Sample records for predator removal program

  1. Compensatory Feeding Following a Predator Removal Program : Detection and Mechanisms, 1982-1996 Progress Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petersen, James H.

    2002-02-28

    Predator removal is one of the oldest management tools in existence, with evidence that ancient Greeks used a bounty reward for wolves over 3,000 years ago (Anonymous 1964). Efforts to control predators on fish have been documented in scientific journals for at least 60 years (Eschmeyer 1937; Lagler 1939; Foerster and Ricker 1941; Smith and Swingle 1941; Jeppson and Platts 1959), and has likely been attempted for much longer. Complete eradication of a target species from a body of water has rarely been the objective of predator removal programs, which instead have attempted to eliminate predators from specific areas, tomore » reduce the density or standing stock of predators, or to kill the largest individuals in the population (Meronek et al. 1996). In evaluating management programs that remove only part of a predator population, the compensatory response(s) of the remaining predators must be considered. Some potential compensatory responses by remaining individuals include increased reproductive output, increased growth rate, or increased consumption of certain prey species (Jude et al. 1987). If compensation by predators that remain in the system following a removal effort occurs, it may reduce the effectiveness of the predator control program. Northern pike-minnow Ptychocheilus oregonensis (formerly called northern squawfish) consume juvenile salmon in rivers, lakes, and reservoirs in British Columbia, Washington, Idaho, Oregon, and California. Northern pikeminnow have been estimated to consume about 11% of all juvenile salmon that migrate through John Day Reservoir on the Columbia River (Rieman et al. 1991). Modeling studies suggested that removal of 20% of the northern pikeminnow population in John Day Reservoir would result in a 50% decrease in predation-related mortality of juvenile salmon migrating through this reach (Beamesderfer et al. 1991). Since the early 1940's, other programs have been implemented to remove northern pikeminnow, with hopes of improving the survival of juvenile salmon (Ricker 1941; Jeppson and Platts 1959).« less

  2. Predatory fish removal and native fish recovery in the Colorado River mainstem: What have we learned?

    USGS Publications Warehouse

    Mueller, Gordon A.

    2005-01-01

    Mechanical predator removal programs have gained popularity in the United States and have benefited the recovery of several native trout and spring fish. These successes have been limited to headwater streams and small, isolated ponds or springs. Nevertheless, these same approaches are being applied to large river systems on the belief that any degree of predator removal will somehow benefit natives. This attitude is prevalent in the Colorado River mainstem where recovery and conservation programs are struggling to reverse the decline of four endangered fish species. Predator removal and prevention are major thrusts of that work but unfortunately, after 10 years and the removal of >1.5 million predators, we have yet to see a positive response from the native fish community. This leads to the obvious question: is mechanical removal or control in large (>100 cfs base flow) western streams technically or politically feasible? If not, recovery for some mainstem fishes may not be practical in the conventional sense, but require innovative management strategies to prevent their extirpation or possible extinction. This article examines (1) what has been attempted, (2) what has worked, and (3) what has not worked in the Colorado River mainstem and provides recommendations for future efforts in this critical management area.

  3. Interactive evolution of camouflage.

    PubMed

    Reynolds, Craig

    2011-01-01

    This article presents an abstract computation model of the evolution of camouflage in nature. The 2D model uses evolved textures for prey, a background texture representing the environment, and a visual predator. A human observer, acting as the predator, is shown a cohort of 10 evolved textures overlaid on the background texture. The observer clicks on the five most conspicuous prey to remove ("eat") them. These lower-fitness textures are removed from the population and replaced with newly bred textures. Biological morphogenesis is represented in this model by procedural texture synthesis. Nested expressions of generators and operators form a texture description language. Natural evolution is represented by genetic programming (GP), a variant of the genetic algorithm. GP searches the space of texture description programs for those that appear least conspicuous to the predator.

  4. Predator removal and nesting waterbird success at San Francisco Bay, California

    USGS Publications Warehouse

    Meckstroth, A.M.; Miles, A.K.

    2005-01-01

    The efficacy of long-term predator removal in urbanized areas is poorly understood. The impact of predation on ground-nesting waterbirds, as well as predator abundance and composition in predator removal versus non-removal or reference sites were examined at South San Francisco Bay. The success of natural nests and predator activity was monitored using track plates, trip cameras, wire haircatchers and simulated nests. Removal sites had higher nest densities, but lower hatching success than reference sites. Predator composition and abundance were not different at the removal and reference sites for any predator other than feral Cat (Felis domesticus). Striped Skunk (Mephitis mephitis) comprised the majority (84%) of predators removed, yet remained the most abundant predators in removal and reference sites. Urban environments provide supplemental food that may influence skunks and other nest predators to immigrate into vacancies created by predator removal. Based on the findings from this study, predator removal should be applied intensively over a larger geographic area in order to be a viable management strategy for some mammalian species in urbanized areas.

  5. Optimal control of native predators

    USGS Publications Warehouse

    Martin, Julien; O'Connell, Allan F.; Kendall, William L.; Runge, Michael C.; Simons, Theodore R.; Waldstein, Arielle H.; Schulte, Shiloh A.; Converse, Sarah J.; Smith, Graham W.; Pinion, Timothy; Rikard, Michael; Zipkin, Elise F.

    2010-01-01

    We apply decision theory in a structured decision-making framework to evaluate how control of raccoons (Procyon lotor), a native predator, can promote the conservation of a declining population of American Oystercatchers (Haematopus palliatus) on the Outer Banks of North Carolina. Our management objective was to maintain Oystercatcher productivity above a level deemed necessary for population recovery while minimizing raccoon removal. We evaluated several scenarios including no raccoon removal, and applied an adaptive optimization algorithm to account for parameter uncertainty. We show how adaptive optimization can be used to account for uncertainties about how raccoon control may affect Oystercatcher productivity. Adaptive management can reduce this type of uncertainty and is particularly well suited for addressing controversial management issues such as native predator control. The case study also offers several insights that may be relevant to the optimal control of other native predators. First, we found that stage-specific removal policies (e.g., yearling versus adult raccoon removals) were most efficient if the reproductive values among stage classes were very different. Second, we found that the optimal control of raccoons would result in higher Oystercatcher productivity than the minimum levels recommended for this species. Third, we found that removing more raccoons initially minimized the total number of removals necessary to meet long term management objectives. Finally, if for logistical reasons managers cannot sustain a removal program by removing a minimum number of raccoons annually, managers may run the risk of creating an ecological trap for Oystercatchers.

  6. Stream hydrology limits recovery of riparian ecosystems after wolf reintroduction

    PubMed Central

    Marshall, Kristin N.; Hobbs, N. Thompson; Cooper, David J.

    2013-01-01

    Efforts to restore ecosystems often focus on reintroducing apex predators to re-establish coevolved relationships among predators, herbivores and plants. The preponderance of evidence for indirect effects of predators on terrestrial plant communities comes from ecosystems where predators have been removed. Far less is known about the consequences of their restoration. The effects of removal and restoration are unlikely to be symmetrical because removing predators can create feedbacks that reinforce the effects of predator loss. Observational studies have suggested that the reintroduction of wolves to Yellowstone National Park initiated dramatic restoration of riparian ecosystems by releasing willows from excessive browsing by elk. Here, we present results from a decade-long experiment in Yellowstone showing that moderating browsing alone was not sufficient to restore riparian zones along small streams. Instead, restoration of willow communities depended on removing browsing and restoring hydrological conditions that prevailed before the removal of wolves. The 70-year absence of predators from the ecosystem changed the disturbance regime in a way that was not reversed by predator reintroduction. We conclude that predator restoration may not quickly repair effects of predator removal in ecosystems. PMID:23390108

  7. Stream hydrology limits recovery of riparian ecosystems after wolf reintroduction.

    PubMed

    Marshall, Kristin N; Hobbs, N Thompson; Cooper, David J

    2013-04-07

    Efforts to restore ecosystems often focus on reintroducing apex predators to re-establish coevolved relationships among predators, herbivores and plants. The preponderance of evidence for indirect effects of predators on terrestrial plant communities comes from ecosystems where predators have been removed. Far less is known about the consequences of their restoration. The effects of removal and restoration are unlikely to be symmetrical because removing predators can create feedbacks that reinforce the effects of predator loss. Observational studies have suggested that the reintroduction of wolves to Yellowstone National Park initiated dramatic restoration of riparian ecosystems by releasing willows from excessive browsing by elk. Here, we present results from a decade-long experiment in Yellowstone showing that moderating browsing alone was not sufficient to restore riparian zones along small streams. Instead, restoration of willow communities depended on removing browsing and restoring hydrological conditions that prevailed before the removal of wolves. The 70-year absence of predators from the ecosystem changed the disturbance regime in a way that was not reversed by predator reintroduction. We conclude that predator restoration may not quickly repair effects of predator removal in ecosystems.

  8. Spatial ecology of predator-prey interactions: corridors and patch shape influence seed predation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. L . Orrock; B. J. Danielson; M. J. Burns

    2003-02-03

    J.L. Orrock, B.J. Danielson, M.J. Burns, and D.J. Levey. 2003. Spatial ecology of predator-prey interactions: corridors and patch shape influence seed predation. Ecology, 84(10):2589-2599. Abstract: Corridors that connect patches of disjunct habitat may be promising tools for mediating the negative impacts of habitat fragmentation, but little is known about how corridors affect ecological interactions. In eight 12-ha experimental landscapes, we examined how corridors affect the impact of invertebrate, rodent, and avian seed predators on pokeweed, Phytolacca americana. Over 13 months in 2000 and 2001, we quantified the effects of patch shape, connectivity, and predator type on the number of seedsmore » germinating in the field (germinants), seed removal, and the viability of remaining seeds. Corridors did not affect the number of P. americana germinants in experimental exclosures or the viability of seeds remaining in exclosures. However, corridors affected the removal of seeds in a predator-specific manner: invertebrates removed more seeds in unconnected patches, whereas rodents removed more seeds in connected patches. Seed removal by birds was similar in connected and unconnected patches. Total seed removal by all seed predators was not affected by corridors, because invertebrates removed more seeds where rodents removed fewer seeds, and vice versa. Overall, seed predation signi®cantly reduced the number and viability of remaining seeds, and reduced the number of germinants in 2000 but not in 2001. The abundance of naturally occurring P. americana plants in our experimental patches in 2000 decreased with increasing seed removal from exclosures but was not related to viability or germinants in 2000, suggesting that seed removal may shape the distribution and abundance of this species. Complementary patterns of seed removal by rodents and invertebrates suggest that corridors alter the effects of these predator taxa by changing the relative amounts of edge and core (nonedge) habitats in a patch. Because invertebrates and rodents do not completely overlap in the seeds they consume, corridors may change predation pressure on seeds that are primarily consumed by one predator type, with potential consequences for the composition of plant and seed predator communities.« less

  9. Development of a Systemwide Program: Stepwise Implementation of a Predation Index, Predator Control Fisheries and Evaluation Plan in the Columbia River Basin, Volume 1, 1992 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, David L.

    1994-06-01

    Results of the second year are reported of a basinwide program to harvest northern squawfish in an effort to reduce mortality due to squawfish predation on juvenile salmonids during their migration from natal streams to the ocean. Six papers are included in this report. They are entitled: feasibility investigation of a commercial longline fishery for northern squawfish in the Columbia River downstream from Bonneville dam; evaluation of the northern squawfish sport-reward fishery in the Columbia and Snake Rivers; controlled angling for northern squawfish at selected dams on the Columbia and Snake Rivers in 1992; evaluation of harvest technology for squawfishmore » control in Columbia River reservoirs; effectiveness of predator-removal for protecting juvenile fall chinook salmon released from Bonneville Hatchery; and Northern squawfish sport-reward payments.« less

  10. Co-occurrence dynamics of endangered Lower Keys marsh rabbits and free-ranging domestic cats: Prey responses to an exotic predator removal program.

    PubMed

    Cove, Michael V; Gardner, Beth; Simons, Theodore R; O'Connell, Allan F

    2018-04-01

    The Lower Keys marsh rabbit ( Sylvilagus palustris hefneri ) is one of many endangered endemic species of the Florida Keys. The main threats are habitat loss and fragmentation from sea-level rise, development, and habitat succession. Exotic predators such as free-ranging domestic cats ( Felis catus ) pose an additional threat to these endangered small mammals. Management strategies have focused on habitat restoration and exotic predator control. However, the effectiveness of predator removal and the effects of anthropogenic habitat modifications and restoration have not been evaluated. Between 2013 and 2015, we used camera traps to survey marsh rabbits and free-ranging cats at 84 sites in the National Key Deer Refuge, Big Pine Key, Florida, USA. We used dynamic occupancy models to determine factors associated with marsh rabbit occurrence, colonization, extinction, and the co-occurrence of marsh rabbits and cats during a period of predator removal. Rabbit occurrence was positively related to freshwater habitat and patch size, but was negatively related to the number of individual cats detected at each site. Furthermore, marsh rabbit colonization was negatively associated with relative increases in the number of individual cats at each site between survey years. Cat occurrence was negatively associated with increasing distance from human developments. The probability of cat site extinction was positively related to a 2-year trapping effort, indicating that predator removal reduced the cat population. Dynamic co-occurrence models suggested that cats and marsh rabbits co-occur less frequently than expected under random conditions, whereas co-detections were site and survey-specific. Rabbit site extinction and colonization were not strongly conditional on cat presence, but corresponded with a negative association. Our results suggest that while rabbits can colonize and persist at sites where cats occur, it is the number of individual cats at a site that more strongly influences rabbit occupancy and colonization. These findings indicate that continued predator management would likely benefit endangered small mammals as they recolonize restored habitats.

  11. Keeping the herds healthy and alert: Implications of predator control for infectious disease

    USGS Publications Warehouse

    Packer, Craig; Holt, Robert D.; Hudson, Peter J.; Lafferty, Kevin D.; Dobson, Andrew P.

    2003-01-01

    Predator control programmes are generally implemented in an attempt to increase prey population sizes. However, predator removal could prove harmful to prey populations that are regulated primarily by parasitic infections rather than by predation. We develop models for microparasitic and macroparasitic infection that specify the conditions where predator removal will (a) increase the incidence of parasitic infection, (b) reduce the number of healthy individuals in the prey population and (c) decrease the overall size of the prey population. In general, predator removal is more likely to be harmful when the parasite is highly virulent, macroparasites are highly aggregated in their prey, hosts are long-lived and the predators select infected prey.

  12. Co‐occurrence dynamics of endangered Lower Keys marsh rabbits and free‐ranging domestic cats: Prey responses to an exotic predator removal program

    USGS Publications Warehouse

    Cove, Michael V.; Gardner, Beth; Simons, Theodore R.; O'Connell, Allan F.

    2018-01-01

    The Lower Keys marsh rabbit (Sylvilagus palustris hefneri) is one of many endangered endemic species of the Florida Keys. The main threats are habitat loss and fragmentation from sea‐level rise, development, and habitat succession. Exotic predators such as free‐ranging domestic cats (Felis catus) pose an additional threat to these endangered small mammals. Management strategies have focused on habitat restoration and exotic predator control. However, the effectiveness of predator removal and the effects of anthropogenic habitat modifications and restoration have not been evaluated. Between 2013 and 2015, we used camera traps to survey marsh rabbits and free‐ranging cats at 84 sites in the National Key Deer Refuge, Big Pine Key, Florida, USA. We used dynamic occupancy models to determine factors associated with marsh rabbit occurrence, colonization, extinction, and the co‐occurrence of marsh rabbits and cats during a period of predator removal. Rabbit occurrence was positively related to freshwater habitat and patch size, but was negatively related to the number of individual cats detected at each site. Furthermore, marsh rabbit colonization was negatively associated with relative increases in the number of individual cats at each site between survey years. Cat occurrence was negatively associated with increasing distance from human developments. The probability of cat site extinction was positively related to a 2‐year trapping effort, indicating that predator removal reduced the cat population. Dynamic co‐occurrence models suggested that cats and marsh rabbits co‐occur less frequently than expected under random conditions, whereas co‐detections were site and survey‐specific. Rabbit site extinction and colonization were not strongly conditional on cat presence, but corresponded with a negative association. Our results suggest that while rabbits can colonize and persist at sites where cats occur, it is the number of individual cats at a site that more strongly influences rabbit occupancy and colonization. These findings indicate that continued predator management would likely benefit endangered small mammals as they recolonize restored habitats.

  13. Impacts of tree rows on grassland birds and potential nest predators: a removal experiment.

    PubMed

    Ellison, Kevin S; Ribic, Christine A; Sample, David W; Fawcett, Megan J; Dadisman, John D

    2013-01-01

    Globally, grasslands and the wildlife that inhabit them are widely imperiled. Encroachment by shrubs and trees has widely impacted grasslands in the past 150 years. In North America, most grassland birds avoid nesting near woody vegetation. Because woody vegetation fragments grasslands and potential nest predator diversity and abundance is often greater along wooded edge and grassland transitions, we measured the impacts of removing rows of trees and shrubs that intersected grasslands on potential nest predators and the three most abundant grassland bird species (Henslow's sparrow [Ammodramus henslowii], Eastern meadowlark [Sturnella magna], and bobolink [Dolichonyx oryzivorus]) at sites in Wisconsin, U.S.A. We monitored 3 control and 3 treatment sites, for 1 yr prior to and 3 yr after tree row removal at the treatment sites. Grassland bird densities increased (2-4 times for bobolink and Henslow's sparrow) and nesting densities increased (all 3 species) in the removal areas compared to control areas. After removals, Henslow's sparrows nested within ≤50 m of the treatment area, where they did not occur when tree rows were present. Most dramatically, activity by woodland-associated predators nearly ceased (nine-fold decrease for raccoon [Procyon lotor]) at the removals and grassland predators increased (up to 27 times activity for thirteen-lined ground squirrel [Ictidomys tridecemlineatus]). Nest success did not increase, likely reflecting the increase in grassland predators. However, more nests were attempted by all 3 species (175 versus 116) and the number of successful nests for bobolinks and Henslow's sparrows increased. Because of gains in habitat, increased use by birds, greater production of young, and the effective removal of woodland-associated predators, tree row removal, where appropriate based on the predator community, can be a beneficial management action for conserving grassland birds and improving fragmented and degraded grassland ecosystems.

  14. Eco-Evolutionary Trophic Dynamics: Loss of Top Predators Drives Trophic Evolution and Ecology of Prey

    PubMed Central

    Palkovacs, Eric P.; Wasserman, Ben A.; Kinnison, Michael T.

    2011-01-01

    Ecosystems are being altered on a global scale by the extirpation of top predators. The ecological effects of predator removal have been investigated widely; however, predator removal can also change natural selection acting on prey, resulting in contemporary evolution. Here we tested the role of predator removal on the contemporary evolution of trophic traits in prey. We utilized a historical introduction experiment where Trinidadian guppies (Poecilia reticulata) were relocated from a site with predatory fishes to a site lacking predators. To assess the trophic consequences of predator release, we linked individual morphology (cranial, jaw, and body) to foraging performance. Our results show that predator release caused an increase in guppy density and a “sharpening” of guppy trophic traits, which enhanced food consumption rates. Predator release appears to have shifted natural selection away from predator escape ability and towards resource acquisition ability. Related diet and mesocosm studies suggest that this shift enhances the impact of guppies on lower trophic levels in a fashion nuanced by the omnivorous feeding ecology of the species. We conclude that extirpation of top predators may commonly select for enhanced feeding performance in prey, with important cascading consequences for communities and ecosystems. PMID:21526156

  15. Impacts of tree rows on grassland birds & potential nest predators: A removal experiment

    USGS Publications Warehouse

    Ellison, Kevin S.; Ribic, Christine; Sample, David W.; Fawcett, Megan J.; Dadisman, John D.

    2013-01-01

    Globally, grasslands and the wildlife that inhabit them are widely imperiled. Encroachment by shrubs and trees has widely impacted grasslands in the past 150 years. In North America, most grassland birds avoid nesting near woody vegetation. Because woody vegetation fragments grasslands and potential nest predator diversity and abundance is often greater along wooded edge and grassland transitions, we measured the impacts of removing rows of trees and shrubs that intersected grasslands on potential nest predators and the three most abundant grassland bird species (Henslow’s sparrow [Ammodramus henslowii], Eastern meadowlark [Sturnella magna], and bobolink [Dolichonyx oryzivorus]) at sites in Wisconsin, U.S.A. We monitored 3 control and 3 treatment sites, for 1 yr prior to and 3 yr after tree row removal at the treatment sites. Grassland bird densities increased (2–4 times for bobolink and Henslow’s sparrow) and nesting densities increased (all 3 species) in the removal areas compared to control areas. After removals, Henslow’s sparrows nested within ≤50 m of the treatment area, where they did not occur when tree rows were present. Most dramatically, activity by woodland-associated predators nearly ceased (nine-fold decrease for raccoon [Procyon lotor]) at the removals and grassland predators increased (up to 27 times activity for thirteen-lined ground squirrel [Ictidomys tridecemlineatus]). Nest success did not increase, likely reflecting the increase in grassland predators. However, more nests were attempted by all 3 species (175 versus 116) and the number of successful nests for bobolinks and Henslow’s sparrows increased. Because of gains in habitat, increased use by birds, greater production of young, and the effective removal of woodland-associated predators, tree row removal, where appropriate based on the predator community, can be a beneficial management action for conserving grassland birds and improving fragmented and degraded grassland ecosystems.

  16. Spatial processes decouple management from objectives in a heterogeneous landscape: predator control as a case study.

    PubMed

    Mahoney, Peter J; Young, Julie K; Hersey, Kent R; Larsen, Randy T; McMillan, Brock R; Stoner, David C

    2018-04-01

    Predator control is often implemented with the intent of disrupting top-down regulation in sensitive prey populations. However, ambiguity surrounding the efficacy of predator management, as well as the strength of top-down effects of predators in general, is often exacerbated by the spatially implicit analytical approaches used in assessing data with explicit spatial structure. Here, we highlight the importance of considering spatial context in the case of a predator control study in south-central Utah. We assessed the spatial match between aerial removal risk in coyotes (Canis latrans) and mule deer (Odocoileus hemionus) resource selection during parturition using a spatially explicit, multi-level Bayesian model. With our model, we were able to evaluate spatial congruence between management action (i.e., coyote removal) and objective (i.e., parturient deer site selection) at two distinct scales: the level of the management unit and the individual coyote removal. In the case of the former, our results indicated substantial spatial heterogeneity in expected congruence between removal risk and parturient deer site selection across large areas, and is a reflection of logistical constraints acting on the management strategy and differences in space use between the two species. At the level of the individual removal, we demonstrated that the potential management benefits of a removed coyote were highly variable across all individuals removed and in many cases, spatially distinct from parturient deer resource selection. Our methods and results provide a means of evaluating where we might anticipate an impact of predator control, while emphasizing the need to weight individual removals based on spatial proximity to management objectives in any assessment of large-scale predator control. Although we highlight the importance of spatial context in assessments of predator control strategy, we believe our methods are readily generalizable in any management or large-scale experimental framework where spatial context is likely an important driver of outcomes. © 2018 by the Ecological Society of America.

  17. Impacts of Tree Rows on Grassland Birds and Potential Nest Predators: A Removal Experiment

    PubMed Central

    Ellison, Kevin S.; Ribic, Christine A.; Sample, David W.; Fawcett, Megan J.; Dadisman, John D.

    2013-01-01

    Globally, grasslands and the wildlife that inhabit them are widely imperiled. Encroachment by shrubs and trees has widely impacted grasslands in the past 150 years. In North America, most grassland birds avoid nesting near woody vegetation. Because woody vegetation fragments grasslands and potential nest predator diversity and abundance is often greater along wooded edge and grassland transitions, we measured the impacts of removing rows of trees and shrubs that intersected grasslands on potential nest predators and the three most abundant grassland bird species (Henslow’s sparrow [Ammodramus henslowii], Eastern meadowlark [Sturnella magna], and bobolink [Dolichonyx oryzivorus]) at sites in Wisconsin, U.S.A. We monitored 3 control and 3 treatment sites, for 1 yr prior to and 3 yr after tree row removal at the treatment sites. Grassland bird densities increased (2–4 times for bobolink and Henslow’s sparrow) and nesting densities increased (all 3 species) in the removal areas compared to control areas. After removals, Henslow’s sparrows nested within ≤50 m of the treatment area, where they did not occur when tree rows were present. Most dramatically, activity by woodland-associated predators nearly ceased (nine-fold decrease for raccoon [Procyon lotor]) at the removals and grassland predators increased (up to 27 times activity for thirteen-lined ground squirrel [Ictidomys tridecemlineatus]). Nest success did not increase, likely reflecting the increase in grassland predators. However, more nests were attempted by all 3 species (175 versus 116) and the number of successful nests for bobolinks and Henslow’s sparrows increased. Because of gains in habitat, increased use by birds, greater production of young, and the effective removal of woodland-associated predators, tree row removal, where appropriate based on the predator community, can be a beneficial management action for conserving grassland birds and improving fragmented and degraded grassland ecosystems. PMID:23565144

  18. Advantages of masting in European beech: timing of granivore satiation and benefits of seed caching support the predator dispersal hypothesis.

    PubMed

    Zwolak, Rafał; Bogdziewicz, Michał; Wróbel, Aleksandra; Crone, Elizabeth E

    2016-03-01

    The predator satiation and predator dispersal hypotheses provide alternative explanations for masting. Both assume satiation of seed-eating vertebrates. They differ in whether satiation occurs before or after seed removal and caching by granivores (predator satiation and predator dispersal, respectively). This difference is largely unrecognized, but it is demographically important because cached seeds are dispersed and often have a microsite advantage over nondispersed seeds. We conducted rodent exclosure experiments in two mast and two nonmast years to test predictions of the predator dispersal hypothesis in our study system of yellow-necked mice (Apodemus flavicollis) and European beech (Fagus sylvatica). Specifically, we tested whether the fraction of seeds removed from the forest floor is similar during mast and nonmast years (i.e., lack of satiation before seed caching), whether masting decreases the removal of cached seeds (i.e., satiation after seed storage), and whether seed caching increases the probability of seedling emergence. We found that masting did not result in satiation at the seed removal stage. However, masting decreased the removal of cached seeds, and seed caching dramatically increased the probability of seedling emergence relative to noncached seeds. European beech thus benefits from masting through the satiation of scatterhoarders that occurs only after seeds are removed and cached. Although these findings do not exclude other evolutionary advantages of beech masting, they indicate that fitness benefits of masting extend beyond the most commonly considered advantages of predator satiation and increased pollination efficiency.

  19. Does predator management enhance survival of reintroduced black-footed ferrets?

    USGS Publications Warehouse

    Breck, Stewart W.; Biggins, Dean E.; Livieri, Travis M.; Matchett, Marc R.; Kopcso, Valerie

    2006-01-01

    Predation on black-footed ferrets (Mustela nigripes) is a potential problem at reintroduction sites, causing up to 95 percent of the documented mortality of ferrets. Strategies to reduce mortality due to predation can focus on preconditioning ferrets prior to reintroduction and/or managing predators of ferrets. Biologists have tried three general strategies to control predators at reintroduction sites: (1) selective removal of individual predators, (2) nonselective removal of coyotes (Canis latrans), and (3) electric fences to exclude coyotes from release sites. We conducted a post hoc review of data from releases during 1994–2003 at 11 sites in South Dakota and Montana to address whether or not predator management has benefited reintroduced black-footed ferrets. Limited evidence indicates that (1) individual great horned owls (Bubo virginianus) can cause significant ferret mortality and that identifying and removing these individuals can be beneficial, (2) lethal control of coyotes may have inverse effects on ferret survival, and (3) electric fencing does not enhance short- or long-term survival of reintroduced ferrets. The data are confounded by a variety of factors, making conclusions tenuous. Well designed studies are needed to properly address the effectiveness of predator management for enhancing ferret survival.

  20. Alien mink predation induces prolonged declines in archipelago amphibians

    PubMed Central

    Ahola, Markus; Nordström, Mikael; Banks, Peter B; Laanetu, Nikolai; Korpimäki, Erkki

    2006-01-01

    Amphibians are undergoing enigmatic global declines variously attributed to a complex web of anthropogenic forces. Alien predators pose a fundamental threat to biodiversity generally that is predicted to be most acute in island ecosystems. While amphibian eggs and tadpoles are vulnerable to aquatic predators, the effect of predators on adult, reproducing frogs, which most influence amphibian population processes, is unknown. Here, we report on the responses of amphibian populations in the outer Finnish Archipelago to a long-term, large-scale removal of American mink (Mustela vison Schreb.), an invasive predator linked to recent biodiversity loss across Europe. Removal increased both the densities and distribution of common frogs (Rana temporaria L.) but not those of common toads (Bufo bufo L.), which appear to escape mink predation because of their unpalatable skin. Importantly, the largest benefits of mink removal to frog recovery were slow to appear as frogs apparently have a delayed maturation in these harsh environments, which means we must be cautious about reliance upon short-term results. PMID:16720400

  1. Development of a Systemwide Predator Control Program, Section II : Northern Squawfish Management Program Evaluation, 1996 annual report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, Franklin R.

    1997-11-01

    Predator control fisheries aimed at reducing predation on juvenile salmonids by northern squawfish Ptychocheilus oregonensis were implemented for the seventh consecutive year in the mainstem Columbia and Snake rivers. In this report, we (1) evaluate northern squawfish exploitation and size composition, and compare catch rate of incidentally-harvested fishes among the three major management fisheries in 1996, (2) estimate reductions in predation on juvenile salmonids since implementation of the fisheries, and (3) evaluate changes from 1990-96 in relative abundance, consumption, size and age structure, growth, and fecundity of northern squawfish. Systemwide exploitation of northern squawfish 2 250 mm fork length wasmore » 12.1% for sport-reward, 0.3% for dam-angling, and 0.5% for site-specific gill-net fisheries. Total exploitation was lowest in Lower Monumental Reservoir (0.0%) and highest in McNary Reservoir (18.2%). Mean fork length of harvested northern squawfish was 355 mm in the sport-reward, 391 mm in the dam-angling, and 408 mm in the gill-net fisheries. The dam-angling fishery had the lowest percentage (3.6%) of incidental catch relative to the total number of fish caught. Incidental catch was 27.0% in the sport-reward fishery and 54.6% in the gill-net fishery. If exploitation rates remain similar to mean 1991-96 levels, we estimate that potential predation by northern squawfish on juvenile salmonids in 1997 will be approximately 62% of predation levels prior to the implementation of removal fisheries. Further reductions in predation may be small, unless average exploitation in future years is higher than 1994-96 levels. Relative abundance of northern squawfish declined slightly from 1995 in Bonneville Reservoir, Lower Monumental Dam tailrace, and Little Goose Dam tailrace. Mean abundance for 1994-96 was 48-60% of 1990-93 levels among areas sampled at least five years. Indices of consumption were lower than 1995 in all areas except during summer in the tailrace boat-restricted zones of Bonneville and The Dalles dams. Predation indices have declined 69% from pre- 1994 levels. Decreases in proportional stock density were greater than could be explained by fluctuations in year-class strength, strongly suggesting that sustained removals may be altering the size structure of predator-sized northern squawfish. We found no evidence that northern squawfish have compensated in growth or fecundity in response to sustained exploitation.« less

  2. Apparent predation by cattle at grassland bird nests

    USGS Publications Warehouse

    Nack, Jamie L.; Ribic, C.A.

    2005-01-01

    We document the first cases of cattle behaving as avian predators, removing nestlings and eggs from three active ground nests in continuously grazed pastures in southwestern Wisconsin, 2000-2001. Cows removed three of four Savannah Sparrow (Passerculus sandwichensis) eggs from one nest (the fourth egg was damaged), all four Eastern Meadowlark (Sturnella magna) nestlings from another, and all three Savannah Sparrow nestlings from a third. We found only two of three missing eggs (intact) and one of seven missing nestlings (dead) near two of the nests. Cows may have eaten the egg and nestlings we were unable to account for; alternatively, the egg and nestlings may have been scavenged by predators or removed from the area by the adult birds. Without videotape documentation, we would have attributed nest failure to traditional predators and cattle would not have been implicated. We may be underestimating the impact of cattle on ground nests by not considering cattle as potential predators.

  3. Mesopredator Management: Effects of Red Fox Control on the Abundance, Diet and Use of Space by Feral Cats.

    PubMed

    Molsher, Robyn; Newsome, Alan E; Newsome, Thomas M; Dickman, Christopher R

    2017-01-01

    Apex predators are subject to lethal control in many parts of the world to minimize their impacts on human industries and livelihoods. Diverse communities of smaller predators-mesopredators-often remain after apex predator removal. Despite concern that these mesopredators may be 'released' in the absence of the apex predator and exert negative effects on each other and on co-occurring prey, these interactions have been little studied. Here, we investigate the potential effects of competition and intraguild predation between red foxes (Vulpes vulpes) and feral cats (Felis catus) in south-eastern Australia where the apex predator, the dingo (Canis dingo), has been extirpated by humans. We predicted that the larger fox would dominate the cat in encounters, and used a fox-removal experiment to assess whether foxes affect cat abundance, diet, home-range and habitat use. Our results provide little indication that intraguild predation occurred or that cats responded numerically to the fox removal, but suggest that the fox affects some aspects of cat resource use. In particular, where foxes were removed cats increased their consumption of invertebrates and carrion, decreased their home range size and foraged more in open habitats. Fox control takes place over large areas of Australia to protect threatened native species and agricultural interests. Our results suggest that fox control programmes could lead to changes in the way that cats interact with co-occurring prey, and that some prey may become more vulnerable to cat predation in open habitats after foxes have been removed. Moreover, with intensive and more sustained fox control it is possible that cats could respond numerically and alter their behaviour in different ways to those documented herein. Such outcomes need to be considered when estimating the indirect impacts of fox control. We conclude that novel approaches are urgently required to control invasive mesopredators at the same time, especially in areas where apex predators are absent.

  4. Past agricultural land use and present-day fire regimes can interact to determine the nature of seed predation.

    PubMed

    Stuhler, John D; Orrock, John L

    2016-06-01

    Historical agriculture and present-day fire regimes can have significant effects on contemporary ecosystems. Although past agricultural land use can lead to long-term changes in plant communities, it remains unclear whether these persistent land-use legacies alter plant-consumer interactions, such as seed predation, and whether contemporary disturbance (e.g., fire) alters the effects of historical agriculture on these interactions. We conducted a study at 27 sites distributed across 80,300 ha in post-agricultural and non-agricultural longleaf pine woodlands with different degrees of fire frequency to test the hypothesis that past and present-day disturbances that alter plant communities can subsequently alter seed predation. We quantified seed removal by arthropods and rodents for Tephrosia virginiana and Vernonia angustifolia, species of conservation interest. We found that the effects of land-use history and fire frequency on seed removal were contingent on granivore guild and microhabitat characteristics. Tephrosia virginiana removal was greater in low fire frequency sites, due to greater seed removal by rodents. Although overall removal of V. angustifolia did not differ among habitats, rodents removed more seeds than arthropods at post-agricultural sites and non-agricultural sites with low fire frequencies, but not at non-agricultural sites with high fire frequencies. Land-use history and fire frequency also affected the relationship between microhabitat characteristics and removal of V. angustifolia. Our results suggest that historical agriculture and present-day fire regimes may alter seed predation by shifting the impact of rodent and arthropod seed predators among habitats, with potential consequences for the establishment of rare plant species consumed by one or both predators.

  5. Spatial heterogeneity in post-dispersal predation on Prunus and Uvularia seeds.

    PubMed

    Webb, Sara L; Willson, Mary F

    1985-08-01

    We investigated effects of seed density, distance from parent, and habitat (woods, open field) on post-dispersal predation risk (chiefly by rodents) for seeds of Prunus virginiana (Rosaceae). Additional study of the habitat effect (woods, open field, treefall gap) was made with seeds of Prunus avium (Rosaceae) and Uvularia grandiflora (Liliaceae). Density of Prunus seeds (range 2-40 seeds/group) did not affect predation risk for individual seeds. Distance from parent plants did influence predation risk, which was greatest directly beneath parents. This distance effect primarily comprised a sharp drop in risk within 2 m of parents, a distance too small to generate a "spacing rule" for conspecifics.We found that habitat strongly influenced predation intensity. Rates of removal of Prunus seeds were higher in woods than in open fields, except when overall predation intensity was very low and no pattern could be discerned. Prunus seed removal rates were higher in closed woods than in treefall gaps. Consequently, a Prunus seed will more likely escape predation if dispersed to an open site. In contrast, Uvularia seed removal rates were higher in open fields than in woods but did not differ between closed woods and tree-fall gaps.Predation intensity was spatially patchy between and within experimental arrays, but was consistent over time at some specific points in space, possibly reflecting home ranges of seed predators.

  6. Landscape genetics of the nonnative red fox of California.

    PubMed

    Sacks, Benjamin N; Brazeal, Jennifer L; Lewis, Jeffrey C

    2016-07-01

    Invasive mammalian carnivores contribute disproportionately to declines in global biodiversity. In California, nonnative red foxes (Vulpes vulpes) have significantly impacted endangered ground-nesting birds and native canids. These foxes derive primarily from captive-reared animals associated with the fur-farming industry. Over the past five decades, the cumulative area occupied by nonnative red fox increased to cover much of central and southern California. We used a landscape-genetic approach involving mitochondrial DNA (mtDNA) sequences and 13 microsatellites of 402 nonnative red foxes removed in predator control programs to investigate source populations, contemporary connectivity, and metapopulation dynamics. Both markers indicated high population structuring consistent with origins from multiple introductions and low subsequent gene flow. Landscape-genetic modeling indicated that population connectivity was especially low among coastal sampling sites surrounded by mountainous wildlands but somewhat higher through topographically flat, urban and agricultural landscapes. The genetic composition of populations tended to be stable for multiple generations, indicating a degree of demographic resilience to predator removal programs. However, in two sites where intensive predator control reduced fox abundance, we observed increases in immigration, suggesting potential for recolonization to counter eradication attempts. These findings, along with continued genetic monitoring, can help guide localized management of foxes by identifying points of introductions and routes of spread and evaluating the relative importance of reproduction and immigration in maintaining populations. More generally, the study illustrates the utility of a landscape-genetic approach for understanding invasion dynamics and metapopulation structure of one of the world's most destructive invasive mammals, the red fox.

  7. Mesopredator Management: Effects of Red Fox Control on the Abundance, Diet and Use of Space by Feral Cats

    PubMed Central

    Molsher, Robyn; Newsome, Thomas M.; Dickman, Christopher R.

    2017-01-01

    Apex predators are subject to lethal control in many parts of the world to minimize their impacts on human industries and livelihoods. Diverse communities of smaller predators—mesopredators—often remain after apex predator removal. Despite concern that these mesopredators may be 'released' in the absence of the apex predator and exert negative effects on each other and on co-occurring prey, these interactions have been little studied. Here, we investigate the potential effects of competition and intraguild predation between red foxes (Vulpes vulpes) and feral cats (Felis catus) in south-eastern Australia where the apex predator, the dingo (Canis dingo), has been extirpated by humans. We predicted that the larger fox would dominate the cat in encounters, and used a fox-removal experiment to assess whether foxes affect cat abundance, diet, home-range and habitat use. Our results provide little indication that intraguild predation occurred or that cats responded numerically to the fox removal, but suggest that the fox affects some aspects of cat resource use. In particular, where foxes were removed cats increased their consumption of invertebrates and carrion, decreased their home range size and foraged more in open habitats. Fox control takes place over large areas of Australia to protect threatened native species and agricultural interests. Our results suggest that fox control programmes could lead to changes in the way that cats interact with co-occurring prey, and that some prey may become more vulnerable to cat predation in open habitats after foxes have been removed. Moreover, with intensive and more sustained fox control it is possible that cats could respond numerically and alter their behaviour in different ways to those documented herein. Such outcomes need to be considered when estimating the indirect impacts of fox control. We conclude that novel approaches are urgently required to control invasive mesopredators at the same time, especially in areas where apex predators are absent. PMID:28068378

  8. Persistent predator-prey dynamics revealed by mass extinction.

    PubMed

    Sallan, Lauren Cole; Kammer, Thomas W; Ausich, William I; Cook, Lewis A

    2011-05-17

    Predator-prey interactions are thought by many researchers to define both modern ecosystems and past macroevolutionary events. In modern ecosystems, experimental removal or addition of taxa is often used to determine trophic relationships and predator identity. Both characteristics are notoriously difficult to infer in the fossil record, where evidence of predation is usually limited to damage from failed attacks, individual stomach contents, one-sided escalation, or modern analogs. As a result, the role of predation in macroevolution is often dismissed in favor of competition and abiotic factors. Here we show that the end-Devonian Hangenberg event (359 Mya) was a natural experiment in which vertebrate predators were both removed and added to an otherwise stable prey fauna, revealing specific and persistent trophic interactions. Despite apparently favorable environmental conditions, crinoids diversified only after removal of their vertebrate consumers, exhibiting predatory release on a geological time scale. In contrast, later Mississippian (359-318 Mya) camerate crinoids declined precipitously in the face of increasing predation pressure from new durophagous fishes. Camerate failure is linked to the retention of obsolete defenses or "legacy adaptations" that prevented coevolutionary escalation. Our results suggest that major crinoid evolutionary phenomena, including rapid diversification, faunal turnover, and species selection, might be linked to vertebrate predation. Thus, interactions observed in small ecosystems, such as Lotka-Volterra cycles and trophic cascades, could operate at geologic time scales and higher taxonomic ranks. Both trophic knock-on effects and retention of obsolete traits might be common in the aftermath of predator extinction.

  9. Predation of nitritation-anammox biofilms used for nitrogen removal from wastewater.

    PubMed

    Suarez, Carolina; Persson, Frank; Hermansson, Malte

    2015-11-01

    Predation is assumed to be a major cause of bacterial mortality in wastewater treatment plants (WWTP). Grazing on the slowly growing autotrophic ammonia oxidizing bacteria (AOB) and anaerobic ammonium oxidizing bacteria (AMX) may result in loss of biomass, which could compromise nitrogen removal by the nitritation-anammox process. However, predation, particularly of anaerobic AMX, is unknown. We investigated the presence of protozoa, AOB and AMX and the possible predation in nitritation-anammox biofilms from several WWTPs. By fluorescence in situ hybridization (FISH) and confocal laser scanning microscopy (CLSM), predator and prey were localized in intact biofilm cryosections. Different broad morphological types of protozoa were found at different biofilm depths. Large variations in abundance of protozoa were seen. One reactor showed a predation event of amoeba-like protozoa, forming grazing fronts reaching deep biofilm regions that were dominated by the anaerobic AMX. Both AOB and AMX were grazed by the amoeba, as revealed by FISH-CLSM. Hence, even AMX, living in the deeper layers of stratified biofilms, are subjected to predation. Interestingly, different colocalization was observed between the amoeba-like protozoa and two different Ca. Brocadia AMX sublineages, indicating different grazing patterns. The findings indicate that predation pressure can be an important factor regulating the abundance of AOB and AMX, with implications for nitrogen removal from wastewater. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Evaluating the effects of trophic complexity on a keystone predator by disassembling a partial intraguild predation food web.

    PubMed

    Davenport, Jon M; Chalcraft, David R

    2012-01-01

    1. Many taxa can be found in food webs that differ in trophic complexity, but it is unclear how trophic complexity affects the performance of particular taxa. In pond food webs, larvae of the salamander Ambystoma opacum occupy the intermediate predator trophic position in a partial intraguild predation (IGP) food web and can function as keystone predators. Larval A. opacum are also found in simpler food webs lacking either top predators or shared prey. 2. We conducted an experiment where a partial IGP food web was simplified, and we measured the growth and survival of larval A. opacum in each set of food webs. Partial IGP food webs that had either a low abundance or high abundance of total prey were also simplified by independently removing top predators and/or shared prey. 3. Removing top predators always increased A. opacum survival, but removal of shared prey had no effect on A. opacum survival, regardless of total prey abundance. 4. Surprisingly, food web simplification had no effect on the growth of A. opacum when present in food webs with a low abundance of prey but had important effects on A. opacum growth in food webs with a high abundance of prey. Simplifying a partial IGP food web with a high abundance of prey reduced A. opacum growth when either top predators or shared prey were removed from the food web and the loss of top predators and shared prey influenced A. opacum growth in a non-additive fashion. 5. The non-additive response in A. opacum growth appears to be the result of supplemental prey availability augmenting the beneficial effects of top predators. Top predators had a beneficial effect on A. opacum populations by reducing the abundance of A. opacum present and thereby reducing the intensity of intraspecific competition. 6. Our study indicates that the effects of food web simplification on the performance of A. opacum are complex and depend on both how a partial IGP food web is simplified and how abundant prey are in the food web. These findings are important because they demonstrate how trophic complexity can create variation in the performance of intermediate predators that play important roles in temporary pond food webs. © 2011 The Authors. Journal of Animal Ecology © 2011 British Ecological Society.

  11. Ecosystem-based management of predator-prey relationships: piscivorous birds and salmonids.

    PubMed

    Wiese, Francis K; Parrish, Julia K; Thompson, Christopher W; Maranto, Christina

    2008-04-01

    Predator-prey relationships are often altered as a result of human activities. Where prey are legally protected, conservation action may include lethal predator control. In the Columbia River basin (Pacific Northwest, USA and Canada), piscivorous predators have been implicated in contributing to a lack of recovery of several endangered anadromous salmonids (Oncorhynchus spp.), and lethal and nonlethal control programs have been instituted against both piscine and avian species. To determine the consequences of avian predation, we used a bioenergetics approach to estimate the consumption of salmonid smolts by waterbirds (Common Merganser, California and Ring-billed Gull, Caspian Tern, Double-crested Cormorant) found in the mid-Columbia River from April through August, 2002-2004. We used our model to explore several predator-prey scenarios, including the impact of historical bird abundance, and the effect of preserving vs. removing birds, on smolt abundance. Each year, <1% of the estimated available salmonid smolts (interannual range: 44,830-109,209; 95% CI = 38,000-137,000) were consumed, 85-98% away from dams. Current diet data combined with historical gull abundance at dams suggests that past smolt consumption may have been 1.5-3 times current numbers, depending on the assumed distribution of gulls along the reaches. After the majority (80%) of salmonid smolts have left the study area, birds switch their diet to predominantly juvenile northern pikeminnow (Ptychocheilus oregonensis), which as adults are significant native salmonid predators in the Columbia River. Our models suggest that one consequence of removing birds from the system may be increased pikeminnow abundance, which--even assuming 80% compensatory mortality in juvenile pikeminnow survival--would theoretically result in an annual average savings of just over 180,000 smolts, calculated over a decade. Practically, this suggests that smolt survival could be maximized by deterring birds from the river when smolts are present, allowing bird presence after the diet switch to act as a tool for salmonid-predator control, and conducting adult-pikeminnow control throughout. Our analysis demonstrates that identifying the strength of ecosystem interactions represents a top priority when attempting to manage the abundance of a particular ecosystem constituent, and that the consequences of a single-species view may be counterintuitive, and potentially counterproductive.

  12. Flexible architecture of inducible morphological plasticity.

    PubMed

    Kishida, Osamu; Nishimura, Kinya

    2006-05-01

    1. Predator-induced morphological defences are produced in response to an emergent predator regime. In natural systems, prey organisms usually experience temporal shifting of the composition of the predator assemblage and of the intensity of predation risk from each predator species. Although, a repetitive morphological change in response to a sequential shift of the predator regime such as alteration of the predator species or diminution of the predation risk may be adaptive, such flexible inducible morphological defences are not ubiquitous. 2. We experimentally addressed whether a flexible inducible morphological defence is accomplished in response to serial changes in the predation regime, using a model prey species which adopt different defensive morphological phenotypes in response to different predator species. Rana pirica (Matsui) tadpoles increased body depth and tail depth against the predatory larval salamander Hynobius retardatus (Dunn); on the other hand, they only increased tail depth against the predatory larval dragonfly Aeshna nigroflava (Martin). 3. Rana pirica tadpoles with the predator-specific phenotypes were subjected to removal or exchange of the predator species. After removal of the predator species, tadpoles with each predator-specific phenotype changed their phenotype to the nondefensive basic one, suggesting that both predator-specific phenotypes are costly to maintain. After an exchange of the predator species, tadpoles with each predator-specific phenotype reciprocally, flexibly shifted their phenotype to the now more suitable predator-specific one only by modifying their body part. The partial modification can effectively reduce time and energy expenditures involved in repetitive morphological changes, and therefore suggest that the costs of the flexible morphological changes are reduced.

  13. Effects of frugivore impoverishment and seed predators on the recruitment of a keystone palm

    NASA Astrophysics Data System (ADS)

    Fadini, Rodrigo F.; Fleury, Marina; Donatti, Camila I.; Galetti, Mauro

    2009-03-01

    Many plant species are threatened as a result of extinction of their large-bodied frugivores all over the world. Additionally, introduced herbivores and seed predators may cause severe pressure on early stages of plant recruitment. We studied the seed dispersal and seed predation of the keystone palm Euterpe edulis on a land-bridge island with a highly impoverished frugivore fauna and overabundant seed predators, and in a continuous Atlantic forest in Brazil. While the diversity of avian seed dispersers and predators was higher on the mainland, the abundance of seed dispersers was 4-fold higher on the island. Turdus flavipes was responsible for 72% and 96% of seeds removed in the island and mainland, respectively. However, the higher density of T. flaviceps on the island did not result in higher seed removal. In fact, seed removal rate was 1.7 times lower there than on the mainland, probably due to the aggressive behavior of the major seed disperser who defend palm fruits. Seed predation, on the other hand, was markedly higher on the island, where nearly 100% of seeds were preyed upon, but only 0.3% on the mainland. As a consequence of higher seed predation the population of E. edulis has few numbers of seedlings and saplings on the island. Therefore, management of the seed predator populations on the island is a key priority for recovering the natural population of this keystone palm and the frugivores that depend on its fruits.

  14. Keystone effects of an alien top-predator stem extinctions of native mammals

    PubMed Central

    Letnic, Mike; Koch, Freya; Gordon, Chris; Crowther, Mathew S.; Dickman, Christopher R.

    2009-01-01

    Alien predators can have catastrophic effects on ecosystems and are thought to be much more harmful to biodiversity than their native counterparts. However, trophic cascade theory and the mesopredator release hypothesis predict that the removal of top predators will result in the reorganization of trophic webs and loss of biodiversity. Using field data collected throughout arid Australia, we provide evidence that removal of an alien top-predator, the dingo, has cascading effects through lower trophic levels. Dingo removal was linked to increased activity of herbivores and an invasive mesopredator, the red fox (Vulpes vulpes), and to the loss of grass cover and native species of small mammals. Using species distribution data, we predict that reintroducing or maintaining dingo populations would produce a net benefit for the conservation of threatened native mammals across greater than 2.42 × 106 km2 of Australia. Our study provides evidence that an alien top predator can assume a keystone role and be beneficial for biodiversity conservation, and also that mammalian carnivores more generally can generate strong trophic cascades in terrestrial ecosystems. PMID:19535372

  15. Is It Necessary Managing Carnivores to Reverse the Decline of Endangered Prey Species? Insights from a Removal Experiment of Mesocarnivores to Benefit Demographic Parameters of the Pyrenean Capercaillie

    PubMed Central

    Moreno-Opo, Rubén; Afonso, Iván; Jiménez, José; Fernández-Olalla, Mariana; Canut, Jordi; García-Ferré, Diego; Piqué, Josep; García, Francisco; Roig, Job; Muñoz-Igualada, Jaime; González, Luis Mariano; López-Bao, José Vicente

    2015-01-01

    Mesopredator control has long been used to alleviate the effect of elevated predation pressure on vulnerable, threatened or valuable species. However, the convenience of using mesopredator controls is technically questionable and scientifically-sound research is therefore required to evaluate the impact of predation on prey case by case. In this study we evaluated the effect of the alteration of terrestrial mesopredator dynamics on the demographic parameters of a relict capercaillie Tetrao urogallus aquitanicus population currently in decline for which the impact of predation has not previously been assessed. We used a six-year mesocarnivore removal experiment (2008–2013) together with seven-years of previous demographic information on capercaillies (1999–2007) within a before-after control-impact (BACI) design to evaluate the effect of mesocarnivore removal on capercaillie demographic parameters and on spatial behaviour of the most frequent predatory mesocarnivores of the capercaillie (Martes spp. and red fox Vulpes vulpes). Using a dynamic site-occupancy approach, the reduction of mesocarnivore population levels as a result of removal was clear for marten species, mainly during key months for capercaillie reproduction, but not for the red fox. Our results show that the breeding success of capercaillies was enhanced in areas where carnivores were removed and was inversely related to the occupation level of the studied mesocarnivores, although being only significant for Martes spp. Moreover, capercaillie predation rates were lower and adult survival seemingly higher in treatment during the removal phase. Cost-effective, long-term management interventions to ensure the recovery of this threatened capercaillie population are discussed in the light of the results. At our study area, the decision for implementing predation management should be included within a broader long-term conservation perspective. In this regard, a more feasible and sustainable management intervention in ecological and economic terms may be to balance the impact of mesocarnivores on capercaillies through the recovery of apex predators. PMID:26489094

  16. Granivory of invasive, naturalized, and native plants in communities differentially susceptible to invasion.

    PubMed

    Connolly, B M; Pearson, D E; Mack, R N

    2014-07-01

    Seed predation is an important biotic filter that can influence abundance and spatial distributions of native species through differential effects on recruitment. This filter may also influence the relative abundance of nonnative plants within habitats and the communities' susceptibility to invasion via differences in granivore identity, abundance, and food preference. We evaluated the effect of postdispersal seed predators on the establishment of invasive, naturalized, and native species within and between adjacent forest and steppe communities of eastern Washington, USA that differ in severity of plant invasion. Seed removal from trays placed within guild-specific exclosures revealed that small mammals were the dominant seed predators in both forest and steppe. Seeds of invasive species (Bromus tectorum, Cirsium arvense) were removed significantly less than the seeds of native (Pseudoroegneria spicata, Balsamorhiza sagittata) and naturalized (Secale cereale, Centaurea cyanus) species. Seed predation limited seedling emergence and establishment in both communities in the absence of competition in a pattern reflecting natural plant abundance: S. cereale was most suppressed, B. tectorum was least suppressed, and P. spicata was suppressed at an intermediate level. Furthermore, seed predation reduced the residual seed bank for all species. Seed mass correlated with seed removal rates in the forest and their subsequent effects on plant recruitment; larger seeds were removed at higher rates than smaller seeds. Our vegetation surveys indicate higher densities and canopy cover of nonnative species occur in the steppe compared with the forest understory, suggesting the steppe may be more susceptible to invasion. Seed predation alone, however, did not result in significant differences in establishment for any species between these communities, presumably due to similar total small-mammal abundance between communities. Consequently, preferential seed predation by small mammals predicts plant establishment for our test species within these communities but not between them. Accumulating evidence suggests that seed predation can be an important biotic filter affecting plant establishment via differences in consumer preferences and abundance with important ramifications for plant invasions and in situ community assembly.

  17. Bagworm bags as portable armour against invertebrate predators.

    PubMed

    Sugiura, Shinji

    2016-01-01

    Some animals have evolved the use of environmental materials as "portable armour" against natural enemies. Portable bags that bagworm larvae (Lepidoptera: Psychidae) construct using their own silk and plant parts are generally believed to play an important role as a physical barrier against natural enemies. However, no experimental studies have tested the importance of bags as portable armour against predators. To clarify the defensive function, I studied the bagworm Eumeta minuscula and a potential predator Calosoma maximoviczi (Coleoptera: Carabidae). Under laboratory conditions, all bagworm larvae were attacked by carabid adults, but successfully defended themselves against the predators' mandibles using their own bags. The portable bags, which are composed mainly of host plant twigs, may function as a physical barrier against predator mandibles. To test this hypothesis, I removed the twig bags and replaced some with herb leaf bags; all bag-removed larvae were easily caught and predated by carabids, while all bag-replaced larvae could successfully defend themselves against carabid attacks. Therefore, various types of portable bags can protect bagworm larvae from carabid attacks. This is the first study to test the defensive function of bagworm portable bags against invertebrate predators.

  18. Do predators control prey species abundance? An experimental test with brown treesnakes on Guam

    USGS Publications Warehouse

    Campbell, Earl W.; Yackel Adams, Amy A.; Converse, Sarah J.; Fritts, Thomas H.; Rodda, Gordon H.

    2012-01-01

    The effect of predators on the abundance of prey species is a topic of ongoing debate in ecology; the effect of snake predators on their prey has been less debated, as there exists a general consensus that snakes do not negatively influence the abundance of their prey. However, this viewpoint has not been adequately tested. We quantified the effect of brown treesnake (Boiga irregularis) predation on the abundance and size of lizards on Guam by contrasting lizards in two 1-ha treatment plots of secondary forest from which snakes had been removed and excluded vs. two 1-ha control plots in which snakes were monitored but not removed or excluded. We removed resident snakes from the treatment plots with snake traps and hand capture, and snake immigration into these plots was precluded by electrified snake barriers. Lizards were sampled in all plots quarterly for a year following snake elimination in the treatment plots. Following the completion of this experiment, we used total removal sampling to census lizards on a 100-m2 subsample of each plot. Results of systematic lizard population monitoring before and after snake removal suggest that the abundance of the skink, Carlia ailanpalai, increased substantially and the abundance of two species of gekkonids, Lepidodactylus lugubris and Hemidactylus frenatus, also increased on snake-free plots. No treatment effect was observed for the skink Emoia caeruleocauda. Mean snout–vent length of all lizard species only increased following snake removal in the treatment plots. The general increase in prey density and mean size was unexpected in light of the literature consensus that snakes do not control the abundance of their prey species. Our findings show that, at least where alternate predators are lacking, snakes may indeed affect prey populations.

  19. Quantifying fear effects on prey demography in nature.

    PubMed

    Peers, Michael J L; Majchrzak, Yasmine N; Neilson, Eric; Lamb, Clayton T; Hämäläinen, Anni; Haines, Jessica A; Garland, Laura; Doran-Myers, Darcy; Broadley, Kate; Boonstra, Rudy; Boutin, Stan

    2018-06-13

    In recent years, it has been argued that the effect of predator fear exacts a greater demographic toll on prey populations than the direct killing of prey. However, efforts to quantify the effects of fear have primarily relied on experiments that replace predators with predator cues. Interpretation of these experiments must consider two important caveats: (1) the magnitude of experimenter-induced predator cues may not be realistically comparable to those of the prey's natural sensory environment, and (2) given functional predators are removed from the treatments, the fear effect is measured in the absence of any consumptive effects, a situation which never occurs in nature. We contend that demographic consequences of fear in natural populations may have been overestimated because the intensity of predator cues applied by experimenters in the majority of studies has been unnaturally high, in some instances rarely occurring in nature without consumption. Furthermore, the removal of consumption from the treatments creates the potential situation that individual prey in poor condition (those most likely to contribute strongly to the observed fear effects via starvation or reduced reproductive output) may have been consumed by predators in nature prior to the expression of fear effects, thus confounding consumptive and fear effects. Here, we describe an alternative treatment design that does not utilize predator cues, and in so doing, better quantifies the demographic effect of fear on wild populations. This treatment substitutes the traditional cue experiment where consumptive effects are eliminated and fear is simulated with a design where fear is removed and consumptive effects are simulated through the experimental removal of prey. Comparison to a natural population would give a more robust estimate of the effect of fear in the presence of consumption on the demographic variable of interest. This approach represents a critical advance in quantifying the mechanistic pathways through which predation structures ecological communities. Discussing the merits of both treatments will motivate researchers to go beyond simply describing the existence of fear effects and focus on testing their true magnitude in wild populations and natural communities. © 2018 by the Ecological Society of America.

  20. Field evidence for pervasive indirect effects of fishing on prey foraging behavior.

    PubMed

    Madin, Elizabeth M P; Gaines, Steven D; Warner, Robert R

    2010-12-01

    The indirect, ecosystem-level consequences of ocean fishing, and particularly the mechanisms driving them, are poorly understood. Most studies focus on density-mediated trophic cascades, where removal of predators alternately causes increases and decreases in abundances of lower trophic levels. However, cascades could also be driven by where and when prey forage rather than solely by prey abundance. Over a large gradient of fishing intensity in the central Pacific's remote northern Line Islands, including a nearly pristine, baseline coral reef system, we found that changes in predation risk elicit strong behavioral responses in foraging patterns across multiple prey fish species. These responses were observed as a function of both short-term ("acute") risk and longer-term ("chronic") risk, as well as when prey were exposed to model predators to isolate the effect of perceived predation risk from other potentially confounding factors. Compared to numerical prey responses, antipredator behavioral responses such as these can potentially have far greater net impacts (by occurring over entire assemblages) and operate over shorter temporal scales (with potentially instantaneous response times) in transmitting top-down effects. A rich body of literature exists on both the direct effects of human removal of predators from ecosystems and predators' effects on prey behavior. Our results draw together these lines of research and provide the first empirical evidence that large-scale human removal of predators from a natural ecosystem indirectly alters prey behavior. These behavioral changes may, in turn, drive previously unsuspected alterations in reef food webs.

  1. Tracking Seed Fates of Tropical Tree Species: Evidence for Seed Caching in a Tropical Forest in North-East India

    PubMed Central

    Sidhu, Swati; Datta, Aparajita

    2015-01-01

    Rodents affect the post-dispersal fate of seeds by acting either as on-site seed predators or as secondary dispersers when they scatter-hoard seeds. The tropical forests of north-east India harbour a high diversity of little-studied terrestrial murid and hystricid rodents. We examined the role played by these rodents in determining the seed fates of tropical evergreen tree species in a forest site in north-east India. We selected ten tree species (3 mammal-dispersed and 7 bird-dispersed) that varied in seed size and followed the fates of 10,777 tagged seeds. We used camera traps to determine the identity of rodent visitors, visitation rates and their seed-handling behavior. Seeds of all tree species were handled by at least one rodent taxon. Overall rates of seed removal (44.5%) were much higher than direct on-site seed predation (9.9%), but seed-handling behavior differed between the terrestrial rodent groups: two species of murid rodents removed and cached seeds, and two species of porcupines were on-site seed predators. In addition, a true cricket, Brachytrupes sp., cached seeds of three species underground. We found 309 caches formed by the rodents and the cricket; most were single-seeded (79%) and seeds were moved up to 19 m. Over 40% of seeds were re-cached from primary cache locations, while about 12% germinated in the primary caches. Seed removal rates varied widely amongst tree species, from 3% in Beilschmiedia assamica to 97% in Actinodaphne obovata. Seed predation was observed in nine species. Chisocheton cumingianus (57%) and Prunus ceylanica (25%) had moderate levels of seed predation while the remaining species had less than 10% seed predation. We hypothesized that seed traits that provide information on resource quantity would influence rodent choice of a seed, while traits that determine resource accessibility would influence whether seeds are removed or eaten. Removal rates significantly decreased (p < 0.001) while predation rates increased (p = 0.06) with seed size. Removal rates were significantly lower for soft seeds (p = 0.002), whereas predation rates were significantly higher on soft seeds (p = 0.01). Our results show that murid rodents play a very important role in affecting the seed fates of tropical trees in the Eastern Himalayas. We also found that the different rodent groups differed in their seed handling behavior and responses to changes in seed characteristics. PMID:26247616

  2. Managing native predators: Evidence from a partial removal of raccoons (Procyon lotor) on the Outer Banks of North Carolina, USA

    USGS Publications Warehouse

    Stocking, Jessica J.; Simons, Theodore R.; Parsons, Arielle W.; O'Connell, Allan F.

    2017-01-01

    Raccoons (Procyon lotor) are important predators of ground-nesting species in coastal systems. They have been identified as a primary cause of nest failure for the American Oystercatcher (Haematopus palliatus) throughout its range. Concerns over the long-term effects of raccoon predation and increased nest success following a hurricane inspired a mark-resight study of the raccoon population on a barrier island off North Carolina, USA. Approximately half of the raccoons were experimentally removed in 2008. Nests (n = 700) were monitored on two adjacent barrier islands during 2004–2013. Daily nest survival estimates were highest for 2004 (0.974 ± 0.005) and lowest for 2007 and 2008 (0.925 ± 0.009 and 0.925 ± 0.010, respectively). The only model in our candidate set that received any support included island and time of season, along with a diminishing effect of the hurricane and a constant, 5-year effect of the raccoon removal. For both hurricane and raccoon removal, however, the support for island-specific effects was weak (β = -0.204 ± 0.116 and 0.146 ± 0.349, respectively). We conclude that either the raccoon reduction was inadequate, or factors other than predation cause more variation in nest success than previously recognized. A multi-faceted approach to management aimed at reducing nest losses to storm overwash, predation, and human disturbance is likely to yield the largest population level benefits.

  3. Interactions between striped bass and other gamefish in reservoirs

    USGS Publications Warehouse

    Miranda, Leandro E.; Raborn, Scott W.

    2013-01-01

    Competitive interactions among reservoir fishes may be pronounced because fish assemblages in these artificial environments have had little time to develop niche-partitioning strategies that alleviate negative interspecific interactions. Such interactions may at times have been intensified by introductions of predators such as striped bass Morone saxatilis, introduced to create additional fisheries and control pelagic clupeids. Possible interactions between existing fish assemblages and striped bass include predation and competition. While there is a perception among angler groups that predation by striped bass on co-existing game fish is significant, most studies have reported little or no predation on game fish my striped bass and have considered predation rare and inconsequential. Moreover, predation that occurs will likely be compensatory and fail to reduce overall game fish survival. Any indirect effect of striped bass predation by restricting prey-sized game fish to limited refuge sites remains unknown. Exploitative competition may be more common. Although infrequently, introduced striped bass have depleted prey resources shared with other piscivores, particularly when stocking rates have been high, when there is a high rate of natural reproduction, or when prey supply has plunged in response to environmental fluxes. Fluctuation in prey supply, associated with ordinary environmental variability, and associated time lages in prey supply and predator demand, preclude adjusting predator densities to exactly balance demand with supply. The frequency of low supply-demand rations varies across systems and exhibits seasonal trends. Nevertheless, chronic supply-demand imbalances are manageable where the predator assemblage is at least partially controlled through stocking, harvest regulations, or both. Because of the poor state of knowledge concerning the parameters defining balance and because uncontrollable annual fluctuations preclude exact management of alternating prey levels, we suggest adjusting stocking to manage demand to that it equals the median historical prey supply. Simulating the removal of striped bass and predicting the aftermath may be the most cost-efficient way to provide decision support for stakeholders involved in determining if a striped bass stocking program is beneficial to most users.

  4. Evaluating the efficacy of a landscape scale feral cat control program using camera traps and occupancy models.

    PubMed

    Comer, Sarah; Speldewinde, Peter; Tiller, Cameron; Clausen, Lucy; Pinder, Jeff; Cowen, Saul; Algar, Dave

    2018-03-28

    The impact of introduced predators is a major factor limiting survivorship and recruitment of many native Australian species. In particular, the feral cat and red fox have been implicated in range reductions and population declines of many conservation dependent species across Australia, including ground-nesting birds and small to medium-sized mammals. The impact of predation by feral cats since their introduction some 200 years ago has altered the structure of native fauna communities and led to the development of landscape-scale threat abatement via baiting programs with the feral cat bait, Eradicat. Demonstrating the effectiveness of broad-scale programs is essential for managers to fine tune delivery and timing of baiting. Efficacy of feral cat baiting at the Fortescue Marsh in the Pilbara, Western Australia was tested using camera traps and occupancy models. There was a significant decrease in probability of site occupancy in baited sites in each of the five years of this study, demonstrating both the effectiveness of aerial baiting for landscape-scale removal of feral cats, and the validity of camera trap monitoring techniques for detecting changes in feral cat occupancy during a five-year baiting program.

  5. Unexpected consequences of control: competitive vs. predator release in a four-species assemblage of invasive mammals.

    PubMed

    Ruscoe, Wendy A; Ramsey, David S L; Pech, Roger P; Sweetapple, Peter J; Yockney, Ivor; Barron, Mandy C; Perry, Mike; Nugent, Graham; Carran, Roger; Warne, Rodney; Brausch, Chris; Duncan, Richard P

    2011-10-01

    Invasive species are frequently the target of eradication or control programmes to mitigate their impacts. However, manipulating single species in isolation can lead to unexpected consequences for other species, with outcomes such as mesopredator release demonstrated both theoretically and empirically in vertebrate assemblages with at least two trophic levels. Less is known about the consequences of species removal in more complex assemblages where a greater number of interacting invaders increases the potential for selective species removal to result in unexpected changes in community structure. Using a replicated Before-After Control-Impact field experiment with a four-species assemblage of invasive mammals we show that species interactions in the community are dominated by competition rather than predation. There was no measurable response of two mesopredators (rats and mice) following control of the top predator (stoats), but there was competitive release of rats following removal of a herbivore (possums), and competitive release of mice following removal of rats. © 2011 Blackwell Publishing Ltd/CNRS.

  6. Abstracts for student symposium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldman, B.

    Lawrence Livermore National Laboratory Science and Engineering Research Semester (SERS) students are participants in a national program sponsored by the DOE Office of Energy Research. Presented topics from Fall 1993 include: Laser glass, wiring codes, lead in food and food containers, chromium removal from ground water, fiber optic sensors for ph measurement, CFC replacement, predator/prey simulation, detection of micronuclei in germ cells, DNA conformation, stimulated brillouin scattering, DNA sequencing, evaluation of education programs, neural network analysis of nuclear glass, lithium ion batteries, Indonesian snails, optical switching systems, and photoreceiver design. Individual papers are indexed separately on the Energy Data Base.

  7. [Live coral predation by fish in Tayrona Nature National Park, Colombian Caribbean].

    PubMed

    Reyes-Nivia, María Catalina; Garzón-Ferreira, Jaime; Rodríguez-Ramírez, Alberto

    2004-12-01

    Live coral predation by fish was evaluated in two bays of the Tayrona National Natural Park (Colombia), as a possible biological agent causing coral mortality. Visual censuses were used to identify the most important predator. Predation incidence was determined by examining all colonies present in permanent belt transects (20 x 2 m) in two reef environments (one dominated by Colpophyllia natans and the other one by Montastraea faveolata), for two climatic seasons (rainy and dry seasons). The parrotfish Sparisoma viride was the most important predator due to its biting frequency and bite size. S. viride adults of the initial and terminal phases, removed live tissue and part of the calcareous matrix of M. faveolata, M. annularis, Porites astreoides and C. natans, of which, the last one lost a major amount of tissue per area (3.51 cm2) and volume (3.22 cm3) per bite. A negative exponential tendency (r2=0.94), between coral density and volume removed was found, indicating that the coral density determines the bite's damage. There is no clear relationship between predation incidence and climatic seasons at the sites studied. At Chengue and Gayraca bays, live coral predation is one of the factors contributing to coral tissue loss and could have important consequences on the dynamic of these reefs.

  8. Postdispersal seed predation limits the abundance of a long-lived perennial forb (Lithospermum ruderale).

    PubMed

    Bricker, Mary; Maron, John

    2012-03-01

    Loss of seeds to consumers is common in plant communities, but the degree to which these losses influence plant abundance or population growth is often unclear. This is particularly the case for postdispersal seed predation by rodents, as most studies of rodent seed predation have focused on the sources of spatiotemporal variation in seed loss but not quantified the population consequences of this loss. In previous work we showed that seed predation by deer mice (Peromyscus maniculatus) substantially reduced seedling recruitment and establishment of Lithospermum ruderale (Boraginaceae), a long-lived perennial forb. To shed light on how rodent seed predation and the near-term effects on plant recruitment might influence longer-term patterns of L. ruderale population growth, we combined experimental results with demographic data in stage-based population models. Model outputs revealed that rodent seed predation had a significant impact on L. ruderale population growth rate (lambda). With the removal of postdispersal seed predation, the projected population growth rates increased between 0.06 and 0.12, depending on site (mean deltalambda across sites = 0.08). Seed predation shifted the projected stable stage distribution of populations from one with a high proportion of young plants to one in which larger adult size classes dominate. Elasticities of vital rates also changed, with germination and growth of seedlings and young plants becoming more important with the removal of seed predation. Simulations varying the magnitude of seed predation pressure while holding other vital rates constant showed that seed predation could lower lambda even if only 40% of available seeds were consumed. These results demonstrate that rodent granivory can be a potent force limiting the abundance of a long-lived perennial forb.

  9. Bagworm bags as portable armour against invertebrate predators

    PubMed Central

    2016-01-01

    Some animals have evolved the use of environmental materials as “portable armour” against natural enemies. Portable bags that bagworm larvae (Lepidoptera: Psychidae) construct using their own silk and plant parts are generally believed to play an important role as a physical barrier against natural enemies. However, no experimental studies have tested the importance of bags as portable armour against predators. To clarify the defensive function, I studied the bagworm Eumeta minuscula and a potential predator Calosoma maximoviczi (Coleoptera: Carabidae). Under laboratory conditions, all bagworm larvae were attacked by carabid adults, but successfully defended themselves against the predators’ mandibles using their own bags. The portable bags, which are composed mainly of host plant twigs, may function as a physical barrier against predator mandibles. To test this hypothesis, I removed the twig bags and replaced some with herb leaf bags; all bag-removed larvae were easily caught and predated by carabids, while all bag-replaced larvae could successfully defend themselves against carabid attacks. Therefore, various types of portable bags can protect bagworm larvae from carabid attacks. This is the first study to test the defensive function of bagworm portable bags against invertebrate predators. PMID:26893969

  10. Coyote removal, understory cover, and survival of white-tailed deer neonates: Coyote Control and Fawn Survival

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kilgo, John C.; Vukovich, Mark; Ray, H. Scott

    Predation by coyotes (Canis latrans) on white-tailed deer (Odocoileus virginianus) neonates has led to reduced recruitment in many deer populations in southeastern North America. This low recruitment combined with liberal antlerless deer harvest has resulted in declines in some deer populations, and consequently, increased interest in coyote population control. We investigated whether neonate survival increased after coyote removal, whether coyote predation on neonates was additive to other mortality sources, and whether understory vegetation density affected neonate survival. We monitored neonate survival for 4 years prior to (2006–2009) and 3 years during (2010–2012) intensive coyote removal on 3 32-km 2 unitsmore » on the United States Department of Energy’s Savannah River Site, South Carolina. We removed 474 coyotes (1.63 coyotes/km 2 per unit per year), reducing coyote abundance by 78% from pre-removal levels. The best model (w i = 0.927) describing survival probability among 216 radio-collared neonates included a within-year quadratic time trend variable, date of birth, removal treatment, and a varying removal year effect. Under this model, survival differed between pre-treatment and removal periods and it differed among years during the removal period, being >100% greater than pre-treatment survival (0.228) during the first removal year (0.513), similar to pre-treatment survival during the second removal year (0.202), and intermediate during the third removal year (0.431). Despite an initial increase, the overall effect of coyote removal on neonate survival was modest. Mortality rate attributable to coyote predation was lowest during the first removal year (0.357) when survival was greatest, but the mortality rate from all other causes did not differ between the pretreatment period and any year during removals, indicating that coyote predation acted as an additive source of mortality. Survival probability was not related to vegetation cover, either directly or in interaction with coyote abundance. When the objective is to increase the recruitment of white-tailed deer, we conclude that neither coyote control nor vegetation management appear effective. Reduction of the antlerless harvest may be necessary to meet this objective, but this harvest strategy warrants additional research in Southeastern deer populations.« less

  11. Livestock Predation by Puma ( Puma concolor) in the Highlands of a Southeastern Brazilian Atlantic Forest

    NASA Astrophysics Data System (ADS)

    Palmeira, Francesca Belem Lopes; Trinca, Cristiano Trapé; Haddad, Claudio Maluf

    2015-10-01

    We evaluated local opinion about reducing livestock losses to puma ( Puma concolor) and the potential for conflict among livestock breeders inside a protected area in the highlands of a southeastern Brazilian Atlantic forest. We also quantified the number and type of livestock losses, and determined if predation by puma was correlated with property profile and landscape characteristics. We conducted semistructured interviews with 42 livestock breeders sampled in 36 rural properties. When asked how to reduce predation, 33 % of livestock breeders refused to answer, 26 % suggested improving livestock husbandry practices, 19 % stated that there was no appropriate action, 17 % favored removing the "problem" individual, and 5 % suggested killing the puma. Opinion on how to solve predation was independent of herd size and history of losses, and was correlated with respondent age class. Older respondents tended to suggest removing or killing pumas. Attitudes toward predation represented high potential for conflict among livestock breeders who demonstrated high discordance among responses. Horses were the most common prey (51 %), followed by cattle (28 %), sheep (17 %), and goats (4 %); totaling 47 animals attacked between 2004 and 2007. Annual predation was approximately 12 ± 5 animals, equivalent to 0.4 % of the total livestock. Property elevation and distance from the urban center were the main predictors of predation probability. This survey used a novel approach that has not been addressed directly in other studies on livestock predation and demonstrated that the high potential for conflict among livestock breeders should be considered before implementing management actions.

  12. Livestock Predation by Puma (Puma concolor) in the Highlands of a Southeastern Brazilian Atlantic Forest.

    PubMed

    Palmeira, Francesca Belem Lopes; Trinca, Cristiano Trapé; Haddad, Claudio Maluf

    2015-10-01

    We evaluated local opinion about reducing livestock losses to puma (Puma concolor) and the potential for conflict among livestock breeders inside a protected area in the highlands of a southeastern Brazilian Atlantic forest. We also quantified the number and type of livestock losses, and determined if predation by puma was correlated with property profile and landscape characteristics. We conducted semistructured interviews with 42 livestock breeders sampled in 36 rural properties. When asked how to reduce predation, 33% of livestock breeders refused to answer, 26% suggested improving livestock husbandry practices, 19% stated that there was no appropriate action, 17% favored removing the "problem" individual, and 5 % suggested killing the puma. Opinion on how to solve predation was independent of herd size and history of losses, and was correlated with respondent age class. Older respondents tended to suggest removing or killing pumas. Attitudes toward predation represented high potential for conflict among livestock breeders who demonstrated high discordance among responses. Horses were the most common prey (51%), followed by cattle (28%), sheep (17%), and goats (4%); totaling 47 animals attacked between 2004 and 2007. Annual predation was approximately 12 ± 5 animals, equivalent to 0.4% of the total livestock. Property elevation and distance from the urban center were the main predictors of predation probability. This survey used a novel approach that has not been addressed directly in other studies on livestock predation and demonstrated that the high potential for conflict among livestock breeders should be considered before implementing management actions.

  13. Additive effects of vertebrate predators on insects in a Puerto Rican coffee plantation

    USGS Publications Warehouse

    Borkhataria, R.R.; Collazo, J.A.; Groom, Martha J.

    2006-01-01

    A variety of studies have established the value of shaded coffee plantations as habitat for birds. While the value of birds as biological controls in coffee has received some attention, the interactions between birds and other predators of insects have not been tested. We used exclosures to examine the effects of vertebrate predators on the arthropods associated with coffee, in particular the coffee leafminer (Leucoptera coffeella) and the flatid planthopper Petrusa epilepsis, in a shaded coffee plantation in Puerto Rico. We used a 2 x 2 factorial design with four treatments: exclusion of birds, lizards, birds and lizards, and control (no exclusion). Abundance of insects >5 mm increased when birds or both birds and lizards were removed. Birds and lizards had an additive effect for insects <5 mm and for all insects combined. Coffee leafminers showed a weak response to removal of predators while planthopper abundance increased significantly in the absence of avian predators. Arthropod predators and parasitoids did not differ significantly between treatments. Our findings suggest that vertebrate insectivores have an additive effect on insects in coffee and may help control abundances of some coffee pests. Equally important, we present evidence suggesting that they do not interfere with other known natural enemies of coffee pests. ?? 2006 by the Ecological Society of America.

  14. Removal of an apex predator initiates a trophic cascade that extends from herbivores to vegetation and the soil nutrient pool

    PubMed Central

    2017-01-01

    It is widely assumed that organisms at low trophic levels, particularly microbes and plants, are essential to basic services in ecosystems, such as nutrient cycling. In theory, apex predators' effects on ecosystems could extend to nutrient cycling and the soil nutrient pool by influencing the intensity and spatial organization of herbivory. Here, we take advantage of a long-term manipulation of dingo abundance across Australia's dingo-proof fence in the Strzelecki Desert to investigate the effects that removal of an apex predator has on herbivore abundance, vegetation and the soil nutrient pool. Results showed that kangaroos were more abundant where dingoes were rare, and effects of kangaroo exclusion on vegetation, and total carbon, total nitrogen and available phosphorus in the soil were marked where dingoes were rare, but negligible where dingoes were common. By showing that a trophic cascade resulting from an apex predator's lethal effects on herbivores extends to the soil nutrient pool, we demonstrate a hitherto unappreciated pathway via which predators can influence nutrient dynamics. A key implication of our study is the vast spatial scale across which apex predators' effects on herbivore populations operate and, in turn, effects on the soil nutrient pool and ecosystem productivity could become manifest. PMID:28490624

  15. Substantial Mortality of Cabbage Looper (Lepidoptera: Noctuidae) From Predators in Urban Agriculture Is not Influenced by Scale of Production or Variation in Local and Landscape-Level Factors.

    PubMed

    Lowenstein, David M; Gharehaghaji, Maryam; Wise, David H

    2017-02-01

    As Midwestern (United States) cities experience population decline, there is growing interest in converting underutilized vacant spaces to agricultural production. Urban agriculture varies in area and scope, yet most growers use similar cultivation practices such as avoiding chemical control of crop pests. For community gardens and farms that sell produce commercially, effective pest suppression by natural enemies is important for both societal, economic, and marketing reasons. To gauge the amount of prey suppression at 28 urban food-production sites, we measured removal of sentinel eggs and larvae of the cabbage looper Trichoplusia ni (Hubner), a caterpillar pest that defoliates Brassica. We investigated how landscape and local factors, such as scale of production, influence cabbage looper mortality caused by predators. Predators removed 50% of eggs and 25% of larvae over a 3-d period. Landscape factors did not predict mortality rates, and the amount of loss and damage to sentinel prey were similar across sites that differed in scale (residential gardens, community gardens, and farms). To confirm that removal of sentinel items was likely caused by natural enemies, we set up a laboratory assay that measured predation of cabbage looper eggs and larvae by several predators occurring in urban gardens. Lady beetles caused the highest mortality rates, suggesting their potential value for biocontrol; spiders and pirate bugs also consumed both eggs and larvae at high rates. Our results suggest that urban growers benefit from high consumption rates of cabbage looper eggs and larvae by arthropod predators. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Carnivore-livestock conflicts: effects of subsidized predator control and economic correlates on the sheep industry.

    PubMed

    Berger, Kim Murray

    2006-06-01

    Despite the importance of carnivores in terrestrial ecosystems, many nations have implemented well-coordinated, state-funded initiatives to remove predators, largely because of conflicts with humans over livestock. Although these control efforts have been successful in terms of the number of carnivores removed, their effects on the viability of the industries they seek to protect are less understood. I assessed the efficacy of long-term efforts by the U.S. government to improve the viability of the sheep industry by reducing predation losses. I used regression analysis and hierarchical partitioning of a 60-year data set to explore associations among changes in sheep numbers and factors such as predator control effort, market prices, and production costs. In addition, I compared trends in the sheep industry in the western United States, where predator control is subsidized and coyotes (Canis latrans) are abundant, with trends in eastern states that lack federally subsidized predator control and that were (1) colonized by coyotes before 1950 or (2) colonized by coyotes between 1950 and 1990. Although control efforts were positively correlated with fluctuations in sheep numbers, production costs and market prices explained most of the model variation, with a combined independent contribution of 77%. Trends in sheep numbers in eastern and western states were highly correlated (r > or = 0.942) independent of the period during which they were colonized by coyotes, indicating either that control has been ineffective at reducing predation losses or that factors other than predation account for the declines in both regions. These results suggest that government-subsidized predator control has failed to prevent the decline in the sheep industry and alternative support mechanisms need to be developed if the goal is to increase sheep production and not simply to kill carnivores.

  17. Problem solving ability of Octopus vulgaris Lamarck (Mollusca, Cephalopoda).

    PubMed

    Fiorito, G; von Planta, C; Scotto, P

    1990-03-01

    Experiments presented in this study show that Octopus vulgaris Lamarck is able to open transparent glass jars closed with a plastic plug and containing a live crab (Carcinus mediterraneus). The animals remove the plus (Operandum: O) and seize the crab (Predation :P) in one single attack. The number of unsuccessful attacks appears to decrease over a series of trials (p less than .01); during the same period exploration time remains unchanged. There is a statistically significant increase in performance over trials for O (p less than .01) and P (p less than .05) mean times analyzed by single factor ANOVA, suggesting that the learning process is accomplished either by stimulus-response association or by trial and error. We propose that Octopus vulgaris is capable of learning the solutions of both problems, Operandum and Predation, thus showing a highly developed ability of "integration" of the behavioral program.

