Novel biomarkers for cardiovascular risk assessment: current status and future directions.
MacNamara, James; Eapen, Danny J; Quyyumi, Arshed; Sperling, Laurence
2015-09-01
Cardiovascular disease (CVD) is the leading cause of mortality in the modern world. Traditional risk algorithms may miss up to 20% of CVD events. Therefore, there is a need for new cardiac biomarkers. Many fields of research are dedicated to improving cardiac risk prediction, including genomics, transcriptomics and proteomics. To date, even the most promising biomarkers have only demonstrated modest associations and predictive ability. Few have undergone randomized control trials. A number of biomarkers are targets to new therapies aimed to reduce cardiovascular risk. Currently, some of the most promising risk prediction has been demonstrated with panels of multiple biomarkers. This article reviews the current state and future of proteomic biomarkers and aggregate biomarker panels.
Image-Based Predictive Modeling of Heart Mechanics.
Wang, V Y; Nielsen, P M F; Nash, M P
2015-01-01
Personalized biophysical modeling of the heart is a useful approach for noninvasively analyzing and predicting in vivo cardiac mechanics. Three main developments support this style of analysis: state-of-the-art cardiac imaging technologies, modern computational infrastructure, and advanced mathematical modeling techniques. In vivo measurements of cardiac structure and function can be integrated using sophisticated computational methods to investigate mechanisms of myocardial function and dysfunction, and can aid in clinical diagnosis and developing personalized treatment. In this article, we review the state-of-the-art in cardiac imaging modalities, model-based interpretation of 3D images of cardiac structure and function, and recent advances in modeling that allow personalized predictions of heart mechanics. We discuss how using such image-based modeling frameworks can increase the understanding of the fundamental biophysics behind cardiac mechanics, and assist with diagnosis, surgical guidance, and treatment planning. Addressing the challenges in this field will require a coordinated effort from both the clinical-imaging and modeling communities. We also discuss future directions that can be taken to bridge the gap between basic science and clinical translation.
Cardiac tissue engineering: state of the art.
Hirt, Marc N; Hansen, Arne; Eschenhagen, Thomas
2014-01-17
The engineering of 3-dimensional (3D) heart muscles has undergone exciting progress for the past decade. Profound advances in human stem cell biology and technology, tissue engineering and material sciences, as well as prevascularization and in vitro assay technologies make the first clinical application of engineered cardiac tissues a realistic option and predict that cardiac tissue engineering techniques will find widespread use in the preclinical research and drug development in the near future. Tasks that need to be solved for this purpose include standardization of human myocyte production protocols, establishment of simple methods for the in vitro vascularization of 3D constructs and better maturation of myocytes, and, finally, thorough definition of the predictive value of these methods for preclinical safety pharmacology. The present article gives an overview of the present state of the art, bottlenecks, and perspectives of cardiac tissue engineering for cardiac repair and in vitro testing.
Bonios, Michael J; Koliopoulou, Antigone; Wever-Pinzon, Omar; Taleb, Iosif; Stehlik, Josef; Xu, Weining; Wever-Pinzon, James; Catino, Anna; Kfoury, Abdallah G; Horne, Benjamin D; Nativi-Nicolau, Jose; Adamopoulos, Stamatis N; Fang, James C; Selzman, Craig H; Bax, Jeroen J; Drakos, Stavros G
2018-04-01
Impaired qualitative and quantitative left ventricular (LV) rotational mechanics predict cardiac remodeling progression and prognosis after myocardial infarction. We investigated whether cardiac rotational mechanics can predict cardiac recovery in chronic advanced cardiomyopathy patients. Sixty-three patients with advanced and chronic dilated cardiomyopathy undergoing implantation of LV assist device (LVAD) were prospectively investigated using speckle tracking echocardiography. Acute heart failure patients were prospectively excluded. We evaluated LV rotational mechanics (apical and basal LV twist, LV torsion) and deformational mechanics (circumferential and longitudinal strain) before LVAD implantation. Cardiac recovery post-LVAD implantation was defined as (1) final resulting LV ejection fraction ≥40%, (2) relative LV ejection fraction increase ≥50%, (iii) relative LV end-systolic volume decrease ≥50% (all 3 required). Twelve patients fulfilled the criteria for cardiac recovery (Rec Group). The Rec Group had significantly less impaired pre-LVAD peak LV torsion compared with the Non-Rec Group. Notably, both groups had similarly reduced pre-LVAD LV ejection fraction. By receiver operating characteristic curve analysis, pre-LVAD peak LV torsion of 0.35 degrees/cm had a 92% sensitivity and a 73% specificity in predicting cardiac recovery. Peak LV torsion before LVAD implantation was found to be an independent predictor of cardiac recovery after LVAD implantation (odds ratio, 0.65 per 0.1 degrees/cm [0.49-0.87]; P =0.014). LV rotational mechanics seem to be useful in selecting patients prone to cardiac recovery after mechanical unloading induced by LVADs. Future studies should investigate the utility of these markers in predicting durable cardiac recovery after the explantation of the cardiac assist device. © 2018 American Heart Association, Inc.
Innovations in cardiac transplantation.
Hasan, Reema; Ela, Ashraf Abou El; Goldstein, Daniel
2017-03-16
As the number of people living with heart failure continues to grow, future treatments will focus on efficient donor organ donation and ensuring safe and durable outcomes. This review will focus on organ procurement, graft surveillance and emerging therapies. Preliminary studies into donation after cardiac death have indicated that this may be an effective means to increase the donor pool. Novel preservation techniques that include ex-vivo perfusion to improve donor metabolic stabilization prior to implantation may also expand the donor pool. Biomarkers, including circulating-free DNA, are emerging that could replace the endomyocardial biopsy for acute graft rejection, but we lack a risk predictive biomarker in heart transplantation. Novel immune suppressants are being investigated. Emerging therapeutics to reduce the development of chronic allograft vasculopathy are yet to be found. This review highlights the most recent studies and future possible therapies that will improve outcomes in cardiac transplantation. Larger clinical trials are currently taking place and will be needed in the future to develop and sustain current trends toward better survival rates with cardiac transplantation.
NASA Astrophysics Data System (ADS)
Suzuki, Yuki; Fung, George S. K.; Shen, Zeyang; Otake, Yoshito; Lee, Okkyun; Ciuffo, Luisa; Ashikaga, Hiroshi; Sato, Yoshinobu; Taguchi, Katsuyuki
2017-03-01
Cardiac motion (or functional) analysis has shown promise not only for non-invasive diagnosis of cardiovascular diseases but also for prediction of cardiac future events. Current imaging modalities has limitations that could degrade the accuracy of the analysis indices. In this paper, we present a projection-based motion estimation method for x-ray CT that estimates cardiac motion with high spatio-temporal resolution using projection data and a reference 3D volume image. The experiment using a synthesized digital phantom showed promising results for motion analysis.
How to create a cardiac CT clinic.
Dowe, David A
2007-02-01
Coronary computed tomography (CT) angiography is taking an exponentially increasing role in the diagnostic algorithm of suspected coronary artery disease. It has the immediate potential of replacing stress tests as the first study a patient receives if suspected of having coronary artery disease. In the near future, it will likely precede all elective, diagnostic cardiac catheterizations secondary to its extraordinary negative predictive value. This paper discusses the 3 building blocks of a successful cardiac CT clinic, image quality, service, and marketing. It then discusses the significant differences in establishing a cardiac CT clinic depending on if the radiologist is hospital based or private office based.
Serum creatinine role in predicting outcome after cardiac surgery beyond acute kidney injury
Najafi, Mahdi
2014-01-01
Serum creatinine is still the most important determinant in the assessment of perioperative renal function and in the prediction of adverse outcome in cardiac surgery. Many biomarkers have been studied to date; still, there is no surrogate for serum creatinine measurement in clinical practice because it is feasible and inexpensive. High levels of serum creatinine and its equivalents have been the most important preoperative risk factor for postoperative renal injury. Moreover, creatinine is the mainstay in predicting risk models and risk factor reduction has enhanced its importance in outcome prediction. The future perspective is the development of new definitions and novel tools for the early diagnosis of acute kidney injury largely based on serum creatinine and a panel of novel biomarkers. PMID:25276301
Early patterning and specification of cardiac progenitors in gastrulating mesoderm
Devine, W Patrick; Wythe, Joshua D; George, Matthew; Koshiba-Takeuchi, Kazuko; Bruneau, Benoit G
2014-01-01
Mammalian heart development requires precise allocation of cardiac progenitors. The existence of a multipotent progenitor for all anatomic and cellular components of the heart has been predicted but its identity and contribution to the two cardiac progenitor ‘fields’ has remained undefined. Here we show, using clonal genetic fate mapping, that Mesp1+ cells in gastrulating mesoderm are rapidly specified into committed cardiac precursors fated for distinct anatomic regions of the heart. We identify Smarcd3 as a marker of early specified cardiac precursors and identify within these precursors a compartment boundary at the future junction of the left and right ventricles that arises prior to morphogenesis. Our studies define the timing and hierarchy of cardiac progenitor specification and demonstrate that the cellular and anatomical fate of mesoderm-derived cardiac cells is specified very early. These findings will be important to understand the basis of congenital heart defects and to derive cardiac regeneration strategies. DOI: http://dx.doi.org/10.7554/eLife.03848.001 PMID:25296024
Seckeler, Michael D; Hirsch, Russel; Beekman, Robert H; Goldstein, Bryan H
2014-01-01
To validate a method for determination of cardiac index (CI) using real-time measurement of oxygen consumption (VO2 ) in young children undergoing cardiac catheterization. Retrospective review comparing thermodilution cardiac index (TDCI) to CI calculated by the Fick equation using real-time measured VO2 (RT-VO2 ) and VO2 derived from 2 published predictive equations. Paired t-test and Bland-Altman analysis were used to compare TDCI to Fick CI. A survey to ascertain pediatric cardiac catheterization practices regarding VO2 determination was also conducted. Quaternary care children's hospital cardiac catheterization laboratory. Children <3 years old with structurally normal hearts undergoing cardiac catheterization under general anesthesia with at least one set of contemporaneous TDCI and RT-VO2 measurements. Thirty-six paired measurements of TDCI and RT-VO2 were made in 27 patients over a 2-year period. Indications for catheterization included congenital diaphragmatic hernia postrepair (n = 13), heart disease post-orthotopic heart transplant (n = 13), and suspected cardiomyopathy (n = 1). Mean age was 21.5 ± 8 months; median weight was 9.9 kg (IQR 8.57, 12.2). RT-VO2 was higher than VO2 predicted by the LaFarge equation (190 ± 31 vs. 173.8 ± 12.8 mL/min/m(2), P < .001), but there was no difference between TDCI and Fick CI calculated using VO2 from any method. Bland-Altman analysis showed excellent agreement between TDCI and Fick CI using RT-VO2 and VO2 predicted by the Lundell equation; Fick CI using VO2 predicted by the LaFarge equation showed fair agreement with TDCI. In children <3 years with a structurally normal heart, RT-VO2 generates highly accurate determinations of Fick CI as compared with TDCI. Additionally, in this population, VO2 derived from the LaFarge and Lundell equations generates accurate Fick CI compared with TDCI. Future studies are needed to identify factors associated with inaccurate VO2 generated from these predictive equations. © 2013 Wiley Periodicals, Inc.
Fatigue of survivors following cardiac surgery: positive influences of preoperative prayer coping.
Ai, Amy L; Wink, Paul; Shearer, Marshall
2012-11-01
Fatigue symptoms are common among individuals suffering from cardiac diseases, but few studies have explored longitudinally protective factors in this population. This study examined the effect of preoperative factors, especially the use of prayer for coping, on long-term postoperative fatigue symptoms as one aspect of lack of vitality in middle-aged and older patients who survived cardiac surgery. The analyses capitalized on demographics, faith factors, mental health, and on medical comorbidities previously collected via two-wave preoperative interviews and standardized information from the Society of Thoracic Surgeons' national database. The current participants completed a mailed survey 30 months after surgery. Two hierarchical regressions were performed to evaluate the extent to which religious factors predicted mental and physical fatigue, respectively, after controlling for key demographics, medical indices, and mental health. Preoperative prayer coping, but not other religious factors, predicted less mental fatigue at the 30-month follow-up, after controlling for key demographics, medical comorbidities, cardiac function (previous cardiovascular intervention, congestive heart failure, left ventricular ejection fraction, New York Heart Association Classification), mental health (depression, anxiety), and protectors (optimism, hope, social support). Male gender, preoperative anxiety, and reverence in secular context predicted more mental fatigue. Physical fatigue increased with age, medical comorbidities, and preoperative anxiety. Including health control beliefs in the model did not eliminate this effect. Prayer coping may have independent and positive influences on less fatigue in individuals who survived cardiac surgery. However, future research should investigate mechanisms of this association. ©2012 The British Psychological Society.
Al-Khatib, Sana M; Sanders, Gillian D; Bigger, J Thomas; Buxton, Alfred E; Califf, Robert M; Carlson, Mark; Curtis, Anne; Curtis, Jeptha; Fain, Eric; Gersh, Bernard J; Gold, Michael R; Haghighi-Mood, Ali; Hammill, Stephen C; Healey, Jeff; Hlatky, Mark; Hohnloser, Stefan; Kim, Raymond J; Lee, Kerry; Mark, Daniel; Mianulli, Marcus; Mitchell, Brent; Prystowsky, Eric N; Smith, Joseph; Steinhaus, David; Zareba, Wojciech
2007-06-01
Accurate and timely prediction of sudden cardiac death (SCD) is a necessary prerequisite for effective prevention and therapy. Although the largest number of SCD events occurs in patients without overt heart disease, there are currently no tests that are of proven predictive value in this population. Efforts in risk stratification for SCD have focused primarily on predicting SCD in patients with known structural heart disease. Despite the ubiquity of tests that have been purported to predict SCD vulnerability in such patients, there is little consensus on which test, in addition to the left ventricular ejection fraction, should be used to determine which patients will benefit from an implantable cardioverter defibrillator. On July 20 and 21, 2006, a group of experts representing clinical cardiology, cardiac electrophysiology, biostatistics, economics, and health policy were joined by representatives of the US Food and Drug administration, Centers for Medicare Services, Agency for Health Research and Quality, the Heart Rhythm Society, and the device and pharmaceutical industry for a round table meeting to review current data on strategies of risk stratification for SCD, to explore methods to translate these strategies into practice and policy, and to identify areas that need to be addressed by future research studies. The meeting was organized by the Duke Center for the Prevention of SCD at the Duke Clinical Research Institute and was funded by industry participants. This article summarizes the presentations and discussions that occurred at that meeting.
Reduced cardiac vagal activity in obese children and adolescents.
Dangardt, Frida; Volkmann, Reinhard; Chen, Yun; Osika, Walter; Mårild, Staffan; Friberg, Peter
2011-03-01
Obese children present with various cardiovascular risk factors affecting their future health. In adults, cardiac autonomic function is a major risk factor, predicting cardiovascular morbidity and mortality. We hypothesized that obese children and adolescents had a lower cardiac vagal activity than lean subjects. We measured cardiac spontaneous baroreflex sensitivity (BRS), reflecting the dynamic regulation of cardiac vagal function, in large groups of obese and lean young individuals. Cardiac BRS, using the sequence approach, was assessed in 120 obese (59 girls), 43 overweight (23 girls) and 148 lean subjects (78 girls). Obese subjects showed a decreased BRS compared to both overweight and lean subjects [16±7 versus 21±9 (P<0·01) and 22±10 ms per mmHg (P<0·0001), respectively]. The differences remained after correcting for age, gender and pubertal status. Children with obesity had low vagal activity at rest, and there was no gender difference. © 2010 The Authors. Clinical Physiology and Functional Imaging © 2010 Scandinavian Society of Clinical Physiology and Nuclear Medicine.
Mikami, Yoko; Jolly, Umjeet; Heydari, Bobak; Peng, Mingkai; Almehmadi, Fahad; Zahrani, Mohammed; Bokhari, Mahmoud; Stirrat, John; Lydell, Carmen P; Howarth, Andrew G; Yee, Raymond; White, James A
2017-01-01
Left ventricular ejection fraction remains the primary risk stratification tool used in the selection of patients for implantable cardioverter defibrillator therapy. However, this solitary marker fails to identify a substantial portion of patients experiencing sudden cardiac arrest. In this study, we examined the incremental value of considering right ventricular ejection fraction for the prediction of future arrhythmic events in patients with systolic dysfunction using the gold standard of cardiovascular magnetic resonance. Three hundred fourteen consecutive patients with ischemic cardiomyopathy or nonischemic dilated cardiomyopathy undergoing cardiovascular magnetic resonance were followed for the primary outcome of sudden cardiac arrest or appropriate implantable cardioverter defibrillator therapy. Blinded quantification of left ventricular and right ventricular (RV) volumes was performed from standard cine imaging. Quantification of fibrosis from late gadolinium enhancement imaging was incrementally performed. RV dysfunction was defined as right ventricular ejection fraction ≤45%. Among all patients (164 ischemic cardiomyopathy, 150 nonischemic dilated cardiomyopathy), the mean left ventricular ejection fraction was 32±12% (range, 6-54%) with mean right ventricular ejection fraction of 48±15% (range, 7-78%). At a median of 773 days, 49 patients (15.6%) experienced the primary outcome (9 sudden cardiac arrest, 40 appropriate implantable cardioverter defibrillator therapies). RV dysfunction was independently predictive of the primary outcome (hazard ratio=2.98; P=0.002). Among those with a left ventricular ejection fraction >35% (N=121; mean left ventricular ejection fraction, 45±6%), RV dysfunction provided an adjusted hazard ratio of 4.2 (P=0.02). RV dysfunction is a strong, independent predictor of arrhythmic events. Among patients with mild to moderate LV dysfunction, a cohort greatly contributing to global sudden cardiac arrest burden, this marker provides robust discrimination of high- versus low-risk subjects. © 2017 American Heart Association, Inc.
Clinical Risk Factors for In-Hospital Adverse Cardiovascular Events After Acute Drug Overdose
Manini, Alex F.; Hoffman, Robert S.; Stimmel, Barry; Vlahov, David
2015-01-01
Objectives It was recently demonstrated that adverse cardiovascular events (ACVE) complicate a high proportion of hospitalizations for patients with acute drug overdoses. The aim of this study was to derive independent clinical risk factors for ACVE in patients with acute drug overdoses. Methods This prospective cohort study was conducted over 3 years at two urban university hospitals. Patients were adults with acute drug overdoses enrolled from the ED. In-hospital ACVE was defined as any of myocardial injury, shock, ventricular dysrhythmia, or cardiac arrest. Results There were 1,562 patients meeting inclusion/exclusion criteria (mean age, 41.8 years; female, 46%; suicidal, 38%). ACVE occurred in 82 (5.7%) patients (myocardial injury, 61; shock, 37; dysrhythmia, 23; cardiac arrests, 22) and there were 18 (1.2%) deaths. On univariate analysis, ACVE risk increased with age, lower serum bicarbonate, prolonged QTc interval, prior cardiac disease, and altered mental status. In a multivariable model adjusting for these factors as well as patient sex and hospital site, independent predictors were: QTc > 500 msec (3.8% prevalence, odds ratio [OR] 27.6), bicarbonate < 20 mEql/L (5.4% prevalence, OR 4.4), and prior cardiac disease (7.1% prevalence, OR 9.5). The derived prediction rule had 51.6% sensitivity, 93.7% specificity, and 97.1% negative predictive value; while presence of two or more risk factors had 90.9% positive predictive value. Conclusions The authors derived independent clinical risk factors for ACVE in patients with acute drug overdose, which should be validated in future studies as a prediction rule in distinct patient populations and clinical settings. PMID:25903997
Uncertainty and variability in computational and mathematical models of cardiac physiology.
Mirams, Gary R; Pathmanathan, Pras; Gray, Richard A; Challenor, Peter; Clayton, Richard H
2016-12-01
Mathematical and computational models of cardiac physiology have been an integral component of cardiac electrophysiology since its inception, and are collectively known as the Cardiac Physiome. We identify and classify the numerous sources of variability and uncertainty in model formulation, parameters and other inputs that arise from both natural variation in experimental data and lack of knowledge. The impact of uncertainty on the outputs of Cardiac Physiome models is not well understood, and this limits their utility as clinical tools. We argue that incorporating variability and uncertainty should be a high priority for the future of the Cardiac Physiome. We suggest investigating the adoption of approaches developed in other areas of science and engineering while recognising unique challenges for the Cardiac Physiome; it is likely that novel methods will be necessary that require engagement with the mathematics and statistics community. The Cardiac Physiome effort is one of the most mature and successful applications of mathematical and computational modelling for describing and advancing the understanding of physiology. After five decades of development, physiological cardiac models are poised to realise the promise of translational research via clinical applications such as drug development and patient-specific approaches as well as ablation, cardiac resynchronisation and contractility modulation therapies. For models to be included as a vital component of the decision process in safety-critical applications, rigorous assessment of model credibility will be required. This White Paper describes one aspect of this process by identifying and classifying sources of variability and uncertainty in models as well as their implications for the application and development of cardiac models. We stress the need to understand and quantify the sources of variability and uncertainty in model inputs, and the impact of model structure and complexity and their consequences for predictive model outputs. We propose that the future of the Cardiac Physiome should include a probabilistic approach to quantify the relationship of variability and uncertainty of model inputs and outputs. © 2016 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
Mathematical Models of Cardiac Pacemaking Function
NASA Astrophysics Data System (ADS)
Li, Pan; Lines, Glenn T.; Maleckar, Mary M.; Tveito, Aslak
2013-10-01
Over the past half century, there has been intense and fruitful interaction between experimental and computational investigations of cardiac function. This interaction has, for example, led to deep understanding of cardiac excitation-contraction coupling; how it works, as well as how it fails. However, many lines of inquiry remain unresolved, among them the initiation of each heartbeat. The sinoatrial node, a cluster of specialized pacemaking cells in the right atrium of the heart, spontaneously generates an electro-chemical wave that spreads through the atria and through the cardiac conduction system to the ventricles, initiating the contraction of cardiac muscle essential for pumping blood to the body. Despite the fundamental importance of this primary pacemaker, this process is still not fully understood, and ionic mechanisms underlying cardiac pacemaking function are currently under heated debate. Several mathematical models of sinoatrial node cell membrane electrophysiology have been constructed as based on different experimental data sets and hypotheses. As could be expected, these differing models offer diverse predictions about cardiac pacemaking activities. This paper aims to present the current state of debate over the origins of the pacemaking function of the sinoatrial node. Here, we will specifically review the state-of-the-art of cardiac pacemaker modeling, with a special emphasis on current discrepancies, limitations, and future challenges.
Utility of Cardiac Troponin to Predict Drug Overdose Mortality
Stimmel, Barry; Hoffman, Robert S.; Vlahov, David
2016-01-01
Drug overdose is now the leading cause of injury-related mortality in the USA, but the prognostic utility of cardiac biomarkers is unknown. We investigated whether serum cardiac troponin I (cTnI) was associated with overdose mortality. This prospective observational cohort studied adults with suspected acute drug overdose at two university hospital emergency departments (ED) over 3 years. The endpoint was in-hospital mortality, which was used to determine test characteristics of initial/peak cTnI. There were 437 overdoses analyzed, of whom there were 20 (4.6 %) deaths. Mean initial cTnI was significantly associated with mortality (1.2 vs. 0.06 ng/mL, p <0.001), and the ROC curve revealed excellent cTnI prediction of mortality (AUC 0.87, CI 0.76–0.98). Test characteristics for initial cTnI (90 % specificity, 99 % negative predictive value) were better than peak cTnI (88.2 % specificity, 99.2 % negative predictive value), and initial cTnI was normal in only one death out of the entire cohort (1/437, CI 0.1–1.4 %). Initial cTnI results were highly associated with drug overdose mortality. Future research should focus on high-risk overdose features to optimize strategies for utilization of cTnI as part of the routine ED evaluation for acute drug overdose. PMID:26541348
Computational modeling for cardiac safety pharmacology analysis: Contribution of fibroblasts.
Gao, Xin; Engel, Tyler; Carlson, Brian E; Wakatsuki, Tetsuro
2017-09-01
Drug-induced proarrhythmic potential is an important regulatory criterion in safety pharmacology. The application of in silico approaches to predict proarrhythmic potential of new compounds is under consideration as part of future guidelines. Current approaches simulate the electrophysiology of a single human adult ventricular cardiomyocyte. However, drug-induced proarrhythmic potential can be different when cardiomyocytes are surrounded by non-muscle cells. Incorporating fibroblasts in models of myocardium is important particularly for predicting a drugs cardiac liability in the aging population - a growing population who take more medications and exhibit increased cardiac fibrosis. In this study, we used computational models to investigate the effects of fibroblast coupling on the electrophysiology and response to drugs of cardiomyocytes. A computational model of cardiomyocyte electrophysiology and ion handling (O'Hara, Virag, Varro, & Rudy, 2011) is coupled to a passive model of fibroblast electrophysiology to test the effects of three compounds that block cardiomyocyte ion channels. Results are compared to model results without fibroblast coupling to see how fibroblasts affect cardiomyocyte action potential duration at 90% repolarization (APD 90 ) and propensity for early after depolarization (EAD). Simulation results show changes in cardiomyocyte APD 90 with increasing concentration of three drugs that affect cardiac function (dofetilide, vardenafil and nebivolol) when no fibroblasts are coupled to the cardiomyocyte. Coupling fibroblasts to cardiomyocytes markedly shortens APD 90 . Moreover, increasing the number of fibroblasts can augment the shortening effect. Coupling cardiomyocytes and fibroblasts are predicted to decrease proarrhythmic susceptibility under dofetilide, vardenafil and nebivolol block. However, this result is sensitive to parameters which define the electrophysiological function of the fibroblast. Fibroblast membrane capacitance and conductance (C FB and G FB ) have less of an effect on APD 90 than the fibroblast resting membrane potential (E FB ). This study suggests that in both theoretical models and experimental tissue constructs that represent cardiac tissue, both cardiomyocytes and non-muscle cells should be considered when testing cardiac pharmacological agents. Copyright © 2017 Elsevier Inc. All rights reserved.
Gayed, Isis; Gohar, Salman; Liao, Zhongxing; McAleer, Mary; Bassett, Roland; Yusuf, Syed Wamique
2009-06-01
This study aims to identify the clinical implications of myocardial perfusion defects after chemoradiation therapy (CRT) in patients with esophageal and lung cancer. We retrospectively compared myocardial perfusion imaging (MPI) results before and after CRT in 16 patients with esophageal cancer and 24 patients with lung cancer. New MPI defects in the radiation therapy (RT) fields were considered related to RT. Follow-up to evaluate for cardiac complications and their relation with the results of MPI was performed. Statistical analysis identified predictors of cardiac morbidities. Eleven females and twenty nine males at a mean age of 66.7 years were included. Five patients (31%) with esophageal cancer and seven patients (29%) with lung cancer developed myocardial ischemia in the RT field at mean intervals of 7.0 and 8.4 months after RT. The patients were followed-up for mean intervals of 15 and 23 months in the esophageal and lung cancer groups, respectively. Seven patients in each of the esophageal (44%) and lung (29%) cancer patients (P = 0.5) developed cardiac complications of which one patient with esophageal cancer died of complete heart block. Six out of the fourteen patients (43%) with cardiac complication had new ischemia on MPI after CRT of which only one developed angina. The remaining eight patients with cardiac complications had normal MPI results. MPI result was not a statistically significant predictor of future cardiac complications after CRT. A history of congestive heart failure (CHF) (P = 0.003) or arrhythmia (P = 0.003) is a significant predictor of cardiac morbidity after CRT in univariate analysis but marginal predictors when multivariate analysis was performed (P = 0.06 and 0.06 for CHF and arrhythmia, respectively). Cardiac complications after CRT are more common in esophageal than lung cancer patients but the difference is not statistically significant. MPI abnormalities are frequently seen after CRT but are not predictive of future cardiac complications. A history of arrhythmia or CHF is significantly associated with cardiac complications after CRT.
Mosley, Emma; Laborde, Sylvain; Kavanagh, Emma
2017-10-01
The aims of this study were 1) to assess the predictive role of coping related variables (CRV) on cardiac vagal activity (derived from heart rate variability), and 2) to investigate the influence of CRV (including cardiac vagal activity) on a dart throwing task under low pressure (LP) and high pressure (HP) conditions. Participants (n=51) completed trait CRV questionnaires: Decision Specific Reinvestment Scale, Movement Specific Reinvestment Scale and Trait Emotional Intelligence Questionnaire. They competed in a dart throwing task under LP and HP conditions. Cardiac vagal activity measurements were taken at resting, task and during recovery for 5min. Self-reported ratings of stress were recorded at three time points via a visual analogue scale. Upon completion of the task, self-report measures of motivation, stress appraisal, attention, perceived pressure and dart throwing experience were completed. Results indicated that resting cardiac vagal activity had no predictors. Task cardiac vagal activity was predicted by resting cardiac vagal activity in both pressure conditions with the addition of a trait CRV in HP. Post task cardiac vagal activity was predicted by resting cardiac vagal activity in both conditions with the addition of a trait CRV in HP. Cardiac vagal reactivity (difference from resting to task) was predicted by a trait CRV in HP conditions. Cardiac vagal recovery (difference from task to post task) was predicted by a state CRV only in LP. Dart throwing task performance was predicted by a combination of both CRV and cardiac vagal activity. The current research suggests that coping related variables and cardiac vagal activity influence dart throwing task performance differently dependent on pressure condition. Copyright © 2017 Elsevier Inc. All rights reserved.
Gimeno-Blanes, Francisco J.; Blanco-Velasco, Manuel; Barquero-Pérez, Óscar; García-Alberola, Arcadi; Rojo-Álvarez, José L.
2016-01-01
Great effort has been devoted in recent years to the development of sudden cardiac risk predictors as a function of electric cardiac signals, mainly obtained from the electrocardiogram (ECG) analysis. But these prediction techniques are still seldom used in clinical practice, partly due to its limited diagnostic accuracy and to the lack of consensus about the appropriate computational signal processing implementation. This paper addresses a three-fold approach, based on ECG indices, to structure this review on sudden cardiac risk stratification. First, throughout the computational techniques that had been widely proposed for obtaining these indices in technical literature. Second, over the scientific evidence, that although is supported by observational clinical studies, they are not always representative enough. And third, via the limited technology transfer of academy-accepted algorithms, requiring further meditation for future systems. We focus on three families of ECG derived indices which are tackled from the aforementioned viewpoints, namely, heart rate turbulence (HRT), heart rate variability (HRV), and T-wave alternans. In terms of computational algorithms, we still need clearer scientific evidence, standardizing, and benchmarking, siting on advanced algorithms applied over large and representative datasets. New scenarios like electronic health recordings, big data, long-term monitoring, and cloud databases, will eventually open new frameworks to foresee suitable new paradigms in the near future. PMID:27014083
Reimann, M J; Møller, J E; Häggström, J; Martinussen, T; Zatrazemi, S S C; Svanholm, L; Nielsen, L B M; Pedersen, H D; Olsen, L H
2017-07-01
Development and progression of myxomatous mitral valve disease (MMVD) in dogs are difficult to predict. Identification at a young age of dogs at high risk of adverse outcome in the future is desirable. To study the predictive value of selected clinical and echocardiographic characteristics associated with MMVD obtained at a young age for prediction of long-term cardiac and all-cause mortality in Cavalier King Charles Spaniels (CKCS). 1125 privately owned CKCS. A retrospective study including CKCS examined at the age of 1-3 years. Long-term outcome was assessed by telephone interview with owners. The value of variables for predicting mortality was investigated by Cox proportional hazard and Kaplan-Meier analyses. Presence of moderate to severe mitral regurgitation (MR) (hazard ratio (HR) = 3.03, 95% confidence interval (95% CI) = 1.48-6.23, P = 0.0025) even intermittent moderate to severe MR (HR = 2.23, 95% CI = 1.48-6.23, P = 0.039) on color flow Doppler echocardiography was significantly associated with increased hazard of cardiac death. An interaction between MR and sex was significant for all-cause mortality (P = 0.035), showing that males with moderate to severe MR had a higher all-cause mortality compared to males with no MR (HR = 2.38, 95% CI = 1.27-4.49, P = 0.0071), whereas no difference was found between female MR groups. The risk of cardiac (HR = 1.37, 95% CI = 1.14-1.63, P < 0.001) and all-cause (HR = 1.13, 95% CI = 1.02-1.24, P = 0.016) mortality increased with increasing left ventricular end-systolic internal dimension normalized for body weight (LVIDS N ). Moderate to severe MR, even if intermittent, and increased LVIDS N in dogs <3 years of age were associated with cardiac death later in life in CKCS. Copyright © 2017 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.
Sudden cardiac death in adults with congenital heart disease.
Yap, Sing-Chien; Harris, Louise
2009-12-01
Sudden cardiac death is one of the leading causes of death in patients with congenital heart disease, especially in patients with repaired cyanotic and left heart obstructive lesions. While the overall annual incidence of sudden cardiac death is relatively low, estimated at 0.09% per year, this nonetheless represents a many-fold increase over that of comparable age-matched control populations. The most frequent cause of sudden cardiac death is believed to be arrhythmic, usually ventricular arrhythmia. Most studies investigating risk factors for ventricular arrhythmia and/or sudden cardiac death have focused on patients with repaired tetralogy of Fallot and patients with Mustard/Senning repair for complete transposition of the great arteries. Despite a multitude of risk factors, their predictive value for the occurrence of sudden cardiac death is relatively low. Current experience with implantable cardioverter defibrillators in this patient population is limited to observational studies and the selection of patients for prophylactic implantable cardioverter defibrillator implantation is impeded both by the absence of randomized trials and weak predictors. Catheter ablation of ventricular tachycardia has emerged as a promising therapy for abolishing or reducing the burden of arrhythmia but experience is still limited and the impact on long-term outcome uncertain. Future studies will have to focus on improving risk stratification of patients with congenital heart disease.
Perspectives on Current Training Guidelines for Cardiac Imaging and Recommendations for the Future.
Arrighi, James A; Kilic, Sena; Haines, Philip G
2018-04-23
To summarize current training guidelines for cardiac imaging and provide recommendations for future guidelines. The current structure of training in cardiac imaging is largely dictated by modality-specific guidelines. While there has been debate on how to define the advanced cardiac imager for over a decade, a uniform consensus has not emerged. We report the perspectives of three key stakeholders in this debate: a senior faculty member-former fellowship program director, a cardiology fellow, and an academic junior faculty imaging expert. The observations of these stakeholders suggest that there is no consensus on the definition of advanced cardiac imaging, leading to ambiguity in training guidelines. This may have negative impact on recruitment of fellows into cardiac imaging careers. Based on the current status of training in cardiac imaging, the authors suggest that the relevant professional groups reconvene to form a consensus in defining advanced cardiac imaging, in order to guide future revisions of training guidelines.
Ebrahimi, Behnam
2017-07-01
Replacing dying or diseased cells of a tissue with new ones that are converted from patient's own cells is an attractive strategy in regenerative medicine. In vivo reprogramming is a novel strategy that can circumvent the hurdles of autologous/allogeneic cell injection therapies. Interestingly, studies have demonstrated that direct injection of cardiac transcription factors or specific miRNAs into the infarct border zone of murine hearts following myocardial infarction converts resident cardiac fibroblasts into functional cardiomyocytes. Moreover, in vivo cardiac reprogramming not only drives cardiac tissue regeneration, but also improves cardiac function and survival rate after myocardial infarction. Thanks to the influence of cardiac microenvironment and the same developmental origin, cardiac fibroblasts seem to be more amenable to reprogramming toward cardiomyocyte fate than other cell sources (e.g. skin fibroblasts). Thus, reprogramming of cardiac fibroblasts to functional induced cardiomyocytes in the cardiac environment holds great promises for induced regeneration and potential clinical purposes. Application of small molecules in future studies may represent a major advancement in this arena and pharmacological reprogramming would convey reprogramming technology to the translational medicine paradigm. This study reviews accomplishments in the field of in vitro and in vivo mouse cardiac reprogramming and then deals with strategies for the enhancement of the efficiency and quality of the process. Furthermore, it discusses challenges ahead and provides suggestions for future research. Human cardiac reprogramming is also addressed as a foundation for possible application of in vivo cardiac reprogramming for human heart regeneration in the future. Copyright © 2017 Elsevier Ltd. All rights reserved.
J Waves for Predicting Cardiac Events in Hypertrophic Cardiomyopathy.
Tsuda, Toyonobu; Hayashi, Kenshi; Konno, Tetsuo; Sakata, Kenji; Fujita, Takashi; Hodatsu, Akihiko; Nagata, Yoji; Teramoto, Ryota; Nomura, Akihiro; Tanaka, Yoshihiro; Furusho, Hiroshi; Takamura, Masayuki; Kawashiri, Masa-Aki; Fujino, Noboru; Yamagishi, Masakazu
2017-10-01
This study sought to investigate whether the presence of J waves was associated with cardiac events in patients with hypertrophic cardiomyopathy (HCM). It has been uncertain whether the presence of J waves predicts life-threatening cardiac events in patients with HCM. This study evaluated consecutive 338 patients with HCM (207 men; age 61 ± 17 years of age). A J-wave was defined as J-point elevation >0.1 mV in at least 2 contiguous inferior and/or lateral leads. Cardiac events were defined as sudden cardiac death, ventricular fibrillation or sustained ventricular tachycardia, or appropriate implantable cardiac defibrillator therapy. The study also investigated whether adding the J-wave in a conventional risk model improved a prediction of cardiac events. J waves were seen in 46 (13.6%) patients at registration. Cardiac events occurred in 31 patients (9.2%) during median follow-up of 4.9 years (interquartile range: 2.6 to 7.1 years). In a Cox proportional hazards model, the presence of J waves was significantly associated with cardiac events (adjusted hazard ratio: 4.01; 95% confidence interval [CI]: 1.78 to 9.05; p = 0.001). Compared with the conventional risk model, the model using J waves in addition to conventional risks better predicted cardiac events (net reclassification improvement, 0.55; 95% CI: 0.20 to 0.90; p = 0.002). The presence of J waves was significantly associated with cardiac events in HCM. Adding J waves to conventional cardiac risk factors improved prediction of cardiac events. Further confirmatory studies are needed before considering J-point elevation as a marker of risk for use in making management decisions regarding risk in patients with HCM. Copyright © 2017 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Electromechanical heterogeneity in the heart : A key to long QT syndrome?
Dressler, F F; Brado, J; Odening, K E
2018-03-01
In the healthy heart, physiological heterogeneities in structure and in electrical and mechanical activity are crucial for normal, efficient excitation and pumping. Alterations of heterogeneity have been linked to arrhythmogenesis in various cardiac disorders such as long QT syndrome (LQTS). This inherited arrhythmia disorder is caused by mutations in different ion channel genes and is characterized by (heterogeneously) prolonged cardiac repolarization and increased risk for ventricular tachycardia, syncope and sudden cardiac death. Cardiac electrical and mechanical function are not independent of each other but interact in a bidirectional manner by electromechanical and mechano-electrical coupling. Therefore, changes in either process will affect the other. Recent experimental and clinical evidence suggests that LQTS, which is primarily considered an "electrical" disorder, also exhibits features of disturbed mechanical function and heterogeneity, which in turn appears to correlate with the risk of arrhythmia in the individual patient. In this review, we give a short overview of the current knowledge about physiological and pathological, long QT-related electrical and mechanical heterogeneity in the heart. Also, their respective roles for future risk prediction approaches in LQTS are discussed.
Complex versus simple models: ion-channel cardiac toxicity prediction.
Mistry, Hitesh B
2018-01-01
There is growing interest in applying detailed mathematical models of the heart for ion-channel related cardiac toxicity prediction. However, a debate as to whether such complex models are required exists. Here an assessment in the predictive performance between two established large-scale biophysical cardiac models and a simple linear model B net was conducted. Three ion-channel data-sets were extracted from literature. Each compound was designated a cardiac risk category using two different classification schemes based on information within CredibleMeds. The predictive performance of each model within each data-set for each classification scheme was assessed via a leave-one-out cross validation. Overall the B net model performed equally as well as the leading cardiac models in two of the data-sets and outperformed both cardiac models on the latest. These results highlight the importance of benchmarking complex versus simple models but also encourage the development of simple models.
Lee, Chang Young; Bae, Mi Kyung; Lee, Jin Gu; Kim, Kwan-Wook; Park, In Kyu
2011-01-01
Background Cardiovascular complications are major causes of morbidity and mortality following non-cardiac thoracic operations. Recent studies have demonstrated that elevation of N-Terminal Pro-B-type natriuretic peptide (NT-proBNP) levels can predict cardiac complications following non-cardiac major surgery as well as cardiac surgery. However, there is little information on the correlation between lung resection surgery and NT-proBNP levels. We evaluated the role of NT-proBNP as a potential marker for the risk stratification of cardiac complications following lung resection surgery. Material and Methods Prospectively collected data of 98 patients, who underwent elective lung resection from August 2007 to February 2008, were analyzed. Postoperative adverse cardiac events were categorized as myocardial injury, ECG evidence of ischemia or arrhythmia, heart failure, or cardiac death. Results Postoperative cardiac complications were documented in 9 patients (9/98, 9.2%): Atrial fibrillation in 3, ECG-evidenced ischemia in 2 and heart failure in 4. Preoperative median NT-proBNP levels was significantly higher in patients who developed postoperative cardiac complications than in the rest (200.2 ng/L versus 45.0 ng/L, p=0.009). NT-proBNP levels predicted adverse cardiac events with an area under the receiver operating characteristic curve of 0.76 [95% confidence interval (CI) 0.545~0.988, p=0.01]. A preoperative NT-proBNP value of 160 ng/L was found to be the best cut-off value for detecting postoperative cardiac complication with a positive predictive value of 0.857 and a negative predictive value of 0.978. Other factors related to cardiac complications by univariate analysis were a higher American Society of Anesthesiologists grade, a higher NYHA functional class and a history of hypertension. In multivariate analysis, however, high preoperative NT-proBNP level (>160 ng/L) only remained significant. Conclusion An elevated preoperative NT-proBNP level is identified as an independent predictor of cardiac complications following lung resection surgery. PMID:22263123
Worster, Andrew; Devereaux, P J; Heels-Ansdell, Diane; Guyatt, Gordon H; Opie, John; Mookadam, Farouk; Hill, Stephen A
2005-06-21
Ischemia-modified albumin (IMA) has been suggested as a marker of cardiac ischemia. Little, however, is known about its capacity to predict short-term serious cardiac outcomes (death, myocardial infarction, congestive heart failure, serious arrhythmia, or refractory ischemic cardiac pain) in patients arriving at the emergency department with symptoms that may indicate cardiac ischemia. We screened 546 patients over a 4-week period, of whom 189 fulfilled our entry criteria by presenting to an emergency department with potential cardiac-ischemia symptoms within 6 hours after chest pain, seeing an emergency physician who chose to order a troponin I test, and having no serious cardiac outcome before the troponin result became available. We followed the study patients for 72 hours to determine if any experienced a serious cardiac outcome. We calculated the likelihood ratios (LRs) of IMA findings predicting serious cardiac outcomes that could not be diagnosed at presentation with current techniques. Of the 189 patients, 24 had a serious cardiac outcome within 72 hours after their arrival at the emergency department. The likelihood ratios for IMA measurement within 6 hours after chest pain predicting a serious cardiac outcome within the next 72 hours were 1.35 (95% confidence interval [CI] 0.315-5.79) for IMA < or = 80 U/mL and 0.98 (95% CI 0.86- 1.11) for IMA > 80 U/mL. These data suggest that in patients presenting with chest pain who have not yet experienced a serious cardiac event, IMA is a poor predictor of serious cardiac outcomes in the short term.
Laukkanen, Jari A.; Mäkikallio, Timo H.; Rauramaa, Rainer; Kurl, Sudhir
2009-01-01
Aims Silent electrocardiographic ST change predicts future coronary events in patients with coronary heart disease (CHD), but the prognostic significance of asymptomatic ST-segment depression with respect to sudden cardiac death in subjects without apparent CHD is not well known. Methods and results We investigated the association between silent ST-segment depression during and after maximal symptom-limited exercise test and the risk of sudden cardiac death in a population-based sample of 1769 men without evident CHD. A total of 72 sudden cardiac death occurred during the median follow-up of 18 years. The risk of sudden cardiac death was increased among men with asymptomatic ST-segment depression during exercise [hazard ratio (HR) 2.1, 95% confidence interval (CI) 1.2–3.9] as well as among those with asymptomatic ST-segment depression during recovery period (HR 3.2, 95% CI 1.7–6.0). Asymptomatic ST-depression during exercise testing was a stronger predictor for the risk of sudden cardiac death especially among smokers as well as in hypercholesterolaemic and hypertensive men than in men without these risk factors. Conclusion Asymptomatic ST-segment depression was a very strong predictor of sudden cardiac death in men with any conventional risk factor but no previously diagnosed CHD, emphasizing the value of exercise testing to identify asymptomatic high-risk men who could benefit from preventive measures. PMID:19168533
Alattar, A; Maffulli, N
2015-01-01
Objective: To review the available evidence establishing the validity of adding electrocardiogram to the preparticipation cardiac screening in athletes. Data Sources: MEDLINE and CINAHL databases were searched. Additional references from the bibliographies of retrieved articles were also reviewed and experts in the area were contacted. Selection Criteria: Only original research articles seeking to establish the use of electrocardiography followed by second line investigations in athletes under 36 years of age were reviewed. Search Result and Quality Assessment: The initial literature search identified 226 papers. Of these, 16 original articles (all type II evidence—population-based clinical studies) met the selection criteria and directly related to the use of electrocardiography in athletes cardiac screening. The methodological qualities of included studies were assessed using the Downs and Black checklist. Conclusion: Screening with electrocardiography represents best clinical practice to prevent or reduce the risk of sudden cardiac death in athletes. It significantly improves the sensitivity of history and physical examination alone; it has reasonable specificity and excellent negative predictive value; and it is cost-effective. Future studies must be large, multicentre, multination, prospective trials powered to determine how different screening options affect the incidence of sudden cardiac death. Efforts should also be targeted toward secondary prevention of sudden cardiac death with pitch side cardiac resuscitation and the immediate use of defibrillator. PMID:25674543
Ekström, Kaj; Lehtonen, Jukka; Hänninen, Helena; Kandolin, Riina; Kivistö, Sari; Kupari, Markku
2016-05-02
Cardiac magnetic resonance imaging has a key role in today's diagnosis of cardiac sarcoidosis. We set out to investigate whether cardiac magnetic resonance imaging also helps predict outcome in cardiac sarcoidosis. Our work involved 59 patients with cardiac sarcoidosis (38 female, mean age 46±10 years) seen at our hospital since February 2004 and followed up after contrast-enhanced cardiac magnetic resonance imaging. The extent of myocardial late gadolinium enhancement (measured as percentage of left ventricular mass), the volumes and ejection fractions of the left and right ventricles, and the thickness of the basal interventricular septum were determined and analyzed for prognostic significance. By April 2015, 23 patients had reached the study's end point, consisting of a composite of cardiac death (n=3), cardiac transplantation (n=1), and occurrence of life-threatening ventricular tachyarrhythmias (n=19; ventricular fibrillation in 5 and sustained ventricular tachycardia in 14 patients). In univariate analysis, myocardial extent of late gadolinium enhancement predicted event-free survival, as did scar-like thinning (<4 mm) of the basal interventricular septum and the ejection fraction of the right ventricle (P<0.05 for all). In multivariate Cox regression analysis, extent of late gadolinium enhancement was the only independent predictor of outcome events on cardiac magnetic resonance imaging, with a hazard ratio of 2.22 per tertile (95% CI 1.07-4.59). An extent of late gadolinium enhancement >22% (third tertile) had positive and negative predictive values for serious cardiac events of 75% and 76%, respectively. Findings on cardiac magnetic resonance imaging and the extent of myocardial late gadolinium enhancement in particular help predict serious cardiac events in cardiac sarcoidosis. © 2016 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.
Ghaem, Haleh; Ghorbani, Mohammad; Zare Dorniani, Samira
2017-06-01
Permanent artificial pacemaker is one of the important therapies for treatment of cardiac conduction system problems. The present study aimed to determine the association between some predictive variables and all-cause and cause-specific mortality in the patients who had undergone pacemaker implantation. This study was conducted on 1207 patients who had undergone permanent pacemaker implantation in the hospitals affiliated with Shiraz University of Medical Sciences, Iran, from Mar 2002 to Mar 2012. The variables that existed in the patients' medical records included sex, diabetes mellitus, obesity, cerebrovascular accident, cardiomegaly, smoking, hypertension, ischemic heart disease, congenital heart disease, sick sinus syndrome, and atrial fibrillation. Competing risks model was used to assess the association between the predictive variables and cause-specific (i.e., cardiac and vascular) mortality. The patients' mean age was 66.32±17.92 yr (70.62±14.45 yr in the patients with single-chamber pacemakers vs. 61.91±17.69 yr in those with two-chamber pacemakers) ( P <0.001). Sick sinus syndrome and age increased the risk of all-cause mortality, while two-chamber pacemaker decreased this risk. Obesity increased the risk of cardiac death, and diabetes mellitus and heart valve disease increased the risk of vascular death. The variables predicting mortality in all-cause model were completely different from those in cause-specific model. Moreover, death in such patients may occur due to reasons other than pacemaker. Therefore, future studies, particularly prospective ones, are recommended to use competing risks models.
Goei, Dustin; Flu, Willem-Jan; Hoeks, Sanne E; Galal, Wael; Dunkelgrun, Martin; Boersma, Eric; Kuijper, Ruud; van Kuijk, Jan-Peter; Winkel, Tamara A; Schouten, Olaf; Bax, Jeroen J; Poldermans, Don
2009-11-01
N-terminal pro-B-type natriuretic peptide (NT-proBNP) predicts adverse cardiac outcome in patients undergoing vascular surgery. However, several conditions might influence this prognostic value, including anemia. In this study, we evaluated whether anemia confounds the prognostic value of NT-proBNP for predicting cardiac events in patients undergoing vascular surgery. A detailed cardiac history, resting echocardiography, and hemoglobin and NT-proBNP levels were obtained in 666 patients before vascular surgery. Anemia was defined as serum hemoglobin <13 g/dL for men and <12 g/dL for women. Troponin T measurements and 12-lead electrocardiograms were performed on postoperative days 1, 3, 7, and 30 and whenever clinically indicated. The primary end point of the study was the composite of 30-day postoperative cardiovascular death, nonfatal myocardial infarction, and troponin T release. Receiver operating characteristic curve analysis was used to assess the optimal cutoff value of NT-proBNP for the prediction of the composite end point. Multivariable regression analysis was used to assess the additional value of NT-proBNP for the prediction of postoperative cardiac events in nonanemic and anemic patients. Anemia was present in 206 patients (31%) before surgery. Hemoglobin level was inversely related with the NT-proBNP levels (beta coefficient = -2.242; P = 0.025). The optimal predictive cutoff value of NT-proBNP for predicting the composite cardiovascular outcome was 350 pg/mL. After adjustment for clinical cardiac risk factors, both anemia (odds ratio [OR] 1.53; 95% confidence interval [CI]: 1.07-2.99) and increased levels of NT-proBNP (OR 4.09; 95% CI: 2.19-7.64) remained independent predictors for postoperative cardiac events. However, increased levels of NT-proBNP were not predictive for the risk of adverse cardiac events in the subgroup of anemic patients (OR 2.16; 95% CI: 0.90-5.21). Both anemia and NT-proBNP are independently associated with an increased risk for postoperative cardiac events in patients undergoing vascular surgery. NT-proBNP has less predictive value in anemic patients.
Park, Chan Hyuk; Park, Jun Chul; Chung, Hyunsoo; Shin, Sung Kwan; Lee, Sang Kil; Lee, Yong Chan
2016-10-01
The role of endoscopic ultrasonography (EUS) in gastric cardia cancer should be further evaluated because the accuracy of EUS depends on tumor location. We aimed to identify a specific role of EUS for therapeutic decision-making in patients with gastric cardia cancer. Initial EUS examinations for treatment-naïve gastric cancer that were followed by endoscopic resection or surgery were included in the study. Lesions were classified as cardiac and non-cardiac cancer according to tumor location. The diagnostic performance of EUS in predicting invasion depth was compared between the two groups. The overall accuracy of EUS in predicting invasion depth did not differ between the cardiac and non-cardiac cancer groups (44.4 vs. 52.3 %, P = 0.259). The underestimation rate was higher in the cardiac cancer group than in the non-cardiac cancer group (37.0 vs. 18.5 %, P = 0.001). When the depth of invasion was predicted to be deeper than the mucosa (submucosal or deeper) by EUS, the positive predictive value was 82.1 [95 % confidence interval (CI), 66.5-92.5 %] and 62.9 % (95 % CI, 60.5-66.9 %) in the cardiac and non-cardiac cancer groups, respectively (P = 0.015). In multivariable analysis, tumor location in the cardia was found to be an independent factor for the underestimation of invasion depth [odds ratio (95 % CI) = 2.242 (1.156-4.349)]. The underestimation rate in predicting invasion depth was significantly higher for cardiac cancers than for non-cardiac cancers. Therefore, selection of the treatment method for gastric cardia cancer via EUS should be done carefully.
Health Literacy Predicts Cardiac Knowledge Gains in Cardiac Rehabilitation Participants
ERIC Educational Resources Information Center
Mattson, Colleen C.; Rawson, Katherine; Hughes, Joel W.; Waechter, Donna; Rosneck, James
2015-01-01
Objective: Health literacy is increasingly recognised as a potentially important patient characteristic related to patient education efforts. We evaluated whether health literacy would predict gains in knowledge after completion of patient education in cardiac rehabilitation. Method: This was a re-post observational analysis study design based on…
Herber, Oliver R; Jones, Martyn C; Smith, Karen; Johnston, Derek W
2012-12-01
This research protocol describes and justifies a study to assess patients' cardiac-related beliefs (i.e. illness representations, knowledge/misconceptions, cardiac treatment beliefs), motivation and mood over time to predict non-attendance at a cardiac rehabilitation programme by measuring weekly/monthly changes in these key variables. Heart disease is the UK's leading cause of death. Evidence from meta-analyses suggests that cardiac rehabilitation facilitates recovery following acute cardiac events. However, 30-60% of patients do not attend cardiac rehabilitation. There is some evidence from questionnaire studies that a range of potentially modifiable psychological variables including patients' cardiac-related beliefs, motivation and mood may influence attendance. Mixed-methods. In this study, during 2012-2013, electronic diary data will be gathered weekly/monthly from 240 patients with acute coronary syndrome from discharge from hospital until completion of the cardiac rehabilitation programme. This will identify changes and interactions between key variables over time and their power to predict non-attendance at cardiac rehabilitation. Data will be analysed to examine the relationship between patients' illness perceptions, cardiac treatment beliefs, knowledge/misconceptions, mood and non-attendance of the cardiac rehabilitation programme. The qualitative component (face-to-face interviews) seeks to explore why patients decide not to attend, not complete or complete the cardiac rehabilitation programme. The identification of robust predictors of (non-)attendance is important for the design and delivery of interventions aimed at optimizing cardiac rehabilitation uptake. Funding for the study was granted in February 2011 by the Scottish Government Chief Scientist Office (CZH/4/650). © 2012 Blackwell Publishing Ltd.
