A multiscale strength model for tantalum over an extended range of strain rates
NASA Astrophysics Data System (ADS)
Barton, N. R.; Rhee, M.
2013-09-01
A strength model for tantalum is developed and exercised across a range of conditions relevant to various types of experimental observations. The model is based on previous multiscale modeling work combined with experimental observations. As such, the model's parameterization includes a hybrid of quantities that arise directly from predictive sub-scale physics models and quantities that are adjusted to align the model with experimental observations. Given current computing and experimental limitations, the response regions for sub-scale physics simulations and detailed experimental observations have been largely disjoint. In formulating the new model and presenting results here, attention is paid to integrated experimental observations that probe strength response at the elevated strain rates where a previous version of the model has generally been successful in predicting experimental data [Barton et al., J. Appl. Phys. 109(7), 073501 (2011)].
Understanding Electrochemistry Concepts Using the Predict-Observe-Explain Strategy
ERIC Educational Resources Information Center
Karamustafaoglu, Sevilay; Mamlok-Naaman, Rachel
2015-01-01
The current study deals with freshman students who study at the Department of Science at the Faculty of Education. The aim of the study was to investigate the effect of teaching electrochemistry concepts using Predict-Observe-Explain (POE) strategy. The study was quasi-experimental design using 20 students each in the experimental group (EG) and…
Caruso, Christina M; Martin, Ryan A; Sletvold, Nina; Morrissey, Michael B; Wade, Michael J; Augustine, Kate E; Carlson, Stephanie M; MacColl, Andrew D C; Siepielski, Adam M; Kingsolver, Joel G
2017-09-01
Although many selection estimates have been published, the environmental factors that cause selection to vary in space and time have rarely been identified. One way to identify these factors is by experimentally manipulating the environment and measuring selection in each treatment. We compiled and analyzed selection estimates from experimental studies. First, we tested whether the effect of manipulating the environment on selection gradients depends on taxon, trait type, or fitness component. We found that the effect of manipulating the environment was larger when selection was measured on life-history traits or via survival. Second, we tested two predictions about the environmental factors that cause variation in selection. We found support for the prediction that variation in selection is more likely to be caused by environmental factors that have a large effect on mean fitness but not for the prediction that variation is more likely to be caused by biotic factors. Third, we compared selection gradients from experimental and observational studies. We found that selection varied more among treatments in experimental studies than among spatial and temporal replicates in observational studies, suggesting that experimental studies can detect relationships between environmental factors and selection that would not be apparent in observational studies.
Asmadi, Aldi; Neumann, Marcus A; Kendrick, John; Girard, Pascale; Perrin, Marc-Antoine; Leusen, Frank J J
2009-12-24
In the 2007 blind test of crystal structure prediction hosted by the Cambridge Crystallographic Data Centre (CCDC), a hybrid DFT/MM method correctly ranked each of the four experimental structures as having the lowest lattice energy of all the crystal structures predicted for each molecule. The work presented here further validates this hybrid method by optimizing the crystal structures (experimental and submitted) of the first three CCDC blind tests held in 1999, 2001, and 2004. Except for the crystal structures of compound IX, all structures were reminimized and ranked according to their lattice energies. The hybrid method computes the lattice energy of a crystal structure as the sum of the DFT total energy and a van der Waals (dispersion) energy correction. Considering all four blind tests, the crystal structure with the lowest lattice energy corresponds to the experimentally observed structure for 12 out of 14 molecules. Moreover, good geometrical agreement is observed between the structures determined by the hybrid method and those measured experimentally. In comparison with the correct submissions made by the blind test participants, all hybrid optimized crystal structures (apart from compound II) have the smallest calculated root mean squared deviations from the experimentally observed structures. It is predicted that a new polymorph of compound V exists under pressure.
Prediction uncertainty and optimal experimental design for learning dynamical systems.
Letham, Benjamin; Letham, Portia A; Rudin, Cynthia; Browne, Edward P
2016-06-01
Dynamical systems are frequently used to model biological systems. When these models are fit to data, it is necessary to ascertain the uncertainty in the model fit. Here, we present prediction deviation, a metric of uncertainty that determines the extent to which observed data have constrained the model's predictions. This is accomplished by solving an optimization problem that searches for a pair of models that each provides a good fit for the observed data, yet has maximally different predictions. We develop a method for estimating a priori the impact that additional experiments would have on the prediction deviation, allowing the experimenter to design a set of experiments that would most reduce uncertainty. We use prediction deviation to assess uncertainty in a model of interferon-alpha inhibition of viral infection, and to select a sequence of experiments that reduces this uncertainty. Finally, we prove a theoretical result which shows that prediction deviation provides bounds on the trajectories of the underlying true model. These results show that prediction deviation is a meaningful metric of uncertainty that can be used for optimal experimental design.
In silico prediction of pharmaceutical degradation pathways: a benchmarking study.
Kleinman, Mark H; Baertschi, Steven W; Alsante, Karen M; Reid, Darren L; Mowery, Mark D; Shimanovich, Roman; Foti, Chris; Smith, William K; Reynolds, Dan W; Nefliu, Marcela; Ott, Martin A
2014-11-03
Zeneth is a new software application capable of predicting degradation products derived from small molecule active pharmaceutical ingredients. This study was aimed at understanding the current status of Zeneth's predictive capabilities and assessing gaps in predictivity. Using data from 27 small molecule drug substances from five pharmaceutical companies, the evolution of Zeneth predictions through knowledge base development since 2009 was evaluated. The experimentally observed degradation products from forced degradation, accelerated, and long-term stability studies were compared to Zeneth predictions. Steady progress in predictive performance was observed as the knowledge bases grew and were refined. Over the course of the development covered within this evaluation, the ability of Zeneth to predict experimentally observed degradants increased from 31% to 54%. In particular, gaps in predictivity were noted in the areas of epimerizations, N-dealkylation of N-alkylheteroaromatic compounds, photochemical decarboxylations, and electrocyclic reactions. The results of this study show that knowledge base development efforts have increased the ability of Zeneth to predict relevant degradation products and aid pharmaceutical research. This study has also provided valuable information to help guide further improvements to Zeneth and its knowledge base.
NASA Astrophysics Data System (ADS)
Batailly, Alain; Agrapart, Quentin; Millecamps, Antoine; Brunel, Jean-François
2016-08-01
This contribution addresses a confrontation between the experimental simulation of a rotor/stator interaction case initiated by structural contacts with numerical predictions made with an in-house numerical strategy. Contrary to previous studies carried out within the low-pressure compressor of an aircraft engine, this interaction is found to be non-divergent: high amplitudes of vibration are experimentally observed and numerically predicted over a short period of time. An in-depth analysis of experimental data first allows for a precise characterization of the interaction as a rubbing event involving the first torsional mode of a single blade. Numerical results are in good agreement with experimental observations: the critical angular speed, the wear patterns on the casing as well as the blade dynamics are accurately predicted. Through out the article, the in-house numerical strategy is also confronted to another numerical strategy that may be found in the literature for the simulation of rubbing events: key differences are underlined with respect to the prediction of non-linear interaction phenomena.
NASA Technical Reports Server (NTRS)
Kovich, G.
1972-01-01
The cavitating performance of a stainless steel 80.6 degree flat-plate helical inducer was investigated in water over a range of liquid temperatures and flow coefficients. A semi-empirical prediction method was used to compare predicted values of required net positive suction head in water with experimental values obtained in water. Good agreement was obtained between predicted and experimental data in water. The required net positive suction head in water decreased with increasing temperature and increased with flow coefficient, similar to that observed for a like inducer in liquid hydrogen.
NASA Technical Reports Server (NTRS)
Rebbechi, Brian; Forrester, B. David; Oswald, Fred B.; Townsend, Dennis P.
1992-01-01
A comparison was made between computer model predictions of gear dynamics behavior and experimental results. The experimental data were derived from the NASA gear noise rig, which was used to record dynamic tooth loads and vibration. The experimental results were compared with predictions from the DSTO Aeronautical Research Laboratory's gear dynamics code for a matrix of 28 load speed points. At high torque the peak dynamic load predictions agree with the experimental results with an average error of 5 percent in the speed range 800 to 6000 rpm. Tooth separation (or bounce), which was observed in the experimental data for light torque, high speed conditions, was simulated by the computer model. The model was also successful in simulating the degree of load sharing between gear teeth in the multiple tooth contact region.
Control of Boundary Layers for Aero-optical Applications
2015-06-23
range of subsonic and supersonic Mach numbers was developed and shown to correctly predict experimentally-observed reductions. Heating the wall allows...40 3.3 Extension to supersonic speeds...boundary layers at supersonic speeds. Comparing the model prediction to the experimental results, it was speculated that while the pressure effects can
Microstructure and rheology of thermoreversible nanoparticle gels.
Ramakrishnan, S; Zukoski, C F
2006-08-29
Naïve mode coupling theory is applied to particles interacting with short-range Yukawa attractions. Model results for the location of the gel line and the modulus of the resulting gels are reduced to algebraic equations capturing the effects of the range and strength of attraction. This model is then applied to thermo reversible gels composed of octadecyl silica particles suspended in decalin. The application of the model to the experimental system requires linking the experimental variable controlling strength of attraction, temperature, to the model strength of attraction. With this link, the model predicts temperature and volume fraction dependencies of gelation and modulus with five parameters: particle size, particle volume fraction, overlap volume of surface hairs, and theta temperature. In comparing model predictions with experimental results, we first observe that in these thermal gels there is no evidence of clustering as has been reported in depletion gels. One consequence of this observation is that there are no additional adjustable parameters required to make quantitative comparisons between experimental results and model predictions. Our results indicate that the naïve mode coupling approach taken here in conjunction with a model linking temperature to strength of attraction provides a robust approach for making quantitative predictions of gel mechanical properties. Extension of model predictions to additional experimental systems requires linking experimental variables to the Yukawa strength and range of attraction.
NASA Technical Reports Server (NTRS)
Hixon, Ray; Envia, Edmane; Dahl, Milo; Sutliff, Daniel L.
2014-01-01
In this paper, numerical predictions of acoustic transmission through a 3D stator obtained using the NASA BASS code are compared with experimentally measured data. The influence of vane count and stagger as well as frequency and mode order on the transmission loss is investigated. The data-theory comparisons indicate that BASS can predict all the important trends observed in the experimental data.
NASA Technical Reports Server (NTRS)
Hixon, Ray; Envia, Edmane; Dahl, Milo; Sutliff, Daniel
2014-01-01
In this paper, numerical predictions of acoustic transmission through a 3D stator obtained using the NASA BASS code are compared with experimentally measured data. The influence of vane count and stagger as well as frequency and mode order on the transmission loss is investigated. The data-theory comparisons indicate that BASS can predict all the important trends observed in the experimental data.
Hansson, Sven Ove
2016-06-01
An experiment, in the standard scientific sense of the term, is a procedure in which some object of study is subjected to interventions (manipulations) that aim at obtaining a predictable outcome or at least predictable aspects of the outcome. The distinction between an experiment and a non-experimental observation is important since they are tailored to different epistemic needs. Experimentation has its origin in pre-scientific technological experiments that were undertaken in order to find the best technological means to achieve chosen ends. Important parts of the methodological arsenal of modern experimental science can be traced back to this pre-scientific, technological tradition. It is claimed that experimentation involves a unique combination of acting and observing, a combination whose unique epistemological properties have not yet been fully clarified.
Experimental Observation of Thermal Self-Modulation in OPO
NASA Technical Reports Server (NTRS)
Gao, Jiangrui; Wang, Hai; Xie, Changde; Peng, Kunchi
1996-01-01
The thermal self-modulation has been observed experimentally via SHG in OPO. The threshold pump power for the thermal self- modulation is much smaller than that of the nonlinear self-pulsing. The thermal effect prevent from realizing the theoretical prediction for the self-pulsing.
The essential value of long-term experimental data for hydrology and water management
NASA Astrophysics Data System (ADS)
Tetzlaff, Doerthe; Carey, Sean K.; McNamara, James P.; Laudon, Hjalmar; Soulsby, Chris
2017-04-01
Observations and data from long-term experimental watersheds are the foundation of hydrology as a geoscience. They allow us to benchmark process understanding, observe trends and natural cycles, and are prerequisites for testing predictive models. Long-term experimental watersheds also are places where new measurement technologies are developed. These studies offer a crucial evidence base for understanding and managing the provision of clean water supplies, predicting and mitigating the effects of floods, and protecting ecosystem services provided by rivers and wetlands. They also show how to manage land and water in an integrated, sustainable way that reduces environmental and economic costs.
Effects of environmental change on plant species density: Comparing predictions with experiments
Gough, L.; Grace, J.B.
1999-01-01
Ideally, general ecological relationships may be used to predict responses of natural communities to environmental change, but few attempts have been made to determine the reliability of predictions based on descriptive data. Using a previously published structural equation model (SEM) of descriptive data from a coastal marsh landscape, we compared these predictions against observed changes in plant species density resulting from field experiments (manipulations of soil fertility, flooding, salinity, and mammalian herbivory) in two areas within the same marsh. In general, observed experimental responses were fairly consistent with predictions. The largest discrepancy occurred when sods were transplanted from high- to low-salinity sites and herbivores selectively consumed a particularly palatable plant species in the transplanted sods. Individual plot responses to some treatments were predicted more accurately than others. Individual fertilized plot responses were not consistent with predictions (P > 0.05), nor were fenced plots (herbivore exclosures; R2 = 0.15) compared to unfenced plots (R2 = 0.53). For the remaining treatments, predictions reasonably matched responses (R2 = 0.63). We constructed an SEM for the experimental data; it explained 60% of the variance in species density and showed that fencing and fertilization led to decreases in species density that were not predicted from treatment effects on community biomass or observed disturbance levels. These treatments may have affected the ratio of live to dead biomass, and competitive exclusion likely decreased species density in fenced and fertilized plots. We conclude that experimental validation is required to determine the predictive value of comparative relationships derived from descriptive data.
Gypsum crystals observed in experimental and natural sea ice
NASA Astrophysics Data System (ADS)
Geilfus, N.-X.; Galley, R. J.; Cooper, M.; Halden, N.; Hare, A.; Wang, F.; Søgaard, D. H.; Rysgaard, S.
2013-12-01
gypsum has been predicted to precipitate in sea ice, it has never been observed. Here we provide the first report on gypsum precipitation in both experimental and natural sea ice. Crystals were identified by X-ray diffraction analysis. Based on their apparent distinguishing characteristics, the gypsum crystals were identified as being authigenic. The FREeZing CHEMistry (FREZCHEM) model results support our observations of both gypsum and ikaite precipitation at typical in situ sea ice temperatures and confirms the "Gitterman pathway" where gypsum is predicted to precipitate. The occurrence of authigenic gypsum in sea ice during its formation represents a new observation of precipitate formation and potential marine deposition in polar seas.
Baronio, Fabio; Andreana, Marco; Conforti, Matteo; Manili, Gabriele; Couderc, Vincent; De Angelis, Costantino; Barthélémy, Alain
2011-07-04
We consider the spectral theory of three-wave interactions to predict the initiation, formation and dynamics of an ensemble of bright-dark-bright soliton triads in frequency conversion processes. Spatial observation of non-interacting triads ensemble in a KTP crystal confirms theoretical prediction and numerical simulations.
Understanding heat and fluid flow in linear GTA welds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zacharia, T.; David, S.A.; Vitek, J.M.
1992-01-01
A transient heat flow and fluid flow model was used to predict the development of gas tungsten arc (GTA) weld pools in 1.5 mm thick AISI 304 SS. The welding parameters were chosen so as to correspond to an earlier experimental study which produced high-resolution surface temperature maps. The motivation of the present study was to verify the predictive capability of the computational model. Comparison of the numerical predictions and experimental observations indicate good agreement.
Understanding heat and fluid flow in linear GTA welds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zacharia, T.; David, S.A.; Vitek, J.M.
1992-12-31
A transient heat flow and fluid flow model was used to predict the development of gas tungsten arc (GTA) weld pools in 1.5 mm thick AISI 304 SS. The welding parameters were chosen so as to correspond to an earlier experimental study which produced high-resolution surface temperature maps. The motivation of the present study was to verify the predictive capability of the computational model. Comparison of the numerical predictions and experimental observations indicate good agreement.
NASA Astrophysics Data System (ADS)
Zhang, Min; Liang, Zuozhong; Wu, Fei; Chen, Jian-Feng; Xue, Chunyu; Zhao, Hong
2017-06-01
We selected the crystal structures of ibuprofen with seven common space groups (Cc, P21/c, P212121, P21, Pbca, Pna21, and Pbcn), which was generated from ibuprofen molecule by molecular simulation. The predicted crystal structures of ibuprofen with space group P21/c has the lowest total energy and the largest density, which is nearly indistinguishable with experimental result. In addition, the XRD patterns for predicted crystal structure are highly consistent with recrystallization from solvent of ibuprofen. That indicates that the simulation can accurately predict the crystal structure of ibuprofen from the molecule. Furthermore, based on this crystal structure, we predicted the crystal habit in vacuum using the attachment energy (AE) method and considered solvent effects in a systematic way using the modified attachment energy (MAE) model. The simulation can accurately construct a complete process from molecule to crystal structure to morphology prediction. Experimentally, we observed crystal morphologies in four different polarity solvents compounds (ethanol, acetonitrile, ethyl acetate, and toluene). We found that the aspect ratio decreases of crystal habits in this ibuprofen system were found to vary with increasing solvent relative polarity. Besides, the modified crystal morphologies are in good agreement with the observed experimental morphologies. Finally, this work may guide computer-aided design of the desirable crystal morphology.
Testing for ontological errors in probabilistic forecasting models of natural systems
Marzocchi, Warner; Jordan, Thomas H.
2014-01-01
Probabilistic forecasting models describe the aleatory variability of natural systems as well as our epistemic uncertainty about how the systems work. Testing a model against observations exposes ontological errors in the representation of a system and its uncertainties. We clarify several conceptual issues regarding the testing of probabilistic forecasting models for ontological errors: the ambiguity of the aleatory/epistemic dichotomy, the quantification of uncertainties as degrees of belief, the interplay between Bayesian and frequentist methods, and the scientific pathway for capturing predictability. We show that testability of the ontological null hypothesis derives from an experimental concept, external to the model, that identifies collections of data, observed and not yet observed, that are judged to be exchangeable when conditioned on a set of explanatory variables. These conditional exchangeability judgments specify observations with well-defined frequencies. Any model predicting these behaviors can thus be tested for ontological error by frequentist methods; e.g., using P values. In the forecasting problem, prior predictive model checking, rather than posterior predictive checking, is desirable because it provides more severe tests. We illustrate experimental concepts using examples from probabilistic seismic hazard analysis. Severe testing of a model under an appropriate set of experimental concepts is the key to model validation, in which we seek to know whether a model replicates the data-generating process well enough to be sufficiently reliable for some useful purpose, such as long-term seismic forecasting. Pessimistic views of system predictability fail to recognize the power of this methodology in separating predictable behaviors from those that are not. PMID:25097265
Combined mechanical loading of composite tubes
NASA Technical Reports Server (NTRS)
Derstine, Mark S.; Pindera, Marek-Jerzy; Bowles, David E.
1988-01-01
An analytical/experimental investigation was performed to study the effect of material nonlinearities on the response of composite tubes subjected to combined axial and torsional loading. The effect of residual stresses on subsequent mechanical response was included in the investigation. Experiments were performed on P75/934 graphite-epoxy tubes with a stacking sequence of (15/0/ + or - 10/0/ -15), using pure torsion and combined axial/torsional loading. In the presence of residual stresses, the analytical model predicted a reduction in the initial shear modulus. Experimentally, coupling between axial loading and shear strain was observed in laminated tubes under combined loading. The phenomenon was predicted by the nonlinear analytical model. The experimentally observed linear limit of the global shear response was found to correspond to the analytically predicted first ply failure. Further, the failure of the tubes was found to be path dependent above a critical load level.
High Reynolds number analysis of an axisymmetric afterbody with flow separation
NASA Technical Reports Server (NTRS)
Carlson, John R.; Reubush, David E.
1996-01-01
The ability of a three-dimensional Navier-Stokes method, PAB3D, to predict nozzle afterbody flow at high Reynolds number was assessed. Predicted surface pressure coefficient distributions and integrated afterbody drag are compared with experimental data obtained from the NASA-Langley 0.3 m Transonic Cryogenic Tunnel. Predicted afterbody surface pressures matched experimental data fairly closely. The change in the pressure coefficient distribution with Reynolds number was slightly over-predicted. Integrated afterbody drag was typically high compared to the experimental data. The change in afterbody pressure drag with Reynolds number was fairly small. The predicted point of flow separation on the nozzle was slightly downstream of that observed from oilflow data at low Reynolds numbers and had a very slight Reynolds number dependence, moving slightly further downstream as Reynolds number increased.
Bryan, Allen W; O’Donnell, Charles W; Menke, Matthew; Cowen, Lenore J; Lindquist, Susan; Berger, Bonnie
2012-01-01
The supersecondary structure of amyloids and prions, proteins of intense clinical and biological interest, are difficult to determine by standard experimental or computational means. In addition, significant conformational heterogeneity is known or suspected to exist in many amyloid fibrils. Previous work has demonstrated that probability-based prediction of discrete β-strand pairs can offer insight into these structures. Here, we devise a system of energetic rules that can be used to dynamically assemble these discrete β-strand pairs into complete amyloid β-structures. The STITCHER algorithm progressively ‘stitches’ strand-pairs into full β-sheets based on a novel free-energy model, incorporating experimentally observed amino-acid side-chain stacking contributions, entropic estimates, and steric restrictions for amyloidal parallel β-sheet construction. A dynamic program computes the top 50 structures and returns both the highest scoring structure and a consensus structure taken by polling this list for common discrete elements. Putative structural heterogeneity can be inferred from sequence regions that compose poorly. Predictions show agreement with experimental models of Alzheimer’s amyloid beta peptide and the Podospora anserina Het-s prion. Predictions of the HET-s homolog HET-S also reflect experimental observations of poor amyloid formation. We put forward predicted structures for the yeast prion Sup35, suggesting N-terminal structural stability enabled by tyrosine ladders, and C-terminal heterogeneity. Predictions for the Rnq1 prion and alpha-synuclein are also given, identifying a similar mix of homogenous and heterogeneous secondary structure elements. STITCHER provides novel insight into the energetic basis of amyloid structure, provides accurate structure predictions, and can help guide future experimental studies. Proteins 2012. © 2011 Wiley Periodicals, Inc. PMID:22095906
Bryan, Allen W; O'Donnell, Charles W; Menke, Matthew; Cowen, Lenore J; Lindquist, Susan; Berger, Bonnie
2012-02-01
The supersecondary structure of amyloids and prions, proteins of intense clinical and biological interest, are difficult to determine by standard experimental or computational means. In addition, significant conformational heterogeneity is known or suspected to exist in many amyloid fibrils. Previous work has demonstrated that probability-based prediction of discrete β-strand pairs can offer insight into these structures. Here, we devise a system of energetic rules that can be used to dynamically assemble these discrete β-strand pairs into complete amyloid β-structures. The STITCHER algorithm progressively 'stitches' strand-pairs into full β-sheets based on a novel free-energy model, incorporating experimentally observed amino-acid side-chain stacking contributions, entropic estimates, and steric restrictions for amyloidal parallel β-sheet construction. A dynamic program computes the top 50 structures and returns both the highest scoring structure and a consensus structure taken by polling this list for common discrete elements. Putative structural heterogeneity can be inferred from sequence regions that compose poorly. Predictions show agreement with experimental models of Alzheimer's amyloid beta peptide and the Podospora anserina Het-s prion. Predictions of the HET-s homolog HET-S also reflect experimental observations of poor amyloid formation. We put forward predicted structures for the yeast prion Sup35, suggesting N-terminal structural stability enabled by tyrosine ladders, and C-terminal heterogeneity. Predictions for the Rnq1 prion and alpha-synuclein are also given, identifying a similar mix of homogenous and heterogeneous secondary structure elements. STITCHER provides novel insight into the energetic basis of amyloid structure, provides accurate structure predictions, and can help guide future experimental studies. Copyright © 2011 Wiley Periodicals, Inc.
Three-Wave Gas Journal Bearing Behavior With Shaft Runout
NASA Technical Reports Server (NTRS)
Dimofte, Florin; Hendricks, Robert C.
1997-01-01
Experimental orbits of a free-mounted, three-wave gas journal bearing housing were recorded and compared to transient predicted orbits. The shaft was mounted eccentric with a fixed runout. Experimental observations for both the absolute bearing housing center orbits and the relative bearing housing center to shaft center orbits are in good agreement with the predictions. The sub-synchronous whirl motion generated by the fluid film was found experimentally and predicted theoretically for certain speeds. A three-wave journal bearing can run stably under dynamic loads with orbits well inside the bearing clearance. Moreover, the orbits are almost circular free of the influence of bearing wave shape.
Stress enhanced calcium kinetics in a neuron.
Kant, Aayush; Bhandakkar, Tanmay K; Medhekar, Nikhil V
2018-02-01
Accurate modeling of the mechanobiological response of a Traumatic Brain Injury is beneficial toward its effective clinical examination, treatment and prevention. Here, we present a stress history-dependent non-spatial kinetic model to predict the microscale phenomena of secondary insults due to accumulation of excess calcium ions (Ca[Formula: see text]) induced by the macroscale primary injuries. The model is able to capture the experimentally observed increase and subsequent partial recovery of intracellular Ca[Formula: see text] concentration in response to various types of mechanical impulses. We further establish the accuracy of the model by comparing our predictions with key experimental observations.
Observation of solid–solid transitions in 3D crystals of colloidal superballs
Meijer, Janne-Mieke; Pal, Antara; Ouhajji, Samia; Lekkerkerker, Henk N. W.; Philipse, Albert P.; Petukhov, Andrei V.
2017-01-01
Self-organization in anisotropic colloidal suspensions leads to a fascinating range of crystal and liquid crystal phases induced by shape alone. Simulations predict the phase behaviour of a plethora of shapes while experimental realization often lags behind. Here, we present the experimental phase behaviour of superball particles with a shape in between that of a sphere and a cube. In particular, we observe the formation of a plastic crystal phase with translational order and orientational disorder, and the subsequent transformation into rhombohedral crystals. Moreover, we uncover that the phase behaviour is richer than predicted, as we find two distinct rhombohedral crystals with different stacking variants, namely hollow-site and bridge-site stacking. In addition, for slightly softer interactions we observe a solid–solid transition between the two. Our investigation brings us one step closer to ultimately controlling the experimental self-assembly of superballs into functional materials, such as photonic crystals. PMID:28186101
NASA Astrophysics Data System (ADS)
Labahn, Jeffrey William; Devaud, Cecile
2017-05-01
A Reynolds-Averaged Navier-Stokes (RANS) simulation of the semi-industrial International Flame Research Foundation (IFRF) furnace is performed using a non-adiabatic Conditional Source-term Estimation (CSE) formulation. This represents the first time that a CSE formulation, which accounts for the effect of radiation on the conditional reaction rates, has been applied to a large scale semi-industrial furnace. The objective of the current study is to assess the capabilities of CSE to accurately reproduce the velocity field, temperature, species concentration and nitrogen oxides (NOx) emission for the IFRF furnace. The flow field is solved using the standard k-ε turbulence model and detailed chemistry is included. NOx emissions are calculated using two different methods. Predicted velocity profiles are in good agreement with the experimental data. The predicted peak temperature occurs closer to the centreline, as compared to the experimental observations, suggesting that the mixing between the fuel jet and vitiated air jet may be overestimated. Good agreement between the species concentrations, including NOx, and the experimental data is observed near the burner exit. Farther downstream, the centreline oxygen concentration is found to be underpredicted. Predicted NOx concentrations are in good agreement with experimental data when calculated using the method of Peters and Weber. The current study indicates that RANS-CSE can accurately predict the main characteristics seen in a semi-industrial IFRF furnace.
Experimental test of quantum nonlocality in three-photon Greenberger-Horne-Zeilinger entanglement
Pan; Bouwmeester; Daniell; Weinfurter; Zeilinger
2000-02-03
Bell's theorem states that certain statistical correlations predicted by quantum physics for measurements on two-particle systems cannot be understood within a realistic picture based on local properties of each individual particle-even if the two particles are separated by large distances. Einstein, Podolsky and Rosen first recognized the fundamental significance of these quantum correlations (termed 'entanglement' by Schrodinger) and the two-particle quantum predictions have found ever-increasing experimental support. A more striking conflict between quantum mechanical and local realistic predictions (for perfect correlations) has been discovered; but experimental verification has been difficult, as it requires entanglement between at least three particles. Here we report experimental confirmation of this conflict, using our recently developed method to observe three-photon entanglement, or 'Greenberger-Horne-Zeilinger' (GHZ) states. The results of three specific experiments, involving measurements of polarization correlations between three photons, lead to predictions for a fourth experiment; quantum physical predictions are mutually contradictory with expectations based on local realism. We find the results of the fourth experiment to be in agreement with the quantum prediction and in striking conflict with local realism.
Pseudoracemic amino acid complexes: blind predictions for flexible two-component crystals.
Görbitz, Carl Henrik; Dalhus, Bjørn; Day, Graeme M
2010-08-14
Ab initio prediction of the crystal packing in complexes between two flexible molecules is a particularly challenging computational chemistry problem. In this work we present results of single crystal structure determinations as well as theoretical predictions for three 1 ratio 1 complexes between hydrophobic l- and d-amino acids (pseudoracemates), known from previous crystallographic work to form structures with one of two alternative hydrogen bonding arrangements. These are accurately reproduced in the theoretical predictions together with a series of patterns that have never been observed experimentally. In this bewildering forest of potential polymorphs, hydrogen bonding arrangements and molecular conformations, the theoretical predictions succeeded, for all three complexes, in finding the correct hydrogen bonding pattern. For two of the complexes, the calculations also reproduce the exact space group and side chain orientations in the best ranked predicted structure. This includes one complex for which the observed crystal packing clearly contradicted previous experience based on experimental data for a substantial number of related amino acid complexes. The results highlight the significant recent advances that have been made in computational methods for crystal structure prediction.
Dahl, Joanna B; Narsimhan, Vivek; Gouveia, Bernardo; Kumar, Sanjay; Shaqfeh, Eric S G; Muller, Susan J
2016-04-20
Vesicles provide an attractive model system to understand the deformation of living cells in response to mechanical forces. These simple, enclosed lipid bilayer membranes are suitable for complementary theoretical, numerical, and experimental analysis. A recent study [Narsimhan, Spann, Shaqfeh, J. Fluid Mech., 2014, 750, 144] predicted that intermediate-aspect-ratio vesicles extend asymmetrically in extensional flow. Upon infinitesimal perturbation to the vesicle shape, the vesicle stretches into an asymmetric dumbbell with a cylindrical thread separating the two ends. While the symmetric stretching of high-aspect-ratio vesicles in extensional flow has been observed and characterized [Kantsler, Segre, Steinberg, Phys. Rev. Lett., 2008, 101, 048101] as well as recapitulated in numerical simulations by Narsimhan et al., experimental observation of the asymmetric stretching has not been reported. In this work, we present results from microfluidic cross-slot experiments observing this instability, along with careful characterization of the flow field, vesicle shape, and vesicle bending modulus. The onset of this shape transition depends on two non-dimensional parameters: reduced volume (a measure of vesicle asphericity) and capillary number (ratio of viscous to bending forces). We observed that every intermediate-reduced-volume vesicle that extends forms a dumbbell shape that is indeed asymmetric. For the subset of the intermediate-reduced-volume regime we could capture experimentally, we present an experimental phase diagram for asymmetric vesicle stretching that is consistent with the predictions of Narsimhan et al.
Analysis of intrinsic optical bistability in Tm-doped laser-related crystals
NASA Astrophysics Data System (ADS)
Noginov, M. A.; Vondrova, M.; Casimir, D.
2003-11-01
We predict and theoretically study intrinsic optical bistability (IOB) mediated by nonlinear energy transfer processes in rare-earth-doped laser-related crystals. In particular, we investigate Tm-Ho and Tm-Yb systems, in which avalanche pumping is overimposed by energy transfer up-conversion. We predict that IOB can be experimentally observed in (Tm,Yb):BaY2F8 crystals in a wide range of experimentally achievable parameters.
Wave Journal Bearings Under Dynamic Loads
NASA Technical Reports Server (NTRS)
Hendricks, Robert C.; Dimofte, Florin
2002-01-01
The dynamic behavior of the wave journal bearing was determined by running a three-wave bearing with an eccentrically mounted shaft. A transient analysis was developed and used to predict numerical data for the experimental cases. The three-wave journal bearing ran stably under dynamic loads with orbits well inside the bearing clearance. The orbits were almost circular and nearly free of the influence of, but dynamically dependent on, bearing wave shape. Experimental observations for both the absolute bearing-housing-center orbits and the relative bearing-housing-center-to-shaft-center orbits agreed well with the predictions. Moreover, the subsynchronous whirl motion generated by the fluid film was found experimentally and predicted theoretically for certain speeds.
Quantum Monte Carlo study of the phase diagram of solid molecular hydrogen at extreme pressures
Drummond, N. D.; Monserrat, Bartomeu; Lloyd-Williams, Jonathan H.; Ríos, P. López; Pickard, Chris J.; Needs, R. J.
2015-01-01
Establishing the phase diagram of hydrogen is a major challenge for experimental and theoretical physics. Experiment alone cannot establish the atomic structure of solid hydrogen at high pressure, because hydrogen scatters X-rays only weakly. Instead, our understanding of the atomic structure is largely based on density functional theory (DFT). By comparing Raman spectra for low-energy structures found in DFT searches with experimental spectra, candidate atomic structures have been identified for each experimentally observed phase. Unfortunately, DFT predicts a metallic structure to be energetically favoured at a broad range of pressures up to 400 GPa, where it is known experimentally that hydrogen is non-metallic. Here we show that more advanced theoretical methods (diffusion quantum Monte Carlo calculations) find the metallic structure to be uncompetitive, and predict a phase diagram in reasonable agreement with experiment. This greatly strengthens the claim that the candidate atomic structures accurately model the experimentally observed phases. PMID:26215251
Ahammad, S Ziauddin; Gomes, James; Sreekrishnan, T R
2011-09-01
Anaerobic degradation of waste involves different classes of microorganisms, and there are different types of interactions among them for substrates, terminal electron acceptors, and so on. A mathematical model is developed based on the mass balance of different substrates, products, and microbes present in the system to study the interaction between methanogens and sulfate-reducing bacteria (SRB). The performance of major microbial consortia present in the system, such as propionate-utilizing acetogens, butyrate-utilizing acetogens, acetoclastic methanogens, hydrogen-utilizing methanogens, and SRB were considered and analyzed in the model. Different substrates consumed and products formed during the process also were considered in the model. The experimental observations and model predictions showed very good prediction capabilities of the model. Model prediction was validated statistically. It was observed that the model-predicted values matched the experimental data very closely, with an average error of 3.9%.
Saravanan, Konda Mani; Dunker, A Keith; Krishnaswamy, Sankaran
2017-12-27
More than 60 prediction methods for intrinsically disordered proteins (IDPs) have been developed over the years, many of which are accessible on the World Wide Web. Nearly, all of these predictors give balanced accuracies in the ~65%-~80% range. Since predictors are not perfect, further studies are required to uncover the role of amino acid residues in native IDP as compared to predicted IDP regions. In the present work, we make use of sequences of 100% predicted IDP regions, false positive disorder predictions, and experimentally determined IDP regions to distinguish the characteristics of native versus predicted IDP regions. A higher occurrence of asparagine is observed in sequences of native IDP regions but not in sequences of false positive predictions of IDP regions. The occurrences of certain combinations of amino acids at the pentapeptide level provide a distinguishing feature in the IDPs with respect to globular proteins. The distinguishing features presented in this paper provide insights into the sequence fingerprints of amino acid residues in experimentally determined as compared to predicted IDP regions. These observations and additional work along these lines should enable the development of improvements in the accuracy of disorder prediction algorithm.
Observation of shock transverse waves in elastic media.
Catheline, S; Gennisson, J-L; Tanter, M; Fink, M
2003-10-17
We report the first experimental observation of a shock transverse wave propagating in an elastic medium. This observation was possible because the propagation medium, a soft solid, allows one to reach a very high Mach number. In this extreme configuration, the shock formation is observed over a distance of less than a few wavelengths, thanks to a prototype of an ultrafast scanner (that acquires 5000 frames per second). A comparison of these new experimental data with theoretical predictions, based on a modified Burger's equation, shows good agreement.
Bandyopadhyay, Pradipta; Kuntz, Irwin D
2009-01-01
The determination of protein structure using distance constraints is a new and promising field of study. One implementation involves attaching residues of a protein using a cross-linking agent, followed by protease digestion, analysis of the resulting peptides by mass spectroscopy, and finally sequence threading to detect the protein folds. In the present work, we carry out computational modeling of the kinetics of cross-linking reactions in proteins using the master equation approach. The rate constants of the cross-linking reactions are estimated using the pKas and the solvent-accessible surface areas of the residues involved. This model is tested with fibroblast growth factor (FGF) and cytochrome C. It is consistent with the initial experimental rate data for individual lysine residues for cytochrome C. Our model captures all observed cross-links for FGF and almost 90% of the observed cross-links for cytochrome C, although it also predicts cross-links that were not observed experimentally (false positives). However, the analysis of the false positive results is complicated by the fact that experimental detection of cross-links can be difficult and may depend on specific experimental conditions such as pH, ionic strength. Receiver operator characteristic plots showed that our model does a good job in predicting the observed cross-links. Molecular dynamics simulations showed that for cytochrome C, in general, the two lysines come closer for the observed cross-links as compared to the false positive ones. For FGF, no such clear pattern exists. The kinetic model and MD simulation can be used to study proposed cross-linking protocols.
Observation of polarization domain wall solitons in weakly birefringent cavity fiber lasers
NASA Astrophysics Data System (ADS)
Zhang, H.; Tang, D. Y.; Zhao, L. M.; Wu, X.
2009-08-01
We report on the experimental observation of two types of phase-locked vector soliton in weakly birefringent cavity erbium-doped fiber lasers. While a phase-locked dark-dark vector soliton was only observed in fiber lasers of positive dispersion, a phase-locked dark-bright vector soliton was obtained in fiber lasers of either positive or negative dispersion. Numerical simulations confirmed the experimental observations and further showed that the observed vector solitons are the two types of phase-locked polarization domain wall solitons theoretically predicted.
Optimization of Nd: YAG Laser Marking of Alumina Ceramic Using RSM And ANN
NASA Astrophysics Data System (ADS)
Peter, Josephine; Doloi, B.; Bhattacharyya, B.
2011-01-01
The present research papers deals with the artificial neural network (ANN) and the response surface methodology (RSM) based mathematical modeling and also an optimization analysis on marking characteristics on alumina ceramic. The experiments have been planned and carried out based on Design of Experiment (DOE). It also analyses the influence of the major laser marking process parameters and the optimal combination of laser marking process parametric setting has been obtained. The output of the RSM optimal data is validated through experimentation and ANN predictive model. A good agreement is observed between the results based on ANN predictive model and actual experimental observations.
Oral LD50 toxicity modeling and prediction of per- and polyfluorinated chemicals on rat and mouse.
Bhhatarai, Barun; Gramatica, Paola
2011-05-01
Quantitative structure-activity relationship (QSAR) analyses were performed using the LD(50) oral toxicity data of per- and polyfluorinated chemicals (PFCs) on rodents: rat and mouse. PFCs are studied under the EU project CADASTER which uses the available experimental data for prediction and prioritization of toxic chemicals for risk assessment by using the in silico tools. The methodology presented here applies chemometrical analysis on the existing experimental data and predicts the toxicity of new compounds. QSAR analyses were performed on the available 58 mouse and 50 rat LD(50) oral data using multiple linear regression (MLR) based on theoretical molecular descriptors selected by genetic algorithm (GA). Training and prediction sets were prepared a priori from available experimental datasets in terms of structure and response. These sets were used to derive statistically robust and predictive (both internally and externally) models. The structural applicability domain (AD) of the models were verified on 376 per- and polyfluorinated chemicals including those in REACH preregistration list. The rat and mouse endpoints were predicted by each model for the studied compounds, and finally 30 compounds, all perfluorinated, were prioritized as most important for experimental toxicity analysis under the project. In addition, cumulative study on compounds within the AD of all four models, including two earlier published models on LC(50) rodent analysis was studied and the cumulative toxicity trend was observed using principal component analysis (PCA). The similarities and the differences observed in terms of descriptors and chemical/mechanistic meaning encoded by descriptors to prioritize the most toxic compounds are highlighted.
NASA Technical Reports Server (NTRS)
Hudson, C. M.; Lewis, P. E.
1979-01-01
A round-robin study was conducted which evaluated and compared different methods currently in practice for predicting crack growth in surface-cracked specimens. This report describes the prediction methods used by the Fracture Mechanics Engineering Section, at NASA-Langley Research Center, and presents a comparison between predicted crack growth and crack growth observed in laboratory experiments. For tests at higher stress levels, the correlation between predicted and experimentally determined crack growth was generally quite good. For tests at lower stress levels, the predicted number of cycles to reach a given crack length was consistently higher than the experimentally determined number of cycles. This consistent overestimation of the number of cycles could have resulted from a lack of definition of crack-growth data at low values of the stress intensity range. Generally, the predicted critical flaw sizes were smaller than the experimentally determined critical flaw sizes. This underestimation probably resulted from using plane-strain fracture toughness values to predict failure rather than the more appropriate values based on maximum load.
NASA Astrophysics Data System (ADS)
Yoon, Heonjun; Kim, Miso; Park, Choon-Su; Youn, Byeng D.
2018-01-01
Piezoelectric vibration energy harvesting (PVEH) has received much attention as a potential solution that could ultimately realize self-powered wireless sensor networks. Since most ambient vibrations in nature are inherently random and nonstationary, the output performances of PVEH devices also randomly change with time. However, little attention has been paid to investigating the randomly time-varying electroelastic behaviors of PVEH systems both analytically and experimentally. The objective of this study is thus to make a step forward towards a deep understanding of the time-varying performances of PVEH devices under nonstationary random vibrations. Two typical cases of nonstationary random vibration signals are considered: (1) randomly-varying amplitude (amplitude modulation; AM) and (2) randomly-varying amplitude with randomly-varying instantaneous frequency (amplitude and frequency modulation; AM-FM). In both cases, this study pursues well-balanced correlations of analytical predictions and experimental observations to deduce the relationships between the time-varying output performances of the PVEH device and two primary input parameters, such as a central frequency and an external electrical resistance. We introduce three correlation metrics to quantitatively compare analytical prediction and experimental observation, including the normalized root mean square error, the correlation coefficient, and the weighted integrated factor. Analytical predictions are in an excellent agreement with experimental observations both mechanically and electrically. This study provides insightful guidelines for designing PVEH devices to reliably generate electric power under nonstationary random vibrations.
Moorkanikkara, Srinivas Nageswaran; Blankschtein, Daniel
2009-02-03
Traditionally, surfactant bulk solutions in which dynamic surface tension (DST) measurements are conducted using the pendant-bubble apparatus are assumed to be quiescent. Consequently, the transport of surfactant molecules in the bulk solution is often modeled as being purely diffusive when analyzing the experimental pendant-bubble DST data. In this Article, we analyze the experimental pendant-bubble DST data of the alkyl poly (ethylene oxide) nonionic surfactants, C12E4 and C12E6, and demonstrate that both surfactants exhibit "superdiffusive" adsorption kinetics behavior with characteristics that challenge the traditional assumption of a quiescent surfactant bulk solution. In other words, the observed superdiffusive adsorption behavior points to the possible existence of convection currents in the surfactant bulk solution. The analysis presented here involves the following steps: (1) constructing an adsorption kinetics model that corresponds to the fastest rate at which surfactant molecules adsorb onto the actual pendant-bubble surface from a quiescent solution, (2) predicting the DST behaviors of C12E4 and C12E6 at several surfactant bulk solution concentrations using the model constructed in step 1, and (3) comparing the predicted DST profiles with the experimental DST profiles. This comparison reveals systematic deviations for both C12E4 and C12E6 with the following characteristics: (a) the experimental DST profiles exhibit adsorption kinetics behavior, which is faster than the predicted fastest rate of surfactant adsorption from a quiescent surfactant bulk solution at time scales greater than 100 s, and (b) the experimental DST profiles and the predicted DST behaviors approach the same equilibrium surface tension values. Characteristic (b) indicates that the cause of the observed systematic deviations may be associated with the adsorption kinetics mechanism adopted in the model used rather than with the equilibrium behavior. Characteristic (a) indicates that the actual surfactant bulk solution in which the DST measurement was conducted, most likely, cannot be considered to be quiescent at time scales greater than 100 s. Accordingly, the observed superdiffusive adsorption behavior is interpreted as resulting from convection currents present in a nonquiescent surfactant bulk solution. Convection currents accelerate the surfactant adsorption process by increasing the rate of surfactant transport in the bulk solution. The systematic nature of the deviations observed between the predicted DST profiles and the experimental DST behavior for C12E4 and C12E6 suggests that the nonquiescent nature of the surfactant bulk solution may be intrinsic to the experimental pendant-bubble DST measurement approach. To validate this possibility, we identified generic features in the experimental DST data when DST measurements are conducted in a nonquiescent surfactant bulk solution, and the DST measurements are analyzed assuming that the surfactant bulk solution is quiescent. An examination of the DST literature reveals that these identified generic features are quite general and are observed in the experimental DST data of several other surfactants (decanol, nonanol, C10E8, C14E8, C12E8, and C10E4) measured using the pendant-bubble apparatus.
The essential value of long-term experimental data for hydrology and water management
NASA Astrophysics Data System (ADS)
Tetzlaff, D.; Carey, S. K.; McNamara, J. P.; Laudon, H.; Soulsby, C.
2017-12-01
Observations and data from long-term experimental watersheds are the foundation of hydrology as a geoscience. They allow us to benchmark process understanding, observe trends and natural cycles, and are pre-requisites for testing predictive models. Long-term experimental watersheds also are places where new measurement technologies are developed. These studies offer a crucial evidence base for understanding and managing the provision of clean water supplies; predicting and mitigating the effects of floods, and protecting ecosystem services provided by rivers and wetlands. They also show how to manage land and water in an integrated, sustainable way that reduces environmental and economic costs. We present a number of compelling examples illustrating how hydrologic process understanding has been generated through comparing hypotheses to data, and how this understanding has been essential for managing water supplies, floods, and ecosystem services today.
Modeling of coherent ultrafast magneto-optical experiments: Light-induced molecular mean-field model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hinschberger, Y.; Hervieux, P.-A.
2015-12-28
We present calculations which aim to describe coherent ultrafast magneto-optical effects observed in time-resolved pump-probe experiments. Our approach is based on a nonlinear semi-classical Drude-Voigt model and is used to interpret experiments performed on nickel ferromagnetic thin film. Within this framework, a phenomenological light-induced coherent molecular mean-field depending on the polarizations of the pump and probe pulses is proposed whose microscopic origin is related to a spin-orbit coupling involving the electron spins of the material sample and the electric field of the laser pulses. Theoretical predictions are compared to available experimental data. The model successfully reproduces the observed experimental trendsmore » and gives meaningful insight into the understanding of magneto-optical rotation behavior in the ultrafast regime. Theoretical predictions for further experimental studies are also proposed.« less
NASA Technical Reports Server (NTRS)
Ericsson, L. E.; Reding, J. P.
1976-01-01
An analysis of the unsteady aerodynamics of bodies with concave nose geometries was performed. The results show that the experimentally observed pulsating flow on spiked bodies and in forward facing cavities can be described by the developed simple mathematical model of the phenomenon. Static experimental data is used as a basis for determination of the oscillatory frequency of spike-induced flow pulsations. The agreement between predicted and measured reduced frequencies is generally very good. The spiked-body mathematical model is extended to describe the pulsations observed in forward facing cavities and it is shown that not only the frequency but also the pressure time history can be described with the accuracy needed to predict the experimentally observed time average effects. This implies that it should be possible to determine analytically the impact of the flow pulsation on the structural integrity of the nozzles for the jettisoned empty SRM-shells.
NASA Astrophysics Data System (ADS)
El-Rabii, Hazem; Kazakov, Kirill A.
2015-12-01
Premixed flames propagating in horizontal tubes are observed to take on a convex shape towards the fresh mixture, which is commonly explained as a buoyancy effect. A recent rigorous analysis has shown, on the contrary, that this process is driven by the balance of vorticity generated by a curved flame front with the baroclinic vorticity, and predicted existence of a regime in which the leading edge of the flame front is concave. We report experimental realization of this regime. Our experiments on ethane and n -butane mixtures with air show that flames with an inflection point on the front are regularly produced in lean mixtures, provided that a sufficiently weak ignition is used. The observed flame shape perfectly agrees with that theoretically predicted.
NASA Technical Reports Server (NTRS)
Bahler, D. D.; Owen, H. A., Jr.; Wilson, T. G.
1978-01-01
A model describing the turning-on period of a power switching transistor in an energy storage voltage step-up converter is presented. Comparisons between an experimental layout and the circuit model during the turning-on interval demonstrate the ability of the model to closely predict the effects of circuit topology on the performance of the converter. A phenomenon of particular importance that is observed in the experimental circuits and is predicted by the model is the deleterious feedback effect of the parasitic emitter lead inductance on the base current waveform during the turning-on interval.
NASA Technical Reports Server (NTRS)
Barger, R. L.
1981-01-01
Wave-induced resonance associated with the geometry of wind-tunnel test sections can occur. A theory that uses acoustic impedance concepts to predict resonance modes in a two dimensional, slotted wall wind tunnel with a plenum chamber is described. The equation derived is consistent with known results for limiting conditions. The computed resonance modes compare well with appropriate experimental data. When the theory is applied to perforated wall test sections, it predicts the experimentally observed closely spaced modes that occur when the wavelength is not long compared with he plenum depth.
NASA Astrophysics Data System (ADS)
Anyalebechi, P. N.
Reported experimentally determined values of hydrogen solubility in liquid and solid Al-H and Al-H-X (where X = Cu, Si, Zn, Mg, Li, Fe or Ti) systems have been critically reviewed and analyzed in terms of Wagner's interaction parameter. An attempt has been made to use Wagner's interaction parameter and statistic linear regression models derived from reported hydrogen solubility limits for binary aluminum alloys to predict the hydrogen solubility limits in liquid and solid (commercial) multicomponent aluminum alloys. Reasons for the observed poor agreement between the predicted and experimentally determined hydrogen solubility limits are discussed.
Jiménez-Osés, Gonzalo; Brockway, Anthony J; Shaw, Jared T; Houk, K N
2013-05-01
The mechanism of direct displacement of alkoxy groups in vinylogous and aromatic esters by Grignard reagents, a reaction that is not observed with expectedly better tosyloxy leaving groups, is elucidated computationally. The mechanism of this reaction has been determined to proceed through the inner-sphere attack of nucleophilic alkyl groups from magnesium to the reacting carbons via a metalaoxetane transition state. The formation of a strong magnesium chelate with the reacting alkoxy and carbonyl groups dictates the observed reactivity and selectivity. The influence of ester, ketone, and aldehyde substituents was investigated. In some cases, the calculations predicted the formation of products different than those previously reported; these predictions were then verified experimentally. The importance of studying the actual system, and not simplified models as computational systems, is demonstrated.
Jiménez-Osés, Gonzalo; Brockway, Anthony J.; Shaw, Jared T.; Houk, K. N.
2013-01-01
The mechanism of direct displacement of alkoxy groups in vinylogous and aromatic esters by Grignard reagents, a reaction that is not observed with expectedly better tosyloxy leaving groups, is elucidated computationally. The mechanism of this reaction has been determined to proceed through the inner-sphere attack of nucleophilic alkyl groups from magnesium to the reacting carbons via a metalaoxetane transition state. The formation of a strong magnesium chelate with the reacting alkoxy and carbonyl groups dictates the observed reactivity and selectivity. The influence of ester, ketone and aldehyde substituents was investigated. In some cases, the calculations predicted the formation of products different than those previously reported; these predictions were then verified experimentally. The importance of studying the actual system, and not simplified models as computational systems, is demonstrated. PMID:23601086
Computational/Experimental Aeroheating Predictions for X-33. Phase 2; Vehicle
NASA Technical Reports Server (NTRS)
Hamilton, H. Harris, II; Weilmuenster, K. James; Horvath, Thomas J.; Berry, Scott A.
1998-01-01
Laminar and turbulent heating-rate calculations from an "engineering" code and laminar calculations from a "benchmark" Navier-Stokes code are compared with experimental wind-tunnel data obtained on several candidate configurations for the X-33 Phase 2 flight vehicle. The experimental data were obtained at a Mach number of 6 and a freestream Reynolds number ranging from 1 to 8 x 10(exp 6)/ft. Comparisons are presented along the windward symmetry plane and in a circumferential direction around the body at several axial stations at angles of attack from 20 to 40 deg. The experimental results include both laminar and turbulent flow. For the highest angle of attack some of the measured heating data exhibited a "non-laminar" behavior which caused the heating to increase above the laminar level long before "classical" transition to turbulent flow was observed. This trend was not observed at the lower angles of attack. When the flow was laminar, both codes predicted the heating along the windward symmetry plane reasonably well but under-predicted the heating in the chine region. When the flow was turbulent the LATCH code accurately predicted the measured heating rates. Both codes were used to calculate heating rates over the X-33 vehicle at the peak heating point on the design trajectory and they were found to be in very good agreement over most of the vehicle windward surface.
A method to identify and analyze biological programs through automated reasoning
Yordanov, Boyan; Dunn, Sara-Jane; Kugler, Hillel; Smith, Austin; Martello, Graziano; Emmott, Stephen
2016-01-01
Predictive biology is elusive because rigorous, data-constrained, mechanistic models of complex biological systems are difficult to derive and validate. Current approaches tend to construct and examine static interaction network models, which are descriptively rich, but often lack explanatory and predictive power, or dynamic models that can be simulated to reproduce known behavior. However, in such approaches implicit assumptions are introduced as typically only one mechanism is considered, and exhaustively investigating all scenarios is impractical using simulation. To address these limitations, we present a methodology based on automated formal reasoning, which permits the synthesis and analysis of the complete set of logical models consistent with experimental observations. We test hypotheses against all candidate models, and remove the need for simulation by characterizing and simultaneously analyzing all mechanistic explanations of observed behavior. Our methodology transforms knowledge of complex biological processes from sets of possible interactions and experimental observations to precise, predictive biological programs governing cell function. PMID:27668090
DOE Office of Scientific and Technical Information (OSTI.GOV)
Odlyzko, Michael L.; Held, Jacob T.; Mkhoyan, K. Andre, E-mail: mkhoyan@umn.edu
2016-07-15
Quantitatively calibrated annular dark field scanning transmission electron microscopy (ADF-STEM) imaging experiments were compared to frozen phonon multislice simulations adapted to include chemical bonding effects. Having carefully matched simulation parameters to experimental conditions, a depth-dependent bonding effect was observed for high-angle ADF-STEM imaging of aluminum nitride. This result is explained by computational predictions, systematically examined in the preceding portion of this study, showing the propagation of the converged STEM beam to be highly sensitive to net interatomic charge transfer. Thus, although uncertainties in experimental conditions and simulation accuracy remain, the computationally predicted experimental bonding effect withstands the experimental testing reportedmore » here.« less
NASA Technical Reports Server (NTRS)
Lee, H. H.; Hyer, M. W.
1992-01-01
The postbuckling failure of square composite plates with central holes is analyzed numerically and experimentally. The particular plates studies have stacking sequences of: (+ and - 45/0/90)(sub 2S); (+ and - 45/0(sub 2))(sub 2S); (+ and - 45/0(sub 6))(sub S); and (+ and - 45)(sub 4S). A simple plate geometry, one with a hole diameter to plate width ratio of 0.3 is compared. Failure load, failure mode, and failure location are predicted numerically by using the finite element method. Predictions are compared with experimental results. In numerical failure analysis the interlaminar shear stresses, as well as the inplane stresses are taken into account. An issue addressed in this study is the possible mode shape change of the plate during loading. It is predicted that the first three laminates fail due to excessive stresses in the fiber direction, and more importantly, that the load level is independent of whether the laminate is deformed in a one-half or two-half wave configuration. It is predicted that the fourth laminate fails due to excessive inplane shear stress. Interlaminar shear failure is not predicted for any laminates. For the first two laminates the experimental observations correlated well with the predictions. Experimentally, the third laminate failed along the side support due to interlaminar shear strength S(sub 23). The fourth experimental laminate failed due to inplane shear in the location predicted, however material softening resulted in a different failure load from predictions.
Persson, Ann-Sofie; Alderborn, Göran
2018-04-01
The objective was to present a hybrid approach to predict the strength-pressure relationship (SPR) of tablets using common compression parameters and a single measurement of tablet tensile strength. Experimental SPR were derived for six pharmaceutical powders with brittle and ductile properties and compared to predicted SPR based on a three-stage approach. The prediction was based on the Kawakita b -1 parameter and the in-die Heckel yield stress, an estimate of maximal tensile strength, and a parameter proportionality factor α. Three values of α were used to investigate the influence of the parameter on the SPR. The experimental SPR could satisfactorily be described by the three stage model, however for sodium bicarbonate the tensile strength plateau could not be observed experimentally. The shape of the predicted SPR was to a minor extent influenced by the Kawakita b -1 but the width of the linear region was highly influenced by α. An increased α increased the width of the linear region and thus also the maximal predicted tablet tensile strength. Furthermore, the correspondence between experimental and predicted SPR was influenced by the α value and satisfactory predictions were in general obtained for α = 4.1 indicating the predictive potential of the hybrid approach. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Comparison of ionospheric F2 peak parameters foF2 and hmF2 with IRI2001 at Hainan
NASA Astrophysics Data System (ADS)
Wang, X.; Shi, J. K.; Wang, G. J.; Gong, Y.
2009-06-01
Monthly median values of foF2, hmF2 and M(3000)F2 parameters, with quarter-hourly time interval resolution for the diurnal variation, obtained with DPS4 digisonde at Hainan (19.5°N, 109.1°E; Geomagnetic coordinates: 178.95°E, 8.1°N) are used to investigate the low-latitude ionospheric variations and comparisons with the International Reference Ionosphere (IRI) model predictions. The data used for the present study covers the period from February 2002 to April 2007, which is characterized by a wide range of solar activity, ranging from high solar activity (2002) to low solar activity (2007). The results show that (1) Generally, IRI predictions follow well the diurnal and seasonal variation patterns of the experimental values of foF2, especially in the summer of 2002. However, there are systematic deviation between experimental values and IRI predictions with either CCIR or URSI coefficients. Generally IRI model greatly underestimate the values of foF2 from about noon to sunrise of next day, especially in the afternoon, and slightly overestimate them from sunrise to about noon. It seems that there are bigger deviations between IRI Model predictions and the experimental observations for the moderate solar activity. (2) Generally the IRI-predicted hmF2 values using CCIR M(3000)F2 option shows a poor agreement with the experimental results, but there is a relatively good agreement in summer at low solar activity. The deviation between the IRI-predicted hmF2 using CCIR M(3000)F2 and observed hmF2 is bigger from noon to sunset and around sunrise especially at high solar activity. The occurrence time of hmF2 peak (about 1200 LT) of the IRI model predictions is earlier than that of observations (around 1500 LT). The agreement between the IRI hmF2 obtained with the measured M(3000)F2 and the observed hmF2 is very good except that IRI overestimates slightly hmF2 in the daytime in summer at high solar activity and underestimates it in the nighttime with lower values near sunrise at low solar activity.
Axisymmetric Eigenmodes of Spheroidal Pure Electron Plasmas
NASA Astrophysics Data System (ADS)
Kawai, Yosuke; Saitoh, Haruhiko; Yoshida, Zensho; Kiwamoto, Yasuhito
2010-11-01
The axisymmetric electrostatic eigenmodes of spheroidal pure electron plasmas have been studied experimentally. It is confirmed that the observed spheroidal plasma attains a theoretically expected equilibrium density distribution, with the exception of a low-density halo distribution surrounding the plasma. When the eigenmode frequency observed for the plasma is compared with the frequency predicted by the dispersion relation derived under ideal conditions wherein the temperature is zero and the boundary is located at an infinite distance from the plasma, it is observed that the absolute value of the observed frequency is systematically higher than the theoretical prediction. Experimental examinations and numerical calculations indicate that the upward shift of the eigenmode frequency cannot be accounted for solely by the finite temperature effect, but is significantly affected by image charges induced on the conducting boundary and the resulting distortion of the density profile from the theoretical expectation.
Prediction of User Preference over Shared Control Paradigms for a Robotic Wheelchair
2017-07-20
the experimentally -observed changes between subject groups and sessions, while providing unique insight into the relative contribution of task metrics...WHEELCHAIR, including the four tested shared- control paradigms. The correlation model and experimental results are provided in Sections IV and V. Section VI...paradigm-specific models. Moreover, we also observe differences between sub- ject groups —meaning that subjects’ evaluations of a control paradigm are
Low-high junction theory applied to solar cells
NASA Technical Reports Server (NTRS)
Godlewski, M. P.; Baraona, C. R.; Brandhorst, H. W., Jr.
1974-01-01
Recent use of alloying techniques for rear contact formation has yielded a new kind of silicon solar cell, the back surface field (BSF) cell, with abnormally high open-circuit voltage and improved radiation resistance. Several analytical models for open-circuit voltage based on the reverse saturation current are formulated to explain these observations. The zero surface recombination velocity (SRV) case of the conventional cell model, the drift field model, and the low-high junction (LHJ) model can predict the experimental trends. The LHJ model applies the theory of the low-high junction and is considered to reflect a more realistic view of cell fabrication. This model can predict the experimental trends observed for BSF cells.
Observation of electromagnetically induced Talbot effect in an atomic system
NASA Astrophysics Data System (ADS)
Zhang, Zhaoyang; Liu, Xing; Zhang, Dan; Sheng, Jiteng; Zhang, Yiqi; Zhang, Yanpeng; Xiao, Min
2018-01-01
The electromagnetically induced Talbot effect (EITE) resulting from the repeated self-reconstruction of a spatially intensity-modulated probe field is experimentally demonstrated in a three-level atomic configuration. The probe beam is launched into an optically induced lattice (established by the interference of two coupling fields) inside a rubidium vapor cell and is diffracted by the electromagnetically induced grating that was formed. The diffraction pattern repeats itself at the planes of integer multiple Talbot lengths. In addition, a fractional EITE is also investigated. The experimental observations agree well with the theoretical predictions. This investigation may potentially pave the way for studying the nonlinear and quantum dynamical features that have been predicted for established periodic optical systems.
Optimization of Nd: YAG Laser Marking of Alumina Ceramic Using RSM And ANN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peter, Josephine; Doloi, B.; Bhattacharyya, B.
The present research papers deals with the artificial neural network (ANN) and the response surface methodology (RSM) based mathematical modeling and also an optimization analysis on marking characteristics on alumina ceramic. The experiments have been planned and carried out based on Design of Experiment (DOE). It also analyses the influence of the major laser marking process parameters and the optimal combination of laser marking process parametric setting has been obtained. The output of the RSM optimal data is validated through experimentation and ANN predictive model. A good agreement is observed between the results based on ANN predictive model and actualmore » experimental observations.« less
Experimental Observation of Bohr's Nonlinear Fluidic Surface Oscillation.
Moon, Songky; Shin, Younghoon; Kwak, Hojeong; Yang, Juhee; Lee, Sang-Bum; Kim, Soyun; An, Kyungwon
2016-01-25
Niels Bohr in the early stage of his career developed a nonlinear theory of fluidic surface oscillation in order to study surface tension of liquids. His theory includes the nonlinear interaction between multipolar surface oscillation modes, surpassing the linear theory of Rayleigh and Lamb. It predicts a specific normalized magnitude of 0.416η(2) for an octapolar component, nonlinearly induced by a quadrupolar one with a magnitude of η much less than unity. No experimental confirmation on this prediction has been reported. Nonetheless, accurate determination of multipolar components is important as in optical fiber spinning, film blowing and recently in optofluidic microcavities for ray and wave chaos studies and photonics applications. Here, we report experimental verification of his theory. By using optical forward diffraction, we measured the cross-sectional boundary profiles at extreme positions of a surface-oscillating liquid column ejected from a deformed microscopic orifice. We obtained a coefficient of 0.42 ± 0.08 consistently under various experimental conditions. We also measured the resonance mode spectrum of a two-dimensional cavity formed by the cross-sectional segment of the liquid jet. The observed spectra agree well with wave calculations assuming a coefficient of 0.414 ± 0.011. Our measurements establish the first experimental observation of Bohr's hydrodynamic theory.
Experimental Observation of Bohr’s Nonlinear Fluidic Surface Oscillation
Moon, Songky; Shin, Younghoon; Kwak, Hojeong; Yang, Juhee; Lee, Sang-Bum; Kim, Soyun; An, Kyungwon
2016-01-01
Niels Bohr in the early stage of his career developed a nonlinear theory of fluidic surface oscillation in order to study surface tension of liquids. His theory includes the nonlinear interaction between multipolar surface oscillation modes, surpassing the linear theory of Rayleigh and Lamb. It predicts a specific normalized magnitude of 0.416η2 for an octapolar component, nonlinearly induced by a quadrupolar one with a magnitude of η much less than unity. No experimental confirmation on this prediction has been reported. Nonetheless, accurate determination of multipolar components is important as in optical fiber spinning, film blowing and recently in optofluidic microcavities for ray and wave chaos studies and photonics applications. Here, we report experimental verification of his theory. By using optical forward diffraction, we measured the cross-sectional boundary profiles at extreme positions of a surface-oscillating liquid column ejected from a deformed microscopic orifice. We obtained a coefficient of 0.42 ± 0.08 consistently under various experimental conditions. We also measured the resonance mode spectrum of a two-dimensional cavity formed by the cross-sectional segment of the liquid jet. The observed spectra agree well with wave calculations assuming a coefficient of 0.414 ± 0.011. Our measurements establish the first experimental observation of Bohr’s hydrodynamic theory. PMID:26803911
NASA Technical Reports Server (NTRS)
Hu, Shoufeng; Bark, Jong S.; Nairn, John A.
