetaldehyde oxidation, competing with 2-PE production. ALD3 deletion strain overexpressing ARO9 and ARO10 both by episomal overexpression and by induction of the endogenous genes through overexpression of Aro80 transcription factor, produced 4.8 g/L 2-PE in a medium containing 10 g/L L-phenylalanine as a sole nitrogen source. Considering the cytotoxicity of 2-PE, this production titer is almost the upper limit that can be reached in batch cultures, suggesting the great potential of this yeast strain for 2-PE production. 2-PE production was further increased by applying two-phase fermentation method with polypropylene glycol 1200 as an extractant, reaching 6.1 g/L 2-PE in organic phase with the molar yield of 82.5%, which is about ninefold increase compared with wild type. © 2013 Wiley Periodicals, Inc.

  6. Enhanced Diterpene Tanshinone Accumulation and Bioactivity of Transgenic Salvia miltiorrhiza Hairy Roots by Pathway Engineering.

    PubMed

    Shi, Min; Luo, Xiuqin; Ju, Guanhua; Li, Leilei; Huang, Shengxiong; Zhang, Tong; Wang, Huizhong; Kai, Guoyin

    2016-03-30

    Tanshinones are health-promoting diterpenoids found in Salvia miltiorrhiza and have wide applications. Here, SmGGPPS (geranylgeranyl diphosphate synthase) and SmDXSII (1-deoxy-D-xylulose-5-phosphate synthase) were introduced into hairy roots of S. miltiorrhiza. Overexpression of SmGGPPS and SmDXSII in hairy roots produces higher levels of tanshinone than control and single-gene transformed lines; tanshinone production in the double-gene transformed line GDII10 reached 12.93 mg/g dry weight, which is the highest tanshinone content that has been achieved through genetic engineering. Furthermore, transgenic hairy root lines showed higher antioxidant and antitumor activities than control lines. In addition, contents of chlorophylls, carotenoids, indoleacetic acid, and gibberellins were significantly elevated in transgenic Arabidopsis thaliana plants. These results demonstrate a promising method to improve the production of diterpenoids including tanshinone as well as other natural plastid-derived isoprenoids in plants by genetic manipulation of the 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway.

  7. Engineering an iterative polyketide pathway in Escherichia coli results in single-form alkene and alkane overproduction.

    PubMed

    Liu, Qian; Wu, Kaiyue; Cheng, Yongbo; Lu, Lei; Xiao, Erting; Zhang, Yuchen; Deng, Zixin; Liu, Tiangang

    2015-03-01

    Alkanes and alkenes are ideal biofuels, due to their high energy content and ability to be safely transported. To date, fatty acid-derived pathways for alkane and alkene bioproduction have been thoroughly explored. In this study, we engineered the pathway of the iterative Type I polyketide synthase (PKS) SgcE with the cognate thioesterase (TE) SgcE10 in Escherichia coli, with the goal of overproducing pentadecaheptaene (PDH) followed by its hydrogenation to pentadecane (PD). Based on initial in vitro titration assays, we learned that PDH production is strongly dependent on the SgcE10:SgcE ratio. Thus, we engineered a high-yield E. coli strain by fine-tuning SgcE10 expression via synthetic promoters. We analyzed engineered E. coli strains using a modified multiple reactions monitoring mass spectrometry (MRM-MS)-based targeted proteomic approach, using a chimeric SgcE10 and SgcE fusion construct to gain insight into expression levels of the two proteins. Lastly, through fed-batch fermentation followed by flow chemical hydrogenation, we obtained a PD yield of nearly 140mg/L in single-alkane form. Thus, we not only employed a metabolic engineering approach to the iterative polyketide pathway, we highlighted the potential of PKS shunt products to play a role in the production of single-form and high-value chemicals.

  8. Production of taxadiene by engineering of mevalonate pathway in Escherichia coli and endophytic fungus Alternaria alternata TPF6.

    PubMed

    Bian, Guangkai; Yuan, Yujie; Tao, Hui; Shi, Xiaofei; Zhong, Xiaofang; Han, Yichao; Fu, Shuai; Fang, Chengxiang; Deng, Zixin; Liu, Tiangang

    2017-04-01

    Taxol (paclitaxel) is a diterpenoid compound with significant and extensive applications in the treatment of cancer. The production of Taxol and relevant intermediates by engineered microbes is an attractive alternative to the semichemical synthesis of Taxol. In this study, based on a previously developed platform, the authors first established taxadiene production in mutant E. coli T2 and T4 by engineering of the mevalonate (MVA) pathway. The authors then developed an Agrobacterium tumefaciens-mediated transformation (ATMT) method and verified the strength of heterologous promoters in Alternaria alternata TPF6. The authors next transformed the taxadiene-producing platform into A. alternata TPF6, and the MVA pathway was engineered, with introduction of the plant taxadiene-forming gene. Notably, by co-overexpression of isopentenyl diphosphate isomerase (Idi), a truncated version of 3-hydroxy-3-methylglutaryl-CoA reductase (tHMG1), and taxadiene synthase (TS), the authors could detect 61.9 ± 6.3 μg/L taxadiene in the engineered strain GB127. This is the first demonstration of taxadiene production in filamentous fungi, and the approach presented in this study provides a new method for microbial production of Taxol. The well-established ATMT method and the known promoter strengths facilitated further engineering of taxaenes in this fungus. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Stress responsive DEAD-box helicases: a new pathway to engineer plant stress tolerance.

    PubMed

    Vashisht, Ajay Amar; Tuteja, Narendra

    2006-08-01

    Abiotic stresses including various environmental factors adversely affect plant growth and limit agricultural production worldwide. Minimizing these losses is a major area of concern for all countries. Therefore, it is desirable to develop multi-stress tolerant varieties. Salinity, drought, and cold are among the major environmental stresses that greatly influence the growth, development, survival, and yield of plants. UV-B radiation of sunlight, which damages the cellular genomes, is another growth-retarding factor. Several genes are induced under the influence of various abiotic stresses. Among these are DNA repair genes, which are induced in response to the DNA damage. Since the stresses affect the cellular gene expression machinery, it is possible that molecules involved in nucleic acid metabolism including helicases are likely to be affected. The light-driven shifts in redox-potential can also initiate the helicase gene expression. Helicases are ubiquitous enzymes that catalyse the unwinding of energetically stable duplex DNA (DNA helicases) or duplex RNA secondary structures (RNA helicases). Most helicases are members of DEAD-box protein superfamily and play essential roles in basic cellular processes such as DNA replication, repair, recombination, transcription, ribosome biogenesis and translation initiation. Therefore, helicases might be playing an important role in regulating plant growth and development under stress conditions by regulating some stress-induced pathways. There are now few reports on the up-regulation of DEAD-box helicases in response to abiotic stresses. Recently, salinity-stress tolerant tobacco plants have already been raised by overexpressing a helicase gene, which suggests a new pathway to engineer plant stress tolerance [N. Sanan-Mishra, X.H. Pham, S.K. Sopory, N. Tuteja, Pea DNA helicase 45 overexpression in tobacco confers high salinity tolerance without affecting yield. Proc. Natl. Acad. Sci. USA 102 (2005) 509-514]. Presently the

  10. Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by Saccharomyces cerevisiae.

    PubMed

    Zhou, Hang; Cheng, Jing-Sheng; Wang, Benjamin L; Fink, Gerald R; Stephanopoulos, Gregory

    2012-11-01

    Xylose is the main pentose and second most abundant sugar in lignocellulosic feedstocks. To improve xylose utilization, necessary for the cost-effective bioconversion of lignocellulose, several metabolic engineering approaches have been employed in the yeast Saccharomyces cerevisiae. In this study, we describe the rational metabolic engineering of a S. cerevisiae strain, including overexpression of the Piromyces xylose isomerase gene (XYLA), Pichia stipitis xylulose kinase (XYL3) and genes of the non-oxidative pentose phosphate pathway (PPP). This engineered strain (H131-A3) was used to initialize a three-stage process of evolutionary engineering, through first aerobic and anaerobic sequential batch cultivation followed by growth in a xylose-limited chemostat. The evolved strain H131-A3-AL(CS) displayed significantly increased anaerobic growth rate (0.203±0.006 h⁻¹) and xylose consumption rate (1.866 g g⁻¹ h⁻¹) along with high ethanol conversion yield (0.41 g/g). These figures exceed by a significant margin any other performance metrics on xylose utilization and ethanol production by S. cerevisiae reported to-date. Further inverse metabolic engineering based on functional complementation suggested that efficient xylose assimilation is attributed, in part, to the elevated expression level of xylose isomerase, which was accomplished through the multiple-copy integration of XYLA in the chromosome of the evolved strain.

  11. SWITCH: a dynamic CRISPR tool for genome engineering and metabolic pathway control for cell factory construction in Saccharomyces cerevisiae.

    PubMed

    Vanegas, Katherina García; Lehka, Beata Joanna; Mortensen, Uffe Hasbro

    2017-02-08

    The yeast Saccharomyces cerevisiae is increasingly used as a cell factory. However, cell factory construction time is a major obstacle towards using yeast for bio-production. Hence, tools to speed up cell factory construction are desirable. In this study, we have developed a new Cas9/dCas9 based system, SWITCH, which allows Saccharomyces cerevisiae strains to iteratively alternate between a genetic engineering state and a pathway control state. Since Cas9 induced recombination events are crucial for SWITCH efficiency, we first developed a technique TAPE, which we have successfully used to address protospacer efficiency. As proof of concept of the use of SWITCH in cell factory construction, we have exploited the genetic engineering state of a SWITCH strain to insert the five genes necessary for naringenin production. Next, the naringenin cell factory was switched to the pathway control state where production was optimized by downregulating an essential gene TSC13, hence, reducing formation of a byproduct. We have successfully integrated two CRISPR tools, one for genetic engineering and one for pathway control, into one system and successfully used it for cell factory construction.

  12. The Cdk4-E2f1 pathway regulates early pancreas development by targeting Pdx1+ progenitors and Ngn3+ endocrine precursors

    PubMed Central

    Kim, So Yoon; Rane, Sushil G.

    2011-01-01

    Cell division and cell differentiation are intricately regulated processes vital to organ development. Cyclin-dependent kinases (Cdks) are master regulators of the cell cycle that orchestrate the cell division and differentiation programs. Cdk1 is essential to drive cell division and is required for the first embryonic divisions, whereas Cdks 2, 4 and 6 are dispensable for organogenesis but vital for tissue-specific cell development. Here, we illustrate an important role for Cdk4 in regulating early pancreas development. Pancreatic development involves extensive morphogenesis, proliferation and differentiation of the epithelium to give rise to the distinct cell lineages of the adult pancreas. The cell cycle molecules that specify lineage commitment within the early pancreas are unknown. We show that Cdk4 and its downstream transcription factor E2f1 regulate mouse pancreas development prior to and during the secondary transition. Cdk4 deficiency reduces embryonic pancreas size owing to impaired mesenchyme development and fewer Pdx1+ pancreatic progenitor cells. Expression of activated Cdk4R24C kinase leads to increased Nkx2.2+ and Nkx6.1+ cells and a rise in the number and proliferation of Ngn3+ endocrine precursors, resulting in expansion of the β cell lineage. We show that E2f1 binds and activates the Ngn3 promoter to modulate Ngn3 expression levels in the embryonic pancreas in a Cdk4-dependent manner. These results suggest that Cdk4 promotes β cell development by directing E2f1-mediated activation of Ngn3 and increasing the pool of endocrine precursors, and identify Cdk4 as an important regulator of early pancreas development that modulates the proliferation potential of pancreatic progenitors and endocrine precursors. PMID:21490060

  13. Aberrant STAT5 and PI3K/mTOR pathway signaling occurs in human CRLF2-rearranged B-precursor acute lymphoblastic leukemia

    PubMed Central

    Tasian, Sarah K.; Doral, Michelle Y.; Borowitz, Michael J.; Wood, Brent L.; Chen, I-Ming; Harvey, Richard C.; Gastier-Foster, Julie M.; Willman, Cheryl L.; Hunger, Stephen P.; Mullighan, Charles G.

    2012-01-01

    Adults and children with high-risk CRLF2-rearranged acute lymphoblastic leukemia (ALL) respond poorly to current cytotoxic chemotherapy and suffer unacceptably high rates of relapse, supporting the need to use alternative therapies. CRLF2 encodes the thymic stromal lymphopoietin (TSLP) receptor, which activates cell signaling in normal lymphocytes on binding its ligand, TSLP. We hypothesized that aberrant cell signaling occurs in CRLF2-rearranged ALL and can be targeted by signal transduction inhibitors of this pathway. In a large number of primary CRLF2-rearranged ALL samples, we observed increased basal levels of pJAK2, pSTAT5, and pS6. We thus characterized the biochemical sequelae of CRLF2 and JAK alterations in CRLF2-rearranged ALL primary patient samples via analysis of TSLP-mediated signal transduction. TSLP stimulation of these leukemias further induced robust JAK/STAT and PI3K/mTOR pathway signaling. JAK inhibition abrogated phosphorylation of JAK/STAT and, surprisingly, of PI3K/mTOR pathway members, suggesting an interconnection between these signaling networks and providing a rationale for testing JAK inhibitors in clinical trials. The PI3K/mTOR pathway inhibitors rapamycin, PI103, and PP242 also inhibited activated signal transduction and translational machinery proteins of the PI3K/mTOR pathway, suggesting that signal transduction inhibitors targeting this pathway also may have therapeutic relevance for patients with CRLF2-rearranged ALL and merit further preclinical testing. PMID:22685175

  14. Cloning and characterization of a panel of constitutive promoters for applications in pathway engineering in Saccharomyces cerevisiae.

    PubMed

    Sun, Jie; Shao, Zengyi; Zhao, Hua; Nair, Nikhil; Wen, Fei; Xu, Jian-He; Zhao, Huimin

    2012-08-01

    Saccharomyces cerevisiae is an important platform organism for synthesis of chemicals and fuels. However, the promoters used in most pathway engineering studies in S. cerevisiae have not been characterized and compared in parallel under multiple conditions that are routinely operated in laboratory and the number of known promoters is rather limited for the construction of large biochemical pathways. Here a total of 14 constitutive promoters from S. cerevisiae were cloned and characterized using a green fluorescent protein (GFP) as a reporter in a 2 µ vector pRS426, under varying glucose and oxygen concentrations. The strengths of these promoters varied no more than sixfold in the mean fluorescence intensity of GFP, with promoter TEF1p being the strongest and promoter PGI1p the weakest. As an example of application for these promoters in metabolic engineering, the genes involved in xylan degradation and zeaxanthin biosynthesis were subsequently cloned under the control of promoters with medium to high strength and assembled into a single pathway. The corresponding construct was transformed to a S. cerevisiae strain integrated with a D-xylose utilizing pathway. The resulting strain produced zeaxanthin with a titer of 0.74 ± 0.02 mg/L directly from birchwood xylan. Copyright © 2012 Wiley Periodicals, Inc.

  15. Apoptotic resistance to ionizing radiation in pediatric B-precursor acute lymphoblastic leukemia frequently involves increased NF-kappaB survival pathway signaling.

    PubMed

    Weston, Victoria J; Austen, Belinda; Wei, Wenbin; Marston, Eliot; Alvi, Azra; Lawson, Sarah; Darbyshire, Philip J; Griffiths, Mike; Hill, Frank; Mann, Jill R; Moss, Paul A H; Taylor, A Malcolm R; Stankovic, Tatjana

    2004-09-01

    To investigate possible causes of the variable response to treatment in pediatric B-precursor acute lymphoblastic leukemia (ALL) and to establish potential novel therapeutic targets, we used ionizing radiation (IR) exposure as a model of DNA damage formation to identify tumors with resistance to p53-dependent apoptosis. Twenty-one of 40 ALL tumors responded normally to IR, exhibiting accumulation of p53 and p21 proteins and cleavage of caspases 3, 7, and 9 and of PARP1. Nineteen tumors exhibited apoptotic resistance and lacked PARP1 and caspase cleavage; although 15 of these tumors had normal accumulation of p53 and p21 proteins, examples exhibited abnormal expression of TRAF5, TRAF6, and cIAP1 after IR, suggesting increased NF-kappaB prosurvival signaling as the mechanism of apoptotic resistance. The presence of a hyperactive PARP1 mutation in one tumor was consistent with such increased NF-kappaB activity. PARP1 inhibition restored p53-dependent apoptosis after IR in these leukemias by reducing NF-kappaB DNA binding and transcriptional activity. In the remaining 4 ALL tumors, apoptotic resistance was associated with a TP53 mutation or with defective activation of p53. We conclude that increased NF-kappaB prosurvival signaling is a frequent mechanism by which B-precursor ALL tumors develop apoptotic resistance to IR and that PARP1 inhibition may improve the DNA damage response of these leukemias.

  16. Reducing natural organic matter and disinfection by-product precursors by alternating oxic and anoxic conditions during engineered short residence time riverbank filtration: A laboratory-scale column study.

    PubMed

    Liu, Peng; Farré, Maria José; Keller, Jurg; Gernjak, Wolfgang

    2016-09-15

    Riverbank filtration (RBF) with days to months of residence time has been successfully used as treatment or pre-treatment process to improve water quality for decades. However, its feasibility depends on the local hydrogeological conditions. Therefore, for sites unsuitable to traditional RBF, a smaller engineered RBF may be an option. This study evaluates the performance of engineered short residence time RBF on improving water quality, focusing on the removal of natural organic matter (NOM) and the reduction of precursors of carbon and nitrogen disinfection by-products (DBP). Lab-scale experiments were conducted with surface feed water from a drinking water plant. The results showed that within 6days hydraulic retention time (HRT), 60-70% dissolved organic carbon (DOC) and 70-80% ultraviolet absorbance at 254nm (UV254) could be removed. During the whole filtration process, biodegradation was responsible for the removal of organic matter, and it was found that alternating redox condition between oxic and anoxic was beneficial for the overall performance of the RBF. Dissolved oxygen (DO) had a substantial impact on the removal of DBP precursors. For carbon-containing DBP (C-DBP) precursors' removal, re-aeration after a sequence of oxic and anoxic conditions could further increase the removal efficiencies from 50%, 60%, and 60% to 80%, 90%, and 80% for trihalomethanes (THMs), chloral hydrate (CH), and haloketones (HKs). Prolonged anoxic conditions were however beneficial for the removal of nitrogen-containing DBP (N-DBP) precursors. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. A new pathway for salvaging the coenzyme B12 precursor cobinamide in archaea requires cobinamide-phosphate synthase (CbiB) enzyme activity.

    PubMed

    Woodson, Jesse D; Zayas, Carmen L; Escalante-Semerena, Jorge C

    2003-12-01

    The ability of archaea to salvage cobinamide has been under question because archaeal genomes lack orthologs to the bacterial nucleoside triphosphate:5'-deoxycobinamide kinase enzyme (cobU in Salmonella enterica). The latter activity is required for cobinamide salvaging in bacteria. This paper reports evidence that archaea salvage cobinamide from the environment by using a pathway different from the one used by bacteria. These studies demanded the functional characterization of two genes whose putative function had been annotated based solely on their homology to the bacterial genes encoding adenosylcobyric acid and adenosylcobinamide-phosphate synthases (cbiP and cbiB, respectively) of S. enterica. A cbiP mutant strain of the archaeon Halobacterium sp. strain NRC-1 was auxotrophic for adenosylcobyric acid, a known intermediate of the de novo cobamide biosynthesis pathway, but efficiently salvaged cobinamide from the environment, suggesting the existence of a salvaging pathway in this archaeon. A cbiB mutant strain of Halobacterium was auxotrophic for adenosylcobinamide-GDP, a known de novo intermediate, and did not salvage cobinamide. The results of the nutritional analyses of the cbiP and cbiB mutants suggested that the entry point for cobinamide salvaging is adenosylcobyric acid. The data are consistent with a salvaging pathway for cobinamide in which an amidohydrolase enzyme cleaves off the aminopropanol moiety of adenosylcobinamide to yield adenosylcobyric acid, which is converted by the adenosylcobinamide-phosphate synthase enzyme to adenosylcobinamide-phosphate, a known intermediate of the de novo biosynthetic pathway. The existence of an adenosylcobinamide amidohydrolase enzyme would explain the lack of an adenosylcobinamide kinase in archaea.

  18. A New Pathway for Salvaging the Coenzyme B12 Precursor Cobinamide in Archaea Requires Cobinamide-Phosphate Synthase (CbiB) Enzyme Activity

    PubMed Central

    Woodson, Jesse D.; Zayas, Carmen L.; Escalante-Semerena, Jorge C.

    2003-01-01

    The ability of archaea to salvage cobinamide has been under question because archaeal genomes lack orthologs to the bacterial nucleoside triphosphate:5′-deoxycobinamide kinase enzyme (cobU in Salmonella enterica). The latter activity is required for cobinamide salvaging in bacteria. This paper reports evidence that archaea salvage cobinamide from the environment by using a pathway different from the one used by bacteria. These studies demanded the functional characterization of two genes whose putative function had been annotated based solely on their homology to the bacterial genes encoding adenosylcobyric acid and adenosylcobinamide-phosphate synthases (cbiP and cbiB, respectively) of S. enterica. A cbiP mutant strain of the archaeon Halobacterium sp. strain NRC-1 was auxotrophic for adenosylcobyric acid, a known intermediate of the de novo cobamide biosynthesis pathway, but efficiently salvaged cobinamide from the environment, suggesting the existence of a salvaging pathway in this archaeon. A cbiB mutant strain of Halobacterium was auxotrophic for adenosylcobinamide-GDP, a known de novo intermediate, and did not salvage cobinamide. The results of the nutritional analyses of the cbiP and cbiB mutants suggested that the entry point for cobinamide salvaging is adenosylcobyric acid. The data are consistent with a salvaging pathway for cobinamide in which an amidohydrolase enzyme cleaves off the aminopropanol moiety of adenosylcobinamide to yield adenosylcobyric acid, which is converted by the adenosylcobinamide-phosphate synthase enzyme to adenosylcobinamide-phosphate, a known intermediate of the de novo biosynthetic pathway. The existence of an adenosylcobinamide amidohydrolase enzyme would explain the lack of an adenosylcobinamide kinase in archaea. PMID:14645280

  19. College-Bound Students' Interest in Engineering: Pathways and Characteristics of the Pre-College Pipeline

    ERIC Educational Resources Information Center

    Edwards, Kelcey; Sawtell, Ellen

    2011-01-01

    Presented at the Annual Meeting of the American Educational Research Association (AERA) in New Orleans, LA in April 2011. The first study evaluated the level of interest in engineering as students approached the end of high school and explored the degree to which the academic preparation of these students shaped the engineering pipeline over a…

  20. Becoming an Engineer in Public Universities: Pathways for Women and Minorities. Palgrave Studies in Urban Education

    ERIC Educational Resources Information Center

    Borman, Kathryn M., Ed.; Tyson, Will, Ed.; Halperin, Rhoda H., Ed.

    2010-01-01

    Based on research conducted in a three-year, mixed-method, multi-site National Science Foundation, Science, Technology, Engineering and Mathematics Talent Expansion Program (STEP) Project, this book offers a comprehensive look into how engineering department culture and climate impacts the successful retention of female and under-represented…

  1. Tailoring pathway modularity in the biosynthesis of erythromycin analogs heterologously engineered in E. coli.

    PubMed

    Zhang, Guojian; Li, Yi; Fang, Lei; Pfeifer, Blaine A

    2015-05-01

    Type I modular polyketide synthases are responsible for potent therapeutic compounds that include avermectin (antihelinthic), rapamycin (immunosuppressant), pikromycin (antibiotic), and erythromycin (antibiotic). However, compound access and biosynthetic manipulation are often complicated by properties of native production organisms, prompting an approach (termed heterologous biosynthesis) illustrated in this study through the reconstitution of the erythromycin pathway through Escherichia coli. Using this heterologous system, 16 tailoring pathways were introduced, systematically producing eight chiral pairs of deoxysugar substrates. Successful analog formation for each new pathway emphasizes the remarkable flexibility of downstream enzymes to accommodate molecular variation. Furthermore, analogs resulting from three of the pathways demonstrated bioactivity against an erythromycin-resistant Bacillus subtilis strain. The approach and results support a platform for continued molecular diversification of the tailoring components of this and other complex natural product pathways in a manner that mirrors the modular nature of the upstream megasynthases responsible for aglycone polyketide formation.

  2. Tailoring pathway modularity in the biosynthesis of erythromycin analogs heterologously engineered in E. coli

    PubMed Central

    Zhang, Guojian; Li, Yi; Fang, Lei; Pfeifer, Blaine A.

    2015-01-01

    Type I modular polyketide synthases are responsible for potent therapeutic compounds that include avermectin (antihelinthic), rapamycin (immunosuppressant), pikromycin (antibiotic), and erythromycin (antibiotic). However, compound access and biosynthetic manipulation are often complicated by properties of native production organisms, prompting an approach (termed heterologous biosynthesis) illustrated in this study through the reconstitution of the erythromycin pathway through Escherichia coli. Using this heterologous system, 16 tailoring pathways were introduced, systematically producing eight chiral pairs of deoxysugar substrates. Successful analog formation for each new pathway emphasizes the remarkable flexibility of downstream enzymes to accommodate molecular variation. Furthermore, analogs resulting from three of the pathways demonstrated bioactivity against an erythromycin-resistant Bacillus subtilis strain. The approach and results support a platform for continued molecular diversification of the tailoring components of this and other complex natural product pathways in a manner that mirrors the modular nature of the upstream megasynthases responsible for aglycone polyketide formation. PMID:26601183

  3. Engineering Favorable Morphology and Structure of Fe-N-C Oxygen-Reduction Catalysts through Tuning of Nitrogen/Carbon Precursors.

    PubMed

    Gupta, Shiva; Zhao, Shuai; Ogoke, Ogechi; Lin, Ye; Xu, Hui; Wu, Gang

    2017-02-22

    Structures and morphologies of Fe-N-C catalysts are believed to be crucial because of the number of active sites and local bonding structures governing the overall catalyst performance for the oxygen reduction reaction (ORR). However, the knowledge how to rationally design catalysts is still lacking. By combining different nitrogen/carbon precursors, including polyaniline (PANI), dicyandiamide (DCDA), and melamine (MLMN), we aim to tune catalyst morphology and structure to facilitate the ORR. Instead of the commonly studied single precursors, multiple precursors were used during the synthesis; this provides a new opportunity to promote catalyst activity and stability through a likely synergistic effect. The best-performing Fe-N-C catalyst derived from PANI+DCDA is superior to the individual PANI or DCDA-derived ones. In particular, when compared to the extensively explored PANI-derived catalysts, the binary precursors have an increased half-wave potential of 0.83 V and an enhanced electrochemical stability in challenging acidic media, indicating a significantly increased number of active sites and strengthened local bonding structures. Multiple key factors associated with the observed promotion are elucidated, including the optimal pore size distribution, highest electrochemically active surface area, presence of dominant amorphous carbon, and thick graphitic carbon layers with more pyridinic nitrogen edge sites likely bonded with active atomic iron.