  18. An integrated mathematical model for chemical oxygen demand (COD) removal in moving bed biofilm reactors (MBBR) including predation and hydrolysis.

    PubMed

    Revilla, Marta; Galán, Berta; Viguri, Javier R

    2016-07-01

    An integrated mathematical model is proposed for modelling a moving bed biofilm reactor (MBBR) for removal of chemical oxygen demand (COD) under aerobic conditions. The composite model combines the following: (i) a one-dimensional biofilm model, (ii) a bulk liquid model, and (iii) biological processes in the bulk liquid and biofilm considering the interactions among autotrophic, heterotrophic and predator microorganisms. Depending on the values for the soluble biodegradable COD loading rate (SCLR), the model takes into account a) the hydrolysis of slowly biodegradable compounds in the bulk liquid, and b) the growth of predator microorganisms in the bulk liquid and in the biofilm. The integration of the model and the SCLR allows a general description of the behaviour of COD removal by the MBBR under various conditions. The model is applied for two in-series MBBR wastewater plant from an integrated cellulose and viscose production and accurately describes the experimental concentrations of COD, total suspended solids (TSS), nitrogen and phosphorous obtained during 14 months working at different SCLRs and nutrient dosages. The representation of the microorganism group distribution in the biofilm and in the bulk liquid allow for verification of the presence of predator microorganisms in the second reactor under some operational conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Differential population responses of native and alien rodents to an invasive predator, habitat alteration and plant masting.

    PubMed

    Fukasawa, Keita; Miyashita, Tadashi; Hashimoto, Takuma; Tatara, Masaya; Abe, Shintaro

    2013-12-22

    Invasive species and anthropogenic habitat alteration are major drivers of biodiversity loss. When multiple invasive species occupy different trophic levels, removing an invasive predator might cause unexpected outcomes owing to complex interactions among native and non-native prey. Moreover, external factors such as habitat alteration and resource availability can affect such dynamics. We hypothesized that native and non-native prey respond differently to an invasive predator, habitat alteration and bottom-up effects. To test the hypothesis, we used Bayesian state-space modelling to analyse 8-year data on the spatio-temporal patterns of two endemic rat species and the non-native black rat in response to the continual removal of the invasive small Indian mongoose on Amami Island, Japan. Despite low reproductive potentials, the endemic rats recovered better after mongoose removal than did the black rat. The endemic species appeared to be vulnerable to predation by mongooses, whose eradication increased the abundances of the endemic rats, but not of the black rat. Habitat alteration increased the black rat's carrying capacity, but decreased those of the endemic species. We propose that spatio-temporal monitoring data from eradication programmes will clarify the underlying ecological impacts of land-use change and invasive species, and will be useful for future habitat management.

  20. Removing external DNA contamination from arthropod predators destined for molecular gut-content analysis

    USDA-ARS?s Scientific Manuscript database

    Molecular gut-content analysis enables detection of arthropod predation with minimal disruption of ecosystem processes. Field and laboratory experiments have demonstrated that mass-collection methods, such as sweep-netting, vacuum sampling, and foliage beating, can lead to contamination of fed pred...

  1. Removing external DNA decontamination from arthropod predators destined for molecular gut-content analysis

    USDA-ARS?s Scientific Manuscript database

    Molecular gut-content analysis enables detection of arthropod predation with minimal disruption of ecosystem processes. Field and laboratory experiments have demonstrated that mass-collection methods, such as sweep-netting, vacuum sampling, and foliage beating, can lead to contamination of fed pred...

  2. Diets of introduced predators using stable isotopes and stomach contents

    USGS Publications Warehouse

    Meckstroth, A.M.; Miles, A.K.; Chandra, S.

    2007-01-01

    In a study of predation on ground-nesting birds at South San Francisco Bay (South Bay), California, USA, we analyzed stomach contents and stable isotopes of carbon and nitrogen to identify commonly consumed prey. We obtained the stomach contents from 206 nonnative red foxes (Vulpes vulpes regalis) collected in the South Bay area and Monterey County during 1995-2001 and from 68 feral cats (Felis silvestris) from the South Bay area during 2001-2002. We determined prey identity, biomass, and frequency, described seasonal diet trends, and derived an Index of Relative Importance. Avian species were the most frequent prey we found in the stomachs of red foxes from South Bay (61%), whereas small rodents were most frequent for red foxes from Monterey County (62%). Small rodents were the most frequent prey we found in feral cats (63%). Carbon and nitrogen isotopic signatures for foxes supported stomach content findings. However, isotope results indicated that cats received a majority of their energy from a source other than rodents and outside the natural system, which differed from the stomach content analysis. We demonstrated the utility of both stable isotope and stomach content analyses to establish a more complete understanding of predators' diets. This information aids natural resource managers in planning and evaluating future predator-removal programs and increases our understanding of the impacts of nonnative foxes and cats on native species.

  3. Restoration through eradication? Removal of an invasive bioengineer restores some habitat function for a native predator.

    PubMed

    Holsman, Kirstin K; McDonald, P Sean; Barreyro, Pablo A; Armstrong, David A

    2010-12-01

    Invasive aquatic macrophytes increase structural complexity in recipient systems and alter trophic and physical resources; thus, eradication programs that remove plant structure have potential to restore some impaired ecological functions. In this study we evaluate how an invasive ecosystem engineer, Atlantic smooth cordgrass (Spartina alterniflora), interferes with the movement and foraging activity of a mobile predator, Dungeness crab (Cancer magister), and whether removal of aboveground cordgrass structure rapidly reestablishes access to foraging habitats. By 2004, smooth cordgrass had invaded >25% of crab foraging habitat in Willapa Bay, Washington (USA), and transformed it into a highly structured landscape. However, by 2007 successful eradication efforts had eliminated most meadows of the cordgrass. In order to investigate the effect of smooth cordgrass on the habitat function of littoral areas for foraging crabs, we integrated field, laboratory, and statistical modeling approaches. We conducted trapping surveys at multiple sites and used a hierarchical model framework to examine patterns in catches prior to and following cordgrass removal (i.e., before-after control-impact design, BACI). Prior to eradication, catches of Dungeness crabs in unstructured habitats were 4-19 times higher than catches in adjacent patches of live cordgrass. In contrast, the results of post-eradication trapping in 2007 indicated similar catch rates of crabs in unstructured habitats and areas formerly invaded by the cordgrass. Subsequent laboratory experiments and video observations demonstrated that the rigid physical structure of smooth cordgrass shoots reduces the ability of Dungeness crabs to access prey resources and increases the risk of stranding. Taken together, these findings suggest that eliminating the structural complexity of invasive macrophytes may rapidly restore some ecological function (i.e., foraging area) for migratory predators like Dungeness crab. However, restoration of affected areas to a preinvasion state will also depend on long-term patterns of succession in invaded areas and the degree of persistence of physical changes that continue to alter biotic characteristics of the habitat. Our work highlights: (1) the efficacy of employing multiple methods of inquiry to evaluate causal relationships through mechanisms of interaction, and (2) the importance of targeting particular ecological functions when identifying both short- and long-term goals of restoration efforts.

  4. An island-wide predator manipulation reveals immediate and long-lasting matching of risk by prey.

    PubMed

    Orrock, John L; Fletcher, Robert J

    2014-06-07

    Anti-predator behaviour affects prey population dynamics, mediates cascading effects in food webs and influences the likelihood of rapid extinctions. Predator manipulations in natural settings provide a rare opportunity to understand how prey anti-predator behaviour is affected by large-scale changes in predators. Here, we couple a long-term, island-wide manipulation of an important rodent predator, the island fox (Urocyon littoralis), with nearly 6 years of measurements on foraging by deer mice (Peromyscus maniculatus) to provide unequivocal evidence that prey closely match their foraging behaviour to the number of fox predators present on the island. Peromyscus maniculatus foraging among exposed and sheltered microhabitats (a measure of aversion to predation risk) closely tracked fox density, but the nature of this effect depended upon nightly environmental conditions known to affect rodent susceptibility to predators. These effects could not be explained by changes in density of deer mice over time. Our work reveals that prey in natural settings are cognizant of the dynamic nature of their predators over timescales that span many years, and that predator removals spanning many generations of prey do not result in a loss of anti-predator behaviour.

  5. Induced changes in island fox (Urocyon littoralis) activity do not mitigate the extinction threat posed by a novel predator.

    PubMed

    Hudgens, Brian R; Garcelon, David K

    2011-03-01

    Prey response to novel predators influences the impacts on prey populations of introduced predators, bio-control efforts, and predator range expansion. Predicting the impacts of novel predators on native prey requires an understanding of both predator avoidance strategies and their potential to reduce predation risk. We examine the response of island foxes (Urocyon littoralis) to invasion by golden eagles (Aquila chrysaetos). Foxes reduced daytime activity and increased night time activity relative to eagle-naïve foxes. Individual foxes reverted toward diurnal tendencies following eagle removal efforts. We quantified the potential population impact of reduced diurnality by modeling island fox population dynamics. Our model predicted an annual population decline similar to what was observed following golden eagle invasion and predicted that the observed 11% reduction in daytime activity would not reduce predation risk sufficiently to reduce extinction risk. The limited effect of this behaviorally plastic predator avoidance strategy highlights the importance of linking behavioral change to population dynamics for predicting the impact of novel predators on resident prey populations.

  6. A meta-analysis of the effects of common management actions on the nest success of North American birds.

    PubMed

    Hartway, Cynthia; Mills, L Scott

    2012-08-01

    Management strategies for the recovery of declining bird populations often must be made without sufficient data to predict the outcome of proposed actions or sufficient time and resources necessary to collect these data. We quantitatively reviewed studies of bird management in Canada and the United States to evaluate the relative efficacy of 4 common management interventions and to determine variables associated with their success. We compared how livestock exclusion, prescribed burning, removal of predators, and removal of cowbirds (Molothrus ater) affect bird nest success and used meta-regression to evaluate the influence of species and study-specific covariates on management outcomes. On average, all 4 management interventions increased nest success. When common species and threatened, endangered, or declining species (as defined by long-term trend data from the North American Breeding Bird Survey) were analyzed together, predator removal was the most effective management option. The difference in mean nest success between treatment and control plots in predator-removal experiments was more than twice that of either livestock exclusion or prescribed burning. However, when we considered management outcomes from only threatened, endangered, or declining species, livestock exclusions resulted in the greatest mean increase in nest success, more than twice that of the 3 other treatments. Our meta-regression results indicated that between-species variation accounted for approximately 86%, 40%, 35%, and 7% of the overall variation in the results of livestock-exclusion, prescribed-burn, predator-removal, and cowbird-removal studies, respectively. However, the covariates we tested explained significant variation only in outcomes among prescribed-burn studies. The difference in nest success between burned and unburned plots displayed a significant, positive trend in association with time since fire and was significantly larger in grasslands than in woodlands. Our results highlight the importance of comparative studies on management effects in developing efficient and effective conservation strategies. ©2012 Society for Conservation Biology.

  7. Hydrated mucilage reduces post-dispersal seed removal of a sand desert shrub by ants in a semiarid ecosystem.

    PubMed

    Yang, Xuejun; Baskin, Carol C; Baskin, Jerry M; Gao, Ruiru; Yang, Fan; Wei, Lingling; Li, Leilei; He, Hongju; Huang, Zhenying

    2013-12-01

    Post-dispersal seed removal by animals can lead to extensive seed loss and thus is an important factor in structuring plant communities. However, we know much less about post-dispersal seed predation than about other forms of herbivory. Mucilage plays many ecological roles in adaptation of plants to diverse environments; nevertheless, until now the role of mucilage in ant-mediated seed movement remains largely hypothetical. We studied the role of mucilage in seed removal of Artemisia sphaerocephala by ants in Mu Us Sandland in Inner Mongolia, China. Messor aciculatus was the most active seed predator of Artemisia sphaerocephala. Time to first ant collecting (T 1st) of wet intact seeds was longest and significantly different from that for dry intact seeds, wet demucilaged seeds, and dry demucilaged seeds; number of seeds removed to ant nests was lowest for wet intact seeds. After they were collected by ants, 5 % of wet intact seeds were dropped during transport. Our results indicate that seed mucilage of Artemisia sphaerocephala may play a significant role in post-dispersal seed removal by (1) making seeds less attractive to ants, thus resulting in a delay of collection time; (2) forming a strong bond to soil particles, making it difficult for ants to remove seeds; and (3) making seeds more likely to be dropped during transport, thereby allowing them to escape from predation even after collection by ants. This study demonstrates the importance of mucilage in reducing seed removal by ants and thus in anchoring seeds of desert plants in the vicinity of mother plants.

  8. Development of a System-Wide Program, Volume II : Stepwise Implementation of a Predation Index, Predator Control Fisheries and Evaluation Plan in the Columbia River Basin, 1992 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, David L.; Nigro, Anthony A.; Willis, Charles F.

    1994-06-01

    The authors report their results of studies to determine the extent to which northern squawfish predation on juvenile salmonids is a problem in the Columbia River Basin, and to evaluate how effectively fisheries can be used to control northern squawfish populations and reduce juvenile salmonid losses to predation. These studies were initiated as part of a basinwide program to control northern squawfish predation and reduce mortality of juvenile salmonids on their migration to the ocean. Three papers are included in this report. They are entitled: (1) Development of a Systemwide Predator Control Program: Indexing and Fisheries Evaluation; (2) Economic, Socialmore » and Legal Feasibility of Commercial Sport, and Bounty Fisheries on Northern Squawfish; (3) Columbia River Ecosystem Model (CREM): Modeling Approach for Evaluation of Control of Northern Squawfish Populations using Fisheries Exploitation.« less

  9. White-tailed deer population dynamics and adult female survival in the presence of a novel predator: Deer Population Dynamics

    DOE PAGES

    Chitwood, Michael C.; Lashley, Marcus A.; Kilgo, John C.; ...

    2015-02-01

    Recent localized declines in white-tailed deer ( Odocoileus virginianus) populations in the southeastern United States have been linked to increasing predation pressure from coyotes ( Canis latrans), a novel predator to the region. Studies have documented coyotes as the leading cause of mortality for neonates, and 1 study documented coyotes as a mortality factor for adult females. However, no study has used field-based vital rates to conduct sensitivity analyses or model deer population trajectories under potential harvest or predator removal strategies. We used low, medium, and high values of fawn survival, adult female survival, and fecundity data collected from Fortmore » Bragg Military Installation, North Carolina to demonstrate the current declining population trajectory for deer (λ = 0.905; low λ = 0.788, high λ = 1.003). Consistent with other studies of ungulates, we determined adult female survival was the most sensitive and elastic vital rate. Further, for 3 potential management (“what if”) scenarios, we projected the population for 10 years using estimated vital rates. Reducing adult female harvest (λ = 0.935; low λ = 0.875, high λ = 1.002) and coyote removal (λ = 0.995; low λ = 0.898, high λ = 1.081) reduced the current population decline, whereas combining both approaches (λ = 1.024; low λ = 0.898, high λ = 1.141) resulted in population increases. Our data indicate that for low-density deer populations with heavy predation pressure on neonates, protecting adult females from harvest may not completely offset population declines. Coyote removal might be a necessary strategy because it could possibly increase very low fawn survival, which appears to be the most important vital rate influencing λ in our study. However, managers may have to start with reductions in adult female harvest because coyote removal would have to be continuous and consistently effective, making it an impractical management approach by itself.« less

  10. White-tailed deer population dynamics and adult female survival in the presence of a novel predator: Deer Population Dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chitwood, Michael C.; Lashley, Marcus A.; Kilgo, John C.

    Recent localized declines in white-tailed deer ( Odocoileus virginianus) populations in the southeastern United States have been linked to increasing predation pressure from coyotes ( Canis latrans), a novel predator to the region. Studies have documented coyotes as the leading cause of mortality for neonates, and 1 study documented coyotes as a mortality factor for adult females. However, no study has used field-based vital rates to conduct sensitivity analyses or model deer population trajectories under potential harvest or predator removal strategies. We used low, medium, and high values of fawn survival, adult female survival, and fecundity data collected from Fortmore » Bragg Military Installation, North Carolina to demonstrate the current declining population trajectory for deer (λ = 0.905; low λ = 0.788, high λ = 1.003). Consistent with other studies of ungulates, we determined adult female survival was the most sensitive and elastic vital rate. Further, for 3 potential management (“what if”) scenarios, we projected the population for 10 years using estimated vital rates. Reducing adult female harvest (λ = 0.935; low λ = 0.875, high λ = 1.002) and coyote removal (λ = 0.995; low λ = 0.898, high λ = 1.081) reduced the current population decline, whereas combining both approaches (λ = 1.024; low λ = 0.898, high λ = 1.141) resulted in population increases. Our data indicate that for low-density deer populations with heavy predation pressure on neonates, protecting adult females from harvest may not completely offset population declines. Coyote removal might be a necessary strategy because it could possibly increase very low fawn survival, which appears to be the most important vital rate influencing λ in our study. However, managers may have to start with reductions in adult female harvest because coyote removal would have to be continuous and consistently effective, making it an impractical management approach by itself.« less

  11. Costs and benefits of trap-neuter-release and euthanasia for removal of urban cats in Oahu, Hawaii.

    PubMed

    Lohr, Cheryl A; Cox, Linda J; Lepczyk, Christopher A

    2013-02-01

    Our goal was to determine whether it is more cost-effective to control feral cat abundance with trap-neuter-release programs or trap and euthanize programs. Using STELLA 7, systems modeling software, we modeled changes over 30 years in abundance of cats in a feral colony in response to each management method and the costs and benefits associated with each method . We included costs associated with providing food, veterinary care, and microchips to the colony cats and the cost of euthanasia, wages, and trapping equipment in the model. Due to a lack of data on predation rates and disease transmission by feral cats the only benefits incorporated into the analyses were reduced predation on Wedge-tailed Shearwaters (Puffinus pacificus). When no additional domestic cats were abandoned by owners and the trap and euthanize program removed 30,000 cats in the first year, the colony was extirpated in at least 75% of model simulations within the second year. It took 30 years for trap-neuter-release to extirpate the colony. When the cat population was supplemented with 10% of the initial population size per year, the colony returned to carrying capacity within 6 years and the trap and euthanize program had to be repeated, whereas trap-neuter-release never reduced the number of cats to near zero within the 30-year time frame of the model. The abandonment of domestic cats reduced the cost effectiveness of both trap-neuter-release and trap and euthanize. Trap-neuter-release was approximately twice as expensive to implement as a trap and euthanize program. Results of sensitivity analyses suggested trap-neuter-release programs that employ volunteers are still less cost-effective than trap and euthanize programs that employ paid professionals and that trap-neuter-release was only effective when the total number of colony cats in an area was below 1000. Reducing the rate of abandonment of domestic cats appears to be a more effective solution for reducing the abundance of feral cats. ©2012 Society for Conservation Biology.

  12. Dynamics in a ratio-dependent predator-prey model with predator harvesting

    NASA Astrophysics Data System (ADS)

    Xiao, Dongmei; Li, Wenxia; Han, Maoan

    2006-12-01

    The objective of this paper is to study systematically the dynamical properties of a ratio-dependent predator-prey model with nonzero constant rate predator harvesting. It is shown that the model has at most two equilibria in the first quadrant and can exhibit numerous kinds of bifurcation phenomena, including the bifurcation of cusp type of codimension 2 (i.e., Bogdanov-Takens bifurcation), the subcritical and supercritical Hopf bifurcations. These results reveal far richer dynamics compared to the model with no harvesting and different dynamics compared to the model with nonzero constant rate prey harvesting in [D. Xiao, L. Jennings, Bifurcations of a ratio-dependent predator-prey system with constant rate harvesting, SIAM Appl. Math. 65 (2005) 737-753]. Biologically, it is shown that nonzero constant rate predator harvesting can prevent mutual extinction as a possible outcome of the predator prey interaction, and remove the singularity of the origin, which was regarded as "pathological behavior" for a ratio-dependent predator prey model in [P. Yodzis, Predator-prey theory and management of multispecies fisheries, Ecological Applications 4 (2004) 51-58].

  13. Predation risk of artificial ground nests in managed floodplain meadows

    NASA Astrophysics Data System (ADS)

    Arbeiter, Susanne; Franke, Elisabeth

    2018-01-01

    Nest predation highly determines the reproductive success in birds. In agricultural grasslands, vegetation characteristics and management practices influences the predation risk of ground breeders. Little is known so far on the predation pressure on non-passerine nests in tall swards. Investigations on the interaction of land use with nesting site conditions and the habitat selection of nest predators are crucial to develop effective conservation measures for grassland birds. In this study, we used artificial nests baited with quail and plasticine eggs to identify potential predators of ground nests in floodplain meadows and related predation risk to vegetation structure and grassland management. Mean daily predation rate was 0.01 (±0.012) after an exposure duration of 21 days. 70% of all observed nest predations were caused by mammals (Red Fox and mustelids) and 17.5% by avian predators (corvids). Nest sites close to the meadow edge and those providing low forb cover were faced with a higher daily predation risk. Predation risk also increased later in the season. Land use in the preceding year had a significant effect on predation risk, showing higher predation rates on unmanaged sites than on mown sites. Unused meadows probably attract mammalian predators, because they provide a high abundance of small rodents and a more favourable vegetation structure for foraging, increasing also the risk of incidental nest predations. Although mowing operation is a major threat to ground-nesting birds, our results suggest that an annual removal of vegetation may reduce predation risk in the subsequent year.

  14. Integrated management of Scotch broom, Cytisus scoparius: is control enhanced when seed predation is combined with prescribed fire or mowing?

    USDA-ARS?s Scientific Manuscript database

    Integrated weed management (IWM) strategies are being advocated and employed to control invasive plants species. Prescribed fire, mechanical removal, and biological control (seed predator Exapion fuscirostre) are used to manage the invasive plant, Cytisus scoparius, in prairies at Fort Lewis, Washi...

  15. Changes in the northern Gulf of St. Lawrence ecosystem estimated by inverse modelling: Evidence of a fishery-induced regime shift?

    NASA Astrophysics Data System (ADS)

    Savenkoff, Claude; Castonguay, Martin; Chabot, Denis; Hammill, Mike O.; Bourdages, Hugo; Morissette, Lyne

    2007-07-01

    Mass-balance models have been constructed using inverse methodology for the northern Gulf of St. Lawrence for the mid-1980s, the mid-1990s, and the early 2000s to describe ecosystem structure, trophic group interactions, and the effects of fishing and predation on the ecosystem for each time period. Our analyses indicate that the ecosystem structure shifted dramatically from one previously dominated by demersal (cod, redfish) and small-bodied forage (e.g., capelin, mackerel, herring, shrimp) species to one now dominated by small-bodied forage species. Overfishing removed a functional group in the late 1980s, large piscivorous fish (primarily cod and redfish), which has not recovered 14 years after the cessation of heavy fishing. This has left only marine mammals as top predators during the mid-1990s, and marine mammals and small Greenland halibut during the early 2000s. Predation by marine mammals on fish increased from the mid-1980s to the early 2000s while predation by large fish on fish decreased. Capelin and shrimp, the main prey in each period, showed an increase in biomass over the three periods. A switch in the main predators of capelin from cod to marine mammals occurred, while Greenland halibut progressively replaced cod as shrimp predators. Overfishing influenced community structure directly through preferential removal of larger-bodied fishes and indirectly through predation release because larger-bodied fishes exerted top-down control upon other community species or competed with other species for the same prey. Our modelling estimates showed that a change in predation structure or flows at the top of the trophic system led to changes in predation at all lower trophic levels in the northern Gulf of St. Lawrence. These changes represent a case of fishery-induced regime shift.

  16. Response of predators to Western Sandpiper nest exclosures

    USGS Publications Warehouse

    Niehaus, Amanda C.; Ruthrauff, Daniel R.; McCaffery, Brian J.

    2004-01-01

    In 2001, predator exclosures were used to protect nests of the Western Sandpiper (Calidris mauri) in western Alaska. During the exclosure experiment, nest contents in exclosures had significantly higher daily survival rates than control nests, however, late in the study predators began to cue in on exclosures and predate the nest contents. An Arctic Fox (Alopex lagopus) dug under one exclosure and took the newly hatched chicks, and Long-tailed Jaegers (Stercorarius longicaudus) learned to associate exclosures with active nests and repeatedly visited them. The jaegers attempted to gain access to exclosed nests and pursued adult sandpipers as they emerged from the exclosures. The exclosures were removed to reduce potential mortality to adult and young sandpipers, but subsequently, post-exclosure nests had lower daily survival rates than controls during the same time period. Predation of post-exclosure eggs and chicks highlighted the lasting influence of the exclosure treatment on offspring survival because predators probably remembered nest locations. Researchers are urged to use caution when considering use of predator exclosures in areas where jaegers occur.

  17. Fear-based niche shifts in neotropical birds.

    PubMed

    Martínez, Ari E; Parra, Eliseo; Muellerklein, Oliver; Vredenburg, Vance T

    2018-06-01

    Predation is a strong ecological force that shapes animal communities through natural selection. Recent studies have shown the cascading effects of predation risk on ecosystems through changes in prey behavior. Minimizing predation risk may explain why multiple prey species associate together in space and time. For example, mixed-species flocks that have been widely documented from forest systems, often include birds that eavesdrop on sentinel species (alarm calling heterospecifics). Sentinel species may be pivotal in (1) allowing flocking species to forage in open areas within forests that otherwise incur high predation risk, and (2) influencing flock occurrence (the amount of time species spend with a flock). To test this, we conducted a short-term removal experiment in an Amazonian lowland rainforest to test whether flock habitat use and flock occurrence was influenced by sentinel presence. Antshrikes (genus Thamnomanes) act as sentinels in Amazonian mixed-species flocks by providing alarm calls widely used by other flock members. The alarm calls provide threat information about ambush predators such as hawks and falcons which attack in flight. We quantified home range behavior, the forest vegetation profile used by flocks, and the proportion occurrence of other flocking species, both before and after removal of antshrikes from flocks. We found that when sentinel species were removed, (1) flock members shifted habitat use to lower risk habitats with greater vegetation cover, and (2) species flock occurrence decreased. We conclude that eavesdropping on sentinel species may allow other species to expand their realized niche by allowing them to safely forage in high-risk habitats within the forest. In allowing species to use extended parts of the forest, sentinel species may influence overall biodiversity across a diverse landscape. © 2018 by the Ecological Society of America.

  18. Invasive non-native species' provision of refugia for endangered native species.

    PubMed

    Chiba, Satoshi

    2010-08-01

    The influence of non-native species on native ecosystems is not predicted easily when interspecific interactions are complex. Species removal can result in unexpected and undesired changes to other ecosystem components. I examined whether invasive non-native species may both harm and provide refugia for endangered native species. The invasive non-native plant Casuarina stricta has damaged the native flora and caused decline of the snail fauna on the Ogasawara Islands, Japan. On Anijima in 2006 and 2009, I examined endemic land snails in the genus Ogasawarana. I compared the density of live specimens and frequency of predation scars (from black rats [Rattus rattus]) on empty shells in native vegetation and Casuarina forests. The density of land snails was greater in native vegetation than in Casuarina forests in 2006. Nevertheless, radical declines in the density of land snails occurred in native vegetation since 2006 in association with increasing predation by black rats. In contrast, abundance of Ogasawarana did not decline in the Casuarina forest, where shells with predation scars from rats were rare. As a result, the density of snails was greater in the Casuarina forest than in native vegetation. Removal of Casuarina was associated with an increased proportion of shells with predation scars from rats and a decrease in the density of Ogasawarana. The thick and dense litter of Casuarina appears to provide refugia for native land snails by protecting them from predation by rats; thus, eradication of rats should precede eradication of Casuarina. Adaptive strategies, particularly those that consider the removal order of non-native species, are crucial to minimizing the unintended effects of eradication on native species. In addition, my results suggested that in some cases a given non-native species can be used to mitigate the impacts of other non-native species on native species.

  19. Introduced mammalian predators induce behavioural changes in parental care in an endemic New Zealand bird

    USGS Publications Warehouse

    Massaro, M.; Starling-Windhof, A.; Briskie, J.V.; Martin, T.E.

    2008-01-01

    The introduction of predatory mammals to oceanic islands has led to the extension of many birds. Although introduced predators should favour changes that reduce predation risk in surviving bird species, the ability of island birds to respond to such novel changes remains unstudied. We tested whether novel predation risk imposed by introduced mammalian predators has altered the parental behaviour of the endemic New Zealand bellbird (Anthomis melanura). We examined parental behaviour of billbnirds at three woodlands sites in New Zealand that differed in predation risk: 1) a mainland site with exotic predators present (high predation risk), 2) a mainland site with exotic predators experimentally removed (low risk recently) and, 3) an off-shore island where exotic predators were never introduced (low risk always). We also compared parental behavior of bellbirds with two closely related Tasmanian honeyeaters (Phylidonyris spp) that evolved with native nest predators (high risk always). Increased nest predation risk has been postulated to favour reduced parental activity, and we tested whether island bellbirds responded to variation in predation risk. We found that females spent more time on the nest per incubating bout with increased risk of predation, a strategy that minimised activity at the nest during incubation. Parental activity during the nestling period, measured as number of feeding visits/hr, also decreased with increasing nest predation risk across sites, and was lowest among the honeyeaters in Tasmania that evolved with native predators. These results demonstrates that some island birds are able to respond to increased risk of predation by novel predators in ways that appear adaptive. We suggest that conservation efforts may be more effective if they take advantage of the ability of island birds to respond to novel predators, especially when the elimination of exotic predators is not possible.

  20. Counterintuitive effects of large-scale predator removal on a midlatitude rodent community

    Treesearch

    John L Maron; Dean E. Pearson; Robert J. Fletcher

    2010-01-01

    Historically, small mammals have been focal organisms for studying predator-prey dynamics, principally because of interest in explaining the drivers of the cyclical dynamics exhibited by northern vole, lemming, and hare populations. However, many small-mammal species occur at relatively low and fairly stable densities at temperate latitudes, and our understanding of...

  1. Strategies of zooplanktivory shape the dynamics and diversity of littoral plankton communities: a mesocosm approach

    PubMed Central

    Helenius, Laura K; Aymà Padrós, Anna; Leskinen, Elina; Lehtonen, Hannu; Nurminen, Leena

    2015-01-01

    Planktivorous fish can exert strong top-down control on zooplankton communities. By incorporating different feeding strategies, from selective particulate feeding to cruising filter feeding, fish species target distinct prey. In this study, we investigated the effects of two species with different feeding strategies, the three-spined stickleback (Gasterosteus aculeatus (L.)) and roach (Rutilus rutilus (L.)), on a low-diversity brackish water zooplankton community using a 16-day mesocosm experiment. The experiment was conducted on a small-bodied spring zooplankton community in high-nutrient conditions, as well as a large-bodied summer community in low-nutrient conditions. Effects were highly dependent on the initial zooplankton community structure and hence seasonal variation. In a small-bodied community with high predation pressure and no dispersal or migration, the selective particulate-feeding stickleback depleted the zooplankton community and decreased its diversity more radically than the cruising filter-feeding roach. Cladocerans rather than copepods were efficiently removed by predation, and their removal caused altered patterns in rotifer abundance. In a large-bodied summer community with initial high taxonomic and functional diversity, predation pressure was lower and resource availability was high for omnivorous crustaceans preying on other zooplankton. In this community, predation maintained diversity, regardless of predator species. During both experimental periods, predation influenced the competitive relationship between the dominant calanoid copepods, and altered species composition and size structure of the zooplankton community. Changes also occurred to an extent at the level of nontarget prey, such as microzooplankton and rotifers, emphasizing the importance of subtle predation effects. We discuss our results in the context of the adaptive foraging mechanism and relate them to the natural littoral community. PMID:26045953

  2. Estimating In Situ Zooplankton Non-Predation Mortality in an Oligo-Mesotrophic Lake from Sediment Trap Data: Caveats and Reality Check

    PubMed Central

    Dubovskaya, Olga P.; Tang, Kam W.; Gladyshev, Michail I.; Kirillin, Georgiy; Buseva, Zhanna; Kasprzak, Peter; Tolomeev, Aleksandr P.; Grossart, Hans-Peter

    2015-01-01

    Background Mortality is a main driver in zooplankton population biology but it is poorly constrained in models that describe zooplankton population dynamics, food web interactions and nutrient dynamics. Mortality due to non-predation factors is often ignored even though anecdotal evidence of non-predation mass mortality of zooplankton has been reported repeatedly. One way to estimate non-predation mortality rate is to measure the removal rate of carcasses, for which sinking is the primary removal mechanism especially in quiescent shallow water bodies. Objectives and Results We used sediment traps to quantify in situ carcass sinking velocity and non-predation mortality rate on eight consecutive days in 2013 for the cladoceran Bosmina longirostris in the oligo-mesotrophic Lake Stechlin; the outcomes were compared against estimates derived from in vitro carcass sinking velocity measurements and an empirical model correcting in vitro sinking velocity for turbulence resuspension and microbial decomposition of carcasses. Our results show that the latter two approaches produced unrealistically high mortality rates of 0.58-1.04 d-1, whereas the sediment trap approach, when used properly, yielded a mortality rate estimate of 0.015 d-1, which is more consistent with concurrent population abundance data and comparable to physiological death rate from the literature. Ecological implications Zooplankton carcasses may be exposed to water column microbes for days before entering the benthos; therefore, non-predation mortality affects not only zooplankton population dynamics but also microbial and benthic food webs. This would be particularly important for carbon and nitrogen cycles in systems where recurring mid-summer decline of zooplankton population due to non-predation mortality is observed. PMID:26146995

  3. The role of rodents in the seed fate of a thorny shrub in an ancient wood pasture

    NASA Astrophysics Data System (ADS)

    Scheper, Jeroen; Smit, Christian

    2011-03-01

    Thorny shrubs play a crucial role for the diversity and dynamics in wood pastures: they protect non-defended plants from large herbivores and thus facilitate tree establishment in the landscape through associational resistance. How thorny shrubs themselves establish in wood pastures - the main bottleneck for a dynamic shifting of grassland - shrub - woodland mosaics - is an essential unanswered question. We studied post-primary dispersal seed fate - i.e. removal, predation, secondary dispersal and survival of seeds after primary dispersal - of the thorny shrub blackthorn ( Prunus spinosa) in an ancient wood pasture in the Netherlands. Blackthorn seeds are primarily dispersed by frugivorous birds and may secondarily be dispersed by scatter-hoarding rodents. We performed two cafeteria-style experiments with blackthorn seeds placed on dishes in the dominant vegetation types. In the first we monitored seed removal in grassland, swards or blackthorn shrubs and determined rodent species abundance by live-trapping. In the second we followed tagged blackthorn seeds under shrubs and in swards to determine seed removal, predation, survival and secondary dispersal patterns. Tagged seeds were retrieved using a metal detector and by visual means. We recorded dispersal direction and distance, vegetation type, seed handling (burial, consumption) and rodent species responsible via bite marks. Seed removal and number of live-trapped rodents differed between vegetation types, with higher removal and rodent captures under shrubs than in swards and grassland. All retrieved seeds were depredated, predominantly by the wood mouse ( Apodemus sylvaticus). Disproportionally high seed numbers were retrieved in the vegetation type where originally placed (shrubs or swards). Our study suggests that rodents play an important role for blackthorn in wood pastures, predominantly as seed predators rather than secondary seed dispersers. Predation is particularly high under blackthorn shrubs, suggesting that primary seed dispersal by birds away from shrubs into grassland or swards is a prerequisite for blackthorn recruitment in wood pastures.

  4. Assessing native and introduced fish predation on migrating juvenile salmon in Priest Rapids and Wanapum Reservoirs, Columbia River, Washington, 2009--11

    USGS Publications Warehouse

    Counihan, Timothy D.; Hardiman, Jill M.; Burgess, Dave S.; Simmons, Katrina E.; Holmberg, Glen S.; Rogala, Josh A.; Polacek, Rochelle R.

    2012-01-01

    We used the catch and diet data collected in 2009 and 2010 to estimate relative abundance, consumption, and predation indices for northern pikeminnow and smallmouth bass. Despite extensive sampling in the study area in 2009 and 2010, very few channel catfish and walleye were captured. The mean total lengths of northern pikeminnow were much lower than those observed in 1993; suggesting that efforts to remove northern pikeminnow in the study area may be shifting the population towards smaller fish. The northern pikeminnow predation index values were lower in 2009 than in the 1993 study. The reduced predation levels observed may be due to the prevalence of smaller pikeminnow in our catches than in catches reported in 1993. Predation by smallmouth bass was lower in 2009 than in 2010, and generally was greater than predation for northern pikeminnow. Predation for northern pikeminnow was concentrated in the tailrace areas of Priest Rapids, Wanapum, and Rock Island Dams; predation for smallmouth bass was concentrated in the forebay and mid-reservoir sections of the study area. Our results indicate areas where control measures for smallmouth bass could be concentrated to reduce predation in the Priest Rapids Project.

  5. Predators of Greater Sage-Grouse nests identified by video monitoring

    USGS Publications Warehouse

    Coates, P.S.; Connelly, J.W.; Delehanty, D.J.

    2008-01-01

    Nest predation is the primary cause of nest failure for Greater Sage-Grouse (Centrocercus urophasianus), but the identity of their nest predators is often uncertain. Confirming the identity of these predators may be useful in enhancing management strategies designed to increase nest success. From 2002 to 2005, we monitored 87 Greater Sage-Grouse nests (camera, N = 55; no camera, N = 32) in northeastern Nevada and south-central Idaho and identified predators at 17 nests, with Common Ravens (Corvus corax) preying on eggs at 10 nests and American badgers (Taxidea taxis) at seven. Rodents were frequently observed at grouse nests, but did not prey on grouse eggs. Because sign left by ravens and badgers was often indistinguishable following nest predation, identifying nest predators based on egg removal, the presence of egg shells, or other sign was not possible. Most predation occurred when females were on nests. Active nest defense by grouse was rare and always unsuccessful. Continuous video monitoring of Sage-Grouse nests permitted unambiguous identification of nest predators. Additional monitoring studies could help improve our understanding of the causes of Sage-Grouse nest failure in the face of land-use changes in the Intermountain West. ?? 2008 Association of Field Ornithologists.

  6. Wolves-coyotes-foxes: a cascade among carnivores.

    PubMed

    Levi, Taal; Wilmers, Christopher C

    2012-04-01

    Due to the widespread eradication of large canids and felids, top predators in many terrestrial ecosystems are now medium-sized carnivores such as coyotes. Coyotes have been shown to increase songbird and rodent abundance and diversity by suppressing populations of small carnivores such as domestic cats and foxes. The restoration of gray wolves to many parts of North America, however, could alter this interaction chain. Here we use a 30-year time series of wolf, coyote, and fox relative abundance from the state of Minnesota, USA, to show that wolves suppress coyote populations, which in turn releases foxes from top-down control by coyotes. In contrast to mesopredator release theory, which has often considered the consequence of top predator removal in a three-species interaction chain (e.g., coyote-fox-prey), the presence of the top predator releases the smaller predator in a four-species interaction chain. Thus, heavy predation by abundant small predators might be more similar to the historical ecosystem before top-predator extirpation. The restructuring of predator communities due to the loss or restoration of top predators is likely to alter the size spectrum of heavily consumed prey with important implications for biodiversity and human health.

  7. Predation cues rather than resource availability promote cryptic behaviour in a habitat-forming sea urchin.

    PubMed

    Spyksma, Arie J P; Taylor, Richard B; Shears, Nick T

    2017-03-01

    It is well known that predators often influence the foraging behaviour of prey through the so-called "fear effect". However, it is also possible that predators could change prey behaviour indirectly by altering the prey's food supply through a trophic cascade. The predator-sea urchin-kelp trophic cascade is widely assumed to be driven by the removal of sea urchins by predators, but changes in sea urchin behaviour in response to predators or increased food availability could also play an important role. We tested whether increased crevice occupancy by herbivorous sea urchins in the presence of abundant predatory fishes and lobsters is a response to the increased risk of predation, or an indirect response to higher kelp abundances. Inside two New Zealand marine reserves with abundant predators and kelp, individuals of the sea urchin Evechinus chloroticus were rarer and remained cryptic (i.e. found in crevices) to larger sizes than on adjacent fished coasts where predators and kelp are rare. In a mesocosm experiment, cryptic behaviour was induced by simulated predation (the addition of crushed conspecifics), but the addition of food in the form of drift kelp did not induce cryptic behaviour. These findings demonstrate that the 'fear' of predators is more important than food availability in promoting sea urchin cryptic behaviour and suggest that both density- and behaviourally mediated interactions are important in the predator-sea urchin-kelp trophic cascade.

  8. Management of Protected Areas and Its Effect on an Ecosystem Function: Removal of Prosopis flexuosa Seeds by Mammals in Argentinian Drylands.

    PubMed

    Campos, Claudia M; Campos, Valeria E; Miguel, Florencia; Cona, Mónica I

    The ecological function of animal seed dispersal depends on species interactions and can be affected by drivers such as the management interventions applied to protected areas. This study was conducted in two protected areas in the Monte Desert: a fenced reserve with grazing exclusion and absence of large native mammals (the Man and Biosphere Ñacuñán Reserve; FR) and an unfenced reserve with low densities of large native and domestic animals (Ischigualasto Park; UFR). The study focuses on Prosopis flexuosa seed removal by different functional mammal groups: "seed predators", "scatter-hoarders", and "opportunistic frugivores". Under both interventions, the relative contribution to seed removal by different functional mammal groups was assessed, as well as how these groups respond to habitat heterogeneity (i.e. vegetation structure) at different spatial scales. Camera traps were used to identify mammal species removing P. flexuosa seeds and to quantify seed removal; remote sensing data helped analyze habitat heterogeneity. In the FR, the major fruit removers were a seed predator (Graomys griseoflavus) and a scatter-hoarder (Microcavia asutralis). In the UFR, the main seed removers were the opportunistic frugivores (Lycalopex griseus and Dolichotis patagonum), who removed more seeds than the seed predator in the FR. The FR shows higher habitat homogeneity than the UFR, and functional groups respond differently to habitat heterogeneity at different spatial scales. In the FR, because large herbivores are locally extinct (e.g. Lama guanicoe) and domestic herbivores are excluded, important functions of large herbivores are missing, such as the maintenance of habitat heterogeneity, which provides habitats for medium-sized opportunistic frugivores with consequent improvement of quality and quantity of seed dispersal services. In the UFR, with low densities of large herbivores, probably one important ecosystem function this group performs is to increase habitat heterogeneity, allowing for the activity of medium-sized mammals who, behaving as opportunistic frugivores, did the most significant seed removal.

  9. Reducing predation by common ravens on desert tortoises in the Mojave and Colorado Deserts

    USGS Publications Warehouse

    Boarman, William I.

    2002-01-01

    intended to provide a basis for a long-term reduction in raven impacts. The recommendations fall into four basic categories. (1) Modify anthropogenic sources of food, water, and nesting substrates to reduce their use by ravens. This includes modifying landfill operations, septage containment practices, livestock management, and other commercial and private practices that help facilitate raven survival and dispersal by providing food and water. Most of these measures are long-term actions deigned to reduce the carrying capacity of the desert for ravens. This action is critical and must be done over very large areas. (2)Lethal removal of ravens by shooting or euthanizing following live trapping. Specific ravens known to prey on tortoises would be targeted as well as all ravens found foraging within specific high-priority desert tortoise management zones (e.g., Desert Tortoise Natural Areas, DTNA). These actions would primarily be deployed on a short-term emergency basis to give specific tortoise populations a necessary boost until other measures become fully implemented and achieve their goals. (3) Conduct research on raven ecology, raven behavior, and methods to reduce raven predation on tortoises. Results of these studies would be used to design future phases of the raven management program. (4) All actions should be approached within an adaptive management framework. As such monitor, actions should be designed as experiments so that monitoring of actions will yield reliable and scientifically sound results. Coordinating and oversight teams should be convened to facilitate cooperation and coordination among agencies and to ensure that the actions are being implemented effectively. Recommendations made herein were developed to help recover tortoise populations by reducing raven predation on juvenile tortoises. If the recommendations made are implemented in concert with actions reducing other causes of mortality, ill health, and lowered reproductive output, they should aid in the long-term recovery of desert tortoise populations. Many important aspects of raven population dynamics, raven predation on tortoises, and how to manage raven populations and behavior are as yet unknown. Because of this, any raven management program must be implemented within an adaptive management framework. Doing so would allow for sufficient flexibility to modify the program as new information is gained.

  10. Predator Diversity Effects in an Exotic Freshwater Food Web

    PubMed Central

    Naddafi, Rahmat; Rudstam, Lars G.

    2013-01-01

    Cascading trophic interactions are often defined as the indirect effects of a predator on primary producers through the effect of the predator on herbivores. These effects can be both direct through removal of herbivores [density-mediated indirect interactions (DMIIs)] or indirect through changes in the behavior of the herbivores [trait-mediated indirect interactions (TMIIs)]. How the relative importance of these two indirect interactions varies with predator diversity remains poorly understood. We tested the effect of predator diversity on both TMIIs and DMIIs on phytoplankton using two competitive invasive dreissenid mussel species (zebra mussel and quagga mussel) as the herbivores and combinations of one, two or all three species of the predators pumpkinseed sunfish, round goby, and rusty crayfish. Predators had either direct access to mussels and induced both TMII and DMII, or no direct access and induced only TMII through the presence of risk cues. In both sets of treatments, the predators induced a trophic cascade which resulted in more phytoplankton remaining with predators present than with only mussels present. The trophic cascade was weaker in three-predator and two-predator treatments than in one-predator treatments when predators had direct access to dreissenids (DMIIs and TMIIs). Crayfish had higher cascading effects on phytoplankton than both pumpkinseed and round goby. Increased predator diversity decreased the strength of DMIIs but had no effect on the strength of TMIIs. The strength of TMIIs was higher with zebra than quagga mussels. Our study suggests that inter-specific interference among predators in multi-species treatments weakens the consumptive cascading effects of predation on lower trophic levels whereas the importance of predator diversity on trait mediated effects depends on predator identity. PMID:23991126

  11. Resilience of predators to fishing pressure on coral patch reefs

    USGS Publications Warehouse

    Schroeder, R.E.; Parrish, J.D.

    2005-01-01

    Numbers and biomass of piscivorous fish and their predation on other fish may often be high in undisturbed coral reef communities. The effects of such predation have sometimes been studied by removal of piscivores (either experimentally or by fishermen). Such perturbations have usually involved removal of large, highly vulnerable, mobile piscivores that are often actively sought in fisheries. The effects of fishing on smaller, demersal, semi-resident piscivores have been little studied. We studied such effects on the fish communities of patch reefs at Midway atoll by experimentally removing major resident, demersal, piscivorous fishes. First, four control reefs and four experimental reefs were selected, their dimensions and habitats mapped, and their visible fish communities censused repeatedly over 1 year. Census of all control and experimental reefs was continued for the following 39 months, during which known piscivores were collected repeatedly by hand spearing. Records were kept of catch and effort to calculate CPUE as an index of predator density. Spearfishing on the experimental reefs removed 2504 piscivorous fish from 12 families and 43 taxa (mostly species). The species richness of the catch did not show an overall change over the duration of the experiment. Spearman rank correlation analysis showed some unexpected positive correlations for density in numbers and biomass of major fished piscivorous groups (especially lizardfish) over the experiment. Only two relatively minor fished piscivorous taxa declined in abundance over the experiment, while the overall abundance of piscivores increased. Visual censuses of fish on the experimental reefs also failed to show reduction of total piscivores over the full experimental period. No significant trend in the abundance of lizardfish censused over the full period was apparent on any of the control reefs. The high resilience of piscivores on these experimental reefs to relatively intense fishing pressure could result from their protracted recruitment seasons, high immigration rates, cryptic habits, or naturally high abundances. A major factor was the high immigration rates of lizardfish, replacing lizardfish and other less mobile piscivores removed from the reefs by spearing. On the fished reefs, the removed lizardfish population replaced itself >20 times during the experiment; other piscivorous taxa replaced themselves only 5 times.

  12. Trophic cascades result in large-scale coralline algae loss through differential grazer effects.

    PubMed

    O'Leary, Jennifer K; McClanahan, Timothy R

    2010-12-01

    Removal of predators can have strong indirect effects on primary producers through trophic cascades. Crustose coralline algae (CCA) are major primary producers worldwide that may be influenced by predator removal through changes in grazer composition and biomass. CCA have been most widely studied in Caribbean and temperate reefs, where cover increases with increasing grazer biomass due to removal of competitive fleshy algae. However, each of these systems has one dominant grazer type, herbivorous fishes or sea urchins, which may not be functionally equivalent. Where fishes and sea urchins co-occur, fishing can result in a phase shift in the grazing community with subsequent effects on CCA and other substrata. Kenyan reefs have herbivorous fishes and sea urchins, providing an opportunity to determine the relative impacts of each grazer type and evaluate potential human-induced trophic cascades. We hypothesized that fish benefit CCA, abundant sea urchins erode CCA, and that fishing indirectly reduces CCA cover by removing sea urchin predators. We used closures and fished reefs as a large-scale, long-term natural experiment to assess how fishing and resultant changes in communities affect CCA abundance. We used a short-term caging experiment to directly test the effects of grazing on CCA. CCA cover declined with increasing fish and sea urchin abundance, but the negative impact of sea urchin grazing was much stronger than that of fishes. Abundant sea urchins reduced the CCA growth rate to almost zero and prevented CCA accumulation. A warming event (El Niño Southern Oscillation, ENSO) occurred during the 18-year study and had a strong but short-term positive effect on CCA cover. However, the effect of the ENSO on CCA was lower in magnitude than the effect of sea urchin grazing. We compare our results with worldwide literature on bioerosion by fishes and sea urchins. Grazer influence depends on whether benefits of fleshy algae removal outweigh costs of grazer-induced bioerosion. However, the cost-benefit ratio for CCA appears to change with grazer type, grazer abundance, and environment. In Kenya, predator removal leads to a trophic cascade that is expected to reduce net calcification of reefs and therefore reduce reef stability, growth, and resilience.

  13. Development of a Systemwide Predator Control Program Section I : Northern Squawfish Management Program Implementation, 1995 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, Franklin R.

    1997-04-01

    Results from the fifth year of a basinwide program to harvest northern squawfish (Ptychocheilus oregonensis) in an effort to reduce mortality due to northern squawfish predation on juvenile salmonids during their emigration from natal streams to the ocean.

  14. Threats from the past: Barbados green monkeys (Chlorocebus sabaeus) fear leopards after centuries of isolation.

    PubMed

    Burns-Cusato, Melissa; Glueck, Amanda C; Merchak, Andrea R; Palmer, Cristin L; Rieskamp, Joshua D; Duggan, Ivy S; Hinds, Rebecca T; Cusato, Brian

    2016-05-01

    Ability to recognize and differentiate between predators and non-predators is a crucial component of successful anti-predator behavior. While there is evidence that both genetic and experiential mechanisms mediate anti-predator behaviors in various animal species, it is unknown to what extent each of these two mechanisms are utilized by the green monkey (Chlorocebus sabaeus). Green monkeys on the West Indies island of Barbados offer a unique opportunity to investigate the underpinnings of anti-predator behaviors in a species that has been isolated from ancestral predators for over 350 years. In the first experiment, monkeys in two free-ranging troops were presented with photographs of an ancestral predator (leopard, Panthera pardus) and a non-predator (African Buffalo, Syncerus caffer). Relative to non-predator stimuli, images of a leopard elicited less approach, more alarm calls, and more escape responses. Subsequent experiments were conducted to determine whether the monkeys were responding to a leopard-specific feature (spotted fur) or a general predator feature (forward facing eyes). The monkeys showed similar approach to images of an unfamiliar non-predator regardless of whether the image had forward facing predator eyes or side facing non-predator eyes. However, once near the images, the monkeys were less likely to reach for peanuts near the predator eyes than the non-predator eyes. The monkeys avoided an image of spotted leopard fur but approached the same image of fur when the dark spots had been removed. Taken together, the results suggest that green monkey anti-predator behavior is at least partially mediated by genetic factors. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. White-tailed deer (Odocoileus virginianus) predation on grassland songbird nestlings

    USGS Publications Warehouse

    Pietz, Pamela J.; Granfors, Diane A.

    2000-01-01

    White-tailed deer (Odocoileus virginianus) were videotaped depredating four songbird nests in grassland habitats in southeastern and northcentral North Dakota, 1996-1999. Deer ate two Savannah sparrow (Passerculus sandwichensis), two grasshopper sparrow (Ammodramus savannarum), one clay-colored sparrow (Spizella pallida), one red-winged blackbird (Agelaius phoeniceus) and three brown-headed cowbird (Molothrus ater) nestlings. Deer removed nestlings quickly (5-19 sec/nest) at night (22:00 to 05:17 Central Daylight Time) and left no evidence of predation. Although probably opportunistic, deer predations clearly were deliberate and likely are more common than generally believed.

  16. Notes and Discussion: White-tailed deer (Odocoileus virginianus) predation on grassland songbird nestlings

    USGS Publications Warehouse

    Pietz, P.J.; Granfors, D.A.

    2000-01-01

    White-tailed deer (odocoileus virginianus) were videotaped depredating four songbird nests in grassland habitats in southeastern and northcentral North Dakota, 1996-1999. Deer ate two Savannah sparrow (Passerculus sandwichensis), two grasshopper sparrow (Ammodramus savannarum), one clay-colored sparrow (Spizella pallida), one red-winged blackbird (Agelaius phoeniceus) and three brown-headed cowbird (Molothrus ater) nestlings. Deer removed nestlings quickly (5-19 sec/nest) at night (22:00 to 05:17 Central Daylight Time) and left no evidence of predation. Although probably opportunistic, deer predations clearly were deliberate and likely are more common than generally believed.

  17. Autumn predation of northern red oak seed crops

    Treesearch

    Kim C. Steiner

    1995-01-01

    Production and autumn predation of northern red oak acorns was measured over four years in five Pennsylvania stands dominated by this species. Mean annual production was 41,779/acre, of which an average of 7.9% was destroyed by insects or decay following insect attack, and an average of 38.6% was destroyed or removed by vertebrates. White-tailed deer appeared to be the...

  18. Biocontrol in an impulsive predator-prey model.

    PubMed

    Terry, Alan J

    2014-10-01

    We study a model for biological pest control (or "biocontrol") in which a pest population is controlled by a program of periodic releases of a fixed yield of predators that prey on the pest. Releases are represented as impulsive increases in the predator population. Between releases, predator-pest dynamics evolve according to a predator-prey model with some fairly general properties: the pest population grows logistically in the absence of predation; the predator functional response is either of Beddington-DeAngelis type or Holling type II; the predator per capita birth rate is bounded above by a constant multiple of the predator functional response; and the predator per capita death rate is allowed to be decreasing in the predator functional response and increasing in the predator population, though the special case in which it is constant is permitted too. We prove that, when the predator functional response is of Beddington-DeAngelis type and the predators are not sufficiently voracious, then the biocontrol program will fail to reduce the pest population below a particular economic threshold, regardless of the frequency or yield of the releases. We prove also that our model possesses a pest-eradication solution, which is both locally and globally stable provided that predators are sufficiently voracious and that releases occur sufficiently often. We establish, curiously, that the pest-eradication solution can be locally stable whilst not being globally stable, the upshot of which is that, if we delay a biocontrol response to a new pest invasion, then this can change the outcome of the response from pest eradication to pest persistence. Finally, we state a number of specific examples for our model, and, for one of these examples, we corroborate parts of our analysis by numerical simulations. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Local and landscape drivers of predation services in urban gardens.

    PubMed

    Philpott, Stacy M; Bichier, Peter

    2017-04-01

    In agroecosystems, local and landscape features, as well as natural enemy abundance and richness, are significant predictors of predation services that may result in biological control of pests. Despite the increasing importance of urban gardening for provisioning of food to urban populations, most urban gardeners suffer from high pest problems, and have little knowledge about how to manage their plots to increase biological control services. We examined the influence of local, garden scale (i.e., herbaceous and arboreal vegetation abundance and diversity, ground cover) and landscape (i.e., landscape diversity and surrounding land use types) characteristics on predation services provided by naturally occurring predators in 19 urban gardens in the California central coast. We introduced sentinel pests (moth eggs and larvae and pea aphids) onto greenhouse-raised plants taken to gardens and assigned to open or bagged (predator exclosure) treatments. We found high predation rates with between 40% and 90% of prey items removed in open treatments. Predation services varied with local and landscape factors, but significant predictors differed by prey species. Predation of eggs and aphids increased with vegetation complexity in gardens, but larvae predation declined with vegetation complexity. Smaller gardens experienced higher predation services, likely due to increases in predator abundance in smaller gardens. Several ground cover features influenced predation services. In contrast to patterns in rural agricultural landscapes, predation on aphids declined with increases in landscape diversity. In sum, we report the relationships between several local management factors, as well as landscape surroundings, and implications for garden management. © 2017 by the Ecological Society of America.

  20. Programming of stress-related behavior and epigenetic neural gene regulation in mice offspring through maternal exposure to predator odor

    PubMed Central

    St-Cyr, Sophie; McGowan, Patrick O.

    2015-01-01

    Perinatal stress mediated through the mother can lead to long-term alterations in stress-related phenotypes in offspring. The capacity for adaptation to adversity in early life depends in part on the life history of the animal. This study was designed to examine the behavioral and neural response in adult offspring to prenatal exposure to predator odor: an ethologically-relevant psychological stressor. Pregnant mice were exposed daily to predator odors or distilled water control over the second half of the pregnancy. Predator odor exposure lead to a transient decrease in maternal care in the mothers. As adults, the offspring of predator odor-exposed mothers showed increased anti-predator behavior, a predator-odor induced decrease in activity and, in female offspring, an increased corticosterone (CORT) response to predator odor exposure. We found a highly specific response among stress-related genes within limbic brain regions. Transcript abundance of Corticotropin-releasing hormone receptor 1 (CRHR1) was elevated in the amygdala in adult female offspring of predator odor-exposed mothers. In the hippocampus of adult female offspring, decreased Brain-derived neurotrophic factor (BDNF) transcript abundance was correlated with a site-specific decrease in DNA methylation in Bdnf exon IV, indicating the potential contribution of this epigenetic mechanism to maternal programming by maternal predator odor exposure. These data indicate that maternal predator odor exposure alone is sufficient to induce an altered stress-related phenotype in adulthood, with implications for anti-predator behavior in offspring. PMID:26082698

  1. Programming of stress-related behavior and epigenetic neural gene regulation in mice offspring through maternal exposure to predator odor.

    PubMed

    St-Cyr, Sophie; McGowan, Patrick O

    2015-01-01

    Perinatal stress mediated through the mother can lead to long-term alterations in stress-related phenotypes in offspring. The capacity for adaptation to adversity in early life depends in part on the life history of the animal. This study was designed to examine the behavioral and neural response in adult offspring to prenatal exposure to predator odor: an ethologically-relevant psychological stressor. Pregnant mice were exposed daily to predator odors or distilled water control over the second half of the pregnancy. Predator odor exposure lead to a transient decrease in maternal care in the mothers. As adults, the offspring of predator odor-exposed mothers showed increased anti-predator behavior, a predator-odor induced decrease in activity and, in female offspring, an increased corticosterone (CORT) response to predator odor exposure. We found a highly specific response among stress-related genes within limbic brain regions. Transcript abundance of Corticotropin-releasing hormone receptor 1 (CRHR1) was elevated in the amygdala in adult female offspring of predator odor-exposed mothers. In the hippocampus of adult female offspring, decreased Brain-derived neurotrophic factor (BDNF) transcript abundance was correlated with a site-specific decrease in DNA methylation in Bdnf exon IV, indicating the potential contribution of this epigenetic mechanism to maternal programming by maternal predator odor exposure. These data indicate that maternal predator odor exposure alone is sufficient to induce an altered stress-related phenotype in adulthood, with implications for anti-predator behavior in offspring.

  2. Predation by Red Foxes (Vulpes vulpes) at an Outdoor Piggery.

    PubMed

    Fleming, Patricia A; Dundas, Shannon J; Lau, Yvonne Y W; Pluske, John R

    2016-10-08

    Outdoor pig operations are an alternative to intensive systems of raising pigs; however for the majority of outdoor pork producers, issues of biosecurity and predation control require significant management and (or) capital investment. Identifying and quantifying predation risk in outdoor pork operations has rarely been done, but such data would be informative for these producers as part of their financial and logistical planning. We quantified potential impact of fox predation on piglets bred on an outdoor pork operation in south-western Australia. We used remote sensor cameras at select sites across the farm as well as above farrowing huts to record interactions between predators and pigs (sows and piglets). We also identified animal losses from breeding records, calculating weaning rate as a proportion of piglets born. Although only few piglets were recorded lost to fox predation (recorded by piggery staff as carcasses that are "chewed"), it is likely that foxes were contributing substantially to the 20% of piglets that were reported "missing". Both sets of cameras recorded a high incidence of fox activity; foxes appeared on camera soon after staff left for the day, were observed tracking and taking live piglets (despite the presence of sows), and removed dead carcasses from in front of the cameras. Newly born and younger piglets appeared to be the most vulnerable, especially when they are born out in the paddock, but older piglets were also lost. A significant ( p = 0.001) effect of individual sow identification on the weaning rate, but no effect of sow age (parity), suggests that individual sow behavior towards predators influences predation risk for litters. We tracked the movement of piglet carcasses by foxes, and confirmed that foxes make use of patches of native vegetation for cover, although there was no effect of paddock, distance to vegetation, or position on the farm on weaning rate. Trials with non-toxic baits reveal high levels of non-target bait interference. Other management options are recommended, including removing hay from the paddocks to reduce the risks of sows farrowing in open paddocks, and covering or predator-proof fencing the pig carcass pit. Results of this study will have increasing relevance for the expanding outdoor/free-range pork industry, contributing to best practice guidelines for predator control.

  3. Demographic parameters of the insecticide-exposed predator Podisus nigrispinus: implications for IPM

    USDA-ARS?s Scientific Manuscript database

    The predator Podisus nigrispinus (Dallas) (Heteroptera: Pentatomidae) shows potential for Integrated Pest Management programs of defoliating caterpillars in agricultural and forestry systems. Insecticides can indirectly affect caterpillar predators through consumption of contaminated prey. We examin...

  4. Yucca brevifolia fruit production, predispersal seed predation, and fruit removal by rodents during two years of contrasting reproduction

    USGS Publications Warehouse

    Borchert, Mark I.; DeFalco, Lesley

    2016-01-01

    PREMISE OF THE STUDY: The distribution of Yucca brevifolia, a keystone species of the Mojave Desert, may contract with climate change, yet reproduction and dispersal are poorly understood. We tracked reproduction, seed predation, and fruit dispersal for two years and discuss whether Y. brevifolia is a masting species. METHODS: Fruit maturation, seed predation (larval yucca moths), and fruit dispersal (rodents) were monitored on a random sample of panicles during 2013 and 2014, which were years of high and low reproduction, respectively. Fates of fruits placed on the ground and in canopies were also tracked. Rodents were live-trapped to assess abundance and species composition. KEY RESULTS: In 2013, 66% of inflorescences produced fruit of which 53% escaped larval predation; 19.5% of seeds were destroyed in infested fruits. Total seed production was estimated to be >100 times greater in 2013 than 2014. One-third of the fruit crop fell to the ground and was removed by rodents over the course of 120 d. After ground fruits became scarce, rodents exploited canopy fruits. Rodent numbers were low in 2013, so fruits remained in canopies for 370 d. In 2014, fruit production was approximately 20% lower. Larvae infested the majority of fruits, and almost twice the number of seeds were damaged. Fruits were exploited by rodents within 65 d. CONCLUSIONS: High fertilization, prolific seed production, and low predispersal predation in 2013 suggests that pollinator attraction and satiation of seed predators influence masting in Y. brevifolia. Abundant, prolonged fruit availability to seed-dispersing rodents likely extends recruitment opportunities during mast years.

  5. Revisiting Paine’s 1966 sea star removal experiment, the most-cited empirical article in the American Naturalist

    USGS Publications Warehouse

    Lafferty, Kevin D.; Suchanek, Tom

    2016-01-01

    “Food Web Complexity and Species Diversity” (Paine 1966) is the most-cited empirical article published in the American Naturalist. In short, Paine removed predatory sea stars (Pisaster ochraceus) from the rocky intertidal and watched the key prey species, mussels (Mytilus californianus), crowd out seven subordinate primary space-holding species. However, because these mussels are a foundational species, they provide three-dimensional habitat for over 300 associated species inhabiting the mussel beds; thus, removing sea stars significantly increases community-wide diversity. In any case, most ecologists cite Paine (1966) to support a statement that predators increase diversity by interfering with competition. Although detractors remained skeptical of top-down effects and keystone concepts, the paradigm that predation increases diversity spread. By 1991, “Food Web Complexity and Species Diversity” was considered a classic ecological paper, and after 50 years it continues to influence ecological theory and conservation biology.

  6. Spatial variation in post-dispersal seed removal in an Atlantic forest: Effects of habitat, location and guilds of seed predators

    NASA Astrophysics Data System (ADS)

    Christianini, Alexander V.; Galetti, Mauro

    2007-11-01

    Studies of post-dispersal seed removal in the Neotropics have rarely examined the magnitude of seed removal by different types of granivores. The relative impact of invertebrates, small rodents, and birds on seed removal was investigated in a 2,178 ha Atlantic forest fragment in southeastern Brazil. We used popcorn kernels ( Zea mays—Poaceae) to investigate seed removal in a series of selective exclosure treatments in a replicated, paired design experiment that included forest understory, gaps, and forest edge sites. We recorded the vegetation around the experimental seed stations in detail in order to evaluate the influence of microhabitat traits on seed removal. Vertebrate granivores (rodents and birds) were surveyed to determine whether granivore abundance was correlated with seed removal levels. Seed removal varied spatially and in unpredictable ways at the study site. Seed encounter and seed use varied with treatments, but not with habitat type. However, seed removal by invertebrates was negatively correlated with gap-related traits, which suggested an avoidance of large gaps by granivorous ants. The abundance of small mammals was remarkably low, but granivorous birds (tinamous and doves) were abundant at the study site. Birds were the main seed consumers in open treatments, but there was no correlation between local granivorous bird abundance and seed removal. These results emphasize the stochastic spatial pattern of seed removal, and, contrary to previous studies, highlight the importance of birds as seed predators in forest habitats.

  7. Weak trophic links between a crab-spider and the effective pollinators of a rewardless orchid

    NASA Astrophysics Data System (ADS)

    Quintero, Carolina; Corley, Juan C.; Aizen, Marcelo A.

    2015-01-01

    Sit and wait predators hunting on flowers are considered to be exploiters of plant-pollinator mutualisms. Several studies have shown that plant-pollinator interactions can be highly susceptible to the impact of a third trophic level, via consumptive (direct) and non-consumptive (indirect) effects that alter pollinator behavior and, ultimately, plant fitness. However, most flowering plants attract a wide array of flower visitors, from which only a subset will be effective pollinators. Hence, a negative effect of an ambush predator on plant fitness should be expected only when: (i) the effective pollinators are part of the predators' diet and/or (ii) the non-consumptive effects of predator presence (e.g. dead prey) alter the behavior of effective pollinators and pollen movement among individual plants. We analyzed the direct and indirect effects of a crab-spider (Misumenops pallidus), on the pollination and reproductive success of Chloraea alpina, a Patagonian rewardless orchid. Our results indicate that most of the flower visitors do not behave as effective pollinators and most effective pollinators were not observed as prey for the crab-spider. In terms of non-consumptive effects, inflorescences with and without spiders and/or dead-prey did not vary the frequency of flower visitors, nor pollinia removal or deposition. Hence, it is not surprising that M. pallidus has a neutral effect on pollinia removal and deposition as well as on fruit and seed set. Similar to other rewardless orchids, the low reproductive success of C. alpina (∼6% fruit set) was associated with the limited number of visits by effective pollinators. Negative top-down effects of a flower-visitor predator on plant pollination may not be anticipated without studying the direct and indirect effects of this predator on the effective pollinators. In pollination systems where effective pollinators visited flowers erratically, such as in deceptive orchids, we expect weak or no effect of predators on plant fitness.

  8. Effects of the heterogeneous landscape on a predator-prey system

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Hee

    2010-01-01

    In order to understand how a heterogeneous landscape affects a predator-prey system, a spatially explicit lattice model consisting of predators, prey, grass, and landscape was constructed. The predators and preys randomly move on the lattice space and the grass grows in its neighboring site according to its growth probability. When predators and preys meet at the same site at the same time, a number of prey, equal to the number of predators are eaten. This rule was also applied to the relationship between the prey and grass. The predator (prey) could give birth to an offspring when it ate prey (grass), with a birth probability. When a predator or prey animal was initially introduced, or newly born, its health state was set at a given high value. This health state decreased by one with every time step. When the state of an animal decreased to less than zero, the animal died and was removed from the system. The heterogeneous landscape was characterized by parameter H, which controlled the heterogeneity according to the neutral model. The simulation results showed that H positively or negatively affected a predator’s survival, while its effect on prey and grass was less pronounced. The results can be understood by the disturbance of the balance between the prey and predator densities in the areas where the animals aggregated.

  9. Native Predators Do Not Influence Invasion Success of Pacific Lionfish on Caribbean Reefs

    PubMed Central

    Hackerott, Serena; Valdivia, Abel; Green, Stephanie J.; Côté, Isabelle M.; Cox, Courtney E.; Akins, Lad; Layman, Craig A.; Precht, William F.; Bruno, John F.

    2013-01-01

    Biotic resistance, the process by which new colonists are excluded from a community by predation from and/or competition with resident species, can prevent or limit species invasions. We examined whether biotic resistance by native predators on Caribbean coral reefs has influenced the invasion success of red lionfishes (Pterois volitans and Pterois miles), piscivores from the Indo-Pacific. Specifically, we surveyed the abundance (density and biomass) of lionfish and native predatory fishes that could interact with lionfish (either through predation or competition) on 71 reefs in three biogeographic regions of the Caribbean. We recorded protection status of the reefs, and abiotic variables including depth, habitat type, and wind/wave exposure at each site. We found no relationship between the density or biomass of lionfish and that of native predators. However, lionfish densities were significantly lower on windward sites, potentially because of habitat preferences, and in marine protected areas, most likely because of ongoing removal efforts by reserve managers. Our results suggest that interactions with native predators do not influence the colonization or post-establishment population density of invasive lionfish on Caribbean reefs. PMID:23874565

  10. Native predators do not influence invasion success of pacific lionfish on Caribbean reefs.

    PubMed

    Hackerott, Serena; Valdivia, Abel; Green, Stephanie J; Côté, Isabelle M; Cox, Courtney E; Akins, Lad; Layman, Craig A; Precht, William F; Bruno, John F

    2013-01-01

    Biotic resistance, the process by which new colonists are excluded from a community by predation from and/or competition with resident species, can prevent or limit species invasions. We examined whether biotic resistance by native predators on Caribbean coral reefs has influenced the invasion success of red lionfishes (Pterois volitans and Pterois miles), piscivores from the Indo-Pacific. Specifically, we surveyed the abundance (density and biomass) of lionfish and native predatory fishes that could interact with lionfish (either through predation or competition) on 71 reefs in three biogeographic regions of the Caribbean. We recorded protection status of the reefs, and abiotic variables including depth, habitat type, and wind/wave exposure at each site. We found no relationship between the density or biomass of lionfish and that of native predators. However, lionfish densities were significantly lower on windward sites, potentially because of habitat preferences, and in marine protected areas, most likely because of ongoing removal efforts by reserve managers. Our results suggest that interactions with native predators do not influence the colonization or post-establishment population density of invasive lionfish on Caribbean reefs.

  11. Remote Cameras Reveal Experimental Artifact in a Study of Seed Predation in a Semi-Arid Shrubland.

    PubMed

    Brown, Alissa J; Deutschman, Douglas H; Braswell, Jessica; McLaughlin, Dana

    2016-01-01

    Granivorous animals may prefer to predate or cache seed of certain plant species over others. Multiple studies have documented preference for larger, non-native seed by granivores. To accomplish this, researchers have traditionally used indirect inference by relating patterns of seed removal to the species composition of the granivorous animal community. To measure seed removal, researchers present seed to granivorous animals in the field using equipment intended to exclude certain animal taxa while permitting access to others. This approach allows researchers to differentiate patterns of seed removal among various taxa (e.g., birds, small mammals, and insects); however, it is unclear whether the animals of interest are freely using the exclusion devices, which may be a hindrance to discovering the seed dishes. We used video observation to perform a study of seed predation using a custom-built, infrared digital camera and recording system. We presented native and non-native seed mixtures in partitioned Petri dishes both within and outside of exclusion cages. The exclusion cages were intended to allow entrance by rodent taxa while preventing entrance by rabbits and birds. We documented all seed removal visits by granivorous animals, which we identified to the genus level. Genera exhibited varying seed removal patterns based on seed type (native vs. non-native) and dish type (open vs. enclosed). We documented avoidance of the enclosed dishes by all but one rodent taxa, even though these dishes were intended to be used freely by rodents. This suggests that preference for non-native seed occurs differentially among granivorous animals in this system; however, interpretation of these nuanced results would be difficult without the benefit of video observation. When feasible, video observation should accompany studies using in situ equipment to ensure incorrect assumptions do not lead to inappropriate interpretation of results.

  12. Red Wolf (Canis rufus) Recovery: A Review with Suggestions for Future Research

    PubMed Central

    Hinton, Joseph W.; Chamberlain, Michael J.; Rabon, David R.

    2013-01-01

    Simple Summary Once widespread in the Eastern United States, early 20th century predator-control programs reduced red wolves to a remnant population by the 1970s. The U.S. Fish and Wildlife Service, through the Red Wolf Recovery Program, restored red wolves to northeastern North Carolina in 1987. After 25 years of restoration efforts, issues of hybridization with coyotes, inbreeding, and human-caused mortality continue to hamper red wolf recovery. To understand how these issues influence recovery efforts, we examine the history of red wolf restoration and its challenges. We then formulate areas of research that are of direct relevance to the restoration of red wolves. Abstract By the 1970s, government-supported eradication campaigns reduced red wolves to a remnant population of less than 100 individuals on the southern border of Texas and Louisiana. Restoration efforts in the region were deemed unpromising because of predator-control programs and hybridization with coyotes. The U.S. Fish and Wildlife Service (USFWS) removed the last remaining red wolves from the wild and placed them in a captive-breeding program. In 1980, the USFWS declared red wolves extinct in the wild. During 1987, the USFWS, through the Red Wolf Recovery Program, reintroduced red wolves into northeastern North Carolina. Although restoration efforts have established a population of approximately 70–80 red wolves in the wild, issues of hybridization with coyotes, inbreeding, and human-caused mortality continue to hamper red wolf recovery. We explore these three challenges and, within each challenge, we illustrate how research can be used to resolve problems associated with red wolf-coyote interactions, effects of inbreeding, and demographic responses to human-caused mortality. We hope this illustrates the utility of research to advance restoration of red wolves. PMID:26479530

  13. Post-dispersal seed removal by ground-feeding rodents in tropical peatlands, Central Kalimantan, Indonesia

    PubMed Central

    Blackham, Grace V.; Corlett, Richard T.

    2015-01-01

    Forested tropical peatlands in Southeast Asia are being rapidly converted to agriculture or degraded into non-forest vegetation. Although large areas have been abandoned, there is little evidence for subsequent forest recovery. As part of a study of forest degradation and recovery, we used seed removal experiments and rodent surveys to investigate the potential role of post-dispersal seed predation in limiting the regeneration of woody plants. Two 14-day seed removal trials were done in deforested and forested peatland habitat in Central Kalimantan, Indonesia. Seeds of Nephelium lappaceum, Syzygium muelleri, Artocarpus heterophyllus (all animal-dispersed) and Combretocarpus rotundatus (wind-dispersed) were tested. Significantly more seeds (82.8%) were removed in forest than non-forest (38.1%) and Combretocarpus had the lowest removal in both habitats. Most handled seeds were eaten in situ and little caching was observed. Six species of rodents were captured in forest and five in non-forest. The most trapped taxa were three Maxomys spp. in forest (85.5% of individuals) and Rattus tiomanicus in non-forest (74.8%). Camera traps confirmed that rodents were responsible for seed removal. Seed predation in deforested areas, which have a much lower seed rain than forest, may contribute to the low density and diversity of regenerating forest. PMID:26369444

  14. Post-dispersal seed removal by ground-feeding rodents in tropical peatlands, Central Kalimantan, Indonesia.

    PubMed

    Blackham, Grace V; Corlett, Richard T

    2015-09-15

    Forested tropical peatlands in Southeast Asia are being rapidly converted to agriculture or degraded into non-forest vegetation. Although large areas have been abandoned, there is little evidence for subsequent forest recovery. As part of a study of forest degradation and recovery, we used seed removal experiments and rodent surveys to investigate the potential role of post-dispersal seed predation in limiting the regeneration of woody plants. Two 14-day seed removal trials were done in deforested and forested peatland habitat in Central Kalimantan, Indonesia. Seeds of Nephelium lappaceum, Syzygium muelleri, Artocarpus heterophyllus (all animal-dispersed) and Combretocarpus rotundatus (wind-dispersed) were tested. Significantly more seeds (82.8%) were removed in forest than non-forest (38.1%) and Combretocarpus had the lowest removal in both habitats. Most handled seeds were eaten in situ and little caching was observed. Six species of rodents were captured in forest and five in non-forest. The most trapped taxa were three Maxomys spp. in forest (85.5% of individuals) and Rattus tiomanicus in non-forest (74.8%). Camera traps confirmed that rodents were responsible for seed removal. Seed predation in deforested areas, which have a much lower seed rain than forest, may contribute to the low density and diversity of regenerating forest.

  15. Tests of landscape influence: Nest predation and brood parasitism in fragmented ecosystems

    USGS Publications Warehouse

    Tewksbury, J.J.; Garner, L.; Garner, S.; Lloyd, J.D.; Saab, V.; Martin, T.E.

    2006-01-01

    The effects of landscape fragmentation on nest predation and brood parasitism, the two primary causes of avian reproductive failure, have been difficult to generalize across landscapes, yet few studies have clearly considered the context and spatial scale of fragmentation. Working in two river systems fragmented by agricultural and rural-housing development, we tracked nesting success and brood parasitism in >2500 bird nests in 38 patches of deciduous riparian woodland. Patches on both river systems were embedded in one of two local contexts (buffered from agriculture by coniferous forest, or adjacent to agriculture), but the abundance of agriculture and human habitation within 1 km of each patch was highly variable. We examined evidence for three models of landscape effects on nest predation based on (1) the relative importance of generalist agricultural nest predators, (2) predators associated with the natural habitats typically removed by agricultural development, or (3) an additive combination of these two predator communities. We found strong support for an additive predation model in which landscape features affect nest predation differently at different spatial scales. Riparian habitat with forest buffers had higher nest predation rates than sites adjacent to agriculture, but nest predation also increased with increasing agriculture in the larger landscape surrounding each site. These results suggest that predators living in remnant woodland buffers, as well as generalist nest predators associated with agriculture, affect nest predation rates, but they appear to respond at different spatial scales. Brood parasitism, in contrast, was unrelated to agricultural abundance on the landscape, but showed a strong nonlinear relationship with farm and house density, indicating a critical point at which increased human habitat causes increased brood parasitism. Accurate predictions regarding landscape effects on nest predation and brood parasitism will require an increased appreciation of the multiple scales at which landscape components influence predator and parasite behavior. ?? 2006 by the Ecological Society of America.

  16. Biodiversity Loss following the Introduction of Exotic Competitors: Does Intraguild Predation Explain the Decline of Native Lady Beetles?

    PubMed Central

    Smith, Chelsea A.; Gardiner, Mary M.

    2013-01-01

    Exotic species are widely accepted as a leading cause of biodiversity decline. Lady beetles (Coccinellidae) provide an important model to study how competitor introductions impact native communities since several native coccinellids have experienced declines that coincide with the establishment and spread of exotic coccinellids. This study tested the central hypothesis that intraguild predation by exotic species has caused these declines. Using sentinel egg experiments, we quantified the extent of predation on previously-common (Hippodamia convergens) and common (Coleomegilla maculata) native coccinellid eggs versus exotic coccinellid (Harmonia axyridis) eggs in three habitats: semi-natural grassland, alfalfa, and soybean. Following the experiments quantifying egg predation, we used video surveillance to determine the composition of the predator community attacking the eggs. The extent of predation varied across habitats, and egg species. Native coccinellids often sustained greater egg predation than H. axyridis. We found no evidence that exotic coccinellids consumed coccinellid eggs in the field. Harvestmen and slugs were responsible for the greatest proportion of attacks. This research challenges the widely-accepted hypothesis that intraguild predation by exotic competitors explains the loss of native coccinellids. Although exotic coccinellids may not be a direct competitor, reduced egg predation could indirectly confer a competitive advantage to these species. A lower proportion of H. axyridis eggs removed by predators may have aided its expansion and population increase and could indirectly affect native species via exploitative or apparent competition. These results do not support the intraguild predation hypothesis for native coccinellid decline, but do bring to light the existence of complex interactions between coccinellids and the guild of generalist predators in coccinellid foraging habitats. PMID:24386383

  17. Development of a System-Wide Predator Control Program: Stepwise Implementation of a Predation Index, Predator Control Fisheries, and Evaluation Plan in the Columbia River Basin; Northern Pikeminnow Management Program, 2001 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Porter, Russell G.; Winther, Eric C.; Fox, Lyle G.

    2003-03-01

    This report presents results for year eleven in a basin-wide program to harvest northern pikeminnow (Ptychocheilus oregonensis). This program was started in an effort to reduce predation by northern pikeminnow on juvenile salmonids during their emigration from natal streams to the ocean. Earlier work in the Columbia River Basin suggested predation by northern pikeminnow on juvenile salmonids might account for most of the 10-20% mortality juvenile salmonids experience in each of eight Columbia River and Snake River reservoirs. Modeling simulations based on work in John Day Reservoir from 1982 through 1988 indicated that, if predator-size northern pikeminnow were exploited atmore » a 10-20% rate, the resulting restructuring of their population could reduce their predation on juvenile salmonids by 50%. To test this hypothesis, we implemented a sport-reward angling fishery and a commercial longline fishery in the John Day Pool in 1990. We also conducted an angling fishery in areas inaccessible to the public at four dams on the mainstem Columbia River and at Ice Harbor Dam on the Snake River. Based on the success of these limited efforts, we implemented three test fisheries on a system-wide scale in 1991--a tribal longline fishery above Bonneville Dam, a sport-reward fishery, and a dam-angling fishery. Low catch of target fish and high cost of implementation resulted in discontinuation of the tribal longline fishery. However, the sport-reward and dam-angling fisheries were continued in 1992 and 1993. In 1992, we investigated the feasibility of implementing a commercial longline fishery in the Columbia River below Bonneville Dam and found that implementation of this fishery was also infeasible.« less

  18. Predation by Red Foxes (Vulpes vulpes) at an Outdoor Piggery

    PubMed Central

    Fleming, Patricia A.; Dundas, Shannon J.; Lau, Yvonne Y. W.; Pluske, John R.