Blood flow patterns underlie developmental heart defects
Midgett, Madeline; Thornburg, Kent
2017-01-01
Although cardiac malformations at birth are typically associated with genetic anomalies, blood flow dynamics also play a crucial role in heart formation. However, the relationship between blood flow patterns in the early embryo and later cardiovascular malformation has not been determined. We used the chicken embryo model to quantify the extent to which anomalous blood flow patterns predict cardiac defects that resemble those in humans and found that restricting either the inflow to the heart or the outflow led to reproducible abnormalities with a dose-response type relationship between blood flow stimuli and the expression of cardiac phenotypes. Constricting the outflow tract by 10–35% led predominantly to ventricular septal defects, whereas constricting by 35–60% most often led to double outlet right ventricle. Ligation of the vitelline vein caused mostly pharyngeal arch artery malformations. We show that both cardiac inflow reduction and graded outflow constriction strongly influence the development of specific and persistent abnormal cardiac structure and function. Moreover, the hemodynamic-associated cardiac defects recapitulate those caused by genetic disorders. Thus our data demonstrate the importance of investigating embryonic blood flow conditions to understand the root causes of congenital heart disease as a prerequisite to future prevention and treatment. NEW & NOTEWORTHY Congenital heart defects result from genetic anomalies, teratogen exposure, and altered blood flow during embryonic development. We show here a novel “dose-response” type relationship between the level of blood flow alteration and manifestation of specific cardiac phenotypes. We speculate that abnormal blood flow may frequently underlie congenital heart defects. PMID:28062416
Douglas, Pamela S; Cerqueira, Manuel D; Berman, Daniel S; Chinnaiyan, Kavitha; Cohen, Meryl S; Lundbye, Justin B; Patel, Rajan A G; Sengupta, Partho P; Soman, Prem; Weissman, Neil J; Wong, Timothy C
2016-10-01
The American College of Cardiology's Executive Committee and Cardiovascular Imaging Section Leadership Council convened a discussion regarding the future of cardiac imaging among thought leaders in the field during a 2 day Think Tank. Participants were charged with thinking broadly about the future of imaging and developing a roadmap to address critical challenges. Key areas of discussion included: 1) how can cardiac imaging services thrive in our new world of value-based health care? 2) Who is the cardiac imager of the future and what is the role of the multimodality imager? 3) How can we nurture innovation and research in imaging? And 4) how can we maximize imaging information and optimize outcomes? This document describes the proceedings of this Think Tank. Copyright © 2016 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
microRNA expression profiling in fetal single ventricle malformation identified by deep sequencing.
Yu, Zhang-Bin; Han, Shu-Ping; Bai, Yun-Fei; Zhu, Chun; Pan, Ya; Guo, Xi-Rong
2012-01-01
microRNAs (miRNAs) have emerged as key regulators in many biological processes, particularly cardiac growth and development, although the specific miRNA expression profile associated with this process remains to be elucidated. This study aimed to characterize the cellular microRNA profile involved in the development of congenital heart malformation, through the investigation of single ventricle (SV) defects. Comprehensive miRNA profiling in human fetal SV cardiac tissue was performed by deep sequencing. Differential expression of 48 miRNAs was revealed by sequencing by oligonucleotide ligation and detection (SOLiD) analysis. Of these, 38 were down-regulated and 10 were up-regulated in differentiated SV cardiac tissue, compared to control cardiac tissue. This was confirmed by real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analysis. Predicted target genes of the 48 differentially expressed miRNAs were analyzed by gene ontology and categorized according to cellular process, regulation of biological process and metabolic process. Pathway-Express analysis identified the WNT and mTOR signaling pathways as the most significant processes putatively affected by the differential expression of these miRNAs. The candidate genes involved in cardiac development were identified as potential targets for these differentially expressed microRNAs and the collaborative network of microRNAs and cardiac development related-mRNAs was constructed. These data provide the basis for future investigation of the mechanism of the occurrence and development of fetal SV malformations.
Mitochondrial Dynamics in Diabetic Cardiomyopathy
Galloway, Chad A.
2015-01-01
Abstract Significance: Cardiac function is energetically demanding, reliant on efficient well-coupled mitochondria to generate adenosine triphosphate and fulfill the cardiac demand. Predictably then, mitochondrial dysfunction is associated with cardiac pathologies, often related to metabolic disease, most commonly diabetes. Diabetic cardiomyopathy (DCM), characterized by decreased left ventricular function, arises independently of coronary artery disease and atherosclerosis. Dysregulation of Ca2+ handling, metabolic changes, and oxidative stress are observed in DCM, abnormalities reflected in alterations in mitochondrial energetics. Cardiac tissue from DCM patients also presents with altered mitochondrial morphology, suggesting a possible role of mitochondrial dynamics in its pathological progression. Recent Advances: Abnormal mitochondrial morphology is associated with pathologies across diverse tissues, suggesting that this highly regulated process is essential for proper cell maintenance and physiological homeostasis. Highly structured cardiac myofibers were hypothesized to limit alterations in mitochondrial morphology; however, recent work has identified morphological changes in cardiac tissue, specifically in DCM. Critical Issues: Mitochondrial dysfunction has been reported independently from observations of altered mitochondrial morphology in DCM. The temporal relationship and causative nature between functional and morphological changes of mitochondria in the establishment/progression of DCM is unclear. Future Directions: Altered mitochondrial energetics and morphology are not only causal for but also consequential to reactive oxygen species production, hence exacerbating oxidative damage through reciprocal amplification, which is integral to the progression of DCM. Therefore, targeting mitochondria for DCM will require better mechanistic characterization of morphological distortion and bioenergetic dysfunction. Antioxid. Redox Signal. 22, 1545–1562. PMID:25738230
Greisenegger, Stefan; Segal, Helen C; Burgess, Annette I; Poole, Debbie L; Mehta, Ziyah; Rothwell, Peter M
2015-03-01
Premature death after transient ischemic attack or stroke is more often because of heart disease or cancer than stroke. Previous studies found blood biomarkers not usefully predictive of nonfatal stroke but possibly of all-cause death. This association might be explained by potentially treatable occult cardiac disease or cancer. We therefore aimed to validate the association of a panel of biomarkers with all-cause death, particularly cardiac death and cancer death, despite the absence of associations with risk of nonfatal vascular events. Fifteen biomarkers were measured in 929 consecutive patients in a population-based study (Oxford Vascular Study), recruited from 2002 and followed up to 2013. Associations were determined by Cox regression. Model discrimination was assessed by c-statistic and the integrated discrimination improvement. During 5560 patient-years of follow-up, none of the biomarkers predicted risk of nonfatal vascular events. However, soluble tumor necrosis factor α receptor-1, von Willebrand factor, heart-type fatty-acid-binding protein, and N-terminal pro-B-type natriuretic peptide were independently predictive of all-cause death (n=361; adjusted hazard ratio per SD, 95% confidence interval: heart-type fatty-acid-binding protein: 1.31, 1.12-1.56, P=0.002; N-terminal pro-B-type natriuretic peptide: 1.34, 1.11-1.62, P=0.002; soluble tumor necrosis factor α receptor-1: 1.45, 1.26-1.66, P=0.02; von Willebrand factor: 1.19, 1.04-1.36, P=0.01). The independent contribution of the four biomarkers taken together added prognostic information and improved model discrimination (integrated discrimination improvement=0.028, P=0.0001). N-terminal pro-B-type natriuretic peptide was most predictive of vascular death (adjusted hazard ratio=1.80, 95% confidence interval, 1.34-2.41, P<0.0001), whereas heart-type fatty-acid-binding protein predicted cancer deaths (1.64, 1.26-2.12, P=0.0002). Associations were strongest in patients without known prior cardiac disease or cancer. Several biomarkers predicted death of any cause after transient ischemic attack and minor stroke. N-terminal pro-B-type natriuretic peptide and heart-type fatty-acid-binding protein might improve patient selection for additional screening for occult cardiac disease or cancer, respectively. However, our results require validation in future studies. © 2015 American Heart Association, Inc.
An early, novel illness severity score to predict outcome after cardiac arrest.
Rittenberger, Jon C; Tisherman, Samuel A; Holm, Margo B; Guyette, Francis X; Callaway, Clifton W
2011-11-01
Illness severity scores are commonly employed in critically ill patients to predict outcome. To date, prior scores for post-cardiac arrest patients rely on some event-related data. We developed an early, novel post-arrest illness severity score to predict survival, good outcome and development of multiple organ failure (MOF) after cardiac arrest. Retrospective review of data from adults treated after in-hospital or out-of-hospital cardiac arrest in a single tertiary care facility between 1/1/2005 and 12/31/2009. In addition to clinical data, initial illness severity was measured using serial organ function assessment (SOFA) scores and full outline of unresponsiveness (FOUR) scores at hospital or intensive care unit arrival. Outcomes were hospital mortality, good outcome (discharge to home or rehabilitation) and development of multiple organ failure (MOF). Single-variable logistic regression followed by Chi-squared automatic interaction detector (CHAID) was used to determine predictors of outcome. Stepwise multivariate logistic regression was used to determine the independent association between predictors and each outcome. The Hosmer-Lemeshow test was used to evaluate goodness of fit. The n-fold method was used to cross-validate each CHAID analysis and the difference between the misclassification risk estimates was used to determine model fit. Complete data from 457/495 (92%) subjects identified distinct categories of illness severity using combined FOUR motor and brainstem subscales, and combined SOFA cardiovascular and respiratory subscales: I. Awake; II. Moderate coma without cardiorespiratory failure; III. Moderate coma with cardiorespiratory failure; and IV. Severe coma. Survival was independently associated with category (I: OR 58.65; 95% CI 27.78, 123.82; II: OR 14.60; 95% CI 7.34, 29.02; III: OR 10.58; 95% CI 4.86, 23.00). Category was also similarly associated with good outcome and development of MOF. The proportion of subjects in each category changed over time. Initial illness severity explains much of the variation in cardiac arrest outcome. This model provides prognostic information at hospital arrival and may be used to stratify patients in future studies. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Terho, Henri K; Tikkanen, Jani T; Kenttä, Tuomas V; Junttila, M Juhani; Aro, Aapo L; Anttonen, Olli; Kerola, Tuomas; Rissanen, Harri A; Knekt, Paul; Reunanen, Antti; Huikuri, Heikki V
2016-11-01
The long-term prognostic value of a standard 12-lead electrocardiogram (ECG) for predicting cardiac events in apparently healthy middle-aged subjects is not well defined. A total of 9511 middle-aged subjects (mean age 43 ± 8.2 years, 52% males) without a known cardiac disease and with a follow-up 40 years were included in the study. Fatal and non-fatal cardiac events were collected from the national registries. The predictive value of ECG was separately analyzed for 10 and 30 years. Major ECG abnormalities were classified according to the Minnesota code. Subjects with major ECG abnormalities (N = 1131) had an increased risk of cardiac death after 10-years (adjusted hazard ratio [HR] 1.7; 95% confidence interval [95% CI], 1.1-2.5, p = 0.009) and 30-years of follow-up (HR 1.3, 95% CI, 1.1-1.5, p < 0.001). Model discrimination measured with the C-index showed only a minor improvement with the inclusion of ECG abnormalities: 0.851 versus 0.853 and 0.742 versus 0.743 for 10- and 30-year follow-up, respectively. ECG did not predict non-fatal cardiac events after 10-years or 30-years of follow-up. Major ECG abnormalities are associated with an increased risk of short and long-term cardiac mortality in middle-aged subjects. However, the improvement in discrimination between subjects with and without fatal cardiac events was marginal with abnormal ECG. Abnormalities observed on 12-lead electrocardiogram are shown to have prognostic significance for cardiac events in elderly subjects without known cardiac disease. Our results suggest that ECG abnormalities increase the risk of fatal cardiac events also in middle-aged healthy subjects.
GHAEM, Haleh; GHORBANI, Mohammad; ZARE DORNIANI, Samira
2017-01-01
Background: Permanent artificial pacemaker is one of the important therapies for treatment of cardiac conduction system problems. The present study aimed to determine the association between some predictive variables and all-cause and cause-specific mortality in the patients who had undergone pacemaker implantation. Methods: This study was conducted on 1207 patients who had undergone permanent pacemaker implantation in the hospitals affiliated with Shiraz University of Medical Sciences, Iran, from Mar 2002 to Mar 2012. The variables that existed in the patients’ medical records included sex, diabetes mellitus, obesity, cerebrovascular accident, cardiomegaly, smoking, hypertension, ischemic heart disease, congenital heart disease, sick sinus syndrome, and atrial fibrillation. Competing risks model was used to assess the association between the predictive variables and cause-specific (i.e., cardiac and vascular) mortality. Results: The patients’ mean age was 66.32±17.92 yr (70.62±14.45 yr in the patients with single-chamber pacemakers vs. 61.91±17.69 yr in those with two-chamber pacemakers) (P<0.001). Sick sinus syndrome and age increased the risk of all-cause mortality, while two-chamber pacemaker decreased this risk. Obesity increased the risk of cardiac death, and diabetes mellitus and heart valve disease increased the risk of vascular death. Conclusion: The variables predicting mortality in all-cause model were completely different from those in cause-specific model. Moreover, death in such patients may occur due to reasons other than pacemaker. Therefore, future studies, particularly prospective ones, are recommended to use competing risks models. PMID:28828325
Virtual Surgery for Conduit Reconstruction of the Right Ventricular Outflow Tract.
Ong, Chin Siang; Loke, Yue-Hin; Opfermann, Justin; Olivieri, Laura; Vricella, Luca; Krieger, Axel; Hibino, Narutoshi
2017-05-01
Virtual surgery involves the planning and simulation of surgical reconstruction using three-dimensional (3D) modeling based upon individual patient data, augmented by simulation of planned surgical alterations including implantation of devices or grafts. Here we describe a case in which virtual cardiac surgery aided us in determining the optimal conduit size to use for the reconstruction of the right ventricular outflow tract. The patient is a young adolescent male with a history of tetralogy of Fallot with pulmonary atresia, requiring right ventricle-to-pulmonary artery (RV-PA) conduit replacement. Utilizing preoperative magnetic resonance imaging data, virtual surgery was undertaken to construct his heart in 3D and to simulate the implantation of three different sizes of RV-PA conduit (18, 20, and 22 mm). Virtual cardiac surgery allowed us to predict the ability to implant a conduit of a size that would likely remain adequate in the face of continued somatic growth and also allow for the possibility of transcatheter pulmonary valve implantation at some time in the future. Subsequently, the patient underwent uneventful conduit change surgery with implantation of a 22-mm Hancock valved conduit. As predicted, the intrathoracic space was sufficient to accommodate the relatively large conduit size without geometric distortion or sternal compression. Virtual cardiac surgery gives surgeons the ability to simulate the implantation of prostheses of different sizes in relation to the dimensions of a specific patient's own heart and thoracic cavity in 3D prior to surgery. This can be very helpful in predicting optimal conduit size, determining appropriate timing of surgery, and patient education.
Girolami, Francesca; Frisso, Giulia; Benelli, Matteo; Crotti, Lia; Iascone, Maria; Mango, Ruggiero; Mazzaccara, Cristina; Pilichou, Kalliope; Arbustini, Eloisa; Tomberli, Benedetta; Limongelli, Giuseppe; Basso, Cristina; Olivotto, Iacopo
2018-01-01
: Inherited cardiac diseases comprise a wide and heterogeneous spectrum of diseases of the heart, including the cardiomyopathies and the arrhythmic diseases in structurally normal hearts, that is, channelopathies. With a combined estimated prevalence of 3% in the general population, these conditions represent a relevant epidemiological entity worldwide, and are a major cause of cardiac morbidity and mortality in the young. The extraordinary progress achieved in molecular genetics over the last three decades has unveiled the complex molecular basis of many familial cardiac conditions, paving the way for routine use of gene testing in clinical practice. In current practice, genetic testing can be used in a clinically affected patient to confirm diagnosis, or to formulate a differential diagnosis among overlapping phenotypes or between hereditary and acquired (nongenetic) forms of disease. Although genotype-phenotype correlations are generally unpredictable, a precise molecular diagnosis can help predict prognosis in specific patient subsets and may guide management. In clinically unaffected relatives, genetic cascade testing is recommended, after the initial identification of a pathogenic variation, with the aim of identifying asymptomatic relatives who might be at risk of disease-related complications, including unexpected sudden cardiac death. Future implications include the identification of novel therapeutic targets and development of tailored treatments including gene therapy. This document reflects the multidisciplinary, 'real-world' experience required when implementing genetic testing in cardiomyopathies and arrhythmic syndromes, along the recommendations of various guidelines.
Girolami, Francesca; Frisso, Giulia; Benelli, Matteo; Crotti, Lia; Iascone, Maria; Mango, Ruggiero; Mazzaccara, Cristina; Pilichou, Kalliope; Arbustini, Eloisa; Tomberli, Benedetta; Limongelli, Giuseppe; Basso, Cristina; Olivotto, Iacopo
2018-01-01
Inherited cardiac diseases comprise a wide and heterogeneous spectrum of diseases of the heart, including the cardiomyopathies and the arrhythmic diseases in structurally normal hearts, that is, channelopathies. With a combined estimated prevalence of 3% in the general population, these conditions represent a relevant epidemiological entity worldwide, and are a major cause of cardiac morbidity and mortality in the young. The extraordinary progress achieved in molecular genetics over the last three decades has unveiled the complex molecular basis of many familial cardiac conditions, paving the way for routine use of gene testing in clinical practice. In current practice, genetic testing can be used in a clinically affected patient to confirm diagnosis, or to formulate a differential diagnosis among overlapping phenotypes or between hereditary and acquired (nongenetic) forms of disease. Although genotype–phenotype correlations are generally unpredictable, a precise molecular diagnosis can help predict prognosis in specific patient subsets and may guide management. In clinically unaffected relatives, genetic cascade testing is recommended, after the initial identification of a pathogenic variation, with the aim of identifying asymptomatic relatives who might be at risk of disease-related complications, including unexpected sudden cardiac death. Future implications include the identification of novel therapeutic targets and development of tailored treatments including gene therapy. This document reflects the multidisciplinary, ‘real-world’ experience required when implementing genetic testing in cardiomyopathies and arrhythmic syndromes, along the recommendations of various guidelines. PMID:29176389
Clinical use of cardiac PET/MRI: current state-of-the-art and potential future applications.
Krumm, Patrick; Mangold, Stefanie; Gatidis, Sergios; Nikolaou, Konstantin; Nensa, Felix; Bamberg, Fabian; la Fougère, Christian
2018-05-01
Combined PET/MRI is a novel imaging method integrating the advances of functional and morphological MR imaging with PET applications that include assessment of myocardial viability, perfusion, metabolism of inflammatory tissue and tumors, as well as amyloid deposition imaging. As such, PET/MRI is a promising tool to detect and characterize ischemic and non-ischemic cardiomyopathies. To date, the greatest benefit may be expected for diagnostic evaluation of systemic diseases and cardiac masses that remain unclear in cardiac MRI, as well as for clinical and scientific studies in the setting of ischemic cardiomyopathies. Diagnosis and therapeutic monitoring of cardiac sarcoidosis has the potential of a possible 'killer-application' for combined cardiac PET/MRI. In this article, we review the current evidence and discuss current and potential future applications of cardiac PET/MRI.
Sakatani, Tomohiko; Shimoo, Satoshi; Takamatsu, Kazuaki; Kyodo, Atsushi; Tsuji, Yumika; Mera, Kayoko; Koide, Masahiro; Isodono, Koji; Tsubakimoto, Yoshinori; Matsuo, Akiko; Inoue, Keiji; Fujita, Hiroshi
2016-12-01
Myocardial perfusion single-photon emission-computed tomography (SPECT) can predict cardiac events in patients with coronary artery disease with high accuracy; however, pseudo-negative cases sometimes occur. Heart Risk View, which is based on the prospective cohort study (J-ACCESS), is a software for evaluating cardiac event probability. We examined whether Heart Risk View was useful to evaluate the cardiac risk in patients with normal myocardial perfusion SPECT (MPS). We studied 3461 consecutive patients who underwent MPS to detect myocardial ischemia and those who had normal MPS were enrolled in this study (n = 698). We calculated cardiac event probability by Heart Risk View and followed-up for 3.8 ± 2.4 years. The cardiac events were defined as cardiac death, non-fatal myocardial infarction, and heart failure requiring hospitalization. During the follow-up period, 21 patients (3.0 %) had cardiac events. The event probability calculated by Heart Risk View was higher in the event group (5.5 ± 2.6 vs. 2.9 ± 2.6 %, p < 0.001). According to the receiver-operating characteristics curve, the cut-off point of the event probability for predicting cardiac events was 3.4 % (sensitivity 0.76, specificity 0.72, and AUC 0.85). Kaplan-Meier curves revealed that a higher event rate was observed in the high-event probability group by the log-rank test (p < 0.001). Although myocardial perfusion SPECT is useful for the prediction of cardiac events, risk estimation by Heart Risk View adds more prognostic information, especially in patients with normal MPS.
2011-01-01
Background Thousands of children experience cardiac arrest events every year in pediatric intensive care units. Most of these children die. Cardiac arrest prediction tools are used as part of medical emergency team evaluations to identify patients in standard hospital beds that are at high risk for cardiac arrest. There are no models to predict cardiac arrest in pediatric intensive care units though, where the risk of an arrest is 10 times higher than for standard hospital beds. Current tools are based on a multivariable approach that does not characterize deterioration, which often precedes cardiac arrests. Characterizing deterioration requires a time series approach. The purpose of this study is to propose a method that will allow for time series data to be used in clinical prediction models. Successful implementation of these methods has the potential to bring arrest prediction to the pediatric intensive care environment, possibly allowing for interventions that can save lives and prevent disabilities. Methods We reviewed prediction models from nonclinical domains that employ time series data, and identified the steps that are necessary for building predictive models using time series clinical data. We illustrate the method by applying it to the specific case of building a predictive model for cardiac arrest in a pediatric intensive care unit. Results Time course analysis studies from genomic analysis provided a modeling template that was compatible with the steps required to develop a model from clinical time series data. The steps include: 1) selecting candidate variables; 2) specifying measurement parameters; 3) defining data format; 4) defining time window duration and resolution; 5) calculating latent variables for candidate variables not directly measured; 6) calculating time series features as latent variables; 7) creating data subsets to measure model performance effects attributable to various classes of candidate variables; 8) reducing the number of candidate features; 9) training models for various data subsets; and 10) measuring model performance characteristics in unseen data to estimate their external validity. Conclusions We have proposed a ten step process that results in data sets that contain time series features and are suitable for predictive modeling by a number of methods. We illustrated the process through an example of cardiac arrest prediction in a pediatric intensive care setting. PMID:22023778
Kennedy, Curtis E; Turley, James P
2011-10-24
Thousands of children experience cardiac arrest events every year in pediatric intensive care units. Most of these children die. Cardiac arrest prediction tools are used as part of medical emergency team evaluations to identify patients in standard hospital beds that are at high risk for cardiac arrest. There are no models to predict cardiac arrest in pediatric intensive care units though, where the risk of an arrest is 10 times higher than for standard hospital beds. Current tools are based on a multivariable approach that does not characterize deterioration, which often precedes cardiac arrests. Characterizing deterioration requires a time series approach. The purpose of this study is to propose a method that will allow for time series data to be used in clinical prediction models. Successful implementation of these methods has the potential to bring arrest prediction to the pediatric intensive care environment, possibly allowing for interventions that can save lives and prevent disabilities. We reviewed prediction models from nonclinical domains that employ time series data, and identified the steps that are necessary for building predictive models using time series clinical data. We illustrate the method by applying it to the specific case of building a predictive model for cardiac arrest in a pediatric intensive care unit. Time course analysis studies from genomic analysis provided a modeling template that was compatible with the steps required to develop a model from clinical time series data. The steps include: 1) selecting candidate variables; 2) specifying measurement parameters; 3) defining data format; 4) defining time window duration and resolution; 5) calculating latent variables for candidate variables not directly measured; 6) calculating time series features as latent variables; 7) creating data subsets to measure model performance effects attributable to various classes of candidate variables; 8) reducing the number of candidate features; 9) training models for various data subsets; and 10) measuring model performance characteristics in unseen data to estimate their external validity. We have proposed a ten step process that results in data sets that contain time series features and are suitable for predictive modeling by a number of methods. We illustrated the process through an example of cardiac arrest prediction in a pediatric intensive care setting.
Relationship between cardiac quiescent periods derived from seismocardiography and echocardiography.
Wick, Carson A; Inan, Omer T; Bhatti, Pamela; Tridandapani, Srini
2015-08-01
The seismocardiogram (SCG) is a measure of chest wall acceleration due to cardiac motion that could potentially supplement the electrocardiogram (ECG) to more reliably predict cardiac quiescence. Accurate prediction is critical for modalities requiring minimal motion during imaging data acquisition, such as cardiac computed tomography (CT) and magnetic resonance imaging (MRI). For seven healthy subjects, SCG and B-mode echocardiography were used to identify quiescent periods on a beat-by-beat basis. Quiescent periods were detected as time intervals when the magnitude of the velocity signals calculated from SCG and echocardiography were less than a specified threshold. The quiescent periods detected from SCG were compared to those detected from B-mode echocardiography. The quiescent periods of the SCG were found to occur before those detected by echocardiography. A linear relationship between the delay from SCG- to echocardiography-detected phases with respect to heart rate was found. This delay could potentially be used to predict cardiac quiescence from SCG-observed quiescence for use with cardiac imaging modalities such as CT and MRI.
Using Time Series Analysis to Predict Cardiac Arrest in a PICU.
Kennedy, Curtis E; Aoki, Noriaki; Mariscalco, Michele; Turley, James P
2015-11-01
To build and test cardiac arrest prediction models in a PICU, using time series analysis as input, and to measure changes in prediction accuracy attributable to different classes of time series data. Retrospective cohort study. Thirty-one bed academic PICU that provides care for medical and general surgical (not congenital heart surgery) patients. Patients experiencing a cardiac arrest in the PICU and requiring external cardiac massage for at least 2 minutes. None. One hundred three cases of cardiac arrest and 109 control cases were used to prepare a baseline dataset that consisted of 1,025 variables in four data classes: multivariate, raw time series, clinical calculations, and time series trend analysis. We trained 20 arrest prediction models using a matrix of five feature sets (combinations of data classes) with four modeling algorithms: linear regression, decision tree, neural network, and support vector machine. The reference model (multivariate data with regression algorithm) had an accuracy of 78% and 87% area under the receiver operating characteristic curve. The best model (multivariate + trend analysis data with support vector machine algorithm) had an accuracy of 94% and 98% area under the receiver operating characteristic curve. Cardiac arrest predictions based on a traditional model built with multivariate data and a regression algorithm misclassified cases 3.7 times more frequently than predictions that included time series trend analysis and built with a support vector machine algorithm. Although the final model lacks the specificity necessary for clinical application, we have demonstrated how information from time series data can be used to increase the accuracy of clinical prediction models.
Crowe, Sonya; Brown, Kate L; Pagel, Christina; Muthialu, Nagarajan; Cunningham, David; Gibbs, John; Bull, Catherine; Franklin, Rodney; Utley, Martin; Tsang, Victor T
2013-05-01
The study objective was to develop a risk model incorporating diagnostic information to adjust for case-mix severity during routine monitoring of outcomes for pediatric cardiac surgery. Data from the Central Cardiac Audit Database for all pediatric cardiac surgery procedures performed in the United Kingdom between 2000 and 2010 were included: 70% for model development and 30% for validation. Units of analysis were 30-day episodes after the first surgical procedure. We used logistic regression for 30-day mortality. Risk factors considered included procedural information based on Central Cardiac Audit Database "specific procedures," diagnostic information defined by 24 "primary" cardiac diagnoses and "univentricular" status, and other patient characteristics. Of the 27,140 30-day episodes in the development set, 25,613 were survivals, 834 were deaths, and 693 were of unknown status (mortality, 3.2%). The risk model includes procedure, cardiac diagnosis, univentricular status, age band (neonate, infant, child), continuous age, continuous weight, presence of non-Down syndrome comorbidity, bypass, and year of operation 2007 or later (because of decreasing mortality). A risk score was calculated for 95% of cases in the validation set (weight missing in 5%). The model discriminated well; the C-index for validation set was 0.77 (0.81 for post-2007 data). Removal of all but procedural information gave a reduced C-index of 0.72. The model performed well across the spectrum of predicted risk, but there was evidence of underestimation of mortality risk in neonates undergoing operation from 2007. The risk model performs well. Diagnostic information added useful discriminatory power. A future application is risk adjustment during routine monitoring of outcomes in the United Kingdom to assist quality assurance. Copyright © 2013 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.
Allyn, Jérôme; Allou, Nicolas; Augustin, Pascal; Philip, Ivan; Martinet, Olivier; Belghiti, Myriem; Provenchere, Sophie; Montravers, Philippe; Ferdynus, Cyril
2017-01-01
The benefits of cardiac surgery are sometimes difficult to predict and the decision to operate on a given individual is complex. Machine Learning and Decision Curve Analysis (DCA) are recent methods developed to create and evaluate prediction models. We conducted a retrospective cohort study using a prospective collected database from December 2005 to December 2012, from a cardiac surgical center at University Hospital. The different models of prediction of mortality in-hospital after elective cardiac surgery, including EuroSCORE II, a logistic regression model and a machine learning model, were compared by ROC and DCA. Of the 6,520 patients having elective cardiac surgery with cardiopulmonary bypass, 6.3% died. Mean age was 63.4 years old (standard deviation 14.4), and mean EuroSCORE II was 3.7 (4.8) %. The area under ROC curve (IC95%) for the machine learning model (0.795 (0.755-0.834)) was significantly higher than EuroSCORE II or the logistic regression model (respectively, 0.737 (0.691-0.783) and 0.742 (0.698-0.785), p < 0.0001). Decision Curve Analysis showed that the machine learning model, in this monocentric study, has a greater benefit whatever the probability threshold. According to ROC and DCA, machine learning model is more accurate in predicting mortality after elective cardiac surgery than EuroSCORE II. These results confirm the use of machine learning methods in the field of medical prediction.
Hulten, Edward; Agarwal, Vikram; Cahill, Michael; Cole, Geoff; Vita, Tomas; Parrish, Scott; Bittencourt, Marcio Sommer; Murthy, Venkatesh L; Kwong, Raymond; Di Carli, Marcelo F; Blankstein, Ron
2016-09-01
Individuals with cardiac sarcoidosis have an increased risk of ventricular arrhythmia and death. Several small cohort studies have evaluated the ability of late gadolinium enhancement (LGE) by cardiac magnetic resonance imaging (MRI) to predict adverse cardiovascular events. However, studies have yielded inconsistent results, and some analyses were underpowered. Therefore, we sought to systematically review and perform meta-analysis of the prognostic value of cardiac MRI for patients with known or suspected cardiac sarcoidosis. We systematically searched for cohort studies of patients with known sarcoidosis with suspected cardiac involvement who underwent cardiac MRI with LGE with at least 12 months of either prospective or retrospective follow-up data regarding post-MRI adverse cardiovascular outcomes. We identified 7 studies of 694 subjects (mean age 53; 42% men).One hundred and ninety-nine patients (29%) were LGE positive. All-cause mortality occurred in 19 LGE-positive versus 17 LGE-negative subjects (annualized incidence, 3.1% versus 0.6%). The pooled relative risk was 3.38 (95% confidence interval, 1.07-10.7; P=0.04). Cardiovascular mortality occurred in 10 LGE-positive versus 2 LGE-negative subjects (annualized incidence, 1.9% versus 0.3%; relative risk 10.7 [95% confidence interval, 1.34-86.3]; P=0.03). Ventricular arrhythmia occurred in 41 LGE-positive versus 0 LGE-negative subjects (annualized incidence, 5.9% versus 0%; relative risk 19.5 [95% confidence interval, 2.68-143]; P=0.003). A combined end point of death or ventricular arrhythmia occurred in 64 LGE-positive versus 18 LGE-negative subjects (annualized incidence, 8.8% versus 0.6%; relative risk 6.20 [95% confidence interval, 2.47-15.6]; P<0.001). There was no significant heterogeneity for any outcomes. LGE is associated with future cardiovascular death and ventricular arrhythmia among patients referred to MRI for known or suspected cardiac sarcoidosis. © 2016 American Heart Association, Inc.
The utility of combining RSA indices in depression prediction.
Yaroslavsky, Ilya; Rottenberg, Jonathan; Kovacs, Maria
2013-05-01
Depression is associated with protracted despondent mood, blunted emotional reactivity, and dysregulated parasympathetic nervous system (PNS) activity. PNS activity is commonly indexed via cardiac output, using indictors of its level (resting respiratory sinus arrhythmia [RSA]) or fluctuations (RSA reactivity). RSA reactivity can reflect increased or decreased PNS cardiac output (RSA augmentation and RSA withdrawal, respectively). Because a single index of a dynamic physiological system may be inadequate to characterize interindividual differences, we investigated whether the interaction of RSA reactivity and resting RSA is a better predictor of depression. Adult probands with childhood-onset depressive disorder histories (n = 113) and controls with no history of major mental disorders (n = 93) completed a psychophysiology protocol involving assessment of RSA at multiple rest periods and while watching a sad film. When examined independently, resting RSA and RSA reactivity were unrelated to depression, but their interaction predicted latent depression levels and proband status. In the context of high resting RSA, RSA withdrawal from the sad film predicted the lowest levels of depressive symptoms (irrespective of depression histories) and the greatest likelihood of having had no history of major mental disorder (irrespective of current distress). Our findings highlight the utility of combining indices of physiological responses in studying depression; combinations of RSA indices should be given future consideration as reflecting depression endophenotypes. © 2013 American Psychological Association
Traversi, Egidio; Bertoli, Giuseppe; Barazzoni, Giancarlo; Baldi, Maurizia; Tramarin, Roberto
2004-02-01
The recent technical developments in multislice computed tomography (MSCT), with ECG retro-gated image reconstruction, have elicited great interest in the possibility of accurate non-invasive imaging of the coronary arteries. The latest generation of MSCT systems with 8-16 rows of detectors permits acquisition of the whole cardiac volume during a single 15-20 s breath-hold with a submillimetric definition of the images and an outstanding signal-to-noise ratio. Thus the race which, between MSCT, electron beam computed tomography and cardiac magnetic resonance imaging, can best provide routine and reliable imaging of the coronary arteries in clinical practice has recommenced. Currently available MSCT systems offer different options for both cardiac image acquisition and reconstruction, including multiplanar and curved multiplanar reconstruction, three-dimensional volume rendering, maximum intensity projection, and virtual angioscopy. In our preliminary experience including 176 patients suffering from known or suspected coronary artery disease, MSCT was feasible in 161 (91.5%) and showed a sensitivity of 80.4% and a specificity of 80.3%, with respect to standard coronary angiography, in detecting critical stenosis in coronary arteries and artery or venous bypass grafts. These results correspond to a positive predictive value of 58.6% and a negative predictive value of 92.2%. The true role that MSCT is likely to play in the future in non-invasive coronary imaging is still to be defined. Nevertheless, the huge amount of data obtainable by MSCT along with the rapid technological advances, shorter acquisition times and reconstruction algorithm developments will make the technique stronger, and possible applications are expected not only for non-invasive coronary angiography, but also for cardiac function and myocardial perfusion evaluation, as an all-in-one examination.
Cartledge, Susie; Feldman, Susan; Bray, Janet E; Stub, Dion; Finn, Judith
2018-05-01
The aim of this study was to gain a comprehensive perspective about the experience of patient and spousal education following an acute cardiac event. The second objective was to elicit an understanding of patient and spousal attitudes, preferences and intentions towards future cardiopulmonary resuscitation training. Patients with cardiovascular disease require comprehensive patient and family education to ensure adequate long-term disease management. As cardiac patients are at risk of future cardiac events, including out-of-hospital cardiac arrest, providing cardiopulmonary resuscitation training to patients and family members has long been advocated. We conducted a qualitative study underpinned by phenomenology and the Theory of Planned Behaviour. Semi-structured interviews were conducted with cardiac patients and their spouses (N = 12 patient-spouse pairs) between March 2015-April 2016 purposively sampled from a cardiology ward. Interviews were transcribed verbatim and thematic analysis undertaken. Nine male and three female patients and their spouses were recruited. Ages ranged from 47-75 years. Four strongly interrelated themes emerged: the emotional response to the event, information, control and responsibility. There was evidence of positive attitudes and intentions from the TPB towards undertaking cardiopulmonary resuscitation training in the future. Only the eldest patient spouse pair were not interested in undertaking training. Findings suggest cardiac patients and spouses have unmet education needs following an acute cardiac event. Information increased control and decreased negative emotions associated with diagnosis. Participants' preferences were for inclusion of cardiopulmonary resuscitation training in cardiac rehabilitation programs. © 2018 John Wiley & Sons Ltd.
Current State and Future Perspectives of Energy Sources for Totally Implantable Cardiac Devices.
Bleszynski, Peter A; Luc, Jessica G Y; Schade, Peter; PhilLips, Steven J; Tchantchaleishvili, Vakhtang
There is a large population of patients with end-stage congestive heart failure who cannot be treated by means of conventional cardiac surgery, cardiac transplantation, or chronic catecholamine infusions. Implantable cardiac devices, many designated as destination therapy, have revolutionized patient care and outcomes, although infection and complications related to external power sources or routine battery exchange remain a substantial risk. Complications from repeat battery replacement, power failure, and infections ultimately endanger the original objectives of implantable biomedical device therapy - eliminating the intended patient autonomy, affecting patient quality of life and survival. We sought to review the limitations of current cardiac biomedical device energy sources and discuss the current state and trends of future potential energy sources in pursuit of a lifelong fully implantable biomedical device.
Yoda, Shunichi; Nakanishi, Kanae; Tano, Ayako; Hori, Yusuke; Suzuki, Yasuyuki; Matsumoto, Naoya; Hirayama, Atsushi
2015-11-01
Estimated glomerular filtration rates (eGFRs) at baseline are useful to determine the severity of renal function and to predict cardiac events. However, no studies aimed to demonstrate significance of eGFRs measured during follow-up and usefulness of combination with nuclear cardiology for prediction of cardiac death in patients with coronary artery disease (CAD). We retrospectively investigated 1739 patients with known/suspected CAD who underwent myocardial perfusion single photon emission computed tomography (SPECT), who had eGFRs measured at baseline and after one year and who underwent a three-year follow-up. The SPECT images were analyzed with the visual scoring model to estimate summed defect scores. Reduction in eGFRs (ΔeGFR) was defined as the difference between eGFRs measured after one year and at baseline. The endpoint of the follow-up was cardiac deaths within three years after the SPECT, which were identified with medical records or responses to posted questionnaires. Cardiac death was observed in 54 of 1739 patients during the follow-up period (45.6±9.1 months). The multivariate Cox regression analysis showed baseline eGFRs, ΔeGFR, and summed stress scores to be significant independent variables for prediction of cardiac death. The area under receiver operating characteristic curves for detection of cardiac death was 0.677 for the baseline eGFR and 0.802 for the follow-up eGFR. Sensitivity of detection of cardiac death was significantly higher in the follow-up eGFR than in the baseline eGFR (p=0.0002). Combination of the best cut-off values, i.e. 9 for the summed stress scores and 10 for the ΔeGFR, which were suggested by receiver operating characteristic analysis, was useful for risk stratification of cardiac death both in patients with and without chronic kidney disease. Baseline and follow-up eGFRs as well as nuclear variables are useful to predict cardiac death in patients with known/suspected CAD. Copyright © 2015 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.
Predicting changes in cardiac myocyte contractility during early drug discovery with in vitro assays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morton, M.J., E-mail: michael.morton@astrazeneca.com; Armstrong, D.; Abi Gerges, N.
2014-09-01
Cardiovascular-related adverse drug effects are a major concern for the pharmaceutical industry. Activity of an investigational drug at the L-type calcium channel could manifest in a number of ways, including changes in cardiac contractility. The aim of this study was to define which of the two assay technologies – radioligand-binding or automated electrophysiology – was most predictive of contractility effects in an in vitro myocyte contractility assay. The activity of reference and proprietary compounds at the L-type calcium channel was measured by radioligand-binding assays, conventional patch-clamp, automated electrophysiology, and by measurement of contractility in canine isolated cardiac myocytes. Activity inmore » the radioligand-binding assay at the L-type Ca channel phenylalkylamine binding site was most predictive of an inotropic effect in the canine cardiac myocyte assay. The sensitivity was 73%, specificity 83% and predictivity 78%. The radioligand-binding assay may be run at a single test concentration and potency estimated. The least predictive assay was automated electrophysiology which showed a significant bias when compared with other assay formats. Given the importance of the L-type calcium channel, not just in cardiac function, but also in other organ systems, a screening strategy emerges whereby single concentration ligand-binding can be performed early in the discovery process with sufficient predictivity, throughput and turnaround time to influence chemical design and address a significant safety-related liability, at relatively low cost. - Highlights: • The L-type calcium channel is a significant safety liability during drug discovery. • Radioligand-binding to the L-type calcium channel can be measured in vitro. • The assay can be run at a single test concentration as part of a screening cascade. • This measurement is highly predictive of changes in cardiac myocyte contractility.« less
Allyn, Jérôme; Allou, Nicolas; Augustin, Pascal; Philip, Ivan; Martinet, Olivier; Belghiti, Myriem; Provenchere, Sophie; Montravers, Philippe; Ferdynus, Cyril
2017-01-01
Background The benefits of cardiac surgery are sometimes difficult to predict and the decision to operate on a given individual is complex. Machine Learning and Decision Curve Analysis (DCA) are recent methods developed to create and evaluate prediction models. Methods and finding We conducted a retrospective cohort study using a prospective collected database from December 2005 to December 2012, from a cardiac surgical center at University Hospital. The different models of prediction of mortality in-hospital after elective cardiac surgery, including EuroSCORE II, a logistic regression model and a machine learning model, were compared by ROC and DCA. Of the 6,520 patients having elective cardiac surgery with cardiopulmonary bypass, 6.3% died. Mean age was 63.4 years old (standard deviation 14.4), and mean EuroSCORE II was 3.7 (4.8) %. The area under ROC curve (IC95%) for the machine learning model (0.795 (0.755–0.834)) was significantly higher than EuroSCORE II or the logistic regression model (respectively, 0.737 (0.691–0.783) and 0.742 (0.698–0.785), p < 0.0001). Decision Curve Analysis showed that the machine learning model, in this monocentric study, has a greater benefit whatever the probability threshold. Conclusions According to ROC and DCA, machine learning model is more accurate in predicting mortality after elective cardiac surgery than EuroSCORE II. These results confirm the use of machine learning methods in the field of medical prediction. PMID:28060903
Noninvasive cardiovascular imaging.
Hartman, Robert J
2014-01-01
Over the past 2 decades, use of noninvasive cardiovascular imaging has increased dramatically. This article provides a brief synopsis of the current state of several technologies-- echocardiography, cardiac magnetic resonance imaging, and cardiac computed tomography--as well as a glimpse at future possibilities in cardiac imaging.
Action Potential Shortening and Impairment of Cardiac Function by Ablation of Slc26a6.
Sirish, Padmini; Ledford, Hannah A; Timofeyev, Valeriy; Thai, Phung N; Ren, Lu; Kim, Hyo Jeong; Park, Seojin; Lee, Jeong Han; Dai, Gu; Moshref, Maryam; Sihn, Choong-Ryoul; Chen, Wei Chun; Timofeyeva, Maria Valeryevna; Jian, Zhong; Shimkunas, Rafael; Izu, Leighton T; Chiamvimonvat, Nipavan; Chen-Izu, Ye; Yamoah, Ebenezer N; Zhang, Xiao-Dong
2017-10-01
Intracellular pH (pH i ) is critical to cardiac excitation and contraction; uncompensated changes in pH i impair cardiac function and trigger arrhythmia. Several ion transporters participate in cardiac pH i regulation. Our previous studies identified several isoforms of a solute carrier Slc26a6 to be highly expressed in cardiomyocytes. We show that Slc26a6 mediates electrogenic Cl - /HCO 3 - exchange activities in cardiomyocytes, suggesting the potential role of Slc26a6 in regulation of not only pH i , but also cardiac excitability. To test the mechanistic role of Slc26a6 in the heart, we took advantage of Slc26a6 knockout ( Slc26a6 -/ - ) mice using both in vivo and in vitro analyses. Consistent with our prediction of its electrogenic activities, ablation of Slc26a6 results in action potential shortening. There are reduced Ca 2+ transient and sarcoplasmic reticulum Ca 2+ load, together with decreased sarcomere shortening in Slc26a6 -/ - cardiomyocytes. These abnormalities translate into reduced fractional shortening and cardiac contractility at the in vivo level. Additionally, pH i is elevated in Slc26a6 -/ - cardiomyocytes with slower recovery kinetics from intracellular alkalization, consistent with the Cl - /HCO 3 - exchange activities of Slc26a6. Moreover, Slc26a6 -/ - mice show evidence of sinus bradycardia and fragmented QRS complex, supporting the critical role of Slc26a6 in cardiac conduction system. Our study provides mechanistic insights into Slc26a6, a unique cardiac electrogenic Cl - /HCO 3 - transporter in ventricular myocytes, linking the critical roles of Slc26a6 in regulation of pH i , excitability, and contractility. pH i is a critical regulator of other membrane and contractile proteins. Future studies are needed to investigate possible changes in these proteins in Slc26a6 -/ - mice. © 2017 American Heart Association, Inc.
Biegstraaten, Marieke; Hughes, Derralynn A.; Mehta, Atul; Elliott, Perry M.; Oder, Daniel; Watkinson, Oliver T.; Vaz, Frédéric M.; van Kuilenburg, André B. P.; Wanner, Christoph; Hollak, Carla E. M.
2017-01-01
Despite enzyme replacement therapy, disease progression is observed in patients with Fabry disease. Identification of factors that predict disease progression is needed to refine guidelines on initiation and cessation of enzyme replacement therapy. To study the association of potential biochemical and clinical prognostic factors with the disease course (clinical events, progression of cardiac and renal disease) we retrospectively evaluated 293 treated patients from three international centers of excellence. As expected, age, sex and phenotype were important predictors of event rate. Clinical events before enzyme replacement therapy, cardiac mass and eGFR at baseline predicted an increased event rate. eGFR was the most important predictor: hazard ratios increased from 2 at eGFR <90 ml/min/1.73m2 to 4 at eGFR <30, compared to patients with an eGFR >90. In addition, men with classical disease and a baseline eGFR <60 ml/min/1.73m2 had a faster yearly decline (-2.0 ml/min/1.73m2) than those with a baseline eGFR of >60. Proteinuria was a further independent risk factor for decline in eGFR. Increased cardiac mass at baseline was associated with the most robust decrease in cardiac mass during treatment, while presence of cardiac fibrosis predicted a stronger increase in cardiac mass (3.36 gram/m2/year). Of other cardiovascular risk factors, hypertension significantly predicted the risk for clinical events. In conclusion, besides increasing age, male sex and classical phenotype, faster disease progression while on enzyme replacement therapy is predicted by renal function, proteinuria and to a lesser extent cardiac fibrosis and hypertension. PMID:28763515
Ikegami, Hirohisa
2014-03-01
It is chronically surplus of doctors in the world of cardiac surgery. There are too many cardiac surgeons because cardiac surgery requires a large amount of manpower resources to provide adequate medical services. Many Japanese cardiac surgeons do not have enough opportunity to perform cardiac surgery operations, and many Japanese cardiac surgery residents do not have enough opportunity to learn cardiac surgery operations. There are physician assistants and nurse practitioners in the US. Because they provide a part of medical care to cardiac surgery patients, American cardiac surgeons can focus more energy on operative procedures. Introduction of cardiac surgery specialized nurse practitioner is essential to deliver a high quality medical service as well as to solve chronic problems that Japanese cardiac surgery has had for a long time.
Nicolau-Raducu, Ramona; Gitman, Marina; Ganier, Donald; Loss, George E; Cohen, Ari J; Patel, Hamang; Girgrah, Nigel; Sekar, Krish; Nossaman, Bobby
2015-01-01
Current American College of Cardiology/American Heart Association guidelines caution that preoperative noninvasive cardiac tests may have poor predictive value for detecting coronary artery disease in liver transplant candidates. The purpose of our study was to evaluate the role of clinical predictor variables for early and late cardiac morbidity and mortality and the predictive values of noninvasive cardiac tests for perioperative cardiac events in a high-risk liver transplant population. In all, 389 adult recipients were retrospectively analyzed for a median follow-up time of 3.4 years (range = 2.3-4.4 years). Overall survival was 83%. During the first year after transplantation, cardiovascular morbidity and mortality rates were 15.2% and 2.8%. In patients who survived the first year, cardiovascular morbidity and mortality rates were 3.9% and 2%, with cardiovascular etiology as the third leading cause of death. Dobutamine stress echocardiography (DSE) and single-photon emission computed tomography had respective sensitivities of 9% and 57%, specificities of 98% and 75%, positive predictive values of 33% and 28%, and negative predictive values of 89% and 91% for predicting early cardiac events. A rate blood pressure product less than 12,000 with DSE was associated with an increased risk for postoperative atrial fibrillation. Correspondence analysis identified a statistical association between nonalcoholic steatohepatitis/cryptogenic cirrhosis and postoperative myocardial ischemia. Logistic regression identified 3 risk factors for postoperative acute coronary syndrome: age, history of coronary artery disease, and pretransplant requirement for vasopressors. Multivariable analysis showed statistical associations of the Model for End-Stage Liver Disease score and the development of acute kidney injury as risk factors for overall cardiac-related mortality. These findings may help in identifying high-risk patients and may lead to the development of better cardiac tests. © 2014 American Association for the Study of Liver Diseases.
Bidirectional Prospective Associations Between Cardiac Autonomic Activity and Inflammatory Markers.
Hu, Mandy Xian; Lamers, Femke; Neijts, Melanie; Willemsen, Gonneke; de Geus, Eco J C; Penninx, Brenda W J H
2018-06-01
Autonomic nervous system (ANS) imbalance has been cross-sectionally associated with inflammatory processes. Longitudinal studies are needed to shed light on the nature of this relationship. We examined cross-sectional and bidirectional prospective associations between cardiac autonomic measures and inflammatory markers. Analyses were conducted with baseline (n = 2823), 2-year (n = 2099), and 6-year (n = 1774) data from the Netherlands Study of Depression and Anxiety. To compare the pattern of results, prospective analyses with ANS (during sleep, leisure time, and work) and inflammation were conducted in two data sets from the Netherlands Twin Register measured for 4.9 years (n = 356) and 5.4 years (n = 472). Autonomic nervous system measures were heart rate (HR) and respiratory sinus arrhythmia (RSA). Inflammatory markers were C-reactive protein (CRP) and interleukin (IL)-6. The Netherlands Study of Depression and Anxiety results showed that higher HR and lower RSA were cross-sectionally significantly associated with higher inflammatory levels. Higher HR predicted higher levels of CRP (B = .065, p < .001) and IL-6 (B = .036, p = .014) at follow-up. Higher CRP levels predicted lower RSA (B = -.024, p = .048) at follow-up. The Netherlands Twin Register results confirmed that higher HR was associated with higher CRP and IL-6 levels 4.9 years later. Higher IL-6 levels predicted higher HR and lower RSA at follow-up. Autonomic imbalance is associated with higher levels of inflammation. Independent data from two studies converge in evidence that higher HR predicts subsequent higher levels of CRP and IL-6. Inflammatory markers may also predict future ANS activity, but evidence for this was less consistent.
Merlos, Pilar; López-Lereu, Maria P; Monmeneu, Jose V; Sanchis, Juan; Núñez, Julio; Bonanad, Clara; Valero, Ernesto; Miñana, Gema; Chaustre, Fabián; Gómez, Cristina; Oltra, Ricardo; Palacios, Lorena; Bosch, Maria J; Navarro, Vicente; Llácer, Angel; Chorro, Francisco J; Bodí, Vicente
2013-08-01
A variety of cardiac magnetic resonance indexes predict mid-term prognosis in ST-segment elevation myocardial infarction patients. The extent of transmural necrosis permits simple and accurate prediction of systolic recovery. However, its long-term prognostic value beyond a comprehensive clinical and cardiac magnetic resonance evaluation is unknown. We hypothesized that a simple semiquantitative assessment of the extent of transmural necrosis is the best resonance index to predict long-term outcome soon after a first ST-segment elevation myocardial infarction. One week after a first ST-segment elevation myocardial infarction we carried out a comprehensive quantification of several resonance parameters in 206 consecutive patients. A semiquantitative assessment (altered number of segments in the 17-segment model) of edema, baseline and post-dobutamine wall motion abnormalities, first pass perfusion, microvascular obstruction, and the extent of transmural necrosis was also performed. During follow-up (median 51 months), 29 patients suffered a major adverse cardiac event (8 cardiac deaths, 11 nonfatal myocardial infarctions, and 10 readmissions for heart failure). Major cardiac events were associated with more severely altered quantitative and semiquantitative resonance indexes. After a comprehensive multivariate adjustment, the extent of transmural necrosis was the only resonance index independently related to the major cardiac event rate (hazard ratio=1.34 [1.19-1.51] per each additional segment displaying>50% transmural necrosis, P<.001). A simple and non-time consuming semiquantitative analysis of the extent of transmural necrosis is the most powerful cardiac magnetic resonance index to predict long-term outcome soon after a first ST-segment elevation myocardial infarction. Copyright © 2013 Sociedad Española de Cardiología. Published by Elsevier Espana. All rights reserved.