  4. Expanding the chemical diversity of natural esters by engineering a polyketide-derived pathway into Escherichia coli.

    PubMed

    Menendez-Bravo, Simón; Comba, Santiago; Sabatini, Martín; Arabolaza, Ana; Gramajo, Hugo

    2014-07-01

    Microbial fatty acid (FA)-derived molecules have emerged as promising alternatives to petroleum-based chemicals for reducing dependence on fossil hydrocarbons. However, native FA biosynthetic pathways often yield limited structural diversity, and therefore restricted physicochemical properties, of the end products by providing only a limited variety of usually linear hydrocarbons. Here we have engineered into Escherichia coli a mycocerosic polyketide synthase-based biosynthetic pathway from Mycobacterium tuberculosis and redefined its biological role towards the production of multi-methyl-branched-esters (MBEs) with novel chemical structures. Expression of FadD28, Mas and PapA5 enzymes enabled the biosynthesis of multi-methyl-branched-FA and their further esterification to an alcohol. The high substrate tolerance of these enzymes towards different FA and alcohol moieties resulted in the biosynthesis of a broad range of MBE. Further metabolic engineering of the MBE producer strain coupled this system to long-chain-alcohol biosynthetic pathways resulting in de novo production of branched wax esters following addition of only propionate.

  5. Metabolic engineering of fatty acyl-ACP reductase-dependent pathway to improve fatty alcohol production in Escherichia coli.

    PubMed

    Liu, Ran; Zhu, Fayin; Lu, Lei; Fu, Aisi; Lu, Jiankai; Deng, Zixin; Liu, Tiangang

    2014-03-01

    Fatty alcohols are important components of surfactants and cosmetic products. The production of fatty alcohols from sustainable resources using microbial fermentation could reduce dependence on fossil fuels and greenhouse gas emission. However, the industrialization of this process has been hampered by the current low yield and productivity of this synthetic pathway. As a result of metabolic engineering strategies, an Escherichia coli mutant containing Synechococcus elongatus fatty acyl-ACP reductase showed improved yield and productivity. Proteomics analysis and in vitro enzymatic assays showed that endogenous E. coli AdhP is a major contributor to the reduction of fatty aldehydes to fatty alcohols. Both in vitro and in vivo results clearly demonstrated that the activity and expression level of fatty acyl-CoA/ACP reductase is the rate-limiting step in the current protocol. In 2.5-L fed-batch fermentation with glycerol as the only carbon source, the most productive E. coli mutant produced 0.75 g/L fatty alcohols (0.02 g fatty alcohol/g glycerol) with a productivity of up to 0.06 g/L/h. This investigation establishes a promising synthetic pathway for industrial microbial production of fatty alcohols. © 2013 Published by International Metabolic Engineering Society on behalf of International Metabolic Engineering Society.

  6. Genetic engineering to enhance the Ehrlich pathway and alter carbon flux for increased isobutanol production from glucose by Saccharomyces cerevisiae.

    PubMed

    Kondo, Takashi; Tezuka, Hironori; Ishii, Jun; Matsuda, Fumio; Ogino, Chiaki; Kondo, Akihiko

    2012-05-31

    The production of higher alcohols by engineered bacteria has received significant attention. The budding yeast, Saccharomyces cerevisiae, has considerable potential as a producer of higher alcohols because of its capacity to naturally fabricate fusel alcohols, in addition to its robustness and tolerance to low pH. However, because its natural productivity is not significant, we considered a strategy of genetic engineering to increase production of the branched-chain higher alcohol isobutanol, which is involved in valine biosynthesis. Initially, we overexpressed 2-keto acid decarboxylase (KDC) and alcohol dehydrogenase (ADH) in S. cerevisiae to enhance the endogenous activity of the Ehrlich pathway. We then overexpressed Ilv2, which catalyzes the first step in the valine synthetic pathway, and deleted the PDC1 gene encoding a major pyruvate decarboxylase with the intent of altering the abundant ethanol flux via pyruvate. Through these engineering steps, along with modification of culture conditions, the isobutanol titer of S. cerevisiae was elevated 13-fold, from 11 mg/l to 143 mg/l, and the yield was 6.6 mg/g glucose, which is higher than any previously reported value for S. cerevisiae. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. BDNF/ TrkB interaction regulates migration of SVZ precursor cells via PI3-K and MAP-K signalling pathways.

    PubMed

    Chiaramello, S; Dalmasso, G; Bezin, L; Marcel, D; Jourdan, F; Peretto, P; Fasolo, A; De Marchis, S

    2007-10-01

    Neuroblasts born in the subventricular zone (SVZ) migrate along the rostral migratory stream, reaching the olfactory bulb (OB) where they differentiate into local interneurons. Several extracellular factors have been suggested to control specific steps of this process. The brain-derived neurotrophic factor (BDNF) has been demonstrated to promote morphological differentiation and survival of OB interneurons. Here we show that BDNF and its receptor TrkB are expressed in vivo throughout the migratory pathway, implying that BDNF might also mediate migratory signals. By using in vitro models we demonstrate that BDNF promotes migration of SVZ neuroblasts, acting both as inducer and attractant through TrkB activation. We show that BDNF induces cAMP response element-binding protein (CREB) activation in migrating neuroblasts via phosphatidylinositol 3-kinase (PI3-K) and mitogen-activated protein kinase (MAP-K) signalling. Pharmacological blockade of these pathways on SVZ explants significantly reduces CREB activation and impairs neuronal migration. This study identifies a function of BDNF in the SVZ system, which involves multiple protein kinase pathways leading to neuroblast migration.

  8. Tyrosine Binding Protein Sites Regulate the Intracellular Trafficking and Processing of Amyloid Precursor Protein through a Novel Lysosome-Directed Pathway

    PubMed Central

    Tam, Joshua H. K.; Cobb, M. Rebecca; Seah, Claudia; Pasternak, Stephen H.

    2016-01-01

    The amyloid hypothesis posits that the production of β-amyloid (Aβ) aggregates leads to neurodegeneration and cognitive decline associated with AD. Aβ is produced by sequential cleavage of the amyloid precursor protein (APP) by β- and γ-secretase. While nascent APP is well known to transit to the endosomal/ lysosomal system via the cell surface, we have recently shown that APP can also traffic to lysosomes intracellularly via its interaction with AP-3. Because AP-3 interacts with cargo protein via interaction with tyrosine motifs, we mutated the three tyrosines motif in the cytoplasmic tail of APP. Here, we show that the YTSI motif interacts with AP-3, and phosphorylation of the serine in this motif disrupts the interaction and decreases APP trafficking to lysosomes. Furthermore, we show that phosphorylation at this motif can decrease the production of neurotoxic Aβ 42. This demonstrates that reducing APP trafficking to lysosomes may be a strategy to reduce Aβ 42 in Alzheimer’s disease. PMID:27776132

  9. A Water-Based Chitosan-Maleimide Precursor for Bioconjugation: An Example of a Rapid Pathway for an In Situ Injectable Adhesive Gel.

    PubMed

    Matsumoto, Masahiro; Udomsinprasert, Wanvisa; Laengee, Prayoon; Honsawek, Sittisak; Patarakul, Kanitha; Chirachanchai, Suwabun

    2016-10-01

    Chitosan conjugated with maleimide (CS-Mal) as a potential precursor for bioconjugation and the example of the application in in situ injectable adhesive gel is proposed. The homogeneous reaction in water/dimethyl sulfoxide (DMSO) (1:1) followed by dialysis in HCl (10 × 10(-3) m) is a good condition to obtain CS-Mal. When SH-PEG-SH is applied as the crosslinker, the gel can be obtained in a few seconds without any by-products at room temperature. The gel formation and properties are controllable by simply varying the concentration and the molecular weight of CS, the Mal substitution degree, and the temperature. The gel is injectable and shows adhesive property for soft tissue. Moreover, the gel shows not only biocompatibility to SAOS2 cells but also antimicrobial activity against both gram-negative and gram-positive bacteria. CS-Mal is useful not only for bioconjugation of CS but also for development of biomaterials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Evolutionary engineered Saccharomyces cerevisiae wine yeast strains with increased in vivo flux through the pentose phosphate pathway.

    PubMed

    Cadière, Axelle; Ortiz-Julien, Anne; Camarasa, Carole; Dequin, Sylvie

    2011-05-01

    Amplification of the flux toward the pentose phosphate (PP) pathway might be of interest for various S. cerevisiae based industrial applications. We report an evolutionary engineering strategy based on a long-term batch culture on gluconate, a substrate that is poorly assimilated by S. cerevisiae cells and is metabolized by the PP pathway. After adaptation for various periods of time, we selected strains that had evolved a greater consumption capacity for gluconate. (13)C metabolic flux analysis on glucose revealed a redirection of carbon flux from glycolysis towards the PP pathway and a greater synthesis of lipids. The relative flux into the PP pathway was 17% for the evolved strain (ECA5) versus 11% for the parental strain (EC1118). During wine fermentation, the evolved strains displayed major metabolic changes, such as lower levels of acetate production, higher fermentation rates and enhanced production of aroma compounds. These represent a combination of novel traits, which are of great interest in the context of modern winemaking. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. GeoFold: Topology-based protein unfolding pathways capture the effects of engineered disulfides on kinetic stability

    PubMed Central

    Ramakrishnan, Vibin; Srinivasan, Sai Praveen; Salem, Saeed M; Matthews, Suzanne J; Colón, Wilfredo; Zaki, Mohammed; Bystroff, Christopher

    2011-01-01

    Protein unfolding is modeled as an ensemble of pathways, where each step in each pathway is the addition of one topologically possible conformational degree of freedom. Starting with a known protein structure, GeoFold hierarchically partitions (cuts) the native structure into substructures using revolute joints and translations. The energy of each cut and its activation barrier are calculated using buried solvent accessible surface area, side chain entropy, hydrogen bonding, buried cavities, and backbone degrees of freedom. A directed acyclic graph is constructed from the cuts, representing a network of simultaneous equilibria. Finite difference simulations on this graph simulate native unfolding pathways. Experimentally observed changes in the unfolding rates for disulfide mutants of barnase, T4 lysozyme, dihydrofolate reductase, and factor for inversion stimulation were qualitatively reproduced in these simulations. Detailed unfolding pathways for each case explain the effects of changes in the chain topology on the folding energy landscape. GeoFold is a useful tool for the inference of the effects of disulfide engineering on the energy landscape of protein unfolding. PMID:22189917

  12. Metabolic engineering of the purine biosynthetic pathway in Corynebacterium glutamicum results in increased intracellular pool sizes of IMP and hypoxanthine

    PubMed Central

    2012-01-01

    Background Purine nucleotides exhibit various functions in cellular metabolism. Besides serving as building blocks for nucleic acid synthesis, they participate in signaling pathways and energy metabolism. Further, IMP and GMP represent industrially relevant biotechnological products used as flavor enhancing additives in food industry. Therefore, this work aimed towards the accumulation of IMP applying targeted genetic engineering of Corynebacterium glutamicum. Results Blocking of the degrading reactions towards AMP and GMP lead to a 45-fold increased intracellular IMP pool of 22 μmol gCDW-1. Deletion of the pgi gene encoding glucose 6-phosphate isomerase in combination with the deactivated AMP and GMP generating reactions, however, resulted in significantly decreased IMP pools (13 μmol gCDW-1). Targeted metabolite profiling of the purine biosynthetic pathway further revealed a metabolite shift towards the formation of the corresponding nucleobase hypoxanthine (102 μmol gCDW-1) derived from IMP degradation. Conclusions The purine biosynthetic pathway is strongly interconnected with various parts of the central metabolism and therefore tightly controlled. However, deleting degrading reactions from IMP to AMP and GMP significantly increased intracellular IMP levels. Due to the complexity of this pathway further degradation from IMP to the corresponding nucleobase drastically increased suggesting additional targets for future strain optimization. PMID:23092390

  13. Improving isobutanol production in metabolically engineered Escherichia coli by co-producing ethanol and modulation of pentose phosphate pathway.

    PubMed

    Liu, Zichun; Liu, Pingping; Xiao, Dongguang; Zhang, Xueli

    2016-06-01

    Redox imbalance has been regarded as the key limitation for anaerobic isobutanol production in metabolically engineered Escherichia coli strains. In this work, the ethanol synthetic pathway was recruited to solve the NADH redundant problem while the pentose phosphate pathway was modulated to solve the NADPH deficient problem for anaerobic isobutanol production. Recruiting the ethanol synthetic pathway in strain AS108 decreased isobutanol yield from 0.66 to 0.29 mol/mol glucose. It was found that there was a negative correlation between aldehyde/alcohol dehydrogenase (AdhE) activity and isobutanol production. Decreasing AdhE activity increased isobutanol yield from 0.29 to 0.6 mol/mol. On the other hand, modulation of the glucose 6-phosphate dehydrogenase gene of the pentose phosphate pathway increased isobutanol yield from 0.29 to 0.41 mol/mol. Combination of these two strategies had a synergistic effect on improving isobutanol production. Isobutanol titer and yield of the best strain ZL021 were 53 mM and 0.74 mol/mol, which were 51 % and 12 % higher than the starting strain AS108, respectively. The total alcohol yield of strain ZL021 was 0.81 mol/mol, which was 23 % higher than strain AS108.

  14. Metabolic engineering of the purine biosynthetic pathway in Corynebacterium glutamicum results in increased intracellular pool sizes of IMP and hypoxanthine.

    PubMed

    Peifer, Susanne; Barduhn, Tobias; Zimmet, Sarah; Volmer, Dietrich A; Heinzle, Elmar; Schneider, Konstantin

    2012-10-24

    Purine nucleotides exhibit various functions in cellular metabolism. Besides serving as building blocks for nucleic acid synthesis, they participate in signaling pathways and energy metabolism. Further, IMP and GMP represent industrially relevant biotechnological products used as flavor enhancing additives in food industry. Therefore, this work aimed towards the accumulation of IMP applying targeted genetic engineering of Corynebacterium glutamicum. Blocking of the degrading reactions towards AMP and GMP lead to a 45-fold increased intracellular IMP pool of 22 μmol g(CDW)⁻¹. Deletion of the pgi gene encoding glucose 6-phosphate isomerase in combination with the deactivated AMP and GMP generating reactions, however, resulted in significantly decreased IMP pools (13 μmol g(CDW)⁻¹). Targeted metabolite profiling of the purine biosynthetic pathway further revealed a metabolite shift towards the formation of the corresponding nucleobase hypoxanthine (102 μmol g(CDW)⁻¹) derived from IMP degradation. The purine biosynthetic pathway is strongly interconnected with various parts of the central metabolism and therefore tightly controlled. However, deleting degrading reactions from IMP to AMP and GMP significantly increased intracellular IMP levels. Due to the complexity of this pathway further degradation from IMP to the corresponding nucleobase drastically increased suggesting additional targets for future strain optimization.

  15. Metabolic engineering of Escherichia coli for 1-butanol biosynthesis through the inverted aerobic fatty acid β-oxidation pathway.

    PubMed

    Gulevich, Andrey Yu; Skorokhodova, Alexandra Yu; Sukhozhenko, Alexey V; Shakulov, Rustem S; Debabov, Vladimir G

    2012-03-01

    The basic reactions of the clostridial 1-butanol biosynthesis pathway can be regarded to be the inverted reactions of the fatty acid β-oxidation pathway. A pathway for the biosynthesis of fuels and chemicals was recently engineered by combining enzymes from both aerobic and anaerobic fatty acid β-oxidation as well as enzymes from other metabolic pathways. In the current study, we demonstrate the inversion of the entire aerobic fatty acid β-oxidation cycle for 1-butanol biosynthesis. The constructed markerless and plasmidless Escherichia coli strain BOX-3 (MG1655 lacI(Q) attB-P(trc-ideal-4)-SD(φ10)-adhE(Glu568Lys) attB-P(trc-ideal-4)-SD(φ10)-atoB attB-P(trc-ideal-4)-SD(φ10)-fadB attB-P(trc-ideal-4)-SD(φ10)-fadE) synthesises 0.3-1 mg 1-butanol/l in the presence of the specific inducer. No 1-butanol production was detected in the absence of the inducer.

  16. Combinatorial Engineering of 1-Deoxy-D-Xylulose 5-Phosphate Pathway Using Cross-Lapping In Vitro Assembly (CLIVA) Method

    PubMed Central

    Zou, Ruiyang; Zhou, Kang; Stephanopoulos, Gregory; Too, Heng Phon

    2013-01-01

    The ability to assemble multiple fragments of DNA into a plasmid in a single step is invaluable to studies in metabolic engineering and synthetic biology. Using phosphorothioate chemistry for high efficiency and site specific cleavage of sequences, a novel ligase independent cloning method (cross-lapping in vitro assembly, CLIVA) was systematically and rationally optimized in E. coli. A series of 16 constructs combinatorially expressing genes encoding enzymes in the 1-deoxy-D-xylulose 5-phosphate (DXP) pathway were assembled using multiple DNA modules. A plasmid (21.6 kb) containing 16 pathway genes, was successfully assembled from 7 modules with high efficiency (2.0 x 103 cfu/ µg input DNA) within 2 days. Overexpressions of these constructs revealed the unanticipated inhibitory effects of certain combinations of genes on the production of amorphadiene. Interestingly, the inhibitory effects were correlated to the increase in the accumulation of intracellular methylerythritol cyclodiphosphate (MEC), an intermediate metabolite in the DXP pathway. The overexpression of the iron sulfur cluster operon was found to modestly increase the production of amorphadiene. This study demonstrated the utility of CLIVA in the assembly of multiple fragments of DNA into a plasmid which enabled the rapid exploration of biological pathways. PMID:24223968

  17. Modular control of multiple pathways using engineered orthogonal T7 polymerases

    PubMed Central

    Temme, Karsten; Hill, Rena; Segall-Shapiro, Thomas H.; Moser, Felix; Voigt, Christopher A.

    2012-01-01

    Synthetic genetic sensors and circuits enable programmable control over the timing and conditions of gene expression. They are being increasingly incorporated into the control of complex, multigene pathways and cellular functions. Here, we propose a design strategy to genetically separate the sensing/circuitry functions from the pathway to be controlled. This separation is achieved by having the output of the circuit drive the expression of a polymerase, which then activates the pathway from polymerase-specific promoters. The sensors, circuits and polymerase are encoded together on a ‘controller’ plasmid. Variants of T7 RNA polymerase that reduce toxicity were constructed and used as scaffolds for the construction of four orthogonal polymerases identified via part mining that bind to unique promoter sequences. This set is highly orthogonal and induces cognate promoters by 8- to 75-fold more than off-target promoters. These orthogonal polymerases enable four independent channels linking the outputs of circuits to the control of different cellular functions. As a demonstration, we constructed a controller plasmid that integrates two inducible systems, implements an AND logic operation and toggles between metabolic pathways that change Escherichia coli green (deoxychromoviridans) and red (lycopene). The advantages of this organization are that (i) the regulation of the pathway can be changed simply by introducing a different controller plasmid, (ii) transcription is orthogonal to host machinery and (iii) the pathway genes are not transcribed in the absence of a controller and are thus more easily carried without invoking evolutionary pressure. PMID:22743271

  18. Advances in metabolic pathway and strain engineering paving the way for sustainable production of chemical building blocks.

    PubMed

    Chen, Yun; Nielsen, Jens

    2013-12-01

    Bio-based production of chemical building blocks from renewable resources is an attractive alternative to petroleum-based platform chemicals. Metabolic pathway and strain engineering is the key element in constructing robust microbial chemical factories within the constraints of cost effective production. Here we discuss how the development of computational algorithms, novel modules and methods, omics-based techniques combined with modeling refinement are enabling reduction in development time and thus advance the field of industrial biotechnology. We further discuss how recent technological developments contribute to the development of novel cell factories for the production of the building block chemicals: adipic acid, succinic acid and 3-hydroxypropionic acid.

  19. Terpene metabolic engineering via nuclear or chloroplast genomes profoundly and globally impacts off-target pathways through metabolite signalling.

    PubMed

    Pasoreck, Elise K; Su, Jin; Silverman, Ian M; Gosai, Sager J; Gregory, Brian D; Yuan, Joshua S; Daniell, Henry

    2016-09-01

    The impact of metabolic engineering on nontarget pathways and outcomes of metabolic engineering from different genomes are poorly understood questions. Therefore, squalene biosynthesis genes FARNESYL DIPHOSPHATE SYNTHASE (FPS) and SQUALENE SYNTHASE (SQS) were engineered via the Nicotiana tabacum chloroplast (C), nuclear (N) or both (CN) genomes to promote squalene biosynthesis. SQS levels were ~4300-fold higher in C and CN lines than in N, but all accumulated ~150-fold higher squalene due to substrate or storage limitations. Abnormal leaf and flower phenotypes, including lower pollen production and reduced fertility, were observed regardless of the compartment or level of transgene expression. Substantial changes in metabolomes of all lines were observed: levels of 65-120 unrelated metabolites, including the toxic alkaloid nicotine, changed by as much as 32-fold. Profound effects of transgenesis on nontarget gene expression included changes in the abundance of 19 076 transcripts by up to 2000-fold in CN; 7784 transcripts by up to 1400-fold in N; and 5224 transcripts by as much as 2200-fold in C. Transporter-related transcripts were induced, and cell cycle-associated transcripts were disproportionally repressed in all three lines. Transcriptome changes were validated by qRT-PCR. The mechanism underlying these large changes likely involves metabolite-mediated anterograde and/or retrograde signalling irrespective of the level of transgene expression or end product, due to imbalance of metabolic pools, offering new insight into both anticipated and unanticipated consequences of metabolic engineering.

  20. Metabolic engineering of microorganisms: general strategies and drug production.

    PubMed

    Lee, Sang Yup; Kim, Hyun Uk; Park, Jin Hwan; Park, Jong Myung; Kim, Tae Yong

    2009-01-01

    Many drugs and drug precursors found in natural organisms are rather difficult to synthesize chemically and to extract in large amounts. Metabolic engineering is playing an increasingly important role in the production of these drugs and drug precursors. This is typically achieved by establishing new metabolic pathways leading to the product formation, and enforcing or removing the existing metabolic pathways toward enhanced product formation. Recent advances in system biology and synthetic biology are allowing us to perform metabolic engineering at the whole cell level, thus enabling optimal design of a microorganism for the efficient production of drugs and drug precursors. In this review, we describe the general strategies for the metabolic engineering of microorganisms for the production of drugs and drug precursors. As successful examples of metabolic engineering, the approaches taken toward strain development for the production of artemisinin, an antimalarial drug, and benzylisoquinoline alkaloids, a family of antibacterial and anticancer drugs, are described in detail. Also, systems metabolic engineering of Escherichia coli for the production of L-valine, an important drug precursor, is showcased as an important strategy of future metabolic engineering effort.

  1. The transcriptionally active amyloid precursor protein (APP) intracellular domain is preferentially produced from the 695 isoform of APP in a {beta}-secretase-dependent pathway.

    PubMed

    Belyaev, Nikolai D; Kellett, Katherine A B; Beckett, Caroline; Makova, Natalia Z; Revett, Timothy J; Nalivaeva, Natalia N; Hooper, Nigel M; Turner, Anthony J

    2010-12-31

    Amyloidogenic processing of the amyloid precursor protein (APP) by β- and γ-secretases generates several biologically active products, including amyloid-β (Aβ) and the APP intracellular domain (AICD). AICD regulates transcription of several neuronal genes, especially the Aβ-degrading enzyme, neprilysin (NEP). APP exists in several alternatively spliced isoforms, APP(695), APP(751), and APP(770). We have examined whether each isoform can contribute to AICD generation and hence up-regulation of NEP expression. Using SH-SY5Y neuronal cells stably expressing each of the APP isoforms, we observed that only APP(695) up-regulated nuclear AICD levels (9-fold) and NEP expression (6-fold). Increased NEP expression was abolished by a β- or γ-secretase inhibitor but not an α-secretase inhibitor. This correlated with a marked increase in both Aβ(1-40) and Aβ(1-42) in APP(695) cells as compared with APP(751) or APP(770) cells. Similar phenomena were observed in Neuro2a but not HEK293 cells. SH-SY5Y cells expressing the Swedish mutant of APP(695) also showed an increase in Aβ levels and NEP expression as compared with wild-type APP(695) cells. Chromatin immunoprecipitation revealed that AICD was associated with the NEP promoter in APP(695), Neuro2a, and APP(Swe) cells but not APP(751) nor APP(770) cells where AICD was replaced by histone deacetylase 1 (HDAC1). AICD occupancy of the NEP promoter was replaced by HDAC1 after treatment of the APP(695) cells with a β- but not an α-secretase inhibitor. The increased AICD and NEP levels were significantly reduced in cholesterol-depleted APP(695) cells. In conclusion, Aβ and functional AICD appear to be preferentially synthesized through β-secretase action on APP(695).

  2. Increased Secreted Amyloid Precursor Protein-α (sAPPα) in Severe Autism: Proposal of a Specific, Anabolic Pathway and Putative Biomarker

    PubMed Central

    Sokol, Deborah K.; Lahiri, Debomoy K.

    2011-01-01

    Autism is a neurodevelopmental disorder characterized by deficits in verbal communication, social interactions, and the presence of repetitive, stereotyped and compulsive behaviors. Excessive early brain growth is found commonly in some patients and may contribute to disease phenotype. Reports of increased levels of brain-derived neurotrophic factor (BDNF) and other neurotrophic-like factors in autistic neonates suggest that enhanced anabolic activity in CNS mediates this overgrowth effect. We have shown previously that in a subset of patients with severe autism and aggression, plasma levels of the secreted amyloid-β (Aβ) precursor protein-alpha form (sAPPα) were significantly elevated relative to controls and patients with mild-to-moderate autism. Here we further tested the hypothesis that levels of sAPPα and sAPPβ (proteolytic cleavage products of APP by α- and β-secretase, respectively) are deranged in autism and may contribute to an anabolic environment leading to brain overgrowth. We measured plasma levels of sAPPα, sAPPβ, Aβ peptides and BDNF by corresponding ELISA in a well characterized set of subjects. We included for analysis 18 control, 6 mild-to-moderate, and 15 severely autistic patient plasma samples. We have observed that sAPPα levels are increased and BDNF levels decreased in the plasma of patients with severe autism as compared to controls. Further, we show that Aβ1-40, Aβ1-42, and sAPPβ levels are significantly decreased in the plasma of patients with severe autism. These findings do not extend to patients with mild-to-moderate autism, providing a biochemical correlate of phenotypic severity. Taken together, this study provides evidence that sAPPα levels are generally elevated in severe autism and suggests that these patients may have aberrant non-amyloidogenic processing of APP. PMID:21731612

  3. The Transcriptionally Active Amyloid Precursor Protein (APP) Intracellular Domain Is Preferentially Produced from the 695 Isoform of APP in a β-Secretase-dependent Pathway*♦

    PubMed Central

    Belyaev, Nikolai D.; Kellett, Katherine A. B.; Beckett, Caroline; Makova, Natalia Z.; Revett, Timothy J.; Nalivaeva, Natalia N.; Hooper, Nigel M.; Turner, Anthony J.

    2010-01-01

    Amyloidogenic processing of the amyloid precursor protein (APP) by β- and γ-secretases generates several biologically active products, including amyloid-β (Aβ) and the APP intracellular domain (AICD). AICD regulates transcription of several neuronal genes, especially the Aβ-degrading enzyme, neprilysin (NEP). APP exists in several alternatively spliced isoforms, APP695, APP751, and APP770. We have examined whether each isoform can contribute to AICD generation and hence up-regulation of NEP expression. Using SH-SY5Y neuronal cells stably expressing each of the APP isoforms, we observed that only APP695 up-regulated nuclear AICD levels (9-fold) and NEP expression (6-fold). Increased NEP expression was abolished by a β- or γ-secretase inhibitor but not an α-secretase inhibitor. This correlated with a marked increase in both Aβ1–40 and Aβ1–42 in APP695 cells as compared with APP751 or APP770 cells. Similar phenomena were observed in Neuro2a but not HEK293 cells. SH-SY5Y cells expressing the Swedish mutant of APP695 also showed an increase in Aβ levels and NEP expression as compared with wild-type APP695 cells. Chromatin immunoprecipitation revealed that AICD was associated with the NEP promoter in APP695, Neuro2a, and APPSwe cells but not APP751 nor APP770 cells where AICD was replaced by histone deacetylase 1 (HDAC1). AICD occupancy of the NEP promoter was replaced by HDAC1 after treatment of the APP695 cells with a β- but not an α-secretase inhibitor. The increased AICD and NEP levels were significantly reduced in cholesterol-depleted APP695 cells. In conclusion, Aβ and functional AICD appear to be preferentially synthesized through β-secretase action on APP695. PMID:20961856

  4. Ion-Ice Astrochemistry: Barrierless Low-Energy Deposition Pathways to HCOOH, CH3OH, and CO2 on Icy Grain Mantles from Precursor Cations

    NASA Technical Reports Server (NTRS)

    Woon, David E.