1993-01-01
A variational analysis of the stress state in microcracked cross-ply laminates has been used to investigate the phenomenon of curved microcracking in /(S)/90n/s laminates. Previous investigators proposed that the initiation and orientation of curved microcracks are controlled by local maxima and stress trajectories of the principal stresses. We have implemented a principal stress model using a variational mechanics stress analysis and we were able to make predictions about curved microcracks. The predictions agree well with experimental observations and therefore support the assertion that the variational analysis gives an accurate stress state that is useful for modeling the microcracking properties of cross-ply laminates. An important prediction about curved microcracks is that they are a late stage of microcracking damage. They occur only when the crack density of straight microcracks exceeds the critical crack density for curved microcracking. The predicted critical crack density for curved microcracking agrees well with experimental observations.
Numerical simulation of turbulent gas flames in tubes.
Salzano, E; Marra, F S; Russo, G; Lee, J H S
2002-12-02
Computational fluid dynamics (CFD) is an emerging technique to predict possible consequences of gas explosion and it is often considered a powerful and accurate tool to obtain detailed results. However, systematic analyses of the reliability of this approach to real-scale industrial configurations are still needed. Furthermore, few experimental data are available for comparison and validation. In this work, a set of well documented experimental data related to the flame acceleration obtained within obstacle-filled tubes filled with flammable gas-air mixtures, has been simulated. In these experiments, terminal steady flame speeds corresponding to different propagation regimes were observed, thus, allowing a clear and prompt characterisation of the numerical results with respect to numerical parameters, as grid definition, geometrical parameters, as blockage ratio and to mixture parameters, as mixture reactivity. The CFD code AutoReagas was used for the simulations. Numerical predictions were compared with available experimental data and some insights into the code accuracy were determined. Computational results are satisfactory for the relatively slower turbulent deflagration regimes and became fair when choking regime is observed, whereas transition to quasi-detonation or Chapman-Jogouet (CJ) were never predicted.
Predicting overload-affected fatigue crack growth in steels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skorupa, M.; Skorupa, A.; Ladecki, B.
1996-12-01
The ability of semi-empirical crack closure models to predict the effect of overloads on fatigue crack growth in low-alloy steels has been investigated. With this purpose, the CORPUS model developed for aircraft metals and spectra has been checked first through comparisons between the simulated and observed results for a low-alloy steel. The CORPUS predictions of crack growth under several types of simple load histories containing overloads appeared generally unconservative which prompted the authors to formulate a new model, more suitable for steels. With the latter approach, the assumed evolution of the crack opening stress during the delayed retardation stage hasmore » been based on experimental results reported for various steels. For all the load sequences considered, the predictions from the proposed model appeared to be by far more accurate than those from CORPUS. Based on the analysis results, the capability of semi-empirical prediction concepts to cover experimentally observed trends that have been reported for sequences with overloads is discussed. Finally, possibilities of improving the model performance are considered.« less
Cometabolic degradation kinetics of TCE and phenol by Pseudomonas putida.
Chen, Yan-Min; Lin, Tsair-Fuh; Huang, Chih; Lin, Jui-Che
2008-08-01
Modeling of cometabolic kinetics is important for better understanding of degradation reaction and in situ application of bio-remediation. In this study, a model incorporated cell growth and decay, loss of transformation activity, competitive inhibition between growth substrate and non-growth substrate and self-inhibition of non-growth substrate was proposed to simulate the degradation kinetics of phenol and trichloroethylene (TCE) by Pseudomonas putida. All the intrinsic parameters employed in this study were measured independently, and were then used for predicting the batch experimental data. The model predictions conformed well to the observed data at different phenol and TCE concentrations. At low TCE concentrations (<2 mg l(-1)), the models with or without self-inhibition of non-growth substrate both simulated the experimental data well. However, at higher TCE concentrations (>6 mg l(-1)), only the model considering self-inhibition can describe the experimental data, suggesting that a self-inhibition of TCE was present in the system. The proposed model was also employed in predicting the experimental data conducted in a repeated batch reactor, and good agreements were observed between model predictions and experimental data. The results also indicated that the biomass loss in the degradation of TCE below 2 mg l(-1) can be totally recovered in the absence of TCE for the next cycle, and it could be used for the next batch experiment for the degradation of phenol and TCE. However, for higher concentration of TCE (>6 mg l(-1)), the recovery of biomass may not be as good as that at lower TCE concentrations.
Newtons's Thermometry: The Role of Radiation.
ERIC Educational Resources Information Center
French, A. P.
1993-01-01
Discusses Newton's idea of predicting very high temperatures of objects by observing the time needed for the object to cool to some standard reference temperature. This article discusses experimental deviations from this idea and provides explanations for the observed results. (MVL)
On the measurement of airborne, angular-dependent sound transmission through supercritical bars.
Shaw, Matthew D; Anderson, Brian E
2012-10-01
The coincidence effect is manifested by maximal sound transmission at angles at which trace wave number matching occurs. Coincidence effect theory is well-defined for unbounded thin plates using plane-wave excitation. However, experimental results for finite bars are known to diverge from theory near grazing angles. Prior experimental work has focused on pulse excitation. An experimental setup has been developed to observe coincidence using continuous- wave excitation and phased-array methods. Experimental results with an aluminum bar exhibit maxima at the predicted angles, showing that coincidence is observable using continuous waves. Transmission near grazing angles is seen to diverge from infinite plate theory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zacharia, T.; David, S.A.; Vitek, J.M.
1989-12-01
In part I of the paper, the results of the heat flow and the fluid flow analysis were presented. Here, in Part II of the paper, predictions of the computational model are verified by comparing the numerically predicted and experimentally observed fusion zone size and shape. Stationary gas tungsten arc and laser beam welds were made on Type 304 stainless steel for different times to provide a variety of solidification conditions such as cooling rate and temperature gradient. Calculated temperatures and cooling rates are correlated with the experimentally observed fusion zone structure. In addition, the effect of sulfur on GTAmore » weld penetration was quantitatively evaluated by considering two heats of 304 stainless steel containing 90 and 240 ppm sulfur. Sulfur, as expected, increased the depth/width ratio by altering the surface tension gradient driven flow in the weld pool.« less
A competitive binding model predicts the response of mammalian olfactory receptors to mixtures
NASA Astrophysics Data System (ADS)
Singh, Vijay; Murphy, Nicolle; Mainland, Joel; Balasubramanian, Vijay
Most natural odors are complex mixtures of many odorants, but due to the large number of possible mixtures only a small fraction can be studied experimentally. To get a realistic understanding of the olfactory system we need methods to predict responses to complex mixtures from single odorant responses. Focusing on mammalian olfactory receptors (ORs in mouse and human), we propose a simple biophysical model for odor-receptor interactions where only one odor molecule can bind to a receptor at a time. The resulting competition for occupancy of the receptor accounts for the experimentally observed nonlinear mixture responses. We first fit a dose-response relationship to individual odor responses and then use those parameters in a competitive binding model to predict mixture responses. With no additional parameters, the model predicts responses of 15 (of 18 tested) receptors to within 10 - 30 % of the observed values, for mixtures with 2, 3 and 12 odorants chosen from a panel of 30. Extensions of our basic model with odorant interactions lead to additional nonlinearities observed in mixture response like suppression, cooperativity, and overshadowing. Our model provides a systematic framework for characterizing and parameterizing such mixing nonlinearities from mixture response data.
Thermoplastic matrix composite processing model
NASA Technical Reports Server (NTRS)
Dara, P. H.; Loos, A. C.
1985-01-01
The effects the processing parameters pressure, temperature, and time have on the quality of continuous graphite fiber reinforced thermoplastic matrix composites were quantitatively accessed by defining the extent to which intimate contact and bond formation has occurred at successive ply interfaces. Two models are presented predicting the extents to which the ply interfaces have achieved intimate contact and cohesive strength. The models are based on experimental observation of compression molded laminates and neat resin conditions, respectively. Identified as the mechanism explaining the phenomenon by which the plies bond to themselves is the theory of autohesion (or self diffusion). Theoretical predictions from the Reptation Theory between autohesive strength and contact time are used to explain the effects of the processing parameters on the observed experimental strengths. The application of a time-temperature relationship for autohesive strength predictions is evaluated. A viscoelastic compression molding model of a tow was developed to explain the phenomenon by which the prepreg ply interfaces develop intimate contact.
Prediction of change in protein unfolding rates upon point mutations in two state proteins.
Chaudhary, Priyashree; Naganathan, Athi N; Gromiha, M Michael
2016-09-01
Studies on protein unfolding rates are limited and challenging due to the complexity of unfolding mechanism and the larger dynamic range of the experimental data. Though attempts have been made to predict unfolding rates using protein sequence-structure information there is no available method for predicting the unfolding rates of proteins upon specific point mutations. In this work, we have systematically analyzed a set of 790 single mutants and developed a robust method for predicting protein unfolding rates upon mutations (Δlnku) in two-state proteins by combining amino acid properties and knowledge-based classification of mutants with multiple linear regression technique. We obtain a mean absolute error (MAE) of 0.79/s and a Pearson correlation coefficient (PCC) of 0.71 between predicted unfolding rates and experimental observations using jack-knife test. We have developed a web server for predicting protein unfolding rates upon mutation and it is freely available at https://www.iitm.ac.in/bioinfo/proteinunfolding/unfoldingrace.html. Prominent features that determine unfolding kinetics as well as plausible reasons for the observed outliers are also discussed. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Miller, Rolf W.; Argrow, Brian M.; Center, Kenneth B.; Brauckmann, Gregory J.; Rhode, Matthew N.
1998-01-01
The NASA Langley Research Center Unitary Plan Wind Tunnel and the 20-Inch Mach 6 Tunnel were used to test two osculating cones waverider models. The Mach-4 and Mach-6 shapes were generated using the interactive design tool WIPAR. WIPAR performance predictions are compared to the experimental results. Vapor screen results for the Mach-4 model at the on- design Mach number provide visual verification that the shock is attached along the entire leading edge, within the limits of observation. WIPAR predictions of pressure distributions and aerodynamic coefficients show general agreement with the corresponding experimental values.
Observation of plasmonic dipolar anti-bonding mode in silver nanoring structures.
Ye, Jian; Van Dorpe, Pol; Lagae, Liesbet; Maes, Guido; Borghs, Gustaaf
2009-11-18
We report on a clear experimental observation of the plasmonic dipolar anti-bonding resonance in silver nanorings. The data can be explained effectively by the plasmon hybridization model, which is confirmed by the numerical calculations of the electromagnetic field and surface charge distribution profiles. The experimental demonstration of the plasmon hybridization model indicates its usefulness as a valuable tool to understand, design and predict optical properties of metallic nanostructures.
Observation of plasmonic dipolar anti-bonding mode in silver nanoring structures
NASA Astrophysics Data System (ADS)
Ye, Jian; Van Dorpe, Pol; Lagae, Liesbet; Maes, Guido; Borghs, Gustaaf
2009-11-01
We report on a clear experimental observation of the plasmonic dipolar anti-bonding resonance in silver nanorings. The data can be explained effectively by the plasmon hybridization model, which is confirmed by the numerical calculations of the electromagnetic field and surface charge distribution profiles. The experimental demonstration of the plasmon hybridization model indicates its usefulness as a valuable tool to understand, design and predict optical properties of metallic nanostructures.
The stopping power and energy straggling of heavy ions in silicon nitride and polypropylene
NASA Astrophysics Data System (ADS)
Mikšová, R.; Hnatowicz, V.; Macková, A.; Malinský, P.; Slepička, P.
2015-07-01
The stopping power and energy straggling of 12C3+ and 16O3+ ions with energies between 4.5 and 7.8 MeV in a 0.166-μm-thin silicon nitride and in 4-μm-thin polypropylene foils were measured by means of an indirect transmission method using a half-covered PIPS detector. Ions scattered from a thin gold layer under a scattering angle of 150° were used. The energy spectra of back-scattered and decelerated ions were registered and evaluated simultaneously. The measured stopping powers were compared with the theoretical predictions simulated by SRIM-2008 and MSTAR codes. SRIM prediction of energy stopping is reasonably close to the experimentally obtained values comparing to MSTAR values. Better agreement between experimental and predicted data was observed for C3+ ion energy losses comparing to O3+ ions. The experimental data from Paul's database and our previous experimental data were also discussed. The obtained experimental energy-straggling data were compared to those calculated by using Bohr's, Yang's models etc. The predictions by Yang are in good agreement with our experiment within a frame of uncertainty of 25%.
NASA Astrophysics Data System (ADS)
Kontaxis, L. C.; Pavlou, C.; Portan, D. V.; Papanicolaou, G. C.
2018-02-01
In the present study, a composite material consisting of a polymeric epoxy resin matrix, reinforced with forty layers of non-woven cotton fiber fabric was manufactured. The method used to manufacture the composite was the Resin Vacuum Infusion technique. This is a technique widely used for high-performance, defect-free, composite materials. Composites and neat polymers are subjected to stresses during their function, while at the same time being influenced by environmental conditions, such as temperature and humidity. The main goal of this study was the investigation of the degradation of composite's viscoelastic behavior, after saline absorption. At this point, it should be mentioned, that this material could be used in biomedical applications. Therefore, a sealed container full of saline was used for the immer s ion of the specimens manufactured, and was placed in a bath at 37°C (body temperature). The specimens remained there for five different immersion periods (24, 72, 144, 216, 336 hours). The viscoelastic behavior of the composite material was determined through stress relaxation under flexure conditions, and the effect of immersion time and amount of saline absorption was studied. It was observed that after 24 hours of immersion a 42% decrease in stress was observed, which in the sequence remained almost constant. The stress relaxation experimental results were predicted by using the Residua l Property Model (RPM), a model developed by Papanicolaou et al. The same model has been successfully applied in the past, to many different materials previously subjected to various types of damage, in order to predict their residual behavior. For its application, the RPM predictive model needs only two experimental points. It was found that in all cases, predictions were in good agreement with experimental findings. Furthermore, the comparison between experimental values and theoretical predictions formed the basis of useful observations and conclusions.
Moffie, B G; Hoogeterp, J J; Lim, T; Douwes-Idema, A E; Mattie, H
1993-03-01
The activity of netilmicin and tobramycin against Pseudomonas aeruginosa was assessed in vitro in the presence of constant and exponentially declining concentrations, and in mice in an experimental thigh infection. The activity in vitro at constant concentrations was expressed as the maximal killing rate (ER) during 3 h of exposure. On the basis of the quantitative relation between E(R) and the drug concentration, the numbers of cfu expected at consecutive times, at constant as well as at declining concentrations, were predicted. The relationship between observed numbers and predicted values of ERt were similar under both conditions for both drugs. On the same basis the numbers of cfu expected in the experimental thigh infection were predicted. There was indeed a significant linear relationship between observed numbers of cfu in homogenized muscle and the values predicted on the basis of the pharmacokinetics of the aminoglycosides, but the slope of this relationship was only 0.22. There was no difference in this respect between the two antibiotics. It is concluded that the efficacy of netilmicin and tobramycin against P. aeruginosa is considerably less in vivo than in vitro, but the relation is about the same for the two drugs; therefore the slightly higher activity of tobramycin in vitro is relevant in the in-vivo situation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marzouk, Youssef
Predictive simulation of complex physical systems increasingly rests on the interplay of experimental observations with computational models. Key inputs, parameters, or structural aspects of models may be incomplete or unknown, and must be developed from indirect and limited observations. At the same time, quantified uncertainties are needed to qualify computational predictions in the support of design and decision-making. In this context, Bayesian statistics provides a foundation for inference from noisy and limited data, but at prohibitive computional expense. This project intends to make rigorous predictive modeling *feasible* in complex physical systems, via accelerated and scalable tools for uncertainty quantification, Bayesianmore » inference, and experimental design. Specific objectives are as follows: 1. Develop adaptive posterior approximations and dimensionality reduction approaches for Bayesian inference in high-dimensional nonlinear systems. 2. Extend accelerated Bayesian methodologies to large-scale {\\em sequential} data assimilation, fully treating nonlinear models and non-Gaussian state and parameter distributions. 3. Devise efficient surrogate-based methods for Bayesian model selection and the learning of model structure. 4. Develop scalable simulation/optimization approaches to nonlinear Bayesian experimental design, for both parameter inference and model selection. 5. Demonstrate these inferential tools on chemical kinetic models in reacting flow, constructing and refining thermochemical and electrochemical models from limited data. Demonstrate Bayesian filtering on canonical stochastic PDEs and in the dynamic estimation of inhomogeneous subsurface properties and flow fields.« less
Predicting the Dynamics of Protein Abundance
Mehdi, Ahmed M.; Patrick, Ralph; Bailey, Timothy L.; Bodén, Mikael
2014-01-01
Protein synthesis is finely regulated across all organisms, from bacteria to humans, and its integrity underpins many important processes. Emerging evidence suggests that the dynamic range of protein abundance is greater than that observed at the transcript level. Technological breakthroughs now mean that sequencing-based measurement of mRNA levels is routine, but protocols for measuring protein abundance remain both complex and expensive. This paper introduces a Bayesian network that integrates transcriptomic and proteomic data to predict protein abundance and to model the effects of its determinants. We aim to use this model to follow a molecular response over time, from condition-specific data, in order to understand adaptation during processes such as the cell cycle. With microarray data now available for many conditions, the general utility of a protein abundance predictor is broad. Whereas most quantitative proteomics studies have focused on higher organisms, we developed a predictive model of protein abundance for both Saccharomyces cerevisiae and Schizosaccharomyces pombe to explore the latitude at the protein level. Our predictor primarily relies on mRNA level, mRNA–protein interaction, mRNA folding energy and half-life, and tRNA adaptation. The combination of key features, allowing for the low certainty and uneven coverage of experimental observations, gives comparatively minor but robust prediction accuracy. The model substantially improved the analysis of protein regulation during the cell cycle: predicted protein abundance identified twice as many cell-cycle-associated proteins as experimental mRNA levels. Predicted protein abundance was more dynamic than observed mRNA expression, agreeing with experimental protein abundance from a human cell line. We illustrate how the same model can be used to predict the folding energy of mRNA when protein abundance is available, lending credence to the emerging view that mRNA folding affects translation efficiency. The software and data used in this research are available at http://bioinf.scmb.uq.edu.au/proteinabundance/. PMID:24532840
Predicting the dynamics of protein abundance.
Mehdi, Ahmed M; Patrick, Ralph; Bailey, Timothy L; Bodén, Mikael
2014-05-01
Protein synthesis is finely regulated across all organisms, from bacteria to humans, and its integrity underpins many important processes. Emerging evidence suggests that the dynamic range of protein abundance is greater than that observed at the transcript level. Technological breakthroughs now mean that sequencing-based measurement of mRNA levels is routine, but protocols for measuring protein abundance remain both complex and expensive. This paper introduces a Bayesian network that integrates transcriptomic and proteomic data to predict protein abundance and to model the effects of its determinants. We aim to use this model to follow a molecular response over time, from condition-specific data, in order to understand adaptation during processes such as the cell cycle. With microarray data now available for many conditions, the general utility of a protein abundance predictor is broad. Whereas most quantitative proteomics studies have focused on higher organisms, we developed a predictive model of protein abundance for both Saccharomyces cerevisiae and Schizosaccharomyces pombe to explore the latitude at the protein level. Our predictor primarily relies on mRNA level, mRNA-protein interaction, mRNA folding energy and half-life, and tRNA adaptation. The combination of key features, allowing for the low certainty and uneven coverage of experimental observations, gives comparatively minor but robust prediction accuracy. The model substantially improved the analysis of protein regulation during the cell cycle: predicted protein abundance identified twice as many cell-cycle-associated proteins as experimental mRNA levels. Predicted protein abundance was more dynamic than observed mRNA expression, agreeing with experimental protein abundance from a human cell line. We illustrate how the same model can be used to predict the folding energy of mRNA when protein abundance is available, lending credence to the emerging view that mRNA folding affects translation efficiency. The software and data used in this research are available at http://bioinf.scmb.uq.edu.au/proteinabundance/.
Acoustic solitons in waveguides with Helmholtz resonators: transmission line approach.
Achilleos, V; Richoux, O; Theocharis, G; Frantzeskakis, D J
2015-02-01
We report experimental results and study theoretically soliton formation and propagation in an air-filled acoustic waveguide side loaded with Helmholtz resonators. We propose a theoretical modeling of the system, which relies on a transmission-line approach, leading to a nonlinear dynamical lattice model. The latter allows for an analytical description of the various soliton solutions for the pressure, which are found by means of dynamical systems and multiscale expansion techniques. These solutions include Boussinesq-like and Korteweg-de Vries pulse-shaped solitons that are observed in the experiment, as well as nonlinear Schrödinger envelope solitons, that are predicted theoretically. The analytical predictions are in excellent agreement with direct numerical simulations and in qualitative agreement with the experimental observations.
Chiaburu, Dan S; Harris, T Brad; Smith, Troy A
2014-01-01
We integrate system justification and social role theory to explain how observers' system justification and target employees' gender interact to predict observers' expectations of targets' sportsmanship citizenship behaviors. In contrast with social role theory predictions, observers did not expect greater levels of sportsmanship from women compared to men. Yet observers expected more sportsmanship from women (a) when observers were ideologically motivated by gender-specific beliefs (gender-specific system justification; Study 1) and (b) when system justification was cued experimentally (Study 2). A heretofore-unexamined aspect, observers' ideology, modifies their expectations of sportsmanship citizenship across target genders. This has implications for system justification, social role, and organizational citizenship theoretical perspectives.
Bye, Robin T; Neilson, Peter D
2010-10-01
Physiological tremor during movement is characterized by ∼10 Hz oscillation observed both in the electromyogram activity and in the velocity profile. We propose that this particular rhythm occurs as the direct consequence of a movement response planning system that acts as an intermittent predictive controller operating at discrete intervals of ∼100 ms. The BUMP model of response planning describes such a system. It forms the kernel of Adaptive Model Theory which defines, in computational terms, a basic unit of motor production or BUMP. Each BUMP consists of three processes: (1) analyzing sensory information, (2) planning a desired optimal response, and (3) execution of that response. These processes operate in parallel across successive sequential BUMPs. The response planning process requires a discrete-time interval in which to generate a minimum acceleration trajectory to connect the actual response with the predicted future state of the target and compensate for executional error. We have shown previously that a response planning time of 100 ms accounts for the intermittency observed experimentally in visual tracking studies and for the psychological refractory period observed in double stimulation reaction time studies. We have also shown that simulations of aimed movement, using this same planning interval, reproduce experimentally observed speed-accuracy tradeoffs and movement velocity profiles. Here we show, by means of a simulation study of constant velocity tracking movements, that employing a 100 ms planning interval closely reproduces the measurement discontinuities and power spectra of electromyograms, joint-angles, and angular velocities of physiological tremor reported experimentally. We conclude that intermittent predictive control through sequential operation of BUMPs is a fundamental mechanism of 10 Hz physiological tremor in movement. Copyright © 2010 Elsevier B.V. All rights reserved.
Response to perturbations for granular flow in a hopper
NASA Astrophysics Data System (ADS)
Wambaugh, John F.; Behringer, Robert P.; Matthews, John V.; Gremaud, Pierre A.
2007-11-01
We experimentally investigate the response to perturbations of circular symmetry for dense granular flow inside a three-dimensional right-conical hopper. These experiments consist of particle tracking velocimetry for the flow at the outer boundary of the hopper. We are able to test commonly used constitutive relations and observe granular flow phenomena that we can model numerically. Unperturbed conical hopper flow has been described as a radial velocity field with no azimuthal component. Guided by numerical models based upon continuum descriptions, we find experimental evidence for secondary, azimuthal circulation in response to perturbation of the symmetry with respect to gravity by tilting. For small perturbations we can discriminate between constitutive relations, based upon the agreement between the numerical predictions they produce and our experimental results. We find that the secondary circulation can be suppressed as wall friction is varied, also in agreement with numerical predictions. For large tilt angles we observe the abrupt onset of circulation for parameters where circulation was previously suppressed. Finally, we observe that for large tilt angles the fluctuations in velocity grow, independent of the onset of circulation.
A comparison of NNLO QCD predictions with 7 TeV ATLAS and CMS data for V+jet processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boughezal, Radja; Liu, Xiaohui; Petriello, Frank
2016-06-17
Here, we perform a detailed comparison of next-to-next-to-leading order (NNLO) QCD predictions for the W+jet and Z+jet processes with 7 TeV experimental data from ATLAS and CMS. We observe excellent agreement between theory and data for most studied observables, which span several orders of magnitude in both cross section and energy. For some observables, such as the HT distribution, the NNLO QCD corrections are essential for resolving existing discrepancies between theory and data.
Mixed-order phase transition in a colloidal crystal.
Alert, Ricard; Tierno, Pietro; Casademunt, Jaume
2017-12-05
Mixed-order phase transitions display a discontinuity in the order parameter like first-order transitions yet feature critical behavior like second-order transitions. Such transitions have been predicted for a broad range of equilibrium and nonequilibrium systems, but their experimental observation has remained elusive. Here, we analytically predict and experimentally realize a mixed-order equilibrium phase transition. Specifically, a discontinuous solid-solid transition in a 2D crystal of paramagnetic colloidal particles is induced by a magnetic field [Formula: see text] At the transition field [Formula: see text], the energy landscape of the system becomes completely flat, which causes diverging fluctuations and correlation length [Formula: see text] Mean-field critical exponents are predicted, since the upper critical dimension of the transition is [Formula: see text] Our colloidal system provides an experimental test bed to probe the unconventional properties of mixed-order phase transitions.
Mixed-order phase transition in a colloidal crystal
NASA Astrophysics Data System (ADS)
Alert, Ricard; Tierno, Pietro; Casademunt, Jaume
2017-12-01
Mixed-order phase transitions display a discontinuity in the order parameter like first-order transitions yet feature critical behavior like second-order transitions. Such transitions have been predicted for a broad range of equilibrium and nonequilibrium systems, but their experimental observation has remained elusive. Here, we analytically predict and experimentally realize a mixed-order equilibrium phase transition. Specifically, a discontinuous solid-solid transition in a 2D crystal of paramagnetic colloidal particles is induced by a magnetic field H. At the transition field Hs, the energy landscape of the system becomes completely flat, which causes diverging fluctuations and correlation length ξ∝|H2-Hs2|-1/2. Mean-field critical exponents are predicted, since the upper critical dimension of the transition is du=2. Our colloidal system provides an experimental test bed to probe the unconventional properties of mixed-order phase transitions.
Experimental verification of the rainbow trapping effect in adiabatic plasmonic gratings
Gan, Qiaoqiang; Gao, Yongkang; Wagner, Kyle; Vezenov, Dmitri; Ding, Yujie J.; Bartoli, Filbert J.
2011-01-01
We report the experimental observation of a trapped rainbow in adiabatically graded metallic gratings, designed to validate theoretical predictions for this unique plasmonic structure. One-dimensional graded nanogratings were fabricated and their surface dispersion properties tailored by varying the grating groove depth, whose dimensions were confirmed by atomic force microscopy. Tunable plasmonic bandgaps were observed experimentally, and direct optical measurements on graded grating structures show that light of different wavelengths in the 500–700-nm region is “trapped” at different positions along the grating, consistent with computer simulations, thus verifying the “rainbow” trapping effect. PMID:21402936
Ikegami, Tsuyoshi; Ganesh, Gowrishankar
2014-01-01
Our social skills are critically determined by our ability to understand and appropriately respond to actions performed by others. However despite its obvious importance, the mechanisms enabling action understanding in humans have remained largely unclear. A popular but controversial belief is that parts of the motor system contribute to our ability to understand observed actions. Here, using a novel behavioral paradigm, we investigated this belief by examining a causal relation between action production, and a component of action understanding - outcome prediction, the ability of a person to predict the outcome of observed actions. We asked dart experts to watch novice dart throwers and predict the outcome of their throws. We modulated the feedbacks provided to them, caused a specific improvement in the expert's ability to predict watched actions while controlling the other experimental factors, and exhibited that a change (improvement) in their outcome prediction ability results in a progressive and proportional deterioration in the expert's own darts performance. This causal relationship supports involvement of the motor system in outcome prediction by humans of actions observed in others. PMID:25384755
Paleoclassical transport explains electron transport barriers in RTP and TEXTOR
NASA Astrophysics Data System (ADS)
Hogeweij, G. M. D.; Callen, J. D.; RTP Team; TEXTOR Team
2008-06-01
The recently developed paleoclassical transport model sets the minimum level of electron thermal transport in a tokamak. This transport level has proven to be in good agreement with experimental observations in many cases when fluctuation-induced anomalous transport is small, i.e. in (near-)ohmic plasmas in small to medium size tokamaks, inside internal transport barriers (ITBs) or edge transport barriers (H-mode pedestal). In this paper predictions of the paleoclassical transport model are compared in detail with data from such kinds of discharges: ohmic discharges from the RTP tokamak, EC heated RTP discharges featuring both dynamic and shot-to-shot scans of the ECH power deposition radius and off-axis EC heated discharges from the TEXTOR tokamak. For ohmically heated RTP discharges the Te profiles predicted by the paleoclassical model are in reasonable agreement with the experimental observations, and various parametric dependences are captured satisfactorily. The electron thermal ITBs observed in steady state EC heated RTP discharges and transiently after switch-off of off-axis ECH in TEXTOR are predicted very well by the paleoclassical model.
NASA Astrophysics Data System (ADS)
Li, Qian-Shu; Zhao, Jun-Fang; Xie, Yaoming; Schaefer, Henry F., III
Four independent density functional theory (DFT) methods have been employed to study the structures and electron affinities of the methyl and F-, Cl- and Br-substituted methyl radicals and their anions. The methods used have been carefully calibrated against a comprehensive tabulation of experimental electron affinities (Chemical Reviews, 2002, 102, 231). The first dissociation energies together with the vibrational frequencies of these species are also reported. The basis sets used in this work are of double- ζ plus polarization quality with additional s- and p-type diffuse functions, labelled as DZP++. Previously observed trends in the prediction of bond lengths by the DFT methods are also demonstrated for the F-, Cl- and Br-substituted methyl radicals and their anions. Generally, the Hartree-Fock/DFT hybrid methods predict shorter and more reliable bond lengths than the pure DFT methods. Neutral-anion energy differences reported in this work are the adiabatic electron affinity (EAad), the vertical electron affinity (EAvert), and the vertical detachment energy (VDE). Compared with the available experimental electron affinities, the BHLYP method predicts much lower values, while the other methods predict values (EAad, EAvert, VDE) close to each other and almost within the experimental range. For those systems without reliable experimental measurements, our best adiabatic EAs predicted by BLYP are 0.78 (CHF2), 1.23 (CHFCl), 1.44 (CHFBr), 1.61 (CHClBr), 2.24 (CF2Cl), 2.42 (CF2Br), 2.56 (CFBr2), 2.36 (CCl2Br), 2.46 (CClBr2), and 2.44 eV (CFClBr). The most striking feature of these predictions is that they display an inverse relationship between halogen electronegativity and EA. The DZP++ B3LYP method determines the vibrational frequencies in best agreement with available experimental results for this series, with an average relative error of ~2%. The value of using a variety of DFT methods is observed in that BHLYP does best for geometries, BLYP for electron affinities, and B3LYP for vibrational frequencies. These theoretical results serve to resolve several disagreements between competing experiments. Several other experiments appear to have drawn incorrect conclusions. For example, CHCl2 is significantly pyramidal, unlike the experimental inferences, and clearly the experimental CCl2 - Cl dissociation energy is too large.
Observations on instabilities of cavitating inducers
NASA Technical Reports Server (NTRS)
Braisted, D.; Brennen, C.
1978-01-01
Experimental observations of instability of cavitating inducers were made for two different inducers operating at different flow coefficients. In general, instability occurred just before head breakdown. Auto-oscillation and rotating cavitation were observed. Analysis of small-amplitude behavior of the inducer and hydraulic system is carried out, and analytical predictions of stability limits were compared with experiment.
Ferguson, Jake M; Ponciano, José M
2014-01-01
Predicting population extinction risk is a fundamental application of ecological theory to the practice of conservation biology. Here, we compared the prediction performance of a wide array of stochastic, population dynamics models against direct observations of the extinction process from an extensive experimental data set. By varying a series of biological and statistical assumptions in the proposed models, we were able to identify the assumptions that affected predictions about population extinction. We also show how certain autocorrelation structures can emerge due to interspecific interactions, and that accounting for the stochastic effect of these interactions can improve predictions of the extinction process. We conclude that it is possible to account for the stochastic effects of community interactions on extinction when using single-species time series. PMID:24304946
Uncertainty aggregation and reduction in structure-material performance prediction
NASA Astrophysics Data System (ADS)
Hu, Zhen; Mahadevan, Sankaran; Ao, Dan
2018-02-01
An uncertainty aggregation and reduction framework is presented for structure-material performance prediction. Different types of uncertainty sources, structural analysis model, and material performance prediction model are connected through a Bayesian network for systematic uncertainty aggregation analysis. To reduce the uncertainty in the computational structure-material performance prediction model, Bayesian updating using experimental observation data is investigated based on the Bayesian network. It is observed that the Bayesian updating results will have large error if the model cannot accurately represent the actual physics, and that this error will be propagated to the predicted performance distribution. To address this issue, this paper proposes a novel uncertainty reduction method by integrating Bayesian calibration with model validation adaptively. The observation domain of the quantity of interest is first discretized into multiple segments. An adaptive algorithm is then developed to perform model validation and Bayesian updating over these observation segments sequentially. Only information from observation segments where the model prediction is highly reliable is used for Bayesian updating; this is found to increase the effectiveness and efficiency of uncertainty reduction. A composite rotorcraft hub component fatigue life prediction model, which combines a finite element structural analysis model and a material damage model, is used to demonstrate the proposed method.
Marianski, Mateusz; Oliva, Antoni
2012-01-01
We reevaluate the interaction of pyridine and p-benzoquinone using functionals designed to treat dispersion. We compare the relative energies of four different structures: stacked, T-shaped (identified for the first time) and two planar H-bonded geometries using these functionals (B97-D, ωB97x-D, M05, M05-2X, M06, M06L, M06-2X), other functionals (PBE1PBE, B3LYP, X3LYP), MP2 and CCSD(T) using basis sets as large as cc-pVTZ. The functionals designed to treat dispersion behave erratically as the predictions of the most stable structure vary considerably. MP2 predicts the experimentally observed structure (H-bonded) to be the least stable, while single point CCSD(T) at the MP2 optimized geometry correctly predicts the observed structure to be most stable. We have confirmed the assignment of the experimental structure using new calculations of the vibrational frequency shifts previously used to identify the structure. The MP2/cc-pVTZ vibrational calculations are in excellent agreement with the observations. All methods used to calculate the energies provide vibrational shifts that agree with the observed structure even though most do not predict this structure to be most stable. The implications for evaluating possible π-stacking in biologically important systems are discussed. PMID:22765283
Marianski, Mateusz; Oliva, Antoni; Dannenberg, J J
2012-08-02
We reevaluate the interaction of pyridine and p-benzoquinone using functionals designed to treat dispersion. We compare the relative energies of four different structures: stacked, T-shaped (identified for the first time), and two planar H-bonded geometries using these functionals (B97-D, ωB97x-D, M05, M05-2X, M06, M06L, and M06-2X), other functionals (PBE1PBE, B3LYP, X3LYP), MP2, and CCSD(T) using basis sets as large as cc-pVTZ. The functionals designed to treat dispersion behave erratically as the predictions of the most stable structure vary considerably. MP2 predicts the experimentally observed structure (H-bonded) to be the least stable, while single-point CCSD(T) at the MP2 optimized geometry correctly predicts the observed structure to be the most stable. We have confirmed the assignment of the experimental structure using new calculations of the vibrational frequency shifts previously used to identify the structure. The MP2/cc-pVTZ vibrational calculations are in excellent agreement with the observations. All methods used to calculate the energies provide vibrational shifts that agree with the observed structure even though most do not predict this structure to be most stable. The implications for evaluating possible π-stacking in biologically important systems are discussed.
Predicting K0Λ photoproduction observables by using the multipole approach
NASA Astrophysics Data System (ADS)
Mart, T.; Rusli, A.
2017-12-01
We present an isobar model for kaon photoproduction on the proton γ p\\to K^+Λ that can nicely reproduce the available experimental data from threshold up to W=2.0 GeV. The background amplitude of the model is constructed from a covariant Feynman diagrammatic method, whereas the resonance one is formulated by using the multipole approach. All unknown parameters in both background and resonance amplitudes are extracted by adjusting the calculated observables to experimental data. With the help of SU(3) isospin symmetry and some information obtained from the Particle Data Group we estimate the cross section and polarization observables for the neutral kaon photoproduction on the neutron γ n\\to K^0Λ. The result indicates no sharp peak in the K^0Λ total cross section. The predicted differential cross section exhibits resonance structures only at cosθ=-1. To obtain sizable observables the present work recommends measurement of the K^0Λ cross section with W≳ 1.70 GeV, whereas for the recoiled Λ polarization measurement with W≈ 1.65-1.90 GeV would be advised, since the predictions of existing models show a large variance at this kinematics. The predicted electric and magnetic multipoles are found to be mostly different from those obtained in previous works. For W=1.75 and 1.95 GeV it is found that most of the single and double polarization observables demonstrate large asymmetries.
Gain and loss of moisture in large forest fuels
Arthur P. Brackebusch
1975-01-01
Equations for predicting moisture in large fuels were developed from data gathered at Priest River Experimental Forest and Boise Basin Experimental Forest. The most important variables were beginning moisture content of the fuel, duration of precipitation, amount of precipitation, and the sum of the mean temperature of an observation period. Sensitivity and precision...
Observation of discrete time-crystalline order in a disordered dipolar many-body system
NASA Astrophysics Data System (ADS)
Choi, Soonwon; Choi, Joonhee; Landig, Renate; Kucsko, Georg; Zhou, Hengyun; Isoya, Junichi; Jelezko, Fedor; Onoda, Shinobu; Sumiya, Hitoshi; Khemani, Vedika; von Keyserlingk, Curt; Yao, Norman; Demler, Eugene; Lukin, Mikhail
2017-04-01
The interplay of periodic driving, disorder, and strong interactions has recently been predicted to result in exotic ``time crystalline'' phases, which spontaneously break the discrete time translation symmetry of the underlying drive. Here, we report the experimental observation of such discrete time crystalline order in a driven, disordered ensemble of dipolar spin impurities in diamond at room temperature. We observe long lived temporal correlations at integer multiples of the fundamental driving period, experimentally identify the phase boundary and find that the temporal order is protected by strong interactions; this order is remarkably stable against perturbations, even in the presence of slow thermalization. We provide a theoretical description of approximate Floquet eigenstates of the system based on product state ansatz and predict the phase boundary, which is in qualitative agreement with our observations. Our work opens the door to exploring dynamical phases of matter and controlling interacting, disordered many body systems. NSF, CUA, NSSEFF, ARO MURI, Moore Foundation.
Assessing the stability of human locomotion: a review of current measures
Bruijn, S. M.; Meijer, O. G.; Beek, P. J.; van Dieën, J. H.
2013-01-01
Falling poses a major threat to the steadily growing population of the elderly in modern-day society. A major challenge in the prevention of falls is the identification of individuals who are at risk of falling owing to an unstable gait. At present, several methods are available for estimating gait stability, each with its own advantages and disadvantages. In this paper, we review the currently available measures: the maximum Lyapunov exponent (λS and λL), the maximum Floquet multiplier, variability measures, long-range correlations, extrapolated centre of mass, stabilizing and destabilizing forces, foot placement estimator, gait sensitivity norm and maximum allowable perturbation. We explain what these measures represent and how they are calculated, and we assess their validity, divided up into construct validity, predictive validity in simple models, convergent validity in experimental studies, and predictive validity in observational studies. We conclude that (i) the validity of variability measures and λS is best supported across all levels, (ii) the maximum Floquet multiplier and λL have good construct validity, but negative predictive validity in models, negative convergent validity and (for λL) negative predictive validity in observational studies, (iii) long-range correlations lack construct validity and predictive validity in models and have negative convergent validity, and (iv) measures derived from perturbation experiments have good construct validity, but data are lacking on convergent validity in experimental studies and predictive validity in observational studies. In closing, directions for future research on dynamic gait stability are discussed. PMID:23516062
NASA Technical Reports Server (NTRS)
Suzen, Y. B.; Huang, P. G.; Ashpis, D. E.; Volino, R. J.; Corke, T. C.; Thomas, F. O.; Huang, J.; Lake, J. P.; King, P. I.
2007-01-01
A transport equation for the intermittency factor is employed to predict the transitional flows in low-pressure turbines. The intermittent behavior of the transitional flows is taken into account and incorporated into computations by modifying the eddy viscosity, mu(sub p) with the intermittency factor, gamma. Turbulent quantities are predicted using Menter's two-equation turbulence model (SST). The intermittency factor is obtained from a transport equation model which can produce both the experimentally observed streamwise variation of intermittency and a realistic profile in the cross stream direction. The model had been previously validated against low-pressure turbine experiments with success. In this paper, the model is applied to predictions of three sets of recent low-pressure turbine experiments on the Pack B blade to further validate its predicting capabilities under various flow conditions. Comparisons of computational results with experimental data are provided. Overall, good agreement between the experimental data and computational results is obtained. The new model has been shown to have the capability of accurately predicting transitional flows under a wide range of low-pressure turbine conditions.
First identification of pure rotation lines of NH in the infrared solar spectrum
NASA Technical Reports Server (NTRS)
Geller, M.; Farmer, C. B.; Norton, R. H.; Sauval, A. J.; Grevesse, N.
1991-01-01
Pure rotation lines of NH of the v = 0 level and v = 1 level are detected in high-resolution solar spectra obtained from the Atmospheric Trace Molecule Spectroscopy (ATMOS) experimental observations. It is pointed out that the identification of the lines is favored by the typical appearance of the triplet lines of nearly equal intensities. The observed equivalent widths of these triplet lines are compared with predicted intensities, and it is observed that these widths are systematically larger than the predicted values. It is noted that because these very faint lines are observed in a region where the signal is very low, a systematic error in the measurements of the equivalent widths cannot be ruled out; therefore, the disagreement between the observed and predicted intensities is not considered to be real.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, E.K.H.; Funkenbusch, P.D.
1993-06-01
Hot isostatic pressing (HIP) of powder mixtures (containing differently sized components) and of composite powders is analyzed. Recent progress, including development of a simple scheme for estimating radial distribution functions, has made modeling of these systems practical. Experimentally, powders containing bimodal or continuous size distributions are observed to hot isostatically press to a higher density tinder identical processing conditions and to show large differences in the densification rate as a function of density when compared with the monosize powders usually assumed for modeling purposes. Modeling correctly predicts these trends and suggests that they can be partially, but not entirely, attributedmore » to initial packing density differences. Modeling also predicts increased deformation in the smaller particles within a mixture. This effect has also been observed experimentally and is associated with microstructural changes, such as preferential recrystallization of small particles. Finally, consolidation of a composite mixture containing hard, but deformable, inclusions has been modeled for comparison with existing experimental data. Modeling results match both the densification and microstructural observations reported experimentally. Densification is retarded due to contacts between the reinforcing particles which support a significant portion of the applied pressure. In addition, partitioning of deformation between soft matrix and hard inclusion powders results in increased deformation of the softer material.« less
Kurella, Swamy; Meikap, Bhim Charan
2016-08-23
In this work, fly-ash water scrubbing experiments were conducted in a three-stage lab-scale dual-flow sieve plate scrubber to observe the performance of scrubber in fly-ash removal at different operating conditions by varying the liquid rate, gas rate and inlet fly-ash loading. The percentage of fly-ash removal efficiency increases with increase in inlet fly-ash loading, gas flow rate and liquid flow rate, and height of the scrubber; 98.55% maximum percentage of fly-ash removal efficiency (ηFA) is achieved at 19.36 × 10(-4) Nm(3)/s gas flow rate (QG) and 48.183 × 10(-6) m(3)/s liquid flow rate (QL) at 25 × 10(-3) kg/Nm(3) inlet fly-ash loading (CFA,i). A model has also been developed for the prediction of fly-ash removal efficiency of the column using the experimental results. The predicted values calculated using the correlation matched well with the experimental results. Deviations observed between the experimental and the predicted values were less than 20%.
Efthimiou, George C; Bartzis, John G; Berbekar, Eva; Hertwig, Denise; Harms, Frank; Leitl, Bernd
2015-06-26
The capability to predict short-term maximum individual exposure is very important for several applications including, for example, deliberate/accidental release of hazardous substances, odour fluctuations or material flammability level exceedance. Recently, authors have proposed a simple approach relating maximum individual exposure to parameters such as the fluctuation intensity and the concentration integral time scale. In the first part of this study (Part I), the methodology was validated against field measurements, which are governed by the natural variability of atmospheric boundary conditions. In Part II of this study, an in-depth validation of the approach is performed using reference data recorded under truly stationary and well documented flow conditions. For this reason, a boundary-layer wind-tunnel experiment was used. The experimental dataset includes 196 time-resolved concentration measurements which detect the dispersion from a continuous point source within an urban model of semi-idealized complexity. The data analysis allowed the improvement of an important model parameter. The model performed very well in predicting the maximum individual exposure, presenting a factor of two of observations equal to 95%. For large time intervals, an exponential correction term has been introduced in the model based on the experimental observations. The new model is capable of predicting all time intervals giving an overall factor of two of observations equal to 100%.
Prediction of recirculation zones in isothermal coaxial jet flows relevant to combustors
NASA Technical Reports Server (NTRS)
Nallasamy, M.
1987-01-01
The characteristics of the recirculation zones in confined coaxial turbulent jets are investigated numerically employing the kappa - epsilon turbulence model. The geometrical arrangement corresponds to the experimental study of Owen (AIAA J. 1976) and the investigation is undertaken to provide information for isothermal flow relevant to combustor flows. For the first time, the shape, size, and location of the recirculation zones for the above experimental configuration are correctly predicted. The processes leading to the observed results are explained. Detailed comparisons of the prediction with measurements are made. It is shown that the recirculation zones are very sensitive to the central jet exit configuration and the velocity ratio of the jets.
Onset of Curved Dendrite Growth in an Al-Cu Welding Pool: A Phase Field Study
NASA Astrophysics Data System (ADS)
Wang, Lei; Wei, Yanhong
2018-02-01
A phase field model is developed to predict curved dendrite growth in the gas tungsten arc (GTA) welding pool of an Al-Cu alloy. The equations of temperature gradient, pulling velocity and dendrite growth orientation are proposed to consider the transient solidification process during welding. Solidification microstructures and solute diffusion along the fusion boundary in the welding pool are predicted by using the phase field model coupled with transient solidification conditions. Predicted primary dendrites are curved and point toward the welding direction. Welding experiments are carried out to observe solidification microstructures of the weld. Comparisons of simulation results with experimental measurements are conducted. Predicted dendritic morphology, dendrite growth orientation, primary dendrite arm spacing and initial cell spacing give a good agreement with experimental measurements.
ROC curves predicted by a model of visual search.
Chakraborty, D P
2006-07-21
In imaging tasks where the observer is uncertain whether lesions are present, and where they could be present, the image is searched for lesions. In the free-response paradigm, which closely reflects this task, the observer provides data in the form of a variable number of mark-rating pairs per image. In a companion paper a statistical model of visual search has been proposed that has parameters characterizing the perceived lesion signal-to-noise ratio, the ability of the observer to avoid marking non-lesion locations, and the ability of the observer to find lesions. The aim of this work is to relate the search model parameters to receiver operating characteristic (ROC) curves that would result if the observer reported the rating of the most suspicious finding on an image as the overall rating. Also presented are the probability density functions (pdfs) of the underlying latent decision variables corresponding to the highest rating for normal and abnormal images. The search-model-predicted ROC curves are 'proper' in the sense of never crossing the chance diagonal and the slope is monotonically changing. They also have the interesting property of not allowing the observer to move the operating point continuously from the origin to (1, 1). For certain choices of parameters the operating points are predicted to be clustered near the initial steep region of the curve, as has been observed by other investigators. The pdfs are non-Gaussians, markedly so for the abnormal images and for certain choices of parameter values, and provide an explanation for the well-known observation that experimental ROC data generally imply a wider pdf for abnormal images than for normal images. Some features of search-model-predicted ROC curves and pdfs resemble those predicted by the contaminated binormal model, but there are significant differences. The search model appears to provide physical explanations for several aspects of experimental ROC curves.
Microbial catabolic activities are naturally selected by metabolic energy harvest rate.
González-Cabaleiro, Rebeca; Ofiţeru, Irina D; Lema, Juan M; Rodríguez, Jorge
2015-12-01
The fundamental trade-off between yield and rate of energy harvest per unit of substrate has been largely discussed as a main characteristic for microbial established cooperation or competition. In this study, this point is addressed by developing a generalized model that simulates competition between existing and not experimentally reported microbial catabolic activities defined only based on well-known biochemical pathways. No specific microbial physiological adaptations are considered, growth yield is calculated coupled to catabolism energetics and a common maximum biomass-specific catabolism rate (expressed as electron transfer rate) is assumed for all microbial groups. Under this approach, successful microbial metabolisms are predicted in line with experimental observations under the hypothesis of maximum energy harvest rate. Two microbial ecosystems, typically found in wastewater treatment plants, are simulated, namely: (i) the anaerobic fermentation of glucose and (ii) the oxidation and reduction of nitrogen under aerobic autotrophic (nitrification) and anoxic heterotrophic and autotrophic (denitrification) conditions. The experimentally observed cross feeding in glucose fermentation, through multiple intermediate fermentation pathways, towards ultimately methane and carbon dioxide is predicted. Analogously, two-stage nitrification (by ammonium and nitrite oxidizers) is predicted as prevailing over nitrification in one stage. Conversely, denitrification is predicted in one stage (by denitrifiers) as well as anammox (anaerobic ammonium oxidation). The model results suggest that these observations are a direct consequence of the different energy yields per electron transferred at the different steps of the pathways. Overall, our results theoretically support the hypothesis that successful microbial catabolic activities are selected by an overall maximum energy harvest rate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Fangyong; Lartey, Michael; Damodaran, Krishnan
2013-01-01
Ionic liquids are an emerging class of materials with applications in a variety of fields. Steady progress has been made in the creation of ionic liquids tailored to specific applications. However, the understanding of the underlying structure–property relationships has been slower to develop. As a step in the effort to alleviate this deficiency, the influence of side groups on ionic liquid properties has been studied through an integrated approach utilizing synthesis, experimental determination of properties, and simulation techniques. To achieve this goal, a classical force field in the framework of OPLS/Amber force fields has been developed to predict ionic liquidmore » properties accurately. Cu(I)-catalyzed click chemistry was employed to synthesize triazolium-based ionic liquids with diverse side groups. Values of densities were predicted within 3% of experimental values, whereas self-diffusion coefficients were underestimated by about an order of magnitude though the trends were in excellent agreement, the activation energy calculated in simulation correlates well with experimental values. The predicted Henry coefficient for CO{sub 2} solubility reproduced the experimentally observed trends. This study highlights the importance of integrating experimental and computational approaches in property prediction and materials development, which is not only useful in the development of ionic liquids for CO{sub 2} capture but has application in many technological fields.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Fangyong; Lartey, Michael; Damodaran, Krishnan
Ionic liquids are an emerging class of materials with applications in a variety of fields. Steady progress has been made in the creation of ionic liquids tailored to specific applications. However, the understanding of the underlying structure–property relationships has been slower to develop. As a step in the effort to alleviate this deficiency, the influence of side groups on ionic liquid properties has been studied through an integrated approach utilizing synthesis, experimental determination of properties, and simulation techniques. To achieve this goal, a classical force field in the framework of OPLS/Amber force fields has been developed to predict ionic liquidmore » properties accurately. Cu(I)-catalyzed click chemistry was employed to synthesize triazolium-based ionic liquids with diverse side groups. Values of densities were predicted within 3% of experimental values, whereas self-diffusion coefficients were underestimated by about an order of magnitude though the trends were in excellent agreement, the activation energy calculated in simulation correlates well with experimental values. The predicted Henry coefficient for CO{sub 2} solubility reproduced the experimentally observed trends. This study highlights the importance of integrating experimental and computational approaches in property prediction and materials development, which is not only useful in the development of ionic liquids for CO{sub 2} capture but has application in many technological fields.« less
Sharma, Neeraj; Sosnay, Patrick R.; Ramalho, Anabela S.; Douville, Christopher; Franca, Arianna; Gottschalk, Laura B.; Park, Jeenah; Lee, Melissa; Vecchio-Pagan, Briana; Raraigh, Karen S.; Amaral, Margarida D.; Karchin, Rachel; Cutting, Garry R.
2015-01-01
Assessment of the functional consequences of variants near splice sites is a major challenge in the diagnostic laboratory. To address this issue, we created expression minigenes (EMGs) to determine the RNA and protein products generated by splice site variants (n = 10) implicated in cystic fibrosis (CF). Experimental results were compared with the splicing predictions of eight in silico tools. EMGs containing the full-length Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) coding sequence and flanking intron sequences generated wild-type transcript and fully processed protein in Human Embryonic Kidney (HEK293) and CF bronchial epithelial (CFBE41o-) cells. Quantification of variant induced aberrant mRNA isoforms was concordant using fragment analysis and pyrosequencing. The splicing patterns of c.1585−1G>A and c.2657+5G>A were comparable to those reported in primary cells from individuals bearing these variants. Bioinformatics predictions were consistent with experimental results for 9/10 variants (MES), 8/10 variants (NNSplice), and 7/10 variants (SSAT and Sroogle). Programs that estimate the consequences of mis-splicing predicted 11/16 (HSF and ASSEDA) and 10/16 (Fsplice and SplicePort) experimentally observed mRNA isoforms. EMGs provide a robust experimental approach for clinical interpretation of splice site variants and refinement of in silico tools. PMID:25066652
NASA Technical Reports Server (NTRS)
Vassberg, John C.; Tinoco, Edward N.; Mani, Mori; Levy, David; Zickuhr, Tom; Mavriplis, Dimitri J.; Wahls, Richard A.; Morrison, Joseph H.; Brodersen, Olaf P.; Eisfeld, Bernhard;
2008-01-01
Recently acquired experimental data for the DLR-F6 wing-body transonic transport con figuration from the National Transonic Facility (NTF) are compared with the database of computational fluid dynamics (CFD) predictions generated for the Third AIAA CFD Drag Prediction Workshop (DPW-III). The NTF data were collected after the DPW-III, which was conducted with blind test cases. These data include both absolute drag levels and increments associated with this wing-body geometry. The baseline DLR-F6 wing-body geometry is also augmented with a side-of-body fairing which eliminates the flow separation in this juncture region. A comparison between computed and experimentally observed sizes of the side-of-body flow-separation bubble is included. The CFD results for the drag polars and separation bubble sizes are computed on grids which represent current engineering best practices for drag predictions. In addition to these data, a more rigorous attempt to predict absolute drag at the design point is provided. Here, a series of three grid densities are utilized to establish an asymptotic trend of computed drag with respect to grid convergence. This trend is then extrapolated to estimate a grid-converged absolute drag level.
Ehrhardt, Fiona; Soussana, Jean-François; Bellocchi, Gianni; Grace, Peter; McAuliffe, Russel; Recous, Sylvie; Sándor, Renáta; Smith, Pete; Snow, Val; de Antoni Migliorati, Massimiliano; Basso, Bruno; Bhatia, Arti; Brilli, Lorenzo; Doltra, Jordi; Dorich, Christopher D; Doro, Luca; Fitton, Nuala; Giacomini, Sandro J; Grant, Brian; Harrison, Matthew T; Jones, Stephanie K; Kirschbaum, Miko U F; Klumpp, Katja; Laville, Patricia; Léonard, Joël; Liebig, Mark; Lieffering, Mark; Martin, Raphaël; Massad, Raia S; Meier, Elizabeth; Merbold, Lutz; Moore, Andrew D; Myrgiotis, Vasileios; Newton, Paul; Pattey, Elizabeth; Rolinski, Susanne; Sharp, Joanna; Smith, Ward N; Wu, Lianhai; Zhang, Qing
2018-02-01
Simulation models are extensively used to predict agricultural productivity and greenhouse gas emissions. However, the uncertainties of (reduced) model ensemble simulations have not been assessed systematically for variables affecting food security and climate change mitigation, within multi-species agricultural contexts. We report an international model comparison and benchmarking exercise, showing the potential of multi-model ensembles to predict productivity and nitrous oxide (N 2 O) emissions for wheat, maize, rice and temperate grasslands. Using a multi-stage modelling protocol, from blind simulations (stage 1) to partial (stages 2-4) and full calibration (stage 5), 24 process-based biogeochemical models were assessed individually or as an ensemble against long-term experimental data from four temperate grassland and five arable crop rotation sites spanning four continents. Comparisons were performed by reference to the experimental uncertainties of observed yields and N 2 O emissions. Results showed that across sites and crop/grassland types, 23%-40% of the uncalibrated individual models were within two standard deviations (SD) of observed yields, while 42 (rice) to 96% (grasslands) of the models were within 1 SD of observed N 2 O emissions. At stage 1, ensembles formed by the three lowest prediction model errors predicted both yields and N 2 O emissions within experimental uncertainties for 44% and 33% of the crop and grassland growth cycles, respectively. Partial model calibration (stages 2-4) markedly reduced prediction errors of the full model ensemble E-median for crop grain yields (from 36% at stage 1 down to 4% on average) and grassland productivity (from 44% to 27%) and to a lesser and more variable extent for N 2 O emissions. Yield-scaled N 2 O emissions (N 2 O emissions divided by crop yields) were ranked accurately by three-model ensembles across crop species and field sites. The potential of using process-based model ensembles to predict jointly productivity and N 2 O emissions at field scale is discussed. © 2017 John Wiley & Sons Ltd.
Rotation and plasma stability in the Fitzpatrick-Aydemir model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pustovitov, V. D.
2007-08-15
The rotational stabilization of the resistive wall modes (RWMs) is analyzed within the single-mode cylindrical Fitzpatrick-Aydemir model [R. Fitzpatrick, Phys. Plasmas 9, 3459 (2002)]. Here, the consequences of the Fitzpatrick-Aydemir dispersion relation are derived in terms of the observable growth rate and toroidal rotation frequency of the mode, which allows easy interpretation of the results and comparison with experimental observations. It is shown that this model, developed for the plasma with weak dissipation, predicts the rotational destabilization of RWM in the typical range of the RWM rotation. The model predictions are compared with those obtained in a similar model, butmore » with the Boozer boundary conditions at the plasma surface [A. H. Boozer, Phys. Plasmas 11, 110 (2004)]. Simple experimental tests of the model are proposed.« less
Mixed-order phase transition in a colloidal crystal
Tierno, Pietro; Casademunt, Jaume
2017-01-01
Mixed-order phase transitions display a discontinuity in the order parameter like first-order transitions yet feature critical behavior like second-order transitions. Such transitions have been predicted for a broad range of equilibrium and nonequilibrium systems, but their experimental observation has remained elusive. Here, we analytically predict and experimentally realize a mixed-order equilibrium phase transition. Specifically, a discontinuous solid–solid transition in a 2D crystal of paramagnetic colloidal particles is induced by a magnetic field H. At the transition field Hs, the energy landscape of the system becomes completely flat, which causes diverging fluctuations and correlation length ξ∝|H2−Hs2|−1/2. Mean-field critical exponents are predicted, since the upper critical dimension of the transition is du=2. Our colloidal system provides an experimental test bed to probe the unconventional properties of mixed-order phase transitions. PMID:29158388
Short-cavity squeezing in barium
NASA Technical Reports Server (NTRS)
Hope, D. M.; Bachor, H-A.; Manson, P. J.; Mcclelland, D. E.
1992-01-01
Broadband phase sensitive noise and squeezing were experimentally observed in a system of barium atoms interacting with a single mode of a short optical cavity. Squeezing of 13 +/- 3 percent was observed. A maximum possible squeezing of 45 +/- 8 percent could be inferred for out experimental conditions, after correction for measured loss factors. Noise reductions below the quantum limit were found over a range of detection frequencies 60-170 MHz and were best for high cavity transmission and large optical depths. The amount of squeezing observed is consistent with theoretical predictions from a full quantum statistical model of the system.
Experimental Observations and Theoretical Modeling of VLF Scattering During LEP Events
NASA Astrophysics Data System (ADS)
Mitchell, M. F.; Moore, R. C.
2012-12-01
Recent experimental observations of very low frequency (VLF) scattering during lightning-induced election precipitation (LEP) events are presented. A spread spectrum analysis technique is applied to these observations, demonstrating a significant dependence on frequency. For LEP events, the scattered field amplitude and phase both exhibit strong frequency dependence, as do the event onset delays (relative to the causative lightning flash) and the event onset durations. The experimental observations are compared with the predictions of an Earth-ionosphere waveguide propagation and scattering model. The Long-Wave Propagation Capability (LWPC) code is used to demonstrate that the scattered field amplitude and phase depend sensitively on the electrical properties of the scattering body and the ionosphere between the scatterer and the receiver. The observed frequency-dependent onset times and durations, on the other hand, are attributed to the scattering source characteristics. These measurements can also be used to study radiation belt dynamics.
Ferguson, Jake M; Ponciano, José M
2014-02-01
Predicting population extinction risk is a fundamental application of ecological theory to the practice of conservation biology. Here, we compared the prediction performance of a wide array of stochastic, population dynamics models against direct observations of the extinction process from an extensive experimental data set. By varying a series of biological and statistical assumptions in the proposed models, we were able to identify the assumptions that affected predictions about population extinction. We also show how certain autocorrelation structures can emerge due to interspecific interactions, and that accounting for the stochastic effect of these interactions can improve predictions of the extinction process. We conclude that it is possible to account for the stochastic effects of community interactions on extinction when using single-species time series. © 2013 The Authors. Ecology Letters published by John Wiley & Sons Ltd and CNRS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ewsuk, Kevin Gregory; Arguello, Jose Guadalupe, Jr.; Reiterer, Markus W.
2006-02-01
The ease and ability to predict sintering shrinkage and densification with the Skorohod-Olevsky viscous sintering (SOVS) model within a finite-element (FE) code have been improved with the use of an Arrhenius-type viscosity function. The need for a better viscosity function was identified by evaluating SOVS model predictions made using a previously published polynomial viscosity function. Predictions made using the original, polynomial viscosity function do not accurately reflect experimentally observed sintering behavior. To more easily and better predict sintering behavior using FE simulations, a thermally activated viscosity function based on creep theory was used with the SOVS model. In comparison withmore » the polynomial viscosity function, SOVS model predictions made using the Arrhenius-type viscosity function are more representative of experimentally observed viscosity and sintering behavior. Additionally, the effects of changes in heating rate on densification can easily be predicted with the Arrhenius-type viscosity function. Another attribute of the Arrhenius-type viscosity function is that it provides the potential to link different sintering models. For example, the apparent activation energy, Q, for densification used in the construction of the master sintering curve for a low-temperature cofire ceramic dielectric has been used as the apparent activation energy for material flow in the Arrhenius-type viscosity function to predict heating rate-dependent sintering behavior using the SOVS model.« less
NASA Astrophysics Data System (ADS)
Endy, Drew; You, Lingchong; Yin, John; Molineux, Ian J.
2000-05-01
We created a simulation based on experimental data from bacteriophage T7 that computes the developmental cycle of the wild-type phage and also of mutants that have an altered genome order. We used the simulation to compute the fitness of more than 105 mutants. We tested these computations by constructing and experimentally characterizing T7 mutants in which we repositioned gene 1, coding for T7 RNA polymerase. Computed protein synthesis rates for ectopic gene 1 strains were in moderate agreement with observed rates. Computed phage-doubling rates were close to observations for two of four strains, but significantly overestimated those of the other two. Computations indicate that the genome organization of wild-type T7 is nearly optimal for growth: only 2.8% of random genome permutations were computed to grow faster, the highest 31% faster, than wild type. Specific discrepancies between computations and observations suggest that a better understanding of the translation efficiency of individual mRNAs and the functions of qualitatively "nonessential" genes will be needed to improve the T7 simulation. In silico representations of biological systems can serve to assess and advance our understanding of the underlying biology. Iteration between computation, prediction, and observation should increase the rate at which biological hypotheses are formulated and tested.
NASA Astrophysics Data System (ADS)
Wang, Qianxin; Hu, Chao; Xu, Tianhe; Chang, Guobin; Hernández Moraleda, Alberto
2017-12-01
Analysis centers (ACs) for global navigation satellite systems (GNSSs) cannot accurately obtain real-time Earth rotation parameters (ERPs). Thus, the prediction of ultra-rapid orbits in the international terrestrial reference system (ITRS) has to utilize the predicted ERPs issued by the International Earth Rotation and Reference Systems Service (IERS) or the International GNSS Service (IGS). In this study, the accuracy of ERPs predicted by IERS and IGS is analyzed. The error of the ERPs predicted for one day can reach 0.15 mas and 0.053 ms in polar motion and UT1-UTC direction, respectively. Then, the impact of ERP errors on ultra-rapid orbit prediction by GNSS is studied. The methods for orbit integration and frame transformation in orbit prediction with introduced ERP errors dominate the accuracy of the predicted orbit. Experimental results show that the transformation from the geocentric celestial references system (GCRS) to ITRS exerts the strongest effect on the accuracy of the predicted ultra-rapid orbit. To obtain the most accurate predicted ultra-rapid orbit, a corresponding real-time orbit correction method is developed. First, orbits without ERP-related errors are predicted on the basis of ITRS observed part of ultra-rapid orbit for use as reference. Then, the corresponding predicted orbit is transformed from GCRS to ITRS to adjust for the predicted ERPs. Finally, the corrected ERPs with error slopes are re-introduced to correct the predicted orbit in ITRS. To validate the proposed method, three experimental schemes are designed: function extrapolation, simulation experiments, and experiments with predicted ultra-rapid orbits and international GNSS Monitoring and Assessment System (iGMAS) products. Experimental results show that using the proposed correction method with IERS products considerably improved the accuracy of ultra-rapid orbit prediction (except the geosynchronous BeiDou orbits). The accuracy of orbit prediction is enhanced by at least 50% (error related to ERP) when a highly accurate observed orbit is used with the correction method. For iGMAS-predicted orbits, the accuracy improvement ranges from 8.5% for the inclined BeiDou orbits to 17.99% for the GPS orbits. This demonstrates that the correction method proposed by this study can optimize the ultra-rapid orbit prediction.
NASA Astrophysics Data System (ADS)
Ravi Babu, S.; Sambasiva Rao, G.