Lakomkin, Nikita; Sathiyakumar, Vasanth; Dodd, Ashley C; Jahangir, A Alex; Whiting, Paul S; Obremskey, William T; Sethi, Manish K
2016-06-01
As US healthcare expenditures continue to rise, there is significant pressure to reduce the cost of inpatient medical services. Studies have estimated that over 70% of routine labs may not yield clinical benefits while adding over $300 in costs per day for every inpatient. Although orthopaedic trauma patients tend to have longer inpatient stays and hip fractures have been associated with significant morbidity, there is a dearth of data examining pre-operative labs in predicting post-operative adverse events in these populations. The purpose of this study was to assess whether pre-operative labs significantly predict post-operative cardiac and septic complications in orthopaedic trauma and hip fracture patients. Between 2006 and 2013, 56,336 (15.6%) orthopaedic trauma patients were identified and 27,441 patients (7.6%) were diagnosed with hip fractures. Pre-operative labs included sodium, BUN, creatinine, albumin, bilirubin, SGOT, alkaline phosphatase, white count, hematocrit, platelet count, prothrombin time, INR, and partial thromboplastin time. For each of these labs, patients were deemed to have normal or abnormal values. Patients were noted to have developed cardiac or septic complications if they sustained (1) myocardial infarction (MI), (2) cardiac arrest, or (3) septic shock within 30 days after surgery. Separate regressions incorporating over 40 patient characteristics including age, gender, pre-operative comorbidities, and labs were performed for orthopaedic trauma patients in order to determine whether pre-operative labs predicted adverse cardiac or septic outcomes. 749 (1.3%) orthopaedic trauma patients developed cardiac complications and 311 (0.6%) developed septic shock. Multivariate regression demonstrated that abnormal pre-operative platelet values were significantly predictive of post-operative cardiac arrest (OR: 11.107, p=0.036), and abnormal bilirubin levels were predictive (OR: 8.487, p=0.008) of the development of septic shock in trauma patients. In the hip fracture cohort, abnormal partial thromboplastin time was significantly associated with post-operative myocardial infarction (OR: 15.083, p=0.046), and abnormal bilirubin (OR: 58.674, p=0.002) significantly predicted the onset of septic shock. This is the first study to demonstrate the utility of pre-operative labs in predicting perioperative cardiac and septic adverse events in orthopaedic trauma and hip fracture patients. Particular attention should be paid to haematologic/coagulation labs (platelets, PTT) and bilirubin values. Prognostic Level II. Copyright © 2016 Elsevier Ltd. All rights reserved.
Lin, Chin-Teng; Chang, Kuan-Cheng; Lin, Chun-Ling; Chiang, Chia-Cheng; Lu, Shao-Wei; Chang, Shih-Sheng; Lin, Bor-Shyh; Liang, Hsin-Yueh; Chen, Ray-Jade; Lee, Yuan-Teh; Ko, Li-Wei
2010-05-01
This study presents a novel wireless, ambulatory, real-time, and autoalarm intelligent telecardiology system to improve healthcare for cardiovascular disease, which is one of the most prevalent and costly health problems in the world. This system consists of a lightweight and power-saving wireless ECG device equipped with a built-in automatic warning expert system. This device is connected to a mobile and ubiquitous real-time display platform. The acquired ECG signals are instantaneously transmitted to mobile devices, such as netbooks or mobile phones through Bluetooth, and then, processed by the expert system. An alert signal is sent to the remote database server, which can be accessed by an Internet browser, once an abnormal ECG is detected. The current version of the expert system can identify five types of abnormal cardiac rhythms in real-time, including sinus tachycardia, sinus bradycardia, wide QRS complex, atrial fibrillation (AF), and cardiac asystole, which is very important for both the subjects who are being monitored and the healthcare personnel tracking cardiac-rhythm disorders. The proposed system also activates an emergency medical alarm system when problems occur. Clinical testing reveals that the proposed system is approximately 94% accurate, with high sensitivity, specificity, and positive prediction rates for ten normal subjects and 20 AF patients. We believe that in the future a business-card-like ECG device, accompanied with a mobile phone, can make universal cardiac protection service possible.
NASA Astrophysics Data System (ADS)
Chiu, Hung-Chih; Lin, Yen-Hung; Lo, Men-Tzung; Tang, Sung-Chun; Wang, Tzung-Dau; Lu, Hung-Chun; Ho, Yi-Lwun; Ma, Hsi-Pin; Peng, Chung-Kang
2015-08-01
The hierarchical interaction between electrical signals of the brain and heart is not fully understood. We hypothesized that the complexity of cardiac electrical activity can be used to predict changes in encephalic electricity after stress. Most methods for analyzing the interaction between the heart rate variability (HRV) and electroencephalography (EEG) require a computation-intensive mathematical model. To overcome these limitations and increase the predictive accuracy of human relaxing states, we developed a method to test our hypothesis. In addition to routine linear analysis, multiscale entropy and detrended fluctuation analysis of the HRV were used to quantify nonstationary and nonlinear dynamic changes in the heart rate time series. Short-time Fourier transform was applied to quantify the power of EEG. The clinical, HRV, and EEG parameters of postcatheterization EEG alpha waves were analyzed using change-score analysis and generalized additive models. In conclusion, the complexity of cardiac electrical signals can be used to predict EEG changes after stress.
Chiu, Hung-Chih; Lin, Yen-Hung; Lo, Men-Tzung; Tang, Sung-Chun; Wang, Tzung-Dau; Lu, Hung-Chun; Ho, Yi-Lwun; Ma, Hsi-Pin; Peng, Chung-Kang
2015-01-01
The hierarchical interaction between electrical signals of the brain and heart is not fully understood. We hypothesized that the complexity of cardiac electrical activity can be used to predict changes in encephalic electricity after stress. Most methods for analyzing the interaction between the heart rate variability (HRV) and electroencephalography (EEG) require a computation-intensive mathematical model. To overcome these limitations and increase the predictive accuracy of human relaxing states, we developed a method to test our hypothesis. In addition to routine linear analysis, multiscale entropy and detrended fluctuation analysis of the HRV were used to quantify nonstationary and nonlinear dynamic changes in the heart rate time series. Short-time Fourier transform was applied to quantify the power of EEG. The clinical, HRV, and EEG parameters of postcatheterization EEG alpha waves were analyzed using change-score analysis and generalized additive models. In conclusion, the complexity of cardiac electrical signals can be used to predict EEG changes after stress. PMID:26286628
Hamo, Carine E; Bloom, Michelle W; Cardinale, Daniela; Ky, Bonnie; Nohria, Anju; Baer, Lea; Skopicki, Hal; Lenihan, Daniel J; Gheorghiade, Mihai; Lyon, Alexander R; Butler, Javed
2016-02-01
Success with oncologic treatment has allowed cancer patients to experience longer cancer-free survival gains. Unfortunately, this success has been tempered by unintended and often devastating cardiac complications affecting overall patient outcomes. Cardiac toxicity, specifically the association of several cancer therapy agents with the development of left ventricular dysfunction and cardiomyopathy, is an issue of growing concern. Although the pathophysiologic mechanisms behind cardiac toxicity have been characterized, there is currently no evidence-based approach for monitoring and management of these patients. In the first of a 2-part review, we discuss the epidemiologic, pathophysiologic, risk factors, and imaging aspects of cancer therapy-related cardiac dysfunction and heart failure. In this second part, we discuss the prevention and treatment aspects in these patients and conclude with highlighting the evidence gaps and future directions for research in this area. © 2016 American Heart Association, Inc.
Echocardiography and cardiac resynchronisation therapy, friends or foes?
van Everdingen, W M; Schipper, J C; van 't Sant, J; Ramdat Misier, K; Meine, M; Cramer, M J
2016-01-01
Echocardiography is used in cardiac resynchronisation therapy (CRT) to assess cardiac function, and in particular left ventricular (LV) volumetric status, and prediction of response. Despite its widespread applicability, LV volumes determined by echocardiography have inherent measurement errors, interobserver and intraobserver variability, and discrepancies with the gold standard magnetic resonance imaging. Echocardiographic predictors of CRT response are based on mechanical dyssynchrony. However, parameters are mainly tested in single-centre studies or lack feasibility. Speckle tracking echocardiography can guide LV lead placement, improving volumetric response and clinical outcome by guiding lead positioning towards the latest contracting segment. Results on optimisation of CRT device settings using echocardiographic indices have so far been rather disappointing, as results suffer from noise. Defining response by echocardiography seems valid, although re-assessment after 6 months is advisable, as patients can show both continuous improvement as well as deterioration after the initial response. Three-dimensional echocardiography is interesting for future implications, as it can determine volume, dyssynchrony and viability in a single recording, although image quality needs to be adequate. Deformation patterns from the septum and the derived parameters are promising, although validation in a multicentre trial is required. We conclude that echocardiography has a pivotal role in CRT, although clinicians should know its shortcomings.
[From a Ph.D. Thesis: Understanding the Past, Predicting the Future].
Watanabe, Kenichi
2018-01-01
Posey et al. have reported multiple molecular diagnoses in 4.5% of cases (101/2076) in which whole-exome sequencing was informative. Distinct disease phenotypes affect different organ systems, whereas overlapping disease phenotypes are more likely to be caused by two genes encoding proteins that interact within the same pathway. My research projects at the Niigata University of Pharmacy have investigated underlying mechanisms involved in human disease, including fatty acid metabolism, diabetic cardiomyopathy, atopic dermatitis, colitis, hepatitis, etc. Three students from abroad graduated this year from the Department of Clinical Pharmacology, Niigata University of Pharmacy and Applied Life Sciences. These students reported on treatments for heart disease, non-alcoholic steatohepatitis and atopic dermatitis, as well as the underlying mechanisms involved in each. The titles of these reports are "Study of the role of cardiac 14-3-3η protein in cardiac inflammation and adverse cardiac remodeling during heart failure in mice", "Non-alcoholic steatohepatitis: onset of mechanisms under diabetic background and treatment strategies" and "The role of HMGB1 and its cascade signaling pathway in atopic dermatitis". It can be concluded from these three theses that oxidative stress and inflammation are among the principal mechanisms underlying these diseases.
Patel, Nikunjkumar; Wiśniowska, Barbara; Jamei, Masoud; Polak, Sebastian
2017-11-27
A quantitative systems toxicology (QST) model for citalopram was established to simulate, in silico, a 'virtual twin' of a real patient to predict the occurrence of cardiotoxic events previously reported in patients under various clinical conditions. The QST model considers the effects of citalopram and its most notable electrophysiologically active primary (desmethylcitalopram) and secondary (didesmethylcitalopram) metabolites, on cardiac electrophysiology. The in vitro cardiac ion channel current inhibition data was coupled with the biophysically detailed model of human cardiac electrophysiology to investigate the impact of (i) the inhibition of multiple ion currents (I Kr , I Ks , I CaL ); (ii) the inclusion of metabolites in the QST model; and (iii) unbound or total plasma as the operating drug concentration, in predicting clinically observed QT prolongation. The inclusion of multiple ion channel current inhibition and metabolites in the simulation with unbound plasma citalopram concentration provided the lowest prediction error. The predictive performance of the model was verified with three additional therapeutic and supra-therapeutic drug exposure clinical cases. The results indicate that considering only the hERG ion channel inhibition of only the parent drug is potentially misleading, and the inclusion of active metabolite data and the influence of other ion channel currents should be considered to improve the prediction of potential cardiac toxicity. Mechanistic modelling can help bridge the gaps existing in the quantitative translation from preclinical cardiac safety assessment to clinical toxicology. Moreover, this study shows that the QST models, in combination with appropriate drug and systems parameters, can pave the way towards personalised safety assessment.
Predictors of operating room extubation in adult cardiac surgery.
Subramaniam, Kathirvel; DeAndrade, Diana S; Mandell, Daniel R; Althouse, Andrew D; Manmohan, Rajan; Esper, Stephen A; Varga, Jeffrey M; Badhwar, Vinay
2017-11-01
The primary objective of the study was to identify perioperative factors associated with successful immediate extubation in the operating room after adult cardiac surgery. The secondary objective was to derive a simplified predictive scoring system to guide clinicians in operating room extubation. All 1518 patients in this retrospective cohort study underwent standardized fast-track cardiac anesthetic protocol during adult cardiac surgery. Perioperative variables between patients who had successful extubation in the operating room versus in the intensive care unit were retrospectively analyzed using both univariate and multivariable logistic regression analyses. A predictive score of successful operating room extubation was constructed from the multivariable results of 800 patients (derivation set), and the scoring system was further tested using a validation set of 398 patients. Younger age, lower body mass index, higher preoperative serum albumin, absence of chronic lung disease and diabetes, less-invasive surgical approach, isolated coronary bypass surgery, elective surgery, and lower doses of intraoperative intravenous fentanyl were independently associated with higher probability of operating room extubation. The extubation prediction score created in a derivation set of patients performed well in the validation set. Patient scores less than 0 had a minimal probability of successful operating room extubation. Operating room extubation was highly predicted with scores of 5 or greater. Perioperative factors that are independently associated with successful operating room extubation after adult cardiac operations were identified, and an operating room extubation prediction scoring system was validated. This scoring system may be used to guide safe operating room extubation after cardiac operations. Copyright © 2017 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.
Predicting Liver Transplant Capacity Using Discrete Event Simulation.
Toro-Díaz, Hector; Mayorga, Maria E; Barritt, A Sidney; Orman, Eric S; Wheeler, Stephanie B
2015-08-01
The number of liver transplants (LTs) performed in the US increased until 2006 but has since declined despite an ongoing increase in demand. This decline may be due in part to decreased donor liver quality and increasing discard of poor-quality livers. We constructed a discrete event simulation (DES) model informed by current donor characteristics to predict future LT trends through the year 2030. The data source for our model is the United Network for Organ Sharing database, which contains patient-level information on all organ transplants performed in the US. Previous analysis showed that liver discard is increasing and that discarded organs are more often from donors who are older, are obese, have diabetes, and donated after cardiac death. Given that the prevalence of these factors is increasing, the DES model quantifies the reduction in the number of LTs performed through 2030. In addition, the model estimatesthe total number of future donors needed to maintain the current volume of LTs and the effect of a hypothetical scenario of improved reperfusion technology.We also forecast the number of patients on the waiting list and compare this with the estimated number of LTs to illustrate the impact that decreased LTs will have on patients needing transplants. By altering assumptions about the future donor pool, this model can be used to develop policy interventions to prevent a further decline in this lifesaving therapy. To our knowledge, there are no similar predictive models of future LT use based on epidemiological trends. © The Author(s) 2014.
Predicting Liver Transplant Capacity Using Discrete Event Simulation
Diaz, Hector Toro; Mayorga, Maria; Barritt, A. Sidney; Orman, Eric S.; Wheeler, Stephanie B.
2014-01-01
The number of liver transplants (LTs) performed in the US increased until 2006, but has since declined despite an ongoing increase in demand. This decline may be due in part to decreased donor liver quality and increasing discard of poor quality livers. We constructed a Discrete Event Simulation (DES) model informed by current donor characteristics to predict future LT trends through the year 2030. The data source for our model is the United Network for Organ Sharing database, which contains patient level information on all organ transplants performed in the US. Previous analysis showed that liver discard is increasing and that discarded organs are more often from donors who are older, obese, have diabetes, and donated after cardiac death. Given that the prevalence of these factors is increasing, the DES model quantifies the reduction in the number of LTs performed through 2030. In addition, the model estimates the total number of future donors needed to maintain the current volume of LTs, and the effect of a hypothetical scenario of improved reperfusion technology. We also forecast the number of patients on the waiting list and compare this to the estimated number of LTs to illustrate the impact that decreased LTs will have on patients needing transplants. By altering assumptions about the future donor pool, this model can be used to develop policy interventions to prevent a further decline in this life saving therapy. To our knowledge, there are no similar predictive models of future LT use based on epidemiologic trends. PMID:25391681
Zhao, Shuang; Chen, Keping; Su, Yangang; Hua, Wei; Chen, Silin; Liang, Zhaoguang; Xu, Wei; Dai, Yan; Liu, Zhimin; Fan, Xiaohan; Hou, Cuihong; Zhang, Shu
2017-05-01
Background Patient activity (PA) has been demonstrated to predict all-cause mortality. However, the association between PA and cardiac death is unclear. Aims The aims of this study were to determine whether PA can predict cardiac death and what is the cut-off of PA to discriminate cardiac death, as well as the mechanism underlying the relationship between PA and survival in patients with home monitoring. Methods This study retrospectively analysed clinical and implantable cardioverter-defibrillator/cardiac resynchronization therapy defibrillator device data in 845 patients. Data regarding PA and PP variability during the first 30-60 days of home monitoring were collected, and mean values were calculated. The primary endpoint was cardiac death, and the secondary endpoint was all-cause mortality. Results The mean PA percentage was 11 ± 5.8%. Based on receiver operating characteristic curve analysis, we determined that a PA cut-off value of 7.84% (113 min) can predict cardiac death. During a mean follow-up period of 31.1 ± 12.9 months (ranging from three to 60 months), PA ≤ 7.84% was associated with increased risks of cardiac death in an unadjusted analysis; after adjusting in a multivariate Cox model, the relationship remained significant between PA≤7.84% and cardiac death (hazard ratio = 3.644, 95% confidence interval = 2.424-5.477, p < 0.001). Moreover, a significant correlation was observed between PA and PP variability ( r = 0.601, p < 0.001). Conclusions A baseline PA ≤ 7.84% was associated with a higher risk of cardiac death in patients who have survived more than three months after implantable cardioverter-defibrillator/cardiac resynchronization therapy defibrillator implantation. PA had a sizable effect on heart rate variability, reflecting autonomic function.
Galyfos, George; Tsioufis, Constantinos; Theodorou, Dimitris; Katsaragakis, Stilianos; Zografos, Georgios; Filis, Konstantinos
2015-07-01
Our aim was to examine the predictive value of preoperative stress echocardiography regarding early myocardial ischemia and late cardiac events after carotid endarterectomy (CEA). Patients with coronary artery disease undergoing CEA were prospectively included in this study. All patients (n = 162) were classified into low, medium, and high cardiac risk group, according to preoperative stress echocardiography. Classification was based on the criteria of the American Society of Echocardiography. For all patients, cTnI was measured before surgery and on postoperative days 1, 3, and 7. Postoperative cTnI values ranging from 0.05 to 0.5 ng/mL were classified as myocardial ischemia; values >0.5 ng/mL were classified as myocardial infarction. Cardiac damage was defined as either myocardial ischemia or infarction. No deaths, strokes, or symptomatic coronary events were observed during the early postoperative period. There were 112 low cardiac risk patients, 42 medium-risk patients, and 8 high-risk patients, according to stress echocardiography findings. Overall, there were 22 patients (14%) that increased their cTnI values postoperatively (12 of low cardiac risk and 10 of medium cardiac risk), and all of them were asymptomatic. None of the high-risk patients showed any troponin increase. Late cardiac events were associated with cTnI increase, although no high-risk patients showed any late event. Preoperative stress echocardiography does not seem to independently recognize patients in high risk for asymptomatic cardiac damage after CEA. Postoperative troponin elevation seems to be more predictive for late adverse cardiac events than preoperative stress echocardiography. © 2014, Wiley Periodicals, Inc.
Christian, Susan; Atallah, Joseph; Clegg, Robin; Giuffre, Michael; Huculak, Cathleen; Dzwiniel, Tara; Parboosingh, Jillian; Taylor, Sherryl; Somerville, Martin
2018-02-01
Predictive genetic testing in minors should be considered when clinical intervention is available. Children who carry a pathogenic variant for an inherited arrhythmia or cardiomyopathy require regular cardiac screening and may be prescribed medication and/or be told to modify their physical activity. Medical genetics and pediatric cardiology charts were reviewed to identify factors associated with uptake of genetic testing and cardiac evaluation for children at risk for long QT syndrome, hypertrophic cardiomyopathy or arrhythmogenic right ventricular cardiomyopathy. The data collected included genetic diagnosis, clinical symptoms in the carrier parent, number of children under 18 years of age, age of children, family history of sudden cardiac arrest/death, uptake of cardiac evaluation and if evaluated, phenotype for each child. We identified 97 at risk children from 58 families found to carry a pathogenic variant for one of these conditions. Sixty six percent of the families pursued genetic testing and 73% underwent cardiac screening when it was recommended. Declining predictive genetic testing was significantly associated with genetic specialist recommendation (p < 0.001) and having an asymptomatic carrier father (p = 0.006). Cardiac evaluation was significantly associated with uptake of genetic testing (p = 0.007). This study provides a greater understanding of factors associated with uptake of genetic testing and cardiac evaluation in children at risk of an inherited arrhythmia or cardiomyopathy. It also identifies a need to educate families about the importance of cardiac evaluation even in the absence of genetic testing.
Haggerty, Christopher M; Kramer, Sage P; Binkley, Cassi M; Powell, David K; Mattingly, Andrea C; Charnigo, Richard; Epstein, Frederick H; Fornwalt, Brandon K
2013-08-27
Advanced measures of cardiac function are increasingly important to clinical assessment due to their superior diagnostic and predictive capabilities. Cine DENSE cardiovascular magnetic resonance (CMR) is ideal for quantifying advanced measures of cardiac function based on its high spatial resolution and streamlined post-processing. While many studies have utilized cine DENSE in both humans and small-animal models, the inter-test and inter-observer reproducibility for quantification of advanced cardiac function in mice has not been evaluated. This represents a critical knowledge gap for both understanding the capabilities of this technique and for the design of future experiments. We hypothesized that cine DENSE CMR would show excellent inter-test and inter-observer reproducibility for advanced measures of left ventricular (LV) function in mice. Five normal mice (C57BL/6) and four mice with depressed cardiac function (diet-induced obesity) were imaged twice, two days apart, on a 7T ClinScan MR system. Images were acquired with 15-20 frames per cardiac cycle in three short-axis (basal, mid, apical) and two long-axis orientations (4-chamber and 2-chamber). LV strain, twist, torsion, and measures of synchrony were quantified. Images from both days were analyzed by one observer to quantify inter-test reproducibility, while inter-observer reproducibility was assessed by a second observer's analysis of day-1 images. The coefficient of variation (CoV) was used to quantify reproducibility. LV strains and torsion were highly reproducible on both inter-observer and inter-test bases with CoVs ≤ 15%, and inter-observer reproducibility was generally better than inter-test reproducibility. However, end-systolic twist angles showed much higher variance, likely due to the sensitivity of slice location within the sharp longitudinal gradient in twist angle. Measures of synchrony including the circumferential (CURE) and radial (RURE) uniformity of strain indices, showed excellent reproducibility with CoVs of 1% and 3%, respectively. Finally, peak measures (e.g., strains) were generally more reproducible than the corresponding rates of change (e.g., strain rate). Cine DENSE CMR is a highly reproducible technique for quantification of advanced measures of left ventricular cardiac function in mice including strains, torsion and measures of synchrony. However, myocardial twist angles are not reproducible and future studies should instead report torsion.
ERIC Educational Resources Information Center
Beauchaine, Theodore P.; Gatzke-Kopp, Lisa; Neuhaus, Emily; Chipman, Jane; Reid, M. Jamila; Webster-Stratton, Carolyn
2013-01-01
Objective: To evaluate measures of cardiac activity and reactivity as prospective biomarkers of treatment response to an empirically supported behavioral intervention for attention-deficit/hyperactivity disorder (ADHD). Method: Cardiac preejection period (PEP), an index of sympathetic-linked cardiac activity, and respiratory sinus arrhythmia…
Leibowitz, David; Planer, David; Rott, David; Elitzur, Yair; Chajek-Shaul, Tova; Weiss, A Teddy
2008-01-01
Brain natriuretic peptide (BNP) levels correlate with prognosis in patients with cardiac disease and may be useful in the risk stratification of cardiac patients undergoing noncardiac surgery (NCS). The objective of this study was to examine whether BNP levels predict perioperative events in cardiac patients undergoing NCS. Patients undergoing NCS with at least 1 of the following criteria were included: a clinical history of congestive heart failure (CHF), ejection fraction <40%, or severe aortic stenosis. All patients underwent echocardiography and measurement of BNP performed using the ADVIA-Centaur BNP assay (Bayer HealthCare). Clinical endpoints were death, myocardial infarction or pulmonary congestion requiring intravenous diuretics at 30 days of follow-up. Forty-four patients were entered into the study; 15 patients (34%) developed cardiac postoperative complications. The mean BNP level was 1,366 +/- 1,420 pg/ml in patients with events and 167 +/- 194 pg/ml in patients without events, indicating a highly significant difference (p < 0.001). The ROC area under the curve was 0.91 (95% CI 0.83-0.99) with an optimal cutoff of >165 pg/ml (100% sensitivity, 70% specificity). BNP levels may predict perioperative complications in cardiac patients undergoing NCS, and the measurement of BNP should be considered to assess the preoperative cardiac risk. (c) 2007 S. Karger AG, Basel
Ethical Issues in Cardiac Surgery
Kavarana, Minoo N.; Sade, Robert M.
2012-01-01
While ethical behavior has always been part of cardiac surgical practice, ethical deliberation has only recently become an important component of cardiac surgical practice. Issues such as informed consent, conflict of interest, and professional self-regulation, among many others, have increasingly attracted the attention of cardiac surgeons. This review covers several broad topics of interest to cardiac surgeons and cardiologists, and treats several other topics more briefly. There is much uncertainty about what the future holds for cardiac surgical practice, research, and culture, and we discuss the background of ethical issues to serve as a platform for envisioning what is to come. PMID:22642634
Drug disposition in obesity: toward evidence-based dosing.
Knibbe, Catherijne A J; Brill, Margreke J E; van Rongen, Anne; Diepstraten, Jeroen; van der Graaf, Piet Hein; Danhof, Meindert
2015-01-01
Obesity and morbid obesity are associated with many physiological changes affecting pharmacokinetics, such as increased blood volume, cardiac output, splanchnic blood flow, and hepatic blood flow. In obesity, drug absorption appears unaltered, although recent evidence suggests that this conclusion may be premature. Volume of distribution may vary largely, but the magnitude and direction of changes seem difficult to predict, with extrapolation on the basis of total body weight being the best approach to date. Changes in clearance may be smaller than in distribution, whereas there is growing evidence that the influence of obesity on clearance can be predicted on the basis of reported changes in the metabolic or elimination pathways involved. For obese children, we propose two methods to distinguish between developmental and obesity-related changes. Future research should focus on the characterization of physiological concepts to predict the optimal dose for each drug in the obese population.
EAST Multicenter Trial on Targeted Temperature Management for Hanging-Induced Cardiac Arrest.
Hsu, Cindy H; Haac, Bryce E; Drake, Mack; Bernard, Andrew C; Aiolfi, Alberto; Inaba, Kenji; Hinson, Holly E; Agarwal, Chinar; Galante, Joseph; Tibbits, Emily M; Johnson, Nicholas J; Carlbom, David; Mirhoseini, Mina F; Patel, Mayur B; OʼBosky, Karen R; Chan, Christian; Udekwu, Pascal O; Farrell, Megan; Wild, Jeffrey L; Young, Katelyn A; Cullinane, Daniel C; Gojmerac, Deborah J; Weissman, Alexandra; Callaway, Clifton; Perman, Sarah M; Guerrero, Mariana; Aisiku, Imoigele P; Seethala, Raghu R; Co, Ivan N; Madhok, Debbie Y; Darger, Bryan; Kim, Dennis Y; Spence, Lara; Scalea, Thomas M; Stein, Deborah M
2018-04-19
We sought to determine the outcome of suicidal hanging and the impact of targeted temperature management (TTM) on hanging-induced cardiac arrest (CA) through an Eastern Association for the Surgery of Trauma (EAST) multicenter retrospective study. We analyzed hanging patient data and TTM variables from January 1992 to December 2015. Cerebral performance category (CPC) score of 1 or 2 was considered good neurologic outcome, while CPC of 3 or 4 was considered poor outcome. Classification and Regression Trees (CART) recursive partitioning was used to develop multivariate predictive models for survival and neurological outcome. Total of 692 hanging patients from 17 centers were analyzed for this study. Their overall survival rate was 77%, and the CA survival rate was 28.6%. The CA patients had significantly higher severity of illness and worse outcome than the non-CA patients. Of the 175 CA patients who survived to hospital admission, 81 patients (46.3%) received post-cardiac arrest TTM. The unadjusted survival of TTM CA patients (24.7% vs 39.4%, p<0.05) and good neurologic outcome (19.8% vs 37.2%, p<0.05) were worse than non-TTM CA patients. However, when subgroup analyses were performed between those with admission GCS of 3-8, the differences between TTM and non-TTM CA survival (23.8% vs 30.0%, p=0.37) and good neurologic outcome (18.8% vs 28.7%, p=0.14) were not significant. TTM implementation and post-cardiac arrest management varied between the participating centers. CART models identified variables predictive of favorable and poor outcome for hanging and TTM patients with excellent accuracy. CA hanging patients had worse outcome than non-CA patients. TTM CA patients had worse unadjusted survival and neurologic outcome than non-TTM patients. These findings may be explained by their higher severity of illness, variable TTM implementation, and differences in post-cardiac arrest management. Future prospective studies are necessary to ascertain the effect of TTM on hanging outcome and to validate our CART models. Therapeutic study, level III; prognostic study, level III.
Computational modeling of cardiac hemodynamics: Current status and future outlook
NASA Astrophysics Data System (ADS)
Mittal, Rajat; Seo, Jung Hee; Vedula, Vijay; Choi, Young J.; Liu, Hang; Huang, H. Howie; Jain, Saurabh; Younes, Laurent; Abraham, Theodore; George, Richard T.
2016-01-01
The proliferation of four-dimensional imaging technologies, increasing computational speeds, improved simulation algorithms, and the widespread availability of powerful computing platforms is enabling simulations of cardiac hemodynamics with unprecedented speed and fidelity. Since cardiovascular disease is intimately linked to cardiovascular hemodynamics, accurate assessment of the patient's hemodynamic state is critical for the diagnosis and treatment of heart disease. Unfortunately, while a variety of invasive and non-invasive approaches for measuring cardiac hemodynamics are in widespread use, they still only provide an incomplete picture of the hemodynamic state of a patient. In this context, computational modeling of cardiac hemodynamics presents as a powerful non-invasive modality that can fill this information gap, and significantly impact the diagnosis as well as the treatment of cardiac disease. This article reviews the current status of this field as well as the emerging trends and challenges in cardiovascular health, computing, modeling and simulation and that are expected to play a key role in its future development. Some recent advances in modeling and simulations of cardiac flow are described by using examples from our own work as well as the research of other groups.
Land, Sander; Gurev, Viatcheslav; Arens, Sander; Augustin, Christoph M; Baron, Lukas; Blake, Robert; Bradley, Chris; Castro, Sebastian; Crozier, Andrew; Favino, Marco; Fastl, Thomas E; Fritz, Thomas; Gao, Hao; Gizzi, Alessio; Griffith, Boyce E; Hurtado, Daniel E; Krause, Rolf; Luo, Xiaoyu; Nash, Martyn P; Pezzuto, Simone; Plank, Gernot; Rossi, Simone; Ruprecht, Daniel; Seemann, Gunnar; Smith, Nicolas P; Sundnes, Joakim; Rice, J Jeremy; Trayanova, Natalia; Wang, Dafang; Jenny Wang, Zhinuo; Niederer, Steven A
2015-12-08
Models of cardiac mechanics are increasingly used to investigate cardiac physiology. These models are characterized by a high level of complexity, including the particular anisotropic material properties of biological tissue and the actively contracting material. A large number of independent simulation codes have been developed, but a consistent way of verifying the accuracy and replicability of simulations is lacking. To aid in the verification of current and future cardiac mechanics solvers, this study provides three benchmark problems for cardiac mechanics. These benchmark problems test the ability to accurately simulate pressure-type forces that depend on the deformed objects geometry, anisotropic and spatially varying material properties similar to those seen in the left ventricle and active contractile forces. The benchmark was solved by 11 different groups to generate consensus solutions, with typical differences in higher-resolution solutions at approximately 0.5%, and consistent results between linear, quadratic and cubic finite elements as well as different approaches to simulating incompressible materials. Online tools and solutions are made available to allow these tests to be effectively used in verification of future cardiac mechanics software.
Cardiac abnormality prediction using HMLP network
NASA Astrophysics Data System (ADS)
Adnan, Ja'afar; Ahmad, K. A.; Mat, Muhamad Hadzren; Rizman, Zairi Ismael; Ahmad, Shahril
2018-02-01
Cardiac abnormality often occurs regardless of gender, age and races but depends on the lifestyle. This problem sometimes does not show any symptoms and usually detected once it already critical which lead to a sudden death to the patient. Basically, cardiac abnormality is the irregular electrical signal that generate by the pacemaker of the heart. This paper attempts to develop a program that can detect cardiac abnormality activity through implementation of Hybrid Multilayer Perceptron (HMLP) network. A certain amount of data of the heartbeat signals from the electrocardiogram (ECG) will be used in this project to train the MLP and HMLP network by using Modified Recursive Prediction Error (MRPE) algorithm and to test the network performance.
Houshyarifar, Vahid; Chehel Amirani, Mehdi
2016-08-12
In this paper we present a method to predict Sudden Cardiac Arrest (SCA) with higher order spectral (HOS) and linear (Time) features extracted from heart rate variability (HRV) signal. Predicting the occurrence of SCA is important in order to avoid the probability of Sudden Cardiac Death (SCD). This work is a challenge to predict five minutes before SCA onset. The method consists of four steps: pre-processing, feature extraction, feature reduction, and classification. In the first step, the QRS complexes are detected from the electrocardiogram (ECG) signal and then the HRV signal is extracted. In second step, bispectrum features of HRV signal and time-domain features are obtained. Six features are extracted from bispectrum and two features from time-domain. In the next step, these features are reduced to one feature by the linear discriminant analysis (LDA) technique. Finally, KNN and support vector machine-based classifiers are used to classify the HRV signals. We used two database named, MIT/BIH Sudden Cardiac Death (SCD) Database and Physiobank Normal Sinus Rhythm (NSR). In this work we achieved prediction of SCD occurrence for six minutes before the SCA with the accuracy over 91%.
Blunt Cardiac Injury in the Severely Injured – A Retrospective Multicentre Study
Hanschen, Marc; Kanz, Karl-Georg; Kirchhoff, Chlodwig; Khalil, Philipe N.; Wierer, Matthias; van Griensven, Martijn; Laugwitz, Karl-Ludwig; Biberthaler, Peter; Lefering, Rolf; Huber-Wagner, Stefan
2015-01-01
Background Blunt cardiac injury is a rare trauma entity. Here, we sought to evaluate the relevance and prognostic significance of blunt cardiac injury in severely injured patients. Methods In a retrospective multicentre study, using data collected from 47,580 patients enrolled to TraumaRegister DGU (1993-2009), characteristics of trauma, prehospital / hospital trauma management, and outcome analysis were correlated to the severity of blunt cardiac injury. The severity of cardiac injury was assessed according to the abbreviated injury score (AIS score 1-6), the revised injury severity score (RISC) allowed comparison of expected outcome with injury severity-dependent outcome. N = 1.090 had blunt cardiac trauma (AIS 1-6) (2.3% of patients). Results Predictors of blunt cardiac injury could be identified. Sternal fractures indicate a high risk of the presence of blunt cardiac injury (AIS 0 [control]: 3.0%; AIS 1: 19.3%; AIS 2-6: 19.1%). The overall mortality rate was 13.9%, minor cardiac injury (AIS 1) and severe cardiac injury (AIS 2-6) are associated with higher rates. Severe blunt cardiac injury (AIS 4 and AIS 5-6) is associated with a higher mortality (OR 2.79 and 4.89, respectively) as compared to the predicted average mortality (OR 2.49) of the study collective. Conclusion Multiple injured patients with blunt cardiac trauma are at high risk to be underestimated. Careful evaluation of trauma patients is able to predict the presence of blunt cardiac injury. The severity of blunt cardiac injury needs to be stratified according to the AIS score, as the patients’ outcome is dependent on the severity of cardiac injury. PMID:26136126
Gupta, Punkaj; Rettiganti, Mallikarjuna; Gossett, Jeffrey M; Daufeldt, Jennifer; Rice, Tom B; Wetzel, Randall C
2018-01-01
To create a novel tool to predict favorable neurologic outcomes during ICU stay among children with critical illness. Logistic regression models using adaptive lasso methodology were used to identify independent factors associated with favorable neurologic outcomes. A mixed effects logistic regression model was used to create the final prediction model including all predictors selected from the lasso model. Model validation was performed using a 10-fold internal cross-validation approach. Virtual Pediatric Systems (VPS, LLC, Los Angeles, CA) database. Patients less than 18 years old admitted to one of the participating ICUs in the Virtual Pediatric Systems database were included (2009-2015). None. A total of 160,570 patients from 90 hospitals qualified for inclusion. Of these, 1,675 patients (1.04%) were associated with a decline in Pediatric Cerebral Performance Category scale by at least 2 between ICU admission and ICU discharge (unfavorable neurologic outcome). The independent factors associated with unfavorable neurologic outcome included higher weight at ICU admission, higher Pediatric Index of Morality-2 score at ICU admission, cardiac arrest, stroke, seizures, head/nonhead trauma, use of conventional mechanical ventilation and high-frequency oscillatory ventilation, prolonged hospital length of ICU stay, and prolonged use of mechanical ventilation. The presence of chromosomal anomaly, cardiac surgery, and utilization of nitric oxide were associated with favorable neurologic outcome. The final online prediction tool can be accessed at https://soipredictiontool.shinyapps.io/GNOScore/. Our model predicted 139,688 patients with favorable neurologic outcomes in an internal validation sample when the observed number of patients with favorable neurologic outcomes was among 139,591 patients. The area under the receiver operating curve for the validation model was 0.90. This proposed prediction tool encompasses 20 risk factors into one probability to predict favorable neurologic outcome during ICU stay among children with critical illness. Future studies should seek external validation and improved discrimination of this prediction tool.
Cronin, Edmond M; Varma, Niraj
2012-07-01
Traditional follow-up of cardiac implantable electronic devices involves the intermittent download of largely nonactionable data. Remote monitoring represents a paradigm shift from episodic office-based follow-up to continuous monitoring of device performance and patient and disease state. This lessens device clinical burden and may also lead to cost savings, although data on economic impact are only beginning to emerge. Remote monitoring technology has the potential to improve the outcomes through earlier detection of arrhythmias and compromised device integrity, and possibly predict heart failure hospitalizations through integration of heart failure diagnostics and hemodynamic monitors. Remote monitoring platforms are also huge databases of patients and devices, offering unprecedented opportunities to investigate real-world outcomes. Here, the current status of the field is described and future directions are predicted.
Radiation Exposure Decreases the Quantity and Quality of Cardiac Stem Cells in Mice
Luo, Lan; Urata, Yoshishige; Yan, Chen; Hasan, Al Shaimaa; Goto, Shinji; Guo, Chang-Ying; Tou, Fang-Fang; Xie, Yucai; Li, Tao-Sheng
2016-01-01
Radiation exposure may increase cardiovascular disease risks; however, the precise molecular/cellular mechanisms remain unclear. In the present study, we examined the hypothesis that radiation impairs cardiac stem cells (CSCs), thereby contributing to future cardiovascular disease risks. Adult C57BL/6 mice were exposed to 3 Gy γ-rays, and heart tissues were collected 24 hours later for further experiments. Although c-kit-positive cells were rarely found, radiation exposure significantly induced apoptosis and DNA damage in the cells of the heart. The ex vivo expansion of CSCs from freshly harvested atrial tissues showed a significantly lower production of CSCs in irradiated mice compared with healthy mice. The proliferative activity of CSCs evaluated by Ki-67 expression was not significantly different between the groups. However, compared to the healthy control, CSCs expanded from irradiated mice showed significantly lower telomerase activity, more 53BP1 foci in the nuclei, lower expression of c-kit and higher expression of CD90. Furthermore, CSCs expanded from irradiated mice had significantly poorer potency in the production of insulin-like growth factor-1. Our data suggest that radiation exposure significantly decreases the quantity and quality of CSCs, which may serve as sensitive bio-parameters for predicting future cardiovascular disease risks. PMID:27195709
Ai, A L; Ladd, K L; Peterson, C; Cook, C A; Shearer, M; Koenig, H G
2010-12-01
despite the growing evidence for effects of religious factors on cardiac health in general populations, findings are not always consistent in sicker and older populations. We previously demonstrated that short-term negative outcomes (depression and anxiety) among older adults following open heart surgery are partially alleviated when patients employ prayer as part of their coping strategy. The present study examines multifaceted effects of religious factors on long-term postoperative adjustment, extending our previous findings concerning prayer and coping with cardiac disease. analyses capitalized on a preoperative survey and medical variables from the Society of Thoracic Surgeons' National Database of patients undergoing open heart surgery. The current participants completed a mailed survey 30 months after surgery. Two hierarchical regressions were performed to evaluate the extent to which religious factors predicted depression and anxiety, after controlling for key demographics, medical indices, and mental health. predicting lower levels of depression at the follow-up were preoperative use of prayer for coping, optimism, and hope. Predicting lower levels of anxiety at the follow-up were subjective religiousness, marital status, and hope. Predicting poorer adjustment were reverence in religious contexts, preoperative mental health symptoms, and medical comorbidity. Including optimism and hope in the model did not eliminate effects of religious factors. Several other religious factors had no long-term influences. MPLICATIONS: the influence of religious factors on the long-term postoperative adjustment is independent and complex, with mediating factors yet to be determined. Future research should investigate mechanisms underlying religion-health relations.
Plasma hepatocyte growth factor is a novel marker of AL cardiac amyloidosis.
Swiger, Kristopher J; Friedman, Eitan A; Brittain, Evan L; Tomasek, Kelsey A; Huang, Shi; Su, Yan R; Sawyer, Douglas B; Lenihan, Daniel J
2016-12-01
Cardiac amyloidosis is an infiltrative cardiomyopathy that is challenging to diagnose. We hypothesized that the novel biomarkers hepatocyte growth factor (HGF), galectin-3 (GAL-3), interleukin-6 (IL-6), and vascular endothelial growth factor (VEGF) would be elevated in cardiac amyloidosis and may be able to discriminate from non-cardiac systemic amyloidosis or other cardiomyopathies with similar clinical or morphologic characteristics. Patients were selected from the Vanderbilt Main Heart Registry according to the following groups: (1) amyloid light-chain (AL) cardiac amyloidosis (n = 26); (2) transthyretin (ATTR) cardiac amyloidosis (n = 7); (3) left ventricular hypertrophy (LVH) (n = 45); (4) systolic heart failure (n = 42); and (5) non-cardiac systemic amyloidosis (n = 7). Biomarkers were measured in stored plasma samples. Biomarkers' discrimination performance in predicting AL cardiac amyloidosis (i.e., Concordance index) was reported. A survival analysis was used to explore the relationship between HGF levels and mortality among AL cardiac amyloidosis patients. HGF levels were markedly elevated in patients with AL cardiac amyloidosis (median = 622, interquartile range (IQR): 299-1228 pg/mL) compared with the other groups, including those with non-cardiac systemic amyloidosis (median = 134, IQR: 94-163 pg/mL, p < 0.001). HGF was not a specific marker for ATTR amyloidosis. Gal-3 was elevated in all groups with amyloidosis but could not differentiate between those with and without cardiac involvement. There was no difference in IL-6 or VEGF between those with AL cardiac amyloidosis compared to other groups (p = 0.13 and 0.057, respectively). HGF may be a specific marker that distinguishes AL cardiac amyloidosis from other cardiomyopathies with similar clinical or morphologic characteristics. Further studies are necessary to determine whether HGF levels predict the likelihood of survival.
Arrhythmogenic KCNE gene variants: current knowledge and future challenges
Crump, Shawn M.; Abbott, Geoffrey W.
2014-01-01
There are twenty-five known inherited cardiac arrhythmia susceptibility genes, all of which encode either ion channel pore-forming subunits or proteins that regulate aspects of ion channel biology such as function, trafficking, and localization. The human KCNE gene family comprises five potassium channel regulatory subunits, sequence variants in each of which are associated with cardiac arrhythmias. KCNE gene products exhibit promiscuous partnering and in some cases ubiquitous expression, hampering efforts to unequivocally correlate each gene to specific native potassium currents. Likewise, deducing the molecular etiology of cardiac arrhythmias in individuals harboring rare KCNE gene variants, or more common KCNE polymorphisms, can be challenging. In this review we provide an update on putative arrhythmia-causing KCNE gene variants, and discuss current thinking and future challenges in the study of molecular mechanisms of KCNE-associated cardiac rhythm disturbances. PMID:24478792
Vogt, Emelie; MacQuarrie, David; Neary, John Patrick
2012-11-01
Ballistocardiography (BCG) is a non-invasive technology that has been used to record ultra-low-frequency vibrations of the heart allowing for the measurement of cardiac cycle events including timing and amplitudes of contraction. Recent developments in BCG have made this technology simple to use, as well as time- and cost-efficient in comparison with other more complicated and invasive techniques used to evaluate cardiac performance. Recent technological advances are considerably greater since the advent of microprocessors and laptop computers. Along with the history of BCG, this paper reviews the present and future potential benefits of using BCG to measure cardiac cycle events and its application to clinical and applied research. © 2012 The Authors Clinical Physiology and Functional Imaging © 2012 Scandinavian Society of Clinical Physiology and Nuclear Medicine.
Wang, Zeneng; Tang, W H Wilson; Buffa, Jennifer A; Fu, Xiaoming; Britt, Earl B; Koeth, Robert A; Levison, Bruce S; Fan, Yiying; Wu, Yuping; Hazen, Stanley L
2014-04-01
Recent metabolomics and animal model studies show trimethylamine-N-oxide (TMAO), an intestinal microbiota-dependent metabolite formed from dietary trimethylamine-containing nutrients such as phosphatidylcholine (PC), choline, and carnitine, is linked to coronary artery disease pathogenesis. Our aim was to examine the prognostic value of systemic choline and betaine levels in stable cardiac patients. We examined the relationship between fasting plasma choline and betaine levels and risk of major adverse cardiac events (MACE = death, myocardial infraction, stroke) in relation to TMAO over 3 years of follow-up in 3903 sequential stable subjects undergoing elective diagnostic coronary angiography. In our study cohort, median (IQR) TMAO, choline, and betaine levels were 3.7 (2.4-6.2)μM, 9.8 (7.9-12.2)μM, and 41.1 (32.5-52.1)μM, respectively. Modest but statistically significant correlations were noted between TMAO and choline (r = 0.33, P < 0.001) and less between TMAO and betaine (r = 0.09, P < 0.001). Higher plasma choline and betaine levels were associated with a 1.9-fold and 1.4-fold increased risk of MACE, respectively (Quartiles 4 vs. 1; P < 0.01, each). Following adjustments for traditional cardiovascular risk factors and high-sensitivity C-reactive protein, elevated choline [1.34 (1.03-1.74), P < 0.05], and betaine levels [1.33 (1.03-1.73), P < 0.05] each predicted increased MACE risk. Neither choline nor betaine predicted MACE risk when TMAO was added to the adjustment model, and choline and betaine predicted future risk for MACE only when TMAO was elevated. Elevated plasma levels of choline and betaine are each associated with incident MACE risk independent of traditional risk factors. However, high choline and betaine levels are only associated with higher risk of future MACE with concomitant increase in TMAO.
Wang, Zeneng; Tang, W. H. Wilson; Buffa, Jennifer A.; Fu, Xiaoming; Britt, Earl B.; Koeth, Robert A.; Levison, Bruce S.; Fan, Yiying; Wu, Yuping; Hazen, Stanley L.
2014-01-01
Aims Recent metabolomics and animal model studies show trimethylamine-N-oxide (TMAO), an intestinal microbiota-dependent metabolite formed from dietary trimethylamine-containing nutrients such as phosphatidylcholine (PC), choline, and carnitine, is linked to coronary artery disease pathogenesis. Our aim was to examine the prognostic value of systemic choline and betaine levels in stable cardiac patients. Methods and results We examined the relationship between fasting plasma choline and betaine levels and risk of major adverse cardiac events (MACE = death, myocardial infraction, stroke) in relation to TMAO over 3 years of follow-up in 3903 sequential stable subjects undergoing elective diagnostic coronary angiography. In our study cohort, median (IQR) TMAO, choline, and betaine levels were 3.7 (2.4–6.2)μM, 9.8 (7.9–12.2)μM, and 41.1 (32.5–52.1)μM, respectively. Modest but statistically significant correlations were noted between TMAO and choline (r = 0.33, P < 0.001) and less between TMAO and betaine (r = 0.09, P < 0.001). Higher plasma choline and betaine levels were associated with a 1.9-fold and 1.4-fold increased risk of MACE, respectively (Quartiles 4 vs. 1; P < 0.01, each). Following adjustments for traditional cardiovascular risk factors and high-sensitivity C-reactive protein, elevated choline [1.34 (1.03–1.74), P < 0.05], and betaine levels [1.33 (1.03–1.73), P < 0.05] each predicted increased MACE risk. Neither choline nor betaine predicted MACE risk when TMAO was added to the adjustment model, and choline and betaine predicted future risk for MACE only when TMAO was elevated. Conclusion Elevated plasma levels of choline and betaine are each associated with incident MACE risk independent of traditional risk factors. However, high choline and betaine levels are only associated with higher risk of future MACE with concomitant increase in TMAO. PMID:24497336
Adams, Brian C; Clark, Ross M; Paap, Christina; Goff, James M
2014-01-01
Perioperative stroke is a devastating complication after cardiac surgery. In an attempt to minimize this complication, many cardiac surgeons routinely preoperatively order carotid artery duplex scans to assess for significant carotid stenosis. We hypothesize that the routine screening of preoperative cardiac surgery patients with carotid artery duplex scans detects few patients who would benefit from carotid intervention or that a significant carotid stenosis reliably predicts stroke risk after cardiac surgery. A retrospective review identified 1,499 patients who underwent cardiac surgical procedures between July 1999 and September 2010. Data collected included patient demographics, comorbidities, history of previous stroke, preoperative carotid artery duplex scan results, location of postoperative stroke, and details of carotid endarterectomy (CEA) procedures before, in conjunction with, or after cardiac surgery. Statistical methods included univariate analysis and Fisher's exact test. Twenty-six perioperative strokes were identified (1.7%). In the 21 postoperative stroke patients for whom there is complete carotid artery duplex scan data, 3 patients had a hemodynamically significant lesion (>70%) and 1 patient underwent unilateral carotid CEA for bilateral disease. Postoperative strokes occurred in the anterior cerebral circulation (69.2%), posterior cerebral circulation (15.4%), or both (15.4%). Patient comorbidities, preoperative carotid artery duplex scan screening velocities, or types of cardiac surgical procedure were not predictive for stroke. Thirteen patients (0.86%) underwent CEA before, in conjunction with, or after cardiac surgery. Two of these patients had symptomatic disease, 1 of whom underwent CEA before and the other after his cardiac surgery. Of the 11 asymptomatic patients, 2 underwent CEA before, 3 concurrently, and 6 after cardiac surgery. Left main disease (≥50% stenosis), previous stroke, and peripheral vascular disease were found to be statistically significant predictors of carotid revascularization. A cost analysis of universal screening resulted in an estimated net cost of $378,918 during the study period. The majority of postoperative strokes after cardiac surgery are not related to extracranial carotid artery disease and they are not predicted by preoperative carotid artery duplex scan screening. Consequently, universal carotid artery duplex scan screening cannot be recommended and a selective approach should be adopted. Published by Elsevier Inc.
Sommerhalter, Kristin M; Insaf, Tabassum Z; Akkaya-Hocagil, Tugba; McGarry, Claire E; Farr, Sherry L; Downing, Karrie F; Lui, George K; Zaidi, Ali N; Van Zutphen, Alissa R
2017-11-01
Many individuals with congenital heart defects (CHDs) discontinue cardiac care in adolescence, putting them at risk of adverse health outcomes. Because geographic barriers may contribute to cessation of care, we sought to characterize geographic access to comprehensive cardiac care among adolescents with CHDs. Using a population-based, 11-county surveillance system of CHDs in New York, we characterized proximity to the nearest pediatric cardiac surgical care center among adolescents aged 11 to 19 years with CHDs. Residential addresses were extracted from surveillance records documenting 2008 to 2010 healthcare encounters. Addresses were geocoded using ArcGIS and the New York State Street and Address Maintenance Program, a statewide address point database. One-way drive and public transit time from residence to nearest center were calculated using R packages gmapsdistance and rgeos with the Google Maps Distance Matrix application programming interface. A marginal model was constructed to identify predictors associated with one-way travel time. We identified 2522 adolescents with 3058 corresponding residential addresses and 12 pediatric cardiac surgical care centers. The median drive time from residence to nearest center was 18.3 min, and drive time was 30 min or less for 2475 (80.9%) addresses. Predicted drive time was longest for rural western addresses in high poverty census tracts (68.7 min). Public transit was available for most residences in urban areas but for few in rural areas. We identified areas with geographic barriers to surgical care. Future research is needed to determine how these barriers influence continuity of care among adolescents with CHDs. Birth Defects Research 109:1494-1503, 2017.© 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Tribuddharat, Sirirat; Sathitkarnmanee, Thepakorn; Ngamsaengsirisup, Kriangsak; Wongbuddha, Chawalit
2018-01-01
Background A prolonged stay in an intensive care unit (ICU) after cardiac surgery with cardiopulmonary bypass (CPB) increases the cost of care as well as morbidity and mortality. Several predictive models aim at identifying patients at risk of prolonged ICU stay after cardiac surgery with CPB, but almost all of them involve a preoperative assessment for proper resource management, while one – the Open-Heart Intraoperative Risk (OHIR) score – focuses on intra-operative manipulatable risk factors for improving anesthetic care and patient outcome. Objective We aimed to revalidate the OHIR score in a different context. Materials and methods The ability of the OHIR score to predict a prolonged ICU stay was assessed in 123 adults undergoing cardiac surgery (both coronary bypass graft and valvular surgery) with CPB at two tertiary university hospitals between January 2013 and December 2014. The criteria for a prolonged ICU stay matched a previous study (ie, a stay longer than the median). Results The area under the receiver operating characteristic curve of the OHIR score to predict a prolonged ICU stay was 0.95 (95% confidence interval 0.90–1.00). The respective sensitivity, specificity, positive predictive value, and accuracy of an OHIR score of ≥3 to discriminate a prolonged ICU stay was 93.10%, 98.46%, 98.18%, and 95.9%. Conclusion The OHIR score is highly predictive of a prolonged ICU stay among intraopera-tive patients undergoing cardiac surgery with CPB. The OHIR comprises of six risk factors, five of which are manipulatable intraoperatively. The OHIR can be used to identify patients at risk as well as to improve the outcome of those patients. PMID:29379295
Multi-views Fusion CNN for Left Ventricular Volumes Estimation on Cardiac MR Images.