    2011-01-01

    A new family of very favorable reaction pathways is explored involving the deposition of ions on icy grain mantles with very low energies. Quantum chemical cluster calculations at the MP2/6-31+G** level in 4H2O clusters and at the B3LYP/6-31+G** level in 17H2O clusters indicate that HCO+ and CH3 + are able to react spontaneously with one of the water molecules in the cluster to form protonated formic acid (HCOOH2 +) and protonated methanol (CH3OH2 +), respectively. It is furthermore found that these initial adducts spontaneously transfer their excess protons to the cluster to form neutral formic acid and methanol, plus solvated hydronium, H3O+. In the final case, if a CO molecule is bound to the surface of the cluster, OH+ may react with it to form protonated carbon dioxide (HCO2 +), which then loses its proton to yield CO2 and H3O+. In the present model, all of these processes were found to occur with no barriers. Discussion includes the analogous gas phase processes, which have been considered in previous studies, as well as the competitive abstraction pathway for HCO(+) + H2O.

  5. Ion-Ice Astrochemistry: Barrierless Low-Energy Deposition Pathways to HCOOH, CH3OH, and CO2 on Icy Grain Mantles from Precursor Cations

    NASA Technical Reports Server (NTRS)

    Woon, David E.

    2011-01-01

    A new family of very favorable reaction pathways is explored involving the deposition of ions on icy grain mantles with very low energies. Quantum chemical cluster calculations at the MP2/6-31+G** level in 4H2O clusters and at the B3LYP/6-31+G** level in 17H2O clusters indicate that HCO+ and CH3 + are able to react spontaneously with one of the water molecules in the cluster to form protonated formic acid (HCOOH2 +) and protonated methanol (CH3OH2 +), respectively. It is furthermore found that these initial adducts spontaneously transfer their excess protons to the cluster to form neutral formic acid and methanol, plus solvated hydronium, H3O+. In the final case, if a CO molecule is bound to the surface of the cluster, OH+ may react with it to form protonated carbon dioxide (HCO2 +), which then loses its proton to yield CO2 and H3O+. In the present model, all of these processes were found to occur with no barriers. Discussion includes the analogous gas phase processes, which have been considered in previous studies, as well as the competitive abstraction pathway for HCO(+) + H2O.

  6. Combination of phenylpyruvic acid (PPA) pathway engineering and molecular engineering of L-amino acid deaminase improves PPA production with an Escherichia coli whole-cell biocatalyst.

    PubMed

    Hou, Ying; Hossain, Gazi Sakir; Li, Jianghua; Shin, Hyun-Dong; Du, Guocheng; Liu, Long

    2016-03-01

    In our previous study, we produced phenylpyruvic acid (PPA) in one step from L-phenylalanine by using an Escherichia coli whole-cell biocatalyst expressing an L-amino acid deaminase (L-AAD) from Proteus mirabilis KCTC2566. However, the PPA titer was low due to the degradation of PPA and low substrate specificity of L-AAD. In this study, metabolic engineering of the L-phenylalanine degradation pathway in E. coli and protein engineering of L-AAD from P. mirabilis were performed to improve the PPA titer. First, three aminotransferase genes were knocked out to block PPA degradation, which increased the PPA titer from 3.3 ± 0.2 to 3.9 ± 0.1 g/L and the substrate conversion ratio to 97.5 %. Next, L-AAD was engineered via error-prone polymerase chain reaction, followed by site-saturation mutation to improve its catalytic performance. The triple mutant D165K/F263M/L336M produced the highest PPA titer of 10.0 ± 0.4 g/L, with a substrate conversion ratio of 100 %, which was 3.0 times that of wild-type L-AAD. Comparative kinetics analysis showed that compared with wild-type L-AAD, the triple mutant had higher substrate-binding affinity and catalytic efficiency. Finally, an optimal fed-batch biotransformation process was developed to achieve a maximal PPA titer of 21 ± 1.8 g/L within 8 h. This study developed a robust whole-cell E. coli biocatalyst for PPA production by integrating metabolic and protein engineering, strategies that may be useful for the construction of other biotransformation biocatalysts.

  7. Expanding the fluorine chemistry of living systems using engineered polyketide synthase pathways

    PubMed Central

    Walker, Mark C.; Thuronyi, Benjamin W.; Charkoudian, Louise K.; Lowry, Brian; Khosla, Chaitan; Chang, Michelle C. Y.

    2014-01-01

    Organofluorines represent a rapidly expanding proportion of molecules used in pharmaceuticals, diagnostics, agrochemicals, and materials. Despite the prevalence of fluorine in synthetic compounds, the known biological scope is limited to a single pathway that produces fluoroacetate. Here, we demonstrate that this pathway can be exploited as a source of fluorinated building blocks for introduction of fluorine into natural product scaffolds. Specifically, we have constructed pathways involving two polyketide synthase systems and show that fluoroacetate can be used to incorporate fluorine into the polyketide backbone in vitro. We further show that fluorine can be introduced site-selectively and introduced into polyketide products in vivo. These results highlight the prospects for the production of complex fluorinated natural products using synthetic biology. PMID:24009388

  8. Renewable energy from Cyanobacteria: energy production optimization by metabolic pathway engineering.

    PubMed

    Quintana, Naira; Van der Kooy, Frank; Van de Rhee, Miranda D; Voshol, Gerben P; Verpoorte, Robert

    2011-08-01

    The need to develop and improve sustainable energy resources is of eminent importance due to the finite nature of our fossil fuels. This review paper deals with a third generation renewable energy resource which does not compete with our food resources, cyanobacteria. We discuss the current state of the art in developing different types of bioenergy (ethanol, biodiesel, hydrogen, etc.) from cyanobacteria. The major important biochemical pathways in cyanobacteria are highlighted, and the possibility to influence these pathways to improve the production of specific types of energy forms the major part of this review.

  9. N-terminal 5-mer peptide analog P165 of amyloid precursor protein inhibits UVA-induced MMP-1 expression by suppressing the MAPK pathway in human dermal fibroblasts.

    PubMed

    Wang, Ying; Chen, Hui; Wang, Wen; Wang, Rong; Liu, Zi-Lian; Zhu, Wei; Lian, Shi

    2014-07-05

    Exposure to ultraviolet (UV) radiation leads to a progressive increase in dermal damage through the degradation of collagen, which is mediated by matrix metalloproteinases (MMPs). UV radiation alters the intracellular signaling events that regulate the elaboration of MMPs. Our previous study showed that P165, the N-terminal 5-mer peptide analog of amyloid precursor protein, exerts a protective effect on ultraviolet A (UVA)-induced loss of collagen type I in human dermal fibroblasts (HDFs) by inhibiting the generation of intracellular reactive oxygen species and MMP-1. In this study, we focused on specific signal transduction pathways to elucidate the possible photoprotective mechanisms of P165 in controlling MMP-1 inhibition. Results from western blot analyses indicated that pretreatment with P165 dose-dependently inhibited UVA-induced phosphorylation of extracellular regulated protein kinases (ERK), c-Jun N-terminal kniase (JNK), p38 mitogen-activated protein kinases (MAPKs), and the phosphorylation of their downstream targets c-Jun and c-Fos. The photoprotective effects of P165 were further demonstrated in collagen type I secretion and cellular senescence induced by UVA irradiation. These findings suggest that P165 exerts photoprotective activity in UVA-treated HDFs by regulating MMP-1 generation. This activity may be mediated by inhibiting the MAPK signaling pathways. Thus, P165 is a potential agent for the prevention of skin photoaging.

  10. D1 dopamine receptor regulation of the levels of the cell-cycle-controlling proteins, cyclin D, P27 and Raf-1, in cerebral cortical precursor cells is mediated through cAMP-independent pathways.

    PubMed

    Zhang, Ling; Bai, Jie; Undie, Ashiwel S; Bergson, Clare; Lidow, Michael S

    2005-01-01

    Previously, we demonstrated that dopamine D1 receptor (D1R) agonists inhibit epidermal growth factor (EGF)-induced passage of mouse fetal cerebral cortical precursor cells from the G1 phase to the S phase of the cell cycle. Here, we report that this action of D1R agonists may involve regulation of cyclin D, and P27, which respectively promote and suppress the G1 to S transition. Furthermore, regulation of Raf-1, a component of the receptor tyrosine kinase mitogen-activated protein kinase pathway engaged in the mitogenic activity of EGF, may also be involved. Specifically, levels of cyclin D and Raf-1 decrease, whereas those of P27 first increase and then decrease in a dose-dependent fashion in response to the D1R agonist, SKF38393. This agonist also promotes Raf-1 phosphorylation on serine 338 residue, suggesting increased activation of this protein. Only the latter effect can be blocked by adenylyl cyclase (AC) and cAMP-dependent protein kinase A (PKA) inhibitors, and mimicked by agonists of the cAMP signaling pathway. Another D1R agonist, SKF83959, which stimulates phospholipase Cbeta (PLCbeta) but not AC, reduces levels of Raf-1 and cyclin D similar to SKF38393. However, we detected only down-regulation of P27 by this agonist. Additionally, the concentration-dependent patterns of both SKF38393- and SKF83959-induced alterations in the levels of P27 closely resemble the effects of these ligands on the levels of the D1R-PLCbeta-associated second-messenger cascades linker, calcyon. These findings suggest that D1R-induced suppression of the cell cycle progression in EGF-supported fetal cortical precursor cells represents a net effect of competing cell cycle promoting and inhibiting molecular changes, which involve cyclin D, P27 and Raf-1. The data also show that cAMP second messenger cascade is not engaged in the D1R-induced regulation of the levels of these three proteins. Such regulation probably involves PLCbeta-associated pathways.

  11. Metabolic engineering of the Stevia rebaudiana ent-kaurene biosynthetic pathway in recombinant Escherichia coli.

    PubMed

    Kong, Min Kyung; Kang, Hyun-Jun; Kim, Jin Ho; Oh, Soon Hwan; Lee, Pyung Cheon

    2015-11-20

    The ent-kaurene is a dedicated precursor pool and is responsible for synthesizing natural sweeteners such as steviol glycosides. In this study, to produce ent-kaurene in Escherichia coli, we modularly constructed and expressed two ent-kaurene genes encoding ent-copalyl diphosphate synthase (CPPS) and ent-kaurene synthase (KS) from Stevia rebaudiana known as a typical plant producing steviol glycoside. The CPPS and KS from S. rebaudiana were functionally expressed in a heterologous host E. coli. Furthermore, in order to enhance ent-kaurene production in E. coli, six geranylgeranyl diphosphate synthases (GGPPS) from various microorganisms and eight strains of E. coli as host were compared by measuring ent-kaurene production. The highest ent-kaurene production of approximately 41.1mg/L was demonstrated in E. coli strain MG1655 co-expressing synthetic CPPS-KS module and GGPPS from Rhodobacter sphaeroides. The ent-kaurene production was further increased up to 179.6 mg/L by overexpression of the three key enzymes for isoprenoid precursor, 1-deoxyxylulose-5-phosphate synthase (DXS), farnesyl diphosphate synthase (IspA) and isopentenyl diphosphate isomerase (IDI) from E. coli. Finally, the highest titer of ent-kaurene (578 mg/L) with a specific yield of ent-kaurene of 143.5mg/g dry cell weight was obtained by culturing E. coli strain MG1655 co-expressing the ent-kaurene module, DXS, IDI and IspA in 1L bioreactor containing 20 g/L glycerol. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Engineering industrial oil biosynthesis: cloning and characterization of Kennedy pathway acyltransferases from novel oilseed species

    USDA-ARS?s Scientific Manuscript database

    For more than twenty years, various industrial, governmental, and academic laboratories have developed and refined genetic engineering strategies aimed at manipulating lipid metabolism in plants and microbes. The goal of these projects is to produce renewable specialized oils that can effectively c...

  13. Enhanced Thermochemical Stability of CH3NH3PbI3 Perovskite Films on Zinc Oxides via New Precursors and Surface Engineering.

    PubMed

    Qin, Fei; Meng, Wei; Fan, Jiacheng; Ge, Chang; Luo, Bangwu; Ge, Ru; Hu, Lin; Jiang, Fangyuan; Liu, Tiefeng; Jiang, Youyu; Zhou, Yinhua

    2017-08-09

    Hydroxyl groups on the surface of ZnO films lead to the chemical decomposition of CH3NH3PbI3 perovskite films during thermal annealing, which limits the application of ZnO as a facile electron-transporting layer (ETL) in perovskite solar cells. In this work, we report a new recipe that leads to substantially reduced hydroxyl groups on the surface of the resulting ZnO films by employing polyethylenimine (PEI) to replace generally used ethanolamine in the precursor solutions. Films derived from the PEI-containing precursors are denoted as P-ZnO and those from the ethanolamine-containing precursors as E-ZnO. Besides the fewer hydroxyl groups that alleviate the thermochemical decomposition of CH3NH3PbI3 perovskite films, P-ZnO also provides a template for the fixation of fullerene ([6,6]-phenyl-C61-butyric acid methyl ester, PCBM) owing to its nitrogen-rich surface that can interact with PCBM. The fullerene was used to block the direct contact between P-ZnO and CH3NH3PbI3 films and therefore further enhance the thermochemical stability of perovskite films. As a result, perovskite solar cells based on the P-ZnO/PCBM ETL yield an optimal power conversion efficiency (PCE) of 15.38%. We also adopt P-ZnO as the ETL for organic solar cells that yield a remarkable PCE of 10.5% based on the PBDB-T:ITIC photoactive layer.

  14. Bioconversion of methanol to value-added mevalonate by engineered Methylobacterium extorquens AM1 containing an optimized mevalonate pathway.

    PubMed

    Zhu, Wen-Liang; Cui, Jin-Yu; Cui, Lan-Yu; Liang, Wei-Fan; Yang, Song; Zhang, Chong; Xing, Xin-Hui

    2016-03-01

    Methylotrophic biosynthesis using methanol as a feedstock is a promising and attractive method to solve the over-dependence of the bioindustry on sugar feedstocks derived from grains that are used for food. In this study, we introduced and engineered the mevalonate pathway into Methylobacterium extorquens AM1 to achieve high mevalonate production from methanol, which could be a platform for terpenoid synthesis. We first constructed a natural operon (MVE) harboring the mvaS and mvaE genes from Enterococcus faecalis as well as an artificial operon (MVH) harboring the hmgcs1 gene from Blattella germanica and the tchmgr gene from Trypanosoma cruzi that encoded enzymes with the highest reported activities. We achieved mevalonate titers of 56 and 66 mg/L, respectively, in flask cultivation. Introduction of the phaA gene from Ralstonia eutropha into the operon MVH increased the mevalonate titer to 180 mg/L, 3.2-fold higher than that of the natural operon MVE. Further modification of the expression level of the phaA gene by regulating the strength of the ribosomal binding site resulted in an additional 20 % increase in mevalonate production to 215 mg/L. A fed-batch fermentation of the best-engineered strain yielded a mevalonate titer of 2.22 g/L, which was equivalent to an overall yield and productivity of 28.4 mg mevalonate/g methanol and 7.16 mg/L/h, respectively. The production of mevalonate from methanol, which is the initial, but critical step linking methanol with valuable terpenoids via methylotrophic biosynthesis, represents a proof of concept for pathway engineering in M. extorquens AM1.

  15. Engineering of a Synthetic Metabolic Pathway for the Assimilation of (d)-Xylose into Value-Added Chemicals.

    PubMed

    Cam, Yvan; Alkim, Ceren; Trichez, Debora; Trebosc, Vincent; Vax, Amélie; Bartolo, François; Besse, Philippe; François, Jean Marie; Walther, Thomas

    2016-07-15

    A synthetic pathway for (d)-xylose assimilation was stoichiometrically evaluated and implemented in Escherichia coli strains. The pathway proceeds via isomerization of (d)-xylose to (d)-xylulose, phosphorylation of (d)-xylulose to obtain (d)-xylulose-1-phosphate (X1P), and aldolytic cleavage of the latter to yield glycolaldehyde and DHAP. Stoichiometric analyses showed that this pathway provides access to ethylene glycol with a theoretical molar yield of 1. Alternatively, both glycolaldehyde and DHAP can be converted to glycolic acid with a theoretical yield that is 20% higher than for the exclusive production of this acid via the glyoxylate shunt. Simultaneous expression of xylulose-1 kinase and X1P aldolase activities, provided by human ketohexokinase-C and human aldolase-B, respectively, restored growth of a (d)-xylulose-5-kinase mutant on xylose. This strain produced ethylene glycol as the major metabolic endproduct. Metabolic engineering provided strains that assimilated the entire C2 fraction into the central metabolism or that produced 4.3 g/L glycolic acid at a molar yield of 0.9 in shake flasks.

  16. Metabolic engineering of Escherichia coli to produce 2'-fucosyllactose via salvage pathway of guanosine 5'-diphosphate (GDP)-l-fucose.

    PubMed

    Chin, Young-Wook; Seo, Nari; Kim, Jae-Han; Seo, Jin-Ho

    2016-11-01

    2'-Fucosyllactose (2-FL) is one of the key oligosaccharides in human milk. In the present study, the salvage guanosine 5'-diphosphate (GDP)-l-fucose biosynthetic pathway from fucose was employed in engineered Escherichia coli BL21star(DE3) for efficient production of 2-FL. Introduction of the fkp gene coding for fucokinase/GDP-l-fucose pyrophosphorylase (Fkp) from Bacteroides fragilis and the fucT2 gene encoding α-1,2-fucosyltransferase from Helicobacter pylori allows the engineered E. coli to produce 2-FL from fucose, lactose and glycerol. To enhance the lactose flux to 2-FL production, the attenuated, and deleted mutants of β-galactosidase were employed. Moreover, the 2-FL yield and productivity were further improved by deletion of the fucI-fucK gene cluster coding for fucose isomerase (FucI) and fuculose kinase (FucK). Finally, fed-batch fermentation of engineered E. coli BL21star(DE3) deleting lacZ and fucI-fucK, and expressing fkp and fucT2 resulted in 23.1 g/L of extracellular concentration of 2-FL and 0.39 g/L/h productivity. Biotechnol. Bioeng. 2016;113: 2443-2452. © 2016 Wiley Periodicals, Inc.

  17. Potentially bioaccessible phenolics, antioxidant activity and nutritional quality of young buckwheat sprouts affected by elicitation and elicitation supported by phenylpropanoid pathway precursor feeding.

    PubMed

    Świeca, Michał

    2016-02-01

    This paper presents the study on impact of elicitation and the phenylpropanoid pathway feeding on the nutritional quality, the potentially bioaccessible phenolics and the antioxidant capacity of young buckwheat sprouts. Phenolics content was increased by elicitation and feeding with tyrosine and shikimic acid--an elevation of 30% and 17%, respectively. Antioxidant capacity was improved by feeding with tyrosine--an increase of 16.7% and 17.1% in both untreated and treated sprouts, respectively. The highest protein digestibility was determined for the control sprouts and those obtained after tyrosine feeding. The lowest starch digestibility was found for elicited sprouts obtained from seeds fed with tyrosine (a decrease by 52%). An increase of expected glycemic index by 38% was determined for elicited sprouts obtained after phenylalanine feeding. Starch and protein digestibility were negatively correlated with total phenolics (r = -0.55 and -0.58, respectively), however starch digestibility was also affected by resistant starch content. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Engineering PQS Biosynthesis Pathway for Enhancement of Bioelectricity Production in Pseudomonas aeruginosa Microbial Fuel Cells

    PubMed Central

    Cao, Bin; Seviour, Thomas; Nesatyy, Victor J.; Marsili, Enrico; Kjelleberg, Staffan; Givskov, Michael; Tolker-Nielsen, Tim; Song, Hao; Loo, Joachim Say Chye; Yang, Liang

    2013-01-01

    The biosynthesis of the redox shuttle, phenazines, in Pseudomonas aeruginosa, an ubiquitous microorganism in wastewater microflora, is regulated by the 2-heptyl-3,4-dihydroxyquinoline (PQS) quorum-sensing system. However, PQS inhibits anaerobic growth of P. aeruginosa. We constructed a P. aeruginosa strain that produces higher concentrations of phenazines under anaerobic conditions by over-expressing the PqsE effector in a PQS negative ΔpqsC mutant. The engineered strain exhibited an improved electrical performance in microbial fuel cells (MFCs) and potentiostat-controlled electrochemical cells with an approximate five-fold increase of maximum current density relative to the parent strain. Electrochemical analysis showed that the current increase correlates with an over-synthesis of phenazines. These results therefore demonstrate that targeting microbial cell-to-cell communication by genetic engineering is a suitable technique to improve power output of bioelectrochemical systems. PMID:23700414

  19. The Scaling of Loss Pathways and Heat Transfer in Small Scale Internal Combustion Engines

    DTIC Science & Technology

    2016-09-16

    maximum amplitude of pressure oscillations or 5 bar/deg peak pressure rise rate for 1% of 400 consecutive cycles. Knock was strongly dependent on...70 Figure 17: In-cylinder pressure traces from a Fuji IMVAC 34-EI showing the faster, earlier, and shorter combustion phasing of n-heptane...79 Figure 18: In-cylinder pressure trace for n-heptane in a Fuji IMVAC engine at full throttle showing knock, reprinted from Wilson [43

  20. Engineered Aedes aegypti JAK/STAT Pathway-Mediated Immunity to Dengue Virus.

    PubMed

    Jupatanakul, Natapong; Sim, Shuzhen; Angleró-Rodríguez, Yesseinia I; Souza-Neto, Jayme; Das, Suchismita; Poti, Kristin E; Rossi, Shannan L; Bergren, Nicholas; Vasilakis, Nikos; Dimopoulos, George

    2017-01-01

    We have developed genetically modified Ae. aegypti mosquitoes that activate the conserved antiviral JAK/STAT pathway in the fat body tissue, by overexpressing either the receptor Dome or the Janus kinase Hop by the blood feeding-induced vitellogenin (Vg) promoter. Transgene expression inhibits infection with several dengue virus (DENV) serotypes in the midgut as well as systemically and in the salivary glands. The impact of the transgenes Dome and Hop on mosquito longevity was minimal, but it resulted in a compromised fecundity when compared to wild-type mosquitoes. Overexpression of Dome and Hop resulted in profound transcriptome regulation in the fat body tissue as well as the midgut tissue, pinpointing several expression signatures that reflect mechanisms of DENV restriction. Our transcriptome studies and reverse genetic analyses suggested that enrichment of DENV restriction factor and depletion of DENV host factor transcripts likely accounts for the DENV inhibition, and they allowed us to identify novel factors that modulate infection. Interestingly, the fat body-specific activation of the JAK/STAT pathway did not result in any enhanced resistance to Zika virus (ZIKV) or chikungunya virus (CHIKV) infection, thereby indicating a possible specialization of the pathway's antiviral role.

  1. Engineering tyrosine-based electron flow pathways in proteins: the case of aplysia myoglobin.

    PubMed

    Reeder, Brandon J; Svistunenko, Dimitri A; Cooper, Chris E; Wilson, Michael T

    2012-05-09

    Tyrosine residues can act as redox cofactors that provide an electron transfer ("hole-hopping") route that enhances the rate of ferryl heme iron reduction by externally added reductants, for example, ascorbate. Aplysia fasciata myoglobin, having no naturally occurring tyrosines but 15 phenylalanines that can be selectively mutated to tyrosine residues, provides an ideal protein with which to study such through-protein electron transfer pathways and ways to manipulate them. Two surface exposed phenylalanines that are close to the heme have been mutated to tyrosines (F42Y, F98Y). In both of these, the rate of ferryl heme reduction increased by up to 3 orders of magnitude. This result cannot be explained in terms of distance or redox potential change between donor and acceptor but indicates that tyrosines, by virtue of their ability to form radicals, act as redox cofactors in a new pathway. The mechanism is discussed in terms of the Marcus theory and the specific protonation/deprotonation states of the oxoferryl iron and tyrosine. Tyrosine radicals have been observed and quantified by EPR spectroscopy in both mutants, consistent with the proposed mechanism. The location of each radical is unambiguous and allows us to validate theoretical methods that assign radical location on the basis of EPR hyperfine structure. Mutation to tyrosine decreases the lipid peroxidase activity of this myoglobin in the presence of low concentrations of reductant, and the possibility of decreasing the intrinsic toxicity of hemoglobin by introduction of these pathways is discussed.

  2. Pathways to excellence: A Federal strategy for science, mathematics, engineering, and technology education

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This Strategic Plan was developed by the Federal Coordinating Council for Science, Engineering, and Technology (FCCSET) through its Committee on Education and Human Resources (CEHR), with representatives from 16 Federal agencies. Based on two years of coordinated interagency effort, the Plan confirms the Federal Government's commitment to ensuring the health and well-being of science, mathematics, engineering, and technology education at all levels and in all sectors (i.e., elementary and secondary, undergraduate, graduate, public understanding of science, and technology education). The Plan represents the Federal Government's efforts to develop a five-year planning framework and associated milestones that focus Federal planning and the resources of the participating agencies toward achieving the requisite or expected level of mathematics and science competence by all students. The priority framework outlines the strategic objectives, implementation priorities, and components for the Strategic Plan and serves as a road map for the Plan. The Plan endorses a broad range of ongoing activities, including continued Federal support for graduate education as the backbone of our country's research and development enterprise. The Plan also identifies three tiers of program activities with goals that address issues in science, mathematics, engineering, and technology education meriting special attention. Within each tier, individual agency programs play important and often unique roles that strengthen the aggregate portfolio. The three tiers are presented in descending order of priority: (1) reforming the formal education system; (2) expanding participation and access; and (3) enabling activities.

  3. Improvement of glutathione production by metabolic engineering the sulfate assimilation pathway of Saccharomyces cerevisiae.

    PubMed

    Hara, Kiyotaka Y; Kiriyama, Kentaro; Inagaki, Akiko; Nakayama, Hideki; Kondo, Akihiko

    2012-06-01

    Glutathione (GSH) is a valuable tri-peptide that is widely used in the pharmaceutical, food, and cosmetic industries. Glutathione is produced industrially by fermentation using Saccharomyces cerevisiae. In this study, we demonstrated that engineering in sulfate assimilation metabolism can significantly improve GSH production. The intracellular GSH content of MET14 and MET16 over-expressing strains increased up to 1.2 and 1.4-fold higher than that of the parental strain, respectively, whereas those of APA1 and MET3 over-expressing strains decreased. Especially, in the MET16 over-expressing strain, the volumetric GSH concentration was up to 1.7-fold higher than that of the parental strain as a result of the synergetic effect of the increases in the cell concentration and the intracellular GSH content. Additionally, combinatorial mutant strains that had been engineered to contain both the sulfur and the GSH synthetic metabolism synergistically increased the GSH production. External addition of cysteine to S. cerevisiae is well known as a way to increase the intracellular GSH content; however, it results a decrease in cell growth. This study showed that the engineering of sulfur metabolism in S. cerevisiae proves more valuable than addition of cysteine as a way to boost GSH production due to the increases in both the intracellular GSH content and the cell growth.