    2016-01-01

    Simple Summary Predation of piglets by red foxes is a significant risk for outdoor/free-range pork producers, but is often difficult to quantify. Using remote sensing cameras, we recorded substantial evidence of red foxes taking piglets from around farrowing huts, and found that piglets were most likely to be recorded as “missing” over their first week. These data suggest that fox predation contributed to the marked production differences between this outdoor farm and a similar-sized intensive farm under the same management, and warrant greater control of this introduced, invasive predator. Abstract Outdoor pig operations are an alternative to intensive systems of raising pigs; however for the majority of outdoor pork producers, issues of biosecurity and predation control require significant management and (or) capital investment. Identifying and quantifying predation risk in outdoor pork operations has rarely been done, but such data would be informative for these producers as part of their financial and logistical planning. We quantified potential impact of fox predation on piglets bred on an outdoor pork operation in south-western Australia. We used remote sensor cameras at select sites across the farm as well as above farrowing huts to record interactions between predators and pigs (sows and piglets). We also identified animal losses from breeding records, calculating weaning rate as a proportion of piglets born. Although only few piglets were recorded lost to fox predation (recorded by piggery staff as carcasses that are “chewed”), it is likely that foxes were contributing substantially to the 20% of piglets that were reported “missing”. Both sets of cameras recorded a high incidence of fox activity; foxes appeared on camera soon after staff left for the day, were observed tracking and taking live piglets (despite the presence of sows), and removed dead carcasses from in front of the cameras. Newly born and younger piglets appeared to be the most vulnerable, especially when they are born out in the paddock, but older piglets were also lost. A significant (p = 0.001) effect of individual sow identification on the weaning rate, but no effect of sow age (parity), suggests that individual sow behavior towards predators influences predation risk for litters. We tracked the movement of piglet carcasses by foxes, and confirmed that foxes make use of patches of native vegetation for cover, although there was no effect of paddock, distance to vegetation, or position on the farm on weaning rate. Trials with non-toxic baits reveal high levels of non-target bait interference. Other management options are recommended, including removing hay from the paddocks to reduce the risks of sows farrowing in open paddocks, and covering or predator-proof fencing the pig carcass pit. Results of this study will have increasing relevance for the expanding outdoor/free-range pork industry, contributing to best practice guidelines for predator control. PMID:27740601

  19. Kokanee Stocking and Monitoring, Flathead Lake, 1993-1994 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deleray, Mark; Fredenberg, Wade; Hansen, Barry

    1995-07-01

    One mitigation goal of the Hungry Horse Dam fisheries mitigation program, funded by the Bonneville Power Administration, is to replace lost production of 100,000 adult kokanee in Flathead Lake. The mitigation program calls for a five-year test to determine if kokanee can be reestablished in Flathead Lake. The test consists. of annual stocking of one million hatchery-raised yearling kokanee. There are three benchmarks for judging the success of the kokanee reintroduction effort: (1) Post-stocking survival of 30 percent of planted kokanee one year after stocking; (2) Yearling to adult survival of 10 percent (100,000 adult salmon); (3) Annual kokanee harvestmore » of 50,000 or more fish per year by 1998, with an average length of 11 inches or longer for harvested fish, and fishing pressure of 100,000 angler hours or more. Kokanee were the primary sport fish species in the Flathead Lake fishery in the early 1900s, and up until the late 1980s when the population rapidly declined in numbers and then disappeared. Factors identified which influenced the decline of kokanee are the introduction of opossum shrimp (Mysis relicta), hydroelectric operations, overharvest through angling, and competition and/or predation by lake trout (Salvelinus namaycush) and lake whitefish (Coregonur clupeaformis). The purpose of this report was to summarize the stocking program and present monitoring results from the 1993 and 1994 field seasons. In June 1993, roughly 210,000 yearling kokanee were stocked into two bays on the east shore of Flathead Lake. Following stocking, we observed a high incidence of stocked kokanee in stomach samples from lake trout captured in areas adjacent to the stocking sites and a high percentage of captured lake trout containing kokanee. Subsequent monitoring concluded that excessive lake trout predation precluded significant survival of kokanee stocked in 1993. In June 1994, over 802,000 kokanee were stocked into Big Arm Bay. The combination of near optimum water temperatures, an upsurge in the abundance of Duphniu rhorum, and saturation planting in an area believed to have lower lake trout densities was expected to maximize short-term survival of stocked kokanee. A net-pen experiment demonstrated that yearling hatchery kokanee, in the absence of predation, adjusted to conditions in Flathead Lake and utilized available zooplankton during June and July without substantial poststocking mortality. Kokanee captured after several months in the lake exhibited good growth and condition. We concluded that the food supply in Big Arm Bay was not limiting survival of stocked kokanee. The 1994 monitoring objective was to quantify lake trout predation of kokanee in Big Arm Bay in the first eight weeks following stocking. There were three components needed to quantify predation; estimated number of lake trout in Big Arm Bay, average number of kokanee consumed by lake trout, and estimated time required for lake trout to digest kokanee. As in the previous year, the monitoring results from the 1994 kokanee plant demonstrated that lake trout predation is the primary factor reducing survival of stocked kokanee. We estimated that lake trout consumed a minimum of 232,000 kokanee in Big Arm Bay during the first eight weeks following stocking. This represents 29 percent of kokanee planted. The consumption estimate was based on a hydroacoustic estimate for lake trout abundance (7,850 fish over 300 mm in total length), an incidence of kokanee per lake trout stomach sample which ranged from 2.99 to 0.22 fish, and a gastric evacuation rate of 47 hours for lake trout to digest consumed kokanee. Due to hydroacoustic limitations in identifying bottom-oriented lake trout, we underestimated the true abundance of lake trout, which led to an underestimate of kokanee mortality. By fall of 1994, we estimated that an additional 12.7 percent of surviving kokanee matured, based on observations of similar-sized fish in the hatchery. Thus, up to 72,000 additional fish were removed from the population due to early maturation. Adding the loss due to predation in the first eight weeks (232,000) to the loss due to early maturation (72,000), we accounted for mortality of at least 304,000 (38 percent) of the original 802,000 fish planted. These estimates did not account for additional losses, including predation outside Big Arm Bay, predation in the months following July, and predation from species other than lake trout, such as bull trout and northern squawfish. We documented lake trout predation of kokanee from June through October, and predation by fish species other than lake trout. One of the program goals is to achieve post-stocking survival of 30 percent one year after planting. Based on observations of the 1994 program, it is unlikely we will achieve this level of survival from the 1994 plant.« less

  20. Rapid acquisition of an alarm response by a neotropical primate to a newly introduced avian predator.

    PubMed Central

    Gil-da-Costa, Ricardo; Palleroni, Alberto; Hauser, Marc D; Touchton, Janeene; Kelley, J Patrick

    2003-01-01

    Predation is an important selective pressure in natural ecosystems. Among non-human primates, relatively little is known about how predators hunt primate prey and how primates acquire adaptive responses to counteract predation. In this study we took advantage of the recent reintroduction of radio-tagged harpy eagles (Harpia harpyja) to Barro Colorado Island (BCI), Panama to explore how mantled howler monkeys (Alouatta palliata), one of their primary prey, acquire anti-predator defences. Based on the observation that harpies follow their prey prior to attack, and often call during this pursuit period, we broadcast harpy eagle calls to howlers on BCI as well as to a nearby control population with no harpy predation. Although harpies have been extinct from this area for 50-100 years, results indicate that BCI howlers rapidly acquired an adaptive anti-predator response to harpy calls, while showing no response to other avian vocalizations; howlers maintained this response several months after the removal of the eagles. These results not only show that non-human primates can rapidly acquire an alarm response to a newly introduced predator, but that they can detect and identify predators on the basis of acoustic cues alone. These findings have significant implications both for the role of learning mechanisms in the evolution of prey defence and for conservation strategies, suggesting that the use of 'probing' approaches, such as auditory playbacks, may highly enhance an a priori assessment of the impact of species reintroduction. PMID:12769460

  1. Risk of spider predation alters food web structure and reduces local herbivory in the field.

    PubMed

    Bucher, Roman; Menzel, Florian; Entling, Martin H

    2015-06-01

    Predators can indirectly enhance plant performance via herbivore suppression, with both prey consumption and changes in prey traits (e.g. changes in foraging behaviour) contributing to the reduction in herbivory. We performed a field experiment to determine the extent of such non-consumptive effects which consisted of repeatedly placing spiders (Pisaura mirabilis) on enclosed plants (Urtica dioica) for cue deposition. Control plants were enclosed in the same way but without spiders. After cue deposition, the enclosures were removed to allow arthropods to colonize the plants and feed on them. Arthropods were removed from the plants before the subsequent spider deposition or control enclosure. During six cycles of enclosure, we quantified leaf damage on the plants. After a seventh cycle, the colonizing arthropods were sampled to determine community composition in relation to the presence/absence of spider cues. We found that the presence of chemotactile spider cues reduced leaf damage by 50 %. In addition, spider cues led to changes in the arthropod community: smaller spiders avoided plants with spider cues. In contrast, the aphid-tending ant Myrmica rubra showed higher recruitment of workers on cue-bearing plants, possibly to protect aphids. Our results show that the risk of spider predation can reduce herbivory on wild plants and also demonstrate that non-consumptive effects can be particularly strong within the predator guild.

  2. Development and corroboration of a bioenergetics model for northern pikeminnow (Ptychocheilus oregonensis) feeding on juvenile salmonids in the Columbia River

    USGS Publications Warehouse

    Petersen, J.H.; Ward, D.L.

    1999-01-01

    A bioenergetics model was developed and corroborated for northern pikeminnow Ptychocheilus oregonensis, an important predator on juvenile salmonids in the Pacific Northwest. Predictions of modeled predation rate on salmonids were compared with field data from three areas of John Day Reservoir (Columbia River). To make bioenergetics model estimates of predation rate, three methods were used to approximate the change in mass of average predators during 30-d growth periods: observed change in mass between the first and the second month, predicted change in mass calculated with seasonal growth rates, and predicted change in mass based on an annual growth model. For all reservoir areas combined, bioenergetics model predictions of predation on salmon were 19% lower than field estimates based on observed masses, 45% lower than estimates based on seasonal growth rates, and 15% lower than estimates based on the annual growth model. For each growth approach, the largest differences in field-versus-model predation occurred at the midreservoir area (-84% to -67% difference). Model predictions of the rate of predation on salmonids were examined for sensitivity to parameter variation, swimming speed, sampling bias caused by gear selectivity, and asymmetric size distributions of predators. The specific daily growth rate of northern pikeminnow predicted by the model was highest in July and October and decreased during August. The bioenergetics model for northern pikeminnow performed well compared with models for other fish species that have been tested with field data. This model should be a useful tool for evaluating management actions such as predator removal, examining the influence of temperature on predation rates, and exploring interactions between predators in the Columbia River basin.

  3. Does the order of invasive species removal matter? The case of the eagle and the pig.

    PubMed

    Collins, Paul W; Latta, Brian C; Roemer, Gary W

    2009-09-14

    Invasive species are recognized as a primary driver of native species endangerment and their removal is often a key component of a conservation strategy. Removing invasive species is not always a straightforward task, however, especially when they interact with other species in complex ways to negatively influence native species. Because unintended consequences may arise if all invasive species cannot be removed simultaneously, the order of their removal is of paramount importance to ecological restoration. In the mid-1990s, three subspecies of the island fox Urocyon littoralis were driven to near extinction on the northern California Channel Islands owing to heightened predation by golden eagles Aquila chrysaetos. Eagles were lured to the islands by an abundant supply of feral pigs Sus scrofa and through the process of apparent competition pigs indirectly facilitated the decline in foxes. As a consequence, both pigs and eagles had to be removed to recover the critically endangered fox. Complete removal of pigs was problematic: removing pigs first could force eagles to concentrate on the remaining foxes, increasing their probability of extinction. Removing eagles first was difficult: eagles are not easily captured and lethal removal was politically distasteful. Using prey remains collected from eagle nests both before and after the eradication of pigs, we show that one pair of eagles that eluded capture did indeed focus more on foxes. These results support the premise that if the threat of eagle predation had not been mitigated prior to pig removal, fox extinction would have been a more likely outcome. If complete eradication of all interacting invasive species is not possible, the order in which they are removed requires careful consideration. If overlooked, unexpected consequences may result that could impede restoration.

  4. The effect of predation on stunted and nonstunted white perch

    USGS Publications Warehouse

    Gosch, N.J.C.; Pierce, L.L.; Pope, K.L.

    2010-01-01

    Predation is widely regarded as a means to prevent or minimise the establishment of a stunted (high density of slow growing individuals) population. We investigated the effect of predation on two different white perch Morone americana populations (stunted and nonstunted) by examining the stomach contents of piscivorous fishes. White perch and gizzard shad dominated piscivore diets in Branched Oak Lake, whereas white perch dominated piscivore diets in Pawnee Lake. White perch consumed in the stunted population (Branched Oak Lake) were larger and older than white perch consumed in the nonstunted population (Pawnee Lake). Many of the consumed white perch in the stunted population were sexually mature and had the opportunity to spawn at least once. In contrast, all of the consumed white perch in the nonstunted population were sexually immature. Predation may have reinforced the stunting of white perch in Branched Oak Lake through removal of the largest, oldest individuals. ?? 2010 John Wiley & Sons A/S.

  5. A nonadaptive scenario explaining the genetic predisposition to obesity: the "predation release" hypothesis.

    PubMed

    Speakman, John R

    2007-07-01

    The "thrifty gene hypothesis" suggests we evolved genes for efficient food collection and fat deposition to survive periods of famine and that now that food is continuously available, these genes are disadvantageous because they make us obese in preparation for a famine that never comes. However, famines are relatively infrequent modern phenomena that involve insufficient mortality for thrifty genes to propagate. I suggest here that early hominids would have been subjected to stabilizing selection for body fatness, with obesity selected against by the risk of predation. Around two million years ago predation was removed as a significant factor by the development of social behavior, weapons, and fire. The absence of predation led to a change in the population distribution of body fatness due to random mutations and drift. Because this novel hypothesis involves random drift, rather than directed selection, it explains why, even in Western society, most people are not obese.

  6. Predator-induced phenotypic plasticity within- and across-generations: a challenge for theory?

    PubMed Central

    Walsh, Matthew R.; Cooley, Frank; Biles, Kelsey; Munch, Stephan B.

    2015-01-01

    Much work has shown that the environment can induce non-genetic changes in phenotype that span multiple generations. Theory predicts that predictable environmental variation selects for both increased within- and across-generation responses. Yet, to the best of our knowledge, there are no empirical tests of this prediction. We explored the relationship between within- versus across-generation plasticity by evaluating the influence of predator cues on the life-history traits of Daphnia ambigua. We measured the duration of predator-induced transgenerational effects, determined when transgenerational responses are induced, and quantified the cues that activate transgenerational plasticity. We show that predator exposure during embryonic development causes earlier maturation and increased reproductive output. Such effects are detectable two generations removed from predator exposure and are similar in magnitude in response to exposure to cues emitted by injured conspecifics. Moreover, all experimental contexts and traits yielded a negative correlation between within- versus across-generation responses. That is, responses to predator cues within- and across-generations were opposite in sign and magnitude. Although many models address transgenerational plasticity, none of them explain this apparent negative relationship between within- and across-generation plasticities. Our results highlight the need to refine the theory of transgenerational plasticity. PMID:25392477

  7. Corridors and some ecological and evolutionary consequences of connectivity.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orrock, John L

    2004-07-01

    Abstract - By connecting disjunct patches, corridors may offset the effects of fragmentation by promoting gene flow and population persistence. However, the ultimate effect of corridors on a focal species may hinge upon two considerations: how corridors may affect ecological interactions that impinge upon that species, and how corridors might affect the fixation of novel alleles that ultimately determine fitness and persistence. Using an experimental landscape, I show that corridor-mediated changes in patch shape change seed predation in connected and unconnected patches, and shift the behavior, abundance, and distribution of seed predators. Rodent seed predators removed more seeds in connectedmore » patches, arthropod seed predators removed more seeds in rectangular patches, and avian seed predation did not differ due to patch type. Rodent foraging was greater in the interior of connected patches because changes in patch shape influenced risk perceived by rodents while foraging. Ant communities were also affected by changes in patch shape caused by corridors, rather than corridor effects per se. The distribution and abundance of ants differed among edge-rich areas (corridors and wings), edges, and the patch interior. In rectangular patches, fire ants (Solenopsis spp.) had negative impacts on other ant species. By changing the activity of rodents, and the composition of ant communities, corridors may have important impacts on seeds. Bird-dispersed seeds may benefit from increased dispersal among connected patches, but connected patches also have greater predation risk. Using a simulation model, I demonstrate that gene flow between a stable population and a population that experiences local extinction or a reduction in size (e.g. due to natural or anthropogenic disturbance) can dramatically affect fixation of alleles in the stable population. Alone or in concert, frequent disturbance, high rates of movement, and low habitat quality make it more likely that connectivity-mediated fixation will promote fixation of harmful alleles and reduce fixation of beneficial alleles.« less

  8. A review of predation as a limiting factor for bird populations in mesopredator-rich landscapes: a case study of the UK.

    PubMed

    Roos, Staffan; Smart, Jennifer; Gibbons, David W; Wilson, Jeremy D

    2018-05-22

    The impact of increasing vertebrate predator numbers on bird populations is widely debated among the general public, game managers and conservationists across Europe. However, there are few systematic reviews of whether predation limits the population sizes of European bird species. Views on the impacts of predation are particularly polarised in the UK, probably because the UK has a globally exceptional culture of intensive, high-yield gamebird management where predator removal is the norm. In addition, most apex predators have been exterminated or much depleted in numbers, contributing to a widely held perception that the UK has high numbers of mesopredators. This has resulted in many high-quality studies of mesopredator impacts over several decades. Here we present results from a systematic review of predator trends and abundance, and assess whether predation limits the population sizes of 90 bird species in the UK. Our results confirm that the generalist predators Red Fox (Vulpes vulpes) and Crows (Corvus corone and C. cornix) occur at high densities in the UK compared with other European countries. In addition, some avian and mammalian predators have increased numerically in the UK during recent decades. Despite these high and increasing densities of predators, we found little evidence that predation limits populations of pigeons, woodpeckers and passerines, whereas evidence suggests that ground-nesting seabirds, waders and gamebirds can be limited by predation. Using life-history characteristics of prey species, we found that mainly long-lived species with high adult survival and late onset of breeding were limited by predation. Single-brooded species were also more likely to be limited by predation than multi-brooded species. Predators that depredate prey species during all life stages (i.e. from nest to adult stages) limited prey numbers more than predators that depredated only specific life stages (e.g. solely during the nest phase). The Red Fox and non-native mammals (e.g. the American Mink Neovison vison) were frequently identified as numerically limiting their prey species. Our review has identified predator-prey interactions that are particularly likely to result in population declines of prey species. In the short term, traditional predator-management techniques (e.g. lethal control or fencing to reduce predation by a small number of predator species) could be used to protect these vulnerable species. However, as these techniques are costly and time-consuming, we advocate that future research should identify land-use practices and landscape configurations that would reduce predator numbers and predation rates. © 2018 Cambridge Philosophical Society.

  9. Predator- and Scavenger-Mediated Ecosystem Services Determined by Distance to Field-Forest Interface in the Maine Lowbush Blueberry Agroecosystem.

    PubMed

    Jones, Matthew S; Halteman, William A; Drummond, Francis A

    2016-10-01

    Predators and scavengers play a vital role in regulating insect pests, weeds, and vertebrate scat in perennial agroecosystems. Understanding how farm management practices and surrounding habitat influence these beneficial ecosystem services contributes to our understanding of these complex ecological systems and guides future management decisions. In a mensurative 2-yr study, we determined how different pest management strategies and surrounding forest composition influenced levels of sentinel insect pupae, weed seeds, and deer scat (feces) removal. Removal of these bioresources was measured within 12 commercial lowbush blueberry fields during 2011 and 2012; farms differed in surrounding landscape composition and farm management strategies. Both the removal of sentinel pupae and scat, was significantly higher within field interiors than at field edges and within adjacent forests. Additionally, farm management strategy interacted with field position to result in significantly higher scat removal in conventional field interiors than organic field interiors. Surrounding forest composition had variable effects on removal of materials. Our results indicate higher levels of activity within field centers as opposed to field edges; this is contrary to what has been observed in other perennial cropping agroecosystems. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Toxicity and residual effects of insecticides on Ascia monuste and predator Solenopsis saevissima.

    PubMed

    Araújo, Tamíris A de; Picanço, Marcelo C; Ferreira, Dalton de O; Campos, Júlia Nd; Arcanjo, Lucas de P; Silva, Gerson A

    2017-11-01

    Investigating the impact of pesticides on non-target organisms is essential for sustainable integrated pest management programs. We therefore assessed the toxicity of ten insecticides to the brassica caterpillar Ascia monuste and its ant predator Solenopsis saevissima and examined the effect that the insecticide synergists had on toxicity to the predator. We also assessed the residual period of control and impact of the insecticides during the brassica growing cycle. All insecticides except flubendiamide exhibited mortality above the threshold required by Brazilian legislation (80%). Chlorantraniliprole, cyantraniliprole, indoxacarb and spinosad exhibited lower toxicity to the ant predator than they did to the brassica caterpillar. The results obtained for synergized insecticides suggest that selectivity to the predator was due the involvement of cytochrome P450-dependent monooxygenases. Chlorfenapyr and cyantraniliprole exhibited the highest residual periods of control to the brassica caterpillar, whereas malathion had the greatest impact on the predator. Most of the insecticides efficiently controlled the brassica caterpillar, but not all exhibited selectivity to the predator. Therefore, due to the distinctive responses of organisms with respect to residual periods of control and the impact of the insecticides, spraying frequency must be strongly considered in integrated pest management programs. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  11. Edge, height and visibility effects on nest predation by birds and mammals in the Brazilian cerrado

    NASA Astrophysics Data System (ADS)

    Dodonov, Pavel; Paneczko, Ingrid Toledo; Telles, Marina

    2017-08-01

    Edge influence is one of the main impacts in fragmented landscapes; yet, most of studies on edge influence have focused on high-contrast edges, and the impacts of low-contrast edges and narrow linear openings are less understood. Edge influence often affects bird nest predation, but these effects are not ubiquitous and may depend on characteristics such as nest height and visibility. We performed an experiment on nest predation in a migratory passerine, Elaenia chiriquensis (Lesser Elaenia; Passeriformes: Tyrannidae), in a savanna vegetation of the Brazilian Cerrado biome in South-Eastern Brazil. We used 89 real E. chiriquensis nests, collected during previous reproductive seasons, with two plasticine eggs in each, and randomly distributed them at two locations (edge - up to 20 m from a firebreak edge and interior - approx. 150-350 m from the edge) and two heights (low - 60-175 cm and high - 190-315 cm above ground). We also measured leaf and branch density around each nest. We performed this study on two 15-days campaigns, checking the nests every 2-3 days and removing those with predation marks. We sorted the predation marks into those made by birds, mammals, or unidentified predators, and used generalized linear models to assess the effects of location, height and leaf density on survival time and predator type. Only four nests had not been predated during the experiment; 55 nests were predated by birds, 7 by mammals, and 23 by unidentified predators. Low nests in the interior tended to have larger survival times whereas high nests at the edge tended to be more predated by birds and less predated by mammals. Thus, even a low-contrast (firebreak) edge may significantly increase nest predation, which is also affected by the nest's height, mainly due to predation by birds. These effects may be due to predator movement along the edge as well as to edge-related changes in vegetation structure. We suggest that higher-contrast edges which may also be used as movement conduits, for example powerline openings, may have even stronger effects, demanding further studies.

  12. Interaction strength combinations and the overfishing of a marine food web.

    PubMed

    Bascompte, Jordi; Melián, Carlos J; Sala, Enric

    2005-04-12

    The stability of ecological communities largely depends on the strength of interactions between predators and their prey. Here we show that these interaction strengths are structured nonrandomly in a large Caribbean marine food web. Specifically, the cooccurrence of strong interactions on two consecutive levels of food chains occurs less frequently than expected by chance. Even when they occur, these strongly interacting chains are accompanied by strong omnivory more often than expected by chance. By using a food web model, we show that these interaction strength combinations reduce the likelihood of trophic cascades after the overfishing of top predators. However, fishing selectively removes predators that are overrepresented in strongly interacting chains. Hence, the potential for strong community-wide effects remains a threat.

  13. Interaction strength combinations and the overfishing of a marine food web

    PubMed Central

    Bascompte, Jordi; Melián, Carlos J.; Sala, Enric

    2005-01-01

    The stability of ecological communities largely depends on the strength of interactions between predators and their prey. Here we show that these interaction strengths are structured nonrandomly in a large Caribbean marine food web. Specifically, the cooccurrence of strong interactions on two consecutive levels of food chains occurs less frequently than expected by chance. Even when they occur, these strongly interacting chains are accompanied by strong omnivory more often than expected by chance. By using a food web model, we show that these interaction strength combinations reduce the likelihood of trophic cascades after the overfishing of top predators. However, fishing selectively removes predators that are overrepresented in strongly interacting chains. Hence, the potential for strong community-wide effects remains a threat. PMID:15802468

  14. A test of trophic cascade theory: fish and benthic assemblages across a predator density gradient on coral reefs.

    PubMed

    Casey, Jordan M; Baird, Andrew H; Brandl, Simon J; Hoogenboom, Mia O; Rizzari, Justin R; Frisch, Ashley J; Mirbach, Christopher E; Connolly, Sean R

    2017-01-01

    Removal of predators is often hypothesized to alter community structure through trophic cascades. However, despite recent advances in our understanding of trophic cascades, evidence is often circumstantial on coral reefs because fishing pressure frequently co-varies with other anthropogenic effects, such as fishing for herbivorous fishes and changes in water quality due to pollution. Australia's outer Great Barrier Reef (GBR) has experienced fishing-induced declines of apex predators and mesopredators, but pollution and targeting of herbivorous fishes are minimal. Here, we quantify fish and benthic assemblages across a fishing-induced predator density gradient on the outer GBR, including apex predators and mesopredators to herbivores and benthic assemblages, to test for evidence of trophic cascades and alternative hypotheses to trophic cascade theory. Using structural equation models, we found no cascading effects from apex predators to lower trophic levels: a loss of apex predators did not lead to higher levels of mesopredators, and this did not suppress mobile herbivores and drive algal proliferation. Likewise, we found no effects of mesopredators on lower trophic levels: a decline of mesopredators was not associated with higher abundances of algae-farming damselfishes and algae-dominated reefs. These findings indicate that top-down forces on coral reefs are weak, at least on the outer GBR. We conclude that predator-mediated trophic cascades are probably the exception rather than the rule in complex ecosystems such as the outer GBR.

  15. Remote Cameras Reveal Experimental Artifact in a Study of Seed Predation in a Semi-Arid Shrubland

    PubMed Central

    Deutschman, Douglas H.; Braswell, Jessica; McLaughlin, Dana

    2016-01-01

    Granivorous animals may prefer to predate or cache seed of certain plant species over others. Multiple studies have documented preference for larger, non-native seed by granivores. To accomplish this, researchers have traditionally used indirect inference by relating patterns of seed removal to the species composition of the granivorous animal community. To measure seed removal, researchers present seed to granivorous animals in the field using equipment intended to exclude certain animal taxa while permitting access to others. This approach allows researchers to differentiate patterns of seed removal among various taxa (e.g., birds, small mammals, and insects); however, it is unclear whether the animals of interest are freely using the exclusion devices, which may be a hindrance to discovering the seed dishes. We used video observation to perform a study of seed predation using a custom-built, infrared digital camera and recording system. We presented native and non-native seed mixtures in partitioned Petri dishes both within and outside of exclusion cages. The exclusion cages were intended to allow entrance by rodent taxa while preventing entrance by rabbits and birds. We documented all seed removal visits by granivorous animals, which we identified to the genus level. Genera exhibited varying seed removal patterns based on seed type (native vs. non-native) and dish type (open vs. enclosed). We documented avoidance of the enclosed dishes by all but one rodent taxa, even though these dishes were intended to be used freely by rodents. This suggests that preference for non-native seed occurs differentially among granivorous animals in this system; however, interpretation of these nuanced results would be difficult without the benefit of video observation. When feasible, video observation should accompany studies using in situ equipment to ensure incorrect assumptions do not lead to inappropriate interpretation of results. PMID:27764200

  16. Modelling moose–forest interactions under different predation scenarios at Isle Royale National Park, USA

    USGS Publications Warehouse

    DeJager, Nathan R.; Rohweder, Jason; Miranda, Brian R.; Sturtevant, Brian R.; Fox, Timothy J.; Romanski, Mark C.

    2017-01-01

    Loss of top predators may contribute to high ungulate population densities and chronic over-browsing of forest ecosystems. However, spatial and temporal variability in the strength of interactions between predators and ungulates occurs over scales that are much shorter than the scales over which forest communities change, making it difficult to characterize trophic cascades in forest ecosystems. We applied the LANDIS-II forest succession model and a recently developed ungulate browsing extension to model how the moose population could interact with the forest ecosystem of Isle Royale National Park, USA, under three different wolf predation scenarios. We contrasted a 100-yr future without wolves (no predation) with two predation scenarios (weak, long-term average predation rates and strong, higher than average rates). Increasing predation rates led to lower peak moose population densities, lower biomass removal rates, and higher estimates of forage availability and landscape carrying capacity, especially during the first 40 yr of simulations. Thereafter, moose population density was similar for all predation scenarios, but available forage biomass and the carrying capacity of the landscape continued to diverge among predation scenarios. Changes in total aboveground live biomass and species composition were most pronounced in the no predation and weak predation scenarios. Consistent with smaller-scale studies, high browsing rates led to reductions in the biomass of heavily browsed Populus tremuloides, Betula papyrifera, and Abies balsamea, and increases in the biomass of unbrowsed Picea glauca and Picea mariana, especially after the simulation year 2050, when existing boreal hardwood stands at Isle Royale are projected to senesce. As a consequence, lower predation rates corresponded with a landscape that progressively shifted toward dominance by Picea glauca and Picea mariana, and lacking available forage biomass. Consistencies with previously documented small-scale successional shifts, and population estimates and trends that approximate those from this and other boreal forests that support moose provide some confidence that these dynamics represent a trophic cascade and therefore provide an important baseline against which to evaluate long-term and large-scale effects of alternative predator management strategies on ungulate populations and forest succession.

  17. The sterile-male-release technique in Great Lakes sea lamprey management

    USGS Publications Warehouse

    Bergstedt, Roger A.; Twohey, Michael B.

    2005-01-01

    The parasitic sea lamprey (Petromyzon marinus) has been a serious pest since its introduction into the Great Lakes, where it contributed to severe imbalances in the fish communities by selectively removing large predators (Smith 1968; Christie 1974; Schneider et al.1996). Since the 1950s, restoration and maintenance of predator-prey balance has depended on the Great Lakes Fishery Commission (GLFC) sea lamprey management program. Initially, management relied primarily on stream treatments with a selective lampricide to kill larvae, on barriers to migration, and on trapping to remove potential spawners (Smith and Tibbles 1980). By the late 1970s, however, it was clear that the future of sea lamprey management lay in development of a larger array of control strategies, including more alternatives to lampricide applications (Sawyer 1980). Since then the only new alternative to chemical control to reach operational status is the release of sterilized male sea lampreys. Research on the concept began at the USGS, Hammond Bay Biological Station in Millersburg, MI (HBBS) during the 1970s (Hanson and Manion 1980). Development and evaluation continued through the 1980s, leading to the release of sterilized males in Great Lakes tributaries since 1991 (Twohey et al. 2003a). The objectives of this paper are 1) to review the implementation and evaluations of sterile-male-release technique (SMRT) as it is being applied against sea lampreys in the Great Lakes, 2) to review our current understanding of its efficacy, and 3) to identify additional research areas and topics that would increase either the efficacy of SMRT or expand its geographic potential for application.

  18. Paternal programming in sticklebacks

    PubMed Central

    Stein, Laura R.; Bell, Alison M.

    2015-01-01

    In a wide range of organisms, including humans, mothers can influence offspring via the care they provide. Comparatively little is known about the effects of fathering on offspring. Here, we test the hypothesis that fathers are capable of programming their offspring for the type of environment they are likely to encounter. Male threespine sticklebacks, Gasterosteus aculeatus, were either exposed to predation risk while fathering or not. Fathers altered their paternal behaviour when exposed to predation risk, and consequently produced adult offspring with phenotypes associated with strong predation pressure (smaller size, reduced body condition, reduced behavioural activity). Moreover, more attentive fathers produced offspring that showed stronger antipredator responses. These results are consistent with behaviourally mediated paternal programming: fathers can alter offspring phenotypes to match their future environment and influence offspring traits well into adulthood. PMID:27011391

  19. The numerical and functional responses of a granivorous rodent and the fate of Neotropical tree seeds

    USGS Publications Warehouse

    Klinger, R.; Rejmanek, M.

    2009-01-01

    Despite their potential to provide mechanistic explanations of rates of seed dispersal and seed fate, the functional and numerical responses of seed predators have never been explicitly examined within this context. Therefore, we investigated the numerical response of a small-mammal seed predator, Heteromys desmarestianus, to disturbance-induced changes in food availability and evaluated the degree to which removal and fate of seeds of eight tree species in a lowland tropical forest in Belize were related to the functional response of H. desmarestianus to varying seed densities. Mark-recapture trapping was used to estimate abundance of H. desmarestianus in six 0.5-ha grids from July 2000 to September 2002. Fruit availability and seed fate were estimated in each grid, and two experiments nested within the grids were used to determine (1) the form of the functional response for nine levels of fruit density (2-32 fruits/m 2), (2) the removal rate and handling times, and (3) the total proportion of fruits removed. The total proportion of fruits removed was determined primarily by the numerical response of H. desmarestianus to fruit availability, while removal rates and the proportion of seeds eaten or cached were related primarily to the form of the functional response. However, the numerical and functional responses interacted; H. desmarestianus showed strong spatial and temporal numerical responses to total fruit availability, and their density relative to fruit availability resulted in variation in the form of the functional response. Types I, II, and III functional responses were observed, as were density-independent responses, and these responses varied both among and within fruit species. The highest proportions of fruits were eaten when the Type III functional response was detected, which was when fruit availability was high relative to H. desmarestianus population density. Numerous idiosyncratic influences on seed fate have been documented, but our results indicate that shifts in the numerical and functional responses of seed predators to seasonal and interannual variation in seed availability potentially provide a general mechanistic explanation for patterns of removal and fate for vertebrate-dispersed seeds. ?? 2009 by the Ecological Society of America.

  20. Predator Bounties in Western Canada Cause Animal Suffering and Compromise Wildlife Conservation Efforts

    PubMed Central

    Proulx, Gilbert; Rodtka, Dwight

    2015-01-01

    Although predation bounty programs (rewards offered for capturing or killing an animal) ended more than 40 years ago in Canada, they were reintroduced in Alberta in 2007 by hunting, trapping, and farming organizations, municipalities and counties, and in 2009 in Saskatchewan, by municipal and provincial governments and the Saskatchewan Cattlemen’s Association. Bounty hunters use inhumane and non-selective killing methods such as shooting animals in non-vital regions, and killing neck snares and strychnine poisoning, which cause suffering and delayed deaths. They are unselective, and kill many non-target species, some of them at risk. Predator bounty programs have been found to be ineffective by wildlife professionals, and they use killing methods that cause needless suffering and jeopardize wildlife conservation programs. Our analysis therefore indicates that government agencies should not permit the implementation of bounty programs. Accordingly, they must develop conservation programs that will minimize wildlife-human conflicts, prevent the unnecessary and inhumane killing of animals, and ensure the persistence of all wildlife species. PMID:26479482

  1. Predator Bounties in Western Canada Cause Animal Suffering and CompromiseWildlife Conservation Efforts.

    PubMed

    Proulx, Gilbert; Rodtka, Dwight

    2015-10-19

    Although predation bounty programs (rewards offered for capturing or killing an animal) ended more than 40 years ago in Canada, they were reintroduced in Alberta in 2007 by hunting, trapping, and farming organizations, municipalities and counties, and in 2009 in Saskatchewan, by municipal and provincial governments and the Saskatchewan Cattlemen's Association. Bounty hunters use inhumane and non-selective killing methods such as shooting animals in non-vital regions, and killing neck snares and strychnine poisoning, which cause suffering and delayed deaths. They are unselective, and kill many non-target species, some of them at risk. Predator bounty programs have been found to be ineffective by wildlife professionals, and they use killing methods that cause needless suffering and jeopardize wildlife conservation programs. Our analysis therefore indicates that government agencies should not permit the implementation of bounty programs. Accordingly, they must develop conservation programs that will minimize wildlife-human conflicts, prevent the unnecessary and inhumane killing of animals, and ensure the persistence of all wildlife species.

  2. Raccoon removal reduces sea turtle nest depredation in the Ten Thousand Islands of Florida

    USGS Publications Warehouse

    Garmestani, A.S.; Percival, H.F.

    2005-01-01

    Predation by raccoons, Procyon lotor marinus (L.), is the primary cause of sea turtle nest loss in the Ten Thousand Islands archipelago. Four islands within Ten Thousand Islands National Wildlife Refuge were surveyed for sea turtle nesting activity from 1991-95. Raccoons depredated 76-100% of nests on Panther Key from 1991-94, until 14 raccoons were removed in 1995 resulting in 0% depredation and 2 more were removed in 1996 resulting in 0% depredation. Raccoon removal may be an effective management option for increasing sea turtle nest survival on barrier islands.

  3. Beyond Predation: The Zoophytophagous Predator Macrolophus pygmaeus Induces Tomato Resistance against Spider Mites

    PubMed Central

    Pappas, Maria L.; Steppuhn, Anke; Geuss, Daniel; Topalidou, Nikoleta; Zografou, Aliki; Broufas, George D.

    2015-01-01

    Many predatory insects that prey on herbivores also feed on the plant, but it is unknown whether plants affect the performance of herbivores by responding to this phytophagy with defence induction. We investigate whether the prior presence of the omnivorous predator Macrolophus pygmaeus (Rambur) on tomato plants affects plant resistance against two different herbivore species. Besides plant-mediated effects of M. pygmaeus on herbivore performance, we examined whether a plant defence trait that is known to be inducible by herbivory, proteinase inhibitors (PI), may also be activated in response to the interactions of this predator with the tomato plant. We show that exposing tomato plants to the omnivorous predator M. pygmaeus reduced performance of a subsequently infesting herbivore, the two-spotted spider mite Tetranychus urticae Koch, but not of the greenhouse whitefly Trialeurodes vaporariorum (Westwood). The spider-mite infested tomato plants experience a lower herbivore load, i.e., number of eggs deposited and individuals present, when previously exposed to the zoophytophagous predator. This effect is not restricted to the exposed leaf and persists on exposed plants for at least two weeks after the removal of the predators. The decreased performance of spider mites as a result of prior exposure of the plant to M. pygmaeus is accompanied by a locally and systemically increased accumulation of transcripts and activity of proteinase inhibitors that are known to be involved in plant defence. Our results demonstrate that zoophytophagous predators can induce plant defence responses and reduce herbivore performance. Hence, the suppression of populations of certain herbivores via consumption may be strengthened by the induction of plant defences by zoophytophagous predators. PMID:25974207

  4. Linking snake habitat use to nest predation risk in grassland birds: the dangers of shrub cover.

    PubMed

    Klug, Page E; Jackrel, Sara L; With, Kimberly A

    2010-03-01

    Extremes in rangeland management, varying from too-frequent fire and intensive grazing to the suppression of both, threaten rangeland ecosystems worldwide. Intensive fire and grazing denude and homogenize vegetation whereas their suppression increases woody cover. Although habitat loss is implicated in grassland bird declines, degradation through intensive management or neglect also decreases breeding habitat and may reduce nesting success through increased rates of nest predation. Snakes are important nest predators, but little is known about how habitat use in snakes relates to predation risk for grassland birds nesting within tallgrass prairie subjected to different grazing and fire frequencies. We evaluated nest survival in the context of habitat used by nesting songbirds and two bird-eating snakes, the eastern yellowbelly racer Coluber constrictor flaviventris and Great Plains ratsnake Pantherophis emoryi. Daily nest survival rates decreased with increasing shrub cover and decreasing vegetation height, which characterize grasslands that have been neglected or intensively managed, respectively. Discriminant function analysis revealed that snake habitats were characterized by higher shrub cover, whereas successful nests were more likely to occur in areas with tall grass and forbs but reduced shrub cover. Because snakes often use shrub habitat, birds nesting in areas with increased shrub cover may be at higher risk of nest predation by snakes in addition to other predators known to use shrub habitat (e.g., mid-sized carnivores and avian predators). Depredated nests also occurred outside the discriminant space of the snakes, indicating that other predators (e.g., ground squirrels Spermophilus spp. and bullsnakes Pituophis catenifer) may be important in areas with denuded cover. Targeted removal of shrubs may increase nest success by minimizing the activity of nest predators attracted to shrub cover.

  5. Sport hunting, predator control and conservation of large carnivores.

    PubMed

    Packer, Craig; Kosmala, Margaret; Cooley, Hilary S; Brink, Henry; Pintea, Lilian; Garshelis, David; Purchase, Gianetta; Strauss, Megan; Swanson, Alexandra; Balme, Guy; Hunter, Luke; Nowell, Kristin

    2009-06-17

    Sport hunting has provided important economic incentives for conserving large predators since the early 1970's, but wildlife managers also face substantial pressure to reduce depredation. Sport hunting is an inherently risky strategy for controlling predators as carnivore populations are difficult to monitor and some species show a propensity for infanticide that is exacerbated by removing adult males. Simulation models predict population declines from even moderate levels of hunting in infanticidal species, and harvest data suggest that African countries and U.S. states with the highest intensity of sport hunting have shown the steepest population declines in African lions and cougars over the past 25 yrs. Similar effects in African leopards may have been masked by mesopredator release owing to declines in sympatric lion populations, whereas there is no evidence of overhunting in non-infanticidal populations of American black bears. Effective conservation of these animals will require new harvest strategies and improved monitoring to counter demands for predator control by livestock producers and local communities.

  6. Sport Hunting, Predator Control and Conservation of Large Carnivores

    PubMed Central

    Packer, Craig; Kosmala, Margaret; Cooley, Hilary S.; Brink, Henry; Pintea, Lilian; Garshelis, David; Purchase, Gianetta; Strauss, Megan; Swanson, Alexandra; Balme, Guy; Hunter, Luke; Nowell, Kristin

    2009-01-01

    Sport hunting has provided important economic incentives for conserving large predators since the early 1970's, but wildlife managers also face substantial pressure to reduce depredation. Sport hunting is an inherently risky strategy for controlling predators as carnivore populations are difficult to monitor and some species show a propensity for infanticide that is exacerbated by removing adult males. Simulation models predict population declines from even moderate levels of hunting in infanticidal species, and harvest data suggest that African countries and U.S. states with the highest intensity of sport hunting have shown the steepest population declines in African lions and cougars over the past 25 yrs. Similar effects in African leopards may have been masked by mesopredator release owing to declines in sympatric lion populations, whereas there is no evidence of overhunting in non-infanticidal populations of American black bears. Effective conservation of these animals will require new harvest strategies and improved monitoring to counter demands for predator control by livestock producers and local communities. PMID:19536277

  7. Recovery of native treefrogs after removal of nonindigenous Cuban Treefrogs, Osteopilus septentrionalis

    USGS Publications Warehouse

    Rice, K.G.; Waddle, J.H.; Miller, M.W.; Crockett, M.E.; Mazzotti, F.J.; Percival, H.F.

    2011-01-01

    Florida is home to several introduced animal species, especially in the southern portion of the state. Most introduced species are restricted to the urban and suburban areas along the coasts, but some species, like the Cuban Treefrog (Osteopilus septentrionalis), are locally abundant in natural protected areas. Although Cuban Treefrogs are known predators of native treefrog species as both adults and larvae, no study has demonstrated a negative effect of Cuban Treefrogs on native treefrog survival, abundance, or occupancy rate. We monitored survival, capture probability, abundance, and proportion of sites occupied by Cuban Treefrogs and two native species, Green Treefrogs (Hyla cinerea) and Squirrel Treefrogs (Hyla squirella), at four sites in Everglades National Park in southern Florida with the use of capture–mark–recapture techniques. After at least 5 mo of monitoring all species at each site we began removing every Cuban Treefrog captured. We continued to estimate survival, abundance, and occupancy rates of native treefrogs for 1 yr after the commencement of Cuban Treefrog removal. Mark–recapture models that included the effect of Cuban Treefrog removal on native treefrog survival did not have considerable Akaike's Information Criterion (AIC) weight, although capture rates of native species were generally very low prior to Cuban Treefrog removal. Estimated abundance of native treefrogs did increase after commencement of Cuban Treefrog removal, but also varied with the season of the year. The best models of native treefrog occupancy included a Cuban Treefrog removal effect at sites with high initial densities of Cuban Treefrogs. This study demonstrates that an introduced predator can have population-level effects on similar native species.

  8. When dinner is dangerous: toxic frogs elicit species-specific responses from a generalist snake predator.

    PubMed

    Phillips, Ben; Shine, Richard

    2007-12-01

    In arms races between predators and prey, some evolved tactics are unbeatable by the other player. For example, many types of prey are inedible because they have evolved chemical defenses. In this case, prey death removes any selective advantage of toxicity to the prey but not the selective advantage to a predator of being able to consume the prey. In the absence of effective selection for postmortem persistence of the toxicity then, some chemical defenses probably break down rapidly after prey death. If so, predators can overcome the toxic defense simply by waiting for that breakdown before consuming the prey. Floodplain death adders (Acanthophis praelongus) are highly venomous frog-eating elapid snakes native to northern Australia. Some of the frogs they eat are nontoxic (Litoria nasuta), others produce gluelike mucus when seized by a predator (Limnodynastes convexiusculus), and one species (Litoria dahlii) is dangerously toxic to snakes. Both the glue and the toxin degrade within about 20 min of prey death. Adders deal with these prey types in different and highly stereotyped ways: they consume nontoxic frogs directly but envenomate and release the other taxa, waiting until the chemical defense loses its potency before consuming the prey.

  9. Fish corallivory on a pocilloporid reef and experimental coral responses to predation

    NASA Astrophysics Data System (ADS)

    Palacios, M. M.; Muñoz, C. G.; Zapata, F. A.

    2014-09-01

    This study examined the effects of the Guineafowl pufferfish ( Arothron meleagris), a major corallivore in the Eastern Pacific, on pocilloporid corals on a reef at Gorgona Island, Colombia. Pufferfish occurred at a density of 171.2 individuals ha-1 and fed at a rate of 1.8 bites min-1, which produced a standing bite density of 366.2 bites m-2. We estimate that approximately 15.6 % of the annual pocilloporid carbonate production is removed by the pufferfish population. Examination of the predation effect on individual pocilloporid colonies revealed that although nubbins exposed to corallivory had lower linear growth, they gained similar weight and became thicker than those protected from it. Additionally, colonies with simulated predation injuries (on up to 75 % of branch tips) healed successfully and maintained growth rates similar to those of uninjured colonies. Despite the high corallivore pressure exerted by pufferfish on this reef, we conclude that they have a low destructive impact on Pocillopora colonies as corals can maintain their carbonate production rate while effectively recovering from partial predation. Due to its influence on colony morphology, pufferfish predation may increase environmentally induced morphological variability in Pocillopora.

  10. Illustrated accounts of coccinellid predators of Maconellicoccus hirsutus (Green) (Hemiptera: Sternorrhyncha: Pseudococcidae) on mulberry in India, with description of a new species of Scymnus Kugelann (Coleoptera: Coccinellidae) from West Bengal.

    PubMed

    Poorani, J; Lalitha, N

    2018-02-20

    The pink hibiscus mealybug, Maconellicoccus hirsutus (Green), is a major pest of mulberry (Morus alba L.), the sole host of the mulberry silkworm, Bombyx mori (L.), which is a source of livelihood to millions of sericulture farmers in India. Several predators, mainly Coccinellidae (Coleoptera), have been reported to feed on M. hirsutus on mulberry. Coccinellid predators of M. hirsutus collected on mulberry from different parts of India are illustrated here with brief diagnostic notes to facilitate their identification. An account of mycophagous species of coccinellids commonly found on mulberry and misreported as predators of mulberry pests is also given with illustrations. Scymnus (Pullus) latifolius sp. nov., a promising predator of M. hirsutus, hitherto misidentified and reported as Scymnus pallidicollis Mulsant, is described and illustrated from West Bengal, India, with detailed biological notes. Keiscymnus taiwanensis Yang Wu, 1972 is reduced to a new junior synonym of Scymnus pallidicollis Mulsant, 1853 (syn. nov.). Illeis bielawskii Ghorpade, 1976 is found to be a valid species and removed from synonymy with I. bistigmosa Mulsant, 1850 (stat. rev.).

  11. Small nonnative fishes as predators of larval razorback suckers

    USGS Publications Warehouse

    Carpenter, J.; Mueller, G.A.

    2008-01-01

    The razorback sucker (Xyrauchen texanus), an endangered big-river fish of the Colorado River basin, has demonstrated no sustainable recruitment in 4 decades, despite presence of spawning adults and larvae. Lack of adequate recruitment has been attributed to several factors, including predation by nonnative fishes. Substantial funding and effort has been expended on mechanically removing nonnative game fishes, typically targeting large predators. As a result, abundance of larger predators has declined, but the abundance of small nonnative fishes has increased in some areas. We conducted laboratory experiments to determine if small nonnative fishes would consume larval razorback suckers. We tested adults of three small species (threadfin shad, Dorosoma petenense; red shiner, Cyprinella lutrensis; fathead minnow, Pimephales promelas) and juveniles of six larger species (common carp, Cyprinus carpio; yellow bullhead, Ameiurus natalis; channel catfish, Ictalurus punctatus; rainbow trout, Oncorhynchus mykiss; green sunfish, Lepomis cyanellus; bluegill, L. macrochirus). These nonnative fishes span a broad ecological range and are abundant within the historical range of the razorback sucker. All nine species fed on larval razorback suckers (total length, 9-16 mm). Our results suggest that predation by small nonnative fishes could be responsible for limiting recovery of this endangered species.

  12. Maternal programming of sex-specific responses to predator odor stress in adult rats.

    PubMed

    St-Cyr, Sophie; Abuaish, Sameera; Sivanathan, Shathveekan; McGowan, Patrick O

    2017-08-01

    Prenatal stress mediated through the mother can lead to long-term adaptations in stress-related phenotypes in offspring. This study tested the long-lasting effect of prenatal exposure to predator odor, an ethologically relevant and psychogenic stressor, in the second half of pregnancy. As adults, the offspring of predator odor-exposed mothers showed increased anxiety-like behaviors in commonly used laboratory tasks assessing novelty-induced anxiety, increased defensive behavior in males and increased ACTH stress reactivity in females in response to predator odor. Female offspring from predator odor-exposed dams showed increased transcript abundance of glucocorticoid receptor (NR3C1) on the day of birth and FK506 binding protein 5 (FKBP5) in adulthood in the amygdala. The increase in FKBP5 expression was associated with decreased DNA methylation in Fkbp5 intron V. These results indicate a sex-specific response to maternal programming by prenatal predator odor exposure and a potential epigenetic mechanism linking these responses with modifications of the stress axis in females. These results are in accordance with the mismatch hypothesis stating that an animal's response to cues within its life history reflects environmental conditions anticipated during important developmental periods and should be adaptive when these conditions are concurring. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Pasta Predation.

    ERIC Educational Resources Information Center

    Waugh, Michael L.

    1986-01-01

    Presents a predator-prey simulation which involves students in collecting data, solving problems, and making predictions on the evolution of prey populations. Provides directives on how to perform the chi-square test and also includes an Applesoft BASK program that performs the calculations. (ML)

  14. Neoseiulus Cucumeris

    USDA-ARS?s Scientific Manuscript database

    Neoseiulus cucumeris is an aggressive predator of several soft-bodied arthropod pests, generally seen on the lower leaf surface or inside flowers. For its generalist predation behavior, it is being extensively used in biological control programs against a broad spectrum of pests (whiteflies, thrips,...

  15. Nest Predation by Commensal Rodents in Urban Bushland Remnants.

    PubMed

    Smith, Helen M; Dickman, Chris R; Banks, Peter B

    2016-01-01

    Exotic predators are a major threat to native wildlife in many parts of the world. Developing and implementing effective strategies to mitigate their effects requires robust quantitative data so that management can be evidence-based, yet in many ecosystems this is missing. Birds in particular have been severely impacted by exotic mammalian predators, and a plethora of studies on islands record predation of bird eggs, fledglings and adults by exotic species such as rodents, stoats and cats. By comparison, few studies have examined nest predation around mainland urban centres which often act as dispersal hubs, especially for commensal species such as rodents. Here, we experimentally examine nest predation rates in habitat patches with varying black rat (Rattus rattus) densities in Sydney, Australia and test whether these exotic rats have the effects expected of exotic predators using effect size benchmarks. In the case where black rats have replaced native Rattus spp., we expected that black rats, being more arboreal than native Rattus spp., would be a significant source of predation on birds because they can readily access the arboreal niche where many birds nest. We tested this idea using above-ground artificial nests to represent those of typical small bird species such as the New Holland honeyeater (Phylidonyris novaehollandiae). We found that fewer eggs were depredated by rodents on sites where we removed black rats compared to unmanipulated sites, and that the effect size calculated from the total number of eggs surviving beyond the typical incubation period was similar to that expected for an exotic predator. Our results suggest that, although Australian birds have co-evolved with native Rattus species, in the case where black rats have replaced native Rattus species, exotic black rats appear to pose an additive source of predation on birds in remnant habitats, most likely due to their ability to climb more efficiently than their native counterparts. Management of these commensal rodents may be necessary to retain urban birdlife.

  16. Nest Predation by Commensal Rodents in Urban Bushland Remnants

    PubMed Central

    2016-01-01

    Exotic predators are a major threat to native wildlife in many parts of the world. Developing and implementing effective strategies to mitigate their effects requires robust quantitative data so that management can be evidence-based, yet in many ecosystems this is missing. Birds in particular have been severely impacted by exotic mammalian predators, and a plethora of studies on islands record predation of bird eggs, fledglings and adults by exotic species such as rodents, stoats and cats. By comparison, few studies have examined nest predation around mainland urban centres which often act as dispersal hubs, especially for commensal species such as rodents. Here, we experimentally examine nest predation rates in habitat patches with varying black rat (Rattus rattus) densities in Sydney, Australia and test whether these exotic rats have the effects expected of exotic predators using effect size benchmarks. In the case where black rats have replaced native Rattus spp., we expected that black rats, being more arboreal than native Rattus spp., would be a significant source of predation on birds because they can readily access the arboreal niche where many birds nest. We tested this idea using above-ground artificial nests to represent those of typical small bird species such as the New Holland honeyeater (Phylidonyris novaehollandiae). We found that fewer eggs were depredated by rodents on sites where we removed black rats compared to unmanipulated sites, and that the effect size calculated from the total number of eggs surviving beyond the typical incubation period was similar to that expected for an exotic predator. Our results suggest that, although Australian birds have co-evolved with native Rattus species, in the case where black rats have replaced native Rattus species, exotic black rats appear to pose an additive source of predation on birds in remnant habitats, most likely due to their ability to climb more efficiently than their native counterparts. Management of these commensal rodents may be necessary to retain urban birdlife. PMID:27295091

  17. Distribution of /sup 32/P in laboratory colonies of Solenopsis invicta (Hymenoptera: Formicidae) after feeding on labeled Heliothis zeal (Lepidoptera: Noctuidae) eggs: an explanation of discrepancies encountered in field predation experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nuessly, G.S.; Sterling, W.L.

    1986-12-01

    Factors responsible for low recovery rates of radioactive Solenopsis invicta Buren following placement of /sup 32/P-labeled Heliothis zea (Boddie) eggs on cotton in field predation tests were investigated using laboratory colonies of the ants. S. invicta workers became radioactive while handling labeled eggs by rupturing the egg chorion or by picking up labeled substances present on the surface of eggs. Foragers that removed the eggs from the plants picked up significantly more of the label than did workers that were sampled from the colonies between 12 and 72 h after egg introduction. Percentage of workers that became labeled over timemore » was much lower with the solid live food than in other studies that used powdered food sources. Problems in finding labeled ants in the field may have been associated with low mean levels of /sup 32/P per ant, together with difficulty in locating and isolating labeled ants from the population. Results indicate that egg predation rates estimated from counts per minute per predator have high variability, and suggest fairly large errors in estimates of eggs consumed per ant. Use of recovery rates of labeled predators to improve estimation of predation rates is discussed.« less

  18. The influence of vibrissal somatosensory processing in rat superior colliculus on prey capture.

    PubMed

    Favaro, P D N; Gouvêa, T S; de Oliveira, S R; Vautrelle, N; Redgrave, P; Comoli, E

    2011-03-10

    The lateral part of intermediate layer of superior colliculus (SCl) is a critical substrate for successful predation by rats. Hunting-evoked expression of the activity marker Fos is concentrated in SCl while prey capture in rats with NMDA lesions in SCl is impaired. Particularly affected are rapid orienting and stereotyped sequences of actions associated with predation of fast moving prey. Such deficits are consistent with the view that the deep layers of SC are important for sensory guidance of movement. Although much of the relevant evidence involves visual control of movement, less is known about movement guidance by somatosensory input from vibrissae. Indeed, our impression is that prey contact with whiskers is a likely stimulus to trigger predation. Moreover, SCl receives whisker and orofacial somatosensory information directly from trigeminal complex, and indirectly from zona incerta, parvicelular reticular formation and somatosensory barrel cortex. To better understand sensory guidance of predation by vibrissal information we investigated prey capture by rats after whisker removal and the role of superior colliculus (SC) by comparing Fos expression after hunting with and without whiskers. Rats were allowed to hunt cockroaches, after which their whiskers were removed. Two days later they were allowed to hunt cockroaches again. Without whiskers the rats were less able to retain the cockroaches after capture and less able to pursue them in the event of the cockroach escaping. The predatory behaviour of rats with re-grown whiskers returned to normal. In parallel, Fos expression in SCl induced by predation was significantly reduced in whiskerless animals. We conclude that whiskers contribute to the efficiency of rat prey capture and that the loss of vibrissal input to SCl, as reflected by reduced Fos expression, could play a critical role in predatory deficits of whiskerless rats. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  19. Boomeranging in structural defense

    PubMed Central

    Marler, Thomas E.

    2012-01-01

    Plant defensive behaviors that resist arthropod herbivory include trichome-mediated defenses, and variation in plant trichome morphology and abundance provides examples of the mechanistic complexities of insect-plant interactions. Trichomes were removed from Cycas revoluta cataphylls on the island of Guam to reveal Aulacaspis yasumatsui scale infestation, and predation of the newly exposed insects by pre-existing Rhyzobius lophanthae beetles commenced within one day. The quotient of predated/total scale insects was 0.5 by day 4 and stabilized at that found on adjacent glabrous leaves in about one week. The trichome phenotype covering the C. revoluta cataphyll complex offers the invasive A. yasumatsui armored scale effectual enemy-free space in this system. This pest and predator share no known evolutionary history with C. revoluta, therefore, the adaptive significance of this plant behavior in natural habitat is not yet known. PMID:22990448

  20. Effects of experimental seaweed deposition on lizard and ant predation in an island food web.

    PubMed

    Piovia-Scott, Jonah; Spiller, David A; Schoener, Thomas W

    2011-01-28

    The effect of environmental change on ecosystems is mediated by species interactions. Environmental change may remove or add species and shift life-history events, altering which species interact at a given time. However, environmental change may also reconfigure multispecies interactions when both species composition and phenology remain intact. In a Caribbean island system, a major manifestation of environmental change is seaweed deposition, which has been linked to eutrophication, overfishing, and hurricanes. Here, we show in a whole-island field experiment that without seaweed two predators--lizards and ants--had a substantially greater-than-additive effect on herbivory. When seaweed was added to mimic deposition by hurricanes, no interactive predator effect occurred. Thus environmental change can substantially restructure food-web interactions, complicating efforts to predict anthropogenic changes in ecosystem processes.

  1. Reassessing the trophic role of reef sharks as apex predators on coral reefs

    NASA Astrophysics Data System (ADS)

    Frisch, Ashley J.; Ireland, Matthew; Rizzari, Justin R.; Lönnstedt, Oona M.; Magnenat, Katalin A.; Mirbach, Christopher E.; Hobbs, Jean-Paul A.

    2016-06-01

    Apex predators often have strong top-down effects on ecosystem components and are therefore a priority for conservation and management. Due to their large size and conspicuous predatory behaviour, reef sharks are typically assumed to be apex predators, but their functional role is yet to be confirmed. In this study, we used stomach contents and stable isotopes to estimate diet, trophic position and carbon sources for three common species of reef shark ( Triaenodon obesus, Carcharhinus melanopterus and C. amblyrhynchos) from the Great Barrier Reef (Australia) and evaluated their assumed functional role as apex predators by qualitative and quantitative comparisons with other sharks and large predatory fishes. We found that reef sharks do not occupy the apex of coral reef food chains, but instead have functional roles similar to those of large predatory fishes such as snappers, emperors and groupers, which are typically regarded as high-level mesopredators. We hypothesise that a degree of functional redundancy exists within this guild of predators, potentially explaining why shark-induced trophic cascades are rare or subtle in coral reef ecosystems. We also found that reef sharks participate in multiple food webs (pelagic and benthic) and are sustained by multiple sources of primary production. We conclude that large conspicuous predators, be they elasmobranchs or any other taxon, should not axiomatically be regarded as apex predators without thorough analysis of their diet. In the case of reef sharks, our dietary analyses suggest they should be reassigned to an alternative trophic group such as high-level mesopredators. This change will facilitate improved understanding of how reef communities function and how removal of predators (e.g., via fishing) might affect ecosystem properties.

  2. What doesn't kill you makes you wary? Effect of repeated culling on the behaviour of an invasive predator.

    PubMed

    Côté, Isabelle M; Darling, Emily S; Malpica-Cruz, Luis; Smith, Nicola S; Green, Stephanie J; Curtis-Quick, Jocelyn; Layman, Craig

    2014-01-01

    As a result of being hunted, animals often alter their behaviour in ways that make future encounters with predators less likely. When hunting is carried out for conservation, for example to control invasive species, these behavioural changes can inadvertently impede the success of future efforts. We examined the effects of repeated culling by spearing on the behaviour of invasive predatory lionfish (Pterois volitans/miles) on Bahamian coral reef patches. We compared the extent of concealment and activity levels of lionfish at dawn and midday on 16 coral reef patches off Eleuthera, The Bahamas. Eight of the patches had been subjected to regular daytime removals of lionfish by spearing for two years. We also estimated the distance at which lionfish became alert to slowly approaching divers on culled and unculled reef patches. Lionfish on culled reefs were less active and hid deeper within the reef during the day than lionfish on patches where no culling had occurred. There were no differences at dawn when removals do not take place. Lionfish on culled reefs also adopted an alert posture at a greater distance from divers than lionfish on unculled reefs. More crepuscular activity likely leads to greater encounter rates by lionfish with more native fish species because the abundance of reef fish outside of shelters typically peaks at dawn and dusk. Hiding deeper within the reef could also make remaining lionfish less likely to be encountered and more difficult to catch by spearfishers during culling efforts. Shifts in the behaviour of hunted invasive animals might be common and they have implications both for the impact of invasive species and for the design and success of invasive control programs.

  3. What Doesn't Kill You Makes You Wary? Effect of Repeated Culling on the Behaviour of an Invasive Predator

    PubMed Central

    Côté, Isabelle M.; Darling, Emily S.; Malpica-Cruz, Luis; Smith, Nicola S.; Green, Stephanie J.; Curtis-Quick, Jocelyn; Layman, Craig

    2014-01-01

    As a result of being hunted, animals often alter their behaviour in ways that make future encounters with predators less likely. When hunting is carried out for conservation, for example to control invasive species, these behavioural changes can inadvertently impede the success of future efforts. We examined the effects of repeated culling by spearing on the behaviour of invasive predatory lionfish (Pterois volitans/miles) on Bahamian coral reef patches. We compared the extent of concealment and activity levels of lionfish at dawn and midday on 16 coral reef patches off Eleuthera, The Bahamas. Eight of the patches had been subjected to regular daytime removals of lionfish by spearing for two years. We also estimated the distance at which lionfish became alert to slowly approaching divers on culled and unculled reef patches. Lionfish on culled reefs were less active and hid deeper within the reef during the day than lionfish on patches where no culling had occurred. There were no differences at dawn when removals do not take place. Lionfish on culled reefs also adopted an alert posture at a greater distance from divers than lionfish on unculled reefs. More crepuscular activity likely leads to greater encounter rates by lionfish with more native fish species because the abundance of reef fish outside of shelters typically peaks at dawn and dusk. Hiding deeper within the reef could also make remaining lionfish less likely to be encountered and more difficult to catch by spearfishers during culling efforts. Shifts in the behaviour of hunted invasive animals might be common and they have implications both for the impact of invasive species and for the design and success of invasive control programs. PMID:24705447

  4. Identification and Management of Multiple Threats to Rare and Endangered Plant Species

    DTIC Science & Technology

    2013-07-30

    Glynn et. al., 2003), affect fruit removal (Schaefer et. al., 2003) and change the palatability of plants to slugs (Albrectsen et. al., 2004...persistent seed bank. Initial seed bank composition should not be affected by the fence, as we detected no initial difference in flowering or fruiting ...and secondary compounds affect fruit removal. Oikos 102, 318-328. Sessions, L., Kelly, D., 2002. Predator mediated apparent competition between an

  5. Gender inequality in predispersal seed predation contributes to female seed set advantage in a gynodioecious species.

    PubMed

    Clarke, Gretel L; Brody, Alison K

    2015-05-01

    Most flowering plants are hermaphrodites. However, in gynodioecious species, some members of the population are male-sterile and reproduce only by setting seed, while others gain fitness through both male and female function. How females compensate for the loss of male function remains unresolved for most gynodioecious species. Here, as with many plants, fitness differences may be influenced by interactions with multiple species. However, whether multiple species interactions result in gender-specific fitness differences remains unknown. Using observational data from 2009-2010, we quantified seed set of the two sex morphs of Polemonium foliosissimu and asked how it is affected by pollination, and seed predation from a dipteran predispersal seed predator (Anthomyiidae: Hylemya sp.). We assessed seed production and losses to predation in 27 populations for one year and in six populations for a second year. Females set significantly more seed than did hermaphrodites in both years. Of the fitness components we assessed, including the number of flowers per plant, fruit set, seeds/fruit, and proportion of fruits destroyed by Hylemya, only fruit destruction differed significantly between the sexes. In one year, seeds/fruit and predation had a stronger effect on seed set for hermaphrodites than for females. Because predispersal seed predators do not pollinate flowers, their effects may depend on successful pollination of flowers on which they oviposit. To examine if genders differed in pollen limitation and seed predation and/or their interactive effects, in 2011 we hand-pollinated flowers and removed seed predator eggs in a fully factorial design. Both sexes were pollen limited, but their degree of pollen limitation did not differ. However, predation reduced.seed set more for hermaphrodites than for females. We found no significant interaction between hand pollen and seed predation, and no interaction between hand pollination and gender. Our results suggest that while interactions with both pollinators and seed predators affect reproductive success, floral enemies can cause inequality in seed set between genders. The next step is to understand how the seed set advantage affects long-term fitness and persistence of females in gynodioecious populations.

  6. Predation.

    ERIC Educational Resources Information Center

    Spain, James D.; Soldan, Theodore

    1983-01-01

    Describes two computer simulations of the predator-prey interaction in which students explore theories and mathematical equations involved in this biological process. The programs (for Apple II), designed for college level ecology, may be used in lecture/demonstrations or as a basis for laboratory assignments. A list of student objectives is…

  7. Protist predation can favour cooperation within bacterial species

    PubMed Central

    Friman, Ville-Petri; Diggle, Stephen P.; Buckling, Angus

    2013-01-01

    Here, we studied how protist predation affects cooperation in the opportunistic pathogen bacterium Pseudomonas aeruginosa, which uses quorum sensing (QS) cell-to-cell signalling to regulate the production of public goods. By competing wild-type bacteria with QS mutants (cheats), we show that a functioning QS system confers an elevated resistance to predation. Surprisingly, cheats were unable to exploit this resistance in the presence of cooperators, which suggests that resistance does not appear to result from activation of QS-regulated public goods. Instead, elevated resistance of wild-type bacteria was related to the ability to form more predation-resistant biofilms. This could be explained by the expression of QS-regulated resistance traits in densely populated biofilms and floating cell aggregations, or alternatively, by a pleiotropic cost of cheating where less resistant cheats are selectively removed from biofilms. These results show that trophic interactions among species can maintain cooperation within species, and have further implications for P. aeruginosa virulence in environmental reservoirs by potentially enriching the cooperative and highly infective strains with functional QS system. PMID:23945212

  8. Reregistration and Other Review Programs Predating Pesticide Registration Review

    EPA Pesticide Factsheets

    Before launching the registration review program, EPA reevaluated existing registered pesticides through programs including Pesticide Reregistration and Tolerance Reassessment, Product Reregistration, and Special Review.

  9. Invasive exotic shrub modifies a classic animal-habitat relationship and alters patterns of vertebrate seed predation.

    PubMed

    Guiden, Peter W; Orrock, John L

    2017-02-01

    Recent evidence suggests that invasive exotic plants can provide novel habitats that alter animal behavior. However, it remains unclear whether classic animal-habitat associations that influence the spatial distribution of plant-animal interactions, such as small mammal use of downed woody debris, persist in invaded habitats. We removed an invasive exotic shrub (buckthorn, Rhamnus cathartica) from 7 of 15 plots in Wisconsin. In each plot, we deployed 200 tagged Quercus rubra seeds in November 2014. After five months, tags were recovered to track spatial patterns of small mammal seed predation. Most recovered tags were associated with consumed seeds (95%); live-trapping, ancillary camera-trapping, and previous behavioral studies suggest that white-footed mice (Peromyscus leucopus) were responsible for most seed predation. In habitats without R. cathartica, most seed predation occurred near woody debris. In habitats with R. cathartica, small mammals rarely consumed seeds near woody debris, and seed predation occurred farther from the plot center and was less spatially clustered. Our results illustrate that invasive exotic shrubs can disrupt an otherwise common animal-habitat relationship. Failing to account for changes in habitat use may diminish our ability to predict animal distributions and outcomes of species interactions in novel habitats created by invasive exotic plants. © 2016 by the Ecological Society of America.

  10. Do Behavioral Foraging Responses of Prey to Predators Function Similarly in Restored and Pristine Foodwebs?

    PubMed Central

    Madin, Elizabeth M. P.; Gaines, Steven D.; Madin, Joshua S.; Link, Anne-Katrin; Lubchenco, Peggy J.; Selden, Rebecca L.; Warner, Robert R.

    2012-01-01

    Efforts to restore top predators in human-altered systems raise the question of whether rebounds in predator populations are sufficient to restore pristine foodweb dynamics. Ocean ecosystems provide an ideal system to test this question. Removal of fishing in marine reserves often reverses declines in predator densities and size. However, whether this leads to restoration of key functional characteristics of foodwebs, especially prey foraging behavior, is unclear. The question of whether restored and pristine foodwebs function similarly is nonetheless critically important for management and restoration efforts. We explored this question in light of one important determinant of ecosystem function and structure – herbivorous prey foraging behavior. We compared these responses for two functionally distinct herbivorous prey fishes (the damselfish Plectroglyphidodon dickii and the parrotfish Chlorurus sordidus) within pairs of coral reefs in pristine and restored ecosystems in two regions of these species' biogeographic ranges, allowing us to quantify the magnitude and temporal scale of this key ecosystem variable's recovery. We demonstrate that restoration of top predator abundances also restored prey foraging excursion behaviors to a condition closely resembling those of a pristine ecosystem. Increased understanding of behavioral aspects of ecosystem change will greatly improve our ability to predict the cascading consequences of conservation tools aimed at ecological restoration, such as marine reserves. PMID:22403650

  11. A Resolution of the Paradox of Enrichment

    NASA Astrophysics Data System (ADS)

    Feng, Z. C.; Li, Y. Charles

    2015-06-01

    The paradox of enrichment was observed by Rosenzweig [1971] in a class of predator-prey models. Two of the parameters in the models are crucial for the paradox. These two parameters are the prey's carrying capacity and prey's half-saturation for predation. Intuitively, increasing the carrying capacity due to enrichment of the prey's environment should lead to a more stable predator-prey system. Analytically, it turns out that increasing the carrying capacity always leads to an unstable predator-prey system that is susceptible to extinction from environmental random perturbations. This is the so-called paradox of enrichment. Our resolution here rests upon a closer investigation on a dimensionless number H formed from the carrying capacity and the prey's half-saturation. By recasting the models into dimensionless forms, the models are in fact governed by a few dimensionless numbers including H. The effects of the two parameters: carrying capacity and half-saturation are incorporated into the number H. In fact, increasing the carrying capacity is equivalent (i.e. has the same effect on H) to decreasing the half-saturation which implies more aggressive predation. Since there is no paradox between more aggressive predation and instability of the predator-prey system, the paradox of enrichment is resolved. The so-called instability of the predator-prey system is characterized by the existence of a stable limit cycle in the phase plane, which gets closer and closer to the predator axis and prey axis. Due to random environmental perturbations, this can lead to extinction. We also further explore spatially dependent models for which the phase space is infinite-dimensional. The spatially independent limit cycle which is generated by a Hopf bifurcation from an unstable steady state, is linearly stable in the infinite-dimensional phase space. Numerical simulations indicate that the basin of attraction of the limit cycle is riddled. This shows that spatial perturbations can sometimes (neither always nor never) remove the paradox of enrichment near the limit cycle!

  12. Low Predictability of Colour Polymorphism in Introduced Guppy (Poecilia reticulata) Populations in Panama

    PubMed Central

    Martínez, Celestino; Chavarría, Carmen; Sharpe, Diana M. T.; De León, Luis Fernando

    2016-01-01

    Colour polymorphism is a recurrent feature of natural populations, and its maintenance has been studied in a range of taxa in their native ranges. However, less is known about whether (and how) colour polymorphism is maintained when populations are removed from their native environments, as in the case of introduced species. We here address this issue by analyzing variation in colour patterns in recently-discovered introduced populations of the guppy (Poecilia reticulata) in Panama. Specifically, we use classic colour analysis to estimate variation in the number and the relative area of different colour spots across low predation sites in the introduced Panamanian range of the species. We then compare this variation to that found in the native range of the species under low- and high predation regimes. We found aspects of the colour pattern that were both consistent and inconsistent with the classical paradigm of colour evolution in guppies. On one hand, the same colours that dominated in native populations (orange, iridescent and black) were also the most dominant in the introduced populations in Panama. On the other, there were no clear differences between either introduced-low and native low- and high predation populations. Our results are therefore only partially consistent with the traditional role of female preference in the absence of predators, and suggest that additional factors could influence colour patterns when populations are removed from their native environments. Future research on the interaction between female preference and environmental variability (e.g. multifarious selection), could help understand adaptive variation in this widely-introduced species, and the contexts under which variation in adaptive traits parallels (or not) variation in the native range. PMID:26863538

  13. Scatter Hoarding of Seeds Confers Survival Advantages and Disadvantages to Large-Seeded Tropical Plants at Different Life Stages

    PubMed Central

    Kuprewicz, Erin K.

    2015-01-01

    Scatter hoarding of seeds by animals contributes significantly to forest-level processes, including plant recruitment and forest community composition. However, the potential positive and negative effects of caching on seed survival, germination success, and seedling survival have rarely been assessed through experimental studies. Here, I tested the hypothesis that seed burial mimicking caches made by scatter hoarding Central American agoutis (Dasyprocta punctate) enhances seed survival, germination, and growth by protecting seeds from seed predators and providing favorable microhabitats for germination. In a series of experiments, I used simulated agouti seed caches to assess how hoarding affects seed predation by ground-dwelling invertebrates and vertebrates for four plant species. I tracked germination and seedling growth of intact and beetle-infested seeds and, using exclosures, monitored the effects of mammals on seedling survival through time. All experiments were conducted over three years in a lowland wet forest in Costa Rica. The majority of hoarded palm seeds escaped predation by both invertebrates and vertebrates while exposed seeds suffered high levels of infestation and removal. Hoarding had no effect on infestation rates of D. panamensis, but burial negatively affected germination success by preventing endocarp dehiscence. Non-infested palm seeds had higher germination success and produced larger seedlings than infested seeds. Seedlings of A. alatum and I. deltoidea suffered high mortality by seed-eating mammals. Hoarding protected most seeds from predators and enhanced germination success (except for D. panamensis) and seedling growth, although mammals killed many seedlings of two plant species; all seedling deaths were due to seed removal from the plant base. Using experimental caches, this study shows that scatter hoarding is beneficial to most seeds and may positively affect plant propagation in tropical forests, although tradeoffs in seed survival do exist. PMID:25970832

  14. Evaluation of neophobia and its potential impact upon predator control techniques: a study on two sympatric foxes in southern Patagonia.

    PubMed

    Travaini, Alejandro; Vassallo, Aldo Iván; García, Germán Oscar; Echeverría, Alejandra Isabel; Zapata, Sonia Cristina; Nielsen, Sigrid

    2013-01-01

    An alternative approach to increase the efficiency of predator control and selectivity is to consider the natural behavioural repertoire of the target species and how such behaviours may increase their vulnerability. Neophobia, or the hesitancy to approach a novel food item, object, or place, is an important factor influencing the investigative behaviour of animals, and its incorporation to predator control techniques may help to reduce losses of livestock to predators. In this study, we simultaneously evaluated the existence and intensity of neophobic responses in two sympatric fox species, the Culpeo (Pseudalopex culpaeus) and the Grey (P. griseus) foxes in southern Patagonia, Argentina. For this purpose, we used bait stations to compare fox behavioural responses in the absence (pre-treatment), presence (treatment) and removal (post-treatment) of a novel stimulus, which consisted of an orange PVC-traffic cone. Both fox species showed a neophobic response: bait-station visitation rates decreased (P=0.005 and P=0.048, for Culpeo and Grey foxes, respectively) in the presence of the novel object. The intensity of the response differed between species being higher for Culpeo foxes (approximately 80% of reduction in visitation rate during treatment for Culpeo foxes vs. 10% for Grey foxes). However, the bait-station visitation pattern after novel object removal indicated that animals probably increased exploration of the station. The high level of neophobia achieved by the Culpeo fox, together with an increase in post-treatment site exploration, suggests that behavioural manipulations (reduction of neophobia and its consequent increase in risk taking) could improve selective and efficient fox control in rural areas where livestock production is a major economic activity. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Low Predictability of Colour Polymorphism in Introduced Guppy (Poecilia reticulata) Populations in Panama.

    PubMed

    Martínez, Celestino; Chavarría, Carmen; Sharpe, Diana M T; De León, Luis Fernando

    2016-01-01

    Colour polymorphism is a recurrent feature of natural populations, and its maintenance has been studied in a range of taxa in their native ranges. However, less is known about whether (and how) colour polymorphism is maintained when populations are removed from their native environments, as in the case of introduced species. We here address this issue by analyzing variation in colour patterns in recently-discovered introduced populations of the guppy (Poecilia reticulata) in Panama. Specifically, we use classic colour analysis to estimate variation in the number and the relative area of different colour spots across low predation sites in the introduced Panamanian range of the species. We then compare this variation to that found in the native range of the species under low- and high predation regimes. We found aspects of the colour pattern that were both consistent and inconsistent with the classical paradigm of colour evolution in guppies. On one hand, the same colours that dominated in native populations (orange, iridescent and black) were also the most dominant in the introduced populations in Panama. On the other, there were no clear differences between either introduced-low and native low- and high predation populations. Our results are therefore only partially consistent with the traditional role of female preference in the absence of predators, and suggest that additional factors could influence colour patterns when populations are removed from their native environments. Future research on the interaction between female preference and environmental variability (e.g. multifarious selection), could help understand adaptive variation in this widely-introduced species, and the contexts under which variation in adaptive traits parallels (or not) variation in the native range.

  16. Regional variation in the intensity of humpback whale predation on Pacific herring in the Gulf of Alaska

    NASA Astrophysics Data System (ADS)

    Moran, J. R.; Heintz, R. A.; Straley, J. M.; Vollenweider, J. J.

    2018-01-01

    We modeled the biomass of Pacific herring (Clupea pallasii) consumed by humpback whales (Megaptera novaeangliae) to determine if whales are preventing the recovery of some herring populations in the Gulf of Alaska. We estimated consumption, by whales, of two depressed (Lynn Canal, Prince William Sound) and one robust (Sitka Sound) herring populations during fall/winter of 2007-2008 and 2008-2009. Consumption estimates relied on observations of whale abundance, prey selection, and herring energy content along with published data on whale size and metabolic rate. Herring biomass removed by whales was compared with independent estimates of herring abundance to assess the impact of predation on each population. Whales removed a greater proportion of the total biomass of herring available in Lynn Canal and Prince William Sound than in Sitka Sound. Biomass removals were greatest in Prince William Sound where we observed the largest number of whales foraging on herring. The biomass of herring consumed in Prince William Sound approximated the biomass lost to natural mortality over winter as projected by age-structured stock assessments. Though whales also focused their foraging on herring during the fall in Lynn Canal, whales were less abundant resulting in lower estimated consumption rates. Whales were more abundant in Sitka Sound than in Lynn Canal but foraged predominately on euphausiids. Herring abundance was greater in Sitka Sound, further reducing the overall impact on the herring population. These data indicate that the focused predation in Prince William Sound can exert top-down controlling pressure, but whale populations are not a ubiquitous constraint on forage fish productivity in the Gulf of Alaska at this time.

  17. Management of Protected Areas and Its Effect on an Ecosystem Function: Removal of Prosopis flexuosa Seeds by Mammals in Argentinian Drylands

    PubMed Central

    Campos, Valeria E.; Miguel, Florencia; Cona, Mónica I.

    2016-01-01

    The ecological function of animal seed dispersal depends on species interactions and can be affected by drivers such as the management interventions applied to protected areas. This study was conducted in two protected areas in the Monte Desert: a fenced reserve with grazing exclusion and absence of large native mammals (the Man and Biosphere Ñacuñán Reserve; FR) and an unfenced reserve with low densities of large native and domestic animals (Ischigualasto Park; UFR). The study focuses on Prosopis flexuosa seed removal by different functional mammal groups: “seed predators”, “scatter-hoarders”, and “opportunistic frugivores”. Under both interventions, the relative contribution to seed removal by different functional mammal groups was assessed, as well as how these groups respond to habitat heterogeneity (i.e. vegetation structure) at different spatial scales. Camera traps were used to identify mammal species removing P. flexuosa seeds and to quantify seed removal; remote sensing data helped analyze habitat heterogeneity. In the FR, the major fruit removers were a seed predator (Graomys griseoflavus) and a scatter-hoarder (Microcavia asutralis). In the UFR, the main seed removers were the opportunistic frugivores (Lycalopex griseus and Dolichotis patagonum), who removed more seeds than the seed predator in the FR. The FR shows higher habitat homogeneity than the UFR, and functional groups respond differently to habitat heterogeneity at different spatial scales. In the FR, because large herbivores are locally extinct (e.g. Lama guanicoe) and domestic herbivores are excluded, important functions of large herbivores are missing, such as the maintenance of habitat heterogeneity, which provides habitats for medium-sized opportunistic frugivores with consequent improvement of quality and quantity of seed dispersal services. In the UFR, with low densities of large herbivores, probably one important ecosystem function this group performs is to increase habitat heterogeneity, allowing for the activity of medium-sized mammals who, behaving as opportunistic frugivores, did the most significant seed removal. PMID:27655222

  18. A test of maternal programming of offspring stress response to predation risk in threespine sticklebacks.

    PubMed

    Mommer, Brett C; Bell, Alison M

    2013-10-02

    Non-genetic maternal effects are widespread across taxa and challenge our traditional understanding of inheritance. Maternal experience with predators, for example, can have lifelong consequences for offspring traits, including fitness. Previous work in threespine sticklebacks showed that females exposed to simulated predation risk produced eggs with higher cortisol content and offspring with altered anti-predator behavior. However, it is unknown whether this maternal effect is mediated via the offspring glucocorticoid stress response and if it is retained over the entire lifetime of offspring. Therefore, we tested the hypothesis that maternal exposure to simulated predation risk has long-lasting effects on the cortisol response to simulated predation risk in stickleback offspring. We measured circulating concentrations of cortisol before (baseline), 15 min after, and 60 min after exposure to a simulated predation risk. We compared adult offspring of predator-exposed mothers and control mothers in two different social environments (alone or in a group). Relative to baseline, offspring plasma cortisol was highest 15 min after exposure to simulated predation risk and decreased after 60 min. Offspring of predator-exposed mothers differed in the cortisol response to simulated predation risk compared to offspring of control mothers. In general, females had higher cortisol than males, and fish in a group had lower cortisol than fish that were by themselves. The buffering effect of the social environment did not differ between maternal treatments or between males and females. Altogether the results show that while a mother's experience with simulated predation risk might affect the physiological response of her adult offspring to a predator, sex and social isolation have much larger effects on the stress response to predation risk in sticklebacks. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Boomeranging in structural defense: phytophagous insect uses cycad trichomes to defend against entomophagy.

    PubMed

    Marler, Thomas E

    2012-11-01

    Plant defensive behaviors that resist arthropod herbivory include trichome-mediated defenses, and variation in plant trichome morphology and abundance provides examples of the mechanistic complexities of insect-plant interactions. Trichomes were removed from Cycas revoluta cataphylls on the island of Guam to reveal Aulacaspis yasumatsui scale infestation, and predation of the newly exposed insects by pre-existing Rhyzobius lophanthae beetles commenced within one day. The quotient of predated/total scale insects was 0.5 by day 4 and stabilized at that found on adjacent glabrous leaves in about one week. The trichome phenotype covering the C. revoluta cataphyll complex offers the invasive A. yasumatsui armored scale effectual enemy-free space in this system. This pest and predator share no known evolutionary history with C. revoluta, therefore, the adaptive significance of this plant behavior in natural habitat is not yet known.