Luo, Gongning; Dong, Suyu; Wang, Kuanquan; Zuo, Wangmeng; Cao, Shaodong; Zhang, Henggui
2017-10-13
Left ventricular (LV) volumes estimation is a critical procedure for cardiac disease diagnosis. The objective of this paper is to address direct LV volumes prediction task. In this paper, we propose a direct volumes prediction method based on the end-to-end deep convolutional neural networks (CNN). We study the end-to-end LV volumes prediction method in items of the data preprocessing, networks structure, and multi-views fusion strategy. The main contributions of this paper are the following aspects. First, we propose a new data preprocessing method on cardiac magnetic resonance (CMR). Second, we propose a new networks structure for end-to-end LV volumes estimation. Third, we explore the representational capacity of different slices, and propose a fusion strategy to improve the prediction accuracy. The evaluation results show that the proposed method outperforms other state-of-the-art LV volumes estimation methods on the open accessible benchmark datasets. The clinical indexes derived from the predicted volumes agree well with the ground truth (EDV: R=0.974, RMSE=9.6ml; ESV: R=0.976, RMSE=7.1ml; EF: R=0.828, RMSE =4.71%). Experimental results prove that the proposed method has high accuracy and efficiency on LV volumes prediction task. The proposed method not only has application potential for cardiac diseases screening for large-scale CMR data, but also can be extended to other medical image research fields.
Myerburg, Robert J; Ullmann, Steven G
2015-04-01
Although identification and management of cardiovascular risk markers have provided important population risk insights and public health benefits, individual risk prediction remains challenging. Using sudden cardiac death risk as a base case, the complex epidemiology of sudden cardiac death risk and the substantial new funding required to study individual risk are explored. Complex epidemiology derives from the multiple subgroups having different denominators and risk profiles, while funding limitations emerge from saturation of conventional sources of research funding without foreseeable opportunities for increases. A resolution to this problem would have to emerge from new sources of funding targeted to individual risk prediction. In this analysis, we explore the possibility of a research funding strategy that would offer business incentives to the insurance industries, while providing support for unresolved research goals. The model is developed for the case of sudden cardiac death risk, but the concept is applicable to other areas of the medical enterprise. © 2015 American Heart Association, Inc.
The role of cardiac vagal tone and inhibitory control in pre-schoolers' listening comprehension.
Scrimin, Sara; Patron, Elisabetta; Florit, Elena; Palomba, Daniela; Mason, Lucia
2017-12-01
This study investigated the role of basal cardiac activity and inhibitory control at the beginning of the school year in predicting oral comprehension at the end of the year in pre-schoolers. Forty-three, 4-year-olds participated in the study. At the beginning of the school year children's electrocardiogram at rest was registered followed by the assessment of inhibitory control as well as verbal working memory and verbal ability. At the end of the year all children were administered a listening comprehension ability measure. A stepwise regression showed a significant effect of basal cardiac vagal tone in predicting listening comprehension together with inhibitory control and verbal ability. These results are among the first to show the predictive role of basal cardiac vagal tone and inhibitory control in pre-schoolers' oral text comprehension, and offer new insight into the association between autonomic regulation of the heart, inhibitory control, and cognitive activity at a young age. © 2017 Wiley Periodicals, Inc.
The History of Heart Surgery at The Johns Hopkins Hospital.
Patel, Nishant D; Alejo, Diane E; Cameron, Duke E
2015-01-01
Johns Hopkins has made many lasting contributions to cardiac surgery, including the discovery of heparin and the Blalock-Taussig Shunt, which represents the dawn of modern cardiac surgery. Equally important, Johns Hopkins has trained some of the world's leaders in academic cardiac surgery, and is committed to training the future leaders in our specialty. Copyright © 2015. Published by Elsevier Inc.
Tsai, Yun-Jeng; Li, Min-Hui; Tsai, Wan-Jung; Tuan, Sheng-Hui; Liao, Tin-Yun; Lin, Ko-Long
2016-07-01
Oxygen uptake efficiency slope (OUES) and peak oxygen consumption (VO2peak) are exercise parameters that can predict cardiac morbidity in patients with numerous heart diseases. But the predictive value in patients with tetralogy of Fallot is still undetermined, especially in children. We evaluated the prognostic value of OUES and VO2peak in children with total repair of tetralogy of Fallot. Retrospective cohort study. Forty tetralogy of Fallot patients younger than 12 years old were recruited. They underwent a cardiopulmonary exercise test during the follow-up period after total repair surgery. The results of the cardiopulmonary exercise test were used to predict the cardiac related hospitalization in the following two years after the test. OUES normalized by body surface area (OUES/BSA) and the percentage of predicted VO2peak appeared to be predictive for two-year cardiac related hospitalization. Receiver operating characteristic curve analysis demonstrated that the best threshold value for OUES/BSA was 1.029 (area under the curve = 0.70, p = 0.03), and for VO2peak was 74% of age prediction (area under the curve = 0.72, p = 0.02). The aforementioned findings were confirmed by Kaplan-Meier plots and log-rank test. OUES/BSA and VO2peak are useful predictors of cardiac-related hospitalization in children with total repair of tetralogy of Fallot. © The European Society of Cardiology 2015.
Compostella, Leonida; Compostella, Caterina; Truong, Li Van Stella; Russo, Nicola; Setzu, Tiziana; Iliceto, Sabino; Bellotto, Fabio
2017-03-01
Background Erectile dysfunction may predict future cardiovascular events and indicate the severity of coronary artery disease in middle-aged men. The aim of this study was to evaluate whether erectile dysfunction (expression of generalized macro- and micro-vascular pathology) could predict reduced effort tolerance in patients after an acute myocardial infarction. Patients and methods One hundred and thirty-nine male patients (60 ± 12 years old), admitted to intensive cardiac rehabilitation 13 days after a complicated acute myocardial infarction, were evaluated for history of erectile dysfunction using the International Index of Erectile Function questionnaire. Their physical performance was assessed by means of two six-minute walk tests (performed two weeks apart) and by a symptom limited cardiopulmonary exercise test (CPET). Results Patients with erectile dysfunction (57% of cases) demonstrated poorer physical performance, significantly correlated to the degree of erectile dysfunction. After cardiac rehabilitation, they walked shorter distances at the final six-minute walk test (490 ± 119 vs. 564 ± 94 m; p < 0.001); at CPET they sustained lower workload (79 ± 28 vs. 109 ± 34 W; p < 0.001) and reached lower oxygen uptake at peak effort (18 ± 5 vs. 21 ± 5 ml/kg per min; p = 0.003) and at anaerobic threshold (13 ± 3 vs.16 ± 4 ml/kg per min; p = 0.001). The positive predictive value of presence of erectile dysfunction was 0.71 for low peak oxygen uptake (<20 ml/kg per min) and 0.69 for reduced effort capacity (W-max <100 W). Conclusions As indicators of generalized underlying vascular pathology, presence and degree of erectile dysfunction may predict the severity of deterioration of effort tolerance in post-acute myocardial infarction patients. In the attempt to reduce the possibly associated long-term risk, an optimization of type, intensity and duration of cardiac rehabilitation should be considered.
Risk model of prolonged intensive care unit stay in Chinese patients undergoing heart valve surgery.
Wang, Chong; Zhang, Guan-xin; Zhang, Hao; Lu, Fang-lin; Li, Bai-ling; Xu, Ji-bin; Han, Lin; Xu, Zhi-yun
2012-11-01
The aim of this study was to develop a preoperative risk prediction model and an scorecard for prolonged intensive care unit length of stay (PrlICULOS) in adult patients undergoing heart valve surgery. This is a retrospective observational study of collected data on 3925 consecutive patients older than 18 years, who had undergone heart valve surgery between January 2000 and December 2010. Data were randomly split into a development dataset (n=2401) and a validation dataset (n=1524). A multivariate logistic regression analysis was undertaken using the development dataset to identify independent risk factors for PrlICULOS. Performance of the model was then assessed by observed and expected rates of PrlICULOS on the development and validation dataset. Model calibration and discriminatory ability were analysed by the Hosmer-Lemeshow goodness-of-fit statistic and the area under the receiver operating characteristic (ROC) curve, respectively. There were 491 patients that required PrlICULOS (12.5%). Preoperative independent predictors of PrlICULOS are shown with odds ratio as follows: (1) age, 1.4; (2) chronic obstructive pulmonary disease (COPD), 1.8; (3) atrial fibrillation, 1.4; (4) left bundle branch block, 2.7; (5) ejection fraction, 1.4; (6) left ventricle weight, 1.5; (7) New York Heart Association class III-IV, 1.8; (8) critical preoperative state, 2.0; (9) perivalvular leakage, 6.4; (10) tricuspid valve replacement, 3.8; (11) concurrent CABG, 2.8; and (12) concurrent other cardiac surgery, 1.8. The Hosmer-Lemeshow goodness-of-fit statistic was not statistically significant in both development and validation dataset (P=0.365 vs P=0.310). The ROC curve for the prediction of PrlICULOS in development and validation dataset was 0.717 and 0.700, respectively. We developed and validated a local risk prediction model for PrlICULOS after adult heart valve surgery. This model can be used to calculate patient-specific risk with an equivalent predicted risk at our centre in future clinical practice. Copyright © 2012 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand (CSANZ). Published by Elsevier B.V. All rights reserved.
Susa, Takehisa; Kobayashi, Shigeki; Tanaka, Takeo; Murakami, Wakako; Akashi, Shintaro; Kunitsugu, Ichiro; Okuda, Shinichi; Doi, Masahiro; Wada, Yasuaki; Nao, Tomoko; Yamada, Jutaro; Ueyama, Takeshi; Okamura, Takayuki; Yano, Masafumi; Matsuzaki, Masunori
2012-01-01
The authors recently reported that urinary 8-hydroxy-2'-deoxyguanosine (U8-OHdG) derived from cardiac tissue reflects clinical status and cardiac dysfunction severity in patients with chronic heart failure (CHF). The aim of the present study was to investigate whether U8-OHdG levels can accurately predict cardiac events in CHF patients and their response to β-blocker treatment. Plasma brain natriuretic peptide (BNP) and U8-OHdG levels were measured in 186 consecutive CHF patients before discharge. Patients were then prospectively followed (median follow-up, 649 days) with endpoints of cardiac death or hospitalization due to progressive heart failure. From receiver operating characteristic curve analysis, cut-offs were 12.4ng/mg creatinine (Cr) for U8-OHdG and 207pg/ml for BNP. On multivariate Cox analysis, U8-OHdG and BNP were independent predictors of cardiac events. Patients were classified into 4 groups according to U8-OHdG and BNP cut-offs. The hazard ratio for cardiac events in patients with BNP ≥207pg/ml and U8-OHdG ≥12.4ng/mg Cr was 16.2 compared with approximately 4 for patients with only 1 indicator above its respective cut-off. Furthermore, carvedilol therapy was initiated in 30 CHF patients. In responders (≥10% increase in left ventricular ejection fraction [LVEF] or ≥1 class decrease in New York Heart Association [NYHA] class), U8-OHdG levels decreased significantly along with improved NYHA class, LVEF, and BNP levels after treatment. U8-OHdG may be a useful biomarker for predicting cardiac events and evaluating β-blocker therapy effectiveness in CHF patients.
NASA Astrophysics Data System (ADS)
Laing, Kevin J. C.; Russamono, Thais
2013-02-01
The likelihood of trained astronauts developing a life threatening cardiac event during spaceflight is relatively rare, whilst the incidence in untrained individuals is unknown. Space tourists who live a sedentary lifestyle have reduced cardiovascular function, but the associated danger of sudden cardiac arrest (SCA) during a suborbital spaceflight (SOSF) is unclear. Risk during SOSF was examined by reviewing several microgravity studies and methods of determining poor cardiovascular condition. Accurately assessing cardiovascular function and improving baroreceptor sensitivity through exercise is suggested to reduce the incidence of SCA during future SOSFs. Future studies will benefit from past participants sharing medical history; allowing creation of risk profiles and suitable guidelines.
Transesophageal echocardiographic strain imaging predicts aortic biomechanics: Beyond diameter.
Emmott, Alexander; Alzahrani, Haitham; Alreishidan, Mohammed; Therrien, Judith; Leask, Richard L; Lachapelle, Kevin
2018-03-11
Clinical guidelines recommend resection of ascending aortic aneurysms at diameters 5.5 cm or greater to prevent rupture or dissection. However, approximately 40% of all ascending aortic dissections occur below this threshold. We propose new transesophageal echocardiography strain-imaging moduli coupled with blood pressure measurements to predict aortic dysfunction below the surgical threshold. A total of 21 patients undergoing aortic resection were recruited to participate in this study. Transesophageal echocardiography imaging of the aortic short-axis and invasive radial blood pressure traces were taken for 3 cardiac cycles. By using EchoPAC (GE Healthcare, Madison, Wis) and postprocessing in MATLAB (MathWorks, Natick, Mass), circumferential stretch profiles were generated and combined with the blood pressure traces. From these data, 2 in vivo stiffness moduli were calculated: the Cardiac Cycle Pressure Modulus and Cardiac Cycle Stress Modulus. From the resected aortic ring, testing squares were isolated for ex vivo mechanical analysis and histopathology. Each square underwent equibiaxial tensile testing to generate stress-stretch profiles for each patient. Two ex vivo indices were calculated from these profiles (energy loss and incremental stiffness) for comparison with the Cardiac Cycle Pressure Modulus and Cardiac Cycle Stress Modulus. The echo-derived stiffness moduli demonstrate positive significant covariance with ex vivo tensile biomechanical indices: energy loss (vs Cardiac Cycle Pressure Modulus: R 2 = 0.5873, P < .0001; vs Cardiac Cycle Stress Modulus: R 2 = 0.6401, P < .0001) and apparent stiffness (vs Cardiac Cycle Pressure Modulus: R 2 = 0.2079, P = .0378; vs Cardiac Cycle Stress Modulus: R 2 = 0.3575, P = .0042). Likewise, these transesophageal echocardiography-derived moduli are highly predictive of the histopathologic composition of collagen and elastin (collagen/elastin ratio vs Cardiac Cycle Pressure Modulus: R 2 = 0.6165, P < .0001; vs Cardiac Cycle Stress Modulus: R 2 = 0.6037, P < .0001). Transesophageal echocardiography-derived stiffness moduli correlate strongly with aortic wall biomechanics and histopathology, which demonstrates the added benefit of using simple echocardiography-derived biomechanics to stratify patient populations. Copyright © 2018. Published by Elsevier Inc.
Discovery and progress of direct cardiac reprogramming.
Kojima, Hidenori; Ieda, Masaki
2017-06-01
Cardiac disease remains a major cause of death worldwide. Direct cardiac reprogramming has emerged as a promising approach for cardiac regenerative therapy. After the discovery of MyoD, a master regulator for skeletal muscle, other single cardiac reprogramming factors (master regulators) have been sought. Discovery of cardiac reprogramming factors was inspired by the finding that multiple, but not single, transcription factors were needed to generate induced pluripotent stem cells (iPSCs) from fibroblasts. We first reported a combination of cardiac-specific transcription factors, Gata4, Mef2c, and Tbx5 (GMT), that could convert mouse fibroblasts into cardiomyocyte-like cells, which were designated as induced cardiomyocyte-like cells (iCMs). Following our first report of cardiac reprogramming, many researchers, including ourselves, demonstrated an improvement in cardiac reprogramming efficiency, in vivo direct cardiac reprogramming for heart regeneration, and cardiac reprogramming in human cells. However, cardiac reprogramming in human cells and adult fibroblasts remains inefficient, and further efforts are needed. We believe that future research elucidating epigenetic barriers and molecular mechanisms of direct cardiac reprogramming will improve the reprogramming efficiency, and that this new technology has great potential for clinical applications.
Ko, Dennis T; Tu, Jack V; Austin, Peter C; Wijeysundera, Harindra C; Samadashvili, Zaza; Guo, Helen; Cantor, Warren J; Hannan, Edward L
2013-07-10
Prior studies have shown that physicians in New York State (New York) perform twice as many cardiac catheterizations per capita as those in Ontario for stable patients. However, the role of patient selection in these findings and their implications for detection of obstructive coronary artery disease (CAD) are largely unknown. To evaluate the extent of obstructive CAD and to compare the probability of detecting obstructive CAD for patients undergoing cardiac catheterization. An observational study was conducted involving patients without a history of cardiac disease who underwent elective cardiac catheterization between October 1, 2008, and September 30, 2011. Obstructive CAD was defined as diameter stenosis of 50% or more in the left main coronary artery or stenosis of 70% or more in a major epicardial vessel. Observed rates and predicted probabilities of obstructive CAD. Predicted probabilities were estimated using logistic regression models. A total of 18,114 patients from New York and 54,933 from Ontario were included. The observed rate of obstructive CAD was significantly lower in New York at 30.4% (95% CI, 29.7%-31.0%) than in Ontario at 44.8% (95% CI, 44.4%-45.3%; P < .001). The percentage of patients with left main or 3-vessel CAD was also significantly lower in New York than in Ontario (7.0% [95% CI, 6.6%-7.3%] vs 13.0% [95% CI, 12.8%-13.3%]; P < .001). In New York, a substantially higher percentage of patients with low predicted probability of obstructive CAD underwent cardiac catheterization; for example, only 19.3% (95% CI, 18.7%-19.9%) of patients undergoing cardiac catheterization in New York had a greater than 50% predicted probability of having obstructive CAD than those in Ontario at 41% (95% CI, 40.6%-41.4%; P < .001). At 30 days, crude mortality for patients undergoing cardiac catheterization was slightly higher in New York at 0.65% (90 of 13,824; 95% CI, 0.51%-0.78%) than in Ontario at 0.38% (153 of 40,794; 95% CI, 0.32%-0.43%; P < .001). In Ontario compared with New York State, patients undergoing elective cardiac catheterization were significantly more likely to have obstructive CAD. This appears to be related to a higher percentage of patients in New York with low predicted probability of CAD undergoing cardiac catheterization.
Association of physical examination with pulmonary artery catheter parameters in acute lung injury.
Grissom, Colin K; Morris, Alan H; Lanken, Paul N; Ancukiewicz, Marek; Orme, James F; Schoenfeld, David A; Thompson, B Taylor
2009-10-01
To correlate physical examination findings, central venous pressure, fluid output, and central venous oxygen saturation with pulmonary artery catheter parameters. Retrospective study. Data from the multicenter Fluid and Catheter Treatment Trial of the National Institutes of Health Acute Respiratory Distress Syndrome Network. Five hundred thirteen patients with acute lung injury randomized to treatment with a pulmonary artery catheter. Correlation of physical examination findings (capillary refill time >2 secs, knee mottling, or cool extremities), central venous pressure, fluid output, and central venous oxygen saturation with parameters from a pulmonary artery catheter. We determined association of baseline physical examination findings and on-study parameters of central venous pressure and central venous oxygen saturation with cardiac index <2.5 L/min/m2 and mixed venous oxygen saturation <60%. We determined correlation of baseline central venous oxygen saturation and mixed venous oxygen saturation and predictive value of a low central venous oxygen saturation for a low mixed venous oxygen saturation. Prevalence of cardiac index <2.5 and mixed venous oxygen saturation <60% was 8.1% and 15.5%, respectively. Baseline presence of all three physical examination findings had low sensitivity (12% and 8%), high specificity (98% and 99%), low positive predictive value (40% and 56%), but high negative predictive value (93% and 86%) for cardiac index <2.5 and mixed venous oxygen saturation <60%, respectively. Central venous oxygen saturation <70% predicted a mixed venous oxygen saturation <60% with a sensitivity 84%,specificity 70%, positive predictive value 31%, and negative predictive value of 96%. Low cardiac index correlated with cool extremities, high central venous pressure, and low 24-hr fluid output; and low mixed venous oxygen saturation correlated with knee mottling and high central venous pressure, but these correlations were not found to be clinically useful. In this subset of patients with acute lung injury, there is a high prior probability that cardiac index and mixed venous oxygen saturation are normal and physical examination findings of ineffective circulation are not useful for predicting low cardiac index or mixed venous oxygen saturation. Central venous oxygen saturation <70% does not accurately predict mixed venous oxygen saturation <60%, but a central venous oxygen saturation >or=70% may be useful to exclude mixed venous oxygen saturation <60%.
A computer case definition for sudden cardiac death.
Chung, Cecilia P; Murray, Katherine T; Stein, C Michael; Hall, Kathi; Ray, Wayne A
2010-06-01
To facilitate studies of medications and sudden cardiac death, we developed and validated a computer case definition for these deaths. The study of community dwelling Tennessee Medicaid enrollees 30-74 years of age utilized a linked database with Medicaid inpatient/outpatient files, state death certificate files, and a state 'all-payers' hospital discharge file. The computerized case definition was developed from a retrospective cohort study of sudden cardiac deaths occurring between 1990 and 1993. Medical records for 926 potential cases had been adjudicated for this study to determine if they met the clinical definition for sudden cardiac death occurring in the community and were likely to be due to ventricular tachyarrhythmias. The computerized case definition included deaths with (1) no evidence of a terminal hospital admission/nursing home stay in any of the data sources; (2) an underlying cause of death code consistent with sudden cardiac death; and (3) no terminal procedures inconsistent with unresuscitated cardiac arrest. This definition was validated in an independent sample of 174 adjudicated deaths occurring between 1994 and 2005. The positive predictive value of the computer case definition was 86.0% in the development sample and 86.8% in the validation sample. The positive predictive value did not vary materially for deaths coded according to the ICO-9 (1994-1998, positive predictive value = 85.1%) or ICD-10 (1999-2005, 87.4%) systems. A computerized Medicaid database, linked with death certificate files and a state hospital discharge database, can be used for a computer case definition of sudden cardiac death. Copyright (c) 2009 John Wiley & Sons, Ltd.
Does job satisfaction predict early return to work after coronary angioplasty or cardiac surgery?
Fiabane, Elena; Argentero, Piergiorgio; Calsamiglia, Giuseppe; Candura, Stefano M; Giorgi, Ines; Scafa, Fabrizio; Rugulies, Reiner
2013-07-01
Few studies have analyzed the relationship between job satisfaction and return to work (RTW) in cardiac patients. The aim of this paper was to investigate whether job satisfaction predicted early RTW in patients sick listed after cardiac invasive procedures. A 6-month prospective study was carried out in a sample of 83 patients in working age who had recently been treated with angioplasty or cardiac surgery. Job satisfaction was measured using the scale from the Occupational Stress Indicator during cardiac rehabilitation. Time to RTW was assessed at the 6-month occupational physician examination. Logistic regression analyses were used to study the association between job satisfaction at baseline and early RTW at follow-up, adjusted for socio-demographic, medical (type of cardiac intervention, ejection fraction) and psychological (depression, locus of control, illness perception) factors. Participants with high job satisfaction were more likely to return early to work, with an odds ratio (OR) of 5.92 (95 % CI, 1.69-20.73) in the most-adjusted model, compared to participants with low job satisfaction. Satisfaction with organizational processes was the job satisfaction component most strongly associated with early RTW (OR, 4.30; 95 % CI, 1.21-15.03). To the best of our knowledge, this is the first prospective study that investigated whether job satisfaction predicts time to RTW after cardiac interventions. The results suggested that when patients are satisfied with their job and positively perceived their work environment, they will be more likely to early RTW, independently of socio-demographic, medical and psychological factors.
Cardiac surgery in the Pacific Islands.
Davis, Philip John; Wainer, Zoe; O'Keefe, Michael; Nand, Parma
2011-12-01
Rheumatic heart disease constitutes a significant disease burden in under-resourced communities. Recognition of the devastating impact of rheumatic heart disease has resulted in volunteer cardiac teams from Australasia providing surgical services to regions of need. The primary objective of this study was to compare New Zealand hospitals' volunteer cardiac surgical operative results in Samoa and Fiji with the accepted surgical mortality and morbidity rates for Australasia. A retrospective review from seven volunteer cardiac surgical trips to Samoa and Fiji from 2003 to 2009 was conducted. Patient data were retrospectively and prospectively collected. Preoperative morbidity and mortality risk were calculated using the European System for Cardiac Operative Risk Evaluation (euroSCORE). Audit data were collated in line with the Australasian Society of Cardiac and Thoracic Surgeons guidelines. One hundred and three operations were performed over 6 years. EuroSCORE predicted an operative mortality of 3.32%. In-hospital mortality was 0.97% and post-discharge mortality was 2.91%, resulting in a 30-day mortality of 3.88%. This study demonstrated that performing cardiac surgery in Fiji and Samoa is viable and safe. However, the mortality was slightly higher than predicted by euroSCORE. Difficulties exist in predicting mortality rates in patients with rheumatic heart disease from Pacific Island nations as known risk scoring models fail to be disease, ethnically or culturally inclusive. Audit processes and risk model development and assessment are an essential part of this complex surgical charity work and will result in improved patient selection and outcomes. © 2011 The Authors. ANZ Journal of Surgery © 2011 Royal Australasian College of Surgeons.
Peigh, Graham; Cavarocchi, Nicholas; Keith, Scott W; Hirose, Hitoshi
2015-10-01
Although the use of cardiac extracorporeal membrane oxygenation (ECMO) is increasing in adult patients, the field lacks understanding of associated risk factors. While standard intensive care unit risk scores such as SAPS II (simplified acute physiology score II), SOFA (sequential organ failure assessment), and APACHE II (acute physiology and chronic health evaluation II), or disease-specific scores such as MELD (model for end-stage liver disease) and RIFLE (kidney risk, injury, failure, loss of function, ESRD) exist, they may not apply to adult cardiac ECMO patients as their risk factors differ from variables used in these scores. Between 2010 and 2014, 73 ECMOs were performed for cardiac support at our institution. Patient demographics and survival were retrospectively analyzed. A new easily calculated score for predicting ECMO mortality was created using identified risk factors from univariate and multivariate analyses, and model discrimination was compared with other scoring systems. Cardiac ECMO was performed on 73 patients (47 males and 26 females) with a mean age of 48 ± 14 y. Sixty-four percent of patients (47/73) survived ECMO support. Pre-ECMO SAPS II, SOFA, APACHE II, MELD, RIFLE, PRESERVE, and ECMOnet scores, were not correlated with survival. Univariate analysis of pre-ECMO risk factors demonstrated that increased lactate, renal dysfunction, and postcardiotomy cardiogenic shock were risk factors for death. Applying these data into a new simplified cardiac ECMO score (minimal risk = 0, maximal = 5) predicted patient survival. Survivors had a lower risk score (1.8 ± 1.2) versus the nonsurvivors (3.0 ± 0.99), P < 0.0001. Common intensive care unit or disease-specific risk scores calculated for cardiac ECMO patients did not correlate with ECMO survival, whereas a new simplified cardiac ECMO score provides survival predictability. Copyright © 2015 Elsevier Inc. All rights reserved.
Kashiura, Masahiro; Hamabe, Yuichi; Akashi, Akiko; Sakurai, Atsushi; Tahara, Yoshio; Yonemoto, Naohiro; Nagao, Ken; Yaguchi, Arino; Morimura, Naoto
2016-03-01
The 2015 American Heart Association Guidelines for Cardiopulmonary Resuscitation recommend Basic Life Support (BLS) and Advanced Life Support (ALS) rules for termination of resuscitation (TOR). However, it is unclear whether the TOR rules are valid for out-of-hospital cardiac arrests (OHCAs) of both cardiac and non-cardiac etiologies. In this study, we validated the TOR rules for OHCA resulting from both etiologies. This was a prospective multicenter observational study of OHCA patients transported to 67 emergency hospitals between January 2012 and March 2013 in the Kanto region of Japan. We calculated the specificity and positive predictive value (PPV) for neurologically unfavorable outcomes at one month in patients with OHCA of cardiac and non-cardiac etiologies. Of 11,505 eligible cases, 6,138 and 5,367 cases were of cardiac and non-cardiac etiology, respectively. BLS was performed on 2,818 and 2,606 patients with OHCA of cardiac and non-cardiac etiology, respectively. ALS was performed on 3,320 and 2,761 patients with OHCA of cardiac and non-cardiac etiology, respectively. The diagnostic accuracy of the TOR rules for predicting unfavorable outcomes in patients with OHCA of cardiac etiology who received BLS included a specificity of 0.985 (95% confidence interval [CI]: 0.956-0.997) and a PPV of 0.999 (95% CI: 0.996-1.000). In patients with OHCA from cardiac etiologies who received ALS, the TOR rules had a specificity of 0.963 (95% CI: 0.896-0.992) and a PPV of 0.997 (95% CI: 0.991-0.999). In patients with OHCA from non-cardiac etiologies who received BLS, the specificity was 0.915 (95% CI: 0.796-0.976) and PPV was 0.998 (95% CI: 0.995-0.999). For patients with OHCA from non-cardiac etiologies who received ALS, the specificity was 0.833 (95% CI: 0.586-0.964) and PPV was 0.996 (95% CI: 0.988-0.999). Both TOR rules have high specificity and PPV in patients with OHCA from cardiac etiologies. For patients with OHCA from non-cardiac etiologies, the rules had a high PPV, but relatively low specificity. Therefore, TOR rules are useful in patients with OHCA from cardiac etiologies, but should be applied with caution to patients with OHCA from non-cardiac etiologies.
Tereshchenko, Larisa G.; Cygankiewicz, Iwona; McNitt, Scott; Vazquez, Rafael; Bayes-Genis, Antoni; Han, Lichy; Sur, Sanjoli; Couderc, Jean-Philippe; Berger, Ronald D.; de Luna, Antoni Bayes; Zareba, Wojciech
2012-01-01
Background The goal of this study was to determine the predictive value of beat-to-beat QT variability in heart failure (HF) patients across the continuum of left ventricular dysfunction. Methods and Results Beat-to-beat QT variability index (QTVI), heart rate variance (LogHRV), normalized QT variance (QTVN), and coherence between heart rate variability and QT variability have been measured at rest during sinus rhythm in 533 participants of the Muerte Subita en Insuficiencia Cardiaca (MUSIC) HF study (mean age 63.1±11.7; males 70.6%; LVEF >35% in 254 [48%]) and in 181 healthy participants from the Intercity Digital Electrocardiogram Alliance (IDEAL) database. During a median of 3.7 years of follow-up, 116 patients died, 52 from sudden cardiac death (SCD). In multivariate competing risk analyses, the highest QTVI quartile was associated with cardiovascular death [hazard ratio (HR) 1.67(95%CI 1.14-2.47), P=0.009] and in particular with non-sudden cardiac death [HR 2.91(1.69-5.01), P<0.001]. Elevated QTVI separated 97.5% of healthy individuals from subjects at risk for cardiovascular [HR 1.57(1.04-2.35), P=0.031], and non-sudden cardiac death in multivariate competing risk model [HR 2.58(1.13-3.78), P=0.001]. No interaction between QTVI and LVEF was found. QTVI predicted neither non-cardiac death (P=0.546) nor SCD (P=0.945). Decreased heart rate variability (HRV) rather than increased QT variability was the reason for increased QTVI in this study. Conclusions Increased QTVI due to depressed HRV predicts cardiovascular mortality and non-sudden cardiac death, but neither SCD nor excracardiac mortality in HF across the continuum of left ventricular dysfunction. Abnormally augmented QTVI separates 97.5% of healthy individuals from HF patients at risk. PMID:22730411
Dawes, Timothy J W; de Marvao, Antonio; Shi, Wenzhe; Fletcher, Tristan; Watson, Geoffrey M J; Wharton, John; Rhodes, Christopher J; Howard, Luke S G E; Gibbs, J Simon R; Rueckert, Daniel; Cook, Stuart A; Wilkins, Martin R; O'Regan, Declan P
2017-05-01
Purpose To determine if patient survival and mechanisms of right ventricular failure in pulmonary hypertension could be predicted by using supervised machine learning of three-dimensional patterns of systolic cardiac motion. Materials and Methods The study was approved by a research ethics committee, and participants gave written informed consent. Two hundred fifty-six patients (143 women; mean age ± standard deviation, 63 years ± 17) with newly diagnosed pulmonary hypertension underwent cardiac magnetic resonance (MR) imaging, right-sided heart catheterization, and 6-minute walk testing with a median follow-up of 4.0 years. Semiautomated segmentation of short-axis cine images was used to create a three-dimensional model of right ventricular motion. Supervised principal components analysis was used to identify patterns of systolic motion that were most strongly predictive of survival. Survival prediction was assessed by using difference in median survival time and area under the curve with time-dependent receiver operating characteristic analysis for 1-year survival. Results At the end of follow-up, 36% of patients (93 of 256) died, and one underwent lung transplantation. Poor outcome was predicted by a loss of effective contraction in the septum and free wall, coupled with reduced basal longitudinal motion. When added to conventional imaging and hemodynamic, functional, and clinical markers, three-dimensional cardiac motion improved survival prediction (area under the receiver operating characteristic curve, 0.73 vs 0.60, respectively; P < .001) and provided greater differentiation according to difference in median survival time between high- and low-risk groups (13.8 vs 10.7 years, respectively; P < .001). Conclusion A machine-learning survival model that uses three-dimensional cardiac motion predicts outcome independent of conventional risk factors in patients with newly diagnosed pulmonary hypertension. Online supplemental material is available for this article.
Pothula, Venu M.; Yuan, Stanley C.; Maerz, David A.; Montes, Lucresia; Oleszkiewicz, Stephen M.; Yusupov, Albert; Perline, Richard
2015-01-01
Background Advanced predictive analytical techniques are being increasingly applied to clinical risk assessment. This study compared a neural network model to several other models in predicting the length of stay (LOS) in the cardiac surgical intensive care unit (ICU) based on pre-incision patient characteristics. Methods Thirty six variables collected from 185 cardiac surgical patients were analyzed for contribution to ICU LOS. The Automatic Linear Modeling (ALM) module of IBM-SPSS software identified 8 factors with statistically significant associations with ICU LOS; these factors were also analyzed with the Artificial Neural Network (ANN) module of the same software. The weighted contributions of each factor (“trained” data) were then applied to data for a “new” patient to predict ICU LOS for that individual. Results Factors identified in the ALM model were: use of an intra-aortic balloon pump; O2 delivery index; age; use of positive cardiac inotropic agents; hematocrit; serum creatinine ≥ 1.3 mg/deciliter; gender; arterial pCO2. The r2 value for ALM prediction of ICU LOS in the initial (training) model was 0.356, p <0.0001. Cross validation in prediction of a “new” patient yielded r2 = 0.200, p <0.0001. The same 8 factors analyzed with ANN yielded a training prediction r2 of 0.535 (p <0.0001) and a cross validation prediction r2 of 0.410, p <0.0001. Two additional predictive algorithms were studied, but they had lower prediction accuracies. Our validated neural network model identified the upper quartile of ICU LOS with an odds ratio of 9.8(p <0.0001). Conclusions ANN demonstrated a 2-fold greater accuracy than ALM in prediction of observed ICU LOS. This greater accuracy would be presumed to result from the capacity of ANN to capture nonlinear effects and higher order interactions. Predictive modeling may be of value in early anticipation of risks of post-operative morbidity and utilization of ICU facilities. PMID:26710254
Ai, A. L.; Ladd, K. L.; Peterson, C.; Cook, C. A.; Shearer, M.; Koenig, H. G.
2010-01-01
Purpose: Despite the growing evidence for effects of religious factors on cardiac health in general populations, findings are not always consistent in sicker and older populations. We previously demonstrated that short-term negative outcomes (depression and anxiety) among older adults following open heart surgery are partially alleviated when patients employ prayer as part of their coping strategy. The present study examines multifaceted effects of religious factors on long-term postoperative adjustment, extending our previous findings concerning prayer and coping with cardiac disease. Design and Methods: Analyses capitalized on a preoperative survey and medical variables from the Society of Thoracic Surgeons’ National Database of patients undergoing open heart surgery. The current participants completed a mailed survey 30 months after surgery. Two hierarchical regressions were performed to evaluate the extent to which religious factors predicted depression and anxiety, after controlling for key demographics, medical indices, and mental health. Results: Predicting lower levels of depression at the follow-up were preoperative use of prayer for coping, optimism, and hope. Predicting lower levels of anxiety at the follow-up were subjective religiousness, marital status, and hope. Predicting poorer adjustment were reverence in religious contexts, preoperative mental health symptoms, and medical comorbidity. Including optimism and hope in the model did not eliminate effects of religious factors. Several other religious factors had no long-term influences. Implications: The influence of religious factors on the long-term postoperative adjustment is independent and complex, with mediating factors yet to be determined. Future research should investigate mechanisms underlying religion–health relations. PMID:20634280
Cardiology needs good planning for the future.
Goodroe, J H; Hicks, K J
1990-08-01
In today's health care environment, hospitals have to develop strategies to maintain their market share, especially in cardiac services. The authors share generic strategies in cost leadership, product differentiation and technological leadership that can be adapted and implemented in cardiac centers.
Hakeem, Abdul; Bhatti, Sabha; Dillie, Kathryn Sullivan; Cook, Jeffrey R; Samad, Zainab; Roth-Cline, Michelle D; Chang, Su Min
2008-12-09
Patients with chronic kidney disease (CKD) have worse cardiovascular outcomes than those without CKD. The prognostic utility of myocardial perfusion single-photon emission CT (MPS) in patients with varying degrees of renal dysfunction and the impact of CKD on cardiac death prediction in patients undergoing MPS have not been investigated. We followed up 1652 consecutive patients who underwent stress MPS (32% exercise, 95% gated) for cardiac death for a mean of 2.15+/-0.8 years. MPS defects were defined with a summed stress score (normal summed stress score <4, abnormal summed stress score>or=4). Ischemia was defined as a summed stress score >or=4 plus a summed difference score >or=2, and scar was defined as a summed difference score <2 plus a summed stress score >or=4. Renal function was calculated with the Modified Diet in Renal Disease equation. CKD (estimated glomerular filtration rate <60 mL . min(-1) . 1.73 m(-2)) was present in 36%. Cardiac death increased with worsening levels of perfusion defects across the entire spectrum of renal function. Presence of ischemia was independently predictive of cardiac death, all-cause mortality, and nonfatal myocardial infarction. Patients with normal MPS and CKD had higher unadjusted cardiac death event rates than those with no CKD and normal MPS (2.7% versus 0.8%, P=0.001). Multivariate Cox proportional hazards models revealed that both perfusion defects (hazard ratio 1.90, 95% CI 1.47 to 2.46) and CKD (hazard ratio 1.96, 95% CI 1.29 to 2.95) were independent predictors of cardiac death after accounting for risk factors, left ventricular dysfunction, pharmacological stress, and symptom status. Both MPS and CKD had incremental power for cardiac death prediction over baseline risk factors and left ventricular dysfunction (global chi(2) 207.5 versus 169.3, P<0.0001). MPS provides effective risk stratification across the entire spectrum of renal function. Renal dysfunction is also an important independent predictor of cardiac death in patients undergoing MPS. Renal function and MPS have additive value in risk stratisfying patients with suspected coronary artery disease. Patients with CKD appear to have a relatively less benign prognosis than those without CKD, even in the presence of a normal scan.
Derefinko, Karen J.; Eisenlohr-Moul, Tory A.; Peters, Jessica R.; Roberts, Walter; Walsh, Erin C.; Milich, Richard; Lynam, Donald R.
2017-01-01
Background Physiological responses to reward and extinction are believed to represent the Behavioral Activation System (BAS) and Behavioral Inhibition System (BIS) constructs of Reinforcement Sensitivity Theory and underlie externalizing behaviors, including substance use. However, little research has examined these relations directly. Methods We assessed individuals’ cardiac pre-ejection periods (PEP) and electrodermal responses (EDR) during reward and extinction trials through the “Number Elimination Game” paradigm. Responses represented BAS and BIS, respectively. We then examined whether these responses provided incremental utility in the prediction of future alcohol, marijuana, and cigarette use. Results Zero-inflated Poisson (ZIP) regression models were used to examine the predictive utility of physiological BAS and BIS responses above and beyond previous substance use. Physiological responses accounted for incremental variance over previous use. Low BAS responses during reward predicted frequency of alcohol use at year 3. Low BAS responses during reward and extinction and high BIS responses during extinction predicted frequency of marijuana use at year 3. For cigarette use, low BAS response during extinction predicted use at year 3. Conclusions These findings suggest that the constructs of Reinforcement Sensitivity Theory, as assessed through physiology, contribute to the longitudinal maintenance of substance use. PMID:27306728
Birnie, D H; Vickers, L E; Hillis, W S; Norrie, J; Cobbe, S M
2005-01-01
Objective: To assess whether antibodies to human heat shock protein 60 (anti-huhsp60) or to mycobacterial heat shock protein 65 (anti-mhsp65) predict an adverse one year prognosis in patients admitted with acute cardiac chest pain. Design: Prospective observational study. Setting: Teaching hospital. Patients: 588 consecutive emergency admissions of patients with acute chest pain of suspected cardiac origin. Main outcome measures: Anti-huhsp60 and anti-mhsp65 titres were assayed on samples drawn on the morning after admission. The end points after discharge were coronary heart disease death, non-fatal myocardial infarction, coronary artery bypass grafting, percutaneous transluminal coronary angioplasty, angiogram, or readmission with further cardiac ischaemic chest pain. Results: During follow up after discharge (mean of 304 days, range 1–788 days), 277 patients had at least one of the study outcomes. Patients with increased titres of anti-huhsp60 had an adverse prognosis (hazard ratio 1.56 (95% confidence interval 1.09 to 2.23) comparing highest versus lowest quartiles, p = 0.015). Anti-mhsp65 titres were not predictive. Conclusions: Patients admitted with acute cardiac chest pain and increased titres of anti-huhsp60 had an adverse one year prognosis. PMID:16103543
Automated patch clamp on mESC-derived cardiomyocytes for cardiotoxicity prediction.
Stoelzle, Sonja; Haythornthwaite, Alison; Kettenhofen, Ralf; Kolossov, Eugen; Bohlen, Heribert; George, Michael; Brüggemann, Andrea; Fertig, Niels
2011-09-01
Cardiovascular side effects are critical in drug development and have frequently led to late-stage project terminations or even drug withdrawal from the market. Physiologically relevant and predictive assays for cardiotoxicity are hence strongly demanded by the pharmaceutical industry. To identify a potential impact of test compounds on ventricular repolarization, typically a variety of ion channels in diverse heterologously expressing cells have to be investigated. Similar to primary cells, in vitro-generated stem cell-derived cardiomyocytes simultaneously express cardiac ion channels. Thus, they more accurately represent the native situation compared with cell lines overexpressing only a single type of ion channel. The aim of this study was to determine if stem cell-derived cardiomyocytes are suited for use in an automated patch clamp system. The authors show recordings of cardiac ion currents as well as action potential recordings in readily available stem cell-derived cardiomyocytes. Besides monitoring inhibitory effects of reference compounds on typical cardiac ion currents, the authors revealed for the first time drug-induced modulation of cardiac action potentials in an automated patch clamp system. The combination of an in vitro cardiac cell model with higher throughput patch clamp screening technology allows for a cost-effective cardiotoxicity prediction in a physiologically relevant cell system.
McSweeney, Jean C; Cleves, Mario A; Fischer, Ellen P; Pettey, Christina M; Beasley, Brittany
Few instruments capture symptoms that predict cardiac events in the short-term. This study examines the ability of the McSweeney Acute and Prodromal Myocardial Infarction Symptom Survey to predict acute cardiac events within 3 months of administration and to identify the prodromal symptoms most associated with short-term risk in women without known coronary heart disease. The McSweeney Acute and Prodromal Myocardial Infarction Symptom Survey was administered to 1,097 women referred to a cardiologist for initial coronary heart disease evaluation. Logistic regression models were used to examine prodromal symptoms individually and in combination to identify the subset of symptoms most predictive of an event within 3 months. Fifty-one women had an early cardiac event. In bivariate analyses, 4 of 30 prodromal symptoms were significantly associated with event occurrence within 90 days. In adjusted analyses, women reporting arm pain or discomfort and unusual fatigue were more likely (OR, 4.67; 95% CI, 2.08-10.48) to have a cardiac event than women reporting neither. The McSweeney Acute and Prodromal Myocardial Infarction Symptom Survey may assist in predicting short-term coronary heart disease events in women without known coronary heart disease. Copyright © 2017 Jacobs Institute of Women's Health. All rights reserved.
Berg, Jan; Kottwitz, Jan; Baltensperger, Nora; Kissel, Christine K; Lovrinovic, Marina; Mehra, Tarun; Scherff, Frank; Schmied, Christian; Templin, Christian; Lüscher, Thomas F; Heidecker, Bettina; Manka, Robert
2017-11-01
There is a major unmet need to identify high-risk patients in myocarditis. Although decreasing cardiac and inflammatory markers are commonly interpreted as resolving myocarditis, this assumption has not been confirmed as of today. We sought to evaluate whether routine laboratory parameters at diagnosis predict dynamic of late gadolinium enhancement (LGE) as persistent LGE has been shown to be a risk marker in myocarditis. Myocarditis was diagnosed based on clinical presentation, high-sensitivity troponin T, and cardiac magnetic resonance imaging, after exclusion of obstructive coronary artery disease by angiography. Cardiac magnetic resonance imaging was repeated at 3 months. LGE extent was analyzed with the software GT Volume. Change in LGE >20% was considered significant. Investigated cardiac and inflammatory markers included high-sensitivity troponin T, creatine kinase, myoglobin, N-terminal B-type natriuretic peptide, C-reactive protein, and leukocyte count. Twenty-four patients were enrolled. Absolute levels of cardiac enzymes and inflammatory markers at baseline did not predict change in LGE at 3 months. Cardiac and inflammatory markers had normalized in 21 patients (88%). LGE significantly improved in 16 patients (67%); however, it persisted to a lesser degree in 17 of them (71%) and increased in a small percentage (21%) despite normalization of cardiac enzymes. This is the first study reporting that cardiac enzymes and inflammatory parameters do not sufficiently reflect LGE in myocarditis. Although a majority of patients with normalizing laboratory markers experienced improved LGE, in a small percentage LGE worsened. These data suggest that cardiac magnetic resonance imaging might add value to currently existing diagnostic tools for risk assessment in myocarditis. © 2017 American Heart Association, Inc.
Piot, J; Hébrard, A; Durand, M; Payen, J F; Albaladejo, P
2018-04-17
Following cardiac surgery, hyperlactatemia due to anaerobic metabolism is associated with an increase in both morbidity and mortality. We previously found that an elevated respiratory quotient (RQ) predicts anaerobic metabolism. In the present study we aimed to demonstrate that it is also associated with poor outcome following cardiac surgery. This single institution, prospective, observational study includes all those patients that were consecutively admitted to the intensive care unit (ICU) after cardiac surgery with cardiopulmonary bypass, that had also been monitored using pulmonary artery catheter. Data were recorded at admission (H0) and after one hour (H1) including: oxygen consumption ([Formula: see text]), carbon dioxide production ([Formula: see text]), RQ ([Formula: see text]), lactate levels and mixed venous oxygen saturation ([Formula: see text]). The primary endpoint was defined as mortality at 30 days. Comparison of the area under the curve (AUC) for receiver operating characteristic curves was used to analyze the prognostic predictive value of RQ, lactate levels and [Formula: see text], in terms of patient outcome. We studied 151 patients admitted to the ICU between May 2015 and February 2016. Seventy eight patients experienced a worse than expected outcome in the post-operative period, and among those seven died. RQ at H1 in non-survivors ([Formula: see text]) was higher than in survivors ([Formula: see text]; p = 0.02). The AUC for RQ to predict mortality was 0.77 (IC 95% [0.70-0.84]), with a threshold value of 0.76 (sensitivity 64%, specificity 100%). By comparison, the AUC for lactate levels was significantly superior (AUClact 0.89, IC 95% [0.83-0.93], p = 0.02). In this study, elevated RQ appeared to be predictive of mortality after cardiac surgery with CPB.
van Montfort, Eveline; Denollet, Johan; Widdershoven, Jos; Kupper, Nina
2016-09-01
In cardiac patients, positive psychological factors have been associated with improved medical and psychological outcomes. The current study examined the interrelation between and independence of multiple positive and negative psychological constructs. Furthermore, the potential added predictive value of positive psychological functioning regarding the prediction of patients' treatment adherence and participation in cardiac rehabilitation (CR) was investigated. 409 percutaneous coronary intervention (PCI) patients were included (mean age = 65.6 ± 9.5; 78% male). Self-report questionnaires were administered one month post-PCI. Positive psychological constructs included positive affect (GMS) and optimism (LOT-R); negative constructs were depression (PHQ-9, BDI), anxiety (GAD-7) and negative affect (GMS). Six months post-PCI self-reported general adherence (MOS) and CR participation were determined. Factor Analysis (Oblimin rotation) revealed two components (r = − 0.56), reflecting positive and negative psychological constructs. Linear regression analyses showed that in unadjusted analyses both optimism and positive affect were associated with better general treatment adherence at six months (p < 0.05). In adjusted analyses, optimism's predictive values remained, independent of sex, age, PCI indication, depression and anxiety. Univariate logistic regression analysis showed that in patients with a cardiac history, positive affect was significantly associated with CR participation. After controlling for multiple covariates, this relation was no longer significant. Positive and negative constructs should be considered as two distinct dimensions. Positive psychological constructs (i.e. optimism) may be of incremental value to negative psychological constructs in predicting patients' treatment adherence. A more complete view of a patients' psychological functioning will open new avenues for treatment. Additional research is needed to investigate the relationship between positive psychological factors and other cardiac outcomes, such as cardiac events and mortality.
Van Den Berg, Patricia; Body, Richard
2018-03-01
The objective of this systematic review was to summarise the current evidence on the diagnostic accuracy of the HEART score for predicting major adverse cardiac events in patients presenting with undifferentiated chest pain to the emergency department. Two investigators independently searched Medline, Embase and Cochrane databases between 2008 and May 2016 identifying eligible studies providing diagnostic accuracy data on the HEART score for predicting major adverse cardiac events as the primary outcome. For the 12 studies meeting inclusion criteria, study characteristics and diagnostic accuracy measures were systematically extracted and study quality assessed using the QUADAS-2 tool. After quality assessment, nine studies including data from 11,217 patients were combined in the meta-analysis applying a generalised linear mixed model approach with random effects assumption (Stata 13.1). In total, 15.4% of patients (range 7.3-29.1%) developed major adverse cardiac events after a mean of 6 weeks' follow-up. Among patients categorised as 'low risk' and suitable for early discharge (HEART score 0-3), the pooled incidence of 'missed' major adverse cardiac events was 1.6%. The pooled sensitivity and specificity of the HEART score for predicting major adverse cardiac events were 96.7% (95% confidence interval (CI) 94.0-98.2%) and 47.0% (95% CI 41.0-53.5%), respectively. Patients with a HEART score of 0-3 are at low risk of incident major adverse cardiac events. As 3.3% of patients with major adverse cardiac events are 'missed' by the HEART score, clinicians must ask whether this risk is acceptably low for clinical implementation.
Miller-Hodges, Eve; Anand, Atul; Shah, Anoop S.V.; Chapman, Andrew R.; Gallacher, Peter; Lee, Kuan Ken; Farrah, Tariq; Halbesma, Nynke; Blackmur, James P.; Newby, David E.; Mills, Nicholas L.
2018-01-01
Background: High-sensitivity cardiac troponin testing may improve the risk stratification and diagnosis of myocardial infarction, but concentrations can be challenging to interpret in patients with renal impairment, and the effectiveness of testing in this group is uncertain. Methods: In a prospective multicenter study of consecutive patients with suspected acute coronary syndrome, we evaluated the performance of high-sensitivity cardiac troponin I in those with and without renal impairment (estimated glomerular filtration rate <60mL/min/1.73m2). The negative predictive value and sensitivity of troponin concentrations below the risk stratification threshold (5 ng/L) at presentation were reported for a primary outcome of index type 1 myocardial infarction, or type 1 myocardial infarction or cardiac death at 30 days. The positive predictive value and specificity at the 99th centile diagnostic threshold (16 ng/L in women, 34 ng/L in men) was determined for index type 1 myocardial infarction. Subsequent type 1 myocardial infarction and cardiac death were reported at 1 year. Results: Of 4726 patients identified, 904 (19%) had renal impairment. Troponin concentrations <5 ng/L at presentation identified 17% of patients with renal impairment as low risk for the primary outcome (negative predictive value, 98.4%; 95% confidence interval [CI], 96.0%–99.7%; sensitivity 98.9%; 95%CI, 97.5%–99.9%), in comparison with 56% without renal impairment (P<0.001) with similar performance (negative predictive value, 99.7%; 95% CI, 99.4%–99.9%; sensitivity 98.4%; 95% CI, 97.2%–99.4%). The positive predictive value and specificity at the 99th centile were lower in patients with renal impairment at 50.0% (95% CI, 45.2%–54.8%) and 70.9% (95% CI, 67.5%–74.2%), respectively, in comparison with 62.4% (95% CI, 58.8%–65.9%) and 92.1% (95% CI, 91.2%–93.0%) in those without. At 1 year, patients with troponin concentrations >99th centile and renal impairment were at greater risk of subsequent myocardial infarction or cardiac death than those with normal renal function (24% versus 10%; adjusted hazard ratio, 2.19; 95% CI, 1.54–3.11). Conclusions: In suspected acute coronary syndrome, high-sensitivity cardiac troponin identified fewer patients with renal impairment as low risk and more as high risk, but with lower specificity for type 1 myocardial infarction. Irrespective of diagnosis, patients with renal impairment and elevated cardiac troponin concentrations had a 2-fold greater risk of a major cardiac event than those with normal renal function, and should be considered for further investigation and treatment. Clinical Trial Registration: URL: https://www.clinicaltrials.gov. Unique identifier: NCT01852123. PMID:28978551
Cardiac stem cell therapy and arrhythmogenicity: prometheus and the arrows of Apollo and Artemis.