  4. Dialogue on reverse-engineering assessment and methods: the DREAM of high-throughput pathway inference.

    PubMed

    Stolovitzky, Gustavo; Monroe, Don; Califano, Andrea

    2007-12-01

    The biotechnological advances of the last decade have confronted us with an explosion of genetics, genomics, transcriptomics, proteomics, and metabolomics data. These data need to be organized and structured before they may provide a coherent biological picture. To accomplish this formidable task, the availability of an accurate map of the physical interactions in the cell that are responsible for cellular behavior and function would be exceedingly helpful, as these data are ultimately the result of such molecular interactions. However, all we have at this time is, at best, a fragmentary and only partially correct representation of the interactions between genes, their byproducts, and other cellular entities. If we want to succeed in our quest for understanding the biological whole as more than the sum of the individual parts, we need to build more comprehensive and cell-context-specific maps of the biological interaction networks. DREAM, the Dialogue on Reverse Engineering Assessment and Methods, is fostering a concerted effort by computational and experimental biologists to understand the limitations and to enhance the strengths of the efforts to reverse engineer cellular networks from high-throughput data. In this chapter we will discuss the salient arguments of the first DREAM conference. We will highlight both the state of the art in the field of reverse engineering as well as some of its challenges and opportunities.

  5. Stable expression of silencing-suppressor protein enhances the performance and longevity of an engineered metabolic pathway.

    PubMed

    Naim, Fatima; Shrestha, Pushkar; Singh, Surinder P; Waterhouse, Peter M; Wood, Craig C

    2016-06-01

    Transgenic engineering of plants is important in both basic and applied research. However, the expression of a transgene can dwindle over time as the plant's small (s)RNA-guided silencing pathways shut it down. The silencing pathways have evolved as antiviral defence mechanisms, and viruses have co-evolved viral silencing-suppressor proteins (VSPs) to block them. Therefore, VSPs have been routinely used alongside desired transgene constructs to enhance their expression in transient assays. However, constitutive, stable expression of a VSP in a plant usually causes pronounced developmental abnormalities, as their actions interfere with endogenous microRNA-regulated processes, and has largely precluded the use of VSPs as an aid to stable transgene expression. In an attempt to avoid the deleterious effects but obtain the enhancing effect, a number of different VSPs were expressed exclusively in the seeds of Arabidopsis thaliana alongside a three-step transgenic pathway for the synthesis of arachidonic acid (AA), an ω-6 long chain polyunsaturated fatty acid. Results from independent transgenic events, maintained for four generations, showed that the VSP-AA-transformed plants were developmentally normal, apart from minor phenotypes at the cotyledon stage, and could produce 40% more AA than plants transformed with the AA transgene cassette alone. Intriguingly, a geminivirus VSP, V2, was constitutively expressed without causing developmental defects, as it acts on the siRNA amplification step that is not part of the miRNA pathway, and gave strong transgene enhancement. These results demonstrate that VSP expression can be used to protect and enhance stable transgene performance and has significant biotechnological application.

  6. Perturbing the metabolic dynamics of myo-inositol in developing Brassica napus seeds through in vivo methylation impacts its utilization as phytate precursor and affects downstream metabolic pathways

    PubMed Central

    2013-01-01

    Background myo-Inositol (Ins) metabolism during early stages of seed development plays an important role in determining the distributional relationships of some seed storage components such as the antinutritional factors, sucrose galactosides (also known as raffinose oligosaccharides) and phytic acid (PhA) (myo-inositol 1,2,3,4,5,6-hexakisphosphate). The former is a group of oligosaccharides, which plays a role in desiccation at seed maturation. They are not easily digested by monogastric animals, hence their flatulence-causing properties. Phytic acid is highly negatively charged, which chelates positive ions of essential minerals and decreases their bioavailability. It is also a major cause of phosphate-related water pollution. Our aim was to investigate the influence of competitive diversion of Ins as common substrate on the biosynthesis of phytate and sucrose galactosides. Results We have studied the initial metabolic patterns of Ins in developing seeds of Brassica napus and determined that early stages of seed development are marked by rapid deployment of Ins into a variety of pathways, dominated by interconversion of polar (Ins phosphates) and non-polar (phospholipids) species. In a time course experiment at early stages of seed development, we show Ins to be a highly significant constituent of the endosperm and seed coat, but with no phytate biosynthesis occurring in either tissue. Phytate accumulation appears to be confined mainly within the embryo throughout seed development and maturation. In our approach, the gene for myo-inositol methyltransferase (IMT), isolated from Mesembryanthemum crystallinum (ice plant), was transferred to B. napus under the control of the seed-specific promoters, napin and phaseolin. Introduction of this new metabolic step during seed development prompted Ins conversion to the corresponding monomethyl ether, ononitol, and affected phytate accumulation. We were able to produce homozygous transgenic lines with 19% - 35% average

  7. Advanced Precursor Reaction Processing for Cu(InGa)(SeS)2 Solar Cells

    SciTech Connect

    Shafarman, William N.

    2015-10-12

    This project “Advanced Precursor Reaction Processing for Cu(InGa)(SeS)2 Solar Cells”, completed by the Institute of Energy Conversion (IEC) at the University of Delaware in collaboration with the Department of Chemical Engineering at the University of Florida, developed the fundamental understanding and technology to increase module efficiency and improve the manufacturability of Cu(InGa)(SeS)2 films using the precursor reaction approach currently being developed by a number of companies. Key results included: (1) development of a three-step H2Se/Ar/H2S reaction process to control Ga distribution through the film and minimizes back contact MoSe2 formation; (2) Ag-alloying to improve precursor homogeneity by avoiding In phase agglomeration, faster reaction and improved adhesion to allow wider reaction process window; (3) addition of Sb, Bi, and Te interlayers at the Mo/precursor junction to produce more uniform precursor morphology and improve adhesion with reduced void formation in reacted films; (4) a precursor structure containing Se and a reaction process to reduce processing time to 5 minutes and eliminate H2Se usage, thereby increasing throughput and reducing costs. All these results were supported by detailed characterization of the film growth, reaction pathways, thermodynamic assessment and device behavior.

  8. Evolutionarily engineered ethanologenic yeast detoxifies lignocellulosic biomass conversion inhibitors by reprogrammed pathways.

    PubMed

    Liu, Z Lewis; Ma, Menggen; Song, Mingzhou

    2009-09-01

    Lignocellulosic biomass conversion inhibitors, furfural and HMF, inhibit microbial growth and interfere with subsequent fermentation of ethanol, posing significant challenges for a sustainable cellulosic ethanol conversion industry. Numerous yeast genes were found to be associated with the inhibitor tolerance. However, limited knowledge is available about mechanisms of the tolerance and the detoxification of the biomass conversion inhibitors. Using a robust standard for absolute mRNA quantification assay and a recently developed tolerant ethanologenic yeast Saccharomyces cerevisiae NRRL Y-50049, we investigate pathway-based transcription profiles relevant to the yeast tolerance and the inhibitor detoxification. Under the synergistic inhibitory challenges by furfural and HMF, Y-50049 was able to withstand the inhibitor stress, in situ detoxify furfural and HMF, and produce ethanol, while its parental control Y-12632 failed to function till 65 h after incubation. The tolerant strain Y-50049 displayed enriched genetic background with significantly higher abundant of transcripts for at least 16 genes than a non-tolerant parental strain Y-12632. The enhanced expression of ZWF1 appeared to drive glucose metabolism in favor of pentose phosphate pathway over glycolysis at earlier steps of glucose metabolisms. Cofactor NAD(P)H generation steps were likely accelerated by enzymes encoded by ZWF1, GND1, GND2, TDH1, and ALD4. NAD(P)H-dependent aldehyde reductions including conversion of furfural and HMF, in return, provided sufficient NAD(P)(+) for NAD(P)H regeneration in the yeast detoxification pathways. Enriched genetic background and a well maintained redox balance through reprogrammed expression responses of Y-50049 were accountable for the acquired tolerance and detoxification of furfural to furan methanol and HMF to furan dimethanol. We present significant gene interactions and regulatory networks involved in NAD(P)H regenerations and functional aldehyde reductions under

  9. Evolutionarily engineered ethanologenic yeast detoxifies lignocellulosic biomass conversion inhibitors by reprogrammed pathways

    PubMed Central

    Ma, Menggen; Song, Mingzhou

    2010-01-01

    Lignocellulosic biomass conversion inhibitors, furfural and HMF, inhibit microbial growth and interfere with subsequent fermentation of ethanol, posing significant challenges for a sustainable cellulosic ethanol conversion industry. Numerous yeast genes were found to be associated with the inhibitor tolerance. However, limited knowledge is available about mechanisms of the tolerance and the detoxification of the biomass conversion inhibitors. Using a robust standard for absolute mRNA quantification assay and a recently developed tolerant ethanologenic yeast Saccharomyces cerevisiae NRRL Y-50049, we investigate pathway-based transcription profiles relevant to the yeast tolerance and the inhibitor detoxification. Under the synergistic inhibitory challenges by furfural and HMF, Y-50049 was able to withstand the inhibitor stress, in situ detoxify furfural and HMF, and produce ethanol, while its parental control Y-12632 failed to function till 65 h after incubation. The tolerant strain Y-50049 displayed enriched genetic background with significantly higher abundant of transcripts for at least 16 genes than a non-tolerant parental strain Y-12632. The enhanced expression of ZWF1 appeared to drive glucose metabolism in favor of pentose phosphate pathway over glycolysis at earlier steps of glucose metabolisms. Cofactor NAD(P)H generation steps were likely accelerated by enzymes encoded by ZWF1, GND1, GND2, TDH1, and ALD4. NAD(P)H-dependent aldehyde reductions including conversion of furfural and HMF, in return, provided sufficient NAD(P)+ for NAD(P)H regeneration in the yeast detoxification pathways. Enriched genetic background and a well maintained redox balance through reprogrammed expression responses of Y-50049 were accountable for the acquired tolerance and detoxification of furfural to furan methanol and HMF to furan dimethanol. We present significant gene interactions and regulatory networks involved in NAD(P)H regenerations and functional aldehyde reductions under

  10. Metabolic pathway engineering for production of 1,2-propanediol and 1-propanol by Corynebacterium glutamicum.

    PubMed

    Siebert, Daniel; Wendisch, Volker F

    2015-01-01

    Production of the versatile bulk chemical 1,2-propanediol and the potential biofuel 1-propanol is still dependent on petroleum, but some approaches to establish bio-based production from renewable feed stocks and to avoid toxic intermediates have been described. The biotechnological workhorse Corynebacterium glutamicum has also been shown to be able to overproduce 1,2-propanediol by metabolic engineering. Additionally, C. glutamicum has previously been engineered for production of the biofuels ethanol and isobutanol but not for 1-propanol. In this study, the improved production of 1,2-propanediol by C. glutamicum is presented. The product yield of a C. glutamicum strain expressing the heterologous genes gldA and mgsA from Escherichia coli that encode methylglyoxal synthase gene and glycerol dehydrogenase, respectively, was improved by additional expression of alcohol dehydrogenase gene yqhD from E. coli leading to a yield of 0.131 mol/mol glucose. Deletion of the endogenous genes hdpA and ldh encoding dihydroxyacetone phosphate phosphatase and lactate dehydrogenase, respectively, prevented formation of glycerol and lactate as by-products and improved the yield to 0.343 mol/mol glucose. To construct a 1-propanol producer, the operon ppdABC from Klebsiella oxytoca encoding diol dehydratase was expressed in the improved 1,2-propanediol producing strain ending up with 12 mM 1-propanol and up to 60 mM unconverted 1,2-propanediol. Thus, B12-dependent diol dehydratase activity may be limiting 1-propanol production. Production of 1,2-propanediol by C. glutamicum was improved by metabolic engineering targeting endogenous enzymes. Furthermore, to the best of our knowledge, production of 1-propanol by recombinant C. glutamicum was demonstrated for the first time.

  11. Metabolic pathway engineering for fatty acid ethyl ester production in Saccharomyces cerevisiae using stable chromosomal integration.

    PubMed

    de Jong, Bouke Wim; Shi, Shuobo; Valle-Rodríguez, Juan Octavio; Siewers, Verena; Nielsen, Jens

    2015-03-01

    Fatty acid ethyl esters are fatty acid derived molecules similar to first generation biodiesel (fatty acid methyl esters; FAMEs) which can be produced in a microbial cell factory. Saccharomyces cerevisiae is a suitable candidate for microbial large scale and long term cultivations, which is the typical industrial production setting for biofuels. It is crucial to conserve the metabolic design of the cell factory during industrial cultivation conditions that require extensive propagation. Genetic modifications therefore have to be introduced in a stable manner. Here, several metabolic engineering strategies for improved production of fatty acid ethyl esters in S. cerevisiae were combined and the genes were stably expressed from the organisms' chromosomes. A wax ester synthase (ws2) was expressed in different yeast strains with an engineered acetyl-CoA and fatty acid metabolism. Thus, we compared expression of ws2 with and without overexpression of alcohol dehydrogenase (ADH2), acetaldehyde dehydrogenase (ALD6) and acetyl-CoA synthetase (acs SE (L641P) ) and further evaluated additional overexpression of a mutant version of acetyl-CoA decarboxylase (ACC1 (S1157A,S659A) ) and the acyl-CoA binding protein (ACB1). The combined engineering efforts of the implementation of ws2, ADH2, ALD6 and acs SE (L641P) , ACC1 (S1157A,S659A) and ACB1 in a S. cerevisiae strain lacking storage lipid formation (are1Δ, are2Δ, dga1Δ and lro1Δ) and β-oxidation (pox1Δ) resulted in a 4.1-fold improvement compared with sole expression of ws2 in S. cerevisiae.

  12. METABOLIC ENGINEERING TO DEVELOP A PATHWAY FOR THE SELECTIVE CLEAVAGE OF CARBON-NITROGEN BONDS

    SciTech Connect

    John J. Kilbane III

    2003-12-01

    The objective of the project is to develop biochemical pathways for the selective cleavage of C-N bonds in molecules found in petroleum. The initial phase of the project will focus on the isolation or development of an enzyme capable of cleaving the C-N bond in aromatic amides, specifically 2-aminobiphenyl. The objective of the second phase of the research will be to construct a biochemical pathway for the selective removal of nitrogen from carbazole by combining the carA genes from Sphingomonas sp. GTIN11 with the gene(s) encoding an appropriate amidase. The objective of the final phase of the project will be to develop derivative CN bond cleaving enzymes that have broader substrate ranges and to demonstrate the use of such strains to selectively remove nitrogen from petroleum. The project is on schedule and no major difficulties have been encountered. During the first year of the project (October, 2002-September, 2003) enrichment culture experiments have resulted in the isolation of promising cultures that may be capable of cleaving C-N bonds in aromatic amides, several amidase genes have been cloned and are currently undergoing directed evolution to obtain derivatives that can cleave C-N bonds in aromatic amides, and the carA genes from Sphingomonas sp. GTIN11, and Pseudomonas resinovorans CA10 were cloned in vectors capable of replicating in Escherichia coli. Future research will address expression of these genes in Rhodococcus erythropolis. Enrichment culture experiments and directed evolution experiments continue to be a main focus of research activity and further work is required to obtain an appropriate amidase that will selectively cleave C-N bonds in aromatic substrates. Once an appropriate amidase gene is obtained it must be combined with genes encoding an enzyme capable of converting carbazole to 2'aminobiphenyl-2,3-diol: specifically carA genes. The carA genes from two sources have been cloned and are ready for construction of C-N bond cleavage pathway

  13. [Advanced biofuel-oriented engineering of fatty acid pathway: a review].

    PubMed

    Zhou, Yongjin J; Zhao, Zongbao K

    2011-09-01

    Biofuel is in high demand as an alternative energy source for petroleum and diesel. Fatty acid-based biofuel has higher energy density and better compatibility with existing infrastructures. Microbial fatty acid biosynthetic pathway is important to develop biofuel. In this article, recent progresses on the modification and reconstruction of fatty acid metabolism for the production of biofuel were reviewed, with a focus on micro-diesel, long chain fatty alcohol and alkane. Problems, solutions and directions for further development of fatty acid-based biofuel were also discussed in the respect of synthetic biology.

  14. Engineered yeast with a CO2-fixation pathway to improve the bio-ethanol production from xylose-mixed sugars.

    PubMed

    Li, Yun-Jie; Wang, Miao-Miao; Chen, Ya-Wei; Wang, Meng; Fan, Li-Hai; Tan, Tian-Wei

    2017-03-06

    Bio-ethanol production from lignocellulosic raw materials could serve as a sustainable potential for improving the supply of liquid fuels in face of the food-to-fuel competition and the growing energy demand. Xylose is the second abundant sugar of lignocelluloses hydrolysates, but its commercial-scale conversion to ethanol by fermentation is challenged by incomplete and inefficient utilization of xylose. Here, we use a coupled strategy of simultaneous maltose utilization and in-situ carbon dioxide (CO2) fixation to achieve efficient xylose fermentation by the engineered Saccharomyces cerevisiae. Our results showed that the introduction of CO2 as electron acceptor for nicotinamide adenine dinucleotide (NADH) oxidation increased the total ethanol productivity and yield at the expense of simultaneous maltose and xylose utilization. Our achievements present an innovative strategy using CO2 to drive and redistribute the central pathways of xylose to desirable products and demonstrate a possible breakthrough in product yield of sugars.

  15. Engineered yeast with a CO2-fixation pathway to improve the bio-ethanol production from xylose-mixed sugars

    PubMed Central

    Li, Yun-Jie; Wang, Miao-Miao; Chen, Ya-Wei; Wang, Meng; Fan, Li-Hai; Tan, Tian-Wei

    2017-01-01

    Bio-ethanol production from lignocellulosic raw materials could serve as a sustainable potential for improving the supply of liquid fuels in face of the food-to-fuel competition and the growing energy demand. Xylose is the second abundant sugar of lignocelluloses hydrolysates, but its commercial-scale conversion to ethanol by fermentation is challenged by incomplete and inefficient utilization of xylose. Here, we use a coupled strategy of simultaneous maltose utilization and in-situ carbon dioxide (CO2) fixation to achieve efficient xylose fermentation by the engineered Saccharomyces cerevisiae. Our results showed that the introduction of CO2 as electron acceptor for nicotinamide adenine dinucleotide (NADH) oxidation increased the total ethanol productivity and yield at the expense of simultaneous maltose and xylose utilization. Our achievements present an innovative strategy using CO2 to drive and redistribute the central pathways of xylose to desirable products and demonstrate a possible breakthrough in product yield of sugars. PMID:28262754

  16. Engineered Aedes aegypti JAK/STAT Pathway-Mediated Immunity to Dengue Virus

    PubMed Central

    Jupatanakul, Natapong; Sim, Shuzhen; Angleró-Rodríguez, Yesseinia I.; Souza-Neto, Jayme; Das, Suchismita; Poti, Kristin E.; Rossi, Shannan L.; Bergren, Nicholas; Vasilakis, Nikos

    2017-01-01

    We have developed genetically modified Ae. aegypti mosquitoes that activate the conserved antiviral JAK/STAT pathway in the fat body tissue, by overexpressing either the receptor Dome or the Janus kinase Hop by the blood feeding-induced vitellogenin (Vg) promoter. Transgene expression inhibits infection with several dengue virus (DENV) serotypes in the midgut as well as systemically and in the salivary glands. The impact of the transgenes Dome and Hop on mosquito longevity was minimal, but it resulted in a compromised fecundity when compared to wild-type mosquitoes. Overexpression of Dome and Hop resulted in profound transcriptome regulation in the fat body tissue as well as the midgut tissue, pinpointing several expression signatures that reflect mechanisms of DENV restriction. Our transcriptome studies and reverse genetic analyses suggested that enrichment of DENV restriction factor and depletion of DENV host factor transcripts likely accounts for the DENV inhibition, and they allowed us to identify novel factors that modulate infection. Interestingly, the fat body-specific activation of the JAK/STAT pathway did not result in any enhanced resistance to Zika virus (ZIKV) or chikungunya virus (CHIKV) infection, thereby indicating a possible specialization of the pathway’s antiviral role. PMID:28081143

  17. Metabolic Engineering to Develop a Pathway for the Selective Cleavage of Carbon-Nitrogen Bonds

    SciTech Connect

    John J. Kilbane II

    2005-10-01

    The objective of the project is to develop a biochemical pathway for the selective cleavage of C-N bonds in molecules found in petroleum. Specifically a novel biochemical pathway will be developed for the selective cleavage of C-N bonds in carbazole. The cleavage of the first C-N bond in carbazole is accomplished by the enzyme carbazole dioxygenase, that catalyzes the conversion of carbazole to 2-aminobiphenyl-2,3-diol. The genes encoding carbazole dioxygenase were cloned from Sphingomonas sp. GTIN11 and from Pseudomonas resinovorans CA10. The selective cleavage of the second C-N bond has been challenging, and efforts to overcome that challenge have been the focus of recent research in this project. Enrichment culture experiments succeeded in isolating bacterial cultures that can metabolize 2-aminobiphenyl, but no enzyme capable of selectively cleaving the C-N bond in 2-aminobiphenyl has been identified. Aniline is very similar to the structure of 2-aminobiphenyl and aniline dioxygenase catalyzes the conversion of aniline to catechol and ammonia. For the remainder of the project the emphasis of research will be to simultaneously express the genes for carbazole dioxygenase and for aniline dioxygenase in the same bacterial host and then to select for derivative cultures capable of using carbazole as the sole source of nitrogen.

  18. High throughput engineering to revitalize a vestigial electron transfer pathway in bacterial photosynthetic reaction centers.

    PubMed

    Faries, Kaitlyn M; Kressel, Lucas L; Wander, Marc J; Holten, Dewey; Laible, Philip D; Kirmaier, Christine; Hanson, Deborah K

    2012-03-09

    Photosynthetic reaction centers convert light energy into chemical energy in a series of transmembrane electron transfer reactions, each with near 100% yield. The structures of reaction centers reveal two symmetry-related branches of cofactors (denoted A and B) that are functionally asymmetric; purple bacterial reaction centers use the A pathway exclusively. Previously, site-specific mutagenesis has yielded reaction centers capable of transmembrane charge separation solely via the B branch cofactors, but the best overall electron transfer yields are still low. In an attempt to better realize the architectural and energetic factors that underlie the directionality and yields of electron transfer, sites within the protein-cofactor complex were targeted in a directed molecular evolution strategy that implements streamlined mutagenesis and high throughput spectroscopic screening. The polycistronic approach enables efficient construction and expression of a large number of variants of a heteroligomeric complex that has two intimately regulated subunits with high sequence similarity, common features of many prokaryotic and eukaryotic transmembrane protein assemblies. The strategy has succeeded in the discovery of several mutant reaction centers with increased efficiency of the B pathway; they carry multiple substitutions that have not been explored or linked using traditional approaches. This work expands our understanding of the structure-function relationships that dictate the efficiency of biological energy-conversion reactions, concepts that will aid the design of bio-inspired assemblies capable of both efficient charge separation and charge stabilization.

  19. Optimization of isopropanol production by engineered cyanobacteria with a synthetic metabolic pathway.

    PubMed

    Hirokawa, Yasutaka; Suzuki, Iwane; Hanai, Taizo

    2015-05-01

    Cyanobacterium is an attractive host for the production of various chemicals and alternative fuels using solar energy and carbon dioxide. In previous study, we succeeded to produce isopropanol using engineered Synechococcus elongatus PCC 7942 under dark and anaerobic conditions (0.43 mM, 26.5 mg/l). In the present study, we report the further optimization of this isopropanol producing condition. We then optimized growth conditions for production of isopropanol by the engineered cyanobacteria, including the use of cells in early stationary phase and buffering of the production medium to neutral pH. We observed that shifting of cultures from dark and anaerobic to light and aerobic conditions during the production phase dramatically increased isopropanol production by conversion to isopropanol from acetate, byproduct under dark and anaerobic condition. Under the optimized production conditions, the titer of isopropanol was elevated 6-fold, to 2.42 mM (146 mg/l). Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  20. Engineering Salidroside Biosynthetic Pathway in Hairy Root Cultures of Rhodiola crenulata Based on Metabolic Characterization of Tyrosine Decarboxylase

    PubMed Central

    Zeng, Lingjiang; Liu, Xiaoqiang; Qiu, Fei; Zheng, Weilie; Quan, Hong; Liao, Zhihua; Chen, Min; Huang, Wenlin; Liu, Wanhong; Wang, Qiang

    2013-01-01

    Tyrosine decarboxylase initializes salidroside biosynthesis. Metabolic characterization of tyrosine decarboxylase gene from Rhodiola crenulata (RcTYDC) revealed that it played an important role in salidroside biosynthesis. Recombinant 53 kDa RcTYDC converted tyrosine into tyramine. RcTYDC gene expression was induced coordinately with the expression of RcUDPGT (the last gene involved in salidroside biosynthesis) in SA/MeJA treatment; the expression of RcTYDC and RcUDPGT was dramatically upregulated by SA, respectively 49 folds and 36 folds compared with control. MeJA also significantly increased the expression of RcTYDC and RcUDPGT in hairy root cultures. The tissue profile of RcTYDC and RcUDPGT was highly similar: highest expression levels found in stems, higher expression levels in leaves than in flowers and roots. The gene expressing levels were consistent with the salidroside accumulation levels. This strongly suggested that RcTYDC played an important role in salidroside biosynthesis in R. crenulata. Finally, RcTYDC was used to engineering salidroside biosynthetic pathway in R. crenulata hairy roots via metabolic engineering strategy of overexpression. All the transgenic lines showed much higher expression levels of RcTYDC than non-transgenic one. The transgenic lines produced tyramine, tyrosol and salidroside at higher levels, which were respectively 3.21–6.84, 1.50–2.19 and 1.27–3.47 folds compared with the corresponding compound in non-transgenic lines. In conclusion, RcTYDC overexpression promoted tyramine biosynthesis that facilitated more metabolic flux flowing toward the downstream pathway and as a result, the intermediate tyrosol was accumulated more that led to the increased production of the end-product salidroside. PMID:24124492

  1. Engineering salidroside biosynthetic pathway in hairy root cultures of Rhodiola crenulata based on metabolic characterization of tyrosine decarboxylase.

    PubMed

    Lan, Xiaozhong; Chang, Kai; Zeng, Lingjiang; Liu, Xiaoqiang; Qiu, Fei; Zheng, Weilie; Quan, Hong; Liao, Zhihua; Chen, Min; Huang, Wenlin; Liu, Wanhong; Wang, Qiang

    2013-01-01

    Tyrosine decarboxylase initializes salidroside biosynthesis. Metabolic characterization of tyrosine decarboxylase gene from Rhodiola crenulata (RcTYDC) revealed that it played an important role in salidroside biosynthesis. Recombinant 53 kDa RcTYDC converted tyrosine into tyramine. RcTYDC gene expression was induced coordinately with the expression of RcUDPGT (the last gene involved in salidroside biosynthesis) in SA/MeJA treatment; the expression of RcTYDC and RcUDPGT was dramatically upregulated by SA, respectively 49 folds and 36 folds compared with control. MeJA also significantly increased the expression of RcTYDC and RcUDPGT in hairy root cultures. The tissue profile of RcTYDC and RcUDPGT was highly similar: highest expression levels found in stems, higher expression levels in leaves than in flowers and roots. The gene expressing levels were consistent with the salidroside accumulation levels. This strongly suggested that RcTYDC played an important role in salidroside biosynthesis in R. crenulata. Finally, RcTYDC was used to engineering salidroside biosynthetic pathway in R. crenulata hairy roots via metabolic engineering strategy of overexpression. All the transgenic lines showed much higher expression levels of RcTYDC than non-transgenic one. The transgenic lines produced tyramine, tyrosol and salidroside at higher levels, which were respectively 3.21-6.84, 1.50-2.19 and 1.27-3.47 folds compared with the corresponding compound in non-transgenic lines. In conclusion, RcTYDC overexpression promoted tyramine biosynthesis that facilitated more metabolic flux flowing toward the downstream pathway and as a result, the intermediate tyrosol was accumulated more that led to the increased production of the end-product salidroside.