2018-04-01
The main objective of this study is to investigate the stability and dielectric breakdown strength of alumina-transformer oil nanofluids as stability issue is the major concern when it is used for practical applications. UV-Vis spectrophotometer and Oil tester were used to measure absorbance and breakdown voltage of nanofluids respectively. As per the experimental results, correlations were developed using regression analysis. Experimental results were compared with the predicted values of BDVE and absorbance and presented. The maximum errors obtained by comparing the experimental and predicted results for BDVE and absorbance are -2.913% and 4.89% respectively. It is also observed that there is a decrement in both BDVE and absorbance for nanofluids of aged 1 day compared to fresh ones. This decrement is due to the sedimentation of nanoparticles.
Jacquet, Pierre O; Roy, Alice C; Chambon, Valérian; Borghi, Anna M; Salemme, Roméo; Farnè, Alessandro; Reilly, Karen T
2016-05-31
Predicting intentions from observing another agent's behaviours is often thought to depend on motor resonance - i.e., the motor system's response to a perceived movement by the activation of its stored motor counterpart, but observers might also rely on prior expectations, especially when actions take place in perceptually uncertain situations. Here we assessed motor resonance during an action prediction task using transcranial magnetic stimulation to probe corticospinal excitability (CSE) and report that experimentally-induced updates in observers' prior expectations modulate CSE when predictions are made under situations of perceptual uncertainty. We show that prior expectations are updated on the basis of both biomechanical and probabilistic prior information and that the magnitude of the CSE modulation observed across participants is explained by the magnitude of change in their prior expectations. These findings provide the first evidence that when observers predict others' intentions, motor resonance mechanisms adapt to changes in their prior expectations. We propose that this adaptive adjustment might reflect a regulatory control mechanism that shares some similarities with that observed during action selection. Such a mechanism could help arbitrate the competition between biomechanical and probabilistic prior information when appropriate for prediction.
Plant community responses to experimental warming across the tundra biome
Walker, Marilyn D.; Wahren, C. Henrik; Hollister, Robert D.; Henry, Greg H. R.; Ahlquist, Lorraine E.; Alatalo, Juha M.; Bret-Harte, M. Syndonia; Calef, Monika P.; Callaghan, Terry V.; Carroll, Amy B.; Epstein, Howard E.; Jónsdóttir, Ingibjörg S.; Klein, Julia A.; Magnússon, Borgþór; Molau, Ulf; Oberbauer, Steven F.; Rewa, Steven P.; Robinson, Clare H.; Shaver, Gaius R.; Suding, Katharine N.; Thompson, Catharine C.; Tolvanen, Anne; Totland, Ørjan; Turner, P. Lee; Tweedie, Craig E.; Webber, Patrick J.; Wookey, Philip A.
2006-01-01
Recent observations of changes in some tundra ecosystems appear to be responses to a warming climate. Several experimental studies have shown that tundra plants and ecosystems can respond strongly to environmental change, including warming; however, most studies were limited to a single location and were of short duration and based on a variety of experimental designs. In addition, comparisons among studies are difficult because a variety of techniques have been used to achieve experimental warming and different measurements have been used to assess responses. We used metaanalysis on plant community measurements from standardized warming experiments at 11 locations across the tundra biome involved in the International Tundra Experiment. The passive warming treatment increased plant-level air temperature by 1-3°C, which is in the range of predicted and observed warming for tundra regions. Responses were rapid and detected in whole plant communities after only two growing seasons. Overall, warming increased height and cover of deciduous shrubs and graminoids, decreased cover of mosses and lichens, and decreased species diversity and evenness. These results predict that warming will cause a decline in biodiversity across a wide variety of tundra, at least in the short term. They also provide rigorous experimental evidence that recently observed increases in shrub cover in many tundra regions are in response to climate warming. These changes have important implications for processes and interactions within tundra ecosystems and between tundra and the atmosphere. PMID:16428292
Collapse of a Liquid Column: Numerical Simulation and Experimental Validation
NASA Astrophysics Data System (ADS)
Cruchaga, Marcela A.; Celentano, Diego J.; Tezduyar, Tayfun E.
2007-03-01
This paper is focused on the numerical and experimental analyses of the collapse of a liquid column. The measurements of the interface position in a set of experiments carried out with shampoo and water for two different initial column aspect ratios are presented together with the corresponding numerical predictions. The experimental procedure was found to provide acceptable recurrence in the observation of the interface evolution. Basic models describing some of the relevant physical aspects, e.g. wall friction and turbulence, are included in the simulations. Numerical experiments are conducted to evaluate the influence of the parameters involved in the modeling by comparing the results with the data from the measurements. The numerical predictions reasonably describe the physical trends.
Stringent and efficient assessment of boson-sampling devices.
Tichy, Malte C; Mayer, Klaus; Buchleitner, Andreas; Mølmer, Klaus
2014-07-11
Boson sampling holds the potential to experimentally falsify the extended Church-Turing thesis. The computational hardness of boson sampling, however, complicates the certification that an experimental device yields correct results in the regime in which it outmatches classical computers. To certify a boson sampler, one needs to verify quantum predictions and rule out models that yield these predictions without true many-boson interference. We show that a semiclassical model for many-boson propagation reproduces coarse-grained observables that are proposed as witnesses of boson sampling. A test based on Fourier matrices is demonstrated to falsify physically plausible alternatives to coherent many-boson propagation.
Nuclear Reactions in Micro/Nano-Scale Metal Particles
NASA Astrophysics Data System (ADS)
Kim, Y. E.
2013-03-01
Low-energy nuclear reactions in micro/nano-scale metal particles are described based on the theory of Bose-Einstein condensation nuclear fusion (BECNF). The BECNF theory is based on a single basic assumption capable of explaining the observed LENR phenomena; deuterons in metals undergo Bose-Einstein condensation. The BECNF theory is also a quantitative predictive physical theory. Experimental tests of the basic assumption and theoretical predictions are proposed. Potential application to energy generation by ignition at low temperatures is described. Generalized theory of BECNF is used to carry out theoretical analyses of recently reported experimental results for hydrogen-nickel system.
Plasma ignition thresholds in UV laser ablation plumes
NASA Astrophysics Data System (ADS)
Clarke, P.; Dyer, P. E.; Key, P. H.; Snelling, H. V.
Ultraviolet (UV) laser thresholds for plasma ignition on solid targets predicted from electron-neutral collisional heating are generally much higher than those observed experimentally. This inconsistency was reconciled by Rosen, et al. [2], who showed that excited-state photoionization played a key role in long-pulse UV laser breakdown. Here we develop a related model but with emphasis on pulses of 10 ns duration. Experimental results are also reported for titanium, copper, silicon, and ferulic acid targets in vacuum, irradiated with combinations of the XeF, KrF, and ArF lasers for comparison with predictions.
Recent Progress in the Study of Topological Semimetals
NASA Astrophysics Data System (ADS)
Bernevig, Andrei; Weng, Hongming; Fang, Zhong; Dai, Xi
2018-04-01
The topological semimetal is a new, theoretically predicted and experimentally discovered, topological state of matter. In one of its several realizations, the topological semimetal hosts Weyl fermions, elusive particles predicted more than 85 years ago, sought after in high-energy experiments, but only recently found in a condensed-matter setting. In the present review, we catalogue the most recent progress in this fast-developing research field. We give special attention to topological invariants and the material realization of three different types of topological semimetal. We also discuss various photo emission, transport and optical experimental observables that characterize the appearance of topological semimetal phases.
Gamma Prime Precipitate Evolution During Aging of a Model Nickel-Based Superalloy
NASA Astrophysics Data System (ADS)
Goodfellow, A. J.; Galindo-Nava, E. I.; Christofidou, K. A.; Jones, N. G.; Martin, T.; Bagot, P. A. J.; Boyer, C. D.; Hardy, M. C.; Stone, H. J.
2018-03-01
The microstructural stability of nickel-based superalloys is critical for maintaining alloy performance during service in gas turbine engines. In this study, the precipitate evolution in a model polycrystalline Ni-based superalloy during aging to 1000 hours has been studied via transmission electron microscopy, atom probe tomography, and neutron diffraction. Variations in phase composition and precipitate morphology, size, and volume fraction were observed during aging, while the constrained lattice misfit remained constant at approximately zero. The experimental composition of the γ matrix phase was consistent with thermodynamic equilibrium predictions, while significant differences were identified between the experimental and predicted results from the γ' phase. These results have implications for the evolution of mechanical properties in service and their prediction using modeling methods.
NASA Astrophysics Data System (ADS)
Song, Di; Kang, Guozheng; Kan, Qianhua; Yu, Chao; Zhang, Chuanzeng
2015-08-01
Based on the experimental observations for the uniaxial low-cycle stress fatigue failure of super-elastic NiTi shape memory alloy microtubes (Song et al 2015 Smart Mater. Struct. 24 075004) and a new definition of damage variable corresponding to the variation of accumulated dissipation energy, a phenomenological damage model is proposed to describe the damage evolution of the NiTi microtubes during cyclic loading. Then, with a failure criterion of Dc = 1, the fatigue lives of the NiTi microtubes are predicted by the damage-based model, the predicted lives are in good agreement with the experimental ones, and all of the points are located within an error band of 1.5 times.
Model Predictions and Observed Performance of JWST's Cryogenic Position Metrology System
NASA Technical Reports Server (NTRS)
Lunt, Sharon R.; Rhodes, David; DiAntonio, Andrew; Boland, John; Wells, Conrad; Gigliotti, Trevis; Johanning, Gary
2016-01-01
The James Webb Space Telescope cryogenic testing requires measurement systems that both obtain a very high degree of accuracy and can function in that environment. Close-range photogrammetry was identified as meeting those criteria. Testing the capability of a close-range photogrammetric system prior to its existence is a challenging problem. Computer simulation was chosen over building a scaled mock-up to allow for increased flexibility in testing various configurations. Extensive validation work was done to ensure that the actual as-built system meet accuracy and repeatability requirements. The simulated image data predicted the uncertainty in measurement to be within specification and this prediction was borne out experimentally. Uncertainty at all levels was verified experimentally to be less than 0.1 millimeters.
Computational Simulations of Convergent Nozzles for the AIAA 1st Propulsion Aerodynamics Workshop
NASA Technical Reports Server (NTRS)
Dippold, Vance F., III
2014-01-01
Computational Fluid Dynamics (CFD) simulations were completed for a series of convergent nozzles in participation of the American Institute of Aeronautics and Astronautics (AIAA) 1st Propulsion Aerodynamics Workshop. The simulations were performed using the Wind-US flow solver. Discharge and thrust coefficients were computed for four axisymmetric nozzles with nozzle pressure ratios (NPR) ranging from 1.4 to 7.0. The computed discharge coefficients showed excellent agreement with available experimental data; the computed thrust coefficients captured trends observed in the experimental data, but over-predicted the thrust coefficient by 0.25 to 1.0 percent. Sonic lines were computed for cases with NPR >= 2.0 and agreed well with experimental data for NPR >= 2.5. Simulations were also performed for a 25 deg. conic nozzle bifurcated by a flat plate at NPR = 4.0. The jet plume shock structure was compared with and without the splitter plate to the experimental data. The Wind-US simulations predicted the shock structure well, though lack of grid resolution in the plume reduced the sharpness of the shock waves. Unsteady Reynolds-Averaged Navier-Stokes (URANS) simulations and Detached Eddy Simulations (DES) were performed at NPR = 1.6 for the 25 deg conic nozzle with splitter plate. The simulations predicted vortex shedding from the trailing edge of the splitter plate. However, the vortices of URANS and DES solutions appeared to dissipate earlier than observed experimentally. It is believed that a lack of grid resolution in the region of the vortex shedding may have caused the vortices to break down too soon
Qi, Xintong; Wang, Xuebing; Chen, Ting; ...
2016-03-30
Compressional and shear wave velocities of the α phase of hafnium have been measured up to 10.4 GPa at room temperature using ultrasonic interferometry in a multi-anvil apparatus. A finite strain equation of state analysis yielded K s0 = 110.4 (5) GPa, G 0 = 54.7(5) GPa,K s0' = 3.7 and G 0' = 0.6 for the elastic bulk and shear moduli and their pressure derivatives at ambient conditions. Complementary to the experimental data, the single crystal elastic constants, elastic anisotropy and the unit cell axial ratio c/a of α-hafnium at high pressures were investigated by Density Functional Theory (DFT)more » based first principles calculations. A c/a value of 1.605 is predicted for α-Hf at 40 GPa, which is in excellent agreement with previous experimental results. The low-pressure derivative of the shear modulus observed in our experimental data up to 10 GPa was found to originate from the elastic constant C44 which exhibits negligible pressure dependence within the current experimental pressure range. At higher pressures (>10 GPa), C 44 was predicted to soften and the shear wave velocity ν S trended to decrease with pressure, which can be interpreted as a precursor to the α-ω transition similar to that observed in other group IV elements (titanium and zirconium). Here, the acoustic velocities, bulk and shear moduli, and the acoustic Debye temperature (θ D = 240.1 K) determined from the current experiments were all compared well with those predicted by our theoretical DFT calculations.« less
Ong, Robert H.; King, Andrew J. C.; Mullins, Benjamin J.; Cooper, Timothy F.; Caley, M. Julian
2012-01-01
We present Computational Fluid Dynamics (CFD) models of the coupled dynamics of water flow, heat transfer and irradiance in and around corals to predict temperatures experienced by corals. These models were validated against controlled laboratory experiments, under constant and transient irradiance, for hemispherical and branching corals. Our CFD models agree very well with experimental studies. A linear relationship between irradiance and coral surface warming was evident in both the simulation and experimental result agreeing with heat transfer theory. However, CFD models for the steady state simulation produced a better fit to the linear relationship than the experimental data, likely due to experimental error in the empirical measurements. The consistency of our modelling results with experimental observations demonstrates the applicability of CFD simulations, such as the models developed here, to coral bleaching studies. A study of the influence of coral skeletal porosity and skeletal bulk density on surface warming was also undertaken, demonstrating boundary layer behaviour, and interstitial flow magnitude and temperature profiles in coral cross sections. Our models compliment recent studies showing systematic changes in these parameters in some coral colonies and have utility in the prediction of coral bleaching. PMID:22701582
Statistical modelling of networked human-automation performance using working memory capacity.
Ahmed, Nisar; de Visser, Ewart; Shaw, Tyler; Mohamed-Ameen, Amira; Campbell, Mark; Parasuraman, Raja
2014-01-01
This study examines the challenging problem of modelling the interaction between individual attentional limitations and decision-making performance in networked human-automation system tasks. Analysis of real experimental data from a task involving networked supervision of multiple unmanned aerial vehicles by human participants shows that both task load and network message quality affect performance, but that these effects are modulated by individual differences in working memory (WM) capacity. These insights were used to assess three statistical approaches for modelling and making predictions with real experimental networked supervisory performance data: classical linear regression, non-parametric Gaussian processes and probabilistic Bayesian networks. It is shown that each of these approaches can help designers of networked human-automated systems cope with various uncertainties in order to accommodate future users by linking expected operating conditions and performance from real experimental data to observable cognitive traits like WM capacity. Practitioner Summary: Working memory (WM) capacity helps account for inter-individual variability in operator performance in networked unmanned aerial vehicle supervisory tasks. This is useful for reliable performance prediction near experimental conditions via linear models; robust statistical prediction beyond experimental conditions via Gaussian process models and probabilistic inference about unknown task conditions/WM capacities via Bayesian network models.
Understanding of impurity poloidal distribution in the edge pedestal by modelling
NASA Astrophysics Data System (ADS)
Rozhansky, V.; Kaveeva, E.; Molchanov, P.; Veselova, I.; Voskoboynikov, S.; Coster, D.; Fable, E.; Puetterich, T.; Viezzer, E.; Kukushkin, A. S.; Kirk, A.; the ASDEX Upgrade Team
2015-07-01
Simulation of an H-mode ASDEX Upgrade shot with boron impurity was done with the B2SOLPS5.2 transport code. Simulation results were compared with the unique experimental data available for the chosen shot: radial density, electron and ion temperature profiles in the equatorial midplanes, radial electric field profile, radial profiles of the parallel velocity of impurities at the low-field side (LFS) and high-field side (HFS), radial density profiles of impurity ions at LHS and HFS. Simulation results reproduce all available experimental data simultaneously. In particular strong poloidal HFS-LFS asymmetry of B5+ ions was predicted in accordance with the experiment. The simulated HFS B5+ density inside the edge transport barrier is twice larger than that at LFS. This is consistent with the experimental observations where even larger impurity density asymmetry was observed. A similar effect was predicted in the simulation done for the MAST H-mode. Here the HFS density of He2+ is predicted to be 4 times larger than that at LHS. Such a large predicted asymmetry is connected with a larger ratio of HFS and LFS magnetic fields which is typical for spherical tokamaks. The HFS/LFS asymmetry was not measured in the experiment, however modelling qualitatively reproduces the observed change of sign of He+parallel velocity to the counter-current direction at LFS. The understanding of the asymmetry is based on neoclassical effects in plasma with strong gradients. It is demonstrated that simulation results obtained with account of sources of ionization, realistic geometry and turbulent transport are consistent with the simplified analytical approach. Difference from the standard neoclassical theory is emphasized.
Density response of the mesospheric sodium layer to gravity wave perturbations
NASA Technical Reports Server (NTRS)
Shelton, J. D.; Gardner, C. S.; Sechrist, C. F., Jr.
1980-01-01
Lidar observations of the mesospheric sodium layer often reveal wavelike features moving through the layer. It is often assumed that these features are a layer density response to gravity waves. Chiu and Ching (1978) described the approximate form of the linear response of atmospheric layers to gravity waves. In this paper, their results are used to predict the response of the sodium layer to gravity waves. These simulations are compared with experimental observations and a good correlation is found between the two. Because of the thickness of the sodium layer and the density gradients found in it, a linear model of the layer response is not always adequate to describe gravity wave-sodium layer interactions. Inclusion of nonlinearities in the layer response is briefly discussed. Experimental data is seen to contain features consistent with the predicted nonlinearities.
Fluctuations and the QCD Phase Diagram
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koch, Volker; Bzdak, Adam
2016-07-01
Here, we will discuss how the study of various fluctuation observables may be used to explore the phase diagram of the strong interaction. Furthermore, we will briefly summarize the present study of experimental and theoretical research in this area. We will then discuss various corrections and issues which need to be understood and applied for a meaningful comparison of experimental measurements with theoretical predictions.
ERIC Educational Resources Information Center
Zhou, Bo; Konstorum, Anna; Duong, Thao; Tieu, Kinh H.; Wells, William M.; Brown, Gregory G.; Stern, Hal S.; Shahbaba, Babak
2013-01-01
We propose a hierarchical Bayesian model for analyzing multi-site experimental fMRI studies. Our method takes the hierarchical structure of the data (subjects are nested within sites, and there are multiple observations per subject) into account and allows for modeling between-site variation. Using posterior predictive model checking and model…
Experimental measurement of interparticle acoustic radiation force in the Rayleigh limit
NASA Astrophysics Data System (ADS)
Mohapatra, Abhishek Ray; Sepehrirahnama, Shahrokh; Lim, Kian-Meng
2018-05-01
Acoustophoresis is a form of contact-free particle manipulation in microfluidic devices. The precision of manipulation can be enhanced with better understanding of the acoustic radiation force. In this paper we present the measurements of interparticle radiation force between a pair of polystyrene beads in the Rayleigh limit. The study is conducted for three different sizes of beads and the experimental results are of the same order of magnitude when compared with theoretical predictions. However, the experimental values are larger than the theoretical values. The trend of a decrease in the magnitude of the interparticle radiation force with decreasing particle size and increasing center-to-center distance between the particles is also observed experimentally. The experiments are conducted in the specific scenario where the pair of beads are in close proximity, but not in contact with each other, and the beads are approaching the pressure nodal plane with the center-to-center line aligned perpendicular to the incident wave. This scenario minimizes the presence of the primary radiation force, allowing accurate measurement of the interparticle force. The attractive nature of the interparticle force is observed, consistent with theoretical predictions.
Schröder, Bernd; Freire, Mara G; Varanda, Fatima R; Marrucho, Isabel M; Santos, Luís M N B F; Coutinho, João A P
2011-07-01
The aqueous solubility of hexafluorobenzene has been determined, at 298.15K, using a shake-flask method with a spectrophotometric quantification technique. Furthermore, the solubility of hexafluorobenzene in saline aqueous solutions, at distinct salt concentrations, has been measured. Both salting-in and salting-out effects were observed and found to be dependent on the nature of the cationic/anionic composition of the salt. COSMO-RS, the Conductor-like Screening Model for Real Solvents, has been used to predict the corresponding aqueous solubilities at conditions similar to those used experimentally. The prediction results showed that the COSMO-RS approach is suitable for the prediction of salting-in/-out effects. The salting-in/-out phenomena have been rationalized with the support of COSMO-RS σ-profiles. The prediction potential of COSMO-RS regarding aqueous solubilities and octanol-water partition coefficients has been compared with typically used QSPR-based methods. Up to now, the absence of accurate solubility data for hexafluorobenzene hampered the calculation of the respective partition coefficients. Combining available accurate vapor pressure data with the experimentally determined water solubility, a novel air-water partition coefficient has been derived. Copyright © 2011 Elsevier Ltd. All rights reserved.
Internally electrodynamic particle model: Its experimental basis and its predictions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng-Johansson, J. X., E-mail: jxzj@iofpr.or
2010-03-15
The internally electrodynamic (IED) particle model was derived based on overall experimental observations, with the IED process itself being built directly on three experimental facts: (a) electric charges present with all material particles, (b) an accelerated charge generates electromagnetic waves according to Maxwell's equations and Planck energy equation, and (c) source motion produces Doppler effect. A set of well-known basic particle equations and properties become predictable based on first principles solutions for the IED process; several key solutions achieved are outlined, including the de Broglie phase wave, de Broglie relations, Schroedinger equation, mass, Einstein mass-energy relation, Newton's law of gravity,more » single particle self interference, and electromagnetic radiation and absorption; these equations and properties have long been broadly experimentally validated or demonstrated. A conditioned solution also predicts the Doebner-Goldin equation which emerges to represent a form of long-sought quantum wave equation including gravity. A critical review of the key experiments is given which suggests that the IED process underlies the basic particle equations and properties not just sufficiently but also necessarily.« less
Internally electrodynamic particle model: Its experimental basis and its predictions
NASA Astrophysics Data System (ADS)
Zheng-Johansson, J. X.
2010-03-01
The internally electrodynamic (IED) particle model was derived based on overall experimental observations, with the IED process itself being built directly on three experimental facts: (a) electric charges present with all material particles, (b) an accelerated charge generates electromagnetic waves according to Maxwell’s equations and Planck energy equation, and (c) source motion produces Doppler effect. A set of well-known basic particle equations and properties become predictable based on first principles solutions for the IED process; several key solutions achieved are outlined, including the de Broglie phase wave, de Broglie relations, Schrödinger equation, mass, Einstein mass-energy relation, Newton’s law of gravity, single particle self interference, and electromagnetic radiation and absorption; these equations and properties have long been broadly experimentally validated or demonstrated. A conditioned solution also predicts the Doebner-Goldin equation which emerges to represent a form of long-sought quantum wave equation including gravity. A critical review of the key experiments is given which suggests that the IED process underlies the basic particle equations and properties not just sufficiently but also necessarily.
A new model for two-dimensional numerical simulation of pseudo-2D gas-solids fluidized beds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Tingwen; Zhang, Yongmin
2013-10-11
Pseudo-two dimensional (pseudo-2D) fluidized beds, for which the thickness of the system is much smaller than the other two dimensions, is widely used to perform fundamental studies on bubble behavior, solids mixing, or clustering phenomenon in different gas-solids fluidization systems. The abundant data from such experimental systems are very useful for numerical model development and validation. However, it has been reported that two-dimensional (2D) computational fluid dynamic (CFD) simulations of pseudo-2D gas-solids fluidized beds usually predict poor quantitative agreement with the experimental data, especially for the solids velocity field. In this paper, a new model is proposed to improve themore » 2D numerical simulations of pseudo-2D gas-solids fluidized beds by properly accounting for the frictional effect of the front and back walls. Two previously reported pseudo-2D experimental systems were simulated with this model. Compared to the traditional 2D simulations, significant improvements in the numerical predictions have been observed and the predicted results are in better agreement with the available experimental data.« less
The Effects of Blade Count on Boundary Layer Development in a Low-Pressure Turbine
NASA Technical Reports Server (NTRS)
Dorney, Daniel J.; Flitan, Horia C.; Ashpis, David E.; Solomon, William J.
2000-01-01
Experimental data from jet-engine tests have indicated that turbine efficiencies at takeoff can be as much as two points higher than those at cruise conditions. Recent studies have shown that Reynolds number effects contribute to the lower efficiencies at cruise conditions. In the current study numerical simulations have been performed to study the boundary layer development in a two-stage low-pressure turbine, and to evaluate the models available for low Reynolds number flows in turbomachinery. In a previous study using the same geometry the predicted time-averaged boundary layer quantities showed excellent agreement with the experimental data, but the predicted unsteady results showed only fair agreement with the experimental data. It was surmised that the blade count approximation used in the numerical simulations generated more unsteadiness than was observed in the experiments. In this study a more accurate blade approximation has been used to model the turbine, and the method of post-processing the boundary layer information has been modified to more closely resemble the process used in the experiments. The predicted results show improved agreement with the unsteady experimental data.
Experimental Observation of Two-Dimensional Anderson Localization with the Atomic Kicked Rotor.
Manai, Isam; Clément, Jean-François; Chicireanu, Radu; Hainaut, Clément; Garreau, Jean Claude; Szriftgiser, Pascal; Delande, Dominique
2015-12-11
Dimension 2 is expected to be the lower critical dimension for Anderson localization in a time-reversal-invariant disordered quantum system. Using an atomic quasiperiodic kicked rotor-equivalent to a two-dimensional Anderson-like model-we experimentally study Anderson localization in dimension 2 and we observe localized wave function dynamics. We also show that the localization length depends exponentially on the disorder strength and anisotropy and is in quantitative agreement with the predictions of the self-consistent theory for the 2D Anderson localization.
Surface tension driven flow in glass melts and model fluids
NASA Technical Reports Server (NTRS)
Mcneil, T. J.; Cole, R.; Subramanian, R. S.
1982-01-01
Surface tension driven flow has been investigated analytically and experimentally using an apparatus where a free column of molten glass or model fluids was supported at its top and bottom faces by solid surfaces. The glass used in the experiments was sodium diborate, and the model fluids were silicone oils. In both the model fluid and glass melt experiments, conclusive evidence was obtained to prove that the observed flow was driven primarily by surface tension forces. The experimental observations are in qualitative agreement with predictions from the theoretical model.
NASA Astrophysics Data System (ADS)
Rodrigues, Neil S.; Kulkarni, Varun; Sojka, Paul E.
2014-11-01
While like-on-like doublet impinging jet atomization has been extensively studied in the literature, there is poor agreement between experimentally observed spray characteristics and theoretical predictions (Ryan et al. 1995, Anderson et al. 2006). Recent works (Bremond and Villermaux 2006, Choo and Kang 2007) have introduced a non-uniform jet velocity profile, which lead to a deviation from the standard assumptions for the sheet velocity and the sheet thickness parameter. These works have assumed a parabolic profile to serve as another limit to the traditional uniform jet velocity profile assumption. Incorporating a non-uniform jet velocity profile results in the sheet velocity and the sheet thickness parameter depending on the sheet azimuthal angle. In this work, the 1/7th power-law turbulent velocity profile is assumed to provide a closer match to the flow behavior of jets at high Reynolds and Weber numbers, which correspond to the impact wave regime. Predictions for the maximum wavelength, sheet breakup length, ligament diameter, and drop diameter are compared with experimental observations. The results demonstrate better agreement between experimentally measured values and predictions, compared to previous models. U.S. Army Research Office under the Multi-University Research Initiative Grant Number W911NF-08-1-0171.
Emborsky, Christopher P; Cox, Kenneth R; Chapman, Walter G
2011-08-28
The ubiquitous use of surfactants in commercial and industrial applications has led to many experimental, theoretical, and simulation based studies. These efforts seek to provide a molecular level understanding of the effects on structuring behavior and the corresponding impacts on observable properties (e.g., interfacial tension). With such physical detail, targeted system design can be improved over typical techniques of observational trends and phenomenological correlations by taking advantage of predictive system response. This research provides a systematic study of part of the broad parameter space effects on equilibrium microstructure and interfacial properties of amphiphiles at a liquid-liquid interface using the interfacial statistical associating fluid theory density functional theory as a molecular model for the system from the bulk to the interface. Insights into the molecular level physics and thermodynamics governing the system behavior are discussed as they relate to both predictions qualitatively consistent with experimental observations and extensions beyond currently available studies. © 2011 American Institute of Physics
Dark Matter and Color Octets Beyond the Standard Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krnjaic, Gordan Zdenko
2012-07-01
Although the Standard Model (SM) of particles and interactions has survived forty years of experimental tests, it does not provide a complete description of nature. From cosmological and astrophysical observations, it is now clear that the majority of matter in the universe is not baryonic and interacts very weakly (if at all) via non-gravitational forces. The SM does not provide a dark matter candidate, so new particles must be introduced. Furthermore, recent Tevatron results suggest that SM predictions for benchmark collider observables are in tension with experimental observations. In this thesis, we will propose extensions to the SM that addressmore » each of these issues.« less
Supersymmetry and Kaon physics
NASA Astrophysics Data System (ADS)
Yamamoto, Kei
2017-01-01
Kaon physics has played an essential role in testing the Standard Model and in searching for new physics with measurements of CP violation and rare decays. Current progress of lattice calculations enables us to predict kaon observables accurately, especially for the direct CP violation, ε‧/ε, and there is a discrepancy from the experimental data at the 2.9 σ level. On the experimental side, the rare kaon decays and are ongoing to be measured at the SM accuracy by KOTO at J-PARC and NA62 at CERN. These kaon observables are good probes for new physics. We study supersymmetric effects; the chargino and gluino contributions to Z penguin, in kaon observables.
Molecular orbital (SCF-Xα-SW) theory of metal-metal charge transfer processes in minerals
Sherman, David M.
1987-01-01
Electronic transitions between the Fe-Fe bonding and Fe-Fe antibonding orbitals results in the optically-induced intervalence charge transfer bands observed in the electronic spectra of mixed valence minerals. Such transitions are predicted to be polarized along the metal-metal bond direction, in agreement with experimental observations.
NASA Astrophysics Data System (ADS)
Tokumitsu, S.; Hasegawa, M.
2018-05-01
The coloring phenomena caused by optical rotation of polarized light beams in sugared water can be an appropriate subject for use as an educational tool. In this paper, such coloring phenomena are studied in terms of theory, and the results are compared with experimental results. First, polarized laser beams in red, blue, or green were allowed to travel in sugared water of certain concentrations, and changes in the irradiance of the beams were measured while changing the distance between a pair of polarizing plates arranged in the sugared water. The angle of rotation was then determined for each color. An equation was established for predicting a theoretical value of the angle of rotation for laser beams of specific colors (wavelengths) traveling in sugared water of specific concentrations. The predicted results from the equation exhibited satisfactory agreement with the experimental values obtained from the measurements. In addition, changes in the irradiance of traveling laser beams, as well as the changes in colors observable for white light beams, were also predicted, resulting in good agreement with the observed results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khan, Inamullah; François, Raoul; Castel, Arnaud
2014-02-15
This paper studies the evolution of reinforcement corrosion in comparison to corrosion crack width in a highly corroded reinforced concrete beam. Cracking and corrosion maps of the beam were drawn and steel reinforcement was recovered from the beam to observe the corrosion pattern and to measure the loss of mass of steel reinforcement. Maximum steel cross-section loss of the main reinforcement and average steel cross-section loss between stirrups were plotted against the crack width. The experimental results were compared with existing models proposed by Rodriguez et al., Vidal et al. and Zhang et al. Time prediction models for a givenmore » opening threshold are also compared to experimental results. Steel cross-section loss for stirrups was also measured and was plotted against the crack width. It was observed that steel cross-section loss in the stirrups had no relationship with the crack width of longitudinal corrosion cracks. -- Highlights: •Relationship between crack and corrosion of reinforcement was investigated. •Corrosion results of natural process and then corresponds to in-situ conditions. •Comparison with time predicting model is provided. •Prediction of load-bearing capacity from crack pattern was studied.« less
Thermodynamics and proton activities of protic ionic liquids with quantum cluster equilibrium theory
NASA Astrophysics Data System (ADS)
Ingenmey, Johannes; von Domaros, Michael; Perlt, Eva; Verevkin, Sergey P.; Kirchner, Barbara
2018-05-01
We applied the binary Quantum Cluster Equilibrium (bQCE) method to a number of alkylammonium-based protic ionic liquids in order to predict boiling points, vaporization enthalpies, and proton activities. The theory combines statistical thermodynamics of van-der-Waals-type clusters with ab initio quantum chemistry and yields the partition functions (and associated thermodynamic potentials) of binary mixtures over a wide range of thermodynamic phase points. Unlike conventional cluster approaches that are limited to the prediction of thermodynamic properties, dissociation reactions can be effortlessly included into the bQCE formalism, giving access to ionicities, as well. The method is open to quantum chemical methods at any level of theory, but combination with low-cost composite density functional theory methods and the proposed systematic approach to generate cluster sets provides a computationally inexpensive and mostly parameter-free way to predict such properties at good-to-excellent accuracy. Boiling points can be predicted within an accuracy of 50 K, reaching excellent accuracy for ethylammonium nitrate. Vaporization enthalpies are predicted within an accuracy of 20 kJ mol-1 and can be systematically interpreted on a molecular level. We present the first theoretical approach to predict proton activities in protic ionic liquids, with results fitting well into the experimentally observed correlation. Furthermore, enthalpies of vaporization were measured experimentally for some alkylammonium nitrates and an excellent linear correlation with vaporization enthalpies of their respective parent amines is observed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Jordan Ned; Carver, Zana A.; Weber, Thomas J.
A combination experimental and computational approach was developed to predict chemical transport into saliva. A serous-acinar chemical transport assay was established to measure chemical transport with non-physiological (standard cell culture medium) and physiological (using surrogate plasma and saliva medium) conditions using 3,5,6-trichloro-2-pyridinol (TCPy) a metabolite of the pesticide chlorpyrifos. High levels of TCPy protein binding was observed in cell culture medium and rat plasma resulting in different TCPy transport behaviors in the two experimental conditions. In the non-physiological transport experiment, TCPy reached equilibrium at equivalent concentrations in apical and basolateral chambers. At higher TCPy doses, increased unbound TCPy was observed,more » and TCPy concentrations in apical and basolateral chambers reached equilibrium faster than lower doses, suggesting only unbound TCPy is able to cross the cellular monolayer. In the physiological experiment, TCPy transport was slower than non-physiological conditions, and equilibrium was achieved at different concentrations in apical and basolateral chambers at a comparable ratio (0.034) to what was previously measured in rats dosed with TCPy (saliva:blood ratio: 0.049). A cellular transport computational model was developed based on TCPy protein binding kinetics and accurately simulated all transport experiments using different permeability coefficients for the two experimental conditions (1.4 vs 0.4 cm/hr for non-physiological and physiological experiments, respectively). The computational model was integrated into a physiologically based pharmacokinetic (PBPK) model and accurately predicted TCPy concentrations in saliva of rats dosed with TCPy. Overall, this study demonstrates an approach to predict chemical transport in saliva potentially increasing the utility of salivary biomonitoring in the future.« less
In-silico wear prediction for knee replacements--methodology and corroboration.
Strickland, M A; Taylor, M
2009-07-22
The capability to predict in-vivo wear of knee replacements is a valuable pre-clinical analysis tool for implant designers. Traditionally, time-consuming experimental tests provided the principal means of investigating wear. Today, computational models offer an alternative. However, the validity of these models has not been demonstrated across a range of designs and test conditions, and several different formulas are in contention for estimating wear rates, limiting confidence in the predictive power of these in-silico models. This study collates and retrospectively simulates a wide range of experimental wear tests using fast rigid-body computational models with extant wear prediction algorithms, to assess the performance of current in-silico wear prediction tools. The number of tests corroborated gives a broader, more general assessment of the performance of these wear-prediction tools, and provides better estimates of the wear 'constants' used in computational models. High-speed rigid-body modelling allows a range of alternative algorithms to be evaluated. Whilst most cross-shear (CS)-based models perform comparably, the 'A/A+B' wear model appears to offer the best predictive power amongst existing wear algorithms. However, the range and variability of experimental data leaves considerable uncertainty in the results. More experimental data with reduced variability and more detailed reporting of studies will be necessary to corroborate these models with greater confidence. With simulation times reduced to only a few minutes, these models are ideally suited to large-volume 'design of experiment' or probabilistic studies (which are essential if pre-clinical assessment tools are to begin addressing the degree of variation observed clinically and in explanted components).
Experimental observation of sub-Rayleigh quantum imaging with a two-photon entangled source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, De-Qin; School of Science, Tianjin University of Technology and Education, Tianjin 300222; Song, Xin-Bing
It has been theoretically predicted that N-photon quantum imaging can realize either an N-fold resolution improvement (Heisenberg-like scaling) or a √(N)-fold resolution improvement (standard quantum limit) beyond the Rayleigh diffraction bound, over classical imaging. Here, we report the experimental study on spatial sub-Rayleigh quantum imaging using a two-photon entangled source. Two experimental schemes are proposed and performed. In a Fraunhofer diffraction scheme with a lens, two-photon Airy disk pattern is observed with subwavelength diffraction property. In a lens imaging apparatus, however, two-photon sub-Rayleigh imaging for an object is realized with super-resolution property. The experimental results agree with the theoretical predictionmore » in the two-photon quantum imaging regime.« less
Jacquet, Pierre O.; Roy, Alice C.; Chambon, Valérian; Borghi, Anna M.; Salemme, Roméo; Farnè, Alessandro; Reilly, Karen T.
2016-01-01
Predicting intentions from observing another agent’s behaviours is often thought to depend on motor resonance – i.e., the motor system’s response to a perceived movement by the activation of its stored motor counterpart, but observers might also rely on prior expectations, especially when actions take place in perceptually uncertain situations. Here we assessed motor resonance during an action prediction task using transcranial magnetic stimulation to probe corticospinal excitability (CSE) and report that experimentally-induced updates in observers’ prior expectations modulate CSE when predictions are made under situations of perceptual uncertainty. We show that prior expectations are updated on the basis of both biomechanical and probabilistic prior information and that the magnitude of the CSE modulation observed across participants is explained by the magnitude of change in their prior expectations. These findings provide the first evidence that when observers predict others’ intentions, motor resonance mechanisms adapt to changes in their prior expectations. We propose that this adaptive adjustment might reflect a regulatory control mechanism that shares some similarities with that observed during action selection. Such a mechanism could help arbitrate the competition between biomechanical and probabilistic prior information when appropriate for prediction. PMID:27243157
Development of a pore network simulation model to study nonaqueous phase liquid dissolution
Dillard, Leslie A.; Blunt, Martin J.
2000-01-01
A pore network simulation model was developed to investigate the fundamental physics of nonequilibrium nonaqueous phase liquid (NAPL) dissolution. The network model is a lattice of cubic chambers and rectangular tubes that represent pore bodies and pore throats, respectively. Experimental data obtained by Powers [1992] were used to develop and validate the model. To ensure the network model was representative of a real porous medium, the pore size distribution of the network was calibrated by matching simulated and experimental drainage and imbibition capillary pressure‐saturation curves. The predicted network residual styrene blob‐size distribution was nearly identical to the observed distribution. The network model reproduced the observed hydraulic conductivity and produced relative permeability curves that were representative of a poorly consolidated sand. Aqueous‐phase transport was represented by applying the equation for solute flux to the network tubes and solving for solute concentrations in the network chambers. Complete mixing was found to be an appropriate approximation for calculation of chamber concentrations. Mass transfer from NAPL blobs was represented using a corner diffusion model. Predicted results of solute concentration versus Peclet number and of modified Sherwood number versus Peclet number for the network model compare favorably with experimental data for the case in which NAPL blob dissolution was negligible. Predicted results of normalized effluent concentration versus pore volume for the network were similar to the experimental data for the case in which NAPL blob dissolution occurred with time.
Experimental and theoretical screening of nanoscale oxide reactivity with LiBH4
NASA Astrophysics Data System (ADS)
Opalka, S. M.; Tang, X.; Laube, B. L.; Vanderspurt, T. H.
2009-05-01
Experimentation, thermodynamic modeling, and atomic modeling were combined to screen the reactivity of SiO2, Al2O3, and ZrO2 nanoscale oxides with LiBH4. Equilibrium thermodynamic modeling showed that the reactions of oxides with LiBH4 could lead to formation of stable Li-bearing oxide and metal boride phases. Experimentation was conducted to evaluate the discharge/recharge reaction products of nanoscale oxide-LiBH4 mixtures. Thermal gravimetric analyses-mass spectroscopy and x-ray diffraction revealed significant SiO2 destabilization of LiBH4 dehydrogenation, resulting in the formation of lithium silicate and boric acid. A smaller amount of lithium metaborate and boric acid was formed with Al2O3. No destabilization products were observed with ZrO2. Density functional theory atomic modeling predicted much stronger LiBH4 interfacial adsorption on the SiO2 and Al2O3 surfaces than on the ZrO2 surface, which was consistent with the experimental findings. Following dehydrogenation, interfacial Li atoms were predicted to strongly adsorb on the oxide surfaces effectively competing with LiH formation. The interfacial Li interactions with Al2O3 and ZrO2 were equal in strength in the fully hydrided and dehydrided states, so that their predicted net effect on LiBH4 dehydrogenation was insignificant. Zirconia was selected for nanoframework development based on the combined observations of compatibility and weaker associative interactions with LiBH4.
NASA Technical Reports Server (NTRS)
Satyanarayana, Arunkumar; Bogert, Philip B.; Chunchu, Prasad B.
2007-01-01
The influence of delamination on the progressing damage path and initial failure load in composite laminates is investigated. Results are presented from a numerical and an experimental study of center-notched tensile-loaded coupons. The numerical study includes two approaches. The first approach considers only intralaminar (fiber breakage and matrix cracking) damage modes in calculating the progression of the damage path. In the second approach, the model is extended to consider the effect of interlaminar (delamination) damage modes in addition to the intralaminar damage modes. The intralaminar damage is modeled using progressive damage analysis (PDA) methodology implemented with the VUMAT subroutine in the ABAQUS finite element code. The interlaminar damage mode has been simulated using cohesive elements in ABAQUS. In the experimental study, 2-3 specimens each of two different stacking sequences of center-notched laminates are tensile loaded. The numerical results from the two different modeling approaches are compared with each other and the experimentally observed results for both laminate types. The comparisons reveal that the second modeling approach, where the delamination damage mode is included together with the intralaminar damage modes, better simulates the experimentally observed damage modes and damage paths, which were characterized by splitting failures perpendicular to the notch tips in one or more layers. Additionally, the inclusion of the delamination mode resulted in a better prediction of the loads at which the failure took place, which were higher than those predicted by the first modeling approach which did not include delaminations.
An integrated physiology model to study regional lung damage effects and the physiologic response
2014-01-01
Background This work expands upon a previously developed exercise dynamic physiology model (DPM) with the addition of an anatomic pulmonary system in order to quantify the impact of lung damage on oxygen transport and physical performance decrement. Methods A pulmonary model is derived with an anatomic structure based on morphometric measurements, accounting for heterogeneous ventilation and perfusion observed experimentally. The model is incorporated into an existing exercise physiology model; the combined system is validated using human exercise data. Pulmonary damage from blast, blunt trauma, and chemical injury is quantified in the model based on lung fluid infiltration (edema) which reduces oxygen delivery to the blood. The pulmonary damage component is derived and calibrated based on published animal experiments; scaling laws are used to predict the human response to lung injury in terms of physical performance decrement. Results The augmented dynamic physiology model (DPM) accurately predicted the human response to hypoxia, altitude, and exercise observed experimentally. The pulmonary damage parameters (shunt and diffusing capacity reduction) were fit to experimental animal data obtained in blast, blunt trauma, and chemical damage studies which link lung damage to lung weight change; the model is able to predict the reduced oxygen delivery in damage conditions. The model accurately estimates physical performance reduction with pulmonary damage. Conclusions We have developed a physiologically-based mathematical model to predict performance decrement endpoints in the presence of thoracic damage; simulations can be extended to estimate human performance and escape in extreme situations. PMID:25044032
Predicting network modules of cell cycle regulators using relative protein abundance statistics.
Oguz, Cihan; Watson, Layne T; Baumann, William T; Tyson, John J
2017-02-28
Parameter estimation in systems biology is typically done by enforcing experimental observations through an objective function as the parameter space of a model is explored by numerical simulations. Past studies have shown that one usually finds a set of "feasible" parameter vectors that fit the available experimental data equally well, and that these alternative vectors can make different predictions under novel experimental conditions. In this study, we characterize the feasible region of a complex model of the budding yeast cell cycle under a large set of discrete experimental constraints in order to test whether the statistical features of relative protein abundance predictions are influenced by the topology of the cell cycle regulatory network. Using differential evolution, we generate an ensemble of feasible parameter vectors that reproduce the phenotypes (viable or inviable) of wild-type yeast cells and 110 mutant strains. We use this ensemble to predict the phenotypes of 129 mutant strains for which experimental data is not available. We identify 86 novel mutants that are predicted to be viable and then rank the cell cycle proteins in terms of their contributions to cumulative variability of relative protein abundance predictions. Proteins involved in "regulation of cell size" and "regulation of G1/S transition" contribute most to predictive variability, whereas proteins involved in "positive regulation of transcription involved in exit from mitosis," "mitotic spindle assembly checkpoint" and "negative regulation of cyclin-dependent protein kinase by cyclin degradation" contribute the least. These results suggest that the statistics of these predictions may be generating patterns specific to individual network modules (START, S/G2/M, and EXIT). To test this hypothesis, we develop random forest models for predicting the network modules of cell cycle regulators using relative abundance statistics as model inputs. Predictive performance is assessed by the areas under receiver operating characteristics curves (AUC). Our models generate an AUC range of 0.83-0.87 as opposed to randomized models with AUC values around 0.50. By using differential evolution and random forest modeling, we show that the model prediction statistics generate distinct network module-specific patterns within the cell cycle network.
Galileo Redux or, How Do Nonrigid, Extended Bodies Fall?
ERIC Educational Resources Information Center
Newburgh, Ronald; Andes, George M.
1995-01-01
Presents a model for the Slinky that allows for calculations that agree with observed behavior and predictions that suggest further experimentation. Offers an opportunity for introducing nonrigid bodies within the Galilean framework. (JRH)
Ikegami, Tsuyoshi; Ganesh, Gowrishankar
2017-01-01
The question of how humans predict outcomes of observed motor actions by others is a fundamental problem in cognitive and social neuroscience. Previous theoretical studies have suggested that the brain uses parts of the forward model (used to estimate sensory outcomes of self-generated actions) to predict outcomes of observed actions. However, this hypothesis has remained controversial due to the lack of direct experimental evidence. To address this issue, we analyzed the behavior of darts experts in an understanding learning paradigm and utilized computational modeling to examine how outcome prediction of observed actions affected the participants' ability to estimate their own actions. We recruited darts experts because sports experts are known to have an accurate outcome estimation of their own actions as well as prediction of actions observed in others. We first show that learning to predict the outcomes of observed dart throws deteriorates an expert's abilities to both produce his own darts actions and estimate the outcome of his own throws (or self-estimation). Next, we introduce a state-space model to explain the trial-by-trial changes in the darts performance and self-estimation through our experiment. The model-based analysis reveals that the change in an expert's self-estimation is explained only by considering a change in the individual's forward model, showing that an improvement in an expert's ability to predict outcomes of observed actions affects the individual's forward model. These results suggest that parts of the same forward model are utilized in humans to both estimate outcomes of self-generated actions and predict outcomes of observed actions.
A combined-slip predictive control of vehicle stability with experimental verification
NASA Astrophysics Data System (ADS)
Jalali, Milad; Hashemi, Ehsan; Khajepour, Amir; Chen, Shih-ken; Litkouhi, Bakhtiar
2018-02-01
In this paper, a model predictive vehicle stability controller is designed based on a combined-slip LuGre tyre model. Variations in the lateral tyre forces due to changes in tyre slip ratios are considered in the prediction model of the controller. It is observed that the proposed combined-slip controller takes advantage of the more accurate tyre model and can adjust tyre slip ratios based on lateral forces of the front axle. This results in an interesting closed-loop response that challenges the notion of braking only the wheels on one side of the vehicle in differential braking. The performance of the proposed controller is evaluated in software simulations and is compared to a similar pure-slip controller. Furthermore, experimental tests are conducted on a rear-wheel drive electric Chevrolet Equinox equipped with differential brakes to evaluate the closed-loop response of the model predictive control controller.
NASA Astrophysics Data System (ADS)
Robin, C.; Gérard, M.; Quinaud, M.; d'Arbigny, J.; Bultel, Y.
2016-09-01
The prediction of Proton Exchange Membrane Fuel Cell (PEMFC) lifetime is one of the major challenges to optimize both material properties and dynamic control of the fuel cell system. In this study, by a multiscale modeling approach, a mechanistic catalyst dissolution model is coupled to a dynamic PEMFC cell model to predict the performance loss of the PEMFC. Results are compared to two 2000-h experimental aging tests. More precisely, an original approach is introduced to estimate the loss of an equivalent active surface area during an aging test. Indeed, when the computed Electrochemical Catalyst Surface Area profile is fitted on the experimental measures from Cyclic Voltammetry, the computed performance loss of the PEMFC is underestimated. To be able to predict the performance loss measured by polarization curves during the aging test, an equivalent active surface area is obtained by a model inversion. This methodology enables to successfully find back the experimental cell voltage decay during time. The model parameters are fitted from the polarization curves so that they include the global degradation. Moreover, the model captures the aging heterogeneities along the surface of the cell observed experimentally. Finally, a second 2000-h durability test in dynamic operating conditions validates the approach.
Baird, Jared A; Taylor, Lynne S
2011-06-01
The purpose of this study was to gain a better understanding of which factors contribute to the eutectic composition of drug-polyethylene glycol (PEG) blends and to compare experimental values with predictions from the semi-empirical model developed by Lacoulonche et al. Eutectic compositions of various drug-PEG 3350 solid dispersions were predicted, assuming athermal mixing, and compared to experimentally determined eutectic points. The presence or absence of specific interactions between the drug and PEG 3350 were investigated using Fourier transform infrared (FT-IR) spectroscopy. The eutectic composition for haloperidol-PEG and loratadine-PEG solid dispersions was accurately predicted using the model, while predictions for aceclofenac-PEG and chlorpropamide-PEG were very different from those experimentally observed. Deviations in the model prediction from ideal behavior for the systems evaluated were confirmed to be due to the presence of specific interactions between the drug and polymer, as demonstrated by IR spectroscopy. Detailed analysis showed that the eutectic composition prediction from the model is interdependent on the crystal lattice energy of the drug compound (evaluated from the melting temperature and the heat of fusion) as well as the nature of the drug-polymer interactions. In conclusion, for compounds with melting points less than 200°C, the model is ideally suited for predicting the eutectic composition of systems where there is an absence of drug-polymer interactions.
Helbling, Ignacio M; Ibarra, Juan C D; Luna, Julio A
2012-02-28
A mathematical modeling of controlled release of drug from one-layer torus-shaped devices is presented. Analytical solutions based on Refined Integral Method (RIM) are derived. The validity and utility of the model are ascertained by comparison of the simulation results with matrix-type vaginal rings experimental release data reported in the literature. For the comparisons, the pair-wise procedure is used to measure quantitatively the fit of the theoretical predictions to the experimental data. A good agreement between the model prediction and the experimental data is observed. A comparison with a previously reported model is also presented. More accurate results are achieved for small A/C(s) ratios. Copyright © 2011 Elsevier B.V. All rights reserved.
Two-proton radioactivity with 2p halo in light mass nuclei A = 18-34
NASA Astrophysics Data System (ADS)
Saxena, G.; Kumawat, M.; Kaushik, M.; Jain, S. K.; Aggarwal, Mamta
2017-12-01
Two-proton radioactivity with 2p halo is reported theoretically in light mass nuclei A = 18- 34. We predict 19Mg, 22Si, 26S, 30Ar and 34Ca as promising candidates of ground state 2p-radioactivity with S2p < 0 and Sp > 0. Observation of extended tail of spatial charge density distribution, larger charge radius and study of proton single particle states, Fermi energy and the wave functions indicate 2p halo like structure which supports direct 2p emission. The Coulomb and centrifugal barriers in experimentally identified 2p unbound 22Si show a quasi-bound state that ensures enough life time for such experimental probes. Our predictions are in good accord with experimental and other theoretical data available so far.
Qeli, Ermir; Omasits, Ulrich; Goetze, Sandra; Stekhoven, Daniel J; Frey, Juerg E; Basler, Konrad; Wollscheid, Bernd; Brunner, Erich; Ahrens, Christian H
2014-08-28
The in silico prediction of the best-observable "proteotypic" peptides in mass spectrometry-based workflows is a challenging problem. Being able to accurately predict such peptides would enable the informed selection of proteotypic peptides for targeted quantification of previously observed and non-observed proteins for any organism, with a significant impact for clinical proteomics and systems biology studies. Current prediction algorithms rely on physicochemical parameters in combination with positive and negative training sets to identify those peptide properties that most profoundly affect their general detectability. Here we present PeptideRank, an approach that uses learning to rank algorithm for peptide detectability prediction from shotgun proteomics data, and that eliminates the need to select a negative dataset for the training step. A large number of different peptide properties are used to train ranking models in order to predict a ranking of the best-observable peptides within a protein. Empirical evaluation with rank accuracy metrics showed that PeptideRank complements existing prediction algorithms. Our results indicate that the best performance is achieved when it is trained on organism-specific shotgun proteomics data, and that PeptideRank is most accurate for short to medium-sized and abundant proteins, without any loss in prediction accuracy for the important class of membrane proteins. Targeted proteomics approaches have been gaining a lot of momentum and hold immense potential for systems biology studies and clinical proteomics. However, since only very few complete proteomes have been reported to date, for a considerable fraction of a proteome there is no experimental proteomics evidence that would allow to guide the selection of the best-suited proteotypic peptides (PTPs), i.e. peptides that are specific to a given proteoform and that are repeatedly observed in a mass spectrometer. We describe a novel, rank-based approach for the prediction of the best-suited PTPs for targeted proteomics applications. By building on methods developed in the field of information retrieval (e.g. web search engines like Google's PageRank), we circumvent the delicate step of selecting positive and negative training sets and at the same time also more closely reflect the experimentalist´s need for selecting e.g. the 5 most promising peptides for targeting a protein of interest. This approach allows to predict PTPs for not yet observed proteins or for organisms without prior experimental proteomics data such as many non-model organisms. Copyright © 2014 Elsevier B.V. All rights reserved.
Design of a fully compliant bistable micromechanism for switching devices
NASA Astrophysics Data System (ADS)
Chang, Hsin-An; Tsay, Jinni; Sung, Cheng-Kuo
2001-11-01
This paper proposes a design of a bistable micromechanism for the application of switching devices. The topology of a fully compliant four-bar mechanism is adopted herein. The central mass of the mechanism is employed as a carriage to carry switching components, such as mirror, electrical contact, etc. The equations that predict the existence of bistable states, the extreme positions of the motion range and the maximum stress states of members were derived. MUMPs provided by Cronos Integrated Microsystems fabricated the proposed micromechanisms for the purpose of verifying the theoretical predictions. Finally, an experimental rig was established. The bistable mechanisms were switched either by the probe or actuators to push the central mass. The experimental results demonstrated that the motions observed approximately met the predicted values.
NASA Technical Reports Server (NTRS)
Schubert, Siegfried
2012-01-01
Among the key recommendations of a recent WCRP Workshop on Drought Predictability and Prediction in a Changing Climate is the development of an experimental global drought information system (GDIS). The timeliness of such an effort is evidenced by the wide aITay of relevant ongoing national and international (as well as regional and continental scale) efforts to provide drought information, including the US and North American drought monitors, and various integrating activities such as GEO and the Global Drought Portal. The workshop will review current capabilities and needs, and focus on the steps necessary to develop a GDIS that will build upon the extensive worldwide investments that have already been made in developing drought monitoring (including new space-based observations), drought risk management, and climate prediction capahilities.
Status of the observed and predicted b anti-b production at the Tevatron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Happacher, F.; Giromini, P.; /Frascati
2005-09-01
The authors review the experimental status of the b-quark production at the Fermilab Tevatron. They compare all available measurements to perturbative QCD predictions (NLO and FONLL) and also to the parton-level cross section evaluated with parton-shower Monte Carlo generators. They examine both the single b cross section and the so called b{bar b} correlations. The review shows that the experimental situation is quite complicated because the measurements appear to be inconsistent among themselves. In this situation, there is no solid basis to either claim that perturbative QCD is challenged by these measurements or, in contrast, that long-standing discrepancies between datamore » and theory have been resolved by incrementally improving the measurements and the theoretical prediction.« less
Propagation of sound in highly porous open-cell elastic foams
NASA Technical Reports Server (NTRS)
Lambert, R. F.
1983-01-01
This work presents both theoretical predictions and experimental measurements of attenuation and progressive phase constants of sound in open-cell, highly porous, elastic polyurethane foams. The foams are available commercially in graded pore sizes for which information about the static flow resistance, thermal time constant, volume porosity, dynamic structure factor, and speed of sound is known. The analysis is specialized to highly porous foams which can be efficient sound absorbers at audio frequencies. Negligible effect of internal wave coupling on attenuation and phase shift for the frequency range 16-6000 Hz was predicted and no experimentally significant effects were observed in the bulk samples studied. The agreement between predictions and measurements in bulk materials is excellent. The analysis is applicable to both the regular and compressed elastic open-cell foams.
Theoretical and experimental investigation of millimeter-wave TED's in cross-waveguide oscillators
NASA Astrophysics Data System (ADS)
Rydberg, A.
1985-07-01
Theoretical and experimental investigations of millimeterwave GaAs second harmonic transferred electron device (TED) oscillators using separate circuits for frequency and power optimization, are described. The theory predicts the oscillation frequency with less than 2 percent error for the second harmonic. Apart from the 2d and 3d, a 4th harmonic from the TED was observed up to 130 GHz.
NASA Astrophysics Data System (ADS)
Riley, W. J.; Zhu, Q.; Tang, J.
2016-12-01
The land models integrated in Earth System Models (ESMs) are critical components necessary to predict soil carbon dynamics and carbon-climate interactions under a changing climate. Yet, these models have been shown to have poor predictive power when compared with observations and ignore many processes known to the observational communities to influence above and belowground carbon dynamics. Here I will report work to tightly couple observations and perturbation experiment results with development of an ESM land model (ALM), focusing on nutrient constraints of the terrestrial C cycle. Using high-frequency flux tower observations and short-term nitrogen and phosphorus perturbation experiments, we show that conceptualizing plant and soil microbe interactions as a multi-substrate, multi-competitor kinetic network allows for accurate prediction of nutrient acquisition. Next, using multiple-year FACE and fertilization response observations at many forest sites, we show that capturing the observed responses requires representation of dynamic allocation to respond to the resulting stresses. Integrating the mechanisms implied by these observations into ALM leads to much lower observational bias and to very different predictions of long-term soil and aboveground C stocks and dynamics, and therefore C-climate feedbacks. I describe how these types of observational constraints are being integrated into the open-source International Land Model Benchmarking (ILAMB) package, and end with the argument that consolidating as many observations of all sorts for easy use by modelers is an important goal to improve C-climate feedback predictions.
NASA Technical Reports Server (NTRS)
Hochhalter, J. D.; Glaessgen, E. H.; Ingraffea, A. R.; Aquino, W. A.
2009-01-01
Fracture processes within a material begin at the nanometer length scale at which the formation, propagation, and interaction of fundamental damage mechanisms occur. Physics-based modeling of these atomic processes quickly becomes computationally intractable as the system size increases. Thus, a multiscale modeling method, based on the aggregation of fundamental damage processes occurring at the nanoscale within a cohesive zone model, is under development and will enable computationally feasible and physically meaningful microscale fracture simulation in polycrystalline metals. This method employs atomistic simulation to provide an optimization loop with an initial prediction of a cohesive zone model (CZM). This initial CZM is then applied at the crack front region within a finite element model. The optimization procedure iterates upon the CZM until the finite element model acceptably reproduces the near-crack-front displacement fields obtained from experimental observation. With this approach, a comparison can be made between the original CZM predicted by atomistic simulation and the converged CZM that is based on experimental observation. Comparison of the two CZMs gives insight into how atomistic simulation scales.
Microstructurally-sensitive fatigue crack nucleation in Ni-based single and oligo crystals
NASA Astrophysics Data System (ADS)
Chen, Bo; Jiang, Jun; Dunne, Fionn P. E.
2017-09-01
An integrated experimental, characterisation and computational crystal plasticity study of cyclic plastic beam loading has been carried out for nickel single crystal (CMSX4) and oligocrystal (MAR002) alloys in order to assess quantitatively the mechanistic drivers for fatigue crack nucleation. The experimentally validated modelling provides knowledge of key microstructural quantities (accumulated slip, stress and GND density) at experimentally observed fatigue crack nucleation sites and it is shown that while each of these quantities is potentially important in crack nucleation, none of them in its own right is sufficient to be predictive. However, the local (elastic) stored energy density, measured over a length scale determined by the density of SSDs and GNDs, has been shown to predict crack nucleation sites in the single and oligocrystals tests. In addition, once primary nucleated cracks develop and are represented in the crystal model using XFEM, the stored energy correctly identifies where secondary fatigue cracks are observed to nucleate in experiments. This (Griffith-Stroh type) quantity also correctly differentiates and explains intergranular and transgranular fatigue crack nucleation.
Are there reliable constitutive laws for dynamic friction?
Woodhouse, Jim; Putelat, Thibaut; McKay, Andrew
2015-09-28
Structural vibration controlled by interfacial friction is widespread, ranging from friction dampers in gas turbines to the motion of violin strings. To predict, control or prevent such vibration, a constitutive description of frictional interactions is inevitably required. A variety of friction models are discussed to assess their scope and validity, in the light of constraints provided by different experimental observations. Three contrasting case studies are used to illustrate how predicted behaviour can be extremely sensitive to the choice of frictional constitutive model, and to explore possible experimental paths to discriminate between and calibrate dynamic friction models over the full parameter range needed for real applications. © 2015 The Author(s).
Initial comparison of single cylinder Stirling engine computer model predictions with test results
NASA Technical Reports Server (NTRS)
Tew, R. C., Jr.; Thieme, L. G.; Miao, D.
1979-01-01
A NASA developed digital computer code for a Stirling engine, modelling the performance of a single cylinder rhombic drive ground performance unit (GPU), is presented and its predictions are compared to test results. The GPU engine incorporates eight regenerator/cooler units and the engine working space is modelled by thirteen control volumes. The model calculates indicated power and efficiency for a given engine speed, mean pressure, heater and expansion space metal temperatures and cooler water inlet temperature and flow rate. Comparison of predicted and observed powers implies that the reference pressure drop calculations underestimate actual pressure drop, possibly due to oil contamination in the regenerator/cooler units, methane contamination in the working gas or the underestimation of mechanical loss. For a working gas of hydrogen, the predicted values of brake power are from 0 to 6% higher than experimental values, and brake efficiency is 6 to 16% higher, while for helium the predicted brake power and efficiency are 2 to 15% higher than the experimental.
Optical properties of extended-chain polymers under stress
NASA Astrophysics Data System (ADS)
Ramirez, Rafael G.; Eby, R. K.
1995-09-01
Birefringence and x-ray diffraction experiments have been carried out on Kevlar 49(superscript R) fibers under tensile stress to monitor structure changes under the stress field. The origin of the observed birefringence is discussed in some detail. Results from theoretical calculations using semi-empirical molecular orbital techniques are presented and contrasted to the experimental observations. The calculations involved the estimation of chain polarizability and were performed under simulated stress conditions using the AM1 Hamiltonian in MOPAC. Polarizability is then used to calculate the birefringence as a function of tensile stress, by using existing internal field theory. This theoretical approach is applied to predict the optical properties of highly oriented extended-chain polyethylene, as well as those for poly(p' phenylene therephtalamide); the latter being the base polymer in Kevlar fibers. Results reveal reasonable birefringence predictions when compared to available experimental results in the literature. Also, it is found that the contribution from orienting crystallites under the stress field, to the measured birefringence in Kevlar fibers, is only a small fraction of the total. However, the calculations predict a significant contribution from deformation (extension) at the molecular level.
NASA Astrophysics Data System (ADS)
Michoski, Craig; Janhunen, Salomon; Faghihi, Danial; Carey, Varis; Moser, Robert
2017-10-01
The suppression of micro-turbulence and ultimately the inhibition of large-scale instabilities observed in tokamak plasmas is partially characterized by the onset of a global stationary state. This stationary attractor corresponds experimentally to a state of ``marginal stability'' in the plasma. The critical threshold that characterizes the onset in the nonlinear regime is observed both experimentally and numerically to exhibit an upshift relative to the linear theory. That is, the onset in the stationary state is up-shifted from those predicted by the linear theory as a function of the ion temperature gradient R0 /LT . Because the transition to this state with enhanced transport and therefore reduced confinement times is inaccessible to the linear theory, strategies for developing nonlinear reduced physics models to predict the upshift have been ongoing. As a complement to these effort, the principle aim of this work is to establish low-fidelity surrogate models that can be used to predict instability driven loss of confinement using training data from high-fidelity models. DE-SC0008454 and DE-AC02-09CH11466.
NASA Technical Reports Server (NTRS)
Goodman, S. J.; Lapenta, W.; Jedlovec, G.; Dodge, J.; Bradshaw, T.
2003-01-01
The NASA Short-term Prediction Research and Transition (SPoRT) Center in Huntsville, Alabama was created to accelerate the infusion of NASA earth science observations, data assimilation and modeling research into NWS forecast operations and decision-making. The principal focus of experimental products is on the regional scale with an emphasis on forecast improvements on a time scale of 0-24 hours. The SPoRT Center research is aligned with the regional prediction objectives of the US Weather Research Program dealing with 0-1 day forecast issues ranging from convective initiation to 24-hr quantitative precipitation forecasting. The SPoRT Center, together with its other interagency partners, universities, and the NASA/NOAA Joint Center for Satellite Data Assimilation, provides a means and a process to effectively transition NASA Earth Science Enterprise observations and technology to National Weather Service operations and decision makers at both the global/national and regional scales. This paper describes the process for the transition of experimental products into forecast operations, current products undergoing assessment by forecasters, and plans for the future.
NASA Astrophysics Data System (ADS)
Volk, Brent L.; Lagoudas, Dimitris C.; Maitland, Duncan J.