Lyon, Alexander R; Harding, Sian E; Peters, Nicholas S
2008-09-01
Cardiac cell therapy is an expanding scientific field which is yielding new insights into the pathogenesis of cardiac disease and offers new therapeutic strategies. Inherent to both these areas of research are the electrical properties of individual cells, the electrical interplay between cardiomyocytes, and their roles in arrhythmogenesis. This review discusses the potential mechanisms by which various candidate cells for cardiac therapy may modulate the ventricular arrhythmic substrate and highlights the data and lessons learnt from the clinical cardiac cell therapy trials published to date. Pro- and antiarrhythmic mechanistic factors are discussed, and the importance of their consideration in the design of any future clinical cell therapy trials.
Environmental Toxin Screening Using Human-Derived 3D Bioengineered Liver and Cardiac Organoids.
Forsythe, Steven D; Devarasetty, Mahesh; Shupe, Thomas; Bishop, Colin; Atala, Anthony; Soker, Shay; Skardal, Aleksander
2018-01-01
Environmental toxins, such as lead and other heavy metals, pesticides, and other compounds, represent a significant health concern within the USA and around the world. Even in the twenty-first century, a plethora of cities and towns in the U.S. have suffered from exposures to lead in drinking water or other heavy metals in food or the earth, while there is a high possibility of further places to suffer such exposures in the near future. We employed bioengineered 3D human liver and cardiac organoids to screen a panel of environmental toxins (lead, mercury, thallium, and glyphosate), and charted the response of the organoids to these compounds. Liver and cardiac organoids were exposed to lead (10 µM-10 mM), mercury (200 nM-200 µM), thallium (10 nM-10 µM), or glyphosate (25 µM-25 mM) for a duration of 48 h. The impacts of toxin exposure were then assessed by LIVE/DEAD viability and cytotoxicity staining, measuring ATP activity and determining IC50 values, and determining changes in cardiac organoid beating activity. As expected, all of the toxins induced toxicity in the organoids. Both ATP and LIVE/DEAD assays showed toxicity in both liver and cardiac organoids. In particular, thallium was the most toxic, with IC50 values of 13.5 and 1.35 µM in liver and cardiac organoids, respectively. Conversely, glyphosate was the least toxic of the four compounds, with IC50 values of 10.53 and 10.85 mM in liver and cardiac organoids, respectively. Additionally, toxins had a negative influence on cardiac organoid beating activity as well. Thallium resulting in the most significant decreases in beating rate, followed by mercury, then glyphosate, and finally, lead. These results suggest that the 3D organoids have significant utility to be deployed in additional toxicity screening applications, and future development of treatments to mitigate exposures. 3D organoids have significant utility to be deployed in additional toxicity screening applications, such as future development of treatments to mitigate exposures, drug screening, and environmental toxin detection.
Violent video games stress people out and make them more aggressive.
Hasan, Youssef; Bègue, Laurent; Bushman, Brad J
2013-01-01
It is well known that violent video games increase aggression, and that stress increases aggression. Many violent video games can be stressful because enemies are trying to kill players. The present study investigates whether violent games increase aggression by inducing stress in players. Stress was measured using cardiac coherence, defined as the synchronization of the rhythm of breathing to the rhythm of the heart. We predicted that cardiac coherence would mediate the link between exposure to violent video games and subsequent aggression. Specifically, we predicted that playing a violent video game would decrease cardiac coherence, and that cardiac coherence, in turn, would correlate negatively with aggression. Participants (N = 77) played a violent or nonviolent video game for 20 min. Cardiac coherence was measured before and during game play. After game play, participants had the opportunity to blast a confederate with loud noise through headphones during a reaction time task. The intensity and duration of noise blasts given to the confederate was used to measure aggression. As expected, violent video game players had lower cardiac coherence levels and higher aggression levels than did nonviolent game players. Cardiac coherence, in turn, was negatively related to aggression. This research offers another possible reason why violent games can increase aggression-by inducing stress. Cardiac coherence can be a useful tool to measure stress induced by violent video games. Cardiac coherence has several desirable methodological features as well: it is noninvasive, stable against environmental disturbances, relatively inexpensive, not subject to demand characteristics, and easy to use. © 2012 Wiley Periodicals, Inc.
Heart failure and kidney dysfunction: epidemiology, mechanisms and management.
Schefold, Joerg C; Filippatos, Gerasimos; Hasenfuss, Gerd; Anker, Stefan D; von Haehling, Stephan
2016-10-01
Heart failure (HF) is a major health-care problem and the prognosis of affected patients is poor. HF often coexists with a number of comorbidities of which declining renal function is of particular importance. A loss of glomerular filtration rate, as in acute kidney injury (AKI) or chronic kidney disease (CKD), independently predicts mortality and accelerates the overall progression of cardiovascular disease and HF. Importantly, cardiac and renal diseases interact in a complex bidirectional and interdependent manner in both acute and chronic settings. From a pathophysiological perspective, cardiac and renal diseases share a number of common pathways, including inflammatory and direct, cellular immune-mediated mechanisms; stress-mediated and (neuro)hormonal responses; metabolic and nutritional changes including bone and mineral disorder, altered haemodynamic and acid-base or fluid status; and the development of anaemia. In an effort to better understand the important crosstalk between the two organs, classifications such as the cardio-renal syndromes were developed. This classification might lead to a more precise understanding of the complex interdependent pathophysiology of cardiac and renal diseases. In light of exceptionally high mortality associated with coexisting HF and kidney disease, this Review describes important crosstalk between the heart and kidney, with a focus on HF and kidney disease in the acute and chronic settings. Underlying molecular and cellular pathomechanisms in HF, AKI and CKD are discussed in addition to current and future therapeutic approaches.
Dandel, Michael; Hetzer, Roland
2015-01-01
Even after incomplete myocardial recovery during mechanical circulatory support, long-term survival rates after ventricular assist device (VAD) explantation can be better than those expected after heart transplantation even for patients with chronic non-ischemic cardiomyopathy as the underlying cause for VAD implantation. The elective therapeutic use of ventricular assist devices for heart failure reversal in its early stage is a future goal. It may be possible to achieve it by developing tools to predict heart failure reversibility even before ventricular assist device implantation and increasing the number of weaning candidates by improvement of adjunctive therapies to optimize unloading-promoted recovery. Special attention is focused on the long-term stability of cardiac remission after VAD removal, the clinical relevance unloading-promoted myocardial recovery and on the current knowledge about a potential prediction of myocardial recovery during long-term VAD support already before VAD implantation.
Adelborg, Kasper; Sundbøll, Jens; Munch, Troels; Frøslev, Trine; Sørensen, Henrik Toft; Bøtker, Hans Erik; Schmidt, Morten
2016-01-01
Objective Danish medical registries are widely used for cardiovascular research, but little is known about the data quality of cardiac interventions. We computed positive predictive values (PPVs) of codes for cardiac examinations, procedures and surgeries registered in the Danish National Patient Registry during 2010–2012. Design Population-based validation study. Setting We randomly sampled patients from 1 university hospital and 2 regional hospitals in the Central Denmark Region. Participants 1239 patients undergoing different cardiac interventions. Main outcome measure PPVs with medical record review as reference standard. Results A total of 1233 medical records (99% of the total sample) were available for review. PPVs ranged from 83% to 100%. For examinations, the PPV was overall 98%, reflecting PPVs of 97% for echocardiography, 97% for right heart catheterisation and 100% for coronary angiogram. For procedures, the PPV was 98% overall, with PPVs of 98% for thrombolysis, 92% for cardioversion, 100% for radiofrequency ablation, 98% for percutaneous coronary intervention, and 100% for both cardiac pacemakers and implantable cardiac defibrillators. For cardiac surgery, the overall PPVs was 99%, encompassing PPVs of 100% for mitral valve surgery, 99% for aortic valve surgery, 98% for coronary artery bypass graft surgery, and 100% for heart transplantation. The accuracy of coding was consistent within age, sex, and calendar year categories, and the agreement between independent reviewers was high (99%). Conclusions Cardiac examinations, procedures and surgeries have high PPVs in the Danish National Patient Registry. PMID:27940630
Davila, D; Ciria, R; Jassem, W; Briceño, J; Littlejohn, W; Vilca-Meléndez, H; Srinivasan, P; Prachalias, A; O'Grady, J; Rela, M; Heaton, N
2012-12-01
Shortage of organs for transplantation has led to the renewed interest in donation after circulatory-determination of death (DCDD). We conducted a retrospective analysis (2001-2009) and a subsequent prospective validation (2010) of liver Maastricht-Category-3-DCDD and donation-after-brain-death (DBD) offers to our program. Accepted and declined offers were compared. Accepted DCDD offers were divided into donors who went on to cardiac arrest and those who did not. Donors who arrested were divided into those producing grafts that were transplanted or remained unused. Descriptive comparisons and regression analyses were performed to assess predictor models of donor cardiac arrest and graft utilization. Variables from the multivariate analysis were prospectively validated. Of 1579 DCDD offers, 621 were accepted, and of these, 400 experienced cardiac arrest after withdrawal of support. Of these, 173 livers were transplanted. In the DCDD group, donor age < 40 years, use of inotropes and absence of gag/cough reflexes were predictors of cardiac arrest. Donor age >50 years, BMI >30, warm ischemia time >25 minutes, ITU stay >7 days and ALT ≥ 4× normal rates were risk factors for not using the graft. These variables had excellent sensitivity and specificity for the prediction of cardiac arrest (AUROC = 0.835) and graft use (AUROC = 0.748) in the 2010 prospective validation. These models can feasibly predict cardiac arrest in potential DCDDs and graft usability, helping to avoid unnecessary recoveries and healthcare expenditure. © Copyright 2012 The American Society of Transplantation and the American Society of Transplant Surgeons.
Patron, Elisabetta; Messerotti Benvenuti, Simone; Zanatta, Paolo; Polesel, Elvio; Palomba, Daniela
2013-01-01
To examine whether preoperative psychological dysfunctions rather than intraoperative factors may differentially predict short- and long-term postoperative cognitive decline (POCD) in patients after cardiac surgery. Forty-two patients completed a psychological evaluation, including the Trail Making Test Part A and B (TMT-A/B), the memory with 10/30-s interference, the phonemic verbal fluency and the Center for Epidemiological Studies of Depression (CES-D) scale for cognitive functions and depressive symptoms, respectively, before surgery, at discharge and at 18-month follow-up. Ten (24%) and 11 (26%) patients showed POCD at discharge and at 18-month follow-up, respectively. The duration of cardiopulmonary bypass significantly predicted short-term POCD [odds ratio (OR)=1.04, P<.05], whereas preoperative psychological factors were unrelated to cognitive decline at discharge. Conversely, long-term cognitive decline after cardiac surgery was significantly predicted by preoperative scores in the CES-D (OR=1.26, P<.03) but not by intraoperative variables (all Ps >.23). Our findings showed that preexisting depressive symptoms rather than perioperative risk factors are associated with cognitive decline 18 months after cardiac surgery. This study suggests that a preoperative psychological evaluation of depressive symptoms is essential to anticipate which patients are likely to show long-term cognitive decline after cardiac surgery. Copyright © 2013 Elsevier Inc. All rights reserved.
The 12-lead electrocardiogram and risk of sudden death: current utility and future prospects.
Narayanan, Kumar; Chugh, Sumeet S
2015-10-01
More than 100 years after it was first invented, the 12-lead electrocardiogram (ECG) continues to occupy an important place in the diagnostic armamentarium of the practicing clinician. With the recognition of relatively rare but important clinical entities such as Wolff-Parkinson-White and the long QT syndrome, this clinical tool was firmly established as a test for assessing risk of sudden cardiac death (SCD). However, over the past two decades the role of the ECG in risk prediction for common forms of SCD, for example in patients with coronary artery disease, has been the focus of considerable investigation. Especially in light of the limitations of current risk stratification approaches, there is a renewed focus on this broadly available and relatively inexpensive test. Various abnormalities of depolarization and repolarization on the ECG have been linked to SCD risk; however, more focused work is needed before they can be deployed in the clinical arena. The present review summarizes the current knowledge on various ECG risk markers for prediction of SCD and discusses some future directions in this field. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.
Validation of a computer case definition for sudden cardiac death in opioid users.
Kawai, Vivian K; Murray, Katherine T; Stein, C Michael; Cooper, William O; Graham, David J; Hall, Kathi; Ray, Wayne A
2012-08-31
To facilitate the use of automated databases for studies of sudden cardiac death, we previously developed a computerized case definition that had a positive predictive value between 86% and 88%. However, the definition has not been specifically validated for prescription opioid users, for whom out-of-hospital overdose deaths may be difficult to distinguish from sudden cardiac death. We assembled a cohort of persons 30-74 years of age prescribed propoxyphene or hydrocodone who had no life-threatening non-cardiovascular illness, diagnosed drug abuse, residence in a nursing home in the past year, or hospital stay within the past 30 days. Medical records were sought for a sample of 140 cohort deaths within 30 days of a prescription fill meeting the computer case definition. Of the 140 sampled deaths, 81 were adjudicated; 73 (90%) were sudden cardiac deaths. Two deaths had possible opioid overdose; after removing these two the positive predictive value was 88%. These findings are consistent with our previous validation studies and suggest the computer case definition of sudden cardiac death is a useful tool for pharmacoepidemiologic studies of opioid analgesics.
MRI Detects Myocardial Iron in the Human Heart
Ghugre, Nilesh R.; Enriquez, Cathleen M.; Gonzalez, Ignacio; Nelson, Marvin D.; Coates, Thomas D.; Wood, John C.
2010-01-01
Iron-induced cardiac dysfunction is a leading cause of death in transfusion-dependent anemia. MRI relaxation rates R2(1/T2) and R2∗(1∕T2∗) accurately predict liver iron concentration, but their ability to predict cardiac iron has been challenged by some investigators. Studies in animal models support similar R2 and R2∗ behavior with heart and liver iron, but human studies are lacking. To determine the relationship between MRI relaxivities and cardiac iron, regional variations in R2 and R2∗ were compared with iron distribution in one freshly deceased, unfixed, iron-loaded heart. R2 and R2∗ were proportionally related to regional iron concentrations and highly concordant with one another within the interventricular septum. A comparison of postmortem and in vitro measurements supports the notion that cardiac R2∗ should be assessed in the septum rather than the whole heart. These data, along with measurements from controls, provide bounds on MRI-iron calibration curves in human heart and further support the clinical use of cardiac MRI in iron-overload syndromes. PMID:16888797
The role of autophagy in cardiac hypertrophy
Li, Lanfang; Xu, Jin; He, Lu; Peng, Lijun; Zhong, Qiaoqing; Chen, Linxi; Jiang, Zhisheng
2016-01-01
Autophagy is conserved in nature from lower eukaryotes to mammals and is an important self-cannibalizing, degradative process that contributes to the elimination of superfluous materials. Cardiac hypertrophy is primarily characterized by excess protein synthesis, increased cardiomyocyte size, and thickened ventricular walls and is a major risk factor that promotes arrhythmia and heart failure. In recent years, cardiomyocyte autophagy has been considered to play a role in controlling the hypertrophic response. However, the beneficial or aggravating role of cardiomyocyte autophagy in cardiac hypertrophy remains controversial. The exact mechanism of cardiomyocyte autophagy in cardiac hypertrophy requires further study. In this review, we summarize the controversies associated with autophagy in cardiac hypertrophy and provide insights into the role of autophagy in the development of cardiac hypertrophy. We conclude that future studies should emphasize the relationship between autophagy and the different stages of cardiac hypertrophy, as well as the autophagic flux and selective autophagy. Autophagy will be a potential therapeutic target for cardiac hypertrophy. PMID:27084518
Ahmad, Tariq; Fiuzat, Mona; Neely, Ben; Neely, Megan; Pencina, Michael J.; Kraus, William E.; Zannad, Faiez; Whellan, David J.; Donahue, Mark; Piña, Ileana L.; Adams, Kirkwood; Kitzman, Dalane W.; O’Connor, Christopher M.; Felker, G. Michael
2014-01-01
Objective To determine whether biomarkers of myocardial stress and fibrosis improve prediction of mode of death in patients with chronic heart failure. Background The two most common modes of death in patients with chronic heart failure are pump failure and sudden cardiac death. Prediction of mode of death may facilitate treatment decisions. The relationship between NT-proBNP, galectin-3, and ST2, biomarkers that reflect different pathogenic pathways in heart failure (myocardial stress and fibrosis), and mode of death is unknown. Methods HF-ACTION was a randomized controlled trial of exercise training vs. usual care in patients with chronic heart failure due to left ventricular systolic dysfunction (LVEF<35%). An independent clinical events committee prospectively adjudicated mode of death. NT-proBNP, galectin-3, and ST2 levels were assessed at baseline in 813 subjects. Associations between biomarkers and mode of death were assessed using cause-specific Cox-proportional hazards modeling, and interaction testing was used to measure differential association between biomarkers and pump failure versus sudden cardiac death. Discrimination and risk reclassification metrics were used to assess the added value of galectin-3 and ST2 in predicting mode of death risk beyond a clinical model that included NT-proBNP. Results After a median follow up of 2.5 years, there were 155 deaths: 49 from pump failure 42 from sudden cardiac death, and 64 from other causes. Elevations in all biomarkers were associated with increased risk of both pump failure and sudden cardiac death in both adjusted and unadjusted analyses. In each case, increases in the biomarker had a stronger association with pump failure than sudden cardiac death but this relationship was attenuated after adjustment for clinical risk factors. Clinical variables along with NT-proBNP levels were stronger predictors of pump failure (C statistic: 0.87) than sudden cardiac death (C statistic: 0.73). Addition of ST2 and galectin-3 led to improved net risk classification of 11% for sudden cardiac death, but not pump failure. Conclusions Clinical predictors along with NT-proBNP levels were strong predictors of pump failure risk, with insignificant incremental contributions of ST2 and galectin-3. Predictability of sudden cardiac death risk was less robust and enhanced by information provided by novel biomarkers. PMID:24952693
Korcarz, Claudia E; Peppard, Paul E; Young, Terry B; Chapman, Carrie B; Hla, K Mae; Barnet, Jodi H; Hagen, Erika; Stein, James H
2016-06-01
To characterize the prospective associations of obstructive sleep apnea (OSA) with future echocardiographic measures of adverse cardiac remodeling. This was a prospective long-term observational study. Participants had overnight polysomnography followed by transthoracic echocardiography a mean (standard deviation) of 18.0 (3.7) y later. OSA was characterized by the apnea-hypopnea index (AHI, events/hour). Echocardiography was used to assess left ventricular (LV) systolic and diastolic function and mass, left atrial volume and pressure, cardiac output, systemic vascular resistance, and right ventricular (RV) systolic function, size, and hemodynamics. Multivariate regression models estimated associations between log10(AHI+1) and future echocardiographic findings. A secondary analysis looked at oxygen desaturation indices and future echocardiographic findings. At entry, the 601 participants were mean (standard deviation) 47 (8) y old (47% female). After adjustment for age, sex, and body mass index, baseline log10(AHI+1) was associated significantly with future reduced LV ejection fraction and tricuspid annular plane systolic excursion (TAPSE) ≤ 15 mm. After further adjustment for cardiovascular risk factors, participants with higher baseline log10(AHI+1) had lower future LV ejection fraction (β = -1.35 [standard error = 0.6]/log10(AHI+1), P = 0.03) and higher odds of TAPSE ≤ 15 mm (odds ratio = 6.3/log10(AHI+1), 95% confidence interval = 1.3-30.5, P = 0.02). SaO2 desaturation indices were associated independently with LV mass, LV wall thickness, and RV area (all P < 0.03). OSA is associated independently with decreasing LV systolic function and with reduced RV function. Echocardiographic measures of adverse cardiac remodeling are strongly associated with OSA but are confounded by obesity. Hypoxia may be a stimulus for hypertrophy in individuals with OSA. © 2016 Associated Professional Sleep Societies, LLC.
Haase-Fielitz, Anja; Bellomo, Rinaldo; Devarajan, Prasad; Story, David; Matalanis, George; Dragun, Duska; Haase, Michael
2009-02-01
To compare the value of novel with conventional serum biomarkers in the prediction of acute kidney injury (AKI) in adult cardiac surgical patients according to preoperative renal function. Single-center, prospective observational study. Tertiary hospital. One hundred adult cardiac surgical patients. We measured concentrations of plasma neutrophil gelatinase-associated lipocalin (NGAL), and serum cystatin C, and creatinine and urea at baseline, on arrival in the intensive care unit (ICU) and at 24 hours postoperatively. We assessed such biomarkers in relation to the development of AKI (>50% increase in creatinine from baseline) and to a composite end point (need for renal replacement therapy and in-hospital mortality). We defined an area under the receiver operating characteristic curve of 0.60-0.69 as poor, 0.70-0.79 as fair, 0.80-0.89 as good, and 0.90-1.00 as excellent in terms of predictive value. On arrival in ICU, plasma NGAL and serum cystatin C were of good predictive value, but creatinine and urea were of poor predictive value. After exclusion of patients with preoperative renal impairment (estimated glomerular filtration rate <60 mL/min), the predictive performance for AKI of all renal biomarkers on arrival in ICU remained unchanged except for cystatin C, which was of fair value in such patients. At 24 hours postoperatively, all renal biomarkers were of good predictive value. On arrival in ICU, novel biomarkers were superior to conventional biomarkers (p < 0.05). Plasma NGAL (p = 0.015) and serum cystatin C (p = 0.007) were independent predictors of AKI and of excellent value in the prediction of the composite end point. Early postoperative measurement of plasma NGAL was of good value in identifying patients who developed AKI after adult cardiac surgery. Plasma NGAL and serum cystatin C were superior to conventional biomarkers in the prediction of AKI and were also of prognostic value in this setting.
Aessopos, Athanassios; Berdoukas, Vasilios; Tsironi, Maria
2008-01-01
Cardiac disease remains the major cause of death in thalassaemia major. This review deals with the mechanisms involved in heart failure development, the peculiar clinical presentation of congestive heart failure and provides guidelines for diagnosis and management of the acute phase of cardiac failure. It emphasizes the need for intensive medical – cardiac care and aggressive iron chelating management as, with such approaches, today, the patients outcomes can be favourable in the long term. It covers advances in the assessment of cardiac iron overload with the use of magnetic resonance imaging and makes recommendations for preventing the onset of cardiac problems by tailoring iron chelation therapy appropriate to the degree of cardiac iron loading found. PMID:18081719
Salam, Idrees; Hassager, Christian; Thomsen, Jakob Hartvig; Langkjær, Sandra; Søholm, Helle; Bro-Jeppesen, John; Bang, Lia; Holmvang, Lene; Erlinge, David; Wanscher, Michael; Lippert, Freddy K; Køber, Lars; Kjaergaard, Jesper
2016-08-01
Current guidelines recommend that comatose out-of-hospital cardiac arrest patients with ST-segment elevations (STEs) following return of spontaneous circulation (ROSC) should be referred for an acute coronary angiography. We sought to investigate the diagnostic value of the pre-hospital ROSC-ECG in predicting ST-elevation myocardial infarction (STEMI). ROSC-ECGs of 145 comatose survivors of out-of-hospital cardiac arrest, randomly assigned in the Target Temperature Management trial, were classified according to the current STEMI ECG criteria (third universal definition of myocardial infarction). STEs were present in the pre-hospital ROSC-ECG of 78 (54%) patients. A final diagnosis revealed that 69 (48%) patients had STEMI, 31 (21%) patients had non-STEMI and 45 (31%) patients had no myocardial infarction. STE in ROSC-ECGs had a sensitivity of 74% (95% confidence interval (CI) 62-84), specificity of 65% (95% CI 53-75) and a positive and negative predictive value of 65% (95% CI 54-76) and 73% (95% CI 61-83) in predicting STEMI. Time to ROSC was significantly longer (24 minutes vs. 19 minutes, P=0.02) in STE compared with no STE patients. Percutaneous coronary intervention was successful in 68% versus 36% (P<0.001) of STE compared to no STE patients. No significant difference was found in 180-day mortality rates between STE and no STE patients (36% vs. 30%, Plogrank=0.37). The pre-hospital ROSC-ECG is a suboptimal diagnostic tool to predict STEMI and therefore not a sensitive tool for triage to cardiac centres. This supports the incentive of referring all comatose survivors of out-of-hospital cardiac arrest of suspected cardiac origin to a tertiary heart centre with the availability of acute coronary angiography, even in the absence of STEs. © The European Society of Cardiology 2015.
Nykanen, David G; Forbes, Thomas J; Du, Wei; Divekar, Abhay A; Reeves, Jaxk H; Hagler, Donald J; Fagan, Thomas E; Pedra, Carlos A C; Fleming, Gregory A; Khan, Danyal M; Javois, Alexander J; Gruenstein, Daniel H; Qureshi, Shakeel A; Moore, Phillip M; Wax, David H
2016-02-01
We sought to develop a scoring system that predicts the risk of serious adverse events (SAE's) for individual pediatric patients undergoing cardiac catheterization procedures. Systematic assessment of risk of SAE in pediatric catheterization can be challenging in view of a wide variation in procedure and patient complexity as well as rapidly evolving technology. A 10 component scoring system was originally developed based on expert consensus and review of the existing literature. Data from an international multi-institutional catheterization registry (CCISC) between 2008 and 2013 were used to validate this scoring system. In addition we used multivariate methods to further refine the original risk score to improve its predictive power of SAE's. Univariate analysis confirmed the strong correlation of each of the 10 components of the original risk score with SAE attributed to a pediatric cardiac catheterization (P < 0.001 for all variables). Multivariate analysis resulted in a modified risk score (CRISP) that corresponds to an increase in value of area under a receiver operating characteristic curve (AUC) from 0.715 to 0.741. The CRISP score predicts risk of occurrence of an SAE for individual patients undergoing pediatric cardiac catheterization procedures. © 2015 Wiley Periodicals, Inc.
Lu, Yueli; Jiang, Dineng; Jia, Xiaofeng; Qiu, Yihong; Zhu, Yisheng; Thakor, Nitish; Tong, Shanbao
2008-01-01
Clinical trials have proven the efficacy of therapeutic hypothermia in improving the functional outcome after cardiac arrest (CA) compared with the normothermic controls. Experimental researches also demonstrated quantitative electroencephalogram (qEEG) analysis was associated with the long-term outcome of the therapeutic hypothermia in brain injury. Nevertheless, qEEG has not been able to provide a prediction earlier than 6h after the return of spontaneous circulation (ROSC). In this study, we use C0 complexity to analyze the nonlinear characteristic of EEG, which could predict the neurological recovery under therapeutic hypothermia during the early phase after asphyxial cardiac arrest in rats. Twelve Wistar rats were randomly assigned to 9-min asphyxia injury under hypothermia (33 degrees C, n=6) or normothermia (37 degrees C, n=6). Significantly greater C0 complexity was found in hypothermic group than that in normothermic group as early as 4h after the ROSC (P0.05). C0 complexity at 4h correlated well with the 72h neurodeficit score (NDS) (Pearson's correlation = 0.882). The results showed that the C0 complexity could be an early predictor of the long-term neurological recovery from cardiac arrest.
Sweet, Shane N.; Fortier, Michelle S.; Strachan, Shaelyn M.; Blanchard, Chris M.; Boulay, Pierre
2014-01-01
Self-determination theory and self-efficacy theory are prominent theories in the physical activity literature, and studies have begun integrating their concepts. Sweet, Fortier, Strachan and Blanchard (2012) have integrated these two theories in a cross-sectional study. Therefore, this study sought to test a longitudinal integrated model to predict physical activity at the end of a 4-month cardiac rehabilitation program based on theory, research and Sweet et al.’s cross-sectional model. Participants from two cardiac rehabilitation programs (N=109) answered validated self-report questionnaires at baseline, two and four months. Data were analyzed using Amos to assess the path analysis and model fit. Prior to integration, perceived competence and self-efficacy were combined, and labeled as confidence. After controlling for 2-month physical activity and cardiac rehabilitation site, no motivational variables significantly predicted residual change in 4-month physical activity. Although confidence at two months did not predict residual change in 4-month physical activity, it had a strong positive relationship with 2-month physical activity (β=0.30, P<0.001). The overall model retained good fit indices. In conclusion, results diverged from theoretical predictions of physical activity, but self-determination and self-efficacy theory were still partially supported. Because the model had good fit, this study demonstrated that theoretical integration is feasible. PMID:26973926
Yamaji, Masayuki; Tsutamoto, Takayoshi; Kawahara, Chiho; Nishiyama, Keizo; Yamamoto, Takashi; Fujii, Masanori; Horie, Minoru
2009-11-01
The pathophysiological role of cortisol, which binds to the mineralocorticoid receptor with an affinity equal to that of aldosterone (ALD), may be influenced by oxidative stress in patients with chronic heart failure. We evaluated cardiac event prediction using cortisol levels in chronic heart failure, in comparison with ALD, adrenocorticotropic hormone, and brain natriuretic peptide (BNP), and the impact of oxidative stress. We measured the plasma levels of biomarkers such as BNP, ALD, adrenocorticotropic hormone, serum cortisol, and oxidized low-density lipoprotein (oxLDL), a biomarker of oxidative stress, in 319 consecutive symptomatic patients with chronic heart failure, and we followed these patients for a mean period of 33 months. During the follow-up period, 29 patients had cardiac events (death or hospitalization). Plasma levels of BNP, ALD, adrenocorticotropic hormone, oxLDL, and serum cortisol (16.8+/-1.8 microg/dL versus 12.4+/-0.3 microg/dL, P=0.01) were significantly higher in patients with cardiac events than in those without cardiac events. On stepwise multivariate analyses, high levels of BNP (P=0.0003), renin (P=0.002), cortisol (P=0.02), and oxLDL (P=0.002) were independent predictors of cardiac events, but ALD and adrenocorticotropic hormone levels were not. In patients with serum cortisol > or =12.5 microg/dL, the hazard ratio of cardiac events in patients with oxLDL > or =12 U/mL was 3.5 compared with that in patients with oxLDL <12 U/mL (P=0.008). These findings indicate that serum cortisol levels were a complementary and incremental cardiac event risk predictor in combination with BNP in patients with chronic heart failure and that cardiac event prediction based on cortisol levels was influenced by oxidative stress.
Deriving a cardiac ageing signature to reveal MMP-9-dependent inflammatory signalling in senescence.
Ma, Yonggang; Chiao, Ying Ann; Clark, Ryan; Flynn, Elizabeth R; Yabluchanskiy, Andriy; Ghasemi, Omid; Zouein, Fouad; Lindsey, Merry L; Jin, Yu-Fang
2015-06-01
Cardiac ageing involves the progressive development of cardiac fibrosis and diastolic dysfunction coordinated by MMP-9. Here, we report a cardiac ageing signature that encompasses macrophage pro-inflammatory signalling in the left ventricle (LV) and distinguishes biological from chronological ageing. Young (6-9 months), middle-aged (12-15 months), old (18-24 months), and senescent (26-34 months) mice of both C57BL/6J wild type (WT) and MMP-9 null were evaluated. Using an identified inflammatory pattern, we were able to define individual mice based on their biological, rather than chronological, age. Bcl6, Ccl24, and Il4 were the strongest inflammatory markers of the cardiac ageing signature. The decline in early-to-late LV filling ratio was most strongly predicted by Bcl6, Il1r1, Ccl24, Crp, and Cxcl13 patterns, whereas LV wall thickness was most predicted by Abcf1, Tollip, Scye1, and Mif patterns. With age, there was a linear increase in cardiac M1 macrophages and a decrease in cardiac M2 macrophages in WT mice; of which, both were prevented by MMP-9 deletion. In vitro, MMP-9 directly activated young macrophage polarization to an M1/M2 mid-transition state. Our results define the cardiac ageing inflammatory signature and assign MMP-9 roles in mediating the inflammaging profile by indirectly and directly modifying macrophage polarization. Our results explain early mechanisms that stimulate ageing-induced cardiac fibrosis and diastolic dysfunction. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.
Prognostic value of exercise echocardiography in diabetic patients
Oliveira, Joselina LM; Barreto-Filho, José AS; Oliveira, Carla RP; Santana, Thaiana A; Anjos-Andrade, Fernando D; Alves, Érica O; Nascimento-Junior, Adão C; Góes, Thiago JS; Santana, Nathalie O; Vasconcelos, Francis L; Barreto, Martha A; D'Oliveira Junior, Argemiro; Salvatori, Roberto; Aguiar-Oliveira, Manuel H; Sousa, Antônio CS
2009-01-01
Background Coronary artery disease (CAD) is the leading cause of death in diabetic patients. Although exercise echocardiography (EE) is established as a useful method for diagnosis and stratification of risk for CAD in the general population, there are few studies on its value as a prognostic tool in diabetic patients. The purpose of this investigation was to evaluate the value of EE in predicting cardiac events in diabetics. Methods 193 diabetic patients, 97 males, 59.8 ± 9.3 yrs (mean ± SD) were submitted to EE between 2001 and 2006 and followed from 7 to 65 months with median of 29 months by phone calls and personal interviews with patients and their primary physician, and reviewing medical records and death certificates. The end points were cardiac events, defined as non-fatal myocardial infarction, late myocardial revascularization and cardiac death. Sudden death without another explanation was considered cardiac death. Survival free of end points was estimated by the Kaplan-Meier method. Results Twenty-six cardiac events were registered in 24 individuals during the follow-up. The rates of cardiac events were 20.6 and 7% in patients with positive and negative EE, respectively (p < 0.001). Predictors of cardiac events included sedentary lifestyle, with RR of 2.57 95%CI [1.09 to 6.02] (P = 0.03) and positive EE, with RR 3.63, 95%CI [1.44 to 9.16] (P = 0.01). Patients with positive EE presented higher rates of cardiac events at 12 months (6.8% vs. 2.2%), p = 0.004. Conclusion EE is a useful method to predict cardiac events in diabetic patients with suspected or known CAD. PMID:19480653
Reynolds, Joshua C; Rittenberger, Jon C; Toma, Catalin; Callaway, Clifton W
2014-09-01
Early CATH is recommended for cardiac arrest survivors with STEMI or suspicion for coronary ischemia. Comatose patients are at risk of death from neurologic injury irrespective of CATH, but post-procedural mortality data do not distinguish between causes of death. Pittsburgh Post Cardiac Arrest Category (PCAC) is a validated, early post-cardiac arrest illness severity score based on initial cardiopulmonary dysfunction and neurologic examination. We evaluated the association between early coronary angiography (CATH) and patient outcome after adjusting for initial post-cardiac arrest illness severity. Retrospective study of a prospective cardiac arrest database at a single site. We included 1011 adult survivors of non-traumatic in-hospital or out-of-hospital cardiac arrest from 2005 to 2012, then stratified by PCAC and immediate CATH. Logistic regression tested the association between immediate CATH and patient outcomes, adjusting for PCAC. Overall, 273 (27%) received immediate CATH. Patients with immediate CATH had higher proportions of good outcome in all but the most severe stratum of illness severity (11% vs. 6%; p=0.11). The primary mode of death was neurologic for all but the least severe stratum. Adjusting for PCAC, immediate CATH was associated with favorable discharge disposition (OR 1.92; 95%CI 1.20, 3.07; p=0.006) and modified Rankin scale (OR 1.95; 95%CI 1.12, 3.38; p=0.02). The benefit of CATH is less clear in the most severe stratum of illness, in which the high risk of mortality is primarily from neurologic causes. PCAC is a risk-stratification tool that provides pre-procedural risk-adjusted outcome prediction for post-cardiac arrest patients being evaluated for immediate CATH. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Sarkar, Urmimala; Ali, Sadia; Whooley, Mary A.
2009-01-01
Objective The authors sought to evaluate the association of self-efficacy with objective measures of cardiac function, subsequent hospitalization for heart failure (HF), and all-cause mortality. Design Observational cohort of ambulatory patients with stable CHD. The authors measured self-efficacy using a published, validated, 5-item summative scale, the Sullivan Self-Efficacy to Maintain Function Scale. The authors also performed a cardiac assessment, including an exercise treadmill test with stress echocardiography. Main Outcome Measures Hospitalizations for HF, as determined by blinded review of medical records, and all-cause mortality, with adjustment for demographics, medical history, medication use, depressive symptoms, and social support. Results Of the 1,024 predominately male, older CHD patients, 1013 (99%) were available for follow-up, 124 (12%) were hospitalized for HF, and 235 (23%) died during 4.3 years of follow-up. Mean cardiac self-efficacy score was 9.7 (SD 4.5, range 0–20), corresponding to responses between “not at all confident” and “somewhat confident” for ability to maintain function. Lower self-efficacy predicted subsequent HF hospitalization (OR per SD decrease = 1.4, p = 0006), and all-cause mortality (OR per SD decrease = 1.4, p < .0001). After adjustment, the association of cardiac self-efficacy with both HF hospitalization and mortality was explained by worse baseline cardiac function. Conclusion Among patients with CHD, self-efficacy was a reasonable proxy for predicting HF hospitalizations. The increased risk of HF associated with lower baseline self-efficacy was explained by worse cardiac function. These findings indicate that measuring cardiac self-efficacy provides a rapid and potentially useful assessment of cardiac function among outpatients with CHD. PMID:19290708
Talkhabi, Mahmood; Razavi, Seyed Morteza; Salari, Ali
2017-06-01
Heart diseases are the most significant cause of morbidity and mortality in the world. De novo generated cardiomyocytes (CMs) are a great cellular source for cell-based therapy and other potential applications. Direct cardiac reprogramming is the newest method to produce CMs, known as induced cardiomyocytes (iCMs). During a direct cardiac reprogramming, also known as transdifferentiation, non-cardiac differentiated adult cells are reprogrammed to cardiac identity by forced expression of cardiac-specific transcription factors (TFs) or microRNAs. To this end, many different combinations of TFs (±microRNAs) have been reported for direct reprogramming of mouse or human fibroblasts to iCMs, although their efficiencies remain very low. It seems that the investigated TFs and microRNAs are not sufficient for efficient direct cardiac reprogramming and other cardiac specific factors may be required for increasing iCM production efficiency, as well as the quality of iCMs. Here, we analyzed gene expression data of cardiac fibroblast (CFs), iCMs and adult cardiomyocytes (aCMs). The up-regulated and down-regulated genes in CMs (aCMs and iCMs) were determined as CM and CF specific genes, respectively. Among CM specific genes, we found 153 transcriptional activators including some cardiac and non-cardiac TFs that potentially activate the expression of CM specific genes. We also identified that 85 protein kinases such as protein kinase D1 (PKD1), protein kinase A (PRKA), calcium/calmodulin-dependent protein kinase (CAMK), protein kinase C (PRKC), and insulin like growth factor 1 receptor (IGF1R) that are strongly involved in establishing CM identity. CM gene regulatory network constructed using protein kinases, transcriptional activators and intermediate proteins predicted some new transcriptional activators such as myocyte enhancer factor 2A (MEF2A) and peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PPARGC1A), which may be required for qualitatively and quantitatively efficient direct cardiac reprogramming. Taken together, this study provides new insights into the complexity of cell fate conversion and better understanding of the roles of transcriptional activators, signaling pathways and protein kinases in increasing the efficiency of direct cardiac reprogramming and maturity of iCMs.
Jean-Pierre, Pascal; Grandner, Michael A; Garland, Sheila N; Henry, Elizabeth; Jean-Louis, Girardin; Burish, Thomas G
2015-07-01
Cancer and its treatments can deleteriously affect memory. Cardiac function and insomnia can exacerbate memory problems. To examine the relationships among cardiovascular disease, insomnia, and self-reported memory problems (SRMP) in adult-onset cancer survivors. We included data from participants (41-64 year-old) of the 2007-2008 National Health and Nutrition Examination Survey, a nationally representative probability sample of the civilian, non-institutionalized population of the US. We excluded participants with brain cancer/stroke history since these conditions are expected to cause cognitive problems. Using binary logistic regression, we determined the prevalence of SRMP relative to cardiac problems and insomnia by weighting our results proportionally. We adjusted for predictors of memory problems: age, sex, race, education and general health. The sample included 2289 adults (49% females), 9% with a cancer history. The results pertain only to cancer survivors. Those with insomnia were 16 times as likely to have SRMP. Only insomnia symptoms (OR, 15.74; 95% CI, 1.73-143.30; p < 0.01) significantly predicted SRMP, uniquely explaining 12% of the variance. Insomnia accounted for 18.8% of the association between cardiac issues and SRMP, demonstrating mediation (Sobel p < 0.05). The large CI is a consequence of analyzing a sub-group of a subpopulation. Among participants without a cancer history, cardiovascular disease and insomnia were not associated with SRMP (p > 0.05). We could not determine severity and time-related changes in SRMP. Likelihood of SRMP was higher in cancer survivors with a history of cardiovascular disease and insomnia symptoms. Future studies are needed to delineate the cardiac-insomnia-memory interrelationships. Copyright © 2015 Elsevier B.V. All rights reserved.
Park, S J; Kushwaha, S S; McGregor, C G A
2012-01-01
Congestive heart failure is associated with poor quality of life (QoL) and low survival rates. The development of state-of-the-art cardiac devices holds promise for improved therapy in patients with heart failure. The field of implantable cardiac assist devices is changing rapidly with the emergence of continuous-flow pumps (CFPs). The important developments in this field, including pertinent clinical trials, registry reports, innovative research, and potential future directions are discussed in this paper.
Bispectral index to predict neurological outcome early after cardiac arrest.
Stammet, Pascal; Collignon, Olivier; Werer, Christophe; Sertznig, Claude; Devaux, Yvan
2014-12-01
To address the value of continuous monitoring of bispectral index (BIS) to predict neurological outcome after cardiac arrest. In this prospective observational study in adult comatose patients treated by therapeutic hypothermia after cardiac arrest we measured bispectral index (BIS) during the first 24 hours of intensive care unit stay. A blinded neurological outcome assessment by cerebral performance category (CPC) was done 6 months after cardiac arrest. Forty-six patients (48%) had a good neurological outcome at 6-month, as defined by a cerebral performance category (CPC) 1-2, and 50 patients (52%) had a poor neurological outcome (CPC 3-5). Over the 24h of monitoring, mean BIS values over time were higher in the good outcome group (38 ± 9) compared to the poor outcome group (17 ± 12) (p<0.001). Analysis of BIS recorded every 30 minutes provided an optimal prediction after 12.5h, with an area under the receiver operating characteristic curve (AUC) of 0.89, a specificity of 89% and a sensitivity of 86% using a cut-off value of 23. With a specificity fixed at 100% (sensitivity 26%) the cut-off BIS value was 2.4 over the first 271 minutes. In multivariable analyses including clinical characteristics, mean BIS value over the first 12.5h was a predictor of neurological outcome (p = 6E-6) and provided a continuous net reclassification index of 1.28% (p = 4E-10) and an integrated discrimination improvement of 0.31 (p=1E-10). Mean BIS value calculated over the first 12.5h after ICU admission potentially predicts 6-months neurological outcome after cardiac arrest. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Early Head CT Findings Are Associated With Outcomes After Pediatric Out-of-Hospital Cardiac Arrest.
Starling, Rebecca M; Shekdar, Karuna; Licht, Dan; Nadkarni, Vinay M; Berg, Robert A; Topjian, Alexis A
2015-07-01
Head CT after out-of-hospital cardiac arrest is often obtained to evaluate intracranial pathology. Among children admitted to the PICU following pediatric out-of-hospital cardiac arrest, we hypothesized that loss of gray-white matter differentiation and basilar cistern and sulcal effacement are associated with mortality and unfavorable neurologic outcome. Retrospective, cohort study. Single, tertiary-care center PICU. Seventy-eight patients less than 18 years old who survived out-of-hospital cardiac arrest to PICU admission and had a head CT within 24 hours of return of spontaneous circulation were evaluated from July 2005 through May 2012. None. Median time to head CT from return of spontaneous circulation was 3.3 hours (1.0, 6.0). Median patient age was 2.3 years (0.4, 9.5). Thirty-nine patients (50%) survived, of whom 29 (74%) had favorable neurologic outcome. Nonsurvivors were more likely than survivors to have 1) loss of gray-white matter differentiation (Hounsfield unit ratios, 0.96 [0.88, 1.07] vs 1.1 [1.07, 1.2]; p < 0.001), 2) basilar cistern effacement (93% vs 7%; p = 0.001; positive predictive value, 94%; negative predictive value, 59%), and 3) sulcal effacement (100% vs 0%; p ≤ 0.001; positive predictive value, 100%; negative predictive value, 68%). All patients with poor gray-white matter differentiation or sulcal effacement had unfavorable neurologic outcomes. Only one patient with basilar cistern effacement had favorable outcome. Loss of gray-white matter differentiation and basilar cistern effacement and sulcal effacement are associated with poor outcome after pediatric out-of-hospital cardiac arrest. Select patients may have favorable outcomes despite these findings.
Early Head CT Findings Are Associated With Outcomes After Pediatric Out-of-Hospital Cardiac Arrest
Starling, Rebecca M.; Shekdar, Karuna; Licht, Dan; Nadkarni, Vinay M.; Berg, Robert A.; Topjian, Alexis A.
2015-01-01
Objectives Head CT after out-of-hospital cardiac arrest is often obtained to evaluate intracranial pathology. Among children admitted to the PICU following pediatric out-of-hospital cardiac arrest, we hypothesized that loss of gray-white matter differentiation and basilar cistern and sulcal effacement are associated with mortality and unfavorable neurologic outcome. Design Retrospective, cohort study. Setting Single, tertiary-care center PICU. Patients Seventy-eight patients less than 18 years old who survived out-of-hospital cardiac arrest to PICU admission and had a head CT within 24 hours of return of spontaneous circulation were evaluated from July 2005 through May 2012. Interventions None. Measurements and Main Results Median time to head CT from return of spontaneous circulation was 3.3 hours (1.0, 6.0). Median patient age was 2.3 years (0.4, 9.5). Thirty-nine patients (50%) survived, of whom 29 (74%) had favorable neurologic outcome. Nonsurvivors were more likely than survivors to have 1) loss of gray-white matter differentiation (Hounsfield unit ratios, 0.96 [0.88, 1.07] vs 1.1 [1.07, 1.2]; p < 0.001), 2) basilar cistern effacement (93% vs 7%; p = 0.001; positive predictive value, 94%; negative predictive value, 59%), and 3) sulcal effacement (100% vs 0%; p ≤ 0.001; positive predictive value, 100%; negative predictive value, 68%). All patients with poor gray-white matter differentiation or sulcal effacement had unfavorable neurologic outcomes. Only one patient with basilar cistern effacement had favorable outcome. Conclusions Loss of gray-white matter differentiation and basilar cistern effacement and sulcal effacement are associated with poor outcome after pediatric out-of-hospital cardiac arrest. Select patients may have favorable outcomes despite these findings. PMID:25844694
Ramjee, Vimal; Grossestreuer, Anne V; Yao, Yuan; Perman, Sarah M; Leary, Marion; Kirkpatrick, James N; Forfia, Paul R; Kolansky, Daniel M; Abella, Benjamin S; Gaieski, David F
2015-11-01
Determination of clinical outcomes following resuscitation from cardiac arrest remains elusive in the immediate post-arrest period. Echocardiographic assessment shortly after resuscitation has largely focused on left ventricular (LV) function. We aimed to determine whether post-arrest right ventricular (RV) dysfunction predicts worse survival and poor neurologic outcome in cardiac arrest patients, independent of LV dysfunction. A single-center, retrospective cohort study at a tertiary care university hospital participating in the Penn Alliance for Therapeutic Hypothermia (PATH) Registry between 2000 and 2012. 291 in- and out-of-hospital adult cardiac arrest patients at the University of Pennsylvania who had return of spontaneous circulation (ROSC) and post-arrest echocardiograms. Of the 291 patients, 57% were male, with a mean age of 59 ± 16 years. 179 (63%) patients had LV dysfunction, 173 (59%) had RV dysfunction, and 124 (44%) had biventricular dysfunction on the initial post-arrest echocardiogram. Independent of LV function, RV dysfunction was predictive of worse survival (mild or moderate: OR 0.51, CI 0.26-0.99, p<0.05; severe: OR 0.19, CI 0.06-0.65, p=0.008) and neurologic outcome (mild or moderate: OR 0.33, CI 0.17-0.65, p=0.001; severe: OR 0.11, CI 0.02-0.50, p=0.005) compared to patients with normal RV function after cardiac arrest. Echocardiographic findings of post-arrest RV dysfunction were equally prevalent as LV dysfunction. RV dysfunction was significantly predictive of worse outcomes in post-arrest patients after accounting for LV dysfunction. Post-arrest RV dysfunction may be useful for risk stratification and management in this high-mortality population. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Robotics in Cardiac Surgery: Past, Present, and Future
Bush, Bryan; Nifong, L. Wiley; Chitwood, W. Randolph
2013-01-01
Robotic cardiac operations evolved from minimally invasive operations and offer similar theoretical benefits, including less pain, shorter length of stay, improved cosmesis, and quicker return to preoperative level of functional activity. The additional benefits offered by robotic surgical systems include improved dexterity and degrees of freedom, tremor-free movements, ambidexterity, and the avoidance of the fulcrum effect that is intrinsic when using long-shaft endoscopic instruments. Also, optics and operative visualization are vastly improved compared with direct vision and traditional videoscopes. Robotic systems have been utilized successfully to perform complex mitral valve repairs, coronary revascularization, atrial fibrillation ablation, intracardiac tumor resections, atrial septal defect closures, and left ventricular lead implantation. The history and evolution of these procedures, as well as the present status and future directions of robotic cardiac surgery, are presented in this review. PMID:23908867
Cheong, Randy Wang Long; Li, Huihua; Doctor, Nausheen Edwin; Ng, Yih Yng; Goh, E Shaun; Leong, Benjamin Sieu-Hon; Gan, Han Nee; Foo, David; Tham, Lai Peng; Charles, Rabind; Ong, Marcus Eng Hock
2016-01-01
Futile resuscitation can lead to unnecessary transports for out-of-hospital cardiac arrest (OHCA). The Basic Life Support (BLS) and Advanced Life Support (ALS) termination of resuscitation (TOR) guidelines have been validated with good results in North America. This study aims to evaluate the performance of these two rules in predicting neurological outcomes of OHCA patients in Singapore, which has an intermediate life support Emergency Medical Services (EMS) system. A retrospective cohort study was carried out on Singapore OHCA data collected from April 2010 to May 2012 for the Pan-Asian Resuscitation Outcomes Study (PAROS). The outcomes of each rule were compared to the actual neurological outcomes of the patients. The sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and predicted transport rates of each test were evaluated. A total of 2,193 patients had cardiac arrest of presumed cardiac etiology. TOR was recommended for 1,411 patients with the BLS-TOR rule, with a specificity of 100% (91.9, 100.0) for predicting poor neurological outcomes, PPV 100% (99.7, 100.0), sensitivity 65.7% (63.6, 67.7), NPV 5.6% (4.1, 7.5), and transportation rate 35.6%. Using the ALS-TOR rule, TOR was recommended for 587 patients, specificity 100% (91.9, 100.0) for predicting poor neurological outcomes, PPV 100% (99.4, 100.0), sensitivity 27.3% (25.4, 29.3), NPV 2.7% (2.0, 3.7), and transportation rate 73.2%. BLS-TOR predicted survival (any neurological outcome) with specificity 93.4% (95% CI 85.3, 97.8) versus ALS-TOR 98.7% (95% CI 92.9, 99.8). Both the BLS and ALS-TOR rules had high specificities and PPV values in predicting neurological outcomes, the BLS-TOR rule had a lower predicted transport rate while the ALS-TOR rule was more accurate in predicting futility of resuscitation. Further research into unique local cultural issues would be useful to evaluate the feasibility of any system-wide implementation of TOR.
Real-time myocardium segmentation for the assessment of cardiac function variation
NASA Astrophysics Data System (ADS)
Zoehrer, Fabian; Huellebrand, Markus; Chitiboi, Teodora; Oechtering, Thekla; Sieren, Malte; Frahm, Jens; Hahn, Horst K.; Hennemuth, Anja
2017-03-01
Recent developments in MRI enable the acquisition of image sequences with high spatio-temporal resolution. Cardiac motion can be captured without gating and triggering. Image size and contrast relations differ from conventional cardiac MRI cine sequences requiring new adapted analysis methods. We suggest a novel segmentation approach utilizing contrast invariant polar scanning techniques. It has been tested with 20 datasets of arrhythmia patients. The results do not differ significantly more between automatic and manual segmentations than between observers. This indicates that the presented solution could enable clinical applications of real-time MRI for the examination of arrhythmic cardiac motion in the future.
The Normal Electrocardiogram: Resting 12-Lead and Electrocardiogram Monitoring in the Hospital.
Harris, Patricia R E
2016-09-01
The electrocardiogram (ECG) is a well-established diagnostic tool extensively used in clinical settings. Knowledge of cardiac rhythm and mastery of cardiac waveform interpretation are fundamental for intensive care nurses. Recognition of the normal findings for the 12-lead ECG and understanding the significance of changes from baseline in continuous cardiac monitoring are essential steps toward ensuring safe patient care. This article highlights historical developments in electrocardiography, describes the normal resting 12-lead ECG, and discusses the need for continuous cardiac monitoring. In addition, future directions for the ECG are explored briefly. Copyright © 2016 Elsevier Inc. All rights reserved.
Predicting return to work following a cardiac event in Malaysia.
Mustafah, Nadia Mohd; Kasim, Sazzli; Isa, Mohamad Rodi; Hanapiah, Fazah Akhtar; Abdul Latif, Lydia
2017-01-01
Return to work is an important aspect for cardiac rehabilitation following a major cardiac event. The aim was to understand the local prevalence and factors associated with returning to work in Malaysia after a cardiac event. A cross sectional design was used. All patients attending the cardiac rehabilitation program after major cardiac event during an 11-months period (2011-2012) were included. Data relating to socio-demographic, work-related, risk factors and acute myocardial infarction were collected. The SF-36 questionnaire was used to assess quality of life. Regression analysis was used to determine the predicting factors to return to work. A total of 398 files were screened, 112 respondents agreed to participate giving a response rate of 47.3%. The prevalence of returned to work (RTW) was 66.1% [95% CI: 57.2-75.0]. Factors associated with work resumption were age (Adj. OR: 0.92 (95% CI: 0.84-0.99), diabetes mellitus (Adj. OR: 3.70, 95% CI: 1.35-10.12), Mental Component Summary (MCS) score (Adj. OR: 1.05 (95% CI: 1.01-1.09) and baseline angiography findings. Patients with single vessel and two vessel disease were 8.9 times and 3.78 times more likely to return to work compared to those with 3 vessels (Adj. OR: 8.90 (95% CI: 2.29-34.64) and Adj. OR: 3.78, (95% CI: 1.12, 12.74). We proposed a cardiac rehabilitation program to emphasize mental health as it may improve successful return to work after cardiac event.