  20. Coexistence with predators (Coexistencia con depredadores)

    Treesearch

    Bill MacDonald; Mac Donaldson; Caren Cowan

    2006-01-01

    We have asked Caren to join us, too, so we get at least three perspectives, because I don’t think there is one particular philosophy with predators that anybody can say works in every case. If you were to ask me what my predator program is, I would say I don’t really have one. That wasn’t always the case. When I was young, I took great delight in sitting for hours with...

  1. Injury-mediated decrease in locomotor performance increases predation risk in schooling fish.

    PubMed

    Krause, J; Herbert-Read, J E; Seebacher, F; Domenici, P; Wilson, A D M; Marras, S; Svendsen, M B S; Strömbom, D; Steffensen, J F; Krause, S; Viblanc, P E; Couillaud, P; Bach, P; Sabarros, P S; Zaslansky, P; Kurvers, R H J M

    2017-08-19

    The costs and benefits of group living often depend on the spatial position of individuals within groups and the ability of individuals to occupy preferred positions. For example, models of predation events for moving prey groups predict higher mortality risk for individuals at the periphery and front of groups. We investigated these predictions in sardine ( Sardinella aurita ) schools under attack from group hunting sailfish ( Istiophorus platypterus ) in the open ocean. Sailfish approached sardine schools about equally often from the front and rear, but prior to attack there was a chasing period in which sardines attempted to swim away from the predator. Consequently, all sailfish attacks were directed at the rear and peripheral positions of the school, resulting in higher predation risk for individuals at these positions. During attacks, sailfish slash at sardines with their bill causing prey injury including scale removal and tissue damage. Sardines injured in previous attacks were more often found in the rear half of the school than in the front half. Moreover, injured fish had lower tail-beat frequencies and lagged behind uninjured fish. Injuries inflicted by sailfish bills may, therefore, hinder prey swimming speed and drive spatial sorting in prey schools through passive self-assortment. We found only partial support for the theoretical predictions from current predator-prey models, highlighting the importance of incorporating more realistic predator-prey dynamics into these models.This article is part of the themed issue 'Physiological determinants of social behaviour in animals'. © 2017 The Author(s).

  2. Setting realistic recovery targets for two interacting endangered species, sea otter and northern abalone.

    PubMed

    Chadès, Iadine; Curtis, Janelle M R; Martin, Tara G

    2012-12-01

    Failure to account for interactions between endangered species may lead to unexpected population dynamics, inefficient management strategies, waste of scarce resources, and, at worst, increased extinction risk. The importance of species interactions is undisputed, yet recovery targets generally do not account for such interactions. This shortcoming is a consequence of species-centered legislation, but also of uncertainty surrounding the dynamics of species interactions and the complexity of modeling such interactions. The northern sea otter (Enhydra lutris kenyoni) and one of its preferred prey, northern abalone (Haliotis kamtschatkana), are endangered species for which recovery strategies have been developed without consideration of their strong predator-prey interactions. Using simulation-based optimization procedures from artificial intelligence, namely reinforcement learning and stochastic dynamic programming, we combined sea otter and northern abalone population models with functional-response models and examined how different management actions affect population dynamics and the likelihood of achieving recovery targets for each species through time. Recovery targets for these interacting species were difficult to achieve simultaneously in the absence of management. Although sea otters were predicted to recover, achieving abalone recovery targets failed even when threats to abalone such as predation and poaching were reduced. A management strategy entailing a 50% reduction in the poaching of northern abalone was a minimum requirement to reach short-term recovery goals for northern abalone when sea otters were present. Removing sea otters had a marginally positive effect on the abalone population but only when we assumed a functional response with strong predation pressure. Our optimization method could be applied more generally to any interacting threatened or invasive species for which there are multiple conservation objectives. © 2012 Society for Conservation Biology.

  3. Ecosystem context and historical contingency in apex predator recoveries.

    PubMed

    Stier, Adrian C; Samhouri, Jameal F; Novak, Mark; Marshall, Kristin N; Ward, Eric J; Holt, Robert D; Levin, Phillip S

    2016-05-01

    Habitat loss, overexploitation, and numerous other stressors have caused global declines in apex predators. This "trophic downgrading" has generated widespread concern because of the fundamental role that apex predators can play in ecosystem functioning, disease regulation, and biodiversity maintenance. In attempts to combat declines, managers have conducted reintroductions, imposed stricter harvest regulations, and implemented protected areas. We suggest that full recovery of viable apex predator populations is currently the exception rather than the rule. We argue that, in addition to well-known considerations, such as continued exploitation and slow life histories, there are several underappreciated factors that complicate predator recoveries. These factors include three challenges. First, a priori identification of the suite of trophic interactions, such as resource limitation and competition that will influence recovery can be difficult. Second, defining and accomplishing predator recovery in the context of a dynamic ecosystem requires an appreciation of the timing of recovery, which can determine the relative density of apex predators and other predators and therefore affect competitive outcomes. Third, successful recovery programs require designing adaptive sequences of management strategies that embrace key environmental and species interactions as they emerge. Consideration of recent research on food web modules, alternative stable states, and community assembly offer important insights for predator recovery efforts and restoration ecology more generally. Foremost among these is the importance of a social-ecological perspective in facilitating a long-lasting predator restoration while avoiding unintended consequences.

  4. Ecosystem context and historical contingency in apex predator recoveries

    PubMed Central

    Stier, Adrian C.; Samhouri, Jameal F.; Novak, Mark; Marshall, Kristin N.; Ward, Eric J.; Holt, Robert D.; Levin, Phillip S.

    2016-01-01

    Habitat loss, overexploitation, and numerous other stressors have caused global declines in apex predators. This “trophic downgrading” has generated widespread concern because of the fundamental role that apex predators can play in ecosystem functioning, disease regulation, and biodiversity maintenance. In attempts to combat declines, managers have conducted reintroductions, imposed stricter harvest regulations, and implemented protected areas. We suggest that full recovery of viable apex predator populations is currently the exception rather than the rule. We argue that, in addition to well-known considerations, such as continued exploitation and slow life histories, there are several underappreciated factors that complicate predator recoveries. These factors include three challenges. First, a priori identification of the suite of trophic interactions, such as resource limitation and competition that will influence recovery can be difficult. Second, defining and accomplishing predator recovery in the context of a dynamic ecosystem requires an appreciation of the timing of recovery, which can determine the relative density of apex predators and other predators and therefore affect competitive outcomes. Third, successful recovery programs require designing adaptive sequences of management strategies that embrace key environmental and species interactions as they emerge. Consideration of recent research on food web modules, alternative stable states, and community assembly offer important insights for predator recovery efforts and restoration ecology more generally. Foremost among these is the importance of a social-ecological perspective in facilitating a long-lasting predator restoration while avoiding unintended consequences. PMID:27386535

  5. Development of a System-Wide Predator Control Program: Stepwise Implementation of a Predation Index, Predator Control Fisheries, and Evaluation Plan in the Columbia River Basin; Northern Pikeminnow Management Program, 2002 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Porter, Russell G.; Winther, Eric C.; Fox, Lyle G.

    2004-01-01

    This report presents results for year twelve in a basin-wide program to harvest northern pikeminnow1 (Ptychocheilus oregonensis). This program was started in an effort to reduce predation by northern pikeminnow on juvenile salmonids during their emigration from natal streams to the ocean. Earlier work in the Columbia River Basin suggested predation by northern pikeminnow on juvenile salmonids might account for most of the 10-20% mortality juvenile salmonids experience in each of eight Columbia River and Snake River reservoirs. Modeling simulations based on work in John Day Reservoir from 1982 through 1988 indicated that, if predator-size northern pikeminnow were exploited atmore » a 10-20% rate, the resulting restructuring of their population could reduce their predation on juvenile salmonids by 50%. To test this hypothesis, we implemented a sport-reward angling fishery and a commercial longline fishery in the John Day Pool in 1990. We also conducted an angling fishery in areas inaccessible to the public at four dams on the mainstem Columbia River and at Ice Harbor Dam on the Snake River. Based on the success of these limited efforts, we implemented three test fisheries on a system-wide scale in 1991--a tribal longline fishery above Bonneville Dam, a sport-reward fishery, and a dam-angling fishery. Low catch of target fish and high cost of implementation resulted in discontinuation of the tribal longline fishery. However, the sport-reward and dam-angling fisheries were continued in 1992 and 1993. In 1992, we investigated the feasibility of implementing a commercial longline fishery in the Columbia River below Bonneville Dam and found that implementation of this fishery was also infeasible. Estimates of combined annual exploitation rates resulting from the sport-reward and damangling fisheries remained at the low end of our target range of 10-20%. This suggested the need for additional effective harvest techniques. During 1991 and 1992, we developed and tested a modified (small-sized) Merwin trapnet. We found this floating trapnet to be very effective in catching northern pikeminnow at specific sites. Consequently, in 1993 we examined a system-wide fishery using floating trapnets, but found this fishery to be ineffective at harvesting large numbers of northern pikeminnow on a system-wide scale.« less

  6. 50 CFR 21.3 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... not limited to, artificial housing, waste removal, health care, protection from predators, and... operations of the Armed Forces that relate to combat, and the adequate and realistic testing of military... population is “biologically viable” when its ability to maintain its genetic diversity, to reproduce, and to...

  7. 50 CFR 21.3 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... not limited to, artificial housing, waste removal, health care, protection from predators, and... operations of the Armed Forces that relate to combat, and the adequate and realistic testing of military... population is “biologically viable” when its ability to maintain its genetic diversity, to reproduce, and to...

  8. 50 CFR 21.3 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... not limited to, artificial housing, waste removal, health care, protection from predators, and... own. Hybrid means any bird that results from a cross of genetic material between two separate taxa... and operations of the Armed Forces that relate to combat, and the adequate and realistic testing of...

  9. 50 CFR 21.3 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... not limited to, artificial housing, waste removal, health care, protection from predators, and... operations of the Armed Forces that relate to combat, and the adequate and realistic testing of military... population is “biologically viable” when its ability to maintain its genetic diversity, to reproduce, and to...

  10. 50 CFR 21.3 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... not limited to, artificial housing, waste removal, health care, protection from predators, and... operations of the Armed Forces that relate to combat, and the adequate and realistic testing of military... population is “biologically viable” when its ability to maintain its genetic diversity, to reproduce, and to...

  11. Regional variation in fish predation intensity: a historical perspective in the Gulf of Maine.

    PubMed

    Witman, Jon D; Sebens, Kenneth P

    1992-06-01

    Regional variation in the intensity of fish predation on tethered brittle stars and crabs was measured at 30-33 m depths in the rocky subtidal zone at seven sites representing coastal and offshore regions of the Gulf of Maine, USA. Analysis of covariance comparing the slopes of brittle star survivorship curves followed by multiple comparisons tests revealed five groupings of sites, with significantly greater predation rates in the two offshore than in the three coastal groups. Brittle stars tethered at the three offshore sites were consumed primarily by cod, Gadus morhua, with 60-100% prey mortality occuring in 2.5 h. In striking contrast, only 6-28% of brittle star prey was consumed in the same amount of time at the four coastal sites, which were dominated by cunner, Tautogolabrus adspersus. In several coastal trials, a majority of brittle star prey remained after 24 h. The pattern of higher predation offshore held for rock crabs as well with only 2.7% of tethered crabs consumed (n=36) at coastal sites versus 57.8% of crabs (n=64) consumed at offshore sites. Another important predatory fish, the wolffish, Anarhichas lupus, consumed more tethered crabs than brittle stars. Videos and time-lapse movies indicated that cod and wolffish were significantly more abundant at offshore than at coastal sites. Three hundred years of fishing pressure in New England has severely depleted stocks of at least one important benthic predator, the cod, in coastal waters. We speculate that this human-induced predator removal has lowered predation pressure on crabs and other large mobile epibenthos in deep coastal communities. Transect data indicate that coastal sites with few cod support significantly higher densities of crabs than offshore sites with abundant cod.

  12. Predator-induced demographic shifts in coral reef fish assemblages

    USGS Publications Warehouse

    Ruttenberg, B.I.; Hamilton, S.L.; Walsh, S.M.; Donovan, M.K.; Friedlander, A.; DeMartini, E.; Sala, E.; Sandin, S.A.

    2011-01-01

    In recent years, it has become apparent that human impacts have altered community structure in coastal and marine ecosystems worldwide. Of these, fishing is one of the most pervasive, and a growing body of work suggests that fishing can have strong effects on the ecology of target species, especially top predators. However, the effects of removing top predators on lower trophic groups of prey fishes are less clear, particularly in highly diverse and trophically complex coral reef ecosystems. We examined patterns of abundance, size structure, and age-based demography through surveys and collection-based studies of five fish species from a variety of trophic levels at Kiritimati and Palmyra, two nearby atolls in the Northern Line Islands. These islands have similar biogeography and oceanography, and yet Kiritimati has ~10,000 people with extensive local fishing while Palmyra is a US National Wildlife Refuge with no permanent human population, no fishing, and an intact predator fauna. Surveys indicated that top predators were relatively larger and more abundant at unfished Palmyra, while prey functional groups were relatively smaller but showed no clear trends in abundance as would be expected from classic trophic cascades. Through detailed analyses of focal species, we found that size and longevity of a top predator were lower at fished Kiritimati than at unfished Palmyra. Demographic patterns also shifted dramatically for 4 of 5 fish species in lower trophic groups, opposite in direction to the top predator, including decreases in average size and longevity at Palmyra relative to Kiritimati. Overall, these results suggest that fishing may alter community structure in complex and non-intuitive ways, and that indirect demographic effects should be considered more broadly in ecosystem-based management. ?? 2011 Ruttenberg et al.

  13. Predator-Induced Demographic Shifts in Coral Reef Fish Assemblages

    PubMed Central

    Ruttenberg, Benjamin I.; Hamilton, Scott L.; Walsh, Sheila M.; Donovan, Mary K.; Friedlander, Alan; DeMartini, Edward; Sala, Enric; Sandin, Stuart A.

    2011-01-01

    In recent years, it has become apparent that human impacts have altered community structure in coastal and marine ecosystems worldwide. Of these, fishing is one of the most pervasive, and a growing body of work suggests that fishing can have strong effects on the ecology of target species, especially top predators. However, the effects of removing top predators on lower trophic groups of prey fishes are less clear, particularly in highly diverse and trophically complex coral reef ecosystems. We examined patterns of abundance, size structure, and age-based demography through surveys and collection-based studies of five fish species from a variety of trophic levels at Kiritimati and Palmyra, two nearby atolls in the Northern Line Islands. These islands have similar biogeography and oceanography, and yet Kiritimati has ∼10,000 people with extensive local fishing while Palmyra is a US National Wildlife Refuge with no permanent human population, no fishing, and an intact predator fauna. Surveys indicated that top predators were relatively larger and more abundant at unfished Palmyra, while prey functional groups were relatively smaller but showed no clear trends in abundance as would be expected from classic trophic cascades. Through detailed analyses of focal species, we found that size and longevity of a top predator were lower at fished Kiritimati than at unfished Palmyra. Demographic patterns also shifted dramatically for 4 of 5 fish species in lower trophic groups, opposite in direction to the top predator, including decreases in average size and longevity at Palmyra relative to Kiritimati. Overall, these results suggest that fishing may alter community structure in complex and non-intuitive ways, and that indirect demographic effects should be considered more broadly in ecosystem-based management. PMID:21698165

  14. Toxicity of rotenone to giant river freshwater prawn Macrobrachium rosenbergii

    USDA-ARS?s Scientific Manuscript database

    Aquaculturists have often suffered predation losses in the production of freshwater giant river prawn Macrobrachium rosenbergii due to the presence of wild fish species in culture ponds. The piscicide rotenone is widely used to remove undesirable fish species from ponds. Although evidence in the t...

  15. Reduced-risk pest management programs for eastern U.S. peach orchards: effects on arthropod predators, parasitoids, and select pests.

    PubMed

    Biddinger, David J; Leslie, Timothy W; Joshi, Neelendra K

    2014-06-01

    We developed new integrated pest management programs for eastern U.S. peaches with minimal use of organophosphates. From 2002-2005, we assessed the ecological impacts of these reduced-risk programs versus grower standard conventional programs that still relied primarily on the use of organophosphorous and carbamate insecticides. Using a split-plot design replicated at four commercial Pennsylvania peach orchards, we quantified pesticide rates, environmental impact, and arthropod community response. We used Environmental Impact Quotient (EIQ) analysis based on the growers' pesticide records from each orchard to calculate seasonal cumulative EIQ field ratings for all years. Ecological effects of the reduced-risk and conventional program were also measured as the abundance and diversity of nontarget arthropod predators, parasitoids, and selected pest taxa. Pesticide inputs and EIQ values were substantially lower in reduced-risk programs compared with conventional spray programs. Arthropod arrays differed significantly between pest management programs: most beneficial predator and parasitoid taxa were positively associated with the reduced-risk program and negatively associated with the standard grower program. Regardless of the pest management program, we observed significant differences in species arrays in the peach tree canopy compared with the ground cover of the orchards, but the arthropod community did not differ among the field sites or based on distance from the edge of the orchard. We conclude that reduced-risk programs not only provide control comparable with that of conventional programs, but they also reduce negative environmental effects while conserving key arthropod biological control agents within eastern U.S. peach orchards.

  16. Assessing Middle School Students' Knowledge of Conduct and Consequences and Their Behaviors regarding the Use of Social Networking Sites

    ERIC Educational Resources Information Center

    Kite, Stacey L.; Gable, Robert; Filippelli, Lawrence

    2010-01-01

    Cyberbullying and threats of Internet predators, not to mention the enduring consequences of postings, may lead to dangerous, unspeakable consequences. Cyberbullying and threats of Internet predators through social networking sites and instant messaging programs are initiating numerous problems for parents, school administrators, and law…

  17. Predator-prey models with component Allee effect for predator reproduction.

    PubMed

    Terry, Alan J

    2015-12-01

    We present four predator-prey models with component Allee effect for predator reproduction. Using numerical simulation results for our models, we describe how the customary definitions of component and demographic Allee effects, which work well for single species models, can be extended to predators in predator-prey models by assuming that the prey population is held fixed. We also find that when the prey population is not held fixed, then these customary definitions may lead to conceptual problems. After this discussion of definitions, we explore our four models, analytically and numerically. Each of our models has a fixed point that represents predator extinction, which is always locally stable. We prove that the predator will always die out either if the initial predator population is sufficiently small or if the initial prey population is sufficiently small. Through numerical simulations, we explore co-existence fixed points. In addition, we demonstrate, by simulation, the existence of a stable limit cycle in one of our models. Finally, we derive analytical conditions for a co-existence trapping region in three of our models, and show that the fourth model cannot possess a particular kind of co-existence trapping region. We punctuate our results with comments on their real-world implications; in particular, we mention the possibility of prey resurgence from mortality events, and the possibility of failure in a biological pest control program.

  18. Effects of marine reserves and urchin disease on southern Californian rocky reef communities

    USGS Publications Warehouse

    Behrens, Michael D.; Lafferty, Kevin D.

    2004-01-01

    While the species level effects of marine reserves are widely recognized, community level shifts due to marine reserves have only recently been documented. Protection from fishing of top predators may lead to trophic cascades, which have community-wide implications. Disease may act in a similar manner, regulating population levels of dominant species within a community. Two decades of data from the Channel Islands National Park Service's Kelp Forest Monitoring database allowed us to compare the effects of fishing and urchin disease on rocky reef community patterns and dynamics. Different size-frequency distributions of urchins inside and outside of reserves indicated reduced predation on urchins at sites where fishing removes urchin predators. Rocky reefs inside reserves were more likely to support kelp forests than were fished areas. We suggest that this results from cascading effects of the fishery on urchin predators outside the reserves, which releases herbivores (urchins) from predation. After periods of prevalent urchin disease, the reef community shifted more towards kelp forest assemblages. Specific groups of algae and invertebrates were associated with kelp forest and barrens communities. The community dynamics leading to transitions between kelp forests and barrens are driven by both fishing and disease; however the fishery effect was of greater magnitude. This study further confirms the importance of marine reserves not only for fisheries conservation, but also for the conservation of historically dominant community types.

  19. Functional response of sport divers to lobsters with application to fisheries management.

    PubMed

    Eggleston, David B; Parsons, Darren M; Kellison, G Todd; Plaia, Gayle R; Johnson, Eric G

    2008-01-01

    Fishery managers must understand the dynamics of fishers and their prey to successfully predict the outcome of management actions. We measured the impact of a two-day exclusively recreational fishery on Caribbean spiny lobster in the Florida Keys, USA, over large spatial scales (>100 km) and multiple years and used a theoretical, predator-prey functional response approach to identify whether or not sport diver catch rates were density-independent (type I) or density-dependent (type II or III functional response), and if catch rates were saturated (i.e., reached an asymptote) at relatively high lobster densities. We then describe how this predator-prey framework can be applied to fisheries management for spiny lobster and other species. In the lower Keys, divers exhibited a type-I functional response, whereby they removed a constant and relatively high proportion of lobsters (0.74-0.84) across all pre-fishing-season lobster densities. Diver fishing effort increased in a linear manner with lobster prey densities, as would be expected with a type-I functional response, and was an order of magnitude lower in the upper Keys than lower Keys. There were numerous instances in the upper Keys where the density of lobsters actually increased from before to after the fishing season, suggesting some type of "spill-in effect" from surrounding diver-disturbed areas. With the exception of isolated reefs in the upper Keys, the proportion of lobsters removed by divers was density independent (type-I functional response) and never reached saturation at natural lobster densities. Thus, recreational divers have a relatively simple predatory response to spiny lobster, whereby catch rates increase linearly with lobster density such that catch is a reliable indicator of abundance. Although diver predation is extremely high (approximately 80%), diver predation pressure is not expected to increase proportionally with a decline in lobster density (i.e., a depensatory response), which could exacerbate local extinction. Furthermore, management actions that reduce diver effort should have a concomitant and desired reduction in catch. The recreational diver-lobster predator-prey construct in this study provides a useful predictive framework to apply to both recreational and commercial fisheries, and on which to build as management actions are implemented.

  20. Context-dependent consumer control in New England tidal wetlands.

    PubMed

    Moore, Alexandria

    2018-01-01

    Recent studies in coastal wetlands have indicated that consumers may play an important role in regulating large-scale ecosystem processes. Predator removal experiments have shown significant differences in above-ground biomass production in the presence of higher level consumers, or predators. These results indicate that predators play an important role in regulating biomass production, but the extent to which this regulation impacts additional ecosystem functions, such as nutrient cycling and organic matter accumulation, is unclear. This study evaluated the impact that consumers have on large-scale ecosystem processes within southern New England tidal wetlands and contributes to the general understanding of trophic control in these systems. I established enclosure cages within three coastal wetlands and manipulated the presence of green crab predators to assess how trophic interactions affect ecosystem functions. Findings suggest that although these consumers may exert some top-down effects, other environmental factors, such as other consumers not studied here or bottom-up interactions, may variably play a larger role in the maintenance of ecosystem processes within the region. These results indicate that the loss of top-down control as an important mechanism influencing ecosystem functions may not hold for all wetlands along the full extent of the New England coastline.

  1. Context-dependent consumer control in New England tidal wetlands

    PubMed Central

    2018-01-01

    Recent studies in coastal wetlands have indicated that consumers may play an important role in regulating large-scale ecosystem processes. Predator removal experiments have shown significant differences in above-ground biomass production in the presence of higher level consumers, or predators. These results indicate that predators play an important role in regulating biomass production, but the extent to which this regulation impacts additional ecosystem functions, such as nutrient cycling and organic matter accumulation, is unclear. This study evaluated the impact that consumers have on large-scale ecosystem processes within southern New England tidal wetlands and contributes to the general understanding of trophic control in these systems. I established enclosure cages within three coastal wetlands and manipulated the presence of green crab predators to assess how trophic interactions affect ecosystem functions. Findings suggest that although these consumers may exert some top-down effects, other environmental factors, such as other consumers not studied here or bottom-up interactions, may variably play a larger role in the maintenance of ecosystem processes within the region. These results indicate that the loss of top-down control as an important mechanism influencing ecosystem functions may not hold for all wetlands along the full extent of the New England coastline. PMID:29771961

  2. Does a No-Take Marine Protected Area Benefit Seahorses?

    PubMed Central

    Harasti, David; Martin-Smith, Keith; Gladstone, William

    2014-01-01

    Seahorses are iconic charismatic species that are often used to ‘champion’ marine conservation causes around the world. As they are threatened in many countries by over-exploitation and habitat loss, marine protected areas (MPAs) could help with their protection and recovery. MPAs may conserve seahorses through protecting essential habitats and removing fishing pressures. Populations of White's seahorse, Hippocampus whitei, a species endemic to New South Wales, Australia, were monitored monthly from 2006 to 2009 using diver surveys at two sites within a no-take marine protected areas established in 1983, and at two control sites outside the no-take MPA sites. Predators of H. whitei were also identified and monitored. Hippocampus whitei were more abundant at the control sites. Seahorse predators (3 species of fish and 2 species of octopus) were more abundant within the no-take MPA sites. Seahorse and predator abundances were negatively correlated. Substantial variability in the seahorse population at one of the control sites reinforced the importance of long-term monitoring and use of multiple control sites to assess the outcomes of MPAs for seahorses. MPAs should be used cautiously to conserve seahorse populations as there is the risk of a negative impact through increased predator abundance. PMID:25137253

  3. Does a no-take marine protected area benefit seahorses?

    PubMed

    Harasti, David; Martin-Smith, Keith; Gladstone, William

    2014-01-01

    Seahorses are iconic charismatic species that are often used to 'champion' marine conservation causes around the world. As they are threatened in many countries by over-exploitation and habitat loss, marine protected areas (MPAs) could help with their protection and recovery. MPAs may conserve seahorses through protecting essential habitats and removing fishing pressures. Populations of White's seahorse, Hippocampus whitei, a species endemic to New South Wales, Australia, were monitored monthly from 2006 to 2009 using diver surveys at two sites within a no-take marine protected areas established in 1983, and at two control sites outside the no-take MPA sites. Predators of H. whitei were also identified and monitored. Hippocampus whitei were more abundant at the control sites. Seahorse predators (3 species of fish and 2 species of octopus) were more abundant within the no-take MPA sites. Seahorse and predator abundances were negatively correlated. Substantial variability in the seahorse population at one of the control sites reinforced the importance of long-term monitoring and use of multiple control sites to assess the outcomes of MPAs for seahorses. MPAs should be used cautiously to conserve seahorse populations as there is the risk of a negative impact through increased predator abundance.

  4. Aquatic insect predators and mosquito control.

    PubMed

    Shaalan, Essam Abdel-Salam; Canyon, Deon V

    2009-12-01

    Mosquitoes are serious biting pests and obligate vectors of many vertebrate pathogens. Their immature larval and pupal life stages are a common feature in most tropical and many temperate water bodies and often form a significant proportion of the biomass. Control strategies rely primarily on the use of larvicides and environmental modification to reduce recruitment and adulticides during periods of disease transmission. Larvicides are usually chemical but can involve biological toxins, agents or organisms. The use of insect predators in mosquito control has been exploited in a limited fashion and there is much room for further investigation and implementation. Insects that are recognized as having predatorial capacity with regard to mosquito prey have been identified in the Orders Odonata, Coleoptera, Diptera (primarily aquatic predators), and Hemiptera (primarily surface predators). Although their capacity is affected by certain biological and physical factors, they could play a major role in mosquito control. Furthermore, better understanding for the mosquitoes-predators relationship(s) could probably lead to satisfactory reduction of mosquito-borne diseases by utilizing either these predators in control programs, for instance biological and/or integrated control, or their kairomones as mosquitoes' ovipoisting repellents. This review covers the predation of different insect species on mosquito larvae, predator-prey-habitat relationships, co-habitation developmental issues, survival and abundance, oviposition avoidance, predatorial capacity and integrated vector control.

  5. Predation by Resident Fish on Juvenile Salmonids in John Day Reservoir: Final Report, 1983-1986: Volume 1, Final Report of Research.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poe, Thomas P.; Rieman, Bruce E.

    1988-07-01

    In 1982 the NPPC included in its Fish and Wildlife Program a measure that called for studies ''... to investigate juvenile salmon and steelhead losses to predators while these fish are migrating through Columbia and Snake River reservoirs.'' In the same year the Bonneville Power Administration (BPA) funded ODFW and FWS to conduct collaborative studies to estimate the number of juvenile salmonids lost to predators in John Day Reservoir. Also included as study objectives were: (1) a description of the importance of predation losses relative to mortality at the dam and total reservoir mortality; (2) a description of how predationmore » losses might vary (spatially and temporally); and (3) recommendations of measures to control predation on smolts. We studied four species of predator: northern squawfish, walleye, smallmouth bass, and channel catfish. We selected John Day Reservoir as the study site because the following factors led us to believe if predation was a problem in any reservoir, it would be most obvious there because: (1) the reservoir is an important subyearling chinook rearing area; (2) passage and residualism of juvenile salmonids were considered a problem there; and (3) substantial populations of predators were known to reside in the reservoir. Individual reports were processed separately for the data base.« less

  6. The Relative Impact of Warming and Removing Top Predators on the Northeast US Large Marine Biotic Community

    EPA Science Inventory

    Ecosystem-based fisheries management necessitates that we take a more holistic view of the many factors affecting ecosystems. All too often, perturbations to fisheries ecosystems are studied in isolation even though there may be important interactions among them that yield unexpe...

  7. Toward a trophic theory of species diversity

    PubMed Central

    Terborgh, John W.

    2015-01-01

    Efforts to understand the ecological regulation of species diversity via bottom-up approaches have failed to yield a consensus theory. Theories based on the alternative of top-down regulation have fared better. Paine’s discovery of keystone predation demonstrated that the regulation of diversity via top-down forcing could be simple, strong, and direct, yet ecologists have persistently failed to perceive generality in Paine’s result. Removing top predators destabilizes many systems and drives transitions to radically distinct alternative states. These transitions typically involve community reorganization and loss of diversity, implying that top-down forcing is crucial to diversity maintenance. Contrary to the expectations of bottom-up theories, many terrestrial herbivores and mesopredators are capable of sustained order-of-magnitude population increases following release from predation, negating the assumption that populations of primary consumers are resource limited and at or near carrying capacity. Predation sensu lato (to include Janzen–Connell mortality agents) has been shown to promote diversity in a wide range of ecosystems, including rocky intertidal shelves, coral reefs, the nearshore ocean, streams, lakes, temperate and tropical forests, and arctic tundra. The compelling variety of these ecosystems suggests that top-down forcing plays a universal role in regulating diversity. This conclusion is further supported by studies showing that the reduction or absence of predation leads to diversity loss and, in the more dramatic cases, to catastrophic regime change. Here, I expand on the thesis that diversity is maintained by the interaction between predation and competition, such that strong top-down forcing reduces competition, allowing coexistence. PMID:26374788

  8. Space-time clusters for early detection of grizzly bear predation.

    PubMed

    Kermish-Wells, Joseph; Massolo, Alessandro; Stenhouse, Gordon B; Larsen, Terrence A; Musiani, Marco

    2018-01-01

    Accurate detection and classification of predation events is important to determine predation and consumption rates by predators. However, obtaining this information for large predators is constrained by the speed at which carcasses disappear and the cost of field data collection. To accurately detect predation events, researchers have used GPS collar technology combined with targeted site visits. However, kill sites are often investigated well after the predation event due to limited data retrieval options on GPS collars (VHF or UHF downloading) and to ensure crew safety when working with large predators. This can lead to missing information from small-prey (including young ungulates) kill sites due to scavenging and general site deterioration (e.g., vegetation growth). We used a space-time permutation scan statistic (STPSS) clustering method (SaTScan) to detect predation events of grizzly bears ( Ursus arctos ) fitted with satellite transmitting GPS collars. We used generalized linear mixed models to verify predation events and the size of carcasses using spatiotemporal characteristics as predictors. STPSS uses a probability model to compare expected cluster size (space and time) with the observed size. We applied this method retrospectively to data from 2006 to 2007 to compare our method to random GPS site selection. In 2013-2014, we applied our detection method to visit sites one week after their occupation. Both datasets were collected in the same study area. Our approach detected 23 of 27 predation sites verified by visiting 464 random grizzly bear locations in 2006-2007, 187 of which were within space-time clusters and 277 outside. Predation site detection increased by 2.75 times (54 predation events of 335 visited clusters) using 2013-2014 data. Our GLMMs showed that cluster size and duration predicted predation events and carcass size with high sensitivity (0.72 and 0.94, respectively). Coupling GPS satellite technology with clusters using a program based on space-time probability models allows for prompt visits to predation sites. This enables accurate identification of the carcass size and increases fieldwork efficiency in predation studies.

  9. How does abundance scale with body size in coupled size-structured food webs?

    PubMed

    Blanchard, Julia L; Jennings, Simon; Law, Richard; Castle, Matthew D; McCloghrie, Paul; Rochet, Marie-Joëlle; Benoît, Eric

    2009-01-01

    1. Widely observed macro-ecological patterns in log abundance vs. log body mass of organisms can be explained by simple scaling theory based on food (energy) availability across a spectrum of body sizes. The theory predicts that when food availability falls with body size (as in most aquatic food webs where larger predators eat smaller prey), the scaling between log N vs. log m is steeper than when organisms of different sizes compete for a shared unstructured resource (e.g. autotrophs, herbivores and detritivores; hereafter dubbed 'detritivores'). 2. In real communities, the mix of feeding characteristics gives rise to complex food webs. Such complexities make empirical tests of scaling predictions prone to error if: (i) the data are not disaggregated in accordance with the assumptions of the theory being tested, or (ii) the theory does not account for all of the trophic interactions within and across the communities sampled. 3. We disaggregated whole community data collected in the North Sea into predator and detritivore components and report slopes of log abundance vs. log body mass relationships. Observed slopes for fish and epifaunal predator communities (-1.2 to -2.25) were significantly steeper than those for infaunal detritivore communities (-0.56 to -0.87). 4. We present a model describing the dynamics of coupled size spectra, to explain how coupling of predator and detritivore communities affects the scaling of log N vs. log m. The model captures the trophic interactions and recycling of material that occur in many aquatic ecosystems. 5. Our simulations demonstrate that the biological processes underlying growth and mortality in the two distinct size spectra lead to patterns consistent with data. Slopes of log N vs. log m were steeper and growth rates faster for predators compared to detritivores. Size spectra were truncated when primary production was too low for predators and when detritivores experienced predation pressure. 6. The approach also allows us to assess the effects of external sources of mortality (e.g. harvesting). Removal of large predators resulted in steeper predator spectra and increases in their prey (small fish and detritivores). The model predictions are remarkably consistent with observed patterns of exploited ecosystems.

  10. Hand in Hand: Media Literacy and Internet Safety

    ERIC Educational Resources Information Center

    Gallagher, Frank

    2011-01-01

    Internet safety cannot be effectively taught without also teaching media literacy. The two go hand in hand, and both are necessary, but neither is sufficient. To understand why, it is important to first appreciate what the real risks to children are. Many of the early Internet safety programs were based on a fear of predators. Predators turned out…

  11. Biomass, size, and trophic status of top predators in the Pacific Ocean.

    PubMed

    Sibert, John; Hampton, John; Kleiber, Pierre; Maunder, Mark

    2006-12-15

    Fisheries have removed at least 50 million tons of tuna and other top-level predators from the Pacific Ocean pelagic ecosystem since 1950, leading to concerns about a catastrophic reduction in population biomass and the collapse of oceanic food chains. We analyzed all available data from Pacific tuna fisheries for 1950-2004 to provide comprehensive estimates of fishery impacts on population biomass and size structure. Current biomass ranges among species from 36 to 91% of the biomass predicted in the absence of fishing, a level consistent with or higher than standard fisheries management targets. Fish larger than 175 centimeters fork length have decreased from 5% to approximately 1% of the total population. The trophic level of the catch has decreased slightly, but there is no detectable decrease in the trophic level of the population. These results indicate substantial, though not catastrophic, impacts of fisheries on these top-level predators and minor impacts on the ecosystem in the Pacific Ocean.

  12. Intraguild relationships between sympatric predators exposed to lethal control: predator manipulation experiments

    PubMed Central

    2013-01-01

    Introduction Terrestrial top-predators are expected to regulate and stabilise food webs through their consumptive and non-consumptive effects on sympatric mesopredators and prey. The lethal control of top-predators has therefore been predicted to inhibit top-predator function, generate the release of mesopredators and indirectly harm native fauna through trophic cascade effects. Understanding the outcomes of lethal control on interactions within terrestrial predator guilds is important for zoologists, conservation biologists and wildlife managers. However, few studies have the capacity to test these predictions experimentally, and no such studies have previously been conducted on the eclectic suite of native and exotic, mammalian and reptilian taxa we simultaneously assess. We conducted a series of landscape-scale, multi-year, manipulative experiments at nine sites spanning five ecosystem types across the Australian continental rangelands to investigate the responses of mesopredators (red foxes, feral cats and goannas) to contemporary poison-baiting programs intended to control top-predators (dingoes) for livestock protection. Result Short-term behavioural releases of mesopredators were not apparent, and in almost all cases, the three mesopredators we assessed were in similar or greater abundance in unbaited areas relative to baited areas, with mesopredator abundance trends typically either uncorrelated or positively correlated with top-predator abundance trends over time. The exotic mammals and native reptile we assessed responded similarly (poorly) to top-predator population manipulation. This is because poison baits were taken by multiple target and non-target predators and top-predator populations quickly recovered to pre-control levels, thus reducing the overall impact of baiting on top-predators and averting a trophic cascade. Conclusions These results are in accord with other predator manipulation experiments conducted worldwide, and suggest that Australian populations of native prey fauna at lower trophic levels are unlikely to be negatively affected by contemporary dingo control practices through the release of mesopredators. We conclude that contemporary lethal control practices used on some top-predator populations do not produce the conditions required to generate positive responses from mesopredators. Functional relationships between sympatric terrestrial predators may not be altered by exposure to spatially and temporally sporadic application of non-selective lethal control. PMID:23842144

  13. Intraguild relationships between sympatric predators exposed to lethal control: predator manipulation experiments.

    PubMed

    Allen, Benjamin L; Allen, Lee R; Engeman, Richard M; Leung, Luke K-P

    2013-07-10

    Terrestrial top-predators are expected to regulate and stabilise food webs through their consumptive and non-consumptive effects on sympatric mesopredators and prey. The lethal control of top-predators has therefore been predicted to inhibit top-predator function, generate the release of mesopredators and indirectly harm native fauna through trophic cascade effects. Understanding the outcomes of lethal control on interactions within terrestrial predator guilds is important for zoologists, conservation biologists and wildlife managers. However, few studies have the capacity to test these predictions experimentally, and no such studies have previously been conducted on the eclectic suite of native and exotic, mammalian and reptilian taxa we simultaneously assess. We conducted a series of landscape-scale, multi-year, manipulative experiments at nine sites spanning five ecosystem types across the Australian continental rangelands to investigate the responses of mesopredators (red foxes, feral cats and goannas) to contemporary poison-baiting programs intended to control top-predators (dingoes) for livestock protection. Short-term behavioural releases of mesopredators were not apparent, and in almost all cases, the three mesopredators we assessed were in similar or greater abundance in unbaited areas relative to baited areas, with mesopredator abundance trends typically either uncorrelated or positively correlated with top-predator abundance trends over time. The exotic mammals and native reptile we assessed responded similarly (poorly) to top-predator population manipulation. This is because poison baits were taken by multiple target and non-target predators and top-predator populations quickly recovered to pre-control levels, thus reducing the overall impact of baiting on top-predators and averting a trophic cascade. These results are in accord with other predator manipulation experiments conducted worldwide, and suggest that Australian populations of native prey fauna at lower trophic levels are unlikely to be negatively affected by contemporary dingo control practices through the release of mesopredators. We conclude that contemporary lethal control practices used on some top-predator populations do not produce the conditions required to generate positive responses from mesopredators. Functional relationships between sympatric terrestrial predators may not be altered by exposure to spatially and temporally sporadic application of non-selective lethal control.

  14. The role of landowners in jaguar conservation in Sonora, Mexico.

    PubMed

    Rosas-Rosas, Octavio C; Valdez, Raul

    2010-04-01

    The northernmost known breeding population of jaguars occurs in the municipality of Nácori Chico, Sonora, Mexico about 270 km from the United States-Mexico border and may be the source from which jaguars sighted in the United States dispersed. Since 1999 at least 11 jaguars (Panthera onca) had been illegally killed in the area due to predator control programs. We initiated a jaguar landowner-based conservation plan in 2004. The eight participating landowners agreed to suspend predator control programs targeting jaguars and pumas (Puma concolor) only if cattle losses were compensated. A private outfitter, with the consent of landowners, initiated white-tailed deer (Odocoileus virginianus) hunts in 2004 and agreed to pay the group of participating landowners US$1500 for every deer hunt permit sold. The funds paid to the landowners from deer hunts were sufficient to convince landowners to suspend all predator-control efforts of jaguars and pumas. The involvement of landowners in the jaguar conservation program in northeastern Sonora is a successful, private, wildlife-conservation initiative that provides an example for jaguar conservation efforts in northern Mexico.

  15. Compensatory mechanisms in fish populations: Literature reviews: Volume 2, Compensation in fish populations subject to catastrophic impact: Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jude, D.J.; Mansfield, P.J.; Schneeberger, P.J.

    1987-05-01

    This study comprises an extensive literature review, critical evaluations of case histories, and considered recommendations for future research on the mechanisms and extent of compensation by various fish species subject to catastrophic impacts. ''Catastrophic impact'' was defined as an event which removes some limitation (such as food or space) on a fish population. Those events studied included new species introduction, toxic spills, exploitation of specific fish populations, and drawdown. The fish studied each had more than one compensatory mechanism available, and thus were able to respond to a catastrophic event even if an option was removed. Predation, overfishing, competition, disease,more » and parasitism are all potential catastrophies, but were found not to cause a catastrophic impact (except in special cases). In general, compensatory responses were determined to vary widely, even for species which perform fairly similar functions in an ecosystem. The extensive nature of this study, however, pointed up the many data gaps in the existing literature; recommendations are therefore made for followup research and expansion of ongoing monitoring programs, based on an evaluation of their relative importance.« less

  16. Coyote removal, understory cover, and survival of white-tailed deer neonates

    Treesearch

    John C. Kilgo; Mark Vukovich; H. Scott Ray; Christopher E. Shaw; Charles Ruth

    2014-01-01

    Predation by coyotes (Canis latrans) on white-tailed deer (Odocoileus virginianus) neonates has led to reduced recruitment in many deer populations in southeastern North America. This low recruitment combined with liberal antlerless deer harvest has resulted in declines in some deer populations, and consequently, increased interest in coyote population control. We...

  17. Direct and indirect trophic effects of predator depletion on basal trophic levels.

    PubMed

    Chen, Huili; Hagerty, Steven; Crotty, Sinead M; Bertness, Mark D

    2016-02-01

    Human population growth and development have heavily degraded coastal ecosystems with cascading impacts across multiple trophic levels. Understanding both the direct and indirect trophic effects of human activities is important for coastal conservation. In New England, recreational overfishing has triggered a regional trophic cascade. Predator depletion releases the herbivorous purple marsh crab from consumer control and leads to overgrazing of marsh cordgrass and salt marsh die-off. The direct and indirect trophic effects of predator depletion on basal trophic levels, however, are not understood. Using observational and experimental data, we examined the hypotheses that (1) direct trophic effects of predator depletion decrease meiofaunal abundance by releasing deposit feeding fiddler crabs from consumer control, and/or (2) indirect trophic effects of predator depletion increase meiofaunal abundance by releasing blue carbon via the erosion of centuries of accreted marsh peat. Experimental deposit feeder removal led to 23% higher meiofaunal density at die-off than at healthy sites, while reciprocally transplanting sediment from die-off and healthy sites revealed that carbon-rich die-off sediment increased meiofauna density by over 164%: six times stronger than direct trophic effects. Recovering sites had both carbon-rich sediment and reduced deposit feeding leading to higher meiofauna densities than both die-off and healthy sites. This suggests that consequences of the trophic downgrading of coastal habitats can be driven by both direct and indirect trophic mechanisms that may vary in direction and magnitude, making their elucidation dependent on experimental manipulations.

  18. Predation and landscape characteristics independently affect reef fish community organization.

    PubMed

    Stier, Adrian C; Hanson, Katharine M; Holbrook, Sally J; Schmitt, Russell J; Brooks, Andrew J

    2014-05-01

    Trophic island biogeography theory predicts that the effects of predators on prey diversity are context dependent in heterogeneous landscapes. Specifically, models predict that the positive effect of habitat area on prey diversity should decline in the presence of predators, and that predators should modify the partitioning of alpha and beta diversity across patchy landscapes. However, experimental tests of the predicted context dependency in top-down control remain limited. Using a factorial field experiment we quantify the effects of a focal predatory fish species (grouper) and habitat characteristics (patch size, fragmentation) on the partitioning of diversity and assembly of coral reef fish communities. We found independent effects of groupers and patch characteristics on prey communities. Groupers reduced prey abundance by 50% and gamma diversity by 45%, with a disproportionate removal of rare species relative to common species (64% and 36% reduction, respectively; an oddity effect). Further, there was a 77% reduction in beta diversity. Null model analysis demonstrated that groupers increased the importance of stochastic community assembly relative to patches without groupers. With regard to patch size, larger patches contained more fishes, but a doubling of patch size led to a modest (36%) increase in prey abundance. Patch size had no effect on prey diversity; however, fragmented patches had 50% higher species richness and modified species composition relative to unfragmented patches. Our findings suggest two different pathways (i.e., habitat or predator shifts) by which natural and/or anthropogenic processes can drive variation in fish biodiversity and community assembly.

  19. Managing a subsidized predator population: Reducing common raven predation on desert tortoises

    USGS Publications Warehouse

    Boarman, W.I.

    2003-01-01

    Human communities often are an inadvertent source of food, water, and other resources to native species of wildlife. Because these resources are more stable and predictable than those in a natural environment, animals that subsist on them are able to increase in numbers and expand their range, much to the detriment of their competitors and species they prey upon. In the Mojave Desert, common ravens (Corvus corax) have benefited from human-provided resources to increase in population size precipitously in recent years. This trend has caused concern because ravens prey on juvenile desert tortoises (Gopherus agassizii), a federally threatened species. In this paper, I discuss management strategies to reduce raven predation on desert tortoises. The recommendations fall into three categories: (1) managing raven populations by reducing access to anthropogenic resources; (2) removing offending ravens or other birds in specially targeted tortoise management zones; and (3) continuing research on raven ecology, raven behavior, and methods of reducing raven predation on tortoises. I also recommend approaching the problem within an adaptive management framework: management efforts should first be employed as scientific experiments - with replicates and controls - to yield an unbiased assessment of their effectiveness. Furthermore, these strategies should be implemented in concert with actions that reduce other causes of desert tortoise mortality to aid the long-term recovery of their populations. Overall, the approaches outlined in this paper are widely applicable to the management of subsidized predators, particularly where they present a threat to a declining species of prey.

  20. Effects of rodent species, seed species, and predator cues on seed fate

    NASA Astrophysics Data System (ADS)

    Sivy, Kelly J.; Ostoja, Steven M.; Schupp, Eugene W.; Durham, Susan

    2011-07-01

    Seed selection, removal and subsequent management by granivorous animals is thought to be a complex interaction of factors including qualities of the seeds themselves (e.g., seed size, nutritional quality) and features of the local habitat (e.g. perceived predator risk). At the same time, differential seed selection and dispersal is thought to have profound effects on seed fate and potentially vegetation dynamics. In a feeding arena, we tested whether rodent species, seed species, and indirect and direct predation cues influence seed selection and handling behaviors (e.g., scatter hoarding versus larder hoarding) of two heteromyid rodents, Ord's kangaroo rat ( Dipodomys ordii) and the Great Basin pocket mouse ( Perognathus parvus). The indirect cue was shrub cover, a feature of the environment. Direct cues, presented individually, were (1) control, (2) coyote ( Canis latrans) vocalization, (3) coyote scent, (4) red fox ( Vulpes vulpes) scent, or (5) short-eared owl ( Asio flammeus) vocalization. We offered seeds of three sizes: two native grasses, Indian ricegrass ( Achnatherum hymenoides) and bluebunch wheatgrass ( Pseudoroegneria spicata), and the non-native cereal rye ( Secale cereale), each in separate trays. Kangaroo rats preferentially harvested Indian ricegrass while pocket mice predominately harvested Indian ricegrass and cereal rye. Pocket mice were more likely to scatter hoard preferred seeds, whereas kangaroo rats mostly consumed and/or larder hoarded preferred seeds. No predator cue significantly affected seed preferences. However, both species altered seed handling behavior in response to direct predation cues by leaving more seeds available in the seed pool, though they responded to different predator cues. If these results translate to natural dynamics on the landscape, the two rodents are expected to have different impacts on seed survival and plant recruitment via their different seed selection and seed handling behaviors.

  1. Effects of rodent species, seed species, and predator cues on seed fate

    USGS Publications Warehouse

    Sivy, Kelly J.; Ostoja, Steven M.; Schupp, Eugene W.; Durham, Susan

    2011-01-01

    Seed selection, removal and subsequent management by granivorous animals is thought to be a complex interaction of factors including qualities of the seeds themselves (e.g., seed size, nutritional quality) and features of the local habitat (e.g. perceived predator risk). At the same time, differential seed selection and dispersal is thought to have profound effects on seed fate and potentially vegetation dynamics. In a feeding arena, we tested whether rodent species, seed species, and indirect and direct predation cues influence seed selection and handling behaviors (e.g., scatter hoarding versus larder hoarding) of two heteromyid rodents, Ord's kangaroo rat (Dipodomys ordii) and the Great Basin pocket mouse (Perognathus parvus). The indirect cue was shrub cover, a feature of the environment. Direct cues, presented individually, were (1) control, (2) coyote (Canis latrans) vocalization, (3) coyote scent, (4) red fox (Vulpes vulpes) scent, or (5) short-eared owl (Asio flammeus) vocalization. We offered seeds of three sizes: two native grasses, Indian ricegrass (Achnatherum hymenoides) and bluebunch wheatgrass (Pseudoroegneria spicata), and the non-native cereal rye (Secale cereale), each in separate trays. Kangaroo rats preferentially harvested Indian ricegrass while pocket mice predominately harvested Indian ricegrass and cereal rye. Pocket mice were more likely to scatter hoard preferred seeds, whereas kangaroo rats mostly consumed and/or larder hoarded preferred seeds. No predator cue significantly affected seed preferences. However, both species altered seed handling behavior in response to direct predation cues by leaving more seeds available in the seed pool, though they responded to different predator cues. If these results translate to natural dynamics on the landscape, the two rodents are expected to have different impacts on seed survival and plant recruitment via their different seed selection and seed handling behaviors.

  2. Re-colonization by common eiders Somateria mollissima in the Aleutian Archipelago following removal of introduced arctic foxes Vulpes lagopus

    USGS Publications Warehouse

    Petersen, Margaret R.; Sonsthagen, Sarah A.; Sexson, Matthew G.

    2015-01-01

    Islands provide refuges for populations of many species where they find safety from predators, but the introduction of predators frequently results in elimination or dramatic reductions in island-dwelling organisms. When predators are removed, re-colonization for some species occurs naturally, and inter-island phylogeographic relationships and current movement patterns can illuminate processes of colonization. We studied a case of re-colonization of common eiders Somateria mollissima following removal of introduced arctic foxes Vulpes lagopus in the Aleutian Archipelago, Alaska. We expected common eiders to resume nesting on islands cleared of foxes and to re-colonize from nearby islets, islands, and island groups. We thus expected common eiders to show limited genetic structure indicative of extensive mixing among island populations. Satellite telemetry was used to record current movement patterns of female common eiders from six islands across three island groups. We collected genetic data from these and other nesting common eiders at 14 microsatellite loci and the mitochondrial DNA control region to examine population genetic structure, historical fluctuations in population demography, and gene flow. Our results suggest recent interchange among islands. Analysis of microsatellite data supports satellite telemetry data of increased dispersal of common eiders to nearby areas and little between island groups. Although evidence from mtDNA is suggestive of female dispersal among island groups, gene flow is insufficient to account for recolonization and rapid population growth. Instead, near-by remnant populations of common eiders contributed substantially to population expansion, without which re-colonization would have likely occurred at a much lower rate. Genetic and morphometric data of common eiders within one island group two and three decades after re-colonization suggests reduced movement of eiders among islands and little movement between island groups after populations were re-established. We predict that re-colonization of an island group where all common eiders are extirpated could take decades.

  3. Seasonal Effects of Habitat on Sources and Rates of Snowshoe Hare Predation in Alaskan Boreal Forests.

    PubMed

    Feierabend, Dashiell; Kielland, Knut

    2015-01-01

    Survival and predation of snowshoe hares (Lepus americanus) has been widely studied, yet there has been little quantification of the changes in vulnerability of hares to specific predators that may result from seasonal changes in vegetation and cover. We investigated survival and causes of mortalities of snowshoe hares during the late increase, peak, and decline of a population in interior Alaska. From June 2008 to May 2012, we radio-tagged 288 adult and older juvenile hares in early successional and black spruce (Picea mariana) forests and, using known-fate methods in program MARK, evaluated 85 survival models that included variables for sex, age, and body condition of hares, as well as trapping site, month, season, year, snowfall, snow depth, and air temperature. We compared the models using Akaike's information criterion with correction for small sample size. Model results indicated that month, capture site, and body condition were the most important variables in explaining survival rates. Survival was highest in July, and more generally during summer, when alternative prey was available to predators of hares. Low survival rates coincided with molting periods, breeding activity in the spring, and the introduction of juveniles to the sample population in the fall. We identified predation as the cause of mortality in 86% of hare deaths. When the source of predation could be determined, hares were killed more often by goshawks (Accipiter gentilis) than other predators in early successional forest (30%), and more often by lynx (Lynx canadensis) than other predators in black spruce forest (31%). Great horned owls (Bubo virginianus) and coyotes (Canis latrans) represented smaller proportions of hare predation, and non-predatory causes were a minor source (3%) of mortality. Because hares rely on vegetative cover for concealment from predators, we measured cover in predation sites and habitats that the hares occupied and concluded that habitat type had a greater influence on the sources of predation than the amount of cover in any given location within a habitat. Our observations illustrate the vulnerability of hares to predators in even the densest coniferous habitat available in the boreal forest, and indicate strong seasonal changes in the rates and sources of predation.

  4. Implications of Habitat Loss on Seed Predation and Early Recruitment of a Keystone Palm in Anthropogenic Landscapes in the Brazilian Atlantic Rainforest.

    PubMed

    Soares, Leiza Aparecida S S; Faria, Deborah; Vélez-Garcia, Felipe; Vieira, Emerson M; Talora, Daniela C; Cazetta, Eliana

    2015-01-01

    Habitat loss is the main driver of the loss of global biodiversity. Knowledge on this subject, however, is highly concentrated on species richness and composition patterns, with little discussion on the consequences of habitat loss for ecological interactions. Therefore, a systemic approach is necessary to maximize the success of conservation efforts by providing more realistic information about the effects of anthropogenic disturbances on natural environmental processes. We investigated the implications of habitat loss for the early recruitment of Euterpe edulis Martius, a keystone palm in the Brazilian Atlantic Forest, in nine sampling sites located in landscapes with different percentages of forest cover (9%-83%). We conducted a paired experiment using E. Edulis seeds set up in experimental stations composed of a vertebrate exclosure versus an open treatment. We used ANCOVA models with treatments as factors to assess the influence of habitat loss on the number of germinated seeds, predation by vertebrates and invertebrates, infestation by fungi, and number of seedlings established. Habitat loss did not affect the probability of transition from a dispersed to a germinated seed. However, when seeds were protected from vertebrate removal, seedling recruitment showed a positive relationship with the amount of forest cover. Seed infestation by fungi was not significant, and seed predation was the main factor limiting seed recruitment. The loss of forest cover antagonistically affected the patterns of seed predation by vertebrates and invertebrates; predation by invertebrates was higher in less forested areas, and predation by vertebrates was higher in forested areas. When seeds were exposed to the action of all biotic mortality factors, the number of recruited seedlings was very low and unrelated to habitat loss. This result indicates that the opposite effects of seed predation by vertebrates and invertebrates mask a differential response of E. edulis recruitment to habitat loss.

  5. Implications of Habitat Loss on Seed Predation and Early Recruitment of a Keystone Palm in Anthropogenic Landscapes in the Brazilian Atlantic Rainforest

    PubMed Central

    Soares, Leiza Aparecida S. S.; Faria, Deborah; Vélez-Garcia, Felipe; Vieira, Emerson M.; Talora, Daniela C.; Cazetta, Eliana

    2015-01-01

    Habitat loss is the main driver of the loss of global biodiversity. Knowledge on this subject, however, is highly concentrated on species richness and composition patterns, with little discussion on the consequences of habitat loss for ecological interactions. Therefore, a systemic approach is necessary to maximize the success of conservation efforts by providing more realistic information about the effects of anthropogenic disturbances on natural environmental processes. We investigated the implications of habitat loss for the early recruitment of Euterpe edulis Martius, a keystone palm in the Brazilian Atlantic Forest, in nine sampling sites located in landscapes with different percentages of forest cover (9%-83%). We conducted a paired experiment using E. Edulis seeds set up in experimental stations composed of a vertebrate exclosure versus an open treatment. We used ANCOVA models with treatments as factors to assess the influence of habitat loss on the number of germinated seeds, predation by vertebrates and invertebrates, infestation by fungi, and number of seedlings established. Habitat loss did not affect the probability of transition from a dispersed to a germinated seed. However, when seeds were protected from vertebrate removal, seedling recruitment showed a positive relationship with the amount of forest cover. Seed infestation by fungi was not significant, and seed predation was the main factor limiting seed recruitment. The loss of forest cover antagonistically affected the patterns of seed predation by vertebrates and invertebrates; predation by invertebrates was higher in less forested areas, and predation by vertebrates was higher in forested areas. When seeds were exposed to the action of all biotic mortality factors, the number of recruited seedlings was very low and unrelated to habitat loss. This result indicates that the opposite effects of seed predation by vertebrates and invertebrates mask a differential response of E. edulis recruitment to habitat loss. PMID:26186339

  6. The influence of coyotes on an urban Canada goose population in the Chicago metropolitan area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Justin L.; /Ohio State U.

    Canada geese (Branta canadensis) have become common in many urban areas, often creating nuisance problems for human residents. The presence of urban geese has raised concerns about the spread of disease, increased erosion, excessive noise, eutrophication of waterways, and general nuisance problems. Goose populations have grown due to an increase in urbanization resulting in an abundance of high quality food (urban grass) and suitable nesting sites, as well as a decrease in some predators. I monitored nest predation in the Chicago suburbs during the 2004 and 2005 nesting seasons using 3 nest monitoring techniques to identify predators: video cameras, plasticinemore » eggs, and sign from nest using a classification tree analysis. Of 58 nests monitored in 2004 and 286 in 2005, only raccoons (Procyon lotor) and coyotes (Canis latrans) were identified as nest predators. Raccoons were responsible for 22-25% of depredated nests, but were rarely capable of depredating nests that were actively defended by a goose. Coyotes were responsible for 75-78% of all Canada goose nest depredation and were documented killing one adult goose and feeding on several others. The coyote is a top-level predator that had increased in many metropolitan areas in recent years. To determine if coyotes were actively hunting geese or eggs during the nesting season, I analyzed coyote habitat selection between nesting and pre-nesting or post-nesting seasons. Coyote home ranges (95% Minimum Convex Polygon) were calculated for 19 coyotes to examine third order habitat selection related to goose nest abundance. A 100 m buffer (buffer habitat) was created and centered on each waterway edge and contained 90% of all nests. Coyotes showed selection for habitats during all seasons. Buffer habitat was the top ranked habitat in both pre-nesting and nesting seasons, but dropped to third ranked in post-nesting season. Habitat selection across seasons was compared using a repeated measures MANOVA. Habitat selection between pre-nesting and nesting seasons (P=0.72) were similar, while between post-nesting and nesting seasons there was a nearly significant difference (P=0.07). The insignificant change in habitat use across seasons suggests that coyotes did not switch habitat use to take advantage of goose nests. Alternatively, the change in ranking of buffer habitat across seasons suggests that coyotes may have switched habitat use to take advantage of goose nests. The results are not clear as large individual variation between coyotes due to differences in habitat availability, and social status interfere with the results of the analysis. Even though I failed to find strong support for coyotes actively hunting goose nests, they nevertheless were the primary nest predator in the area and may influence Canada goose populations. To determine the potential influence of coyotes on the Canada goose population, I created a Canada goose matrix population model that included variables such as coyote predation on adults and nests as well as coyote influence on nest desertion. Using the base population model I calculated the Canada goose population to be increasing with {lambda} = 1.055. The removal of all coyote influence on the goose population would allow {lambda} to increase to 1.214. Nest predation was the most important factor related to coyotes: the removal of coyote nest predation from the model resulted in a population growth rate {lambda} = 1.157. Modeling results suggest coyotes are serving as a limiting factor for the Canada goose population within the Chicago metropolitan area.« less

  7. Avian Conservation Practices Strengthen Ecosystem Services in California Vineyards

    PubMed Central

    Jedlicka, Julie A.; Greenberg, Russell; Letourneau, Deborah K.

    2011-01-01

    Insectivorous Western Bluebirds (Sialia mexicana) occupy vineyard nest boxes established by California winegrape growers who want to encourage avian conservation. Experimentally, the provision of available nest sites serves as an alternative to exclosure methods for isolating the potential ecosystem services provided by foraging birds. We compared the abundance and species richness of avian foragers and removal rates of sentinel prey in treatments with songbird nest boxes and controls without nest boxes. The average species richness of avian insectivores increased by over 50 percent compared to controls. Insectivorous bird density nearly quadrupled, primarily due to a tenfold increase in Western Bluebird abundance. In contrast, there was no significant difference in the abundance of omnivorous or granivorous bird species some of which opportunistically forage on grapes. In a sentinel prey experiment, 2.4 times more live beet armyworms (Spodoptera exigua) were removed in the nest box treatment than in the control. As an estimate of the maximum foraging services provided by insectivorous birds, we found that larval removal rates measured immediately below occupied boxes averaged 3.5 times greater than in the control. Consequently the presence of Western Bluebirds in vineyard nest boxes strengthened ecosystem services to winegrape growers, illustrating a benefit of agroecological conservation practices. Predator addition and sentinel prey experiments lack some disadvantages of predator exclusion experiments and were robust methodologies for detecting ecosystem services. PMID:22096555

  8. Avian conservation practices strengthen ecosystem services in California vineyards.

    PubMed

    Jedlicka, Julie A; Greenberg, Russell; Letourneau, Deborah K

    2011-01-01

    Insectivorous Western Bluebirds (Sialia mexicana) occupy vineyard nest boxes established by California winegrape growers who want to encourage avian conservation. Experimentally, the provision of available nest sites serves as an alternative to exclosure methods for isolating the potential ecosystem services provided by foraging birds. We compared the abundance and species richness of avian foragers and removal rates of sentinel prey in treatments with songbird nest boxes and controls without nest boxes. The average species richness of avian insectivores increased by over 50 percent compared to controls. Insectivorous bird density nearly quadrupled, primarily due to a tenfold increase in Western Bluebird abundance. In contrast, there was no significant difference in the abundance of omnivorous or granivorous bird species some of which opportunistically forage on grapes. In a sentinel prey experiment, 2.4 times more live beet armyworms (Spodoptera exigua) were removed in the nest box treatment than in the control. As an estimate of the maximum foraging services provided by insectivorous birds, we found that larval removal rates measured immediately below occupied boxes averaged 3.5 times greater than in the control. Consequently the presence of Western Bluebirds in vineyard nest boxes strengthened ecosystem services to winegrape growers, illustrating a benefit of agroecological conservation practices. Predator addition and sentinel prey experiments lack some disadvantages of predator exclusion experiments and were robust methodologies for detecting ecosystem services.

  9. Columbia Estuary Ecosystem Restoration Program. 2012 Synthesis Memorandum

    DTIC Science & Technology

    2013-01-01

    species . Predation studies have not been conducted in wetland sites, and bird predation in particular may be significant. Do factors in the estuary...ensuing sections, we concentrate on synthesizing information pertaining to salmon- habitat associations. We first review the species , life history types...Bay, and Grays River). Six species of salmon and anadromous trout were identified in these shallow-water habitats : Chinook salmon (Onchryrhchus

  10. Weed-biocontrol insects reduce native-plant recruitment through second-order apparent competition.

    PubMed

    Pearson, Dean E; Callaway, Ragan M

    2008-09-01

    Small-mammal seed predation is an important force structuring native-plant communities that may also influence exotic-plant invasions. In the intermountain West, deer mice (Peromyscus maniculatus) are prominent predators of native-plant seeds, but they avoid consuming seeds of certain widespread invasives like spotted knapweed (Centaurea maculosa). These mice also consume the biological-control insects Urophora spp. introduced to control C. maculosa, and this food resource substantially increases deer mouse populations. Thus, mice may play an important role in the invasion and management of C. maculosa through food-web interactions. We examined deer mouse seed predation and its effects on seedling emergence and establishment of a dominant native grass, Pseudoroegneria spicata, and forb, Balsamorhiza sagittata, in C. maculosa-invaded grasslands that were treated with herbicide to suppress C. maculosa or left untreated as controls. Deer mice readily took seeds of both native plants but removed 2-20 times more of the larger B. sagittata seeds than the smaller P. spicata seeds. Seed predation reduced emergence and establishment of both species but had greater impacts on B. sagittata. The intensity of seed predation corresponded with annual and seasonal changes in deer mouse abundance, suggesting that abundance largely determined mouse impacts on native-plant seeds. Accordingly, herbicide treatments that reduced mouse abundance by suppressing C. maculosa and its associated biocontrol food subsidies to mice also reduced seed predation and decreased the impact of deer mice on B. sagittata establishment. These results provide evidence that Urophora biocontrol agents may exacerbate the negative effects of C. maculosa on native plants through a form of second-order apparent competition-a biocontrol indirect effect that has not been previously documented. Herbicide suppressed C. maculosa and Urophora, reducing mouse populations and moderating seed predation on native plants, but the herbicide's direct negative effects on native forb seedlings overwhelmed the indirect positive effect of reducing deer mouse seed predation. By manipulating this four-level food chain, we illustrate that host-specific biological control agents may impact nontarget plant species through food-web interactions, and herbicides may influence management outcomes through indirect trophic interactions in addition to their direct effects on plants.

  11. Chronic effects of an invasive species on an animal community.

    PubMed

    Doody, J Sean; Rhind, David; Green, Brian; Castellano, Christina; McHenry, Colin; Clulow, Simon

    2017-08-01

    Invasive species can trigger trophic cascades in animal communities, but published cases involving their removal of top predators are extremely rare. An exception is the invasive cane toad (Rhinella marina) in Australia, which has caused severe population declines in monitor lizards, triggering trophic cascades that facilitated dramatic and sometimes unexpected increases in several prey of the predators, including smaller lizards, snakes, turtles, crocodiles, and birds. Persistence of isolated populations of these predators with a decades-long sympatry with toads suggests the possibility of recovery, but alternative explanations are possible. Confirming predator recovery requires longer-term study of populations with both baseline and immediate post-invasion densities. Previously, we quantified short-term impacts of invasive cane toads on animal communities over seven years at two sites in tropical Australia. Herein, we test the hypothesis that predators have begun to recover by repeating the study 12 yr after the initial toad invasion. The three predatory lizards that experienced 71-97% declines in the short-term study showed no sign of recovery, and indeed a worse fate: two of the three species were no longer detectable in 630 km of river surveys, suggesting local extirpation. Two mesopredators that had increased markedly in the short term due to these predator losses showed diverse responses in the medium term; a small lizard species increased by ~500%, while populations of a snake species showed little change. Our results indicate a system still in ecological turmoil, having not yet reached a "new equilibrium" more than a decade after the initial invasion; predator losses due to this toxic invasive species, and thus downstream effects, were not transient. Given that cane toads have proven too prolific to eradicate or control, we suggest that recovery of impacted predators must occur unassisted by evolutionary means: dispersal into extinction sites from surviving populations with alleles for toxin resistance or toad avoidance. Evolution and subsequent dispersal may be the only solution for a number of species or communities affected by invasive species for which control is either prohibitively expensive, or not possible. © 2017 by the Ecological Society of America.

  12. Integrated Pest Management in a Predator-Prey System with Allee Effects.

    PubMed

    Costa, M I S; dos Anjos, L

    2015-08-01

    A commonly used biocontrol strategy to control invasive pests with Allee effects consists of the deliberate introduction of natural enemies. To enhance the effectiveness of this strategy, several tactics of control of invasive species (e.g., mass-trapping, manual removal of individuals, and pesticide spraying) are combined so as to impair pest outbreaks. This combination of strategies to control pest species dynamics are usually named integrated pest management (IPM). In this work, we devise a predator-prey dynamical model in order to assess the influence of the intensity of chemical killing on the success of an IPM. The biological and mathematical framework presented in this study can also be analyzed in the light of species conservation and food web dynamics theory.

  13. Red-cockaded woodpecker nesting success, forest structure, and southern flying squirrels in Texas

    Treesearch

    Richard N. Conner; D. Craig Rudolph; Daniel Saenz; Richard R. Schaefer

    1996-01-01

    For several decades general opinion has suggested that southern flying squirrels (Gluucomys volans) have a negative effect on Red-cockaded Woodpeckers (Picoides borealis) through competition for cavities and egg/nestling predation. Complete removal of hardwood trees from Red-cockaded Woodpecker cavity tree clusters has occurred on some forests because southern flying...

  14. Development of a System-Wide Predator Control Program: Stepwise Implementation of a Predation Index, Predator Control Fisheries, and Evaluation Plan in the Columbia River Basin; Northern Pikeminnow Management Program, 2000 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Porter, Russell G.; Glaser, Bryce G.; Amren, Jennifer

    2003-03-01

    This report presents results for year ten in a basin-wide program to harvest northern pikeminnow (Ptychocheilus oregonensis). This program was started in an effort to reduce predation by northern pikeminnow on juvenile salmonids during their emigration from natal streams to the ocean. Earlier work in the Columbia River Basin suggested predation by northern pikeminnow on juvenile salmonids might account for most of the 10-20% mortality juvenile salmonids experience in each of eight Columbia River and Snake River reservoirs. Modeling simulations based on work in John Day Reservoir from 1982 through 1988 indicated that, if predator-size northern pikeminnow were exploited atmore » a 10-20% rate, the resulting restructuring of their population could reduce their predation on juvenile salmonids by 50%. To test this hypothesis, we implemented a sport-reward angling fishery and a commercial longline fishery in the John Day Pool in 1990. We also conducted an angling fishery in areas inaccessible to the public at four dams on the mainstem Columbia River and at Ice Harbor Dam on the Snake River. Based on the success of these limited efforts, we implemented three test fisheries on a system-wide scale in 1991--a tribal longline fishery above Bonneville Dam, a sport-reward fishery, and a dam-angling fishery. Low catch of target fish and high cost of implementation resulted in discontinuation of the tribal longline fishery. However, the sport-reward and dam-angling fisheries were continued in 1992 and 1993. In 1992, we investigated the feasibility of implementing a commercial longline fishery in the Columbia River below Bonneville Dam and found that implementation of this fishery was also infeasible. Estimates of combined annual exploitation rates resulting from the sport-reward and damangling fisheries remained at the low end of our target range of 10-20%. This suggested the need for additional effective harvest techniques. During 1991 and 1992, we developed and tested a modified (small-sized) Merwin trapnet. We found this floating trapnet to be very effective in catching northern pikeminnow at specific sites. Consequently, in 1993 we examined a system wide fishery using floating trapnets, but found this fishery to be ineffective at harvesting large numbers of northern pikeminnow on a system-wide scale. In 1994, we investigated the use of trapnets and gillnets at specific locations where concentrations of northern pikeminnow were known or suspected to occur during the spring season (i.e., March through early June). In addition, we initiated a concerted effort to increase public participation in the sport-reward fishery through a series of promotional and incentive activities. In 1995, 1996, and 1997, promotional activities and incentives were further improved based on the favorable response in 1994. Results of these efforts are subjects of this annual report under Section I, Implementation. Evaluation of the success of test fisheries in achieving our target goal of a 10-20% annual exploitation rate on northern pikeminnow is presented in Section II of this report. Overall program success in terms of altering the size and age composition of the northern pikeminnow population and in terms of potential reductions in loss of juvenile salmonids to northern pikeminnow predation is also discussed under Section II.« less

  15. Local habitat and landscape influence predation of bird nests on afforested Mediterranean cropland

    NASA Astrophysics Data System (ADS)

    Sánchez-Oliver, J. S.; Rey Benayas, J. M.; Carrascal, L. M.

    2014-07-01

    Afforestation programs such as the one promoted by the EU Common Agrarian Policy have contributed to spread tree plantations on former cropland. Nevertheless these afforestations may cause severe damage to open habitat species, especially birds of high conservation value. We investigated predation of artificial bird nests at young tree plantations and at the open farmland habitat adjacent to the tree plantations in central Spain. Predation rates were very high at both tree plantations (95.6%) and open farmland habitat (94.2%) after two and three week exposure. Plantation edge/area ratio and development of the tree canopy decreased predation rates and plantation area and magpie (Pica pica) abundance increased predation rates within tree plantations, which were also affected by land use types around plantations. The area of nearby tree plantations (positive effect), distance to the tree plantation edge (negative effect), and habitat type (mainly attributable to the location of nests in vineyards) explained predation rates at open farmland habitat. We conclude that predation rates on artificial nests were particularly high and rapid at or nearby large plantations, with high numbers of magpies and low tree development, and located in homogenous landscapes dominated by herbaceous crops and pastures with no remnants of semi-natural woody vegetation. Landscape planning should not favour tree plantations as the ones studied here in Mediterranean agricultural areas that are highly valuable for ground-nesting bird species.

  16. Mesobuthus Venom-Derived Antimicrobial Peptides Possess Intrinsic Multifunctionality and Differential Potential as Drugs

    PubMed Central

    Gao, Bin; Zhu, Shunyi

    2018-01-01

    Animal venoms are a mixture of peptides and proteins that serve two basic biological functions: predation and defense against both predators and microbes. Antimicrobial peptides (AMPs) are a common component extensively present in various scorpion venoms (herein abbreviated as svAMPs). However, their roles in predation and defense against predators and potential as drugs are poorly understood. Here, we report five new venom peptides with antimicrobial activity from two Mesobuthus scorpion species. These α-helical linear peptides displayed highly bactericidal activity toward all the Gram-positive bacteria used here but differential activity against Gram-negative bacteria and fungi. In addition to the antibiotic activity, these AMPs displayed lethality to houseflies and hemotoxin-like toxicity on mice by causing hemolysis, tissue damage and inducing inflammatory pain. Unlike AMPs from other origins, these venom-derived AMPs seem to be unsuitable as anti-infective drugs due to their high hemolysis and low serum stability. However, MeuTXKβ1, a known two-domain Mesobuthus AMP, is an exception since it exhibits high activity toward antibiotic resistant Staphylococci clinical isolates with low hemolysis and high serum stability. The findings that the classical AMPs play predatory and defensive roles indicate that the multifunctionality of scorpion venom components is an intrinsic feature likely evolved by natural selection from microbes, prey and predators of scorpions. This definitely provides an excellent system in which one can study how a protein adaptively evolves novel functions in a new environment. Meantimes, new strategies are needed to remove the toxicity of svAMPs on eukaryotic cells when they are used as leads for anti-infective drugs. PMID:29599756

  17. Bird productivity and nest predation in agricultural grasslands

    USGS Publications Warehouse

    Ribic, Christine; Guzy, Michael J.; Anderson, Travis J.; Sample, David W.; Nack, Jamie L.

    2012-01-01

    Effective conservation strategies for grassland birds in agricultural landscapes require understanding how nesting success varies among different grassland habitats. A key component to this is identifying nest predators and how these predators vary by habitat. We quantified nesting activity of obligate grassland birds in three habitats [remnant prairie, cool-season grass Conservation Reserve Program (CRP) fields, and pastures) in southwest Wisconsin, 2002-2004. We determined nest predators using video cameras and examined predator activity using track stations. Bobolink (Dolichonyx oryzivorus) and Henslow's Sparrow (Ammodramus henslowii) nested primarily in CRP fields, and Grasshopper Sparrow (A. savannarum) in remnant prairies. Eastern Meadowlark (Sturnella magna) nested evenly across all three habitats. Daily nest survival rate for Eastern Meadowlark varied by nesting stage alone. Daily nest survival rate for Grasshopper Sparrow varied by nest vegetation and distance to the nearest woody edge; nest survival was higher near woody edges. In CRP fields, most predators were grassland-associated, primarily thirteen-lined ground squirrels (Ictidomys tridecemlineatus). In pastures, one-third of the nest predators were grassland-associated (primarily thirteen-lined ground squirrels) and 56% were associated with woody habitats (primarily raccoons, Procyon lotor). Raccoon activity was greatest around pastures and lowest around prairies; regardless of habitat, raccoon activity along woody edges was twice that along non-woody edges. Thirteen-lined ground squirrel activity was greater along prairie edges than pastures and was greater along nonwoody edges compared to woody edges. In CRP fields, raccoon activity was greater along edges compared to the interiors; for ground squirrels these relationships were reversed. Using video camera technology to identify nest predators was indispensable in furthering our understanding of the grassland system. The challenge is to use that knowledge to develop management actions for both birds and predators.

  18. Integrating Remote Sensing and Citizen Science to Study the Environmental Context and Ecological Consequences of Returning Avian Predators

    NASA Astrophysics Data System (ADS)

    Zuckerberg, B.; McCabe, J.; Yin, H.; Pidgeon, A. M.; Bonter, D. N.; Radeloff, V.

    2017-12-01

    Urbanization causes the simplification of animal communities dominated by exotic and invasive species with few top predators. In recent years, however, many animal predators (e.g., coyotes, cougars, and hawks) have become increasingly common in urban environments. As predator recovery is central to the mission of conservation biology, this colonization of urban environments represents a unique experiment in predator colonization and its associated ecological consequences. One such predator that is recovering from decades of widespread population declines are accipiter hawks. These woodland hawks are widely distributed throughout North America and are increasingly common in urban and suburban landscapes. Using data from Project FeederWatch, a national citizen science program, we quantified 25 years (1990-2015) of changes in the spatiotemporal dynamics of accipiter hawks in Washington D.C. and Chicago. We estimated change in hawk occupancy over time and identified the environmental characteristics associated with occupancy for two accipiter hawk species, Cooper's Hawk (Accipiter cooperii) and Sharp-shinned Hawk (Accipiter striatus), using Bayesian hierarchical models and remotely-sensed temperature (MODIS) and land cover data (NLCD). We found the proportion of sites recording the presence of accipiter hawks increased from 10% in the early 1990's to over 80% in 2015. This increase in occupancy followed a discrete pattern of establishment, growth, and saturation. Colonizing hawks were more strongly associated with remnant forest patches in urban environments. Over time, we found hawks became more tolerant of urban landscapes with higher amounts of impervious surface, suggesting that these predators became adapted to urbanization. The implications of returning predators and altered ecological dynamics in urban environments is of critical importance to conservation biology, and integrating remote sensing observations and citizen science allowed for an unprecedented investigation of the urban characteristics facilitating predator colonization.

  19. Snake River fall Chinook salmon life history investigations, 1/1/2013 – 12/31/2013

    USGS Publications Warehouse

    Tiffan, Kenneth F.; Connor, William P.

    2015-01-01

    Smallmouth bass predation on subyearling fall Chinook salmon was examined in the upper portion of Lower Granite Reservoir during 2013. During the time subyearlings were present in the reservoir, smallmouth bass were collected, their stomach contents removed for diet analysis, and their abundance estimated with mark-recapture techniques. In 2013, the greatest consumption of subyearlings by smallmouth bass occurred in late May and early June—as much as 50% of their diet by weight. Sand rollers were the most common non-salmonid fish consumed by smallmouth bass. In the section of the reservoir above the confluence with the Clearwater River, the abundance of bass was higher in non-riprap habitat than in riprap, but the opposite was true in the section below the confluence. We estimated that over 168,000 subyearlings were lost to smallmouth bass predation in 2013. Given the predominance of sand rollers in the diet of smallmouth bass, we believe this species reduces predation on subyearling fall Chinook salmon. A complete report of our findings is provided in the Appendix.

  20. Fish distribution during smolt migration in the Penobscot Estuary, ME

    NASA Astrophysics Data System (ADS)

    Volkel, S. L.

    2016-02-01

    Estuaries are complex and dynamic ecosystems. The Penobscot Estuary is particularly important because it harbors a suite of imperiled diadromous fish species. In order to properly manage these populations, it is imperative to understand their distribution and ecology. My study focuses on May because endangered Atlantic salmon migrate seaward then. Successful emigration of these smolts is important to the population's overall fitness. One potential way to increase the likelihood of migratory success (survival) is to decrease their risk of predation. Assuming that predators in this system are generalists, overall smolt predation may be reduced by having a larger selection of alternative prey (other fish species). We hypothesize that diadromous fish abundance is increasing as a result of recent (2012-2013) dam removals. To explore this hypothesis, I used hydroacoustic methods to characterize the distribution patterns of alternative prey (TL=10-30 cm). I found that peak fish abundances occurred in the mid-estuary, especially during mid-May, and depth distribution patterns varied weekly. By understanding these seasonal, longitudinal, and vertical distribution patterns, I explored potential interactions of other fish populations as prey buffers to emigrating smolts.

  1. First report of predation of Giardia sp. cysts by ciliated protozoa and confirmation of predation of Cryptosporidium spp. oocysts by ciliate species.

    PubMed

    Siqueira-Castro, Isabel Cristina Vidal; Greinert-Goulart, Juliane Araújo; Bonatti, Tais Rondello; Yamashiro, Sandra; Franco, Regina Maura Bueno

    2016-06-01

    Ciliated protozoa are important components of the microbial food web in various habitats, especially aquatic environments. These organisms are useful bioindicators for both environmental quality assessment and the wastewater purification process. The pathogenic parasitic protozoan species Giardia and Cryptosporidium represent a significant concern for human health, being responsible for numerous disease outbreaks worldwide. The predation of cysts and oocysts in 15 ciliate species from water and sewage samples collected in Campinas, São Paulo, Brazil were verified under laboratory conditions. The ciliated protozoan species were selected based on their mode of nutrition, and only bacterivorous and suspension-feeders were considered for the experiments. The species Blepharisma sinuosum, Euplotes aediculatus, Sterkiella cavicola, Oxytricha granulifera, Vorticella infusionum, Spirostomum minus, and Stentor coeruleus ingested cysts and oocysts, the resistance forms of Giardia spp. and Cryptosporidium spp., respectively. This is the first time that the ingestion of Giardia cysts by ciliated protozoa has been reported. These findings may contribute to a better understanding of the biological removal of these pathogens from aquatic environments.

  2. Neighborhoods have little effect on fungal attack or insect predation of developing seeds in a grassland biodiversity experiment.

    PubMed

    Beckman, Noelle G; Dybzinski, Ray; Tilman, G David

    2014-02-01

    Numerous observational studies have documented conspecific negative density-dependence that is consistent with the Janzen-Connell Hypothesis (JCH) of diversity maintenance. However, there have been few experimental tests of a central prediction of the JCH: that removing host-specific enemies should lead to greater increases in per capita recruitment in areas of higher host density or lower relative phylogenetic diversity. Using spatially randomized plots of high and low host biomass in a temperate grassland biodiversity experiment, we treated developing seedheads of six prairie perennials to factorial applications of fungicide and insecticide. We measured predispersal seed production, seed viability, and seedling biomass. Results were highly species-specific and idiosyncratic. Effects of insect seed predators and fungal pathogens on predispersal responses varied with neither conspecific biomass nor phylogenetic diversity, suggesting that-at least at the predispersal stage and for the insect and fungal seed predators we were able to exclude-the JCH is not sufficient to contribute to negative conspecific density-dependence for these dominant prairie species.