2011-09-01
In this work, tensile tests and one-dimensional constitutive modeling were performed on a high recovery force polyurethane shape memory polymer that is being considered for biomedical applications. The tensile tests investigated the free recovery (zero load) response as well as the constrained displacement recovery (stress recovery) response at extension values up to 25%, and two consecutive cycles were performed during each test. The material was observed to recover 100% of the applied deformation when heated at zero load in the second thermomechanical cycle, and a stress recovery of 1.5-4.2 MPa was observed for the constrained displacement recovery experiments. After the experiments were performed, the Chen and Lagoudas model was used to simulate and predict the experimental results. The material properties used in the constitutive model—namely the coefficients of thermal expansion, shear moduli, and frozen volume fraction—were calibrated from a single 10% extension free recovery experiment. The model was then used to predict the material response for the remaining free recovery and constrained displacement recovery experiments. The model predictions match well with the experimental data.
NASA Astrophysics Data System (ADS)
Harms, Jack C.; Grames, Ethan M.; Han, Shu; O'Brien, Leah C.; O'Brien, James J.
2016-06-01
The near-infrared spectrum of NiCl has been recorded in high resolution in the 13,200-13,500 wn and 13,600-13,750 wn regions using Intracavity Laser Spectroscopy (ILS). The NiCl Molecules were produced in the plasma discharge of a Ni-lined copper hollow cathode with 0.3-0.6 torr of argon as the sputter gas, and a trace amount of CCl_4. The hollow cathode was located within the laser cavity of a Verdi V-10 pumped Ti:sapphire system. A generation of 90 μsec resulted in an effective pathlength of approximately 700 m for the absorption measurements. Several transitions were observed, including 3 transitions involving 2 previously unreported electronic states. The (0,0) and (1,0) bands of the [13.5] 2Φ7/2-[0.16] A 2Δ5/2 transition were observed near 13,709 wn and 13,318 wn, respectively. The (0,0) band of the [13.8] 2Π1/2 - [0.38] X 2Π1/2 transition was observed near 13,480 wn. With the analysis of these transitions, molecular constants have been obtained for 9 of the 12 doublet states of NiCl predicted by Zou and Lou in 2006. Analysis of these transitions and a comparison between the experimentally observed transitions and the theoretically predicted states of NiCl will be presented.
A model of the human in a cognitive prediction task.
NASA Technical Reports Server (NTRS)
Rouse, W. B.
1973-01-01
The human decision maker's behavior when predicting future states of discrete linear dynamic systems driven by zero-mean Gaussian processes is modeled. The task is on a slow enough time scale that physiological constraints are insignificant compared with cognitive limitations. The model is basically a linear regression system identifier with a limited memory and noisy observations. Experimental data are presented and compared to the model.
Low-high junction theory applied to solar cells
NASA Technical Reports Server (NTRS)
Godlewski, M. P.; Baraona, C. R.; Brandhorst, H. W., Jr.
1973-01-01
Recent use of alloying techniques for rear contact formation has yielded a new kind of silicon solar cell, the back surface field (BSF) cell, with abnormally high open circuit voltage and improved radiation resistance. Several analytical models for open circuit voltage based on the reverse saturation current are formulated to explain these observations. The zero SRV case of the conventional cell model, the drift field model, and the low-high junction (LHJ) model can predict the experimental trends. The LHJ model applies the theory of the low-high junction and is considered to reflect a more realistic view of cell fabrication. This model can predict the experimental trends observed for BSF cells. Detailed descriptions and derivations for the models are included. The correspondences between them are discussed. This modeling suggests that the meaning of minority carrier diffusion length measured in BSF cells be reexamined.
NASA Technical Reports Server (NTRS)
Ash, A. G.
1985-01-01
Simulation predictions for the Leeds 35 sq m horizontal discharge chamber array for proton primaries with a approx. E sup 2.7 spectrum extrapolated from balloon data to 10 to the 16th power eV give power law rho (r)-spectra with constant slope approx. -2 consistent with the experimental data up to the point at which they steepen but overshooting them at higher densities, and at high shower sizes predicted cores which are significantly steeper than those observed. Further comparisons with results for heavy nuclei primaries (up to A = 56) point to the inadequacy of changes in primary composition to account for the observed density spectra and core flattening, and the shower size spectrum together, and point, therefore, to the failure of the scaling interaction model at approx. 10 to the 15th power eV primary energy.
Experimental observation of negative effective gravity in water waves.
Hu, Xinhua; Yang, Jiong; Zi, Jian; Chan, C T; Ho, Kai-Ming
2013-01-01
The gravity of Earth is responsible for the formation of water waves and usually difficult to change. Although negative effective gravity was recently predicted theoretically in water waves, it has not yet been observed in experiments and remains a mathematical curiosity which is difficult to understand. Here we experimentally demonstrate that close to the resonant frequency of purposely-designed resonating units, negative effective gravity can occur for water waves passing through an array of resonators composing of bottom-mounted split tubes, resulting in the prohibition of water wave propagation. It is found that when negative gravity occurs, the averaged displacement of water surface in a unit cell of the array has a phase difference of π to that along the boundary of the unit cell, consistent with theoretical predictions. Our results provide a mechanism to block water waves and may find applications in wave energy conversion and coastal protection.
Iyer, Swami; Reyes, Joshua; Killingback, Timothy
2014-01-01
The Traveler's Dilemma game and the Minimum Effort Coordination game are two social dilemmas that have attracted considerable attention due to the fact that the predictions of classical game theory are at odds with the results found when the games are studied experimentally. Moreover, a direct application of deterministic evolutionary game theory, as embodied in the replicator dynamics, to these games does not explain the observed behavior. In this work, we formulate natural variants of these two games as smoothed continuous-strategy games. We study the evolutionary dynamics of these continuous-strategy games, both analytically and through agent-based simulations, and show that the behavior predicted theoretically is in accord with that observed experimentally. Thus, these variants of the Traveler's Dilemma and the Minimum Effort Coordination games provide a simple resolution of the paradoxical behavior associated with the original games. PMID:24709851
Iyer, Swami; Reyes, Joshua; Killingback, Timothy
2014-01-01
The Traveler's Dilemma game and the Minimum Effort Coordination game are two social dilemmas that have attracted considerable attention due to the fact that the predictions of classical game theory are at odds with the results found when the games are studied experimentally. Moreover, a direct application of deterministic evolutionary game theory, as embodied in the replicator dynamics, to these games does not explain the observed behavior. In this work, we formulate natural variants of these two games as smoothed continuous-strategy games. We study the evolutionary dynamics of these continuous-strategy games, both analytically and through agent-based simulations, and show that the behavior predicted theoretically is in accord with that observed experimentally. Thus, these variants of the Traveler's Dilemma and the Minimum Effort Coordination games provide a simple resolution of the paradoxical behavior associated with the original games.
Experimental Observation of Negative Effective Gravity in Water Waves
Hu, Xinhua; Yang, Jiong; Zi, Jian; Chan, C. T.; Ho, Kai-Ming
2013-01-01
The gravity of Earth is responsible for the formation of water waves and usually difficult to change. Although negative effective gravity was recently predicted theoretically in water waves, it has not yet been observed in experiments and remains a mathematical curiosity which is difficult to understand. Here we experimentally demonstrate that close to the resonant frequency of purposely-designed resonating units, negative effective gravity can occur for water waves passing through an array of resonators composing of bottom-mounted split tubes, resulting in the prohibition of water wave propagation. It is found that when negative gravity occurs, the averaged displacement of water surface in a unit cell of the array has a phase difference of π to that along the boundary of the unit cell, consistent with theoretical predictions. Our results provide a mechanism to block water waves and may find applications in wave energy conversion and coastal protection. PMID:23715132
NASA Astrophysics Data System (ADS)
McBeck, Jessica A.; Cooke, Michele L.; Herbert, Justin W.; Maillot, Bertrand; Souloumiac, Pauline
2017-09-01
We employ work optimization to predict the geometry of frontal thrusts at two stages of an evolving physical accretion experiment. Faults that produce the largest gains in efficiency, or change in external work per new fault area, ΔWext/ΔA, are considered most likely to develop. The predicted thrust geometry matches within 1 mm of the observed position and within a few degrees of the observed fault dip, for both the first forethrust and backthrust when the observed forethrust is active. The positions of the second backthrust and forethrust that produce >90% of the maximum ΔWext/ΔA also overlap the observed thrusts. The work optimal fault dips are within a few degrees of the fault dips that maximize the average Coulomb stress. Slip gradients along the detachment produce local elevated shear stresses and high strain energy density regions that promote thrust initiation near the detachment. The mechanical efficiency (Wext) of the system decreases at each of the two simulated stages of faulting and resembles the evolution of experimental force. The higher ΔWext/ΔA due to the development of the first pair relative to the second pair indicates that the development of new thrusts may lead to diminishing efficiency gains as the wedge evolves. The numerical estimates of work consumed by fault propagation overlap the range calculated from experimental force data and crustal faults. The integration of numerical and physical experiments provides a powerful approach that demonstrates the utility of work optimization to predict the development of faults.
Magnetic domain-wall tilting due to domain-wall speed asymmetry
NASA Astrophysics Data System (ADS)
Kim, Dae-Yun; Park, Min-Ho; Park, Yong-Keun; Kim, Joo-Sung; Nam, Yoon-Seok; Hwang, Hyun-Seok; Kim, Duck-Ho; Je, Soong-Geun; Min, Byoung-Chul; Choe, Sug-Bong
2018-04-01
Broken symmetries in diverse systems generate a number of intriguing phenomena and the analysis on such broken symmetries often provides decisive clues for exploring underlying physics in the systems. Recently, in magnetic thin-film systems, the Dzyaloshinskii-Moriya interaction (DMI)—induced by the broken symmetry of structural inversion—accounts for various chiral phenomena, which are of timely issues in spintronics. Here, we report an experimental observation on unexpected tilting of magnetic domain walls (DWs) due to the broken symmetry under the application of the magnetic field transverse to the magnetic wire systems. It has been predicted that the DMI possibly causes such DW tilting in the direction of the energy minimization. However, very interestingly, experimental observation reveals that the DW tilting does not follow the prediction based on the energy minimization, even for the tilting direction. Instead, the DW tilting is governed by the DW speed asymmetry that is initiated by the DW pinning at wire edges. A simple analytic model is proposed in consideration of the DW speed asymmetry at wire edges, which successfully explains the experimental observation of the DW tilting directions and angles, as confirmed by numerical simulation. The present study manifests the decisive role of the DW pinning with the DW speed asymmetry, which determines the DW configuration and consequently, the dynamics.
NASA Astrophysics Data System (ADS)
Joshi, Pranit Satish; Mahapatra, Pallab Sinha; Pattamatta, Arvind
2017-12-01
Experiments and numerical simulation of natural convection heat transfer with nanosuspensions are presented in this work. The investigations are carried out for three different types of nanosuspensions: namely, spherical-based (alumina/water), tubular-based (multi-walled carbon nanotube/water), and flake-based (graphene/water). A comparison with in-house experiments is made for all the three nanosuspensions at different volume fractions and for the Rayleigh numbers in the range of 7 × 105-1 × 107. Different models such as single component homogeneous, single component non-homogeneous, and multicomponent non-homogeneous are used in the present study. From the present numerical investigation, it is observed that for lower volume fractions (˜0.1%) of nanosuspensions considered, single component models are in close agreement with the experimental results. Single component models which are based on the effective properties of the nanosuspensions alone can predict heat transfer characteristics very well within the experimental uncertainty. Whereas for higher volume fractions (˜0.5%), the multi-component model predicts closer results to the experimental observation as it incorporates drag-based slip force which becomes prominent. The enhancement observed at lower volume fractions for non-spherical particles is attributed to the percolation chain formation, which perturbs the boundary layer and thereby increases the local Nusselt number values.
Experimental Observation of Two Features Unexpected from the Classical Theories of Rubber Elasticity
NASA Astrophysics Data System (ADS)
Nishi, Kengo; Fujii, Kenta; Chung, Ung-il; Shibayama, Mitsuhiro; Sakai, Takamasa
2017-12-01
Although the elastic modulus of a Gaussian chain network is thought to be successfully described by classical theories of rubber elasticity, such as the affine and phantom models, verification experiments are largely lacking owing to difficulties in precisely controlling of the network structure. We prepared well-defined model polymer networks experimentally, and measured the elastic modulus G for a broad range of polymer concentrations and connectivity probabilities, p . In our experiment, we observed two features that were distinct from those predicted by classical theories. First, we observed the critical behavior G ˜|p -pc|1.95 near the sol-gel transition. This scaling law is different from the prediction of classical theories, but can be explained by analogy between the electric conductivity of resistor networks and the elasticity of polymer networks. Here, pc is the sol-gel transition point. Furthermore, we found that the experimental G -p relations in the region above C* did not follow the affine or phantom theories. Instead, all the G /G0-p curves fell onto a single master curve when G was normalized by the elastic modulus at p =1 , G0. We show that the effective medium approximation for Gaussian chain networks explains this master curve.
Patrick, Amanda L; Vogelhuber, Kristen M; Prince, Benjamin D; Annesley, Christopher J
2018-03-01
Ionic liquids are used for myriad applications, including as catalysts, solvents, and propellants. Specifically, 2-hydroxyethylhydrazinium nitrate (HEHN) has been developed as a chemical propellant for space applications. The gas-phase behavior of HEHN ions and clusters is important in understanding its potential as an electrospray thruster propellant. Here, the unimolecular dissociation pathways of two clusters are experimentally observed, and theoretical modeling of hydrogen bonding and dissociation pathways is used to help rationalize those observations. The cation/deprotonated cation cluster [HEH 2 - H] + , which is observed from electrospray ionization, is calculated to be considerably more stable than the complementary cation/protonated anion adduct, [HEH + HNO 3 ] + , which is not observed experimentally. Upon collisional activation, a larger cluster [(HEHN) 2 HEH] + undergoes dissociation via loss of nitric acid at lower collision energies, as predicted theoretically. At higher collision energies, additional primary and secondary loss pathways open, including deprotonated cation loss, ion-pair loss, and double-nitric-acid loss. Taken together, these experimental and theoretical results contribute to a foundational understanding of the dissociation of protic ionic liquid clusters in the gas phase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kidnay, A.J.; Yesavage, V.F.
1979-01-01
Enthalpy measurements on a coal-derived naphtha and middle distillate, both produced by the SRC-II process, were made using flow calorimetry. The accuracy of the measurements, as reported by Omid, was within +- 1% of the measured enthalpy differences, ..delta..H. Experimental data for the naphtha were obtained over a pressure range of 100-300 psia and temperatures from 148/sup 0/ to 456/sup 0/F. The middle distillate enthalpy measurements were made in the pressure and temperature ranges of 130 to 1000 psia, and 157/sup 0/ to 675/sup 0/F, respectively. The methods of prediction of enthalpy developed for petroleum fractions were unsatisfactory when appliedmore » to the above data. A negative bias was observed in the predicted enthalpy values for several of the coal-liquids. Based on these results, it was theorized that the high experimental enthalpy values for coal-liquids were due to an energy of association attributed, primarily, to hydrogen-bonding effects. The petroleum-fraction enthalpy correlations were then tested on the experimental data for pure compounds, both associating and non-associating. The predicted values compared very well with the experimental results for non-associating model compounds. However, for associating model compounds the predicted enthalpy values were considerably lower than their experimental data. This served to confirm the basic premise that the high experimental enthalpy values, for model compounds and coal liquids, were a direct consequence of an energy of association attributed, primarily, to hydrogen-bonding effects.« less
Predicting Sympathy and Prosocial Behavior from Young Children’s Dispositional Sadness
Edwards, Alison; Eisenberg, Nancy; Spinrad, Tracy L.; Reiser, Mark; Eggum-Wilkens, Natalie D.; Liew, Jeffrey
2014-01-01
The purpose of this study was to examine whether dispositional sadness predicted children's prosocial behavior and if sympathy mediated this relation. Constructs were measured when children (N = 256 at Time 1) were 18-, 30-, and 42-months old. Mothers and non-parental caregivers rated children’s sadness; mothers, caregivers, and fathers rated children’s prosocial behavior; sympathy (concern and hypothesis testing) and prosocial behavior (indirect and direct, as well as verbal at older ages) were assessed with a task in which the experimenter feigned injury. In a panel path analysis, 30-month dispositional sadness predicted marginally higher 42-month sympathy; in addition, 30-month sympathy predicted 42-month sadness. Moreover, when controlling for prior levels of prosocial behavior, 30-month sympathy significantly predicted reported and observed prosocial behavior at 42 months. Sympathy did not mediate the relation between sadness and prosocial behavior (either reported or observed). PMID:25663753
Predicting Sympathy and Prosocial Behavior from Young Children's Dispositional Sadness.
Edwards, Alison; Eisenberg, Nancy; Spinrad, Tracy L; Reiser, Mark; Eggum-Wilkens, Natalie D; Liew, Jeffrey
2015-02-01
The purpose of this study was to examine whether dispositional sadness predicted children's prosocial behavior and if sympathy mediated this relation. Constructs were measured when children ( N = 256 at Time 1) were 18-, 30-, and 42-months old. Mothers and non-parental caregivers rated children's sadness; mothers, caregivers, and fathers rated children's prosocial behavior; sympathy (concern and hypothesis testing) and prosocial behavior (indirect and direct, as well as verbal at older ages) were assessed with a task in which the experimenter feigned injury. In a panel path analysis, 30-month dispositional sadness predicted marginally higher 42-month sympathy; in addition, 30-month sympathy predicted 42-month sadness. Moreover, when controlling for prior levels of prosocial behavior, 30-month sympathy significantly predicted reported and observed prosocial behavior at 42 months. Sympathy did not mediate the relation between sadness and prosocial behavior (either reported or observed).
NASA Astrophysics Data System (ADS)
Sharif, Morteza A.; Majles Ara, M. H.; Ghafary, Bijan; Salmani, Somayeh; Mohajer, Salman
2016-03-01
We have experimentally investigated low threshold Optical Bistability (OB) and multi-stability in exfoliated graphene ink with low oxidation degree. Theoretical predictions of N-layer problem and the resonator feedback problem show good agreement with the experimental observation. In contrary to the other graphene oxide samples, we have indicated that the absorbance does not restrict OB process. We have concluded from the experimental results and Nonlinear Schrödinger Equation (NLSE) that the nonlinear dispersion - rather than absorption - is the main nonlinear mechanism of OB. In addition to the enhanced nonlinearity, exfoliated graphene with low oxidation degree possesses semiconductors group III-V equivalent band gap energy, high charge carrier mobility and thus, ultra-fast optical response which makes it a unique optical material for application in all optical switching, especially in THz frequency range.
High temperature phase decomposition in Ti{sub x}Zr{sub y}Al{sub z}N
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lind, Hans; Pilemalm, Robert; Rogström, Lina
2014-12-15
Through a combination of theoretical and experimental observations we study the high temperature decomposition behavior of c-(Ti{sub x}Zr{sub y}Al{sub z}N) alloys. We show that for most concentrations the high formation energy of (ZrAl)N causes a strong tendency for spinodal decomposition between ZrN and AlN while other decompositions tendencies are suppressed. In addition we observe that entropic effects due to configurational disorder favor a formation of a stable Zr-rich (TiZr)N phase with increasing temperature. Our calculations also predict that at high temperatures a Zr rich (TiZrAl)N disordered phase should become more resistant against the spinodal decomposition despite its high and positivemore » formation energy due to the specific topology of the free energy surface at the relevant concentrations. Our experimental observations confirm this prediction by showing strong tendency towards decomposition in a Zr-poor sample while a Zr-rich alloy shows a greatly reduced decomposition rate, which is mostly attributable to binodal decomposition processes. This result highlights the importance of considering the second derivative of the free energy, in addition to its absolute value in predicting decomposition trends of thermodynamically unstable alloys.« less
Experimental and simulational result multipactors in 112 MHz QWR injector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xin, T.; Ben-Zvi, I.; Belomestnykh, S.
2015-05-03
The first RF commissioning of 112 MHz QWR superconducting electron gun was done in late 2014. The coaxial Fundamental Power Coupler (FPC) and Cathode Stalk (stalk) were installed and tested for the first time. During this experiment, we observed several multipacting barriers at different gun voltage levels. The simulation work was done within the same range. The comparison between the experimental observation and the simulation results are presented in this paper. The observations during the test are consisted with the simulation predictions. We were able to overcome most of the multipacting barriers and reach 1.8 MV gun voltage under pulsedmore » mode after several round of conditioning processes.« less
Seismic velocities in fractured rocks: An experimental verification of Hudson`s theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peacock, S.; McCann, C.; Sothcott, J.
1994-01-01
Flow of fluids in many hydrocarbon reservoirs aquifers is enhanced by the presence of cracks and fractures. These cracks could be detected by their effects on propagation of compressional and shear waves through the reservoir: several theories, including Hudson`s, claim to predict the seismic effects of cracks. Although Hudson`s theory has already been used to calculate crack densities from seismic survey`s, the predictions of the theory have not yet been tested experimentally on rocks containing a known crack distribution. This paper describes an experimental verification of the theory. The rock used, Carrara marble, was chosen for its uniformity and lowmore » porosity, so that the effect of cracks would not be obscured by other influences. Cracks were induced by loading of laboratory specimens. Velocities of compressional and shear waves were measured by ultrasound at 0.85 MHz in dry and water-saturated specimens at high and low effective pressures.The cracks were then counted in polished sections of the specimens. In ``dry`` specimens with both dry and saturated cracks, Hudson`s theory overpredicted observed crack densities by a constant amount that is attributed to the observed value being systematically underestimated. The theory made poor predictions for fully saturated specimens. Shear-wave splitting, caused by anisotropy due to both crystal and crack alignment, was observed. Cracks were seen to follow grain boundaries rather than the direction of maximum compression due to loading. The results demonstrate that Hudson`s theory may be used in some cases to determine crack and fracture densities from compressional- and shear-wave velocity data.« less
NASA Astrophysics Data System (ADS)
Usmeldi
2018-05-01
The preliminary study shows that many students are difficult to master the concept of physics. There are still many students who have not mastery learning physics. Teachers and students still use textbooks. Students rarely do experiments in the laboratory. One model of learning that can improve students’ competence is a research-based learning with Predict- Observe-Explain (POE) strategies. To implement this learning, research-based physics learning modules with POE strategy are used. The research aims to find out the effectiveness of implementation of research-based physics learning modules with POE strategy to improving the students’ competence. The research used a quasi-experimental with pretest-posttest group control design. Data were collected using observation sheets, achievement test, skill assessment sheets, questionnaire of attitude and student responses to learning implementation. The results of research showed that research-based physics learning modules with POE strategy was effective to improve the students’ competence, in the case of (1) mastery learning of physics has been achieved by majority of students, (2) improving the students competency of experimental class including high category, (3) there is a significant difference between the average score of students’ competence of experimental class and the control class, (4) the average score of the students competency of experimental class is higher than the control class, (5) the average score of the students’ responses to the learning implementation is very good category, this means that most students can implement research-based learning with POE strategies.
Integrative analyses shed new light on human ribosomal protein gene regulation
Li, Xin; Zheng, Yiyu; Hu, Haiyan; Li, Xiaoman
2016-01-01
Ribosomal protein genes (RPGs) are important house-keeping genes that are well-known for their coordinated expression. Previous studies on RPGs are largely limited to their promoter regions. Recent high-throughput studies provide an unprecedented opportunity to study how human RPGs are transcriptionally modulated and how such transcriptional regulation may contribute to the coordinate gene expression in various tissues and cell types. By analyzing the DNase I hypersensitive sites under 349 experimental conditions, we predicted 217 RPG regulatory regions in the human genome. More than 86.6% of these computationally predicted regulatory regions were partially corroborated by independent experimental measurements. Motif analyses on these predicted regulatory regions identified 31 DNA motifs, including 57.1% of experimentally validated motifs in literature that regulate RPGs. Interestingly, we observed that the majority of the predicted motifs were shared by the predicted distal and proximal regulatory regions of the same RPGs, a likely general mechanism for enhancer-promoter interactions. We also found that RPGs may be differently regulated in different cells, indicating that condition-specific RPG regulatory regions still need to be discovered and investigated. Our study advances the understanding of how RPGs are coordinately modulated, which sheds light to the general principles of gene transcriptional regulation in mammals. PMID:27346035
Integrative analyses shed new light on human ribosomal protein gene regulation.
Li, Xin; Zheng, Yiyu; Hu, Haiyan; Li, Xiaoman
2016-06-27
Ribosomal protein genes (RPGs) are important house-keeping genes that are well-known for their coordinated expression. Previous studies on RPGs are largely limited to their promoter regions. Recent high-throughput studies provide an unprecedented opportunity to study how human RPGs are transcriptionally modulated and how such transcriptional regulation may contribute to the coordinate gene expression in various tissues and cell types. By analyzing the DNase I hypersensitive sites under 349 experimental conditions, we predicted 217 RPG regulatory regions in the human genome. More than 86.6% of these computationally predicted regulatory regions were partially corroborated by independent experimental measurements. Motif analyses on these predicted regulatory regions identified 31 DNA motifs, including 57.1% of experimentally validated motifs in literature that regulate RPGs. Interestingly, we observed that the majority of the predicted motifs were shared by the predicted distal and proximal regulatory regions of the same RPGs, a likely general mechanism for enhancer-promoter interactions. We also found that RPGs may be differently regulated in different cells, indicating that condition-specific RPG regulatory regions still need to be discovered and investigated. Our study advances the understanding of how RPGs are coordinately modulated, which sheds light to the general principles of gene transcriptional regulation in mammals.
Electronic stopping powers for heavy ions in SiC and SiO{sub 2}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, K.; Xue, H.; Zhang, Y., E-mail: Zhangy1@ornl.gov
2014-01-28
Accurate information on electronic stopping power is fundamental for broad advances in materials science, electronic industry, space exploration, and sustainable energy technologies. In the case of slow heavy ions in light targets, current codes and models provide significantly inconsistent predictions, among which the Stopping and Range of Ions in Matter (SRIM) code is the most commonly used one. Experimental evidence, however, has demonstrated considerable errors in the predicted ion and damage profiles based on SRIM stopping powers. In this work, electronic stopping powers for Cl, Br, I, and Au ions are experimentally determined in two important functional materials, SiC andmore » SiO{sub 2}, based on a single ion technique, and new electronic stopping power values are derived over the energy regime from 0 to 15 MeV, where large deviations from the SRIM predictions are observed. As an experimental validation, Rutherford backscattering spectrometry (RBS) and secondary ion mass spectrometry (SIMS) are utilized to measure the depth profiles of implanted Au ions in SiC for energies from 700 keV to 15 MeV. The measured ion distributions by both RBS and SIMS are considerably deeper than the SRIM predictions, but agree well with predictions based on our derived stopping powers.« less
Electronic Stopping Powers For Heavy Ions In SiC And SiO2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Ke; Zhang, Y.; Zhu, Zihua
2014-01-24
Accurate information on electronic stopping power is fundamental for broad advances in materials science, electronic industry, space exploration, and sustainable energy technologies. In the case of slow heavy ions in light targets, current codes and models provide significantly inconsistent predictions, among which the Stopping and Range of Ions in Matter (SRIM) code is the most commonly used one. Experimental evidence, however, has demonstrated considerable errors in the predicted ion and damage profiles based on SRIM stopping powers. In this work, electronic stopping powers for Cl, Br, I, and Au ions are experimentally determined in two important functional materials, SiC andmore » SiO2, based on a single ion technique, and new electronic stopping power values are derived over the energy regime from 0 to 15 MeV, where large deviations from the SRIM predictions are observed. As an experimental validation, Rutherford backscattering spectrometry (RBS) and secondary ion mass spectrometry (SIMS) are utilized to measure the depth profiles of implanted Au ions in SiC for energies from 700 keV to 15MeV. The measured ion distributions by both RBS and SIMS are considerably deeper than the SRIM predictions, but agree well with predictions based on our derived stopping powers.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Ke; Zhang, Yanwen; Zhu, Zihua
Accurate information of electronic stopping power is fundamental for broad advances in electronic industry, space exploration, national security, and sustainable energy technologies. The Stopping and Range of Ions in Matter (SRIM) code has been widely applied to predict stopping powers and ion distributions for decades. Recent experimental results have, however, shown considerable errors in the SRIM predictions for stopping of heavy ions in compounds containing light elements, indicating an urgent need to improve current stopping power models. The electronic stopping powers of 35Cl, 80Br, 127I, and 197Au ions are experimentally determined in two important functional materials, SiC and SiO2, frommore » tens to hundreds keV/u based on a single ion technique. By combining with the reciprocity theory, new electronic stopping powers are suggested in a region from 0 to 15 MeV, where large deviations from SRIM predictions are observed. For independent experimental validation of the electronic stopping powers we determined, Rutherford backscattering spectrometry (RBS) and secondary ion mass spectrometry (SIMS) are utilized to measure the depth profiles of implanted Au ions in SiC with energies from 700 keV to 15 MeV. The measured ion distributions from both RBS and SIMS are considerably deeper (up to ~30%) than the predictions from the commercial SRIM code. In comparison, the new electronic stopping power values are utilized in a modified TRIM-85 (the original version of the SRIM) code, M-TRIM, to predict ion distributions, and the results are in good agreement with the experimentally measured ion distributions.« less
Chenevas-Paule, Clémence; Wolff, Hans-Michael; Ashton, Mark; Schubert, Martin; Dodou, Kalliopi
2017-05-01
Microreservoir-type transdermal drug delivery systems (MTDDS) can prevent drug crystallization; however, no current predictive model considers the impact of drug load and hydration on their physical stability. We investigated MTDDS films containing polyvinylpyrrolidone (PVP) as polymeric drug stabilizer in lipophilic pressure-sensitive adhesive (silicone). Medicated and unmedicated silicone films with different molar N-vinylpyrrolidone:drug ratios were prepared and characterized by Fourier transform infrared spectroscopy, differential scanning calorimetry, scanning electron microscopy, microscopy, dynamic vapor sorption (DVS), and stability testing for 4 months at different storage conditions. Homogeneously distributed drug-PVP associates were observed when nonaqueous emulsions, containing drug-PVP (inner phase) and silicone adhesive (outer phase), were dried to films. DVS data were essential to predict physical stability at different humidities. A predictive thermodynamic model was developed based on drug-polymer hydrogen-bonding interactions, using the Hoffman equation, to estimate the drug-PVP ratio needed to obtain stable MTDDS and to evaluate the impact of humidity on their physical stability. This new approach considers the impact of polymorphism on drug solubility by using easily accessible experimental data (T m and DVS) and avoids uncertainties associated with the solubility parameter approach. In conclusion, a good fit of predicted and experimental data was observed. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Ganesh, Gowrishankar
2017-01-01
Abstract The question of how humans predict outcomes of observed motor actions by others is a fundamental problem in cognitive and social neuroscience. Previous theoretical studies have suggested that the brain uses parts of the forward model (used to estimate sensory outcomes of self-generated actions) to predict outcomes of observed actions. However, this hypothesis has remained controversial due to the lack of direct experimental evidence. To address this issue, we analyzed the behavior of darts experts in an understanding learning paradigm and utilized computational modeling to examine how outcome prediction of observed actions affected the participants’ ability to estimate their own actions. We recruited darts experts because sports experts are known to have an accurate outcome estimation of their own actions as well as prediction of actions observed in others. We first show that learning to predict the outcomes of observed dart throws deteriorates an expert’s abilities to both produce his own darts actions and estimate the outcome of his own throws (or self-estimation). Next, we introduce a state-space model to explain the trial-by-trial changes in the darts performance and self-estimation through our experiment. The model-based analysis reveals that the change in an expert’s self-estimation is explained only by considering a change in the individual’s forward model, showing that an improvement in an expert’s ability to predict outcomes of observed actions affects the individual’s forward model. These results suggest that parts of the same forward model are utilized in humans to both estimate outcomes of self-generated actions and predict outcomes of observed actions. PMID:29340300
Piezoelectric Non Linear Nanomechanical Temperature and Acceleration Insensitive Clocks (PENNTAC)
2016-07-01
requirements dictated by the Defense Advanced Research Agency (DARPA) program. Figure 7: Measured PN Response of the Non -linear 222 MHz AlN...wavelength (λ) are designed as supports for resonators in which the dimensions of the vibrating body are kept fixed. The Q extracted experimentally confirms...conditions. In this way, we are able to quantitatively predict Q due to anchor losses and qualitatively describe the trends observed experimentally
An Experimental and Computational Study of the Gas-Phase Acidities of the Common Amino Acid Amides.
Plummer, Chelsea E; Stover, Michele L; Bokatzian, Samantha S; Davis, John T M; Dixon, David A; Cassady, Carolyn J
2015-07-30
Using proton-transfer reactions in a Fourier transform ion cyclotron resonance mass spectrometer and correlated molecular orbital theory at the G3(MP2) level, gas-phase acidities (GAs) and the associated structures for amides corresponding to the common amino acids have been determined for the first time. These values are important because amino acid amides are models for residues in peptides and proteins. For compounds whose most acidic site is the C-terminal amide nitrogen, two ions populations were observed experimentally with GAs that differ by 4-7 kcal/mol. The lower energy, more acidic structure accounts for the majority of the ions formed by electrospray ionization. G3(MP2) calculations predict that the lowest energy anionic conformer has a cis-like orientation of the [-C(═O)NH](-) group whereas the higher energy, less acidic conformer has a trans-like orientation of this group. These two distinct conformers were predicted for compounds with aliphatic, amide, basic, hydroxyl, and thioether side chains. For the most acidic amino acid amides (tyrosine, cysteine, tryptophan, histidine, aspartic acid, and glutamic acid amides) only one conformer was observed experimentally, and its experimental GA correlates with the theoretical GA related to side chain deprotonation.
Mechanical properties of triaxially braided composites: Experimental and analytical results
NASA Technical Reports Server (NTRS)
Masters, John E.; Foye, Raymond L.; Pastore, Christopher M.; Gowayed, Yasser A.
1992-01-01
This paper investigates the unnotched tensile properties of two-dimensional triaxial braid reinforced composites from both an experimental and analytical viewpoint. The materials are graphite fibers in an epoxy matrix. Three different reinforcing fiber architectures were considered. Specimens were cut from resin transfer molded (RTM) composite panels made from each braid. There were considerable differences in the observed elastic constants from different size strain gage and extensometer readings. Larger strain gages gave more consistent results and correlated better with the extensometer readings. Experimental strains correlated reasonably well with analytical predictions in the longitudinal, zero degree, fiber direction but not in the transverse direction. Tensile strength results were not always predictable even in reinforcing directions. Minor changes in braid geometry led to disproportionate strength variations. The unit cell structure of the triaxial braid was discussed with the assistence of computer analysis of the microgeometry. Photomicrographs of the braid geometry were used to improve upon the computer graphics representations of unit cells. These unit cells were used to predict the elastic moduli with various degrees of sophistication. The simple and the complex analyses were generally in agreement but none adequately matched the experimental results for all the braids.
Mechanical properties of triaxially braided composites: Experimental and analytical results
NASA Technical Reports Server (NTRS)
Masters, John E.; Foye, Raymond L.; Pastore, Christopher M.; Gowayed, Yasser A.
1992-01-01
The unnotched tensile properties of 2-D triaxial braid reinforced composites from both an experimental and an analytical viewpoint are studied. The materials are graphite fibers in an epoxy matrix. Three different reinforcing fiber architectures were considered. Specimens were cut from resin transfer molded (RTM) composite panels made from each braid. There were considerable differences in the observed elastic constants from different size strain gage and extensometer reading. Larger strain gages gave more consistent results and correlated better with the extensometer reading. Experimental strains correlated reasonably well with analytical predictions in the longitudinal, 0 degrees, fiber direction but not in the transverse direction. Tensile strength results were not always predictable even in reinforcing directions. Minor changes in braid geometry led to disproportionate strength variations. The unit cell structure of the triaxial braid was discussed with the assistance of computer analysis of the microgeometry. Photomicrographs of braid geometry were used to improve upon the computer graphics representations of unit cells. These unit cells were used to predict the elastic moduli with various degrees of sophistication. The simple and the complex analyses were generally in agreement but none adequately matched the experimental results for all the braids.
Slug Flow Analysis in Vertical Large Diameter Pipes
NASA Astrophysics Data System (ADS)
Roullier, David
The existence of slug flow in vertical co-current two-phase flow is studied experimentally and theoretically. The existence of slug flow in vertical direction implies the presence of Taylor bubbles separated by hydraulically sealed liquid slugs. Previous experimental studies such as Ombere-Ayari and Azzopardi (2007) showed the evidence of the non-existence of Taylor bubbles for extensive experimental conditions. Models developed to predict experimental behavior [Kocamustafaogullari et al. (1984), Jayanti and Hewitt. (1990) and Kjoolas et al. (2017)] suggest that Taylor bubbles may disappear at large diameters and high velocities. A 73-ft tall and 101.6-mm internal diameter test facility was used to conduct the experiments allowing holdup and pressure drop measurements at large L/D. Superficial liquid and gas velocities varied from 0.05-m/s to 0.2 m/s and 0.07 m/s to 7.5 m/s, respectively. Test section pressure varied from 38 psia to 84 psia. Gas compressibility effect was greatly reduced at 84 psia. The experimental program allowed to observe the flow patterns for flowing conditions near critical conditions predicted by previous models (air-water, 1016 mm ID, low mixture velocities). Flow patterns were observed in detail using wire-mesh sensor measurements. Slug-flow was observed for a narrow range of experimental conditions at low velocities. Churn-slug and churn-annular flows were observed for most of the experimental data-points. Cap-bubble flow was observed instead of bubbly flow at low vSg. Wire-mesh measurements showed that the liquid has a tendency to remain near to the walls. The standard deviation of radial holdup profile correlates to the flow pattern observed. For churn-slug flow, the profile is convex with a single maximum near the pipe center while it exhibits a concave shape with two symmetric maxima close to the wall for churn-annular flow. The translational velocity was measured by two consecutive wire-mesh sensor crosscorrelation. The results show linear trends at low mixture velocities and non-linear behaviors at high mixture velocities. The translational velocity trends seem to be related to the flow-pattern observed, namely to the ability of the gas to flow through the liquid structures. A simplified Taylor bubble stability model is proposed. The model allows to estimate under which conditions Taylor bubbles disappear, properly accounting for the diameter effect and velocity effect observed experimentally. In addition, annular flow distribution coefficient relating true holdup to centerline holdup in vertical flow is proposed. The proposed coefficient defines the tendency of the liquid to remain near the walls. This coefficient increases linearly with the void fraction.
Learning to apply models of materials while explaining their properties
NASA Astrophysics Data System (ADS)
Karpin, Tiia; Juuti, Kalle; Lavonen, Jari
2014-09-01
Background:Applying structural models is important to chemistry education at the upper secondary level, but it is considered one of the most difficult topics to learn. Purpose:This study analyses to what extent in designed lessons students learned to apply structural models in explaining the properties and behaviours of various materials. Sample:An experimental group is 27 Finnish upper secondary school students and control group included 18 students from the same school. Design and methods:In quasi-experimental setting, students were guided through predict, observe, explain activities in four practical work situations. It was intended that the structural models would encourage students to learn how to identify and apply appropriate models when predicting and explaining situations. The lessons, organised over a one-week period, began with a teacher's demonstration and continued with student experiments in which they described the properties and behaviours of six household products representing three different materials. Results:Most students in the experimental group learned to apply the models correctly, as demonstrated by post-test scores that were significantly higher than pre-test scores. The control group showed no significant difference between pre- and post-test scores. Conclusions:The findings indicate that the intervention where students engage in predict, observe, explain activities while several materials and models are confronted at the same time, had a positive effect on learning outcomes.
Commercial turbofan engine exhaust nozzle flow analyses using PAB3D
NASA Technical Reports Server (NTRS)
Abdol-Hamid, Khaled S.; Uenishi, K.; Carlson, John R.; Keith, B. D.
1992-01-01
Recent developments of a three-dimensional (PAB3D) code have paved the way for a computational investigation of complex aircraft aerodynamic components. The PAB3D code was developed for solving the simplified Reynolds Averaged Navier-Stokes equations in a three-dimensional multiblock/multizone structured mesh domain. The present analysis was applied to commercial turbofan exhaust flow systems. Solution sensitivity to grid density is presented. Laminar flow solutions were developed for all grids and two-equation k-epsilon solutions were developed for selected grids. Static pressure distributions, mass flow and thrust quantities were calculated for on-design engine operating conditions. Good agreement between predicted surface static pressures and experimental data was observed at different locations. Mass flow was predicted within 0.2 percent of experimental data. Thrust forces were typically within 0.4 percent of experimental data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hills, Richard G.; Maniaci, David Charles; Naughton, Jonathan W.
2015-09-01
A Verification and Validation (V&V) framework is presented for the development and execution of coordinated modeling and experimental program s to assess the predictive capability of computational models of complex systems through focused, well structured, and formal processes.The elements of the framework are based on established V&V methodology developed by various organizations including the Department of Energy, National Aeronautics and Space Administration, the American Institute of Aeronautics and Astronautics, and the American Society of Mechanical Engineers. Four main topics are addressed: 1) Program planning based on expert elicitation of the modeling physics requirements, 2) experimental design for model assessment, 3)more » uncertainty quantification for experimental observations and computational model simulations, and 4) assessment of the model predictive capability. The audience for this document includes program planners, modelers, experimentalist, V &V specialist, and customers of the modeling results.« less
Pilot Wave Model for Impulsive Thrust from RF Test Device Measured in Vacuum
NASA Technical Reports Server (NTRS)
White, Harold; Lawrence, James; Sylvester, Andre; Vera, Jerry; Chap, Andrew; George, Jeff
2017-01-01
A physics model is developed in detail and its place in the taxonomy of ideas about the nature of the quantum vacuum is discussed. The experimental results from the recently completed vacuum test campaign evaluating the impulsive thrust performance of a tapered RF test article excited in the TM212 mode at 1,937 megahertz (MHz) are summarized. The empirical data from this campaign is compared to the predictions from the physics model tools. A discussion is provided to further elaborate on the possible implications of the proposed model if it is physically valid. Based on the correlation of analysis prediction with experimental data collected, it is proposed that the observed anomalous thrust forces are real, not due to experimental error, and are due to a new type of interaction with quantum vacuum fluctuations.
[Are non-clinical studies predictive of adverse events in humans?].
Claude, N
2007-09-01
The predictibility of adverse events induced by drugs in non-clinical safety studies performed on in vitro and/or in vivo models is a key point for the safety of humans exposed to pharmaceuticals. The strength and the weakness of animal studies to predict human toxicity were assessed by an international study on the concordance of the toxicity of 150 pharmaceuticals observed in humans with that observed in experimental animals. The results showed a good correlation (70% of the adverse events in humans were detected in animal studies) and an early time to first appearance of concordant animal toxicity: 94% were first observed in studies of 1 month or less in duration. The highest incidence of overall concordance was seen in hematological and cardiovascular adverse effects and the least was seen in cutaneous and ophthalmological adverse effects. These studies, scientifically and regulatory standardized, need, in some cases to be adapted to specific problems linked to sensitive populations (young, old or with a pathology which could be worsened by the drug), or specific pharmaceuticals (produced by biotechnology). Some severe adverse events are not detected in conventional animal models (immuno-allergy, idiosyncrasy). Taken together, these elements support the value of toxicology studies to predict many human toxic events associated with pharmaceuticals. Nevertheless, a part of human toxicity is not detected by these experimental approaches, and new tools developed through progress in biology and bio-informatics should reduce this uncertainly margin.
A multi-step reaction model for ignition of fully-dense Al-CuO nanocomposite powders
NASA Astrophysics Data System (ADS)
Stamatis, D.; Ermoline, A.; Dreizin, E. L.
2012-12-01
A multi-step reaction model is developed to describe heterogeneous processes occurring upon heating of an Al-CuO nanocomposite material prepared by arrested reactive milling. The reaction model couples a previously derived Cabrera-Mott oxidation mechanism describing initial, low temperature processes and an aluminium oxidation model including formation of different alumina polymorphs at increased film thicknesses and higher temperatures. The reaction model is tuned using traces measured by differential scanning calorimetry. Ignition is studied for thin powder layers and individual particles using respectively the heated filament (heating rates of 103-104 K s-1) and laser ignition (heating rate ∼106 K s-1) experiments. The developed heterogeneous reaction model predicts a sharp temperature increase, which can be associated with ignition when the laser power approaches the experimental ignition threshold. In experiments, particles ignited by the laser beam are observed to explode, indicating a substantial gas release accompanying ignition. For the heated filament experiments, the model predicts exothermic reactions at the temperatures, at which ignition is observed experimentally; however, strong thermal contact between the metal filament and powder prevents the model from predicting the thermal runaway. It is suggested that oxygen gas release from decomposing CuO, as observed from particles exploding upon ignition in the laser beam, disrupts the thermal contact of the powder and filament; this phenomenon must be included in the filament ignition model to enable prediction of the temperature runaway.
A survey of the broadband shock associated noise prediction methods
NASA Technical Reports Server (NTRS)
Kim, Chan M.; Krejsa, Eugene A.; Khavaran, Abbas
1992-01-01
Several different prediction methods to estimate the broadband shock associated noise of a supersonic jet are introduced and compared with experimental data at various test conditions. The nozzle geometries considered for comparison include a convergent and a convergent-divergent nozzle, both axisymmetric. Capabilities and limitations of prediction methods in incorporating the two nozzle geometries, flight effect, and temperature effect are discussed. Predicted noise field shows the best agreement for a convergent nozzle geometry under static conditions. Predicted results for nozzles in flight show larger discrepancies from data and more dependable flight data are required for further comparison. Qualitative effects of jet temperature, as observed in experiment, are reproduced in predicted results.
Determining the direction of tooth grinding: an in vitro study.
ten Berge, F; te Poel, J; Ranjitkar, S; Kaidonis, J A; Lobbezoo, F; Hughes, T E; Townsend, G C
2012-08-01
The analysis of microwear patterns, including scratch types and widths, has enabled reconstruction of the dietary habits and lifestyles of prehistoric and modern humans. The aim of this in vitro study was to determine whether an assessment of microwear features of experimental scratches placed on enamel, perpendicularly to the direction of grinding, could predict the grinding direction. Experimental scratches were placed using a scalpel blade on standardised wear facets that had been prepared by wearing opposing enamel surfaces in an electromechanical tooth wear machine. These control 'baseline' facets (with unworn experimental scratches) were subjected to 50 wear cycles, so that differential microwear could be observed on the leading and trailing edges of the 'final' facets. In Group 1 (n=28), the 'footprint' microwear patterns corresponding to the known grinding direction of specimens in the tooth wear machine were identified. Then, they were used to predict the direction of tooth grinding blindly in the same sample after a 2-week intermission period. To avoid overfitting the predictive model, its sensitivity was also cross-validated in a new sample (Group 2, n=14). A crescent-shaped characteristic observed in most experimental scratches matched the grinding direction on all occasions. The best predictor of the direction of grinding was a combined assessment of the leading edge microwear pattern and the crescent characteristic (82.1% in Group 1 and 92.9% in Group 2). In conclusion, a simple scratch test can determine the direction of tooth grinding with high reliability, although further improvement in sensitivity is desirable. © 2012 Blackwell Publishing Ltd.
NASA Technical Reports Server (NTRS)
Wu, X. R.; Newman, J. C.; Zhao, W.; Swain, M. H.; Ding, C. F.; Phillips, E. P.
1998-01-01
The small crack effect was investigated in two high-strength aluminium alloys: 7075-T6 bare and LC9cs clad alloy. Both experimental and analytical investigations were conducted to study crack initiation and growth of small cracks. In the experimental program, fatigue tests, small crack and large crack tests A,ere conducted under constant amplitude and Mini-TWIST spectrum loading conditions. A pronounced small crack effect was observed in both materials, especially for the negative stress ratios. For all loading conditions, most of the fatigue life of the SENT specimens was shown to be crack propagation from initial material defects or from the cladding layer. In the analysis program, three-dimensional finite element and A weight function methods were used to determine stress intensity factors and to develop SIF equations for surface and corner cracks at the notch in the SENT specimens. A plastisity-induced crack-closure model was used to correlate small and large crack data, and to make fatigue life predictions, Predicted crack-growth rates and fatigue lives agreed well with experiments. A total fatigue life prediction method for the aluminum alloys was developed and demonstrated using the crack-closure model.
Fatigue Life Prediction Based on Crack Closure and Equivalent Initial Flaw Size
Wang, Qiang; Zhang, Wei; Jiang, Shan
2015-01-01
Failure analysis and fatigue life prediction are necessary and critical for engineering structural materials. In this paper, a general methodology is proposed to predict fatigue life of smooth and circular-hole specimens, in which the crack closure model and equivalent initial flaw size (EIFS) concept are employed. Different effects of crack closure on small crack growth region and long crack growth region are considered in the proposed method. The EIFS is determined by the fatigue limit and fatigue threshold stress intensity factor △Kth. Fatigue limit is directly obtained from experimental data, and △Kth is calculated by using a back-extrapolation method. Experimental data for smooth and circular-hole specimens in three different alloys (Al2024-T3, Al7075-T6 and Ti-6Al-4V) under multiple stress ratios are used to validate the method. In the validation section, Semi-circular surface crack and quarter-circular corner crack are assumed to be the initial crack shapes for the smooth and circular-hole specimens, respectively. A good agreement is observed between model predictions and experimental data. The detailed analysis and discussion are performed on the proposed model. Some conclusions and future work are given. PMID:28793625
Lin, Chih-Tin; Meyhofer, Edgar; Kurabayashi, Katsuo
2010-01-01
Directional control of microtubule shuttles via microfabricated tracks is key to the development of controlled nanoscale mass transport by kinesin motor molecules. Here we develop and test a model to quantitatively predict the stochastic behavior of microtubule guiding when they mechanically collide with the sidewalls of lithographically patterned tracks. By taking into account appropriate probability distributions of microscopic states of the microtubule system, the model allows us to theoretically analyze the roles of collision conditions and kinesin surface densities in determining how the motion of microtubule shuttles is controlled. In addition, we experimentally observe the statistics of microtubule collision events and compare our theoretical prediction with experimental data to validate our model. The model will direct the design of future hybrid nanotechnology devices that integrate nanoscale transport systems powered by kinesin-driven molecular shuttles.
NASA Technical Reports Server (NTRS)
Johannsen, G.; Govindaraj, T.
1980-01-01
The influence of different types of predictor displays in a longitudinal vertical takeoff and landing (VTOL) hover task is analyzed in a theoretical study. Several cases with differing amounts of predictive and rate information are compared. The optimal control model of the human operator is used to estimate human and system performance in terms of root-mean-square (rms) values and to compute optimized attention allocation. The only part of the model which is varied to predict these data is the observation matrix. Typical cases are selected for a subsequent experimental validation. The rms values as well as eye-movement data are recorded. The results agree favorably with those of the theoretical study in terms of relative differences. Better matching is achieved by revised model input data.
Collapse of Experimental Colloidal Aging using Record Dynamics
NASA Astrophysics Data System (ADS)
Robe, Dominic; Boettcher, Stefan; Sibani, Paolo; Yunker, Peter
The theoretical framework of record dynamics (RD) posits that aging behavior in jammed systems is controlled by short, rare events involving activation of only a few degrees of freedom. RD predicts dynamics in an aging system to progress with the logarithm of t /tw . This prediction has been verified through new analysis of experimental data on an aging 2D colloidal system. MSD and persistence curves spanning three orders of magnitude in waiting time are collapsed. These predictions have also been found consistent with a number of experiments and simulations, but verification of the specific assumptions that RD makes about the underlying statistics of these rare events has been elusive. Here the observation of individual particles allows for the first time the direct verification of the assumptions about event rates and sizes. This work is suppoted by NSF Grant DMR-1207431.
NASA Astrophysics Data System (ADS)
Allport, P. P.; Erriquez, O.; Guy, J.; Venus, W.; Aderholz, M.; Berggren, M.; Bullock, F. W.; Calicchio, M.; Coghen, T.; Cooper-Sarkar, A. M.; Jones, G. T.; Marage, P.; Mobayyen, M.; Morrison, D. R. O.; Neveu, M.; Parker, M. A.; Radojicic, D.; Sansum, R. A.; Saitta, B.; Schmitz, N.; Simopoulou, E.; O'neale, S.; Van Apeldoorn, G.; Varvell, K.; Vayaki, A.; Wachsmuth, H.; Wittek, W.; BEBC WA59 Collaboration
1989-12-01
Comparing the kinematical distributions of events obtained on neon and deuterium targets in similar experimental conditions reveals a reduction of the neutrino and antineutrino charged current cross section per nucleon in neon at low Q2. The effect, interpreted as due to geometric shadowing of the weak propagator in interactions of neutrinos and antineutrinos with nuclei, agrees well with predictions derived from PCAC.
Early/fast VLF events produced by the quiescent heating of the lower ionosphere by thunderstorms
NASA Astrophysics Data System (ADS)
Kabirzadeh, R.; Marshall, R. A.; Inan, U. S.
2017-06-01
Large and easily distinguishable perturbations of the VLF transmitter signals due to interactions with thundercloud-driven ionospheric modifications have been observed and studied for about three decades. These events are called "early/fast VLF" or "early VLF" events due to their immediate detection (˜20 ms) after the causative lightning flash on the ground and the fast rise time of the perturbed signal. Despite many years of study, the physical mechanisms responsible for these perturbations are still under investigation. Modifications of the sustained heating level of the ionosphere due to a lightning flash has been previously proposed as the causative mechanism of early/fast VLF events. The perturbations predicted by this mechanism, however, have been much smaller than experimental observations of 0.2-1 dB or higher. In this study, by using an improved 3-D thundercloud electrostatic upward coupling model which uses a realistic geomagnetic field, we find that the sustained heating model can predict perturbations that are consistent with reported experimental observations. Modifications in the quiescent heating of the lower ionosphere by thundercloud fields by individual lightning flashes may thus account for some observations of early/fast VLF events.
Lany, Stephan; Wolf, Herbert; Wichert, Thomas
2004-06-04
The In DX center and the DX-like configuration of the Cd host atom in CdTe are investigated using density functional theory. The simultaneous calculation of the atomic structure and the electric field gradient (EFG) allows one to correlate the theoretically predicted structure of the DX center with an experimental observable, namely, the EFG obtained from radioactive 111In/111Cd probe atoms in In doped CdTe. In this way, the experimental identification of the DX center structure is established.
NASA Astrophysics Data System (ADS)
Vindigni, A.; Bogani, L.; Gatteschi, D.; Sessoli, R.; Rettori, A.; Novak, M. A.
2004-05-01
We investigate the relaxation time, τ, of a dilute Glauber kinetic Ising chain obtained by ac susceptibility and SQUID magnetometry on a Co(II)-organic radical Ising 1D ferrimagnet doped with Zn(II). Theoretically we predicted a crossover in the temperature-dependence of τ, when the average segment is of the same order of the correlation length. Comparing the experimental results with theory we conclude that in the investigted temperature range the correlation length exceeds the finite length also in the pure sample.
NASA Astrophysics Data System (ADS)
Kandilian, Razmig; Pruvost, Jérémy; Artu, Arnaud; Lemasson, Camille; Legrand, Jack; Pilon, Laurent
2016-05-01
This paper aims to experimentally and directly validate a recent theoretical method for predicting the radiation characteristics of photosynthetic microorganisms. Such predictions would facilitate light transfer analysis in photobioreactors (PBRs) to control their operation and to maximize their production of biofuel and other high-value products. The state of the art experimental method can be applied to microorganisms of any shape and inherently accounts for their non-spherical and heterogeneous nature. On the other hand, the theoretical method treats the microorganisms as polydisperse homogeneous spheres with some effective optical properties. The absorption index is expressed as the weighted sum of the pigment mass absorption cross-sections and the refractive index is estimated based on the subtractive Kramers-Kronig relationship given an anchor refractive index and wavelength. Here, particular attention was paid to green microalgae Chlamydomonas reinhardtii grown under nitrogen-replete and nitrogen-limited conditions and to Chlorella vulgaris grown under nitrogen-replete conditions. First, relatively good agreement was found between the two methods for determining the mass absorption and scattering cross-sections and the asymmetry factor of both nitrogen-replete and nitrogen-limited C. reinhardtii with the proper anchor point. However, the homogeneous sphere approximation significantly overestimated the absorption cross-section of C. vulgaris cells. The latter were instead modeled as polydisperse coated spheres consisting of an absorbing core containing pigments and a non-absorbing but strongly refracting wall made of sporopollenin. The coated sphere approximation gave good predictions of the experimentally measured integral radiation characteristics of C. vulgaris. In both cases, the homogeneous and coated sphere approximations predicted resonance in the scattering phase function that were not observed experimentally. However, these approximations were sufficiently accurate to predict the fluence rate and local rate of photon absorption in PBRs.
Quantum Griffiths singularity of superconductor-metal transition in Ga thin films.
Xing, Ying; Zhang, Hui-Min; Fu, Hai-Long; Liu, Haiwen; Sun, Yi; Peng, Jun-Ping; Wang, Fa; Lin, Xi; Ma, Xu-Cun; Xue, Qi-Kun; Wang, Jian; Xie, X C
2015-10-30
The Griffiths singularity in a phase transition, caused by disorder effects, was predicted more than 40 years ago. Its signature, the divergence of the dynamical critical exponent, is challenging to observe experimentally. We report the experimental observation of the quantum Griffiths singularity in a two-dimensional superconducting system. We measured the transport properties of atomically thin gallium films and found that the films undergo superconductor-metal transitions with increasing magnetic field. Approaching the zero-temperature quantum critical point, we observed divergence of the dynamical critical exponent, which is consistent with the Griffiths singularity behavior. We interpret the observed superconductor-metal quantum phase transition as the infinite-randomness critical point, where the properties of the system are controlled by rare large superconducting regions. Copyright © 2015, American Association for the Advancement of Science.
Simulation studies of phase inversion in agitated vessels using a Monte Carlo technique.
Yeo, Leslie Y; Matar, Omar K; Perez de Ortiz, E Susana; Hewitt, Geoffrey F
2002-04-15
A speculative study on the conditions under which phase inversion occurs in agitated liquid-liquid dispersions is conducted using a Monte Carlo technique. The simulation is based on a stochastic model, which accounts for fundamental physical processes such as drop deformation, breakup, and coalescence, and utilizes the minimization of interfacial energy as a criterion for phase inversion. Profiles of the interfacial energy indicate that a steady-state equilibrium is reached after a sufficiently large number of random moves and that predictions are insensitive to initial drop conditions. The calculated phase inversion holdup is observed to increase with increasing density and viscosity ratio, and to decrease with increasing agitation speed for a fixed viscosity ratio. It is also observed that, for a fixed viscosity ratio, the phase inversion holdup remains constant for large enough agitation speeds. The proposed model is therefore capable of achieving reasonable qualitative agreement with general experimental trends and of reproducing key features observed experimentally. The results of this investigation indicate that this simple stochastic method could be the basis upon which more advanced models for predicting phase inversion behavior can be developed.
While relationships between chemical structure and observed properties or activities (QSAR - quantitative structure activity relationship) can be used to predict the behavior of unknown chemicals, this method is semiempirical in nature relying on high quality experimental data to...
Evaluation of a Mysis bioenergetics model
Chipps, S.R.; Bennett, D.H.
2002-01-01
Direct approaches for estimating the feeding rate of the opossum shrimp Mysis relicta can be hampered by variable gut residence time (evacuation rate models) and non-linear functional responses (clearance rate models). Bioenergetics modeling provides an alternative method, but the reliability of this approach needs to be evaluated using independent measures of growth and food consumption. In this study, we measured growth and food consumption for M. relicta and compared experimental results with those predicted from a Mysis bioenergetics model. For Mysis reared at 10??C, model predictions were not significantly different from observed values. Moreover, decomposition of mean square error indicated that 70% of the variation between model predictions and observed values was attributable to random error. On average, model predictions were within 12% of observed values. A sensitivity analysis revealed that Mysis respiration and prey energy density were the most sensitive parameters affecting model output. By accounting for uncertainty (95% CLs) in Mysis respiration, we observed a significant improvement in the accuracy of model output (within 5% of observed values), illustrating the importance of sensitive input parameters for model performance. These findings help corroborate the Mysis bioenergetics model and demonstrate the usefulness of this approach for estimating Mysis feeding rate.
NASA Astrophysics Data System (ADS)
Becker, Matthew D.; Wang, Yonggang; L. Paulsen, Jeffrey; Song, Yi-Qiao; Abriola, Linda M.; Pennell, Kurt D.
2014-12-01
Nanotechnologies have been proposed for a variety of environmental applications, including subsurface characterization, enhanced oil recovery, and in situ contaminant remediation. For such applications, quantitative predictive models will be of great utility for system design and implementation. Electrolyte chemistry, which can vary substantially within subsurface pore waters, has been shown to strongly influence nanoparticle aggregation and deposition in porous media. Thus, it is essential that mathematical models be capable of tracking changes in electrolyte chemistry and predicting its influence on nanoparticle mobility. In this work, a modified version of a multi-dimensional multispecies transport simulator (SEAWAT) was employed to model nanoparticle transport under transient electrolyte conditions. The modeling effort was supported by experimental measurements of paramagnetic magnetite (Fe3O4) nanoparticle, coated with polyacrylamide-methylpropane sulfonic acid - lauryl acrylate (nMag-PAMPS), mobility in columns packed with 40-50 mesh Ottawa sand. Column effluent analyses and magnetic resonance imaging (MRI) were used to quantify nanoparticle breakthrough and in situ aqueous phase concentrations, respectively. Experimental observations revealed that introduction of de-ionized water into the brine saturated column (80 g L-1 NaCl + 20 g L-1 CaCl2) promoted release and remobilization of deposited nanoparticles along a diagonal front, coincident with the variable density flow field. This behavior was accurately captured by the simulation results, which indicated that a two-site deposition-release model provided the best fit to experimental observations, suggesting that heterogeneous nanoparticle-surface interactions governed nanoparticle attachment. These findings illustrate the importance of accounting for both physical and chemical processes associated with changes in electrolyte chemistry when predicting nanoparticle transport behavior in subsurface formations.Nanotechnologies have been proposed for a variety of environmental applications, including subsurface characterization, enhanced oil recovery, and in situ contaminant remediation. For such applications, quantitative predictive models will be of great utility for system design and implementation. Electrolyte chemistry, which can vary substantially within subsurface pore waters, has been shown to strongly influence nanoparticle aggregation and deposition in porous media. Thus, it is essential that mathematical models be capable of tracking changes in electrolyte chemistry and predicting its influence on nanoparticle mobility. In this work, a modified version of a multi-dimensional multispecies transport simulator (SEAWAT) was employed to model nanoparticle transport under transient electrolyte conditions. The modeling effort was supported by experimental measurements of paramagnetic magnetite (Fe3O4) nanoparticle, coated with polyacrylamide-methylpropane sulfonic acid - lauryl acrylate (nMag-PAMPS), mobility in columns packed with 40-50 mesh Ottawa sand. Column effluent analyses and magnetic resonance imaging (MRI) were used to quantify nanoparticle breakthrough and in situ aqueous phase concentrations, respectively. Experimental observations revealed that introduction of de-ionized water into the brine saturated column (80 g L-1 NaCl + 20 g L-1 CaCl2) promoted release and remobilization of deposited nanoparticles along a diagonal front, coincident with the variable density flow field. This behavior was accurately captured by the simulation results, which indicated that a two-site deposition-release model provided the best fit to experimental observations, suggesting that heterogeneous nanoparticle-surface interactions governed nanoparticle attachment. These findings illustrate the importance of accounting for both physical and chemical processes associated with changes in electrolyte chemistry when predicting nanoparticle transport behavior in subsurface formations. Electronic supplementary information (ESI) available: A schematic diagram of the nMag-MRI experimental systems, description of the mathematical modeling domain, further information regarding calibration of R2 to nMag concentration in sand, comparison of one- and two-site simulations of phases 1 and 2, DLVO interaction energy profiles for the system, and a time lapse movie of the best fit two-site model simulation of the nMag experimental data. See DOI: 10.1039/c4nr05088f
Investigation of the Relationship between Undercooling and Solidification Velocity
NASA Technical Reports Server (NTRS)
Bayuzick, Robert J.; Hofmeister, William H.
2004-01-01
This work was aimed at reconciling the differences between experimental measurements of the theoretical predictions of the solidification velocity as a function of undercooling. The theory proposed by Boettinger, Coriell and Trivedi (the BCT theory) has been one of the most widely used models for describing the nature of the solidification of undercooled metals and alloys. However, for undercoolings greater than about 5% of the absolute melting temperature, there is considerable discrepancy between theory and experiment. At these large undercoolings, experimental results exhibit a much lessened dependency of solidification velocity on undercooling than is predicted by theory. Furthermore, unpredicted plateaus in the solidification velocity as a function of undercooling are observed.
The interaction of unidirectional winds with an isolated barchan sand dune
NASA Technical Reports Server (NTRS)
Gad-El-hak, M.; Pierce, D.; Howard, A.; Morton, J. B.
1976-01-01
Velocity profile measurements are determined on and around a barchan dune model inserted in the roughness layer on the tunnel floor. A theoretical investigation is made into the factors influencing the rate of sand flow around the dune. Flow visualization techniques are employed in the mapping of streamlines of flow on the dune's surface. Maps of erosion and deposition of sand are constructed for the barchan model, utilizing both flow visualization techniques and friction velocities calculated from the measured velocity profiles. The sediment budget found experimentally for the model is compared to predicted and observed results reported. The comparison shows fairly good agreement between the experimentally determined and predicted sediment budgets.
NASA Astrophysics Data System (ADS)
Belair, S.; Bernier, N.; Tong, L.; Mailhot, J.
2008-05-01
The 2010 Winter Olympic and Paralympic Games will take place in Vancouver, Canada, from 12 to 28 February 2010 and from 12 to 21 March 2010, respectively. In order to provide the best possible guidance achievable with current state-of-the-art science and technology, Environment Canada is currently setting up an experimental numerical prediction system for these special events. This system consists of a 1-km limited-area atmospheric model that will be integrated for 16h, twice a day, with improved microphysics compared with the system currently operational at the Canadian Meteorological Centre. In addition, several new and original tools will be used to adapt and refine predictions near and at the surface. Very high-resolution two-dimensional surface systems, with 100-m and 20-m grid size, will cover the Vancouver Olympic area. Using adaptation methods to improve the forcing from the lower-resolution atmospheric models, these 2D surface models better represent surface processes, and thus lead to better predictions of snow conditions and near-surface air temperature. Based on a similar strategy, a single-point model will be implemented to better predict surface characteristics at each station of an observing network especially installed for the 2010 events. The main advantage of this single-point system is that surface observations are used as forcing for the land surface models, and can even be assimilated (although this is not expected in the first version of this new tool) to improve initial conditions of surface variables such as snow depth and surface temperatures. Another adaptation tool, based on 2D stationnary solutions of a simple dynamical system, will be used to produce near-surface winds on the 100-m grid, coherent with the high- resolution orography. The configuration of the experimental numerical prediction system will be presented at the conference, together with preliminary results for winter 2007-2008.