Pulmonary Vascular Congestion: A Mechanism for Distal Lung Unit Dysfunction in Obesity.
Oppenheimer, Beno W; Berger, Kenneth I; Ali, Saleem; Segal, Leopoldo N; Donnino, Robert; Katz, Stuart; Parikh, Manish; Goldring, Roberta M
2016-01-01
Obesity is characterized by increased systemic and pulmonary blood volumes (pulmonary vascular congestion). Concomitant abnormal alveolar membrane diffusion suggests subclinical interstitial edema. In this setting, functional abnormalities should encompass the entire distal lung including the airways. We hypothesize that in obesity: 1) pulmonary vascular congestion will affect the distal lung unit with concordant alveolar membrane and distal airway abnormalities; and 2) the degree of pulmonary congestion and membrane dysfunction will relate to the cardiac response. 54 non-smoking obese subjects underwent spirometry, impulse oscillometry (IOS), diffusion capacity (DLCO) with partition into membrane diffusion (DM) and capillary blood volume (VC), and cardiac MRI (n = 24). Alveolar-capillary membrane efficiency was assessed by calculation of DM/VC. Mean age was 45±12 years; mean BMI was 44.8±7 kg/m2. Vital capacity was 88±13% predicted with reduction in functional residual capacity (58±12% predicted). Despite normal DLCO (98±18% predicted), VC was elevated (135±31% predicted) while DM averaged 94±22% predicted. DM/VC varied from 0.4 to 1.4 with high values reflecting recruitment of alveolar membrane and low values indicating alveolar membrane dysfunction. The most abnormal IOS (R5 and X5) occurred in subjects with lowest DM/VC (r2 = 0.31, p<0.001; r2 = 0.34, p<0.001). Cardiac output and index (cardiac output / body surface area) were directly related to DM/VC (r2 = 0.41, p<0.001; r2 = 0.19, p = 0.03). Subjects with lower DM/VC demonstrated a cardiac output that remained in the normal range despite presence of obesity. Global dysfunction of the distal lung (alveolar membrane and distal airway) is associated with pulmonary vascular congestion and failure to achieve the high output state of obesity. Pulmonary vascular congestion and consequent fluid transudation and/or alterations in the structure of the alveolar capillary membrane may be considered often unrecognized causes of airway dysfunction in obesity.
Adverse cardiac events in 56,000 orthopaedic trauma patients: Does anatomic area make a difference?
Lee, Adam K; Dodd, Ashley C; Lakomkin, Nikita; Yarlagadda, Mahesh; Jahangir, A Alex; Collinge, Cory A; Sethi, Manish K
2016-08-01
Postoperative cardiac events in orthopaedic trauma patients constitute severe morbidity and mortality. It is therefore increasingly important to determine patient risk factors that are predictive of postoperative myocardial infarctions and cardiac arrests. This study sought to assess if there is an association between anatomic area and cardiac complications in the orthopaedic trauma patient. From 2006-2013, a total of 361,402 orthopaedic patients were identified in the NSQIP database using Current Procedural Terminology (CPT) codes. Of these, 56,336 (15.6%) patients were identified as orthopaedic trauma patients broken down by anatomic region: 11,905 (21.1%) upper extremity patients (UE), 29,009 (51.5%) hip/pelvis patients (HP), and 15,422 (27.4%) lower extremity patients (LE) using CPT codes. Patients were defined as having adverse cardiac events if they developed myocardial infarctions or cardiac arrests within 30days after surgery. Chi-squared analysis was used to determine if there was an association between anatomic area and rates of cardiac events. Multivariate logistical analysis was used with over 40 patient characteristics including age, gender, history of cardiac disease, and anatomic region as independent predictors to determine whether anatomic area significantly predicted the development of cardiac complications. There were significant differences in baseline demographics among the three groups: HP patients had the greatest average age (77.6 years) compared to 54.8 years for UE patients and 54.1 years in LE patients (p<0.001). HP patients also had the highest average ASA score (3.0) (p<0.001). There was a significant difference in adverse cardiac events based on anatomic area: 0.27% (32/11,905) UE patients developed cardiac complications compared to 2.15% (623/29,009) HP patients and 0.61% (94/15,422) LE patients. After multivariate analysis, HP patients were significantly more likely to develop cardiac complications compared to both UE patients (OR: 6.377, p=0.014) and LE patients (OR: 2.766, p=0.009). There is a significant difference in adverse cardiac events following orthopaedic trauma based on anatomic region. Hip/Pelvis surgery appeared to be a significant risk factor in developing an adverse cardiac event. Further studies should investigate why hip/pelvic patients are at a higher risk of adverse cardiac events. Copyright © 2016 Elsevier Ltd. All rights reserved.
Launcelott, Sebastian; Ouzounian, Maral; Buth, Karen J; Légaré, Jean-Francois
2012-09-01
The present study generated a risk model and an easy-to-use scorecard for the preoperative prediction of in-hospital mortality for patients undergoing redo cardiac operations. All patients who underwent redo cardiac operations in which the initial and subsequent procedures were performed through a median sternotomy were included. A logistic regression model was created to identify independent preoperative predictors of in-hospital mortality. The results were then used to create a scorecard predicting operative risk. A total of 1,521 patients underwent redo procedures between 1995 and 2010 at a single institution. Coronary bypass procedures were the most common previous (58%) or planned operations (54%). The unadjusted in-hospital mortality for all redo cases was higher than for first-time procedures (9.7% vs. 3.4%; p<0.001). Independent predictors of in-hospital mortality were a composite urgency variable (odds ratio [OR], 3.47), older age (70-79 years, OR, 2.74; ≥80 years, OR, 3.32), more than 2 previous sternotomies (OR, 2.69), current procedure other than isolated coronary or valve operation (OR, 2.64), preoperative renal failure (OR, 1.89), and peripheral vascular disease (PVD) (OR, 1.55); all p<0.05. A scorecard was generated using these independent predictors, stratifying patients undergoing redo cardiac operations into 6 risk categories of in-hospital mortality ranging from <5% risk to >40%. Reoperation represents a significant proportion of modern cardiac surgical procedures and is often associated with significantly higher mortality than first-time operations. We created an easy-to-use scorecard to assist clinicians in estimating operative mortality to ensure optimal decision making in the care of patients facing redo cardiac operations. Copyright © 2012 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.
Ricci, Brittany; Chang, Andrew D; Hemendinger, Morgan; Dakay, Katarina; Cutting, Shawna; Burton, Tina; Mac Grory, Brian; Narwal, Priya; Song, Christopher; Chu, Antony; Mehanna, Emile; McTaggart, Ryan; Jayaraman, Mahesh; Furie, Karen; Yaghi, Shadi
2018-06-01
Occult paroxysmal atrial fibrillation (AF) is detected in 16%-30% of patients with embolic stroke of unknown source (ESUS). The identification of AF predictors on outpatient cardiac monitoring can help guide clinicians decide on a duration or method of cardiac monitoring after ESUS. We included all patients with ESUS who underwent an inpatient diagnostic evaluation and outpatient cardiac monitoring between January 1, 2013, and December 31, 2016. Patients were divided into 2 groups based on detection of AF or atrial flutter during monitoring. We compared demographic data, clinical risk factors, and cardiac biomarkers between the 2 groups. Multivariable logistic regression was used to determine predictors of AF. We identified 296 consecutive patients during the study period; 38 (12.8%) patients had AF detected on outpatient cardiac monitoring. In a multivariable regression analysis, advanced age (ages 65-74: odds ratio [OR] 2.36, 95% confidence interval [CI] .85-6.52; ages 75 or older: OR 4.08, 95% CI 1.58-10.52) and moderate-to-severe left atrial enlargement (OR 4.66, 95% CI 1.79-12.12) were predictors of AF on outpatient monitoring. We developed the Brown ESUS-AF score: age (65-74 years: 1 point, 75 years or older: 2 points) and left atrial enlargement (moderate or severe: 2 points) with good prediction of AF (area under the curve .725) and was internally validated using bootstrapping. The percentage of patients with AF detected in each score category were as follows: 0: 4.2%; 1: 14.8%; 2: 20.8%; 3: 22.2%; 4: 55.6%. The Brown ESUS-AF score predicts AF on prolonged outpatient monitoring after ESUS. More studies are needed to externally validate our findings. Copyright © 2018 National Stroke Association. Published by Elsevier Inc. All rights reserved.
Prediction of acute kidney injury within 30 days of cardiac surgery.
Ng, Shu Yi; Sanagou, Masoumeh; Wolfe, Rory; Cochrane, Andrew; Smith, Julian A; Reid, Christopher Michael
2014-06-01
To predict acute kidney injury after cardiac surgery. The study included 28,422 cardiac surgery patients who had had no preoperative renal dialysis from June 2001 to June 2009 in 18 hospitals. Logistic regression analyses were undertaken to identify the best combination of risk factors for predicting acute kidney injury. Two models were developed, one including the preoperative risk factors and another including the pre-, peri-, and early postoperative risk factors. The area under the receiver operating characteristic curve was calculated, using split-sample internal validation, to assess model discrimination. The incidence of acute kidney injury was 5.8% (1642 patients). The mortality for patients who experienced acute kidney injury was 17.4% versus 1.6% for patients who did not. On validation, the area under the curve for the preoperative model was 0.77, and the Hosmer-Lemeshow goodness-of-fit P value was .06. For the postoperative model area under the curve was 0.81 and the Hosmer-Lemeshow P value was .6. Both models had good discrimination and acceptable calibration. Acute kidney injury after cardiac surgery can be predicted using preoperative risk factors alone or, with greater accuracy, using pre-, peri-, and early postoperative risk factors. The ability to identify high-risk individuals can be useful in preoperative patient management and for recruitment of appropriate patients to clinical trials. Prediction in the early stages of postoperative care can guide subsequent intensive care of patients and could also be the basis of a retrospective performance audit tool. Copyright © 2014 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.
In vivo dose measurement using TLDs and MOSFET dosimeters for cardiac radiosurgery.
Gardner, Edward A; Sumanaweera, Thilaka S; Blanck, Oliver; Iwamura, Alyson K; Steel, James P; Dieterich, Sonja; Maguire, Patrick
2012-05-10
In vivo measurements were made of the dose delivered to animal models in an effort to develop a method for treating cardiac arrhythmia using radiation. This treatment would replace RF energy (currently used to create cardiac scar) with ionizing radiation. In the current study, the pulmonary vein ostia of animal models were irradiated with 6 MV X-rays in order to produce a scar that would block aberrant signals characteristic of atrial fibrillation. The CyberKnife radiosurgery system was used to deliver planned treatments of 20-35 Gy in a single fraction to four animals. The Synchrony system was used to track respiratory motion of the heart, while the contractile motion of the heart was untracked. The dose was measured on the epicardial surface near the right pulmonary vein and on the esophagus using surgically implanted TLD dosimeters, or in the coronary sinus using a MOSFET dosimeter placed using a catheter. The doses measured on the epicardium with TLDs averaged 5% less than predicted for those locations, while doses measured in the coronary sinus with the MOSFET sensor nearest the target averaged 6% less than the predicted dose. The measurements on the esophagus averaged 25% less than predicted. These results provide an indication of the accuracy with which the treatment planning methods accounted for the motion of the target, with its respiratory and cardiac components. This is the first report on the accuracy of CyberKnife dose delivery to cardiac targets.
Yao, Jingting; Tridandapani, Srini; Wick, Carson A; Bhatti, Pamela T
2017-01-01
To more accurately trigger cardiac computed tomography angiography (CTA) than electrocardiography (ECG) alone, a sub-system is proposed as an intermediate step toward fusing ECG with seismocardiography (SCG). Accurate prediction of quiescent phases is crucial to prospectively gating CTA, which is susceptible to cardiac motion and, thus, can affect the diagnostic quality of images. The key innovation of this sub-system is that it identifies the SCG waveform corresponding to heart sounds and determines their phases within the cardiac cycles. Furthermore, this relationship is modeled as a linear function with respect to heart rate. For this paper, B-mode echocardiography is used as the gold standard for identifying the quiescent phases. We analyzed synchronous ECG, SCG, and echocardiography data acquired from seven healthy subjects (mean age: 31; age range: 22-48; males: 4) and 11 cardiac patients (mean age: 56; age range: 31-78; males: 6). On average, the proposed algorithm was able to successfully identify 79% of the SCG waveforms in systole and 68% in diastole. The simulated results show that SCG-based prediction produced less average phase error than that of ECG. It was found that the accuracy of ECG-based gating is more susceptible to increases in heart rate variability, while SCG-based gating is susceptible to high cycle to cycle variability in morphology. This pilot work of prediction using SCG waveforms enriches the framework of a comprehensive system with multiple modalities that could potentially, in real time, improve the image quality of CTA.
Making it stick: chasing the optimal stem cells for cardiac regeneration
Quijada, Pearl; Sussman, Mark A
2014-01-01
Despite the increasing use of stem cells for regenerative-based cardiac therapy, the optimal stem cell population(s) remains in a cloud of uncertainty. In the past decade, the field has witnessed a surge of researchers discovering stem cell populations reported to directly and/or indirectly contribute to cardiac regeneration through processes of cardiomyogenic commitment and/or release of cardioprotective paracrine factors. This review centers upon defining basic biological characteristics of stem cells used for sustaining cardiac integrity during disease and maintenance of communication between the cardiac environment and stem cells. Given the limited successes achieved so far in regenerative therapy, the future requires development of unprecedented concepts involving combinatorial approaches to create and deliver the optimal stem cell(s) that will enhance myocardial healing. PMID:25340282
Novel therapeutic strategies targeting fibroblasts and fibrosis in heart disease
Gourdie, Robert G.; Dimmeler, Stefanie; Kohl, Peter
2016-01-01
Our understanding of cardiac fibroblast functions has moved beyond their roles in heart structure and extracellular matrix generation, and now includes contributions to paracrine, mechanical and electrical signalling during ontogenesis and normal cardiac activity. Fibroblasts have central roles in pathogenic remodelling during myocardial ischaemia, hypertension and heart failure. As key contributors to scar formation, they are crucial for tissue repair after interventions including surgery and ablation. Novel experimental approaches targeting cardiac fibroblasts are promising potential therapies for heart disease. Indeed, several existing drugs act, at least partially, through effects on cardiac connective tissue. This Review outlines the origins and roles of fibroblasts in cardiac development, homeostasis and disease; illustrates the involvement of fibroblasts in current and emerging clinical interventions; and identifies future targets for research and development. PMID:27339799
Donofrio, Mary T
2018-05-01
Advances in prenatal imaging have improved the examination of the fetal cardiovascular system. Fetal echocardiography facilitates the prenatal diagnosis of congenital heart disease (CHD) and through sequential examination, allows assessment of fetal cardiac hemodynamics, predicting the evolution of anatomical and functional cardiovascular abnormalities in utero and during the transition to a postnatal circulation at delivery. This approach allows detailed diagnosis with prenatal counseling and enables planning to define perinatal management, selecting the fetuses at a risk of postnatal hemodynamic instability who are likely to require a specialized delivery plan. The prenatal diagnosis and management of critical neonatal CHD has been shown to play an important role in improving the outcome of newborns with these conditions, allowing timely stabilization of the circulation prior to cardiac intervention or surgery, thus reducing the risk of perioperative morbidity and mortality. Diagnostic protocols aimed at risk-stratifying severity and potential postnatal compromise in fetuses with CHD have been developed to identify those who may require special intervention at birth or within the first days of life. In addition, new methodologies are being studied to improve the accuracy of prediction of disease severity. Perinatal management of neonates with a prenatal diagnosis of CHD requires a close collaboration between obstetric, neonatal, and cardiology services. In this article, the management of fetuses with CHD will be discussed, along with summarizing the in utero and fetal echocardiographic findings used for risk stratification of newborns with CHD and reviewing the basic principles used for planning for neonatal resuscitation and initial transitional care of these complex newborns. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Hahn, Ezra; Jiang, Haiyan; Ng, Angela; Bashir, Shaheena; Ahmed, Sameera; Tsang, Richard; Sun, Alexander; Gospodarowicz, Mary; Hodgson, David
2017-08-01
Mediastinal radiation therapy (RT) for Hodgkin lymphoma (HL) is associated with late cardiotoxicity, but there are limited data to indicate which dosimetric parameters are most valuable for predicting this risk. This study investigated which whole heart dosimetric measurements provide the most information regarding late cardiotoxicity, and whether coronary artery dosimetry was more predictive of this outcome than whole heart dosimetry. A random sample of 125 HL patients treated with mediastinal RT was selected, and 3-dimensional cardiac dose-volume data were generated from historical plans using validated methods. Cardiac events were determined by linking patients to population-based datasets of inpatient and same-day hospitalizations and same-day procedures. Variables collected for the whole heart and 3 coronary arteries included the following: Dmean, Dmax, Dmin, dose homogeneity, V5, V10, V20, and V30. Multivariable competing risk regression models were generated for the whole heart and coronary arteries. There were 44 cardiac events documented, of which 70% were ischemic. The best multivariable model included the following covariates: whole heart Dmean (hazard ratio [HR] 1.09, P=.0083), dose homogeneity (HR 0.94, P=.0034), male sex (HR 2.31, P=.014), and age (HR 1.03, P=.0049). When any adverse cardiac event was the outcome, models using coronary artery variables did not perform better than models using whole heart variables. However, in a subanalysis of ischemic cardiac events only, the model using coronary artery variables was superior to the whole heart model and included the following covariates: age (HR 1.05, P<.001), volume of left anterior descending artery receiving 5 Gy (HR 0.98, P=.003), and volume of left circumflex artery receiving 20 Gy (HR 1.03, P<.001). In addition to higher mean heart dose, increasing inhomogeneity in cardiac dose was associated with a greater risk of late cardiac effects. When all types of cardiotoxicity were evaluated, the whole heart variable model outperformed the coronary artery models. However, when events were limited to ischemic cardiotoxicity, the coronary artery-based model was superior. Copyright © 2017 Elsevier Inc. All rights reserved.
Predictive risk models for proximal aortic surgery
Díaz, Rocío; Pascual, Isaac; Álvarez, Rubén; Alperi, Alberto; Rozado, Jose; Morales, Carlos; Silva, Jacobo; Morís, César
2017-01-01
Predictive risk models help improve decision making, information to our patients and quality control comparing results between surgeons and between institutions. The use of these models promotes competitiveness and led to increasingly better results. All these virtues are of utmost importance when the surgical operation entails high-risk. Although proximal aortic surgery is less frequent than other cardiac surgery operations, this procedure itself is more challenging and technically demanding than other common cardiac surgery techniques. The aim of this study is to review the current status of predictive risk models for patients who undergo proximal aortic surgery, which means aortic root replacement, supracoronary ascending aortic replacement or aortic arch surgery. PMID:28616348
Chemical genetics and its potential in cardiac stem cell therapy
Vieira, Joaquim M; Riley, Paul R
2013-01-01
Over the last decade or so, intensive research in cardiac stem cell biology has led to significant discoveries towards a potential therapy for cardiovascular disease; the main cause of morbidity and mortality in humans. The major goal within the field of cardiovascular regenerative medicine is to replace lost or damaged cardiac muscle and coronaries following ischaemic disease. At present, de novo cardiomyocytes can be generated either in vitro, for cell transplantation or disease modelling using directed differentiation of embryonic stem cells or induced pluripotent stem cells, or in vivo via direct reprogramming of resident adult cardiac fibroblast or ectopic stimulation of resident cardiac stem or progenitor cells. A major bottleneck with all of these approaches is the low efficiency of cardiomyocyte differentiation alongside their relative functional immaturity. Chemical genetics, and the application of phenotypic screening with small molecule libraries, represent a means to enhance understanding of the molecular pathways controlling cardiovascular cell differentiation and, moreover, offer the potential for discovery of new drugs to invoke heart repair and regeneration. Here, we review the potential of chemical genetics in cardiac stem cell therapy, highlighting not only the major contributions to the field so far, but also the future challenges. LINKED ARTICLES This article is part of a themed section on Regenerative Medicine and Pharmacology: A Look to the Future. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2013.169.issue-2 PMID:22385148
Validation of a computer case definition for sudden cardiac death in opioid users
2012-01-01
Background To facilitate the use of automated databases for studies of sudden cardiac death, we previously developed a computerized case definition that had a positive predictive value between 86% and 88%. However, the definition has not been specifically validated for prescription opioid users, for whom out-of-hospital overdose deaths may be difficult to distinguish from sudden cardiac death. Findings We assembled a cohort of persons 30-74 years of age prescribed propoxyphene or hydrocodone who had no life-threatening non-cardiovascular illness, diagnosed drug abuse, residence in a nursing home in the past year, or hospital stay within the past 30 days. Medical records were sought for a sample of 140 cohort deaths within 30 days of a prescription fill meeting the computer case definition. Of the 140 sampled deaths, 81 were adjudicated; 73 (90%) were sudden cardiac deaths. Two deaths had possible opioid overdose; after removing these two the positive predictive value was 88%. Conclusions These findings are consistent with our previous validation studies and suggest the computer case definition of sudden cardiac death is a useful tool for pharmacoepidemiologic studies of opioid analgesics. PMID:22938531
Sun, Qing; Schwartz, François; Michel, Jacques; Herve, Yannick; Dalmolin, Renzo
2011-06-01
In this paper, we aim at developing an analog spiking neural network (SNN) for reinforcing the performance of conventional cardiac resynchronization therapy (CRT) devices (also called biventricular pacemakers). Targeting an alternative analog solution in 0.13- μm CMOS technology, this paper proposes an approach to improve cardiac delay predictions in every cardiac period in order to assist the CRT device to provide real-time optimal heartbeats. The primary analog SNN architecture is proposed and its implementation is studied to fulfill the requirement of very low energy consumption. By using the Hebbian learning and reinforcement learning algorithms, the intended adaptive CRT device works with different functional modes. The simulations of both learning algorithms have been carried out, and they were shown to demonstrate the global functionalities. To improve the realism of the system, we introduce various heart behavior models (with constant/variable heart rates) that allow pathologic simulations with/without noise on the signals of the input sensors. The simulations of the global system (pacemaker models coupled with heart models) have been investigated and used to validate the analog spiking neural network implementation.
Refinement of detecting atrial fibrillation in stroke patients: results from the TRACK-AF Study.
Reinke, F; Bettin, M; Ross, L S; Kochhäuser, S; Kleffner, I; Ritter, M; Minnerup, J; Dechering, D; Eckardt, L; Dittrich, R
2018-04-01
Detection of occult atrial fibrillation (AF) is crucial for optimal secondary prevention in stroke patients. The AF detection rate was determined by implantable cardiac monitor (ICM) and compared to the prediction rate of the probability of incident AF by software based analysis of a continuously monitored electrocardiogram at follow-up (stroke risk analysis, SRA); an optimized AF detection algorithm is proposed by combining both tools. In a monocentric prospective study 105 out of 389 patients with cryptogenic stroke despite extensive diagnostic workup were investigated with two additional cardiac monitoring tools: (a) 20 months' monitoring by ICM and (b) SRA during hospitalization at the stroke unit. The detection rate of occult AF was 18% by ICM (n = 19) (range 6-575 days) and 62% (n = 65) had an increased risk for AF predicted by SRA. When comparing the predictive accuracy of SRA to ICM, the sensitivity was 95%, specificity 35%, positive predictive value 27% and negative predictive value 96%. In 18 patients with AF detected by ICM, SRA also showed a medium risk for AF. Only one patient with a very low risk predicted by SRA developed AF revealed by ICM after 417 days. A combination of SRA and ICM is a promising strategy to detect occult AF. SRA is reliable in predicting incident AF with a high negative predictive value. Thus, SRA may serve as a cost-effective pre-selection tool identifying patients at risk for AF who may benefit from further cardiac monitoring by ICM. © 2017 EAN.
Williams, Sarah R; Woodruff-Borden, Janet
2015-08-01
The importance of the parent-child relationship in emotional development is well supported. The parental role of facilitating a child's self-regulation may provide a more focused approach for examining the role of parenting in child anxiety. The current study hypothesized that parent emotion socialization practices would predict a child's abilities in self-regulation. Given that physiological arousal has been implicated in emotional development, this was hypothesized to mediate the relationship between parental emotion socialization and child emotion regulation to predict child anxiety. Eighty-five parent and child dyads participated in the study. Parents reporting higher degrees of unsupportive emotion socialization were more likely to have children with fewer abilities in emotion regulation. Cardiac responsiveness mediated the relationship between unsupportive emotion socialization and child emotion regulation. The model of cardiac responsiveness mediating the relationship between unsupportive emotion socialization and child emotion regulation failed to reach statistical significance in predicting child anxiety symptoms.
Lee, Sang-Eun; Cho, Iksung; Hong, Geu-Ru; Sung, Ji Min; Cho, In-Jeong; Shim, Chi Young; Choi, Byoung Wook; Chung, Namsik
2015-01-01
Background To explore the prognostic performance of coronary computed tomography angiography (CCTA) and exercise electrocardiography (XECG) in asymptomatic subjects. Methods We retrospectively enrolled 812 (59 ± 9 years, 60.8% male) asymptomatic subjects who underwent CCTA and XECG concurrently from 2003 through 2009. Subjects were followed-up for major adverse cardiac events (MACE) including cardiac death, nonfatal myocardial infarction, unstable angina, and revascularization after 90 days from index CCTA. Results The prevalence of occult coronary artery disease (CAD) detected by CCTA was 17.5% and 120 subjects (14.8%) had positive XECG. During a mean follow-up of 37 ± 16 months, nine subjects experienced MACE. In multivariable Cox-regression analysis, only the presence of CAD by CCTA independently predicted future MACE (p = 0.002). Moreover, CAD by CCTA improved the predictive value when added to a clinical risk factor model using the likelihood ratio test (p < 0.001). Notably, the prognostic value of CCTA persisted in the moderate-to-high-risk group as classified by the Duke treadmill score (p = 0.040), but not in the low-risk group (p = 0.991). Conclusion CCTA provides incremental prognostic benefit over and above XECG in an asymptomatic population, especially for those in a moderate-to-high-risk group as classified by the Duke treadmill score. Risk stratification using XECG may prove valuable for identifying asymptomatic subjects who can benefit from CCTA. PMID:26755933
Ahmad, Tariq; Fiuzat, Mona; Neely, Benjamin; Neely, Megan L; Pencina, Michael J; Kraus, William E; Zannad, Faiez; Whellan, David J; Donahue, Mark P; Piña, Ileana L; Adams, Kirkwood F; Kitzman, Dalane W; O'Connor, Christopher M; Felker, G Michael
2014-06-01
The aim of this study was to determine whether biomarkers of myocardial stress and fibrosis improve prediction of the mode of death in patients with chronic heart failure. The 2 most common modes of death in patients with chronic heart failure are pump failure and sudden cardiac death. Prediction of the mode of death may facilitate treatment decisions. The relationship between amino-terminal pro-brain natriuretic peptide (NT-proBNP), galectin-3, and ST2, biomarkers that reflect different pathogenic pathways in heart failure (myocardial stress and fibrosis), and mode of death is unknown. HF-ACTION (Heart Failure: A Controlled Trial Investigating Outcomes of Exercise Training) was a randomized controlled trial of exercise training versus usual care in patients with chronic heart failure due to left ventricular systolic dysfunction (left ventricular ejection fraction ≤35%). An independent clinical events committee prospectively adjudicated mode of death. NT-proBNP, galectin-3, and ST2 levels were assessed at baseline in 813 subjects. Associations between biomarkers and mode of death were assessed using cause-specific Cox proportional hazards modeling, and interaction testing was used to measure differential associations between biomarkers and pump failure versus sudden cardiac death. Discrimination and risk reclassification metrics were used to assess the added value of galectin-3 and ST2 in predicting mode of death risk beyond a clinical model that included NT-proBNP. After a median follow-up period of 2.5 years, there were 155 deaths: 49 from pump failure, 42 from sudden cardiac death, and 64 from other causes. Elevations in all biomarkers were associated with increased risk for both pump failure and sudden cardiac death in both adjusted and unadjusted analyses. In each case, increases in the biomarker had a stronger association with pump failure than sudden cardiac death, but this relationship was attenuated after adjustment for clinical risk factors. Clinical variables along with NT-proBNP levels were stronger predictors of pump failure (C statistic: 0.87) than sudden cardiac death (C statistic: 0.73). Addition of ST2 and galectin-3 led to improved net risk classification of 11% for sudden cardiac death, but not pump failure. Clinical predictors along with NT-proBNP levels were strong predictors of pump failure risk, with insignificant incremental contributions of ST2 and galectin-3. Predictability of sudden cardiac death risk was less robust and enhanced by information provided by novel biomarkers. Copyright © 2014 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Nolan, Jerry P; Berg, Robert A; Callaway, Clifton W; Morrison, Laurie J; Nadkarni, Vinay; Perkins, Gavin D; Sandroni, Claudio; Skrifvars, Markus B; Soar, Jasmeet; Sunde, Kjetil; Cariou, Alain
2018-06-02
The purpose of this review is to describe the epidemiology of out-of-hospital cardiac arrest (OHCA), disparities in organisation and outcome, recent advances in treatment and ongoing controversies. We also outline the standard of care that should be provided by the critical care specialist and propose future directions for cardiac arrest research. Narrative review with contributions from international resuscitation experts. Although it is recognised that survival rates from OHCA are increasing there is considerable scope for improvement and many countries have implemented national strategies in an attempt to achieve this goal. More resources are required to enable high-quality randomised trials in resuscitation. Increasing international collaboration should facilitate resuscitation research and knowledge translation. The International Liaison Committee on Resuscitation (ILCOR) has adopted a continuous evidence review process, which facilitate the implementation of resuscitation interventions proven to improve patient outcomes.
Bischof, Dominique B; Ganter, Michael T; Shore-Lesserson, Linda; Hartnack, Sonja; Klaghofer, Richard; Graves, Kirk; Genoni, Michele; Hofer, Christoph K
2015-01-01
The aim of the study was to determine if Sonoclot with its sensitive glass bead-activated, viscoelastic test can predict postoperative bleeding in patients undergoing cardiac surgery at predefined time points. A prospective, observational clinical study. A teaching hospital, single center. Consecutive patients undergoing cardiac surgery (N = 300). Besides routine laboratory coagulation studies and heparin management with standard (kaolin) activated clotting time, additional native blood samples were analyzed on a Sonoclot using glass bead-activated tests. Glass bead-activated clotting time, clot rate, and platelet function were recorded immediately before anesthesia induction and at the end of surgery after heparin reversal but before chest closure. Primary outcome was postoperative blood loss (chest tube drainage at 4, 8, and 12 hours postoperatively). Secondary outcome parameters were transfusion requirements, need for surgical re-exploration, time of mechanical ventilation, length of intensive care unit and hospital stay, and hospital morbidity and mortality. Patients were categorized into "bleeders" and "nonbleeders." Patient characteristics, operations, preoperative standard laboratory parameters, and procedural times were comparable between bleeders and nonbleeders except for sex and age. Bleeders had higher rates of transfusions, surgical re-explorations, and complications. Only glass bead measurements by Sonoclot after heparin reversal before chest closure but not preoperatively were predictive for increased postoperative bleeding. Sonoclot with its glass bead-activated tests may predict the risk for postoperative bleeding in patients undergoing cardiac surgery at the end of surgery after heparin reversal but before chest closure. Copyright © 2015 Elsevier Inc. All rights reserved.
Klein, A A; Collier, T; Yeates, J; Miles, L F; Fletcher, S N; Evans, C; Richards, T
2017-09-01
A simple and accurate scoring system to predict risk of transfusion for patients undergoing cardiac surgery is lacking. We identified independent risk factors associated with transfusion by performing univariate analysis, followed by logistic regression. We then simplified the score to an integer-based system and tested it using the area under the receiver operator characteristic (AUC) statistic with a Hosmer-Lemeshow goodness-of-fit test. Finally, the scoring system was applied to the external validation dataset and the same statistical methods applied to test the accuracy of the ACTA-PORT score. Several factors were independently associated with risk of transfusion, including age, sex, body surface area, logistic EuroSCORE, preoperative haemoglobin and creatinine, and type of surgery. In our primary dataset, the score accurately predicted risk of perioperative transfusion in cardiac surgery patients with an AUC of 0.76. The external validation confirmed accuracy of the scoring method with an AUC of 0.84 and good agreement across all scores, with a minor tendency to under-estimate transfusion risk in very high-risk patients. The ACTA-PORT score is a reliable, validated tool for predicting risk of transfusion for patients undergoing cardiac surgery. This and other scores can be used in research studies for risk adjustment when assessing outcomes, and might also be incorporated into a Patient Blood Management programme. © The Author 2017. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Mufti, Hani N; Hirsch, Gregory M
2017-12-01
Delirium is a temporary mental disorder that occurs frequently among hospitalized patients. In this study we sought to develop a user-friendly scorecard based on perioperative features to identify patients at risk of developing agitated delirium after cardiac surgery. Retrospective analysis was performed on adult patients undergoing cardiac surgery in a single center. A parsimonious predictive model was created, with subsequent internal validation. Then a simple scorecard was developed that can be used to predict the probability of agitated delirium. Among the 5584 patients who met the study criteria, 614 (11.4%) developed postoperative agitated delirium. Independent predictors of postoperative agitated delirium were age, male gender, history of cerebrovascular disease, procedure other than isolated Coronary Arteries Bypass Surgery, transfusion of blood products within the first 48h, mechanical ventilation for >24h, length of stay in the Intensive Care Unit. The scorecard stratified patients into 4 categories at risk of postoperative agitated delirium ranging from <5% to >30%. Using a large cohort of adult patient's undergoing cardiac surgery, a user-friendly scorecard was developed and validated, which will facilitate the implementation of timely interventions to mitigate adverse effects of agitated delirium in this high risk population. Copyright © 2017 Elsevier Inc. All rights reserved.
Gao, L; Chen, Y D; Shi, Y J; Xue, H; Wang, J L
2016-05-24
To investigate the value of deceleration capacity of rate (DC) and heart rate deceleration runs(DRs) in predicting cardiovascular events in patient with acute myocardial infarction (AMI). This study included 166 patients with AMI, who underwent ECG with sinus rhythm.These patients were followed-up for major adverse cardiac events (MACE). The receiver operating characteristic curve (ROC) was drawn to determine the best values for estimating the MACE. The mean follow-up time was (20.5±2.8) months, with 13 cases of cardiac death.There was statistically significant difference of DC, DRs and standard diviation of NN intervals(SDNN-24) between the death group and survival group.The area under the curve (AUC) of DC, DR4 and DR8 were larger than SDNN-24 (0.874, 0.804 vs 0.727). The values of DC, DR2, DR4 and root mean square of the successive differences(RMSSD) in the group of patients who underwent cardiac adverse events were smaller than the group of patients who didn't, and the AUC of DC was slightly higher than that of RMSSD. DC and DRs have important predictive value for cardiac death and MACE and can screen high-risk patients in patients with AMI.
Sondag, Lotte; Ruijter, Barry J; Tjepkema-Cloostermans, Marleen C; Beishuizen, Albertus; Bosch, Frank H; van Til, Janine A; van Putten, Michel J A M; Hofmeijer, Jeannette
2017-05-15
We recently showed that electroencephalography (EEG) patterns within the first 24 hours robustly contribute to multimodal prediction of poor or good neurological outcome of comatose patients after cardiac arrest. Here, we confirm these results and present a cost-minimization analysis. Early prognosis contributes to communication between doctors and family, and may prevent inappropriate treatment. A prospective cohort study including 430 subsequent comatose patients after cardiac arrest was conducted at intensive care units of two teaching hospitals. Continuous EEG was started within 12 hours after cardiac arrest and continued up to 3 days. EEG patterns were visually classified as unfavorable (isoelectric, low-voltage, or burst suppression with identical bursts) or favorable (continuous patterns) at 12 and 24 hours after cardiac arrest. Outcome at 6 months was classified as good (cerebral performance category (CPC) 1 or 2) or poor (CPC 3, 4, or 5). Predictive values of EEG measures and cost-consequences from a hospital perspective were investigated, assuming EEG-based decision- making about withdrawal of life-sustaining treatment in the case of a poor predicted outcome. Poor outcome occurred in 197 patients (51% of those included in the analyses). Unfavorable EEG patterns at 24 hours predicted a poor outcome with specificity of 100% (95% CI 98-100%) and sensitivity of 29% (95% CI 22-36%). Favorable patterns at 12 hours predicted good outcome with specificity of 88% (95% CI 81-93%) and sensitivity of 51% (95% CI 42-60%). Treatment withdrawal based on an unfavorable EEG pattern at 24 hours resulted in a reduced mean ICU length of stay without increased mortality in the long term. This gave small cost reductions, depending on the timing of withdrawal. Early EEG contributes to reliable prediction of good or poor outcome of postanoxic coma and may lead to reduced length of ICU stay. In turn, this may bring small cost reductions.
Pressure-Flow During Exercise Catheterization Predicts Survival in Pulmonary Hypertension.
Hasler, Elisabeth D; Müller-Mottet, Séverine; Furian, Michael; Saxer, Stéphanie; Huber, Lars C; Maggiorini, Marco; Speich, Rudolf; Bloch, Konrad E; Ulrich, Silvia
2016-07-01
Pulmonary hypertension manifests with impaired exercise capacity. Our aim was to investigate whether the mean pulmonary arterial pressure to cardiac output relationship (mPAP/CO) predicts transplant-free survival in patients with pulmonary arterial hypertension (PAH) and inoperable chronic thromboembolic pulmonary hypertension (CTEPH). Hemodynamic data according to right heart catheterization in patients with PAH and CTEPH at rest and during supine incremental cycle exercise were analyzed. Transplant-free survival and predictive value of hemodynamics were assessed by using Kaplan-Meier and Cox regression analyses. Seventy patients (43 female; 54 with PAH, 16 with CTEPH; median (quartiles) age, 65 [50; 73] years; mPAP, 34 [29; 44] mm Hg; cardiac index, 2.8 [2.3; 3.5] [L/min]/m(2)) were followed up for 610 (251; 1256) days. Survival at 1, 3, 5, and 7 years was 89%, 81%, 71%, and 59%. Age, World Health Organization-functional class, 6-min walk test, and mixed-venous oxygen saturation (but not resting hemodynamics) predicted transplant-free survival. Maximal workload (hazard ratio [HR], 0.94 [95% CI, 0.89-0.99]; P = .027), peak cardiac index (HR, 0.51 [95% CI, 0.27-0.95]; P = .034), change in cardiac index, 0.25 [95% CI, 0.06-0.94]; P = .040), and mPAP/CO (HR, 1.02 [95% CI, 1.01-1.03]; P = .003) during exercise predicted survival. Values for mPAP/CO predicted 3-year transplant-free survival with an area under the curve of 0.802 (95% CI, 0.66-0.95; P = .004). In this collective of patients with PAH or CTEPH, the pressure-flow relationship during exercise predicted transplant-free survival and correlated with established markers of disease severity and outcome. Right heart catheterization during exercise may provide important complementary prognostic information in the management of pulmonary hypertension. Copyright © 2016 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.
Cardiac Concomitants of Feedback and Prediction Error Processing in Reinforcement Learning.
Kastner, Lucas; Kube, Jana; Villringer, Arno; Neumann, Jane
2017-01-01
Successful learning hinges on the evaluation of positive and negative feedback. We assessed differential learning from reward and punishment in a monetary reinforcement learning paradigm, together with cardiac concomitants of positive and negative feedback processing. On the behavioral level, learning from reward resulted in more advantageous behavior than learning from punishment, suggesting a differential impact of reward and punishment on successful feedback-based learning. On the autonomic level, learning and feedback processing were closely mirrored by phasic cardiac responses on a trial-by-trial basis: (1) Negative feedback was accompanied by faster and prolonged heart rate deceleration compared to positive feedback. (2) Cardiac responses shifted from feedback presentation at the beginning of learning to stimulus presentation later on. (3) Most importantly, the strength of phasic cardiac responses to the presentation of feedback correlated with the strength of prediction error signals that alert the learner to the necessity for behavioral adaptation. Considering participants' weight status and gender revealed obesity-related deficits in learning to avoid negative consequences and less consistent behavioral adaptation in women compared to men. In sum, our results provide strong new evidence for the notion that during learning phasic cardiac responses reflect an internal value and feedback monitoring system that is sensitive to the violation of performance-based expectations. Moreover, inter-individual differences in weight status and gender may affect both behavioral and autonomic responses in reinforcement-based learning.
Cardiac Concomitants of Feedback and Prediction Error Processing in Reinforcement Learning
Kastner, Lucas; Kube, Jana; Villringer, Arno; Neumann, Jane
2017-01-01
Successful learning hinges on the evaluation of positive and negative feedback. We assessed differential learning from reward and punishment in a monetary reinforcement learning paradigm, together with cardiac concomitants of positive and negative feedback processing. On the behavioral level, learning from reward resulted in more advantageous behavior than learning from punishment, suggesting a differential impact of reward and punishment on successful feedback-based learning. On the autonomic level, learning and feedback processing were closely mirrored by phasic cardiac responses on a trial-by-trial basis: (1) Negative feedback was accompanied by faster and prolonged heart rate deceleration compared to positive feedback. (2) Cardiac responses shifted from feedback presentation at the beginning of learning to stimulus presentation later on. (3) Most importantly, the strength of phasic cardiac responses to the presentation of feedback correlated with the strength of prediction error signals that alert the learner to the necessity for behavioral adaptation. Considering participants' weight status and gender revealed obesity-related deficits in learning to avoid negative consequences and less consistent behavioral adaptation in women compared to men. In sum, our results provide strong new evidence for the notion that during learning phasic cardiac responses reflect an internal value and feedback monitoring system that is sensitive to the violation of performance-based expectations. Moreover, inter-individual differences in weight status and gender may affect both behavioral and autonomic responses in reinforcement-based learning. PMID:29163004
Rady, Hanaa Ibrahim; Zekri, Hanan
2015-01-01
To assess children with myocarditis, the frequency of various presenting symptoms, and the accuracy of different investigations in the diagnosis. This was an observational study of 63 patients admitted to PICU with non-cardiac diagnosis. Cardiac enzymes, chest-X ray, echocardiography, and electrocardiogram were performed to diagnose myocarditis among those patients. There were 16 cases of definite myocarditis. The age distribution was non-normal, with median of 5.5 months (3.25-21). Of the 16 patients who were diagnosed with myocarditis, 62.5% were originally diagnosed as having respiratory problems, and there were more females than males. Among the present cases, the accuracy of cardiac enzymes (cardiac troponin T [cTn] and creatine phosphokinase MB [CKMB]) in the diagnosis of myocarditis was only 63.5%, while the accuracy of low fractional shortening and of chest-X ray cardiomegaly was 85.7 and 80.9%; respectively. Cardiac troponin folds 2.02 had positive predictive value of 100%, negative predictive value of 88.7%, specificity of 100%, sensitivity of 62.5%, and accuracy of 90.5%. Children with myocarditis present with symptoms that can be mistaken for other types of illnesses. When clinical suspicion of myocarditis exists, chest-X ray and echocardiography are sufficient as screening tests. Cardiac troponins confirm the diagnosis in screened cases, with specificity of 100%. Copyright © 2013 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.
Outcome in 55 dogs with pulmonic stenosis that did not undergo balloon valvuloplasty or surgery.
Francis, A J; Johnson, M J S; Culshaw, G C; Corcoran, B M; Martin, M W S; French, A T
2011-06-01
To determine the outcome, independent predictors of cardiac death, and the Doppler-derived pressure gradient cut-off for predicting cardiac death in dogs with pulmonic stenosis, with or without tricuspid regurgitation, that do not undergo balloon valvuloplasty or valve surgery. Review of medical records of two UK referral centres between July 1997 and October 2008 for all cases of pulmonic stenosis that had no balloon valvuloplasty or valve surgery. Inclusion criteria included a diagnosis of pulmonic stenosis; spectral Doppler pulmonic velocity greater than 1·6 m/s; characteristic valve leaflet morphological abnormalities. Exclusion criteria included concurrent significant cardiac defects, including tricuspid dysplasia. Dogs with tricuspid regurgitation were included. Dogs were classified according to Doppler-derived pressure gradients into mild, moderate or severe pulmonic stenosis categories. Presence of tricuspid regurgitation and severe stenosis were independent predictors of cardiac death. A pulmonic pressure gradient of more than 60 mmHg was associated with 86% sensitivity, and 71% specificity of predicting cardiac death. There is an increased probability of cardiac death in those cases which have a pulmonary pressure gradient greater than 60 mmHg and tricuspid regurgitation, though the effect of severity of tricuspid regurgitation on outcome was not measurable because of small sample sizes. These animals might benefit from intervention. © 2011 British Small Animal Veterinary Association.
[After your heart arrest, would you like to test a medicinal elixir?].
Carron, P-N; Hugli, O; Liaudet, L; Yersin, B
2005-02-09
So far, cardiac arrest is still associated with high mortality or severe neurological disability in survivors. At the tissue level, cardiac arrest results into an acute condition of generalized hypoxia. A better understanding of the pathophysiology of ischemia-reperfusion and of the inflammatory response that develops after cardiac arrest could help to design novel therapeutic strategies in the future. It seems unlikely that a single drug, acting as a
Evaluation of noninvasive cardiac output methods during exercise
NASA Technical Reports Server (NTRS)
Moore, Alan D.; Barrows, Linda H.; Rashid, Michael; Siconolfi, Steven F.
1992-01-01
Noninvasive techniques to estimate cardiac output (Qc) will be used during future space flight. This retrospective literature survey compared the Qc techniques of carbon dioxide rebreathing (CO2-R), CO2 single breath (CO2-S), Doppler (DOP), impedance (IM), and inert gas (IG: acetylene or nitrous oxide) to direct (DIR) assessments measured at rest and during exercise.
Cardiac stem cell biology: glimpse of the past, present, and future.
Matsa, Elena; Sallam, Karim; Wu, Joseph C
2014-01-03
Cardiac regeneration strategies and de novo generation of cardiomyocytes have long been significant areas of research interest in cardiovascular medicine. In this review, we outline a variety of common cell sources and methods used to regenerate cardiomyocytes and highlight the important role that key Circulation Research articles have played in this flourishing field.
Choi, Mun Hee; Yoon, Jung Han; Yong, Suk Woo
2017-10-15
Postganglionic cardiac sympathetic denervation is evident in patients with early-stage Parkinson's disease (PD). Cardiac iodine-123-meta-iodobenzylguanidine (MIBG) uptake is correlated with the non-motor symptoms of PD, suggesting that low cardiac MIBG uptake may reflect wider alpha-synuclein pathology. In addition, low cardiac MIBG could be related to orthostatic hypotension in PD, which may affect cognition. However, the prognostic validity of baseline MIBG scintigraphy in terms of the risk of subsequent dementia remains unclear. We investigated whether cardiac MIBG uptake was associated with a later risk of dementia. We retrospectively enrolled 93 drug-naive patients with de novo PD who underwent MIBG scanning on initial evaluation. The patients visited our outpatient clinic every 3-6months and were followed-up for a minimum of 4years from the time they were begun on dopaminergic medication. The predictive powers of baseline MIBG cardiac scintigraphic data in terms of dementia development were evaluated using Cox's proportional hazard models. During a mean follow-up period of 6.7years, 27 patients with PD (29.0%) developed dementia. These patients had less baseline MIBG uptake than did others (delayed H/M ratios: 1.19 vs. 1.31). Multivariate Cox's proportional hazard modeling revealed that both MIBG uptake (hazard ratio [HR] 3.40; p=0.004) and age (HR 1.08, p=0.01) significantly predicted dementia development. A reduction in cardiac MIBG uptake by PD patients may be associated with a subsequent risk of dementia; reduced uptake may reflect wider extension of alpha-synuclein pathology in PD. Copyright © 2017 Elsevier B.V. All rights reserved.
Cardiac Endothelial Cell Transcriptome.
Lother, Achim; Bergemann, Stella; Deng, Lisa; Moser, Martin; Bode, Christoph; Hein, Lutz
2018-03-01
Endothelial cells (ECs) are a highly specialized cell type with marked diversity between different organs or vascular beds. Cardiac ECs are an important player in cardiac physiology and pathophysiology but are not sufficiently characterized yet. Thus, the aim of the present study was to analyze the cardiac EC transcriptome. We applied fluorescence-assisted cell sorting to isolate pure ECs from adult mouse hearts. RNAseq revealed 1288 genes predominantly expressed in cardiac ECs versus heart tissue including several transcription factors. We found an overrepresentation of corresponding transcription factor binding motifs within the promotor region of EC-enriched genes, suggesting that they control the EC transcriptome. Cardiac ECs exhibit a distinct gene expression profile when compared with renal, cerebral, or pulmonary ECs. For example, we found the Meox2 / Tcf15, Fabp4 , and Cd36 signaling cascade higher expressed in cardiac ECs which is a key regulator of fatty acid uptake and involved in the development of atherosclerosis. The results from this study provide a comprehensive resource of gene expression and transcriptional control in cardiac ECs. The cardiac EC transcriptome exhibits distinct differences in gene expression compared with other cardiac cell types and ECs from other organs. We identified new candidate genes that have not been investigated in ECs yet as promising targets for future evaluation. © 2018 American Heart Association, Inc.
Howell, Brett A; Chauhan, Anuj
2010-08-01
Physiologically based pharmacokinetic (PBPK) models were developed for design and optimization of liposome therapy for treatment of overdoses of tricyclic antidepressants and local anesthetics. In vitro drug-binding data for pegylated, anionic liposomes and published mechanistic equations for partition coefficients were used to develop the models. The models were proven reliable through comparisons to intravenous data. The liposomes were predicted to be highly effective at treating amitriptyline overdoses, with reductions in the area under the concentration versus time curves (AUC) of 64% for the heart and brain. Peak heart and brain drug concentrations were predicted to drop by 20%. Bupivacaine AUC and peak concentration reductions were lower at 15.4% and 17.3%, respectively, for the heart and brain. The predicted pharmacokinetic profiles following liposome administration agreed well with data from clinical studies where protein fragments were administered to patients for overdose treatment. Published data on local cardiac function were used to relate the predicted concentrations in the body to local pharmacodynamic effects in the heart. While the results offer encouragement for future liposome therapies geared toward overdose, it is imperative to point out that animal experiments and phase I clinical trials are the next steps to ensuring the efficacy of the treatment. (c) 2010 Wiley-Liss, Inc. and the American Pharmacists Association
Minimally Invasive Mitral Valve Procedures: The Current State
Ritwick, Bhuyan; Chaudhuri, Krishanu; Crouch, Gareth; Edwards, James R. M.; Worthington, Michael; Stuklis, Robert G.
2013-01-01
Since its early days, cardiac surgery has typically involved large incisions with complete access to the heart and the great vessels. After the popularization of the minimally invasive techniques in general surgery, cardiac surgeons began to experiment with minimal access techniques in the early 1990s. Although the goals of minimally invasive cardiac surgery (MICS) are fairly well established as decreased pain, shorter hospital stay, accelerated recuperation, improved cosmesis, and cost effectiveness, a strict definition of minimally invasive cardiac surgery has been more elusive. Minimally invasive cardiac surgery started with mitral valve procedures and then gradually expanded towards other valve procedures, coronary artery bypass grafting, and various types of simple congenital heart procedures. In this paper, the authors attempt to focus on the evolution, techniques, results, and the future perspective of minimally invasive mitral valve surgery (MIMVS). PMID:24382998
Advances in cardiac CT contrast injection and acquisition protocols.
Scholtz, Jan-Erik; Ghoshhajra, Brian
2017-10-01
Cardiac computed tomography (CT) imaging has become an important part of modern cardiovascular care. Coronary CT angiography (CTA) is the first choice imaging modality for non-invasive visualization of coronary artery stenosis. In addition, cardiac CT does not only provide anatomical evaluation, but also functional and valvular assessment, and myocardial perfusion evaluation. In this article we outline the factors which influence contrast enhancement, give an overview of current contrast injection and acquisition protocols, with focus on current emerging topics such as pre-transcatheter aortic valve replacement (TAVR) planning, cardiac CT for congenital heart disease (CHD) patients, and myocardial CT perfusion (CTP). Further, we point out areas where we see potential for future improvements in cardiac CT imaging based on a closer interaction between CT scanner settings and contrast injection protocols to tailor injections to patient- and exam-specific factors.