  2. Metabolic engineering of Escherichia coli for the production of 2'-fucosyllactose and 3-fucosyllactose through modular pathway enhancement.

    PubMed

    Huang, Di; Yang, Kexin; Liu, Jia; Xu, Yingying; Wang, Yuanyuan; Wang, Ru; Liu, Bin; Feng, Lu

    2017-03-09

    Fucosyllactoses, including 2'-fucosyllactose (2'-FL) and 3-fucosyllactose (3-FL), are important oligosaccharides in human milk that are commonly used as nutritional additives in infant formula due to their biological functions, such as the promotion of bifidobacteria growth, inhibition of pathogen infection, and improvement of immune response. In this study, we developed a synthetic biology approach to promote the efficient biosynthesis of 2'-FL and 3-FL in engineered Escherichia coli. To boost the production of 2'-FL and 3-FL, multiple modular optimization strategies were applied in a plug-and-play manner. First, comparisons of various exogenous α1,2-fucosyltransferase and α1,3-fucosyltransferase candidates, as well as a series of E. coli host strains, demonstrated that futC and futA from Helicobacter pylori using BL21(DE3) as the host strain yielded the highest titers of 2'-FL and 3-FL. Subsequently, both the availability of the lactose acceptor substrate and the intracellular pool of the GDP-L-fucose donor substrate were optimized by inactivating competitive (or repressive) pathways and strengthening acceptor (or donor) availability to achieve overproduction. Moreover, the intracellular redox regeneration pathways were engineered to further enhance the production of 2'-FL and 3-FL. Finally, various culture conditions were optimized to achieve the best performance of 2'-FL and 3-FL biosynthesizing strains. The final concentrations of 2'-FL and 3-FL were 9.12 and 12.43g/L, respectively. This work provides a platform that enables modular construction, optimization and characterization to facilitate the development of FL-producing cell factories.

  3. METABOLIC ENGINEERING TO DEVELOP A PATHWAY FOR THE SELECTIVE CLEAVAGE OF CARBON-NITROGEN BONDS

    SciTech Connect

    John J. Kilbane II

    2004-10-01

    The objective of the project is to develop biochemical pathways for the selective cleavage of C-N bonds in molecules found in petroleum. The initial phase of the project was focused on the isolation or development of an enzyme capable of cleaving the C-N bond in aromatic amides, specifically 2-aminobiphenyl. The objective of the second phase of the research will be to construct a biochemical pathway for the selective removal of nitrogen from carbazole by combining the carA genes from Sphingomonas sp. GTIN11 with the gene(s) encoding an appropriate deaminase. The objective of the final phase of the project will be to develop derivative C-N bond cleaving enzymes that have broader substrate ranges and to demonstrate the use of such strains to selectively remove nitrogen from petroleum. During the first year of the project (October, 2002-September, 2003) enrichment culture experiments resulted in the isolation of microbial cultures that utilize aromatic amides as sole nitrogen sources, several amidase genes were cloned and were included in directed evolution experiments to obtain derivatives that can cleave C-N bonds in aromatic amides, and the carA genes from Sphingomonas sp. GTIN11, and Pseudomonas resinovorans CA10 were cloned in vectors capable of replicating in Escherichia coli. During the second year of the project (October, 2003-September, 2004) enrichment culture experiments succeeded in isolating a mixed bacterial culture that can utilize 2-aminobiphenyl as a sole nitrogen source, directed evolution experiments were focused on the aniline dioxygenase enzyme that is capable of deaminating aniline, and expression vectors were constructed to enable the expression of genes encoding C-N bond cleaving enzymes in Rhodococcus hosts. The construction of a new metabolic pathway to selectively remove nitrogen from carbazole and other molecules typically found in petroleum should lead to the development of a process to improve oil refinery efficiency by reducing the

  4. Nitric oxide and nitrous oxide turnover in natural and engineered microbial communities: biological pathways, chemical reactions, and novel technologies

    PubMed Central

    Schreiber, Frank; Wunderlin, Pascal; Udert, Kai M.; Wells, George F.

    2012-01-01

    Nitrous oxide (N2O) is an environmentally important atmospheric trace gas because it is an effective greenhouse gas and it leads to ozone depletion through photo-chemical nitric oxide (NO) production in the stratosphere. Mitigating its steady increase in atmospheric concentration requires an understanding of the mechanisms that lead to its formation in natural and engineered microbial communities. N2O is formed biologically from the oxidation of hydroxylamine (NH2OH) or the reduction of nitrite (NO−2) to NO and further to N2O. Our review of the biological pathways for N2O production shows that apparently all organisms and pathways known to be involved in the catabolic branch of microbial N-cycle have the potential to catalyze the reduction of NO−2 to NO and the further reduction of NO to N2O, while N2O formation from NH2OH is only performed by ammonia oxidizing bacteria (AOB). In addition to biological pathways, we review important chemical reactions that can lead to NO and N2O formation due to the reactivity of NO−2, NH2OH, and nitroxyl (HNO). Moreover, biological N2O formation is highly dynamic in response to N-imbalance imposed on a system. Thus, understanding NO formation and capturing the dynamics of NO and N2O build-up are key to understand mechanisms of N2O release. Here, we discuss novel technologies that allow experiments on NO and N2O formation at high temporal resolution, namely NO and N2O microelectrodes and the dynamic analysis of the isotopic signature of N2O with quantum cascade laser absorption spectroscopy (QCLAS). In addition, we introduce other techniques that use the isotopic composition of N2O to distinguish production pathways and findings that were made with emerging molecular techniques in complex environments. Finally, we discuss how a combination of the presented tools might help to address important open questions on pathways and controls of nitrogen flow through complex microbial communities that eventually lead to N2O build

  5. Fatty Aldehydes in Cyanobacteria Are a Metabolically Flexible Precursor for a Diversity of Biofuel Products

    PubMed Central

    Kaiser, Brett K.; Carleton, Michael; Hickman, Jason W.; Miller, Cameron; Lawson, David; Budde, Mark; Warrener, Paul; Paredes, Angel; Mullapudi, Srinivas; Navarro, Patricia; Cross, Fred; Roberts, James M.

    2013-01-01

    We describe how pathway engineering can be used to convert a single intermediate derived from lipid biosynthesis, fatty aldehydes, into a variety of biofuel precursors including alkanes, free fatty acids and wax esters. In cyanobacteria, long-chain acyl-ACPs can be reduced to fatty aldehydes, and then decarbonylated to alkanes. We discovered a cyanobacteria class-3 aldehyde-dehydrogenase, AldE, that was necessary and sufficient to instead oxidize fatty aldehyde precursors into fatty acids. Overexpression of enzymes in this pathway resulted in production of 50 to 100 fold more fatty acids than alkanes, and the fatty acids were secreted from the cell. Co-expression of acyl-ACP reductase, an alcohol-dehydrogenase and a wax-ester-synthase resulted in a third fate for fatty aldehydes: conversion to wax esters, which accumulated as intracellular lipid bodies. Conversion of acyl-ACP to fatty acids using endogenous cyanobacterial enzymes may allow biofuel production without transgenesis. PMID:23505484

  6. Activation of glycerol metabolic pathway by evolutionary engineering of Rhizopus oryzae to strengthen the fumaric acid biosynthesis from crude glycerol.

    PubMed

    Huang, Di; Wang, Ru; Du, Wenjie; Wang, Guanyi; Xia, Menglei

    2015-11-01

    Rhizopus oryzae is strictly inhibited by biodiesel-based by-product crude glycerol, which results in low fumaric acid production. In this study, evolutionary engineering was employed to activate the glycerol utilization pathway for fumaric acid production. An evolved strain G80 was selected, which could tolerate and utilize high concentrations of crude glycerol to produce 14.9g/L fumaric acid with a yield of 0.248g/g glycerol. Key enzymes activity analysis revealed that the evolved strain displayed a significant upregulation in glycerol dissimilation, pyruvate consumption and reductive tricarboxylic acid pathways, compared with the parent strain. Subsequently, intracellular metabolic profiling analysis showed that amino acid biosynthesis, tricarboxylic acid cycle, fatty acid and stress response metabolites accounted for metabolic difference between two strains. Moreover, a glycerol fed-batch strategy was optimized to obtain the highest fumaric acid production of 25.5g/L, significantly increased by 20.9-fold than that of the parent strain of 1.2g/L.

  7. Pathway to oxide photovoltaics via band-structure engineering of SnO

    DOE PAGES

    Peng, Haowei; Bikowski, Andre; Zakutayev, Andriy; ...

    2016-10-04

    All-oxide photovoltaics could open rapidly scalable manufacturing routes, if only oxide materials with suitable electronic and optical properties were developed. SnO has exceptional doping and transport properties among oxides, but suffers from a strongly indirect band gap. Here, we address this shortcoming by band-structure engineering through isovalent but heterostructural alloying with divalent cations (Mg, Ca, Sr, and Zn). Furthermore, using first-principles calculations, we show that suitable band gaps and optical properties close to that of direct semiconductors are achievable, while the comparatively small effective masses are preserved in the alloys. Initial thin film synthesis and characterization support the feasibility ofmore » the approach.« less

  8. Engineering of a Glycerol Utilization Pathway for Amino Acid Production by Corynebacterium glutamicum▿

    PubMed Central

    Rittmann, Doris; Lindner, Steffen N.; Wendisch, Volker F.

    2008-01-01

    The amino acid-producing organism Corynebacterium glutamicum cannot utilize glycerol, a stoichiometric by-product of biodiesel production. By heterologous expression of Escherichia coli glycerol utilization genes, C. glutamicum was engineered to grow on glycerol. While expression of the E. coli genes for glycerol kinase (glpK) and glycerol 3-phosphate dehydrogenase (glpD) was sufficient for growth on glycerol as the sole carbon and energy source, additional expression of the aquaglyceroporin gene glpF from E. coli increased growth rate and biomass formation. Glutamate production from glycerol was enabled by plasmid-borne expression of E. coli glpF, glpK, and glpD in C. glutamicum wild type. In addition, a lysine-producing C. glutamicum strain expressing E. coli glpF, glpK, and glpD was able to produce lysine from glycerol as the sole carbon substrate as well as from glycerol-glucose mixtures. PMID:18757581

  9. Engineering of a glycerol utilization pathway for amino acid production by Corynebacterium glutamicum.

    PubMed

    Rittmann, Doris; Lindner, Steffen N; Wendisch, Volker F

    2008-10-01

    The amino acid-producing organism Corynebacterium glutamicum cannot utilize glycerol, a stoichiometric by-product of biodiesel production. By heterologous expression of Escherichia coli glycerol utilization genes, C. glutamicum was engineered to grow on glycerol. While expression of the E. coli genes for glycerol kinase (glpK) and glycerol 3-phosphate dehydrogenase (glpD) was sufficient for growth on glycerol as the sole carbon and energy source, additional expression of the aquaglyceroporin gene glpF from E. coli increased growth rate and biomass formation. Glutamate production from glycerol was enabled by plasmid-borne expression of E. coli glpF, glpK, and glpD in C. glutamicum wild type. In addition, a lysine-producing C. glutamicum strain expressing E. coli glpF, glpK, and glpD was able to produce lysine from glycerol as the sole carbon substrate as well as from glycerol-glucose mixtures.

  10. Niche Inheritance: A Cooperative Pathway to Enhance Cancer Cell Fitness Through Ecosystem Engineering

    PubMed Central

    Yang, Kimberline R; Mooney, Steven M; Zarif, Jelani C; Coffey, Donald S; Taichman, Russell S; Pienta, Kenneth J

    2014-01-01

    Cancer cells can be described as an invasive species that is able to establish itself in a new environment. The concept of niche construction can be utilized to describe the process by which cancer cells terraform their environment, thereby engineering an ecosystem that promotes the genetic fitness of the species. Ecological dispersion theory can then be utilized to describe and model the steps and barriers involved in a successful diaspora as the cancer cells leave the original host organ and migrate to new host organs to successfully establish a new metastatic community. These ecological concepts can be further utilized to define new diagnostic and therapeutic areas for lethal cancers. 115: 1478–1485, 2014. © 2014 Wiley Periodicals, Inc. PMID:24700698

  11. Metabolic pathways recruited in the production of a recombinant enveloped virus: mining targets for process and cell engineering.

    PubMed

    Rodrigues, A F; Formas-Oliveira, A S; Bandeira, V S; Alves, P M; Hu, W S; Coroadinha, A S

    2013-11-01

    Biopharmaceuticals derived from enveloped virus comprise an expanding market of vaccines, oncolytic vectors and gene therapy products. Thus, increased attention is given to the development of robust high-titer cell hosts for their manufacture. However, the knowledge on the physiological constraints modulating virus production is still scarce and the use of integrated strategies to improve hosts productivity and upstream bioprocess an under-explored territory. In this work, we conducted a functional genomics study, including the transcriptional profiling and central carbon metabolism analysis, following the metabolic changes in the transition 'parental-to-producer' of two human cell lines producing recombinant retrovirus. Results were gathered into three comprehensive metabolic maps, providing a broad and integrated overview of gene expression changes for both cell lines. Eight pathways were identified to be recruited in the virus production state: amino acid catabolism, carbohydrate catabolism and integration of the energy metabolism, nucleotide metabolism, glutathione metabolism, pentose phosphate pathway, polyamines biosynthesis and lipid metabolism. Their ability to modulate viral titers was experimentally challenged, leading to improved specific productivities of recombinant retrovirus up to 6-fold. Within recruited pathways in the virus production state, we sought for metabolic engineering gene targets in the low producing phenotypes. A mining strategy was used alternative to the traditional approach 'high vs. low producer' clonal comparison. Instead, 'high vs. low producer' from different genetic backgrounds (i.e. cell origins) were compared. Several genes were identified as limiting in the low-production phenotype, including two enzymes from cholesterol biosynthesis, two enzymes from glutathione biosynthesis and the regulatory machinery of polyamines biosynthesis. This is thus a frontier work, bridging fundamentals to technological research and contributing

  12. β-catenin blocks Kras-dependent reprogramming of acini into pancreatic cancer precursor lesions in mice

    PubMed Central

    Morris, John P.; Cano, David A.; Sekine, Shigeki; Wang, Sam C.; Hebrok, Matthias

    2010-01-01

    Cellular plasticity in adult organs is involved in both regeneration and carcinogenesis. WT mouse acinar cells rapidly regenerate following injury that mimics acute pancreatitis, a process characterized by transient reactivation of pathways involved in embryonic pancreatic development. In contrast, such injury promotes the development of pancreatic ductal adenocarcinoma (PDA) precursor lesions in mice expressing a constitutively active form of the GTPase, Kras, in the exocrine pancreas. The molecular environment that mediates acinar regeneration versus the development of PDA precursor lesions is poorly understood. Here, we used genetically engineered mice to demonstrate that mutant Kras promotes acinar-to-ductal metaplasia (ADM) and pancreatic cancer precursor lesion formation by blocking acinar regeneration following acute pancreatitis. Our results indicate that β-catenin is required for efficient acinar regeneration. In addition, canonical β-catenin signaling, a pathway known to regulate embryonic acinar development, is activated following acute pancreatitis. This regeneration-associated activation of β-catenin signaling was not observed during the initiation of Kras-induced acinar-to-ductal reprogramming. Furthermore, stabilized β-catenin signaling antagonized the ability of Kras to reprogram acini into PDA preneoplastic precursors. Therefore, these results suggest that β-catenin signaling is a critical determinant of acinar plasticity and that it is inhibited during Kras-induced fate decisions that specify PDA precursors, highlighting the importance of temporal regulation of embryonic signaling pathways in the development of neoplastic cell fates. PMID:20071774

  13. Engineering of Corynebacterium glutamicum with an NADPH-Generating Glycolytic Pathway for l-Lysine Production ▿

    PubMed Central

    Takeno, Seiki; Murata, Ryosuke; Kobayashi, Ryosuke; Mitsuhashi, Satoshi; Ikeda, Masato

    2010-01-01

    A sufficient supply of NADPH is a critical factor in l-lysine production by Corynebacterium glutamicum. Endogenous NAD-dependent glyceraldehyde 3-phosphate dehydrogenase (GAPDH) of C. glutamicum was replaced with nonphosphorylating NADP-dependent glyceraldehyde 3-phosphate dehydrogenase (GapN) of Streptococcus mutans, which catalyzes the reaction of glyceraldehyde 3-phosphate to 3-phosphoglycerate with the reduction of NADP+ to NADPH, resulting in the reconstruction of the functional glycolytic pathway. Although the growth of the engineered strain on glucose was significantly retarded, a suppressor mutant with an increased ability to utilize sugars was spontaneously isolated from the engineered strain. The suppressor mutant was characterized by the properties of GapN as well as the nucleotide sequence of the gene, confirming that no change occurred in either the activity or the basic properties of GapN. The suppressor mutant was engineered into an l-lysine-producing strain by plasmid-mediated expression of the desensitized lysC gene, and the performance of the mutant as an l-lysine producer was evaluated. The amounts of l-lysine produced by the suppressor mutant were larger than those produced by the reference strain (which was created by replacement of the preexisting gapN gene in the suppressor mutant with the original gapA gene) by ∼70% on glucose, ∼120% on fructose, and ∼100% on sucrose, indicating that the increased l-lysine production was attributed to GapN. These results demonstrate effective l-lysine production by C. glutamicum with an additional source of NADPH during glycolysis. PMID:20851994

  14. Characterizing oxidative flow reactor SOA production and OH radical exposure from laboratory experiments of complex mixtures (engine exhaust) and simple precursors (monoterpenes)

    NASA Astrophysics Data System (ADS)

    Michael Link, M. L.; Friedman, B.; Ortega, J. V.; Son, J.; Kim, J.; Park, G.; Park, T.; Kim, K.; Lee, T.; Farmer, D.

    2016-12-01

    Recent commercialization of the Oxidative Flow Reactor (OFR, occasionally described in the literature as a "Potential Aerosol Mass") has created the opportunity for many researchers to explore the mechanisms behind OH-driven aerosol formation on a wide range of oxidative timescales (hours to weeks) in both laboratory and field measurements. These experiments have been conducted in both laboratory and field settings, including simple (i.e. single component) and complex (multi-component) precursors. Standard practices for performing OFR experiments, and interpreting data from the measurements, are still being developed. Measurement of gas and particle phase chemistry, from oxidation products generated in the OFR, through laboratory studies on single precursors and the measurement of SOA from vehicle emissions on short atmospheric timescales represent two very different experiments in which careful experimental design is essential for exploring reaction mechanisms and SOA yields. Two parameters essential in experimental design are (1) the role of seed aerosol in controlling gas-particle partitioning and SOA yields, and (2) the accurate determination of OH exposure during any one experiment. We investigated the role of seed aerosol surface area in controlling the observed SOA yields and gas/particle composition from the OH-initiated oxidation of four monoterpenes using an aerosol chemical ionization time-of-flight mass spectrometer and scanning mobility particle sizer. While the OH exposure during laboratory experiments is simple to constrain, complex mixtures such as diesel exhaust have high estimated OH reactivity values, and thus require careful consideration. We developed methods for constraining OH radical exposure in the OFR during vehicle exhaust oxidation experiments. We observe changes in O/C ratios and highly functionalized species over the temperature gradient employed in the aerosol-CIMS measurement. We relate this observed, speciated chemistry to the

  15. Engineered Production of Short Chain Fatty Acid in Escherichia coli Using Fatty Acid Synthesis Pathway

    PubMed Central

    Jawed, Kamran; Mattam, Anu Jose; Fatma, Zia; Wajid, Saima; Abdin, Malik Z.; Yazdani, Syed Shams

    2016-01-01

    Short-chain fatty acids (SCFAs), such as butyric acid, have a broad range of applications in chemical and fuel industries. Worldwide demand of sustainable fuels and chemicals has encouraged researchers for microbial synthesis of SCFAs. In this study we compared three thioesterases, i.e., TesAT from Anaerococcus tetradius, TesBF from Bryantella formatexigens and TesBT from Bacteroides thetaiotaomicron, for production of SCFAs in Escherichia coli utilizing native fatty acid synthesis (FASII) pathway and modulated the genetic and bioprocess parameters to improve its yield and productivity. E. coli strain expressing tesBT gene yielded maximum butyric acid titer at 1.46 g L-1, followed by tesBF at 0.85 g L-1 and tesAT at 0.12 g L-1. The titer of butyric acid varied significantly depending upon the plasmid copy number and strain genotype. The modulation of genetic factors that are known to influence long chain fatty acid production, such as deletion of the fadD and fadE that initiates the fatty acid degradation cycle and overexpression of fadR that is a global transcriptional activator of fatty acid biosynthesis and repressor of degradation cycle, did not improve the butyric acid titer significantly. Use of chemical inhibitor cerulenin, which restricts the fatty acid elongation cycle, increased the butyric acid titer by 1.7-fold in case of TesBF, while it had adverse impact in case of TesBT. In vitro enzyme assay indicated that cerulenin also inhibited short chain specific thioesterase, though inhibitory concentration varied according to the type of thioesterase used. Further process optimization followed by fed-batch cultivation under phosphorous limited condition led to production of 14.3 g L-1 butyric acid and 17.5 g L-1 total free fatty acid at 28% of theoretical yield. This study expands our understanding of SCFAs production in E. coli through FASII pathway and highlights role of genetic and process optimization to enhance the desired product. PMID:27466817

  16. Violet/blue chrysanthemums--metabolic engineering of the anthocyanin biosynthetic pathway results in novel petal colors.

    PubMed

    Brugliera, Filippa; Tao, Guo-Qing; Tems, Ursula; Kalc, Gianna; Mouradova, Ekaterina; Price, Kym; Stevenson, Kim; Nakamura, Noriko; Stacey, Iolanda; Katsumoto, Yukihisa; Tanaka, Yoshikazu; Mason, John G

    2013-10-01

    Chrysanthemums (Chrysanthemum×morifolium Ramat.) are an important cut-flower and potted plant crop in the horticultural industry world wide. Chrysanthemums express the flavonoid 3'-hydroxylase (F3'H) gene and thus accumulate anthocyanins derived from cyanidin in their inflorescences which appear pink/red. Delphinidin-based anthocyanins are lacking due to the deficiency of a flavonoid 3', 5'-hydroxylase (F3'5'H), and so violet/blue chrysanthemum flower colors are not found. In this study, together with optimization of transgene expression and selection of the host cultivars and gene source, F3'5'H genes have been successfully utilized to produce transgenic bluish chrysanthemums that accumulate delphinidin-based anthocyanins. HPLC analysis and feeding experiments with a delphinidin precursor identified 16 cultivars of chrysanthemums out of 75 that were predicted to turn bluish upon delphinidin accumulation. A selection of eight cultivars were successfully transformed with F3'5'H genes under the control of different promoters. A pansy F3'5'H gene under the control of a chalcone synthase promoter fragment from rose resulted in the effective diversion of the anthocyanin pathway to produce delphinidin in transgenic chrysanthemum flower petals. The resultant petal color was bluish, with 40% of total anthocyanidins attributed to delphinidin. Increased delphinidin levels (up to 80%) were further achieved by hairpin RNA interference-mediated silencing of the endogenous F3'H gene. The resulting petal colors were novel bluish hues, not possible by hybridization breeding. This is the first report of the production of anthocyanins derived from delphinidin in chrysanthemum petals leading to novel flower color.

  17. Hydrology without hillslopes: runoff controls and pathways on a near-level, engineered landscape

    NASA Astrophysics Data System (ADS)

    Petzold, Halya; Ali, Genevieve

    2015-04-01

    Low relief, artificially drained landscapes like those of the Prairies in south-central Canada have received little consideration in hydrologic study. While topography is generally asserted as the main control of runoff generation, it is unknown whether this is also the case where relief is low, or if in the absence of high relief other landscape characteristics become relatively more influential. To address this knowledge gap, runoff behaviour was analysed via event rainfall-runoff hydrographs and perched water table level at 6 study sites to infer dominant runoff processes and their control factors. Instrumentation was deployed in the Catfish Creek watershed, a 642 km2 near-level, mixed land use and engineered Prairie watershed located 90 km northeast of Winnipeg, Manitoba, Canada. Specifically, surface water levels were measured at the outlet of six sub-watersheds while perched water table levels were monitored in riparian areas. At each site, rainfall events were delineated and rainfall-runoff parameters, perched water table maximum rise and antecedent rainfall variables (as surrogates for antecedent moisture conditions or AMCs) were calculated on an event basis. Landscape characteristics, including elevation, slope, and land use and land cover statistics, were also determined for each sub-watershed. Correlation analysis and principal component analysis were then carried out including all variables. Rainfall-runoff responses were highly variable across sites. Event hydrographs were generally characterized by short lag times and initial abstractions which correlated moderately to total event rainfall. However, sub-watersheds characteristics did not influence the different hydrograph characteristics recorded across sites. Threshold behaviour was observed only in the two study sub-watersheds of greatest relief. Runoff generation was hypothesized to occur predominantly as Hortonian overland flow, although the dominant runoff process shifted under certain moisture

  18. Missing Linkers: An Alternative Pathway to UiO-66 Electronic Structure Engineering

    PubMed Central

    2017-01-01

    UiO-66 is a promising metal–organic framework for photocatalytic applications. However, the ligand-to-metal charge transfer of an excited electron is inefficient in the pristine material. Herein, we assess the influence of missing linker defects on the electronic structure of UiO-66 and discuss their ability to improve ligand-to-metal charge transfer. Using a new defect classification system, which is transparent and easily extendable, we identify the most promising photocatalysts by considering both relative stability and electronic structure. We find that the properties of UiO-66 defect structures largely depend on the coordination of the constituent nodes and that the nodes with the strongest local distortions alter the electronic structure most. Defects hence provide an alternative pathway to tune UiO-66 for photocatalytic purposes, besides linker modification and node metal substitution. In addition, the decomposition of MOF properties into node- and linker-based behavior is more generally valid, so we propose orthogonal electronic structure tuning as a paradigm in MOF design. PMID:28413260

  19. Reconstituting regulation of the canonical Wnt pathway by engineering a minimal β-catenin destruction machine

    PubMed Central

    Pronobis, Mira I.; Deuitch, Natalie; Posham, Vinya; Mimori-Kiyosue, Yuko; Peifer, Mark

    2017-01-01

    Negatively regulating key signaling pathways is critical to development and altered in cancer. Wnt signaling is kept off by the destruction complex, which is assembled around the tumor suppressors APC and Axin and targets β-catenin for destruction. Axin and APC are large proteins with many domains and motifs that bind other partners. We hypothesized that if we identified the essential regions required for APC:Axin cooperative function and used these data to design a minimal β-catenin-destruction machine, we would gain new insights into the core mechanisms of destruction complex function. We identified five key domains/motifs in APC or Axin that are essential for their function in reconstituting Wnt regulation. Strikingly, however, certain APC and Axin mutants that are nonfunctional on their own can complement one another in reducing β-catenin, revealing that the APC:Axin complex is a highly robust machine. We used these insights to design a minimal β-catenin-destruction machine, revealing that a minimized chimeric protein covalently linking the five essential regions of APC and Axin reconstitutes destruction complex internal structure, size, and dynamics, restoring efficient β-catenin destruction in colorectal tumor cells. On the basis of our data, we propose a new model of the mechanistic function of the destruction complex as an integrated machine. PMID:27852897

  20. Replacement of a Metabolic Pathway for Large-Scale Production of Lactic Acid from Engineered Yeasts

    PubMed Central

    Porro, Danilo; Bianchi, Michele M.; Brambilla, Luca; Menghini, Rossella; Bolzani, Davide; Carrera, Vittorio; Lievense, Jefferson; Liu, Chi-Li; Ranzi, Bianca Maria; Frontali, Laura; Alberghina, Lilia

    1999-01-01

    Interest in the production of l-(+)-lactic acid is presently growing in relation to its applications in the synthesis of biodegradable polymer materials. With the aim of obtaining efficient production and high productivity, we introduced the bovine l-lactate dehydrogenase gene (LDH) into a wild-type Kluyveromyces lactis yeast strain. The observed lactic acid production was not satisfactory due to the continued coproduction of ethanol. A further restructuring of the cellular metabolism was obtained by introducing the LDH gene into a K. lactis strain in which the unique pyruvate decarboxylase gene had been deleted. With this modified strain, in which lactic fermentation substituted completely for the pathway leading to the production of ethanol, we obtained concentrations, productivities, and yields of lactic acid as high as 109 g liter−1, 0.91 g liter−1 h−1, and 1.19 mol per mole of glucose consumed, respectively. The organic acid was also produced at pH levels lower than those usual for bacterial processes. PMID:10473436

  1. Reconstituting regulation of the canonical Wnt pathway by engineering a minimal β-catenin destruction machine.

    PubMed

    Pronobis, Mira I; Deuitch, Natalie; Posham, Vinya; Mimori-Kiyosue, Yuko; Peifer, Mark

    2017-01-01

    Negatively regulating key signaling pathways is critical to development and altered in cancer. Wnt signaling is kept off by the destruction complex, which is assembled around the tumor suppressors APC and Axin and targets β-catenin for destruction. Axin and APC are large proteins with many domains and motifs that bind other partners. We hypothesized that if we identified the essential regions required for APC:Axin cooperative function and used these data to design a minimal β-catenin-destruction machine, we would gain new insights into the core mechanisms of destruction complex function. We identified five key domains/motifs in APC or Axin that are essential for their function in reconstituting Wnt regulation. Strikingly, however, certain APC and Axin mutants that are nonfunctional on their own can complement one another in reducing β-catenin, revealing that the APC:Axin complex is a highly robust machine. We used these insights to design a minimal β-catenin-destruction machine, revealing that a minimized chimeric protein covalently linking the five essential regions of APC and Axin reconstitutes destruction complex internal structure, size, and dynamics, restoring efficient β-catenin destruction in colorectal tumor cells. On the basis of our data, we propose a new model of the mechanistic function of the destruction complex as an integrated machine.