Sequential experimental design based generalised ANOVA
NASA Astrophysics Data System (ADS)
Chakraborty, Souvik; Chowdhury, Rajib
2016-07-01
Over the last decade, surrogate modelling technique has gained wide popularity in the field of uncertainty quantification, optimization, model exploration and sensitivity analysis. This approach relies on experimental design to generate training points and regression/interpolation for generating the surrogate. In this work, it is argued that conventional experimental design may render a surrogate model inefficient. In order to address this issue, this paper presents a novel distribution adaptive sequential experimental design (DA-SED). The proposed DA-SED has been coupled with a variant of generalised analysis of variance (G-ANOVA), developed by representing the component function using the generalised polynomial chaos expansion. Moreover, generalised analytical expressions for calculating the first two statistical moments of the response, which are utilized in predicting the probability of failure, have also been developed. The proposed approach has been utilized in predicting probability of failure of three structural mechanics problems. It is observed that the proposed approach yields accurate and computationally efficient estimate of the failure probability.
Sequential experimental design based generalised ANOVA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakraborty, Souvik, E-mail: csouvik41@gmail.com; Chowdhury, Rajib, E-mail: rajibfce@iitr.ac.in
Over the last decade, surrogate modelling technique has gained wide popularity in the field of uncertainty quantification, optimization, model exploration and sensitivity analysis. This approach relies on experimental design to generate training points and regression/interpolation for generating the surrogate. In this work, it is argued that conventional experimental design may render a surrogate model inefficient. In order to address this issue, this paper presents a novel distribution adaptive sequential experimental design (DA-SED). The proposed DA-SED has been coupled with a variant of generalised analysis of variance (G-ANOVA), developed by representing the component function using the generalised polynomial chaos expansion. Moreover,more » generalised analytical expressions for calculating the first two statistical moments of the response, which are utilized in predicting the probability of failure, have also been developed. The proposed approach has been utilized in predicting probability of failure of three structural mechanics problems. It is observed that the proposed approach yields accurate and computationally efficient estimate of the failure probability.« less
Interfacial charge transfer absorption: Application to metal molecule assemblies
NASA Astrophysics Data System (ADS)
Creutz, Carol; Brunschwig, Bruce S.; Sutin, Norman
2006-05-01
Optically induced charge transfer between adsorbed molecules and a metal electrode was predicted by Hush to lead to new electronic absorption features, but has been only rarely observed experimentally. Interfacial charge transfer absorption (IFCTA) provides information concerning the barriers to charge transfer between molecules and the metal/semiconductor and the magnitude of the electronic coupling and could thus provide a powerful tool for understanding interfacial charge-transfer kinetics. Here, we utilize a previously published model [C. Creutz, B.S. Brunschwig, N. Sutin, J. Phys. Chem. B 109 (2005) 10251] to predict IFCTA spectra of metal-molecule assemblies and compare the literature observations to these predictions. We conclude that, in general, the electronic coupling between molecular adsorbates and the metal levels is so small that IFCTA is not detectable. However, few experiments designed to detect IFCTA have been done. We suggest approaches to optimizing the conditions for observing the process.
1987-10-01
bistable interaction of an electromagnetic wave with the simplest microscopic physical object. Most recently, consistent with this prediction , the hysteresis...1985, p. 17) credited both the experimental observation and the theoretical prediction as very important discoveries. London-based journal "Nature...order processes of this kind was also predicted , which was described as higher-order cyclo- -6- Raman effect whereby w, - W2 = nfl, where n is an
Mechanisms of Exhaust Pollutants and Plume Formation in Continuous Combustion.
1984-06-01
device. 4.1.3 Dilute Swirl Combustor (DSC) A swirl-stabilized geometry was developed to address the deficiencies observed with the swirl CBC geometry and...certain deficiencies were apparent in the ability of the model to predict experimental trends. For example: (1) The velocity profiles (Figure lOa) show that...25,000 Re - 50,000 HDF LA 1.1 0.55 Prediction 1.2 0.71 Flow Visualization 0.92 0.66 0 LCF LA 1.2 0.60 Prediction 1.3 0.70 5 J~55 -* - *7 2-- tK2
Life prediction of thermal-mechanical fatigue using strainrange partitioning
NASA Technical Reports Server (NTRS)
Halford, G. R.; Manson, S. S.
1975-01-01
This paper describes the applicability of the method of Strainrange Partitioning to the life prediction of thermal-mechanical strain-cycling fatigue. An in-phase test on 316 stainless steel is analyzed as an illustrative example. The observed life is in excellent agreement with the life predicted by the method using the recently proposed Step-Stress Method of experimental partitioning, the Interaction Damage Rule, and the life relationships determined at an isothermal temperature of 705 C. Implications of the present study are discussed relative to the general thermal fatigue problem.
Life prediction of thermal-mechanical fatigue using strain-range partitioning
NASA Technical Reports Server (NTRS)
Halford, G. R.; Manson, S. S.
1975-01-01
The applicability is described of the method of Strainrange Partitioning to the life prediction of thermal-mechanical strain-cycling fatigue. An in-phase test on 316 stainless steel is analyzed as an illustrative example. The observed life is in excellent agreement with the life predicted by the method using the recently proposed Step-Stress Method of experimental partitioning, the Interation Damage Rule, and the life relationships determined at an isothermal temperature of 705 C. Implications of the study are discussed relative to the general thermal fatigue problem.
Theoretical prediction and direct observation of the 9R structure in Ag
NASA Astrophysics Data System (ADS)
Ernst, F.; Finnis, M. W.; Hofmann, D.; Muschik, T.; Schönberger, U.; Wolf, U.; Methfessel, M.
1992-07-01
Molecular-dynamics simulations of the Σ3<110>(211) twin boundary in Ag predict a thin (1 nm) boundary phase of the 9R (α-Sm) structure. High-resolution electron microscopy shows the presence of the predicted structure. We also calculate the energy ab initio for several hypothetical structures of Cu and Ag. Low energies of the 9R structure and other polytypes, low experimental stacking-fault energies, and the hcp-fcc energy difference are correlated and explained in terms of an effective nearest-neighbor Ising interaction.
Liquid crystalline phase behavior of protein fibers in water: experiments versus theory.
Jung, Jin-Mi; Mezzenga, Raffaele
2010-01-05
We have developed a new method allowing the study of the thermodynamic phase behavior of mesoscopic colloidal systems consisting of amyloid protein fibers in water, obtained by heat denaturation and aggregation of beta-lactoglobulin, a dairy protein. The fibers have a cross section of about 5.2 nm and two groups of polydisperse contour lengths: (i) long fibers of 1-20 microm, showing semiflexible behavior, and (ii) short rods of 100-200 nm long, obtained by cutting the long fibers via high-pressure homogenization. At pH 2 without salt, these fibers are highly charged and stable in water. We have studied the isotropic-nematic phase transition for both systems and compared our results with the theoretical values predicted by Onsager's theory. The experimentally measured isotropic-nematic phase transition was found to occur at 0.4% and at 3% for the long and short fibers, respectively. For both systems, this phase transition occurs at concentrations more than 1 order of magnitude lower than what is expected based on Onsager's theory. Moreover, at low enough pH, no intermediate biphasic region was observed between the isotropic phase and the nematic phase. The phase diagrams of both systems (pH vs concentration) showed similar, yet complex and rich, phase behavior. We discuss the possible physical fundamentals ruling the phase diagram as well as the discrepancy we observe for the isotropic-nematic phase transition between our experimental results and the predicted theoretical results. Our work highlights that systems formed by water-amyloid protein fibers are way too complex to be understood based solely on Onsager's theories. Experimental results are revisited in terms of the Flory's theory (1956) for suspensions of rods, which allows accounting for rod-solvent hydrophobic interactions. This theoretical approach allows explaining, on a semiquantitative basis, most of the discrepancies observed between the experimental results and Onsager's predictions. The sources of protein fibers complex colloidal behavior are analyzed and discussed at length.
Understanding the Femtosecond Laser-Solid Interaction Near and Beyond the Material Damage Threshold
2016-05-23
study of the fundamentals of femtosecond laser damage as a function of various parameters, laser wavelength, pulsewidth, pulse number, experimental ... experimental observation without any free parameters. The brand new FSD Lab constructed under the BRI grant in the Physics Research Building at the Ohio... studied across a range of band-gaps for s- and p-polarized light and it is found that conventional theoretical prediction on laser damage threshold
Chen, Linjiang; Mowat, John P S; Fairen-Jimenez, David; Morrison, Carole A; Thompson, Stephen P; Wright, Paul A; Düren, Tina
2013-10-23
Ab initio molecular dynamics (AIMD) simulations have been used to predict structural transitions of the breathing metal-organic framework (MOF) MIL-53(Sc) in response to changes in temperature over the range 100-623 K and adsorption of CO2 at 0-0.9 bar at 196 K. The method has for the first time been shown to predict successfully both temperature-dependent structural changes and the structural response to variable sorbate uptake of a flexible MOF. AIMD employing dispersion-corrected density functional theory accurately simulated the experimentally observed closure of MIL-53(Sc) upon solvent removal and the transition of the empty MOF from the closed-pore phase to the very-narrow-pore phase (symmetry change from P2(1)/c to C2/c) with increasing temperature, indicating that it can directly take into account entropic as well as enthalpic effects. We also used AIMD simulations to mimic the CO2 adsorption of MIL-53(Sc) in silico by allowing the MIL-53(Sc) framework to evolve freely in response to CO2 loadings corresponding to the two steps in the experimental adsorption isotherm. The resulting structures enabled the structure determination of the two CO2-containing intermediate and large-pore phases observed by experimental synchrotron X-ray diffraction studies with increasing CO2 pressure; this would not have been possible for the intermediate structure via conventional methods because of diffraction peak broadening. Furthermore, the strong and anisotropic peak broadening observed for the intermediate structure could be explained in terms of fluctuations of the framework predicted by the AIMD simulations. Fundamental insights from the molecular-level interactions further revealed the origin of the breathing of MIL-53(Sc) upon temperature variation and CO2 adsorption. These simulations illustrate the power of the AIMD method for the prediction and understanding of the behavior of flexible microporous solids.
Chan, Chung-Hung; Yusoff, Rozita; Ngoh, Gek-Cheng
2013-09-01
A modeling technique based on absorbed microwave energy was proposed to model microwave-assisted extraction (MAE) of antioxidant compounds from cocoa (Theobroma cacao L.) leaves. By adapting suitable extraction model at the basis of microwave energy absorbed during extraction, the model can be developed to predict extraction profile of MAE at various microwave irradiation power (100-600 W) and solvent loading (100-300 ml). Verification with experimental data confirmed that the prediction was accurate in capturing the extraction profile of MAE (R-square value greater than 0.87). Besides, the predicted yields from the model showed good agreement with the experimental results with less than 10% deviation observed. Furthermore, suitable extraction times to ensure high extraction yield at various MAE conditions can be estimated based on absorbed microwave energy. The estimation is feasible as more than 85% of active compounds can be extracted when compared with the conventional extraction technique. Copyright © 2013 Elsevier Ltd. All rights reserved.
Knudson, M D; Desjarlais, M P; Becker, A; Lemke, R W; Cochrane, K R; Savage, M E; Bliss, D E; Mattsson, T R; Redmer, R
2015-06-26
Eighty years ago, it was proposed that solid hydrogen would become metallic at sufficiently high density. Despite numerous investigations, this transition has not yet been experimentally observed. More recently, there has been much interest in the analog of this predicted metallic transition in the dense liquid, due to its relevance to planetary science. Here, we show direct observation of an abrupt insulator-to-metal transition in dense liquid deuterium. Experimental determination of the location of this transition provides a much-needed benchmark for theory and may constrain the region of hydrogen-helium immiscibility and the boundary-layer pressure in standard models of the internal structure of gas-giant planets. Copyright © 2015, American Association for the Advancement of Science.
Unsteady flow phenomena in industrial centrifugal compressor stage
NASA Technical Reports Server (NTRS)
Bonciani, L.; Terrinoni, L.; Tesei, A.
1982-01-01
The results of an experimental investigation on a typical centrifugal compressor stage running on an atmospheric pressure test rig are shown. Unsteady flow was invariably observed at low flow well before surge. In order to determine the influence of the statoric components, the same impeller was repeatedly tested with the same vaneless diffuser, but varying return channel geometry. Experimental results show the strong effect exerted by the return channel, both on onset and on the behavior of unsteady flow. Observed phenomena have been found to confirm well the observed dynamic behavior of full load tested machines when gas density is high enough to cause appreciable mechanical vibrations. Therefore, testing of single stages at atmospheric pressure may provide a fairly accurate prediction of this kind of aerodynamic excitation.
Overview of the Aeroelastic Prediction Workshop
NASA Technical Reports Server (NTRS)
Heeg, Jennifer; Chwalowski, Pawel; Florance, Jennifer P.; Wieseman, Carol D.; Schuster, David M.; Perry, Raleigh B.
2013-01-01
The Aeroelastic Prediction Workshop brought together an international community of computational fluid dynamicists as a step in defining the state of the art in computational aeroelasticity. This workshop's technical focus was prediction of unsteady pressure distributions resulting from forced motion, benchmarking the results first using unforced system data. The most challenging aspects of the physics were identified as capturing oscillatory shock behavior, dynamic shock-induced separated flow and tunnel wall boundary layer influences. The majority of the participants used unsteady Reynolds-averaged Navier Stokes codes. These codes were exercised at transonic Mach numbers for three configurations and comparisons were made with existing experimental data. Substantial variations were observed among the computational solutions as well as differences relative to the experimental data. Contributing issues to these differences include wall effects and wall modeling, non-standardized convergence criteria, inclusion of static aeroelastic deflection, methodology for oscillatory solutions, post-processing methods. Contributing issues pertaining principally to the experimental data sets include the position of the model relative to the tunnel wall, splitter plate size, wind tunnel expansion slot configuration, spacing and location of pressure instrumentation, and data processing methods.
Efficient spot size converter for higher-order mode fiber-chip coupling.
Lai, Yaxiao; Yu, Yu; Fu, Songnian; Xu, Jing; Shum, Perry Ping; Zhang, Xinliang
2017-09-15
We propose and demonstrate a silicon-based spot size converter (SSC), composed of two identical tapered channel waveguides and a Y-junction. The SSC is designed for first-order mode fiber-to-chip coupling on the basis of mode petal separation and the recombination method. Compared with a traditional on-chip SSC, this method is superior with reduced coupling loss when dealing with a higher-order mode. To the best of our knowledge, we present the first experimental observations of a higher-order SSC which is fully compatible with a standard fabrication process. Average coupling losses of 3 and 5.5 dB are predicted by simulation and demonstrated experimentally. A fully covered 3 dB bandwidth over a 1515-1585 nm wavelength range is experimentally observed.
Do young toddlers act on their social preferences?
Dahl, Audun; Schuck, Rachel K; Campos, Joseph J
2013-10-01
From preschool age to adulthood, most humans prefer to help someone who has treated others well over helping someone who has treated others badly. Researchers have recently made opposing predictions about whether such observation-based preferential helping is present when children begin to help in the second year of life. In the present study, 84 toddlers (16-27 months) observed 1 experimenter (antisocial) take a ball from, and 1 experimenter (prosocial) return a ball to, a neutral experimenter. In subsequent tests, children could help either the antisocial or the prosocial experimenter. Only the oldest children showed a significant preference for helping the prosocial agent first. Most children in all age groups were willing to help both experimenters when given multiple opportunities to help. Across age groups, children who looked longer at the continuation of the antisocial interaction were more likely to help the prosocial agent. These findings suggest that social evaluations do affect toddlers' helping behavior but that interactions between human agents may be difficult to evaluate for very young children.
NASA Astrophysics Data System (ADS)
Matz, Phillip Daniel
Based on crystal structure data, the recently developed density functional PBE1PBE predicts ground state equilibrium geometries in good agreement with experiments. Bond length and angle alpha,alpha'-diimine ligand Mean Absolute Deviation (MAD) values of 0.0077 A and 0.63° are obtained with the low-cost model chemistry PBE1PBE/6-21G. Theoretical trends, specifically the gs → 1pipi* absorption energies and 3pipi* → gs phosphorescence emission energies of the ligands also agree well with experiment. Computations on [Ru(II)(1,10-phenanthroline)3]2+ indicate that the Stuttgart ECP ECP28MWB is capable of reproducing adequately the geometries and photophysical characteristics of transition-metal complexes when paired with the DFT hybrid functional PBE1PBE and the Pople-style split-valence 6-21G basis set describing the ligands. Examination shows that the predicted photophysical properties of both [Rh(III)(s-NN)3](PF6) 3 and [Rh(III)(CN)2(s-NN)2](PF6) complexes agree with experimental evidence in many, but not all aspects. The experimentally observed spectroscopic trend for the gs → 1pipi* absorption energies is reproduced, namely the absorption bands of phenanthroline complexes containing progressively more methyl substituents are monotonically red-shifted relative to the parent phenanthroline in the following energy order: phen > 4-Mephen > 4,7-Me2phen > 3,4,7,8-Me4phen >> 5,6-Me 2phen. Also, the trend of the experimental 3pipi* → gs phosphorescence emission energies is reproduced by the calculations. Experimentally, the activation barriers for the onset of photochemistry in glycerol matrices are reported to be around 2500 cm-1 and 2000 cm-1 for the [Rh(III)(s-NN)3](PF 6)3 and [Rh(III)(CN)2(s-NN)2](PF 6) complexes, respectively. Calculations of the energy gap between the lowest 3pipi* states and the ligand-field states locate the ligand-field states ˜5000cm-1 above the 3pipi* manifolds in the [Rh(III)(s-NN)3](PF6) 3 complexes, far exceeding the experimentally observed values. Analogous calculations on [Rh(III)(CN)2(s-NN)2](PF6) complexes predict an energy gap closer to the experimentally observed activation barriers (˜2500 cm-1) and correctly reproduce the observed trend of increasing activation energy with increasing methyl-substitution, but the ligand field states are shown to possess substantial ligand-centered character.
External intermittency prediction using AMR solutions of RANS turbulence and transported PDF models
NASA Astrophysics Data System (ADS)
Olivieri, D. A.; Fairweather, M.; Falle, S. A. E. G.
2011-12-01
External intermittency in turbulent round jets is predicted using a Reynolds-averaged Navier-Stokes modelling approach coupled to solutions of the transported probability density function (pdf) equation for scalar variables. Solutions to the descriptive equations are obtained using a finite-volume method, combined with an adaptive mesh refinement algorithm, applied in both physical and compositional space. This method contrasts with conventional approaches to solving the transported pdf equation which generally employ Monte Carlo techniques. Intermittency-modified eddy viscosity and second-moment turbulence closures are used to accommodate the effects of intermittency on the flow field, with the influence of intermittency also included, through modifications to the mixing model, in the transported pdf equation. Predictions of the overall model are compared with experimental data on the velocity and scalar fields in a round jet, as well as against measurements of intermittency profiles and scalar pdfs in a number of flows, with good agreement obtained. For the cases considered, predictions based on the second-moment turbulence closure are clearly superior, although both turbulence models give realistic predictions of the bimodal scalar pdfs observed experimentally.
NASA Technical Reports Server (NTRS)
Suzen, Y. Bora; Huang, P. G.; Hultgren, Lennart S.; Ashpis, David E.
2001-01-01
A new transport equation for the intermittency factor was proposed to predict separated and transitional boundary layers under low-pressure turbine airfoil conditions. The intermittent behavior of the transitional flows is taken into account and incorporated into computations by modifying the eddy viscosity, mu(sub t), with the intermittency factor, gamma. Turbulent quantities are predicted by using Menter's two-equation turbulence model (SST). The intermittency factor is obtained from a transport equation model, which not only can reproduce the experimentally observed streamwise variation of the intermittency in the transition zone, but also can provide a realistic cross-stream variation of the intermittency profile. In this paper, the intermittency model is used to predict a recent separated and transitional boundary layer experiment under low pressure turbine airfoil conditions. The experiment provides detailed measurements of velocity, turbulent kinetic energy and intermittency profiles for a number of Reynolds numbers and freestream turbulent intensity conditions and is suitable for validation purposes. Detailed comparisons of computational results with experimental data are presented and good agreements between the experiments and predictions are obtained.
NASA Technical Reports Server (NTRS)
Suzen, Y. B.; Huang, P. G.; Hultgren, Lennart S.; Ashpis, David E.
2003-01-01
A new transport equation for the intermittency factor was proposed to predict separated and transitional boundary layers under low-pressure turbine airfoil conditions. The intermittent behavior of the transitional flows is taken into account and incorporated into computations by modifying the eddy viscosity, t , with the intermittency factor, y. Turbulent quantities are predicted by using Menter s two-equation turbulence model (SST). The intermittency factor is obtained from a transport equation model, which not only can reproduce the experimentally observed streamwise variation of the intermittency in the transition zone, but also can provide a realistic cross-stream variation of the intermittency profile. In this paper, the intermittency model is used to predict a recent separated and transitional boundary layer experiment under low pressure turbine airfoil conditions. The experiment provides detailed measurements of velocity, turbulent kinetic energy and intermittency profiles for a number of Reynolds numbers and freestream turbulent intensity conditions and is suitable for validation purposes. Detailed comparisons of computational results with experimental data are presented and good agreements between the experiments and predictions are obtained.
Quantitative theory of driven nonlinear brain dynamics.
Roberts, J A; Robinson, P A
2012-09-01
Strong periodic stimuli such as bright flashing lights evoke nonlinear responses in the brain and interact nonlinearly with ongoing cortical activity, but the underlying mechanisms for these phenomena are poorly understood at present. The dominant features of these experimentally observed dynamics are reproduced by the dynamics of a quantitative neural field model subject to periodic drive. Model power spectra over a range of drive frequencies show agreement with multiple features of experimental measurements, exhibiting nonlinear effects including entrainment over a range of frequencies around the natural alpha frequency f(α), subharmonic entrainment near 2f(α), and harmonic generation. Further analysis of the driven dynamics as a function of the drive parameters reveals rich nonlinear dynamics that is predicted to be observable in future experiments at high drive amplitude, including period doubling, bistable phase-locking, hysteresis, wave mixing, and chaos indicated by positive Lyapunov exponents. Moreover, photosensitive seizures are predicted for physiologically realistic model parameters yielding bistability between healthy and seizure dynamics. These results demonstrate the applicability of neural field models to the new regime of periodically driven nonlinear dynamics, enabling interpretation of experimental data in terms of specific generating mechanisms and providing new tests of the theory. Copyright © 2012 Elsevier Inc. All rights reserved.
Charge-density-shear-moduli relationships in aluminum-lithium alloys.
Eberhart, M
2001-11-12
Using the first principles full-potential linear-augmented-Slater-type orbital technique, the energies and charge densities of aluminum and aluminum-lithium supercells have been computed. The experimentally observed increase in aluminum's shear moduli upon alloying with lithium is argued to be the result of predictable changes to aluminum's total charge density, suggesting that simple rules may allow the alloy designer to predict the effects of dilute substitutional elements on alloy elastic response.
Measuring and modeling the salting-out effect in ammonium sulfate solutions.
Wang, Chen; Lei, Ying Duan; Endo, Satoshi; Wania, Frank
2014-11-18
The presence of inorganic salts significantly influences the partitioning behavior of organic compounds between environmentally relevant aqueous phases, such as seawater or aqueous aerosol, and other, nonaqueous phases (gas phase, organic phase, etc.). In this study, salting-out coefficients (or Setschenow constants) (KS [M(-1)]) for 38 diverse neutral compounds in ammonium sulfate ((NH4)2SO4) solutions were measured using a shared headspace passive dosing method and a negligible depletion solid phase microextraction technique. The measured KS were all positive, varied from 0.216 to 0.729, and had standard errors in the range of 0.006-0.060. Compared to KS for sodium chloride (NaCl) in the literature, KS values for (NH4)2SO4 are always higher for the same compound, suggesting a higher salting-out effect of (NH4)2SO4. A polyparameter linear free energy relationship (pp-LFER) for predicting KS in (NH4)2SO4 solutions was generated using the experimental data for calibration. pp-LFER predicted KS agreed well with measured KS reported in the literature. KS for (NH4)2SO4 was also predicted using the quantum-chemical COSMOtherm software and the thermodynamic model AIOMFAC. While COSMOtherm generally overpredicted the experimental KS, predicted and experimental values were correlated. Therefore, a fitting factor needs to be applied when using the current version of COSMOtherm to predict KS. AIOMFAC tends to underpredict the measured KS((NH4)2SO4) but always overpredicts KS(NaCl). The prediction error is generally larger for KS(NaCl) than for KS((NH4)2SO4). AIOMFAC also predicted a dependence of KS on the salt concentrations, which is not observed in the experimental data. In order to demonstrate that the models developed and calibrated in this study can be applied to estimate Setschenow coefficients for atmospherically relevant compounds involved in secondary organic aerosol formation based on chemical structure alone, we predicted and compared KS for selected α-pinene oxidation products.
Carrying capacity in a heterogeneous environment with habitat connectivity.
Zhang, Bo; Kula, Alex; Mack, Keenan M L; Zhai, Lu; Ryce, Arrix L; Ni, Wei-Ming; DeAngelis, Donald L; Van Dyken, J David
2017-09-01
A large body of theory predicts that populations diffusing in heterogeneous environments reach higher total size than if non-diffusing, and, paradoxically, higher size than in a corresponding homogeneous environment. However, this theory and its assumptions have not been rigorously tested. Here, we extended previous theory to include exploitable resources, proving qualitatively novel results, which we tested experimentally using spatially diffusing laboratory populations of yeast. Consistent with previous theory, we predicted and experimentally observed that spatial diffusion increased total equilibrium population abundance in heterogeneous environments, with the effect size depending on the relationship between r and K. Refuting previous theory, however, we discovered that homogeneously distributed resources support higher total carrying capacity than heterogeneously distributed resources, even with species diffusion. Our results provide rigorous experimental tests of new and old theory, demonstrating how the traditional notion of carrying capacity is ambiguous for populations diffusing in spatially heterogeneous environments. © 2017 John Wiley & Sons Ltd/CNRS.
Charge optimized many-body potential for aluminum.
Choudhary, Kamal; Liang, Tao; Chernatynskiy, Aleksandr; Lu, Zizhe; Goyal, Anuj; Phillpot, Simon R; Sinnott, Susan B
2015-01-14
An interatomic potential for Al is developed within the third generation of the charge optimized many-body (COMB3) formalism. The database used for the parameterization of the potential consists of experimental data and the results of first-principles and quantum chemical calculations. The potential exhibits reasonable agreement with cohesive energy, lattice parameters, elastic constants, bulk and shear modulus, surface energies, stacking fault energies, point defect formation energies, and the phase order of metallic Al from experiments and density functional theory. In addition, the predicted phonon dispersion is in good agreement with the experimental data and first-principles calculations. Importantly for the prediction of the mechanical behavior, the unstable stacking fault energetics along the [Formula: see text] direction on the (1 1 1) plane are similar to those obtained from first-principles calculations. The polycrsytal when strained shows responses that are physical and the overall behavior is consistent with experimental observations.
NASA Astrophysics Data System (ADS)
Popov, Valentin N.; Levshov, Dmitry I.; Sauvajol, Jean-Louis; Paillet, Matthieu
2018-04-01
The interactions between the layers of double-walled carbon nanotubes induce a measurable shift of the G bands relative to the isolated layers. While experimental data on this shift in freestanding double-walled carbon nanotubes has been reported in the past several years, a comprehensive theoretical description of the observed shift is still lacking. The prediction of this shift is important for supporting the assignment of the measured double-walled nanotubes to particular nanotube types. Here, we report a computational study of the G-band shift as a function of the semiconducting inner layer radius and interlayer separation. We find that with increasing interlayer separation, the G band shift decreases, passes through zero and becomes negative, and further increases in absolute value for the wide range of considered inner layer radii. The theoretical predictions are shown to agree with the available experimental data within the experimental uncertainty.
Numerical and experimental investigations on cavitation erosion
NASA Astrophysics Data System (ADS)
Fortes Patella, R.; Archer, A.; Flageul, C.
2012-11-01
A method is proposed to predict cavitation damage from cavitating flow simulations. For this purpose, a numerical process coupling cavitating flow simulations and erosion models was developed and applied to a two-dimensional (2D) hydrofoil tested at TUD (Darmstadt University of Technology, Germany) [1] and to a NACA 65012 tested at LMH-EPFL (Lausanne Polytechnic School) [2]. Cavitation erosion tests (pitting tests) were carried out and a 3D laser profilometry was used to analyze surfaces damaged by cavitation [3]. The method allows evaluating the pit characteristics, and mainly the volume damage rates. The paper describes the developed erosion model, the technique of cavitation damage measurement and presents some comparisons between experimental results and numerical damage predictions. The extent of cavitation erosion was correctly estimated in both hydrofoil geometries. The simulated qualitative influence of flow velocity, sigma value and gas content on cavitation damage agreed well with experimental observations.
Carrying capacity in a heterogeneous environment with habitat connectivity
Zhang, Bo; Kula, Alex; Mack, Keenan M.L.; Zhai, Lu; Ryce, Arrix L.; Ni, Wei-Ming; DeAngelis, Donald L.; Van Dyken, J. David
2017-01-01
A large body of theory predicts that populations diffusing in heterogeneous environments reach higher total size than if non-diffusing, and, paradoxically, higher size than in a corresponding homogeneous environment. However, this theory and its assumptions have not been rigorously tested. Here, we extended previous theory to include exploitable resources, proving qualitatively novel results, which we tested experimentally using spatially diffusing laboratory populations of yeast. Consistent with previous theory, we predicted and experimentally observed that spatial diffusion increased total equilibrium population abundance in heterogeneous environments, with the effect size depending on the relationship between r and K. Refuting previous theory, however, we discovered that homogeneously distributed resources support higher total carrying capacity than heterogeneously distributed resources, even with species diffusion. Our results provide rigorous experimental tests of new and old theory, demonstrating how the traditional notion of carrying capacity is ambiguous for populations diffusing in spatially heterogeneous environments.
Polavarapu, Prasad L; Covington, Cody L
2014-09-01
For three different chiroptical spectroscopic methods, namely, vibrational circular dichroism (VCD), electronic circular dichroism (ECD), and Raman optical activity (ROA), the measures of similarity of the experimental spectra to the corresponding spectra predicted using quantum chemical theories are summarized. In determining the absolute configuration and/or predominant conformations of chiral molecules, these similarity measures provide numerical estimates of agreement between experimental observations and theoretical predictions. Selected applications illustrating the similarity measures for absorption, circular dichroism, and corresponding dissymmetry factor (DF) spectra, in the case of VCD and ECD, and for Raman, ROA, and circular intensity differential (CID) spectra in the case of ROA, are presented. The analysis of similarity in DF or CID spectra is considered to be much more discerning and accurate than that in absorption (or Raman) and circular dichroism (or ROA) spectra, undertaken individually. © 2014 Wiley Periodicals, Inc.
Modeling texture kinetics during thermal processing of potato products.
Moyano, P C; Troncoso, E; Pedreschi, F
2007-03-01
A kinetic model based on 2 irreversible serial chemical reactions has been proposed to fit experimental data of texture changes during thermal processing of potato products. The model links dimensionless maximum force F*(MAX) with processing time. Experimental texture changes were obtained during frying of French fries and potato chips at different temperatures, while literature data for blanching/cooking of potato cubes have been considered. A satisfactory agreement between experimental and predicted values was observed, with root mean square values (RMSs) in the range of 4.7% to 16.4% for French fries and 16.7% to 29.3% for potato chips. In the case of blanching/cooking, the proposed model gave RMSs in the range of 1.2% to 17.6%, much better than the 6.2% to 44.0% obtained with the traditional 1st-order kinetics. The model is able to predict likewise the transition from softening to hardening of the tissue during frying.
NASA Technical Reports Server (NTRS)
Szczepanski, Jan; Vala, Martin; Talbi, Dahbia; Parisel, Olivier; Ellinger, Yves
1993-01-01
The IR vibrational and visible/UV electronic absorption spectra of the anthracene cation, An(+), were studied experimentally, in argon matrices at 12 K, as well as theoretically, using ab initio calculations for the vibrational modes and enhanced semiempirical methods with configuration interaction for the electronic spectra. It was found that both approaches predicted well the observed photoelectron spectrum. The theoretical IR intensities showed some remarkable differences between neutral and ionized species (for example, the CH in-plane bending modes and CC in-plane stretching vibrations were predicted to increase by several orders of magnitude upon ionization). Likewise, estimated experimental IR intensities showed a significant increase in the cation band intensities over the neutrals. The implication of these findings for the hypothesis that polycyclic aromatic hydrocarbon cations are responsible for the unidentified IR emission bands from interstellar space is discussed.
NASA Astrophysics Data System (ADS)
Finneran, James J.
2003-04-01
An acoustic backscatter technique was used to estimate in vivo whole-lung resonant frequencies in a bottlenose dolphin (Tursiops truncatus) and a white whale (Delphinapterus leucas). Subjects were trained to submerge and position themselves near an underwater sound projector and a receiving hydrophone. Acoustic pressure measurements were made near the subjects' lungs while insonified with pure tones at frequencies from 16 to 100 Hz. Whole-lung resonant frequencies were estimated by comparing pressures measured near the subjects' lungs to those measured from the same location without the subject present. Experimentally measured resonant frequencies and damping ratios were much higher than those predicted using equivalent volume spherical air bubble models. The experimental technique, data analysis method, and discrepancy between the observed and predicted values will be discussed. The potential effects of depth on the resonance frequencies will also be discussed.
NASA Astrophysics Data System (ADS)
Dikmen, Erkan; Ayaz, Mahir; Gül, Doğan; Şahin, Arzu Şencan
2017-07-01
The determination of drying behavior of herbal plants is a complex process. In this study, gene expression programming (GEP) model was used to determine drying behavior of herbal plants as fresh sweet basil, parsley and dill leaves. Time and drying temperatures are input parameters for the estimation of moisture ratio of herbal plants. The results of the GEP model are compared with experimental drying data. The statistical values as mean absolute percentage error, root-mean-squared error and R-square are used to calculate the difference between values predicted by the GEP model and the values actually observed from the experimental study. It was found that the results of the GEP model and experimental study are in moderately well agreement. The results have shown that the GEP model can be considered as an efficient modelling technique for the prediction of moisture ratio of herbal plants.
NASA Astrophysics Data System (ADS)
Hu, Dianyin; Gao, Ye; Meng, Fanchao; Song, Jun; Wang, Rongqiao
2018-04-01
Combining experiments and finite element analysis (FEA), a systematic study was performed to analyze the microstructural evolution and stress states of shot-peened GH4169 superalloy over a variety of peening intensities and coverages. A dislocation density evolution model was integrated into the representative volume FEA model to quantitatively predict microstructural evolution in the surface layers and compared with experimental results. It was found that surface roughness and through-depth residual stress profile are more sensitive to shot-peening intensity compared to coverage due to the high kinetic energy involved. Moreover, a surface nanocrystallization layer was discovered in the top surface region of GH4169 for all shot-peening conditions. However, the grain refinement was more intensified under high shot-peening coverage, under which enough time was permitted for grain refinement. The grain size gradient predicted by the numerical framework showed good agreement with experimental observations.
Aerosol penetration through a model transport system: Comparison of theory and experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
McFarland, A.R.; Wong, F.S.; Anand, N.K.
1991-09-01
Numerical predictions were made of aerosol penetration through a model transport system. A physical model of the system was constructed and tested in an aerosol wind tunnel to obtain comparative data. The system was 26.6 mm in diameter and consisted of an inlet and three straight sections (oriented horizontally, vertically, and at 45{degree}). Particle sizes covered a range in which losses were primarily caused by inertial and gravitational effects (3-25 {mu}m aerodynamic equivalent diameter (AED)). Tests were conducted at two flow rates (70 and 130 l/min) and two inlet orientations (parallel and perpendicular to the free stream). Wind speed wasmore » 3 m/s for all test cases. The cut points for aerosol penetration through the experimental model vis-a-vis the numerical results are as follows: At a flow rate of 70 l/min with the inlet at 0{degree}, the experimentally observed cut point was 16.2 {mu}m AED while the numerically predicted value was 18.2 {mu}m AED while the numerically predicted value was 18.2 {mu}m AED. At 130 l/min and 0{degree}, the experimental cut point was 12.8 {mu}m AED as compared with a numerically value of 13.7 {mu}m AED. At 70l/min and a 90{degree}, the experimental cut point was 12.0 {mu}m AED while the numerically calculated value was 11.1 {mu}m AED. Slopes of the experimental penetration curves are somewhat steeper than the numerically predicted counterparts.« less
Migration arising from gradients in shear stress: Particle distributions in Poiseuille flow
NASA Technical Reports Server (NTRS)
Leighton, D. T., Jr.
1988-01-01
Experimental evidence for the existence of shear induced migration processes is reviewed and the mechanism by Leighton and Acrivos (1987b) is described in detail. The proposed mechanism is shown to lead to the existence of an additional shear induced migration in the presence of gradients in shear stress such as would be found in Poiseuille flow, and which may be used to predict the amplitude of the observed short-term viscosity increase. The concentration and velocity profiles which result from such a migration are discussed in detail and are compared to the experimental observations of Karnis, Goldsmith and Mason (1966).
Experimental observation of spatially localized dynamo magnetic fields.
Gallet, B; Aumaître, S; Boisson, J; Daviaud, F; Dubrulle, B; Bonnefoy, N; Bourgoin, M; Odier, Ph; Pinton, J-F; Plihon, N; Verhille, G; Fauve, S; Pétrélis, F
2012-04-06
We report the first experimental observation of a spatially localized dynamo magnetic field, a common feature of astrophysical dynamos and convective dynamo simulations. When the two propellers of the von Kármán sodium experiment are driven at frequencies that differ by 15%, the mean magnetic field's energy measured close to the slower disk is nearly 10 times larger than the one close to the faster one. This strong localization of the magnetic field when a symmetry of the forcing is broken is in good agreement with a prediction based on the interaction between a dipolar and a quadrupolar magnetic mode. © 2012 American Physical Society
Mathematical modelling of tissue formation in chondrocyte filter cultures.
Catt, C J; Schuurman, W; Sengers, B G; van Weeren, P R; Dhert, W J A; Please, C P; Malda, J
2011-12-17
In the field of cartilage tissue engineering, filter cultures are a frequently used three-dimensional differentiation model. However, understanding of the governing processes of in vitro growth and development of tissue in these models is limited. Therefore, this study aimed to further characterise these processes by means of an approach combining both experimental and applied mathematical methods. A mathematical model was constructed, consisting of partial differential equations predicting the distribution of cells and glycosaminoglycans (GAGs), as well as the overall thickness of the tissue. Experimental data was collected to allow comparison with the predictions of the simulation and refinement of the initial models. Healthy mature equine chondrocytes were expanded and subsequently seeded on collagen-coated filters and cultured for up to 7 weeks. Resulting samples were characterised biochemically, as well as histologically. The simulations showed a good representation of the experimentally obtained cell and matrix distribution within the cultures. The mathematical results indicate that the experimental GAG and cell distribution is critically dependent on the rate at which the cell differentiation process takes place, which has important implications for interpreting experimental results. This study demonstrates that large regions of the tissue are inactive in terms of proliferation and growth of the layer. In particular, this would imply that higher seeding densities will not significantly affect the growth rate. A simple mathematical model was developed to predict the observed experimental data and enable interpretation of the principal underlying mechanisms controlling growth-related changes in tissue composition.
Volk, Brent L; Lagoudas, Dimitris C; Maitland, Duncan J
2011-01-01
In this work, tensile tests and one-dimensional constitutive modeling are performed on a high recovery force polyurethane shape memory polymer that is being considered for biomedical applications. The tensile tests investigate the free recovery (zero load) response as well as the constrained displacement recovery (stress recovery) response at extension values up to 25%, and two consecutive cycles are performed during each test. The material is observed to recover 100% of the applied deformation when heated at zero load in the second thermomechanical cycle, and a stress recovery of 1.5 MPa to 4.2 MPa is observed for the constrained displacement recovery experiments. After performing the experiments, the Chen and Lagoudas model is used to simulate and predict the experimental results. The material properties used in the constitutive model – namely the coefficients of thermal expansion, shear moduli, and frozen volume fraction – are calibrated from a single 10% extension free recovery experiment. The model is then used to predict the material response for the remaining free recovery and constrained displacement recovery experiments. The model predictions match well with the experimental data. PMID:22003272
An Optimal Current Observer for Predictive Current Controlled Buck DC-DC Converters
Min, Run; Chen, Chen; Zhang, Xiaodong; Zou, Xuecheng; Tong, Qiaoling; Zhang, Qiao
2014-01-01
In digital current mode controlled DC-DC converters, conventional current sensors might not provide isolation at a minimized price, power loss and size. Therefore, a current observer which can be realized based on the digital circuit itself, is a possible substitute. However, the observed current may diverge due to the parasitic resistors and the forward conduction voltage of the diode. Moreover, the divergence of the observed current will cause steady state errors in the output voltage. In this paper, an optimal current observer is proposed. It achieves the highest observation accuracy by compensating for all the known parasitic parameters. By employing the optimal current observer-based predictive current controller, a buck converter is implemented. The converter has a convergently and accurately observed inductor current, and shows preferable transient response than the conventional voltage mode controlled converter. Besides, costs, power loss and size are minimized since the strategy requires no additional hardware for current sensing. The effectiveness of the proposed optimal current observer is demonstrated experimentally. PMID:24854061
Tools for Early Prediction of Drug Loading in Lipid-Based Formulations
2015-01-01
Identification of the usefulness of lipid-based formulations (LBFs) for delivery of poorly water-soluble drugs is at date mainly experimentally based. In this work we used a diverse drug data set, and more than 2,000 solubility measurements to develop experimental and computational tools to predict the loading capacity of LBFs. Computational models were developed to enable in silico prediction of solubility, and hence drug loading capacity, in the LBFs. Drug solubility in mixed mono-, di-, triglycerides (Maisine 35-1 and Capmul MCM EP) correlated (R2 0.89) as well as the drug solubility in Carbitol and other ethoxylated excipients (PEG400, R2 0.85; Polysorbate 80, R2 0.90; Cremophor EL, R2 0.93). A melting point below 150 °C was observed to result in a reasonable solubility in the glycerides. The loading capacity in LBFs was accurately calculated from solubility data in single excipients (R2 0.91). In silico models, without the demand of experimentally determined solubility, also gave good predictions of the loading capacity in these complex formulations (R2 0.79). The framework established here gives a better understanding of drug solubility in single excipients and of LBF loading capacity. The large data set studied revealed that experimental screening efforts can be rationalized by solubility measurements in key excipients or from solid state information. For the first time it was shown that loading capacity in complex formulations can be accurately predicted using molecular information extracted from calculated descriptors and thermal properties of the crystalline drug. PMID:26568134
Tools for Early Prediction of Drug Loading in Lipid-Based Formulations.
Alskär, Linda C; Porter, Christopher J H; Bergström, Christel A S
2016-01-04
Identification of the usefulness of lipid-based formulations (LBFs) for delivery of poorly water-soluble drugs is at date mainly experimentally based. In this work we used a diverse drug data set, and more than 2,000 solubility measurements to develop experimental and computational tools to predict the loading capacity of LBFs. Computational models were developed to enable in silico prediction of solubility, and hence drug loading capacity, in the LBFs. Drug solubility in mixed mono-, di-, triglycerides (Maisine 35-1 and Capmul MCM EP) correlated (R(2) 0.89) as well as the drug solubility in Carbitol and other ethoxylated excipients (PEG400, R(2) 0.85; Polysorbate 80, R(2) 0.90; Cremophor EL, R(2) 0.93). A melting point below 150 °C was observed to result in a reasonable solubility in the glycerides. The loading capacity in LBFs was accurately calculated from solubility data in single excipients (R(2) 0.91). In silico models, without the demand of experimentally determined solubility, also gave good predictions of the loading capacity in these complex formulations (R(2) 0.79). The framework established here gives a better understanding of drug solubility in single excipients and of LBF loading capacity. The large data set studied revealed that experimental screening efforts can be rationalized by solubility measurements in key excipients or from solid state information. For the first time it was shown that loading capacity in complex formulations can be accurately predicted using molecular information extracted from calculated descriptors and thermal properties of the crystalline drug.
Some nuclear physics aspects of BBN
NASA Astrophysics Data System (ADS)
Coc, Alain
2017-09-01
Primordial or big bang nucleosynthesis (BBN) is now a parameter free theory whose predictions are in good overall agreement with observations. However, the 7 Li calculated abundance is significantly higher than the one deduced from spectroscopic observations. Nuclear physics solutions to this lithium problem have been investigated by experimental means. Other solutions which were considered involve exotic sources of extra neutrons which inevitably leads to an increase of the deuterium abundance, but this seems now excluded by recent deuterium observations.
2017-04-01
A COMPARISON OF PREDICTIVE THERMO AND WATER SOLVATION PROPERTY PREDICTION TOOLS AND EXPERIMENTAL DATA FOR...4. TITLE AND SUBTITLE A Comparison of Predictive Thermo and Water Solvation Property Prediction Tools and Experimental Data for Selected...1 2. EXPERIMENTAL PROCEDURE
NASA Technical Reports Server (NTRS)
Vetter, A. A.; Maxwell, C. D.; Swean, T. F., Jr.; Demetriades, S. T.; Oliver, D. A.; Bangerter, C. D.
1981-01-01
Data from sufficiently well-instrumented, short-duration experiments at AEDC/HPDE, Reynolds Metal Co., and Hercules, Inc., are compared to analyses with multidimensional and time-dependent simulations with the STD/MHD computer codes. These analyses reveal detailed features of major transient events, severe loss mechanisms, and anomalous MHD behavior. In particular, these analyses predicted higher-than-design voltage drops, Hall voltage overshoots, and asymmetric voltage drops before the experimental data were available. The predictions obtained with these analyses are in excellent agreement with the experimental data and the failure predictions are consistent with the experiments. The design of large, high-interaction or advanced MHD experiments will require application of sophisticated, detailed and comprehensive computational procedures in order to account for the critical mechanisms which led to the observed behavior in these experiments.
An individual-based model of zebrafish population dynamics accounting for energy dynamics.
Beaudouin, Rémy; Goussen, Benoit; Piccini, Benjamin; Augustine, Starrlight; Devillers, James; Brion, François; Péry, Alexandre R R
2015-01-01
Developing population dynamics models for zebrafish is crucial in order to extrapolate from toxicity data measured at the organism level to biological levels relevant to support and enhance ecological risk assessment. To achieve this, a dynamic energy budget for individual zebrafish (DEB model) was coupled to an individual based model of zebrafish population dynamics (IBM model). Next, we fitted the DEB model to new experimental data on zebrafish growth and reproduction thus improving existing models. We further analysed the DEB-model and DEB-IBM using a sensitivity analysis. Finally, the predictions of the DEB-IBM were compared to existing observations on natural zebrafish populations and the predicted population dynamics are realistic. While our zebrafish DEB-IBM model can still be improved by acquiring new experimental data on the most uncertain processes (e.g. survival or feeding), it can already serve to predict the impact of compounds at the population level.
An Individual-Based Model of Zebrafish Population Dynamics Accounting for Energy Dynamics
Beaudouin, Rémy; Goussen, Benoit; Piccini, Benjamin; Augustine, Starrlight; Devillers, James; Brion, François; Péry, Alexandre R. R.
2015-01-01
Developing population dynamics models for zebrafish is crucial in order to extrapolate from toxicity data measured at the organism level to biological levels relevant to support and enhance ecological risk assessment. To achieve this, a dynamic energy budget for individual zebrafish (DEB model) was coupled to an individual based model of zebrafish population dynamics (IBM model). Next, we fitted the DEB model to new experimental data on zebrafish growth and reproduction thus improving existing models. We further analysed the DEB-model and DEB-IBM using a sensitivity analysis. Finally, the predictions of the DEB-IBM were compared to existing observations on natural zebrafish populations and the predicted population dynamics are realistic. While our zebrafish DEB-IBM model can still be improved by acquiring new experimental data on the most uncertain processes (e.g. survival or feeding), it can already serve to predict the impact of compounds at the population level. PMID:25938409
Bistable behavior of the lac operon in E. coli when induced with a mixture of lactose and TMG.
Díaz-Hernández, Orlando; Santillán, Moisés
2010-01-01
In this work we investigate multistability in the lac operon of Escherichia coli when it is induced by a mixture of lactose and the non-metabolizable thiomethyl galactoside (TMG). In accordance with previously published experimental results and computer simulations, our simulations predict that: (1) when the system is induced by TMG, the system shows a discernible bistable behavior while, (2) when the system is induced by lactose, bistability does not disappear but excessively high concentrations of lactose would be required to observe it. Finally, our simulation results predict that when a mixture of lactose and TMG is used, the bistability region in the extracellular glucose concentration vs. extracellular lactose concentration parameter space changes in such a way that the model predictions regarding bistability could be tested experimentally. These experiments could help to solve a recent controversy regarding the existence of bistability in the lac operon under natural conditions.
Surface temperature distribution of GTA weld pools on thin-plate 304 stainless steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zacharia, T.; David, S.A.; Vitek, J.M.
1995-11-01
A transient multidimensional computational model was utilized to study gas tungsten arc (GTA) welding of thin-plate 304 stainless steel (SS). The model eliminates several of the earlier restrictive assumptions including temperature-independent thermal-physical properties. Consequently, all important thermal-physical properties were considered as temperature dependent throughout the range of temperatures experienced by the weld metal. The computational model was used to predict surface temperature distribution of the GTA weld pools in 1.5-mm-thick AISI 304 SS. The welding parameters were chosen so as to correspond with an earlier experimental study that produced high-resolution surface temperature maps. One of the motivations of the presentmore » study was to verify the predictive capability of the computational model. Comparison of the numerical predictions and experimental observations indicate excellent agreement, thereby verifying the model.« less
A study of the Coriolis effect on the fluid flow profile in a centrifugal bioreactor.
Detzel, Christopher J; Thorson, Michael R; Van Wie, Bernard J; Ivory, Cornelius F
2009-01-01
Increasing demand for tissues, proteins, and antibodies derived from cell culture is necessitating the development and implementation of high cell density bioreactors. A system for studying high density culture is the centrifugal bioreactor (CCBR), which retains cells by increasing settling velocities through system rotation, thereby eliminating diffusional limitations associated with mechanical cell retention devices. This article focuses on the fluid mechanics of the CCBR system by considering Coriolis effects. Such considerations for centrifugal bioprocessing have heretofore been ignored; therefore, a simpler analysis of an empty chamber will be performed. Comparisons are made between numerical simulations and bromophenol blue dye injection experiments. For the non-rotating bioreactor with an inlet velocity of 4.3 cm/s, both the numerical and experimental results show the formation of a teardrop shaped plume of dye following streamlines through the reactor. However, as the reactor is rotated, the simulation predicts the development of vortices and a flow profile dominated by Coriolis forces resulting in the majority of flow up the leading wall of the reactor as dye initially enters the chamber, results are confirmed by experimental observations. As the reactor continues to fill with dye, the simulation predicts dye movement up both walls while experimental observations show the reactor fills with dye from the exit to the inlet. Differences between the simulation and experimental observations can be explained by excessive diffusion required for simulation convergence, and a slight density difference between dyed and un-dyed solutions. Implications of the results on practical bioreactor use are also discussed. (c) 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009.
A Study of the Coriolis Effect on the Fluid Flow Profile in a Centrifugal Bioreactor
Detzel, Christopher J.; Thorson, Michael R.; Van Wie, Bernard J.; Ivory, Cornelius F.
2011-01-01
Increasing demand for tissues, proteins, and antibodies derived from cell culture is necessitating the development and implementation of high cell density bioreactors. A system for studying high density culture is the centrifugal bioreactor (CCBR) which retains cells by increasing settling velocities through system rotation, thereby eliminating diffusional limitations associated with mechanical cell retention devices. This paper focuses on the fluid mechanics of the CCBR system by considering Coriolis effects. Such considerations for centrifugal bioprocessing have heretofore been ignored; therefore a simpler analysis of an empty chamber will be performed. Comparisons are made between numerical simulations and bromophenol blue dye injection experiments. For the non-rotating bioreactor with an inlet velocity of 4.3 cm/s, both the numerical and experimental results show the formation of a teardrop shaped plume of dye following streamlines through the reactor. However, as the reactor is rotated the simulation predicts the development of vortices and a flow profile dominated by Coriolis forces resulting in the majority of flow up the leading wall of the reactor as dye initially enters the chamber, results confirmed by experimental observations. As the reactor continues to fill with dye, the simulation predicts dye movement up both walls while experimental observations show the reactor fills with dye from the exit to the inlet. Differences between the simulation and experimental observations can be explained by excessive diffusion required for simulation convergence, and a slight density difference between dyed and un-dyed solutions. Implications of the results on practical bioreactor use are also discussed. PMID:19455639
Grain growth prediction based on data assimilation by implementing 4DVar on multi-phase-field model
NASA Astrophysics Data System (ADS)
Ito, Shin-ichi; Nagao, Hiromichi; Kasuya, Tadashi; Inoue, Junya
2017-12-01
We propose a method to predict grain growth based on data assimilation by using a four-dimensional variational method (4DVar). When implemented on a multi-phase-field model, the proposed method allows us to calculate the predicted grain structures and uncertainties in them that depend on the quality and quantity of the observational data. We confirm through numerical tests involving synthetic data that the proposed method correctly reproduces the true phase-field assumed in advance. Furthermore, it successfully quantifies uncertainties in the predicted grain structures, where such uncertainty quantifications provide valuable information to optimize the experimental design.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watson, R.
Waterflooding is the most commonly used secondary oil recovery technique. One of the requirements for understanding waterflood performance is a good knowledge of the basic properties of the reservoir rocks. This study is aimed at correlating rock-pore characteristics to oil recovery from various reservoir rock types and incorporating these properties into empirical models for Predicting oil recovery. For that reason, this report deals with the analyses and interpretation of experimental data collected from core floods and correlated against measurements of absolute permeability, porosity. wettability index, mercury porosimetry properties and irreducible water saturation. The results of the radial-core the radial-core andmore » linear-core flow investigations and the other associated experimental analyses are presented and incorporated into empirical models to improve the predictions of oil recovery resulting from waterflooding, for sandstone and limestone reservoirs. For the radial-core case, the standardized regression model selected, based on a subset of the variables, predicted oil recovery by waterflooding with a standard deviation of 7%. For the linear-core case, separate models are developed using common, uncommon and combination of both types of rock properties. It was observed that residual oil saturation and oil recovery are better predicted with the inclusion of both common and uncommon rock/fluid properties into the predictive models.« less
Extended charge banking model of dual path shocks for implantable cardioverter defibrillators
Dosdall, Derek J; Sweeney, James D
2008-01-01
Background Single path defibrillation shock methods have been improved through the use of the Charge Banking Model of defibrillation, which predicts the response of the heart to shocks as a simple resistor-capacitor (RC) circuit. While dual path defibrillation configurations have significantly reduced defibrillation thresholds, improvements to dual path defibrillation techniques have been limited to experimental observations without a practical model to aid in improving dual path defibrillation techniques. Methods The Charge Banking Model has been extended into a new Extended Charge Banking Model of defibrillation that represents small sections of the heart as separate RC circuits, uses a weighting factor based on published defibrillation shock field gradient measures, and implements a critical mass criteria to predict the relative efficacy of single and dual path defibrillation shocks. Results The new model reproduced the results from several published experimental protocols that demonstrated the relative efficacy of dual path defibrillation shocks. The model predicts that time between phases or pulses of dual path defibrillation shock configurations should be minimized to maximize shock efficacy. Discussion Through this approach the Extended Charge Banking Model predictions may be used to improve dual path and multi-pulse defibrillation techniques, which have been shown experimentally to lower defibrillation thresholds substantially. The new model may be a useful tool to help in further improving dual path and multiple pulse defibrillation techniques by predicting optimal pulse durations and shock timing parameters. PMID:18673561
Equilibrium high entropy alloy phase stability from experiments and thermodynamic modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saal, James E.; Berglund, Ida S.; Sebastian, Jason T.
Long-term stability of high entropy alloys (HEAs) is a critical consideration for the design and practical application of HEAs. It has long been assumed that many HEAs are a kinetically-stabilized metastable structure, and recent experiments have confirmed this hypothesis by observing HEA ecomposition after long-termequilibration. In the presentwork,we demonstrate the use of the CALculation of PHAse Diagrams (CALPHAD) approach to predict HEA stability and processing parameters, comparing experimental long-term annealing observations to CALPHAD phase diagrams from a commercially-available HEA database. As a result, we find good agreement between single- and multi-phase predictions and experiments.
Equilibrium high entropy alloy phase stability from experiments and thermodynamic modeling
Saal, James E.; Berglund, Ida S.; Sebastian, Jason T.; ...
2017-10-29
Long-term stability of high entropy alloys (HEAs) is a critical consideration for the design and practical application of HEAs. It has long been assumed that many HEAs are a kinetically-stabilized metastable structure, and recent experiments have confirmed this hypothesis by observing HEA ecomposition after long-termequilibration. In the presentwork,we demonstrate the use of the CALculation of PHAse Diagrams (CALPHAD) approach to predict HEA stability and processing parameters, comparing experimental long-term annealing observations to CALPHAD phase diagrams from a commercially-available HEA database. As a result, we find good agreement between single- and multi-phase predictions and experiments.
Spectra of conditionalization and typicality in the multiverse
NASA Astrophysics Data System (ADS)
Azhar, Feraz
2016-02-01
An approach to testing theories describing a multiverse, that has gained interest of late, involves comparing theory-generated probability distributions over observables with their experimentally measured values. It is likely that such distributions, were we indeed able to calculate them unambiguously, will assign low probabilities to any such experimental measurements. An alternative to thereby rejecting these theories, is to conditionalize the distributions involved by restricting attention to domains of the multiverse in which we might arise. In order to elicit a crisp prediction, however, one needs to make a further assumption about how typical we are of the chosen domains. In this paper, we investigate interactions between the spectra of available assumptions regarding both conditionalization and typicality, and draw out the effects of these interactions in a concrete setting; namely, on predictions of the total number of species that contribute significantly to dark matter. In particular, for each conditionalization scheme studied, we analyze how correlations between densities of different dark matter species affect the prediction, and explicate the effects of assumptions regarding typicality. We find that the effects of correlations can depend on the conditionalization scheme, and that in each case atypicality can significantly change the prediction. In doing so, we demonstrate the existence of overlaps in the predictions of different "frameworks" consisting of conjunctions of theory, conditionalization scheme and typicality assumption. This conclusion highlights the acute challenges involved in using such tests to identify a preferred framework that aims to describe our observational situation in a multiverse.
Rhoden, John J.; Dyas, Gregory L.
2016-01-01
Despite the increasing number of multivalent antibodies, bispecific antibodies, fusion proteins, and targeted nanoparticles that have been generated and studied, the mechanism of multivalent binding to cell surface targets is not well understood. Here, we describe a conceptual and mathematical model of multivalent antibody binding to cell surface antigens. Our model predicts that properties beyond 1:1 antibody:antigen affinity to target antigens have a strong influence on multivalent binding. Predicted crucial properties include the structure and flexibility of the antibody construct, the target antigen(s) and binding epitope(s), and the density of antigens on the cell surface. For bispecific antibodies, the ratio of the expression levels of the two target antigens is predicted to be critical to target binding, particularly for the lower expressed of the antigens. Using bispecific antibodies of different valencies to cell surface antigens including MET and EGF receptor, we have experimentally validated our modeling approach and its predictions and observed several nonintuitive effects of avidity related to antigen density, target ratio, and antibody affinity. In some biological circumstances, the effect we have predicted and measured varied from the monovalent binding interaction by several orders of magnitude. Moreover, our mathematical framework affords us a mechanistic interpretation of our observations and suggests strategies to achieve the desired antibody-antigen binding goals. These mechanistic insights have implications in antibody engineering and structure/activity relationship determination in a variety of biological contexts. PMID:27022022
Robust Bayesian Experimental Design for Conceptual Model Discrimination
NASA Astrophysics Data System (ADS)
Pham, H. V.; Tsai, F. T. C.
2015-12-01
A robust Bayesian optimal experimental design under uncertainty is presented to provide firm information for model discrimination, given the least number of pumping wells and observation wells. Firm information is the maximum information of a system can be guaranteed from an experimental design. The design is based on the Box-Hill expected entropy decrease (EED) before and after the experiment design and the Bayesian model averaging (BMA) framework. A max-min programming is introduced to choose the robust design that maximizes the minimal Box-Hill EED subject to that the highest expected posterior model probability satisfies a desired probability threshold. The EED is calculated by the Gauss-Hermite quadrature. The BMA method is used to predict future observations and to quantify future observation uncertainty arising from conceptual and parametric uncertainties in calculating EED. Monte Carlo approach is adopted to quantify the uncertainty in the posterior model probabilities. The optimal experimental design is tested by a synthetic 5-layer anisotropic confined aquifer. Nine conceptual groundwater models are constructed due to uncertain geological architecture and boundary condition. High-performance computing is used to enumerate all possible design solutions in order to identify the most plausible groundwater model. Results highlight the impacts of scedasticity in future observation data as well as uncertainty sources on potential pumping and observation locations.
An Overhead Demonstration of Some Descriptive Chemistry of the Halogens and LeChatelier's Principle.
ERIC Educational Resources Information Center
Hansen, Robert C.
1988-01-01
Describes a demonstration procedure using controlled reduction potentials to predict observed color changes which are then experimentally verified. Demonstrates the usefulness of this procedure in helping students understand LeChatelier's principle and the solubilit rule "like dissolves like." (CW)
Single-Slit Diffraction Pattern of a Thermal Atomic Potassium Beam
ERIC Educational Resources Information Center
Leavitt, John A.; Bills, Francis A.
1969-01-01
The diffraction of a full thermal atomic potassium beam by a single slit was observed. Four experimental diffraction patterns were compared with that predicted by de Brogtie's hypothesis and simple scalar Fresnel diffraction theory. Possible reasons for the differences were discussed. (LC)
An experimental and numerical study of wave motion and upstream influence in a stratified fluid
NASA Technical Reports Server (NTRS)
Hurdis, D. A.
1974-01-01
A system consisting of two superimposed layers of liquid of different densities, with a thin transition layer at the interface, provides a good laboratory model of an ocean thermocline or of an atmospheric inversion layer. This research was to gain knowledge about the propagation of disturbances within these two geophysical systems. The technique used was to observe the propagation of internal waves and of upstream influence within the density-gradient region between the two layers of liquid. The disturbances created by the motion of a vertical flat plate, which was moved longitudinally through this region, were examined both experimentally and numerically. An upstream influence, which resulted from a balance of inertial and gravitational forces, was observed, and it was possible to predict the behavior of this influence with the numerical model. The prediction included a description of the propagation of the upstream influence to steadily increasing distances from the flat plate and the shapes and magnitudes of the velocity profiles.
Synaptic Transmission Optimization Predicts Expression Loci of Long-Term Plasticity.
Costa, Rui Ponte; Padamsey, Zahid; D'Amour, James A; Emptage, Nigel J; Froemke, Robert C; Vogels, Tim P
2017-09-27
Long-term modifications of neuronal connections are critical for reliable memory storage in the brain. However, their locus of expression-pre- or postsynaptic-is highly variable. Here we introduce a theoretical framework in which long-term plasticity performs an optimization of the postsynaptic response statistics toward a given mean with minimal variance. Consequently, the state of the synapse at the time of plasticity induction determines the ratio of pre- and postsynaptic modifications. Our theory explains the experimentally observed expression loci of the hippocampal and neocortical synaptic potentiation studies we examined. Moreover, the theory predicts presynaptic expression of long-term depression, consistent with experimental observations. At inhibitory synapses, the theory suggests a statistically efficient excitatory-inhibitory balance in which changes in inhibitory postsynaptic response statistics specifically target the mean excitation. Our results provide a unifying theory for understanding the expression mechanisms and functions of long-term synaptic transmission plasticity. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Mermin inequalities for GHZ contradictions in many-qutrit systems
NASA Astrophysics Data System (ADS)
Lawrence, Walter
In view of recent experimental interest in multi-qutrit entanglement properties, we provide here new Mermin inequalities for use in experimental tests of many-qutrit GHZ contradictions, first predicted only recently (2013). Mermin inequalities refer here to Bell-like inequalities in which the quantum predictions are not probabilistic, thus elevating hidden variables to the status of EPR elements of reality. Earlier Bell inequalities for qutrits predate the discovery of GHZ contradictions, are based on non-concurrent observable sets, and hence cannot establish GHZ contradictions. The current Mermin inequalities are derived from those concurrent observable sets which produce GHZ contradictions, with the following results: (i) There is an operator M defined for every N >= 4 , built on two measurement bases, whose quantum eigenvalue grows as 2N, maximum classical value more slowly (1 .879N), with quantum to classical ratio being never less than 1.39, and (ii) For N = 3 , there is an M3, built on three local measurement bases, whose quantum to classical ratio is 3/2.
Observation of the Chiral and Achiral Hexatic Phases of Self-assembled Micellar polymers
Pal, Antara; Kamal, Md. Arif; Raghunathan, V. A.
2016-01-01
We report the discovery of a thermodynamically stable line hexatic (N + 6) phase in a three-dimensional (3D) system made up of self-assembled polymer-like micelles of amphiphilic molecules. The experimentally observed phase transition sequence nematic (N) N + 6 two-dimensional hexagonal (2D-H) is in good agreement with the theoretical predictions. Further, the present study also brings to light the effect of chirality on the N + 6 phase. In the chiral N + 6 phase the bond-orientational order within each “polymer” bundle is found to be twisted about an axis parallel to the average polymer direction. This structure is consistent with the theoretically envisaged Moiré state, thereby providing the first experimental demonstration of the Moiré structure. In addition to confirming the predictions of fundamental theories of two-dimensional melting, these results are relevant in a variety of situations in chemistry, physics and biology, where parallel packing of polymer-like objects are encountered. PMID:27577927
Novel Feshbach resonances in a ^40K spin-mixture
NASA Astrophysics Data System (ADS)
Walraven, J. T. M.; Ludewig, A.; Tiecke, T. G.