Advances in cardiac CT contrast injection and acquisition protocols
Scholtz, Jan-Erik
2017-01-01
Cardiac computed tomography (CT) imaging has become an important part of modern cardiovascular care. Coronary CT angiography (CTA) is the first choice imaging modality for non-invasive visualization of coronary artery stenosis. In addition, cardiac CT does not only provide anatomical evaluation, but also functional and valvular assessment, and myocardial perfusion evaluation. In this article we outline the factors which influence contrast enhancement, give an overview of current contrast injection and acquisition protocols, with focus on current emerging topics such as pre-transcatheter aortic valve replacement (TAVR) planning, cardiac CT for congenital heart disease (CHD) patients, and myocardial CT perfusion (CTP). Further, we point out areas where we see potential for future improvements in cardiac CT imaging based on a closer interaction between CT scanner settings and contrast injection protocols to tailor injections to patient- and exam-specific factors. PMID:29255688
2014-01-01
Introduction High-sensitivity cardiac troponin I(hs-TnI) and T levels(hs-TnT) are sensitive biomarkers of cardiomyocyte turnover or necrosis. Prior studies of the predictive role of hs-TnT in type 2 diabetes mellitus(T2DM) patients have yielded conflicting results. This study aimed to determine whether hs-TnI, which is detectable in a higher proportion of normal subjects than hsTnT, is associated with a major adverse cardiovascular event(MACE) in T2DM patients. Methods and results We compared hs-TnI level in stored serum samples from 276 consecutive patients (mean age 65 ± 10 years; 57% male) with T2DM with that of 115 age-and sex-matched controls. All T2DM patients were prospectively followed up for at least 4 years for incidence of MACE including heart failure(HF), myocardial infarction(MI) and cardiovascular mortality. At baseline, 274(99%) patients with T2DM had detectable hs-TnI, and 57(21%) had elevated hs-TnI (male: 8.5 ng/L, female: 7.6 ng/L, above the 99th percentile in healthy controls). A total of 43 MACE occurred: HF(n = 18), MI(n = 11) and cardiovascular mortality(n = 14). Kaplan-Meier analysis showed that an elevated hs-TnI was associated with MACE, HF, MI and cardiovascular mortality. Although multivariate analysis revealed that an elevated hs-TnI independently predicted MACE, it had limited sensitivity(62.7%) and positive predictive value(38.5%). Contrary to this, a normal hs-TnI level had an excellent negative predictive value(92.2%) for future MACE in patients with T2DM. Conclusion The present study demonstrates that elevated hs-TnI in patients with T2DM is associated with increased MACE, HF, MI and cardiovascular mortality. Importantly, a normal hs-TnI level has an excellent negative predictive value for future adverse cardiovascular events during long-term follow-up. PMID:24661773
Atashi, Alireza; Amini, Shahram; Tashnizi, Mohammad Abbasi; Moeinipour, Ali Asghar; Aazami, Mathias Hossain; Tohidnezhad, Fariba; Ghasemi, Erfan; Eslami, Saeid
2018-01-01
Introduction The European System for Cardiac Operative Risk Evaluation II (EuroSCORE II) is a prediction model which maps 18 predictors to a 30-day post-operative risk of death concentrating on accurate stratification of candidate patients for cardiac surgery. Objective The objective of this study was to determine the performance of the EuroSCORE II risk-analysis predictions among patients who underwent heart surgeries in one area of Iran. Methods A retrospective cohort study was conducted to collect the required variables for all consecutive patients who underwent heart surgeries at Emam Reza hospital, Northeast Iran between 2014 and 2015. Univariate and multivariate analysis were performed to identify covariates which significantly contribute to higher EuroSCORE II in our population. External validation was performed by comparing the real and expected mortality using area under the receiver operating characteristic curve (AUC) for discrimination assessment. Also, Brier Score and Hosmer-Lemeshow goodness-of-fit test were used to show the overall performance and calibration level, respectively. Results Two thousand five hundred eight one (59.6% males) were included. The observed mortality rate was 3.3%, but EuroSCORE II had a prediction of 4.7%. Although the overall performance was acceptable (Brier score=0.047), the model showed poor discriminatory power by AUC=0.667 (sensitivity=61.90, and specificity=66.24) and calibration (Hosmer-Lemeshow test, P<0.01). Conclusion Our study showed that the EuroSCORE II discrimination power is less than optimal for outcome prediction and less accurate for resource allocation programs. It highlights the need for recalibration of this risk stratification tool aiming to improve post cardiac surgery outcome predictions in Iran. PMID:29617500
Predictive factors for red blood cell transfusion in children undergoing noncomplex cardiac surgery.
Mulaj, Muj; Faraoni, David; Willems, Ariane; Sanchez Torres, Cristel; Van der Linden, Philippe
2014-08-01
Red blood cell (RBC) transfusion is frequently required in pediatric cardiac surgery and is associated with altered outcome and increased costs. Determining which factors predict transfusion in this context will enable clinicians to adopt strategies that will reduce the risk of RBC transfusion. This study aimed to assess predictive factors associated with RBC transfusion in children undergoing low-risk cardiac surgery with cardiopulmonary bypass (CPB). Children undergoing surgery to repair ventricular septal defect or atrioventricular septal defect from 2006 to 2011 were included in this retrospective study. Demography, preoperative laboratory testing, intraoperative data, and RBC transfusion were reviewed. Univariate and multivariate logistic regression analysis were used to define factors that were able to predict RBC transfusion. Then, we employed receiver operating characteristic analysis to design a predictive score. Among the 334 children included, 261 (78%) were transfused. Age (<18 months), priming volume of the CPB (>43 mL/kg), type of oxygenator used, minimal temperature reached during CPB (<32°C), and preoperative hematocrit (<34%) were independently associated with RBC transfusion in the studied population. A predictive score 2 or greater was the best predictor of RBC transfusion. The present study identified several factors that were significantly associated with perioperative RBC transfusion. Based on these factors, we designed a predictive score that can be used to develop a patient-based blood management program with the aim of reducing the incidence of RBC transfusion. Copyright © 2014 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.
Maharlou, Hamidreza; Niakan Kalhori, Sharareh R; Shahbazi, Shahrbanoo; Ravangard, Ramin
2018-04-01
Accurate prediction of patients' length of stay is highly important. This study compared the performance of artificial neural network and adaptive neuro-fuzzy system algorithms to predict patients' length of stay in intensive care units (ICU) after cardiac surgery. A cross-sectional, analytical, and applied study was conducted. The required data were collected from 311 cardiac patients admitted to intensive care units after surgery at three hospitals of Shiraz, Iran, through a non-random convenience sampling method during the second quarter of 2016. Following the initial processing of influential factors, models were created and evaluated. The results showed that the adaptive neuro-fuzzy algorithm (with mean squared error [MSE] = 7 and R = 0.88) resulted in the creation of a more precise model than the artificial neural network (with MSE = 21 and R = 0.60). The adaptive neuro-fuzzy algorithm produces a more accurate model as it applies both the capabilities of a neural network architecture and experts' knowledge as a hybrid algorithm. It identifies nonlinear components, yielding remarkable results for prediction the length of stay, which is a useful calculation output to support ICU management, enabling higher quality of administration and cost reduction.
Lukas, Roman-Patrik; Gräsner, Jan Thorsten; Seewald, Stephan; Lefering, Rolf; Weber, Thomas Peter; Van Aken, Hugo; Fischer, Matthias; Bohn, Andreas
2012-10-01
Investigating the effects of any intervention during cardiac arrest remains difficult. The ROSC after cardiac arrest score was introduced to facilitate comparison of rates of return of spontaneous circulation (ROSC) between different ambulance services. To study the influence of chest compression quality management (including training, real-time feedback devices, and debriefing) in comparison with conventional cardiopulmonary resuscitation (CPR), a matched-pair analysis was conducted using data from the German Resuscitation Registry, with the calculated ROSC after cardiac arrest score as the baseline. Matching for independent ROSC after cardiac arrest score variables yielded 319 matched cases from the study period (January 2007-March 2011). The score predicted a 45% ROSC rate for the matched pairs. The observed ROSC increased significantly with chest compression quality management, to 52% (P=0.013; 95% CI, 46-57%). No significant differences were seen in the conventional CPR group (47%; 95% CI, 42-53%). The difference between the observed ROSC rates was not statistically significant. Chest compression quality management leads to significantly higher ROSC rates than those predicted by the prognostic score (ROSC after cardiac arrest score). Matched-pair analysis shows that with conventional CPR, the observed ROSC rate was not significantly different from the predicted rate. Analysis shows a trend toward a higher ROSC rate for chest compression quality management in comparison with conventional CPR. It is unclear whether a single aspect of chest compression quality management or the combination of training, real-time feedback, and debriefing contributed to this result. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
In vivo dose measurement using TLDs and MOSFET dosimeters for cardiac radiosurgery
Sumanaweera, Thilaka S.; Blanck, Oliver; Iwamura, Alyson K.; Steel, James P.; Dieterich, Sonja; Maguire, Patrick
2012-01-01
In vivo measurements were made of the dose delivered to animal models in an effort to develop a method for treating cardiac arrhythmia using radiation. This treatment would replace RF energy (currently used to create cardiac scar) with ionizing radiation. In the current study, the pulmonary vein ostia of animal models were irradiated with 6 MV X‐rays in order to produce a scar that would block aberrant signals characteristic of atrial fibrillation. The CyberKnife radiosurgery system was used to deliver planned treatments of 20–35 Gy in a single fraction to four animals. The Synchrony system was used to track respiratory motion of the heart, while the contractile motion of the heart was untracked. The dose was measured on the epicardial surface near the right pulmonary vein and on the esophagus using surgically implanted TLD dosimeters, or in the coronary sinus using a MOSFET dosimeter placed using a catheter. The doses measured on the epicardium with TLDs averaged 5% less than predicted for those locations, while doses measured in the coronary sinus with the MOSFET sensor nearest the target averaged 6% less than the predicted dose. The measurements on the esophagus averaged 25% less than predicted. These results provide an indication of the accuracy with which the treatment planning methods accounted for the motion of the target, with its respiratory and cardiac components. This is the first report on the accuracy of CyberKnife dose delivery to cardiac targets. PACS numbers: 87.53.Ly, 87.53.Bn PMID:22584173
Goldstein, Benjamin A; Chang, Tara I; Mitani, Aya A; Assimes, Themistocles L; Winkelmayer, Wolfgang C
2014-01-01
Sudden cardiac death is the most common cause of death among individuals undergoing hemodialysis. The epidemiology of sudden cardiac death has been well studied, and efforts are shifting to risk assessment. This study aimed to test whether assessment of acute changes during hemodialysis that are captured in electronic health records improved risk assessment. Data were collected from all hemodialysis sessions of patients 66 years and older receiving hemodialysis from a large national dialysis provider between 2004 and 2008. The primary outcome of interest was sudden cardiac death the day of or day after a dialysis session. This study used data from 2004 to 2006 as the training set and data from 2007 to 2008 as the validation set. The machine learning algorithm, Random Forests, was used to derive the prediction model. In 22 million sessions, 898 people between 2004 and 2006 and 826 people between 2007 and 2008 died on the day of or day after a dialysis session that was serving as a training or test data session, respectively. A reasonably strong predictor was derived using just predialysis information (concordance statistic=0.782), which showed modest but significant improvement after inclusion of postdialysis information (concordance statistic=0.799, P<0.001). However, risk prediction decreased the farther out that it was forecasted (up to 1 year), and postdialytic information became less important. Subtle changes in the experience of hemodialysis aid in the assessment of sudden cardiac death and are captured by modern electronic health records. The collected data are better for the assessment of near-term risk as opposed to longer-term risk.
Yao, Jingting; Tridandapani, Srini; Wick, Carson A.
2017-01-01
To more accurately trigger cardiac computed tomography angiography (CTA) than electrocardiography (ECG) alone, a sub-system is proposed as an intermediate step toward fusing ECG with seismocardiography (SCG). Accurate prediction of quiescent phases is crucial to prospectively gating CTA, which is susceptible to cardiac motion and, thus, can affect the diagnostic quality of images. The key innovation of this sub-system is that it identifies the SCG waveform corresponding to heart sounds and determines their phases within the cardiac cycles. Furthermore, this relationship is modeled as a linear function with respect to heart rate. For this paper, B-mode echocardiography is used as the gold standard for identifying the quiescent phases. We analyzed synchronous ECG, SCG, and echocardiography data acquired from seven healthy subjects (mean age: 31; age range: 22–48; males: 4) and 11 cardiac patients (mean age: 56; age range: 31–78; males: 6). On average, the proposed algorithm was able to successfully identify 79% of the SCG waveforms in systole and 68% in diastole. The simulated results show that SCG-based prediction produced less average phase error than that of ECG. It was found that the accuracy of ECG-based gating is more susceptible to increases in heart rate variability, while SCG-based gating is susceptible to high cycle to cycle variability in morphology. This pilot work of prediction using SCG waveforms enriches the framework of a comprehensive system with multiple modalities that could potentially, in real time, improve the image quality of CTA. PMID:28845370
Schreck, David M; Fishberg, Robert D
2014-01-01
Objective A new cardiac “electrical” biomarker (CEB) for detection of 12-lead electrocardiogram (ECG) changes indicative of acute myocardial ischemic injury has been identified. Objective was to test CEB diagnostic accuracy. Methods This is a blinded, observational retrospective case-control, noninferiority study. A total of 508 ECGs obtained from archived digital databases were interpreted by cardiologist and emergency physician (EP) blinded reference standards for presence of acute myocardial ischemic injury. CEB was constructed from three ECG cardiac monitoring leads using nonlinear modeling. Comparative active controls included ST voltage changes (J-point, ST area under curve) and a computerized ECG interpretive algorithm (ECGI). Training set of 141 ECGs identified CEB cutoffs by receiver-operating-characteristic (ROC) analysis. Test set of 367 ECGs was analyzed for validation. Poor-quality ECGs were excluded. Sensitivity, specificity, and negative and positive predictive values were calculated with 95% confidence intervals. Adjudication was performed by consensus. Results CEB demonstrated noninferiority to all active controls by hypothesis testing. CEB adjudication demonstrated 85.3–94.4% sensitivity, 92.5–93.0% specificity, 93.8–98.6% negative predictive value, and 74.6–83.5% positive predictive value. CEB was superior against all active controls in EP analysis, and against ST area under curve and ECGI by cardiologist. Conclusion CEB detects acute myocardial ischemic injury with high diagnostic accuracy. CEB is instantly constructed from three ECG leads on the cardiac monitor and displayed instantly allowing immediate cost-effective identification of patients with acute ischemic injury during cardiac rhythm monitoring. PMID:24118724
Issues in solid-organ transplantation in children: translational research from bench to bedside
Lipshultz, Steven E.; Chandar, Jayanthi J.; Rusconi, Paolo G.; Fornoni, Alessia; Abitbol, Carolyn L.; Burke III, George W.; Zilleruelo, Gaston E.; Pham, Si M.; Perez, Elena E.; Karnik, Ruchika; Hunter, Juanita A.; Dauphin, Danielle D.; Wilkinson, James D.
2014-01-01
In this review, we identify important challenges facing physicians responsible for renal and cardiac transplantation in children based on a review of the contemporary medical literature. Regarding pediatric renal transplantation, we discuss the challenge of antibody-mediated rejection, focusing on both acute and chronic antibody-mediated rejection. We review new diagnostic approaches to antibody-mediated rejection, such as panel-reactive antibodies, donor-specific cross-matching, antibody assays, risk assessment and diagnosis of antibody-mediated rejection, the pathology of antibody-mediated rejection, the issue of ABO incompatibility in renal transplantation, new therapies for antibody-mediated rejection, inhibiting of residual antibodies, the suppression or depletion of B-cells, genetic approaches to treating acute antibody-mediated rejection, and identifying future translational research directions in kidney transplantation in children. Regarding pediatric cardiac transplantation, we discuss the mechanisms of cardiac transplant rejection, including the role of endomyocardial biopsy in detecting graft rejection and the role of biomarkers in detecting cardiac graft rejection, including biomarkers of inflammation, cardiomyocyte injury, or stress. We review cardiac allograft vasculopathy. We also address the role of genetic analyses, including genome-wide association studies, gene expression profiling using entities such as AlloMap®, and adenosine triphosphate release as a measure of immune function using the Cylex® ImmuKnow™ cell function assay. Finally, we identify future translational research directions in heart transplantation in children. PMID:24860861
[The maximum heart rate in the exercise test: the 220-age formula or Sheffield's table?].
Mesquita, A; Trabulo, M; Mendes, M; Viana, J F; Seabra-Gomes, R
1996-02-01
To determine in the maximum cardiac rate in exercise test of apparently healthy individuals may be more properly estimated through 220-age formula (Astrand) or the Sheffield table. Retrospective analysis of clinical history and exercises test of apparently healthy individuals submitted to cardiac check-up. Sequential sampling of 170 healthy individuals submitted to cardiac check-up between April 1988 and September 1992. Comparison of maximum cardiac rate of individuals studied by the protocols of Bruce and modified Bruce, in interrupted exercise test by fatigue, and with the estimated values by the formulae: 220-age versus Sheffield table. The maximum cardiac heart rate is similar with both protocols. This parameter in normal individuals is better predicted by the 220-age formula. The theoretic maximum cardiac heart rate determined by 220-age formula should be recommended for a healthy, and for this reason the Sheffield table has been excluded from our clinical practice.
Sudden cardiac death in haemodialysis: clinical epidemiology and mechanisms.
Banerjee, Debasish
Sudden cardiac death, which causes premature loss of lives on haemodialysis of the elderly, youths and even children; cannot be prevented, because the aetiology is poorly understood and effective interventions are yet unknown. Improving our knowledge of mechanisms causing sudden cardiac death in haemodialysis patients may help us to design better interventions; and clinical epidemiology of sudden cardiac death could be an important tool to further guide human and animal studies. This review researches the clinical epidemiology of sudden cardiac death to suggest possible mechanisms, although they require further studies. The research shows how traditional cardiovascular risk factors such as age, diabetes and smoking have an impact; non-traditional risk factors such as inflammation, mineral-bone disease and even uraemia itself have higher impact; and how cardiac structural, functional and electrocardiographic markers predict sudden cardiac death in dialysis patients. More in-depth human and animal studies, guided with existing knowledge, are necessary to better understand the mechanisms and design successful interventions. Copyright © 2016 Elsevier Inc. All rights reserved.
Detection of physiological noise in resting state fMRI using machine learning.
Ash, Tom; Suckling, John; Walter, Martin; Ooi, Cinly; Tempelmann, Claus; Carpenter, Adrian; Williams, Guy
2013-04-01
We present a technique for predicting cardiac and respiratory phase on a time point by time point basis, from fMRI image data. These predictions have utility in attempts to detrend effects of the physiological cycles from fMRI image data. We demonstrate the technique both in the case where it can be trained on a subject's own data, and when it cannot. The prediction scheme uses a multiclass support vector machine algorithm. Predictions are demonstrated to have a close fit to recorded physiological phase, with median Pearson correlation scores between recorded and predicted values of 0.99 for the best case scenario (cardiac cycle trained on a subject's own data) down to 0.83 for the worst case scenario (respiratory predictions trained on group data), as compared to random chance correlation score of 0.70. When predictions were used with RETROICOR--a popular physiological noise removal tool--the effects are compared to using recorded phase values. Using Fourier transforms and seed based correlation analysis, RETROICOR is shown to produce similar effects whether recorded physiological phase values are used, or they are predicted using this technique. This was seen by similar levels of noise reduction noise in the same regions of the Fourier spectra, and changes in seed based correlation scores in similar regions of the brain. This technique has a use in situations where data from direct monitoring of the cardiac and respiratory cycles are incomplete or absent, but researchers still wish to reduce this source of noise in the image data. Copyright © 2011 Wiley Periodicals, Inc.
2014-01-01
Neurocognitive deficits are a major source of morbidity in survivors of cardiac arrest. Treatment options that could be implemented either during cardiopulmonary resuscitation or after return of spontaneous circulation to improve these neurological deficits are limited. We conducted a literature review of treatment protocols designed to evaluate neurologic outcome and survival following cardiac arrest with associated global cerebral ischemia. The search was limited to investigational therapies that were utilized to treat global cerebral ischemia associated with cardiac arrest. In this review we discuss potential mechanisms of neurologic protection following cardiac arrest including actions of several medical gases such as xenon, argon, and nitric oxide. The 3 included mechanisms are: 1. Modulation of neuronal cell death; 2. Alteration of oxygen free radicals; and 3. Improving cerebral hemodynamics. Only a few approaches have been evaluated in limited fashion in cardiac arrest patients and results show inconclusive neuroprotective effects. Future research focusing on combined neuroprotective strategies that target multiple pathways are compelling in the setting of global brain ischemia resulting from cardiac arrest. PMID:24808942
Cardiac rhythm management devices
Stevenson, Irene; Voskoboinik, Alex
2018-05-01
The last decade has seen ongoing evolution and use of cardiac rhythm management devices, including pacemakers, cardiac resynchronisation therapy, implantable cardioverter defibrillators and loop recorders. General practitioners are increasingly involved in follow-up and management of patients with these devices. The aim of this article is to provide an overview of different cardiac rhythm management devices, including their role, implant procedure, post-procedural care, potential complications and follow‑up. We also include practical advice for patients regarding driving, exercise, sexual intimacy and precautions with regards to electromagnetic interference. Cardiac rhythm management devices perform many functions, including bradycardia pacing, monitoring for arrhythmias, cardiac resynchronisation for heart failure, defibrillation and anti-tachycardia pacing for tachyarrhythmias. Concerns regarding potential device-related complications should be discussed with the implanting physician. In the post-implant period, patients with cardiac rhythm management devices can expect to lead normal, active lives. However, caution must occasionally be exercised in certain situations, such as near appliances with electromagnetic interference. Future innovations will move away from transvenous leads to leadless designs with combinations of different components on a 'modular' basis according to the function required.
Maher, Kevin O; Chang, Anthony C; Shin, Andrew; Hunt, Juliette; Wong, Hector R
2015-10-01
The word innovation is derived from the Latin noun innovatus, meaning renewal or change. Although companies such as Google and Apple are nearly synonymous with innovation, virtually all sectors in our current lives are imbued with yearn for innovation. This has led to organizational focus on innovative strategies as well as recruitment of chief innovation officers and teams in a myriad of organizations. At times, however, the word innovation seems like an overused cliché, as there are now more than 5,000 books in print with the word "innovation" in the title. More recently, innovation has garnered significant attention in health care. The future of health care is expected to innovate on a large scale in order to deliver sustained value for an overall transformative care. To date, there are no published reports on the state of the art in innovation in pediatric health care and in particular, pediatric cardiac intensive care. This report will address the issue of innovation in pediatric medicine with relevance to cardiac intensive care and delineate possible future directions and strategies in pediatric cardiac intensive care. © The Author(s) 2015.
Bioluminescence imaging: a shining future for cardiac regeneration
Roura, Santiago; Gálvez-Montón, Carolina; Bayes-Genis, Antoni
2013-01-01
Advances in bioanalytical techniques have become crucial for both basic research and medical practice. One example, bioluminescence imaging (BLI), is based on the application of natural reactants with light-emitting capabilities (photoproteins and luciferases) isolated from a widespread group of organisms. The main challenges in cardiac regeneration remain unresolved, but a vast number of studies have harnessed BLI with the discovery of aequorin and green fluorescent proteins. First described in the luminous hydromedusan Aequorea victoria in the early 1960s, bioluminescent proteins have greatly contributed to the design and initiation of ongoing cell-based clinical trials on cardiovascular diseases. In conjunction with advances in reporter gene technology, BLI provides valuable information about the location and functional status of regenerative cells implanted into numerous animal models of disease. The purpose of this review was to present the great potential of BLI, among other existing imaging modalities, to refine effectiveness and underlying mechanisms of cardiac cell therapy. We recount the first discovery of natural primary compounds with light-emitting capabilities, and follow their applications to bioanalysis. We also illustrate insights and perspectives on BLI to illuminate current efforts in cardiac regeneration, where the future is bright. PMID:23402217
Understanding STAT3 signaling in cardiac ischemia.
O'Sullivan, K E; Breen, E P; Gallagher, H C; Buggy, D J; Hurley, J P
2016-05-01
Cardiovascular disease is the leading cause of death worldwide. It remains one of the greatest challenges to global health and will continue to dominate mortality trends in the future. Acute myocardial infarction results in 7.4 million deaths globally per annum. Current management strategies are centered on restoration of coronary blood flow via percutaneous coronary intervention, coronary artery bypass grafting and administration of anti-platelet agents. Such myocardial reperfusion accounts for 40-50 % of the final infarct size in most cases. Signaling transducer and activator of transcription 3 (STAT3) has been shown to have cardioprotective effects via canonical and non-canonical activation and modulation of mitochondrial and transcriptional responses. A significant body of in vitro and in vivo evidence suggests that activation of the STAT3 signal transduction pathway results in a cardio protective response to ischemia and attempts have been made to modulate this with therapeutic effect. Not only is STAT3 important for cardiomyocyte function, but it also modulates the cardiac microenvironment and communicates with cardiac fibroblasts. To this end, we here review the current evidence supporting the manipulation of STAT3 for therapeutic benefit in cardiac ischemia and identify areas for future research.
Hascoët, Sebastien; Warin-Fresse, Karine; Baruteau, Alban-Elouen; Hadeed, Khaled; Karsenty, Clement; Petit, Jérôme; Guérin, Patrice; Fraisse, Alain; Acar, Philippe
2016-02-01
Cardiac catheterization has contributed to the progress made in the management of patients with congenital heart disease (CHD). First, it allowed clarification of the diagnostic assessment of CHD, by offering a better understanding of normal cardiac physiology and the pathophysiology and anatomy of complex malformations. Then, it became an alternative to surgery and a major component of the therapeutic approach for some CHD lesions. Nowadays, techniques have evolved and cardiac catheterization is widely used to percutaneously close intracardiac shunts, to relieve obstructive valvar or vessel lesions, and for transcatheter valve replacement. Accurate imaging is mandatory to guide these procedures. Cardiac imaging during catheterization of CHD must provide accurate images of lesions, surrounding cardiac structures, medical devices and tools used to deliver them. Cardiac imaging has to be 'real-time' with an excellent temporal resolution to ensure 'eyes-hands' synchronization and 'device-target area' accurate positioning. In this comprehensive review, we provide an overview of conventional cardiac imaging tools used in the catheterization laboratory in daily practice, as well as the effect of recent evolution and future imaging modalities. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Cardiac arrhythmia and thyroid dysfunction: a novel genetic link
Purtell, Kerry; Roepke, Torsten K.; Abbott, Geoffrey W.
2010-01-01
Inherited Long QT Syndrome, a cardiac arrhythmia that predisposes to the often lethal ventricular fibrillation, is commonly linked to mutations in KCNQ1. The KCNQ1 voltage-gated K+ channel α subunit passes ventricular myocyte K+ current that helps bring a timely end to each heart-beat. KCNQ1, like many K+ channel α subunits, is regulated by KCNE β subunits, inherited mutations in which also associate with Long QT Syndrome. KCNQ1 and KCNE mutations are also associated with atrial fibrillation. It has long been known that thyroid status strongly influences cardiac function, and that thyroid dysfunction causes abnormal cardiac structure and rhythm. We recently discovered that KCNQ1 and KCNE2 form a thyroid-stimulating hormone-stimulated K+ channel in the thyroid that is required for normal thyroid hormone biosynthesis. Here, we review this novel genetic link between cardiac and thyroid physiology and pathology, and its potential influence upon future therapeutic strategies in cardiac and thyroid disease. PMID:20688187
Ishino, Mitsunori; Takeishi, Yasuchika; Niizeki, Takeshi; Watanabe, Tetsu; Nitobe, Joji; Miyamoto, Takuya; Miyashita, Takehiko; Kitahara, Tatsuro; Suzuki, Satoshi; Sasaki, Toshiki; Bilim, Olga; Kubota, Isao
2008-11-01
B-type natriuretic peptide (BNP), heart-type fatty acid-binding protein (H-FABP), and pentraxin 3 (PTX3) each predict adverse cardiac events in chronic heart failure (CHF) patients. For prognostic evaluation from different aspects, the utility of combined measurement of the 3 biomarkers in patients with CHF was examined in the present study. Levels of BNP (associated with left ventricular dysfunction, positive if >200 pg/ml), H-FABP (marker of myocardial damage, positive if >4.1 ng/ml), and PTX3 (marker of inflammation, positive if >4.0 ng/ml) were measured in 164 consecutive CHF patients, and patients were prospectively followed with endpoints of cardiac death or rehospitalization. When patients were categorized on the basis of the number of elevated biomarkers, patients with 1, 2, and 3 elevated biomarkers had a 5.4-fold (not significant), 11.2-old (p<0.05), and 34.6-fold increase (p<0.01), respectively, in the risk of adverse cardiac events compared with those without elevated biomarkers. Kaplan-Meier analysis revealed that patients with 3 elevated biomarkers had a significantly higher cardiac event rate than patients with a lower number of elevated biomarkers. The combination of these 3 biomarkers could reliably risk-stratify CHF patients for prediction of cardiac events.
Durmuş, Gündüz; Belen, Erdal; Can, Mehmet Mustafa
The neutrophil to lymphocyte ratio (NLR), has been proposed as potential indicator of cardiovascular events. Our aim was to determine the relationship between NLR and development of myocardial injury after non-cardiac surgery (MINS). This observational cohort study included 255 consecutive noncardiac surgery patients aged ≥45 years. Electrocardiography recordings and high sensitivity cardiac troponin T (hscTnT) levels of the patients were obtained for a period of 3 days postoperatively. MINS was detected in 30 (11.8%) patients using the cut-off level of ≥14 ng/L for hscTnT. In the MINS group NLR (3.79 ± 0.7 vs. 2.69 ± 0.6, p < 0.000) values were higher than non-NLR group. The NLR to be independently associated with the development of MINS (OR: 11.690; CI: 4.619-29.585, p < 0.000). NLR seems to be a simple, easy and cheap tool to predict the development of MINS in patient undergoing non-cardiac surgery. Copyright © 2018 Elsevier Inc. All rights reserved.
Gaalema, Diann E.; Cutler, Alexander Y.; Higgins, Stephen T.; Ades, Philip A.
2015-01-01
Objective Continued smoking after a cardiac event greatly increases mortality risk. Smoking cessation and participation in cardiac rehabilitation (CR) are effective in reducing morbidity and mortality. However, these two behaviors may interact; those who smoke may be less likely to access or complete CR. This review explores the association between smoking status and CR referral, attendance, and adherence. Methods A systematic literature search was conducted examining associations between smoking status and CR referral, attendance and completion in peer-reviewed studies published through July 1st, 2014. For inclusion, studies had to report data on outpatient CR referral, attendance or completion rates and smoking status had to be considered as a variable associated with these outcomes. Results Fifty-six studies met inclusion criteria. In summary, a history of smoking was associated with an increased likelihood of referral to CR. However, smoking status also predicted not attending CR and was a strong predictor of CR dropout. Conclusion Continued smoking after a cardiac event predicts lack of attendance in, and completion of CR. The issue of smoking following a coronary event deserves renewed attention. PMID:25900804
Panitz, Christian; Wacker, Jan; Stemmler, Gerhard; Mueller, Erik M
2013-09-01
Prior work on the coupling of cortical and cardiac responses to feedback demonstrated that feedback-evoked single-trial EEG magnitudes 300 ms post-stimulus predict the degree of subsequent cardiac acceleration. The main goal of the current study was to explore the neural sources of this phenomenon using (a) independent component analysis in conjunction with dipole fitting and (b) low resolution electromagnetic tomography (LORETA) in N=14 participants who performed a gambling task with feedback presented after each trial. It was shown that independent components localized near anterior cingulate cortex produced robust within-subjects correlations with feedback-evoked heart-period, suggesting that anterior cingulate cortex activity 300ms after feedback presentation predicts the strength of subsequent cardiac acceleration. Moreover, interindividual differences in evoked left insular cortex LORETA-estimated activity at around 300ms moderated within-subjects EEG-heart period correlations. These results suggest that key regions of central autonomic control are involved in cortico-cardiac coupling evoked by feedback stimuli. Copyright © 2013 Elsevier B.V. All rights reserved.
Duthie, Fiona A I; McGeehan, Paul; Hill, Sharleen; Phelps, Richard; Kluth, David C; Zamvar, Vipin; Hughes, Jeremy; Ferenbach, David A
2014-01-01
Acute kidney injury (AKI) following cardiac surgery is a complication associated with high rates of morbidity and mortality. We compared staging systems for the diagnosis of AKI after cardiac surgery, and assessed pre-operative factors predictive of post-operative AKI. Clinical data, surgical risk scores, procedure and clinical outcome were obtained on all 4,651 patients undergoing cardiac surgery to the Royal Infirmary of Edinburgh between April 2006 and March 2011, of whom 4,572 had sufficient measurements of creatinine before and after surgery to permit inclusion and analysis. The presence of AKI was assessed using the AKIN and RIFLE criteria. By AKIN criteria, 12.4% of the studied population developed AKI versus 6.5% by RIFLE criteria. Any post-operation AKI was associated with increased mortality from 2.2 to 13.5% (relative risk 7.0, p < 0.001), and increased inpatient stay from a median of 7 (IQR 4) to 9 (IQR 11) days (p < 0.05). Patients identified by AKIN, but not RIFLE, had a mean peak creatinine rise of 34% from baseline and had a significantly lower mortality compared to RIFLE-'Risk' AKI (mortality 6.1 vs. 9.7%; p < 0.05). Pre-operative creatinine, diabetes, NYHA Class IV dyspnoea and EuroSCORE-1 (a surgical risk score) all predicted subsequent AKI on multivariate analysis. EuroSCORE-1 outperformed any single demographic factor in predicting post-operative AKI risk, equating to an 8% increase in relative risk for each additional point. AKI after cardiac surgery is associated with delayed discharge and high mortality rates. The AKIN and RIFLE criteria identify patients at a range of AKI severity levels suitable for trial recruitment. The utility of EuroSCORE as a risk stratification tool to identify high AKI-risk subjects for prospective intervention merits further study.
Elmer, Jonathan; Jeong, Kwonho; Abebe, Kaleab Z; Guyette, Francis X; Murugan, Raghavan; Callaway, Clifton W; Rittenberger, Jon C
2016-01-01
In the first days after cardiac arrest, accurate prognostication is challenging. Serum biomarkers are a potentially attractive adjunct for prognostication and risk stratification. Our primary objective in this exploratory study was to identify novel early serum biomarkers that predict survival after cardiac arrest earlier than currently possible. Prospective, observational study. A single academic medical center. Adult subjects who sustained cardiac arrest with return of spontaneous circulation. None. We obtained blood samples from each subject at enrollment, 6, 12, 24, 48, and 72 hours after return of spontaneous circulation. We measured the serum levels of novel biomarkers, including neutrophil gelatinase-associated lipocalin, high-mobility group protein B1, intracellular cell adhesion molecule-1, and leptin, as well as previously characterized biomarkers, including neuron-specific enolase and S100B protein. Our primary outcome of interest was survival-to-hospital discharge. We compared biomarker concentrations at each time point between survivors and nonsurvivors and used logistic regression to test the unadjusted associations of baseline clinical characteristics and enrollment biomarker levels with survival. Finally, we constructed a series of adjusted models to explore the independent association of each enrollment biomarker level with survival. A total of 86 subjects were enrolled. Enrollment levels of high-mobility group protein B1, neutrophil gelatinase-associated lipocalin, and S100B were higher in nonsurvivors than survivors. Enrollment leptin, neuron-specific enolase, and intracellular cell adhesion molecule-1 levels did not differ between nonsurvivors and survivors. The discriminatory power of enrollment neutrophil gelatinase-associated lipocalin level was the greatest (c-statistic, 0.78 [95% CI, 0.66-0.90]) and remained stable across all time points. In our adjusted models, enrollment neutrophil gelatinase-associated lipocalin level was independently associated with survival even after controlling for the development of acute kidney injury, and its addition to clinical models improved overall predictive accuracy. Serum neutrophil gelatinase-associated lipocalin levels are strongly predictive of survival-to-hospital discharge after cardiac arrest.
Garan, A Reshad; Eckhardt, Christina; Takeda, Koji; Topkara, Veli K; Clerkin, Kevin; Fried, Justin; Masoumi, Amirali; Demmer, Ryan T; Trinh, Pauline; Yuzefpolskaya, Melana; Naka, Yoshifumi; Burkhoff, Dan; Kirtane, Ajay; Colombo, Paolo C; Takayama, Hiroo
2017-11-01
Cardiogenic shock following acute myocardial infarction (AMI-CS) portends a poor prognosis. Short-term mechanical circulatory support devices (MCSDs) provide hemodynamic support for patients with cardiogenic shock but predictors of survival and the ability to wean from short-term MCSDs remain largely unknown. All patients > 18 years old treated at our institution with extra-corporeal membrane oxygenation or short-term surgical ventricular assist device for AMI-CS were studied. We collected acute myocardial infarction details with demographic and hemodynamic variables. Primary outcomes were survival to discharge and recovery from MCSD (i.e. survival without heart replacement therapy including durable ventricular assist device or heart transplant). One hundred and twenty-four patients received extra-corporeal membrane oxygenation or short-term surgical ventricular assist device following acute myocardial infarction from 2007 to 2016; 89 received extra-corporeal membrane oxygenation and 35 short-term ventricular assist device. Fifty-five (44.4%) died in the hospital and 69 (55.6%) survived to discharge. Twenty-six (37.7%) required heart replacement therapy (four transplant, 22 durable ventricular assist device) and 43 (62.3%) were discharged without heart replacement therapy. Age and cardiac index at MCSD implantation were predictors of survival to discharge; patients over 60 years with cardiac index <1.5 l/min per m 2 had a low likelihood of survival. The angiographic result after revascularization predicted recovery from MCSD (odds ratio 9.00, 95% confidence interval 2.45-32.99, p=0.001), but 50% of those optimally revascularized still required heart replacement therapy. Cardiac index predicted recovery from MCSD among this group (odds ratio 4.06, 95% confidence interval 1.45-11.55, p=0.009). Among AMI-CS patients requiring short-term MCSDs, age and cardiac index predict survival to discharge. Angiographic result and cardiac index predict ventricular recovery but 50% of those optimally revascularized still required heart replacement therapy.
Electronic health record-based cardiac risk assessment and identification of unmet preventive needs.
Persell, Stephen D; Dunne, Alexis P; Lloyd-Jones, Donald M; Baker, David W
2009-04-01
Cardiac risk assessment may not be routinely performed. Electronic health records (EHRs) offer the potential to automate risk estimation. We compared EHR-based assessment with manual chart review to determine the accuracy of automated cardiac risk estimation and determination of candidates for antiplatelet or lipid-lowering interventions. We performed an observational retrospective study of 23,111 adults aged 20 to 79 years, seen in a large urban primary care group practice. Automated assessments classified patients into 4 cardiac risk groups or as unclassifiable and determined candidates for antiplatelet or lipid-lowering interventions based on current guidelines. A blinded physician manually reviewed 100 patients from each risk group and the unclassifiable group. We determined the agreement between full review and automated assessments for cardiac risk estimation and identification of which patients were candidates for interventions. By automated methods, 9.2% of the population were candidates for lipid-lowering interventions, and 8.0% were candidates for antiplatelet medication. Agreement between automated risk classification and manual review was high (kappa = 0.91; 95% confidence interval [CI], 0.88-0.93). Automated methods accurately identified candidates for antiplatelet therapy [sensitivity, 0.81 (95% CI, 0.73-0.89); specificity, 0.98 (95% CI, 0.96-0.99); positive predictive value, 0.86 (95% CI, 0.78-0.94); and negative predictive value, 0.98 (95% CI, 0.97-0.99)] and lipid lowering [sensitivity, 0.92 (95% CI, 0.87-0.96); specificity, 0.98 (95% CI, 0.97-0.99); positive predictive value, 0.94 (95% CI, 0.89-0.99); and negative predictive value, 0.99 (95% CI, 0.98-> or =0.99)]. EHR data can be used to automatically perform cardiovascular risk stratification and identify patients in need of risk-lowering interventions. This could improve detection of high-risk patients whom physicians would otherwise be unaware.
Medenwald, Daniel; Swenne, Cees A; Frantz, Stefan; Nuding, Sebastian; Kors, Jan A; Pietzner, Diana; Tiller, Daniel; Greiser, Karin H; Kluttig, Alexander; Haerting, Johannes
2017-12-01
To assess the value of cardiac structure/function in predicting heart rate variability (HRV) and the possibly predictive value of HRV on cardiac parameters. Baseline and 4-year follow-up data from the population-based CARLA cohort were used (790 men, 646 women, aged 45-83 years at baseline and 50-87 years at follow-up). Echocardiographic and HRV recordings were performed at baseline and at follow-up. Linear regression models with a quadratic term were used. Crude and covariate adjusted estimates were calculated. Missing values were imputed by means of multiple imputation. Heart rate variability measures taken into account consisted of linear time and frequency domain [standard deviation of normal-to-normal intervals (SDNN), high-frequency power (HF), low-frequency power (LF), LF/HF ratio] and non-linear measures [detrended fluctuation analysis (DFA1), SD1, SD2, SD1/SD2 ratio]. Echocardiographic parameters considered were ventricular mass index, diastolic interventricular septum thickness, left ventricular diastolic dimension, left atrial dimension systolic (LADS), and ejection fraction (Teichholz). A negative quadratic relation between baseline LADS and change in SDNN and HF was observed. The maximum HF and SDNN change (an increase of roughly 0.02%) was predicted at LADS of 3.72 and 3.57 cm, respectively, while the majority of subjects experienced a decrease in HRV. There was no association between further echocardiographic parameters and change in HRV, and there was no evidence of a predictive value of HRV in the prediction of changes in cardiac structure. In the general population, LADS predicts 4-year alteration in SDNN and HF non-linearly. Because of the novelty of the result, analyses should be replicated in other populations. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions please email: journals.permissions@oup.com.
Hanning, Uta; Sporns, Peter Bernhard; Lebiedz, Pia; Niederstadt, Thomas; Zoubi, Tarek; Schmidt, Rene; Knecht, Stefan; Heindel, Walter; Kemmling, André
2016-07-01
Early prediction of potential neurological recovery in patients after cardiac arrest is challenging. Recent studies suggest that the densitrometic gray-white matter ratio (GWR) determined from cranial computed tomography (CT) scans may be a reliable predictor of poor outcome. We evaluated an automated, rater independent method to determine GWR in CT as an early objective imaging predictor of clinical outcome. We analyzed imaging data of 84 patients after cardiac arrest that underwent noncontrast CT within 24h after arrest. To determine GWR in CT we applied two methods using a recently published automated probabilistic gray-white matter segmentation algorithm (GWR_aut) and conventional manual measurements within gray-white regions of interest (GWR_man). Neurological outcome was graded by the cerebral performance category (CPC). As part of standard routine CPC was assessed by the treating physician in the intensive care unit at admission and at discharge to normal ward. The performance of GWR measures (automated and manual) to predict the binary clinical endpoints of poor (CPC3-5) and good outcome (CPC1-2) was assessed by ROC analysis with increasing discrimination thresholds. Results of GWR_aut were compared to GWR_man of two raters. Of 84 patients, 55 (65%) showed a poor outcome. ROC curve analysis revealed reliable outcome prediction of GWR_aut (AUC 0.860) and GWR_man (AUC 0.707 and 0.699, respectively). Predictive power of GWR_aut was higher than GWR_man by each rater (p=0.019 and p=0.021, respectively) at an optimal cut-off of 1.084 to predict poor outcome (optimal criterion with 92.7% sensitivity, 72.4% specificity). Interrater reliability of GWR_man by intra-class correlation coefficient (ICC) was moderate (0.551). Automated quantification of GWR in CT may be used as an objective observer-independent imaging marker for outcome in patients after cardiac arrest. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Devenyi, Ryan A; Ortega, Francis A; Groenendaal, Willemijn; Krogh-Madsen, Trine; Christini, David J; Sobie, Eric A
2017-04-01
Arrhythmias result from disruptions to cardiac electrical activity, although the factors that control cellular action potentials are incompletely understood. We combined mathematical modelling with experiments in heart cells from guinea pigs to determine how cellular electrical activity is regulated. A mismatch between modelling predictions and the experimental results allowed us to construct an improved, more predictive mathematical model. The balance between two particular potassium currents dictates how heart cells respond to perturbations and their susceptibility to arrhythmias. Imbalances of ionic currents can destabilize the cardiac action potential and potentially trigger lethal cardiac arrhythmias. In the present study, we combined mathematical modelling with information-rich dynamic clamp experiments to determine the regulation of action potential morphology in guinea pig ventricular myocytes. Parameter sensitivity analysis was used to predict how changes in ionic currents alter action potential duration, and these were tested experimentally using dynamic clamp, a technique that allows for multiple perturbations to be tested in each cell. Surprisingly, we found that a leading mathematical model, developed with traditional approaches, systematically underestimated experimental responses to dynamic clamp perturbations. We then re-parameterized the model using a genetic algorithm, which allowed us to estimate ionic current levels in each of the cells studied. This unbiased model adjustment consistently predicted an increase in the rapid delayed rectifier K + current and a drastic decrease in the slow delayed rectifier K + current, and this prediction was validated experimentally. Subsequent simulations with the adjusted model generated the clinically relevant prediction that the slow delayed rectifier is better able to stabilize the action potential and suppress pro-arrhythmic events than the rapid delayed rectifier. In summary, iterative coupling of simulations and experiments enabled novel insight into how the balance between cardiac K + currents influences ventricular arrhythmia susceptibility. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.
Callejas, Raquel; Panadero, Alfredo; Vives, Marc; Duque, Paula; Echarri, Gemma; Monedero, Pablo
2018-05-11
Predictive models of CS-AKI include emergency surgery and patients with haemodynamic instability. Our objective was to evaluate the performance of validated predictive models (Thakar and Demirjian) in elective cardiac surgery and to propose a better score in the case of poor performance. A prospective, multicentre, observational study was designed. Data were collected from 942 patients undergoing cardiac surgery, after excluding emergency surgery and patients with an intraaortic balloon pump. The main outcome measure was CS-AKI defined by the composite of requiring dialysis or doubling baseline creatinine values. Both models showed poor discrimination in elective surgery (Thakar's model, AUROC = 0.57, 95% CI = 0.50-0.64 and Demirjian's model, AUROC= 0.64, 95% CI = 0.58-0.71). We generated a new model whose significant independent predictors were: anaemia, age, hypertension, obesity, congestive heart failure, previous cardiac surgery and type of surgery. It classifies patients with scores 0-3 as low risk (< 5%), scores 4-7 as medium risk (up to 15%) and scores > 8 as high risk (>30%) of developing CS-AKI with a statistically significant correlation (p <0.001). Our model reflects acceptable discriminatory ability (AUC = 0.72, 95% CI = 0.66-0.78) which is significantly better than Thakar and Demirjian's models (p<0.01). We developed a new simple predictive model of CS-AKI in elective surgery based on available preoperative information. Our new model is easy to calculate and can be an effective tool for communicating risk to patients and guiding decision-making in the perioperative period. The study requires external validation.
Sheriff, Mohammed J; Mouline, Omar; Hsu, Chijen; Grieve, Stuart M; Wilson, Michael K; Bannon, Paul G; Vallely, Michael P; Puranik, Rajesh
2016-06-01
The euroSCORE II is a widely used pre-coronary artery bypass graft surgery (CAGS) risk score, but its predictive power lacks the specificity to predict outcomes in high-risk patients (
Sun, Shiren; Ma, Feng; Li, Qiaoneng; Bai, Ming; Li, Yangping; Yu, Yan; Huang, Chen; Wang, Hanmin; Ning, Xiaoxuan
2017-10-01
Acute kidney injury (AKI) is a serious complication after cardiac surgery and is associated with increased in-hospital deaths. Renal replacement therapy (RRT) is becoming a routine strategy for severe AKI. Our goal was to evaluate the risk factors for death and RRT dependence in patients with AKI after cardiac surgery. We included 190 eligible adult patients who had AKI following cardiac surgery and who required RRT at our centre from November 2010 to March 2015. We collected preoperative, intraoperative, postoperative and RRT data for all patients. In this cohort, 87 patients had successful RRT in the hospital, whereas 103 patients had RRT that failed (70 deaths and 33 cases of RRT dependence). The multivariable logistic analysis identified old age [odds ratio (OR): 1.042, 95% confidence interval (CI): 1.012-1.074; P = 0.011], serum uric acid (OR: 1.015, 95% CI: 1.003-1.031; P = 0.024), intraoperative concentrated red blood cell transfusions (OR: 1.144, 95% CI: 1.006-1.312; P = 0.041), postoperative low cardiac output syndrome (OR: 3.107, 95% CI: 1.179-8.190; P = 0.022) and multiple organ failure (OR: 5.786, 95% CI: 2.115-15.832; P = 0.001) as factors associated with a higher risk for RRT failure. The prediction model (-4.3 + 0.002 × preuric acid + 0.10 × concentrated red blood cells + 0.04 × age + 1.12 × [low cardiac output syndrome = 1] + 1.67 × [multiple organ failure = 1]) based on the multivariate analysis had statistically significant different incriminatory power with an area under the curve of 0.786. The prediction model may serve as a simple, accurate tool for predicting in-hospital RRT failure for patients with AKI following cardiac surgery. © The Author 2017. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.
Jacobs, Leo H J; van Borren, Marcel; Gemen, Eugenie; van Eck, Martijn; van Son, Bas; Glatz, Jan F C; Daniels, Marcel; Kusters, Ron
2015-09-01
The rapid exclusion of acute myocardial infarction in patients with chest pain can reduce the length of hospital admission, prevent unnecessary diagnostic work-up and reduce the burden on our health-care systems. The combined use of biomarkers that are associated with different pathophysiological aspects of acute myocardial infarction could improve the early diagnostic assessment of patients presenting with chest pain. We measured cardiac troponin I, copeptin and heart-type fatty acid-binding protein concentrations in 584 patients who presented to the emergency department with acute chest pain. The diagnostic performances for the diagnosis of acute myocardial infarction and NSTEMI were calculated for the individual markers and their combinations. Separate calculations were made for patients presenting to the emergency department <3 h, 3-6 h and 6-12 h after chest pain onset. For ruling out acute myocardial infarction, the net predictive values (95% CI) of cardiac troponin I, copeptin and heart-type fatty acid-binding protein were 90.4% (87.3-92.9), 84% (79.8-87.6) and 87% (83.5-90), respectively. Combining the three biomarkers resulted in a net predictive value of 95.8% (92.8-97.8). The improvement was most pronounced in the early presenters (<3 h) where the combined net predictive value was 92.9% (87.3-96.5) compared to 84.6% (79.4-88.9) for cardiac troponin I alone. The area under the receiver operating characteristic for the triple biomarker combination increased significantly (P < 0.05) compared to that of cardiac troponin I alone (0.880 [0.833-0.928] vs. 0.840 [0.781-0.898], respectively). Combining copeptin, heart-type fatty acid-binding protein and cardiac troponin I measurements improves the diagnostic performance in patients presenting with chest pain. Importantly, in patients who present early (<3 h) after chest pain onset, the combination improves the diagnostic performance compared to the standard cardiac troponin I measurement alone. © The Author(s) 2015.
Cardiovascular Magnetic Resonance and prognosis in cardiac amyloidosis
Maceira, Alicia M; Prasad, Sanjay K; Hawkins, Philip N; Roughton, Michael; Pennell, Dudley J
2008-01-01
Background Cardiac involvement is common in amyloidosis and associated with a variably adverse outcome. We have previously shown that cardiovascular magnetic resonance (CMR) can assess deposition of amyloid protein in the myocardial interstitium. In this study we assessed the prognostic value of late gadolinium enhancement (LGE) and gadolinium kinetics in cardiac amyloidosis in a prospective longitudinal study. Materials and methods The pre-defined study end point was all-cause mortality. We prospectively followed a cohort of 29 patients with proven cardiac amyloidosis. All patients underwent biopsy, 2D-echocardiography and Doppler studies, 123I-SAP scintigraphy, serum NT pro BNP assay, and CMR with a T1 mapping method and late gadolinium enhancement (LGE). Results Patients with were followed for a median of 623 days (IQ range 221, 1436), during which 17 (58%) patients died. The presence of myocardial LGE by itself was not a significant predictor of mortality. However, death was predicted by gadolinium kinetics, with the 2 minute post-gadolinium intramyocardial T1 difference between subepicardium and subendocardium predicting mortality with 85% accuracy at a threshold value of 23 ms (the lower the difference the worse the prognosis). Intramyocardial T1 gradient was a better predictor of survival than FLC response to chemotherapy (Kaplan Meier analysis P = 0.049) or diastolic function (Kaplan-Meier analysis P = 0.205). Conclusion In cardiac amyloidosis, CMR provides unique information relating to risk of mortality based on gadolinium kinetics which reflects the severity of the cardiac amyloid burden. PMID:19032744
Genetic factors contribute to bleeding after cardiac surgery.
Welsby, I J; Podgoreanu, M V; Phillips-Bute, B; Mathew, J P; Smith, P K; Newman, M F; Schwinn, D A; Stafford-Smith, M
2005-06-01
Postoperative bleeding remains a common, serious problem for cardiac surgery patients, with striking inter-patient variability poorly explained by clinical, procedural, and biological markers. We tested the hypothesis that genetic polymorphisms of coagulation proteins and platelet glycoproteins are associated with bleeding after cardiac surgery. Seven hundred and eighty patients undergoing aortocoronary surgery with cardiopulmonary bypass were studied. Clinical covariates previously associated with bleeding were recorded and DNA isolated from preoperative blood. Matrix Assisted Laser Desorption/Ionization, Time-Of-Flight (MALDI-TOF) mass spectroscopy or polymerase chain reaction were used for genotype analysis. Multivariable linear regression modeling, including all genetic main effects and two-way gene-gene interactions, related clinical and genetic predictors to bleeding from the thorax and mediastinum. Nineteen candidate polymorphisms were assessed; seven [GPIaIIa-52C>T and 807C>T, GPIb alpha 524C>T, tissue factor-603A>G, prothrombin 20210G>A, tissue factor pathway inhibitor-399C>T, and angiotensin converting enzyme (ACE) deletion/insertion] demonstrate significant association with bleeding (P < 0.01). Adding genetic to clinical predictors results improves the model, doubling overall ability to predict bleeding (P < 0.01). We identified seven genetic polymorphisms associated with bleeding after cardiac surgery. Genetic factors appear primarily independent of, and explain at least as much variation in bleeding as clinical covariates; combining genetic and clinical factors double our ability to predict bleeding after cardiac surgery. Accounting for genotype may be necessary when stratifying risk of bleeding after cardiac surgery.
Interassociation Consensus Statement on Cardiovascular Care of College Student-Athletes.
Hainline, Brian; Drezner, Jonathan A; Baggish, Aaron; Harmon, Kimberly G; Emery, Michael S; Myerburg, Robert J; Sanchez, Eduardo; Molossi, Silvana; Parsons, John T; Thompson, Paul D
2016-06-28
Cardiovascular evaluation and care of college student-athletes is gaining increasing attention from both the public and medical communities. Emerging strategies include screening of the general athlete population, recommendations of permissible levels of participation by athletes with identified cardiovascular conditions, and preparation for responding to unanticipated cardiac events in athletic venues. The primary focus has been sudden cardiac death and the utility of screening with or without advanced cardiac screening. The National Collegiate Athletic Association convened a multidisciplinary task force to address cardiovascular concerns in collegiate student-athletes and to develop consensus for an interassociation statement. This document summarizes the task force deliberations and follow-up discussions, and includes available evidence on cardiovascular risk, pre-participation evaluation, and the recognition of and response to cardiac arrest. Future recommendations for cardiac research initiatives, education, and collaboration are also provided. Copyright © 2016 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Perspectives on stem cell therapy for cardiac regeneration. Advances and challenges.