  3. Seasonal Effects of Habitat on Sources and Rates of Snowshoe Hare Predation in Alaskan Boreal Forests

    PubMed Central

    Feierabend, Dashiell; Kielland, Knut

    2015-01-01

    Survival and predation of snowshoe hares (Lepus americanus) has been widely studied, yet there has been little quantification of the changes in vulnerability of hares to specific predators that may result from seasonal changes in vegetation and cover. We investigated survival and causes of mortalities of snowshoe hares during the late increase, peak, and decline of a population in interior Alaska. From June 2008 to May 2012, we radio-tagged 288 adult and older juvenile hares in early successional and black spruce (Picea mariana) forests and, using known-fate methods in program MARK, evaluated 85 survival models that included variables for sex, age, and body condition of hares, as well as trapping site, month, season, year, snowfall, snow depth, and air temperature. We compared the models using Akaike’s information criterion with correction for small sample size. Model results indicated that month, capture site, and body condition were the most important variables in explaining survival rates. Survival was highest in July, and more generally during summer, when alternative prey was available to predators of hares. Low survival rates coincided with molting periods, breeding activity in the spring, and the introduction of juveniles to the sample population in the fall. We identified predation as the cause of mortality in 86% of hare deaths. When the source of predation could be determined, hares were killed more often by goshawks (Accipiter gentilis) than other predators in early successional forest (30%), and more often by lynx (Lynx canadensis) than other predators in black spruce forest (31%). Great horned owls (Bubo virginianus) and coyotes (Canis latrans) represented smaller proportions of hare predation, and non-predatory causes were a minor source (3%) of mortality. Because hares rely on vegetative cover for concealment from predators, we measured cover in predation sites and habitats that the hares occupied and concluded that habitat type had a greater influence on the sources of predation than the amount of cover in any given location within a habitat. Our observations illustrate the vulnerability of hares to predators in even the densest coniferous habitat available in the boreal forest, and indicate strong seasonal changes in the rates and sources of predation. PMID:26717577

  4. Does habitat fragmentation influence nest predation in the shortgrass prairie?

    USGS Publications Warehouse

    Howard, M.N.; Skagen, S.K.; Kennedy, P.L.

    2001-01-01

    We examined the effects of habitat fragmentation and vegetation structure of shortgrass prairie and Conservation Reserve Program (CRP) lands on predation rates of artificial and natural nests in northeastern Colorado. The CRP provides federal payments to landowners to take highly erodible cropland out of agricultural production. In our study area, CRP lands have been reseeded primarily with non-native grasses, and this vegetation is taller than native shortgrass prairie. We measured three indices of habitat fragmentation (patch size, degree of matrix fragmentation, and distance from edge), none of which influenced mortality rates of artificial or natural nests. Vegetation structure did influence predation rates of artificial nests; daily mortality decreased significantly with increasing vegetation height. Vegetation structure did not influence predation rates of natural nests. CRP lands and shortgrass sites did not differ with respect to mortality rates of artificial nests. Our study area is only moderately fragmented; 62% of the study area is occupied by native grassland. We conclude that the extent of habitat fragmentation in our study area does not result in increased predation in remaining patches of shortgrass prairie habitat.

  5. Predator Acquisition Program Transition from Rapid to Standard Processes

    DTIC Science & Technology

    2012-06-08

    47 Team Composition ...programs. Literature Review There is significant material written about Predator’s operational and acquisition success. For example, Dr. Mike...Reconnaissance Office (DARO), the organization that demonstrated medium altitude *The terms UAV and

  6. Comparisons of boll weevil (Coleoptera: Curculionidae) pheromone traps with and without kill strips.

    PubMed

    Suh, C P C; Armstrong, J S; Spurgeon, D W; Duke, S

    2009-02-01

    Boll weevil, Anthonomus grandis grandis Boheman (Coleoptera: Curculionidae), eradication programs typically equip pheromone traps with an insecticide-impregnated kill strip. These strips are intended to kill captured insects, thereby simplifying trap servicing and reducing the loss of weevils from predation and escape. However, the effectiveness of kill strips has not been extensively evaluated. We examined the influences of kill strips on weevil captures, trap servicing, and the incidences of weevil predation and trap obstruction (e.g., by spider webs). Evaluations were conducted weekly during three different production periods (pre- to early-, late-, and postseason) of cotton, Gossypium hirsutum L., to represent different environmental conditions and weevil population levels. Within each period, mean weekly captures of weevils in traps with and without kill strips were statistically similar. On average, traps with kill strips took 9 s longer to service than traps without kill strips, but statistical differences were only detected during the late-season period. Overall, the mean weekly proportion of traps with evidence of weevil predation or trap obstruction was significantly lower for traps with kill strips (0.25) than for traps without kill strips (0.37). However, this reduction in the frequency of weevil predation or trap obstruction was too small to produce a corresponding increase in the numbers of weevils captured. In light of these findings, the use of kill strips is likely unnecessary in eradication programs, but may be a consideration in situations when the numbers of deployed traps are reduced and chronic problems with weevil predation or trap obstruction exist.

  7. Problems with studying wolf predation on small prey in summer via global positioning system collars

    USGS Publications Warehouse

    Palacios, Vicente; Mech, L. David

    2010-01-01

    We attempted to study predation on various-sized prey by a male and female wolf (Canis lupus) with global positioning system (GPS) collars programmed to acquire locations every 10 min in the Superior National Forest of Minnesota. During May to August 2007, we investigated 147 clusters of locations (31% of the total) and found evidence of predation on a white-tailed deer (Odocoileus virginianus) fawn and yearling, a beaver (Castor canadensis), ruffed grouse (Bonasa umbellus), and fisher (Martes pennanti) and scavenging on a road-killed deer and other carrion. However, we missed finding many prey items and discuss the problems associated with trying to conduct such a study.

  8. Problems with studying wolf predation on small prey in summer via global positioning system collars

    USGS Publications Warehouse

    Palacios, V.; Mech, L.D.

    2011-01-01

    We attempted to study predation on various-sized prey by a male and female wolf (Canis lupus) with global positioning system (GPS) collars programmed to acquire locations every 10 min in the Superior National Forest of Minnesota. During May to August 2007, we investigated 147 clusters of locations (31% of the total) and found evidence of predation on a white-tailed deer (Odocoileus virginianus) fawn and yearling, a beaver (Castor canadensis), ruffed grouse (Bonasa umbellus), and fisher (Martes pennanti) and scavenging on a road-killed deer and other carrion. However, we missed finding many prey items and discuss the problems associated with trying to conduct such a study. ?? 2010 US Government.

  9. Endocarp thickness affects seed removal speed by small rodents in a warm-temperate broad-leafed deciduous forest, China

    NASA Astrophysics Data System (ADS)

    Zhang, Hongmao; Zhang, Zhibin

    2008-11-01

    Seed traits are important factors affecting seed predation by rodents and thereby the success of recruitment. Seeds of many tree species have hard hulls. These are thought to confer mechanical protection, but the effect of endocarp thickness on seed predation by rodents has not been well investigated. Wild apricot ( Prunus armeniaca), wild peach ( Amygdalus davidiana), cultivated walnut ( Juglans regia), wild walnut ( Juglans mandshurica Maxim) and Liaodong oak ( Quercus liaotungensis) are very common tree species in northwestern Beijing city, China. Their seeds vary greatly in size, endocarp thickness, caloric value and tannin content. This paper aims to study the effects of seed traits on seed removal speed of these five tree species by small rodents in a temperate deciduous forest, with emphasis on the effect of endocarp thickness. The results indicated that speed of removal of seeds released at stations in the field decreased significantly with increasing endocarp thickness. We found no significant correlations between seed removal speed and other seed traits such as seed size, caloric value and tannin content. In seed selection experiments in small cages, Père David's rock squirrel ( Sciurotamias davidianus), a large-bodied, strong-jawed rodent, selected all of the five seed species, and the selection order among the five seed species was determined by endocarp thickness and the ratio of endocarp mass/seed mass. In contrast, the Korean field mouse ( Apodemus peninsulae) and Chinese white-bellied rat ( Niviventer confucianus), with relatively small bodies and weak jaws, preferred to select small seeds like acorns of Q. liaotungensis and seeds of P. armeniaca, indicating that rodent body size is also an important factor affecting food selection based on seed size. These results suggest endocarp thickness significantly reduces seed removal speed by rodents and then negatively affects dispersal fitness of seeds before seed removal of tree species in the study region. However, effect of endocarp thickness on final dispersal fitness needs further investigation because it may increase seed caching and survival after seed removal.

  10. Nest predation rates in managed and reserved extensive northern hardwood forests

    Treesearch

    Richard M. DeGraaf

    1995-01-01

    Depredation rates on artificial ground and shrub nests in large blocks of managed and remote reserved northern hardwood forests were studied in the White Mountain National Forest (WMNF) (303 930 ha) in New Hampshire, USA, from June to August 1991. Both types of nests were monitored by trip cameras that recorded depredations as eggs were removed. No differences in nest...

  11. Multiple mechanisms sustain a plant-animal facilitation on a coastal ecotone

    PubMed Central

    He, Qiang; Cui, Baoshan

    2015-01-01

    Theory suggests that species distributions are expanded by positive species interactions, but the importance of facilitation in expanding species distributions at physiological range limits has not been widely recognized. We investigated the effects of the nurse shrub Tamarix chinensis on the crab Helice tientsinensis on the terrestrial borders of salt marshes, a typical coastal ecotone, where Tamarix and Helice were on their lower and upper elevational distribution edges, respectively. Crab burrows were abundant under Tamarix, but were absent in open areas between Tamarix. Removing Tamarix decreased associated crab burrows with time, while simulating Tamarix in open areas by shading, excluding predators, and adding Tamarix branches as crab food, increased crab burrows. Measurements of soil and microclimate factors showed that removing Tamarix increased abiotic stress, while simulating Tamarix by shading decreased abiotic stress. Survival of tethered crabs was high only when protected from desiccation and predation. Thus, by alleviating abiotic and biotic stresses, as well as by food provision, Tamarix expanded the upper intertidal distribution of Helice. Our study provides clear evidence for the importance of facilitation in expanding species distributions at their range limits, and suggests that facilitation is a crucial biological force maintaining the ecotones between ecosystems. PMID:25721758

  12. Multiple mechanisms sustain a plant-animal facilitation on a coastal ecotone.

    PubMed

    He, Qiang; Cui, Baoshan

    2015-02-27

    Theory suggests that species distributions are expanded by positive species interactions, but the importance of facilitation in expanding species distributions at physiological range limits has not been widely recognized. We investigated the effects of the nurse shrub Tamarix chinensis on the crab Helice tientsinensis on the terrestrial borders of salt marshes, a typical coastal ecotone, where Tamarix and Helice were on their lower and upper elevational distribution edges, respectively. Crab burrows were abundant under Tamarix, but were absent in open areas between Tamarix. Removing Tamarix decreased associated crab burrows with time, while simulating Tamarix in open areas by shading, excluding predators, and adding Tamarix branches as crab food, increased crab burrows. Measurements of soil and microclimate factors showed that removing Tamarix increased abiotic stress, while simulating Tamarix by shading decreased abiotic stress. Survival of tethered crabs was high only when protected from desiccation and predation. Thus, by alleviating abiotic and biotic stresses, as well as by food provision, Tamarix expanded the upper intertidal distribution of Helice. Our study provides clear evidence for the importance of facilitation in expanding species distributions at their range limits, and suggests that facilitation is a crucial biological force maintaining the ecotones between ecosystems.

  13. Efficacy of CPTH-treated egg baits for removing ravens

    USGS Publications Warehouse

    Coates, Peter S.; Spencer, Jack O.; Delehanty, David J.

    2007-01-01

    Human-altered landscapes have provided resource subsidies for common ravens (Corvus corax) resulting in a substantial increase in raven abundance and distribution throughout the United States and Canada in the past 25 years. Ravens are effective predators of eggs and young of ground-nesting birds. During 2002–2005, we tested whether chicken egg baits treated with CPTH (3-chloro-p-toluidine hydrochloride) could be used to manage raven numbers in an area where raven depredation was impacting sharp-tailed grouse (Tympanuchus phasianellus columbianus) and greater sage-grouse (Centrocercus urophasianus) populations in Nevada. We performed multiple raven surveys at a treatment site and 3 control sites and used videography to identify predators and estimate egg bait consumption. We detected reductions in raven abundances over time at the treatment site during all years of this study and did not detect reductions in raven abundances at control sites. Videographic observations of egg consumption indicated that the standard 1:2 ratio (1 raven removed/2 eggs consumed) substantially overestimated raven take because nontarget species (rodents) consumed some egg baits. The technique described here likely will be effective at reducing raven densities where this is the intended management action.

  14. Feeding on toxic prey. The praying mantis (Mantodea) as predator of poisonous butterfly and moth (Lepidoptera) caterpillars.

    PubMed

    Mebs, Dietrich; Wunder, Cora; Pogoda, Werner; Toennes, Stefan W

    2017-06-01

    Caterpillars of the monarch butterfly, Danaus plexippus, feed on milkweed plants, Asclepias spp. (Apocynaceae), and sequester their toxic cardenolides aimed at deterring predators. Nevertheless, Chinese praying mantids, Tenodera sinensis, consume these caterpillars after removing the midgut ("gutting") including its plant content. In the present study, monarch caterpillars raised on A. curassavica, and those of the death's-head hawkmoth, Acherontia atropos, raised on Atropa belladonna containing atropine, were fed to mantids, Hierodula membranacea, which removed the gut of both species discarding about 59% of cardenolides and more than 90% of atropine, respectively. The ingestion of these compounds produced no apparent ill effects in the mantids and both were excreted with faeces. On the other hand, when mantids were fed with larvae of two moth species, Amata mogadorensis and Brahmaea certia, raised on non-poisonous host plants, the mantids showed the same gutting behaviour, thereby discarding indigestible plant material. As polar compounds, e.g. cardenolides and atropine, are not absorbed from the mantids midgut and do not pass the gut membrane, this enables the mantids to feed on toxic prey. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Resetting predator baselines in coral reef ecosystems

    PubMed Central

    Bradley, Darcy; Conklin, Eric; Papastamatiou, Yannis P.; McCauley, Douglas J.; Pollock, Kydd; Pollock, Amanda; Kendall, Bruce E.; Gaines, Steven D.; Caselle, Jennifer E.

    2017-01-01

    What did coral reef ecosystems look like before human impacts became pervasive? Early efforts to reconstruct baselines resulted in the controversial suggestion that pristine coral reefs have inverted trophic pyramids, with disproportionally large top predator biomass. The validity of the coral reef inverted trophic pyramid has been questioned, but until now, was not resolved empirically. We use data from an eight-year tag-recapture program with spatially explicit, capture-recapture models to re-examine the population size and density of a key top predator at Palmyra atoll, the same location that inspired the idea of inverted trophic biomass pyramids in coral reef ecosystems. Given that animal movement is suspected to have significantly biased early biomass estimates of highly mobile top predators, we focused our reassessment on the most mobile and most abundant predator at Palmyra, the grey reef shark (Carcharhinus amblyrhynchos). We estimated a density of 21.3 (95% CI 17.8, 24.7) grey reef sharks/km2, which is an order of magnitude lower than the estimates that suggested an inverted trophic pyramid. Our results indicate that the trophic structure of an unexploited reef fish community is not inverted, and that even healthy top predator populations may be considerably smaller, and more precarious, than previously thought. PMID:28220895

  16. Reef Fishes at All Trophic Levels Respond Positively to Effective Marine Protected Areas

    PubMed Central

    Soler, German A.; Edgar, Graham J.; Thomson, Russell J.; Kininmonth, Stuart; Campbell, Stuart J.; Dawson, Terence P.; Barrett, Neville S.; Bernard, Anthony T. F.; Galván, David E.; Willis, Trevor J.; Alexander, Timothy J.; Stuart-Smith, Rick D.

    2015-01-01

    Marine Protected Areas (MPAs) offer a unique opportunity to test the assumption that fishing pressure affects some trophic groups more than others. Removal of larger predators through fishing is often suggested to have positive flow-on effects for some lower trophic groups, in which case protection from fishing should result in suppression of lower trophic groups as predator populations recover. We tested this by assessing differences in the trophic structure of reef fish communities associated with 79 MPAs and open-access sites worldwide, using a standardised quantitative dataset on reef fish community structure. The biomass of all major trophic groups (higher carnivores, benthic carnivores, planktivores and herbivores) was significantly greater (by 40% - 200%) in effective no-take MPAs relative to fished open-access areas. This effect was most pronounced for individuals in large size classes, but with no size class of any trophic group showing signs of depressed biomass in MPAs, as predicted from higher predator abundance. Thus, greater biomass in effective MPAs implies that exploitation on shallow rocky and coral reefs negatively affects biomass of all fish trophic groups and size classes. These direct effects of fishing on trophic structure appear stronger than any top down effects on lower trophic levels that would be imposed by intact predator populations. We propose that exploitation affects fish assemblages at all trophic levels, and that local ecosystem function is generally modified by fishing. PMID:26461104

  17. Anti-predator meshing may provide greater protection for sea turtle nests than predator removal.

    PubMed

    O'Connor, Julie M; Limpus, Colin J; Hofmeister, Kate M; Allen, Benjamin L; Burnett, Scott E

    2017-01-01

    The problem of how to protect sea turtle nests from terrestrial predators is of worldwide concern. On Queensland's southern Sunshine Coast, depredation of turtle nests by the introduced European red fox (Vulpes vulpes) has been recorded as the primary terrestrial cause of egg and hatchling mortality. We investigated the impact of foxes on the nests of the loggerhead turtle (Caretta caretta) and occasional green turtle (Chelonia mydas) over ten nesting seasons. Meshing of nests with fox exclusion devices (FEDs) was undertaken in all years accompanied by lethal fox control in the first five-year period, but not in the second five-year period. Lethal fox control was undertaken in the study area from 2005 to February 2010, but foxes still breached 27% (range19-52%) of turtle nests. In the second five-year period, despite the absence of lethal fox control, the average percentage of nests breached was less than 3% (range 0-4%). Comparison of clutch depredation rates in the two five-year periods demonstrated that continuous nest meshing may be more effective than lethal fox control in mitigating the impact of foxes on turtle nests. In the absence of unlimited resources available for the eradication of exotic predators, the use of FEDs and the support and resourcing of a dedicated volunteer base can be considered an effective turtle conservation tool on some beaches.

  18. Using organic-certified rather than synthetic pesticides may not be safer for biological control agents: selectivity and side effects of 14 pesticides on the predator Orius laevigatus.

    PubMed

    Biondi, Antonio; Desneux, Nicolas; Siscaro, Gaetano; Zappalà, Lucia

    2012-05-01

    The generalist predator Orius laevigatus (Fieber) (Hemiptera: Anthocoridae) is a key natural enemy of various arthropods in agricultural and natural ecosystems. Releases of this predator are frequently carried out, and it is included in the Integrated Pest Management (IPM) programs of several crops. The accurate assessment of the compatibility of various pesticides with predator activity is key for the success of this strategy. We assessed acute and sublethal toxicity of 14 pesticides on O. laevigatus adults under laboratory conditions. Pesticides commonly used in either conventional or organic farming were selected for the study, including six biopesticides, three synthetic insecticides, two sulfur compounds and three adjuvants. To assess the pesticides' residual persistence, the predator was exposed for 3d to pesticide residues on tomato sprouts that had been treated 1 h, 7 d or 14 d prior to the assay. The percentage of mortality and the sublethal effects on predator reproductive capacity were summarized in a reduction coefficient (E(x)) and the pesticides were classified according to the IOBC (International Organization for Biological Control) toxicity categories. The results showed that the pesticides greatly differed in their toxicity, both in terms of lethal and sub lethal effects, as well as in their persistence. In particular, abamectin was the most noxious and persistent, and was classified as harmful up to 14 d after the treatment, causing almost 100% mortality. Spinosad, emamectin, metaflumizone were moderately harmful until 7 d after the treatment, while the other pesticides were slightly harmful or harmless. The results, based on the combination of assessment of acute mortality, predator reproductive capacity pesticides residual and pesticides residual persistence, stress the need of using complementary bioassays (e.g. assessment of lethal and sublethal effects) to carefully select the pesticides to be used in IPM programs and appropriately time the pesticides application (as function of natural enemies present in crops) and potential releases of natural enemies like O. laevigatus. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. 77 FR 19682 - Proposed Information Collection; Wolf Livestock Demonstration Project Grant Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-02

    ...-FF09E30000] Proposed Information Collection; Wolf Livestock Demonstration Project Grant Program AGENCY: Fish... Interior and the Secretary of Agriculture to develop a Wolf Livestock Demonstration Project Grant Program... of livestock loss due to predation by wolves; and Compensate livestock producers for livestock losses...

  20. Report on the Predation Index, Predator Control Fisheries, and Program Evaluation for the Columbia River Basin Experimental Northern Pikeminnow Management Program, 2008 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Porter, Russell

    2009-09-10

    This report presents results for year seventeen in the basin-wide Experimental Northern Pikeminnow Management Program to harvest northern pikeminnow1 (Ptychocheilus oregonensis) in the Columbia and Snake Rivers. This program was started in an effort to reduce predation by northern pikeminnow on juvenile salmonids during their emigration from natal streams to the ocean. Earlier work in the Columbia River Basin suggested predation by northern pikeminnow on juvenile salmonids might account for most of the 10-20% mortality juvenile salmonids experience in each of eight Columbia River and Snake River reservoirs. Modeling simulations based on work in John Day Reservoir from 1982 throughmore » 1988 indicated that, if predator-size northern pikeminnow were exploited at a 10-20% rate, the resulting restructuring of their population could reduce their predation on juvenile salmonids by 50%. To test this hypothesis, we implemented a sport-reward angling fishery and a commercial longline fishery in the John Day Pool in 1990. We also conducted an angling fishery in areas inaccessible to the public at four dams on the mainstem Columbia River and at Ice Harbor Dam on the Snake River. Based on the success of these limited efforts, we implemented three test fisheries on a system-wide scale in 1991 - a tribal longline fishery above Bonneville Dam, a sport-reward fishery, and a dam-angling fishery. Low catch of target fish and high cost of implementation resulted in discontinuation of the tribal longline fishery. However, the sport-reward and dam-angling fisheries were continued in 1992 and 1993. In 1992, we investigated the feasibility of implementing a commercial longline fishery in the Columbia River below Bonneville Dam and found that implementation of this fishery was also infeasible. Estimates of combined annual exploitation rates resulting from the sport-reward and dam-angling fisheries remained at the low end of our target range of 10-20%. This suggested the need for additional effective harvest techniques. During 1991 and 1992, we developed and tested a modified (small-sized) Merwin trapnet. We found this floating trapnet to be very effective in catching northern pikeminnow at specific sites. Consequently, in 1993 we examined a system-wide fishery using floating trapnets, but found this fishery to be ineffective at harvesting large numbers of northern pikeminnow on a system-wide scale. In 1994, we investigated the use of trap nets and gillnets at specific locations where concentrations of northern pikeminnow were known or suspected to occur during the spring season (i.e., March through early June). In addition, we initiated a concerted effort to increase public participation in the sport-reward fishery through a series of promotional and incentive activities. In 1995, 1996, and 1997, promotional activities and incentives were further improved based on the favorable response in 1994. Results of these efforts are subjects of this annual report. Evaluation of the success of test fisheries in achieving our target goal of a 10-20% annual exploitation rate on northern pikeminnow is presented in Report C of this report. Overall program success in terms of altering the size and age composition of the northern pikeminnow population and in terms of potential reductions in loss of juvenile salmonids to northern pikeminnow predation is also discussed in Report C. Program cooperators include the Pacific States Marine Fisheries Commission (PSMFC), Oregon Department of Fish and Wildlife (ODFW), and Washington Department of Fish and Wildlife (WDFW), and the U. S. Department of Agriculture (USDA), Animal Damage Unit as a contractor to test Dam Angling. The PSMFC was responsible for coordination and administration of the program; PSMFC subcontracted various tasks and activities to ODFW and WDFW based on the expertise each brought to the tasks involved in implementing the program and dam angling to the USDA.« less

  1. Freezing to the predator odor 2,4,5 dihydro 2,5 trimethylthiazoline (TMT) is disrupted by olfactory bulb removal but not trigeminal deafferentation.

    PubMed

    Ayers, Luke W; Asok, Arun; Heyward, Frankie D; Rosen, Jeffrey B

    2013-09-15

    2,4,5 dihydro 2,5 trimethylthiazoline (TMT) is a synthesized component of red fox anal secretions that reliably elicits defensive behaviors in rats and mice. TMT differs from other predator odors because it is a single molecule, it can be synthesized in large quantities, and the dose for exposure is highly controllable in an experimental setting. TMT has become a popular tool for studying the brain mechanisms that mediate innate fear behavior to olfactory stimuli. However, this view of TMT as a biologically relevant olfactory stimulus has been challenged by suggestions that the odor elicits fear behavior due to its irritating properties, presumably working through a nociceptive mechanism. To address this criticism our lab measured freezing behavior in rats during exposures to 2 odors (TMT and butyric acid) and H2O (no odor control) following either surgical transection of the trigeminal nerves or ablation of the olfactory bulbs. Our findings (Experiment 1) indicate that freezing behavior to TMT requires an intact olfactory system, as indicated by the loss of freezing following olfactory bulb removal. Experiment 2 revealed that rats with trigeminal nerve transection freeze normally to TMT, suggesting the olfactory system mediates this behavior to TMT. A replication of Experiment 1 that included contextual fear conditioning revealed that the decreased freezing behavior was not due to an inability of olfactory bulb ablated rats to freeze (Experiment 3). Taken together, these findings support TMT's role as an ecologically relevant predator odor useful in experiments of unconditioned fear that is mediated via olfaction and not nociception. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Metal levels in southern leopard frogs from the Savannah River Site: location and body compartment effects.

    PubMed

    Burger, J; Snodgrass, J

    2001-06-01

    Tadpoles have been proposed as useful bioindicators of environmental contamination; yet, recently it has been shown that metal levels vary in different body compartments of tadpoles. Metals levels are higher in the digestive tract of bullfrog (Rana catesbeiana) tadpoles, which is usually not removed during such analysis. In this paper we examine the heavy metal levels in southern leopard frog (R. utricularia) tadpoles from several wetlands at the Savannah River Site and test the null hypotheses that (1) there are no differences in metal levels in different body compartments of the tadpoles, including the digestive tract; (2) there are no differences in heavy metal levels among different wetlands; and (3) there are no differences in the ratio of metals in the tail/body and in the digestive tract/body as a function of metal or developmental stage as indicated by body weight. Variations in heavy metal levels were explained by wetland and body compartment for all metals and by tadpole weight for selenium and manganese. In all cases, levels of metals were higher in the digestive tract than in the body or tail of tadpoles. Metal levels were highest in a wetland that had been remediated and lowest in a wetland that was never a pasture or remediated (i.e., was truly undisturbed). Although tadpoles are sometimes eaten by fish and other aquatic predators, leopard frogs usually avoid laying their eggs in ponds with such predators. However, avian predators will eat them. These data suggest that tadpoles can be used as bioindicators of differences in metal levels among wetlands and as indicators of potential exposure for higher-trophic-level organisms, but that to assess effects on the tadpoles themselves, digestive tracts should be removed before analysis. Copyright 2001 Academic Press.

  3. Effects of Bacillus thuringiensis on non-target herbivore and natural enemy assemblages in tropical irrigated rice.

    PubMed

    Schoenly, Kenneth G; Cohen, Michael B; Barrion, Alberto T; Zhang, Wenjun; Gaolach, Bradley; Viajante, Vicente D

    2003-01-01

    Endotoxins from Bacillus thuringiensis (Bt) produced in transgenic pest-resistant Bt crops are generally not toxic to predatory and parasitic arthropods. However, elimination of Bt-susceptible prey and hosts in Bt crops could reduce predator and parasitoid abundance and thereby disrupt biological control of other herbivorous pests. Here we report results of a field study evaluating the effects of Bt sprays on non-target terrestrial herbivore and natural enemy assemblages from three rice (Oryza sativa L.) fields on Luzon Island, Philippines. Because of restrictions on field-testing of transgenic rice, Bt sprays were used to remove foliage-feeding lepidopteran larvae that would be targeted by Bt rice. Data from a 546-taxa Philippines-wide food web, matched abundance plots, species accumulation curves, time-series analysis, and ecostatistical tests for species richness and ranked abundance were used to compare different subsets of non-target herbivores, predators, and parasitoids in Bt sprayed and water-sprayed (control) plots. For whole communities of terrestrial predators and parasitoids, Bt sprays altered parasitoid richness in 3 of 3 sites and predator richness in 1 of 3 sites, as measured by rarefaction (in half of these cases, richness was greater in Bt plots), while Spearman tests on ranked abundances showed that correlations, although significantly positive between all treatment pairs, were stronger for predators than for parasitoids, suggesting that parasitoid complexes may have been more sensitive than predators to the effects of Bt sprays. Species accumulation curves and time-series analyses of population trends revealed no evidence that Bt sprays altered the overall buildup of predator or parasitoid communities or population trajectories of non-target herbivores (planthoppers and leafhoppers) nor was evidence found for bottom-up effects in total abundances of non-target species identified in the food web from the addition of spores in the Bt spray formulation. When the same methods were applied to natural enemies (predators and parasitoids) of foliage-feeding lepidopteran and non-lepidopteran (homopteran, hemipteran and dipteran) herbivores, significant differences between treatments were detected in 7 of 12 cases. However, no treatment differences were found in mean abundances of these natural enemies, either in time-series plots or in total (seasonal) abundance. Analysis of guild-level trajectories revealed population behavior and treatment differences that could not be predicted in whole-community studies of predators and parasitoids. A more conclusive test of the impact of Bt rice will require field experiments with transgenic plants, conducted in a range of Asian environments, and over multiple cropping seasons.

  4. Good fire, bad fire: how to think about forest land management and ecological processes.

    Treesearch

    Merrill R. Kaufmann; Ayn Shlisky; Marchand; Peter

    2005-01-01

    The first rule of tinkering is to save all the parts, according to forester, philosopher, and hunter Aldo Leopold. Leopold was thinking about wildfire 50 years ago when he also was questioning his own role in exterminating large predators, wondering how their removal might affect forest ecosystems in the future. Leopold was well ahead of his contemporaries in...

  5. Consumptive effects of fish reduce wetland crayfish recruitment and drive species turnover.

    PubMed

    Kellogg, Christopher M; Dorn, Nathan J

    2012-04-01

    Predators and dry-disturbances have pronounced effects on invertebrate communities and can deterministically affect compositional turnover between discrete aquatic habitats. We examined the effect of sunfish (Lepomis spp.) predators on two native crayfish, Procambarus alleni and P. fallax, that regionally coexist in an expansive connected wetland in order to test the hypotheses that sunfish predation limits crayfish recruitment (both species) and that it disproportionately affects P. alleni, the species inhabiting temporary wetlands. In replicate vegetated wetlands (18.6 m(2)), we quantified summertime crayfish recruitment and species composition across an experimental gradient of sunfish density. Separately, we quantified effects of sunfish on crayfish growth, conducted a complimentary predation assay in mesocosms, and compared behavior of the two crayfish. Sunfish reduced P. alleni summertime recruitment by >99% over the full sunfish gradient, and most of the effect was caused by low densities of sunfish (0.22-0.43 m(-2)). P. alleni dominated wetlands with few or no sunfish, but the composition shifted towards P. fallax dominance in wetlands with abundant sunfish. P. fallax survived better than P. alleni over 40 h in smaller mesocosms stocked with warmouth. Sunfish reduced P. fallax recruitment 62% in a second wetland experiment, but growth rates of caged crayfish (both species) were unaffected by sunfish presence, suggesting predatory effects were primarily consumptive. Consistent with life histories of relatively fish-sensitive invertebrates, P. alleni engaged in more risky behaviors in the laboratory. Our results indicate that sunfish predators limit recruitment of both species, but disproportionately remove the more active and competitively dominant P. alleni. Spatially and temporally variable dry-disturbances negatively co-varying with sunfish populations allow for regional coexistence of these two crayfish and may release populations of either species from control by predatory fishes.

  6. Declines in predatory fish promote bloom-forming macroalgae.

    PubMed

    Eriksson, Britas Klemens; Ljunggren, Lars; Sandström, Alfred; Johansson, Gustav; Mattila, Johanna; Rubach, Anja; Råberg, Sonja; Snickars, Martin

    2009-12-01

    In the Baltic Sea, increased dominance of ephemeral and bloom-forming algae is presently attributed to increased nutrient loads. Simultaneously, coastal predatory fish are in strong decline. Using field data from nine areas covering a 700-km coastline, we examined whether formation of macroalgal blooms could be linked to the composition of the fish community. We then tested whether predator or nutrient availability could explain the field patterns in two small-scale field experiments, by comparing joint effects on algal net production from nutrient enrichment with agricultural fertilizer and exclusion of larger predatory fish with cages. We also manipulated the presence of invertebrate grazers. The abundance of piscivorous fish had a strong negative correlation with the large-scale distribution of bloom-forming macroalgae. Areas with depleted top-predator communities displayed massive increases in their prey, small-bodied fish, and high covers of ephemeral algae. Combining the results from the two experiments showed that excluding larger piscivorous fish: (1) increased the abundance of small-bodied predatory fish; (2) changed the size distribution of the dominating grazers, decreasing the smaller gastropod scrapers; and (3) increased the net production of ephemeral macroalgae. Effects of removing top predators and nutrient enrichment were similar and additive, together increasing the abundance of ephemeral algae many times. Predator effects depended on invertebrate grazers; in the absence of invertebrates there were no significant effects of predator exclusion on algal production. Our results provide strong support for regional declines of larger predatory fish in the Baltic Sea promoting algal production by decreasing invertebrate grazer control. This highlights the importance of trophic interactions for ecosystem responses to eutrophication. The view emerges that to achieve management goals for water quality we need to consider the interplay between top-down and bottom-up processes in future ecosystem management of marine resources.

  7. Impacts of climate change on marine top predators: Advances and future challenges

    NASA Astrophysics Data System (ADS)

    Hobday, Alistair J.; Arrizabalaga, Haritz; Evans, Karen; Nicol, Simon; Young, Jock W.; Weng, Kevin C.

    2015-03-01

    Oceanic top predators are the subject of studies by researchers under the international Climate Impacts on Oceanic Top Predators (CLIOTOP) program. A wide range of data sets have shown that environmental conditions, such as temperature and marine productivity, affect the distribution and biological processes of these species, and thus the activities of the humans that depend on them. In this special issue, 25 papers arising from the 2nd CLIOTOP symposium, held in Noumea, New Caledonia in February 2013 report the importance of realistic physical descriptions of oceanic processes for climate change projections, demonstrate a wide range of predator responses to historical climate variability, describe new analytical approaches for understanding the physiology, behaviour and trophodynamics, and project future distributions for a range of species. Several contributions discuss the implications for conservation and fisheries and show that resolving ecosystem management challenges and conflicts in the face of climate change is possible, but will require attention by decision-makers to issues that are broader than their traditional mandate. In the coming years, an increased focus on the development of management options to reduce the impacts of climate change on top predators and their dependent industries is needed.

  8. White-tailed deer age ratios as herd management and predator impact measures in Pennsylvania

    USGS Publications Warehouse

    Rosenberry, Christopher S.; Norton, Andrew S.; Diefenbach, Duane R.; Fleegle, Jeannine T.; Wallingford, Bret D.

    2011-01-01

    A review of the Pennsylvania Game Commission's (PGC) deer management program and public concern about predator impacts on deer (Odocoileus virginianus) populations compelled the PGC to investigate the role of age ratios in developing management recommendations. Age ratios, such as proportion of juveniles in the antlerless harvest, may provide an index to population productivity and predator impacts. We estimated proportion of juveniles in the antlerless harvest from hunter-killed deer, population trends using the Pennsylvania (USA) sex–age–kill model, and reproduction from road-killed females. Using these estimates and a simulation model, we concluded that no single age-ratio value would serve as a reliable measure of population status. Wildlife Management Unit-specific trends in proportion of juveniles in the antlerless harvest and population trends provided the most relevant management information. We also provide an example decision chart to guide management actions in response to declining age ratios in the harvest. Although predator management activities and juvenile survival studies are often desired by the public, our decision-chart example indicated a number of deer management options exist before investing resources in predator management activities and juvenile survival studies.

  9. Older mothers follow conservative strategies under predator pressure: the adaptive role of maternal glucocorticoids in yellow-bellied marmots.

    PubMed

    Monclús, Raquel; Tiulim, Justin; Blumstein, Daniel T

    2011-11-01

    When the maternal environment is a good predictor of the offspring environment, maternal glucocorticoid (GC) levels might serve to pre-program offspring to express certain phenotypes or life-history characteristics that will increase their fitness. We conducted a field study to assess the effects of naturally occurring maternal GC levels on their offspring in yellow-bellied marmots (Marmota flaviventris) subjected to different predator pressures. Maternal fecal corticosteroid metabolites (FCM) were positively correlated with predator pressure. Predators had both direct and indirect effects on pups. We found that older mothers with higher FCM levels had smaller and female-biased litters. Moreover, sons from older mothers with high FCM levels dispersed significantly more than those from older mothers with low FCM levels, whereas the opposite pattern was found in pups from younger mothers. These age-related effects may permit females to make adaptive decisions that increase their pups' fitness according to their current situation. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Who are the important predators of sea turtle nests at Wreck Rock beach?

    PubMed Central

    Booth, David T.

    2017-01-01

    Excessive sea turtle nest predation is a problem for conservation management of sea turtle populations. This study assessed predation on nests of the endangered loggerhead sea turtle (Caretta caretta) at Wreck Rock beach adjacent to Deepwater National Park in Southeast Queensland, Australia after a control program for feral foxes was instigated. The presence of predators on the nesting dune was evaluated by tracking plots (2 × 1 m) every 100 m along the dune front. There were 21 (2014–2015) and 41 (2015–2016) plots established along the dune, and these were monitored for predator tracks daily over three consecutive months in both nesting seasons. Predator activities at nests were also recorded by the presence of tracks on top of nests until hatchlings emerged. In addition, camera traps were set to record the predator activity around selected nests. The tracks of the fox (Vulpes vulpes) and goanna (Varanus spp) were found on tracking plots. Tracking plots, nest tracks and camera traps indicated goanna abundance varied strongly between years. Goannas were widely distributed along the beach and had a Passive Activity Index (PAI) (0.31 in 2014–2015 and 0.16 in 2015–2016) approximately seven times higher than that of foxes (PAI 0.04 in 2014–2015 and 0.02 in 2015–2016). Five hundred and twenty goanna nest visitation events were recorded by tracks but no fox tracks were found at turtle nests. Camera trap data indicated that yellow-spotted goannas (Varanus panoptes) appeared at loggerhead turtle nests more frequently than lace monitors (V. varius) did, and further that lace monitors only predated nests previously opened by yellow-spotted goannas. No foxes were recorded at nests with camera traps. This study suggests that large male yellow-spotted goannas are the major predator of sea turtle nests at the Wreck Rock beach nesting aggregation and that goanna activity varies between years. PMID:28674666

  11. Moth tails divert bat attack: evolution of acoustic deflection.

    PubMed

    Barber, Jesse R; Leavell, Brian C; Keener, Adam L; Breinholt, Jesse W; Chadwell, Brad A; McClure, Christopher J W; Hill, Geena M; Kawahara, Akito Y

    2015-03-03

    Adaptations to divert the attacks of visually guided predators have evolved repeatedly in animals. Using high-speed infrared videography, we show that luna moths (Actias luna) generate an acoustic diversion with spinning hindwing tails to deflect echolocating bat attacks away from their body and toward these nonessential appendages. We pit luna moths against big brown bats (Eptesicus fuscus) and demonstrate a survival advantage of ∼ 47% for moths with tails versus those that had their tails removed. The benefit of hindwing tails is equivalent to the advantage conferred to moths by bat-detecting ears. Moth tails lured bat attacks to these wing regions during 55% of interactions between bats and intact luna moths. We analyzed flight kinematics of moths with and without hindwing tails and suggest that tails have a minimal role in flight performance. Using a robust phylogeny, we find that long spatulate tails have independently evolved four times in saturniid moths, further supporting the selective advantage of this anti-bat strategy. Diversionary tactics are perhaps more common than appreciated in predator-prey interactions. Our finding suggests that focusing on the sensory ecologies of key predators will reveal such countermeasures in prey.

  12. Habituation of adult sea lamprey repeatedly exposed to damage-released alarm and predator cues

    USGS Publications Warehouse

    Imre, Istvan; Di Rocco, Richard T.; Brown, Grant E.; Johnson, Nicholas

    2016-01-01

    Predation is an unforgiving selective pressure affecting the life history, morphology and behaviour of prey organisms. Selection should favour organisms that have the ability to correctly assess the information content of alarm cues. This study investigated whether adult sea lamprey Petromyzon marinus habituate to conspecific damage-released alarm cues (fresh and decayed sea lamprey extract), a heterospecific damage-released alarm cue (white sucker Catostomus commersoniiextract), predator cues (Northern water snake Nerodia sipedon washing, human saliva and 2-phenylethylamine hydrochloride (PEA HCl)) and a conspecific damage-released alarm cue and predator cue combination (fresh sea lamprey extract and human saliva) after they were pre-exposed 4 times or 8 times, respectively, to a given stimulus the previous night. Consistent with our prediction, adult sea lamprey maintained an avoidance response to conspecific damage-released alarm cues (fresh and decayed sea lamprey extract), a predator cue presented at high relative concentration (PEA HCl) and a conspecific damage-released alarm cue and predator cue combination (fresh sea lamprey extract plus human saliva), irrespective of previous exposure level. As expected, adult sea lamprey habituated to a sympatric heterospecific damage-released alarm cue (white sucker extract) and a predator cue presented at lower relative concentration (human saliva). Adult sea lamprey did not show any avoidance of the Northern water snake washing and the Amazon sailfin catfish extract (heterospecific control). This study suggests that conspecific damage-released alarm cues and PEA HCl present the best options as natural repellents in an integrated management program aimed at controlling the abundance of sea lamprey in the Laurentian Great Lakes.

  13. Status and conservation of Antarctic seals and seabirds: a review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Croxall, J.P.

    1987-01-01

    Present threats to Antarctic seabirds and seals when ashore include disturbance and habitat destruction and serious predation by introduced rats and cats at sub-Antarctic islands. In the marine environment threats are posed by pesticides (widespread but at low levels), pollution (mainly a potential problem associated with oil exploration), incidental takes and competition with commercial fisheries, which is reviewed in detail. Even in areas where harvesting of fish may be exceeding sustainable yield, predator-prey interaction data are inadequate to assess the level, or significance, of the effect on predators. Present krill harvests are small but likely to increase, especially in favoredmore » areas; species of potential vulnerability are noted. Existing legislation offers excellent protection for wildlife, but formally protected areas by no means cover the major breeding concentrations of seabirds and especially seals in all sectors and zones. There is a need for a comprehensive review, which in some areas will require extensive survey work. Programs for the control and elimination of alien predators need proper planning and major support. Marine reserves may be of limited benefit to pelagic seals and seabirds, and further research in some key areas is needed. Realistic environmental impact assessments will require more detailed information on predator distribution and movements than is available now; appropriate surveys and research need starting. Sensitive management of marine fisheries is difficult with the present level of quantitative data on predator-prey interactions. Difficulties in monitoring aspects of predator biology as indices of the state of prey stocks are reviewed.« less

  14. The Effect of Conservation Tillage and Cover Crop Residue on Beneficial Arthropods and Weed Seed Predation in Acorn Squash.

    PubMed

    Quinn, N F; Brainard, D C; Szendrei, Z

    2016-12-01

    Conservation tillage combined with cover crops or mulching may enhance natural enemy activity in agroecosystems by reducing soil disturbance and increasing habitat structural complexity. In particular, weed seed predation can increase with vegetation cover and reduced tillage, indicating that mulches may improve the quality of the habitat for weed seed foraging. The purpose of this study was to quantify the effects of tillage and mulching for conservation biological control in cucurbit fields. The effects of mulch and reduced tillage on arthropods and rates of weed seed loss from arenas were examined in field trials on sandy soils in 2014 and 2015. Experimental factors included tillage and cover crop, each with two levels: strip-tillage or full-tillage, and cover crop mulch (rye residue) or no cover crop mulch (unmulched). Arthropod abundance on the crop foliage was not affected by tillage or cover crops. Contrary to expectations, epigeal natural enemies of insects and rates of weed seed removal either did not respond to treatments or were greater in full-tilled plots and plots without mulch. Our study demonstrates the potential importance of weed seed predators in reducing weed seedbanks in vegetable agroecosystems, and suggests that early-season tillage may not be detrimental to epigeal predator assemblages. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Reversing functional extinction of mammals prompts a rethink of paradigms about seed fate in arid Australia

    PubMed Central

    2018-01-01

    Functional extinction of once abundant species has frequently preceded understanding of their ecological roles. Consequently, our understanding of ecosystems is prone to shifting baselines because it often relies on observations made on depauperate species assemblages. In Australian deserts, current paradigms are that ants are the dominant granivores, mammals are unimportant seed predators and that myrmecochory in many Australian shrubs is an adaptation to increase dispersal distance and direct seeds to favourable germination sites. Here, we ask whether these paradigms could be artefacts of mammal extinction. We take advantage of a predator-proof reserve within which locally extinct native mammals have been reintroduced to compare seed removal by ants and mammals. Using foraging trays that selectively excluded mammals and ants we show that a reintroduced mammal, the woylie (Bettongia penicillata) was at least as important as ants in the removal of seeds of two shrub species (Dodonaea viscosa and Acacia ligulata). Our results provide evidence that the dominance of ants as granivores and current understanding of the adaptive benefit of myrmecochory in arid Australia may be artefacts of the functional extinction of mammals. Our study shows how reversing functional extinction can provide the opportunity to rethink contemporary understanding of ecological processes. PMID:29410877

  16. The Role of Dead Wood in Maintaining Arthropod Diversity on the Forest Floor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanula, James L.; Horn, Scott; Wade, Dale D.

    2006-08-01

    Dead wood is a major component of forests and contributes to overall diversity, primarily by supporting insects that feed directly on or in it. Further, a variety of organisms benefit by feeding on those insects. What is not well known is how or whether dead wood influences the composition of the arthropod community that is not solely dependent on it as a food resource, or whether woody debris influences prey available to generalist predators. One group likely to be affected by dead wood is ground-dwelling arthropods. We studied the effect of adding large dead wood to unburned and frequently burnedmore » pine stands to determine if dead wood was used more when the litter and understory plant community are removed. We also studied the effect of annual removal of dead wood from large (10-ha) plots over a 5-year period on ground-dwelling arthropods. In related studies, we examined the relationships among an endangered woodpecker that forages for prey on live trees, its prey, and dead wood in the forest. Finally, the results of these and other studies show that dead wood can influence the abundance and diversity of the ground-dwelling arthropod community and of prey available to generalist predators not foraging directly on dead trees.« less

  17. Reversing functional extinction of mammals prompts a rethink of paradigms about seed fate in arid Australia.

    PubMed

    Mills, Charlotte H; Letnic, Mike

    2018-01-01

    Functional extinction of once abundant species has frequently preceded understanding of their ecological roles. Consequently, our understanding of ecosystems is prone to shifting baselines because it often relies on observations made on depauperate species assemblages. In Australian deserts, current paradigms are that ants are the dominant granivores, mammals are unimportant seed predators and that myrmecochory in many Australian shrubs is an adaptation to increase dispersal distance and direct seeds to favourable germination sites. Here, we ask whether these paradigms could be artefacts of mammal extinction. We take advantage of a predator-proof reserve within which locally extinct native mammals have been reintroduced to compare seed removal by ants and mammals. Using foraging trays that selectively excluded mammals and ants we show that a reintroduced mammal, the woylie ( Bettongia penicillata ) was at least as important as ants in the removal of seeds of two shrub species ( Dodonaea viscosa and Acacia ligulata ). Our results provide evidence that the dominance of ants as granivores and current understanding of the adaptive benefit of myrmecochory in arid Australia may be artefacts of the functional extinction of mammals. Our study shows how reversing functional extinction can provide the opportunity to rethink contemporary understanding of ecological processes.

  18. Predator removal enhances waterbird restoration in Chesapeake Bay (Maryland)

    USGS Publications Warehouse

    Erwin, R. Michael; McGowan, Peter C.; Reese, Jan

    2011-01-01

    This report represents an update to an earlier report(Erwin et al. 2007a) on wildlife restoration on the largest dredge material island project in the United States underway in Talbot County, Maryland (Figure 1) in the mid–Chesapeake Bay region, referred to as the Paul Sarbanes Ecosystem Restoration Project at Poplar Island (www.nab.usace.army.mil/projects/Maryland/PoplarIsland/documents.html). An important component of this largescale restoration effort focused on water birds, as many of these species have undergone significant declines in the Chesapeake region over the past 30 years (Erwin et al. 2007b). The priority waterbird species include common terns (Sterna hirundo), least terns (S. antillarum), snowy egrets (Egretta thula), and ospreys (Pandion haliaetus). Although significant numbers of common terns (more than 800 pairs in 2003), least terns (62 pairs in 2003), snowy egrets (50 or more pairs by 2005), and ospreys (7 to 10 pairs) have nested on Poplar Island since early 2000, tern productivity especially had been strongly limited by a combination of red fox (Vulpes vulpes) and great horned owl (Bubo virginianus) predation. Fox trapping began in 2004, and four were removed that year; no more evidence of fox presence was found in 2005 or subsequently. The owls proved to be more problematic.

  19. Quality control method to measure predator evasion in wild and mass-reared Mediterranean fruit flies (Diptera: Tephritidae)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hendrichs, M.; Wornoayporn, V.; Hendrichs, J.

    Sterile male insects, mass-reared and released as part of sterile insect technique (SIT) programs, must survive long enough in the field to mature sexually and compete effectively with wild males for wild females. An often reported problem in Mediterranean fruit fly (medfly) Ceratitis capitata (Wiedemann) SIT programs is that numbers of released sterile males decrease rapidly in the field for various reasons, including losses to different types of predators. This is a serious issue in view that most operational programs release sterile flies at an age when they are still immature. Previous field and field-cage tests have confirmed that fliesmore » of laboratory strains are less able to evade predators than wild flies. Such tests involve, however, considerable manipulation and observation of predators and are therefore not suitable for routine measurements of predator evasion. Here we describe a simple quality control method with aspirators to measure agility in medflies and show that this parameter is related to the capacity of flies to evade predators. Although further standardization of the test is necessary to allow more accurate inter-strain comparisons, results confirm the relevance of measuring predator evasion in mass-reared medfly strains. Besides being a measure of this sterile male quality parameter, the described method could be used for the systematic selection of strains with a higher capacity for predator evasion. (author) [Spanish] Insectos machos esteriles criados en forma masiva para ser liberados en programas que utilizan la tecnica del insecto esteril (TIE), tienen que tener la capacidad de sobrevivir en el campo el tiempo necesario para poder madurar sexualmente y competir efectivamente con los machos silvestres por hembras silvestres. Un problema frecuentemente reportado por dichos programas de la mosca del Mediterraneo, Ceratitis capitata (Wiedemann), es que el numero de machos esteriles de laboratorio liberados en el campo, decrecen rapidamente por varias razones, incluyendo perdidas debidas a diferentes tipos de depredadores. Estudios anteriores conducidos en el campo, y en jaulas de campo, han confirmado que las cepas de machos de laboratorio tienen menos capacidad de evadir depredadores que los machos silvestres. Estos estudios involucran, sin embargo, una considerable cantidad de manipulacion y observacion de depredadores, por lo que no son adecuados para ser usados como medidas rutinarias en los programas de cria masiva. Aqui describimos un metodo sencillo de control de calidad usando aspiradores para medir agilidad en la mosca del Mediterraneo y mostramos que este parametro esta relacionado a la capacidad de la moscas a evadir a depredadores. Aunque aun es necesario refinar la estandarizacion de este metodo para permitir la comparacion entre cepas, los resultados confirman la importancia de tener un metodo rutinario para medir la capacidad de evasion de depredadores en cepas de cria de laboratorio de la mosca del Mediterraneo. Ademas de medir este parametro de control de calidad de los machos esteriles, el metodo descrito podria tambien ser usado para la seleccion sistematica de cepas con una mayor capacidad de evasion de depredadores. (author)« less

  20. Mass rearing and augmentative biological control evaluation of Rhynocoris fuscipes (Hemiptera: Reduviidae) against multiple pests of cotton.

    PubMed

    Tomson, Majesh; Sahayaraj, Kitherian; Kumar, Vivek; Avery, Pasco B; McKenzie, Cindy L; Osborne, Lance S

    2017-08-01

    Rhynocoris fuscipes (Fab.) (Hemiptera: Reduviidae) is a generalist predator of cotton pests and is commonly found inhabiting cotton-growing regions in southern India. With the goal of integrating this predator in standard management practices used against cotton pests on a commercial scale, (1) we developed a protocol for adult group rearing of this predator inside micro-environmental cages (MECs), and (2) we evaluated the biocontrol potential of mass-produced predators against cotton pests under potted and field conditions. Higher fecundity and adult longevity of R. fuscipes was recorded in the MECs than under natural growing conditions. The reduviid predator preferred stones and fallen leaves as hiding places in the MECs. The predator showed a higher biocontrol potential during the night hours against two pests, Phenacoccus solenopsis Tinsley and Dysdercus cingulatus (Fab.), than during the day under potted conditions. Under field conditions, R. fuscipes significantly reduced the population of Aphis gossypii Glover, P. solenopsis, D. cingulatus and Helicoverpa armigera (Hübner) by 28, 70, 29 and 50%, respectively. No negative impact of R. fuscipes was reported on other natural enemies present in the cotton agroecosystem. Significantly higher crop yield and cost benefit ratio were observed in R. fuscipes-released plots than in the control plots. The results suggest that R. fuscipes can be mass produced efficiently under controlled conditions in MECs, and used in an integrated management program for multiple cotton pests. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  1. A tropical horde of counterfeit predator eyes.

    PubMed

    Janzen, Daniel H; Hallwachs, Winnie; Burns, John M

    2010-06-29

    We propose that the many different, but essentially similar, eye-like and face-like color patterns displayed by hundreds of species of tropical caterpillars and pupae-26 examples of which are displayed here from the dry, cloud, and rain forests of Area de Conservacion Guanacaste (ACG) in northwestern Costa Rica-constitute a huge and pervasive mimicry complex that is evolutionarily generated and sustained by the survival behavior of a large and multispecific array of potential predators: the insect-eating birds. We propose that these predators are variously and innately programmed to flee when abruptly confronted, at close range, with what appears to be an eye of one of their predators. Such a mimetic complex differs from various classical Batesian and Müllerian mimicry complexes of adult butterflies in that (i) the predators sustain it for the most part by innate traits rather than by avoidance behavior learned through disagreeable experiences, (ii) the more or less harmless, sessile, and largely edible mimics vastly outnumber the models, and (iii) there is no particular selection for the eye-like color pattern to closely mimic the eye or face of any particular predator of the insect-eating birds or that of any other member of this mimicry complex. Indeed, selection may not favor exact resemblance among these mimics at all. Such convergence through selection could create a superabundance of one particular false eyespot or face pattern, thereby increasing the likelihood of a bird species or guild learning to associate that pattern with harmless prey.

  2. A Paleozoological Perspective on White-Tailed Deer ( Odocoileus virginianus texana) Population Density and Body Size in Central Texas

    NASA Astrophysics Data System (ADS)

    Wolverton, Steve; Kennedy, James H.; Cornelius, John D.

    2007-04-01

    Archaeological and paleontological datasets are used in conservation to add time-depth to ecology. In central Texas, several top carnivores including prehistoric Native American hunters have been extirpated or have had their historic ranges restricted, which has resulted in pest-level white-tailed deer ( Odocoileus virginianus texana) populations in some areas. Differences in body size of deer between prehistory and modernity are expected, given that a lack of predation likely has increased intraspecific competition for forage among deer, resulting in smaller body size today. In fact, modern deer from settings without harvest pressure are significantly smaller than those from harvested areas and from prehistoric deer. From a natural history perspective, this research highlights potential evolutionary causes and effects of top-predator removal on deer populations and related components of biological communities in central Texas.

  3. Logging cuts the functional importance of invertebrates in tropical rainforest

    PubMed Central

    Ewers, Robert M.; Boyle, Michael J. W.; Gleave, Rosalind A.; Plowman, Nichola S.; Benedick, Suzan; Bernard, Henry; Bishop, Tom R.; Bakhtiar, Effendi Y.; Chey, Vun Khen; Chung, Arthur Y. C.; Davies, Richard G.; Edwards, David P.; Eggleton, Paul; Fayle, Tom M.; Hardwick, Stephen R.; Homathevi, Rahman; Kitching, Roger L.; Khoo, Min Sheng; Luke, Sarah H.; March, Joshua J.; Nilus, Reuben; Pfeifer, Marion; Rao, Sri V.; Sharp, Adam C.; Snaddon, Jake L.; Stork, Nigel E.; Struebig, Matthew J.; Wearn, Oliver R.; Yusah, Kalsum M.; Turner, Edgar C.

    2015-01-01

    Invertebrates are dominant species in primary tropical rainforests, where their abundance and diversity contributes to the functioning and resilience of these globally important ecosystems. However, more than one-third of tropical forests have been logged, with dramatic impacts on rainforest biodiversity that may disrupt key ecosystem processes. We find that the contribution of invertebrates to three ecosystem processes operating at three trophic levels (litter decomposition, seed predation and removal, and invertebrate predation) is reduced by up to one-half following logging. These changes are associated with decreased abundance of key functional groups of termites, ants, beetles and earthworms, and an increase in the abundance of small mammals, amphibians and insectivorous birds in logged relative to primary forest. Our results suggest that ecosystem processes themselves have considerable resilience to logging, but the consistent decline of invertebrate functional importance is indicative of a human-induced shift in how these ecological processes operate in tropical rainforests. PMID:25865801

  4. Logging cuts the functional importance of invertebrates in tropical rainforest.

    PubMed

    Ewers, Robert M; Boyle, Michael J W; Gleave, Rosalind A; Plowman, Nichola S; Benedick, Suzan; Bernard, Henry; Bishop, Tom R; Bakhtiar, Effendi Y; Chey, Vun Khen; Chung, Arthur Y C; Davies, Richard G; Edwards, David P; Eggleton, Paul; Fayle, Tom M; Hardwick, Stephen R; Homathevi, Rahman; Kitching, Roger L; Khoo, Min Sheng; Luke, Sarah H; March, Joshua J; Nilus, Reuben; Pfeifer, Marion; Rao, Sri V; Sharp, Adam C; Snaddon, Jake L; Stork, Nigel E; Struebig, Matthew J; Wearn, Oliver R; Yusah, Kalsum M; Turner, Edgar C

    2015-04-13

    Invertebrates are dominant species in primary tropical rainforests, where their abundance and diversity contributes to the functioning and resilience of these globally important ecosystems. However, more than one-third of tropical forests have been logged, with dramatic impacts on rainforest biodiversity that may disrupt key ecosystem processes. We find that the contribution of invertebrates to three ecosystem processes operating at three trophic levels (litter decomposition, seed predation and removal, and invertebrate predation) is reduced by up to one-half following logging. These changes are associated with decreased abundance of key functional groups of termites, ants, beetles and earthworms, and an increase in the abundance of small mammals, amphibians and insectivorous birds in logged relative to primary forest. Our results suggest that ecosystem processes themselves have considerable resilience to logging, but the consistent decline of invertebrate functional importance is indicative of a human-induced shift in how these ecological processes operate in tropical rainforests.

  5. Composition and energy contents of mature inshore spawning capelin (Mallotus villosus): Implications for seabird predators

    USGS Publications Warehouse

    Montevecchi, W.A.; Piatt, John F.

    1984-01-01

    1. Lipid levels of capelin are highest in late fall and lowest during the summer spawning season; protein levels are constant at 13–14% body wt throughout the year.2. Ovid females contained significantly more lipid and protein and less water and had higher energy densities than males and spent females.3. Surgically-removed egg masses made up 34.2 ± 10.3% female body wt and were very similar in composition and energy density to gravid females, differing from spent females and males in similar respects. Owing to the ovarian development of females, sexes differ in energy density only during the spawning season.4. Sexes were similar in amino acid composition. Analysis of capelin and three other seabird forage species revealed that isoleucine levels were lower than minimum avian maintenance and growth requirements.5. Implications for the foraging behaviour and food preferences of diving seabird predators (murres, puffins) are discussed

  6. Spatial Patterns and Sequential Sampling Plans for Predators of Aphis glycines (Hemiptera: Aphididae) in Minnesota Soybean.

    PubMed

    Tran, Anh K; Koch, Robert L

    2017-06-01

    The soybean aphid, Aphis glycines Matsumura, is an economically important soybean pest. Many studies have demonstrated that predatory insects are important in suppressing A. glycines population growth. However, to improve the utilization of predators in A. glycines management, sampling plans need to be developed and validated for predators. Aphid predators were sampled in soybean fields near Rosemount, Minnesota, from 2006-2007 and 2013-2015 with sample sizes of 20-80 plants. Sampling plans were developed for Orius insidiosus (Say), Harmonia axyridis (Pallas), and all aphidophagous Coccinellidae species combined. Taylor's power law parameters from the regression of log variance versus log mean suggested aggregated spatial patterns for immature and adult stages combined for O. insidiosus, H. axyridis, and Coccinellidae in soybean fields. Using the parameters from Taylor's power law and Green's method, sequential fixed-precision sampling plans were developed to estimate the density for each predator taxon at desired precision levels of 0.10 and 0.25. To achieve a desired precision of 0.10 and 0.25, the average sample number (ASN) ranged from 398-713 and 64-108 soybean plants, respectively, for all species. Resulting ASNs were relatively large and assumed impractical for most purposes; therefore, the desired precision levels were adjusted to determine the level of precision associated with a more practical ASN. Final analysis indicated an ASN of 38 soybean plants provided precision of 0.32-0.40 for the predators. Development of sampling plans should provide guidance for improved estimation of predator densities for A. glycines pest management programs and for research purposes. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Susceptibility of Ceraeochrysa cubana larvae and adults to six insect growth-regulator insecticides.

    PubMed

    Ono, Éric Kodi; Zanardi, Odimar Zanuzo; Aguiar Santos, Kenia Fernanda; Yamamoto, Pedro Takao

    2017-02-01

    The impacts of six insect growth-regulators were assessed on the predator Ceraeochrysa cubana (Hagen) larvae and adults. Our results showed that diflubenzuron, lufenuron and pyriproxyfen caused 100% larva mortality, whereas buprofezin, methoxyfenozide and tebufenozide were similar to control treatment. In comparison to the control, buprofezin prolonged the duration of larval stage, while methoxyfenozide and tebufenozide reduced the predator larva development time. Buprofezin, methoxyfenozide and tebufenozide did not affect the C. cubana duration and survival of pupal stage, fecundity and fertility. However, methoxyfenozide and tebufenozide reduced predator female and male longevities. Based on a reduction coefficient, diflubenzuron, lufenuron and pyriproxyfen were highly harmful to first instar larvae, while buprofezin, methoxyfenozide and tebufenozide were considered slightly harmful to the predator. Estimating the life table parameters, our results showed that buprofezin, methoxyfenozide and tebufenozide reduced the C. cubana R o , r and λ. In comparison to the control, buprofezin prolonged the T and methoxyfenozide and tebufenozide shortened the predator T. In adults, our results showed that the insecticides did not cause significant mortality, but diflubenzuron, lufenuron and pyriproxyfen reduced the C. cubana fecundity and longevity. Diflubenzuron and lufenuron also reduced the C. cubana fertility. Based on a reduction coefficient, diflubenzuron and lufenuron were highly harmful to C. cubana adults, while pyriproxyfen was slightly harmful and buprofezin, methoxyfenozide and tebufenozide were considered harmless to the predator. Therefore, insect growth-regulators affect the C. cubana biological or populational parameters, and they can harm the integrated pest management programs that aim the predator conservation and/or augmentation in agroecosystems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. More Efficient Sodium Removal by Ultrafiltration Compared to Diuretics in Acute Heart Failure; Underexplored and Overstated.

    PubMed

    Kazory, Amir

    2016-01-01

    Enhanced removal of sodium has often been cited as an advantage of ultrafiltration (UF) therapy over diuretic-based medical treatment in the management of acute decompensated heart failure. However, so far clinical studies have rarely evaluated the precise magnitude of sodium removal, and this assumption is largely based on the physiologic mechanisms and anecdotal observations that predate the contemporary management of heart failure. Recent data suggest that patients treated with UF experience substantial reduction in urinary sodium excretion possibly due to prolonged intravascular volume contraction. Consequently, the efficient sodium extraction through production of isotonic ultrafiltrate can be offset by urine hypotonicity. Based on the limited currently available data, it seems unlikely that the persistent benefits of UF could be solely explained by its greater efficiency in sodium removal. The design of the future studies should include frequent measurements of urine sodium to precisely compare the impact of UF and diuretics on sodium balance. © 2016 S. Karger AG, Basel.

  9. Mechanisms for parasites removal in a waste stabilisation pond.

    PubMed

    Reinoso, Roberto; Blanco, Saúl; Torres-Villamizar, Linda A; Bécares, Eloy

    2011-04-01

    A waste stabilisation pond (WSP) system formed by two anaerobic ponds, a facultative pond and a maturation pond was studied from December 2003 to September 2004 in north-western Spain in order to evaluate its efficiency in the removal of faecal indicator bacteria (total coliforms, Escherichia coli, faecal streptococci), coliphages, helminth eggs and protozoan (oo)cysts (Cryptosporidium and Giardia). Furthermore, sediment samples were collected from the bottom of the ponds to assess the settling rates and thus determine the main pathogen removal mechanisms in the WSPs system. The overall removal ranged from 1.4 log units for coliphages in the cold period to 5.0 log units for E. coli in the hot period. Cryptosporidium oocysts were reduced by an average of 96%, Giardia cysts by 98% and helminth eggs by 100%. The anaerobic ponds showed significantly higher surface removal rates (4.6, 5.2 and 3.7 log (oo)cysts/eggs removed m(-2) day(-1), respectively) than facultative and maturation ponds. Sunlight and water physicochemical conditions were the main factors influencing C. parvum oocysts removal both in the anaerobic and maturation ponds, whereas other factors like predation or natural mortality were more important in the facultative pond. Sedimentation, the most commonly proposed mechanism for cyst removal had, therefore, a negligible influence in the studied ponds.

  10. Control Strategy Scenarios for the Alien Lionfish Pterois volitans in Chinchorro Bank (Mexican Caribbean): Based on Semi-Quantitative Loop Analysis

    PubMed Central

    Ortiz, Marco; Rodriguez-Zaragoza, Fabián; Hermosillo-Nuñez, Brenda; Jordán, Ferenc

    2015-01-01

    Ecological and eco-social network models were constructed with different levels of complexity in order to represent and evaluate management strategies for controlling the alien species Pterois volitans in Chinchorro bank (Mexican Caribbean). Levins´s loop analysis was used as a methodological framework for assessing the local stability (considered as a component of sustainability) of the modeled management interventions represented by various scenarios. The results provided by models of different complexity (models 1 through 4) showed that a reduction of coral species cover would drive the system to unstable states. In the absence of the alien lionfish, the simultaneous fishing of large benthic epifaunal species, adult herbivorous fish and adult carnivorous fish could be sustainable only if the coral species present high levels of cover (models 2 and 3). Once the lionfish is added to the simulations (models 4 and 5), the analysis suggests that although the exploitation or removal of lionfish from shallow waters may be locally stable, it remains necessary to implement additional and concurrent human interventions that increase the holistic sustainability of the control strategy. The supplementary interventions would require the implementation of programs for: (1) the restoration of corals for increasing their cover, (2) the exploitation or removal of lionfish from deeper waters (decreasing the chance of source/sink meta-population dynamics) and (3) the implementation of bans and re-stocking programs for carnivorous fishes (such as grouper) that increase the predation and competition pressure on lionfish (i.e. biological control). An effective control management for the alien lionfish at Chinchorro bank should not be optimized for a single action plan: instead, we should investigate the concurrent implementation of multiple strategies. PMID:26114745

  11. Control Strategy Scenarios for the Alien Lionfish Pterois volitans in Chinchorro Bank (Mexican Caribbean): Based on Semi-Quantitative Loop Analysis.

    PubMed

    Ortiz, Marco; Rodriguez-Zaragoza, Fabián; Hermosillo-Nuñez, Brenda; Jordán, Ferenc

    2015-01-01

    Ecological and eco-social network models were constructed with different levels of complexity in order to represent and evaluate management strategies for controlling the alien species Pterois volitans in Chinchorro bank (Mexican Caribbean). Levins´s loop analysis was used as a methodological framework for assessing the local stability (considered as a component of sustainability) of the modeled management interventions represented by various scenarios. The results provided by models of different complexity (models 1 through 4) showed that a reduction of coral species cover would drive the system to unstable states. In the absence of the alien lionfish, the simultaneous fishing of large benthic epifaunal species, adult herbivorous fish and adult carnivorous fish could be sustainable only if the coral species present high levels of cover (models 2 and 3). Once the lionfish is added to the simulations (models 4 and 5), the analysis suggests that although the exploitation or removal of lionfish from shallow waters may be locally stable, it remains necessary to implement additional and concurrent human interventions that increase the holistic sustainability of the control strategy. The supplementary interventions would require the implementation of programs for: (1) the restoration of corals for increasing their cover, (2) the exploitation or removal of lionfish from deeper waters (decreasing the chance of source/sink meta-population dynamics) and (3) the implementation of bans and re-stocking programs for carnivorous fishes (such as grouper) that increase the predation and competition pressure on lionfish (i.e. biological control). An effective control management for the alien lionfish at Chinchorro bank should not be optimized for a single action plan: instead, we should investigate the concurrent implementation of multiple strategies.

  12. Compilation of 1993 Annual Reports of the Navy ELF Communications System Ecological Monitoring Program. Volume 3. Tabs G-I

    DTIC Science & Technology

    1994-04-01

    Sparrow 2 8 2 2 Spizella passerina Clay-colored Sparrow 3 8 5 2 Spizella pallida Vesper Sparrow 1 8 5 2 Pooecetes gramineus Savannah Sparrow 1 8 5 2...mortality. Reverse Lee’s Phenomenon can occur also, especially in non-exploited populations or where predator - prey relationships do not exist or are...mass as well as predator / prey mass ratios. Finally, we I followed changes in numbers and sizes of six insect taxa to see whether their growth rates

  13. Invasive mammals and habitat modification interact to generate unforeseen outcomes for indigenous fauna.

    PubMed

    Norbury, Grant; Byrom, Andrea; Pech, Roger; Smith, James; Clarke, Dean; Anderson, Dean; Forrester, Guy

    2013-10-01

    Biotic invasions and habitat modification are two drivers of global change predicted to have detrimental impacts on the persistence of indigenous biota worldwide. Few studies have investigated how they operate synergistically to alter trophic interactions among indigenous and nonindigenous species in invaded ecosystems. We experimentally manipulated a suite of interacting invasive mammals, including top predators (cat Felis catus, ferret Mustela furo, stoat M. erminea), herbivores (rabbit Oryctolagus cuniculus, hare Lepus europaeus), and an insectivore (hedgehog Erinaceus europaeus occidentalis), and measured their effects on indigenous lizards and invertebrates and on an invasive mesopredator (house mouse Mus musculus). The work was carried out in a grassland/shrubland ecosystem that had been subjected to two types of habitat modification (widespread introduction of high-seed-producing pasture species, and areas of land use intensification by fertilization and livestock grazing). We also quantified food productivity for indigenous and invasive fauna by measuring pasture biomass, as well as seed and fruit production by grasses and shrubs. Indigenous fauna did not always increase following top-predator suppression: lizards increased on one of two sites; invertebrates did not increase on either site. Mesopredator release of mice was evident at the site where lizards did not increase, suggesting negative effects of mice on lizard populations. High mouse abundance occurred only on the predator-suppression site with regular production of pasture seed, indicating that this food resource was the main driver of mouse populations. Removal of herbivores increased pasture and seed production, which further enhanced ecological release of mice, particularly where pasture swards were overtopped by shrubs. An effect of landscape supplementation was also evident where nearby fertilized pastures boosted rabbit numbers and the associated top predators. Other studies have shown that both suppression of invasive predators and retiring land from grazing can benefit indigenous species, but our results suggest that the ensuing vegetation changes and complex interactions among invasive species can block recovery of indigenous fauna vulnerable to mesopredators. Top-down and bottom-up ecological release of mesopredators and landscape supplementation of top predators are key processes to consider when managing invaded communities in complex landscapes.

  14. Metabarcoding dietary analysis of coral dwelling predatory fish demonstrates the minor contribution of coral mutualists to their highly partitioned, generalist diet.

    PubMed

    Leray, Matthieu; Meyer, Christopher P; Mills, Suzanne C

    2015-01-01

    Understanding the role of predators in food webs can be challenging in highly diverse predator/prey systems composed of small cryptic species. DNA based dietary analysis can supplement predator removal experiments and provide high resolution for prey identification. Here we use a metabarcoding approach to provide initial insights into the diet and functional role of coral-dwelling predatory fish feeding on small invertebrates. Fish were collected in Moorea (French Polynesia) where the BIOCODE project has generated DNA barcodes for numerous coral associated invertebrate species. Pyrosequencing data revealed a total of 292 Operational Taxonomic Units (OTU) in the gut contents of the arc-eye hawkfish (Paracirrhites arcatus), the flame hawkfish (Neocirrhites armatus) and the coral croucher (Caracanthus maculatus). One hundred forty-nine (51%) of them had species-level matches in reference libraries (>98% similarity) while 76 additional OTUs (26%) could be identified to higher taxonomic levels. Decapods that have a mutualistic relationship with Pocillopora and are typically dominant among coral branches, represent a minor contribution of the predators' diets. Instead, predators mainly consumed transient species including pelagic taxa such as copepods, chaetognaths and siphonophores suggesting non random feeding behavior. We also identified prey species known to have direct negative interactions with stony corals, such as Hapalocarcinus sp, a gall crab considered a coral parasite, as well as species of vermetid snails known for their deleterious effects on coral growth. Pocillopora DNA accounted for 20.8% and 20.1% of total number of sequences in the guts of the flame hawkfish and coral croucher but it was not detected in the guts of the arc-eye hawkfish. Comparison of diets among the three fishes demonstrates remarkable partitioning with nearly 80% of prey items consumed by only one predator. Overall, the taxonomic resolution provided by the metabarcoding approach highlights a highly complex interaction web and demonstrates that levels of trophic partitioning among coral reef fishes have likely been underestimated. Therefore, we strongly encourage further empirical approaches to dietary studies prior to making assumptions of trophic equivalency in food web reconstruction.

  15. Reliability of risk assessment measures used in sexually violent predator proceedings.

    PubMed

    Miller, Cailey S; Kimonis, Eva R; Otto, Randy K; Kline, Suzonne M; Wasserman, Adam L

    2012-12-01

    The field interrater reliability of three assessment tools frequently used by mental health professionals when evaluating sex offenders' risk for reoffending--the Psychopathy Checklist-Revised (PCL-R), the Minnesota Sex Offender Screening Tool-Revised (MnSOST-R) and the Static-99-was examined within the context of sexually violent predator program proceedings. Rater agreement was highest for the Static--99 (intraclass correlation coefficient [ICC₁] = .78) and lowest for the PCL-R (ICC₁ = .60; MnSOST-R ICC₁ = .74), although all instruments demonstrated lower field reliability than that reported in their test manuals. Findings raise concerns about the reliability of risk assessment tools that are used to inform judgments of risk in high-stake sexually violent predator proceedings. Implications for future research and suggestions for improving evaluator training to increase accuracy when informing legal decision making are discussed.

  16. Rescuing Ecosystems from Extinction Cascades

    NASA Astrophysics Data System (ADS)

    Sahasrabudhe, Sagar; Motter, Adilson

    2010-03-01

    Food web perturbations stemming from climate change, overexploitation, invasive species, and natural disasters often cause an initial loss of species that results in a cascade of secondary extinctions. Using a predictive modeling framework, here we will present a systematic network-based approach to reduce the number of secondary extinctions. We will show that the extinction of one species can often be compensated by the concurrent removal of a second specific species, which is a counter-intuitive effect not previously tested in complex food webs. These compensatory perturbations frequently involve long-range interactions that are not a priori evident from local predator-prey relationships. Strikingly, in numerous cases even the early removal of a species that would eventually be extinct by the cascade is found to significantly reduce the number of cascading extinctions. Other nondestructive interventions based on partial removals and growth suppression and/or mortality increase are shown to sometimes prevent all secondary extinctions.

  17. Exploring potential effects of cormorant predation on the fish community in Saginaw Bay, Lake Huron

    USGS Publications Warehouse

    DeBruyne, Robin L.; Fielder, David G.; Roseman, Edward; Butchko, Peter H.

    2017-01-01

    Stakeholders and fishery managers expressed concern that double-crested cormorant Phalacrocorax auritus predation may be a factor in the recent poor survival of yellow perch Perca flavescens in Saginaw Bay. We quantified cormorant diets from two nesting colonies in Saginaw Bay during April–September in 2013 and 2014, with special emphasis on impacts to yellow perch. Cormorants (n = 691) were collected when returning to colonies after foraging. Stomachs were removed and preserved in the field. Diet items were identified, enumerated, and measured (n = 23.373). Cormorant diets from Saginaw Bay indicate a heavy reliance on round goby and Notropis species as prey during the breeding season, consistent with other areas of the Great Lakes where round goby and cormorants coincide. Respectively, the three most common prey species observed by number (%) and biomass (%) pooled across years and sites were round goby Neogobius melanostomus (56.6%, 42.1%), emerald shiner Notropis antherinoides (25.2%, 12.5%), and yellow perch (8.0%, 14.1%). Diet composition was more variable at Spoils Island than at Little Charity Island. Overall cormorant consumption (estimated using cormorant consumption demand rates) of yellow perch was compared to walleye consumption. Cormorant consumption of age-1 yellow perch was 13–17% as much as mean walleye consumption of yellow perch in 2013 and 8–11% in 2014. The cumulative effects of walleye and spring cormorant predation likely represent a recruitment bottleneck for yellow perch in Saginaw Bay. Future studies determining age-specific abundance of yellow perch would facilitate better determination of cormorant predation significance.

  18. Virginia Standards Predated the Common Core Initiative

    ERIC Educational Resources Information Center

    Knowledge Quest, 2014

    2014-01-01

    The Virginia Board of Education is committed to the Virginia Standards of Learning (SOL) program and opposed to adoption of the newly developed Common Core State Standards as a prerequisite for participation in federal competitive grant and entitlement programs. The Standards of Learning are clear and rigorous and have won the acceptance and trust…

  19. Incorporating Community Education in the Strategy for Harpy Eagle Conservation in Panama

    ERIC Educational Resources Information Center

    Curti, Marta; Valdez, Ursula

    2009-01-01

    Many species of top predators are threatened, in large part, because of human destruction. Although conservation programs that include captive breeding, release, and research are vital, environmental education is just as important for the long-term survival of many wildlife species. In Panama, The Peregrine Fund developed an education program to…

  20. Predation Efficacy of Bdellovibrio bacteriovorus on Multidrug-Resistant Clinical Pathogens and Their Corresponding Biofilms.

    PubMed

    Sun, Yao; Ye, Jianzhong; Hou, Yuanbo; Chen, Huale; Cao, Jianming; Zhou, Tieli

    2017-09-25

    The aim of the present study was to evaluate the predation efficacy of Bdellovibrio bacteriovorus on multidrug-resistant (MDR) or extensive drug resistant (XDR) gram-negative pathogens and their corresponding biofilms. In this study, we examined the ability of B. bacteriovorus to prey on MDR and XDR gram-negative clinical bacteria, including Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii. Results showed that B. bacteriovorus was able to prey on all planktonic cultures, among which the most efficient predation was observed for drug-resistant E. coli, with a 3.11 log10 reduction in viability. Furthermore, B. bacteriovorus demonstrated promising efficacy in preventing biofilm formation and dispersing the established biofilm. Reductions in biofilm formation of E. coli, K. pneumoniae, P. aeruginosa, and A. baumannii co-cultured with B. bacteriovorus were 65.2%, 37.1%, 44.7%, and 36.8%, respectively. Meanwhile, the established biofilms of E. coli, K. pneumoniae, P. aeruginosa, and A. baumannii were significantly reduced by 83.4%, 81.8%, 83.1%, and 79.9%, respectively. A visual analysis supported by scanning electron microscopy demonstrated the role of B. bacteriovorus in removing the established biofilms. This study highlights the potential use of B. bacteriovorus as a biological control agent with the capability to prey on MDR/XDR gram-negative pathogens and eradicate biofilms.

  1. Predation on parasitic gnathiid isopods on coral reefs: a comparison of Caribbean cleaning gobies with non-cleaning microcarnivores

    NASA Astrophysics Data System (ADS)

    Artim, John M.; Hook, Alexandra; Grippo, Richard S.; Sikkel, Paul C.

    2017-12-01

    On coral reefs, gnathiid isopods are a common blood-feeding ectoparasite of reef fishes that can have significant impacts on reef-fish health and fitness. Cleaner fishes and shrimps are the only major documented predators of gnathiids, removing them from the bodies of host fishes. However, gnathiids spend most of their lifecycle free living and thus may be eaten by other microcarnivorous fishes that collectively could have larger impacts on gnathiid populations. This study examined gut contents from Caribbean nocturnal reef microcarnivorous fish and from the Caribbean cleaning goby Elacatinus evelynae for the presence of gnathiid isopods. Among nocturnal microcarnivores, gnathiids were found in only a small proportion of the gut contents of grunts (5%) and cardinalfish (4%), but in a higher proportion of the gut contents of squirrelfish and soldierfish (26%). In comparison, most cleaning gobies collected in the morning had gnathiids (93%), with an average of 6.3 gnathiids per fish. While microcarnivorous fishes ate far fewer gnathiids, they were present in much greater numbers than cleaning gobies. These results support previous studies on cleaning gobies suggesting that individually, they consume high numbers of gnathiids. However, they also suggest that collectively, other predators could have an equal or greater impact on gnathiid populations.

  2. Protistan Predation Affects Trichloroethene Biodegradation in a Bedrock Aquifer▿

    PubMed Central

    Cunningham, Joseph J.; Kinner, Nancy E.; Lewis, Maureen

    2009-01-01

    Despite extensive research on the bottom-up force of resource availability (e.g., electron donors and acceptors), slow biodegradation rates and stalling at cis-dichloroethene (cDCE) and vinyl chloride continue to be observed in aquifers contaminated with trichloroethene (TCE). The objective of this research was to gauge the impact of the top-down force of protistan predation on TCE biodegradation in laboratory microcosms. When indigenous bacteria from an electron donor-limited TCE-contaminated bedrock aquifer were present, the indigenous protists inhibited reductive dechlorination altogether. The presence of protists during organic carbon-amended conditions caused the bacteria to elongate (length:width, ≥10:1), but reductive dechlorination was still inhibited. When a commercially available dechlorinating bacterial culture and an organic carbon amendment were added in he presence of protists, the elongated bacteria predominated and reductive dechlorination stalled at cDCE. When protists were removed under organic carbon-amended conditions, reductive dechlorination stalled at cDCE, whereas in the presence organic carbon and bacterial amendments, the total chlorinated ethene concentration decreased, indicating TCE was converted to ethene and/or CO2. The data suggested that indigenous protists grazed dechlorinators to extremely low levels, inhibiting dechlorination altogether. Hence, in situ bioremediation/bioaugmentation may not be successful in mineralizing TCE unless the top-down force of protistan predation is inhibited. PMID:19820148

  3. Assessing the trophic position and ecological role of squids in marine ecosystems by means of food-web models

    NASA Astrophysics Data System (ADS)

    Coll, Marta; Navarro, Joan; Olson, Robert J.; Christensen, Villy

    2013-10-01

    We synthesized available information from ecological models at local and regional scales to obtain a global picture of the trophic position and ecological role of squids in marine ecosystems. First, static food-web models were used to analyze basic ecological parameters and indicators of squids: biomass, production, consumption, trophic level, omnivory index, predation mortality diet, and the ecological role. In addition, we developed various dynamic temporal simulations using two food-web models that included squids in their parameterization, and we investigated potential impacts of fishing pressure and environmental conditions for squid populations and, consequently, for marine food webs. Our results showed that squids occupy a large range of trophic levels in marine food webs and show a large trophic width, reflecting the versatility in their feeding behaviors and dietary habits. Models illustrated that squids are abundant organisms in marine ecosystems, and have high growth and consumption rates, but these parameters are highly variable because squids are adapted to a large variety of environmental conditions. Results also show that squids can have a large trophic impact on other elements of the food web, and top-down control from squids to their prey can be high. In addition, some squid species are important prey of apical predators and may be keystone species in marine food webs. In fact, we found strong interrelationships between neritic squids and the populations of their prey and predators in coastal and shelf areas, while the role of squids in open ocean and upwelling ecosystems appeared more constrained to a bottom-up impact on their predators. Therefore, large removals of squids will likely have large-scale effects on marine ecosystems. In addition, simulations confirm that squids are able to benefit from a general increase in fishing pressure, mainly due to predation release, and quickly respond to changes triggered by the environment. Squids may thus be very sensitive to the effects of fishing and climate change.