2010-03-01
We present experimental results on novel s-wave Feshbach resonances in ^40K spin-mixtures. Using an extended version of the Asymptotic Bound-state Model (ABM) [1] we predict Feshbach resonances with more promising characteristics than the commonly used resonances in the (|F,mF>) |9/2,-9/2>+|9/2,-7/2> and |9/2,-9/2>+|9/2,-5/2> spin mixtures. We report on an s-wave resonance in the |9/2,-5/2>+|9/2,-3/2> mixture. We have experimentally observed the corresponding loss-feature at B0˜178 G with a width of ˜10G. This resonance is promising due to its large predicted width and the absence of an overlapping p-wave resonance. We present our recent results on measurements of the resonance width and the stability of the system around this and other observed s-wave and p-wave resonances. [4pt] [1] T.G. Tiecke, et al., Phys. Rev. Lett. 104, 053202 (2010).
Improving membrane protein expression by optimizing integration efficiency
2017-01-01
The heterologous overexpression of integral membrane proteins in Escherichia coli often yields insufficient quantities of purifiable protein for applications of interest. The current study leverages a recently demonstrated link between co-translational membrane integration efficiency and protein expression levels to predict protein sequence modifications that improve expression. Membrane integration efficiencies, obtained using a coarse-grained simulation approach, robustly predicted effects on expression of the integral membrane protein TatC for a set of 140 sequence modifications, including loop-swap chimeras and single-residue mutations distributed throughout the protein sequence. Mutations that improve simulated integration efficiency were 4-fold enriched with respect to improved experimentally observed expression levels. Furthermore, the effects of double mutations on both simulated integration efficiency and experimentally observed expression levels were cumulative and largely independent, suggesting that multiple mutations can be introduced to yield higher levels of purifiable protein. This work provides a foundation for a general method for the rational overexpression of integral membrane proteins based on computationally simulated membrane integration efficiencies. PMID:28918393
Gaussian process regression for sensor networks under localization uncertainty
Jadaliha, M.; Xu, Yunfei; Choi, Jongeun; Johnson, N.S.; Li, Weiming
2013-01-01
In this paper, we formulate Gaussian process regression with observations under the localization uncertainty due to the resource-constrained sensor networks. In our formulation, effects of observations, measurement noise, localization uncertainty, and prior distributions are all correctly incorporated in the posterior predictive statistics. The analytically intractable posterior predictive statistics are proposed to be approximated by two techniques, viz., Monte Carlo sampling and Laplace's method. Such approximation techniques have been carefully tailored to our problems and their approximation error and complexity are analyzed. Simulation study demonstrates that the proposed approaches perform much better than approaches without considering the localization uncertainty properly. Finally, we have applied the proposed approaches on the experimentally collected real data from a dye concentration field over a section of a river and a temperature field of an outdoor swimming pool to provide proof of concept tests and evaluate the proposed schemes in real situations. In both simulation and experimental results, the proposed methods outperform the quick-and-dirty solutions often used in practice.
Quantitative Reappraisal of the Helmholtz-Guyton Resonance Theory of Frequency Tuning in the Cochlea
Babbs, Charles F.
2011-01-01
To explore the fundamental biomechanics of sound frequency transduction in the cochlea, a two-dimensional analytical model of the basilar membrane was constructed from first principles. Quantitative analysis showed that axial forces along the membrane are negligible, condensing the problem to a set of ordered one-dimensional models in the radial dimension, for which all parameters can be specified from experimental data. Solutions of the radial models for asymmetrical boundary conditions produce realistic deformation patterns. The resulting second-order differential equations, based on the original concepts of Helmholtz and Guyton, and including viscoelastic restoring forces, predict a frequency map and amplitudes of deflections that are consistent with classical observations. They also predict the effects of an observation hole drilled in the surrounding bone, the effects of curvature of the cochlear spiral, as well as apparent traveling waves under a variety of experimental conditions. A quantitative rendition of the classical Helmholtz-Guyton model captures the essence of cochlear mechanics and unifies the competing resonance and traveling wave theories. PMID:22028708
Efficient prediction of terahertz quantum cascade laser dynamics from steady-state simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agnew, G.; Lim, Y. L.; Nikolić, M.
2015-04-20
Terahertz-frequency quantum cascade lasers (THz QCLs) based on bound-to-continuum active regions are difficult to model owing to their large number of quantum states. We present a computationally efficient reduced rate equation (RE) model that reproduces the experimentally observed variation of THz power with respect to drive current and heat-sink temperature. We also present dynamic (time-domain) simulations under a range of drive currents and predict an increase in modulation bandwidth as the current approaches the peak of the light–current curve, as observed experimentally in mid-infrared QCLs. We account for temperature and bias dependence of the carrier lifetimes, gain, and injection efficiency,more » calculated from a full rate equation model. The temperature dependence of the simulated threshold current, emitted power, and cut-off current are thus all reproduced accurately with only one fitting parameter, the interface roughness, in the full REs. We propose that the model could therefore be used for rapid dynamical simulation of QCL designs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rovinelli, Andrea; Sangid, Michael D.; Proudhon, Henry
Small crack propagation accounts for most of the fatigue life of engineering structures subject to high cycle fatigue loading conditions. Determining the fatigue crack growth rate of small cracks propagating into polycrystalline engineering alloys is critical to improving fatigue life predictions, thus lowering cost and increasing safety. In this work, cycle-by-cycle data of a small crack propagating in a beta metastable titanium alloy is available via phase and diffraction contrast tomography. Crystal plasticity simulations are used to supplement experimental data regarding the micromechanical fields ahead of the crack tip. Experimental and numerical results are combined into a multimodal dataset andmore » sampled utilizing a non-local data mining procedure. Furthermore, to capture the propensity of body-centered cubic metals to deform according to the pencil-glide model, a non-local driving force is postulated. The proposed driving force serves as the basis to construct a data-driven probabilistic crack propagation framework using Bayesian networks as building blocks. The spatial correlation between the postulated driving force and experimental observations is obtained by analyzing the results of the proposed framework. Results show that the above correlation increases proportionally to the distance from the crack front until the edge of the plastic zone. Moreover, the predictions of the propagation framework show good agreement with experimental observations. Finally, we studied the interaction of a small crack with grain boundaries (GBs) utilizing various slip transmission criteria, revealing the tendency of a crack to cross a GB by propagating along the slip directions minimizing the residual Burgers vector within the GB.« less
NASA Astrophysics Data System (ADS)
Rovinelli, Andrea; Sangid, Michael D.; Proudhon, Henry; Guilhem, Yoann; Lebensohn, Ricardo A.; Ludwig, Wolfgang
2018-06-01
Small crack propagation accounts for most of the fatigue life of engineering structures subject to high cycle fatigue loading conditions. Determining the fatigue crack growth rate of small cracks propagating into polycrystalline engineering alloys is critical to improving fatigue life predictions, thus lowering cost and increasing safety. In this work, cycle-by-cycle data of a small crack propagating in a beta metastable titanium alloy is available via phase and diffraction contrast tomography. Crystal plasticity simulations are used to supplement experimental data regarding the micromechanical fields ahead of the crack tip. Experimental and numerical results are combined into a multimodal dataset and sampled utilizing a non-local data mining procedure. Furthermore, to capture the propensity of body-centered cubic metals to deform according to the pencil-glide model, a non-local driving force is postulated. The proposed driving force serves as the basis to construct a data-driven probabilistic crack propagation framework using Bayesian networks as building blocks. The spatial correlation between the postulated driving force and experimental observations is obtained by analyzing the results of the proposed framework. Results show that the above correlation increases proportionally to the distance from the crack front until the edge of the plastic zone. Moreover, the predictions of the propagation framework show good agreement with experimental observations. Finally, we studied the interaction of a small crack with grain boundaries (GBs) utilizing various slip transmission criteria, revealing the tendency of a crack to cross a GB by propagating along the slip directions minimizing the residual Burgers vector within the GB.
Mechanical behavior of regular open-cell porous biomaterials made of diamond lattice unit cells.
Ahmadi, S M; Campoli, G; Amin Yavari, S; Sajadi, B; Wauthle, R; Schrooten, J; Weinans, H; Zadpoor, A A
2014-06-01
Cellular structures with highly controlled micro-architectures are promising materials for orthopedic applications that require bone-substituting biomaterials or implants. The availability of additive manufacturing techniques has enabled manufacturing of biomaterials made of one or multiple types of unit cells. The diamond lattice unit cell is one of the relatively new types of unit cells that are used in manufacturing of regular porous biomaterials. As opposed to many other types of unit cells, there is currently no analytical solution that could be used for prediction of the mechanical properties of cellular structures made of the diamond lattice unit cells. In this paper, we present new analytical solutions and closed-form relationships for predicting the elastic modulus, Poisson׳s ratio, critical buckling load, and yield (plateau) stress of cellular structures made of the diamond lattice unit cell. The mechanical properties predicted using the analytical solutions are compared with those obtained using finite element models. A number of solid and porous titanium (Ti6Al4V) specimens were manufactured using selective laser melting. A series of experiments were then performed to determine the mechanical properties of the matrix material and cellular structures. The experimentally measured mechanical properties were compared with those obtained using analytical solutions and finite element (FE) models. It has been shown that, for small apparent density values, the mechanical properties obtained using analytical and numerical solutions are in agreement with each other and with experimental observations. The properties estimated using an analytical solution based on the Euler-Bernoulli theory markedly deviated from experimental results for large apparent density values. The mechanical properties estimated using FE models and another analytical solution based on the Timoshenko beam theory better matched the experimental observations. Copyright © 2014 Elsevier Ltd. All rights reserved.
Rovinelli, Andrea; Sangid, Michael D.; Proudhon, Henry; ...
2018-03-11
Small crack propagation accounts for most of the fatigue life of engineering structures subject to high cycle fatigue loading conditions. Determining the fatigue crack growth rate of small cracks propagating into polycrystalline engineering alloys is critical to improving fatigue life predictions, thus lowering cost and increasing safety. In this work, cycle-by-cycle data of a small crack propagating in a beta metastable titanium alloy is available via phase and diffraction contrast tomography. Crystal plasticity simulations are used to supplement experimental data regarding the micromechanical fields ahead of the crack tip. Experimental and numerical results are combined into a multimodal dataset andmore » sampled utilizing a non-local data mining procedure. Furthermore, to capture the propensity of body-centered cubic metals to deform according to the pencil-glide model, a non-local driving force is postulated. The proposed driving force serves as the basis to construct a data-driven probabilistic crack propagation framework using Bayesian networks as building blocks. The spatial correlation between the postulated driving force and experimental observations is obtained by analyzing the results of the proposed framework. Results show that the above correlation increases proportionally to the distance from the crack front until the edge of the plastic zone. Moreover, the predictions of the propagation framework show good agreement with experimental observations. Finally, we studied the interaction of a small crack with grain boundaries (GBs) utilizing various slip transmission criteria, revealing the tendency of a crack to cross a GB by propagating along the slip directions minimizing the residual Burgers vector within the GB.« less
Lee, Chang-Joon; Gardiner, Bruce S; Ngo, Jennifer P; Kar, Saptarshi; Evans, Roger G; Smith, David W
2017-08-01
We develop a pseudo-three-dimensional model of oxygen transport for the renal cortex of the rat, incorporating both the axial and radial geometry of the preglomerular circulation and quantitative information regarding the surface areas and transport from the vasculature and renal corpuscles. The computational model was validated by simulating four sets of published experimental studies of renal oxygenation in rats. Under the control conditions, the predicted cortical tissue oxygen tension ([Formula: see text]) or microvascular oxygen tension (µPo 2 ) were within ±1 SE of the mean value observed experimentally. The predicted [Formula: see text] or µPo 2 in response to ischemia-reperfusion injury, acute hemodilution, blockade of nitric oxide synthase, or uncoupling mitochondrial respiration, were within ±2 SE observed experimentally. We performed a sensitivity analysis of the key model parameters to assess their individual or combined impact on the predicted [Formula: see text] and µPo 2 The model parameters analyzed were as follows: 1 ) the major determinants of renal oxygen delivery ([Formula: see text]) (arterial blood Po 2 , hemoglobin concentration, and renal blood flow); 2 ) the major determinants of renal oxygen consumption (V̇o 2 ) [glomerular filtration rate (GFR) and the efficiency of oxygen utilization for sodium reabsorption (β)]; and 3) peritubular capillary surface area (PCSA). Reductions in PCSA by 50% were found to profoundly increase the sensitivity of [Formula: see text] and µPo 2 to the major the determinants of [Formula: see text] and V̇o 2 The increasing likelihood of hypoxia with decreasing PCSA provides a potential explanation for the increased risk of acute kidney injury in some experimental animals and for patients with chronic kidney disease. Copyright © 2017 the American Physiological Society.
Testing and extension of a sea lamprey feeding model
Cochran, Philip A.; Swink, William D.; Kinziger, Andrew P.
1999-01-01
A previous model of feeding by sea lamprey Petromyzon marinus predicted energy intake and growth by lampreys as a function of lamprey size, host size, and duration of feeding attachments, but it was applicable only to lampreys feeding at 10°C and it was tested against only a single small data set of limited scope. We extended the model to other temperatures and tested it against an extensive data set (more than 700 feeding bouts) accumulated during experiments with captive sea lampreys. Model predictions of instantaneous growth were highly correlated with observed growth, and a partitioning of mean squared error between model predictions and observed results showed that 88.5% of the variance was due to random variation rather than to systematic errors. However, deviations between observed and predicted values varied substantially, especially for short feeding bouts. Predicted and observed growth trajectories of individual lampreys during multiple feeding bouts during the summer tended to correspond closely, but predicted growth was generally much higher than observed growth late in the year. This suggests the possibility that large overwintering lampreys reduce their feeding rates while attached to hosts. Seasonal or size-related shifts in the fate of consumed energy may provide an alternative explanation. The lamprey feeding model offers great flexibility in assessing growth of captive lampreys within various experimental protocols (e.g., different host species or thermal regimes) because it controls for individual differences in feeding history.
On Theoretical Broadband Shock-Associated Noise Near-Field Cross-Spectra
NASA Technical Reports Server (NTRS)
Miller, Steven A. E.
2015-01-01
The cross-spectral acoustic analogy is used to predict auto-spectra and cross-spectra of broadband shock-associated noise in the near-field and far-field from a range of heated and unheated supersonic off-design jets. A single equivalent source model is proposed for the near-field, mid-field, and far-field terms, that contains flow-field statistics of the shock wave shear layer interactions. Flow-field statistics are modeled based upon experimental observation and computational fluid dynamics solutions. An axisymmetric assumption is used to reduce the model to a closed-form equation involving a double summation over the equivalent source at each shock wave shear layer interaction. Predictions are compared with a wide variety of measurements at numerous jet Mach numbers and temperature ratios from multiple facilities. Auto-spectral predictions of broadband shock-associated noise in the near-field and far-field capture trends observed in measurement and other prediction theories. Predictions of spatial coherence of broadband shock-associated noise accurately capture the peak coherent intensity, frequency, and spectral width.
Ab initio thermodynamic model for magnesium carbonates and hydrates.
Chaka, Anne M; Felmy, Andrew R
2014-09-04
An ab initio thermodynamic framework for predicting properties of hydrated magnesium carbonate minerals has been developed using density-functional theory linked to macroscopic thermodynamics through the experimental chemical potentials for MgO, water, and CO2. Including semiempirical dispersion via the Grimme method and small corrections to the generalized gradient approximation of Perdew, Burke, and Ernzerhof for the heat of formation yields a model with quantitative agreement for the benchmark minerals brucite, magnesite, nesquehonite, and hydromagnesite. The model shows how small differences in experimental conditions determine whether nesquehonite, hydromagnesite, or magnesite is the result of laboratory synthesis from carbonation of brucite, and what transformations are expected to occur on geological time scales. Because of the reliance on parameter-free first-principles methods, the model is reliably extensible to experimental conditions not readily accessible to experiment and to any mineral composition for which the structure is known or can be hypothesized, including structures containing defects, substitutions, or transitional structures during solid state transformations induced by temperature changes or processes such as water, CO2, or O2 diffusion. Demonstrated applications of the ab initio thermodynamic framework include an independent means to evaluate differences in thermodynamic data for lansfordite, predicting the properties of Mg analogues of Ca-based hydrated carbonates monohydrocalcite and ikaite, which have not been observed in nature, and an estimation of the thermodynamics of barringtonite from the stoichiometry and a single experimental observation.
Danov, Krassimir D.; Basheva, Elka S.; Kralchevsky, Peter A.
2016-01-01
Experimental data for the disjoining pressure of foam films stabilized by anionic surfactant in the presence of 1:1, 1:2, 1:3, and 2:2 electrolytes: NaCl, Na2SO4, Na3Citrate, and MgSO4 are reported. The disjoining pressure predicted by the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory coincides with the experimental data in the case of a 1:1 electrolyte, but it is considerably greater than the measured pressure in all other cases. The theory is extended to account for the effects of ionic correlations and finite ionic radii. Original analytical expressions are derived for the local activity coefficient, electrostatic disjoining pressure, and asymptotic screening parameter. With the same parameter of counterion binding as for a 1:1 electrolyte, the curves predicted by the extended theory are in perfect agreement with the experimental data for 1:2 and 1:3 electrolytes. In comparison with the DLVO theory, the effect of ionic correlations leads to more effective screening of electrostatic interactions, and lower electric potential and counterion concentrations in the film’s midplane, resulting in lower disjoining pressure, as experimentally observed. The developed theory is applicable to both multivalent coions and multivalent counterions. Its application could remove some discrepancies between theory and experiment observed in studies with liquid films from electrolyte solutions. PMID:28773269
NASA Technical Reports Server (NTRS)
Hochhalter, Jake D.; Littlewood, David J.; Christ, Robert J., Jr.; Veilleux, M. G.; Bozek, J. E.; Ingraffea, A. R.; Maniatty, Antionette M.
2010-01-01
The objective of this paper is to develop further a framework for computationally modeling microstructurally small fatigue crack growth in AA 7075-T651 [1]. The focus is on the nucleation event, when a crack extends from within a second-phase particle into a surrounding grain, since this has been observed to be an initiating mechanism for fatigue crack growth in this alloy. It is hypothesized that nucleation can be predicted by computing a non-local nucleation metric near the crack front. The hypothesis is tested by employing a combination of experimentation and nite element modeling in which various slip-based and energy-based nucleation metrics are tested for validity, where each metric is derived from a continuum crystal plasticity formulation. To investigate each metric, a non-local procedure is developed for the calculation of nucleation metrics in the neighborhood of a crack front. Initially, an idealized baseline model consisting of a single grain containing a semi-ellipsoidal surface particle is studied to investigate the dependence of each nucleation metric on lattice orientation, number of load cycles, and non-local regularization method. This is followed by a comparison of experimental observations and computational results for microstructural models constructed by replicating the observed microstructural geometry near second-phase particles in fatigue specimens. It is found that orientation strongly influences the direction of slip localization and, as a result, in uences the nucleation mechanism. Also, the baseline models, replication models, and past experimental observation consistently suggest that a set of particular grain orientations is most likely to nucleate fatigue cracks. It is found that a continuum crystal plasticity model and a non-local nucleation metric can be used to predict the nucleation event in AA 7075-T651. However, nucleation metric threshold values that correspond to various nucleation governing mechanisms must be calibrated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qu, Jianmin
Understanding of reactor material behavior in extreme environments is vital not only to the development of new materials for the next generation nuclear reactors, but also to the extension of the operating lifetimes of the current fleet of nuclear reactors. To this end, this project conducted a suite of unique experimental techniques, augmented by a mesoscale computational framework, to understand and predict the long-term effects of irradiation, temperature, and stress on material microstructures and their macroscopic behavior. The experimental techniques and computational tools were demonstrated on two distinctive types of reactor materials, namely, Zr alloys and high-Cr martensitic steels. Thesemore » materials are chosen as the test beds because they are the archetypes of high-performance reactor materials (cladding, wrappers, ducts, pressure vessel, piping, etc.). To fill the knowledge gaps, and to meet the technology needs, a suite of innovative in situ transmission electron microscopy (TEM) characterization techniques (heating, heavy ion irradiation, He implantation, quantitative small-scale mechanical testing, and various combinations thereof) were developed and used to elucidate and map the fundamental mechanisms of microstructure evolution in both Zr and Cr alloys for a wide range environmental boundary conditions in the thermal-mechanical-irradiation input space. Knowledge gained from the experimental observations of the active mechanisms and the role of local microstructural defects on the response of the material has been incorporated into a mathematically rigorous and comprehensive three-dimensional mesoscale framework capable of accounting for the compositional variation, microstructural evolution and localized deformation (radiation damage) to predict aging and degradation of key reactor materials operating in extreme environments. Predictions from this mesoscale framework were compared with the in situ TEM observations to validate the model.« less
Yoschenko, V I; Kashparov, V A; Levchuk, S E; Glukhovskiy, A S; Khomutinin, Yu V; Protsak, V P; Lundin, S M; Tschiersch, J
2006-01-01
To predict parameters of radionuclide resuspension, transport and deposition during forest and grassland fires, several model modules were developed and adapted. Experimental data of controlled burning of prepared experimental plots in the Chernobyl exclusion zone have been used to evaluate the prognostic power of the models. The predicted trajectories and elevations of the plume match with those visually observed during the fire experiments in the grassland and forest sites. Experimentally determined parameters could be successfully used for the calculation of the initial plume parameters which provide the tools for the description of various fire scenarios and enable prognostic calculations. In summary, the model predicts a release of some per thousand from the radionuclide inventory of the fuel material by the grassland fires. During the forest fire, up to 4% of (137)Cs and (90)Sr and up to 1% of the Pu isotopes can be released from the forest litter according to the model calculations. However, these results depend on the parameters of the fire events. In general, the modeling results are in good accordance with the experimental data. Therefore, the considered models were successfully validated and can be recommended for the assessment of the resuspension and redistribution of radionuclides during grassland and forest fires in contaminated territories.
NASA Astrophysics Data System (ADS)
Xu, Hao; Pei, Yongmao; Li, Faxin; Fang, Daining
2018-05-01
The magnetic, electric and mechanical behaviors are strongly coupled in magnetoelectric (ME) materials, making them great promising in the application of functional devices. In this paper, the magneto-electro-mechanical fully coupled constitutive behaviors of ME laminates are systematically studied both theoretically and experimentally. A new probabilistic domain switching function considering the surface ferromagnetic anisotropy and the interface charge-mediated effect is proposed. Then a multi-scale multi-field coupling nonlinear constitutive model for layered ME composites is developed with physical measureable parameters. The experiments were performed to compare the theoretical predictions with the experimental data. The theoretical predictions have a good agreement with experimental results. The proposed constitutive relation can be used to describe the nonlinear multi-field coupling properties of both ME laminates and thin films. Several novel coupling experimental phenomena such as the electric-field control of magnetization, and the magnetic-field tuning of polarization are observed and analyzed. Furthermore, the size-effect of the electric tuning behavior of magnetization is predicted, which demonstrates a competition mechanism between the interface strain-mediated effect and the charge-driven effect. Our study offers deep insight into the coupling microscopic mechanism and macroscopic properties of ME layered composites, which is benefit for the design of electromagnetic functional devices.
Story, Anna; Jaworski, Zdzisław
2017-01-01
Results of numerical simulations of momentum transfer for a highly shear-thinning fluid (0.2% Carbopol) in a stirred tank equipped with a Prochem Maxflo T type impeller are presented. The simulation results were validated using LDA data and both tangential and axial force measurements in the laminar and early transitional flow range. A good agreement between the predicted and experimental results of the local fluid velocity components was found. From the predicted and experimental values of both tangential and axial forces, the power number, Po , and thrust number, Th , were also calculated. Values of the absolute relative deviations were below 4.0 and 10.5%, respectively, for Po and Th , which confirms a satisfactory agreement with experiments. An intensive mixing zone, known as cavern, was observed near the impeller. In this zone, the local values of fluid velocity, strain rate, Metzner-Otto coefficient, shear stress and intensity of energy dissipation were all characterized by strong variability. Based on the results of experimental study a new model using non-dimensional impeller force number was proposed to predict the cavern diameter. Comparative numerical simulations were also carried out for a Newtonian fluid (water) and their results were similarly well verified using LDA measurements, as well as experimental power number values.
NASA Technical Reports Server (NTRS)
Zumdieck, J. F.; Zlatarich, S. A.
1974-01-01
A clean source of high enthalpy air was obtained from the exothermic decomposition of nitric oxide in the presence of strongly heated nitrogen. A nitric oxide jet was introduced into a confined coaxial nitrogen stream. Measurements were made of the extent of mixing and reaction. Experimental results are compared with one- and two-dimensional chemical kinetics computations. Both analyses predict much lower reactivity than was observed experimentally. Inlet nitrogen temperatures above 2400 K were sufficient to produce experimentally a completely reacted gas stream of synthetic air.
Comparative Bacterial Proteomics: Analysis of the Core Genome Concept
Callister, Stephen J.; McCue, Lee Ann; Turse, Joshua E.; Monroe, Matthew E.; Auberry, Kenneth J.; Smith, Richard D.; Adkins, Joshua N.; Lipton, Mary S.
2008-01-01
While comparative bacterial genomic studies commonly predict a set of genes indicative of common ancestry, experimental validation of the existence of this core genome requires extensive measurement and is typically not undertaken. Enabled by an extensive proteome database developed over six years, we have experimentally verified the expression of proteins predicted from genomic ortholog comparisons among 17 environmental and pathogenic bacteria. More exclusive relationships were observed among the expressed protein content of phenotypically related bacteria, which is indicative of the specific lifestyles associated with these organisms. Although genomic studies can establish relative orthologous relationships among a set of bacteria and propose a set of ancestral genes, our proteomics study establishes expressed lifestyle differences among conserved genes and proposes a set of expressed ancestral traits. PMID:18253490
Dark soliton decay due to trap anharmonicity in atomic Bose-Einstein condensates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, N. G.; Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4M1; School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT
2010-03-15
A number of recent experiments with nearly pure atomic Bose-Einstein condensates have confirmed the predicted dark soliton oscillations when under harmonic trapping. However, a dark soliton propagating in an inhomogeneous condensate has also been predicted to be unstable to the emission of sound waves. Although harmonic trapping supports an equilibrium between the coexisting soliton and sound, we show that the ensuing dynamics are sensitive to trap anharmonicities. Such anharmonicities can break the soliton-sound equilibrium and lead to the net decay of the soliton on a considerably shorter time scale than other dissipation mechanisms. Thus, we propose that small realistic modificationsmore » to existing experimental setups could enable the experimental observation of this decay channel.« less
Knowledge-guided fuzzy logic modeling to infer cellular signaling networks from proteomic data
Liu, Hui; Zhang, Fan; Mishra, Shital Kumar; Zhou, Shuigeng; Zheng, Jie
2016-01-01
Modeling of signaling pathways is crucial for understanding and predicting cellular responses to drug treatments. However, canonical signaling pathways curated from literature are seldom context-specific and thus can hardly predict cell type-specific response to external perturbations; purely data-driven methods also have drawbacks such as limited biological interpretability. Therefore, hybrid methods that can integrate prior knowledge and real data for network inference are highly desirable. In this paper, we propose a knowledge-guided fuzzy logic network model to infer signaling pathways by exploiting both prior knowledge and time-series data. In particular, the dynamic time warping algorithm is employed to measure the goodness of fit between experimental and predicted data, so that our method can model temporally-ordered experimental observations. We evaluated the proposed method on a synthetic dataset and two real phosphoproteomic datasets. The experimental results demonstrate that our model can uncover drug-induced alterations in signaling pathways in cancer cells. Compared with existing hybrid models, our method can model feedback loops so that the dynamical mechanisms of signaling networks can be uncovered from time-series data. By calibrating generic models of signaling pathways against real data, our method supports precise predictions of context-specific anticancer drug effects, which is an important step towards precision medicine. PMID:27774993
Corner Wrinkling at a Square Membrane Due to Symmetric Mechanical Loads
NASA Technical Reports Server (NTRS)
Blandino, Joseph R.; Johnston, John D.; Dharamsi, Urmil K.; Brodeur, Stephen J. (Technical Monitor)
2001-01-01
Thin-film membrane structures are under consideration for use in many future gossamer spacecraft systems. Examples include sunshields for large aperture telescopes, solar sails, and membrane optics. The development of capabilities for testing and analyzing pre-tensioned, thin film membrane structures is an important and challenging aspect of gossamer spacecraft technology development. This paper presents results from experimental and computational studies performed to characterize the wrinkling behavior of thin-fi[m membranes under mechanical loading. The test article is a 500 mm square membrane subjected to symmetric comer loads. Data is presented for loads ranging from 0.49 N to 4.91 N. The experimental results show that as the load increases the number of wrinkles increases, while the wrinkle amplitude decreases. The computational model uses a finite element implementation of Stein-Hedgepeth membrane wrinkling theory to predict the behavior of the membrane. Comparisons were made with experimental results for the wrinkle angle and wrinkled region. There was reasonably good agreement between the measured wrinkle angle and the predicted directions of the major principle stresses. The shape of the wrinkle region predicted by the finite element model matches that observed in the experiments; however, the size of the predicted region is smaller than that determined in the experiments.
Numerical and experimental investigation of the bending response of thin-walled composite cylinders
NASA Technical Reports Server (NTRS)
Fuchs, J. P.; Hyer, M. W.; Starnes, J. H., Jr.
1993-01-01
A numerical and experimental investigation of the bending behavior of six eight-ply graphite-epoxy circular cylinders is presented. Bending is induced by applying a known end-rotation to each end of the cylinders, analogous to a beam in bending. The cylinders have a nominal radius of 6 inches, a length-to-radius ratio of 2 and 5, and a radius-to-thickness ratio of approximately 160. A (+/- 45/0/90)S quasi-isotropic layup and two orthotropic layups, (+/- 45/0 sub 2)S and (+/- 45/90 sub 2)S, are studied. A geometrically nonlinear special-purpose analysis, based on Donnell's nonlinear shell equations, is developed to study the prebuckling responses and gain insight into the effects of non-ideal boundary conditions and initial geometric imperfections. A geometrically nonlinear finite element analysis is utilized to compare with the prebuckling solutions of the special-purpose analysis and to study the buckling and post buckling responses of both geometrically perfect and imperfect cylinders. The imperfect cylinder geometries are represented by an analytical approximation of the measured shape imperfections. Extensive experimental data are obtained from quasi-static tests of the cylinders using a test fixture specifically designed for the present investigation. A description of the test fixture is included. The experimental data are compared to predictions for both perfect and imperfect cylinder geometries. Prebuckling results are presented in the form of displacement and strain profiles. Buckling end-rotations, moments, and strains are reported, and predicted mode shapes are presented. Observed and predicted moment vs. end-rotation relations, deflection patterns, and strain profiles are illustrated for the post buckling responses. It is found that a geometrically nonlinear boundary layer behavior characterizes the prebuckling responses. The boundary layer behavior is sensitive to laminate orthotropy, cylinder geometry, initial geometric imperfections, applied end-rotation, and non-ideal boundary conditions. Buckling end-rotations, strains, and moments are influenced by laminate orthotropy and initial geometric imperfections. Measured buckling results correlate well with predictions for the geometrically imperfect specimens. The postbuckling analyses predict equilibrium paths with a number of scallop-shaped branches that correspond to unique deflection patterns. The observed postbuckling deflection patterns and measured strain profiles show striking similarities to the predictions in some cases. Ultimate failure of the cylinders is attributed to an interlaminar shear failure mode along the nodal lines of the postbuckling deflection patterns.
Testing neoclassical and turbulent effects on poloidal rotation in the core of DIII-D
Chrystal, Colin; Burrell, Keith H.; Grierson, Brian A.; ...
2014-07-09
Experimental tests of ion poloidal rotation theories have been performed on DIII-D using a novel impurity poloidal rotation diagnostic. These tests show significant disagreements with theoretical predictions in various conditions, including L-mode plasmas with internal transport barriers (ITB), H-mode plasmas, and QH-mode plasmas. The theories tested include standard neoclassical theory, turbulence driven Reynolds stress, and fast-ion friction on the thermal ions. Poloidal rotation is observed to spin up at the formation of an ITB and makes a significant contribution to the measurement of themore » $$\\vec{E}$$ × $$\\vec{B}$$ shear that forms the ITB. In ITB cases, neoclassical theory agrees quantitatively with the experimental measurements only in the steep gradient region. Significant quantitative disagreement with neoclassical predictions is seen in the cores of ITB, QH-, and H-mode plasmas, demonstrating that neoclassical theory is an incomplete description of poloidal rotation. The addition of turbulence driven Reynolds stress does not remedy this disagreement; linear stability calculations and Doppler backscattering measurements show that disagreement increases as turbulence levels decline. Furthermore, the effect of fast-ion friction, by itself, does not lead to improved agreement; in QH-mode plasmas, neoclassical predictions are closest to experimental results in plasmas with the largest fast ion friction. Finally, predictions from a new model that combines all three effects show somewhat better agreement in the H-mode case, but discrepancies well outside the experimental error bars remain.« less
Inferior olive mirrors joint dynamics to implement an inverse controller.
Alvarez-Icaza, Rodrigo; Boahen, Kwabena
2012-10-01
To produce smooth and coordinated motion, our nervous systems need to generate precisely timed muscle activation patterns that, due to axonal conduction delay, must be generated in a predictive and feedforward manner. Kawato proposed that the cerebellum accomplishes this by acting as an inverse controller that modulates descending motor commands to predictively drive the spinal cord such that the musculoskeletal dynamics are canceled out. This and other cerebellar theories do not, however, account for the rich biophysical properties expressed by the olivocerebellar complex's various cell types, making these theories difficult to verify experimentally. Here we propose that a multizonal microcomplex's (MZMC) inferior olivary neurons use their subthreshold oscillations to mirror a musculoskeletal joint's underdamped dynamics, thereby achieving inverse control. We used control theory to map a joint's inverse model onto an MZMC's biophysics, and we used biophysical modeling to confirm that inferior olivary neurons can express the dynamics required to mirror biomechanical joints. We then combined both techniques to predict how experimentally injecting current into the inferior olive would affect overall motor output performance. We found that this experimental manipulation unmasked a joint's natural dynamics, as observed by motor output ringing at the joint's natural frequency, with amplitude proportional to the amount of current. These results support the proposal that the cerebellum-in particular an MZMC-is an inverse controller; the results also provide a biophysical implementation for this controller and allow one to make an experimentally testable prediction.
Measurement of photoemission and secondary emission from laboratory dust grains
NASA Technical Reports Server (NTRS)
Hazelton, Robert C.; Yadlowsky, Edward J.; Settersten, Thomas B.; Spanjers, Gregory G.; Moschella, John J.
1995-01-01
The overall goal of this project is experimentally determine the emission properties of dust grains in order to provide theorists and modelers with an accurate data base to use in codes that predict the charging of grains in various plasma environments encountered in the magnetospheres of the planets. In general these modelers use values which have been measured on planar, bulk samples of the materials in question. The large enhancements expected due to the small size of grains can have a dramatic impact upon the predictions and the ultimate utility of these predictions. The first experimental measurement of energy resolved profiles of the secondary electron emission coefficient, 6, of sub-micron diameter particles has been accomplished. Bismuth particles in the size range of .022 to .165 micrometers were generated in a moderate pressure vacuum oven (average size is a function of oven temperature and pressure) and introduced into a high vacuum chamber where they interacted with a high energy electron beam (0.4 to 20 keV). Large enhancements in emission were observed with a peak value, delta(sub max) = 4. 5 measured for the ensemble of particles with a mean size of .022 micrometers. This is in contrast to the published value, delta(sub max) = 1.2, for bulk bismuth. The observed profiles are in general agreement with recent theoretical predictions made by Chow et al. at UCSD.
Predictive computation of genomic logic processing functions in embryonic development
Peter, Isabelle S.; Faure, Emmanuel; Davidson, Eric H.
2012-01-01
Gene regulatory networks (GRNs) control the dynamic spatial patterns of regulatory gene expression in development. Thus, in principle, GRN models may provide system-level, causal explanations of developmental process. To test this assertion, we have transformed a relatively well-established GRN model into a predictive, dynamic Boolean computational model. This Boolean model computes spatial and temporal gene expression according to the regulatory logic and gene interactions specified in a GRN model for embryonic development in the sea urchin. Additional information input into the model included the progressive embryonic geometry and gene expression kinetics. The resulting model predicted gene expression patterns for a large number of individual regulatory genes each hour up to gastrulation (30 h) in four different spatial domains of the embryo. Direct comparison with experimental observations showed that the model predictively computed these patterns with remarkable spatial and temporal accuracy. In addition, we used this model to carry out in silico perturbations of regulatory functions and of embryonic spatial organization. The model computationally reproduced the altered developmental functions observed experimentally. Two major conclusions are that the starting GRN model contains sufficiently complete regulatory information to permit explanation of a complex developmental process of gene expression solely in terms of genomic regulatory code, and that the Boolean model provides a tool with which to test in silico regulatory circuitry and developmental perturbations. PMID:22927416
NASA Astrophysics Data System (ADS)
Rubinstein, Justin L.; Ellsworth, William L.; Beeler, Nicholas M.; Kilgore, Brian D.; Lockner, David A.; Savage, Heather M.
2012-02-01
The behavior of individual stick-slip events observed in three different laboratory experimental configurations is better explained by a "memoryless" earthquake model with fixed inter-event time or fixed slip than it is by the time- and slip-predictable models for earthquake occurrence. We make similar findings in the companion manuscript for the behavior of natural repeating earthquakes. Taken together, these results allow us to conclude that the predictions of a characteristic earthquake model that assumes either fixed slip or fixed recurrence interval should be preferred to the predictions of the time- and slip-predictable models for all earthquakes. Given that the fixed slip and recurrence models are the preferred models for all of the experiments we examine, we infer that in an event-to-event sense the elastic rebound model underlying the time- and slip-predictable models does not explain earthquake behavior. This does not indicate that the elastic rebound model should be rejected in a long-term-sense, but it should be rejected for short-term predictions. The time- and slip-predictable models likely offer worse predictions of earthquake behavior because they rely on assumptions that are too simple to explain the behavior of earthquakes. Specifically, the time-predictable model assumes a constant failure threshold and the slip-predictable model assumes that there is a constant minimum stress. There is experimental and field evidence that these assumptions are not valid for all earthquakes.
Valerio, Laura; North, Ace; Collins, C. Matilda; Mumford, John D.; Facchinelli, Luca; Spaccapelo, Roberta; Benedict, Mark Q.
2016-01-01
The persistence of transgenes in the environment is a consideration in risk assessments of transgenic organisms. Combining mathematical models that predict the frequency of transgenes and experimental demonstrations can validate the model predictions, or can detect significant biological deviations that were neither apparent nor included as model parameters. In order to assess the correlation between predictions and observations, models were constructed to estimate the frequency of a transgene causing male sexual sterility in simulated populations of a malaria mosquito Anopheles gambiae that were seeded with transgenic females at various proportions. Concurrently, overlapping-generation laboratory populations similar to those being modeled were initialized with various starting transgene proportions, and the subsequent proportions of transgenic individuals in populations were determined weekly until the transgene disappeared. The specific transgene being tested contained a homing endonuclease gene expressed in testes, I-PpoI, that cleaves the ribosomal DNA and results in complete male sexual sterility with no effect on female fertility. The transgene was observed to disappear more rapidly than the model predicted in all cases. The period before ovipositions that contained no transgenic progeny ranged from as little as three weeks after cage initiation to as long as 11 weeks. PMID:27669312
NASA Astrophysics Data System (ADS)
Zel'dovich, Boris Ya; Kundikova, N. D.
1995-02-01
Rotation of the plane of polarisation during propagation of sagittal rays in a rectilinear multimode fibre was observed experimentally. The angle of rotation was in good agreement with the results predicted on the basis of the Rytov—Vladimirskii—Berry theory.
An efficient and robust method for predicting helicopter rotor high-speed impulsive noise
NASA Technical Reports Server (NTRS)
Brentner, Kenneth S.
1996-01-01
A new formulation for the Ffowcs Williams-Hawkings quadrupole source, which is valid for a far-field in-plane observer, is presented. The far-field approximation is new and unique in that no further approximation of the quadrupole source strength is made and integrands with r(exp -2) and r(exp -3) dependence are retained. This paper focuses on the development of a retarded-time formulation in which time derivatives are analytically taken inside the integrals to avoid unnecessary computational work when the observer moves with the rotor. The new quadrupole formulation is similar to Farassat's thickness and loading formulation 1A. Quadrupole noise prediction is carried out in two parts: a preprocessing stage in which the previously computed flow field is integrated in the direction normal to the rotor disk, and a noise computation stage in which quadrupole surface integrals are evaluated for a particular observer position. Preliminary predictions for hover and forward flight agree well with experimental data. The method is robust and requires computer resources comparable to thickness and loading noise prediction.
Casalderrey-Solana, Jorge; Gulhan, Doga Can; Milhano, José Guilherme; ...
2016-03-09
We have previously introduced a hybrid strong/weak coupling model for jet quenching in heavy ion collisions in which we describe the production and fragmentation of jets at weak coupling, using Pythia, and describe the rate at which each parton in the jet shower loses energy as it propagates through the strongly coupled plasma, dE/dx, using an expression computed holographically at strong coupling. The model has a single free parameter that we fit to a single experimental measurement. We then confront our model with experimental data on many other jet observables, focusing in this paper on boson-jet observables, finding that itmore » provides a good description of present jet data. Next, we provide the predictions of our hybrid model for many measurements to come, including those for inclusive jet, dijet, photon-jet and Z-jet observables in heavy ion collisions with energy √s = 5 : 02 ATeV coming soon at the LHC. As the statistical uncertainties on near-future measurements of photon-jet observables are expected to be much smaller than those in present data, with about an order of magnitude more photon-jet events expected, predictions for these observables are particularly important. We find that most of our pre- and post-dictions do not depend sensitively on the form we choose for the rate of energy loss dE/dx of the partons in the shower. This gives our predictions considerable robustness. To better discriminate between possible forms for the rate of energy loss, though, we must turn to intrajet observables. Here, we focus on ratios of fragmentation functions. Finally, we close with a suggestion for a particular ratio, between the fragmentation functions of inclusive and associated jets with the same kinematics in the same collisions, which is particularly sensitive to the x- and E-dependence of dE/dx, and hence may be used to learn which mechanism of parton energy loss best describes the quenching of jets.« less
Multitime correlators in continuous measurement of qubit observables
NASA Astrophysics Data System (ADS)
Atalaya, Juan; Hacohen-Gourgy, Shay; Martin, Leigh S.; Siddiqi, Irfan; Korotkov, Alexander N.
2018-02-01
We consider multitime correlators for output signals from linear detectors, continuously measuring several qubit observables at the same time. Using the quantum Bayesian formalism, we show that for unital (symmetric) evolution in the absence of phase backaction, an N -time correlator can be expressed as a product of two-time correlators when N is even. For odd N , there is a similar factorization, which also includes a single-time average. Theoretical predictions agree well with experimental results for two detectors, which simultaneously measure noncommuting qubit observables.
A View of Hurricane Katrina with Early 2lSt Century Technology
NASA Technical Reports Server (NTRS)
Lin, Xin; Li, J.-L.; Suarez, M. J.; Tompkins, A. M.; Waliser, D. E.; Rienecker, M. M.; Bacmeister, J.; Jiang, J.; Wu, H.-T.; Tassone, C. M.
2006-01-01
Recent advances in space-borne observations and numerical weather prediction models provide new opportunities for improving hurricane forecasts. In this study, state-of-the-art satellite observations are used to document the evolution of one of the most devastating tropical cyclones ever to hit the United States: Hurricane Katrina. The ECMWF and NASA global high-resolution forecasts, the latter being run in experimental mode, are compared with satellite observations, with a focus on precipitation and cloud processes. Future directions on modeling and observations are briefly discussed.
Modeling of electron cyclotron resonance discharges
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyyappan, M.; Govindan, T.R.
The current trend in plasma processing is the development of high density plasma sources to achieve high deposition and etch rates, uniformity over large ares, and low wafer damage. Here, is a simple model to predict the spatially-averaged plasma characteristics of electron cyclotron resonance (ECR) reactors is presented. The model consists of global conservation equations for species concentration, electron density and energy. A gas energy balance is used to predict the neutral temperature self-consistently. The model is demonstrated for an ECR argon discharge. The predicted behavior of the discharge as a function of system variables agrees well with experimental observations.
A first principles prediction of the crystal structure of C6Br2ClFH2
NASA Astrophysics Data System (ADS)
Misquitta, Alston J.; Welch, Gareth W. A.; Stone, Anthony J.; Price, Sarah L.
2008-04-01
We have constructed an intermolecular potential for the 1,3-dibromo-2-chloro-5-fluorobenzene molecule from first principles using SAPT(DFT) interaction energy calculations and the Williams-Stone-Misquitta method for obtaining molecular properties in distributed form. This molecule was included in the fourth Blind Test of crystal structure prediction organised by the Cambridge Crystallographic Data Centre. Using our potential, we have predicted the crystal structure of CBrClFH and found the lowest energy solution to be in excellent agreement with the experimentally observed crystal when it was subsequently revealed.
Premixed flame propagation in combustible particle cloud mixtures
NASA Technical Reports Server (NTRS)
Seshadri, K.; Yang, B.
1993-01-01
The structures of premixed flames propagating in combustible systems, containing uniformly distributed volatile fuel particles, in an oxidizing gas mixtures is analyzed. The experimental results show that steady flame propagation occurs even if the initial equivalence ratio of the combustible mixture based on the gaseous fuel available in the particles, phi(u) is substantially larger than unity. A model is developed to explain these experimental observations. In the model it is presumed that the fuel particles vaporize first to yield a gaseous fuel of known chemical composition which then reacts with oxygen in a one-step overall process. It is shown that the interplay of vaporization kinetics and oxidation process, can result in steady flame propagation in combustible mixtures where the value of phi(u) is substantially larger than unity. This prediction is in agreement with experimental observations.
Simulation and analysis of a model dinoflagellate predator-prey system
NASA Astrophysics Data System (ADS)
Mazzoleni, M. J.; Antonelli, T.; Coyne, K. J.; Rossi, L. F.
2015-12-01
This paper analyzes the dynamics of a model dinoflagellate predator-prey system and uses simulations to validate theoretical and experimental studies. A simple model for predator-prey interactions is derived by drawing upon analogies from chemical kinetics. This model is then modified to account for inefficiencies in predation. Simulation results are shown to closely match the model predictions. Additional simulations are then run which are based on experimental observations of predatory dinoflagellate behavior, and this study specifically investigates how the predatory dinoflagellate Karlodinium veneficum uses toxins to immobilize its prey and increase its feeding rate. These simulations account for complex dynamics that were not included in the basic models, and the results from these computational simulations closely match the experimentally observed predatory behavior of K. veneficum and reinforce the notion that predatory dinoflagellates utilize toxins to increase their feeding rate.
Stress granule formation via ATP depletion-triggered phase separation
NASA Astrophysics Data System (ADS)
Wurtz, Jean David; Lee, Chiu Fan
2018-04-01
Stress granules (SG) are droplets of proteins and RNA that form in the cell cytoplasm during stress conditions. We consider minimal models of stress granule formation based on the mechanism of phase separation regulated by ATP-driven chemical reactions. Motivated by experimental observations, we identify a minimal model of SG formation triggered by ATP depletion. Our analysis indicates that ATP is continuously hydrolysed to deter SG formation under normal conditions, and we provide specific predictions that can be tested experimentally.
NASA Astrophysics Data System (ADS)
Dupont-Nivet, M.; Demur, R.; Westbrook, C. I.; Schwartz, S.
2018-04-01
We report the experimental study of an atom-chip interferometer using ultracold rubidium 87 atoms above the Bose–Einstein condensation threshold. The observed dependence of the contrast decay time with temperature and with the degree of symmetry of the traps during the interferometer sequence is in good agreement with theoretical predictions published in Dupont-Nivet et al (2016 New J. Phys. 18 113012). These results pave the way for precision measurements with trapped thermal atoms.
Superprism effect in a metal-clad terahertz photonic crystal slab.
Prasad, Tushar; Colvin, Vicki L; Jian, Zhongping; Mittleman, Daniel M
2007-03-15
We report an experimental demonstration of the superprism effect in a photonic crystal slab at terahertz frequencies. For a 10% frequency variation around 0.28 THz, the refraction angle at the output facet of a wedge-shaped photonic crystal varies by about 15 degrees. A comparison with the predictions of a band structure calculation demonstrates that a three-dimensional treatment, accurately modeling the finite slab thickness and the metallic boundary conditions, is required for even a qualitative agreement with the experimental observations.
Non-linear identification of a squeeze-film damper
NASA Technical Reports Server (NTRS)
Stanway, Roger; Mottershead, John; Firoozian, Riaz
1987-01-01
Described is an experimental study to identify the damping laws associated with a squeeze-film vibration damper. This is achieved by using a non-linear filtering algorithm to process displacement responses of the damper ring to synchronous excitation and thus to estimate the parameters in an nth-power velocity model. The experimental facility is described in detail and a representative selection of results is included. The identified models are validated through the prediction of damper-ring orbits and comparison with observed responses.
Tests of alternative quantum theories with neutrons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sponar, S.; Durstberger-Rennhofer, K.; Badurek, G.
2014-12-04
According to Bell’s theorem, every theory based on local realism is at variance with certain predictions of quantum mechanics. A theory that maintains realism but abandons reliance on locality, which has been proposed by Leggett, is incompatible with experimentally observable quantum correlations. In our experiment correlation measurements of spin-energy entangled single-neutrons violate a Leggett-type inequality by more than 7.6 standard deviations. The experimental data falsify the contextual realistic model and are fully in favor of quantum mechanics.
Experimental noise-resistant Bell-inequality violations for polarization-entangled photons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bovino, Fabio A.; Castagnoli, Giuseppe; Cabello, Adan
2006-06-15
We experimentally demonstrate that violations of Bell's inequalities for two-photon polarization-entangled states with colored noise are extremely robust, whereas this is not the case for states with white noise. Controlling the amount of noise by using the timing compensation scheme introduced by Kim et al. [Phys. Rev. A 67, 010301(R) (2003)], we have observed violations even for states with very high noise, in excellent agrement with the predictions of Cabello et al. [Phys. Rev. A 72, 052112 (2005)].
An experimental study of the elastic theory for granular flows
NASA Astrophysics Data System (ADS)
Guo, Tongtong; Campbell, Charles S.
2016-08-01
This paper reports annular shear cell measurements granular flows with an eye towards experimentally confirming the flow regimes laid out in the elastic theory of granular flow. Tests were carried out on four different kinds of plastic spherical particles under both constant volume flows and constant applied stress flows. In particular, observations were made of the new regime in that model, the elastic-inertial regime, and the predicted transitions between the elastic-inertial and both the elastic-quasistatic and pure inertial regimes.
FUN3D Analyses in Support of the First Aeroelastic Prediction Workshop
NASA Technical Reports Server (NTRS)
Chwalowski, Pawel; Heeg, Jennifer; Wieseman, Carol D.; Florance, Jennifer P.
2013-01-01
This paper presents the computational aeroelastic results generated in support of the first Aeroelastic Prediction Workshop for the Benchmark Supercritical Wing (BSCW) and the HIgh REynolds Number AeroStructural Dynamics (HIRENASD) configurations and compares them to the experimental data. The computational results are obtained using FUN3D, an unstructured grid Reynolds-averaged Navier-Stokes solver developed at NASA Langley Research Center. The analysis results for both configurations include aerodynamic coefficients and surface pressures obtained for steady-state or static aeroelastic equilibrium (BSCW and HIRENASD, respectively) and for unsteady flow due to a pitching wing (BSCW) or modally-excited wing (HIRENASD). Frequency response functions of the pressure coefficients with respect to displacement are computed and compared with the experimental data. For the BSCW, the shock location is computed aft of the experimentally-located shock position. The pressure distribution upstream of this shock is in excellent agreement with the experimental data, but the pressure downstream of the shock in the separated flow region does not match as well. For HIRENASD, very good agreement between the numerical results and the experimental data is observed at the mid-span wing locations.
NASA Astrophysics Data System (ADS)
Liu, Z. X.; Xu, X. Q.; Gao, X.; Xia, T. Y.; Joseph, I.; Meyer, W. H.; Liu, S. C.; Xu, G. S.; Shao, L. M.; Ding, S. Y.; Li, G. Q.; Li, J. G.
2014-09-01
Experimental measurements of edge localized modes (ELMs) observed on the EAST experiment are compared to linear and nonlinear theoretical simulations of peeling-ballooning modes using the BOUT++ code. Simulations predict that the dominant toroidal mode number of the ELM instability becomes larger for lower current, which is consistent with the mode structure captured with visible light using an optical CCD camera. The poloidal mode number of the simulated pressure perturbation shows good agreement with the filamentary structure observed by the camera. The nonlinear simulation is also consistent with the experimentally measured energy loss during an ELM crash and with the radial speed of ELM effluxes measured using a gas puffing imaging diagnostic.
Shimotohno, Akie; Sotta, Naoyuki; Sato, Takafumi; De Ruvo, Micol; Marée, Athanasius F M; Grieneisen, Verônica A; Fujiwara, Toru
2015-04-01
Boron, an essential micronutrient, is transported in roots of Arabidopsis thaliana mainly by two different types of transporters, BORs and NIPs (nodulin26-like intrinsic proteins). Both are plasma membrane localized, but have distinct transport properties and patterns of cell type-specific accumulation with different polar localizations, which are likely to affect boron distribution. Here, we used mathematical modeling and an experimental determination to address boron distributions in the root. A computational model of the root is created at the cellular level, describing the boron transporters as observed experimentally. Boron is allowed to diffuse into roots, in cells and cell walls, and to be transported over plasma membranes, reflecting the properties of the different transporters. The model predicts that a region around the quiescent center has a higher concentration of soluble boron than other portions. To evaluate this prediction experimentally, we determined the boron distribution in roots using laser ablation-inductivity coupled plasma-mass spectrometry. The analysis indicated that the boron concentration is highest near the tip and is lower in the more proximal region of the meristem zone, similar to the pattern of soluble boron distribution predicted by the model. Our model also predicts that upward boron flux does not continuously increase from the root tip toward the mature region, indicating that boron taken up in the root tip is not efficiently transported to shoots. This suggests that root tip-absorbed boron is probably used for local root growth, and that instead it is the more mature root regions which have a greater role in transporting boron toward the shoots. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.
Shimotohno, Akie; Sotta, Naoyuki; Sato, Takafumi; De Ruvo, Micol; Marée, Athanasius F.M.; Grieneisen, Verônica A.; Fujiwara, Toru
2015-01-01
Boron, an essential micronutrient, is transported in roots of Arabidopsis thaliana mainly by two different types of transporters, BORs and NIPs (nodulin26-like intrinsic proteins). Both are plasma membrane localized, but have distinct transport properties and patterns of cell type-specific accumulation with different polar localizations, which are likely to affect boron distribution. Here, we used mathematical modeling and an experimental determination to address boron distributions in the root. A computational model of the root is created at the cellular level, describing the boron transporters as observed experimentally. Boron is allowed to diffuse into roots, in cells and cell walls, and to be transported over plasma membranes, reflecting the properties of the different transporters. The model predicts that a region around the quiescent center has a higher concentration of soluble boron than other portions. To evaluate this prediction experimentally, we determined the boron distribution in roots using laser ablation-inductivity coupled plasma-mass spectrometry. The analysis indicated that the boron concentration is highest near the tip and is lower in the more proximal region of the meristem zone, similar to the pattern of soluble boron distribution predicted by the model. Our model also predicts that upward boron flux does not continuously increase from the root tip toward the mature region, indicating that boron taken up in the root tip is not efficiently transported to shoots. This suggests that root tip-absorbed boron is probably used for local root growth, and that instead it is the more mature root regions which have a greater role in transporting boron toward the shoots. PMID:25670713
Whitney, Anna; Shakhnovich, Eugene I.
2015-01-01
Design of proteins with desired thermal properties is important for scientific and biotechnological applications. Here we developed a theoretical approach to predict the effect of mutations on protein stability from non-equilibrium unfolding simulations. We establish a relative measure based on apparent simulated melting temperatures that is independent of simulation length and, under certain assumptions, proportional to equilibrium stability, and we justify this theoretical development with extensive simulations and experimental data. Using our new method based on all-atom Monte-Carlo unfolding simulations, we carried out a saturating mutagenesis of Dihydrofolate Reductase (DHFR), a key target of antibiotics and chemotherapeutic drugs. The method predicted more than 500 stabilizing mutations, several of which were selected for detailed computational and experimental analysis. We find a highly significant correlation of r = 0.65–0.68 between predicted and experimentally determined melting temperatures and unfolding denaturant concentrations for WT DHFR and 42 mutants. The correlation between energy of the native state and experimental denaturation temperature was much weaker, indicating the important role of entropy in protein stability. The most stabilizing point mutation was D27F, which is located in the active site of the protein, rendering it inactive. However for the rest of mutations outside of the active site we observed a weak yet statistically significant positive correlation between thermal stability and catalytic activity indicating the lack of a stability-activity tradeoff for DHFR. By combining stabilizing mutations predicted by our method, we created a highly stable catalytically active E. coli DHFR mutant with measured denaturation temperature 7.2°C higher than WT. Prediction results for DHFR and several other proteins indicate that computational approaches based on unfolding simulations are useful as a general technique to discover stabilizing mutations. PMID:25905910
Precipitation Modeling in Nitriding in Fe-M Binary System
NASA Astrophysics Data System (ADS)
Tomio, Yusaku; Miyamoto, Goro; Furuhara, Tadashi
2016-10-01
Precipitation of fine alloy nitrides near the specimen surface results in significant surface hardening in nitriding of alloyed steels. In this study, a simulation model of alloy nitride precipitation during nitriding is developed for Fe-M binary system based upon the Kampmann-Wagner numerical model in order to predict variations in the distribution of precipitates with depth. The model can predict the number density, average radius, and volume fraction of alloy nitrides as a function of depth from the surface and nitriding time. By a comparison with the experimental observation in a nitrided Fe-Cr alloy, it was found that the model can predict successfully the observed particle distribution from the surface into depth when appropriate solubility of CrN, interfacial energy between CrN and α, and nitrogen flux at the surface are selected.
Retrocausation Or Extant Indefinite Reality?
NASA Astrophysics Data System (ADS)
Houtkooper, Joop M.
2006-10-01
The possibility of retrocausation has been considered to explain the occurrence of anomalous phenomena in which the ostensible effects are preceded by their causes. A scrutiny of both experimental methodology and the experimental data is called for. A review of experimental data reveals the existence of such effects to be a serious possibility. The experimental methodology entails some conceptual difficulties, these depending on the underlying assumptions about the effects. A major point is an ambiguity between anomalous acquisition of information and retrocausation in exerted influences. A unifying theory has been proposed, based upon the fundamental randomness of quantum mechanics. Quantum mechanical randomness may be regarded as a tenacious phenomenon, that apparently is only resolved by the human observer of the random variable in question. This has led to the "observational theory" of anomalous phenomena, which is based upon the assumption that the preference of a motivated observer is able to interact with the extant indefinite random variable that is being observed. This observational theory has led to a novel prediction, which has been corroborated in experiments. Moreover, different classes of anomalous phenomena can be explained by the same basic mechanism. This foregoes retroactive causation, but, instead, requires that macroscopic physical variables remain in a state of indefinite reality and thus remain influenceable by mental efforts until these are observed. More work is needed to discover the relevant psychological and neurophysiological variables involved in effective motivated observation. Besides these practicalities, the fundamentals still have some interesting loose ends.
Hughes, Zak E; Kochandra, Raji; Walsh, Tiffany R
2017-04-18
The adsorption of three homo-tripeptides, HHH, YYY, and SSS, at the aqueous Au interface is investigated, using molecular dynamics simulations. We find that consideration of surface facet effects, relevant to experimental conditions, opens up new questions regarding interpretations of current experimental findings. Our well-tempered metadynamics simulations predict the rank ordering of the tripeptide binding affinities at aqueous Au(111) to be YYY > HHH > SSS. This ranking differs with that obtained from existing experimental data which used surface-immobilized Au nanoparticles as the target substrate. The influence of Au facet on these experimental findings is then considered, via our binding strength predictions of the relevant amino acids at aqueous Au(111) and Au(100)(1 × 1). The Au(111) interface supports an amino acid ranking of Tyr > HisA ≃ HisH > Ser, matching that of the tripeptides on Au(111), while the ranking on Au(100) is HisA > Ser ≃ Tyr ≃ HisH, with only HisA showing non-negligible binding. The substantial reduction in Tyr amino acid affinity for Au(100) vs Au(111) offers one possible explanation for the experimentally observed weaker adsorption of YYY on the nanoparticle-immobilized substrate compared with HHH. In a separate set of simulations, we predict the structures of the adsorbed tripeptides at the two aqueous Au facets, revealing facet-dependent differences in the adsorbed conformations. Our findings suggest that Au facet effects, where relevant, may influence the adsorption structures and energetics of biomolecules, highlighting the possible influence of the structural model used to interpret experimental binding data.
Diversity-invasibility across an experimental disturbance gradient in Appalachian forests
R. Travis Belote; Robert H. Jones; Sharon M. Hood; Bryan W. Wender
2008-01-01
Research examining the relationship between community diversity and invasions by nonnative species has raised new questions about the theory and management of biological invasions. Ecological theory predicts, and small-scale experiments confirm, lower levels of nonnative species invasion into species-rich compared to species-poor communities, but observational studies...
Bed Morphology and Sediment Transport under Oscillatory Flow
ERIC Educational Resources Information Center
Pedocchi Miljan, Francisco
2009-01-01
Recent laboratory and field experiments have shown the inability of existing oscillatory flow ripple predictors to accurately predict both ripple size and planform geometry. However, at this time, only partial adaptations of these predictors have been proposed in the literature to account for the observed discrepancies with experimental data…
Application of an Energy-Based Life Prediction Model to Bithermal and Thermomechanical Fatigue
NASA Technical Reports Server (NTRS)
Radhakrishnan, V. M.; Kalluri, Sreeramesh; Halford, Gary R.
1994-01-01
The inelastic hysteresis energy applied to the material in a cycle is used as the basis for predicting nonisothermal fatigue life of a wrought cobalt-base superalloy, Haynes 188, from isothermal fatigue data. Damage functions that account for hold-time effects and time-dependent environmental phenomena such as oxidation and hot corrosion are proposed in terms of the inelastic hysteresis energy per cycle. The proposed damage functions are used to predict the bithermal and thermomechanical fatigue lives of Haynes 188 between 316 and 760 C from isothermal fatigue data. Predicted fatigue lives of all but two of the nonisothermal tests are within a factor of 1.5 of the experimentally observed lives.
Aerosols in healthy and emphysematous in silico pulmonary acinar rat models.
Oakes, Jessica M; Hofemeier, Philipp; Vignon-Clementel, Irene E; Sznitman, Josué
2016-07-26
There has been relatively little attention given on predicting particle deposition in the respiratory zone of the diseased lungs despite the high prevalence of chronic obstructive pulmonary disease (COPD). Increased alveolar volume and deterioration of alveolar septum, characteristic of emphysema, may alter the amount and location of particle deposition compared to healthy lungs, which is particularly important for toxic or therapeutic aerosols. In an attempt to shed new light on aerosol transport and deposition in emphysematous lungs, we performed numerical simulations in models of healthy and emphysematous acini motivated by recent experimental lobar-level data in rats (Oakes et al., 2014a). Compared to healthy acinar structures, models of emphysematous subacini were created by removing inter-septal alveolar walls and enhancing the alveolar volume in either a homogeneous or heterogeneous fashion. Flow waveforms and particle properties were implemented to match the experimental data. The occurrence of flow separation and recirculation within alveolar cavities was found in proximal generations of the healthy zones, in contrast to the radial-like airflows observed in the diseased regions. In agreement with experimental data, simulations point to particle deposition concentrations that are more heterogeneously distributed in the diseased models compared with the healthy one. Yet, simulations predicted less deposition in the emphysematous models in contrast to some experimental studies, a likely consequence due to the shallower penetration depths and modified flow topologies in disease compared to health. These spatial-temporal particle transport simulations provide new insight on deposition in the emphysematous acini and shed light on experimental observations. Copyright © 2015 Elsevier Ltd. All rights reserved.
A strain-mediated corrosion model for bioabsorbable metallic stents.
Galvin, E; O'Brien, D; Cummins, C; Mac Donald, B J; Lally, C
2017-06-01
This paper presents a strain-mediated phenomenological corrosion model, based on the discrete finite element modelling method which was developed for use with the ANSYS Implicit finite element code. The corrosion model was calibrated from experimental data and used to simulate the corrosion performance of a WE43 magnesium alloy stent. The model was found to be capable of predicting the experimentally observed plastic strain-mediated mass loss profile. The non-linear plastic strain model, extrapolated from the experimental data, was also found to adequately capture the corrosion-induced reduction in the radial stiffness of the stent over time. The model developed will help direct future design efforts towards the minimisation of plastic strain during device manufacture, deployment and in-service, in order to reduce corrosion rates and prolong the mechanical integrity of magnesium devices. The need for corrosion models that explore the interaction of strain with corrosion damage has been recognised as one of the current challenges in degradable material modelling (Gastaldi et al., 2011). A finite element based plastic strain-mediated phenomenological corrosion model was developed in this work and was calibrated based on the results of the corrosion experiments. It was found to be capable of predicting the experimentally observed plastic strain-mediated mass loss profile and the corrosion-induced reduction in the radial stiffness of the stent over time. To the author's knowledge, the results presented here represent the first experimental calibration of a plastic strain-mediated corrosion model of a corroding magnesium stent. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Correlation between average melting temperature and glass transition temperature in metallic glasses
NASA Astrophysics Data System (ADS)
Lu, Zhibin; Li, Jiangong
2009-02-01
The correlation between average melting temperature (⟨Tm⟩) and glass transition temperature (Tg) in metallic glasses (MGs) is analyzed. A linear relationship, Tg=0.385⟨Tm⟩, is observed. This correlation agrees with Egami's suggestion [Rep. Prog. Phys. 47, 1601 (1984)]. The prediction of Tg from ⟨Tm⟩ through the relationship Tg=0.385⟨Tm⟩ has been tested using experimental data obtained on a large number of MGs. This relationship can be used to predict and design MGs with a desired Tg.