  2. Engineering levoglucosan metabolic pathway in Rhodococcus jostii RHA1 for lipid production.

    PubMed

    Xiong, Xiaochao; Lian, Jieni; Yu, Xiaochen; Garcia-Perez, Manuel; Chen, Shulin

    2016-11-01

    Oleaginous strains of Rhodococcus including R. jostii RHA1 have attracted considerable attention due to their ability to accumulate triacylglycerols (TAGs), robust growth properties and genetic tractability. In this study, a novel metabolic pathway was introduced into R. jostii by heterogenous expression of the well-characterized gene, lgk encoding levoglucosan kinase from Lipomyces starkeyi YZ-215. This enables the recombinant R. jostii RHA1 to produce TAGs from the anhydrous sugar, levoglucosan, which can be generated efficiently as the major molecule from the pyrolysis of cellulose. The recombinant R. jostii RHA1 could grow on levoglucosan as the sole carbon source, and the consumption rate of levoglucosan was determined. Furthermore, expression of one more copy of lgk increased the enzymatic activity of LGK in the recombinant. However, the growth performance of the recombinant bearing two copies of lgk on levoglucosan was not improved. Although expression of lgk in the recombinants was not repressed by the glucose present in the media, glucose in the sugar mixture still affected consumption of levoglucosan. Under nitrogen limiting conditions, lipid produced from levoglucosan by the recombinant bearing lgk was up to 43.54 % of the cell dry weight, which was comparable to the content of lipid accumulated from glucose. This work demonstrated the technical feasibility of producing lipid from levoglucosan, an anhydrosugar derived from the pyrolysis of lignocellulosic materials, by the genetically modified rhodococci strains.

  3. Development of an arabinose-fermenting Zymomonas mobilis strain by metabolic pathway engineering.

    PubMed Central

    Deanda, K; Zhang, M; Eddy, C; Picataggio, S

    1996-01-01

    The substrate fermentation range of the ethanologenic bacterium Zymomonas mobilis was expanded to include the pentose sugar, L-arabinose, which is commonly found in agricultural residues and other lignocellulosic biomass. Five genes, encoding L-arabinose isomerase (araA), L-ribulokinase (araB), L-ribulose-5-phosphate-4-epimerase (araD), transaldolase (talB), and transketolase (tktA), were isolated from Escherichia coli and introduced into Z. mobilis under the control of constitutive promoters that permitted their expression even in the presence of glucose. The engineered strain grew on and produced ethanol from L-arabinose as a sole C source at 98% of the maximum theoretical ethanol yield, based on the amount of consumed sugar. This indicates that arabinose was metabolized almost exclusively to ethanol as the sole fermentation product, with little by-product formation. Although no diauxic growth pattern was evident, the microorganism preferentially utilized glucose before arabinose, apparently reflecting the specificity of the indigenous facilitated diffusion transport system. This microorganism may be useful, along with the previously developed xylose-fermenting Z. mobilis (M. Zhang, C. Eddy, K. Deanda, M. Finkelstein, and S. Picataggio, Science 267:240-243, 1995), in a mixed culture for efficient fermentation of the predominant hexose and pentose sugars in agricultural residues and other lignocellulosic feedstocks to ethanol. PMID:8953718

  4. Ethanol production from lignocellulosic hydrolysates using engineered Saccharomyces cerevisiae harboring xylose isomerase-based pathway.

    PubMed

    Ko, Ja Kyong; Um, Youngsoon; Woo, Han Min; Kim, Kyoung Heon; Lee, Sun-Mi

    2016-06-01

    The efficient co-fermentation of glucose and xylose is necessary for the economically feasible bioethanol production from lignocellulosic biomass. Even with xylose utilizing Saccharomyces cerevisiae, the efficiency of the lignocellulosic ethanol production remains suboptimal mainly due to the low conversion yield of xylose to ethanol. In this study, we evaluated the co-fermentation performances of SXA-R2P-E, a recently engineered isomerase-based xylose utilizing strain, in mixed sugars and in lignocellulosic hydrolysates. In a high-sugar fermentation with 70g/L of glucose and 40g/L of xylose, SXA-R2P-E produced 50g/L of ethanol with an yield of 0.43gethanol/gsugars at 72h. From dilute acid-pretreated hydrolysates of rice straw and hardwood (oak), the strain produced 18-21g/L of ethanol with among the highest yield of 0.43-0.46gethanol/gsugars ever reported. This study shows a highly promising potential of a xylose isomerase-expressing strain as an industrially relevant ethanol producer from lignocellulosic hydrolysates.

  5. Physiology, Genomics, and Pathway Engineering of an Ethanol-Tolerant Strain of Clostridium phytofermentans.

    PubMed

    Tolonen, Andrew C; Zuroff, Trevor R; Ramya, Mohandass; Boutard, Magali; Cerisy, Tristan; Curtis, Wayne R

    2015-08-15

    Novel processing strategies for hydrolysis and fermentation of lignocellulosic biomass in a single reactor offer large potential cost savings for production of biocommodities and biofuels. One critical challenge is retaining high enzyme production in the presence of elevated product titers. Toward this goal, the cellulolytic, ethanol-producing bacterium Clostridium phytofermentans was adapted to increased ethanol concentrations. The resulting ethanol-tolerant (ET) strain has nearly doubled ethanol tolerance relative to the wild-type level but also reduced ethanol yield and growth at low ethanol concentrations. The genome of the ET strain has coding changes in proteins involved in membrane biosynthesis, the Rnf complex, cation homeostasis, gene regulation, and ethanol production. In particular, purification of the mutant bifunctional acetaldehyde coenzyme A (CoA)/alcohol dehydrogenase showed that a G609D variant abolished its activities, including ethanol formation. Heterologous expression of Zymomonas mobilis pyruvate decarboxylase and alcohol dehydrogenase in the ET strain increased cellulose consumption and restored ethanol production, demonstrating how metabolic engineering can be used to overcome disadvantageous mutations incurred during adaptation to ethanol. We discuss how genetic changes in the ET strain reveal novel potential strategies for improving microbial solvent tolerance. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  6. Pathway-Specific Engineered Mouse Allograft Models Functionally Recapitulate Human Serous Epithelial Ovarian Cancer

    PubMed Central

    Szabova, Ludmila; Bupp, Sujata; Kamal, Muhaymin; Householder, Deborah B.; Hernandez, Lidia; Schlomer, Jerome J.; Baran, Maureen L.; Yi, Ming; Stephens, Robert M.; Annunziata, Christina M.; Martin, Philip L.; Van Dyke, Terry A.

    2014-01-01

    The high mortality rate from ovarian cancers can be attributed to late-stage diagnosis and lack of effective treatment. Despite enormous effort to develop better targeted therapies, platinum-based chemotherapy still remains the standard of care for ovarian cancer patients, and resistance occurs at a high rate. One of the rate limiting factors for translation of new drug discoveries into clinical treatments has been the lack of suitable preclinical cancer models with high predictive value. We previously generated genetically engineered mouse (GEM) models based on perturbation of Tp53 and Rb with or without Brca1 or Brca2 that develop serous epithelial ovarian cancer (SEOC) closely resembling the human disease on histologic and molecular levels. Here, we describe an adaptation of these GEM models to orthotopic allografts that uniformly develop tumors with short latency and are ideally suited for routine preclinical studies. Ovarian tumors deficient in Brca1 respond to treatment with cisplatin and olaparib, a PARP inhibitor, whereas Brca1-wild type tumors are non-responsive to treatment, recapitulating the relative sensitivities observed in patients. These mouse models provide the opportunity for evaluation of effective therapeutics, including prediction of differential responses in Brca1-wild type and Brca1–deficient tumors and development of relevant biomarkers. PMID:24748377

  7. Physiology, Genomics, and Pathway Engineering of an Ethanol-Tolerant Strain of Clostridium phytofermentans

    PubMed Central

    Zuroff, Trevor R.; Ramya, Mohandass; Boutard, Magali; Cerisy, Tristan; Curtis, Wayne R.

    2015-01-01

    Novel processing strategies for hydrolysis and fermentation of lignocellulosic biomass in a single reactor offer large potential cost savings for production of biocommodities and biofuels. One critical challenge is retaining high enzyme production in the presence of elevated product titers. Toward this goal, the cellulolytic, ethanol-producing bacterium Clostridium phytofermentans was adapted to increased ethanol concentrations. The resulting ethanol-tolerant (ET) strain has nearly doubled ethanol tolerance relative to the wild-type level but also reduced ethanol yield and growth at low ethanol concentrations. The genome of the ET strain has coding changes in proteins involved in membrane biosynthesis, the Rnf complex, cation homeostasis, gene regulation, and ethanol production. In particular, purification of the mutant bifunctional acetaldehyde coenzyme A (CoA)/alcohol dehydrogenase showed that a G609D variant abolished its activities, including ethanol formation. Heterologous expression of Zymomonas mobilis pyruvate decarboxylase and alcohol dehydrogenase in the ET strain increased cellulose consumption and restored ethanol production, demonstrating how metabolic engineering can be used to overcome disadvantageous mutations incurred during adaptation to ethanol. We discuss how genetic changes in the ET strain reveal novel potential strategies for improving microbial solvent tolerance. PMID:26048945

  8. Understanding the conditions that encourage the persistence of women in science, mathematics, and engineering career pathways

    NASA Astrophysics Data System (ADS)

    Kondrick, Linda C.

    The purpose of this study was to determine which factors encourage the persistence of women in the pursuit of Science, Math, and Engineering (SME) careers. Surveys with 36 parallel pairs of theory and history questions regarding the importance and the aptness of variables identified in the literature were completed by 205 SME career women. The variables covered three educational levels: High School, Undergraduate and Graduate. Results reveal which variables fit the experiences of these women and were also believed by them to be important to women in the pursuit of an SME career goal. False Negatives, women who according to the SME literature should not have persisted but did, were identified. Their existence, together with the false positives identified in the SME literature, is evidence, according to Confirmation/Disconfirmation Theory, that important variables in SME persistence are yet to be discovered. Follow-up telephone interviews with nineteen respondents identified important affective variables. Love of math or science was in itself a powerful motivator. Respondents made suggestions for intervention programs that may help to develop that abiding interest. Mentors, role models, and social support networks were identified as important in building the confidence and sustaining the focus needed to cope with the rigorous curriculum and negative sex-bias encountered in SME programs. The qualitative and quantitative results were synthesized in a Causal Event Flow Network, a cognitive map of the longitudinal effects of both positive and negative push/pull vectors operating on women in pursuit of an SME career goal.

  9. Effector-mediated eradication of precursor B acute lymphoblastic leukemia with a novel Fc engineered monoclonal antibody targeting the BAFF-R

    PubMed Central

    Parameswaran, Reshmi; Lim, Min; Fei, Fei; Abdel-Azim, Hisham; Arutyunyan, Anna; Schiffer, Isabelle; McLaughlin, Margaret E.; Gram, Hermann; Huet, Heather; Groffen, John; Heisterkamp, Nora

    2014-01-01

    B-cell activating factor receptor (BAFF-R) is expressed on precursor B acute lymphoblastic leukemia ALL (pre-B ALL) cells but not on their pre-B normal counterparts. Thus, selective killing of ALL cells is possible by targeting this receptor. Here we have further examined therapeutic targeting of pre-B ALL based on the presence of the BAFF-R. Mouse pre-B ALL cells lacking BAFF-R function had comparable viability and proliferation to wild type cells but were more sensitive to drug treatment. Viability of human pre-B ALL cells was further reduced when antibodies to the BAFF-R were combined with other drugs, even in the presence of stromal protection. This indicates that inhibition of BAFF-R function reduces fitness of stressed pre-B ALL cells. We tested a novel humanized anti-BAFF-R monoclonal antibody optimalized for FcRγIII mediated, antibody-dependent cell killing by effector cells. Antibody binding to human ALL cells was inhibitable, in a dose-dependent manner, by recombinant human BAFF. There was no evidence for internalization of the antibodies. The antibodies significantly stimulated NK cell-mediated killing of different human patient-derived ALL cells. Moreover, incubation of such ALL cells with these antibodies stimulated phagocytosis by macrophages. When this was tested in an immunodeficient transplant model, mice that were treated with the antibody had a significantly decreased leukemia burden in bone marrow and spleen. In view of the restricted expression of the BAFF-R on normal cells and the multiple anti-pre-B ALL activities stimulated by this antibody, a further examination of its use for treatment of pre-B ALL is warranted. PMID:24825858

  10. [Increasing reductant NADPH content via metabolic engineering of PHB synthesis pathway in Synechocystis sp. PCC 6803].

    PubMed

    Xie, Juan; Zhou, Jie; Zhang, Haifeng; Li, Yin

    2011-07-01

    Cyanobacteria have become attractive hosts for renewable chemicals production. The low productivity, however, prevents it from industrial application. Reductant NAD(P)H availability is a chief hurdle for the production of reductive metabolites in microbes. To increase NADPH content in Synechocystis sp. PCC 6803, PHB synthase encoding gene phaC and phaE in Synechocystis was inactivated by replacing phaC&E genes with chloromycetin resistance cassette via homologous recombination. PCR analysis showed that mutant S.delta phaC&E with complete genome segregation was generated. The comparison between growth curves of S.wt and S.delta phaC&E indicated the knockout of phaC & phaE genes did not affect obviously the cell growth. Gas chromatography analysis showed that the accumulation of PHB in wild type was about 2.3% of the dry cell weight, whereas no PHB was detected in the mutant S.delta phaC&E. The data indicated that inactivation of PHB synthase gene phaC and phaE interrupted the synthesis of PHB. Further comparative study of wild type and mutant demonstrated that NADPH content in S.delta phaC&E was obviously increased. On the third day, the NADPH content in S.delta phaC&E was up to 1.85 fold higher than that in wild type. These results indicated that deleting PHB synthase gene phaC and phaE not only can block the synthesis of PHB, but also can save NADPH to contribute reductant sink in cyanobacteria. Hence, the engineered cyanobacterial strain S.delta phaC&E, in which carbon flux was redirected and NADPH was increased, will be a potential host strain for chemicals production in cyanobacteria.

  11. Engineering tyrosine electron transfer pathways decreases oxidative toxicity in hemoglobin: implications for blood substitute design

    PubMed Central

    Silkstone, Gary G.A.; Silkstone, Rebecca S.; Wilson, Michael T.; Simons, Michelle; Bülow, Leif; Kallberg, Kristian; Ratanasopa, Khuanpiroon; Ronda, Luca; Mozzarelli, Andrea; Reeder, Brandon J.; Cooper, Chris E.

    2016-01-01

    Hemoglobin (Hb)-based oxygen carriers (HBOC) have been engineered to replace or augment the oxygen-carrying capacity of erythrocytes. However, clinical results have generally been disappointing due to adverse side effects linked to intrinsic heme-mediated oxidative toxicity and nitric oxide (NO) scavenging. Redox-active tyrosine residues can facilitate electron transfer between endogenous antioxidants and oxidative ferryl heme species. A suitable residue is present in the α-subunit (Y42) of Hb, but absent from the homologous position in the β-subunit (F41). We therefore replaced this residue with a tyrosine (βF41Y, Hb Mequon). The βF41Y mutation had no effect on the intrinsic rate of lipid peroxidation as measured by conjugated diene and singlet oxygen formation following the addition of ferric(met) Hb to liposomes. However, βF41Y significantly decreased these rates in the presence of physiological levels of ascorbate. Additionally, heme damage in the β-subunit following the addition of the lipid peroxide hydroperoxyoctadecadieoic acid was five-fold slower in βF41Y. NO bioavailability was enhanced in βF41Y by a combination of a 20% decrease in NO dioxygenase activity and a doubling of the rate of nitrite reductase activity. The intrinsic rate of heme loss from methemoglobin was doubled in the β-subunit, but unchanged in the α-subunit. We conclude that the addition of a redox-active tyrosine mutation in Hb able to transfer electrons from plasma antioxidants decreases heme-mediated oxidative reactivity and enhances NO bioavailability. This class of mutations has the potential to decrease adverse side effects as one component of a HBOC product. PMID:27470146

  12. Graphene Oxide Sheathed ZIF-8 Microcrystals: Engineered Precursors of Nitrogen-Doped Porous Carbon for Efficient Oxygen Reduction Reaction (ORR) Electrocatalysis.

    PubMed

    Thomas, Minju; Illathvalappil, Rajith; Kurungot, Sreekumar; Nair, Balagopal N; Mohamed, Abdul Azeez Peer; Anilkumar, Gopinathan M; Yamaguchi, Takeo; Hareesh, U S

    2016-11-02

    Nitrogen containing mesoporous carbon obtained by the pyrolysis of graphene oxide (GO) wrapped ZIF-8 (Zeolitic Imidazolate Frameworks-8) micro crystals is demonstrated to be an efficient catalyst for the oxygen reduction reaction (ORR). ZIF-8 synthesis in the presence of GO sheets helped to realize layers of graphene oxide over ZIF-8 microcrystals and the sphere-like structures thus obtained, on heat treatment, transformed to highly porous carbon with a nitrogen content of about 6.12% and surface area of 502 m(2)/g. These catalysts with a typical micromeso porous architecture exhibited an onset potential of 0.88Vvs RHE in a four electron pathway and also demonstrated superior durability in alkaline medium compared to that of the commercial Pt/C catalyst. The N-doped porous carbon derived from GO sheathed ZIF-8 core-shell structures could therefore be employed as an efficient electrocatalyst for fuel cell applications.

  13. Metabolic engineering of Serratia marcescens with the bacterial hemoglobin gene: alterations in fermentation pathways.

    PubMed

    Wei, M L; Webster, D A; Stark, B C

    1998-09-05

    Serratia marcescens was transformed with plasmid vector pUC8 or pUC8 containing the bacterial (Vitreoscilla) hemoglobin gene (vgb) on either a 2.3-kb fragment (pUC8:15) or 1.4-kb fragment (pUC8:16) of Vitreoscilla DNA. The vgb-bearing strains were compared with the pUC8 transformant and untransformed S. marcescens with respect to growth in Luria-Bertani (LB) broth supplemented with glucose or casein acid hydrolysate. Growth (on a viable cell basis) was similar to that in unsupplemented LB. Total acid excretion (as estimated by medium pH) was similar for all strains in both LB plus 2% casein acid hydrolysate and LB without additions. Acid excretion in LB plus 2% glucose was somewhat greater at up to 10 h in culture for the two vgb-bearing strains; from 10 to 26 h in culture, the pHs of these cultures continued to decrease (to 4.1-4.2), whereas those of the non-vgb-bearing strains returned to near the starting pH (7.4-7.8). Concomitantly, after 26 h of culture in LB plus 2% glucose, the non-vgb-bearing strains had produced about 15 times as much acetoin and about three to four times as much 2,3-butanediol as the vgb-bearing strains. In general, for all strains, much more acetoin and 2,3-butanediol were produced in LB plus 2% glucose than in unsupplemented LB. The exception was acetoin production by the strain bearing vgb on plasmid pUC8:15; after 26 h of culture in LB without supplementation it was between three and four times that of the other strains, and about 50% higher than its level in LB plus 2% glucose. When grown with the 2% casein acid hydrolysate supplement, the strain bearing vgb on plasmid pUC8:15 produced much more acetoin and 2,3-butanediol than the other strains after 26 hours in culture. The results confirm that vgb can significantly alter carbon metabolism and suggest that the use of vgb technology for directed metabolic engineering may be a complicated process, depending in part on medium composition. Copyright 1998 John Wiley & Sons, Inc.

  14. Metabolic Engineering and Modeling of Metabolic Pathways to Improve Hydrogen Production by Photosynthetic Bacteria

    SciTech Connect

    Jiao, Y.; Navid, A.

    2014-12-19

    traits act as the biocatalysts of the process designed to both enhance the system efficiency of CO2 fixation and the net hydrogen production rate. Additionally we applied metabolic engineering approaches guided by computational modeling for the chosen model microorganisms to enable efficient hydrogen production.

  15. Advances in the engineering science of immiscible polymer blends: A powder route for delicate polymer precursors and a highly renewable polyamide/terephthalate blend system

    NASA Astrophysics Data System (ADS)

    Giancola, Giorgiana

    Powder processing of thermoplastic polymer composites is an effective way to achieve a high level of component homogenization in raw blends prior to melt processing, thus reducing the thermal and shear stress on the components. Polymer blends can be prepared that would otherwise not be possible due to thermodynamic incompatibility. Evaluation of this concept was conducted by processing PMMA and HDPE micron sized powders which were characterized using DSC and rheology. Optical microscopy and SEM, showed that high-quality, fine domain sized blends can be made by the compression molding process. Silica marker spheres were used to qualitatively assess the level dispersive mixing. EDS chemical analysis was effective in providing image contrast between PMMA and HDPE based on the carbonyl and ester oxygen. EDS image maps, combined with secondary electron images show that compression molding of blended powder precursors produces composites of comparable homogeneity and domain size as extrusion processing. FTIR proved valuable when assessing the intimacy of the constituents at the interface of the immiscible domains. The formation of an in-situ, PMMA nano-network structure resulting from solvent extraction and redeposition using DMF was uniquely found on the surface of these immiscible polymer blends. This work has shown that powder processing of polymers is an effective means to melt processed fragile polymers to high quality blends. Recently, efforts towards the development of sustainable materials have evolved due in part to the increase in price and limited supply of crude oil. Immiscible polymer blending is a paradigm that enables synergistic material performance in certain instances where the composite properties are superior to the sum of the constituents. The addition of PA6,10 to PTT offers an opportunity to increase the bio-based content of PTT while simultaneously maintaining or improving mechanical properties. PA6,10 and PTT are immiscible polymers that can be

  16. The development of Sustainability Graduate Community (SGC) as a learning pathway for sustainability education - a framework for engineering programmes in Malaysia Technical Universities Network (MTUN)

    NASA Astrophysics Data System (ADS)

    Johan, Kartina; Mohd Turan, Faiz

    2016-11-01

    ‘Environmental and sustainability’ is one of the Program Outcome (PO) designated by the Board of Engineers Malaysia (BEM) as one of the accreditation program requirement. However, to-date the implementation of sustainability elements in engineering programme in the technical universities in Malaysia is within individual faculty's curriculum plan and lack of university-level structured learning pathway, which enable all students to have access to an education in sustainability across all disciplines. Sustainability Graduate Community (SGC) is a framework designed to provide a learning pathway in the curriculum of engineering programs to inculcate sustainability education among engineering graduates. This paper aims to study the required attributes in Sustainability Graduate Community (SGC) framework to produce graduates who are not just engineers but also skilful in sustainability competencies using Global Project Management (GPM) P5 Standard for Sustainability. The development of the conceptual framework is to provide a constructive teaching and learning plan for educators and policy makers to work on together in developing the Sustainability Graduates (SG), the new kind of graduates from Malaysia Technical Universities Network (MTUN) in Malaysia who are literate in sustainability practices. The framework also support the call for developing holistic students based on Malaysian Education Blueprint (Higher Education) and address the gap between the statuses of engineering qualification to the expected competencies from industries in Malaysia in particular by achieving the SG attributes outlined in the framework

  17. Tools for metabolic engineering in Streptomyces.

    PubMed

    Bekker, Valerie; Dodd, Amanda; Brady, Dean; Rumbold, Karl

    2014-01-01

    During the last few decades, Streptomycetes have shown to be a very important and adaptable group of bacteria for the production of various beneficial secondary metabolites. These secondary metabolites have been of great interest in academia and the pharmaceutical industries. To date, a vast variety of techniques and tools for metabolic engineering of relevant structural biosynthetic gene clusters have been developed. The main aim of this review is to summarize and discuss the published literature on tools for metabolic engineering of Streptomyces over the last decade. These strategies involve precursor engineering, structural and regulatory gene engineering, and the up or downregulation of genes, as well as genome shuffling and the use of genome scale metabolic models, which can reconstruct bacterial metabolic pathways to predict phenotypic changes and hence rationalize engineering strategies. These tools are continuously being developed to simplify the engineering strategies for this vital group of bacteria.