  4. Trout piscivory in the Colorado River, Grand Canyon: Effects of turbidity, temperature, and fish prey availability

    USGS Publications Warehouse

    Yard, Michael D.; Coggins,, Lewis G.; Baxter, Colden V.; Bennett, Glenn E.; Korman, Josh

    2011-01-01

    Introductions of nonnative salmonids, such as rainbow trout Oncorhynchus mykiss and brown trout Salmo trutta, have affected native fishes worldwide in unforeseen and undesirable ways. Predation and other interactions with nonnative rainbow trout and brown trout have been hypothesized as contributing to the decline of native fishes (including the endangered humpback chub Gila cypha) in the Colorado River, Grand Canyon. A multiyear study was conducted to remove nonnative fish from a 15-km segment of the Colorado River near the Little Colorado River confluence. We evaluated how sediment, temperature, fish prey availability, and predator abundance influenced the incidence of piscivory (IP) by nonnative salmonids. Study objectives were addressed through spatial (upstream and downstream of the Little Colorado River confluence) and temporal (seasonal and annual) comparisons of prey availability and predator abundance. Data were then evaluated by modeling the quantity of fish prey ingested by trout during the first 2 years (2003–2004) of the mechanical removal period. Field effort resulted in the capture of 20,000 nonnative fish, of which 90% were salmonids. Results indicated that the brown trout IP was higher (8–70%) than the rainbow trout IP (0.5–3.3%); however, rainbow trout were 50 times more abundant than brown trout in the study area. We estimated that during the study period, over 30,000 fish (native and nonnative species combined) were consumed by rainbow trout (21,641 fish) and brown trout (11,797 fish). On average, rainbow trout and brown trout ingested 85% more native fish than nonnative fish in spite of the fact that native fish constituted less than 30% of the small fish available in the study area. Turbidity may mediate piscivory directly by reducing prey detection, but this effect was not apparent in our data, as rainbow trout IP was greater when suspended sediment levels (range = 5.9–20,000 mg/L) were higher.

  5. Fate and Enumeration Problems of Fecal Coliform Bacteria in Runoff Waters from Terrestrial Ecosystems.

    DTIC Science & Technology

    1980-09-01

    bacteria and also for the development of a surface organic layer on the plots that aided in the removal of wastewater bacteria through filtration and...better conditions not only for protozoan predation of fecal bacteria but also for the development of a surface organic layer on the plots. This organic... layer acted to increase the detention of the wastewater bacteria through filtration and entrapment. The intermittently treated plots promoted the

  6. Overfishing reduces resilience of kelp beds to climate-driven catastrophic phase shift.

    PubMed

    Ling, S D; Johnson, C R; Frusher, S D; Ridgway, K R

    2009-12-29

    A key consideration in assessing impacts of climate change is the possibility of synergistic effects with other human-induced stressors. In the ocean realm, climate change and overfishing pose two of the greatest challenges to the structure and functioning of marine ecosystems. In eastern Tasmania, temperate coastal waters are warming at approximately four times the global ocean warming average, representing the fastest rate of warming in the Southern Hemisphere. This has driven range extension of the ecologically important long-spined sea urchin (Centrostephanus rodgersii), which has now commenced catastrophic overgrazing of productive Tasmanian kelp beds leading to loss of biodiversity and important rocky reef ecosystem services. Coincident with the overgrazing is heavy fishing of reef-based predators including the spiny lobster Jasus edwardsii. By conducting experiments inside and outside Marine Protected Areas we show that fishing, by removing large predatory lobsters, has reduced the resilience of kelp beds against the climate-driven threat of the sea urchin and thus increased risk of catastrophic shift to widespread sea urchin barrens. This shows that interactions between multiple human-induced stressors can exacerbate nonlinear responses of ecosystems to climate change and limit the adaptive capacity of these systems. Management actions focused on reducing the risk of catastrophic phase shift in ecosystems are particularly urgent in the face of ongoing warming and unprecedented levels of predator removal from the world's oceans.

  7. Overfishing reduces resilience of kelp beds to climate-driven catastrophic phase shift

    PubMed Central

    Ling, S. D.; Johnson, C. R.; Frusher, S. D.; Ridgway, K. R.

    2009-01-01

    A key consideration in assessing impacts of climate change is the possibility of synergistic effects with other human-induced stressors. In the ocean realm, climate change and overfishing pose two of the greatest challenges to the structure and functioning of marine ecosystems. In eastern Tasmania, temperate coastal waters are warming at approximately four times the global ocean warming average, representing the fastest rate of warming in the Southern Hemisphere. This has driven range extension of the ecologically important long-spined sea urchin (Centrostephanus rodgersii), which has now commenced catastrophic overgrazing of productive Tasmanian kelp beds leading to loss of biodiversity and important rocky reef ecosystem services. Coincident with the overgrazing is heavy fishing of reef-based predators including the spiny lobster Jasus edwardsii. By conducting experiments inside and outside Marine Protected Areas we show that fishing, by removing large predatory lobsters, has reduced the resilience of kelp beds against the climate-driven threat of the sea urchin and thus increased risk of catastrophic shift to widespread sea urchin barrens. This shows that interactions between multiple human-induced stressors can exacerbate nonlinear responses of ecosystems to climate change and limit the adaptive capacity of these systems. Management actions focused on reducing the risk of catastrophic phase shift in ecosystems are particularly urgent in the face of ongoing warming and unprecedented levels of predator removal from the world's oceans. PMID:20018706

  8. Differential foraging preferences on seed size by rodents result in higher dispersal success of medium-sized seeds.

    PubMed

    Cao, Lin; Wang, Zhenyu; Yan, Chuan; Chen, Jin; Guo, Cong; Zhang, Zhibin

    2016-11-01

    Rodent preference for scatter-hoarding large seeds has been widely considered to favor the evolution of large seeds. Previous studies supporting this conclusion were primarily based on observations at earlier stages of seed dispersal, or on a limited sample of successfully established seedlings. Because seed dispersal comprises multiple dispersal stages, we hypothesized that differential foraging preference on seed size by animal dispersers at different dispersal stages would ultimately result in medium-sized seeds having the highest dispersal success rates. In this study, by tracking a large number of seeds for 5 yr, we investigated the effects of seed size on seed fates from seed removal to seedling establishment of a dominant plant Pittosporopsis kerrii (Icacinaceae) dispersed by scatter-hoarding rodents in tropical forest in southwest China. We found that small seeds had a lower survival rate at the early dispersal stage where more small seeds were predated at seed stations and after removal; large seeds had a lower survival rate at the late dispersal stage, more large seeds were recovered, predated after being cached, or larder-hoarded. Medium-sized seeds experienced the highest dispersal success. Our study suggests that differential foraging preferences by scatter-hoarding rodents at different stages of seed dispersal could result in conflicting selective pressures on seed size and higher dispersal success of medium-sized seeds. © 2016 by the Ecological Society of America.

  9. Factors that influence vital rates of Seaside and Saltmarsh sparrows in coastal New Jersey, USA

    PubMed Central

    Roberts, Samuel G.; Longenecker, Rebecca A.; Etterson, Matthew A.; Ruskin, Katharine J.; Elphick, Chris S.; Olsen, Brian J.; Shriver, W. Gregory

    2018-01-01

    As saltmarsh habitat continues to disappear, understanding the factors that influence saltmarsh breeding bird population dynamics is an important step for the conservation of these declining species. Using five years (2011 – 2015) of demographic data, we evaluated and compared Seaside (Ammodramus maritimus) and Saltmarsh (A. caudacutus) sparrow apparent adult survival and nest survival at the Edwin B. Forsythe National Wildlife Refuge, New Jersey, USA. We determined the effect of site management history (unditched vs. ditched marsh) on adult and nest survival to aid in prioritizing future management or restoration actions. Seaside Sparrow apparent adult survival (61.6%, 95% CI: 52.5 – 70.0%) averaged >1.5 times greater than Saltmarsh Sparrow apparent adult survival (39.9%, 95% CI: 34.0 – 46.2%). Nest survival and predation and flooding rates did not differ between species, and predation was the primary cause of failure for both species. Apparent adult survival and nest survival did not differ between unditched and ditched marshes for either species, indicating that marsh ditching history may not affect breeding habitat quality for these species. With predation as the primary cause of nest failure for both species in New Jersey, we suggest that future research should focus on identification of predator communities in salt marshes and the potential for implementing predator-control programs to limit population declines. PMID:29479129

  10. Cultural Momentum: The Impact of Agency on Foreign Area Officer Support to the Geographic Combatant Commands

    DTIC Science & Technology

    2015-06-01

    extensive and highly successful military careers started in this personal and professional relationship, directly contributing to the humanitarian aid and...The Navy program, started in 2005, follows the Army’s single-track model for language- enabled officers. The Marine Corps’ program pre-dates the...adheres to its institutional personality against minimalist Joint FAO Program requirements. Before delving into the cases

  11. Ongoing removals of invasive lionfish in Honduras and their effect on native Caribbean prey fishes.

    PubMed

    Peiffer, Friederike; Bejarano, Sonia; Palavicini de Witte, Giacomo; Wild, Christian

    2017-01-01

    The invasion of Indo-Pacific lionfish is one of the most pressing concerns in the context of coral reef conservation throughout the Caribbean. Invasive lionfish threaten Caribbean fish communities by feeding on a wide range of native prey species, some of which have high ecological and economic value. In Roatan (Honduras) a local non-governmental organisation (i.e. Roatan Marine Park) trains residents and tourists in the use of spears to remove invasive lionfish. Here, we assess the effectiveness of local removal efforts in reducing lionfish populations. We ask whether reefs subject to relatively frequent removals support more diverse and abundant native fish assemblages compared to sites were no removals take place. Lionfish biomass, as well as density and diversity of native prey species were quantified on reefs subject to regular and no removal efforts. Reefs subject to regular lionfish removals (two to three removals month -1 ) with a mean catch per unit effort of 2.76 ± 1.72 lionfish fisher -1 h -1 had 95% lower lionfish biomass compared to non-removal sites. Sites subject to lionfish removals supported 30% higher densities of native prey-sized fishes compared to sites subject to no removal efforts. We found no evidence that species richness and diversity of native fish communities differ between removal and non-removal sites. We conclude that opportunistic voluntary removals are an effective management intervention to reduce lionfish populations locally and might alleviate negative impacts of lionfish predation. We recommend that local management and the diving industry cooperate to cost-effectively extend the spatial scale at which removal regimes are currently sustained.

  12. Ongoing removals of invasive lionfish in Honduras and their effect on native Caribbean prey fishes

    PubMed Central

    Palavicini de Witte, Giacomo; Wild, Christian

    2017-01-01

    The invasion of Indo-Pacific lionfish is one of the most pressing concerns in the context of coral reef conservation throughout the Caribbean. Invasive lionfish threaten Caribbean fish communities by feeding on a wide range of native prey species, some of which have high ecological and economic value. In Roatan (Honduras) a local non-governmental organisation (i.e. Roatan Marine Park) trains residents and tourists in the use of spears to remove invasive lionfish. Here, we assess the effectiveness of local removal efforts in reducing lionfish populations. We ask whether reefs subject to relatively frequent removals support more diverse and abundant native fish assemblages compared to sites were no removals take place. Lionfish biomass, as well as density and diversity of native prey species were quantified on reefs subject to regular and no removal efforts. Reefs subject to regular lionfish removals (two to three removals month−1) with a mean catch per unit effort of 2.76 ± 1.72 lionfish fisher−1 h−1 had 95% lower lionfish biomass compared to non-removal sites. Sites subject to lionfish removals supported 30% higher densities of native prey-sized fishes compared to sites subject to no removal efforts. We found no evidence that species richness and diversity of native fish communities differ between removal and non-removal sites. We conclude that opportunistic voluntary removals are an effective management intervention to reduce lionfish populations locally and might alleviate negative impacts of lionfish predation. We recommend that local management and the diving industry cooperate to cost-effectively extend the spatial scale at which removal regimes are currently sustained. PMID:29062597

  13. Synthetic predator cues impair immune function and make the biological pesticide Bti more lethal for vector mosquitoes.

    PubMed

    Op De Beeck, Lin; Janssens, Lizanne; Stoks, Robby

    2016-03-01

    The control of vector mosquitoes is one of the biggest challenges facing humankind with the use of chemical pesticides often leading to environmental impact and the evolution of resistance. Although to a lesser extent, this also holds for Bacillus thuringiensis israelensis (Bti), the most widely used biological pesticide to control mosquito populations. This raises the need for the development of integrated pest management strategies that allow the reduction of Bti concentrations without loss of the mosquito control efficiency. To this end, we tested in a laboratory experiment the combined effects of larval exposure to a sublethal Bti concentration and predation risk cues on life history and physiology of larval and adult Culex pipiens mosquitoes. Besides natural predator kairomones and prey alarm cues, we also tested synthetic kairomones of Notonecta predators. Neither Bti nor predation risk cues affected mortality, yet when both stressors were combined mortality increased on average by 133% compared to the treatment with only predation risk cues. This synergistic interaction was also present when Bti was combined with synthetic kairomones. This was further reflected in changes of the composite index of population performance, which suggested lowered per capita growth rates in mosquitoes exposed to Bti but only when Bti was combined with synthetic kairomones. Furthermore, predation risk cues shortened larval development time, reduced mass at metamorphosis in males, and had an immunosuppressive effect in larval and adult mosquitoes which may affect the mosquito vector competence. We provide the first demonstration that synthetic kairomones may generate similar effects on prey as natural kairomones. The identified immunosuppressive effect of synthetic kairomones and the novel lethal synergism type between a biological pesticide and synthetic predator kairomones provide an important proof of principle illustrating the potential of this combination for integrated mosquito control and should in a next step be evaluated under more natural conditions. It may guide novel integrated pest management programs with Bti that incorporate synthetic kairomones and thereby can reduce environmental impact and evolution of resistance creating more efficient and sustainable mosquito control.

  14. Living with lions: the economics of coexistence in the Gir forests, India.

    PubMed

    Banerjee, Kausik; Jhala, Yadvendradev V; Chauhan, Kartikeya S; Dave, Chittranjan V

    2013-01-01

    Rarely human communities coexist in harmony with large predators. Most often communities suffer due to predation on their stock while large carnivores suffer losses and at times extirpation due to retaliation. We examine the mechanisms permitting the coexistence of Asiatic lions (Panthera leo persica) and pastoral communities (Maldharis) in the Gir forests, India. We monitored six Maldhari settlements between 2005 and 2007 to quantify seasonal livestock holding, density and losses due to predation and other causes. Lion density, estimated by mark recapture, was 15±0.1 SE/100 km(2). Livestock density, estimated by total counts, ranged between 25/km(2)-31/km(2) with buffaloes being most abundant. Average livestock holding of Maldhari families was 33±3 SE. Lions predated mostly on unproductive cattle (30%). Scat analysis (n = 165), predation events (n = 180) and seven continuous monitoring sessions of 1,798 hours on four radio-collared lions estimated livestock to contribute between 25 to 42% of lions' biomass consumptions, of which only 16% was predated; rest scavenged. With free grazing rights within Gir forests, Maldharis offset 58±0.2 SE% of annual livestock rearing cost in comparison to non-forest dwelling pastoralists. With government compensation scheme for livestock predation, this profit margin augmented to 76±0.05 SE%. Lion density was higher in areas with Maldhari livestock in comparison to areas without livestock. Thus, the current lifestyles and livestock holdings of Maldharis seem to be beneficial to both lions and local pastoralists. We conclude that a combination of strict protection regime for lions, Maldharis' traditional reverence towards lions and the livelihood economics permit the delicate balance of lion-Maldhari coexistence. Indefinite increase in human and livestock population within Gir might upset this equilibrium undermining the conservation objectives. We see no end to compensation programs worldwide as they constitute a crucial element needed for human-carnivore coexistence.

  15. Living with Lions: The Economics of Coexistence in the Gir Forests, India

    PubMed Central

    Banerjee, Kausik; Jhala, Yadvendradev V.; Chauhan, Kartikeya S.; Dave, Chittranjan V.

    2013-01-01

    Rarely human communities coexist in harmony with large predators. Most often communities suffer due to predation on their stock while large carnivores suffer losses and at times extirpation due to retaliation. We examine the mechanisms permitting the coexistence of Asiatic lions (Panthera leo persica) and pastoral communities (Maldharis) in the Gir forests, India. We monitored six Maldhari settlements between 2005 and 2007 to quantify seasonal livestock holding, density and losses due to predation and other causes. Lion density, estimated by mark recapture, was 15±0.1 SE/100 km2. Livestock density, estimated by total counts, ranged between 25/km2–31/km2 with buffaloes being most abundant. Average livestock holding of Maldhari families was 33±3 SE. Lions predated mostly on unproductive cattle (30%). Scat analysis (n = 165), predation events (n = 180) and seven continuous monitoring sessions of 1,798 hours on four radio-collared lions estimated livestock to contribute between 25 to 42% of lions’ biomass consumptions, of which only 16% was predated; rest scavenged. With free grazing rights within Gir forests, Maldharis offset 58±0.2 SE% of annual livestock rearing cost in comparison to non-forest dwelling pastoralists. With government compensation scheme for livestock predation, this profit margin augmented to 76±0.05 SE%. Lion density was higher in areas with Maldhari livestock in comparison to areas without livestock. Thus, the current lifestyles and livestock holdings of Maldharis seem to be beneficial to both lions and local pastoralists. We conclude that a combination of strict protection regime for lions, Maldharis’ traditional reverence towards lions and the livelihood economics permit the delicate balance of lion-Maldhari coexistence. Indefinite increase in human and livestock population within Gir might upset this equilibrium undermining the conservation objectives. We see no end to compensation programs worldwide as they constitute a crucial element needed for human-carnivore coexistence. PMID:23341871

  16. Resembling a viper: implications of mimicry for conservation of the endangered smooth snake.

    PubMed

    Valkonen, Janne K; Mappes, Johanna

    2014-12-01

    The phenomenon of Batesian mimicry, where a palatable animal gains protection against predation by resembling an unpalatable model, has been a core interest of evolutionary biologists for 150 years. An extensive range of studies has focused on revealing mechanistic aspects of mimicry (shared education and generalization of predators) and the evolutionary dynamics of mimicry systems (co-operation vs. conflict) and revealed that protective mimicry is widespread and is important for individual fitness. However, according to our knowledge, there are no case studies where mimicry theories have been applied to conservation of mimetic species. Theoretically, mimicry affects, for example, frequency dependency of predator avoidance learning and human induced mortality. We examined the case of the protected, endangered, nonvenomous smooth snake (Coronella austriaca) that mimics the nonprotected venomous adder (Vipera berus), both of which occur in the Åland archipelago, Finland. To quantify the added predation risk on smooth snakes caused by the rarity of vipers, we calculated risk estimates from experimental data. Resemblance of vipers enhances survival of smooth snakes against bird predation because many predators avoid touching venomous vipers. Mimetic resemblance is however disadvantageous against human predators, who kill venomous vipers and accidentally kill endangered, protected smooth snakes. We found that the effective population size of the adders in Åland is very low relative to its smooth snake mimic (28.93 and 41.35, respectively).Because Batesian mimicry is advantageous for the mimic only if model species exist in sufficiently high numbers, it is likely that the conservation program for smooth snakes will fail if adders continue to be destroyed. Understanding the population consequences of mimetic species may be crucial to the success of endangered species conservation. We suggest that when a Batesian mimic requires protection, conservation planners should not ignore the model species (or co-mimic in Mullerian mimicry rings) even if it is not itself endangered. © 2014 Society for Conservation Biology.

  17. Wave propagation in predator-prey systems

    NASA Astrophysics Data System (ADS)

    Fu, Sheng-Chen; Tsai, Je-Chiang

    2015-12-01

    In this paper, we study a class of predator-prey systems of reaction-diffusion type. Specifically, we are interested in the dynamical behaviour for the solution with the initial distribution where the prey species is at the level of the carrying capacity, and the density of the predator species has compact support, or exponentially small tails near x=+/- ∞ . Numerical evidence suggests that this will lead to the formation of a pair of diverging waves propagating outwards from the initial zone. Motivated by this phenomenon, we establish the existence of a family of travelling waves with the minimum speed. Unlike the previous studies, we do not use the shooting argument to show this. Instead, we apply an iteration process based on Berestycki et al 2005 (Math Comput. Modelling 50 1385-93) to construct a set of super/sub-solutions. Since the underlying system does not enjoy the comparison principle, such a set of super/sub-solutions is not based on travelling waves, and in fact the super/sub-solutions depend on each other. With the aid of the set of super/sub-solutions, we can construct the solution of the truncated problem on the finite interval, which, via the limiting argument, can in turn generate the wave solution. There are several advantages to this approach. First, it can remove the technical assumptions on the diffusivities of the species in the existing literature. Second, this approach is of PDE type, and hence it can shed some light on the spreading phenomenon indicated by numerical simulation. In fact, we can compute the spreading speed of the predator species for a class of biologically acceptable initial distributions. Third, this approach might be applied to the study of waves in non-cooperative systems (i.e. a system without a comparison principle).

  18. Eye-spots in Lepidoptera attract attention in humans

    PubMed Central

    Yorzinski, Jessica L.; Platt, Michael L.; Adams, Geoffrey K.

    2015-01-01

    Many prey species exhibit defensive traits to decrease their chances of predation. Conspicuous eye-spots, concentric rings of contrasting colours, are one type of defensive trait that some species exhibit to deter predators. We examined the function of eye-spots in Lepidoptera to determine whether they are effective at deterring predators because they resemble eyes (‘eye mimicry hypothesis’) or are highly salient (‘conspicuous signal hypothesis’). We recorded the gaze behaviour of men and women as they viewed natural images of butterflies and moths as well as images in which the eye-spots of these insects were modified. The eye-spots were modified by removing them, scrambling their colours, or replacing them with elliptical or triangular shapes that had either dark or light centres. Participants were generally more likely to look at, spend more time looking at and be faster to first fixate the eye-spots of butterflies and moths that were natural compared with ones that were modified, including the elliptical eye-spots with dark centres that most resembled eyes as well as the scrambled eye-spots that had the same contrast as the natural eye-spots. Participants were most likely to look at eye-spots that were numerous, had a large surface area and were located close to the insects' heads. Participants' pupils were larger when viewing eye-spots compared with the rest of the insects' body, suggesting a greater arousal when viewing eye-spots. Our results provide some support for the conspicuous signal hypothesis (and minimal support for the eye mimicry hypothesis) and suggest that eye-spots may be effective at deterring predators because they are highly conspicuous signals that draw attention. PMID:26543589

  19. Host Plant-Herbivore-Predator Interactions in Chrysoperla carnea (Neuroptera: Chrysopidae) and Myzus persicae (Homoptera: Aphididae) on Four Plant Species Under Laboratory Conditions.

    PubMed

    Farrokhi, Milad; Gharekhani, Gholamhossein; Iranipour, Shahzad; Hassanpour, Mahdi

    2017-12-05

    The common green lacewing, Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae), is a well-known biocontrol agent. The current study examined host plant-herbivore-predator interactions with C. carnea and Myzus persicae on four host plants (peach, almond, pepper, and potato). The experiments were carried out at 25 ± 1°C and 65 ± 5% RH at a photoperiod of 16:8 (L:D) h). Duration of the preadult growth period, adult longevity, fecundity, and population growth parameters were analyzed based on the age-stage, two-sex life table theory. The shortest and longest preadult developmental times of the predator were observed on the peach and potato, respectively. The highest and lowest predation rate, oviposition period, and male and female longevity of predator were also observed on the peach and potato, respectively. The lowest intrinsic rate of increase (r) and finite rate of increase (λ) were observed on the potato (0.1087 and 1.11 d-1, respectively) and the highest on the peach (0.1460 and 1.15 d-1, respectively). The maximum and minimum mean generation times (T) were 41.84 and 35.59 d in the potato and peach, respectively. Overall, peach was found to be a more appropriate host than the other host plants for development and predation fitness of C. carnea. These findings reveal that information on tritrophic interactions and subsequent life table evaluation of natural enemies improves integrated pest management programs. Published by Oxford University Press on behalf of Entomological Society of America 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  20. Personality Assessment Inventory scores as predictors of misconduct among sex offenders civilly committed as sexually violent predators.

    PubMed

    Boccaccini, Marcus T; Rufino, Katrina A; Jackson, Rebecca L; Murrie, Daniel C

    2013-12-01

    We examined the usefulness of scores on the Personality Assessment Inventory (PAI; Morey, 1991) in predicting treatment program violations among 76 sexual offenders civilly committed as sexually violent predators. Scores on the Borderline Features scale (area under the curve [AUC] = .69, p = .005) and Negative Relationships subscale (BOR-N: AUC = .71, p < .001) were the strongest predictors of misconduct, outperforming scores on scales designed to predict poor treatment amenability and antisocial behavior. Incremental validity analyses indicated that BOR scores made a significant contribution to the prediction of misconduct after controlling for scores on measures of overall self-reported distress (e.g., Mean Clinical Elevation, Negative Impression), which were also predictive of program violations. Overall, our findings point to the potential utility of integrating components of treatment for borderline personality disorder into sex offender treatment. (c) 2013 APA, all rights reserved.

  1. Persistence of identifiable remains of white sturgeon juveniles in digestive tracts of northern pikeminnow

    USGS Publications Warehouse

    Gadomski, D.M.; Frost, C.N.

    2004-01-01

    Juvenile white sturgeon, Acipenser transmontanus, have not been commonly identified as prey items in digestive tracts of fishes collected in the wild. In particular, the diet of northern pikeminnow, Ptychocheilus oregonensis, an abundant Pacific Northwest freshwater predator which has been widely studied, has not included juvenile white sturgeon. To aid in interpreting these results and help in planning future feeding studies, we determined the persistence of identifiable remains of white sturgeon juveniles in this predator's digestive tract. Northern pikeminnow (mean total length = 476 mm), were force-fed meals of 2 or 3 juvenile white sturgeon (mean total length = 91 mm). After digestive periods of 4, 8, 16, 24, 28, and 32h at a water temperature of about 17 ??C, fish were sacrificed, digestive tracts removed, and contents examined. Our results indicate that juvenile white sturgeon would be readily discernable in digestive tracts of northern pikeminnow at least a day after feeding, with scutes remaining undigested and identifiable for 28 h.

  2. How mammalian predation contributes to tropical tree community structure.

    PubMed

    Paine, C E Timothy; Beck, Harald; Terborgh, John

    2016-12-01

    The recruitment of seedlings from seeds is the key demographic transition for rain forest trees. Though tropical forest mammals are known to consume many seeds, their effects on tree community structure remain little known. To evaluate their effects, we monitored 8,000 seeds of 24 tree species using exclosure cages that were selectively permeable to three size classes of mammals for up to 4.4 years. Small and medium-bodied mammals removed many more seeds than did large mammals, and they alone generated beta diversity and negative density dependence, whereas all mammals reduced diversity and shaped local species composition. Thus, small and medium-bodied mammals more strongly contributed to community structure and promoted species coexistence than did large mammals. Given that seedling recruitment is seed limited for most species, alterations to the composition of the community of mammalian seed predators is expected to have long-term consequences for tree community structure in tropical forests. © 2016 by the Ecological Society of America.

  3. The Influence of Mean Trophic Level on Biomass and Production in Marine Ecosystems

    NASA Astrophysics Data System (ADS)

    Woodson, C. B.; Schramski, J.

    2016-02-01

    The oceans have faced rapid removal of top predators causing a reduction in the mean trophic level of many marine ecosystems due to fishing down the food web. However, estimating the pre-exploitation biomass of the ocean has been difficult. Historical population sizes have been estimated using population dynamics models, archaeological or historical records, fisheries data, living memory, ecological monitoring data, genetics, and metabolic theory. In this talk, we expand on the use of metabolic theory by including complex trophic webs to estimate pre-exploitation levels of marine biomass. Our results suggest that historical marine biomass could be as much as 10 times higher than current estimates and that the total carrying capacity of the ocean is sensitive to mean trophic level and trophic web complexity. We further show that the production levels needed to support the added biomass are possible due to biomass accumulation and predator-prey overlap in regions such as fronts. These results have important implications for marine biogeochemical cycling, fisheries management, and conservation efforts.

  4. Effects of fish density and river fertilization on algal standing stocks, invertebrates communities, and fish production in an Arctic River

    USGS Publications Warehouse

    Deegan, Linda A.; Peterson, B.J.; Golden, H.; McIvor, C.C.; Miller, M.C.

    1997-01-01

    This study examined the relative importance of bottom-up and top-down controls of an arctic stream food web by simultaneous manipulation of the top predator and nutrient availability. We created a two-step trophic system (algae to insects) by removal of the top predator (Arctic grayling, Thymallus arcticus) in fertilized and control stream reaches. Fish abundance was also increased 10 times to examine the effect of high fish density on stream ecosystem dynamics and fish. We measured the response of epilithic algae, benthic and drifting insects, and fish to nutrient enrichment and to changes in fish density. Insect grazers had little effect on algae and fish had little effect on insects. In both the control and fertilized reaches, fish growth, energy storage, and reproductive response of females declined with increased fish density. Fish growth and energy storage were more closely correlated with per capita insect availability than with per capita algal standing stock

  5. Paying the pipers: Mitigating the impact of anticoagulant rodenticides on predators and scavengers

    USGS Publications Warehouse

    Elliott, John E.; Rattner, Barnett A.; Shore, Richard F.; van den Brink, Nico W.

    2016-01-01

    Anticoagulant rodenticides, mainly second-generation forms, or SGARs, dominate the global market for rodent control. Introduced in the 1970s to counter genetic resistance in rodent populations to first-generation compounds such as warfarin, SGARs are extremely toxic and highly effective killers. However, their tendency to persist and accumulate in the body has led to the widespread contamination of terrestrial predators and scavengers. Commercial chemicals that are classified by regulators as persistent, bio-accumulative, and toxic (PBT) chemicals and that are widely used with potential environmental release, such as dichloro-diphenyl-trichloroethane (DDT) or polychlorinated biphenyls (PCBs), have been removed from commerce. However, despite consistently failing ecological risk assessments, SGARs remain in use because of the demand for effective rodent-control options and the lack of safe and humane alternatives. Although new risk-mitigation measures for rodenticides are now in effect in some countries, the contamination and poisoning of nontarget wildlife are expected to continue. Here, we suggest options to further attenuate this problem.

  6. When did Carcharocles megalodon become extinct? A new analysis of the fossil record.

    PubMed

    Pimiento, Catalina; Clements, Christopher F

    2014-01-01

    Carcharocles megalodon ("Megalodon") is the largest shark that ever lived. Based on its distribution, dental morphology, and associated fauna, it has been suggested that this species was a cosmopolitan apex predator that fed on marine mammals from the middle Miocene to the Pliocene (15.9-2.6 Ma). Prevailing theory suggests that the extinction of apex predators affects ecosystem dynamics. Accordingly, knowing the time of extinction of C. megalodon is a fundamental step towards understanding the effects of such an event in ancient communities. However, the time of extinction of this important species has never been quantitatively assessed. Here, we synthesize the most recent records of C. megalodon from the literature and scientific collections and infer the date of its extinction by making a novel use of the Optimal Linear Estimation (OLE) model. Our results suggest that C. megalodon went extinct around 2.6 Ma. Furthermore, when contrasting our results with known ecological and macroevolutionary trends in marine mammals, it became evident that the modern composition and function of modern gigantic filter-feeding whales was established after the extinction of C. megalodon. Consequently, the study of the time of extinction of C. megalodon provides the basis to improve our understanding of the responses of marine species to the removal of apex predators, presenting a deep-time perspective for the conservation of modern ecosystems.

  7. When Did Carcharocles megalodon Become Extinct? A New Analysis of the Fossil Record

    PubMed Central

    Pimiento, Catalina; Clements, Christopher F.

    2014-01-01

    Carcharocles megalodon (“Megalodon”) is the largest shark that ever lived. Based on its distribution, dental morphology, and associated fauna, it has been suggested that this species was a cosmopolitan apex predator that fed on marine mammals from the middle Miocene to the Pliocene (15.9–2.6 Ma). Prevailing theory suggests that the extinction of apex predators affects ecosystem dynamics. Accordingly, knowing the time of extinction of C. megalodon is a fundamental step towards understanding the effects of such an event in ancient communities. However, the time of extinction of this important species has never been quantitatively assessed. Here, we synthesize the most recent records of C. megalodon from the literature and scientific collections and infer the date of its extinction by making a novel use of the Optimal Linear Estimation (OLE) model. Our results suggest that C. megalodon went extinct around 2.6 Ma. Furthermore, when contrasting our results with known ecological and macroevolutionary trends in marine mammals, it became evident that the modern composition and function of modern gigantic filter-feeding whales was established after the extinction of C. megalodon. Consequently, the study of the time of extinction of C. megalodon provides the basis to improve our understanding of the responses of marine species to the removal of apex predators, presenting a deep-time perspective for the conservation of modern ecosystems. PMID:25338197

  8. Cache placement, pilfering, and a recovery advantage in a seed-dispersing rodent: Could predation of scatter hoarders contribute to seedling establishment?

    NASA Astrophysics Data System (ADS)

    Steele, Michael A.; Bugdal, Melissa; Yuan, Amy; Bartlow, Andrew; Buzalewski, Jarrod; Lichti, Nathan; Swihart, Robert

    2011-11-01

    Scatter-hoarding mammals are thought to rely on spatial memory to relocate food caches. Yet, we know little about how long these granivores (primarily rodents) recall specific cache locations or whether individual hoarders have an advantage when recovering their own caches. Indeed, a few recent studies suggest that high rates of pilferage are common and that individual hoarders may not have a retriever's advantage. We tested this hypothesis in a high-density (>7 animals/ha) population of eastern gray squirrels ( Sciurus carolinensis) by presenting individually marked animals (>20) with tagged acorns, mapping cache sites, and following the fate of seed caches. PIT tags allowed us to monitor individual seeds without disturbing cache sites. Acorns only remained in the caches for 12-119 h (0.5-5 d). However, when we live-trapped and removed some animals from the site immediately after they stored seeds (thus simulating predation), their seed caches remained intact for significantly longer periods (16-27 d). Cache duration corresponded roughly to the time at which squirrels were returned to the study area. These results suggest that squirrels have a retriever's advantage and may remember specific cache sites longer than previously thought. We further suggest that predation of scatter hoarders who store seeds for long periods and also possess a recovery advantage may be one important mechanism by which seed establishment is achieved.

  9. INSIDE EPA RESEARCH

    EPA Science Inventory

    The article discusses air pollution research at the U.S. EPA, and particularly AEERL's role in that research which, in some areas, predates the Agency's. EPA's engineering research programs are shifting from an initial focus on sulfur dioxide and nitrogen oxide pollution control ...

  10. Building the Mysterious Bankhide.

    ERIC Educational Resources Information Center

    Jurgs, Don W.

    1983-01-01

    Building bankhides (areas for trout to rest, hide from predators, and wait for their next meal) is one project of the Bettendorf (Iowa) Community School District's K-12 field science programs. Discusses sixth graders involvement and related activities in the bankhide project. (JN)

  11. TNR and conservation on a university campus: a political ecological perspective.

    PubMed

    Dombrosky, Jonathan; Wolverton, Steve

    2014-01-01

    How to manage the impact of free-ranging cats on native wildlife is a polarizing issue. Conservation biologists largely support domestic cat euthanasia to mitigate impacts of free-ranging cat predation on small animal populations. Above all else, animal welfare activists support the humane treatment of free-ranging cats, objecting to euthanasia. Clearly, this issue of how to control free-ranging cat predation on small animals is value laden, and both positions must be considered and comprehended to promote effective conservation. Here, two gaps in the free-ranging cat-small-animal conservation literature are addressed. First, the importance of understanding the processes of domestication and evolution and how each relates to felid behavioral ecology is discussed. The leading hypothesis to explain domestication of wildcats (Felis silvestris) relates to their behavioral ecology as a solitary predator, which made them suited for pest control in early agricultural villages of the Old World. The relationship humans once had with cats, however, has changed because today domesticated cats are usually household pets. As a result, concerns of conservation biologists may relate to cats as predators, but cat welfare proponents come from the position of assuming responsibility for free-ranging household pets (and their feral offspring). Thus, the perceptions of pet owners and other members of the general public provide an important context that frames the relationship between free-ranging cats and small animal conservation. The second part of this paper assesses the effects of an information-based conservation approach on shifting student's perception of a local Trap-Neuter-Return (TNR) program in introductory core science classes at the University of North Texas (UNT). UNT students are (knowingly or unknowingly) regularly in close proximity to a TNR program on campus that supports cat houses and feeding stations. A survey design implementing a tailored-information approach was used to communicate what TNR programs are, their goals, and the "conservationist" view of TNR programs. We gauged favorability of student responses to the goals of TNR programs prior to and after exposure to tailored information on conservation concerns related to free-ranging cats. Although these results are from a preliminary study, we suggest that an information-based approach may only be marginally effective at shifting perceptions about the conservation implications of free-ranging cats. Our position is that small animal conservation in Western societies occurs in the context of pet ownership, thus broader approaches that promote ecological understanding via environmental education are more likely to be successful than information-based approaches.

  12. TNR and conservation on a university campus: a political ecological perspective

    PubMed Central

    Wolverton, Steve

    2014-01-01

    How to manage the impact of free-ranging cats on native wildlife is a polarizing issue. Conservation biologists largely support domestic cat euthanasia to mitigate impacts of free-ranging cat predation on small animal populations. Above all else, animal welfare activists support the humane treatment of free-ranging cats, objecting to euthanasia. Clearly, this issue of how to control free-ranging cat predation on small animals is value laden, and both positions must be considered and comprehended to promote effective conservation. Here, two gaps in the free-ranging cat—small-animal conservation literature are addressed. First, the importance of understanding the processes of domestication and evolution and how each relates to felid behavioral ecology is discussed. The leading hypothesis to explain domestication of wildcats (Felis silvestris) relates to their behavioral ecology as a solitary predator, which made them suited for pest control in early agricultural villages of the Old World. The relationship humans once had with cats, however, has changed because today domesticated cats are usually household pets. As a result, concerns of conservation biologists may relate to cats as predators, but cat welfare proponents come from the position of assuming responsibility for free-ranging household pets (and their feral offspring). Thus, the perceptions of pet owners and other members of the general public provide an important context that frames the relationship between free-ranging cats and small animal conservation. The second part of this paper assesses the effects of an information-based conservation approach on shifting student’s perception of a local Trap–Neuter–Return (TNR) program in introductory core science classes at the University of North Texas (UNT). UNT students are (knowingly or unknowingly) regularly in close proximity to a TNR program on campus that supports cat houses and feeding stations. A survey design implementing a tailored-information approach was used to communicate what TNR programs are, their goals, and the “conservationist” view of TNR programs. We gauged favorability of student responses to the goals of TNR programs prior to and after exposure to tailored information on conservation concerns related to free-ranging cats. Although these results are from a preliminary study, we suggest that an information-based approach may only be marginally effective at shifting perceptions about the conservation implications of free-ranging cats. Our position is that small animal conservation in Western societies occurs in the context of pet ownership, thus broader approaches that promote ecological understanding via environmental education are more likely to be successful than information-based approaches. PMID:24711965

  13. Mismatched anti-predator behavioral responses in predator-naïve larval anurans.

    PubMed

    Albecker, Molly; Vance-Chalcraft, Heather D

    2015-01-01

    Organisms are adept at altering behaviors to balance the tradeoff between foraging and predation risk in spatially and temporally shifting predator environments. In order to optimize this tradeoff, prey need to be able to display an appropriate response based on degree of predation risk. To be most beneficial in the earliest life stages in which many prey are vulnerable to predation, innate anti-predator responses should scale to match the risk imposed by predators until learned anti-predator responses can occur. We conducted an experiment that examined whether tadpoles with no previous exposure to predators (i.e., predator-naive) exhibit innate antipredator behavioral responses (e.g., via refuge use and spatial avoidance) that match the actual risk posed by each predator. Using 7 treatments (6 free-roaming, lethal predators plus no-predator control), we determined the predation rates of each predator on Lithobates sphenocephalus tadpoles. We recorded behavioral observations on an additional 7 nonlethal treatments (6 caged predators plus no-predator control). Tadpoles exhibited innate responses to fish predators, but not non-fish predators, even though two non-fish predators (newt and crayfish) consumed the most tadpoles. Due to a mismatch between innate response and predator consumption, tadpoles may be vulnerable to greater rates of predation at the earliest life stages before learning can occur. Thus, naïve tadpoles in nature may be at a high risk to predation in the presence of a novel predator until learned anti-predator responses provide additional defenses to the surviving tadpoles.

  14. Mismatched anti-predator behavioral responses in predator-naïve larval anurans

    PubMed Central

    Vance-Chalcraft, Heather D.

    2015-01-01

    Organisms are adept at altering behaviors to balance the tradeoff between foraging and predation risk in spatially and temporally shifting predator environments. In order to optimize this tradeoff, prey need to be able to display an appropriate response based on degree of predation risk. To be most beneficial in the earliest life stages in which many prey are vulnerable to predation, innate anti-predator responses should scale to match the risk imposed by predators until learned anti-predator responses can occur. We conducted an experiment that examined whether tadpoles with no previous exposure to predators (i.e., predator-naive) exhibit innate antipredator behavioral responses (e.g., via refuge use and spatial avoidance) that match the actual risk posed by each predator. Using 7 treatments (6 free-roaming, lethal predators plus no-predator control), we determined the predation rates of each predator on Lithobates sphenocephalus tadpoles. We recorded behavioral observations on an additional 7 nonlethal treatments (6 caged predators plus no-predator control). Tadpoles exhibited innate responses to fish predators, but not non-fish predators, even though two non-fish predators (newt and crayfish) consumed the most tadpoles. Due to a mismatch between innate response and predator consumption, tadpoles may be vulnerable to greater rates of predation at the earliest life stages before learning can occur. Thus, naïve tadpoles in nature may be at a high risk to predation in the presence of a novel predator until learned anti-predator responses provide additional defenses to the surviving tadpoles. PMID:26664805

  15. An Historical Analysis and Comparison of the Military Retirement System and the Federal Employee Retirement system

    DTIC Science & Technology

    1998-06-01

    retirement programs in existence. This thesis concentrates on the Civil Service Retirement System (CSRS) and its successor the Federal Employee Retirement...federal employees at the beginning of fiscal year 1995. (Ref. 11, p. 2) The basic objective of the CSRS and FERS programs is to attract quality...and FERS both provide pensions for retired federal employees , the programs are designed differently. CSRS was established in 1920 and predates the

  16. Mathematics and mallard management

    USGS Publications Warehouse

    Cowardin, L.M.; Johnson, D.H.

    1979-01-01

    Waterfowl managers can effectively use simple population models to aid in making management decisions. We present a basic model of the change in population size as related to survival and recruitment. A management technique designed to increase survival of mallards (Anas platyrhynchos) by limiting harvest on the Chippewa National Forest, Minnesota, is used to illustrate the application of models in decision making. The analysis suggests that the management technique would be of limited effectiveness. In a 2nd example, the change in mallard population in central North Dakota is related to implementing programs to create dense nesting cover with or without supplementary predator control. The analysis suggests that large tracts of land would be required to achieve a hypothetical management objective of increasing harvest by 50% while maintaining a stable population. Less land would be required if predator reduction were used in combination with cover management, but questions about effectiveness and ecological implications of large scale predator reduction remain unresolved. The use of models as a guide to planning research responsive to the needs of management is illustrated.

  17. Management and protection protocols for nesting sea turtles on Cape Hatteras National Seashore, North Carolina

    USGS Publications Warehouse

    Cohen, J.B.

    2005-01-01

    Executive Summary 1. The southeast U.S. population of the loggerhead turtle (Caretta caretta) has increased since the species was listed as federally threatened in 1978. Since standardized monitoring began in North Carolina in 1995, the number of nests at Cape Hatteras National Seashore (CAHA) fluctuated from year to year, and was lowest in 1996 and 1997 (39 nests) and highest in 2003 (101 nests). Green turtles (Chelonia mydas) and leatherback turtles (Dermochelys coriacea) have nested in small numbers at CAHA, sporadically over time. 2. Hatching success of sea turtle nests typically approaches 80%. At CAHA hatching success from 1999-2003 was low when hurricanes hit during the nesting season (30%-38%), and ranged from 52%-70% otherwise. Hatching success at CAHA is usually correlated with hatching success in the surrounding subpopulation (north Florida to North Carolina). 3. Inclement weather, predation, and human recreation can negatively impact nesting rate and hatching success. 4. Currently there is little protection from recreation at CAHA for nesting females and nests that have not been found by monitors. We propose three management options to provide such protection, and to increase protection for known nests and hatchlings. We propose an adaptive management framework for assessing the effectiveness of these management options in improving sea turtle nesting rate and nest and hatchling survival. 5. We recommend continued efforts to trap and remove mammalian predators from all sea turtle habitat. We further recommend intensive monitoring and surveillance of protected areas to determine the extent and timing of threats to nests and broods, including nest overwash, predation, and disturbance or vandalism by humans. 6. Continue to relocate nests and assist stranded turtles according to North Carolina Wildlife Resources Commission guidelines. 7. Artificial light sources pose a serious threat to sea turtles in some parts of CAHA, which must be remedied immediately. We recommend that CAHA enact turtle-friendly lighting regulations and work with the communities within its borders to reduce light pollution and to eliminate artificial light sources that are directly visible from sea turtle nesting areas. 8. We recommend increased education and outreach to CAHA visitors, including requiring participation in an educational program before being granted nighttime beach access. The long-term success of sea turtle recovery will depend on public cooperation and positive public attitudes toward sea turtles and turtle management actions.

  18. Killing Coyotes.

    ERIC Educational Resources Information Center

    Beasley, Conger, Jr.

    1993-01-01

    Presents different viewpoints concerning the federal government's Animal Damage Control (ADC) Program cited as responsible for killing millions of predators. Critics provide evidence of outdated and inhumane methods exemplified in the coyote killings. The ADC emphasizes new, nonlethal methods of controlling animals cited as "noxious."…

  19. Pituophis ruthveni (Louisiana pinesnake) Reproduction/breeding phenology

    Treesearch

    Josh B. Pierce; Craig Rudolph; Christopher A. Melder; Beau B. Gregory

    2016-01-01

    Determing the reproductive phenology of snakes is important since it marks a time period where snakes are particularly vulnerable to predation. In addition, knowledge of reproductive phenology may help captive breeding programs specify appropriate times to pair snakes for reproduction.

  20. Intraguild predation reduces redundancy of predator species in multiple predator assemblage.

    PubMed

    Griffen, Blaine D; Byers, James E

    2006-07-01

    1. Interference between predator species frequently decreases predation rates, lowering the risk of predation for shared prey. However, such interference can also occur between conspecific predators. 2. Therefore, to understand the importance of predator biodiversity and the degree that predator species can be considered functionally interchangeable, we determined the degree of additivity and redundancy of predators in multiple- and single-species combinations. 3. We show that interference between two invasive species of predatory crabs, Carcinus maenas and Hemigrapsus sanguineus, reduced the risk of predation for shared amphipod prey, and had redundant per capita effects in most multiple- and single-species predator combinations. 4. However, when predator combinations with the potential for intraguild predation were examined, predator interference increased and predator redundancy decreased. 5. Our study indicates that trophic structure is important in determining how the effects of predator species combine and demonstrates the utility of determining the redundancy, as well as the additivity, of multiple predator species.

  1. Environmental Impact Research Program and Defense Natural Resources Program: Maximilian Sunflower (Helianthus maximiliani), Section 7.4.3, US Army Corps of Engineers Wildlife Resources Management Manual.

    DTIC Science & Technology

    1992-02-01

    black - bird predation on sunflower seed becomes a serious problem...Calamosplza melanocorys Vesper sparrow Pooecetes gramineus Lark sparrow Chondestes grammacus American tree sparrow Spizella arborea Field sparrow ...8217. pusilla Harris’ sparrow Zonotrichla querula White-crowned sparrow Z. leucophrys White- throated sparrow Z. albicollis Lincoln’s sparrow

  2. The short-term effects of a routine poisoning campaign on the movements and detectability of a social top-predator.

    PubMed

    Allen, Benjamin L; Engeman, Richard M; Leung, Luke K-P

    2014-02-01

    Top-predators can be important components of resilient ecosystems, but they are still controlled in many places to mitigate a variety of economic, environmental and/or social impacts. Lethal control is often achieved through the broad-scale application of poisoned baits. Understanding the direct and indirect effects of such lethal control on subsequent movements and behaviour of survivors is an important pre-requisite for interpreting the efficacy and ecological outcomes of top-predator control. In this study, we use GPS tracking collars to investigate the fine-scale and short-term movements of dingoes (Canis lupus dingo and other wild dogs) in response to a routine poison-baiting program as an example of how a common, social top-predator can respond (behaviourally) to moderate levels of population reduction. We found no consistent control-induced differences in home range size or location, daily distance travelled, speed of travel, temporal activity patterns or road/trail usage for the seven surviving dingoes we monitored immediately before and after a typical lethal control event. These data suggest that the spatial behaviour of surviving dingoes was not altered in ways likely to affect their detectability, and if control-induced changes in dingoes' ecological function did occur, these may not be related to altered spatial behaviour or movement patterns.

  3. Metabarcoding dietary analysis of coral dwelling predatory fish demonstrates the minor contribution of coral mutualists to their highly partitioned, generalist diet

    PubMed Central

    Meyer, Christopher P.; Mills, Suzanne C.

    2015-01-01

    Understanding the role of predators in food webs can be challenging in highly diverse predator/prey systems composed of small cryptic species. DNA based dietary analysis can supplement predator removal experiments and provide high resolution for prey identification. Here we use a metabarcoding approach to provide initial insights into the diet and functional role of coral-dwelling predatory fish feeding on small invertebrates. Fish were collected in Moorea (French Polynesia) where the BIOCODE project has generated DNA barcodes for numerous coral associated invertebrate species. Pyrosequencing data revealed a total of 292 Operational Taxonomic Units (OTU) in the gut contents of the arc-eye hawkfish (Paracirrhites arcatus), the flame hawkfish (Neocirrhites armatus) and the coral croucher (Caracanthus maculatus). One hundred forty-nine (51%) of them had species-level matches in reference libraries (>98% similarity) while 76 additional OTUs (26%) could be identified to higher taxonomic levels. Decapods that have a mutualistic relationship with Pocillopora and are typically dominant among coral branches, represent a minor contribution of the predators’ diets. Instead, predators mainly consumed transient species including pelagic taxa such as copepods, chaetognaths and siphonophores suggesting non random feeding behavior. We also identified prey species known to have direct negative interactions with stony corals, such as Hapalocarcinus sp, a gall crab considered a coral parasite, as well as species of vermetid snails known for their deleterious effects on coral growth. Pocillopora DNA accounted for 20.8% and 20.1% of total number of sequences in the guts of the flame hawkfish and coral croucher but it was not detected in the guts of the arc-eye hawkfish. Comparison of diets among the three fishes demonstrates remarkable partitioning with nearly 80% of prey items consumed by only one predator. Overall, the taxonomic resolution provided by the metabarcoding approach highlights a highly complex interaction web and demonstrates that levels of trophic partitioning among coral reef fishes have likely been underestimated. Therefore, we strongly encourage further empirical approaches to dietary studies prior to making assumptions of trophic equivalency in food web reconstruction. PMID:26137428

  4. Disease prevalence and transmission of Microsporidium phytoseiuli infecting the predatory mite, Phytoseiulus persimilis (Acari: Phytoseiidae).

    PubMed

    Bjørnson, S; Keddie, B A

    2001-02-01

    Isolated colonies of the predatory mite, Phytoseiulus persimilis, were used to gain information regarding prevalence and transmission of Microsporidium phytoseiuli. Two colonies of P. persimilis were reared on spider mite (Tetranychus urticae)-infested bean plants in isolated cages. Disease prevalence of predators from Colony 1 remained relatively low (between 0 and 15%) over 57 weeks of observation whereas disease prevalence of predators from Colony 2 increased over 3 months (from 12 to 100%). Disease prevalence among predators from Colony 1 had increased to 100% 2 months after weekly sampling had ceased for this colony and periodic sampling confirmed that disease prevalence among individuals of both colonies remained at 100%. Microsporidian spores were not detected in randomly chosen samples of T. urticae prey mites that were removed and examined biweekly during this period. Although numerous microsporidian spores were observed in smear preparations of fecal pellets examined by light microscopy, spores were not observed on leaf surfaces or predator feces when examined by SEM. The latter appeared as intact aggregates composed of numerous dumbbell-shaped crystals and it is unlikely that spores are liberated from intact fecal pellets onto leaf surfaces. Vertical transmission of M. phytoseiuli was 100%; horizontal transmission was low (14.3%) and occurred only when immature P. persimilis were permitted to develop in contact with infected immature and adult predators. The mean number of eggs produced per mated pair was highest when uninfected females were mated with uninfected males (63.2 eggs per mated pair). Although mean egg production decreased when one or both parents were infected, not all differences were significant. Male predatory mites did not contribute to infection of their progeny. Results suggest that routine examination of P. persimilis for microsporidian spores is essential for the management of M. phytoseiuli within P. persimilis colonies. Low disease prevalence and lack of obvious disease signs or symptoms, as in the case of M. phytoseiuli, increase the probability that these pathogens will escape notice unless individuals are routinely examined for pathogens. Copyright 2001 Academic Press.

  5. Effects of multiple predator species on green treefrog (Hyla cinerea) tadpoles

    USGS Publications Warehouse

    Gunzburger, M.S.; Travis, J.

    2005-01-01

    Prey species that occur across a range of habitats may be exposed to variable communities of multiple predator species across habitats. Predicting the combined effects of multiple predators can be complex. Many experiments evaluating the effects of multiple predators on prey confound either variation in predator density with predator identity or variation in relative predator frequency with overall predation rates. We develop a new experimental design of factorial predator combinations that maintains a constant expected predation rate, under the null hypothesis of additive predator effects. We implement this design to evaluate the combined effects of three predator species (bass, aeshnid and libellulid odonate naiads) on mortality rate of a prey species, Hyla cinerea (Schneider, 1799) tadpoles, that occurs across a range of aquatic habitats. Two predator treatments (libellulid and aeshnid + libellulid) resulted in lower tadpole mortality than any of the other predator treatments. Variation in tadpole mortality across treatments was not related to coarse variation in microhabitat use, but was likely due to intraguild predation, which occurred in all predator treatments. Hyla cinerea tadpoles have constant, low survival values when exposed to many different combinations of predator species, and predation rate probably increases linearly with predator density.

  6. Learning to distinguish between predators and non-predators: understanding the critical role of diet cues and predator odours in generalisation.

    PubMed

    Mitchell, Matthew D; Chivers, Douglas P; McCormick, Mark I; Ferrari, Maud C O

    2015-09-11

    It is critical for prey to recognise predators and distinguish predators from non-threatening species. Yet, we have little understanding of how prey develop effective predator recognition templates. Recent studies suggest that prey may actually learn key predator features which can be used to recognise novel species with similar characteristics. However, non-predators are sometimes mislabelled as predators when generalising recognition. Here, we conduct the first comprehensive investigation of how prey integrate information on predator odours and predator diet cues in generalisation, allowing them to discriminate between predators and non-predators. We taught lemon damselfish to recognise a predator fed a fish diet, and tested them for their response to the known predator and a series of novel predators (fed fish diet) and non-predators (fed squid diet) distributed across a phylogenetic gradient. Our findings show that damselfish distinguish between predators and non-predators when generalising recognition. Additional experiments revealed that generalised recognition did not result from recognition of predator odours or diet cues, but that damselfish based recognition on what they learned during the initial conditioning. Incorporating multiple sources of information enables prey to develop highly plastic and accurate recognition templates that will increase survival in patchy environments where they have little prior knowledge.

  7. Learning to distinguish between predators and non-predators: understanding the critical role of diet cues and predator odours in generalisation

    PubMed Central

    Mitchell, Matthew D.; Chivers, Douglas P.; McCormick, Mark I.; Ferrari, Maud C.O.

    2015-01-01

    It is critical for prey to recognise predators and distinguish predators from non-threatening species. Yet, we have little understanding of how prey develop effective predator recognition templates. Recent studies suggest that prey may actually learn key predator features which can be used to recognise novel species with similar characteristics. However, non-predators are sometimes mislabelled as predators when generalising recognition. Here, we conduct the first comprehensive investigation of how prey integrate information on predator odours and predator diet cues in generalisation, allowing them to discriminate between predators and non-predators. We taught lemon damselfish to recognise a predator fed a fish diet, and tested them for their response to the known predator and a series of novel predators (fed fish diet) and non-predators (fed squid diet) distributed across a phylogenetic gradient. Our findings show that damselfish distinguish between predators and non-predators when generalising recognition. Additional experiments revealed that generalised recognition did not result from recognition of predator odours or diet cues, but that damselfish based recognition on what they learned during the initial conditioning. Incorporating multiple sources of information enables prey to develop highly plastic and accurate recognition templates that will increase survival in patchy environments where they have little prior knowledge. PMID:26358861

  8. Do Biological and Bedsite Characteristics Influence Survival of Neonatal White-Tailed Deer?

    DOE PAGES

    Chitwood, Michael Colter; Lashley, Marcus A.; Kilgo, John C.; ...

    2015-03-03

    Coyotes recently expanded into the eastern U.S. and potentially have caused localized white-tailed deer population declines. Research has focused on quantifying coyote predation on neonates, but little research has addressed the potential influence of bedsite characteristics on survival. In 2011 and 2012, we radiocollared 65 neonates, monitored them intensively for 16 weeks, and assigned mortality causes.We used Program MARK to estimate survival to 16 weeks and included biological covariates (i.e., sex, sibling status [whether or not it had a sibling], birth weight, and Julian date of birth). Survival to 16 weeks was 0.141 (95% CI = 0.075-0.249) and the topmore » model included only sibling status, which indicated survival was lower for neonates that had a sibling. Predation was the leading cause of mortality (35 of 55; 64%) and coyotes were responsible for the majority of depredations (30 of 35; 86%). Additionally, we relocated neonates for the first 10 days of life and measured distance to firebreak, visual obstruction, and plant diversity at bedsites. Survival of predation to 10 days (0.726; 95% CI = 0.586-0.833) was weakly associated with plant diversity at bedsites but not related to visual obstruction. Our results indicate that neonate survival was low and coyote predation was an important source of mortality, which corroborates several recent studies from the region. Additionally, we detected only weak support for bedsite cover as a covariate to neonate survival, which indicates that mitigating effects of coyote predation on neonates may be more complicated than simply managing for increased hiding cover.« less

  9. Predation of caterpillars on understory saplings in an Ozark forest

    USGS Publications Warehouse

    Lichtenberg, J.S.; Lichtenberg, D.A.

    2003-01-01

    Predators of caterpillars (Lepidoptera larvae) can indirectly enhance economic gains from plant resources by reducing herbivore damage to plants. For this study, we directly observed predation of caterpillars on understory trees in the Ozarks. Our objectives were to determine the relative importance of diurnal guilds of caterpillar predators, the time of day most diurnal predation events occur, and whether predators spend more time feeding in open or closed canopy areas. Once per month, June-September, we tethered caterpillars to understory saplings and recorded all predation events. Only invertebrate predators were observed feeding on caterpillars, and most predation events were attributed to ants and vespids (wasps, hornets and yellow jackets). Predation by vertebrate predators such as birds, small mammals, reptiles and amphibians was not observed. Most predation events took place at mid-day between 1200 and 1600 hrs. Predation pressure differed significantly over the four observation dates with peak ant predation in July and peak vespid predation in September. Canopy environment appeared to influence predation events as there was a trend towards higher vespid predation of caterpillars on open canopy as opposed to closed canopy saplings. Ants and vespids accounted for 90% of observed predation events; therefore they appear to be important predators of caterpillars during the summer months. Future studies at earlier sampling dates would be valuable in determining whether the relative importance of other diurnal guilds of caterpillar predators might be greater in the spring.

  10. Unit Process Wetlands for Removal of Trace Organic Contaminants and Pathogens from Municipal Wastewater Effluents

    PubMed Central

    Jasper, Justin T.; Nguyen, Mi T.; Jones, Zackary L.; Ismail, Niveen S.; Sedlak, David L.; Sharp, Jonathan O.; Luthy, Richard G.; Horne, Alex J.; Nelson, Kara L.

    2013-01-01

    Abstract Treatment wetlands have become an attractive option for the removal of nutrients from municipal wastewater effluents due to their low energy requirements and operational costs, as well as the ancillary benefits they provide, including creating aesthetically appealing spaces and wildlife habitats. Treatment wetlands also hold promise as a means of removing other wastewater-derived contaminants, such as trace organic contaminants and pathogens. However, concerns about variations in treatment efficacy of these pollutants, coupled with an incomplete mechanistic understanding of their removal in wetlands, hinder the widespread adoption of constructed wetlands for these two classes of contaminants. A better understanding is needed so that wetlands as a unit process can be designed for their removal, with individual wetland cells optimized for the removal of specific contaminants, and connected in series or integrated with other engineered or natural treatment processes. In this article, removal mechanisms of trace organic contaminants and pathogens are reviewed, including sorption and sedimentation, biotransformation and predation, photolysis and photoinactivation, and remaining knowledge gaps are identified. In addition, suggestions are provided for how these treatment mechanisms can be enhanced in commonly employed unit process wetland cells or how they might be harnessed in novel unit process cells. It is hoped that application of the unit process concept to a wider range of contaminants will lead to more widespread application of wetland treatment trains as components of urban water infrastructure in the United States and around the globe. PMID:23983451

  11. Unit Process Wetlands for Removal of Trace Organic Contaminants and Pathogens from Municipal Wastewater Effluents.

    PubMed

    Jasper, Justin T; Nguyen, Mi T; Jones, Zackary L; Ismail, Niveen S; Sedlak, David L; Sharp, Jonathan O; Luthy, Richard G; Horne, Alex J; Nelson, Kara L

    2013-08-01

    Treatment wetlands have become an attractive option for the removal of nutrients from municipal wastewater effluents due to their low energy requirements and operational costs, as well as the ancillary benefits they provide, including creating aesthetically appealing spaces and wildlife habitats. Treatment wetlands also hold promise as a means of removing other wastewater-derived contaminants, such as trace organic contaminants and pathogens. However, concerns about variations in treatment efficacy of these pollutants, coupled with an incomplete mechanistic understanding of their removal in wetlands, hinder the widespread adoption of constructed wetlands for these two classes of contaminants. A better understanding is needed so that wetlands as a unit process can be designed for their removal, with individual wetland cells optimized for the removal of specific contaminants, and connected in series or integrated with other engineered or natural treatment processes. In this article, removal mechanisms of trace organic contaminants and pathogens are reviewed, including sorption and sedimentation, biotransformation and predation, photolysis and photoinactivation, and remaining knowledge gaps are identified. In addition, suggestions are provided for how these treatment mechanisms can be enhanced in commonly employed unit process wetland cells or how they might be harnessed in novel unit process cells. It is hoped that application of the unit process concept to a wider range of contaminants will lead to more widespread application of wetland treatment trains as components of urban water infrastructure in the United States and around the globe.

  12. Hunting-mediated predator facilitation and superadditive mortality in a European ungulate.

    PubMed

    Gehr, Benedikt; Hofer, Elizabeth J; Pewsner, Mirjam; Ryser, Andreas; Vimercati, Eric; Vogt, Kristina; Keller, Lukas F

    2018-01-01

    Predator-prey theory predicts that in the presence of multiple types of predators using a common prey, predator facilitation may result as a consequence of contrasting prey defense mechanisms, where reducing the risk from one predator increases the risk from the other. While predator facilitation is well established in natural predator-prey systems, little attention has been paid to situations where human hunters compete with natural predators for the same prey. Here, we investigate hunting-mediated predator facilitation in a hunter-predator-prey system. We found that hunter avoidance by roe deer ( Capreolus capreolus ) exposed them to increase predation risk by Eurasian lynx ( Lynx lynx ). Lynx responded by increasing their activity and predation on deer, providing evidence that superadditive hunting mortality may be occurring through predator facilitation. Our results reveal a new pathway through which human hunters, in their role as top predators, may affect species interactions at lower trophic levels and thus drive ecosystem processes.

  13. Plant defences limit herbivore population growth by changing predator-prey interactions.

    PubMed

    Kersch-Becker, Mônica F; Kessler, André; Thaler, Jennifer S

    2017-09-13

    Plant quality and predators are important factors affecting herbivore population growth, but how they interact to regulate herbivore populations is not well understood. We manipulated jasmonate-induced plant resistance, exposure to the natural predator community and herbivore density to test how these factors jointly and independently affect herbivore population growth. On low-resistance plants, the predator community was diverse and abundant, promoting high predator consumption rates. On high-resistance plants, the predator community was less diverse and abundant, resulting in low predator consumption rate. Plant resistance only directly regulated aphid population growth on predator-excluded plants. When predators were present, plant resistance indirectly regulated herbivore population growth by changing the impact of predators on the herbivorous prey. A possible mechanism for the interaction between plant resistance and predation is that methyl salicylate, a herbivore-induced plant volatile attractive to predators, was more strongly induced in low-resistance plants. Increased plant resistance reduced predator attractant lures, preventing predators from locating their prey. Low-resistance plants may regulate herbivore populations via predators by providing reliable information on prey availability and increasing the effectiveness of predators. © 2017 The Author(s).

  14. Influence of predator density on nonindependent effects of multiple predator species.

    PubMed

    Griffen, Blaine D; Williamson, Tucker

    2008-02-01

    Interactions between multiple predator species are frequent in natural communities and can have important implications for shared prey survival. Predator density may be an important component of these interactions between predator species, as the frequency of interactions between species is largely determined by species density. Here we experimentally examine the importance of predator density for interactions between predator species and subsequent impacts on prey. We show that aggressive interactions between the predatory shore crabs Carcinus maenas and Hemigrapsus sanguineus increased with predator density, yet did not increase as fast as negative interactions between conspecifics. At low density, interactions between conspecific and heterospecific predators had similar inhibitory impacts on predator function, whereas conspecific interference was greater than interference from heterospecifics at high predator density. Thus the impact of conspecific interference at high predator density was sufficient in itself that interactions with a second predator species had no additional impact on per capita predation. Spatial and temporal variability in predator density is a ubiquitous characteristic of natural systems that should be considered in studies of multiple predator species.

  15. Cannibalism and intraguild predation of eggs within a diverse predator assemblage.

    PubMed

    Takizawa, Tadashi; Snyder, William E

    2011-02-01

    Greater biodiversity among aphid predators sometimes leads to greater predator reproductive success. This could occur if cannibalism of predator eggs is consistently stronger than intraguild predation, such that diversity dilutes cannibalism risk when total predator densities remain constant across diversity levels. We compared the frequency of cannibalism versus intraguild predation by adult predators of four species [the lady beetles Coccinella septempunctata L. and Hippodamia convergens Guerin-Meneville, and the predatory bugs Geocoris bullatus (Say) and Nabis alternatus Parshley] on the eggs of three predator species (all of these predators but Nabis). For both coccinellid species, egg predation averaged across all intraguild predators was less frequent than cannibalism. In contrast, Geocoris eggs were generally more likely to be consumed by intraguild predators than by conspecifics. Closer inspection of the data revealed that Geocoris consistently consumed fewer eggs than the other species, regardless of egg species. Indeed, for lady beetle eggs it was relatively infrequent egg predation by Geocoris that brought down the average across all heterospecific predators, masking the fact that adults of the two lady beetles were no more likely to act as egg cannibals than as intraguild predators. Nabis ate eggs of the two beetles at approximately equal rates, but rarely ate Geocoris eggs. Female predators generally consumed more eggs than did males, but this did not alter any of the patterns described above. Altogether, our results suggest that species-specific differences in egg predation rates determined the relative intensity of egg intraguild-predation versus cannibalism, rather than any more general trend for egg cannibalism to always exceed intraguild predation. © 2011 Entomological Society of America

  16. USAF Posture Statement 2013

    DTIC Science & Technology

    2013-04-12

    request maintains investments in the DCGS, the MQ-1 Predator, the RC-135 Rivet Joint, the RQ-4 Global Hawk Block 40, and U-2 programs, and makes internal... electromagnetic jamming. Our potential adversaries are also making advances by electronically linking their own combat capabilities, creating new military

  17. Disease and predation: Sorting out causes of a bighorn sheep (Ovis canadensis) decline

    USGS Publications Warehouse

    Smith, Joshua B.; Jenks, Jonathan A.; Grovenburg, Troy W.; Klaver, Robert W.

    2014-01-01

    Estimating survival and documenting causes and timing of mortality events in neonate bighorn sheep (Ovis canadensis) improves understanding of population ecology and factors influencing recruitment. During 2010–2012, we captured and radiocollared 74 neonates in the Black Hills, South Dakota, of which 95% (70) died before 52 weeks of age. Pneumonia (36%) was the leading cause of mortality followed by predation (30%). We used known fate analysis in Program MARK to estimate weekly survival rates and investigate the influence of intrinsic variables on 52-week survival. Model {S1 wk, 2–8 wks, >8 wks} had the lowest AICc (Akaike’s Information Criterion corrected for small sample size) value, indicating that age (3-stage age-interval: 1 week, 2–8 weeks, and >8 weeks) best explained survival. Weekly survival estimates for 1 week, 2–8 weeks, and >8 weeks were 0.81 (95% CI = 0.70–0.88), 0.86 (95% CI = 0.81–0.90), and 0.94 (95% CI = 0.91–0.96), respectively. Overall probability of surviving 52 weeks was 0.02 (95% CI = 0.01–0.07). Of 70 documented mortalities, 21% occurred during the first week, 55% during weeks 2–8, and 23% occurred >8 weeks of age. We found pneumonia and predation were temporally heterogeneous with lambs most susceptible to predation during the first 2–3 weeks of life, while the greatest risk from pneumonia occurred from weeks 4–8. Our results indicated pneumonia was the major factor limiting recruitment followed by predation. Mortality from predation may have been partly compensatory to pneumonia and its effects were less pronounced as alternative prey became available. Given the high rates of pneumonia-caused mortality we observed, and the apparent lack of pneumonia-causing pathogens in bighorn populations in the western Black Hills, management activities should be geared towards eliminating contact between diseased and healthy populations.

  18. Sponge communities on Caribbean coral reefs are structured by factors that are top-down, not bottom-up.

    PubMed

    Pawlik, Joseph R; Loh, Tse-Lynn; McMurray, Steven E; Finelli, Christopher M

    2013-01-01

    Caribbean coral reefs have been transformed in the past few decades with the demise of reef-building corals, and sponges are now the dominant habitat-forming organisms on most reefs. Competing hypotheses propose that sponge communities are controlled primarily by predatory fishes (top-down) or by the availability of picoplankton to suspension-feeding sponges (bottom-up). We tested these hypotheses on Conch Reef, off Key Largo, Florida, by placing sponges inside and outside predator-excluding cages at sites with less and more planktonic food availability (15 m vs. 30 m depth). There was no evidence of a bottom-up effect on the growth of any of 5 sponge species, and 2 of 5 species grew more when caged at the shallow site with lower food abundance. There was, however, a strong effect of predation by fishes on sponge species that lacked chemical defenses. Sponges with chemical defenses grew slower than undefended species, demonstrating a resource trade-off between growth and the production of secondary metabolites. Surveys of the benthic community on Conch Reef similarly did not support a bottom-up effect, with higher sponge cover at the shallower depth. We conclude that the structure of sponge communities on Caribbean coral reefs is primarily top-down, and predict that removal of sponge predators by overfishing will shift communities toward faster-growing, undefended species that better compete for space with threatened reef-building corals.

  19. Sponge Communities on Caribbean Coral Reefs Are Structured by Factors That Are Top-Down, Not Bottom-Up

    PubMed Central

    Pawlik, Joseph R.; Loh, Tse-Lynn; McMurray, Steven E.; Finelli, Christopher M.

    2013-01-01

    Caribbean coral reefs have been transformed in the past few decades with the demise of reef-building corals, and sponges are now the dominant habitat-forming organisms on most reefs. Competing hypotheses propose that sponge communities are controlled primarily by predatory fishes (top-down) or by the availability of picoplankton to suspension-feeding sponges (bottom-up). We tested these hypotheses on Conch Reef, off Key Largo, Florida, by placing sponges inside and outside predator-excluding cages at sites with less and more planktonic food availability (15 m vs. 30 m depth). There was no evidence of a bottom-up effect on the growth of any of 5 sponge species, and 2 of 5 species grew more when caged at the shallow site with lower food abundance. There was, however, a strong effect of predation by fishes on sponge species that lacked chemical defenses. Sponges with chemical defenses grew slower than undefended species, demonstrating a resource trade-off between growth and the production of secondary metabolites. Surveys of the benthic community on Conch Reef similarly did not support a bottom-up effect, with higher sponge cover at the shallower depth. We conclude that the structure of sponge communities on Caribbean coral reefs is primarily top-down, and predict that removal of sponge predators by overfishing will shift communities toward faster-growing, undefended species that better compete for space with threatened reef-building corals. PMID:23667492

  20. Habitat alteration increases invasive fire ant abundance to the detriment of amphibians and reptiles

    USGS Publications Warehouse

    Todd, B.D.; Rothermel, B.B.; Reed, R.N.; Luhring, T.M.; Schlatter, K.; Trenkamp, L.; Gibbons, J.W.

    2008-01-01

    Altered habitats have been suggested to facilitate red imported fire ant (Solenopsis invicta) colonization and dispersal, possibly compounding effects of habitat alteration on native wildlife. In this study, we compared colonization intensity of wood cover boards by S. invicta among four forest management treatments in South Carolina, USA: an unharvested control (>30 years old); a partially thinned stand; a clearcut with coarse woody debris retained; and a clearcut with coarse woody debris removed. Additionally, we compared dehydration rates and survival of recently metamorphosed salamanders (marbled salamanders, Ambystoma opacum, and mole salamanders, A. talpoideum) among treatments. We found that the number of wood cover boards colonized by S. invicta differed significantly among treatments, being lowest in the unharvested forest treatments and increasing with the degree of habitat alteration. Salamanders that were maintained in experimental field enclosures to study water loss were unexpectedly subjected to high levels of S. invicta predation that differed among forest treatments. All known predation by S. invicta was restricted to salamanders in clearcuts. The amount of vegetative ground cover was inversely related to the likelihood of S. invicta predation of salamanders. Our results show that S. invicta abundance increases with habitat disturbance and that this increased abundance has negative consequences for amphibians that remain in altered habitats. Our findings also suggest that the presence of invasive S. invicta may compromise the utility of cover boards and other techniques commonly used in herpetological studies in the Southeast. ?? 2007 Springer Science+Business Media B.V.

  1. Partitioning mechanisms of predator interference in different habitats.

    PubMed

    Griffen, Blaine D; Byers, James E

    2006-01-01

    Prey are often consumed by multiple predator species. Predation rates on shared prey species measured in isolation often do not combine additively due to interference or facilitation among the predator species. Furthermore, the strength of predator interactions and resulting prey mortality may change with habitat type. We experimentally examined predation on amphipods in rock and algal habitats by two species of intertidal crabs, Hemigrapsus sanguineus (top predators) and Carcinus maenas (intermediate predators). Algae provided a safer habitat for amphipods when they were exposed to only a single predator species. When both predator species were present, mortality of amphipods was less than additive in both habitats. However, amphipod mortality was reduced more in rock than algal habitat because intermediate predators were less protected in rock habitat and were increasingly targeted by omnivorous top predators. We found that prey mortality in general was reduced by (1) altered foraging behavior of intermediate predators in the presence of top predators, (2) top predators switching to foraging on intermediate predators rather than shared prey, and (3) density reduction of intermediate predators. The relative importance of these three mechanisms was the same in both habitats; however, the magnitude of each was greater in rock habitat. Our study demonstrates that the strength of specific mechanisms of interference between top and intermediate predators can be quantified but cautions that these results may be habitat specific.

  2. Diversity of protists and bacteria determines predation performance and stability.

    PubMed

    Saleem, Muhammad; Fetzer, Ingo; Harms, Hauke; Chatzinotas, Antonis

    2013-10-01

    Predation influences prey diversity and productivity while it effectuates the flux and reallocation of organic nutrients into biomass at higher trophic levels. However, it is unknown how bacterivorous protists are influenced by the diversity of their bacterial prey. Using 456 microcosms, in which different bacterial mixtures with equal initial cell numbers were exposed to single or multiple predators (Tetrahymena sp., Poterioochromonas sp. and Acanthamoeba sp.), we showed that increasing prey richness enhanced production of single predators. The extent of the response depended, however, on predator identity. Bacterial prey richness had a stabilizing effect on predator performance in that it reduced variability in predator production. Further, prey richness tended to enhance predator evenness in the predation experiment including all three protists predators (multiple predation experiment). However, we also observed a negative relationship between prey richness and predator production in multiple predation experiments. Mathematical analysis of potential ecological mechanisms of positive predator diversity-functioning relationships revealed predator complementarity as a factor responsible for both enhanced predator production and prey reduction. We suggest that the diversity at both trophic levels interactively determines protistan performance and might have implications in microbial ecosystem processes and services.

  3. Habitat complexity and sex-dependent predation of mosquito larvae in containers

    PubMed Central

    Griswold, Marcus W.; Lounibos, L. Philip

    2012-01-01

    Studies in aquatic systems have shown that habitat complexity may provide refuge or reduce the number of encounters prey have with actively searching predators. For ambush predators, habitat complexity may enhance or have no effect on predation rates because it conceals predators, reduces prey detection by predators, or visually impairs both predators and prey. We investigated the effects of habitat complexity and predation by the ambush predators Toxorhynchites rutilus and Corethrella appendiculata on their mosquito prey Aedes albopictus and Ochlerotatus triseriatus in container analogs of treeholes. As in other ambush predator-prey systems, habitat complexity did not alter the effects of T. rutilus or C. appendiculata whose presence decreased prey survivorship, shortened development time, and increased adult size compared to treatments where predators were absent. Faster growth and larger size were due to predator-mediated release from competition among surviving prey. Male and female prey survivorship were similar in the absence of predators, however when predators were present, survivorship of both prey species was skewed in favor of males. We conclude that habitat complexity is relatively unimportant in shaping predator-prey interactions in this treehole community, where predation risk differs between prey sexes. PMID:16041612

  4. Predation by ants controls swallow bug (Hemiptera: Cimicidae: Oeciacus vicarius) infestations.

    PubMed

    Brown, Charles R; Page, Catherine E; Robison, Grant A; O'Brien, Valerie A; Booth, Warren

    2015-06-01

    The swallow bug (Oeciacus vicarius) is the only known vector for Buggy Creek virus (BCRV), an alphavirus that circulates in cliff swallows (Petrochelidon pyrrhonota) and house sparrows (Passer domesticus) in North America. We discovered ants (Crematogaster lineolata and Formica spp.) preying on swallow bugs at cliff swallow colonies in western Nebraska, U.S.A. Ants reduced the numbers of visible bugs on active swallow nests by 74-90%, relative to nests in the same colony without ants. Ant predation on bugs had no effect on the reproductive success of cliff swallows inhabiting the nests where ants foraged. Ants represent an effective and presumably benign way of controlling swallow bugs at nests in some colonies. They may constitute an alternative to insecticide use at sites where ecologists wish to remove the effects of swallow bugs on cliff swallows or house sparrows. By reducing bug numbers, ant presence may also lessen BCRV transmission at the spatial foci (bird colony sites) where epizootics occur. The effect of ants on swallow bugs should be accounted for in studying variation among sites in vector abundance. © 2015 The Society for Vector Ecology.

  5. Lake trout (Salvelinus namaycush) suppression for bull trout (Salvelinus confluentus) recovery in Flathead Lake, Montana, North America

    USGS Publications Warehouse

    Hansen, Michael J.; Hansen, Barry S; Beauchamp, David A.

    2016-01-01

    Non-native lake trout Salvelinus namaycush displaced native bull trout Salvelinus confluentus in Flathead Lake, Montana, USA, after 1984, when Mysis diluviana became abundant following its introduction in upstream lakes in 1968–1976. We developed a simulation model to determine the fishing mortality rate on lake trout that would enable bull trout recovery. Model simulations indicated that suppression of adult lake trout by 75% from current abundance would reduce predation on bull trout by 90%. Current removals of lake trout through incentivized fishing contests has not been sufficient to suppress lake trout abundance estimated by mark-recapture or indexed by stratified-random gill netting. In contrast, size structure, body condition, mortality, and maturity are changing consistent with a density-dependent reduction in lake trout abundance. Population modeling indicated total fishing effort would need to increase 3-fold to reduce adult lake trout population density by 75%. We conclude that increased fishing effort would suppress lake trout population density and predation on juvenile bull trout, and thereby enable higher abundance of adult bull trout in Flathead Lake and its tributaries.

  6. Cold-shock based method to induce the discharge of extrusomes in ciliated protists and its efficiency.

    PubMed

    Buonanno, Federico; Ortenzi, Claudio

    2016-05-01

    Extrusomes are ejectable organelles in protists, which are able to discharge their contents to the outside of the cell in response to external stimuli. It is known that a large number of extrusomes functions as organelles for offense or defense in predator-prey interactions among protists and/or microinvertebrates. To date, the main approach to study these interactions was to compare artificially-induced extrusome-deficient cells with normal cells as prey for predators. Commonly applied methods to obtain extrusome-deficient cells use external chemicals, which could alter the viability of cells and/or interfere with the subsequent analysis of the substances (secondary metabolites) contained in the extrusomes. The cold-shock based method here presented has proven to be effective to remove different kinds of extrusomes from several protist species without harming the treated cells and without adding external reagents. This method could be also useful to simplify the related analysis of the chemical nature of the secreted secondary metabolites. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Artificial night light alters nocturnal prey interception outcomes for morphologically variable spiders.

    PubMed

    Yuen, Suet Wai; Bonebrake, Timothy C

    2017-01-01

    Artificial night light has the potential to significantly alter visually-dependent species interactions. However, examples of disruptions of species interactions through changes in light remain rare and how artificial night light may alter predator-prey relationships are particularly understudied. In this study, we examined whether artificial night light could impact prey attraction and interception in Nephila pilipes orb weaver spiders, conspicuous predators who make use of yellow color patterns to mimic floral resources and attract prey to their webs. We measured moth prey attraction and interception responses to treatments where we experimentally manipulated the color/contrast of spider individuals in the field (removed yellow markings) and also set up light manipulations. We found that lit webs had lower rates of moth interception than unlit webs. Spider color, however, had no clear impact on moth interception or attraction rates in lit nor unlit webs. The results show that night light can reduce prey interception for spiders. Additionally, this study highlights how environmental and morphological variation can complicate simple predictions of ecological light pollution's disruption of species interactions.

  8. Amphibians in the climate vise: loss and restoration of resilience of montane wetland ecosystems in the western US

    USGS Publications Warehouse

    Ryan, Maureen E.; Palen, Wendy J.; Adams, Michael J.; Rochefort, Regina M.

    2014-01-01

    Wetlands in the remote mountains of the western US have undergone two massive ecological “experiments” spanning the 20th century. Beginning in the late 1800s and expanding after World War II, fish and wildlife managers intentionally introduced millions of predatory trout (primarily Oncorhynchus spp) into fishless mountain ponds and lakes across the western states. These new top predators, which now occupy 95% of large mountain lakes, have limited the habitat distributions of native frogs, salamanders, and wetland invertebrates to smaller, more ephemeral ponds where trout do not survive. Now a second “experiment” – anthropogenic climate change – threatens to eliminate many of these ephemeral habitats and shorten wetland hydroperiods. Caught between climate-induced habitat loss and predation from introduced fish, native mountain lake fauna of the western US – especially amphibians – are at risk of extirpation. Targeted fish removals, guided by models of how wetlands will change under future climate scenarios, provide innovative strategies for restoring resilience of wetland ecosystems to climate change.