Measuring saliency in images: which experimental parameters for the assessment of image quality?
NASA Astrophysics Data System (ADS)
Fredembach, Clement; Woolfe, Geoff; Wang, Jue
2012-01-01
Predicting which areas of an image are perceptually salient or attended to has become an essential pre-requisite of many computer vision applications. Because observers are notoriously unreliable in remembering where they look a posteriori, and because asking where they look while observing the image necessarily in uences the results, ground truth about saliency and visual attention has to be obtained by gaze tracking methods. From the early work of Buswell and Yarbus to the most recent forays in computer vision there has been, perhaps unfortunately, little agreement on standardisation of eye tracking protocols for measuring visual attention. As the number of parameters involved in experimental methodology can be large, their individual in uence on the nal results is not well understood. Consequently, the performance of saliency algorithms, when assessed by correlation techniques, varies greatly across the literature. In this paper, we concern ourselves with the problem of image quality. Specically: where people look when judging images. We show that in this case, the performance gap between existing saliency prediction algorithms and experimental results is signicantly larger than otherwise reported. To understand this discrepancy, we rst devise an experimental protocol that is adapted to the task of measuring image quality. In a second step, we compare our experimental parameters with the ones of existing methods and show that a lot of the variability can directly be ascribed to these dierences in experimental methodology and choice of variables. In particular, the choice of a task, e.g., judging image quality vs. free viewing, has a great impact on measured saliency maps, suggesting that even for a mildly cognitive task, ground truth obtained by free viewing does not adapt well. Careful analysis of the prior art also reveals that systematic bias can occur depending on instrumental calibration and the choice of test images. We conclude this work by proposing a set of parameters, tasks and images that can be used to compare the various saliency prediction methods in a manner that is meaningful for image quality assessment.
Observation of the pressure effect in simulations of droplets splashing on a dry surface
NASA Astrophysics Data System (ADS)
Boelens, A. M. P.; Latka, A.; de Pablo, J. J.
2018-06-01
At atmospheric pressure, a drop of ethanol impacting on a solid surface produces a splash. Reducing the ambient pressure below its atmospheric value suppresses this splash. The origin of this so-called pressure effect is not well understood, and this study presents an in-depth comparison between various theoretical models that aim to predict splashing and simulations. In this paper, the pressure effect is explored numerically by resolving the Navier-Stokes equations at a 3-nm resolution. In addition to reproducing numerous experimental observations, it is found that different models all provide elements of what is observed in the simulations. The skating droplet model correctly predicts the existence and scaling of a gas film under the droplet, the lamella formation theory is able to correctly predict the scaling of the lamella ejection velocity as a function of the impact velocity for liquids with different viscosity, and lastly, the dewetting theory's hypothesis of a lift force acting on the liquid sheet after ejection is consistent with our results.
Large-scale imputation of epigenomic datasets for systematic annotation of diverse human tissues.
Ernst, Jason; Kellis, Manolis
2015-04-01
With hundreds of epigenomic maps, the opportunity arises to exploit the correlated nature of epigenetic signals, across both marks and samples, for large-scale prediction of additional datasets. Here, we undertake epigenome imputation by leveraging such correlations through an ensemble of regression trees. We impute 4,315 high-resolution signal maps, of which 26% are also experimentally observed. Imputed signal tracks show overall similarity to observed signals and surpass experimental datasets in consistency, recovery of gene annotations and enrichment for disease-associated variants. We use the imputed data to detect low-quality experimental datasets, to find genomic sites with unexpected epigenomic signals, to define high-priority marks for new experiments and to delineate chromatin states in 127 reference epigenomes spanning diverse tissues and cell types. Our imputed datasets provide the most comprehensive human regulatory region annotation to date, and our approach and the ChromImpute software constitute a useful complement to large-scale experimental mapping of epigenomic information.
A theoretical and experimental technique to measure fracture properties in viscoelastic solids
NASA Astrophysics Data System (ADS)
Freitas, Felipe Araujo Colares De
Prediction of crack growth in engineering structures is necessary for better analysis and design. However, this prediction becomes quite complex for certain materials in which the fracture behavior is both rate and path dependent. Asphaltic materials used in pavements have that intrinsic complexity in their behavior. A lot of research effort has been devoted to better understanding viscoelastic behavior and fracture in such materials. This dissertation presents a further refinement of an experimental test setup, which is significantly different from standard testing protocols, to measure viscoelastic and fracture properties of nonlinear viscoelastic solids, such as asphaltic materials. The results presented herein are primarily for experiments with asphalt, but the test procedure can be used for other viscoelastic materials as well. Even though the test is designed as a fracture test, experiments on the investigated materials have uncovered very complex phenomena prior to fracture. Viscoelasticity and micromechanics are used to explain some of the physical phenomena observed in the tests. The material behavior prior to fracture includes both viscoelastic behavior and a necking effect, which is further discussed in the appendix of the present study. The dissertation outlines a theoretical model for the prediction of tractions ahead of the crack tip. The major contribution herein lies in the development of the experimental procedure for evaluating the material parameters necessary for deploying the model in the prediction of ductile crack growth. Finally, predictions of crack growth in a double cantilever beam specimens and asphalt concrete samples are presented in order to demonstrate the power of this approach for predicting crack growth in viscoelastic media.
The gamma ray north-south effect
NASA Technical Reports Server (NTRS)
White, R. S.; O'Neill, T. J.; Tumer, O. T.; Zych, A. D.
1988-01-01
Theoretical calculations are presented that explain the balloon observations by O'Neill et al. (1987) of a strong north-south anisotropy of atmospheric gamma rays over the Southern Hemisphere, and to predict the north-south ratios. It is shown that the gamma rays that originate at the longest distances from the telescopes give the largest north-south ratios. Comparisons are made of the experimental north-south ratios measured on balloons launched from Alice Springs, Australia, and from Palestine, Texas, U.S., and predictions are made for ratios at other geomagnetic latitudes and longitudes. It is pointed out that observers who measure backgrounds for celestial sources may be misled unless they correct for the north-south effect.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vivek Agarwal; Richard Wright; Timothy Roney
A relatively simple method using the nominal constant average stress information and the creep rupture model is developed to predict the creep-fatigue lifetime of Alloy 617, in terms of time to rupture. The nominal constant average stress is computed using the stress relaxation curve. The predicted time to rupture can be converted to number of cycles to failure using the strain range, the strain rate during each cycle, and the hold time information. The predicted creep-fatigue lifetime is validated against the experimental measurements of the creep-fatigue lifetime collected using conventional laboratory creep-fatigue tests. High temperature creep-fatigue tests of Alloy 617more » were conducted in air at 950°C with a tensile hold period of up to 1800s in a cycle at total strain ranges of 0.3% and 0.6%. It was observed that the proposed method is conservative in that the predicted lifetime is less than the experimentally determined values. The approach would be relevant to calculate the remaining useful life to a component like a steam generator that might fail by the creep-fatigue mechanism.« less
Simulations of the modified gap experiment
NASA Astrophysics Data System (ADS)
Sutherland, Gerrit T.; Benjamin, Richard; Kooker, Douglas
2017-01-01
Modified gap experiment (test) hydrocode simulations predict the trends seen in experimental excess free surface velocity versus input pressure curves for explosives with both large and modest failure diameters. Simulations were conducted for explosive "A", an explosive with a large failure diameter, and for cast TNT, which has a modest failure diameter. Using the best available reactive rate models, the simulations predicted sustained ignition thresholds similar to experiment. This is a threshold where detonation is likely given a long enough run distance. For input pressures greater than the sustained ignition threshold pressure, the simulations predicted too little velocity for explosive "A" and too much velocity for TNT. It was found that a better comparison of experiment and simulation requires additional experimental data for both explosives. It was observed that the choice of reactive rate model for cast TNT can lead to large differences in the predicted modified gap experiment result. The cause of the difference is that the same data was not used to parameterize both models; one set of data was more shock reactive than the other.
Prediction of Proper Temperatures for the Hot Stamping Process Based on the Kinetics Models
NASA Astrophysics Data System (ADS)
Samadian, P.; Parsa, M. H.; Mirzadeh, H.
2015-02-01
Nowadays, the application of kinetics models for predicting microstructures of steels subjected to thermo-mechanical treatments has increased to minimize direct experimentation, which is costly and time consuming. In the current work, the final microstructures of AISI 4140 steel sheets after the hot stamping process were predicted using the Kirkaldy and Li kinetics models combined with new thermodynamically based models in order for the determination of the appropriate process temperatures. In this way, the effect of deformation during hot stamping on the Ae3, Acm, and Ae1 temperatures was considered, and then the equilibrium volume fractions of phases at different temperatures were calculated. Moreover, the ferrite transformation rate equations of the Kirkaldy and Li models were modified by a term proposed by Åkerström to consider the influence of plastic deformation. Results showed that the modified Kirkaldy model is satisfactory for the determination of appropriate austenitization temperatures for the hot stamping process of AISI 4140 steel sheets because of agreeable microstructure predictions in comparison with the experimental observations.
Eigenspace perturbations for uncertainty estimation of single-point turbulence closures
NASA Astrophysics Data System (ADS)
Iaccarino, Gianluca; Mishra, Aashwin Ananda; Ghili, Saman
2017-02-01
Reynolds-averaged Navier-Stokes (RANS) models represent the workhorse for predicting turbulent flows in complex industrial applications. However, RANS closures introduce a significant degree of epistemic uncertainty in predictions due to the potential lack of validity of the assumptions utilized in model formulation. Estimating this uncertainty is a fundamental requirement for building confidence in such predictions. We outline a methodology to estimate this structural uncertainty, incorporating perturbations to the eigenvalues and the eigenvectors of the modeled Reynolds stress tensor. The mathematical foundations of this framework are derived and explicated. Thence, this framework is applied to a set of separated turbulent flows, while compared to numerical and experimental data and contrasted against the predictions of the eigenvalue-only perturbation methodology. It is exhibited that for separated flows, this framework is able to yield significant enhancement over the established eigenvalue perturbation methodology in explaining the discrepancy against experimental observations and high-fidelity simulations. Furthermore, uncertainty bounds of potential engineering utility can be estimated by performing five specific RANS simulations, reducing the computational expenditure on such an exercise.
Dermol, Janja; Miklavčič, Damijan
2014-12-01
High voltage electric pulses cause electroporation of the cell membrane. Consequently, flow of the molecules across the membrane increases. In our study we investigated possibility to predict the percentage of the electroporated cells in an inhomogeneous electric field on the basis of the experimental results obtained when cells were exposed to a homogeneous electric field. We compared and evaluated different mathematical models previously suggested by other authors for interpolation of the results (symmetric sigmoid, asymmetric sigmoid, hyperbolic tangent and Gompertz curve). We investigated the density of the cells and observed that it has the most significant effect on the electroporation of the cells while all four of the mathematical models yielded similar results. We were able to predict electroporation of cells exposed to an inhomogeneous electric field based on mathematical modeling and using mathematical formulations of electroporation probability obtained experimentally using exposure to the homogeneous field of the same density of cells. Models describing cell electroporation probability can be useful for development and presentation of treatment planning for electrochemotherapy and non-thermal irreversible electroporation. Copyright © 2014 Elsevier B.V. All rights reserved.
Prediction and validation of blowout limits of co-flowing jet diffusion flames -- effect of dilution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karbasi, M.; Wierzba, I.
1996-10-01
The blowout limits of a co-flowing turbulent methane jet diffusion flame with addition of diluent in either jet fuel or surrounding air stream is studied both analytically and experimentally. Helium, nitrogen and carbon dioxide were employed as the diluents. Experiments indicated that an addition of diluents to the jet fuel or surrounding air stream decreased the stability limit of the jet diffusion flames. The strongest effect was observed with carbon dioxide as the diluent followed by nitrogen and then by helium. A model of extinction based on recognized criterion of the mixing time scale to characteristic combustion time scale ratiomore » using experimentally derived correlations is proposed. It is capable of predicting the large reduction of the jet blowout velocity due to a relatively small increase in the co-flow stream velocity along with an increase in the concentration of diluent in either the jet fuel or surrounding air stream. Experiments were carried out to validate the model. The predicted blowout velocities of turbulent jet diffusion flames obtained using this model are in good agreement with the corresponding experimental data.« less
Detection of free nickel monocarbonyl, NiCO: rotational spectrum and structure.
Yamazaki, Emi; Okabayashi, Toshiaki; Tanimoto, Mitsutoshi
2004-02-04
Unsaturated transition metal carbonyls are important in processes such as organometallic synthesis, homogeneous catalysis, and photochemical decomposition of organometallics. In particular, a metal monocarbonyl offers a zeroth-order model for interpreting the chemisorption of a CO molecule on a metal surface in catalytic activation processes. Quite large numbers of theoretical papers have appeared which predict spectroscopic and structural properties of transition metal carbonyls. The nickel monocarbonyl NiCO has been one of the metal carbonyls most extensively studied by the theoretical calculations. At least 50 theoretical studies have been published on this simplest transition metal carbonyl up to the present time. However, experimental evidence of NiCO is much more sparse than theoretical predictions, and the actual structure of NiCO has never been determined by any experimental methods. This Communication reports the first preparation of free nickel monocarbonyl and observation of its rotational transitions. The NiCO molecule was generated by the sputtering reaction of a Ni cathode in the presence of CO. The accurate bond lengths of Ni-C and C-O were experimentally determined from isotopic data and were compared with the theoretical predictions for the first time.
NASA Astrophysics Data System (ADS)
Romero-García, V.; Vasseur, J. O.; Garcia-Raffi, L. M.; Hladky-Hennion, A. C.
2012-02-01
The complex band structures calculated using the extended plane wave expansion (EPWE) reveal the presence of evanescent modes in periodic systems, never predicted by the classical \\omega(\\vec {k}) methods, providing novel interpretations of several phenomena as well as a complete picture of the system. In this work, we theoretically and experimentally observe that in the ranges of frequencies where a deaf band is traditionally predicted, an evanescent mode with excitable symmetry appears, changing drastically the interpretation of the transmission properties. On the other hand, the simplicity of the sonic crystals in which only the longitudinal polarization can be excited is used to interpret, without loss of generality, the level repulsion between symmetric and antisymmetric bands in sonic crystals as the presence of an evanescent mode connecting both repelled bands. These evanescent modes, obtained using EPWE, explain both the attenuation produced in this range of frequencies and the transfer of symmetry from one band to the other in good agreement with both experimental results and multiple scattering predictions. Thus, the evanescent properties of the periodic system have been revealed to be necessary for the design of new acoustic and electromagnetic applications based on periodicity.
Spreading dynamics of superposed liquid drops on a spinning disk
NASA Astrophysics Data System (ADS)
Sahoo, Subhadarshinee; Orpe, Ashish V.; Doshi, Pankaj
2018-01-01
We have experimentally studied simultaneous spreading of superposed drops of two Newtonian liquids on top of a horizontal spinning disk using the flow visualization technique. An inner drop of high surface tension liquid is placed centrally on the disk followed by a drop of outer liquid (lower surface tension) placed exactly above that. The disk is then rotated at a desired speed for a range of volume ratios of two liquids. Such an arrangement of two superposed liquid drops does not affect the spreading behavior of the outer liquid but influences that of the inner liquid significantly. The drop spreads to a larger extent and breaks into more fingers (Nf) as compared to the case where the same liquid is spreading in the absence of outer liquid. The experimentally observed number of fingers is compared with the prediction using available theory for single liquid. It is found that the theory over-predicts the value of Nf for the inner liquid while it is covered by an outer liquid. We provide a theoretical justification for this observation using linear stability analysis. Our analysis demonstrates that for small but finite surface tension ratio of the two liquids, the presence of the outer interface reduces the value of the most unstable wave number which is equivalent to the decrease in the number of fingers observed experimentally. Finally, sustained rotation of the disk leads to the formation of droplets at the tip of the fingers traveling outwards.
Fast integration-based prediction bands for ordinary differential equation models.
Hass, Helge; Kreutz, Clemens; Timmer, Jens; Kaschek, Daniel
2016-04-15
To gain a deeper understanding of biological processes and their relevance in disease, mathematical models are built upon experimental data. Uncertainty in the data leads to uncertainties of the model's parameters and in turn to uncertainties of predictions. Mechanistic dynamic models of biochemical networks are frequently based on nonlinear differential equation systems and feature a large number of parameters, sparse observations of the model components and lack of information in the available data. Due to the curse of dimensionality, classical and sampling approaches propagating parameter uncertainties to predictions are hardly feasible and insufficient. However, for experimental design and to discriminate between competing models, prediction and confidence bands are essential. To circumvent the hurdles of the former methods, an approach to calculate a profile likelihood on arbitrary observations for a specific time point has been introduced, which provides accurate confidence and prediction intervals for nonlinear models and is computationally feasible for high-dimensional models. In this article, reliable and smooth point-wise prediction and confidence bands to assess the model's uncertainty on the whole time-course are achieved via explicit integration with elaborate correction mechanisms. The corresponding system of ordinary differential equations is derived and tested on three established models for cellular signalling. An efficiency analysis is performed to illustrate the computational benefit compared with repeated profile likelihood calculations at multiple time points. The integration framework and the examples used in this article are provided with the software package Data2Dynamics, which is based on MATLAB and freely available at http://www.data2dynamics.org helge.hass@fdm.uni-freiburg.de Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
New smoke predictions for Alaska in NOAA’s National Air Quality Forecast Capability
NASA Astrophysics Data System (ADS)
Davidson, P. M.; Ruminski, M.; Draxler, R.; Kondragunta, S.; Zeng, J.; Rolph, G.; Stajner, I.; Manikin, G.
2009-12-01
Smoke from wildfire is an important component of fine particle pollution, which is responsible for tens of thousands of premature deaths each year in the US. In Alaska, wildfire smoke is the leading cause of poor air quality in summer. Smoke forecast guidance helps air quality forecasters and the public take steps to limit exposure to airborne particulate matter. A new smoke forecast guidance tool, built by a cross-NOAA team, leverages efforts of NOAA’s partners at the USFS on wildfire emissions information, and with EPA, in coordinating with state/local air quality forecasters. Required operational deployment criteria, in categories of objective verification, subjective feedback, and production readiness, have been demonstrated in experimental testing during 2008-2009, for addition to the operational products in NOAA's National Air Quality Forecast Capability. The Alaska smoke forecast tool is an adaptation of NOAA’s smoke predictions implemented operationally for the lower 48 states (CONUS) in 2007. The tool integrates satellite information on location of wildfires with weather (North American mesoscale model) and smoke dispersion (HYSPLIT) models to produce daily predictions of smoke transport for Alaska, in binary and graphical formats. Hour-by hour predictions at 12km grid resolution of smoke at the surface and in the column are provided each day by 13 UTC, extending through midnight next day. Forecast accuracy and reliability are monitored against benchmark criteria for accuracy and reliability. While wildfire activity in the CONUS is year-round, the intense wildfire activity in AK is limited to the summer. Initial experimental testing during summer 2008 was hindered by unusually limited wildfire activity and very cloudy conditions. In contrast, heavier than average wildfire activity during summer 2009 provided a representative basis (more than 60 days of wildfire smoke) for demonstrating required prediction accuracy. A new satellite observation product was developed for routine near-real time verification of these predictions. The footprint of the predicted smoke from identified fires is verified with satellite observations of the spatial extent of smoke aerosols (5km resolution). Based on geostationary aerosol optical depth measurements that provide good time resolution of the horizontal spatial extent of the plumes, these observations do not yield quantitative concentrations of smoke particles at the surface. Predicted surface smoke concentrations are consistent with the limited number of in situ observations of total fine particle mass from all sources; however they are much higher than predicted for most CONUS fires. To assess uncertainty associated with fire emissions estimates, sensitivity analyses are in progress.
Hybridization-mediated anisotropic coupling in plutonium compounds
NASA Astrophysics Data System (ADS)
Banerjea, Amitava; Cooper, Bernard R.; Thayamballi, Pradeep
1984-09-01
The magnetic behavior of a class of cerium and light actinide compounds containing moderately delocalized f electrons has been explained on the basis of an anisotropic two-ion interaction that arises from the hybridization of band electrons and the f electrons. This theory, first developed by Siemann and Cooper for cerium compounds using the treatment of Coqblin and Schrieffer for the hybridization, was later generalized by Thayamballi and Cooper to fn systems in the L-S and j-j coupling limits. We here extend the theory to the case of intermediate intraionic coupling and further include the possibility of long-period antiferromagnetic structures. In particular, we have considered the Pu3+(f5) ion in PuSb. The theory reproduces the experimentally observed magnetic behavior of PuSb quite closely, predicting a phase transition from a low-temperature ferromagnetic phase to a long-period antiferromagnetic phase at about 75 K, for a fitting to a Néel temperature of 85 K, with ordered moments close to the experimental values. However, while the modulation in the long-period antiferromagnetic phase has been experimentally observed to be longitudinal, the theory predicts a transverse modulation with moments aligned along the cube edge. We also present the T=0 magnetic excitation spectrum in the ferromagnetic phase calculated on the basis of this theory using the random-phase approximation.
Vapor tagging of electric blasting caps with perfluorinated compounds. [For crime detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Senum, G I; Gergley, R P; Greene, M
Vapor tagging of electric blasting caps (EBC) is accomplished with the use of perfluorocarbon taggants. These taggants are absorbed in either the present EBC end closures or in substitute fluoroelastomeric end closures to approximately 5 to 10% of the total weight of end closure. The specific taggants have been chosen to allow a 0.5 to 5 nanoliter per minute vapor taggant emission rate from the tagged EBC over a 5 y lifetime. The taggant emission rates from tagged EBC have been experimentally observed to be well described by a taggant emission rate model. This model provides for experimental selection ofmore » the proper taggant for projected lifetimes of ten years based on just several months of observed emission measurements. Another model has been derived which can predict the taggant concentrations in various realistic scenarios such as room, building, lockers, etc. The model takes into consideration the effect of barriers such as boxes, suitcases, etc., in impeding the release of the taggant vapors from the tagged EBC into the scenario and the dilution effect of the scenarios air circulation system. Taggant concentrations have been experimentally determined using a 425 liter sampling chamber with various barriers and the results are used with the model to predict various scenario taggant concentrations.« less
Lindén, Carl Fredrik; Žabka, Ján; Polášek, Miroslav; Zymak, Illia; Geppert, Wolf D
2018-02-21
A theoretical and experimental investigation of the reaction C 5 N - + C 2 H 2 has been carried out. This reaction is of astrophysical interest since the growth mechanism of large anions that have been detected in Titan's upper atmosphere by the Cassini plasma spectrometer are still largely unknown. The experimental studies have been performed using a tandem quadrupole mass spectrometer which allows identification of the different reaction channels and assessment of their reaction thresholds. Results of these investigations were compared with the predictions of ab initio calculations, which identified possible pathways leading to the observed products and their thermodynamical properties. These computations yielded that the majority of these products are only accessible via energy barriers situated more than 1 eV above the reactant energies. In many cases, the thresholds predicted by the ab initio calculations are in good agreement with the experimentally observed ones. For example, the chain elongation reaction leading to C 7 N - , although being slightly exoergic, possesses an energy barrier of 1.91 eV. Therefore, the title reaction can be regarded to be somewhat unlikely to be responsible for the formation of large anions in cold environments such as interstellar medium or planetary ionospheres.
An experimental investigation of hollow cathode-based plasma contactors. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Williams, John D.
1991-01-01
Experimental results are presented which describe operation of the plasma environment associated with a hollow cathod-based plasma contactor collecting electrons from or emitting them to an ambient, low density Maxwellian plasma. A one-dimensional, phenomenological model of the near-field electron collection process, which was formulated from experimental observations, is presented. It considers three regions, namely, a plasma cloud adjacent to the contactor, an ambient plasma from which electrons are collected, and a double layer region that develops between the contactor plasma cloud and the ambient plasma regions. Results of the electron emission experiments are also presented. An important observation is made using a retarding potential analyzer (RPA) which shows that high energy ions generally stream from a contactor along with the electrons being emitted. A mechanism for this phenomenon is presented and it involves a high rate of ionization induced between electrons and atoms flowing together from the hollow cathode orifice. This can result in the development of a region of high positive potential. Langmuir and RPA probe data suggest that both electrons and ions expand spherically from this hill region. In addition to experimental observations, a one-dimensional model which describes the electron emission process and predicts the phenomena just mentioned is presented and shown to agree qualitatively with these observations.
Sahaï, Aïsha; Pacherie, Elisabeth; Grynszpan, Ouriel; Berberian, Bruno
2017-01-01
Nowadays, interactions with others do not only involve human peers but also automated systems. Many studies suggest that the motor predictive systems that are engaged during action execution are also involved during joint actions with peers and during other human generated action observation. Indeed, the comparator model hypothesis suggests that the comparison between a predicted state and an estimated real state enables motor control, and by a similar functioning, understanding and anticipating observed actions. Such a mechanism allows making predictions about an ongoing action, and is essential to action regulation, especially during joint actions with peers. Interestingly, the same comparison process has been shown to be involved in the construction of an individual's sense of agency, both for self-generated and observed other human generated actions. However, the implication of such predictive mechanisms during interactions with machines is not consensual, probably due to the high heterogeneousness of the automata used in the experimentations, from very simplistic devices to full humanoid robots. The discrepancies that are observed during human/machine interactions could arise from the absence of action/observation matching abilities when interacting with traditional low-level automata. Consistently, the difficulties to build a joint agency with this kind of machines could stem from the same problem. In this context, we aim to review the studies investigating predictive mechanisms during social interactions with humans and with automated artificial systems. We will start by presenting human data that show the involvement of predictions in action control and in the sense of agency during social interactions. Thereafter, we will confront this literature with data from the robotic field. Finally, we will address the upcoming issues in the field of robotics related to automated systems aimed at acting as collaborative agents. PMID:29081744
Rhoden, John J; Dyas, Gregory L; Wroblewski, Victor J
2016-05-20
Despite the increasing number of multivalent antibodies, bispecific antibodies, fusion proteins, and targeted nanoparticles that have been generated and studied, the mechanism of multivalent binding to cell surface targets is not well understood. Here, we describe a conceptual and mathematical model of multivalent antibody binding to cell surface antigens. Our model predicts that properties beyond 1:1 antibody:antigen affinity to target antigens have a strong influence on multivalent binding. Predicted crucial properties include the structure and flexibility of the antibody construct, the target antigen(s) and binding epitope(s), and the density of antigens on the cell surface. For bispecific antibodies, the ratio of the expression levels of the two target antigens is predicted to be critical to target binding, particularly for the lower expressed of the antigens. Using bispecific antibodies of different valencies to cell surface antigens including MET and EGF receptor, we have experimentally validated our modeling approach and its predictions and observed several nonintuitive effects of avidity related to antigen density, target ratio, and antibody affinity. In some biological circumstances, the effect we have predicted and measured varied from the monovalent binding interaction by several orders of magnitude. Moreover, our mathematical framework affords us a mechanistic interpretation of our observations and suggests strategies to achieve the desired antibody-antigen binding goals. These mechanistic insights have implications in antibody engineering and structure/activity relationship determination in a variety of biological contexts. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Metastable Structural Phases of Metals in Columns IVB to Vib, and Rows 4 TO 6 OF the Periodic Table
NASA Astrophysics Data System (ADS)
Nnolim, Neme; Tyson, Trevor
2002-03-01
Total energy calculations as a function of strain along the <001> direction have been carried out for the bcc metals V, Nb, Ta, Cr, Mo and W, and the hcp metals Ti, Zr and Hf, all in the block of the periodic table defined by columns IVB to VIB, and rows 4 to 6. Since strain along the <001> direction corresponds to variation of the c lattice constant with respect to the a lattice constant, the total energy per unit cell has being calculated as a function of the c/a ratio. The highly accurate FP-LAPW (Full Potential Linearized Augmented Plane Wave) band structure method in the DFT (Density Functional Theory) formalism has been used for the calculations. In all cases except for the hcp column IVB elements, Zr, Hf and Ti, a metastable state was predicted from the calculations. Electronic properties are computed for all structures and are correlated with electrical and mechanical properties of metastable phases that have been observed experimentally. Properties of metastable phases, which were predicted in this work but which as of yet have not been observed experimentally, have also been predicted. Special attention is paid to the phases of tantalum and calculated transport properties are used to show that the observed high resistivity of the beta phase of tantalum relative to the alpha bcc phase cannot be explained solely by simple tetragonal distortions of the bcc phase.
NASA Astrophysics Data System (ADS)
Ueno, Tetsuro; Hino, Hideitsu; Hashimoto, Ai; Takeichi, Yasuo; Sawada, Masahiro; Ono, Kanta
2018-01-01
Spectroscopy is a widely used experimental technique, and enhancing its efficiency can have a strong impact on materials research. We propose an adaptive design for spectroscopy experiments that uses a machine learning technique to improve efficiency. We examined X-ray magnetic circular dichroism (XMCD) spectroscopy for the applicability of a machine learning technique to spectroscopy. An XMCD spectrum was predicted by Gaussian process modelling with learning of an experimental spectrum using a limited number of observed data points. Adaptive sampling of data points with maximum variance of the predicted spectrum successfully reduced the total data points for the evaluation of magnetic moments while providing the required accuracy. The present method reduces the time and cost for XMCD spectroscopy and has potential applicability to various spectroscopies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsoneva, N., E-mail: Nadia.Tsoneva@theo.physik.uni-giessen.de; Lenske, H.
During the last decade, a theoretical method based on the energy–density functional theory and quasiparticle–phonon model, including up to three-phonon configurations was developed. The main advantages of themethod are that it incorporates a self-consistentmean-field and multi-configuration mixing which are found of crucial importance for systematic investigations of nuclear low-energy excitations, pygmy and giant resonances in an unified way. In particular, the theoretical approach has been proven to be very successful in predictions of new modes of excitations, namely pygmy quadrupole resonance which is also lately experimentally observed. Recently, our microscopically obtained dipole strength functions are implemented in predictions of nucleon-capturemore » reaction rates of astrophysical importance. A comparison to available experimental data is discussed.« less
Reducing bias and analyzing variability in the time-left procedure.
Trujano, R Emmanuel; Orduña, Vladimir
2015-04-01
The time-left procedure was designed to evaluate the psychophysical function for time. Although previous results indicated a linear relationship, it is not clear what role the observed bias toward the time-left option plays in this procedure and there are no reports of how variability changes with predicted indifference. The purposes of this experiment were to reduce bias experimentally, and to contrast the difference limen (a measure of variability around indifference) with predictions from scalar expectancy theory (linear timing) and behavioral economic model (logarithmic timing). A control group of 6 rats performed the original time-left procedure with C=60 s and S=5, 10,…, 50, 55 s, whereas a no-bias group of 6 rats performed the same conditions in a modified time-left procedure in which only a single response per choice trial was allowed. Results showed that bias was reduced for the no-bias group, observed indifference grew linearly with predicted indifference for both groups, and difference limen and Weber ratios decreased as expected indifference increased for the control group, which is consistent with linear timing, whereas for the no-bias group they remained constant, consistent with logarithmic timing. Therefore, the time-left procedure generates results consistent with logarithmic perceived time once bias is experimentally reduced. Copyright © 2015 Elsevier B.V. All rights reserved.
Electroweak Symmetry Breaking and the Higgs Boson: Confronting Theories at Colliders
NASA Astrophysics Data System (ADS)
Azatov, Aleksandr; Galloway, Jamison
2013-01-01
In this review, we discuss methods of parsing direct information from collider experiments regarding the Higgs boson and describe simple ways in which experimental likelihoods can be consistently reconstructed and interfaced with model predictions in pertinent parameter spaces. We review prevalent scenarios for extending the electroweak symmetry breaking sector and emphasize their predictions for nonstandard Higgs phenomenology that could be observed in large hadron collider (LHC) data if naturalness is realized in particular ways. Specifically we identify how measurements of Higgs couplings can be used to imply the existence of new physics at particular scales within various contexts. The most dominant production and decay modes of the Higgs-like state observed in the early data sets have proven to be consistent with predictions of the Higgs boson of the Standard Model, though interesting directions in subdominant channels still exist and will require our careful attention in further experimental tests. Slightly anomalous rates in certain channels at the early LHC have spurred effort in model building and spectra analyses of particular theories, and we discuss these developments in some detail. Finally, we highlight some parameter spaces of interest in order to give examples of how the data surrounding the new state can most effectively be used to constrain specific models of weak scale physics.
Constitutive Model for Hot Deformation of the Cu-Zr-Ce Alloy
NASA Astrophysics Data System (ADS)
Zhang, Yi; Sun, Huili; Volinsky, Alex A.; Wang, Bingjie; Tian, Baohong; Liu, Yong; Song, Kexing
2018-02-01
Hot compressive deformation behavior of the Cu-Zr-Ce alloy has been investigated according to the hot deformation tests in the 550-900 °C temperature range and 0.001-10 s-1 strain rate range. Based on the true stress-true strain curves, the flow stress behavior of the Cu-Zr-Ce alloy was investigated. Microstructure evolution was observed by optical microscopy. Based on the experimental results, a constitutive equation, which reflects the relationships between the stress, strain, strain rate and temperature, has been established. Material constants n, α, Q and ln A were calculated as functions of strain. The equation predicting the flow stress combined with these materials constants has been proposed. The predicted stress is consistent with experimental stress, indicating that developed constitutive equation can adequately predict the flow stress of the Cu-Zr-Ce alloy. Dynamic recrystallization critical strain was determined using the work hardening rate method. According to the dynamic material model, the processing maps for the Cu-Zr and Cu-Zr-Ce alloy were obtained at 0.4 and 0.5 strain. Based on the processing maps and microstructure observations, the optimal processing parameters for the two alloys were determined, and it was found that the addition of Ce can promote the hot workability of the Cu-Zr alloy.
NASA Astrophysics Data System (ADS)
Zhou, Jianguo; Zhu, Tao; Tang, Baolin
2017-04-01
There have been many earthquakes occurring in Chinese Mainland. These earthquakes, especially large earthquakes, often cause immeasurable loss. For instance, the 2008 Wenchuan Ms8.0 earthquake killed 70, 000 people and caused 17, 000 people missing. It is well known that this earthquake was not predicted. Why? Were there no precursors? After analyzing the geo-electrical resistivity recording at Chengdu station which is only about 36 km to the epicenter, we find that resistivity had changed abnormally very significantly along NE direction but no outstanding abnormal changes had been observed along NW direction before the earthquake. Perhaps this non-consistent changes result in that this earthquake was not predicted. However, in another standpoint, can another observation way be found to supplement the current geo-electrical resistivity observation in Chinese Mainland in order to improve the probability of catching the precursor? This motivates us to conduct experiments in lab and field. Apparent resistivity data are acquired along three common-midpoint measuring lines during the fixed-rate uniaxial compression on two sets of dry man-made samples and a Magnetite sample. We construct the relative resistivity change images (RRCIs). Our results indicate that all RRCIs show a trending change with stress: with the increase of stress, the resistivity-decreased region (RDR) in the RRCIs shrinks/expands, while the resistivity-increased region (RIR) expands/shrinks gradually, which is in agreement with the field experimental results of earthquake monitoring (Feng et al., 2001). Our results encourage us to conclude that the trending changes in RRCI with stress could probably become a useful indicator in monitoring and predicting earthquakes, volcanic eruptions and large-scale geologic movements. This work is supported by National Natural Science Foundation of China (NSFC, Grant 41574083).
Are V1 Simple Cells Optimized for Visual Occlusions? A Comparative Study
Bornschein, Jörg; Henniges, Marc; Lücke, Jörg
2013-01-01
Simple cells in primary visual cortex were famously found to respond to low-level image components such as edges. Sparse coding and independent component analysis (ICA) emerged as the standard computational models for simple cell coding because they linked their receptive fields to the statistics of visual stimuli. However, a salient feature of image statistics, occlusions of image components, is not considered by these models. Here we ask if occlusions have an effect on the predicted shapes of simple cell receptive fields. We use a comparative approach to answer this question and investigate two models for simple cells: a standard linear model and an occlusive model. For both models we simultaneously estimate optimal receptive fields, sparsity and stimulus noise. The two models are identical except for their component superposition assumption. We find the image encoding and receptive fields predicted by the models to differ significantly. While both models predict many Gabor-like fields, the occlusive model predicts a much sparser encoding and high percentages of ‘globular’ receptive fields. This relatively new center-surround type of simple cell response is observed since reverse correlation is used in experimental studies. While high percentages of ‘globular’ fields can be obtained using specific choices of sparsity and overcompleteness in linear sparse coding, no or only low proportions are reported in the vast majority of studies on linear models (including all ICA models). Likewise, for the here investigated linear model and optimal sparsity, only low proportions of ‘globular’ fields are observed. In comparison, the occlusive model robustly infers high proportions and can match the experimentally observed high proportions of ‘globular’ fields well. Our computational study, therefore, suggests that ‘globular’ fields may be evidence for an optimal encoding of visual occlusions in primary visual cortex. PMID:23754938
Drug-target interaction prediction from PSSM based evolutionary information.
Mousavian, Zaynab; Khakabimamaghani, Sahand; Kavousi, Kaveh; Masoudi-Nejad, Ali
2016-01-01
The labor-intensive and expensive experimental process of drug-target interaction prediction has motivated many researchers to focus on in silico prediction, which leads to the helpful information in supporting the experimental interaction data. Therefore, they have proposed several computational approaches for discovering new drug-target interactions. Several learning-based methods have been increasingly developed which can be categorized into two main groups: similarity-based and feature-based. In this paper, we firstly use the bi-gram features extracted from the Position Specific Scoring Matrix (PSSM) of proteins in predicting drug-target interactions. Our results demonstrate the high-confidence prediction ability of the Bigram-PSSM model in terms of several performance indicators specifically for enzymes and ion channels. Moreover, we investigate the impact of negative selection strategy on the performance of the prediction, which is not widely taken into account in the other relevant studies. This is important, as the number of non-interacting drug-target pairs are usually extremely large in comparison with the number of interacting ones in existing drug-target interaction data. An interesting observation is that different levels of performance reduction have been attained for four datasets when we change the sampling method from the random sampling to the balanced sampling. Copyright © 2015 Elsevier Inc. All rights reserved.
Collaborative Physical Chemistry Projects Involving Computational Chemistry
NASA Astrophysics Data System (ADS)
Whisnant, David M.; Howe, Jerry J.; Lever, Lisa S.
2000-02-01
The physical chemistry classes from three colleges have collaborated on two computational chemistry projects using Quantum CAChe 3.0 and Gaussian 94W running on Pentium II PCs. Online communication by email and the World Wide Web was an important part of the collaboration. In the first project, students used molecular modeling to predict benzene derivatives that might be possible hair dyes. They used PM3 and ZINDO calculations to predict the electronic spectra of the molecules and tested the predicted spectra by comparing some with experimental measurements. They also did literature searches for real hair dyes and possible health effects. In the final phase of the project they proposed a synthetic pathway for one compound. In the second project the students were asked to predict which isomer of a small carbon cluster (C3, C4, or C5) was responsible for a series of IR lines observed in the spectrum of a carbon star. After preliminary PM3 calculations, they used ab initio calculations at the HF/6-31G(d) and MP2/6-31G(d) level to model the molecules and predict their vibrational frequencies and rotational constants. A comparison of the predictions with the experimental spectra suggested that the linear isomer of the C5 molecule was responsible for the lines.
Simple, empirical approach to predict neutron capture cross sections from nuclear masses
NASA Astrophysics Data System (ADS)
Couture, A.; Casten, R. F.; Cakirli, R. B.
2017-12-01
Background: Neutron capture cross sections are essential to understanding the astrophysical s and r processes, the modeling of nuclear reactor design and performance, and for a wide variety of nuclear forensics applications. Often, cross sections are needed for nuclei where experimental measurements are difficult. Enormous effort, over many decades, has gone into attempting to develop sophisticated statistical reaction models to predict these cross sections. Such work has met with some success but is often unable to reproduce measured cross sections to better than 40 % , and has limited predictive power, with predictions from different models rapidly differing by an order of magnitude a few nucleons from the last measurement. Purpose: To develop a new approach to predicting neutron capture cross sections over broad ranges of nuclei that accounts for their values where known and which has reliable predictive power with small uncertainties for many nuclei where they are unknown. Methods: Experimental neutron capture cross sections were compared to empirical mass observables in regions of similar structure. Results: We present an extremely simple method, based solely on empirical mass observables, that correlates neutron capture cross sections in the critical energy range from a few keV to a couple hundred keV. We show that regional cross sections are compactly correlated in medium and heavy mass nuclei with the two-neutron separation energy. These correlations are easily amenable to predict unknown cross sections, often converting the usual extrapolations to more reliable interpolations. It almost always reproduces existing data to within 25 % and estimated uncertainties are below about 40 % up to 10 nucleons beyond known data. Conclusions: Neutron capture cross sections display a surprisingly strong connection to the two-neutron separation energy, a nuclear structure property. The simple, empirical correlations uncovered provide model-independent predictions of neutron capture cross sections, extending far from stability, including for nuclei of the highest sensitivity to r -process nucleosynthesis.
Threat facilitates subsequent executive control during anxious mood.
Birk, Jeffrey L; Dennis, Tracy A; Shin, Lisa M; Urry, Heather L
2011-12-01
Dual competition framework (DCF) posits that low-level threat may facilitate behavioral performance by influencing executive control functions. Anxiety is thought to strengthen this effect by enhancing threat's affective significance. To test these ideas directly, we examined the effects of low-level threat and experimentally induced anxiety on one executive control function, the efficiency of response inhibition. In Study 1, briefly presented stimuli that were mildly threatening (i.e., fearful faces) relative to nonthreatening (i.e., neutral faces) led to facilitated executive control efficiency during experimentally induced anxiety. No such effect was observed during an equally arousing, experimentally induced happy mood state. In Study 2, we assessed the effects of low-level threat, experimentally induced anxiety, and individual differences in trait anxiety on executive control efficiency. Consistent with Study 1, fearful relative to neutral faces led to facilitated executive control efficiency during experimentally induced anxiety. No such effect was observed during an experimentally induced neutral mood state. Moreover, individual differences in trait anxiety did not moderate the effects of threat and anxiety on executive control efficiency. The findings are partially consistent with the predictions of DCF in that low-level threat improved executive control, at least during a state of anxiety. (c) 2011 APA, all rights reserved.
Viscoplastic analysis of an experimental cylindrical thrust chamber liner
NASA Technical Reports Server (NTRS)
Arya, Vinod K.; Arnold, Steven M.
1991-01-01
A viscoplastic stress-strain analysis of an experimental cylindrical thrust chamber is presented. A viscoelastic constitutive model incorporating a single internal state variable that represents kinematic hardening was employed to investigate whether such a viscoplastic model could predict the experimentally observed behavior of the thrust chamber. Two types of loading cycles were considered: a short cycle of 3.5 sec. duration that corresponded to the experiments, and an extended loading cycle of 485.1 sec. duration that is typical of the Space Shuttle Main Engine (SSME) operating cycle. The analysis qualitatively replicated the deformation behavior of the component as observed in experiments designed to simulate SSME operating conditions. The analysis also showed that the mode and location in the component may depend on the loading cycle. The results indicate that using viscoplastic models for structural analysis can lead to a more realistic life assessment of thrust chambers.
Observation of interspecies ion separation in inertial-confinement-fusion implosions
Hsu, Scott C.; Joshi, Tirtha Raj; Hakel, Peter; ...
2016-10-24
Here we report direct experimental evidence of interspecies ion separation in direct-drive, inertial-confinement-fusion experiments on the OMEGA laser facility. These experiments, which used plastic capsules with D 2/Ar gas fill (1% Ar by atom), were designed specifically to reveal interspecies ion separation by exploiting the predicted, strong ion thermo-diffusion between ion species of large mass and charge difference. Via detailed analyses of imaging x-ray-spectroscopy data, we extract Ar-atom-fraction radial profiles at different times, and observe both enhancement and depletion compared to the initial 1%-Ar gas fill. The experimental results are interpreted with radiation-hydrodynamic simulations that include recently implemented, first-principles modelsmore » of interspecies ion diffusion. Finally, the experimentally inferred Ar-atom-fraction profiles agree reasonably, but not exactly, with calculated profiles associated with the incoming and rebounding first shock.« less
Effect of glycerol and dimethyl sulfoxide on the phase behavior of lysozyme: Theory and experiments
NASA Astrophysics Data System (ADS)
Gögelein, Christoph; Wagner, Dana; Cardinaux, Frédéric; Nägele, Gerhard; Egelhaaf, Stefan U.
2012-01-01
Salt, glycerol, and dimethyl sulfoxide (DMSO) are used to modify the properties of protein solutions. We experimentally determined the effect of these additives on the phase behavior of lysozyme solutions. Upon the addition of glycerol and DMSO, the fluid-solid transition and the gas-liquid coexistence curve (binodal) shift to lower temperatures and the gap between them increases. The experimentally observed trends are consistent with our theoretical predictions based on the thermodynamic perturbation theory and the Derjaguin-Landau-Verwey-Overbeek model for the lysozyme-lysozyme pair interactions. The values of the parameters describing the interactions, namely the refractive indices, dielectric constants, Hamaker constant and cut-off length, are extracted from literature or are experimentally determined by independent experiments, including static light scattering, to determine the second virial coefficient. We observe that both, glycerol and DMSO, render the potential more repulsive, while sodium chloride reduces the repulsion.
Choice of Tuning Parameters on 3D IC Engine Simulations Using G-Equation
Liu, Jinlong; Szybist, James; Dumitrescu, Cosmin
2018-04-03
3D CFD spark-ignition IC engine simulations are extremely complex for the regular user. Truly-predictive CFD simulations for the turbulent flame combustion that solve fully coupled transport/chemistry equations may require large computational capabilities unavailable to regular CFD users. A solution is to use a simpler phenomenological model such as the G-equation that decouples transport/chemistry result. Such simulation can still provide acceptable and faster results at the expense of predictive capabilities. While the G-equation is well understood within the experienced modeling community, the goal of this paper is to document some of them for a novice or less experienced CFD user whomore » may not be aware that phenomenological models of turbulent flame combustion usually require heavy tuning and calibration from the user to mimic experimental observations. This study used ANSYS® Forte, Version 17.2, and the built-in G-equation model, to investigate two tuning constants that influence flame propagation in 3D CFD SI engine simulations: the stretch factor coefficient, Cms and the flame development coefficient, Cm2. After identifying several Cm2-Cms pairs that matched experimental data at one operating conditions, simulation results showed that engine models that used different Cm2-Cms sets predicted similar combustion performance, when the spark timing, engine load, and engine speed were changed from the operating condition used to validate the CFD simulation. A dramatic shift was observed when engine speed was doubled, which suggested that the flame stretch coefficient, Cms, had a much larger influence at higher engine speeds compared to the flame development coefficient, Cm2. Therefore, the Cm2-Cms sets that predicted a higher turbulent flame under higher in-cylinder pressure and temperature increased the peak pressure and efficiency. This suggest that the choice of the Cm2-Cms will affect the G-equation-based simulation accuracy when engine speed increases from the one used to validate the model. As a result, for the less-experienced CFD user and in the absence of enough experimental data that would help retune the tuning parameters at various operating conditions, the purpose of a good G-equation-based 3D engine simulation is to guide and/or complement experimental investigations, not the other way around. Only a truly-predictive simulation that fully couples the turbulence/chemistry equations can help reduce the amount of experimental work.« less
Choice of Tuning Parameters on 3D IC Engine Simulations Using G-Equation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Jinlong; Szybist, James; Dumitrescu, Cosmin
3D CFD spark-ignition IC engine simulations are extremely complex for the regular user. Truly-predictive CFD simulations for the turbulent flame combustion that solve fully coupled transport/chemistry equations may require large computational capabilities unavailable to regular CFD users. A solution is to use a simpler phenomenological model such as the G-equation that decouples transport/chemistry result. Such simulation can still provide acceptable and faster results at the expense of predictive capabilities. While the G-equation is well understood within the experienced modeling community, the goal of this paper is to document some of them for a novice or less experienced CFD user whomore » may not be aware that phenomenological models of turbulent flame combustion usually require heavy tuning and calibration from the user to mimic experimental observations. This study used ANSYS® Forte, Version 17.2, and the built-in G-equation model, to investigate two tuning constants that influence flame propagation in 3D CFD SI engine simulations: the stretch factor coefficient, Cms and the flame development coefficient, Cm2. After identifying several Cm2-Cms pairs that matched experimental data at one operating conditions, simulation results showed that engine models that used different Cm2-Cms sets predicted similar combustion performance, when the spark timing, engine load, and engine speed were changed from the operating condition used to validate the CFD simulation. A dramatic shift was observed when engine speed was doubled, which suggested that the flame stretch coefficient, Cms, had a much larger influence at higher engine speeds compared to the flame development coefficient, Cm2. Therefore, the Cm2-Cms sets that predicted a higher turbulent flame under higher in-cylinder pressure and temperature increased the peak pressure and efficiency. This suggest that the choice of the Cm2-Cms will affect the G-equation-based simulation accuracy when engine speed increases from the one used to validate the model. As a result, for the less-experienced CFD user and in the absence of enough experimental data that would help retune the tuning parameters at various operating conditions, the purpose of a good G-equation-based 3D engine simulation is to guide and/or complement experimental investigations, not the other way around. Only a truly-predictive simulation that fully couples the turbulence/chemistry equations can help reduce the amount of experimental work.« less
Vibrational spectroscopic, molecular docking and quantum chemical studies on 6-aminonicotinamide
NASA Astrophysics Data System (ADS)
Mohamed Asath, R.; Premkumar, S.; Mathavan, T.; Milton Franklin Benial, A.
2017-04-01
The most stable molecular structure of 6-aminonicotinamide (ANA) molecule was predicted by conformational analysis and vibrational spectral analysis was carried out by experimental and theoretical methods. The calculated and experimentally observed vibrational frequencies were assigned and compared. The π→π* electronic transition of the molecule was predicted by theoretically calculated ultraviolet-visible spectra in gas and liquid phase and further validated experimentally using ethanol as a solvent. Frontier molecular orbitals analysis was carried out to probe the reactive nature of the ANA molecule and further the site selectivity to specific chemical reactions were effectively analyzed by Fukui function calculation. The molecular electrostatic potential surface was simulated to confirm the reactive sites of the molecule. The natural bond orbital analysis was also performed to understand the intra molecular interactions, which confirms the bioactivity of the ANA molecule. Neuroprotective nature of the ANA molecule was analyzed by molecular docking analysis and the ANA molecule was identified as a good inhibitor against Alzheimer's disease.
X-38 Experimental Aeroheating at Mach 10
NASA Technical Reports Server (NTRS)
Berry, Scott A.; Horvath, Thomas J.; Weilmuenster, K. James; Alter, Stephan J.; Merski, N. Ronald
2001-01-01
This report provides an update of the hypersonic aerothermodynamic wind tunnel test program conducted at the NASA Langley Research Center in support of the X-38 program. Global surface heat transfer distributions were measured on 0.0177 and 0.0236 scale models of the proposed X-38 configuration at Mach 10 in air. The parametrics that were investigated primarily include freestream unit Reynolds numbers of 0.6 to 2.2 million per foot and body flap deflections of 15, 20, and 25 deg for an angle-of-attack of 40 deg. The model-scale variance was tested to obtain laminar, transitional, and turbulent heating levels on the defected bodyflaps. In addition, a limited investigation of forced boundary layer transition through the use of discrete roughness elements was performed. Comparisons of the present experimental results to computational predictions and previous experimental data were conducted Laminar, transitional, and turbulent heating levels were observed on the deflected body flap, which compared favorably to the computational results and to the predicted heating based on the flight aerothermodynamic database.
Haraguchi, Shojiro; Hara, Miwa; Shingae, Takahito; Kumauchi, Masato; Hoff, Wouter D; Unno, Masashi
2015-09-21
Raman optical activity (ROA) is an advanced technique capable of detecting structural deformations of light-absorbing molecules embedded in chromophoric proteins. Resonance Raman (RR) spectroscopy is widely used to enhance the band intensities. However, theoretical work has predicted that under resonance conditions the ROA spectrum resembles the shape of the RR spectrum. Herein, we use photoactive yellow protein (PYP) to measure the first experimental data on the effect of changing the excitation wavelength on the ROA spectra of a protein. We observe a close similarity between the shape of the RR spectrum and the resonance ROA spectrum of PYP. Furthermore, we experimentally verify the theoretical prediction concerning the ratio of the amplitudes of the ROA and Raman spectra. Our data demonstrate that selecting an appropriate excitation wavelength is a key factor for extracting structural information on a protein active site using ROA spectroscopy. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Webb, Michael A.; Jung, Yukyung; Pesko, Danielle M.
Understanding the mechanisms of lithium-ion transport in polymers is crucial for the design of polymer electrolytes. We combine modular synthesis, electrochemical characterization, and molecular simulation to investigate lithium-ion transport in a new family of polyester-based polymers and in poly(ethylene oxide) (PEO). Theoretical predictions of glass-transition temperatures and ionic conductivities in the polymers agree well with experimental measurements. Interestingly, both the experiments and simulations indicate that the ionic conductivity of PEO, relative to the polyesters, is far higher than would be expected from its relative glass-transition temperature. The simulations reveal that diffusion of the lithium cations in the polyesters proceeds viamore » a different mechanism than in PEO, and analysis of the distribution of available cation solvation sites in the various polymers provides a novel and intuitive way to explain the experimentally observed ionic conductivities. This work provides a platform for the evaluation and prediction of ionic conductivities in polymer electrolyte materials.« less
A genetic algorithm approach in interface and surface structure optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jian
The thesis is divided into two parts. In the first part a global optimization method is developed for the interface and surface structures optimization. Two prototype systems are chosen to be studied. One is Si[001] symmetric tilted grain boundaries and the other is Ag/Au induced Si(111) surface. It is found that Genetic Algorithm is very efficient in finding lowest energy structures in both cases. Not only existing structures in the experiments can be reproduced, but also many new structures can be predicted using Genetic Algorithm. Thus it is shown that Genetic Algorithm is a extremely powerful tool for the materialmore » structures predictions. The second part of the thesis is devoted to the explanation of an experimental observation of thermal radiation from three-dimensional tungsten photonic crystal structures. The experimental results seems astounding and confusing, yet the theoretical models in the paper revealed the physics insight behind the phenomena and can well reproduced the experimental results.« less
Webb, Michael A.; Jung, Yukyung; Pesko, Danielle M.; ...
2015-07-10
Understanding the mechanisms of lithium-ion transport in polymers is crucial for the design of polymer electrolytes. We combine modular synthesis, electrochemical characterization, and molecular simulation to investigate lithium-ion transport in a new family of polyester-based polymers and in poly(ethylene oxide) (PEO). Theoretical predictions of glass-transition temperatures and ionic conductivities in the polymers agree well with experimental measurements. Interestingly, both the experiments and simulations indicate that the ionic conductivity of PEO, relative to the polyesters, is far higher than would be expected from its relative glass-transition temperature. The simulations reveal that diffusion of the lithium cations in the polyesters proceeds viamore » a different mechanism than in PEO, and analysis of the distribution of available cation solvation sites in the various polymers provides a novel and intuitive way to explain the experimentally observed ionic conductivities. This work provides a platform for the evaluation and prediction of ionic conductivities in polymer electrolyte materials.« less
An investigation of thermal comfort inside an automobile during the heating period.
Kaynakli, Omer; Kilic, Muhsin
2005-05-01
This paper describes a combined theoretical and experimental study of thermal comfort during the heating period inside an automobile. To investigate the effects of thermal conditions on the human physiology and thermal comfort during the heating period, temperature, humidity and air velocity were measured at a number of points inside the automobile, so thermal conditions were accurately determined. The human body was divided into 16 sedentary segments, and the change of temperature was observed both experimentally and theoretically. During transient conditions of the heating period, heat and mass transfer between the human body and the interior environment of an automobile were simulated by a computational model, and predictions were compared with the measured data. It is shown that there is a good agreement between the model predictions and experimental results. By means of the present model, the effects of the fast transient conditions of the heating period on the sensible and latent heat transfer from the body, body segments skin temperatures and thermal sensation were investigated in detail.
Dynamics of an experimental unconfined aquifer
NASA Astrophysics Data System (ADS)
Lajeunesse, E.; Guérin, A.; Devauchelle, O.
2015-12-01
During a rain event, water infiltrates into the ground where it flows slowly towards rivers. We use a tank filled with glass beads to simulate this process in a simplified laboratory experiment. A sprinkler pipe generates rain, which infiltrates into the porous material. Groundwater exits this laboratory aquifer through one side of the tank. The resulting water discharge increases rapidly during rainfall, and decays slowly after the rain has stopped.A theoretical analysis based on Darcy's law and the shallow-water approximation reveals two asymptotic regimes. At the beginning of a rain event, the water discharge increases linearly with time, with a slope proportional to the rainfall rate at the power of 3/2. Long after the rain has stopped, it decreases as the inverse time squared, as predicted by Polubarinova-Kochina (1962). These predictions compare well against our experimental data.Field measurements from two distinct catchments exhibit the same asymptotic behaviours as our experiment. This observation suggests that, despite the simplicity of the setup, our experimental results could be extended to natural groundwater flows.
2015-01-01
Understanding the mechanisms of lithium-ion transport in polymers is crucial for the design of polymer electrolytes. We combine modular synthesis, electrochemical characterization, and molecular simulation to investigate lithium-ion transport in a new family of polyester-based polymers and in poly(ethylene oxide) (PEO). Theoretical predictions of glass-transition temperatures and ionic conductivities in the polymers agree well with experimental measurements. Interestingly, both the experiments and simulations indicate that the ionic conductivity of PEO, relative to the polyesters, is far higher than would be expected from its relative glass-transition temperature. The simulations reveal that diffusion of the lithium cations in the polyesters proceeds via a different mechanism than in PEO, and analysis of the distribution of available cation solvation sites in the various polymers provides a novel and intuitive way to explain the experimentally observed ionic conductivities. This work provides a platform for the evaluation and prediction of ionic conductivities in polymer electrolyte materials. PMID:27162971
Tan, J L Y; Deshpande, V S; Fleck, N A
2016-07-13
A damage-based finite-element model is used to predict the fracture behaviour of centre-notched quasi-isotropic carbon-fibre-reinforced-polymer laminates under multi-axial loading. Damage within each ply is associated with fibre tension, fibre compression, matrix tension and matrix compression. Inter-ply delamination is modelled by cohesive interfaces using a traction-separation law. Failure envelopes for a notch and a circular hole are predicted for in-plane multi-axial loading and are in good agreement with the observed failure envelopes from a parallel experimental study. The ply-by-ply (and inter-ply) damage evolution and the critical mechanisms of ultimate failure also agree with the observed damage evolution. It is demonstrated that accurate predictions of notched compressive strength are obtained upon employing the band broadening stress for microbuckling, highlighting the importance of this damage mode in compression. This article is part of the themed issue 'Multiscale modelling of the structural integrity of composite materials'. © 2016 The Author(s).
A variable capacitance based modeling and power capability predicting method for ultracapacitor
NASA Astrophysics Data System (ADS)
Liu, Chang; Wang, Yujie; Chen, Zonghai; Ling, Qiang
2018-01-01
Methods of accurate modeling and power capability predicting for ultracapacitors are of great significance in management and application of lithium-ion battery/ultracapacitor hybrid energy storage system. To overcome the simulation error coming from constant capacitance model, an improved ultracapacitor model based on variable capacitance is proposed, where the main capacitance varies with voltage according to a piecewise linear function. A novel state-of-charge calculation approach is developed accordingly. After that, a multi-constraint power capability prediction is developed for ultracapacitor, in which a Kalman-filter-based state observer is designed for tracking ultracapacitor's real-time behavior. Finally, experimental results verify the proposed methods. The accuracy of the proposed model is verified by terminal voltage simulating results under different temperatures, and the effectiveness of the designed observer is proved by various test conditions. Additionally, the power capability prediction results of different time scales and temperatures are compared, to study their effects on ultracapacitor's power capability.
Casey, F P; Baird, D; Feng, Q; Gutenkunst, R N; Waterfall, J J; Myers, C R; Brown, K S; Cerione, R A; Sethna, J P
2007-05-01
We apply the methods of optimal experimental design to a differential equation model for epidermal growth factor receptor signalling, trafficking and down-regulation. The model incorporates the role of a recently discovered protein complex made up of the E3 ubiquitin ligase, Cbl, the guanine exchange factor (GEF), Cool-1 (beta -Pix) and the Rho family G protein Cdc42. The complex has been suggested to be important in disrupting receptor down-regulation. We demonstrate that the model interactions can accurately reproduce the experimental observations, that they can be used to make predictions with accompanying uncertainties, and that we can apply ideas of optimal experimental design to suggest new experiments that reduce the uncertainty on unmeasurable components of the system.
Sub-Doppler Rovibrational Spectroscopy of the H_3^+ Cation and Isotopologues
NASA Astrophysics Data System (ADS)
Markus, Charles R.; McCollum, Jefferson E.; Dieter, Thomas S.; Kocheril, Philip A.; McCall, Benjamin J.
2017-06-01
Molecular ions play a central role in the chemistry of the interstellar medium (ISM) and act as benchmarks for state of the art ab initio theory. The molecular ion H_3^+ initiates a chain of ion-neutral reactions which drives chemistry in the ISM, and observing it either directly or indirectly through its isotopologues is valuable for understanding interstellar chemistry. Improving the accuracy of laboratory measurements will assist future astronomical observations. H_3^+ is also one of a few systems whose rovibrational transitions can be predicted to spectroscopic accuracy (<1 cm^{-1}), and with careful treatment of adiabatic, nonadiabatic, and quantum electrodynamic corrections to the potential energy surface, predictions of low lying rovibrational states can rival the uncertainty of experimental measurements New experimental data will be needed to benchmark future treatment of these corrections. Previously we have reported 26 transitions within the fundamental band of H_3^+ with MHz-level uncertainties. With recent improvements to our overall sensitivity, we have expanded this survey to include additional transitions within the fundamental band and the first hot band. These new data will ultimately be used to predict ground state rovibrational energy levels through combination differences which will act as benchmarks for ab initio theory and predict forbidden rotational transitions of H_3^+. We will also discuss progress in measuring rovibrational transitions of the isotopologues H_2D^+ and D_2H^+, which will be used to assist in future THz astronomical observations. New experimental data will be needed to benchmark future treatment of these corrections. J. N. Hodges, A. J. Perry, P. A. Jenkins II, B. M. Siller, and B. J. McCall, J. Chem. Phys. (2013), 139, 164201. A. J. Perry, J. N. Hodges, C. R. Markus, G. S. Kocheril, and B. J. McCall, J. Mol. Spectrosc. (2015), 317, 71-73. A. J. Perry, C. R. Markus, J. N. Hodges, G. S. Kocheril, and B. J. McCall, 71st International Symposium on Molecular Spectroscopy (2016), MH03. C. R. Markus, A. J. Perry, J. N. Hodges, and B. J. McCall, Opt. Express (2017), 25, 3709-3721.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nay, John J.; Vorobeychik, Yevgeniy; Xia, Cheng -Yi
The Prisoner’s Dilemma has been a subject of extensive research due to its importance in understanding the ever-present tension between individual self-interest and social benefit. A strictly dominant strategy in a Prisoner’s Dilemma (defection), when played by both players, is mutually harmful. Repetition of the Prisoner’s Dilemma can give rise to cooperation as an equilibrium, but defection is as well, and this ambiguity is difficult to resolve. The numerous behavioral experiments investigating the Prisoner’s Dilemma highlight that players often cooperate, but the level of cooperation varies significantly with the specifics of the experimental predicament. We present the first computational modelmore » of human behavior in repeated Prisoner’s Dilemma games that unifies the diversity of experimental observations in a systematic and quantitatively reliable manner. Our model relies on data we integrated from many experiments, comprising 168,386 individual decisions. The model is composed of two pieces: the first predicts the first-period action using solely the structural game parameters, while the second predicts dynamic actions using both game parameters and history of play. Our model is successful not merely at fitting the data, but in predicting behavior at multiple scales in experimental designs not used for calibration, using only information about the game structure. As a result, we demonstrate the power of our approach through a simulation analysis revealing how to best promote human cooperation.« less
Nay, John J.; Vorobeychik, Yevgeniy; Xia, Cheng -Yi
2016-05-12
The Prisoner’s Dilemma has been a subject of extensive research due to its importance in understanding the ever-present tension between individual self-interest and social benefit. A strictly dominant strategy in a Prisoner’s Dilemma (defection), when played by both players, is mutually harmful. Repetition of the Prisoner’s Dilemma can give rise to cooperation as an equilibrium, but defection is as well, and this ambiguity is difficult to resolve. The numerous behavioral experiments investigating the Prisoner’s Dilemma highlight that players often cooperate, but the level of cooperation varies significantly with the specifics of the experimental predicament. We present the first computational modelmore » of human behavior in repeated Prisoner’s Dilemma games that unifies the diversity of experimental observations in a systematic and quantitatively reliable manner. Our model relies on data we integrated from many experiments, comprising 168,386 individual decisions. The model is composed of two pieces: the first predicts the first-period action using solely the structural game parameters, while the second predicts dynamic actions using both game parameters and history of play. Our model is successful not merely at fitting the data, but in predicting behavior at multiple scales in experimental designs not used for calibration, using only information about the game structure. As a result, we demonstrate the power of our approach through a simulation analysis revealing how to best promote human cooperation.« less
First principles study of hydrogen bond symmetrization in δ-AlOOH
NASA Astrophysics Data System (ADS)
Pillai, Sharad Babu; Jha, Prafulla K.; Padmalal, Akash; Maurya, D. M.; Chamyal, L. S.
2018-03-01
The high pressure behaviour of the hydrous mineral δ-AlOOH has been investigated by many experimental and theoretical studies, but the discrepancy in predicting the value of hydrogen symmetrization pressure was not resolved. Here, we investigated the high pressure behaviour of δ-AlOOH using first principles calculations and found that with proper optimization using pressure routine control, local density approximation (LDA) predicts the hydrogen symmetrization pressure as 15 GPa which is in good agreement with the experimentally predicted value which resolves the existing discrepancy and hence proving the validity of LDA in predicting the hydrogen symmetrization pressure. We further studied the compressibility behaviour of δ-AlOOH at low pressures and confirmed the P21nm to Pnnm transition of δ-AlOOH shown by the experimental work [Kuribayashi et al., Phys. Chem. Miner. 41, 303-312 (2014)]. We have also analysed the dependence of elastic constants, elastic moduli, sound velocities, and Raman spectrum of δ-AlOOH with pressure and found that a subtle change in the position of the hydrogen atom at hydrogen symmetrization pressure results into drastic changes in elastic and vibrational properties. Further, this study has been used to discuss the seismic anomalies observed in the upper mantle beneath the Deccan Volcanic Province in India and the Java subduction zone in the eastern flank of the Indian Ocean.