  18. Tools for metabolic engineering in Streptomyces

    PubMed Central

    Bekker, Valerie; Dodd, Amanda; Brady, Dean; Rumbold, Karl

    2014-01-01

    During the last few decades, Streptomycetes have shown to be a very important and adaptable group of bacteria for the production of various beneficial secondary metabolites. These secondary metabolites have been of great interest in academia and the pharmaceutical industries. To date, a vast variety of techniques and tools for metabolic engineering of relevant structural biosynthetic gene clusters have been developed. The main aim of this review is to summarize and discuss the published literature on tools for metabolic engineering of Streptomyces over the last decade. These strategies involve precursor engineering, structural and regulatory gene engineering, and the up or downregulation of genes, as well as genome shuffling and the use of genome scale metabolic models, which can reconstruct bacterial metabolic pathways to predict phenotypic changes and hence rationalize engineering strategies. These tools are continuously being developed to simplify the engineering strategies for this vital group of bacteria. PMID:25482230

  19. Amyloid precursor protein cooperates with c-KIT mutation/overexpression to regulate cell apoptosis in AML1-ETO-positive leukemia via the PI3K/AKT signaling pathway.

    PubMed

    Yu, Guopan; Yin, Changxin; Jiang, Ling; Zheng, Zhongxin; Wang, Zhixiang; Wang, Chunli; Zhou, Hongsheng; Jiang, Xuejie; Liu, Qifa; Meng, Fanyi

    2016-09-01

    It has been reported that amyloid precursor protein (APP) promotes cell proliferation and metastasis in various types of solid cancers. In our previous study, we showed that APP is highly expressed and regulates leukemia cell migration in AML1‑ETO-positive (AE) leukemia. Whether APP is involved in the regulation of AE leukemia cell proliferation or apoptosis is unclear. In the present study we focused on the correlation of APP with c-KIT mutation/overexpression and cell proliferation and apoptosis in AE leukemia. APP and c-KIT expression detected by quantitative real-time (qPCR) method, and c-KIT mutations screened using PCR in bone marrow cells from 65 patients with AE leukemia before their first chemotherapy, were simultaneously assessed. Furthermore, the Kasumi-1 cell line was chosen as the cell model, and the APP gene was knocked down using siRNA technology. The correlation of cell cycle distribution and apoptosis and c-Kit expression with APP expression levels, as well as the regulation of the PI3K/AKT signaling pathway by APP were analyzed in the Kasumi-1 cell line. The results showed that peripheral white blood cell counts (P=0.008) and bone marrow cellularity (P=0.031), but not bone marrow blasts, were correlated with APP expression. Moreover, the patients with APP high expression had a significantly higher incidence of c-KIT mutations (P<0.001) and increased levels of c-KIT expression (P=0.001) and poorer disease outcome. In the Kasumi-1 cell line, as compared with the wild-type and negative control cells, cell apoptosis, both early (P<0.001) and late (P<0.001), was significantly increased when the APP gene was knocked down, concomitant with reduced levels of anti-apoptotic protein Bcl-2 and increased levels of caspase-3 and -9, however, no apparent change was observed in the cell cycle distribution (P>0.05). Moreover, the knockdown of APP markedly decreased c-KIT expression at both the transcription (as evidenced by qPCR analysis) and translation

  20. Synthetic carbon precursor materials

    SciTech Connect

    Frame, B.J.

    1986-03-01

    Synthetic carbon precursor systems offer advantages over natural petroleum and coal-tar pitch precursors in that they can reproducibly provide a material with a known and uniform composition. They also permit controlled modifications of the derived carbon's properties through variations in the precursor's properties and processing conditions. Extensive research efforts at Oak Ridge have been directed toward the production and characterization of synthetic carbon precursors and the correlations that exist between carbon precursor properties and the properties of the ultimate carbon. This report describes how synthetic carbon precursors can be used to tailor and develop reproducible carbon structures for advanced materials applications. The potential and capability for performing carbon material development at Oak Ridge is also described.

  1. Modular pathway engineering of Corynebacterium glutamicum for production of the glutamate-derived compounds ornithine, proline, putrescine, citrulline, and arginine.

    PubMed

    Jensen, Jaide V K; Eberhardt, Dorit; Wendisch, Volker F

    2015-11-20

    The glutamate-derived bioproducts ornithine, citrulline, proline, putrescine, and arginine have applications in the food and feed, cosmetic, pharmaceutical, and chemical industries. Corynebacterium glutamicum is not only an excellent producer of glutamate but also of glutamate-derived products. Here, engineering targets beneficial for ornithine production were identified and the advantage of rationally constructing a platform strain for the production of the amino acids citrulline, proline, and arginine, and the diamine putrescine was demonstrated. Feedback alleviation of N-acetylglutamate kinase, tuning of the promoter of glutamate dehydrogenase gene gdh, lowering expression of phosphoglucoisomerase gene pgi, along with the introduction of a second copy of the arginine biosynthesis operon argCJB(A49V,M54V)D into the chromosome resulted in a C. glutamicum strain producing ornithine with a yield of 0.52 g ornithine per g glucose, an increase of 71% as compared to the parental ΔargFRG strain. Strains capable of producing 0.41 g citrulline per g glucose, 0.29 g proline per g glucose, 0.30 g arginine per g glucose, and 0.17 g putrescine per g glucose were derived from the ornithine-producing platform strain by plasmid-based overexpression of appropriate pathway modules with one to three genes.

  2. Extending carbon chain length of 1-butanol pathway for 1-hexanol synthesis from glucose by engineered Escherichia coli.

    PubMed

    Dekishima, Yasumasa; Lan, Ethan I; Shen, Claire R; Cho, Kwang Myung; Liao, James C

    2011-08-03

    An Escherichia coli strain was engineered to synthesize 1-hexanol from glucose by extending the coenzyme A (CoA)-dependent 1-butanol synthesis reaction sequence catalyzed by exogenous enzymes. The C4-acyl-CoA intermediates were first synthesized via acetyl-CoA acetyltransferase (AtoB), 3-hydroxybutyryl-CoA dehydrogenase (Hbd), crotonase (Crt), and trans-enoyl-CoA reductase (Ter) from various organisms. The butyryl-CoA synthesized was further extended to hexanoyl-CoA via β-ketothiolase (BktB), Hbd, Crt, and Ter. Finally, hexanoyl-CoA was reduced to yield 1-hexanol by aldehyde/alcohol dehydrogenase (AdhE2). Enzyme activities for the C6 intermediates were confirmed by assays using HPLC and GC. 1-Hexanol was secreted to the fermentation medium under anaerobic conditions. Furthermore, co-expressing formate dehydrogenase (Fdh) from Candida boidinii increased the 1-hexanol titer. This demonstration of 1-hexanol production by extending the 1-butanol pathway provides the possibility to produce other medium chain length alcohols using the same strategy.

  3. Application of the Synechococcus nirA Promoter To Establish an Inducible Expression System for Engineering the Synechocystis Tocopherol Pathway

    PubMed Central

    Qi, Qungang; Hao, Ming; Ng, Wing-on; Slater, Steven C.; Baszis, Susan R.; Weiss, James D.; Valentin, Henry E.

    2005-01-01

    Tocopherols are important antioxidants in lipophilic environments. They are synthesized by plants and some photosynthetic bacteria. Recent efforts to analyze and engineer tocopherol biosynthesis led to the identification of Synechocystis sp. strain PCC 6803 as a well-characterized model system. To facilitate the identification of the rate-limiting step(s) in the tocopherol biosynthetic pathway through the modulation of transgene expression, we established an inducible expression system in Synechocystis sp. strain PCC 6803. The nirA promoter from Synechococcus sp. strain PCC 7942, which is repressed by ammonium and induced by nitrite (S.-I. Maeda et al., J. Bacteriol. 180:4080-4088, 1998), was chosen to drive the expression of Arabidopsis thaliana p-hydroxyphenylpyruvate dioxygenase. The enzyme catalyzes the formation of homogentisic acid from p-hydroxyphenylpyruvate. Expression of this gene under inducing conditions resulted in up to a fivefold increase in total tocopherol levels with up to 20% of tocopherols being accumulated as tocotrienols. The culture supernatant of these cultures exhibited a brown coloration, a finding indicative of homogentisic acid excretion. Enzyme assays, functional complementation, reverse transcription-PCR, and Western blot analysis confirmed transgene expression under inducing conditions only. These data demonstrate that the nirA promoter can be used to control transgene expression in Synechocystis and that homogentisic acid is a limiting factor for tocopherol synthesis in Synechocystis sp. strain PCC 6803. PMID:16204475

  4. Application of the Synechococcus nirA promoter to establish an inducible expression system for engineering the Synechocystis tocopherol pathway.

    PubMed

    Qi, Qungang; Hao, Ming; Ng, Wing-On; Slater, Steven C; Baszis, Susan R; Weiss, James D; Valentin, Henry E

    2005-10-01

    Tocopherols are important antioxidants in lipophilic environments. They are synthesized by plants and some photosynthetic bacteria. Recent efforts to analyze and engineer tocopherol biosynthesis led to the identification of Synechocystis sp. strain PCC 6803 as a well-characterized model system. To facilitate the identification of the rate-limiting step(s) in the tocopherol biosynthetic pathway through the modulation of transgene expression, we established an inducible expression system in Synechocystis sp. strain PCC 6803. The nirA promoter from Synechococcus sp. strain PCC 7942, which is repressed by ammonium and induced by nitrite (S.-I. Maeda et al., J. Bacteriol. 180:4080-4088, 1998), was chosen to drive the expression of Arabidopsis thaliana p-hydroxyphenylpyruvate dioxygenase. The enzyme catalyzes the formation of homogentisic acid from p-hydroxyphenylpyruvate. Expression of this gene under inducing conditions resulted in up to a fivefold increase in total tocopherol levels with up to 20% of tocopherols being accumulated as tocotrienols. The culture supernatant of these cultures exhibited a brown coloration, a finding indicative of homogentisic acid excretion. Enzyme assays, functional complementation, reverse transcription-PCR, and Western blot analysis confirmed transgene expression under inducing conditions only. These data demonstrate that the nirA promoter can be used to control transgene expression in Synechocystis and that homogentisic acid is a limiting factor for tocopherol synthesis in Synechocystis sp. strain PCC 6803.

  5. Exploiting mixtures of H2, CO2, and O2 for improved production of methacrylate precursor 2-hydroxyisobutyric acid by engineered Cupriavidus necator strains.

    PubMed

    Przybylski, Denise; Rohwerder, Thore; Dilßner, Cornelia; Maskow, Thomas; Harms, Hauke; Müller, Roland H

    2015-03-01

    Current manufacturing of most bulk chemicals through petrochemical routes considerably contributes to common concerns over the depletion of fossil carbon sources and greenhouse gas emissions. Sustainable future production of commodities thus requires the shift to renewable feedstocks in combination with established or newly developed synthesis routes. In this study, the potential of Cupriavidus necator H16 for autotrophic synthesis of the building block chemical 2-hydroxyisobutyric acid (2-HIBA) is evaluated. A novel biosynthetic pathway was implemented by heterologous expression of the 2-hydroxyisobutyryl-coenzyme A (2-HIB-CoA) mutase from Aquincola tertiaricarbonis L108, relying on a main intermediate of strain H16's C4 overflow metabolism, 3-hydroxybutyryl-CoA. The intention was to direct the latter to 2-HIBA instead or in addition to poly-3-hydroxybutyrate (PHB). Autotrophic growth and 2-HIBA (respectively, PHB) synthesis of wild-type and PHB-negative mutant strains were investigated producing maximum 2-HIBA titers of 3.2 g L(-1) and maximum specific 2-HIBA synthesis rates (q 2-HIBA) of about 16 and 175 μmol g(-1) h(-1), respectively. The obtained specific productivity was the highest reported to date for mutase-dependent 2-HIBA synthesis from heterotrophic and autotrophic substrates. Furthermore, expression of a G protein chaperone (MeaH) in addition to the 2-HIB-CoA mutase subunits yielded improved productivity. Analyzing the inhibition of growth and product synthesis due to substrate availability and product accumulation revealed a strong influence of 2-HIBA, when cells were cultivated at high titers. Nevertheless, the presented results imply that at the time the autotrophic synthesis route is superior to thus far established heterotrophic routes for production of 2-HIBA with C. necator.

  6. Engineering of a modular and synthetic phosphoketolase pathway for photosynthetic production of acetone from CO2 in Synechococcus elongatus PCC 7942 under light and aerobic condition.

    PubMed

    Chwa, Jun-Won; Kim, Wook Jin; Sim, Sang Jun; Um, Youngsoon; Woo, Han Min

    2016-08-01

    Capture and conversion of CO2 to valuable chemicals is intended to answer global challenges on environmental issues, climate change and energy security. Engineered cyanobacteria have been enabled to produce industry-relevant chemicals from CO2 . However, the final products from cyanobacteria have often been mixed with fermented metabolites during dark fermentation. In this study, our engineering of Synechococcus elongatus PCC 7942 enabled continuous conversion of CO2 to volatile acetone as sole product. This process occurred during lighted, aerobic culture via both ATP-driven malonyl-CoA synthesis pathway and heterologous phosphoketolase (PHK)-phosphotransacetylase (Pta) pathway. Because of strong correlations between the metabolic pathways of acetate and acetone, supplying the acetyl-CoA directly from CO2 in the engineered strain, led to sole production of acetone (22.48 mg/L ± 1.00) without changing nutritional constraints, and without an anaerobic shift. Our engineered S. elongatus strains, designed for acetone production, could be modified to create biosolar cell factories for sustainable photosynthetic production of acetyl-CoA-derived biochemicals.

  7. An engineered heparin-binding form of VEGF-E (hbVEGF-E). Biological effects in vitro and mobilizatiion of precursor cells.

    PubMed

    Heil, Matthias; Mitnacht-Krauss, Rita; Issbrücker, Katja; van den Heuvel, Joop; Dehio, Christoph; Schaper, Wolfgang; Clauss, Matthias; Weich, Herbert A

    2003-01-01

    Vascular endothelial growth factor (VEGF-A) is the founding member of a family of angiogenic proteins with various binding abilities to three cognate VEGF receptors. Previously, a gene encoding from the genome of parapox orf virus (OV) with about 25% amino acid identity to mammalian VEGF-A was named VEGF-E and shown to bind and specifically activate the vascular endothelial growth factor receptor VEGFR-2 (KDR/flk-1). Here, we have generated a novel heparin-binding form of VEGF-E by introducing the heparin-domain of the human VEGF-A(165) splice variant into the viral VEGF-E protein. Recombinant heparin-binding VEGF-E (hbVEGF-E) is shown to stimulate proliferation and sprout formation of macro- and microvascular endothelial cells to a similar extent as the parental OV-VEGF-E but fails to activate peripheral mononuclear cells. However, hbVEGF-E is more potent in binding competition assays with primary human endothelial cells when compared to the OV-VEGF-E. This can be explained by our finding that binding of hbVEGF-E but not of parental OV-VEGF-E to the VEGFR-2 is strongly increased by the addition of neuropilin-1 (NP-1), a cognate co-receptor for VEGF-A. The engineered hbVEGF-E was compared with the VEGFR-1 selective and also heparin-binding form of placenta growth factor (PlGF-2) in vivo. Both heparin-binding homologues induced mobilization of endothelial progenitor cells from the bone marrow and gave rise to similar colony numbers of myeloic cells in a colony-forming assay. These findings suggest that both VEGFR-1 and VEGFR-2 are involved in stem cell mobilization.

  8. Use of plankton-derived vitamin B1 precursors, especially thiazole-related precursor, by key marine picoeukaryotic phytoplankton.

    PubMed

    Paerl, Ryan W; Bouget, Francois-Yves; Lozano, Jean-Claude; Vergé, Valérie; Schatt, Philippe; Allen, Eric E; Palenik, Brian; Azam, Farooq

    2017-03-01

    Several cosmopolitan marine picoeukaryotic phytoplankton are B1 auxotrophs requiring exogenous vitamin B1 or precursor to survive. From genomic evidence, representatives of picoeukaryotic phytoplankton (Ostreococcus and Micromonas spp.) were predicted to use known thiazole and pyrimidine B1 precursors to meet their B1 demands, however, recent culture-based experiments could not confirm this assumption. We hypothesized these phytoplankton strains could grow on precursors alone, but required a thiazole-related precursor other the well-known and extensively tested 4-methyl-5-thiazoleethanol. This hypothesis was tested using bioassays and co-cultures of picoeukaryotic phytoplankton and bacteria. We found that specific B1-synthesizing proteobacteria and phytoplankton are sources of a yet-to-be chemically identified thiazole-related precursor(s) that, along with pyrimidine B1 precursor 4-amino-5-hydroxymethyl-2-methylpyrimidine, can support growth of Ostreococcus spp. (also Micromonas spp.) without B1. We additionally found that the B1-synthesizing plankton do not require contact with picoeukaryotic phytoplankton cells to produce thiazole-related precursor(s). Experiments with wild-type and genetically engineered Ostreococcus lines revealed that the thiazole kinase, ThiM, is required for growth on precursors, and that thiazole-related precursor(s) accumulate to appreciable levels in the euphotic ocean. Overall, our results point to thiazole-related B1 precursors as important micronutrients promoting the survival of abundant phytoplankton influencing surface ocean production and biogeochemical cycling.

  9. Use of plankton-derived vitamin B1 precursors, especially thiazole-related precursor, by key marine picoeukaryotic phytoplankton

    PubMed Central

    Paerl, Ryan W; Bouget, Francois-Yves; Lozano, Jean-Claude; Vergé, Valérie; Schatt, Philippe; Allen, Eric E; Palenik, Brian; Azam, Farooq

    2017-01-01

    Several cosmopolitan marine picoeukaryotic phytoplankton are B1 auxotrophs requiring exogenous vitamin B1 or precursor to survive. From genomic evidence, representatives of picoeukaryotic phytoplankton (Ostreococcus and Micromonas spp.) were predicted to use known thiazole and pyrimidine B1 precursors to meet their B1 demands, however, recent culture-based experiments could not confirm this assumption. We hypothesized these phytoplankton strains could grow on precursors alone, but required a thiazole-related precursor other the well-known and extensively tested 4-methyl-5-thiazoleethanol. This hypothesis was tested using bioassays and co-cultures of picoeukaryotic phytoplankton and bacteria. We found that specific B1-synthesizing proteobacteria and phytoplankton are sources of a yet-to-be chemically identified thiazole-related precursor(s) that, along with pyrimidine B1 precursor 4-amino-5-hydroxymethyl-2-methylpyrimidine, can support growth of Ostreococcus spp. (also Micromonas spp.) without B1. We additionally found that the B1-synthesizing plankton do not require contact with picoeukaryotic phytoplankton cells to produce thiazole-related precursor(s). Experiments with wild-type and genetically engineered Ostreococcus lines revealed that the thiazole kinase, ThiM, is required for growth on precursors, and that thiazole-related precursor(s) accumulate to appreciable levels in the euphotic ocean. Overall, our results point to thiazole-related B1 precursors as important micronutrients promoting the survival of abundant phytoplankton influencing surface ocean production and biogeochemical cycling. PMID:27935586

  10. Polyimide Precursor Solid Residuum

    NASA Technical Reports Server (NTRS)

    Weiser, Erik S. (Inventor); St.Clair, Terry L. (Inventor); Echigo, Yoshiaki (Inventor); Kaneshiro, Hisayasu (Inventor)

    2001-01-01

    A polyimide precursor solid residuum is an admixture of an aromatic dianhydride or derivative thereof and an aromatic diamine or derivative thereof plus a complexing agent, which is complexed with the admixture by hydrogen bonding. The polyimide precursor solid residuum is effectively employed in the preparation of polyimide foam and the fabrication of polyimide foam structures.

  11. Precursors and BRST symmetry

    NASA Astrophysics Data System (ADS)

    de Boer, Jan; Freivogel, Ben; Kabir, Laurens; Lokhande, Sagar F.

    2017-07-01

    In the AdS/CFT correspondence, bulk information appears to be encoded in the CFT in a redundant way. A local bulk field corresponds to many different non-local CFT operators (precursors). We recast this ambiguity in the language of BRST symmetry, and propose that in the large N limit, the difference between two precursors is a BRST exact and ghost-free term. This definition of precursor ambiguities has the advantage that it generalizes to any gauge theory. Using the BRST formalism and working in a simple model with global symmetries, we re-derive a precursor ambiguity appearing in earlier work. Finally, we show within this model that the obtained ambiguity has the right number of parameters to explain the freedom to localize precursors within different spatial regions of the boundary order by order in the large N expansion.

  12. Proteome Profiling Reveals Potential Toxicity and Detoxification Pathways Following Exposure of BEAS-2B Cells to Engineered Nanoparticle Titanium Dioxide

    EPA Science Inventory

    Identification of toxicity pathways linked to chemical -exposure is critical for a better understanding of biological effects of the exposure, toxic mechanisms, and for enhancement of the prediction of chemical toxicity and adverse health outcomes. To identify toxicity pathways a...

  13. Proteome Profiling Reveals Potential Toxicity and Detoxification Pathways Following Exposure of BEAS-2B Cells to Engineered Nanoparticle Titanium Dioxide

    EPA Science Inventory

    Identification of toxicity pathways linked to chemical -exposure is critical for a better understanding of biological effects of the exposure, toxic mechanisms, and for enhancement of the prediction of chemical toxicity and adverse health outcomes. To identify toxicity pathways a...

  14. Comparative analysis of enzyme and pathway engineering strategies for 5FC-mediated suicide gene therapy applications.

    PubMed

    Johnson, A J; Ardiani, A; Sanchez-Bonilla, M; Black, M E

    2011-08-01

    Bacterial- and yeast- encoded cytosine deaminases (bCD and yCD, respectively) are widely investigated suicide enzymes used in combination with the prodrug 5-fluorocytosine (5FC) to achieve localized cytotoxicity. Yet characteristics such as poor turnover rates of 5FC (bCD) and enzyme thermolability (yCD) preclude their full therapeutic potential. We previously applied regio-specific random mutagenesis and computational design to create novel bCD and yCD variants with altered substrate preference (bCD(1525)) or increased thermostability (yCD(double), yCD(triple)) to aid in overcoming these limitations. Others have utilized pathway engineering in which the microbial enzyme uracil phosphoribosyltransferase (UPRT) is fused with its respective CD, creating bCD/bUPRT or yCD/yUPRT. In this study, we evaluated whether the overlay of CD mutants onto their respective CD/UPRT fusion construct would further enhance 5FC activation, cancer cell prodrug sensitivity and bystander activity in vitro and in vivo. We show that all mutant fusion enzymes allowed for significant reductions in IC(50) values relative to their mutant CD counterparts. However, in vivo the CD mutants displayed enhanced tumor growth inhibition capacity relative to the mutant fusions, with bCD(1525) displaying the greatest tumor growth inhibition and bystander activity. In summary, mutant bCD(1525) appears to be the most effective of all bacterial or yeast CD or CD/UPRT enzymes examined and as such is likely to be the best choice to significantly improve the clinical outcome of CD/5FC suicide gene therapy applications.

  15. Engineering ESPT pathways based on structural analysis of LSSmKate red fluorescent proteins with large Stokes shift

    PubMed Central

    Piatkevich, Kiryl D.; Malashkevich, Vladimir N.; Almo, Steven C.; Verkhusha, Vladislav V.

    2010-01-01

    LSSmKate1 and LSSmKate2 are monomeric red fluorescent proteins (RFPs) with large Stokes shifts (LSSs) which allows for efficient separation of absorbance and emission maxima, as well as for excitation with conventional two-photon laser sources. These LSSmKates differ by a single amino acid substitution at position 160 and exhibit absorbance maxima around 460 nm, corresponding to a neutral DsRed-like chromophore. However, excitation at 460 nm leads to fluorescence emission above 600 nm. Structures of LSSmKate1 and LSSmKate2, determined at resolutions of 2.0 Å and 1.5 Å, respectively, revealed that the predominant DsRed-chromophore configurations are cis for LSSmKate1 but trans for LSSmKate2. Crystallographic and mutagenesis analyses, as well as isotope and temperature dependences suggest that an excited state proton transfer (ESPT) is responsible for the LSSs observed in LSSmKates. Hydrogen bonding between the chromophore hydroxyl and Glu160 in LSSmKate1 and a proton relay involving the chromophore tyrosine hydroxyl, Ser158 and the Asp160 carboxylate in LSSmKate2 represent the putative ESPT pathways. Comparisons with mKeima LSS RFP suggest that similar proton relays could be engineered in other FPs. Accordingly, we mutated positions 158 and 160 in several conventional red-shifted FPs, including mNeptune, mCherry, mStrawberry, mOrange and mKO, and the resulting FP variants exhibited LSS fluorescence emission in a wide range of wavelengths from 560 to 640 nm. These data suggest that different chromophores formed by distinct tripeptides in different environments can be rationally modified to yield RFPs with novel photochemical properties. PMID:20681709

  16. Engineering ESPT pathways based on structural analysis of LSSmKate red fluorescent proteins with large Stokes shift.

    PubMed

    Piatkevich, Kiryl D; Malashkevich, Vladimir N; Almo, Steven C; Verkhusha, Vladislav V

    2010-08-11

    LSSmKate1 and LSSmKate2 are monomeric red fluorescent proteins (RFPs) with large Stokes shifts (LSSs), which allows for efficient separation of absorbance and emission maxima, as well as for excitation with conventional two-photon laser sources. These LSSmKates differ by a single amino acid substitution at position 160 and exhibit absorbance maxima around 460 nm, corresponding to a neutral DsRed-like chromophore. However, excitation at 460 nm leads to fluorescence emission above 600 nm. Structures of LSSmKate1 and LSSmKate2, determined at resolutions of 2.0 and 1.5 A, respectively, revealed that the predominant DsRed-chromophore configurations are cis for LSSmKate1 but trans for LSSmKate2. Crystallographic and mutagenesis analyses, as well as isotope and temperature dependences, suggest that an excited-state proton transfer (ESPT) is responsible for the LSSs observed in LSSmKates. Hydrogen bonding between the chromophore hydroxyl and Glu160 in LSSmKate1 and a proton relay involving the chromophore tyrosine hydroxyl, Ser158, and the Asp160 carboxylate in LSSmKate2 represent the putative ESPT pathways. Comparisons with mKeima LSS RFP suggest that similar proton relays could be engineered in other FPs. Accordingly, we mutated positions 158 and 160 in several conventional red-shifted FPs, including mNeptune, mCherry, mStrawberry, mOrange, and mKO, and the resulting FP variants exhibited LSS fluorescence emission in a wide range of wavelengths from 560 to 640 nm. These data suggest that different chromophores formed by distinct tripeptides in different environments can be rationally modified to yield RFPs with novel photochemical properties.

  17. Precursors to Lymphoproliferative Malignancies

    PubMed Central

    Goldin, Lynn R.; McMaster, Mary L.; Caporaso, Neil E.

    2013-01-01

    We review monoclonal B-cell lymphocytosis (MBL) as a precursor to chronic lymphocytic leukemia and monoclonal gammopathy of undetermined significance (MGUS) as a precursor to plasma cell disorders. These conditions are present in the general population and increase with age. These precursors aggregate with lymphoproliferative malignancies in families suggesting shared inheritance. MBL and MGUS may share some of the same risk factors as their related malignancies but data are limited. While these conditions are characterized by enhanced risk for the associated malignancy, the majority of individuals with these conditions do not progress to malignancy. A key focus for current work is to identify markers that predict progression to malignancy. PMID:23549397

  18. Evaluation of Ethanol Production Activity by Engineered Saccharomyces cerevisiae Fermenting Cellobiose through the Phosphorolytic Pathway in Simultaneous Saccharification and Fermentation of Cellulose.