  9. Power lines, roads, and avian nest survival: effects on predator identity and predation intensity

    PubMed Central

    DeGregorio, Brett A; Weatherhead, Patrick J; Sperry, Jinelle H

    2014-01-01

    1 Anthropogenic alteration of landscapes can affect avian nest success by influencing the abundance, distribution, and behavior of predators. Understanding avian nest predation risk necessitates understanding how landscapes affect predator distribution and behavior. 2 From a sample of 463 nests of 17 songbird species, we evaluated how landscape features (distance to forest edge, unpaved roads, and power lines) influenced daily nest survival. We also used video cameras to identify nest predators at 137 nest predation events and evaluated how landscape features influenced predator identity. Finally, we determined the abundance and distribution of several of the principal predators using surveys and radiotelemetry. 3 Distance to power lines was the best predictor of predator identity: predation by brown-headed cowbirds (Molothrus ater), corvids (Corvus sp. and Cyanocitta cristata), racers (Coluber constrictor), and coachwhips (Masticophis flagellum) increased with proximity to power lines, whereas predation by rat snakes (Elaphe obsoleta) and raptors decreased. In some cases, predator density may reliably indicate nest predation risk because racers, corvids, and cowbirds frequently used power line right-of-ways. 4 Of five bird species with enough nests to analyze individually, daily nest survival of only indigo buntings (Passerina cyanea) decreased with proximity to power lines, despite predation by most predators at our site being positively associated with power lines. For all nesting species combined, distance to unpaved road was the model that most influenced daily nest survival. This pattern is likely a consequence of rat snakes, the locally dominant nest predator (28% of predation events), rarely using power lines and associated areas. Instead, rat snakes were frequently associated with road edges, indicating that not all edges are functionally similar. 5 Our results suggest that interactions between predators and landscape features are likely to be specific to both the local predators and landscape. Thus, predicting how anthropogenic changes to landscapes affect nesting birds requires that we know more about how landscape changes affect the behavior of nest predators and which nest predators are locally important. PMID:24967077

  10. Power lines, roads, and avian nest survival: effects on predator identity and predation intensity.

    PubMed

    DeGregorio, Brett A; Weatherhead, Patrick J; Sperry, Jinelle H

    2014-05-01

    1 Anthropogenic alteration of landscapes can affect avian nest success by influencing the abundance, distribution, and behavior of predators. Understanding avian nest predation risk necessitates understanding how landscapes affect predator distribution and behavior. 2 From a sample of 463 nests of 17 songbird species, we evaluated how landscape features (distance to forest edge, unpaved roads, and power lines) influenced daily nest survival. We also used video cameras to identify nest predators at 137 nest predation events and evaluated how landscape features influenced predator identity. Finally, we determined the abundance and distribution of several of the principal predators using surveys and radiotelemetry. 3 Distance to power lines was the best predictor of predator identity: predation by brown-headed cowbirds (Molothrus ater), corvids (Corvus sp. and Cyanocitta cristata), racers (Coluber constrictor), and coachwhips (Masticophis flagellum) increased with proximity to power lines, whereas predation by rat snakes (Elaphe obsoleta) and raptors decreased. In some cases, predator density may reliably indicate nest predation risk because racers, corvids, and cowbirds frequently used power line right-of-ways. 4 Of five bird species with enough nests to analyze individually, daily nest survival of only indigo buntings (Passerina cyanea) decreased with proximity to power lines, despite predation by most predators at our site being positively associated with power lines. For all nesting species combined, distance to unpaved road was the model that most influenced daily nest survival. This pattern is likely a consequence of rat snakes, the locally dominant nest predator (28% of predation events), rarely using power lines and associated areas. Instead, rat snakes were frequently associated with road edges, indicating that not all edges are functionally similar. 5 Our results suggest that interactions between predators and landscape features are likely to be specific to both the local predators and landscape. Thus, predicting how anthropogenic changes to landscapes affect nesting birds requires that we know more about how landscape changes affect the behavior of nest predators and which nest predators are locally important.

  11. Plant architecture and prey distribution influence foraging behavior of the predatory mite Phytoseiulus persimilis (Acari: Phytoseiidae).

    PubMed

    Gontijo, Lessando M; Nechols, James R; Margolies, David C; Cloyd, Raymond A

    2012-01-01

    The arrangement, number, and size of plant parts may influence predator foraging behavior, either directly, by altering the rate or pattern of predator movement, or, indirectly, by affecting the distribution and abundance of prey. We report on the effects of both plant architecture and prey distribution on foraging by the predatory mite, Phytoseiulus persimilis Athias-Henriot (Acari: Phytoseiidae), on cucumber (Cucumis sativus L.). Plants differed in leaf number (2- or 6-leafed), and there were associated differences in leaf size, plant height, and relative proportions of plant parts; but all had the same total surface area. The prey, the twospotted spider mite Tetranychus urticae Koch (Acari: Tetranychidae), were distributed either on the basal leaf or on all leaves. The effect of plant architecture on predator foraging behavior varied depending on prey distribution. The dimensions of individual plant parts affected time allocated to moving and feeding, but they did not appear to influence the frequency with which predators moved among different plant parts. Overall, P. persimilis moved less, and fed upon prey longer, on 6-leafed plants with prey on all leaves than on plants representing other treatment combinations. Our findings suggest that both plant architecture and pattern of prey distribution should be considered, along with other factors such as herbivore-induced plant volatiles, in augmentative biological control programs.

  12. Chemical defenses and resource trade-offs structure sponge communities on Caribbean coral reefs.

    PubMed

    Loh, Tse-Lynn; Pawlik, Joseph R

    2014-03-18

    Ecological studies have rarely been performed at the community level across a large biogeographic region. Sponges are now the primary habitat-forming organisms on Caribbean coral reefs. Recent species-level investigations have demonstrated that predatory fishes (angelfishes and some parrotfishes) differentially graze sponges that lack chemical defenses, while co-occurring, palatable species heal, grow, reproduce, or recruit at faster rates than defended species. Our prediction, based on resource allocation theory, was that predator removal would result in a greater proportion of palatable species in the sponge community on overfished reefs. We tested this prediction by performing surveys of sponge and fish community composition on reefs having different levels of fishing intensity across the Caribbean. A total of 109 sponge species was recorded from 69 sites, with the 10 most common species comprising 51.0% of sponge cover (3.6-7.7% per species). Nonmetric multidimensional scaling indicated that the species composition of sponge communities depended more on the abundance of sponge-eating fishes than geographic location. Across all sites, multiple-regression analyses revealed that spongivore abundance explained 32.8% of the variation in the proportion of palatable sponges, but when data were limited to geographically adjacent locations with strongly contrasting levels of fishing pressure (Cayman Islands and Jamaica; Curaçao, Bonaire, and Martinique), the adjusted R(2) values were much higher (76.5% and 94.6%, respectively). Overfishing of Caribbean coral reefs, particularly by fish trapping, removes sponge predators and is likely to result in greater competition for space between faster-growing palatable sponges and endangered reef-building corals.

  13. Chemical defenses and resource trade-offs structure sponge communities on Caribbean coral reefs

    PubMed Central

    Loh, Tse-Lynn; Pawlik, Joseph R.

    2014-01-01

    Ecological studies have rarely been performed at the community level across a large biogeographic region. Sponges are now the primary habitat-forming organisms on Caribbean coral reefs. Recent species-level investigations have demonstrated that predatory fishes (angelfishes and some parrotfishes) differentially graze sponges that lack chemical defenses, while co-occurring, palatable species heal, grow, reproduce, or recruit at faster rates than defended species. Our prediction, based on resource allocation theory, was that predator removal would result in a greater proportion of palatable species in the sponge community on overfished reefs. We tested this prediction by performing surveys of sponge and fish community composition on reefs having different levels of fishing intensity across the Caribbean. A total of 109 sponge species was recorded from 69 sites, with the 10 most common species comprising 51.0% of sponge cover (3.6–7.7% per species). Nonmetric multidimensional scaling indicated that the species composition of sponge communities depended more on the abundance of sponge-eating fishes than geographic location. Across all sites, multiple-regression analyses revealed that spongivore abundance explained 32.8% of the variation in the proportion of palatable sponges, but when data were limited to geographically adjacent locations with strongly contrasting levels of fishing pressure (Cayman Islands and Jamaica; Curaçao, Bonaire, and Martinique), the adjusted R2 values were much higher (76.5% and 94.6%, respectively). Overfishing of Caribbean coral reefs, particularly by fish trapping, removes sponge predators and is likely to result in greater competition for space between faster-growing palatable sponges and endangered reef-building corals. PMID:24567392

  14. Seed consumption and dispersal of ant-dispersed plants by slugs.

    PubMed

    Türke, Manfred; Heinze, Eric; Andreas, Kerstin; Svendsen, Sarah M; Gossner, Martin M; Weisser, Wolfgang W

    2010-07-01

    In beech-dominated forests in Central Europe, many spring geophytes show adaptations to seed dispersal by ants (myrmecochory). Ants, however, can be rare in such moist forests. Motivated by observations of slug feeding on seeds we investigated the seed consumption of two plant species, Anemone nemorosa and Asarum europaeum, by slugs, in a series of experiments. In a seed predation experiment in a beech forest, we found that seed removal was strongly reduced when gastropods were excluded from the seed depots. The contribution of insects, including ants, and rodents to seed removal was relatively less but differed between May and July. In the laboratory, slug species, in particular Arion sp., consumed seeds of both plant species. Slugs either consumed the elaiosomes of seeds or swallowed seeds intact. Swallowed seeds were defecated undamaged and germinated as well as control seeds when buried overwinter, indicating the potential for seed dispersal by slugs. We also recovered seeds of myrmecochores in the faeces of several slugs caught in forests. In a slug release experiment in the forest, slugs moved up to 14.6 m (mean 4.4 m) in 15 h, which is the median gut passage time of seeds based on measurements made in the laboratory. We also found that when slug-defecated seeds were offered to rodents, these were less attractive than control seeds, suggesting that passage through the slug gut reduces seed predation risk. Our results demonstrate that slugs are significant consumers of elaiosomes or entire seeds of ant-dispersed plants and that they can function as seed dispersers of these plants.

  15. Minimizing predation risk in a landscape of multiple predators: effects on the spatial distribution of African ungulates.

    PubMed

    Thaker, Maria; Vanak, Abi T; Owen, Cailey R; Ogden, Monika B; Niemann, Sophie M; Slotow, Rob

    2011-02-01

    Studies that focus on single predator-prey interactions can be inadequate for understanding antipredator responses in multi-predator systems. Yet there is still a general lack of information about the strategies of prey to minimize predation risk from multiple predators at the landscape level. Here we examined the distribution of seven African ungulate species in the fenced Karongwe Game Reserve (KGR), South Africa, as a function of predation risk from all large carnivore species (lion, leopard, cheetah, African wild dog, and spotted hyena). Using observed kill data, we generated ungulate-specific predictions of relative predation risk and of riskiness of habitats. To determine how ungulates minimize predation risk at the landscape level, we explicitly tested five hypotheses consisting of strategies that reduce the probability of encountering predators, and the probability of being killed. All ungulate species avoided risky habitats, and most selected safer habitats, thus reducing their probability of being killed. To reduce the probability of encountering predators, most of the smaller prey species (impala, warthog, waterbuck, kudu) avoided the space use of all predators, while the larger species (wildebeest, zebra, giraffe) only avoided areas where lion and leopard space use were high. The strength of avoidance for the space use of predators generally did not correspond to the relative predation threat from those predators. Instead, ungulates used a simpler behavioral rule of avoiding the activity areas of sit-and-pursue predators (lion and leopard), but not those of cursorial predators (cheetah and African wild dog). In general, selection and avoidance of habitats was stronger than avoidance of the predator activity areas. We expect similar decision rules to drive the distribution pattern of ungulates in other African savannas and in other multi-predator systems, especially where predators differ in their hunting modes.

  16. Development of a System-wide Predator Control Program: Stepwise Implementation of a Predation Index, Predator Control Fisheries, and Evaluation Plan in the Columbia River Basin; Northern Pikeminnow Management Program, 1998 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, Franklin R.; Wachtel, Mark L.; Petersen, Marc R.

    2003-03-01

    We are reporting on the progress of the Northern Pikeminnow Sport-Reward Fishery (NPSRF) in the lower Columbia and Snake rivers for 1998. The objectives of this project were to (1) implement a sport fishery that rewards anglers who harvest northern pikeminnow Ptychocheilus oregonensis {ge}279 mm (11 inches) total length, (2) collect catch data on selected fish species caught by fishery participants while targeting northern pikeminnow, (3) monitor and report incidental catch of sensitive salmonid species by anglers targeting northern pikeminnow and, (4) collect, monitor and report data on angler participation, catch and catch per angler day of northern pikeminnow duringmore » the season. A total of 108,903 northern pikeminnow {ge}279 mm were harvested during the 1998 season and 21,959 angler days were spent harvesting these fish. Harvest was below the seven year average of 150,874 and participation was well below the seven-year average of 51,013 angler days. Catch per angler day for all anglers during the season was 4.96 and exceeded the seven-year average of 2.96 northern pikeminnow per angler day. Peamouth Mylocheilus caurinus, and white sturgeon Acipencer transmontanus, were the other species most often harvested by returning NPSRF anglers targeting northern pikeminnow. Harvest of salmonids Oncorhynchus spp. by NPSRF anglers targeting northern pikeminnow remained below limits established by the National Marine Fisheries Service (NMFS).« less

  17. Ground-nesting waterbirds and mammalian carnivores in the Virginia barrier island region: Running out of options

    USGS Publications Warehouse

    Erwin, R.M.; Truitt, B.R.; Jimenez, J.E.

    2001-01-01

    We examined changing patterns of distribution of two large mammalian predators, the raccoon (Procyon lotor) and red fox (Vulpes vulpes), and beach-nesting terns and Black Skimmers (Rynchops niger) along ca. 80 km of the Virginia barrier island landscape between the periods 1975-1977 and 1998. Based on evidence from trapping, scent stations, den observations and sightings of the two predators, there has been a marked increase in their island ranges. In 1975-77, only 6 of the 11 surveyed barrier islands definitely harbored at least one of the two mammals, but by 1998, 11 of 14 islands showed evidence of one or both during the spring and summer. Concurrently, annual beach-nesting bird surveys have been conducted since the mid 1970s during June. From 1977 to 1998, the number of colonies of terns [Common (Sterna hirundo), Gull-billed (S. nilotica), Least (S. antillarum), Royal (S. maxima), and Sandwich (S. sandvicensis)] and Black Skimmers declined from 23 colonies on 11 barrier islands to 13 colonies on 10 islands. In addition, the populations decreased dramatically for all species except the marginal Sandwich Tern and Least Tern. This pattern suggests that mammalian predation may be a major factor in colony site selection or success, although we have no data on success at most locations. The only consistently large colony over the years has been the Royal Tern colony on Fisherman Island, one of the few with no resident large mammals. Because these declining waterbirds appear to be running out of options for safe colony sites in coastal Virginia, we discuss the prospects of conducting limited predator removals on certain islands. In addition, considerations of strict management and enforcement of protection at critical manmade colony sites that now attract large numbers of certain species, are timely. Lastly, where dredged material disposal projects are planned, providing nesting sites for these colonial species and roosting sites for migrant birds may be appropriate.

  18. A method to estimate the population level of Aceria litchii (Prostigmata: Eriophyidae) and a study of the population dynamics of this species and its predators on litchi trees in southern Brazil.

    PubMed

    De Azevedo, Letícia Henrique; Maeda, Enzo Yuji; Inomoto, Mário Massayuki; De Moraes, Gilberto José

    2014-02-01

    Litchi (Litchi chinensis Sonnerat) is native to Southeast Asia, where most of the world cultivation of this crop is done. Its commercial cultivation in Brazil is recent and concentrated in the state of São Paulo. This crop has been severely damaged in Asia and Brazil by the litchi erineum mite, Aceria litchii (Keifer) (Eriophyidae). The objectives of this study were the adaptation of a method to estimate the density of A. litchii, an evaluation of the population dynamics of this pest and of its associated predators in the state of São Paulo, and an estimation of its injury levels to litchi trees. To estimate the density of A. litchii, an adaptation of a method commonly used to evaluate nematode densities in plant roots was performed. This method was shown to be adequate for the estimation of the number of A. litchii, and it might also be useful for similar evaluations of other erineum forming mites. Field samples to determine the pest population dynamics were collected monthly from August 2011 to July 2012. Sampled leaves were examined under a stereomicroscope for removal of predators and subsequent extraction ofA. litchii by the adapted method. A. litchii reached maximum densities in November 2011 and June 2012, being found at low densities between January and March 2012. The pattern of variation of A. litchii injury levels was similar to that of the density of A. litchii. The main predatory mite co-occurring with A. litchii was the phytoseiid Phytoseius intermedius Evans and McFarlane. However, high injury levels due toA. litchii suggest that the predator was unable to prevent visible damages to the trees, indicating that control activities should be adopted by growers.

  19. Warring arthropod societies: Social spider colonies can delay annihilation by predatory ants via reduced apparency and increased group size.

    PubMed

    Keiser, Carl N; Wright, Colin M; Pruitt, Jonathan N

    2015-10-01

    Sociality provides individuals with benefits via collective foraging and anti-predator defense. One of the costs of living in large groups, however, is increased apparency to natural enemies. Here, we test how the individual-level and collective traits of spider societies can increase the risk of discovery and death by predatory ants. We transplanted colonies of the social spider Stegodyphus dumicola into a habitat dense with one of their top predators, the pugnacious ant Anoplolepis custodiens. With three different experiments, we test how colony-wide survivorship in a predator-dense habitat can be altered by colony apparency (i.e., the presence of a capture web), group size, and group composition (i.e., the proportion of bold and shy personality types present). We also test how spiders' social context (i.e., living solitarily vs. among conspecifics) modifies their behaviour toward ants in their capture web. Colonies with capture webs intact were discovered by predatory ants on average 25% faster than colonies with the capture web removed, and all discovered colonies eventually collapsed and succumbed to predation. However, the lag time from discovery by ants to colony collapse was greater for colonies containing more individuals. The composition of individual personality types in the group had no influence on survivorship. Spiders in a social group were more likely to approach ants caught in their web than were isolated spiders. Isolated spiders were more likely to attack a safe prey item (a moth) than they were to attack ants and were more likely to retreat from ants after contact than they were after contact with moths. Together, our data suggest that the physical structures produced by large animal societies can increase their apparency to natural enemies, though larger groups can facilitate a longer lag time between discovery and demise. Lastly, the interaction between spiders and predatory ants seems to depend on the social context in which spiders reside. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. The Influence of Host Plant Extrafloral Nectaries on Multitrophic Interactions: An Experimental Investigation

    PubMed Central

    Koptur, Suzanne; Jones, Ian M.; Peña, Jorge E.

    2015-01-01

    A field experiment was conducted with outplantings of the native perennial shrub Senna mexicana var. chapmanii in a semi-natural area adjacent to native pine rockland habitat in southern Florida. The presence of ants and the availability of extrafloral nectar were manipulated in a stratified random design. Insect communities were monitored and recorded over a period of six months with a view to addressing three main questions. Do ants provide biotic defense against key herbivores on S. chapmanii? Is the presence of ants on S. chapmanii mediated by EFN? Finally, are there ecological costs associated with the presence of ants on S. chapmanii, such as a reduction in alternative predator or parasitoid numbers? Herbivores on S. chapmanii included immature stages of three pierid butterflies, and adult weevils. Eight species of ants were associated with the plants, and other predators included spiders, ladybugs, wasps, and hemipterans. Parasitic, haemolymph-sucking midges (Ceratopogonidae) and parasitoid flies were also associated with the caterpillar herbivores, and possibly the extrafloral nectaries of the plants. The presence of ants did not appear to influence oviposition by butterflies, as numbers of lepidopterans of all developmental stages did not differ among treatments. Significantly more late instar caterpillars, however, were observed on plants with ants excluded, indicating that ants remove small caterpillars from plants. Substantially more alternative predators (spiders, ladybugs, and wasps) were observed on plants with ants excluded. Rates of parasitization did not differ among the treatments, but there were substantially fewer caterpillars succumbing to virus among those collected from control plants. We provide a rare look at facultative ant-plant mutualisms in the context of the many other interactions with which they overlap. We conclude that ants provide some biotic defense against herbivores on S. chapmanii, and plants benefit overall from the presence of ants, despite negative impacts on non-ant predators. PMID:26394401

  1. Antipredator behaviours of a spider mite in response to cues of dangerous and harmless predators.

    PubMed

    Dias, Cleide Rosa; Bernardo, Ana Maria Guimarães; Mencalha, Jussara; Freitas, Caelum Woods Carvalho; Sarmento, Renato Almeida; Pallini, Angelo; Janssen, Arne

    2016-07-01

    Prey are known to invest in costly antipredator behaviour when perceiving cues of dangerous, but not of relatively harmless predators. Whereas most studies investigate one type of antipredator behaviour, we studied several types (changes in oviposition, in escape and avoidance behaviour) in the spider mite Tetranychus evansi in response to cues from two predatory mites. The predator Phytoseiulus longipes is considered a dangerous predator for T. evansi, whereas Phytoseiulus macropilis has a low predation rate on this prey, thus is a much less dangerous predator. Spider mite females oviposited less on leaf disc halves with predator cues than on clean disc halves, independent of the predator species. On entire leaf discs, they laid fewer eggs in the presence of cues of the dangerous predator than on clean discs, but not in the presence of cues of the harmless predator. Furthermore, the spider mites escaped more often from discs with cues of the dangerous predator than from discs without predator cues, but they did not escape more from discs with cues of the harmless predator. The spider mites did not avoid plants with conspecifics and predators. We conclude that the spider mites displayed several different antipredator responses to the same predator species, and that some of these antipredator responses were stronger with cues of dangerous predators than with cues of harmless predators.

  2. Interactions of multiple predators with different foraging modes in an aquatic food web.

    PubMed

    Carey, Michael P; Wahl, David H

    2010-02-01

    Top predators can have different foraging modes that may alter their interactions and effects on food webs. Interactions between predators may be non-additive resulting from facilitation or interference, whereas their combined effects on a shared prey may result in emergent effects that are risk enhanced or risk reduced. To test the importance of multiple predators with different foraging modes, we examined the interaction between a cruising predator (largemouth bass, Micropterus salmoides) and an ambush predator (muskellunge, Esox masquinongy) foraging on a shared prey (bluegill sunfish, Lepomis macrochirus) with strong anti-predator defense behaviors. Additive and substitution designs were used to compare individual to combined predator treatments in experimental ponds. The multiple predator interaction facilitated growth of the cruising predator in the combined predator treatments, whereas predator species had substitutable effects on the growth of the ambush predator. The combined predator treatments created an emergent effect on the prey; however, the direction was dependent on the experimental design. The additive design found a risk-reducing effect, whereas the substitution design found a risk-enhancing effect for prey fish. Indirect effects from the predators weakly extended to lower trophic levels (i.e., zooplankton community). Our results highlight the need to consider differences in foraging mode of top predators, interactions between predators, and emergent effects on prey to understand food webs.

  3. Predator interference and stability of predator-prey dynamics.

    PubMed

    Přibylová, Lenka; Berec, Luděk

    2015-08-01

    Predator interference, that is, a decline in the per predator consumption rate as predator density increases, is generally thought to promote predator-prey stability. Indeed, this has been demonstrated in many theoretical studies on predator-prey dynamics. In virtually all of these studies, the stabilization role is demonstrated as a weakening of the paradox of enrichment. With predator interference, stable limit cycles that appear as a result of environmental enrichment occur for higher values of the environmental carrying capacity of prey, and even a complete absence of the limit cycles can happen. Here we study predator-prey dynamics using the Rosenzweig-MacArthur-like model in which the Holling type II functional response has been replaced by a predator-dependent family which generalizes many of the commonly used descriptions of predator interference. By means of a bifurcation analysis we show that sufficiently strong predator interference may bring about another stabilizing mechanism. In particular, hysteresis combined with (dis)appearance of stable limit cycles imply abrupt increases in both the prey and predator densities and enhanced persistence and resilience of the predator-prey system. We encourage refitting the previously collected data on predator consumption rates as well as for conducting further predation experiments to see what functional response from the explored family is the most appropriate.

  4. Predator-prey interactions mediated by prey personality and predator hunting mode.

    PubMed

    Belgrad, Benjamin A; Griffen, Blaine D

    2016-04-13

    Predator-prey interactions are important drivers in structuring ecological communities. However, despite widespread acknowledgement that individual behaviours and predator species regulate ecological processes, studies have yet to incorporate individual behavioural variations in a multipredator system. We quantified a prevalent predator avoidance behaviour to examine the simultaneous roles of prey personality and predator hunting mode in governing predator-prey interactions. Mud crabs, Panopeus herbstii, reduce their activity levels and increase their refuge use in the presence of predator cues. We measured mud crab mortality and consistent individual variations in the strength of this predator avoidance behaviour in the presence of predatory blue crabs, Callinectes sapidus, and toadfish, Opsanus tau We found that prey personality and predator species significantly interacted to affect mortality with blue crabs primarily consuming bold mud crabs and toadfish preferentially selecting shy crabs. Additionally, the strength of the predator avoidance behaviour depended upon the predation risk from the predator species. Consequently, the personality composition of populations and predator hunting mode may be valuable predictors of both direct and indirect predator-prey interaction strength. These findings support theories postulating mechanisms for maintaining intraspecies diversity and have broad implications for community dynamics. © 2016 The Author(s).

  5. Predator diversity reduces habitat colonization by mosquitoes and midges.

    PubMed

    Staats, Ethan G; Agosta, Salvatore J; Vonesh, James R

    2016-12-01

    Changes in predator diversity via extinction and invasion are increasingly widespread and can have important ecological and socio-economic consequences. Anticipating and managing these consequences requires understanding how predators shape ecological communities. Previous predator biodiversity research has focused on post-colonization processes. However, predators can also shape communities by altering patterns of prey habitat selection during colonization. The sensitivity of this non-consumptive top down mechanism to changes in predator diversity is largely unexamined. To address this gap, we examined patterns of dipteran oviposition habitat selection in experimental aquatic habitats in response to varied predator species richness while holding predator abundance constant. Caged predators were used in order to disentangle behavioural oviposition responses to predator cues from potential post-oviposition consumption of eggs and larvae. We hypothesized that because increases in predator richness often result in greater prey mortality than would be predicted from independent effects of predators, prey should avoid predator-rich habitats during colonization. Consistent with this hypothesis, predator-rich habitats received 48% fewer dipteran eggs than predicted, including 60% fewer mosquito eggs and 38% fewer midge eggs. Our findings highlight the potentially important links between predator biodiversity, prey habitat selection and the ecosystem service of pest regulation. © 2016 The Author(s).

  6. Top predators in relation to bathymetry, ice and krill during austral winter in Marguerite Bay, Antarctica

    USGS Publications Warehouse

    Ribic, C.A.; Chapman, E.; Fraser, William R.; Lawson, G.L.; Wiebe, P.H.

    2008-01-01

    A key hypothesis guiding the US Southern Ocean Global Ocean Ecosystems Dynamics (US SO GLOBEC) program is that deep across-shelf troughs facilitate the transport of warm and nutrient-rich waters onto the continental shelf of the Western Antarctic Peninsula, resulting in enhanced winter production and prey availability to top predators. We tested aspects of this hypothesis during austral winter by assessing the distribution of the resident pack-ice top predators in relation to these deep across-shelf troughs and by investigating associations between top predators and their prey. Surveys were conducted July-August 2001 and August-September 2002 in Marguerite Bay, Antarctica, with a focus on the main across-shelf trough in the bay, Marguerite Trough. The common pack-ice seabird species were snow petrel (Pagodroma nivea, 1.2 individuals km-2), Antarctic petrel (Thalassoica antarctica, 0.3 individuals km-2), and Ade??lie penguin (Pygoscelis adeliae, 0.5 individuals km-2). The most common pack-ice pinniped was crabeater seal (Lobodon carcinophagus). During both winters, snow and Antarctic petrels were associated with low sea-ice concentrations independent of Marguerite Trough, while Ade??lie penguins occurred in association with this trough. Krill concentrations, both shallow and deep, also were associated with Ade??lie penguin and snow petrel distributions. During both winters, crabeater seal occurrence was associated with deep krill concentrations and with regions of lower chlorophyll concentration. The area of lower chlorophyll concentrations occurred in an area with complex bathymetry close to land and heavy ice concentrations. Complex or unusual bathymetry via its influence on physical and biological processes appears to be one of the keys to understanding how top predators survive during the winter in this Antarctic region. ?? 2007 Elsevier Ltd. All rights reserved.

  7. Termites and large herbivores influence seed removal rates in an African savanna.

    PubMed

    Acanakwo, Erik Francis; Sheil, Douglas; Moe, Stein R

    2017-12-01

    Seed removal can influence plant community dynamics, composition, and resulting vegetation characteristics. In the African savanna, termites and large herbivores influence vegetation in various ways, likely including indirect effects on seed predators and secondary dispersers. However, the intensity and variation of seed removal rates in African savannas has seldom been studied. We experimentally investigated whether termites and large herbivores were important factors in the mechanisms contributing to observed patterns in tree species composition on and off mounds, in Lake Mburo National Park, Uganda. Within fenced (excluding large herbivores) and unfenced termite mound and adjacent savanna plots, we placed seeds of nine native tree species within small open "cages," accessed by all animals, roofed cages that only allowed access to small vertebrates and invertebrates, and closed cages that permitted access by smaller invertebrates only (5 mm wire mesh). We found that mean seed removal rate was high (up to 87.3% per 3 d). Mound habitats experienced significantly higher removal rates than off-mound habitats. The mean removal rate of native seeds from closed cages was 11.1% per 3 d compared with 19.4% and 23.3% removed per 3 d in the roofed and open cages, respectively. Smaller seeds experienced higher removal rates than larger seeds. Large herbivore exclusion on mounds reduced native seed removal rates by a mean of 8.8% in the open cages, but increased removal rates by 1.7% in the open cages when off-mound habitats were fenced. While removal rates from open cages were higher on active mounds (30.9%) than on inactive mounds (26.7%), the removal rates from closed cages were lower on active vs. inactive mounds (6.1% vs. 11.6%, respectively). Thus, we conclude that large herbivores and Macrotermes mounds influence seed removal rates, though these effects appear indirect. © 2017 by the Ecological Society of America.

  8. Sparrowhawk movement, calling, and presence of dead conspecifics differentially impact blue tit (Cyanistes caeruleus) vocal and behavioral mobbing responses.

    PubMed

    Carlson, Nora V; Pargeter, Helen M; Templeton, Christopher N

    2017-01-01

    Many animals alter their anti-predator behavior in accordance to the threat level of a predator. While much research has examined variation in mobbing responses to different predators, few studies have investigated how anti-predator behavior is affected by changes in a predator's own state or behavior. We examined the effect of sparrowhawk ( Accipiter nisus ) behavior on the mobbing response of wild blue tits ( Cyanistes caeruleus ) using robotic taxidermy sparrowhawks. We manipulated whether the simulated predator moved its head, produced vocalizations, or held a taxidermy blue tit in its talons. When any sparrowhawk model was present, blue tits decreased foraging and increased anti-predator behavior and vocalizations. Additionally, each manipulation of the model predator's state (moving, vocalizing, or the presence of a dead conspecific) impacted different types of blue tit anti-predator behavior and vocalizations. These results indicate that different components of mobbing vary according to the specific state of a given predator-beyond its presence or absence-and suggest that each might play a different role in the overall mobbing response. Last, our results indicate that using more life-like predator stimuli-those featuring simple head movements and audio playback of vocalizations-changes how prey respond to the predator; these 'robo-raptor' models provide a powerful tool to provide increased realism in simulated predator encounters without sacrificing experimental control. Anti-predatory behavior is often modulated by the threat level posed by a particular predator. While much research has tested how different types of predators change prey behavior, few experiments have examined how predator behavior affects anti-predatory responses of prey. By experimentally manipulating robotic predators, we show that blue tits not only respond to the presence of a sparrowhawk, by decreasing feeding and increasing anti-predator behavior and vocalizations, but that they vary specific anti-predator behaviors when encountering differently behaving predators (moving, vocalizing, or those with captured prey), suggesting that prey pay attention to their predators' state and behavior.

  9. Disentangling the effects of predator hunting mode and habitat domain on the top-down control of insect herbivores.

    PubMed

    Woodcock, Ben A; Heard, Matthew S

    2011-03-01

    1. Polyphagous predatory invertebrates play a key role in the top-down control of insect herbivores. However, predicting predation risk for herbivores is not a simple function of predator species richness. Predation risk may be reduced or enhanced depending on the functional characteristics predator species. We predict that where predator species spatially overlap this will reduce predation risk for herbivores by allowing negative inter-specific interaction between predators to occur. Where increased predation risk occurs, we also predict that this will have a cascading effect through the food chain reducing plant growth. 2. We used a substitutive replicated block design to identify the effect of similarity and dissimilarity in predator hunting mode (e.g. 'sit and wait', 'sit and pursue', and 'active') and habitat domain (e.g. canopy or ground) on the top-down control of planthoppers in grasslands. Predators included within the mesocosms were randomly selected from a pool of 17 local species. 3. Predation risk was reduced where predators shared the same habitat domain, independent of whether they shared hunting modes. Where predators shared the same habitat domains, there was some evidence that this had a cascading negative effect on the re-growth of grass biomass. Where predator habitat domains did not overlap, there were substitutable effects on predation risk to planthoppers. Predation risk for planthoppers was affected by taxonomic identity of predator species, i.e. whether they were beetles, spiders or true bugs. 4. Our results indicated that in multi-predator systems, the risk of predation is typically reduced. Consideration of functional characteristics of individual species, in particular aspects of habitat domain and hunting mode, are crucial in predicting the effects of multi-predator systems on the top-down control of herbivores. © 2010 The Authors. Journal of Animal Ecology © 2010 British Ecological Society.

  10. Improving the assessment of predator functional responses by considering alternate prey and predator interactions.

    PubMed

    Chan, K; Boutin, S; Hossie, T J; Krebs, C J; O'Donoghue, M; Murray, D L

    2017-07-01

    To improve understanding of the complex and variable patterns of predator foraging behavior in natural systems, it is critical to determine how density-dependent predation and predator hunting success are mediated by alternate prey or predator interference. Despite considerable theory and debate seeking to place predator-prey interactions in a more realistic context, few empirical studies have quantified the role of alternate prey or intraspecific interactions on predator-prey dynamics. We assessed functional responses of two similarly sized, sympatric carnivores, lynx (Lynx canadensis) and coyotes (Canis latrans), foraging on common primary (snowshoe hares; Lepus americanus) and alternate (red squirrels; Tamiasciurus hudsonicus) prey in a natural system. Lynx exhibited a hyperbolic prey-dependent response to changes in hare density, which is characteristic of predators relying primarily on a single prey species. In contrast, the lynx-squirrel response was found to be linear ratio dependent, or inversely dependent on hare density. The coyote-hare and coyote-squirrel interactions also were linear and influenced by predator density. We explain these novel results by apparent use of spatial and temporal refuges by prey, and the likelihood that predators commonly experience interference and lack of satiation when foraging. Our study provides empirical support from a natural predator-prey system that (1) predation rate may not be limited at high prey densities when prey are small or rarely captured; (2) interference competition may influence the predator functional response; and (3) predator interference has a variable role across different prey types. Ultimately, distinct functional responses of predators to different prey types illustrates the complexity associated with predator-prey interactions in natural systems and highlights the need to investigate predator behavior and predation rate in relation to the broader ecological community. © 2017 by the Ecological Society of America.

  11. Predator and prey functional traits: understanding the adaptive machinery driving predator-prey interactions.

    PubMed

    Schmitz, Oswald

    2017-01-01

    Predator-prey relationships are a central component of community dynamics. Classic approaches have tried to understand and predict these relationships in terms of consumptive interactions between predator and prey species, but characterizing the interaction this way is insufficient to predict the complexity and context dependency inherent in predator-prey relationships. Recent approaches have begun to explore predator-prey relationships in terms of an evolutionary-ecological game in which predator and prey adapt to each other through reciprocal interactions involving context-dependent expression of functional traits that influence their biomechanics. Functional traits are defined as any morphological, behavioral, or physiological trait of an organism associated with a biotic interaction. Such traits include predator and prey body size, predator and prey personality, predator hunting mode, prey mobility, prey anti-predator behavior, and prey physiological stress. Here, I discuss recent advances in this functional trait approach. Evidence shows that the nature and strength of many interactions are dependent upon the relative magnitude of predator and prey functional traits. Moreover, trait responses can be triggered by non-consumptive predator-prey interactions elicited by responses of prey to risk of predation. These interactions in turn can have dynamic feedbacks that can change the context of the predator-prey interaction, causing predator and prey to adapt their traits-through phenotypically plastic or rapid evolutionary responses-and the nature of their interaction. Research shows that examining predator-prey interactions through the lens of an adaptive evolutionary-ecological game offers a foundation to explain variety in the nature and strength of predator-prey interactions observed in different ecological contexts.

  12. Seasonal fecundity and costs to λ are more strongly affected by direct than indirect predation effects across species

    USGS Publications Warehouse

    LaManna, Joseph A.; Martin, Thomas E.

    2017-01-01

    Increased perceived predation risk can cause behavioral and physiological responses to reduce direct predation mortality, but these responses can also cause demographic costs through reduced reproductive output. Such indirect costs of predation risk have received increased attention in recent years, but the relative importance of direct vs. indirect predation costs to population growth (λ) across species remains unclear. We measured direct nest predation rates as well as indirect benefits (i.e., reduced predation rates) and costs (i.e., decreased reproductive output) arising from parental responses to perceived offspring predation risk for 10 songbird species breeding along natural gradients in nest predation risk. We show that reductions in seasonal fecundity from behavioral responses to perceived predation risk represent significant demographic costs for six of the 10 species. However, demographic costs from these indirect predation effects on seasonal fecundity comprised only 12% of cumulative predation costs averaged across species. In contrast, costs from direct predation mortality comprised 88% of cumulative predation costs averaged across species. Demographic costs from direct offspring predation were relatively more important for species with higher within-season residual-reproductive value (i.e., multiple-brooded species) than for species with lower residual-reproductive value (i.e., single-brooded species). Costs from indirect predation effects were significant across single- but not multiple-brooded species. Ultimately, demographic costs from behavioral responses to offspring predation risk differed among species as a function of their life-history strategies. Yet direct predation mortality generally wielded a stronger influence than indirect effects on seasonal fecundity and projected λ across species.

  13. Predation on Japanese quail vs. house sparrow eggs in artificial nests: small eggs reveal small predators

    Treesearch

    Thomas J. Maier; Richard M. DeGraaf

    2000-01-01

    Nest predation studies frequently use eggs such as Japanese Quail (Coturnix japonica) to identify potential predators of Neotropical migrants' eggs, but such eggs may be too large or thick-shelled to identify the full complement of potential predators. We compared predation events and predators of Japanese Quail and smaller House Sparrow (

  14. Behavioral Hypervolumes of Predator Groups and Predator-Predator Interactions Shape Prey Survival Rates and Selection on Prey Behavior

    PubMed Central

    Pruitt, Jonathan N.; Howell, Kimberly A.; Gladney, Shaniqua J.; Yang, Yusan; Lichtenstein, James L. L.; Spicer, Michelle Elise; Echeverri, Sebastian A.; Pinter-Wollman, Noa

    2017-01-01

    Predator-prey interactions often vary on the basis of the traits of the individual predators and prey involved. Here we examine whether the multidimensional behavioral diversity of predator groups shapes prey mortality rates and selection on prey behavior. We ran individual sea stars (Pisaster ochraceus) through three behavioral assays to characterize individuals’ behavioral phenotype along three axes. We then created groups that varied in the volume of behavioral space that they occupied. We further manipulated the ability of predators to interact with one another physically via the addition of barriers. Prey snails (Chlorostome funebralis) were also run through an assay to evaluate their predator avoidance behavior before their use in mesocosm experiments. We then subjected pools of prey to predator groups and recorded the number of prey consumed and their behavioral phenotypes. We found that predator-predator interactions changed survival selection on prey traits: when predators were prevented from interacting, more fearful snails had higher survival rates, whereas prey fearfulness had no effect on survival when predators were free to interact. We also found that groups of predators that occupied a larger volume in behavioral trait space consumed 35% more prey snails than homogeneous predator groups. Finally, we found that behavioral hypervolumes were better predictors of prey survival rates than single behavioral traits or other multivariate statistics (i.e., principal component analysis). Taken together, predator-predator interactions and multidimensional behavioral diversity determine prey survival rates and selection on prey traits in this system. PMID:28221831

  15. Behavioral Hypervolumes of Predator Groups and Predator-Predator Interactions Shape Prey Survival Rates and Selection on Prey Behavior.

    PubMed

    Pruitt, Jonathan N; Howell, Kimberly A; Gladney, Shaniqua J; Yang, Yusan; Lichtenstein, James L L; Spicer, Michelle Elise; Echeverri, Sebastian A; Pinter-Wollman, Noa

    2017-03-01

    Predator-prey interactions often vary on the basis of the traits of the individual predators and prey involved. Here we examine whether the multidimensional behavioral diversity of predator groups shapes prey mortality rates and selection on prey behavior. We ran individual sea stars (Pisaster ochraceus) through three behavioral assays to characterize individuals' behavioral phenotype along three axes. We then created groups that varied in the volume of behavioral space that they occupied. We further manipulated the ability of predators to interact with one another physically via the addition of barriers. Prey snails (Chlorostome funebralis) were also run through an assay to evaluate their predator avoidance behavior before their use in mesocosm experiments. We then subjected pools of prey to predator groups and recorded the number of prey consumed and their behavioral phenotypes. We found that predator-predator interactions changed survival selection on prey traits: when predators were prevented from interacting, more fearful snails had higher survival rates, whereas prey fearfulness had no effect on survival when predators were free to interact. We also found that groups of predators that occupied a larger volume in behavioral trait space consumed 35% more prey snails than homogeneous predator groups. Finally, we found that behavioral hypervolumes were better predictors of prey survival rates than single behavioral traits or other multivariate statistics (i.e., principal component analysis). Taken together, predator-predator interactions and multidimensional behavioral diversity determine prey survival rates and selection on prey traits in this system.

  16. Critical Stages in the Recruitment Process of Rhamnus alaternus L.

    PubMed Central

    GULIAS, J.; TRAVESET, A.; RIERA, N.; MUS, M.

    2004-01-01

    • Background and Aims Rhamnus alaternus is a Mediterranean shrub commonly used in reforestation programs. Although several aspects of its reproductive biology have been studied, little is known about the importance of the different recruitment stages in the overall regeneration process of this species, which limits its proper use in Mediterranean forests and shrubland management. The aim of the present work was to quantify the importance of the different recruitment stages in the regeneration process of R. alaternus. • Methods Two populations of Rhamnus alaternus on the island of Mallorca that differ in climatic conditions, type of habitat and sex ratio were studied. The importance of seed production, seed dispersal and predation, seedling emergence and seedling survival for the regeneration of this species were quantified. • Key Results In both populations, fruit set and fruit removal by animals were not critical stages, since almost half of the flowers became mature fruits and 90 % of those were dispersed. Most seeds were deposited under female conspecifics (86 and 47 %, at Lloret and Esporles, respectively), and very few were found in open inter‐spaces (1 and 5 %). Post‐dispersal seed predation (mostly by ants and rodents) was very high in both populations. Seedling emergence took place during autumn and early winter and it ranged from 31 to 68 % depending upon year and microhabitat. The majority of emerged seedlings died during the first year, mainly due to desiccation; such mortality was influenced by rainfall and differed among microhabitats (varying from 67 to 100 %). The general spatial distribution of seed rain was concordant with the seedling emergence and survival pattern in both populations. • Conclusions The recruitment of Rhamnus alaternus appeared to be mainly limited by seed and seedling survival, regardless of the type of habitat in which the species is found. PMID:15150073

  17. History and status of introduced mammals and impacts to breeding seabirds on the California channel and Northwestern Baja California Islands

    USGS Publications Warehouse

    McChesney, G.J.; Tershy, B.R.

    1998-01-01

    The California Channel Islands, U.S.A., and Northwestern Baja California Islands, Mexico, host important breeding populations of several seabird species, including the endemic Black-vented Shearwater (Puffinus opisthomelas) and Xantus' Murrelet (Synthliboramphus hypoleucus). Mammals introduced to nearly all of the islands beginning in the late 1800s to early 1900s include: cats (Felis catus), dogs (Canis familiaris), Black Rats (Rattus rattus), rabbits and hares (Leporidae), goats (Capra hirca), sheep (Ovis ones), and other grazers. Cats, dogs and rats are seabird predators, grazers such as goats and sheep cause habitat degredation, and rabbits destroy habitat and compete with hole-nesting seabirds. Cats, which were introduced to at least 19 islands and currently occur on ten islands, have had the greatest impacts on seabirds, including the extinction of the endemic Guadalupe Storm-Petrel (Oceanodroma macrodactyla). Cats are known to have eliminated or severely reduced colonies of Black-vented Shearwaters, Cassin's Auklets (Ptychoramphus aleuticus) and Xantus' Murrelets. Black Rats have occurred on a minimum of seven islands and have reduced numbers of small, hole-nesting alcids on at least one island. At many islands, defoliation and erosion caused by rabbits and large grazing mammals has been severe. Their effects on seabirds are not well documented but potentially are serious. Impacts from introduced mammals have been most severe on islands with no native mammalian predators. On the Northwestern Baja California Islands, temporary and permanent human settlements have led to a greater diversity and source of introductions. Programs to remove introduced mammals and to reduce the possibility of future introductions are needed to restore seabird populations and to preserve the biodiversity of the region. Surveys are needed particularly on the Northwestern Baja California Islands to update the status and distribution of seabirds and to further assess impacts from introduced mammals.

  18. Using Animal-Borne Cameras to Quantify Prey Field, Habitat Characteristics and Foraging Success in a Marine Top Predator

    DTIC Science & Technology

    2013-09-30

    developed for the Victorian Marine Habitat Mapping Program (Ierodiaconou et al. 2007). These analyses will enable statistical comparisons of prey...determine whether patterns of specialisation observed in the videos reflected long-term trophic niche. The distribution of prey types encountered

  19. Species diversity and predation strategies in a multiple species predator-prey model

    NASA Astrophysics Data System (ADS)

    Mullan, Rory; Glass, David H.; McCartney, Mark

    2015-08-01

    A single predator, single prey ecological model, in which the behaviour of the populations relies upon two control parameters has been expanded to allow for multiple predators and prey to occupy the ecosystem. The diversity of the ecosystem that develops as the model runs is analysed by assessing how many predator or prey species survive. Predation strategies that dictate how the predators distribute their efforts across the prey are introduced in this multiple species model. The paper analyses various predation strategies and highlights their effect on the survival of the predators and prey species.

  20. An exploitation-competition system with negative effect of prey on its predator.

    PubMed

    Wang, Yuanshi

    2015-05-01

    This paper considers an exploitation-competition system in which exploitation is the dominant interaction when the prey is at low density, while competition is dominant when the prey is at high density due to its negative effect on the predator. The two-species system is characterized by differential equations, which are the combination of Lotka-Volterra competitive and predator-prey models. Global dynamics of the model demonstrate some basic properties of exploitation-competition systems: (i) When the growth rate of prey is extremely small, the prey cannot promote the growth of predator. (ii) When the growth rate is small, an obligate predator can survive by preying on the prey, while a facultative predator can approach a high density by the predation. (iii) When the growth rate is intermediate, the predator can approach the maximal density by an intermediate predation. (iv) When the growth rate is large, the predator can persist only if it has a large density and its predation on the prey is big. (v) Intermediate predation is beneficial to the predator under certain parameter range, while over- or under-predation is not good. Extremely big/small predation would lead to extinction of species. Numerical simulations confirm and extend our results. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Species and temporal factors affect predator-specific rates of nest predation for forest songbirds in the midwest

    Treesearch

    W. Andrew Cox; Frank R. III Thompson; John Faaborg

    2012-01-01

    Knowledge of the relative contributions of predator species to overall rates of nest predation can improve our understanding of why predation risk varies, but the identity of predators is seldom known. We used video technology to identify nest predators of the tree-nesting Acadian Flycatcher (Empidonax virescens) and the shrub-nesting Indigo Bunting...

  2. A community-level evaluation of the impact of prey behavioural and ecological characteristics on predator diet composition.

    PubMed

    Shultz, Susanne; Noë, Ronald; McGraw, W Scott; Dunbar, R I M

    2004-04-07

    Although predation avoidance is the most commonly invoked explanation for vertebrate social evolution, there is little evidence that individuals in larger groups experience lower predation rates than those in small groups. We compare the morphological and behavioural traits of mammal prey species in the Taï forest, Ivory Coast, with the diet preferences of three of their non-human predators: leopards, chimpanzees and African crowned eagles. Individual predators show marked differences in their predation rates on prey species of different body sizes, but clear patterns with prey behaviour were apparent only when differences in prey habitat use were incorporated into the analyses. Leopard predation rates are highest for terrestrial species living in smaller groups, whereas eagle predation rates are negatively correlated with group size only among arboreal prey. When prey predation rates are summed over all three predators, terrestrial species incur higher predation rates than arboreal species and, within both categories, predation rates decline with increasing prey group size and decreasing density of groups in the habitat. These results reveal that it is necessary to consider anti-predator strategies in the context of a dynamic behavioural interaction between predators and prey.

  3. Maternal intraguild predation risk affects offspring anti-predator behavior and learning in mites.

    PubMed

    Seiter, Michael; Schausberger, Peter

    2015-10-09

    Predation risk is a strong selective force shaping prey morphology, life history and behavior. Anti-predator behaviors may be innate, learned or both but little is known about the transgenerational behavioral effects of maternally experienced predation risk. We examined intraguild predation (IGP) risk-induced maternal effects on offspring anti-predator behavior, including learning, in the predatory mite Phytoseiulus persimilis. We exposed predatory mite mothers during egg production to presence or absence of the IG predator Amblyseius andersoni and assessed whether maternal stress affects the anti-predator behavior, including larval learning ability, of their offspring as protonymphs. Protonymphs emerging from stressed or unstressed mothers, and having experienced IGP risk as larvae or not, were subjected to choice situations with and without IG predator traces. Predator-experienced protonymphs from stressed mothers were the least active and acted the boldest in site choice towards predator cues. We argue that the attenuated response of the protonymphs to predator traces alone represents optimized risk management because no immediate risk existed. Such behavioral adjustment could reduce the inherent fitness costs of anti-predator behaviors. Overall, our study suggests that P. persimilis mothers experiencing IGP risk may prime their offspring to behave more optimally in IGP environments.

  4. Maternal intraguild predation risk affects offspring anti-predator behavior and learning in mites

    PubMed Central

    Seiter, Michael; Schausberger, Peter

    2015-01-01

    Predation risk is a strong selective force shaping prey morphology, life history and behavior. Anti-predator behaviors may be innate, learned or both but little is known about the transgenerational behavioral effects of maternally experienced predation risk. We examined intraguild predation (IGP) risk-induced maternal effects on offspring anti-predator behavior, including learning, in the predatory mite Phytoseiulus persimilis. We exposed predatory mite mothers during egg production to presence or absence of the IG predator Amblyseius andersoni and assessed whether maternal stress affects the anti-predator behavior, including larval learning ability, of their offspring as protonymphs. Protonymphs emerging from stressed or unstressed mothers, and having experienced IGP risk as larvae or not, were subjected to choice situations with and without IG predator traces. Predator-experienced protonymphs from stressed mothers were the least active and acted the boldest in site choice towards predator cues. We argue that the attenuated response of the protonymphs to predator traces alone represents optimized risk management because no immediate risk existed. Such behavioral adjustment could reduce the inherent fitness costs of anti-predator behaviors. Overall, our study suggests that P. persimilis mothers experiencing IGP risk may prime their offspring to behave more optimally in IGP environments. PMID:26449645

  5. Species invasion shifts the importance of predator dependence.

    PubMed

    Griffen, Blaine D; Delaney, David G

    2007-12-01

    The strength of interference between foraging individuals can influence per capita consumption rates, with important consequences for predator and prey populations and system stability. Here we demonstrate how the replacement of a previously established invader, the predatory crab Carcinus maenas, by the recently invading predatory crab Hemigrapsus sanguineus shifts predation from a species that experiences strong predator interference (strong predator dependence) to one that experiences weak predator interference (weak predator dependence). We demonstrate using field experiments that differences in the strength of predator dependence persist for these species both when they forage on a single focal prey species only (the mussel Mytilus edulis) and when they forage more broadly across the entire prey community. This shift in predator dependence with species replacement may be altering the biomass across trophic levels, consistent with theoretical predictions, as we show that H. sanguineus populations are much larger than C. maenas populations throughout their invaded ranges. Our study highlights that predator dependence may differ among predator species and demonstrates that different predatory impacts of two conspicuous invasive predators may be explained at least in part by different strengths of predator dependence.

  6. Plastic Responses of a Sessile Prey to Multiple Predators: A Field and Experimental Study

    PubMed Central

    Hirsch, Philipp Emanuel; Cayon, David; Svanbäck, Richard

    2014-01-01

    Background Theory predicts that prey facing a combination of predators with different feeding modes have two options: to express a response against the feeding mode of the most dangerous predator, or to express an intermediate response. Intermediate phenotypes protect equally well against several feeding modes, rather than providing specific protection against a single predator. Anti-predator traits that protect against a common feeding mode displayed by all predators should be expressed regardless of predator combination, as there is no need for trade-offs. Principal Findings We studied phenotypic anti-predator responses of zebra mussels to predation threat from a handling-time-limited (crayfish) and a gape-size-limited (roach) predator. Both predators dislodge mussels from the substrate but diverge in their further feeding modes. Mussels increased expression of a non-specific defense trait (attachment strength) against all combinations of predators relative to a control. In response to roach alone, mussels showed a tendency to develop a weaker and more elongated shell. In response to crayfish, mussels developed a harder and rounder shell. When exposed to either a combination of predators or no predator, mussels developed an intermediate phenotype. Mussel growth rate was positively correlated with an elongated weaker shell and negatively correlated with a round strong shell, indicating a trade-off between anti-predator responses. Field observations of prey phenotypes revealed the presence of both anti-predator phenotypes and the trade-off with growth, but intra-specific population density and bottom substrate had a greater influence than predator density. Conclusions Our results show that two different predators can exert both functionally equivalent and inverse selection pressures on a single prey. Our field study suggests that abiotic factors and prey population density should be considered when attempting to explain phenotypic diversity in the wild. PMID:25517986

  7. Does Predation Risk Affect Mating Behavior? An Experimental Test in Dumpling Squid (Euprymna tasmanica)

    PubMed Central

    Franklin, Amanda M.; Squires, Zoe E.; Stuart-Fox, Devi

    2014-01-01

    Introduction One of the most important trade-offs for many animals is that between survival and reproduction. This is particularly apparent when mating increases the risk of predation, either by increasing conspicuousness, reducing mobility or inhibiting an individual's ability to detect predators. Individuals may mitigate the risk of predation by altering their reproductive behavior (e.g. increasing anti-predator responses to reduce conspicuousness). The degree to which individuals modulate their reproductive behavior in relation to predation risk is difficult to predict because both the optimal investment in current and future reproduction (due to life-history strategies) and level of predation risk may differ between the sexes and among species. Here, we investigate the effect of increased predation risk on the reproductive behavior of dumpling squid (Euprymna tasmanica). Results Females, but not males, showed a substantial increase in the number of inks (an anti-predator behavior) before mating commenced in the presence of a predator (sand flathead Platycephalus bassensis). However, predation risk did not affect copulation duration, the likelihood of mating, female anti-predator behavior during or after mating or male anti-predator behavior at any time. Conclusions Inking is a common anti-predator defense in cephalopods, thought to act like a smokescreen, decoy or distraction. Female dumpling squid are probably using this form of defense in response to the increase in predation risk prior to mating. Conversely, males were undeterred by the increase in predation risk. A lack of change in these variables may occur if the benefit of completing mating outweighs the risk of predation. Prioritizing current reproduction, even under predation risk, can occur when the chance of future reproduction is low, there is substantial energetic investment into mating, or the potential fitness payoffs of mating are high. PMID:25551378

  8. A predator-prey model with generic birth and death rates for the predator.

    PubMed

    Terry, Alan J

    2014-02-01

    We propose and study a predator-prey model in which the predator has a Holling type II functional response and generic per capita birth and death rates. Given that prey consumption provides the energy for predator activity, and that the predator functional response represents the prey consumption rate per predator, we assume that the per capita birth and death rates for the predator are, respectively, increasing and decreasing functions of the predator functional response. These functions are monotonic, but not necessarily strictly monotonic, for all values of the argument. In particular, we allow the possibility that the predator birth rate is zero for all sufficiently small values of the predator functional response, reflecting the idea that a certain level of energy intake is needed before a predator can reproduce. Our analysis reveals that the model exhibits the behaviours typically found in predator-prey models - extinction of the predator population, convergence to a periodic orbit, or convergence to a co-existence fixed point. For a specific example, in which the predator birth and death rates are constant for all sufficiently small or large values of the predator functional response, we corroborate our analysis with numerical simulations. In the unlikely case where these birth and death rates equal the same constant for all sufficiently large values of the predator functional response, the model is capable of structurally unstable behaviour, with a small change in the initial conditions leading to a more pronounced change in the long-term dynamics. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Nest Predation Deviates from Nest Predator Abundance in an Ecologically Trapped Bird.

    PubMed

    Hollander, Franck A; Van Dyck, Hans; San Martin, Gilles; Titeux, Nicolas

    2015-01-01

    In human-modified environments, ecological traps may result from a preference for low-quality habitat where survival or reproductive success is lower than in high-quality habitat. It has often been shown that low reproductive success for birds in preferred habitat types was due to higher nest predator abundance. However, between-habitat differences in nest predation may only weakly correlate with differences in nest predator abundance. An ecological trap is at work in a farmland bird (Lanius collurio) that recently expanded its breeding habitat into open areas in plantation forests. This passerine bird shows a strong preference for forest habitat, but it has a higher nest success in farmland. We tested whether higher abundance of nest predators in the preferred habitat or, alternatively, a decoupling of nest predator abundance and nest predation explained this observed pattern of maladaptive habitat selection. More than 90% of brood failures were attributed to nest predation. Nest predator abundance was more than 50% higher in farmland, but nest predation was 17% higher in forest. Differences between nest predation on actual shrike nests and on artificial nests suggested that parent shrikes may facilitate nest disclosure for predators in forest more than they do in farmland. The level of caution by parent shrikes when visiting their nest during a simulated nest predator intrusion was the same in the two habitats, but nest concealment was considerably lower in forest, which contributes to explaining the higher nest predation in this habitat. We conclude that a decoupling of nest predator abundance and nest predation may create ecological traps in human-modified environments.

  10. Nest Predation Deviates from Nest Predator Abundance in an Ecologically Trapped Bird

    PubMed Central

    Hollander, Franck A.; Van Dyck, Hans; San Martin, Gilles; Titeux, Nicolas

    2015-01-01

    In human-modified environments, ecological traps may result from a preference for low-quality habitat where survival or reproductive success is lower than in high-quality habitat. It has often been shown that low reproductive success for birds in preferred habitat types was due to higher nest predator abundance. However, between-habitat differences in nest predation may only weakly correlate with differences in nest predator abundance. An ecological trap is at work in a farmland bird (Lanius collurio) that recently expanded its breeding habitat into open areas in plantation forests. This passerine bird shows a strong preference for forest habitat, but it has a higher nest success in farmland. We tested whether higher abundance of nest predators in the preferred habitat or, alternatively, a decoupling of nest predator abundance and nest predation explained this observed pattern of maladaptive habitat selection. More than 90% of brood failures were attributed to nest predation. Nest predator abundance was more than 50% higher in farmland, but nest predation was 17% higher in forest. Differences between nest predation on actual shrike nests and on artificial nests suggested that parent shrikes may facilitate nest disclosure for predators in forest more than they do in farmland. The level of caution by parent shrikes when visiting their nest during a simulated nest predator intrusion was the same in the two habitats, but nest concealment was considerably lower in forest, which contributes to explaining the higher nest predation in this habitat. We conclude that a decoupling of nest predator abundance and nest predation may create ecological traps in human-modified environments. PMID:26624619

  11. Mesopredator suppression by an apex predator alleviates the risk of predation perceived by small prey

    PubMed Central

    Gordon, Christopher E.; Feit, Anna; Grüber, Jennifer; Letnic, Mike

    2015-01-01

    Predators can impact their prey via consumptive effects that occur through direct killing, and via non-consumptive effects that arise when the behaviour and phenotypes of prey shift in response to the risk of predation. Although predators' consumptive effects can have cascading population-level effects on species at lower trophic levels there is less evidence that predators' non-consumptive effects propagate through ecosystems. Here we provide evidence that suppression of abundance and activity of a mesopredator (the feral cat) by an apex predator (the dingo) has positive effects on both abundance and foraging efficiency of a desert rodent. Then by manipulating predators' access to food patches we further the idea that apex predators provide small prey with refuge from predation by showing that rodents increased their habitat breadth and use of ‘risky′ food patches where an apex predator was common but mesopredators rare. Our study suggests that apex predators' suppressive effects on mesopredators extend to alleviate both mesopredators' consumptive and non-consumptive effects on prey. PMID:25652837

  12. Predators indirectly reduce the prevalence of an insect-vectored plant pathogen independent of predator diversity.

    PubMed

    Long, Elizabeth Y; Finke, Deborah L

    2015-04-01

    A widely cited benefit of predator diversity is greater suppression of insect herbivores, with corresponding increases in plant biomass. In the context of a vector-borne pathogen system, predator species richness may also influence plant disease risk via the direct effects of predators on the abundance and behavior of herbivores that also act as pathogen vectors. Using an assemblage of generalist insect predators, we examined the relationship between predator species richness and the prevalence of the aphid-vectored cereal yellow dwarf virus in wheat. We found that increasing predator richness enhanced suppression of the vector population and that pathogen prevalence was reduced when predators were present, but the reduction in prevalence was independent of predator species richness. To determine the mechanism(s) by which predator species richness contributes to vector suppression, but not pathogen prevalence, we evaluated vector movement and host plant occupancy in response to predator treatments. We found that pathogen prevalence was unrelated to vector suppression because host plant occupancy by vectors did not vary as a function of vector abundance. However, the presence of predators reduced pathogen prevalence because predators stimulated greater plant-to-plant movement by vectors, which likely diminished vector feeding time and reduced the transmission efficiency of this persistent pathogen. We conclude that community structure (i.e., the presence of predators), but not predator diversity, is a potential factor influencing local plant infection by this insect-vectored pathogen.

  13. Conservation implications when the nest predators are known

    USGS Publications Warehouse

    Ribic, Christine; Thompson, Frank

    2012-01-01

    Conservation and management of passerines has largely focused on habitat manipulation or restoration because the natural communities on which these birds depend have been destroyed and fragmented. However, productivity is another important aspect of avian conservation, and nest predation can be a large source of nesting mortality for passerines. Recent studies using video surveillance to identify nest predators allow researchers to start evaluating what methods could be used to mitigate nest predation to help passerines of conservation concern. From recent studies, we identified latitudinal and habitat-related patterns in the importance of predator groups that depredate passerine nests. We then reviewed how knowledge of specific nest predators can benefit conservation of bird species of concern. Mammals were the dominant predator group in northern grasslands. Snakes were the dominant predator group in southern habitats. Fire ants were only a nest predator in southern latitudes. Differences in the importance of predator species or groups were likely the result of both their geographic patterns of distribution and habitat preferences. Some direct and indirect predator control measures developed for waterfowl management potentially could be used to benefit passerine productivity. We reviewed three examples-cowbirds, snakes in shrublands, and ground squirrels in grasslands-to illustrate how different predator control strategies may be needed in different situations. Mitigation of passerine nest predation will need to be based on knowledge of predator communities to be effective. This requires large samples of predation events with identified predators; video technology is essential for this task.

  14. Landscape heterogeneity shapes predation in a newly restored predator-prey system.

    PubMed

    Kauffman, Matthew J; Varley, Nathan; Smith, Douglas W; Stahler, Daniel R; MacNulty, Daniel R; Boyce, Mark S

    2007-08-01

    Because some native ungulates have lived without top predators for generations, it has been uncertain whether runaway predation would occur when predators are newly restored to these systems. We show that landscape features and vegetation, which influence predator detection and capture of prey, shape large-scale patterns of predation in a newly restored predator-prey system. We analysed the spatial distribution of wolf (Canis lupus) predation on elk (Cervus elaphus) on the Northern Range of Yellowstone National Park over 10 consecutive winters. The influence of wolf distribution on kill sites diminished over the course of this study, a result that was likely caused by territorial constraints on wolf distribution. In contrast, landscape factors strongly influenced kill sites, creating distinct hunting grounds and prey refugia. Elk in this newly restored predator-prey system should be able to mediate their risk of predation by movement and habitat selection across a heterogeneous risk landscape.

  15. Landscape heterogeneity shapes predation in a newly restored predator-prey system

    USGS Publications Warehouse

    Kauffman, M.J.; Varley, N.; Smith, D.W.; Stahler, D.R.; MacNulty, D.R.; Boyce, M.S.

    2007-01-01

    Because some native ungulates have lived without top predators for generations, it has been uncertain whether runaway predation would occur when predators are newly restored to these systems. We show that landscape features and vegetation, which influence predator detection and capture of prey, shape large-scale patterns of predation in a newly restored predator-prey system. We analysed the spatial distribution of wolf (Canis lupus) predation on elk (Cervus elaphus) on the Northern Range of Yellowstone National Park over 10 consecutive winters. The influence of wolf distribution on kill sites diminished over the course of this study, a result that was likely caused by territorial constraints on wolf distribution. In contrast, landscape factors strongly influenced kill sites, creating distinct hunting grounds and prey refugia. Elk in this newly restored predator-prey system should be able to mediate their risk of predation by movement and habitat selection across a heterogeneous risk landscape. ?? 2007 Blackwell Publishing Ltd/CNRS.

  16. Dynamics of a intraguild predation model with generalist or specialist predator.

    PubMed

    Kang, Yun; Wedekin, Lauren

    2013-11-01

    Intraguild predation (IGP) is a combination of competition and predation which is the most basic system in food webs that contains three species where two species that are involved in a predator/prey relationship are also competing for a shared resource or prey. We formulate two intraguild predation (IGP: resource, IG prey and IG predator) models: one has generalist predator while the other one has specialist predator. Both models have Holling-Type I functional response between resource-IG prey and resource-IG predator; Holling-Type III functional response between IG prey and IG predator. We provide sufficient conditions of the persistence and extinction of all possible scenarios for these two models, which give us a complete picture on their global dynamics. In addition, we show that both IGP models can have multiple interior equilibria under certain parameters range. These analytical results indicate that IGP model with generalist predator has "top down" regulation by comparing to IGP model with specialist predator. Our analysis and numerical simulations suggest that: (1) Both IGP models can have multiple attractors with complicated dynamical patterns; (2) Only IGP model with specialist predator can have both boundary attractor and interior attractor, i.e., whether the system has the extinction of one species or the coexistence of three species depending on initial conditions; (3) IGP model with generalist predator is prone to have coexistence of three species.

  17. Fasting or fear: disentangling the roles of predation risk and food deprivation in the nitrogen metabolism of consumers.

    PubMed

    Dalton, Christopher M; Tracy, Karen E; Hairston, Nelson G; Flecker, Alexander S

    2018-03-01

    Predators can alter nutrient cycles simply by inducing stress in prey. This stress accelerates prey's protein catabolism, nitrogen waste production, and nitrogen cycling. Yet predators also reduce the feeding rates of their prey, inducing food deprivation that is expected to slow protein catabolism and nitrogen cycling. The physiology of prey under predation risk thus balances the influences of predation risk and food deprivation, and this balance is central to understanding the role of predators in nutrient cycles. We explored the separate and combined effects of predation risk and food deprivation on prey physiology and nutrient cycling by exposing guppies (Poecilia reticulata) to predation risk and food deprivation in a 2 × 2 design. We simulated predation risk using chemical cues from a natural predator of guppies, and we created food deprivation by rationing food availability. We measured guppy response as food consumption, growth, tissue energy density, tissue carbon:nitrogen, and nitrogen (N) excretion and assimilation. We found that N-linked physiological processes (N consumption, assimilation, excretion) were strongly affected by predation risk, independent of food consumption. Guppies excreted substantially less under predation risk than they did under food deprivation or control conditions. These results suggest that predation risk, per se, triggers physiological changes in guppies that increase N retention and decrease N excretion. We suggest that slower N metabolism under predation risk is an adaptive response that minimizes protein loss in the face of predictable, predator-induced food restriction. Notably, N metabolism shares common hormonal control with food seeking behavior, and we speculate that increased N retention is a direct and immediate result of reduced food seeking under predation risk. Contrary to predation-stress-based hypotheses for how predators affect nutrient cycling by prey, our result indicates that even short-term exposure to predators may decelerate, rather than accelerate, the speed of N cycling by suppressing N turnover by prey. © 2018 by the Ecological Society of America.

  18. Understanding predation: implications toward forest management

    Treesearch

    Harvey R. Smith

    1991-01-01

    It is generally accepted that when gypsy moths rest in the litter survival is low due to predation by ground-foraging generalist predators and that predation can maintain these populations indefinitely. Forest Service research on predators of gypsy moth continues to focus on population dynamics, the mechanisms of predation and forest management implications.

  19. Predator effects on reef fish settlement depend on predator origin and recruit density.

    PubMed

    Benkwitt, Cassandra E

    2017-04-01

    During major life-history transitions, animals often experience high mortality rates due to predation, making predator avoidance particularly advantageous during these times. There is mixed evidence from a limited number of studies, however, regarding how predator presence influences settlement of coral-reef fishes and it is unknown how other potentially mediating factors, including predator origin (native vs. nonnative) or interactions among conspecific recruits, mediate the non-consumptive effects of predators on reef fish settlement. During a field experiment in the Caribbean, approximately 52% fewer mahogany snapper (Lutjanus mahogoni) recruited to reefs with a native predator (graysby grouper, Cephalopholis cruentata) than to predator-free control reefs and reefs with an invasive predator (red lionfish, Pterois volitans) regardless of predator diet. These results suggest that snapper recruits do not recognize nonnative lionfish as a threat. However, these effects depended on the density of conspecific recruits, with evidence that competition may limit the response of snapper to even native predators at the highest recruit densities. In contrast, there was no effect of predator presence or conspecific density on the recruitment of bicolor damselfish (Stegastes partitus). These context-dependent responses of coral-reef fishes to predators during settlement may influence individual survival and shape subsequent population and community dynamics. © 2017 by the Ecological Society of America.

  20. Spacelab baseline ECS trace contaminant removal test program

    NASA Technical Reports Server (NTRS)

    Ray, C. D.; Stanley, J. B.

    1977-01-01

    An estimate of the Spacelab Baseline Environmental Control System's contaminated removal capability was required to allow determination of the need for a supplemental trace contaminant removal system. Results from a test program to determine this removal capability are presented.

  1. ARSENIC REMOVAL COST ESTIMATING PROGRAM

    EPA Science Inventory

    The Arsenic Removal Cost Estimating program (Excel) calculates the costs for using adsorptive media and anion exchange treatment systems to remove arsenic from drinking water. The program is an easy-to-use tool to estimate capital and operating costs for three types of arsenic re...

  2. Temporal variation in black-caiman-nest predation in varzea of central Brazilian amazonia

    PubMed Central

    2017-01-01

    On the Amazon floodplain, the main predators of black caiman (Melanosuchus niger) eggs are jaguars (Panthera onca), tegu lizards (Tupinambis teguixim), capuchin monkeys (Sapajus macrocephalus) and humans (Homo sapiens). In this study, we investigated the relationship between predator attacks on nests and incubation period, and evaluated the influence of initial predation on subsequent predation in the Mamirauá Sustainable Development Reserve. We also evaluated the influence of presence of females near the nests and manipulation of nests on the occurrence of attacks. We compared results from data obtained with camera traps and vestiges left by predators on estimates of rates of predation by different predators. Egg predation was recorded in 32% of the 658 black caiman nests monitored during two years. Our results suggest that the probability of predation on black caiman eggs is relatively constant throughout the incubation period and that predation on eggs was lower when adults, presumably females, were present. Careful opening of nests and handling of eggs did not increase the number of attacks on black caiman nests. Nest opening by a predator appeared to increase the chances of a subsequent attack because most of the attacks on nests occurred soon after a predator first opened the nest. However, attacks by another species of predator do not appear to be necessary to initiate attacks by any other species of predator. Results based on camera traps and vestiges differed, but use of vestiges was adequate for identifying the principal predators on eggs in black caiman nests and, in many circumstances, the vestiges may be better for estimating predation by humans. In this study, opening nests and handling eggs did not increase the number of attacks on black caiman nests. PMID:28854258

  3. Temporal variation in black-caiman-nest predation in varzea of central Brazilian amazonia.

    PubMed

    Torralvo, Kelly; Botero-Arias, Robinson; Magnusson, William E

    2017-01-01

    On the Amazon floodplain, the main predators of black caiman (Melanosuchus niger) eggs are jaguars (Panthera onca), tegu lizards (Tupinambis teguixim), capuchin monkeys (Sapajus macrocephalus) and humans (Homo sapiens). In this study, we investigated the relationship between predator attacks on nests and incubation period, and evaluated the influence of initial predation on subsequent predation in the Mamirauá Sustainable Development Reserve. We also evaluated the influence of presence of females near the nests and manipulation of nests on the occurrence of attacks. We compared results from data obtained with camera traps and vestiges left by predators on estimates of rates of predation by different predators. Egg predation was recorded in 32% of the 658 black caiman nests monitored during two years. Our results suggest that the probability of predation on black caiman eggs is relatively constant throughout the incubation period and that predation on eggs was lower when adults, presumably females, were present. Careful opening of nests and handling of eggs did not increase the number of attacks on black caiman nests. Nest opening by a predator appeared to increase the chances of a subsequent attack because most of the attacks on nests occurred soon after a predator first opened the nest. However, attacks by another species of predator do not appear to be necessary to initiate attacks by any other species of predator. Results based on camera traps and vestiges differed, but use of vestiges was adequate for identifying the principal predators on eggs in black caiman nests and, in many circumstances, the vestiges may be better for estimating predation by humans. In this study, opening nests and handling eggs did not increase the number of attacks on black caiman nests.

  4. Predator experience overrides learned aversion to heterospecifics in stickleback species pairs

    PubMed Central

    Kozak, Genevieve M.; Boughman, Janette W.

    2015-01-01

    Predation risk can alter female mating decisions because the costs of mate searching and selecting attractive mates increase when predators are present. In response to predators, females have been found to plastically adjust mate preference within species, but little is known about how predators alter sexual isolation and hybridization among species. We tested the effects of predator exposure on sexual isolation between benthic and limnetic threespine sticklebacks (Gasterosteus spp.). Female discrimination against heterospecific mates was measured before and after females experienced a simulated attack by a trout predator or a control exposure to a harmless object. In the absence of predators, females showed increased aversion to heterospecifics over time. We found that predator exposure made females less discriminating and precluded this learned aversion to heterospecifics. Benthic and limnetic males differ in coloration, and predator exposure also affected sexual isolation by weakening female preferences for colourful males. Predator effects on sexual selection were also tested but predators had few effects on female choosiness among conspecific mates. Our results suggest that predation risk may disrupt the cognitive processes associated with mate choice and lead to fluctuations in the strength of sexual isolation between species. PMID:25808887

  5. Predator confusion is sufficient to evolve swarming behaviour.

    PubMed

    Olson, Randal S; Hintze, Arend; Dyer, Fred C; Knoester, David B; Adami, Christoph

    2013-08-06

    Swarming behaviours in animals have been extensively studied owing to their implications for the evolution of cooperation, social cognition and predator-prey dynamics. An important goal of these studies is discerning which evolutionary pressures favour the formation of swarms. One hypothesis is that swarms arise because the presence of multiple moving prey in swarms causes confusion for attacking predators, but it remains unclear how important this selective force is. Using an evolutionary model of a predator-prey system, we show that predator confusion provides a sufficient selection pressure to evolve swarming behaviour in prey. Furthermore, we demonstrate that the evolutionary effect of predator confusion on prey could in turn exert pressure on the structure of the predator's visual field, favouring the frontally oriented, high-resolution visual systems commonly observed in predators that feed on swarming animals. Finally, we provide evidence that when prey evolve swarming in response to predator confusion, there is a change in the shape of the functional response curve describing the predator's consumption rate as prey density increases. Thus, we show that a relatively simple perceptual constraint--predator confusion--could have pervasive evolutionary effects on prey behaviour, predator sensory mechanisms and the ecological interactions between predators and prey.

  6. Technologies for reducing sludge production in wastewater treatment plants: State of the art.

    PubMed

    Wang, Qilin; Wei, Wei; Gong, Yanyan; Yu, Qiming; Li, Qin; Sun, Jing; Yuan, Zhiguo

    2017-06-01

    This review presents the state-of-the-art sludge reduction technologies applied in both wastewater and sludge treatment lines. They include chemical, mechanical, thermal, electrical treatment, addition of chemical un-coupler, and predation of protozoa/metazoa in wastewater treatment line, and physical, chemical and biological pretreatment in sludge treatment line. Emphasis was put on their effect on sludge reduction performance, with 10% sludge reduction to zero sludge production in wastewater treatment line and enhanced TS (total solids) or volatile solids removal of 5-40% in sludge treatment line. Free nitrous acid (FNA) technology seems good in wastewater treatment line but it is only under the lab-scale trial. In sludge treatment line, thermal, ultrasonic (<4400kJ/kg TS), FNA pretreatment and temperature-phased anaerobic digestion (TPAD) are promising if pathogen inactivation is not a concern. However, thermal pretreatment and TPAD are superior to other pretreatment technologies when pathogen inactivation is required. The new wastewater treatment processes including SANI®, high-rate activated sludge coupled autotrophic nitrogen removal and anaerobic membrane bioreactor coupled autotrophic nitrogen removal also have a great potential to reduce sludge production. In the future, an effort should be put on the effect of sludge reduction technologies on the removal of organic micropollutants and heavy metals. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. You can't run but you can hide: refuge use in frog tadpoles elicits density-dependent predation by dragonfly larvae.

    PubMed

    Hossie, Thomas John; Murray, Dennis L

    2010-06-01

    The potential role of prey refuges in stabilizing predator-prey interactions is of longstanding interest to ecologists, but mechanisms underlying a sigmoidal predator functional response remain to be fully elucidated. Authors have disagreed on whether the stabilizing effect of prey refuges is driven by prey- versus predator-centric mechanisms, but to date few studies have married predator and prey behavioural observations to distinguish between these possibilities. We used a dragonfly nymph-tadpole system to study the effect of a structural refuge (leaf litter) on the predator's functional response, and paired this with behavioural observations of both predator and prey. Our study confirmed that hyperbolic (type II) functional responses were characteristic of foraging predators when structural cover was low or absent, whereas the functional response was sigmoidal (type III) when prey were provided with sufficient refuge. Prey activity and refuge use were density independent across cover treatments, thereby eliminating a prey-centric mechanism as being the genesis for density-dependent predation. In contrast, the predator's pursuit length, capture success, and handling time were altered by the amount of structure implying that observed shifts in density-dependent predation likely were related to predator hunting efficiency. Our study advances current theory by revealing that despite fixed-proportion refuge use by prey, presence of a prey refuge can induce density-dependent predation through its effect on predator hunting strategy. Ultimately, responses of predator foraging decisions in response to changes in prey availability and search efficiency may be more important in producing density-dependent predation than the form of prey refuge use.

  8. The behavioral response of prey fish to predators: the role of predator size.

    PubMed

    Tang, Zhong-Hua; Huang, Qing; Wu, Hui; Kuang, Lu; Fu, Shi-Jian

    2017-01-01

    Predation is one of the key factors governing patterns in natural systems, and adjustments of prey behaviors in response to a predator stimulus can have important ecological implications for wild fish. To investigate the effects of predators on the behavior of prey fish and to test whether the possible effects varied with predator size, black carp (Mylopharyngodon piceus) and snakehead (Channa argus) (a size-matched predator treatment with a similar body size to prey fish and a larger predator treatment with approximately 2.7 times of the body mass of prey fish) were selected to function as prey and predator, respectively. Their spontaneous activities were videorecorded in a central circular arena surrounded by a ring holding the stimulus fish. The distance between prey and predator fish was approximately 200% of the distance between two prey fish, which suggested that black carp can distinguish their conspecifics from heterospecifics and probably recognize the snakehead as a potential predator. The prey fish spent substantially less time moving and exhibited an overall shorter total distance of movement after the size-matched or large predator was introduced, which possibly occurred due to increased vigilance or efforts to reduce the possibility of detection by potential predators. However, there was no significant difference in either distance or spontaneous activities between two predator treatments. These findings suggested that (1) an anti-predator strategy in black carp might involve maintaining a safe distance, decreasing activity and possibly increased vigilance and that (2) the behaviors of prey response to predators were not influenced by their relative size difference.

  9. Phenotypic plasticity in anti-intraguild predator strategies: mite larvae adjust their behaviours according to vulnerability and predation risk.

    PubMed

    Walzer, Andreas; Schausberger, Peter

    2013-05-01

    Interspecific threat-sensitivity allows prey to maximize the net benefit of antipredator strategies by adjusting the type and intensity of their response to the level of predation risk. This is well documented for classical prey-predator interactions but less so for intraguild predation (IGP). We examined threat-sensitivity in antipredator behaviour of larvae in a predatory mite guild sharing spider mites as prey. The guild consisted of the highly vulnerable intraguild (IG) prey and weak IG predator Phytoseiulus persimilis, the moderately vulnerable IG prey and moderate IG predator Neoseiulus californicus and the little vulnerable IG prey and strong IG predator Amblyseius andersoni. We videotaped the behaviour of the IG prey larvae of the three species in presence of either a low- or a high-risk IG predator female or predator absence and analysed time, distance, path shape and interaction parameters of predators and prey. The least vulnerable IG prey A. andersoni was insensitive to differing IGP risks but the moderately vulnerable IG prey N. californicus and the highly vulnerable IG prey P. persimilis responded in a threat-sensitive manner. Predator presence triggered threat-sensitive behavioural changes in one out of ten measured traits in N. californicus larvae but in four traits in P. persimilis larvae. Low-risk IG predator presence induced a typical escape response in P. persimilis larvae, whereas they reduced their activity in the high-risk IG predator presence. We argue that interspecific threat-sensitivity may promote co-existence of IG predators and IG prey and should be common in predator guilds with long co-evolutionary history.

  10. An estimated 400-800 million tons of prey are annually killed by the global spider community.

    PubMed

    Nyffeler, Martin; Birkhofer, Klaus

    2017-04-01

    Spiders have been suspected to be one of the most important groups of natural enemies of insects worldwide. To document the impact of the global spider community as insect predators, we present estimates of the biomass of annually killed insect prey. Our estimates assessed with two different methods suggest that the annual prey kill of the global spider community is in the range of 400-800 million metric tons (fresh weight), with insects and collembolans composing >90% of the captured prey. This equals approximately 1‰ of the global terrestrial net primary production. Spiders associated with forests and grasslands account for >95% of the annual prey kill of the global spider community, whereas spiders in other habitats are rather insignificant contributors over a full year. The spider communities associated with annual crops contribute less than 2% to the global annual prey kill. This, however, can be partly explained by the fact that annual crop fields are "disturbed habitats" with a low buildup of spider biomass and that agrobiont spiders often only kill prey over short time periods in a year. Our estimates are supported by the published results of exclusion experiments, showing that the number of herbivorous/detritivorous insects and collembolans increased significantly after spider removal from experimental plots. The presented estimates of the global annual prey kill and the relative contribution of spider predation in different biomes improve the general understanding of spider ecology and provide a first assessment of the global impact of this very important predator group.

  11. An estimated 400-800 million tons of prey are annually killed by the global spider community

    NASA Astrophysics Data System (ADS)

    Nyffeler, Martin; Birkhofer, Klaus

    2017-04-01

    Spiders have been suspected to be one of the most important groups of natural enemies of insects worldwide. To document the impact of the global spider community as insect predators, we present estimates of the biomass of annually killed insect prey. Our estimates assessed with two different methods suggest that the annual prey kill of the global spider community is in the range of 400-800 million metric tons (fresh weight), with insects and collembolans composing >90% of the captured prey. This equals approximately 1‰ of the global terrestrial net primary production. Spiders associated with forests and grasslands account for >95% of the annual prey kill of the global spider community, whereas spiders in other habitats are rather insignificant contributors over a full year. The spider communities associated with annual crops contribute less than 2% to the global annual prey kill. This, however, can be partly explained by the fact that annual crop fields are "disturbed habitats" with a low buildup of spider biomass and that agrobiont spiders often only kill prey over short time periods in a year. Our estimates are supported by the published results of exclusion experiments, showing that the number of herbivorous/detritivorous insects and collembolans increased significantly after spider removal from experimental plots. The presented estimates of the global annual prey kill and the relative contribution of spider predation in different biomes improve the general understanding of spider ecology and provide a first assessment of the global impact of this very important predator group.