Nay, John J.; Vorobeychik, Yevgeniy
2016-01-01
The Prisoner’s Dilemma has been a subject of extensive research due to its importance in understanding the ever-present tension between individual self-interest and social benefit. A strictly dominant strategy in a Prisoner’s Dilemma (defection), when played by both players, is mutually harmful. Repetition of the Prisoner’s Dilemma can give rise to cooperation as an equilibrium, but defection is as well, and this ambiguity is difficult to resolve. The numerous behavioral experiments investigating the Prisoner’s Dilemma highlight that players often cooperate, but the level of cooperation varies significantly with the specifics of the experimental predicament. We present the first computational model of human behavior in repeated Prisoner’s Dilemma games that unifies the diversity of experimental observations in a systematic and quantitatively reliable manner. Our model relies on data we integrated from many experiments, comprising 168,386 individual decisions. The model is composed of two pieces: the first predicts the first-period action using solely the structural game parameters, while the second predicts dynamic actions using both game parameters and history of play. Our model is successful not merely at fitting the data, but in predicting behavior at multiple scales in experimental designs not used for calibration, using only information about the game structure. We demonstrate the power of our approach through a simulation analysis revealing how to best promote human cooperation. PMID:27171417
NASA Technical Reports Server (NTRS)
Collins, J. Scott; Johnson, Eric R.
1989-01-01
Experiments were conducted to measure the three-dimensional static and free vibrational response of two graphite-epoxy, thin-walled, open section frames. The frames are semi-circular with a radius of three feet, and one specimen has an I cross section and the other has a channel cross section. The flexibility influence coefficients were measured in static tests for loads applied at midspan with the ends of the specimens clamped. Natural frequencies and modes were determined from vibrational tests for free and clamped end conditions. The experimental data is used to evaluate a new finite element which was developed specifically for the analysis of curved, thin-walled structures. The formulation of the element is based on a Vlasov-type, thin-walled, curved beam theory. The predictions from the finite element program generally correlated well with the experimental data for the symmetric I-specimen. Discrepancies in some of the data were found to be due to flexibility in the clamped end conditions. With respect to the data for the channel specimen, the correlation was less satisfactory. The finite element analysis predicted the out-of-plane response of the channel specimen reasonably well, but large discrepancies occurred between the predicted in-plane response and the experimental data. The analysis predicted a much more compliant in-plane response than was observed in the experiments.
Prediction of traction forces of motile cells.
Roux, Clément; Duperray, Alain; Laurent, Valérie M; Michel, Richard; Peschetola, Valentina; Verdier, Claude; Étienne, Jocelyn
2016-10-06
When crawling on a flat substrate, living cells exert forces on it via adhesive contacts, enabling them to build up tension within their cytoskeleton and to change shape. The measurement of these forces has been made possible by traction force microscopy (TFM), a technique which has allowed us to obtain time-resolved traction force maps during cell migration. This cell 'footprint' is, however, not sufficient to understand the details of the mechanics of migration, that is how cytoskeletal elements (respectively, adhesion complexes) are put under tension and reinforce or deform (respectively, mature and/or unbind) as a result. In a recent paper, we have validated a rheological model of actomyosin linking tension, deformation and myosin activity. Here, we complement this model with tentative models of the mechanics of adhesion and explore how closely these models can predict the traction forces that we recover from experimental measurements during cell migration. The resulting mathematical problem is a PDE set on the experimentally observed domain, which we solve using a finite-element approach. The four parameters of the model can then be adjusted by comparison with experimental results on a single frame of an experiment, and then used to test the predictive power of the model for following frames and other experiments. It is found that the basic pattern of traction forces is robustly predicted by the model and fixed parameters as a function of current geometry only.
Finite Element Model of the Knee for Investigation of Injury Mechanisms: Development and Validation
Kiapour, Ali; Kiapour, Ata M.; Kaul, Vikas; Quatman, Carmen E.; Wordeman, Samuel C.; Hewett, Timothy E.; Demetropoulos, Constantine K.; Goel, Vijay K.
2014-01-01
Multiple computational models have been developed to study knee biomechanics. However, the majority of these models are mainly validated against a limited range of loading conditions and/or do not include sufficient details of the critical anatomical structures within the joint. Due to the multifactorial dynamic nature of knee injuries, anatomic finite element (FE) models validated against multiple factors under a broad range of loading conditions are necessary. This study presents a validated FE model of the lower extremity with an anatomically accurate representation of the knee joint. The model was validated against tibiofemoral kinematics, ligaments strain/force, and articular cartilage pressure data measured directly from static, quasi-static, and dynamic cadaveric experiments. Strong correlations were observed between model predictions and experimental data (r > 0.8 and p < 0.0005 for all comparisons). FE predictions showed low deviations (root-mean-square (RMS) error) from average experimental data under all modes of static and quasi-static loading, falling within 2.5 deg of tibiofemoral rotation, 1% of anterior cruciate ligament (ACL) and medial collateral ligament (MCL) strains, 17 N of ACL load, and 1 mm of tibiofemoral center of pressure. Similarly, the FE model was able to accurately predict tibiofemoral kinematics and ACL and MCL strains during simulated bipedal landings (dynamic loading). In addition to minimal deviation from direct cadaveric measurements, all model predictions fell within 95% confidence intervals of the average experimental data. Agreement between model predictions and experimental data demonstrates the ability of the developed model to predict the kinematics of the human knee joint as well as the complex, nonuniform stress and strain fields that occur in biological soft tissue. Such a model will facilitate the in-depth understanding of a multitude of potential knee injury mechanisms with special emphasis on ACL injury. PMID:24763546
Dutta, Achintya Kumar; Dar, Manzoor; Vaval, Nayana; Pal, Sourav
2014-02-27
We report a comparative single-reference and multireference coupled-cluster investigation on the structure, potential energy surface, and IR spectroscopic properties of the trans peroxo nitrate radical, one of the key intermediates in stratospheric NOX chemistry. The previous single-reference ab initio studies predicted an unbound structure for the trans peroxo nitrate radical. However, our Fock space multireference coupled-cluster calculation confirms a bound structure for the trans peroxo nitrate radical, in accordance with the experimental results reported earlier. Further, the analysis of the potential energy surface in FSMRCC method indicates a well-behaved minima, contrary to the shallow minima predicted by the single-reference coupled-cluster method. The harmonic force field analysis, of various possible isomers of peroxo nitrate also reveals that only the trans structure leads to the experimentally observed IR peak at 1840 cm(-1). The present study highlights the critical importance of nondynamic correlation in predicting the structure and properties of high-energy stratospheric NOx radicals.
Simulation of radiation driven fission gas diffusion in UO 2, ThO 2 and PuO 2
Cooper, Michael William D.; Stanek, Christopher Richard; Turnbull, James Anthony; ...
2016-12-01
Below 1000 K it is thought that fission gas diffusion in nuclear fuel during irradiation occurs through atomic mixing due to radiation damage. Here we present a molecular dynamics (MD) study of Xe, Kr, Th, U, Pu and O diffusion due to irradiation. It is concluded that the ballistic phase does not sufficiently account for the experimentally observed diffusion. Thermal spike simulations are used to confirm that electronic stopping remedies the discrepancy with experiment and the predicted diffusivities lie within the scatter of the experimental data. Here, our results predict that the diffusion coefficients are ordered such that D* 0more » > D* Kr > D* Xe > D* U. For all species >98.5% of diffusivity is accounted for by electronic stopping. Fission gas diffusivity was not predicted to vary significantly between ThO 2, UO 2 and PuO 2, indicating that this process would not change greatly for mixed oxide fuels.« less
Single-layer model to predict the source/sink behavior of diffusion-controlled building materials.
Kumar, Deept; Little, John C
2003-09-01
Building materials may act as both sources of and sinks forvolatile organic compounds (VOCs) in indoor air. A strategy to characterize the rate of absorption and desorption of VOCs by diffusion-controlled building materials is validated. A previously developed model that predicts mass transfer between a flat slab of material and the well-mixed air within a chamber or room is extended. The generalized model allows a nonuniform initial material-phase concentration and a transient influent gas-phase concentration to be simultaneously considered. An analytical solution to the more general model is developed. Experimental data are obtained by placing samples of vinyl flooring inside a small stainless steel chamber and exposing them to absorption/desorption cycles of n-dodecane and phenol. Measured values for the material-air partition coefficient and the material-phase diffusion coefficient were obtained previously in a series of completely independent experiments. The a priori model predictions are in close agreement with the observed experimental data.
Bistable Behavior of the Lac Operon in E. Coli When Induced with a Mixture of Lactose and TMG
Díaz-Hernández, Orlando; Santillán, Moisés
2010-01-01
In this work we investigate multistability in the lac operon of Escherichia coli when it is induced by a mixture of lactose and the non-metabolizable thiomethyl galactoside (TMG). In accordance with previously published experimental results and computer simulations, our simulations predict that: (1) when the system is induced by TMG, the system shows a discernible bistable behavior while, (2) when the system is induced by lactose, bistability does not disappear but excessively high concentrations of lactose would be required to observe it. Finally, our simulation results predict that when a mixture of lactose and TMG is used, the bistability region in the extracellular glucose concentration vs. extracellular lactose concentration parameter space changes in such a way that the model predictions regarding bistability could be tested experimentally. These experiments could help to solve a recent controversy regarding the existence of bistability in the lac operon under natural conditions. PMID:21423364
Survey of computer programs for prediction of crash response and of its experimental validation
NASA Technical Reports Server (NTRS)
Kamat, M. P.
1976-01-01
The author seeks to critically assess the potentialities of the mathematical and hybrid simulators which predict post-impact response of transportation vehicles. A strict rigorous numerical analysis of a complex phenomenon like crash may leave a lot to be desired with regard to the fidelity of mathematical simulation. Hybrid simulations on the other hand which exploit experimentally observed features of deformations appear to hold a lot of promise. MARC, ANSYS, NONSAP, DYCAST, ACTION, WHAM II and KRASH are among some of the simulators examined for their capabilities with regard to prediction of post impact response of vehicles. A review of these simulators reveals that much more by way of an analysis capability may be desirable than what is currently available. NASA's crashworthiness testing program in conjunction with similar programs of various other agencies, besides generating a large data base, will be equally useful in the validation of new mathematical concepts of nonlinear analysis and in the successful extension of other techniques in crashworthiness.
Prediction of possible CaMnO3 modifications using an ab initio minimization data-mining approach.
Zagorac, Jelena; Zagorac, Dejan; Zarubica, Aleksandra; Schön, J Christian; Djuris, Katarina; Matovic, Branko
2014-10-01
We have performed a crystal structure prediction study of CaMnO3 focusing on structures generated by octahedral tilting according to group-subgroup relations from the ideal perovskite type (Pm\\overline 3 m), which is the aristotype of the experimentally known CaMnO3 compound in the Pnma space group. Furthermore, additional structure candidates have been obtained using data mining. For each of the structure candidates, a local optimization on the ab initio level using density-functional theory (LDA, hybrid B3LYP) and the Hartree--Fock (HF) method was performed, and we find that several of the modifications may be experimentally accessible. In the high-pressure regime, we identify a post-perovskite phase in the CaIrO3 type, not previously observed in CaMnO3. Similarly, calculations at effective negative pressure predict a phase transition from the orthorhombic perovskite to an ilmenite-type (FeTiO3) modification of CaMnO3.
A System Computational Model of Implicit Emotional Learning
Puviani, Luca; Rama, Sidita
2016-01-01
Nowadays, the experimental study of emotional learning is commonly based on classical conditioning paradigms and models, which have been thoroughly investigated in the last century. Unluckily, models based on classical conditioning are unable to explain or predict important psychophysiological phenomena, such as the failure of the extinction of emotional responses in certain circumstances (for instance, those observed in evaluative conditioning, in post-traumatic stress disorders and in panic attacks). In this manuscript, starting from the experimental results available from the literature, a computational model of implicit emotional learning based both on prediction errors computation and on statistical inference is developed. The model quantitatively predicts (a) the occurrence of evaluative conditioning, (b) the dynamics and the resistance-to-extinction of the traumatic emotional responses, (c) the mathematical relation between classical conditioning and unconditioned stimulus revaluation. Moreover, we discuss how the derived computational model can lead to the development of new animal models for resistant-to-extinction emotional reactions and novel methodologies of emotions modulation. PMID:27378898
A System Computational Model of Implicit Emotional Learning.
Puviani, Luca; Rama, Sidita
2016-01-01
Nowadays, the experimental study of emotional learning is commonly based on classical conditioning paradigms and models, which have been thoroughly investigated in the last century. Unluckily, models based on classical conditioning are unable to explain or predict important psychophysiological phenomena, such as the failure of the extinction of emotional responses in certain circumstances (for instance, those observed in evaluative conditioning, in post-traumatic stress disorders and in panic attacks). In this manuscript, starting from the experimental results available from the literature, a computational model of implicit emotional learning based both on prediction errors computation and on statistical inference is developed. The model quantitatively predicts (a) the occurrence of evaluative conditioning, (b) the dynamics and the resistance-to-extinction of the traumatic emotional responses, (c) the mathematical relation between classical conditioning and unconditioned stimulus revaluation. Moreover, we discuss how the derived computational model can lead to the development of new animal models for resistant-to-extinction emotional reactions and novel methodologies of emotions modulation.
Data Assimilation - Advances and Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Brian J.
2014-07-30
This presentation provides an overview of data assimilation (model calibration) for complex computer experiments. Calibration refers to the process of probabilistically constraining uncertain physics/engineering model inputs to be consistent with observed experimental data. An initial probability distribution for these parameters is updated using the experimental information. Utilization of surrogate models and empirical adjustment for model form error in code calibration form the basis for the statistical methodology considered. The role of probabilistic code calibration in supporting code validation is discussed. Incorporation of model form uncertainty in rigorous uncertainty quantification (UQ) analyses is also addressed. Design criteria used within a batchmore » sequential design algorithm are introduced for efficiently achieving predictive maturity and improved code calibration. Predictive maturity refers to obtaining stable predictive inference with calibrated computer codes. These approaches allow for augmentation of initial experiment designs for collecting new physical data. A standard framework for data assimilation is presented and techniques for updating the posterior distribution of the state variables based on particle filtering and the ensemble Kalman filter are introduced.« less
Experiments, constitutive modeling and FE simulations of the impact behavior of Molybdenum
NASA Astrophysics Data System (ADS)
Kleiser, Geremy; Revil-Baudard, Benoit
For polycrystalline high-purity molybdenum the feasibility of a Taylor test is questionable because the very large tensile stresses generated at impact would result in disintegration of the specimen. We report an experimental investigation and new model to account simultaneously for the experimentally observed anisotropy, tension-compression asymmetry and strain-rate sensitivity of this material. To ensure high-fidelity predictions, a fully-implicit algorithm was used for implementing the new model in the FE code ABAQUS. Based on model predictions, the impact velocity range was established for which specimens may be recovered. Taylor impact tests in this range (140-165 m/s) were successfully conducted for different specimen taken along the rolling direction (RD), the transverse direction and 45o to the RD. Comparison between the measured profiles of impact specimens and FE model predictions show excellent agreement. Furthermore, simulations were performed to gain understanding of the dynamic event: time evolution of the pressure, the extent of plastic deformation, distribution of plastic strain rates, and transition to quasi-stable deformation occurs.
Brown, Richard J C; Wang, Jian; Tantra, Ratna; Yardley, Rachel E; Milton, Martin J T
2006-01-01
Despite widespread use for more than two decades, the SERS phenomenon has defied accurate physical and chemical explanation. The relative contributions from electronic and chemical mechanisms are difficult to quantify and are often not reproduced under nominally similar experimental conditions. This work has used electromagnetic modelling to predict the Raman enhancement expected from three configurations: metal nanoparticles, structured metal surfaces, and sharp metal tips interacting with metal surfaces. In each case, parameters such as artefact size, artefact separation and incident radiation wavelength have been varied and the resulting electromagnetic field modelled. This has yielded an electromagnetic description of these configurations with predictions of the maximum expected Raman enhancement, and hence a prediction of the optimum substrate configuration for the SERS process. When combined with experimental observations of the dependence of Raman enhancement with changing ionic strength, the modelling results have allowed a novel estimate of the size of the chemical enhancement mechanism to be produced.
Sresht, Vishnu; Lewandowski, Eric P; Blankschtein, Daniel; Jusufi, Arben
2017-08-22
A molecular modeling approach is presented with a focus on quantitative predictions of the surface tension of aqueous surfactant solutions. The approach combines classical Molecular Dynamics (MD) simulations with a molecular-thermodynamic theory (MTT) [ Y. J. Nikas, S. Puvvada, D. Blankschtein, Langmuir 1992 , 8 , 2680 ]. The MD component is used to calculate thermodynamic and molecular parameters that are needed in the MTT model to determine the surface tension isotherm. The MD/MTT approach provides the important link between the surfactant bulk concentration, the experimental control parameter, and the surfactant surface concentration, the MD control parameter. We demonstrate the capability of the MD/MTT modeling approach on nonionic alkyl polyethylene glycol surfactants at the air-water interface and observe reasonable agreement of the predicted surface tensions and the experimental surface tension data over a wide range of surfactant concentrations below the critical micelle concentration. Our modeling approach can be extended to ionic surfactants and their mixtures with both ionic and nonionic surfactants at liquid-liquid interfaces.
Can quantitative sensory testing predict responses to analgesic treatment?
Grosen, K; Fischer, I W D; Olesen, A E; Drewes, A M
2013-10-01
The role of quantitative sensory testing (QST) in prediction of analgesic effect in humans is scarcely investigated. This updated review assesses the effectiveness in predicting analgesic effects in healthy volunteers, surgical patients and patients with chronic pain. A systematic review of English written, peer-reviewed articles was conducted using PubMed and Embase (1980-2013). Additional studies were identified by chain searching. Search terms included 'quantitative sensory testing', 'sensory testing' and 'analgesics'. Studies on the relationship between QST and response to analgesic treatment in human adults were included. Appraisal of the methodological quality of the included studies was based on evaluative criteria for prognostic studies. Fourteen studies (including 720 individuals) met the inclusion criteria. Significant correlations were observed between responses to analgesics and several QST parameters including (1) heat pain threshold in experimental human pain, (2) electrical and heat pain thresholds, pressure pain tolerance and suprathreshold heat pain in surgical patients, and (3) electrical and heat pain threshold and conditioned pain modulation in patients with chronic pain. Heterogeneity among studies was observed especially with regard to application of QST and type and use of analgesics. Although promising, the current evidence is not sufficiently robust to recommend the use of any specific QST parameter in predicting analgesic response. Future studies should focus on a range of different experimental pain modalities rather than a single static pain stimulation paradigm. © 2013 European Federation of International Association for the Study of Pain Chapters.
Biomechanical influences on balance recovery by stepping.
Hsiao, E T; Robinovitch, S N
1999-10-01
Stepping represents a common means for balance recovery after a perturbation to upright posture. Yet little is known regarding the biomechanical factors which determine whether a step succeeds in preventing a fall. In the present study, we developed a simple pendulum-spring model of balance recovery by stepping, and used this to assess how step length and step contact time influence the effort (leg contact force) and feasibility of balance recovery by stepping. We then compared model predictions of step characteristics which minimize leg contact force to experimentally observed values over a range of perturbation strengths. At all perturbation levels, experimentally observed step execution times were higher than optimal, and step lengths were smaller than optimal. However, the predicted increase in leg contact force associated with these deviations was substantial only for large perturbations. Furthermore, increases in the strength of the perturbation caused subjects to take larger, quicker steps, which reduced their predicted leg contact force. We interpret these data to reflect young subjects' desire to minimize recovery effort, subject to neuromuscular constraints on step execution time and step length. Finally, our model predicts that successful balance recovery by stepping is governed by a coupling between step length, step execution time, and leg strength, so that the feasibility of balance recovery decreases unless declines in one capacity are offset by enhancements in the others. This suggests that one's risk for falls may be affected more by small but diffuse neuromuscular impairments than by larger impairment in a single motor capacity.
Hydrocode predictions of collisional outcomes: Effects of target size
NASA Technical Reports Server (NTRS)
Ryan, Eileen V.; Asphaug, Erik; Melosh, H. J.
1991-01-01
Traditionally, laboratory impact experiments, designed to simulate asteroid collisions, attempted to establish a predictive capability for collisional outcomes given a particular set of initial conditions. Unfortunately, laboratory experiments are restricted to using targets considerably smaller than the modelled objects. It is therefore necessary to develop some methodology for extrapolating the extensive experimental results to the size regime of interest. Results are reported obtained through the use of two dimensional hydrocode based on 2-D SALE and modified to include strength effects and the fragmentation equations. The hydrocode was tested by comparing its predictions for post-impact fragment size distributions to those observed in laboratory impact experiments.
The energetics of heterogeneous deformation in open-cell elastic foams
NASA Astrophysics Data System (ADS)
Gioia, Gustavo; Cuitino, Alberto
2002-03-01
We study the energetics of a model of elastic foams to show that the stretch heterogeneity observed in experiments stems from the lack of convexity of the governing energy functional. The predicted stretch distributions correspond to stratified mixtures of two configurational phases of the foam. Stretching occurs in the form of a phase transition, by growth of one of the phases at the expense of the other. We also compare the predicted mechanical response with experimental data for foams of different densities. Lastly, we perform displacement field measurements using the digital image correlation technique, and find the results to be in agreement with our predictions.
Validation of High-Resolution CFD Method for Slosh Damping Extraction of Baffled Tanks
NASA Technical Reports Server (NTRS)
Yang, H. Q.; West, Jeff
2016-01-01
The predicted slosh damping values from Loci-Stream-VOF agree with experimental data very well for all fill levels in the vicinity of the baffle. Grid refinement study is conducted and shows that the current predictions are grid independent. The increase of slosh damping due to the baffle is shown to arise from: a) surface breakup; b) cascade of energy from the low order slosh mode to higher modes; and c) recirculation inside liquid phase around baffle. The damping is a function of slosh amplitude, consistent with previous observation. Miles equation under predicts damping in the upper dome section.
Small-amplitude acoustics in bulk granular media
NASA Astrophysics Data System (ADS)
Henann, David L.; Valenza, John J., II; Johnson, David L.; Kamrin, Ken
2013-10-01
We propose and validate a three-dimensional continuum modeling approach that predicts small-amplitude acoustic behavior of dense-packed granular media. The model is obtained through a joint experimental and finite-element study focused on the benchmark example of a vibrated container of grains. Using a three-parameter linear viscoelastic constitutive relation, our continuum model is shown to quantitatively predict the effective mass spectra in this geometry, even as geometric parameters for the environment are varied. Further, the model's predictions for the surface displacement field are validated mode-by-mode against experiment. A primary observation is the importance of the boundary condition between grains and the quasirigid walls.
Model predictions of higher-order normal alkane ignition from dilute shock-tube experiments
NASA Astrophysics Data System (ADS)
Rotavera, B.; Petersen, E. L.
2013-07-01
Shock-induced oxidation of two higher-order linear alkanes was measured using a heated shock tube facility. Experimental overlap in stoichiometric ignition delay times obtained under dilute (99 % Ar) conditions near atmospheric pressure was observed in the temperature-dependent ignition trends of n-nonane ( n-C9H20) and n-undecane ( n-C11H24). Despite the overlap, model predictions of ignition using two different detailed chemical kinetics mechanisms show discrepancies relative to both the measured data as well as to one another. The present study therefore focuses on the differences observed in the modeled, high-temperature ignition delay times of higher-order n-alkanes, which are generally regarded to have identical ignition behavior for carbon numbers above C7. Comparisons are drawn using experimental data from the present study and from recent work by the authors relative to two existing chemical kinetics mechanisms. Time histories from the shock-tube OH* measurements are also compared to the model predictions; a double-peaked structure observed in the data shows that the time response of the detector electronics is crucial for properly capturing the first, incipient peak near time zero. Calculations using the two mechanisms were carried out at the dilution level employed in the shock-tube experiments for lean {({φ} = 0.5)}, stoichiometric, and rich {({φ} = 2.0)} equivalence ratios, 1230-1620 K, and for both 1.5 and 10 atm. In general, the models show differing trends relative to both measured data and to one another, indicating that agreement among chemical kinetics models for higher-order n-alkanes is not consistent. For example, under certain conditions, one mechanism predicts the ignition delay times to be virtually identical between the n-nonane and n-undecane fuels (in fact, also for all alkanes between at least C8 and C12), which is in agreement with the experiment, while the other mechanism predicts the larger fuels to ignite progressively more slowly.
A School Experiment in Kinematics: Shooting from a Ballistic Cart
ERIC Educational Resources Information Center
Kranjc, T.; Razpet, N.
2011-01-01
Many physics textbooks start with kinematics. In the lab, students observe the motions, describe and make predictions, and get acquainted with basic kinematics quantities and their meaning. Then they can perform calculations and compare the results with experimental findings. In this paper we describe an experiment that is not often done, but is…
Knudsen effects in a Scott effect experiment.
NASA Technical Reports Server (NTRS)
Wells, C. W.; Wood, L. T.; Hildebrandt, A. F.
1973-01-01
A thermal torque sometimes observed in Scott effect measurements has been studied experimentally and an explanation for the thermal torque proposed. The magnitude of the thermal torque can be comparable to the Scott torque depending on geometrical and thermal anisotropies. The thermal torque is predicted to decrease with application of an axial magnetic field.
Overload retardation due to plasticity-induced crack closure
NASA Technical Reports Server (NTRS)
Fleck, N. A.; Shercliff, H. R.
1989-01-01
Experiments are reported which show that plasticity-induced crack closure can account for crack growth retardation following an overload. The finite element method is used to provide evidence which supports the experimental observations of crack closure. Finally, a simple model is presented which predicts with limited success the retardation transient following an overload.
Fixation-Dependent Memory for Natural Scenes: An Experimental Test of Scanpath Theory
ERIC Educational Resources Information Center
Foulsham, Tom; Kingstone, Alan
2013-01-01
Many modern theories propose that perceptual information is represented by the sensorimotor activity elicited by the original stimulus. Scanpath theory (Noton & Stark, 1971) predicts that reinstating a sequence of eye fixations will help an observer recognize a previously seen image. However, the only studies to investigate this are…
Comparison of GLIMPS and HFAST Stirling engine code predictions with experimental data
NASA Technical Reports Server (NTRS)
Geng, Steven M.; Tew, Roy C.
1992-01-01
Predictions from GLIMPS and HFAST design codes are compared with experimental data for the RE-1000 and SPRE free piston Stirling engines. Engine performance and available power loss predictions are compared. Differences exist between GLIMPS and HFAST loss predictions. Both codes require engine specific calibration to bring predictions and experimental data into agreement.
NASA Astrophysics Data System (ADS)
Hsu, Chung-Yuan; Tsai, Chin-Chung; Liang, Jyh-Chong
2011-10-01
Educational researchers have suggested that computer games have a profound influence on students' motivation, knowledge construction, and learning performance, but little empirical research has targeted preschoolers. Thus, the purpose of the present study was to investigate the effects of implementing a computer game that integrates the prediction-observation-explanation (POE) strategy (White and Gunstone in Probing understanding. Routledge, New York, 1992) on facilitating preschoolers' acquisition of scientific concepts regarding light and shadow. The children's alternative conceptions were explored as well. Fifty participants were randomly assigned into either an experimental group that played a computer game integrating the POE model or a control group that played a non-POE computer game. By assessing the students' conceptual understanding through interviews, this study revealed that the students in the experimental group significantly outperformed their counterparts in the concepts regarding "shadow formation in daylight" and "shadow orientation." However, children in both groups, after playing the games, still expressed some alternative conceptions such as "Shadows always appear behind a person" and "Shadows should be on the same side as the sun."
Learning Contrast-Invariant Cancellation of Redundant Signals in Neural Systems
Bol, Kieran; Maler, Leonard; Longtin, André
2013-01-01
Cancellation of redundant information is a highly desirable feature of sensory systems, since it would potentially lead to a more efficient detection of novel information. However, biologically plausible mechanisms responsible for such selective cancellation, and especially those robust to realistic variations in the intensity of the redundant signals, are mostly unknown. In this work, we study, via in vivo experimental recordings and computational models, the behavior of a cerebellar-like circuit in the weakly electric fish which is known to perform cancellation of redundant stimuli. We experimentally observe contrast invariance in the cancellation of spatially and temporally redundant stimuli in such a system. Our model, which incorporates heterogeneously-delayed feedback, bursting dynamics and burst-induced STDP, is in agreement with our in vivo observations. In addition, the model gives insight on the activity of granule cells and parallel fibers involved in the feedback pathway, and provides a strong prediction on the parallel fiber potentiation time scale. Finally, our model predicts the existence of an optimal learning contrast around 15% contrast levels, which are commonly experienced by interacting fish. PMID:24068898
NASA Astrophysics Data System (ADS)
Klein, D. Harley; Leal, L. Gary; García-Cervera, Carlos J.; Ceniceros, Hector D.
2007-02-01
We consider the behavior of the Doi-Marrucci-Greco (DMG) model for nematic liquid crystalline polymers in planar shear flow. We found the DMG model to exhibit dynamics in both qualitative and quantitative agreement with experimental observations reported by Larson and Mead [Liq. Cryst. 15, 151 (1993)] for the Ericksen number and Deborah number cascades. For increasing shear rates within the Ericksen number cascade, the DMG model displays three distinct regimes: stable simple shear, stable roll cells, and irregular structure accompanied by disclination formation. In accordance with experimental observations, the model predicts both ±1 and ±1/2 disclinations. Although ±1 defects form via the ridge-splitting mechanism first identified by Feng, Tao, and Leal [J. Fluid Mech. 449, 179 (2001)], a new mechanism is identified for the formation of ±1/2 defects. Within the Deborah number cascade, with increasing Deborah number, the DMG model exhibits a streamwise banded texture, in the absence of disclinations and roll cells, followed by a monodomain wherein the mean orientation lies within the shear plane throughout the domain.
Global performance enhancements via pedestal optimisation on ASDEX Upgrade
NASA Astrophysics Data System (ADS)
Dunne, M. G.; Frassinetti, L.; Beurskens, M. N. A.; Cavedon, M.; Fietz, S.; Fischer, R.; Giannone, L.; Huijsmans, G. T. A.; Kurzan, B.; Laggner, F.; McCarthy, P. J.; McDermott, R. M.; Tardini, G.; Viezzer, E.; Willensdorfer, M.; Wolfrum, E.; The EUROfusion MST1 Team; The ASDEX Upgrade Team
2017-02-01
Results of experimental scans of heating power, plasma shape, and nitrogen content are presented, with a focus on global performance and pedestal alteration. In detailed scans at low triangularity, it is shown that the increase in stored energy due to nitrogen seeding stems from the pedestal. It is also shown that the confinement increase is driven through the temperature pedestal at the three heating power levels studied. In a triangularity scan, an orthogonal effect of shaping and seeding is observed, where increased plasma triangularity increases the pedestal density, while impurity seeding (carbon and nitrogen) increases the pedestal temperature in addition to this effect. Modelling of these effects was also undertaken, with interpretive and predictive models being employed. The interpretive analysis shows a general agreement of the experimental pedestals in separate power, shaping, and seeding scans with peeling-ballooning theory. Predictive analysis was used to isolate the individual effects, showing that the trends of additional heating power and increased triangularity can be recoverd. However, a simple change of the effective charge in the plasma cannot explain the observed levels of confinement improvement in the present models.
Experimental evidence of solitary wave interaction in Hertzian chains
NASA Astrophysics Data System (ADS)
Santibanez, Francisco; Munoz, Romina; Caussarieu, Aude; Job, Stéphane; Melo, Francisco
2011-08-01
We study experimentally the interaction between two solitary waves that approach one another in a linear chain of spheres interacting via the Hertz potential. When these counterpropagating waves collide, they cross each other and a phase shift in respect to the noninteracting waves is introduced as a result of the nonlinear interaction potential. This observation is well reproduced by our numerical simulations and is shown to be independent of viscoelastic dissipation at the bead contact. In addition, when the collision of equal amplitude and synchronized counterpropagating waves takes place, we observe that two secondary solitary waves emerge from the interacting region. The amplitude of the secondary solitary waves is proportional to the amplitude of incident waves. However, secondary solitary waves are stronger when the collision occurs at the middle contact in chains with an even number of beads. Although numerical simulations correctly predict the existence of these waves, experiments show that their respective amplitudes are significantly larger than predicted. We attribute this discrepancy to the rolling friction at the bead contact during solitary wave propagation.
Hormiga, J A; Vera, J; Frías, I; Torres Darias, N V
2008-10-10
The well-documented ability to degrade lignin and a variety of complex chemicals showed by the white-rot fungus Phanerochaete chrysosporium has made it the subject of many studies in areas of environmental concern, including pulp bioleaching and bioremediation technologies. However, until now, most of the work in this field has been focused on the ligninolytic sub-system but, due to the great complexity of the involved processes, less progress has been made in understanding the biochemical regulatory structure that could explain growth dynamics, the substrate utilization and the ligninolytic system production itself. In this work we want to tackle this problem from the perspectives and approaches of systems biology, which have been shown to be effective in the case of complex systems. We will use a top-down approach to the construction of this model aiming to identify the cellular sub-systems that play a major role in the whole process. We have investigated growth dynamics, substrate consumption and lignin peroxidase production of the P. chrysosporium wild type under a set of definite culture conditions. Based on data gathered from different authors and in our own experimental determinations, we built a model using a GMA power-law representation, which was used as platform to make predictive simulations. Thereby, we could assess the consistency of some current assumptions about the regulatory structure of the overall process. The model parameters were estimated from a time series experimental measurements by means of an algorithm previously adapted and optimized for power-law models. The model was subsequently checked for quality by comparing its predictions with the experimental behavior observed in new, different experimental settings and through perturbation analysis aimed to test the robustness of the model. Hence, the model showed to be able to predict the dynamics of two critical variables such as biomass and lignin peroxidase activity when in conditions of nutrient deprivation and after pulses of veratryl alcohol. Moreover, it successfully predicts the evolution of the variables during both, the active growth phase and after the deprivation shock. The close agreement between the predicted and observed behavior and the advanced understanding of its kinetic structure and regulatory features provides the necessary background for the design of a biotechnological set-up designed for the continuous production of the ligninolityc system and its optimization.
Lundholm, Ida V.; Rodilla, Helena; Wahlgren, Weixiao Y.; Duelli, Annette; Bourenkov, Gleb; Vukusic, Josip; Friedman, Ran; Stake, Jan; Schneider, Thomas; Katona, Gergely
2015-01-01
Whether long-range quantum coherent states could exist in biological systems, and beyond low-temperature regimes where quantum physics is known to be applicable, has been the subject to debate for decades. It was proposed by Fröhlich that vibrational modes within protein molecules can order and condense into a lowest-frequency vibrational mode in a process similar to Bose-Einstein condensation, and thus that macroscopic coherence could potentially be observed in biological systems. Despite the prediction of these so-called Fröhlich condensates almost five decades ago, experimental evidence thereof has been lacking. Here, we present the first experimental observation of Fröhlich condensation in a protein structure. To that end, and to overcome the challenges associated with probing low-frequency molecular vibrations in proteins (which has hampered understanding of their role in proteins' function), we combined terahertz techniques with a highly sensitive X-ray crystallographic method to visualize low-frequency vibrational modes in the protein structure of hen-egg white lysozyme. We found that 0.4 THz electromagnetic radiation induces non-thermal changes in electron density. In particular, we observed a local increase of electron density in a long α-helix motif consistent with a subtle longitudinal compression of the helix. These observed electron density changes occur at a low absorption rate indicating that thermalization of terahertz photons happens on a micro- to milli-second time scale, which is much slower than the expected nanosecond time scale due to damping of delocalized low frequency vibrations. Our analyses show that the micro- to milli-second lifetime of the vibration can only be explained by Fröhlich condensation, a phenomenon predicted almost half a century ago, yet never experimentally confirmed. PMID:26798828
Lundholm, Ida V; Rodilla, Helena; Wahlgren, Weixiao Y; Duelli, Annette; Bourenkov, Gleb; Vukusic, Josip; Friedman, Ran; Stake, Jan; Schneider, Thomas; Katona, Gergely
2015-09-01
Whether long-range quantum coherent states could exist in biological systems, and beyond low-temperature regimes where quantum physics is known to be applicable, has been the subject to debate for decades. It was proposed by Fröhlich that vibrational modes within protein molecules can order and condense into a lowest-frequency vibrational mode in a process similar to Bose-Einstein condensation, and thus that macroscopic coherence could potentially be observed in biological systems. Despite the prediction of these so-called Fröhlich condensates almost five decades ago, experimental evidence thereof has been lacking. Here, we present the first experimental observation of Fröhlich condensation in a protein structure. To that end, and to overcome the challenges associated with probing low-frequency molecular vibrations in proteins (which has hampered understanding of their role in proteins' function), we combined terahertz techniques with a highly sensitive X-ray crystallographic method to visualize low-frequency vibrational modes in the protein structure of hen-egg white lysozyme. We found that 0.4 THz electromagnetic radiation induces non-thermal changes in electron density. In particular, we observed a local increase of electron density in a long α-helix motif consistent with a subtle longitudinal compression of the helix. These observed electron density changes occur at a low absorption rate indicating that thermalization of terahertz photons happens on a micro- to milli-second time scale, which is much slower than the expected nanosecond time scale due to damping of delocalized low frequency vibrations. Our analyses show that the micro- to milli-second lifetime of the vibration can only be explained by Fröhlich condensation, a phenomenon predicted almost half a century ago, yet never experimentally confirmed.
Secondary Structure Predictions for Long RNA Sequences Based on Inversion Excursions and MapReduce.
Yehdego, Daniel T; Zhang, Boyu; Kodimala, Vikram K R; Johnson, Kyle L; Taufer, Michela; Leung, Ming-Ying
2013-05-01
Secondary structures of ribonucleic acid (RNA) molecules play important roles in many biological processes including gene expression and regulation. Experimental observations and computing limitations suggest that we can approach the secondary structure prediction problem for long RNA sequences by segmenting them into shorter chunks, predicting the secondary structures of each chunk individually using existing prediction programs, and then assembling the results to give the structure of the original sequence. The selection of cutting points is a crucial component of the segmenting step. Noting that stem-loops and pseudoknots always contain an inversion, i.e., a stretch of nucleotides followed closely by its inverse complementary sequence, we developed two cutting methods for segmenting long RNA sequences based on inversion excursions: the centered and optimized method. Each step of searching for inversions, chunking, and predictions can be performed in parallel. In this paper we use a MapReduce framework, i.e., Hadoop, to extensively explore meaningful inversion stem lengths and gap sizes for the segmentation and identify correlations between chunking methods and prediction accuracy. We show that for a set of long RNA sequences in the RFAM database, whose secondary structures are known to contain pseudoknots, our approach predicts secondary structures more accurately than methods that do not segment the sequence, when the latter predictions are possible computationally. We also show that, as sequences exceed certain lengths, some programs cannot computationally predict pseudoknots while our chunking methods can. Overall, our predicted structures still retain the accuracy level of the original prediction programs when compared with known experimental secondary structure.
NASA Astrophysics Data System (ADS)
Couture, O.; Cherin, E.; Foster, F. S.
2007-07-01
A model predicting the reflection of ultrasound from multiple layers of small scattering spheres is developed. Predictions of the reflection coefficient, which takes into account the interferences between the different sphere layers, are compared to measurements performed in the 10-80 MHz and 15-35 MHz frequency range with layers of glass beads and spherical acute myeloid leukemia (AML) cells, respectively. For both types of scatterers, the reflection coefficient increases as a function of their density on the surface for less than three superimposed layers, at which point it saturates at 0.38 for glass beads and 0.02 for AML cells. Above three layers, oscillations of the reflection coefficient due to constructive or destructive interference between layers are observed experimentally and are accurately predicted by the model. The use of such a model could lead to a better understanding of the structures observed in layered tissue images.
Ratcheting in a nonlinear viscoelastic adhesive
NASA Astrophysics Data System (ADS)
Lemme, David; Smith, Lloyd
2017-11-01
Uniaxial time-dependent creep and cycled stress behavior of a standard and toughened film adhesive were studied experimentally. Both adhesives exhibited progressive accumulation of strain from an applied cycled stress. Creep tests were fit to a viscoelastic power law model at three different applied stresses which showed nonlinear response in both adhesives. A third order nonlinear power law model with a permanent strain component was used to describe the creep behavior of both adhesives and to predict creep recovery and the accumulation of strain due to cycled stress. Permanent strain was observed at high stress but only up to 3% of the maximum strain. Creep recovery was under predicted by the nonlinear model, while cycled stress showed less than 3% difference for the first cycle but then over predicted the response above 1000 cycles by 4-14% at high stress. The results demonstrate the complex response observed with structural adhesives, and the need for further analytical advancements to describe their behavior.
A Bitter Pill: The Cosmic Lithium Problem
NASA Astrophysics Data System (ADS)
Fields, Brian
2014-03-01
Primordial nucleosynthesis describes the production of the lightest nuclides in the first three minutes of cosmic time. We will discuss the transformative influence of the WMAP and Planck determinations of the cosmic baryon density. Coupled with nucleosynthesis theory, these measurements make tight predictions for the primordial light element abundances: deuterium observations agree spectacularly with these predictions, helium observations are in good agreement, but lithium observations (in ancient halo stars) are significantly discrepant-this is the ``lithium problem.'' Over the past decade, the lithium discrepancy has become more severe, and very recently the solution space has shrunk. A solution due to new nuclear resonances has now been essentially ruled out experimentally. Stellar evolution solutions remain viable but must be finely tuned. Observational systematics are now being probed by qualitatively new methods of lithium observation. Finally, new physics solutions are now strongly constrained by the combination of the precision baryon determination by Planck, and the need to match the D/H abundances now measured to unprecedented precision at high redshift. Supported in part by NSF grant PHY-1214082.
Experimental observation of Fano effect in Ag nanoparticle-CdTe quantum dot hybrid system
NASA Astrophysics Data System (ADS)
Gurung, Sabina; Jayabalan, J.; Singh, Asha; Khan, Salahuddin; Chari, Rama
2018-04-01
We have experimentally measured the optical properties of Ag nanoparticle-CdTe quantum dot hybrid system and compared it with that of bare CdTe quantum dot colloid. It has been shown that the photoluminescence line shape of CdTe quantum dots becomes asymmetric in presence of Ag nanoparticles. The observed changes in the PL spectrum closely match the expected changes in the line shape due to Fano interaction between discrete level and continuum levels. Our experiment shows that a very small fraction of metal nanoparticles in the metal-semiconductor hybrid is sufficient to induce such changes in line shape which is in contrary to the earlier reported theoretical prediction on metal-semiconductor hybrid.
Observation of an optical spring with a beam splitter
NASA Astrophysics Data System (ADS)
Cripe, Jonathan; Danz, Baylee; Lane, Benjamin; Lorio, Mary Catherine; Falcone, Julia; Cole, Garrett D.; Corbitt, Thomas
2018-05-01
We present the experimental observation of an optical spring without the use of an optical cavity. The optical spring is produced by interference at a beamsplitter and, in principle, does not have the damping force associated with optical springs created in detuned cavities. The experiment consists of a Michelson-Sagnac interferometer (with no recycling cavities) with a partially reflective GaAs microresonator as the beamsplitter that produces the optical spring. Our experimental measurements at input powers of up to 360 mW show the shift of the optical spring frequency as a function of power and are in excellent agreement with theoretical predictions. In addition, we show that the optical spring is able to keep the interferometer stable and locked without the use of external feedback.
Discrete time-crystalline order in black diamond
NASA Astrophysics Data System (ADS)
Zhou, Hengyun; Choi, Soonwon; Choi, Joonhee; Landig, Renate; Kucsko, Georg; Isoya, Junichi; Jelezko, Fedor; Onoda, Shinobu; Sumiya, Hitoshi; Khemani, Vedika; von Keyserlingk, Curt; Yao, Norman; Demler, Eugene; Lukin, Mikhail D.
2017-04-01
The interplay of periodic driving, disorder, and strong interactions has recently been predicted to result in exotic ``time-crystalline'' phases, which spontaneously break the discrete time-translation symmetry of the underlying drive. Here, we report the experimental observation of such discrete time-crystalline order in a driven, disordered ensemble of 106 dipolar spin impurities in diamond at room-temperature. We observe long-lived temporal correlations at integer multiples of the fundamental driving period, experimentally identify the phase boundary and find that the temporal order is protected by strong interactions; this order is remarkably stable against perturbations, even in the presence of slow thermalization. Our work opens the door to exploring dynamical phases of matter and controlling interacting, disordered many-body systems.
Marozas, J A; Hohenberger, M; Rosenberg, M J; Turnbull, D; Collins, T J B; Radha, P B; McKenty, P W; Zuegel, J D; Marshall, F J; Regan, S P; Sangster, T C; Seka, W; Campbell, E M; Goncharov, V N; Bowers, M W; Di Nicola, J-M G; Erbert, G; MacGowan, B J; Pelz, L J; Yang, S T
2018-02-23
Cross-beam energy transfer (CBET) results from two-beam energy exchange via seeded stimulated Brillouin scattering, which detrimentally reduces ablation pressure and implosion velocity in direct-drive inertial confinement fusion. Mitigating CBET is demonstrated for the first time in inertial-confinement implosions at the National Ignition Facility by detuning the laser-source wavelengths (±2.3 Å UV) of the interacting beams. We show that, in polar direct-drive, wavelength detuning increases the equatorial region velocity experimentally by 16% and alters the in-flight shell morphology. These experimental observations are consistent with design predictions of radiation-hydrodynamic simulations that indicate a 10% increase in the average ablation pressure.
NASA Astrophysics Data System (ADS)
Marozas, J. A.; Hohenberger, M.; Rosenberg, M. J.; Turnbull, D.; Collins, T. J. B.; Radha, P. B.; McKenty, P. W.; Zuegel, J. D.; Marshall, F. J.; Regan, S. P.; Sangster, T. C.; Seka, W.; Campbell, E. M.; Goncharov, V. N.; Bowers, M. W.; Di Nicola, J.-M. G.; Erbert, G.; MacGowan, B. J.; Pelz, L. J.; Yang, S. T.
2018-02-01
Cross-beam energy transfer (CBET) results from two-beam energy exchange via seeded stimulated Brillouin scattering, which detrimentally reduces ablation pressure and implosion velocity in direct-drive inertial confinement fusion. Mitigating CBET is demonstrated for the first time in inertial-confinement implosions at the National Ignition Facility by detuning the laser-source wavelengths (±2.3 Å UV) of the interacting beams. We show that, in polar direct-drive, wavelength detuning increases the equatorial region velocity experimentally by 16% and alters the in-flight shell morphology. These experimental observations are consistent with design predictions of radiation-hydrodynamic simulations that indicate a 10% increase in the average ablation pressure.
Prediction of Spatiotemporal Patterns of Neural Activity from Pairwise Correlations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marre, O.; El Boustani, S.; Fregnac, Y.
We designed a model-based analysis to predict the occurrence of population patterns in distributed spiking activity. Using a maximum entropy principle with a Markovian assumption, we obtain a model that accounts for both spatial and temporal pairwise correlations among neurons. This model is tested on data generated with a Glauber spin-glass system and is shown to correctly predict the occurrence probabilities of spatiotemporal patterns significantly better than Ising models only based on spatial correlations. This increase of predictability was also observed on experimental data recorded in parietal cortex during slow-wave sleep. This approach can also be used to generate surrogatesmore » that reproduce the spatial and temporal correlations of a given data set.« less
Experimental, Theoretical, and Computational Investigation of Separated Nozzle Flows
NASA Technical Reports Server (NTRS)
Hunter, Craig A.
2004-01-01
A detailed experimental, theoretical, and computational study of separated nozzle flows has been conducted. Experimental testing was performed at the NASA Langley 16-Foot Transonic Tunnel Complex. As part of a comprehensive static performance investigation, force, moment, and pressure measurements were made and schlieren flow visualization was obtained for a sub-scale, non-axisymmetric, two-dimensional, convergent- divergent nozzle. In addition, two-dimensional numerical simulations were run using the computational fluid dynamics code PAB3D with two-equation turbulence closure and algebraic Reynolds stress modeling. For reference, experimental and computational results were compared with theoretical predictions based on one-dimensional gas dynamics and an approximate integral momentum boundary layer method. Experimental results from this study indicate that off-design overexpanded nozzle flow was dominated by shock induced boundary layer separation, which was divided into two distinct flow regimes; three- dimensional separation with partial reattachment, and fully detached two-dimensional separation. The test nozzle was observed to go through a marked transition in passing from one regime to the other. In all cases, separation provided a significant increase in static thrust efficiency compared to the ideal prediction. Results indicate that with controlled separation, the entire overexpanded range of nozzle performance would be within 10% of the peak thrust efficiency. By offering savings in weight and complexity over a conventional mechanical exhaust system, this may allow a fixed geometry nozzle to cover an entire flight envelope. The computational simulation was in excellent agreement with experimental data over most of the test range, and did a good job of modeling internal flow and thrust performance. An exception occurred at low nozzle pressure ratios, where the two-dimensional computational model was inconsistent with the three-dimensional separation observed in the experiment. In general, the computation captured the physics of the shock boundary layer interaction and shock induced boundary layer separation in the nozzle, though there were some differences in shock structure compared to experiment. Though minor, these differences could be important for studies involving flow control or thrust vectoring of separated nozzles. Combined with other observations, this indicates that more detailed, three-dimensional computational modeling needs to be conducted to more realistically simulate shock-separated nozzle flows.
The motion of bubbles inside drops in containerless processing
NASA Technical Reports Server (NTRS)
Shankar, N.; Annamalai, P.; Cole, R.; Subramanian, R. S.
1982-01-01
A theoretical model of thermocapillary bubble motion inside a drop, located in a space laboratory, due to an arbitrary axisymmetric temperature distribution on the drop surface was constructed. Typical results for the stream function and temperature fields as well as the migration velocity of the bubble were obtained in the quasistatic limit. The motion of bubbles in a rotating body of liquid was studied experimentally, and an approximate theoretical model was developed. Comparison of the experimental observations of the bubble trajectories and centering times with theoretical predictions lends qualified support to the theory.
Mixtures of Strongly Interacting Bosons in Optical Lattices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buonsante, P.; Penna, V.; Giampaolo, S. M.
2008-06-20
We investigate the properties of strongly interacting heteronuclear boson-boson mixtures loaded in realistic optical lattices, with particular emphasis on the physics of interfaces. In particular, we numerically reproduce the recent experimental observation that the addition of a small fraction of {sup 41}K induces a significant loss of coherence in {sup 87}Rb, providing a simple explanation. We then investigate the robustness against the inhomogeneity typical of realistic experimental realizations of the glassy quantum emulsions recently predicted to occur in strongly interacting boson-boson mixtures on ideal homogeneous lattices.
Wavelength dependence of picosecond laser-induced periodic surface structures on copper
NASA Astrophysics Data System (ADS)
Maragkaki, Stella; Derrien, Thibault J.-Y.; Levy, Yoann; Bulgakova, Nadezhda M.; Ostendorf, Andreas; Gurevich, Evgeny L.
2017-09-01
The physical mechanisms of the laser-induced periodic surface structures (LIPSS) formation are studied in this paper for single-pulse irradiation regimes. The change in the LIPSS period with wavelength of incident laser radiation is investigated experimentally, using a picosecond laser system, which provides 7-ps pulses in near-IR, visible, and UV spectral ranges. The experimental results are compared with predictions made under the assumption that the surface-scattered waves are involved in the LIPSS formation. Considerable disagreement suggests that hydrodynamic mechanisms can be responsible for the observed pattern periodicity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baird, Benjamin; Loebick, Codruta; Roychoudhury, Subir
During Phase I both experimental evaluation and computational validation of an advanced Spouted Bed Reactor (SBR) approach for biomass and coal combustion was completed. All Phase I objectives were met and some exceeded. Comprehensive insight on SBR operation was achieved via design, fabrication, and testing of a small demonstration unit with pulverized coal and biomass as feedstock at University of Connecticut (UCONN). A scale-up and optimization tool for the next generation of coal and biomass co-firing for reducing GHG emissions was also developed. The predictive model was implemented with DOE’s MFIX computational model and was observed to accurately mimic evenmore » unsteady behavior. An updated Spouted Bed Reactor was fabricated, based on model feedback, and experimentally displayed near ideal behavior. This predictive capability based upon first principles and experimental correlation allows realistic simulation of mixed fuel combustion in these newly proposed power boiler designs. Compared to a conventional fluidized bed the SBR facilitates good mixing of coal and biomass, with relative insensitivity to particle size and densities, resulting in improved combustion efficiency. Experimental data with mixed coal and biomass fuels demonstrated complete oxidation at temperatures as low as 500ºC. This avoids NOx formation and residual carbon in the waste ash. Operation at stoichiometric conditions without requiring cooling or sintering of the carrier was also observed. Oxygen-blown operation were tested and indicated good performance. This highlighted the possibility of operating the SBR at a wide range of conditions suitable for power generation and partial oxidation byproducts. It also supports the possibility of implementing chemical looping (for readily capturing CO 2 and SO x).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baird, Benjamin; Loebick, Codruta; Roychoudhury, Subir
During Phase I both experimental evaluation and computational validation of an advanced Spouted Bed Reactor (SBR) approach for biomass and coal combustion was completed. All Phase I objectives were met and some exceeded. Comprehensive insight on SBR operation was achieved via design, fabrication, and testing of a small demonstration unit with pulverized coal and biomass as feedstock at University of Connecticut (UCONN). A scale-up and optimization tool for the next generation of coal and biomass co-firing for reducing GHG emissions was also developed. The predictive model was implemented with DOE’s MFIX computational model and was observed to accurately mimic evenmore » unsteady behavior. An updated Spouted Bed Reactor was fabricated, based on model feedback, and experimentally displayed near ideal behavior. This predictive capability based upon first principles and experimental correlation allows realistic simulation of mixed fuel combustion in these newly proposed power boiler designs. Compared to a conventional fluidized bed the SBR facilitates good mixing of coal and biomass, with relative insensitivity to particle size and densities, resulting in improved combustion efficiency. Experimental data with mixed coal and biomass fuels demonstrated complete oxidation at temperatures as low as 500C. This avoids NOx formation and residual carbon in the waste ash. Operation at stoichiometric conditions without requiring cooling or sintering of the carrier was also observed. Oxygen-blown operation were tested and indicated good performance. This highlighted the possibility of operating the SBR at a wide range of conditions suitable for power generation and partial oxidation byproducts. It also supports the possibility of implementing chemical looping (for readily capturing CO2 and SOx).« less
The Adaptation of the Moth Pheromone Receptor Neuron to its Natural Stimulus
NASA Astrophysics Data System (ADS)
Kostal, Lubomir; Lansky, Petr; Rospars, Jean-Pierre
2008-07-01
We analyze the first phase of information transduction in the model of the olfactory receptor neuron of the male moth Antheraea polyphemus. We predict such stimulus characteristics that enable the system to perform optimally, i.e., to transfer as much information as possible. Few a priori constraints on the nature of stimulus and stimulus-to-signal transduction are assumed. The results are given in terms of stimulus distributions and intermittency factors which makes direct comparison with experimental data possible. Optimal stimulus is approximatelly described by exponential or log-normal probability density function which is in agreement with experiment and the predicted intermittency factors fall within the lowest range of observed values. The results are discussed with respect to electroantennogram measurements and behavioral observations.
A model of the human observer and decision maker
NASA Technical Reports Server (NTRS)
Wewerinke, P. H.
1981-01-01
The decision process is described in terms of classical sequential decision theory by considering the hypothesis that an abnormal condition has occurred by means of a generalized likelihood ratio test. For this, a sufficient statistic is provided by the innovation sequence which is the result of the perception an information processing submodel of the human observer. On the basis of only two model parameters, the model predicts the decision speed/accuracy trade-off and various attentional characteristics. A preliminary test of the model for single variable failure detection tasks resulted in a very good fit of the experimental data. In a formal validation program, a variety of multivariable failure detection tasks was investigated and the predictive capability of the model was demonstrated.
Empirical Models for the Shielding and Reflection of Jet Mixing Noise by a Surface
NASA Technical Reports Server (NTRS)
Brown, Cliff
2015-01-01
Empirical models for the shielding and refection of jet mixing noise by a nearby surface are described and the resulting models evaluated. The flow variables are used to non-dimensionalize the surface position variables, reducing the variable space and producing models that are linear function of non-dimensional surface position and logarithmic in Strouhal frequency. A separate set of coefficients are determined at each observer angle in the dataset and linear interpolation is used to for the intermediate observer angles. The shielding and rejection models are then combined with existing empirical models for the jet mixing and jet-surface interaction noise sources to produce predicted spectra for a jet operating near a surface. These predictions are then evaluated against experimental data.
Empirical Models for the Shielding and Reflection of Jet Mixing Noise by a Surface
NASA Technical Reports Server (NTRS)
Brown, Clifford A.
2016-01-01
Empirical models for the shielding and reflection of jet mixing noise by a nearby surface are described and the resulting models evaluated. The flow variables are used to non-dimensionalize the surface position variables, reducing the variable space and producing models that are linear function of non-dimensional surface position and logarithmic in Strouhal frequency. A separate set of coefficients are determined at each observer angle in the dataset and linear interpolation is used to for the intermediate observer angles. The shielding and reflection models are then combined with existing empirical models for the jet mixing and jet-surface interaction noise sources to produce predicted spectra for a jet operating near a surface. These predictions are then evaluated against experimental data.
NASA Astrophysics Data System (ADS)
Sivapalan, Murugesu; Ruprecht, John K.; Viney, Neil R.
1996-03-01
A long-term water balance model has been developed to predict the hydrological effects of land-use change (especially forest clearing) in small experimental catchments in the south-west of Western Australia. This small catchment model has been used as the building block for the development of a large catchment-scale model, and has also formed the basis for a coupled water and salt balance model, developed to predict the changes in stream salinity resulting from land-use and climate change. The application of the coupled salt and water balance model to predict stream salinities in two small experimental catchments, and the application of the large catchment-scale model to predict changes in water yield in a medium-sized catchment that is being mined for bauxite, are presented in Parts 2 and 3, respectively, of this series of papers.The small catchment model has been designed as a simple, robust, conceptually based model of the basic daily water balance fluxes in forested catchments. The responses of the catchment to rainfall and pan evaporation are conceptualized in terms of three interdependent subsurface stores A, B and F. Store A depicts a near-stream perched aquifer system; B represents a deeper, permanent groundwater system; and F is an intermediate, unsaturated infiltration store. The responses of these stores are characterized by a set of constitutive relations which involves a number of conceptual parameters. These parameters are estimated by calibration by comparing observed and predicted runoff. The model has performed very well in simulations carried out on Salmon and Wights, two small experimental catchments in the Collie River basin in south-west Western Australia. The results from the application of the model to these small catchments are presented in this paper.
NASA Astrophysics Data System (ADS)
Kumar, Gautam; Maji, Kuntal
2018-04-01
This article deals with the prediction of strain-and stress-based forming limit curves for advanced high strength steel DP590 sheet using Marciniak-Kuczynski (M-K) method. Three yield criteria namely Von-Mises, Hill's 48 and Yld2000-2d and two hardening laws i.e., Hollomon power and Swift hardening laws were considered to predict the forming limit curves (FLCs) for DP590 steel sheet. The effects of imperfection factor and initial groove angle on prediction of FLC were also investigated. It was observed that the FLCs shifted upward with the increase of imperfection factor value. The initial groove angle was found to have significant effects on limit strains in the left side of FLC, and insignificant effect for the right side of FLC for certain range of strain paths. The limit strains were calculated at zero groove angle for the right side of FLC, and a critical groove angle was used for the left side of FLC. The numerically predicted FLCs considering the different combinations of yield criteria and hardening laws were compared with the published experimental results of FLCs for DP590 steel sheet. The FLC predicted using the combination of Yld2000-2d yield criterion and swift hardening law was in better coorelation with the experimental data. Stress based forming limit curves (SFLCs) were also calculated from the limiting strain values obtained by M-K model. Theoretically predicted SFLCs were compared with that obtained from the experimental forming limit strains. Stress based forming limit curves were seen to better represent the forming limits of DP590 steel sheet compared to that by strain-based forming limit curves.
Nonlinear Terahertz Absorption of Graphene Plasmons.
Jadidi, Mohammad M; König-Otto, Jacob C; Winnerl, Stephan; Sushkov, Andrei B; Drew, H Dennis; Murphy, Thomas E; Mittendorff, Martin
2016-04-13
Subwavelength graphene structures support localized plasmonic resonances in the terahertz and mid-infrared spectral regimes. The strong field confinement at the resonant frequency is predicted to significantly enhance the light-graphene interaction, which could enable nonlinear optics at low intensity in atomically thin, subwavelength devices. To date, the nonlinear response of graphene plasmons and their energy loss dynamics have not been experimentally studied. We measure and theoretically model the terahertz nonlinear response and energy relaxation dynamics of plasmons in graphene nanoribbons. We employ a terahertz pump-terahertz probe technique at the plasmon frequency and observe a strong saturation of plasmon absorption followed by a 10 ps relaxation time. The observed nonlinearity is enhanced by 2 orders of magnitude compared to unpatterned graphene with no plasmon resonance. We further present a thermal model for the nonlinear plasmonic absorption that supports the experimental results. The model shows that the observed strong linearity is caused by an unexpected red shift of plasmon resonance together with a broadening and weakening of the resonance caused by the transient increase in electron temperature. The model further predicts that even greater resonant enhancement of the nonlinear response can be expected in high-mobility graphene, suggesting that nonlinear graphene plasmonic devices could be promising candidates for nonlinear optical processing.
Welch, David A.; Mehdi, Beata L.; Hatchell, Hanna J.; ...
2015-03-25
Understanding the fundamental processes taking place at the electrode-electrolyte interface in batteries will play a key role in the development of next generation energy storage technologies. One of the most fundamental aspects of the electrode-electrolyte interface is the electrical double layer (EDL). Given the recent development of high spatial resolution in-situ electrochemical cells for scanning transmission electron microscopy (STEM), there now exists the possibility that we can directly observe the formation and dynamics of the EDL. In this paper we predict electrolyte structure within the EDL using classical models and atomistic Molecular Dynamics (MD) simulations. The MD simulations show thatmore » the classical models fail to accurately reproduce concentration profiles that exist within the electrolyte. It is thus suggested that MD must be used in order to accurately predict STEM images of the electrode-electrolyte interface. Using MD and image simulations together for a high contrast electrolyte (the high atomic number CsCl electrolyte), it is determined that, for a smooth interface, concentration profiles within the EDL should be visible experimentally. When normal experimental parameters such as rough interfaces and low-Z electrolytes (like those used in Li-ion batteries) are considered, observation of the EDL appears to be more difficult.« less
The role of language in the experience and perception of emotion: a neuroimaging meta-analysis
Brooks, Jeffrey A.; Shablack, Holly; Gendron, Maria; Satpute, Ajay B.; Parrish, Michael H.
2017-01-01
Abstract Recent behavioral and neuroimaging studies demonstrate that labeling one’s emotional experiences and perceptions alters those states. Here, we used a comprehensive meta-analysis of the neuroimaging literature to systematically explore whether the presence of emotion words in experimental tasks has an impact on the neural representation of emotional experiences and perceptions across studies. Using a database of 386 studies, we assessed brain activity when emotion words (e.g. ‘anger’, ‘disgust’) and more general affect words (e.g. ‘pleasant’, ‘unpleasant’) were present in experimental tasks vs not present. As predicted, when emotion words were present, we observed more frequent activations in regions related to semantic processing. When emotion words were not present, we observed more frequent activations in the amygdala and parahippocampal gyrus, bilaterally. The presence of affect words did not have the same effect on the neural representation of emotional experiences and perceptions, suggesting that our observed effects are specific to emotion words. These findings are consistent with the psychological constructionist prediction that in the absence of accessible emotion concepts, the meaning of affective experiences and perceptions are ambiguous. Findings are also consistent with the regulatory role of ‘affect labeling’. Implications of the role of language in emotion construction and regulation are discussed. PMID:27539864
Characterizing Drainage Multiphase Flow in Heterogeneous Sandstones
NASA Astrophysics Data System (ADS)
Jackson, Samuel J.; Agada, Simeon; Reynolds, Catriona A.; Krevor, Samuel
2018-04-01
In this work, we analyze the characterization of drainage multiphase flow properties on heterogeneous rock cores using a rich experimental data set and mm-m scale numerical simulations. Along with routine multiphase flow properties, 3-D submeter scale capillary pressure heterogeneity is characterized by combining experimental observations and numerical calibration, resulting in a 3-D numerical model of the rock core. The uniqueness and predictive capability of the numerical models are evaluated by accurately predicting the experimentally measured relative permeability of N2—DI water and CO2—brine systems in two distinct sandstone rock cores across multiple fractional flow regimes and total flow rates. The numerical models are used to derive equivalent relative permeabilities, which are upscaled functions incorporating the effects of submeter scale capillary pressure. The functions are obtained across capillary numbers which span four orders of magnitude, representative of the range of flow regimes that occur in subsurface CO2 injection. Removal of experimental boundary artifacts allows the derivation of equivalent functions which are characteristic of the continuous subsurface. We also demonstrate how heterogeneities can be reorientated and restructured to efficiently estimate flow properties in rock orientations differing from the original core sample. This analysis shows how combined experimental and numerical characterization of rock samples can be used to derive equivalent flow properties from heterogeneous rocks.
Prediction and experimental observation of damage dependent damping in laminated composite beams
NASA Technical Reports Server (NTRS)
Allen, D. H.; Harris, C. E.; Highsmith, A. L.
1987-01-01
The equations of motion are developed for laminated composite beams with load-induced matrix cracking. The damage is accounted for by utilizing internal state variables. The net result of these variables on the field equations is the introduction of both enhanced damping, and degraded stiffness. Both quantities are history dependent and spatially variable, thus resulting in nonlinear equations of motion. It is explained briefly how these equations may be quasi-linearized for laminated polymeric composites under certain types of structural loading. The coupled heat conduction equation is developed, and it is shown that an enhanced Zener damping effect is produced by the introduction of microstructural damage. The resulting equations are utilized to demonstrate how damage dependent material properties may be obtained from dynamic experiments. Finaly, experimental results are compared to model predictions for several composite layups.