    PubMed

    Lee, Won-Heong; Jin, Yong-Su

    2017-09-28

    In simultaneous saccharification and fermentation (SSF) for production of cellulosic biofuels, engineered Saccharomyces cerevisiae capable of fermenting cellobiose has provided several benefits, such as lower enzyme costs and faster fermentation rate compared with wild-type S. cerevisiae fermenting glucose. In this study, the effects of an alternative intracellular cellobiose utilization pathway-a phosphorolytic pathway based on a mutant cellodextrin transporter (CDT-1 (F213L)) and cellobiose phosphorylase (SdCBP)-was investigated by comparing with a hydrolytic pathway based on the same transporter and an intracellular β-glucosidase (GH1-1) for their SSF performances under various conditions. Whereas the phosphorolytic and hydrolytic cellobiose-fermenting S. cerevisiae strains performed similarly under the anoxic SSF conditions, the hydrolytic S. cerevisiae performed slightly better than the phosphorolytic S. cerevisiae under the microaerobic SSF conditions. Nonetheless, the phosphorolytic S. cerevisiae expressing the mutant CDT-1 showed better ethanol production than the glucose-fermenting S. cerevisiae with an extracellular β-glucosidase, regardless of SSF conditions. These results clearly prove that introduction of the intracellular cellobiose metabolic pathway into yeast can be effective on cellulosic ethanol production in SSF. They also demonstrate that enhancement of cellobiose transport activity in engineered yeast is the most important factor affecting the efficiency of SSF of cellulose.

  19. Increased H2 production in the cyanobacterium Synechocystis sp. strain PCC 6803 by redirecting the electron supply via genetic engineering of the nitrate assimilation pathway.

    PubMed

    Baebprasert, Wipawee; Jantaro, Saowarath; Khetkorn, Wanthanee; Lindblad, Peter; Incharoensakdi, Aran

    2011-09-01

    The unicellular cyanobacterium Synechocystis sp. strain PCC 6803 contains a single bidirectional NiFe-Hox-hydrogenase, which evolves hydrogen under certain environmental conditions. The nitrate assimilation pathway is a potential competing pathway that may reduce the electron flow to the hydrogenase and thereby limit hydrogen production. To improve H(2) production, the nitrate assimilation pathway was disrupted by genetic engineering to redirect the electron flow towards the Hox-hydrogenase. Mutant strains disrupted in either nitrate reductase (ΔnarB) or nitrite reductase (ΔnirA) or both nitrate reductase and nitrite reductase (ΔnarB:ΔnirA) were constructed and tested for their ability to produce hydrogen. H(2) production and Hox-hydrogenase activities in all the mutant strains were higher than those in wild-type. Highest H(2) production was observed in the ΔnarB:ΔnirA strain. Small changes were observed for Hox-hydrogenase enzyme activities and only minor changes in transcript levels of hoxH and hoxY were not correlated with H(2) production. The results suggest that the high rate of H(2) production observed in the ΔnarB:ΔnirA strain of the cyanobacterium Synechocystis sp. strain PCC 6803 is the result of redirecting the electron supply from the nitrate assimilation pathway, through genetic engineering, towards the Hox-hydrogenase.

  20. Diverse Pathways to the Phd: a Study of Women Faculty in the Sciences and Engineering at a Hispanic-Serving Institution

    NASA Astrophysics Data System (ADS)

    Ryabov, Igor; Witherspoon, Patricia D.

    The National Science Foundation's ADVANCE grants for Institutional Transformation have been awarded to institutions to study, and to implement programs to improve, the number of women who are recruited, retained, and promoted as faculty in the sciences and engineering at American universities. At one ADVANCE institution, 57 women faculty in the social sciences, natural sciences, and engineering were interviewed to determine their pathways to the doctoral degree. Through the use of qualitative analyses, this study identified major themes that emerged from the interviews of Anglo, international, and Latina faculty. The findings of the study should contribute to the discourse on underrepresentation of women faculty in the sciences and engineering in general, and Latina faculty in particular.

  1. Computational identification of gene over-expression targets for metabolic engineering of taxadiene production.

    PubMed

    Boghigian, Brett A; Armando, John; Salas, Daniel; Pfeifer, Blaine A

    2012-03-01

    Taxadiene is the first dedicated intermediate in the biosynthetic pathway of the anticancer compound Taxol. Recent studies have taken advantage of heterologous hosts to produce taxadiene and other isoprenoid compounds, and such ventures now offer research opportunities that take advantage of the engineering tools associated with the surrogate host. In this study, metabolic engineering was applied in the context of over-expression targets predicted to improve taxadiene production. Identified targets included genes both within and outside of the isoprenoid precursor pathway. These targets were then tested for experimental over-expression in a heterologous Escherichia coli host designed to support isoprenoid biosynthesis. Results confirmed the computationally predicted improvements and indicated a synergy between targets within the expected isoprenoid precursor pathway and those outside this pathway. The presented algorithm is broadly applicable to other host systems and/or product choices.

  2. Mechanical Compression of Articular Cartilage Induces Chondrocyte Proliferation and Inhibits Proteoglycan Synthesis by Activation of the Erk Pathway: Implications for Tissue Engineering and Regenerative Medicine

    PubMed Central

    Ryan, James A.; Eisner, Eric A.; DuRaine, Grayson; You, Zongbing; Reddi, A. Hari

    2013-01-01

    Articular cartilage is recalcitrant to endogenous repair and regeneration and thus a focus of tissue engineering and regenerative medicine strategies. A pre-requisite for articular cartilage tissue engineering is an understanding of the signal transduction pathways involved in mechanical compression during trauma or disease. We sought to explore the role of the extracellular signal-regulated kinase 1/2 (ERK 1/2) pathway in chondrocyte proliferation and proteoglycan synthesis following acute mechanical compression. Bovine articular cartilage explants were cultured with and without the ERK 1/2 pathway inhibitor PD98059. Cartilage explants were statically loaded to 40% strain at a strain rate of 1−sec for 5 seconds. Control explants were cultured under similar conditions but were not loaded. There were four experimental groups: 1) no load without inhibitor 2) no load with the inhibitor PD98059, 3) loaded without the inhibitor, and 4) loaded with the inhibitor PD98059. Explants were cultured for varying durations, from 5 minutes to 5 days. Explants were then analyzed by biochemical and immunohistochemical methods. Mechanical compression induced phosphorylation of ERK 1/2, and this was attenuated with the ERK 1/2 pathway inhibitor PD98059 in a dose-dependent manner. Chondrocyte proliferation was increased by mechanical compression. This effect was blocked by the inhibitor of the ERK 1/2 pathway. Mechanical compression also led to a decrease in proteoglycan synthesis that was reversed with inhibitor PD98059. In conclusion, the ERK 1/2 pathway is involved in the proliferative and biosynthetic response of chondrocytes following acute static mechanical compression. PMID:19177463

  3. Earthquakes: hydrogeochemical precursors

    USGS Publications Warehouse

    Ingebritsen, Steven E.; Manga, Michael

    2014-01-01

    Earthquake prediction is a long-sought goal. Changes in groundwater chemistry before earthquakes in Iceland highlight a potential hydrogeochemical precursor, but such signals must be evaluated in the context of long-term, multiparametric data sets.

  4. Morphologic and molecular evolutionary pathways of low nuclear grade invasive breast cancers and their putative precursor lesions: further evidence to support the concept of low nuclear grade breast neoplasia family.

    PubMed

    Abdel-Fatah, Tarek M A; Powe, Desmond G; Hodi, Zsolt; Reis-Filho, Jorge S; Lee, Andrew H S; Ellis, Ian O

    2008-04-01

    We have previously provided evidence showing an association between some precursor lesions with low nuclear grade breast carcinomas (LNGBCs). In this study, further immunophenotypic support to our proposed route of pathogenesis of LNGBC and their precursor lesions was provided. Precursor lesions including columnar cell lesions, atypical ductal hyperplasia, ductal carcinoma in situ, usual epithelial hyperplasia, and lobular neoplasia were compared with matching "morphologically normal" terminal lobular duct units and matching invasive carcinoma. The epithelial cells in the putative precursor flat epithelial atypia, atypical ductal hyperplasia, lobular neoplasia, ductal carcinoma in situ lesions, and their coexisting LNGBC were negative for basal and myoepithelial markers, but positive for CK19/18/8, estrogen receptor (ER)-alpha, Bcl-2, and cyclin D1. The ER-alpha/ER-beta expression ratio increased during carcinogenesis, as did expression of cyclin D1 and Bcl-2. p53 immunopositivity was found 3% in LNGBC versus 43% in high nuclear grade breast carcinoma (HNGBC), whereas ataxia telangiectasia mutated expression was absent or reduced in 22% of LNGBC versus 53% of HNGBC cases. In summary, our findings support the concept that flat epithelial atypia is the earliest morphologically identifiable nonobligate precursor lesion of LNGBC. These may represent a family of precursor, in situ and invasive neoplastic lesions belonging to the luminal "A" subclass of breast cancer. The balance between ER-alpha and ER-beta expression may be important in driving cyclin D-1 and Bcl-2 expression. Ataxia telangiectasia mutated may be one of the alternative regulatory mechanisms to TP53 mutation or dysfunction in low-grade and high-grade breast carcinoma. Our findings support the concept that progression of LNGBC to HNGBC (basal-like or HER2+) phenotype is an unlikely biologic phenomenon.

  5. Carotenoid Biosynthesis in Arabidopsis: A Colorful Pathway

    PubMed Central

    Ruiz-Sola, M. Águila; Rodríguez-Concepción, Manuel

    2012-01-01

    Plant carotenoids are a family of pigments that participate in light harvesting and are essential for photoprotection against excess light. Furthermore, they act as precursors for the production of apocarotenoid hormones such as abscisic acid and strigolactones. In this review, we summarize the current knowledge on the genes and enzymes of the carotenoid biosynthetic pathway (which is now almost completely elucidated) and on the regulation of carotenoid biosynthesis at both transcriptional and post-transcriptional levels. We also discuss the relevance of Arabidopsis as a model system for the study of carotenogenesis and how metabolic engineering approaches in this plant have taught important lessons for carotenoid biotechnology. PMID:22582030

  6. Spatial modulation of key pathway enzymes by DNA-guided scaffold system and respiration chain engineering for improved N-acetylglucosamine production by Bacillus subtilis.

    PubMed

    Liu, Yanfeng; Zhu, Yanqiu; Ma, Wenlong; Shin, Hyun-dong; Li, Jianghua; Liu, Long; Du, Guocheng; Chen, Jian

    2014-07-01

    Previously we constructed a Bacillus subtilis strain for efficient production of N-acetylglucosamine (GlcNAc) by engineering of GlcNAc synthetic and catabolic pathways. However, the further improvement of GlcNAc titer is limited by the intrinsic inefficiency of GlcNAc synthetic pathway and undesirable cellular properties including sporulation and high maintenance metabolism. In this work, we further improved GlcNAc titer through spatial modulation of key pathway enzymes and by blocking sporulation and decreasing maintenance metabolism. Specifically, a DNA-guided scaffold system was firstly used to modulate the activities of glucosamine-6-phosphate synthase and GlcNAc-6-phosphate N-acetyltransferase, increasing the GlcNAc titer from 1.83g/L to 4.55g/L in a shake flask. Next, sporulation was blocked by respectively deleting spo0A (gene encoding the initiation regulon of sporulation) and sigE (gene encoding RNA polymerase sporulation-specific sigma factor). Deletion of sigE more effectively blocked sporulation without altering cell growth or GlcNAc production. The respiration chain was then engineered to decrease the maintenance metabolism of recombinant B. subtilis by deleting cydB and cydC, genes encoding cytochrome bd ubiquinol oxidase (subunit II) and ATP-binding protein for the expression of cytochrome bd, respectively. The respiration-engineered B. subtilis produced 6.15g/L GlcNAc in a shake flask and 20.58g/L GlcNAc in a 3-L fed-batch bioreactor. To the best of our knowledge, this report is the first to describe the modulation of pathway enzymes via a DNA-guided scaffold system in B. subtilis. The combination of spatial modulation of key pathway enzymes and optimization of cellular properties may be used to develop B. subtilis as a well-organized cell factory for the production of the other industrially useful chemicals. Copyright © 2014 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  7. c-Kit+ progenitors generate vascular cells for tissue-engineered grafts through modulation of the Wnt/Klf4 pathway.

    PubMed

    Campagnolo, Paola; Tsai, Tsung-Neng; Hong, Xuechong; Kirton, John Paul; So, Po-Wah; Margariti, Andriana; Di Bernardini, Elisabetta; Wong, Mei Mei; Hu, Yanhua; Stevens, Molly M; Xu, Qingbo

    2015-08-01

    The development of decellularised scaffolds for small diameter vascular grafts is hampered by their limited patency, due to the lack of luminal cell coverage by endothelial cells (EC) and to the low tone of the vessel due to absence of a contractile smooth muscle cells (SMC). In this study, we identify a population of vascular progenitor c-Kit+/Sca-1- cells available in large numbers and derived from immuno-privileged embryonic stem cells (ESCs). We also define an efficient and controlled differentiation protocol yielding fully to differentiated ECs and SMCs in sufficient numbers to allow the repopulation of a tissue engineered vascular graft. When seeded ex vivo on a decellularised vessel, c-Kit+/Sca-1-derived cells recapitulated the native vessel structure and upon in vivo implantation in the mouse, markedly reduced neointima formation and mortality, restoring functional vascularisation. We showed that Krüppel-like transcription factor 4 (Klf4) regulates the choice of differentiation pathway of these cells through β-catenin activation and was itself regulated by the canonical Wnt pathway activator lithium chloride. Our data show that ESC-derived c-Kit+/Sca-1-cells can be differentiated through a Klf4/β-catenin dependent pathway and are a suitable source of vascular progenitors for the creation of superior tissue-engineered vessels from decellularised scaffolds.

  8. Increase in furfural tolerance by combinatorial overexpression of NAD salvage pathway enzymes in engineered isobutanol-producing E. coli.

    PubMed

    Song, Hun-Suk; Jeon, Jong-Min; Kim, Hyun-Joong; Bhatia, Shashi Kant; Sathiyanarayanan, Ganesan; Kim, Junyoung; Won Hong, Ju; Gi Hong, Yoon; Young Choi, Kwon; Kim, Yun-Gon; Kim, Wooseong; Yang, Yung-Hun

    2017-06-01

    To reduce the furfural toxicity for biochemical production in E. coli, a new strategy was successfully applied by supplying NAD(P)H through the nicotine amide salvage pathway. To alleviate the toxicity, nicotinamide salvage pathway genes were overexpressed in recombinant, isobutanol-producing E. coli. Gene expression of pncB and nadE respectively showed increased tolerance to furfural among these pathways. The combined expression of pncB and nadE was the most effective in increasing the tolerance of the cells to toxic aldehydes. By comparing noxE- and fdh-harbouring strains, the form of NADH, rather than NAD(+), was the major effector of furfural tolerance. Overall, this study is the application of the salvage pathway to isobutanol production in the presence of furfural, and this system seems to be applicable to alleviate furfural toxicity in the production of other biochemical. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Biochemical Removal of HAP Precursors from Coal

    SciTech Connect

    Olson, Gregory J

    1997-05-12

    Column biooxidation tests with Kentucky coal confirmed results of earlier shake flask tests showing significant removal from the coal of arsenic, selenium, cobalt, manganese, nickel and cadmium. Rates of pyrite biooxidation in Kentucky coal were only slightly more than half the rates found previously for Indiana and Pittsburgh coals. Removal of pyrite from Pittsburgh coal by ferric ion oxidation slows markedly as ferrous ions accumulate in solution, requiring maintenance of high redox potentials in processes designed for removal of pyrite and hazardous air pollutant (HAP) precursors by circulation of ferric solutions through coal. The pyrite oxidation rates obtained in these tests were used by Unifield Engineering to support the conceptual designs for alternative pyrite and HAP precursor bioleaching processes for the phase 2 pilot plant. Thermophilic microorganisms were tested to determine if mercury could be mobilized from coal under elevated growth temperatures. There was no evidence for mercury removal from coal under these conditions. However, the activity of the organisms may have liberated mercury physically. It is also possible that the organisms dissolved mercury and it readsorbed to the clay preferentially. Both of these possibilities are undergoing further testing. The Idaho National Engineering and Environmental Laboratory's (INEEL) slurry column reactor was operated and several batches of feed coal, product coal, waste solids and leach solutions were submitted to LBL for HAP precursor analysis. Results to date indicate significant removal of mercury, arsenic and other HAP precursors in the combined physical-biological process.

  10. Metabolic pathway engineering based on metabolomics confers acetic and formic acid tolerance to a recombinant xylose-fermenting strain of Saccharomyces cerevisiae

    PubMed Central

    2011-01-01

    Background The development of novel yeast strains with increased tolerance toward inhibitors in lignocellulosic hydrolysates is highly desirable for the production of bio-ethanol. Weak organic acids such as acetic and formic acids are necessarily released during the pretreatment (i.e. solubilization and hydrolysis) of lignocelluloses, which negatively affect microbial growth and ethanol production. However, since the mode of toxicity is complicated, genetic engineering strategies addressing yeast tolerance to weak organic acids have been rare. Thus, enhanced basic research is expected to identify target genes for improved weak acid tolerance. Results In this study, the effect of acetic acid on xylose fermentation was analyzed by examining metabolite profiles in a recombinant xylose-fermenting strain of Saccharomyces cerevisiae. Metabolome analysis revealed that metabolites involved in the non-oxidative pentose phosphate pathway (PPP) [e.g. sedoheptulose-7-phosphate, ribulose-5-phosphate, ribose-5-phosphate and erythrose-4-phosphate] were significantly accumulated by the addition of acetate, indicating the possibility that acetic acid slows down the flux of the pathway. Accordingly, a gene encoding a PPP-related enzyme, transaldolase or transketolase, was overexpressed in the xylose-fermenting yeast, which successfully conferred increased ethanol productivity in the presence of acetic and formic acid. Conclusions Our metabolomic approach revealed one of the molecular events underlying the response to acetic acid and focuses attention on the non-oxidative PPP as a target for metabolic engineering. An important challenge for metabolic engineering is identification of gene targets that have material importance. This study has demonstrated that metabolomics is a powerful tool to develop rational strategies to confer tolerance to stress through genetic engineering. PMID:21219616

  11. Dietary phytochemicals as potent chemotherapeutic agents against breast cancer: Inhibition of NF-κB pathway via molecular interactions in rel homology domain of its precursor protein p105

    PubMed Central

    Khan, Mohammad K. A.; Ansari, Irfan A.; Khan, M. Salman; Arif, Jamal M.

    2013-01-01

    Background: Dietary phytochemicals consist of a wide variety of biologically active compounds that are ubiquitous in plants, many of which have been reported to have anti-tumor as well as anti-inflammatory properties. Objective: In the present study, we aimed to validate these findings by using docking protocols and explicate the possible mechanism of action for a dataset of nine phytochemicals namely boswellic acid, 1-caffeoylquinic acid, ellagic acid, emodin, genistein, guggulsterone, quercetin, resveratrol, and sylibinin from different plants against the nuclear factor- kappaB (NF-κB) precursor protein p105, an important transcription factor reported to be overexpressed in breast cancer. Materials and Methods: 2-D structures of all phytochemicals were retrieved from PubChem Compound database and their subsequent conversion into 3-D structures was performed by using online software system CORINA. The X-ray crystallographic structure of the NF-κB precursor p105 was extracted from Brookhaven Protein Data Bank. Molecular docking simulation study was carried out by using AutoDock Tools 4.0. Results: Our results showed significant binding affinity of different phytochemicals with the Rel homology domain of the NF-κB precursor protein p105. Quercetin and 1-caffeoylquinic acid were found to be very effective inhibitors against target molecule as they showed binding energy of −12.11 and −11.50 Kcal/mol, respectively. The order of affinity of other ligands with p105 was found as follows: guggulsterone > sylibinin > emodin > resveratrol > genistein > boswellic acid > ellagic acid. Conclusion: Our in silico study has explored the possible chemopreventive mechanism of these phytochemicals against the NF-κB precursor protein p105 and deciphered that quercetin, 1-caffeoylquinic acid and guggulsterone were the potent inhibitors against target molecule. In addition, large scale preclinical and clinical trials are needed to explore the role of these chemotherapeutic

  12. Thermal Studies of New Precursors to Indium-tin Oxides for Use as Sensor Materials in the Detection of NO(x)

    NASA Technical Reports Server (NTRS)

    Goldsby, J. C.; Kacik, T.; Hockensmith, C. M.

    1999-01-01

    Control of combustion product emissions in both sub and super-sonic jet engines can be facilitated by measurement of NO(x) levels with metal oxide sensors, In2O3, metal-doped SnO2, and SnO, (as well as other materials) show resistivity changes in the presence of NO(x), but often their sensitivity, stability, and selectivity are low. This study was designed to develop new synthetic pathways to precursors that produce high purity, two phase In2O3-SnO2. The precursors were formed by complexation of tin with any oxide ligands to give the ammonium salt (NH4). Thermal studies of these precursors were carried out by thermal gravimetry (TG) and differential scanning calorimetry (DSC). Further studies by Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance spectroscopy (NMR) were also conducted.

  13. Thermal Studies of New Precursors to Indium-tin Oxides for Use as Sensor Materials in the Detection of NO(x)

    NASA Technical Reports Server (NTRS)

    Goldsby, J. C.; Kacik, T.; Hockensmith, C. M.

    1999-01-01

    Control of combustion product emissions in both sub and super-sonic jet engines can be facilitated by measurement of NO(x) levels with metal oxide sensors, In2O3, metal-doped SnO2, and SnO, (as well as other materials) show resistivity changes in the presence of NO(x), but often their sensitivity, stability, and selectivity are low. This study was designed to develop new synthetic pathways to precursors that produce high purity, two phase In2O3-SnO2. The precursors were formed by complexation of tin with any oxide ligands to give the ammonium salt (NH4). Thermal studies of these precursors were carried out by thermal gravimetry (TG) and differential scanning calorimetry (DSC). Further studies by Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance spectroscopy (NMR) were also conducted.

  14. Engineering of a tyrosol-producing pathway, utilizing simple sugar and the central metabolic tyrosine, in Escherichia coli.

    PubMed

    Satoh, Yasuharu; Tajima, Kenji; Munekata, Masanobu; Keasling, Jay D; Lee, Taek Soon

    2012-02-01

    Metabolic engineering was applied to the development of Escherichia coli capable of synthesizing tyrosol (2-(4-hydroxyphenyl)ethanol), an attractive phenolic compound with great industrial value, from glucose, a renewable carbon source. In this strain, tyrosine, which was supplied not only from the culture medium but also from the central metabolism, was converted into tyrosol via three steps: decarboxylation, amine oxidation, and reduction. The engineered strain synthesized both tyrosol and 4-hydroxyphenylacetate (4HPA), but disruption of the endogenous phenylacetaldehyde dehydrogenase gene shut off 4HPA production and improved the production of tyrosol as a sole product. The engineered mutant strain was capable of producing 0.5 mM tyrosol from 1% (w/v) glucose during a 48 h shake flask cultivation.

  15. Current Development in Isoprenoid Precursor Biosynthesis and Regulation

    PubMed Central

    Chang, Wei-chen; Song, Heng; Liu, Hung-wen; Liu, Pinghua

    2013-01-01

    Isoprenoids are one of the largest classes of natural products and all of them are constructed from two precursors, isopentenyl diphosphate (IPP) and its isomer dimethylallyl diphosphate (DMAPP). For decades, the mevalonic acid (MVA) pathway was proposed to be the only IPP and DMAPP biosynthetic pathway. This review summarizes the newly discovered IPP and DMAPP production pathways since late 1990s, their distribution among different kingdoms, and their roles in secondary metabolite production. These new IPP and DMAPP production pathways include the methylerythritol phosphate (MEP) pathway, a modified MVA pathway, and the 5-Methylthioadenosine shunt pathway. Relative to the studies on the MVA pathway, information on the MEP pathway regulation is limited and the mechanistic details of several of its novel transformations remain to be addressed. Current status on both MEP pathway regulation and mechanistic issues are also presented. PMID:23891475

  16. Improvement of 1,3-propanediol production using an engineered cyanobacterium, Synechococcus elongatus by optimization of the gene expression level of a synthetic metabolic pathway and production conditions.

    PubMed

    Hirokawa, Yasutaka; Maki, Yuki; Hanai, Taizo

    2017-01-01

    The introduction of a synthetic metabolic pathway consisting of multiple genes derived from various organisms enables cyanobacteria to directly produce valuable chemicals from carbon dioxide. We previously constructed a synthetic metabolic pathway composed of genes from Escherichia coli, Saccharomyces cerevisiae, and Klebsiella pneumoniae. This pathway enabled 1,3-propanediol (1,3-PDO) production from cellular DHAP via glycerol in the cyanobacterium, Synechococcus elongatus PCC 7942. The production of 1,3-PDO (3.79mM, 0.29g/l) directly from carbon dioxide by engineered S. elongatus PCC 7942 was successfully accomplished. However, the constructed strain accumulated a remarkable amount of glycerol (12.6mM, 1.16g/l), an intermediate metabolite in 1,3-PDO production. Notably, enhancement of latter reactions of synthetic metabolic pathway for conversion of glycerol to 1,3-PDO increases 1,3-PDO production. In this study, we aimed to increase the observed 1,3-PDO production titer. First, the weaker S. elongatus PCC 7942 promoter, PLlacO1, was replaced with a stronger promoter (Ptrc) to regulate genes involved in the conversion of glycerol to 1,3-PDO. Second, the induction timing for gene expression and medium composition were optimized. Promoter replacement resulted in higher 1,3-PDO production than glycerol accumulation, and the amount of products (1,3-PDO and glycerol) generated via the synthetic metabolic pathway increased with optimization of medium composition. Accordingly, we achieved the highest titer of 1,3-PDO (16.1mM, 1.22g/l) and this was higher than glycerol accumulation (9.46mM, 0.87g/l). The improved titer was over 4-fold higher than that of our previous study.

  17. The c4h, tat, hppr and hppd Genes Prompted Engineering of Rosmarinic Acid Biosynthetic Pathway in Salvia miltiorrhiza Hairy Root Cultures

    PubMed Central

    Gao, Shouhong; Saechao, Saengking; Di, Peng; Chen, Junfeng; Chen, Wansheng

    2011-01-01

    Rational engineering to produce biologically active plant compounds has been greatly impeded by our poor understanding of the regulatory and metabolic pathways underlying the biosynthesis of these compounds. Here we capitalized on our previously described gene-to-metabolite network in order to engineer rosmarinic acid (RA) biosynthesis pathway for the production of beneficial RA and lithospermic acid B (LAB) in Salvia miltiorrhiza hairy root cultures. Results showed their production was greatly elevated by (1) overexpression of single gene, including cinnamic acid 4-hydroxylase (c4h), tyrosine aminotransferase (tat), and 4-hydroxyphenylpyruvate reductase (hppr), (2) overexpression of both tat and hppr, and (3) suppression of 4-hydroxyphenylpyruvate dioxygenase (hppd). Co-expression of tat/hppr produced the most abundant RA (906 mg/liter) and LAB (992 mg/liter), which were 4.3 and 3.2-fold more than in their wild-type (wt) counterparts respectively. And the value of RA concentration was also higher than that reported before, that produced by means of nutrient medium optimization or elicitor treatment. It is the first report of boosting RA and LAB biosynthesis through genetic manipulation, providing an effective approach for their large-scale commercial production by using hairy root culture systems as bioreactors. PMID:22242141

  18. Gender and Ethnic Differences in Precollege Mathematics Coursework Related to Science, Technology, Engineering, and Mathematics (STEM) Pathways

    ERIC Educational Resources Information Center

    You, Sukkyung

    2013-01-01

    In 2004, the pattern in academic pathways for high school students in the USA showed that students were completing more demanding mathematics courses. Despite the upward pattern in advanced-level mathematics course-taking, disparities among racial/ethnic groups p