  12. Too hard to swallow: a secret secondary defence of an aposematic insect.

    PubMed

    Wang, Lu-Yi; Huang, Wen-San; Tang, Hsin-Chieh; Huang, Lung-Chun; Lin, Chung-Ping

    2018-01-25

    Anti-predator strategies are significant components of adaptation in prey species. Aposematic prey are expected to possess effective defences that have evolved simultaneously with their warning colours. This study tested the hypothesis of the defensive function and ecological significance of the hard body in aposematic Pachyrhynchus weevils pioneered by Alfred Russel Wallace nearly 150 years ago. We used predation trials with Japalura tree lizards to assess the survivorship of 'hard' (mature) versus 'soft' (teneral) and 'clawed' (intact) versus 'clawless' (surgically removed) weevils. The ecological significance of the weevil's hard body was evaluated by assessing the hardness of the weevils, the local prey insects, and the bite forces of the lizard populations. The existence of toxins or deterrents in the weevil was examined by gas chromatography-mass spectrometry (GC-MS). All 'hard' weevils were instantly spat out after being bitten once and survived attacks by the lizards. In contrast, the 'soft' weevils were chewed and subsequently swallowed. The results were the same regardless of the presence or absence of the weevil's tarsal claws. The hardness of 'hard' Pachyrhynchus weevils was significantly higher than the average hardness of other prey insects in the same habitat and the mean bite forces of the local lizards. The four candidate compounds of the weevil identified by GC-MS had no known toxic or repellent functions against vertebrates. These results reveal that the hardness of aposematic prey functions as an effective secondary defence, and they provide a framework for understanding the spatio-temporal interactions between vertebrate predators and aposematic insect prey. © 2018. Published by The Company of Biologists Ltd.

  13. A metagenomics-based approach to the top-down effect on the detritivore food web: a salamanders influence on fungal communities within a deciduous forest.

    PubMed

    Walker, Donald M; Lawrence, Brandy R; Esterline, Dakota; Graham, Sean P; Edelbrock, Michael A; Wooten, Jessica A

    2014-11-01

    The flow of energy within an ecosystem can be considered either top-down, where predators influence consumers, or bottom-up, where producers influence consumers. Plethodon cinereus (Red-backed Salamander) is a terrestrial keystone predator who feeds on invertebrates within the ecosystem. We investigated the impact of the removal of P. cinereus on the detritivore food web in an upland deciduous forest in northwest Ohio, U.S.A. A total of eight aluminum enclosures, each containing a single P. cinereus under a small log, were constructed in the deciduous forest. On Day 1 of the experiment, four salamanders were evicted from four of the eight enclosures. Organic matter and soil were collected from the center of each enclosure at Day 1 and Day 21. From each sample, DNA was extracted, fungal-specific amplification performed, and 454 pyrosequencing was used to sequence the nuclear ribosomal internal transcribed spacer (ITS2) region and partial ribosomal large subunit (LSU). Changes in overall fungal community composition or species diversity were not statistically significant between treatments. Statistically significant shifts in the most abundant taxonomic groups of fungi were documented in presence but not absence enclosures. We concluded that P. cinereus does not affect the overall composition or diversity of fungal communities, but does have an impact on specific groups of fungi. This study used a metagenomics-based approach to investigate a missing link among a keystone predator, P. cinereus, invertebrates, and fungal communities, all of which are critical in the detritivore food web.

  14. Effects of reconstruction of a pre-European vertebrate assemblage on ground-dwelling arachnids in arid Australia.

    PubMed

    Silvey, Colin J; Hayward, Matthew W; Gibb, Heloise

    2015-06-01

    Species loss can result in changes in assemblage structure and ecosystem function through ecological cascades. Australian vertebrate assemblages changed significantly following European colonisation, which resulted in the establishment of invasive vertebrates and the loss of native marsupials, many of which consume invertebrates. Conservation focusses on the removal of invasive carnivores and the reintroduction of regionally extinct species to fenced sites, resulting in what could be considered a reconstruction of pre-European vertebrate assemblages. In semi-arid Australian spinifex mallee ecosystems, we asked: (1) what is the effect of reconstructed pre-European vertebrate assemblages on native arachnid assemblages? and (2) what direct or indirect mechanisms (predation, disturbance and/or competition) could plausibly be responsible for these effects? We compared sites with reconstructed vertebrate assemblages with paired control sites. Arachnids were sampled using pitfall trapping and direct searching. Hypotheses regarding mechanisms were tested using scat analysis (predation) and by comparing burrow depth (disturbance) and scorpion mass (competition) between control and reconstructed sites. The dominant dune scorpion, Urodacus yaschenkoi, was less abundant and a wolf spider (Lycosa gibsoni species group) more abundant in reconstructed sites. Differences in spider assemblage composition were marginally non-significant. Scat analysis confirmed native vertebrate predation on scorpions and we found no evidence that competition or disturbance affected scorpions. We, thus, suggest that changes in spider assemblages may have resulted from ecological cascades via decreases in dune scorpions. The loss of omnivorous mammals and other changes associated with the invasion of carnivores may, therefore, have had broad-reaching consequences for native arachnid assemblages in Australian ecosystems.

  15. Tree-to-tree variation in seed size and its consequences for seed dispersal versus predation by rodents.

    PubMed

    Wang, Bo; Ives, Anthony R

    2017-03-01

    Individual variation in seed size and seed production is high in many plant species. How does this variation affect seed-dispersing animals and, in turn, the fitness of individual plants? In this study, we first surveyed intraspecific variation in seed mass and production in a population of a Chinese white pine, Pinus armandii. For 134 target trees investigated in 2012, there was very high variation in seed size, with mean seed mass varying among trees almost tenfold, from 0.038 to 0.361 g. Furthermore, 30 of the 134 trees produced seeds 2 years later, and for these individuals there was a correlation in seed mass of 0.59 between years, implying consistent differences among individuals. For a subset of 67 trees, we monitored the foraging preferences of scatter-hoarding rodents on a total of 15,301 seeds: 8380 were ignored, 3184 were eaten in situ, 2651 were eaten after being cached, and 395 were successfully dispersed (cached and left intact). At the scale of individual seeds, seed mass affected almost every decision that rodents made to eat, remove, and cache individual seeds. At the level of individual trees, larger seeds had increased probabilities of both predation and successful dispersal: the effects of mean seed size on costs (predation) and benefits (caching) balanced out. Thus, despite seed size affecting rodent decisions, variation among trees in dispersal success associated with mean seed size was small once seeds were harvested. This might explain, at least in part, the maintenance of high variation in mean seed mass among tree individuals.

  16. Duckling survival of mallards in Southland, New Zealand

    USGS Publications Warehouse

    Garrick, Erin; Amundson, Courtney L.; Seddon, Phillip J.

    2017-01-01

    The southern portion of New Zealand's South Island is a productive area for mallards (Anas platyrhynchos) despite a notable lack of permanent or semi-permanent wetlands. Most broods are reared in pastures that may or may not be flooded with ephemeral water. In recent years, there has been an increased conversion from continuous to sporadic grazing that has resulted in a functional change in the emergent and upland vegetation available for broods. In 2014, we investigated mallard duckling survival on different pastures relative to a suite of characteristics pertaining to the adult female, clutch, brood, weather, and habitat. We monitored 438 ducklings from 50 radio-marked females to 30 days post-hatch. Duckling survival was unaffected by pasture type but increased with duckling age, the presence of ephemeral water, and with greater distance from the nearest anthropogenic structure. Survival was lower for broods of second year (SY) females than for broods of after-second year (ASY) females, in areas with more dense cover, and when ducklings moved, on average, greater daily distances. Cumulative 30-day duckling survival ranged from 0.11 for ducklings of SY females without ephemeral water present to 0.46 for ducklings of ASY females with ephemeral water present. Therefore, increasing available seasonal water sources may increase duckling survival. Further, narrow, linear patches of dense cover present in our study could support a greater abundance of predators or increase their foraging efficiency. As such, managers could consider increasing patch sizes of dense cover to reduce predator efficiency, and employing predator removal in these areas to improve duckling survival.

  17. Black-footed ferrets and recreational shooting influence the attributes of black-tailed prairie dog burrows

    USGS Publications Warehouse

    Biggins, Dean E.; Ramakrishnan, Shantini; Goldberg, Amanda R.; Eads, David A.

    2012-01-01

    Black-tailed prairie dogs (Cynomys ludovicianus) plug burrows occupied by black-footed ferrets (Mustela nigripes), and they also plug burrows to entomb dead prairie dogs. We further evaluated these phenomena by sampling connectivity and plugging of burrow openings on prairie dog colonies occupied by ferrets, colonies where recreational shooting was allowed, and colonies with neither shooting nor ferrets. We counted burrow openings on line surveys and within plots, classified surface plugging, and used an air blower to examine subsurface connectivity. Colonies with ferrets had lower densities of openings, fewer connected openings (suggesting increased subsurface plugging), and more surface plugs compared to colonies with no known ferrets. Colonies with recreational shooting had the lowest densities of burrow openings, and line-survey data suggested colonies with shooting had intermediate rates of surface plugging. The extent of surface and subsurface plugging could have consequences for the prairie dog community by changing air circulation and escape routes of burrow systems and by altering energetic relationships. Burrow plugging might reduce prairie dogs' risk of predation by ferrets while increasing risk of predation by American badgers (Taxidea taxus); however, the complexity of the trade-off is increased if plugging increases the risk of predation on ferrets by badgers. Prairie dogs expend more energy plugging and digging when ferrets or shooting are present, and ferrets increase their energy expenditures when they dig to remove those plugs. Microclimatic differences in plugged burrow systems may play a role in flea ecology and persistence of the flea-borne bacterium that causes plague (Yersinia pestis).

  18. Historical ecology and the conservation of large, hermaphroditic fishes in Pacific Coast kelp forest ecosystems

    PubMed Central

    Braje, Todd J.; Rick, Torben C.; Szpak, Paul; Newsome, Seth D.; McCain, Joseph M.; Elliott Smith, Emma A.; Glassow, Michael; Hamilton, Scott L.

    2017-01-01

    The intensive commercial exploitation of California sheephead (Semicossyphus pulcher) has become a complex, multimillion-dollar industry. The fishery is of concern because of high harvest levels and potential indirect impacts of sheephead removals on the structure and function of kelp forest ecosystems. California sheephead are protogynous hermaphrodites that, as predators of sea urchins and other invertebrates, are critical components of kelp forest ecosystems in the northeast Pacific. Overfishing can trigger trophic cascades and widespread ecological dysfunction when other urchin predators are also lost from the system. Little is known about the ecology and abundance of sheephead before commercial exploitation. Lack of a historical perspective creates a gap for evaluating fisheries management measures and marine reserves that seek to rebuild sheephead populations to historical baseline conditions. We use population abundance and size structure data from the zooarchaeological record, in concert with isotopic data, to evaluate the long-term health and viability of sheephead fisheries in southern California. Our results indicate that the importance of sheephead to the diet of native Chumash people varied spatially across the Channel Islands, reflecting modern biogeographic patterns. Comparing ancient (~10,000 calibrated years before the present to 1825 CE) and modern samples, we observed variability and significant declines in the relative abundance of sheephead, reductions in size frequency distributions, and shifts in the dietary niche between ancient and modern collections. These results highlight how size-selective fishing can alter the ecological role of key predators and how zooarchaeological data can inform fisheries management by establishing historical baselines that aid future conservation. PMID:28164155

  19. Determining nest predators of the Least Bell's Vireo through point counts, tracking stations, and video photography

    USGS Publications Warehouse

    Peterson, Bonnie L.; Kus, Barbara E.; Deutschman, Douglas H.

    2004-01-01

    We compared three methods to determine nest predators of the Least Bell's Vireo (Vireo bellii pusillus) in San Diego County, California, during spring and summer 2000. Point counts and tracking stations were used to identify potential predators and video photography to document actual nest predators. Parental behavior at depredated nests was compared to that at successful nests to determine whether activity (frequency of trips to and from the nest) and singing vs. non-singing on the nest affected nest predation. Yellow-breasted Chats (Icteria virens) were the most abundant potential avian predator, followed by Western Scrub-Jays (Aphelocoma californica). Coyotes (Canis latrans) were abundant, with smaller mammalian predators occurring in low abundance. Cameras documented a 48% predation rate with scrub-jays as the major nest predators (67%), but Virginia opossums (Didelphis virginiana, 17%), gopher snakes (Pituophis melanoleucus, 8%) and Argentine ants (Linepithema humile, 8%) were also confirmed predators. Identification of potential predators from tracking stations and point counts demonstrated only moderate correspondence with actual nest predators. Parental behavior at the nest prior to depredation was not related to nest outcome.

  20. Identifying nest predators of American avocets (Recurvirostra americana) and black-necked stilts (Himantopus mexicanus) in San Francisco Bay, California

    USGS Publications Warehouse

    Herring, G.; Ackerman, Joshua T.; Takekawa, John Y.; Eagles-Smith, Collin A.; Eadie, J.M.

    2011-01-01

    We evaluated predation on nests and methods to detect predators using a combination of infrared cameras and plasticine eggs at nests of American avocets (Recurvirostra americana) and black-necked stilts (Himantopus mexicanus) in Don Edwards San Francisco Bay National Wildlife Refuge, San Mateo and Santa Clara counties, California. Each technique indicated that predation was prevalent; 59% of monitored nests were depredated. Most identifiable predation (n = 49) was caused by mammals (71%) and rates of predation were similar on avocets and stilts. Raccoons (Procyon lotor) and striped skunks (Mephitis mephitis) each accounted for 16% of predations, whereas gray foxes (Urocyon cinereoargenteus) and avian predators each accounted for 14%. Mammalian predation was mainly nocturnal (mean time, 0051 h ?? 5 h 36 min), whereas most avian predation was in late afternoon (mean time, 1800 h ?? 1 h 26 min). Nests with cameras and plasticine eggs were 1.6 times more likely to be predated than nests where only cameras were used in monitoring. Cameras were associated with lower abandonment of nests and provided definitive identification of predators.

  1. Identifying nest predators of American avocets (Recurvirostra americana) and black-necked stilts (Himantopus mexicanus) in San Francisco Bay, California

    USGS Publications Warehouse

    Herring, Garth; Ackerman, Joshua T.; Takekawa, John Y.; Eagles-Smith, Collin A.; Eadie, John M.

    2011-01-01

    We evaluated predation on nests and methods to detect predators using a combination of infrared cameras and plasticine eggs at nests of American avocets (Recurvirostra americana) and black-necked stilts (Himantopus mexicanus) in Don Edwards San Francisco Bay National Wildlife Refuge, San Mateo and Santa Clara counties, California. Each technique indicated that predation was prevalent; 59% of monitored nests were depredated. Most identifiable predation (n = 49) was caused by mammals (71%) and rates of predation were similar on avocets and stilts. Raccoons (Procyon lotor) and striped skunks (Mephitis mephitis) each accounted for 16% of predations, whereas gray foxes (Urocyon cinereoargenteus) and avian predators each accounted for 14%. Mammalian predation was mainly nocturnal (mean time, 0051 h +/- 5 h 36 min), whereas most avian predation was in late afternoon (mean time, 1800 h +/- 1 h 26 min). Nests with cameras and plasticine eggs were 1.6 times more likely to be predated than nests where only cameras were used in monitoring. Cameras were associated with lower abandonment of nests and provided definitive identification of predators.

  2. Global patterns in post-dispersal seed removal by invertebrates and vertebrates.

    PubMed

    Peco, Begoña; Laffan, Shawn W; Moles, Angela T

    2014-01-01

    It is commonly accepted that species interactions such as granivory are more intense in the tropics. However, this has rarely been tested. A global dataset of post-dispersal seed removal by invertebrates and vertebrates for 79 native plant species from semi-natural and natural terrestrial habitats ranging from 55° N to 45° S, was compiled from the global literature to test the hypothesis that post-dispersal seed removal by invertebrates and vertebrates is more intense at lower latitudes. We also quantified the relationship between post-dispersal seed removal by vertebrates and by invertebrates to global climatic features including temperature, actual evapotranspiration (AET) and rainfall seasonality. Linear mixed effect models were applied to describe the relationships between seed removal and latitude, hemisphere and climatic variables controlling for the effect of seed mass. Post-dispersal seed removal by invertebrates was negatively related to latitude. In contrast, post-dispersal seed removal by vertebrates was positively but weakly related to latitude. Mean annual temperature and actual evapotranspiration were positively related to post-dispersal seed removal by invertebrates, but not to post-dispersal seed removal by vertebrates, which was only marginally negatively related to rainfall seasonality. The inclusion of seed mass improved the fit of all models, but the term for seed mass was not significant in any model. Although a good climatic model for predicting post-dispersal seed predation by vertebrates at the global level was not found, our results suggest different and opposite latitudinal patterns of post-dispersal seed removal by invertebrates vs vertebrates. This is the first time that a negative relationship between post-dispersal seed removal by invertebrates and latitude, and a positive relationship with temperature and AET have been documented at a global-scale. These results have important implications for understanding global patterns in plant-animal interactions, and the factors that shape plant reproductive ecology, and also for predicting how this plant-animal interaction might respond to climate change.

  3. Global Patterns in Post-Dispersal Seed Removal by Invertebrates and Vertebrates

    PubMed Central

    Peco, Begoña; Laffan, Shawn W.; Moles, Angela T.

    2014-01-01

    It is commonly accepted that species interactions such as granivory are more intense in the tropics. However, this has rarely been tested. A global dataset of post-dispersal seed removal by invertebrates and vertebrates for 79 native plant species from semi-natural and natural terrestrial habitats ranging from 55° N to 45° S, was compiled from the global literature to test the hypothesis that post-dispersal seed removal by invertebrates and vertebrates is more intense at lower latitudes. We also quantified the relationship between post-dispersal seed removal by vertebrates and by invertebrates to global climatic features including temperature, actual evapotranspiration (AET) and rainfall seasonality. Linear mixed effect models were applied to describe the relationships between seed removal and latitude, hemisphere and climatic variables controlling for the effect of seed mass. Post-dispersal seed removal by invertebrates was negatively related to latitude. In contrast, post-dispersal seed removal by vertebrates was positively but weakly related to latitude. Mean annual temperature and actual evapotranspiration were positively related to post-dispersal seed removal by invertebrates, but not to post-dispersal seed removal by vertebrates, which was only marginally negatively related to rainfall seasonality. The inclusion of seed mass improved the fit of all models, but the term for seed mass was not significant in any model. Although a good climatic model for predicting post-dispersal seed predation by vertebrates at the global level was not found, our results suggest different and opposite latitudinal patterns of post-dispersal seed removal by invertebrates vs vertebrates. This is the first time that a negative relationship between post-dispersal seed removal by invertebrates and latitude, and a positive relationship with temperature and AET have been documented at a global-scale. These results have important implications for understanding global patterns in plant-animal interactions, and the factors that shape plant reproductive ecology, and also for predicting how this plant-animal interaction might respond to climate change. PMID:24618879

  4. Functional response and population dynamics for fighting predator, based on activity distribution.

    PubMed

    Garay, József; Varga, Zoltán; Gámez, Manuel; Cabello, Tomás

    2015-03-07

    The classical Holling type II functional response, describing the per capita predation as a function of prey density, was modified by Beddington and de Angelis to include interference of predators that increases with predator density and decreases the number of killed prey. In the present paper we further generalize the Beddington-de Angelis functional response, considering that all predator activities (searching and handling prey, fight and recovery) have time duration, the probabilities of predator activities depend on the encounter probabilities, and hence on the prey and predator abundance, too. Under these conditions, the aim of the study is to introduce a functional response for fighting the predator and to analyse the corresponding dynamics, when predator-predator-prey encounters also occur. From this general approach, the Holling type functional responses can also be obtained as particular cases. In terms of the activity distribution, we give biologically interpretable sufficient conditions for stable coexistence. We consider two-individual (predator-prey) and three-individual (predator-predator-prey) encounters. In the three-individual encounter model there is a relatively higher fighting rate and a lower killing rate. Using numerical simulation, we surprisingly found that when the intrinsic prey growth rate and the conversion rate are small enough, the equilibrium predator abundance is higher in the three-individual encounter case. The above means that, when the equilibrium abundance of the predator is small, coexistence appears first in the three-individual encounter model. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Breeding phenology of birds: mechanisms underlying seasonal declines in the risk of nest predation.

    PubMed

    Borgmann, Kathi L; Conway, Courtney J; Morrison, Michael L

    2013-01-01

    Seasonal declines in avian clutch size are well documented, but seasonal variation in other reproductive parameters has received less attention. For example, the probability of complete brood mortality typically explains much of the variation in reproductive success and often varies seasonally, but we know little about the underlying cause of that variation. This oversight is surprising given that nest predation influences many other life-history traits and varies throughout the breeding season in many songbirds. To determine the underlying causes of observed seasonal decreases in risk of nest predation, we modeled nest predation of Dusky Flycatchers (Empidonax oberholseri) in northern California as a function of foliage phenology, energetic demand, developmental stage, conspecific nest density, food availability for nest predators, and nest predator abundance. Seasonal variation in the risk of nest predation was not associated with seasonal changes in energetic demand, conspecific nest density, or predator abundance. Instead, seasonal variation in the risk of nest predation was associated with foliage density (early, but not late, in the breeding season) and seasonal changes in food available to nest predators. Supplemental food provided to nest predators resulted in a numerical response by nest predators, increasing the risk of nest predation at nests that were near supplemental feeders. Our results suggest that seasonal changes in foliage density and factors associated with changes in food availability for nest predators are important drivers of temporal patterns in risk of avian nest predation.

  6. Breeding Phenology of Birds: Mechanisms Underlying Seasonal Declines in the Risk of Nest Predation

    PubMed Central

    Borgmann, Kathi L.; Conway, Courtney J.; Morrison, Michael L.

    2013-01-01

    Seasonal declines in avian clutch size are well documented, but seasonal variation in other reproductive parameters has received less attention. For example, the probability of complete brood mortality typically explains much of the variation in reproductive success and often varies seasonally, but we know little about the underlying cause of that variation. This oversight is surprising given that nest predation influences many other life-history traits and varies throughout the breeding season in many songbirds. To determine the underlying causes of observed seasonal decreases in risk of nest predation, we modeled nest predation of Dusky Flycatchers (Empidonax oberholseri) in northern California as a function of foliage phenology, energetic demand, developmental stage, conspecific nest density, food availability for nest predators, and nest predator abundance. Seasonal variation in the risk of nest predation was not associated with seasonal changes in energetic demand, conspecific nest density, or predator abundance. Instead, seasonal variation in the risk of nest predation was associated with foliage density (early, but not late, in the breeding season) and seasonal changes in food available to nest predators. Supplemental food provided to nest predators resulted in a numerical response by nest predators, increasing the risk of nest predation at nests that were near supplemental feeders. Our results suggest that seasonal changes in foliage density and factors associated with changes in food availability for nest predators are important drivers of temporal patterns in risk of avian nest predation. PMID:23776566

  7. The landscape of fear as an emergent property of heterogeneity: Contrasting patterns of predation risk in grassland ecosystems.

    PubMed

    Atuo, Fidelis Akunke; O'Connell, Timothy John

    2017-07-01

    The likelihood of encountering a predator influences prey behavior and spatial distribution such that non-consumptive effects can outweigh the influence of direct predation. Prey species are thought to filter information on perceived predator encounter rates in physical landscapes into a landscape of fear defined by spatially explicit heterogeneity in predation risk. The presence of multiple predators using different hunting strategies further complicates navigation through a landscape of fear and potentially exposes prey to greater risk of predation. The juxtaposition of land cover types likely influences overlap in occurrence of different predators, suggesting that attributes of a landscape of fear result from complexity in the physical landscape. Woody encroachment in grasslands furnishes an example of increasing complexity with the potential to influence predator distributions. We examined the role of vegetation structure on the distribution of two avian predators, Red-tailed Hawk ( Buteo jamaicensis ) and Northern Harrier ( Circus cyaneus ), and the vulnerability of a frequent prey species of those predators, Northern Bobwhite ( Colinus virginianus ). We mapped occurrences of the raptors and kill locations of Northern Bobwhite to examine spatial vulnerability patterns in relation to landscape complexity. We use an offset model to examine spatially explicit habitat use patterns of these predators in the Southern Great Plains of the United States, and monitored vulnerability patterns of their prey species based on kill locations collected during radio telemetry monitoring. Both predator density and predation-specific mortality of Northern Bobwhite increased with vegetation complexity generated by fine-scale interspersion of grassland and woodland. Predation pressure was lower in more homogeneous landscapes where overlap of the two predators was less frequent. Predator overlap created areas of high risk for Northern Bobwhite amounting to 32% of the land area where landscape complexity was high and 7% where complexity was lower. Our study emphasizes the need to evaluate the role of landscape structure on predation dynamics and reveals another threat from woody encroachment in grasslands.

  8. Effects of parents and Brown-headed Cowbirds (Molothrus ater) on nest predation risk for a songbird

    PubMed Central

    Latif, Quresh S; Heath, Sacha K; Rotenberry, John T

    2012-01-01

    Nest predation limits avian fitness, so ornithologists study nest predation, but they often only document patterns of predation rates without substantively investigating underlying mechanisms. Parental behavior and predator ecology are two fundamental drivers of predation rates and patterns, but the role of parents is less certain, particularly for songbirds. Previous work reproduced microhabitat-predation patterns experienced by Yellow Warblers (Setophaga petechia) in the Mono Lake basin at experimental nests without parents, suggesting that these patterns were driven by predator ecology rather than predator interactions with parents. In this study, we further explored effects of post-initiation parental behavior (nest defense and attendance) on predation risk by comparing natural versus experimental patterns related to territory density, seasonal timing of nest initiation, and nest age. Rates of parasitism by Brown-headed Cowbirds (Molothrus ater) were high in this system (49% nests parasitized), so we also examined parasitism-predation relationships. Natural nest predation rates (NPR) correlated negatively with breeding territory density and nonlinearly (U-shaped relationship) with nest-initiation timing, but experimental nests recorded no such patterns. After adjusting natural-nest data to control for these differences from experimental nests other than the presence of parents (e.g., defining nest failure similarly and excluding nestling-period data), we obtained similar results. Thus, parents were necessary to produce observed patterns. Lower natural NPR compared with experimental NPR suggested that parents reduced predation rates via nest defense, so this parental behavior or its consequences were likely correlated with density or seasonal timing. In contrast, daily predation rates decreased with nest age for both nest types, indicating this pattern did not involve parents. Parasitized nests suffered higher rates of partial predation but lower rates of complete predation, suggesting direct predation by cowbirds. Explicit behavioral research on parents, predators (including cowbirds), and their interactions would further illuminate mechanisms underlying the density, seasonal, and nest age patterns we observed. PMID:23301174

  9. Cascading top-down effects of changing oceanic predator abundances.

    PubMed

    Baum, Julia K; Worm, Boris

    2009-07-01

    1. Top-down control can be an important determinant of ecosystem structure and function, but in oceanic ecosystems, where cascading effects of predator depletions, recoveries, and invasions could be significant, such effects had rarely been demonstrated until recently. 2. Here we synthesize the evidence for oceanic top-down control that has emerged over the last decade, focusing on large, high trophic-level predators inhabiting continental shelves, seas, and the open ocean. 3. In these ecosystems, where controlled manipulations are largely infeasible, 'pseudo-experimental' analyses of predator-prey interactions that treat independent predator populations as 'replicates', and temporal or spatial contrasts in predator populations and climate as 'treatments', are increasingly employed to help disentangle predator effects from environmental variation and noise. 4. Substantial reductions in marine mammals, sharks, and piscivorous fishes have led to mesopredator and invertebrate predator increases. Conversely, abundant oceanic predators have suppressed prey abundances. Predation has also inhibited recovery of depleted species, sometimes through predator-prey role reversals. Trophic cascades have been initiated by oceanic predators linking to neritic food webs, but seem inconsistent in the pelagic realm with effects often attenuating at plankton. 5. Top-down control is not uniformly strong in the ocean, and appears contingent on the intensity and nature of perturbations to predator abundances. Predator diversity may dampen cascading effects except where nonselective fisheries deplete entire predator functional groups. In other cases, simultaneous exploitation of predator and prey can inhibit prey responses. Explicit consideration of anthropogenic modifications to oceanic foodwebs should help inform predictions about trophic control. 6. Synthesis and applications. Oceanic top-down control can have important socio-economic, conservation, and management implications as mesopredators and invertebrates assume dominance, and recovery of overexploited predators is impaired. Continued research aimed at integrating across trophic levels is needed to understand and forecast the ecosystem effects of changing oceanic predator abundances, the relative strength of top-down and bottom-up control, and interactions with intensifying anthropogenic stressors such as climate change.

  10. Modeling the Fear Effect in Predator-Prey Interactions with Adaptive Avoidance of Predators.

    PubMed

    Wang, Xiaoying; Zou, Xingfu

    2017-06-01

    Recent field experiments on vertebrates showed that the mere presence of a predator would cause a dramatic change of prey demography. Fear of predators increases the survival probability of prey, but leads to a cost of prey reproduction. Based on the experimental findings, we propose a predator-prey model with the cost of fear and adaptive avoidance of predators. Mathematical analyses show that the fear effect can interplay with maturation delay between juvenile prey and adult prey in determining the long-term population dynamics. A positive equilibrium may lose stability with an intermediate value of delay and regain stability if the delay is large. Numerical simulations show that both strong adaptation of adult prey and the large cost of fear have destabilizing effect while large population of predators has a stabilizing effect on the predator-prey interactions. Numerical simulations also imply that adult prey demonstrates stronger anti-predator behaviors if the population of predators is larger and shows weaker anti-predator behaviors if the cost of fear is larger.

  11. Coevolution can reverse predator-prey cycles.

    PubMed

    Cortez, Michael H; Weitz, Joshua S

    2014-05-20

    A hallmark of Lotka-Volterra models, and other ecological models of predator-prey interactions, is that in predator-prey cycles, peaks in prey abundance precede peaks in predator abundance. Such models typically assume that species life history traits are fixed over ecologically relevant time scales. However, the coevolution of predator and prey traits has been shown to alter the community dynamics of natural systems, leading to novel dynamics including antiphase and cryptic cycles. Here, using an eco-coevolutionary model, we show that predator-prey coevolution can also drive population cycles where the opposite of canonical Lotka-Volterra oscillations occurs: predator peaks precede prey peaks. These reversed cycles arise when selection favors extreme phenotypes, predator offense is costly, and prey defense is effective against low-offense predators. We present multiple datasets from phage-cholera, mink-muskrat, and gyrfalcon-rock ptarmigan systems that exhibit reversed-peak ordering. Our results suggest that such cycles are a potential signature of predator-prey coevolution and reveal unique ways in which predator-prey coevolution can shape, and possibly reverse, community dynamics.

  12. Metamorphosing reef fishes avoid predator scent when choosing a home.

    PubMed

    Vail, Alexander L; McCormick, Mark I

    2011-12-23

    Most organisms possess anti-predator adaptations to reduce their risk of being consumed, but little is known of the adaptations prey employ during vulnerable life-history transitions when predation pressures can be extreme. We demonstrate the use of a transition-specific anti-predator adaptation by coral reef fishes as they metamorphose from pelagic larvae to benthic juveniles, when over half are consumed within 48 h. Our field experiment shows that naturally settling damselfish use olfactory, and most likely innate, predator recognition to avoid settling to habitat patches manipulated to emit predator odour. Settlement to patches emitting predator odour was on average 24-43% less than to control patches. Evidence strongly suggests that this avoidance of sedentary and patchily distributed predators by nocturnal settlers will gain them a survival advantage, but also lead to non-lethal predator effects: the costs of exhibiting anti-predator adaptations. Transition-specific anti-predator adaptations, such as demonstrated here, may be widespread among organisms with complex life cycles and play an important role in prey population dynamics.

  13. Cymbopogon citratus-synthesized gold nanoparticles boost the predation efficiency of copepod Mesocyclops aspericornis against malaria and dengue mosquitoes.

    PubMed

    Murugan, Kadarkarai; Benelli, Giovanni; Panneerselvam, Chellasamy; Subramaniam, Jayapal; Jeyalalitha, Tirupathi; Dinesh, Devakumar; Nicoletti, Marcello; Hwang, Jiang-Shiou; Suresh, Udaiyan; Madhiyazhagan, Pari

    2015-06-01

    Plant-borne compounds can be employed to synthesize mosquitocidal nanoparticles that are effective at low doses. However, how they affect the activity of mosquito predators in the aquatic environment is unknown. In this study, we synthesized gold nanoparticles (AuN) using the leaf extract of Cymbopogon citratus, which acted as a reducing and capping agent. AuN were characterized by a variety of biophysical methods and sorted for size in order to confirm structural integrity. C. citratus extract and biosynthesized AuN were tested against larvae and pupae of the malaria vector Anopheles stephensi and the dengue vector Aedes aegypti. LC₅₀ of C. citratus extract ranged from 219.32 ppm to 471.36 ppm. LC₅₀ of AuN ranged from 18.80 ppm to 41.52 ppm. In laboratory, the predatory efficiency of the cyclopoid crustacean Mesocyclops aspericornis against A. stephensi larvae was 26.8% (larva I) and 17% (larva II), while against A. aegypti was 56% (I) and 35.1% (II). Predation against late-instar larvae was minimal. In AuN-contaminated environment,predation efficiency against A. stephensi was 45.6% (I) and 26.7% (II), while against A. aegypti was 77.3% (I) and 51.6% (II). Overall, low doses of AuN may help to boost the control of Anopheles and Aedes larval populations in copepod-based control programs. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Selective attention in peacocks during predator detection.

    PubMed

    Yorzinski, Jessica L; Platt, Michael L

    2014-05-01

    Predation can exert strong selective pressure on the evolution of behavioral and morphological traits in birds. Because predator avoidance is key to survival and birds rely heavily on visual perception, predation may have shaped avian visual systems as well. To address this question, we examined the role of visual attention in antipredator behavior in peacocks (Pavo cristatus). Peacocks were exposed to a model predator while their gaze was continuously recorded with a telemetric eye-tracker. We found that peacocks spent more time looking at and made more fixations on the predator compared to the same spatial location before the predator was revealed. The duration of fixations they directed toward conspecifics and environmental features decreased after the predator was revealed, indicating that the peacocks were rapidly scanning their environment with their eyes. Maximum eye movement amplitudes and amplitudes of consecutive saccades were similar before and after the predator was revealed. In cases where conspecifics detected the predator first, peacocks appeared to learn that danger was present by observing conspecifics' antipredator behavior. Peacocks were faster to detect the predator when they were fixating closer to the area where the predator would eventually appear. In addition, pupil size increased after predator exposure, consistent with increased physiological arousal. These findings demonstrate that peacocks selectively direct their attention toward predatory threats and suggest that predation has influenced the evolution of visual orienting systems.

  15. 78 FR 45584 - Self-Regulatory Organizations; Chicago Board Options Exchange, Incorporated; Notice of Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-29

    ... that persons serving as proctors for the purposes of In-Firm Delivery must be registered. Introduction... Series 7 registration (that predates the introduction of the Series 56 on the Exchange) that registered... Element. The introduction of the Proprietary Trader Continuing Education Program allows the Exchange to...

  16. Comprehensive Monitoring Program: Final Biota Annual Report for 1989. Volume 2

    DTIC Science & Technology

    1990-06-01

    samples from RMA lakes were highest in largemouth bass, a top predator . Largemouth bass and bluegill exhibited the widest geographic distribution...certification. BCtL = Siss examined with endrin concentrations below lower certified reporting limit of 0.0740 pg/g (MRI) or 0 036 pf (ESE) for aimal tipte and

  17. Inocluative release of an exotic predator for the biological control of the black turpentine beetle

    Treesearch

    John C. Moser

    1989-01-01

    An inoculative release of the Eurasian predatorial beetle, Rhizophagus grandis, was made for control of the black turpentine beetle, Dendroctonus terebrans Olivier, a prominent native pest of southern pines. If this central Louisiana release proves successful, and rearing programs are prefectied, further releases should expand the...

  18. Human-Wildlife Conflict and Environmental Education: Evaluating a Community Program to Protect the Andean Bear in Ecuador

    ERIC Educational Resources Information Center

    Espinosa, Santiago; Jacobson, Susan K.

    2012-01-01

    Environmental education is a widespread, yet relatively unexamined strategy to reduce human-wildlife conflicts. We evaluated knowledge, attitudes and behavioral intentions toward bear conservation after five years of environmental education in a Quichua community. Conflicts with livestock predation created mixed attitudes and behaviors toward bear…

  19. Predators of Knowledge Construction: Interpreting Students' Metacognition in an Amusement Park Physics Program

    ERIC Educational Resources Information Center

    Anderson, David; Nashon, Samson

    2007-01-01

    It is recognized widely that learning is a dynamic and idiosyncratic process of construction and reconstruction of concepts in response to new experiences. It is influenced by the learner's prior knowledge, motivation, and sociocultural context. This study investigated how year 11 and 12 physics students' metacognition influences the development…

  20. Evaluation of fall armyworm resistance in maize germplasm lines using visual leaf injury rating and predator survey

    USDA-ARS?s Scientific Manuscript database

    After examining ear-colonizing pest resistance, 20 maize lines from the USDA-ARS germplasm enhancement of Maize (GEM) Program were evaluated for whorl-feeding fall armyworm (FAW) (Spodoptera frugiperda) resistance using four maize inbred lines as the resistant and susceptible controls. Both FAW inju...

  1. Integrating chemical and biological control

    Treesearch

    Scott Salom; Albert Mayfield; Tom McAvoy

    2011-01-01

    Research and management efforts to establish an effective biological control program against HWA has received significant support by the U.S. Forest Service over the past 17 years. Other federal and state agencies, universities, and private entities have also contributed to this overall research and management effort. Although a number of HWA-specific predator species...

  2. Effects of parents and Brown-headed Cowbirds (Molothrus ater) on nest predation risk for a songbird

    Treesearch

    Quresh S. Latif; Sacha K. Heath; John T. Rotenberry

    2012-01-01

    Nest predation limits avian fitness, so ornithologists study nest predation, but they often only document patterns of predation rates without substantively investigating underlying mechanisms. Parental behavior and predator ecology are two fundamental drivers of predation rates and patterns, but the role of parents is less certain, particularly for songbirds. Previous...

  3. Predator identity can explain nest predation patterns. Chapter 11

    Treesearch

    Jennifer L. Reidy; Frank R., III Thompson

    2012-01-01

    Knowledge of dominant predators is necessary to identify predation patterns and mitigate losses to nest predation, especially for endangered songbirds. We monitored songbird nests with timelapse infrared video cameras at Fort Hood Military Reservation, Texas, from 1997 to 2002 and 2005, and in Austin, Texas, during 2005, 2006, 2008, and 2009. Predation was the most...

  4. Fear on the move: predator hunting mode predicts variation in prey mortality and plasticity in prey spatial response.

    PubMed

    Miller, Jennifer R B; Ament, Judith M; Schmitz, Oswald J

    2014-01-01

    Ecologists have long searched for a framework of a priori species traits to help predict predator-prey interactions in food webs. Empirical evidence has shown that predator hunting mode and predator and prey habitat domain are useful traits for explaining predator-prey interactions. Yet, individual experiments have yet to replicate predator hunting mode, calling into question whether predator impacts can be attributed to hunting mode or merely species identity. We tested the effects of spider predators with sit-and-wait, sit-and-pursue and active hunting modes on grasshopper habitat domain, activity and mortality in a grassland system. We replicated hunting mode by testing two spider predator species of each hunting mode on the same grasshopper prey species. We observed grasshoppers with and without each spider species in behavioural cages and measured their mortality rates, movements and habitat domains. We likewise measured the movements and habitat domains of spiders to characterize hunting modes. We found that predator hunting mode explained grasshopper mortality and spider and grasshopper movement activity and habitat domain size. Sit-and-wait spider predators covered small distances over a narrow domain space and killed fewer grasshoppers than sit-and-pursue and active predators, which ranged farther distances across broader domains and killed more grasshoppers, respectively. Prey adjusted their activity levels and horizontal habitat domains in response to predator presence and hunting mode: sedentary sit-and-wait predators with narrow domains caused grasshoppers to reduce activity in the same-sized domain space; more mobile sit-and-pursue predators with broader domains caused prey to reduce their activity within a contracted horizontal (but not vertical) domain space; and highly mobile active spiders led grasshoppers to increase their activity across the same domain area. All predators impacted prey activity, and sit-and-pursue predators generated strong effects on domain size. This study demonstrates the validity of utilizing hunting mode and habitat domain for predicting predator-prey interactions. Results also highlight the importance of accounting for flexibility in prey movement ranges as an anti-predator response rather than treating the domain as a static attribute. © 2013 The Authors. Journal of Animal Ecology © 2013 British Ecological Society.

  5. The relationship between direct predation and antipredator responses: a test with multiple predators and multiple prey.

    PubMed

    Creel, Scott; Dröge, Egil; M'soka, Jassiel; Smit, Daan; Becker, Matt; Christianson, Dave; Schuette, Paul

    2017-08-01

    Most species adjust their behavior to reduce the likelihood of predation. Many experiments have shown that antipredator responses carry energetic costs that can affect growth, survival, and reproduction, so that the total cost of predation depends on a trade-off between direct predation and risk effects. Despite these patterns, few field studies have examined the relationship between direct predation and the strength of antipredator responses, particularly for complete guilds of predators and prey. We used scan sampling in 344 observation periods over a four-year field study to examine behavioral responses to the immediate presence of predators for a complete antelope guild (dominated by wildebeest, zebra, and oribi) in Liuwa Plains National Park, Zambia, testing for differences in response to all large carnivores in the ecosystem (lions, spotted hyenas, cheetahs, and African wild dogs). We quantified the proportion that each prey species contributed to the kills made by each predator (516 total kills), used distance sampling on systematic line transects to determine the abundance of each prey species, and combined these data to quantify the per-capita risk of direct predation for each predator-prey pair. On average, antelopes increased their vigilance by a factor of 2.4 when predators were present. Vigilance varied strongly among prey species, but weakly in response to different predators. Increased vigilance was correlated with reduced foraging in a similar manner for all prey species. The strength of antipredator response was not detectably related to patterns of direct predation (n = 15 predator-prey combinations with sufficient data). This lack of correlation has implications for our understanding of the role of risk effects as part of the limiting effect of predators on prey. © 2017 by the Ecological Society of America.

  6. Changes in herbivore control in arable fields by detrital subsidies depend on predator species and vary in space.

    PubMed

    von Berg, Karsten; Thies, Carsten; Tscharntke, Teja; Scheu, Stefan

    2010-08-01

    Prey from the decomposer subsystem may help sustain predator populations in arable fields. Adding organic residues to agricultural systems may therefore enhance pest control. We investigated whether resource addition (maize mulch) strengthens aboveground trophic cascades in winter wheat fields. Evaluating the flux of the maize-borne carbon into the food web after 9 months via stable isotope analysis allowed differentiating between prey in predator diets originating from the above- and belowground subsystems. Furthermore, we recorded aphid populations in predator-reduced and control plots of no-mulch and mulch addition treatments. All analyzed soil dwelling species incorporated maize-borne carbon. In contrast, only 2 out of 13 aboveground predator species incorporated maize carbon, suggesting that these 2 predators forage on prey from the above- and belowground systems. Supporting this conclusion, densities of these two predator species were increased in the mulch addition fields. Nitrogen isotope signatures suggested that these generalist predators in part fed on Collembola thereby benefiting indirectly from detrital resources. Increased density of these two predator species was associated by increased aphid control but the identity of predators responsible for aphid control varied in space. One of the three wheat fields studied even lacked aphid control despite of mulch-mediated increased density of generalist predators. The results suggest that detrital subsidies quickly enter belowground food webs but only a few aboveground predator species include prey out of the decomposer system into their diet. Variation in the identity of predator species benefiting from detrital resources between sites suggest that, depending on locality, different predator species are subsidised by prey out of the decomposer system and that these predators contribute to aphid control. Therefore, by engineering the decomposer subsystem via detrital subsidies, biological control by generalist predators may be strengthened.

  7. Predator Dispersal Determines the Effect of Connectivity on Prey Diversity

    PubMed Central

    Limberger, Romana; Wickham, Stephen A.

    2011-01-01

    Linking local communities to a metacommunity can positively affect diversity by enabling immigration of dispersal-limited species and maintenance of sink populations. However, connectivity can also negatively affect diversity by allowing the spread of strong competitors or predators. In a microcosm experiment with five ciliate species as prey and a copepod as an efficient generalist predator, we analysed the effect of connectivity on prey species richness in metacommunities that were either unconnected, connected for the prey, or connected for both prey and predator. Presence and absence of predator dispersal was cross-classified with low and high connectivity. The effect of connectivity on local and regional richness strongly depended on whether corridors were open for the predator. Local richness was initially positively affected by connectivity through rescue of species from stochastic extinctions. With predator dispersal, however, this positive effect soon turned negative as the predator spread over the metacommunity. Regional richness was unaffected by connectivity when local communities were connected only for the prey, while predator dispersal resulted in a pronounced decrease of regional richness. The level of connectivity influenced the speed of richness decline, with regional species extinctions being delayed for one week in weakly connected metacommunities. While connectivity enabled rescue of prey species from stochastic extinctions, deterministic extinctions due to predation were not overcome through reimmigration from predator-free refuges. Prey reimmigrating into these sink habitats appeared to be directly converted into increased predator abundance. Connectivity thus had a positive effect on the predator, even when the predator was not dispersing itself. Our study illustrates that dispersal of a species with strong negative effects on other community members shapes the dispersal-diversity relationship. When connections enable the spread of a generalist predator, positive effects of connectivity on prey species richness are outweighed by regional extinctions through predation. PMID:22194992

  8. Effects of seed density and proximity to refuge habitat on seed predation rates for a rare and a common Lupinus species.

    PubMed

    Pardini, Eleanor A; Patten, Melissa V; Knight, Tiffany M

    2017-03-01

    Biotic interactions such as seed predation can play a role in explaining patterns of abundance among plant species. The effect of seed predation will depend on how the strength of predation differs across species and environments, and on the degree to which seed loss at one life-cycle phase increases fitness at another phase. Few studies have simultaneously quantified predispersal and postdispersal predation in co-occurring rare and common congeners, despite the value of estimating both for understanding causes of rarity. We quantified predispersal seed predation on the rare, herbaceous species Lupinus tidestromii (Fabaceae) and its common, shrubby congener L. chamissonis across multiple years in the same community. We experimentally measured postdispersal seed predation at two seed densities and locations near or far from an exotic grass housing high densities of deer mice ( Peromyscus maniculatus ), their primary, native seed predator. The common L. chamissonis had the lowest predispersal seed predation of the two lupine species, potentially because of its height: its high racemes received less predation than those low to the ground. By contrast, the same species experienced higher postdispersal seed predation, and at predators traveled long distances away from refuge habitat to consume their seeds. Across both plant species, mice preferentially predated high-density seed sources. Our results show differences in the magnitude and direction of seed predation between the species across different life-cycle phases. We demonstrated possible roles of proximity to refuge habitat, seed density, and seed size in these patterns. Congeneric comparisons would benefit from a comprehensive framework that considers seed predation across different life-cycle phases and the environmental context of predation. © 2017 Botanical Society of America.

  9. Predator response to releases of American shad larvae in the Susquehanna River basin

    USGS Publications Warehouse

    Johnson, James H.; Ringler, N.H.

    1998-01-01

    Predation on American shad (Alosa sapidissima) larvae within the first two hours of release was examined from 1989 to 1992 on 31 occasions at stocking sites in the Susquehanna River basin. Twenty-two fish species consumed shad larvae; the dominant predators were spotfin shiner (Cyprinella spiloptera), mimic shiner (Notropis volucellus) and juvenile smallmouth bass (Micropterus dolomieu). The number of shad larvae found in predator stomachs ranged from 0 to 900. Mortality of shad larvae at the stocking site was usually less than 2%. The greatest mortality (9.6%) occurred at the highest stocking level (1.5 million larvae). Highly variable predation rates and release levels of shad insufficient to achieve predator satiation hindered the ability to determine a specific type of functional response of predators. Predator numbers increased with stocking density, indicating short-term aggregation at the release site. Because of practical problems associated with releasing the large numbers of larvae that would be required to satiate predators, routine stocking at these levels is probably unreasonable. Releases of 400,000 to 700,000 larvae may reduce predation by offsetting depensatory mechanisms that operate on small releases and the effects of increased predation due to predator aggregation on large releases. Night stocking may reduce predation on larval shad at the release site.

  10. A two-patch prey-predator model with predator dispersal driven by the predation strength.

    PubMed

    Kang, Yun; Sasmal, Sourav Kumar; Messan, Komi

    2017-08-01

    Foraging movements of predator play an important role in population dynamics of prey-predator systems, which have been considered as mechanisms that contribute to spatial self-organization of prey and predator. In nature, there are many examples of prey-predator interactions where prey is immobile while predator disperses between patches non-randomly through different factors such as stimuli following the encounter of a prey. In this work, we formulate a Rosenzweig-MacArthur prey-predator two patch model with mobility only in predator and the assumption that predators move towards patches with more concentrated prey-predator interactions. We provide completed local and global analysis of our model. Our analytical results combined with bifurcation diagrams suggest that: (1) dispersal may stabilize or destabilize the coupled system; (2) dispersal may generate multiple interior equilibria that lead to rich bistable dynamics or may destroy interior equilibria that lead to the extinction of predator in one patch or both patches; (3) Under certain conditions, the large dispersal can promote the permanence of the system. In addition, we compare the dynamics of our model to the classic two patch model to obtain a better understanding how different dispersal strategies may have different impacts on the dynamics and spatial patterns.

  11. Predator personality structures prey communities and trophic cascades.

    PubMed

    Start, Denon; Gilbert, Benjamin

    2017-03-01

    Intraspecific variation is central to our understanding of evolution and population ecology, yet its consequences for community ecology are poorly understood. Animal personality - consistent individual differences in suites of behaviours - may be particularly important for trophic dynamics, where predator personality can determine activity rates and patterns of attack. We used mesocosms with aquatic food webs in which the top predator (dragonfly nymphs) varied in activity and subsequent attack rates on zooplankton, and tested the effects of predator personality. We found support for four hypotheses: (1) active predators disproportionately reduce the abundance of prey, (2) active predators select for predator-resistant prey species, (3) active predators strengthen trophic cascades (increase phytoplankton abundance) and (4) active predators are more likely to cannibalise one another, weakening all other trends when at high densities. These results suggest that intraspecific variation in predator personality is an important determinant of prey abundance, community composition and trophic cascades. © 2017 John Wiley & Sons Ltd/CNRS.

  12. Dynamics Analysis of Anti-predator Model on Intermediate Predator With Ratio Dependent Functional Responses

    NASA Astrophysics Data System (ADS)

    Savitri, D.

    2018-01-01

    This articel discusses a predator prey model with anti-predator on intermediate predator using ratio dependent functional responses. Dynamical analysis performed on the model includes determination of equilibrium point, stability and simulation. Three kinds of equilibrium points have been discussed, namely the extinction of prey point, the extinction of intermediate predator point and the extinction of predator point are exists under certain conditions. It can be shown that the result of numerical simulations are in accordance with analitical results

  13. Predator identity and time of day interact to shape the risk-reward trade-off for herbivorous coral reef fishes.

    PubMed

    Catano, Laura B; Barton, Mark B; Boswell, Kevin M; Burkepile, Deron E

    2017-03-01

    Non-consumptive effects (NCEs) of predators occur as prey alters their habitat use and foraging decisions to avoid predation. Although NCEs are recognized as being important across disparate ecosystems, the factors influencing their strength and importance remain poorly understood. Ecological context, such as time of day, predator identity, and prey condition, may modify how prey species perceive and respond to risk, thereby altering NCEs. To investigate how predator identity affects foraging of herbivorous coral reef fishes, we simulated predation risk using fiberglass models of two predator species (grouper Mycteroperca bonaci and barracuda Sphyraena barracuda) with different hunting modes. We quantified how predation risk alters herbivory rates across space (distance from predator) and time (dawn, mid-day, and dusk) to examine how prey reconciles the conflicting demands of avoiding predation vs. foraging. When we averaged the effect of both predators across space and time, they suppressed herbivory similarly. Yet, they altered feeding differently depending on time of day and distance from the model. Although feeding increased strongly with increasing distance from the predators particularly during dawn, we found that the barracuda model suppressed herbivory more strongly than the grouper model during mid-day. We suggest that prey hunger level and differences in predator hunting modes could influence these patterns. Understanding how context mediates NCEs provides insight into the emergent effects of predator-prey interactions on food webs. These insights have broad implications for understanding how anthropogenic alterations to predator abundances can affect the spatial and temporal dynamics of important ecosystem processes.

  14. Enhanced understanding of predator-prey relationships using molecular methods to identify predator species, individual and sex.

    PubMed

    Mumma, Matthew A; Soulliere, Colleen E; Mahoney, Shane P; Waits, Lisette P

    2014-01-01

    Predator species identification is an important step in understanding predator-prey interactions, but predator identifications using kill site observations are often unreliable. We used molecular tools to analyse predator saliva, scat and hair from caribou calf kills in Newfoundland, Canada to identify the predator species, individual and sex. We sampled DNA from 32 carcasses using cotton swabs to collect predator saliva. We used fragment length analysis and sequencing of mitochondrial DNA to distinguish between coyote, black bear, Canada lynx and red fox and used nuclear DNA microsatellite analysis to identify individuals. We compared predator species detected using molecular tools to those assigned via field observations at each kill. We identified a predator species at 94% of carcasses using molecular methods, while observational methods assigned a predator species to 62.5% of kills. Molecular methods attributed 66.7% of kills to coyote and 33.3% to black bear, while observations assigned 40%, 45%, 10% and 5% to coyote, bear, lynx and fox, respectively. Individual identification was successful at 70% of kills where a predator species was identified. Only one individual was identified at each kill, but some individuals were found at multiple kills. Predator sex was predominantly male. We demonstrate the first large-scale evaluation of predator species, individual and sex identification using molecular techniques to extract DNA from swabs of wild prey carcasses. Our results indicate that kill site swabs (i) can be highly successful in identifying the predator species and individual responsible; and (ii) serve to inform and complement traditional methods. © 2013 John Wiley & Sons Ltd.

  15. Do intraspecific or interspecific interactions determine responses to predators feeding on a shared size-structured prey community?

    PubMed

    ten Brink, Hanna; Mazumdar, Abul Kalam Azad; Huddart, Joseph; Persson, Lennart; Cameron, Tom C

    2015-03-01

    Coexistence of predators that share the same prey is common. This is still the case in size-structured predator communities where predators consume prey species of different sizes (interspecific prey responses) or consume different size classes of the same species of prey (intraspecific prey responses). A mechanism has recently been proposed to explain coexistence between predators that differ in size but share the same prey species, emergent facilitation, which is dependent on strong intraspecific responses from one or more prey species. Under emergent facilitation, predators can depend on each other for invasion, persistence or success in a size-structured prey community. Experimental evidence for intraspecific size-structured responses in prey populations remains rare, and further questions remain about direct interactions between predators that could prevent or limit any positive effects between predators [e.g. intraguild predation (IGP)]. Here, we provide a community-wide experiment on emergent facilitation including natural predators. We investigate both the direct interactions between two predators that differ in body size (fish vs. invertebrate predator), and the indirect interaction between them via their shared prey community (zooplankton). Our evidence supports the most likely expectation of interactions between differently sized predators that IGP rates are high, and interspecific interactions in the shared prey community dominate the response to predation (i.e. predator-mediated competition). The question of whether emergent facilitation occurs frequently in nature requires more empirical and theoretical attention, specifically to address the likelihood that its pre-conditions may co-occur with high rates of IGP. © 2014 The Authors. Journal of Animal Ecology © 2014 British Ecological Society.

  16. Insect Seed Predators in Erythrina falcata (Fabaceae): Identification of Predatory Species and Ecological Consequences of Asynchronous Flowering.

    PubMed

    Pereira, C M; Moura, M O; Da-Silva, P R

    2014-06-01

    Seed predation by insects exerts negative effects on plant reproduction by limiting the supply of seeds and preventing germination. Seed predators of the family Fabaceae are usually generalists, which increases the rate of predation. One strategy to minimize seed predation, developed by plants from temperate regions, is "escape in time," i.e., flowering before or after the peak of predation. For tropical species, few studies have investigated the strategies used by plants to minimize seed predation. Here, using Erythrina falcata, a tropical species of Fabaceae, we test three main hypotheses: (i) escape in time is a mechanism used by E. falcata to minimize seed predation, (ii) the predators of E. falcata seeds are generalists, and (iii) the biometric variables of the pods can influence seed predation. In order to test these hypotheses, we determined the flowering time of E. falcata, rate of seed predation, the predators insects, and biometric variables of the pods. The analyzed trees were grouped into three classes: "early," "peak," and "late" flowering. The average seed predation rates on trees in the early and late classes were 65% and 50%, respectively, and in the peak class, 80%; thus, our first hypothesis can be accepted. Three species of Lepidoptera and two of Coleoptera were found preying on E. falcata seeds. These species were observed to be generalist predators; thus, our second hypothesis can be accepted. The biometric variables of the pods cannot influence seed predation rate. The ecological consequences of asynchronous flowering on plants and insects are discussed.

  17. Effects of behavioral and morphological plasticity on risk of predation in a Neotropical tadpole

    USGS Publications Warehouse

    McIntyre, P.B.; Baldwin, S.; Flecker, A.S.

    2004-01-01

    Predator-induced phenotypic plasticity is widespread among aquatic animals, however the relative contributions of behavioral and morphological shifts to reducing risk of predation remain uncertain. We tested the phenotypic plasticity of a Neotropical tadpole (Rana palmipes) in response to chemical cues from predatory Belostoma water bugs, and how phenotype affects risk of predation. Behavior, morphology, and pigmentation all were plastic, resulting in a predator-induced phenotype with lower activity, deeper tail fin and muscle, and darker pigmentation. Tadpoles in the predator cue treatment also grew more rapidly, possibly as a result of the nutrient subsidy from feeding the caged predator. For comparison to phenotypes induced in the experiment, we quantified the phenotype of tadpoles from a natural pool. Wildcaught tadpoles did not match either experimentally induced phenotype; their morphology was more similar to that produced in the control treatment, but their low swimming activity was similar to that induced by predator cues. Exposure of tadpoles from both experimental treatments and the natural pool to a free-ranging predator confirmed that predator-induced phenotypic plasticity reduces risk of predation. Risk of predation was comparable among wild-caught and predator-induced tadpoles, indicating that behavioral shifts can substantially alleviate risk in tadpoles that lack the typical suite of predator-induced morphological traits. The morphology observed in wild-caught tadpoles is associated with rapid growth and high competition in other tadpole species, suggesting that tadpoles may profitably combine a morphology suited to competition for food with behaviors that minimize risk of predation. ?? Springer-Verlag 2004.

  18. Bifurcation Analysis of a Predator-Prey System with Ratio-Dependent Functional Response

    NASA Astrophysics Data System (ADS)

    Jiang, Xin; She, Zhikun; Feng, Zhaosheng; Zheng, Xiuliang

    2017-12-01

    In this paper, we are concerned with the structural stability of a density dependent predator-prey system with ratio-dependent functional response. Starting with the geometrical analysis of hyperbolic curves, we obtain that the system has one or two positive equilibria under various conditions. Inspired by the S-procedure and semi-definite programming, we use the sum of squares decomposition based method to ensure the global asymptotic stability of the positive equilibrium through the associated polynomial Lyapunov functions. By exploring the monotonic property of the trace of the Jacobian matrix with respect to r under the given different conditions, we analytically verify that there is a corresponding unique r∗ such that the trace is equal to zero and prove the existence of Hopf bifurcation, respectively.

  19. Neoseiulus paspalivorus, a predator from coconut, as a candidate for controlling dry bulb mites infesting stored tulip bulbs.

    PubMed

    Lesna, Izabela; da Silva, Fernando R; Sato, Yukie; Sabelis, Maurice W; Lommen, Suzanne T E

    2014-06-01

    The dry bulb mite, Aceria tulipae, is the most important pest of stored tulip bulbs in The Netherlands. This tiny, eriophyoid mite hides in the narrow space between scales in the interior of the bulb. To achieve biological control of this hidden pest, candidate predators small enough to move in between the bulb scales are required. Earlier experiments have shown this potential for the phytoseiid mite, Neoseiulus cucumeris, but only after the bulbs were exposed to ethylene, a plant hormone that causes a slight increase in the distance between tulip bulb scales, just sufficient to allow this predator to reach the interior part of the bulb. Applying ethylene, however, is not an option in practice because it causes malformation of tulip flowers. In fact, to prevent this cosmetic damage, bulb growers ventilate rooms where tulip bulbs are stored, thereby removing ethylene produced by the bulbs (e.g. in response to mite or fungus infestation). Recently, studies on the role of predatory mites in controlling another eriophyoid mite on coconuts led to the discovery of an exceptionally small phytoseiid mite, Neoseiulus paspalivorus. This predator is able to move under the perianth of coconuts where coconut mites feed on meristematic tissue of the fruit. This discovery prompted us to test N. paspalivorus for its ability to control A. tulipae on tulip bulbs under storage conditions (ventilated rooms with bulbs in open boxes; 23 °C; storage period June-October). Using destructive sampling we monitored predator and prey populations in two series of replicated experiments, one at a high initial level of dry bulb mite infestation, late in the storage period, and another at a low initial dry bulb mite infestation, halfway the storage period. The first and the second series involved treatment with N. paspalivorus and a control experiment, but the second series had an additional treatment in which the predator N. cucumeris was released. Taking the two series of experiments together we found that N. paspalivorus controlled the populations of dry bulb mites both on the outer scale of the bulbs as well as in the interior part of the bulbs, whereas N. cucumeris significantly reduced the population of dry bulb mites on the outer scale, but not in the interior part of the bulb. Moreover, N. paspalivorus was found predominantly inside the bulb, whereas N. cucumeris was only found on the outer scale, thereby confirming our hypothesis that the small size of N. paspalivorus facilitates access to the interior of the bulbs. We argue that N. paspalivorus is a promising candidate for the biological control of dry bulb mites on tulip bulbs under storage conditions in the Netherlands.

  20. Deciphering Scavenging Propensity Among Arthropod Predators.

    USDA-ARS?s Scientific Manuscript database

    Scavenging is a well documented feeding behavior among many arthrop predators. However, quantifying scavenging feeding activity is not well understood because many predators are small elusive. This makes directly observing predation events in nature almost impossible. If predators prefer dead prey ...

  1. Predation of Songbird Nests Differs By Predator and Between Field and Forest Habitats

    Treesearch

    Frank R., III Thompson; Dirk E. Burhans

    2003-01-01

    Our understanding of factors affecting nest predation and ability to mitigate high nest predation rates is hampered by a lack of information on the importance of various nest predator species in different habitats and landscapes. We identified predators of songbird nests in old-field and forest habitats in central Missouri, USA, with miniature video cameras. We used an...

  2. Effects of predation and dispersal on bacterial abundance and contaminant biodegradation.

    PubMed

    Otto, Sally; Harms, Hauke; Wick, Lukas Y

    2017-02-01

    Research into the biodegradation of soil contaminants has rarely addressed the consequences of predator-prey interactions. Here, we investigated the joint effect of predation and dispersal networks on contaminant degradation by linking spatial abundances of degrader (Pseudomonas fluorescens LP6a) and predator (Bdellovibrio bacteriovorus) bacteria to the degradation of the major soil contaminant phenanthrene (PHE). We used a laboratory microcosm with a PHE passive dosing system and a glass fiber network to facilitate bacterial dispersal. Different predator-to-prey ratios and spatial arrangements of prey and predator inoculation were used to study predation pressure effects on PHE degradation. We observed that predation resulted in (i) enhanced PHE-degradation at low predator counts (PC) compared to controls lacking predation, (ii) reduced PHE-degradation at elevated PC relative to low PC, and (iii) significant effects of the spatial arrangement of prey and predator inoculation on PHE degradation. Our data suggest that predation facilitated by dispersal networks (such as fungal mycelia) may support the build-up of an effective bacterial biomass and, hence, contaminant biodegradation in heterogeneous systems such as soil. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Intraspecific variation in body size does not alter the effects of mesopredators on prey.

    PubMed

    Gallagher, Austin J; Brandl, Simon J; Stier, Adrian C

    2016-12-01

    As humans continue to alter the species composition and size structure of marine food webs, it is critical to understand size-dependent effects of predators on prey. Yet, how shifts in predator body size mediate the effect of predators is understudied in tropical marine ecosystems, where anthropogenic harvest has indirectly increased the density and size of small-bodied predators. Here, we combine field surveys and a laboratory feeding experiment in coral reef fish communities to show that small and large predators of the same species can have similar effects. Specifically, surveys show that the presence of a small predator ( Paracirrhites arcatus ) was correlated with lower chances of prey fish presence, but these correlations were independent of predator size. Experimental trials corroborated the size-independent effect of the predator; attack rates were indistinguishable between small and large predators, suggesting relatively even effects of hawkfish in various size classes on the same type of prey. Our results indicate that the effects of small predators on coral reefs can be size-independent, suggesting that variation in predator size-structure alone may not always affect the functional role of these predators.

  4. 10 CFR 850.35 - Medical removal.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Medical removal. 850.35 Section 850.35 Energy DEPARTMENT OF ENERGY CHRONIC BERYLLIUM DISEASE PREVENTION PROGRAM Specific Program Requirements § 850.35 Medical removal. (a) Medical removal protection. The responsible employer must offer a beryllium-associated worker...

  5. 10 CFR 850.35 - Medical removal.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Medical removal. 850.35 Section 850.35 Energy DEPARTMENT OF ENERGY CHRONIC BERYLLIUM DISEASE PREVENTION PROGRAM Specific Program Requirements § 850.35 Medical removal. (a) Medical removal protection. The responsible employer must offer a beryllium-associated worker...

  6. 10 CFR 850.35 - Medical removal.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Medical removal. 850.35 Section 850.35 Energy DEPARTMENT OF ENERGY CHRONIC BERYLLIUM DISEASE PREVENTION PROGRAM Specific Program Requirements § 850.35 Medical removal. (a) Medical removal protection. The responsible employer must offer a beryllium-associated worker...

  7. 10 CFR 850.35 - Medical removal.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Medical removal. 850.35 Section 850.35 Energy DEPARTMENT OF ENERGY CHRONIC BERYLLIUM DISEASE PREVENTION PROGRAM Specific Program Requirements § 850.35 Medical removal. (a) Medical removal protection. The responsible employer must offer a beryllium-associated worker...

  8. 10 CFR 850.35 - Medical removal.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Medical removal. 850.35 Section 850.35 Energy DEPARTMENT OF ENERGY CHRONIC BERYLLIUM DISEASE PREVENTION PROGRAM Specific Program Requirements § 850.35 Medical removal. (a) Medical removal protection. The responsible employer must offer a beryllium-associated worker...

  9. From seed production to seedling establishment: Important steps in an invasive process

    NASA Astrophysics Data System (ADS)

    Ferreras, Ana Elisa; Galetto, Leonardo

    2010-03-01

    It is widely accepted that exotic invasive species are one of the most important ecological and economic problems. Reproductive and establishment traits are considered key features of a population expansion process, but few works have studied many of these simultaneously. This work examines how large the differences are in reproductive and establishment traits between two Fabaceae, the exotic invasive, Gleditsia triacanthos and the native, Acacia aroma. Gleditsia is a serious leguminous woody invader in various parts of the world and Acacia is a common native tree of Argentina. Both species have similar dispersal mechanisms and their reproductive phenology overlaps. We chose 17 plants of each species in a continuous forest of the Chaco Serrano Forest of Córdoba, Argentina. In each plant we measured fruit production, fruit removal (exclusion experiments), seed predation (pre- and post-dispersal), seed germination, seed bank (on each focal tree, three sampling periods during the year), and density of seedlings (around focal individuals and randomly in the study site). Gleditsia presented some traits that could favour the invasion process, such as a higher number of seeds per plant, percentage of scarified seed germination and density of seedlings around the focal individuals, than Acacia. On the other hand, Gleditsia presented a higher percentage of seed predation. The seed bank was persistent in both species and no differences were observed in fruit removal. This work highlights the importance of simultaneously studying reproductive and establishment variables involved in the spreading of an exotic invasive species. It also gives important insight into the variables to be considered when planning management strategies. The results are discussed from the perspective of some remarkable hypotheses on invasive species and may contribute to rethinking some aspects of the theory on invasive species.

  10. Spatial variability in ecosystem services: simple rules for predator-mediated pest suppression.

    PubMed

    Bianchi, F J J A; Schellhorn, N A; Buckley, Y M; Possingham, H P

    2010-12-01

    Agricultural pest control often relies on the ecosystem services provided by the predators of pests. Appropriate landscape and habitat management for pest control services requires an understanding of insect dispersal abilities and the spatial arrangement of source habitats for pests and their predators. Here we explore how dispersal and habitat configuration determine the locations where management actions are likely to have the biggest impact on natural pest control. The study focuses on the early colonization phase before predator reproduction takes place and when pest populations in crops are still relatively low. We developed a spatially explicit simulation model in which pest populations grow exponentially in pest patches and predators disperse across the landscape from predator patches. We generated 1000 computer-simulated landscapes in which the performance of four typical but different predator groups as biological control agents was evaluated. Predator groups represented trait combinations of poor and good dispersal ability and density-independent and density-dependent aggregation responses toward pests. Case studies from the literature were used to inform the parameterization of predator groups. Landscapes with a small nearest-neighbor distance between pest and predator patches had the lowest mean pest density at the landscape scale for all predator groups, but there can be high variation in pest density between the patches within these landscapes. Mobile and strongly aggregating predators provide the best pest suppression in the majority of landscape types. Ironically, this result is true except in landscapes with small nearest-neighbor distances between pest and predator patches. The pest control potential of mobile predators can best be explained by the mean distance between a pest patch and all predator patches in the landscape, whereas for poorly dispersing predators the distance between a pest patch and the nearest predator patch is the best explanatory variable. In conclusion, the spatial arrangement of source habitats for natural enemies of agricultural pest species can have profound effects on their potential to colonize crops and suppress pest populations.

  11. Beyond diversity: how nested predator effects control ecosystem functions.

    PubMed

    Schneider, Florian Dirk; Brose, Ulrich

    2013-01-01

    The global decline in biodiversity is especially evident in higher trophic levels as predators display higher sensitivity to environmental change than organisms from lower trophic levels. This is even more alarming given the paucity of knowledge about the role of individual predator species in sustaining ecosystem functioning. The effect of predator diversity on lower trophic level prey is often driven by the increasing chance of including the most influential species. Furthermore, intraguild predation can cause trophic cascades with net positive effects on basal prey. As a consequence, the effects of losing a predator species appear to be idiosyncratic and it becomes unpredictable how the community's net effect on lower trophic levels changes when species number is declining. We performed a full factorial microcosm experiment with litter layer arthropods to measure the effects of predator diversity and context-dependent identity effects on a detritivore population and microbial biomass. We show that major parts of the observed diversity effect can be assigned to the increasing likelihood of including the most influential predator. Further, the presence of a second predator feeding on the first predator dampens this dominant effect. Including this intraguild predator on top of the first predator is more likely with increasing predator diversity as well. Thus, the overall pattern can be explained by a second identity effect, which is nested into the first. When losing a predator from the community, the response of the lower trophic level is highly dependent on the remaining predator species. We mechanistically explain the net effects of the predator community on lower trophic levels by nested effects of predator identities. These identity effects become predictable when taking the species' body masses into account. This provides a new mechanistic perspective describing ecosystem functioning as a consequence of species composition and yields an understanding beyond simple effects of biodiversity. © 2012 The Authors. Journal of Animal Ecology © 2012 British Ecological Society.

  12. Antipredator responses by native mosquitofish to non-native cichlids: An examination of the role of prey naiveté

    USGS Publications Warehouse

    Rehage, Jennifer S.; Dunlop, Katherine L.; Loftus, William F.

    2009-01-01

    The strong impact of non-native predators in aquatic systems is thought to relate to the evolutionary naiveté of prey. Due to isolation and limited dispersal, this naiveté may be relatively high in freshwater systems. In this study, we tested this notion by examining the antipredator response of native mosquitofish, Gambusia holbrooki, to two non-native predators found in the Everglades, the African jewelfish,Hemichromis letourneuxi, and the Mayan cichlid, Cichlasoma urophthalmus. We manipulated prey naiveté by using two mosquitofish populations that varied in their experience with the recent invader, the African jewelfish, but had similar levels of experience with the longer-established Mayan cichlid. Specifically, we tested these predictions: (1) predator hunting modes differed between the two predators, (2) predation rates would be higher by the novel jewelfish predator, (3) particularly on the naive population living where jewelfish have not invaded yet, (4) antipredator responses would be stronger to Mayan cichlids due to greater experience and weaker and/or ineffective to jewelfish, and (5) especially weakest by the naive population. We assayed prey and predator behavior, and prey mortality in lab aquaria where both predators and prey were free-ranging. Predator hunting modes and habitat domains differed, with jewelfish being more active search predators that used slightly higher parts of the water column and less of the habitat structure relative to Mayan cichlids. In disagreement with our predictions, predation rates were similar between the two predators, antipredator responses were stronger to African jewelfish (except for predator inspections), and there was no difference in response between jewelfish-savvy and jewelfish-naive populations. These results suggest that despite the novelty of introduced predators, prey may be able to respond appropriately if non-native predator archetypes are similar enough to those of native predators, if prey rely on general antipredator responses or predation cues, and/or show neophobic responses.

  13. The effects of predator odors in mammalian prey species: a review of field and laboratory studies.

    PubMed

    Apfelbach, Raimund; Blanchard, Caroline D; Blanchard, Robert J; Hayes, R Andrew; McGregor, Iain S

    2005-01-01

    Prey species show specific adaptations that allow recognition, avoidance and defense against predators. For many mammalian species this includes sensitivity towards predator-derived odors. The typical sources of such odors include predator skin and fur, urine, feces and anal gland secretions. Avoidance of predator odors has been observed in many mammalian prey species including rats, mice, voles, deer, rabbits, gophers, hedgehogs, possums and sheep. Field and laboratory studies show that predator odors have distinctive behavioral effects which include (1) inhibition of activity, (2) suppression of non-defensive behaviors such as foraging, feeding and grooming, and (3) shifts to habitats or secure locations where such odors are not present. The repellent effect of predator odors in the field may sometimes be of practical use in the protection of crops and natural resources, although not all attempts at this have been successful. The failure of some studies to obtain repellent effects with predator odors may relate to (1) mismatches between the predator odors and prey species employed, (2) strain and individual differences in sensitivity to predator odors, and (3) the use of predator odors that have low efficacy. In this regard, a small number of recent studies have suggested that skin and fur-derived predator odors may have a more profound lasting effect on prey species than those derived from urine or feces. Predator odors can have powerful effects on the endocrine system including a suppression of testosterone and increased levels of stress hormones such as corticosterone and ACTH. Inhibitory effects of predator odors on reproductive behavior have been demonstrated, and these are particularly prevalent in female rodent species. Pregnant female rodents exposed to predator odors may give birth to smaller litters while exposure to predator odors during early life can hinder normal development. Recent research is starting to uncover the neural circuitry activated by predator odors, leading to hypotheses about how such activation leads to observable effects on reproduction, foraging and feeding.

  14. Intraguild predation and native lady beetle decline.

    PubMed

    Gardiner, Mary M; O'Neal, Matthew E; Landis, Douglas A

    2011-01-01

    Coccinellid communities across North America have experienced significant changes in recent decades, with declines in several native species reported. One potential mechanism for these declines is interference competition via intraguild predation; specifically, increased predation of native coccinellid eggs and larvae following the introduction of exotic coccinellids. Our previous studies have shown that agricultural fields in Michigan support a higher diversity and abundance of exotic coccinellids than similar fields in Iowa, and that the landscape surrounding agricultural fields across the north central U.S. influences the abundance and activity of coccinellid species. The goal of this study was to quantify the amount of egg predation experienced by a native coccinellid within Michigan and Iowa soybean fields and explore the influence of local and large-scale landscape structure. Using the native lady beetle Coleomegilla maculata as a model, we found that sentinel egg masses were subject to intense predation within both Michigan and Iowa soybean fields, with 60.7% of egg masses attacked and 43.0% of available eggs consumed within 48 h. In Michigan, the exotic coccinellids Coccinella septempunctata and Harmonia axyridis were the most abundant predators found in soybean fields whereas in Iowa, native species including C. maculata, Hippodamia parenthesis and the soft-winged flower beetle Collops nigriceps dominated the predator community. Predator abundance was greater in soybean fields within diverse landscapes, yet variation in predator numbers did not influence the intensity of egg predation observed. In contrast, the strongest predictor of native coccinellid egg predation was the composition of edge habitats bordering specific fields. Field sites surrounded by semi-natural habitats including forests, restored prairies, old fields, and pasturelands experienced greater egg predation than fields surrounded by other croplands. This study shows that intraguild predation by both native and exotic predators may contribute to native coccinellid decline, and that landscape structure interacts with local predator communities to shape the specific outcomes of predator-predator interactions.

  15. Impact of cannibalism on predator-prey dynamics: size-structured interactions and apparent mutualism.

    PubMed

    Rudolf, Volker H W

    2008-06-01

    Direct and indirect interactions between two prey species can strongly alter the dynamics of predator-prey systems. Most predators are cannibalistic, and as a consequence, even systems with only one predator and one prey include two prey types: conspecifics and heterospecifics. The effects of the complex direct and indirect interactions that emerge in such cannibalistic systems are still poorly understood. This study examined how the indirect interaction between conspecific and heterospecific prey affects cannibalism and predation rates and how the direct interactions between both species indirectly alter the effect of the cannibalistic predator. I tested for these effects using larvae of the stream salamanders Eurycea cirrigera (prey) and Pseudotriton ruber (cannibalistic predator) by manipulating the relative densities of the conspecific and heterospecific prey in the presence and absence of the predator in experimental streams. The rates of cannibalism and heterospecific predation were proportional to the respective densities and negatively correlated, indicating a positive indirect interaction between conspecific and heterospecific prey, similar to "apparent mutualism." Direct interactions between prey species did not alter the effect of the predator. Although both types of prey showed a similar 30% reduction in night activity and switch in microhabitat use in response to the presence of the predator, cannibalism rates were three times higher than heterospecific predation rates irrespective of the relative densities of the two types of prey. Cumulative predation risks differed even more due to the 48% lower growth rate of conspecific prey. Detailed laboratory experiments suggest that the 3:1 difference in cannibalism and predation rate was due to the higher efficiency of heterospecific prey in escaping immediate attacks. However, no difference was observed when the predator was a closely related salamander species, Gyrinophilus porphyriticus, indicating that this difference is species specific. This demonstrates that cannibalism can result in the coupling of predator and prey mortality rates that strongly determines the dynamics of predator-prey systems.

  16. Rabbit biocontrol and landscape-scale recovery of threatened desert mammals.

    PubMed

    Pedler, Reece D; Brandle, Robert; Read, John L; Southgate, Richard; Bird, Peter; Moseby, Katherine E

    2016-08-01

    Funding for species conservation is insufficient to meet the current challenges facing global biodiversity, yet many programs use expensive single-species recovery actions and neglect broader management that addresses threatening processes. Arid Australia has the world's worst modern mammalian extinction record, largely attributable to competition from introduced herbivores, particularly European rabbits (Oryctolagus cuniculus) and predation by feral cats (Felis catus) and foxes (Vulpes vulpes). The biological control agent rabbit hemorrhagic disease virus (RHDV) was introduced to Australia in 1995 and resulted in dramatic, widespread rabbit suppression. We compared the area of occupancy and extent of occurrence of 4 extant species of small mammals before and after RHDV outbreak, relative to rainfall, sampling effort, and rabbit and predator populations. Despite low rainfall during the first 14 years after RHDV, 2 native rodents listed by the International Union for Conservation of Nature (IUCN), the dusky hopping-mouse (Notomys fuscus) and plains mouse (Pseudomys australis), increased their extent of occurrence by 241-365%. A threatened marsupial micropredator, the crest-tailed mulgara (Dasycercus cristicauda), underwent a 70-fold increase in extent of occurrence and a 20-fold increase in area of occupancy. Both bottom-up and top-down trophic effects were attributed to RHDV, namely decreased competition for food resources and declines in rabbit-dependent predators. Based on these sustained increases, these 3 previously threatened species now qualify for threat-category downgrading on the IUCN Red List. These recoveries are on a scale rarely documented in mammals and give impetus to programs aimed at targeted use of RHDV in Australia, rather than simply employing top-down threat-based management of arid ecosystems. Conservation programs that take big-picture approaches to addressing threatening processes over large spatial scales should be prioritized to maximize return from scarce conservation funding. Further, these should be coupled with long-term ecological monitoring, a critical tool in detecting and understanding complex ecosystem change. © 2016 Society for Conservation Biology.

  17. A transient performance method for CO2 removal with regenerable adsorbents

    NASA Technical Reports Server (NTRS)

    Hwang, K. C.

    1972-01-01

    A computer program is described which can be used to predict the transient performance of vacuum-desorbed sorbent beds for CO2 or water removal, and composite beds of two sorbents for simultaneous humidity control and CO2 removal. The program was written primarily for silica gel and molecular sieve inorganic sorbents, but can be used for a variety of adsorbent materials. Part 2 of this report describes a computer program which can be used to predict performance for multiple-bed CO2-removal sorbent systems. This program is an expanded version of the composite sorbent bed program described in Part 1.

  18. No evidence of nonlinear effects of predator density, refuge availability, or body size of prey on prey mortality rates.

    PubMed

    Simkins, Richard M; Belk, Mark C

    2017-08-01

    Predator density, refuge availability, and body size of prey can all affect the mortality rate of prey. We assume that more predators will lead to an increase in prey mortality rate, but behavioral interactions between predators and prey, and availability of refuge, may lead to nonlinear effects of increased number of predators on prey mortality rates. We tested for nonlinear effects in prey mortality rates in a mesocosm experiment with different size classes of western mosquitofish ( Gambusia affinis ) as the prey, different numbers of green sunfish ( Lepomis cyanellus ) as the predators, and different levels of refuge. Predator number and size class of prey, but not refuge availability, had significant effects on the mortality rate of prey. Change in mortality rate of prey was linear and equal across the range of predator numbers. Each new predator increased the mortality rate by about 10% overall, and mortality rates were higher for smaller size classes. Predator-prey interactions at the individual level may not scale up to create nonlinearity in prey mortality rates with increasing predator density at the population level.

  19. The Effects of Predator Evolution and Genetic Variation on Predator-Prey Population-Level Dynamics.

    PubMed

    Cortez, Michael H; Patel, Swati

    2017-07-01

    This paper explores how predator evolution and the magnitude of predator genetic variation alter the population-level dynamics of predator-prey systems. We do this by analyzing a general eco-evolutionary predator-prey model using four methods: Method 1 identifies how eco-evolutionary feedbacks alter system stability in the fast and slow evolution limits; Method 2 identifies how the amount of standing predator genetic variation alters system stability; Method 3 identifies how the phase lags in predator-prey cycles depend on the amount of genetic variation; and Method 4 determines conditions for different cycle shapes in the fast and slow evolution limits using geometric singular perturbation theory. With these four methods, we identify the conditions under which predator evolution alters system stability and shapes of predator-prey cycles, and how those effect depend on the amount of genetic variation in the predator population. We discuss the advantages and disadvantages of each method and the relations between the four methods. This work shows how the four methods can be used in tandem to make general predictions about eco-evolutionary dynamics and feedbacks.

  20. Are fast explorers slow reactors? Linking personality type and anti-predator behaviour

    PubMed Central

    Jones, Katherine A.; Godin, Jean-Guy J.

    2010-01-01

    Response delays to predator attack may be adaptive, suggesting that latency to respond does not always reflect predator detection time, but can be a decision based on starvation–predation risk trade-offs. In birds, some anti-predator behaviours have been shown to be correlated with personality traits such as activity level and exploration. Here, we tested for a correlation between exploration behaviour and response latency time to a simulated fish predator attack in a fish species, juvenile convict cichlids (Amatitlania nigrofasciata). Individual focal fish were subjected to a standardized attack by a robotic fish predator while foraging, and separately given two repeated trials of exploration of a novel environment. We found a strong positive correlation between exploration and time taken to respond to the predator model. Fish that were fast to explore the novel environment were slower to respond to the predator. Our study therefore provides some of the first experimental evidence for a link between exploration behaviour and predator-escape behaviour. We suggest that different behavioural types may differ in how they partition their attention between foraging and anti-predator vigilance. PMID:19864291

Top