Choi, Sung Hyun; Jung, Seok Yun; Kwon, Sang-Mo; Baek, Sang Hong
2012-01-01
Ischemic heart disease (IHD) accelerates cardiomyocyte loss, but the developing stem cell research could be useful for regenerating a variety of tissue cells, including cardiomyocytes. Diverse sources of stem cells for IHD have been reported, including embryonic stem cells, induced pluripotent stem cells, skeletal myoblasts, bone marrow-derived stem cells, mesenchymal stem cells, and cardiac stem cells. However, stem cells have unique advantages and disadvantages for cardiac tissue regeneration, which are important considerations in determining the specific cells for improving cell survival and long-term engraftment after transplantation. Additionally, the dosage and administration method of stem cells need to be standardized to increase stability and efficacy for clinical applications. Accordingly, this review presents a summary of the stem cell therapies that have been studied for cardiac regeneration thus far, and discusses the direction of future cardiac regeneration research for stem cells.
Karaismailoğlu, Eda; Dikmen, Zeliha Günnur; Akbıyık, Filiz; Karaağaoğlu, Ahmet Ergun
2018-04-30
Background/aim: Myoglobin, cardiac troponin T, B-type natriuretic peptide (BNP), and creatine kinase isoenzyme MB (CK-MB) are frequently used biomarkers for evaluating risk of patients admitted to an emergency department with chest pain. Recently, time- dependent receiver operating characteristic (ROC) analysis has been used to evaluate the predictive power of biomarkers where disease status can change over time. We aimed to determine the best set of biomarkers that estimate cardiac death during follow-up time. We also obtained optimal cut-off values of these biomarkers, which differentiates between patients with and without risk of death. A web tool was developed to estimate time intervals in risk. Materials and methods: A total of 410 patients admitted to the emergency department with chest pain and shortness of breath were included. Cox regression analysis was used to determine an optimal set of biomarkers that can be used for estimating cardiac death and to combine the significant biomarkers. Time-dependent ROC analysis was performed for evaluating performances of significant biomarkers and a combined biomarker during 240 h. The bootstrap method was used to compare statistical significance and the Youden index was used to determine optimal cut-off values. Results : Myoglobin and BNP were significant by multivariate Cox regression analysis. Areas under the time-dependent ROC curves of myoglobin and BNP were about 0.80 during 240 h, and that of the combined biomarker (myoglobin + BNP) increased to 0.90 during the first 180 h. Conclusion: Although myoglobin is not clinically specific to a cardiac event, in our study both myoglobin and BNP were found to be statistically significant for estimating cardiac death. Using this combined biomarker may increase the power of prediction. Our web tool can be useful for evaluating the risk status of new patients and helping clinicians in making decisions.
Ekmekci, Ahmet; Cicek, Gokhan; Uluganyan, Mahmut; Gungor, Baris; Osman, Faizel; Ozcan, Kazim Serhan; Bozbay, Mehmet; Ertas, Gokhan; Zencirci, Aycan; Sayar, Nurten; Eren, Mehmet
2014-02-01
Admission hyperglycemia is associated with high inhospital and long-term adverse events in patients that undergo primary percutaneous coronary intervention (PCI). We aimed to evaluate whether hyperglycemia predicts inhospital mortality. We prospectively analyzed 503 consecutive patients. The patients were divided into tertiles according to the admission glucose levels. Tertile I: glucose <118 mg/dL (n = 166), tertile II: glucose 118 to 145 mg/dL (n = 168), and tertile III: glucose >145 mg/dL (n = 169). Inhospital mortality was 0 in tertile I, 2 in tertile II, and 9 in tertile III (P < .02). Cardiogenic shock occurred more frequently in tertile III compared to tertiles I and II (10% vs 4.1% and 0.6%, respectively, P = .01). Multivariate logistic regression analysis revealed that patients in tertile III had significantly higher risk of inhospital major adverse cardiac events compared to patients in tertile I (odds ratio: 9.55, P < .02). Admission hyperglycemia predicts inhospital adverse cardiac events in mortality and acute ST-segment elevation myocardial infarction in patients that underwent primary PCI.
Tuominen, Heikki; Haarala, Atte; Tikkakoski, Antti; Kähönen, Mika; Nikus, Kjell; Sipilä, Kalle
2018-05-02
In up to 65% of cardiac sarcoidosis patients, the disease is confined to the heart. Diagnosing isolated cardiac sarcoidosis is challenging due to the low sensitivity of endomyocardial biopsy. If cardiac sarcoidosis is part of biopsy-confirmed systemic sarcoidosis, the diagnosis can be based on cardiac imaging studies. We compared the imaging features of patients with isolated cardiac FDG uptake on positron emission tomography with those who had findings indicative of systemic sarcoidosis. 137 consecutive cardiac FDG-PET/CT studies performed on subjects suspected of having cardiac sarcoidosis were retrospectively analyzed. 33 patients had pathological left ventricular FDG uptake, and 12 of these also had pathological right ventricular uptake. 16/33 patients with pathological cardiac uptake had pathological extracardiac uptake. 10/12 patients with both LV- and RV-uptake patterns had extracardiac uptake compared to 6/21 of those with pathological LV uptake without RV uptake. SUVmax values in the myocardium were higher among patients with abnormal extracardiac uptake. The presence of extracardiac uptake was the only imaging-related factor that could predict a biopsy indicative of sarcoidosis. Right ventricular involvement seems to be more common in patients who also have findings suggestive of suspected systemic sarcoidosis, compared with patients with PET findings indicative of isolated cardiac disease.
Howarter, Alisha D; Bennett, Kymberley K; Barber, Carolyn E; Gessner, Stacia N; Clark, Jillian M R
2014-01-01
Cardiac rehabilitation is often recommended after experiencing a cardiac event and has been shown to significantly improve health outcomes among patients. Several psychosocial variables have been linked with cardiac rehabilitation program success, including exercise self-efficacy. However, little is known about temporal patterns in patients' exercise self-efficacy after program completion. This study examined changes in exercise self-efficacy among 133 cardiac rehabilitation patients and whether symptoms of depression impacted the rate of change in exercise self-efficacy. Participants completed questionnaires at the beginning and end of cardiac rehabilitation and at 6-month intervals for 2 years. Growth curve analyses showed that exercise self-efficacy levels were highest at the beginning of cardiac rehabilitation, significantly declined 6 months after cardiac rehabilitation, and leveled off over the next 18 months. Results also showed that baseline depressive symptoms interacted with time: Compared with participants with fewer symptoms, participants high in depressive symptoms began cardiac rehabilitation with lower levels of exercise self-efficacy and evidenced significant declines 6 months after cardiac rehabilitation. At no time were they equal to their counterparts in exercise self-efficacy, and their means were lower 2 years after cardiac rehabilitation than before cardiac rehabilitation. Our findings imply that patients show unrealistic optimism surrounding the ease of initiating and maintaining an exercise program and that integrating efficacy-building activities into cardiac rehabilitation, especially for patients who show signs of distress, is advisable.
Using electrical impedance to predict catheter-endocardial contact during RF cardiac ablation.
Cao, Hong; Tungjitkusolmun, Supan; Choy, Young Bin; Tsai, Jang-Zern; Vorperian, Vicken R; Webster, John G
2002-03-01
During radio-frequency (RF) cardiac catheter ablation, there is little information to estimate the contact between the catheter tip electrode and endocardium because only the metal electrode shows up under fluoroscopy. We present a method that utilizes the electrical impedance between the catheter electrode and the dispersive electrode to predict the catheter tip electrode insertion depth into the endocardium. Since the resistivity of blood differs from the resistivity of the endocardium, the impedance increases as the catheter tip lodges deeper in the endocardium. In vitro measurements yielded the impedance-depth relations at 1, 10, 100, and 500 kHz. We predict the depth by spline curve interpolation using the obtained calibration curve. This impedance method gives reasonably accurate predicted depth. We also evaluated alternative methods, such as impedance difference and impedance ratio.
Wiśniowska, Barbara; Polak, Sebastian
2016-11-01
A Quantitative Systems Pharmacology approach was utilized to predict the cardiac consequences of drug-drug interaction (DDI) at the population level. The Simcyp in vitro-in vivo correlation and physiologically based pharmacokinetic platform was used to predict the pharmacokinetic profile of terfenadine following co-administration of the drug. Electrophysiological effects were simulated using the Cardiac Safety Simulator. The modulation of ion channel activity was dependent on the inhibitory potential of drugs on the main cardiac ion channels and a simulated free heart tissue concentration. ten Tusscher's human ventricular cardiomyocyte model was used to simulate the pseudo-ECG traces and further predict the pharmacodynamic consequences of DDI. Consistent with clinical observations, predicted plasma concentration profiles of terfenadine show considerable intra-subject variability with recorded C max values below 5 ng/mL for most virtual subjects. The pharmacokinetic and pharmacodynamic effects of inhibitors were predicted with reasonable accuracy. In all cases, a combination of the physiologically based pharmacokinetic and physiology-based pharmacodynamic models was able to differentiate between the terfenadine alone and terfenadine + inhibitor scenario. The range of QT prolongation was comparable in the clinical and virtual studies. The results indicate that mechanistic in vitro-in vivo correlation can be applied to predict the clinical effects of DDI even without comprehensive knowledge on all mechanisms contributing to the interaction. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Gu, Jiwei; Andreasen, Jan J; Melgaard, Jacob; Lundbye-Christensen, Søren; Hansen, John; Schmidt, Erik B; Thorsteinsson, Kristinn; Graff, Claus
2017-02-01
To investigate if electrocardiogram (ECG) markers from routine preoperative ECGs can be used in combination with clinical data to predict new-onset postoperative atrial fibrillation (POAF) following cardiac surgery. Retrospective observational case-control study. Single-center university hospital. One hundred consecutive adult patients (50 POAF, 50 without POAF) who underwent coronary artery bypass grafting, valve surgery, or combinations. Retrospective review of medical records and registration of POAF. Clinical data and demographics were retrieved from the Western Denmark Heart Registry and patient records. Paper tracings of preoperative ECGs were collected from patient records, and ECG measurements were read by two independent readers blinded to outcome. A subset of four clinical variables (age, gender, body mass index, and type of surgery) were selected to form a multivariate clinical prediction model for POAF and five ECG variables (QRS duration, PR interval, P-wave duration, left atrial enlargement, and left ventricular hypertrophy) were used in a multivariate ECG model. Adding ECG variables to the clinical prediction model significantly improved the area under the receiver operating characteristic curve from 0.54 to 0.67 (with cross-validation). The best predictive model for POAF was a combined clinical and ECG model with the following four variables: age, PR-interval, QRS duration, and left atrial enlargement. ECG markers obtained from a routine preoperative ECG may be helpful in predicting new-onset POAF in patients undergoing cardiac surgery. Copyright © 2017 Elsevier Inc. All rights reserved.
Rahman, Rachel Jane; Hudson, Joanne; Thøgersen-Ntoumani, Cecilie; Doust, Jonathan H
2015-01-01
This research examined the processes underpinning changes in psychological well-being and behavioural regulation in cardiac rehabilitation (CR) patients using self-determination theory (SDT). A repeated measures design was used to identify the longitudinal relationships between SDT variables, psychological well-being and exercise behaviour during and following a structured CR programme. Participants were 389 cardiac patients (aged 36-84 years; M(age) = 64 ± 9 years; 34.3% female) referred to a 12-week-supervised CR programme. Psychological need satisfaction, behavioural regulation, health-related quality of life, physical self-worth, anxiety and depression were measured at programme entry, exit and six month post-programme. During the programme, increases in autonomy satisfaction predicted positive changes in behavioural regulation, and improvements in competence and relatedness satisfaction predicted improvements in behavioural regulation and well-being. Competence satisfaction also positively predicted habitual physical activity. Decreases in external regulation and increases in intrinsic motivation predicted improvements in physical self-worth and physical well-being, respectively. Significant longitudinal relationships were identified whereby changes during the programme predicted changes in habitual physical activity and the mental quality of life from exit to six month follow-up. Findings provide insight into the factors explaining psychological changes seen during CR. They highlight the importance of increasing patients' perceptions of psychological need satisfaction and self-determined motivation to improve well-being during the structured component of a CR programme and longer term physical activity.
Initial Efficacy of a Cardiac Rehabilitation Transition Program: Cardiac TRUST
Zullo, Melissa; Boxer, Rebecca; Moore, Shirley M.
2012-01-01
Patients recovering from cardiac events are increasingly using postacute care, such as home health care and skilled nursing facility services. The purpose of this pilot study was to test the initial efficacy, feasibility, and safety of a specially designed postacute care transitional rehabilitation intervention for cardiac patients. Cardiac Transitional Rehabilitation Using Self- Management Techniques (Cardiac TRUST) is a family-focused intervention that includes progressive low-intensity walking and education in self-management skills to facilitate recovery following a cardiac event. Using a randomized two-group design, exercise self-efficacy, steps walked, and participation in an outpatient cardiac rehabilitation program were compared in a sample of 38 older adults; 17 who received the Cardiac TRUST program and 21 who received usual care only. At discharge from postacute care, the intervention group had a trend for higher levels of self-efficacy for exercise outcomes (X=39.1, SD=7.4) than the usual care group (X=34.5; SD=7.0) (t-test 1.9, p=.06). During the 6 weeks following discharge, compared with the usual care group, the intervention group had more attendance in out-patient cardiac rehabilitation (33% compared to 11.8%, F=7.1, p=.03) and a trend toward more steps walked during the first week (X=1,307, SD=652 compared to X=782, SD=544, t-test 1.8, p=.07). The feasibility of the intervention was better for the home health participants than for those in the skilled nursing facility and there were no safety concerns. The provision of cardiac-focused rehabilitation during postacute care has the potential to bridge the gap in transitional services from hospitalization to outpatient cardiac rehabilitation for these patients at high risk for future cardiac events. Further evidence of the efficacy of Cardiac TRUST is warranted. PMID:22084960
Konerman, Matthew C; Lazarus, John J; Weinberg, Richard L; Shah, Ravi V; Ghannam, Michael; Hummel, Scott L; Corbett, James R; Ficaro, Edward P; Aaronson, Keith D; Colvin, Monica M; Koelling, Todd M; Murthy, Venkatesh L
2018-06-01
We evaluated the diagnostic and prognostic value of quantification of myocardial flow reserve (MFR) with positron emission tomography (PET) in orthotopic heart transplant patients. We retrospectively identified orthotopic heart transplant patients who underwent rubidium-82 cardiac PET imaging. The primary outcome was the composite of cardiovascular death, acute coronary syndrome, coronary revascularization, and heart failure hospitalization. Cox regression was used to evaluate the association of MFR with the primary outcome. The relationship of MFR and cardiac allograft vasculopathy severity in patients with angiography within 1 year of PET imaging was assessed using Spearman rank correlation and logistic regression. A total of 117 patients (median age, 60 years; 71% men) were identified. Twenty-one of 62 patients (34%) who underwent angiography before PET had cardiac allograft vasculopathy. The median time from orthotopic heart transplant to PET imaging was 6.4 years (median global MFR, 2.31). After a median of 1.4 years, 22 patients (19%) experienced the primary outcome. On an unadjusted basis, global MFR (hazard ratio, 0.22 per unit increase; 95% confidence interval, 0.09-0.50; P <0.001) and stress myocardial blood flow (hazard ratio, 0.48 per unit increase; 95% confidence interval, 0.29-0.79; P =0.004) were associated with the primary outcome. Decreased MFR independently predicted the primary outcome after adjustment for other variables. In 42 patients who underwent angiography within 12 months of PET, MFR and stress myocardial blood flow were associated with moderate-severe cardiac allograft vasculopathy (International Society of Heart and Lung Transplantation grade 2-3). MFR assessed by cardiac rubidium-82 PET imaging is a predictor of cardiovascular events after orthotopic heart transplant and is associated with cardiac allograft vasculopathy severity. © 2018 American Heart Association, Inc.
Day, Theodore Eugene; Sarawgi, Sandeep; Perri, Alexis; Nicolson, Susan C
2015-04-01
This study describes the use of discrete event simulation (DES) to model and analyze a large academic pediatric and test cardiac center. The objective was to identify a strategy, and to predict and test the effectiveness of that strategy, to minimize the number of elective cardiac procedures that are postponed because of a lack of available cardiac intensive care unit (CICU) capacity. A DES of the cardiac center at The Children's Hospital of Philadelphia was developed and was validated by use of 1 year of deidentified administrative patient data. The model was then used to analyze strategies for reducing postponements of cases requiring CICU care through improved scheduling of multipurpose space. Each of five alternative scenarios was simulated for ten independent 1-year runs. Reductions in simulated elective procedure postponements were found when a multipurpose procedure room (the hybrid room) was used for operations on Wednesday and Thursday, compared with Friday (as was the real-world use). The reduction Wednesday was statistically significant, with postponements dropping from 27.8 to 23.3 annually (95% confidence interval 18.8-27.8). Thus, we anticipate a relative reduction in postponements of 16.2%. Since the implementation, there have been two postponements from July 1 to November 21, 2014, compared with ten for the same time period in 2013. Simulation allows us to test planned changes in complex environments, including pediatric cardiac care. Reduction in postponements of cardiac procedures requiring CICU care is predicted through reshuffling schedules of existing multipurpose capacity, and these reductions appear to be achievable in the real world after implementation. Copyright © 2015 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.
Harrison, David A; Patel, Krishna; Nixon, Edel; Soar, Jasmeet; Smith, Gary B; Gwinnutt, Carl; Nolan, Jerry P; Rowan, Kathryn M
2014-08-01
The National Cardiac Arrest Audit (NCAA) is the UK national clinical audit for in-hospital cardiac arrest. To make fair comparisons among health care providers, clinical indicators require case mix adjustment using a validated risk model. The aim of this study was to develop and validate risk models to predict outcomes following in-hospital cardiac arrest attended by a hospital-based resuscitation team in UK hospitals. Risk models for two outcomes-return of spontaneous circulation (ROSC) for greater than 20min and survival to hospital discharge-were developed and validated using data for in-hospital cardiac arrests between April 2011 and March 2013. For each outcome, a full model was fitted and then simplified by testing for non-linearity, combining categories and stepwise reduction. Finally, interactions between predictors were considered. Models were assessed for discrimination, calibration and accuracy. 22,479 in-hospital cardiac arrests in 143 hospitals were included (14,688 development, 7791 validation). The final risk model for ROSC>20min included: age (non-linear), sex, prior length of stay in hospital, reason for attendance, location of arrest, presenting rhythm, and interactions between presenting rhythm and location of arrest. The model for hospital survival included the same predictors, excluding sex. Both models had acceptable performance across the range of measures, although discrimination for hospital mortality exceeded that for ROSC>20min (c index 0.81 versus 0.72). Validated risk models for ROSC>20min and hospital survival following in-hospital cardiac arrest have been developed. These models will strengthen comparative reporting in NCAA and support local quality improvement. Copyright © 2014 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
Harrison, David A.; Patel, Krishna; Nixon, Edel; Soar, Jasmeet; Smith, Gary B.; Gwinnutt, Carl; Nolan, Jerry P.; Rowan, Kathryn M.
2014-01-01
Aim The National Cardiac Arrest Audit (NCAA) is the UK national clinical audit for in-hospital cardiac arrest. To make fair comparisons among health care providers, clinical indicators require case mix adjustment using a validated risk model. The aim of this study was to develop and validate risk models to predict outcomes following in-hospital cardiac arrest attended by a hospital-based resuscitation team in UK hospitals. Methods Risk models for two outcomes—return of spontaneous circulation (ROSC) for greater than 20 min and survival to hospital discharge—were developed and validated using data for in-hospital cardiac arrests between April 2011 and March 2013. For each outcome, a full model was fitted and then simplified by testing for non-linearity, combining categories and stepwise reduction. Finally, interactions between predictors were considered. Models were assessed for discrimination, calibration and accuracy. Results 22,479 in-hospital cardiac arrests in 143 hospitals were included (14,688 development, 7791 validation). The final risk model for ROSC > 20 min included: age (non-linear), sex, prior length of stay in hospital, reason for attendance, location of arrest, presenting rhythm, and interactions between presenting rhythm and location of arrest. The model for hospital survival included the same predictors, excluding sex. Both models had acceptable performance across the range of measures, although discrimination for hospital mortality exceeded that for ROSC > 20 min (c index 0.81 versus 0.72). Conclusions Validated risk models for ROSC > 20 min and hospital survival following in-hospital cardiac arrest have been developed. These models will strengthen comparative reporting in NCAA and support local quality improvement. PMID:24830872
Subcutaneous Tissue Thickness is an Independent Predictor of Image Noise in Cardiac CT
Staniak, Henrique Lane; Sharovsky, Rodolfo; Pereira, Alexandre Costa; de Castro, Cláudio Campi; Benseñor, Isabela M.; Lotufo, Paulo A.; Bittencourt, Márcio Sommer
2014-01-01
Background Few data on the definition of simple robust parameters to predict image noise in cardiac computed tomography (CT) exist. Objectives To evaluate the value of a simple measure of subcutaneous tissue as a predictor of image noise in cardiac CT. Methods 86 patients underwent prospective ECG-gated coronary computed tomographic angiography (CTA) and coronary calcium scoring (CAC) with 120 kV and 150 mA. The image quality was objectively measured by the image noise in the aorta in the cardiac CTA, and low noise was defined as noise < 30HU. The chest anteroposterior diameter and lateral width, the image noise in the aorta and the skin-sternum (SS) thickness were measured as predictors of cardiac CTA noise. The association of the predictors and image noise was performed by using Pearson correlation. Results The mean radiation dose was 3.5 ± 1.5 mSv. The mean image noise in CT was 36.3 ± 8.5 HU, and the mean image noise in non-contrast scan was 17.7 ± 4.4 HU. All predictors were independently associated with cardiac CTA noise. The best predictors were SS thickness, with a correlation of 0.70 (p < 0.001), and noise in the non-contrast images, with a correlation of 0.73 (p < 0.001). When evaluating the ability to predict low image noise, the areas under the ROC curve for the non-contrast noise and for the SS thickness were 0.837 and 0.864, respectively. Conclusion Both SS thickness and CAC noise are simple accurate predictors of cardiac CTA image noise. Those parameters can be incorporated in standard CT protocols to adequately adjust radiation exposure. PMID:24173136
Gastric myoelectrical and autonomic cardiac reactivity to laboratory stressors
GIANAROS, PETER J.; QUIGLEY, KAREN S.; MORDKOFF, J. TOBY; STERN, ROBERT M.
2010-01-01
We evaluated the effects of two laboratory stressors (speech preparation and isometric handgrip) on gastric myoelectrical and autonomic cardiac activity, and the extent to which autonomic responses to these stressors and somatization predict reports of motion sickness during exposure to a rotating optokinetic drum. Both stressors prompted a decrease in preejection period (PEP) and respiratory sinus arrhythmia (RSA), and an increase in a dysrhythmic pattern of gastric myoelectrical activity, termed gastric tachyarrhythmia. Stressor-induced decreases in RSA and higher somatization scores predicted increased reports of motion sickness during drum rotation. These results demonstrate that laboratory stressors concurrently affect gastric myoelectrical activity and autonomic control of the heart, and that stressor-induced decreases in RSA and higher levels of somatization predict motion sickness susceptibility. PMID:11446577
Marín-Royo, Gema; Martínez-Martínez, Ernesto; Gutiérrez, Beatriz; Jurado-López, Raquel; Gallardo, Isabel; Montero, Olimpio; Bartolomé, Mª Visitación; Román, José Alberto San; Salaices, Mercedes; Nieto, María Luisa; Cachofeiro, Victoria
To explore the impact of obesity on the cardiac lipid profile in rats with diet-induced obesity, as well as to evaluate whether or not the specific changes in lipid species are associated with cardiac fibrosis. Male Wistar rats were fed either a high-fat diet (HFD, 35% fat) or standard diet (3.5% fat) for 6 weeks. Cardiac lipids were analyzed using by liquid chromatography-tandem mass spectrometry. HFD rats showed cardiac fibrosis and enhanced levels of cardiac superoxide anion (O 2 ), HOMA index, adiposity, and plasma leptin, as well as a reduction in those of cardiac glucose transporter (GLUT 4), compared with control animals. Cardiac lipid profile analysis showed a significant increase in triglycerides, especially those enriched with palmitic, stearic, and arachidonic acid. An increase in levels of diacylglycerol (DAG) was also observed. No changes in cardiac levels of diacyl phosphatidylcholine, or even a reduction in total levels of diacyl phosphatidylethanolamine, diacyl phosphatidylinositol, and sphingomyelins (SM) was observed in HFD, as compared with control animals. After adjustment for other variables (oxidative stress, HOMA, cardiac hypertrophy), total levels of DAG were independent predictors of cardiac fibrosis while the levels of total SM were independent predictors of the cardiac levels of GLUT 4. These data suggest that obesity has a significant impact on cardiac lipid composition, although it does not modulate the different species in a similar manner. Nonetheless, these changes are likely to participate in the cardiac damage in the context of obesity, since total DAG levels can facilitate the development of cardiac fibrosis, and SM levels predict GLUT4 levels. Copyright © 2017 Sociedad Española de Arteriosclerosis. Publicado por Elsevier España, S.L.U. All rights reserved.
Meyer, Fiorenza Angela; von Känel, Roland; Saner, Hugo; Schmid, Jean-Paul; Stauber, Stefanie
2015-10-01
Little is known as to whether negative emotions adversely impact the prognosis of patients who undergo cardiac rehabilitation. We prospectively investigated the predictive value of state negative affect (NA) assessed at discharge from cardiac rehabilitation for prognosis and the moderating role of positive affect (PA) on the effect of NA on outcomes. A total of 564 cardiac patients (62.49 ± 11.51) completed a comprehensive three-month outpatient cardiac rehabilitation program, filling in the Global Mood Scale (GMS) at discharge. The combined endpoint was cardiovascular disease (CVD)-related hospitalizations plus all-cause mortality at follow-up. Cox regression models estimated the predictive value of NA, as well as the moderating influence of PA on outcomes. Survival models were adjusted for sociodemographic factors, traditional cardiovascular risk factors, and severity of disease. During a mean follow-up period of 3.4 years, 71 patients were hospitalized for a CVD-related event and 15 patients died. NA score (range 0-20) was a significant and independent predictor (hazard ratio (HR) 1.091, 95% confidence interval (CI) 1.012-1.175; p = 0.023) with a three-point higher level in NA increasing the relative risk by 9.1%. Furthermore, PA interacted significantly with NA (p < 0.001). The relative risk of poor prognosis with NA was increased in patients with low PA (p = 0.012) but remained unchanged in combination with high PA (p = 0.12). The combination of NA with low PA was particularly predictive of poor prognosis. Whether reduction of NA and increase of PA, particularly in those with high NA, improves outcome needs to be tested. © The European Society of Cardiology 2014.
Predictive value of EEG in postanoxic encephalopathy: A quantitative model-based approach.
Efthymiou, Evdokia; Renzel, Roland; Baumann, Christian R; Poryazova, Rositsa; Imbach, Lukas L
2017-10-01
The majority of comatose patients after cardiac arrest do not regain consciousness due to severe postanoxic encephalopathy. Early and accurate outcome prediction is therefore essential in determining further therapeutic interventions. The electroencephalogram is a standardized and commonly available tool used to estimate prognosis in postanoxic patients. The identification of pathological EEG patterns with poor prognosis relies however primarily on visual EEG scoring by experts. We introduced a model-based approach of EEG analysis (state space model) that allows for an objective and quantitative description of spectral EEG variability. We retrospectively analyzed standard EEG recordings in 83 comatose patients after cardiac arrest between 2005 and 2013 in the intensive care unit of the University Hospital Zürich. Neurological outcome was assessed one month after cardiac arrest using the Cerebral Performance Category. For a dynamic and quantitative EEG analysis, we implemented a model-based approach (state space analysis) to quantify EEG background variability independent from visual scoring of EEG epochs. Spectral variability was compared between groups and correlated with clinical outcome parameters and visual EEG patterns. Quantitative assessment of spectral EEG variability (state space velocity) revealed significant differences between patients with poor and good outcome after cardiac arrest: Lower mean velocity in temporal electrodes (T4 and T5) was significantly associated with poor prognostic outcome (p<0.005) and correlated with independently identified visual EEG patterns such as generalized periodic discharges (p<0.02). Receiver operating characteristic (ROC) analysis confirmed the predictive value of lower state space velocity for poor clinical outcome after cardiac arrest (AUC 80.8, 70% sensitivity, 15% false positive rate). Model-based quantitative EEG analysis (state space analysis) provides a novel, complementary marker for prognosis in postanoxic encephalopathy. Copyright © 2017 Elsevier B.V. All rights reserved.
Temporal and spectral imaging with micro-CT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnston, Samuel M.; Johnson, G. Allan; Badea, Cristian T.
2012-08-15
Purpose: Micro-CT is widely used for small animal imaging in preclinical studies of cardiopulmonary disease, but further development is needed to improve spatial resolution, temporal resolution, and material contrast. We present a technique for visualizing the changing distribution of iodine in the cardiac cycle with dual source micro-CT. Methods: The approach entails a retrospectively gated dual energy scan with optimized filters and voltages, and a series of computational operations to reconstruct the data. Projection interpolation and five-dimensional bilateral filtration (three spatial dimensions + time + energy) are used to reduce noise and artifacts associated with retrospective gating. We reconstruct separatemore » volumes corresponding to different cardiac phases and apply a linear transformation to decompose these volumes into components representing concentrations of water and iodine. Since the resulting material images are still compromised by noise, we improve their quality in an iterative process that minimizes the discrepancy between the original acquired projections and the projections predicted by the reconstructed volumes. The values in the voxels of each of the reconstructed volumes represent the coefficients of linear combinations of basis functions over time and energy. We have implemented the reconstruction algorithm on a graphics processing unit (GPU) with CUDA. We tested the utility of the technique in simulations and applied the technique in an in vivo scan of a C57BL/6 mouse injected with blood pool contrast agent at a dose of 0.01 ml/g body weight. Postreconstruction, at each cardiac phase in the iodine images, we segmented the left ventricle and computed its volume. Using the maximum and minimum volumes in the left ventricle, we calculated the stroke volume, the ejection fraction, and the cardiac output. Results: Our proposed method produces five-dimensional volumetric images that distinguish different materials at different points in time, and can be used to segment regions containing iodinated blood and compute measures of cardiac function. Conclusions: We believe this combined spectral and temporal imaging technique will be useful for future studies of cardiopulmonary disease in small animals.« less
Landmark lecture on cardiac intensive care and anaesthesia: continuum and conundrums.
Laussen, Peter C
2017-12-01
Cardiac anesthesia and critical care provide an important continuum of care for patients with congenital heart disease. Clinicians in both areas work in complex environments in which the interactions between humans and technology is critical. Understanding our contributions to outcomes (modifiable risk) and our ability to perceive and predict an evolving clinical state (low failure-to-predict rate) are important performance metrics. Improved methods for capturing continuous physiologic signals will allow for new and interactive approaches to data visualization, and for sophisticated and iterative data modeling that will help define a patient's phenotype and response to treatment (precision physiology).
Gopal, Deepa M; Sam, Flora
2013-08-01
Dilated cardiomyopathy (DCM) is characterized by deteriorating cardiac performance, impaired contraction and dilation of the left ventricle (or both ventricles). Blood markers--known as "biomarkers"--allow insight into underlying pathophysiologic mechanisms and biologic pathways while predicting outcomes and guiding heart failure management and/or therapies. In this review, we provide an alternative approach to conceptualize heart failure biomarkers: the cardiomyocyte, its surrounding microenvironment, and the macroenvironment, integrating these entities which may impact cellular processes involved in the pathogenesis and/or propagation of DCM. Newer biomarkers of left ventricular systolic dysfunction can be categorized under: (a) myocyte stress and stretch, (b) myocyte apoptosis, (c) cardiac interstitium, (d) inflammation, (e) oxidative stress, (f) cardiac energetics, (g) neurohormones, and (h) renal biomarkers. Biomarkers provide insight into the pathogenesis of DCM while predicting and potentially providing prognostic information in these patients with heart failure.
Gopal, Deepa M.; Sam, Flora
2013-01-01
Background Dilated cardiomyopathy (DCM) is characterized by deteriorating cardiac performance and impaired contraction and dilation of the left (or both) ventricles. Blood markers – known as “biomarkers” allow insight into underlying pathophysiologic mechanisms and biologic pathways, while predicting outcomes and guiding heart failure management and/or therapies. Content In this review, we provide an alternative approach to conceptualize heart failure biomarkers: the cardiomyocyte, its surrounding microenvironment, and the macroenvironment with clear interaction between these entities which may impact cellular processes involved in the pathogenesis and/or propagation of DCM. Newer biomarkers of left ventricular systolic dysfunction can be categorized under: (a) myocyte stress and stretch, (b) myocyte apoptosis, (c) cardiac interstitium, (d) inflammation, (e) oxidative stress, (f) cardiac energetics, (g) neurohormones and (h) renal biomarkers. Summary Biomarkers provide insight into the pathogenesis of DCM while predicting and potentially providing prognostic information in these patients with heart failure. PMID:23609585
ERIC Educational Resources Information Center
Pedersen, Frank A.; And Others
1996-01-01
Examined cardiac response and ratings of subjective aversiveness to recordings of unfamiliar infant cries in 60 primiparous women at 32 weeks' gestation. Mothers who prenatally rated the crying recordings as more aversive postnatally described their infants as more fussy and unpredictable. Women who showed greater cardiac acceleration to the cries…
Chapman, Andrew R.; Lee, Kuan Ken; McAllister, David A.; Cullen, Louise; Greenslade, Jaimi H.; Parsonage, William; Worster, Andrew; Kavsak, Peter A.; Blankenberg, Stefan; Neumann, Johannes; Söerensen, Nils A.; Westermann, Dirk; Buijs, Madelon M.; Verdel, Gerard J. E.; Pickering, John W.; Than, Martin P.; Twerenbold, Raphael; Badertscher, Patrick; Sabti, Zaid; Mueller, Christian; Anand, Atul; Adamson, Philip; Strachan, Fiona E.; Ferry, Amy; Sandeman, Dennis; Gray, Alasdair; Body, Richard; Keevil, Brian; Carlton, Edward; Greaves, Kim; Korley, Frederick K.; Metkus, Thomas S.; Sandoval, Yader; Apple, Fred S.; Newby, David E.; Shah, Anoop S. V.
2017-01-01
Importance High-sensitivity cardiac troponin I testing is widely used to evaluate patients with suspected acute coronary syndrome. A cardiac troponin concentration of less than 5 ng/L identifies patients at presentation as low risk, but the optimal threshold is uncertain. Objective To evaluate the performance of a cardiac troponin I threshold of 5 ng/L at presentation as a risk stratification tool in patients with suspected acute coronary syndrome. Data Sources Systematic search of MEDLINE, EMBASE, Cochrane, and Web of Science databases from January 1, 2006, to March 18, 2017. Study Selection Prospective studies measuring high-sensitivity cardiac troponin I concentrations in patients with suspected acute coronary syndrome in which the diagnosis was adjudicated according to the universal definition of myocardial infarction. Data Extraction and Synthesis The systematic review identified 19 cohorts. Individual patient-level data were obtained from the corresponding authors of 17 cohorts, with aggregate data from 2 cohorts. Meta-estimates for primary and secondary outcomes were derived using a binomial-normal random-effects model. Main Outcomes and Measures The primary outcome was myocardial infarction or cardiac death at 30 days. Performance was evaluated in subgroups and across a range of troponin concentrations (2-16 ng/L) using individual patient data. Results Of 11 845 articles identified, 104 underwent full-text review, and 19 cohorts from 9 countries were included. Among 22 457 patients included in the meta-analysis (mean age, 62 [SD, 15.5] years; n = 9329 women [41.5%]), the primary outcome occurred in 2786 (12.4%). Cardiac troponin I concentrations were less than 5 ng/L at presentation in 11 012 patients (49%), in whom there were 60 missed index or 30-day events (59 index myocardial infarctions, 1 myocardial infarction at 30 days, and no cardiac deaths at 30 days). This resulted in a negative predictive value of 99.5% (95% CI, 99.3%-99.6%) for the primary outcome. There were no cardiac deaths at 30 days and 7 (0.1%) at 1 year, with a negative predictive value of 99.9% (95% CI, 99.7%-99.9%) for cardiac death. Conclusions and Relevance Among patients with suspected acute coronary syndrome, a high-sensitivity cardiac troponin I concentration of less than 5 ng/L identified those at low risk of myocardial infarction or cardiac death within 30 days. Further research is needed to understand the clinical utility and cost-effectiveness of this approach to risk stratification. PMID:29127948
Chapman, Andrew R; Lee, Kuan Ken; McAllister, David A; Cullen, Louise; Greenslade, Jaimi H; Parsonage, William; Worster, Andrew; Kavsak, Peter A; Blankenberg, Stefan; Neumann, Johannes; Sörensen, Nils A; Westermann, Dirk; Buijs, Madelon M; Verdel, Gerard J E; Pickering, John W; Than, Martin P; Twerenbold, Raphael; Badertscher, Patrick; Sabti, Zaid; Mueller, Christian; Anand, Atul; Adamson, Philip; Strachan, Fiona E; Ferry, Amy; Sandeman, Dennis; Gray, Alasdair; Body, Richard; Keevil, Brian; Carlton, Edward; Greaves, Kim; Korley, Frederick K; Metkus, Thomas S; Sandoval, Yader; Apple, Fred S; Newby, David E; Shah, Anoop S V; Mills, Nicholas L
2017-11-21
High-sensitivity cardiac troponin I testing is widely used to evaluate patients with suspected acute coronary syndrome. A cardiac troponin concentration of less than 5 ng/L identifies patients at presentation as low risk, but the optimal threshold is uncertain. To evaluate the performance of a cardiac troponin I threshold of 5 ng/L at presentation as a risk stratification tool in patients with suspected acute coronary syndrome. Systematic search of MEDLINE, EMBASE, Cochrane, and Web of Science databases from January 1, 2006, to March 18, 2017. Prospective studies measuring high-sensitivity cardiac troponin I concentrations in patients with suspected acute coronary syndrome in which the diagnosis was adjudicated according to the universal definition of myocardial infarction. The systematic review identified 19 cohorts. Individual patient-level data were obtained from the corresponding authors of 17 cohorts, with aggregate data from 2 cohorts. Meta-estimates for primary and secondary outcomes were derived using a binomial-normal random-effects model. The primary outcome was myocardial infarction or cardiac death at 30 days. Performance was evaluated in subgroups and across a range of troponin concentrations (2-16 ng/L) using individual patient data. Of 11 845 articles identified, 104 underwent full-text review, and 19 cohorts from 9 countries were included. Among 22 457 patients included in the meta-analysis (mean age, 62 [SD, 15.5] years; n = 9329 women [41.5%]), the primary outcome occurred in 2786 (12.4%). Cardiac troponin I concentrations were less than 5 ng/L at presentation in 11 012 patients (49%), in whom there were 60 missed index or 30-day events (59 index myocardial infarctions, 1 myocardial infarction at 30 days, and no cardiac deaths at 30 days). This resulted in a negative predictive value of 99.5% (95% CI, 99.3%-99.6%) for the primary outcome. There were no cardiac deaths at 30 days and 7 (0.1%) at 1 year, with a negative predictive value of 99.9% (95% CI, 99.7%-99.9%) for cardiac death. Among patients with suspected acute coronary syndrome, a high-sensitivity cardiac troponin I concentration of less than 5 ng/L identified those at low risk of myocardial infarction or cardiac death within 30 days. Further research is needed to understand the clinical utility and cost-effectiveness of this approach to risk stratification.
Financial strain predicts recurrent events among women with coronary artery disease.
Georgiades, Anastasia; Janszky, Imre; Blom, May; László, Krisztina D; Ahnve, Staffan
2009-06-26
Although a number of epidemiological studies have found an association between socioeconomic status (SES) indices such as income and education and coronary morbidity and mortality, few have looked at health consequences arising from actually experiencing financial shortcomings. The objective of the present study was to examine whether financial strain predicts recurrent coronary artery disease (CAD) events among women with established CAD. Two hundred two women (mean age 62+/-9 years) hospitalized for an acute coronary event were followed over a period of 3.5 years. Demographic, socioeconomic, lifestyle-related, psychosocial and biological characteristics were obtained by means of questionnaires and clinical examination. Data on recurrent cardiac events were collected from the Swedish discharge and death registers. Women experiencing financial strain over the past year had an increased risk for recurrent events, i.e. the combination of all-cause mortality, new acute myocardial infarction and unstable angina pectoris during the follow-up with an unadjusted hazard ratio (HR) of 3.2 (95% CI 1.6-6.6), and a HR of 2.76 (95% CI 1.02-7.50) after controlling for education, household income, age, cohabiting status, inclusion diagnosis and rehabilitation therapy. Adjustment for potential mediators, i.e. psychosocial factors, lipids, diabetes mellitus, smoking, body-mass index, blood pressure, physical activity, alcohol consumption, participation in other cardiac rehabilitation programs did not alter the results significantly. Financial strain was a predictor for recurrent events among women with CAD, independently of commonly used SES indicators such as education and household income. Future studies will have to explore the mechanism behind this association.
Matsui, T; Arai, I; Gotoh, S; Hattori, H; Takase, B; Kikuchi, M; Ishihara, M
2005-10-01
The impaired balance of the low-frequency/high-frequency ratio obtained from spectral components of RR intervals can be a diagnostic test for sepsis. In addition, it is known that a reduction of heart rate variability (HRV) is useful in identifying septic patients at risk of the development of multiple organ dysfunction syndrome (MODS). We have reported a non-contact method using a microwave radar to monitor the heart and respiratory rates of a healthy person placed inside an isolator or of experimental animals exposed to toxic materials. With the purpose of preventing secondary exposure of medical personnel to toxic materials under biochemical hazard conditions, we designed a novel apparatus for non-contact measurement of HRV using a 1215 MHz microwave radar, a high-pass filter, and a personal computer. The microwave radar monitors only the small reflected waves from the subject's chest wall, which are modulated by the cardiac and respiratory motion. The high-pass filter enhances the cardiac signal and attenuates the respiratory signal. In a human trial, RR intervals derived from the non-contact apparatus significantly correlated with those derived from ECG (r=0.98, P<0.0001). The non-contact apparatus showed a similar power spectrum of RR intervals to that of ECG. Our non-contact HRV measurement apparatus appears promising for future pre-hospital monitoring of septic patients or for predicting MODS patients, inside isolators or in the field for mass casualties under biochemical hazard circumstances.
Chequel, Mathieu; Ollitrault, Pierre; Saloux, Eric; Parienti, Jean-Jacques; Fischer, Marc-Olivier; Desgué, Julien; Allouche, Stéphane; Milliez, Paul; Alexandre, Joachim
2016-01-01
Post-operative atrial fibrillation (POAF) is a major and frequent complication occurring after cardiac surgery, contributing to prolonged intensive care and hospital stays and is associated with several cardiovascular complications. The exact mechanisms and signaling pathways involved in the development of POAF seem to be multifactorial and remain to date incompletely understood. β-blockers and amiodarone are the first line preventive drugs but are partially effective and near 30% of POAF resist to these strategies. In this work, we review the current knowledge about pathophysiological POAF mechanisms and preventive pharmacological strategies. We also discuss the rational for the use of pre-operative plasma aldosterone and galectin-3 (Gal-3) levels as predictive biomarkers of POAF and the potential role of aldosterone antagonists in the POAF preventive strategy. POAF is a major complication occurring after cardiac surgery. In this context, there is some evidence indicating that renin-angiotensin-aldosterone system and Gal-3 could be very useful predictive biomarkers of POAF and potentially interesting therapeutic target to prevent POAF occurrence. We present the rationale and the design of the ALDO-POAF trial (ALDOsterone for prediction of Post- Operative Atrial Fibrillation, NCT 02814903).
Trends in cardiac catheterization laboratories in the United States.
Sheldon, W C
2001-05-01
The Society for Cardiac Angiography and Interventions has periodically published a Directory of Cardiac Catheterization Laboratories in the United States. All known catheterization laboratories are surveyed and certain operational characteristics are queried. These surveys, in 1983, 1987, 1993, 1995 and 1998, have demonstrated a 2.5 fold increase in cardiac catheterization laboratories since 1983, corresponding increases in numbers of physicians that perform procedures, and in the numbers of procedures performed, reflecting advances in cardiovascular medicine and technology. These surveys have also documented the evolution of interventional techniques, and a shift away from film based imaging, to digitally based methods. These data provide a substrate for consideration of national cardiovascular objectives and planning of future resource allocation by cardiovascular physicians and their colleagues. Copyright 2001 Wiley-Liss, Inc.
Evolution of Cardiac Biomodels from Computational to Therapeutics.
Rathinam, Alwin Kumar; Mokhtar, Raja Amin Raja
2016-08-23
Biomodeling the human anatomy in exact structure and size is an exciting field of medical science. Utilizing medical data from various medical imaging topography, the data of an anatomical structure can be extracted and converted into a three-dimensional virtual biomodel; thereafter a physical biomodel can be generated utilizing rapid prototyping machines. Here, we have reviewed the utilization of this technology and have provided some guidelines to develop biomodels of cardiac structures. Cardiac biomodels provide insights for cardiothoracic surgeons, cardiologists, and patients alike. Additionally, the technology may have future usability for tissue engineering, robotic surgery, or routine hospital usage as a diagnostic and therapeutic tool for cardiovascular diseases (CVD). Given the broad areas of application of cardiac biomodels, attention should be given to further research and development of their potential.
Xiu, Jiancheng; Cui, Kai; Wang, Yuegang; Zheng, Hua; Chen, Gangbin; Feng, Qian; Bin, Jianping; Wu, Juefei; Porter, Thomas R
2017-03-01
Myocardial perfusion (MP) imaging during stress myocardial contrast echocardiography (MCE) improves the detection of coronary artery disease (CAD). However, its prognostic value to predict cardiac events in patients with known or suspected CAD is still undefined. A search was conducted for single- or multicenter prospective studies that evaluated the prognostic value of stress MCE in patients with known or suspected CAD. A database search was performed through June 2015. Effect sizes of relative risk ratios (RRs) with their corresponding 95% CIs were used to evaluate the association between the occurrence of total cardiac events (cardiac death, nonfatal myocardial infarction, coronary revascularization) and hard cardiac events (cardiac death and nonfatal myocardial infarction) in subjects with normal and abnormal MP measured by MCE. The Cochran Q statistic and the I 2 statistic were used to assess heterogeneity. A comprehensive literature search of the MEDLINE, Google Scholar, Cochrane, and Embase databases identified 11 studies enrolling a total of 4,045 patients. The overall analysis of RRs revealed that patients with abnormal MP were at higher risk for total cardiac events compared with patients with normal MP (RR, 5.58; 95% CI, 3.64-8.57; P < .001), with low heterogeneity among trials (I 2 = 48.15%, Q = 7.71, P = .103). Similarly, patients with abnormal MP were at higher risk for hard cardiac events compared with patients with normal MP (RR, 4.99; 95% CI, 1.75-14.32; P = .003), with significant heterogeneity among trials (I 2 = 81.48%, Q = 21.59, P < .001). The results of this meta-analysis suggest that MP assessment using stress MCE is an effective prognostic tool for predicting the occurrence of cardiac events in patients with known or suspected CAD. Copyright © 2016 American Society of Echocardiography. Published by Elsevier Inc. All rights reserved.
Gu, Wan-Jie; Hou, Bai-Ling; Kwong, Joey S W; Tian, Xin; Qian, Yue; Cui, Yin; Hao, Jing; Li, Ju-Chen; Ma, Zheng-Liang; Gu, Xiao-Ping
2018-05-01
The association between intraoperative hypotension (IOH) and postoperative outcomes is not fully understood. We performed a meta-analysis to determine whether IOH is associated with increased risk of 30-day mortality, major adverse cardiac events (MACEs) and acute kidney injury (AKI) after non-cardiac surgery. We searched PubMed and Embase through May 2016 to identify cohort studies that investigated the association between IOH and risk of 30-day mortality, MACEs, or AKI in adult patients after non-cardiac surgery. Ascertainment of IOH and assessment of outcomes were defined by the individual study. Considering the level of clinical heterogeneity, adjusted odds ratios (ORs) with 95% confidence interval (CIs) were pooled using a random-effects model. This meta-analysis is registered on PROSPERO (CRD42016049405). We included 14 cohort studies that were heterogeneous in terms of definition of IOH. IOH alone was associated with increased risk of 30-day mortality (OR 1.29 [95% CI, 1.19-1.41]), MACEs (OR 1.59 [95% CI, 1.23-2.05]), especially myocardial injury (OR 1.67 [95% CI, 1.31-2.13]), and AKI (OR 1.39 [95% CI, 1.09-1.77]). Triple low (IOH coincident with low bispectral index and low minimum alveolar concentration) also predicts increased risk of 30-day mortality (OR 1.32 [95% CI, 1.03-1.68]). IOH alone significantly increases the risk of postoperative 30-day mortality, MACEs, especially myocardial injury, and AKI in adult patients after non-cardiac surgery. Triple low also predicts increased risk of 30-day mortality after non-cardiac surgery. These findings provide evidence that IOH should be recognized as an independent risk factor for postoperative adverse outcomes after non-cardiac surgery. Copyright © 2018 Elsevier B.V. All rights reserved.
Hannan, Edward L; Cozzens, Kimberly; King, Spencer B; Walford, Gary; Shah, Nirav R
2012-06-19
In 1988, the New York State Health Commissioner was confronted with hospital-level data demonstrating very large, multiple-year, interhospital variations in short-term mortality and complications for cardiac surgery. The concern with the extent to which these differences were due to variations in patients' pre-surgical severity of illness versus hospitals' quality of care led to the development of clinical registries for cardiac surgery in 1989 and for percutaneous coronary interventions in 1992 in New York. In 1990, the Department of Health released hospitals' risk-adjusted cardiac surgery mortality rates for the first time, and shortly thereafter, similar data were released for hospitals and physicians for percutaneous coronary interventions, cardiac valve surgery, and pediatric cardiac surgery (only hospital data). This practice is still ongoing. The purpose of this communication is to relate the history of this initiative, including changes or purported changes that have occurred since the public release of cardiac data. These changes include decreases in risk-adjusted mortality, cessation of cardiac surgery in New York by low-volume and high-mortality surgeons, out-of-state referral or avoidance of cardiac surgery/angioplasty for high-risk patients, alteration of contracting choices by insurance companies, and modifications in market share of cardiac hospitals. Evidence related to these impacts is reviewed and critiqued. This communication also includes a summary of numerous studies that used New York's cardiac registries to examine a variety of policy issues regarding the choice and use of cardiac procedures, the comparative effectiveness of competing treatment options, and the examination of the relationship among processes, structures, and outcomes of cardiac care. Copyright © 2012 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Trends in Cardiac Pacemaker Batteries
Mallela, Venkateswara Sarma; Ilankumaran, V; Rao, N.Srinivasa
2004-01-01
Batteries used in Implantable cardiac pacemakers-present unique challenges to their developers and manufacturers in terms of high levels of safety and reliability. In addition, the batteries must have longevity to avoid frequent replacements. Technological advances in leads/electrodes have reduced energy requirements by two orders of magnitude. Micro-electronics advances sharply reduce internal current drain concurrently decreasing size and increasing functionality, reliability, and longevity. It is reported that about 600,000 pacemakers are implanted each year worldwide and the total number of people with various types of implanted pacemaker has already crossed 3 million. A cardiac pacemaker uses half of its battery power for cardiac stimulation and the other half for housekeeping tasks such as monitoring and data logging. The first implanted cardiac pacemaker used nickel-cadmium rechargeable battery, later on zinc-mercury battery was developed and used which lasted for over 2 years. Lithium iodine battery invented and used by Wilson Greatbatch and his team in 1972 made the real impact to implantable cardiac pacemakers. This battery lasts for about 10 years and even today is the power source for many manufacturers of cardiac pacemakers. This paper briefly reviews various developments of battery technologies since the inception of cardiac pacemaker and presents the alternative to lithium iodine battery for the near future. PMID:16943934
In Vivo, High-Frequency Three-Dimensional Cardiac MR Elastography: Feasibility in Normal Volunteers
Arani, Arvin; Glaser, Kevin L.; Arunachalam, Shivaram P.; Rossman, Phillip J.; Lake, David S.; Trzasko, Joshua D.; Manduca, Armando; McGee, Kiaran P.; Ehman, Richard L.; Araoz, Philip A.
2016-01-01
Purpose Noninvasive stiffness imaging techniques (elastography) can image myocardial tissue biomechanics in vivo. For cardiac MR elastography (MRE) techniques, the optimal vibration frequency for in vivo experiments is unknown. Furthermore, the accuracy of cardiac MRE has never been evaluated in a geometrically accurate phantom. Therefore, the purpose of this study was to determine the necessary driving frequency to obtain accurate three-dimensional (3D) cardiac MRE stiffness estimates in a geometrically accurate diastolic cardiac phantom and to determine the optimal vibration frequency that can be introduced in healthy volunteers. Methods The 3D cardiac MRE was performed on eight healthy volunteers using 80 Hz, 100 Hz, 140 Hz, 180 Hz, and 220 Hz vibration frequencies. These frequencies were tested in a geometrically accurate diastolic heart phantom and compared with dynamic mechanical analysis (DMA). Results The 3D Cardiac MRE was shown to be feasible in volunteers at frequencies as high as 180 Hz. MRE and DMA agreed within 5% at frequencies greater than 180 Hz in the cardiac phantom. However, octahedral shear strain signal to noise ratios and myocardial coverage was shown to be highest at a frequency of 140 Hz across all subjects. Conclusion This study motivates future evaluation of high-frequency 3D MRE in patient populations. PMID:26778442
Injectable Hydrogels for Cardiac Tissue Repair after Myocardial Infarction
Khattab, Ahmad; Islam, Mohammad Ariful; Hweij, Khaled Abou; Zeitouny, Joya; Waters, Renae; Sayegh, Malek; Hossain, Md Monowar; Paul, Arghya
2015-01-01
Cardiac tissue damage due to myocardial infarction (MI) is one of the leading causes of mortality worldwide. The available treatments of MI include pharmaceutical therapy, medical device implants, and organ transplants, all of which have severe limitations including high invasiveness, scarcity of donor organs, thrombosis or stenosis of devices, immune rejection, and prolonged hospitalization time. Injectable hydrogels have emerged as a promising solution for in situ cardiac tissue repair in infarcted hearts after MI. In this review, an overview of various natural and synthetic hydrogels for potential application as injectable hydrogels in cardiac tissue repair and regeneration is presented. The review starts with brief discussions about the pathology of MI, its current clinical treatments and their limitations, and the emergence of injectable hydrogels as a potential solution for post MI cardiac regeneration. It then summarizes various hydrogels, their compositions, structures and properties for potential application in post MI cardiac repair, and recent advancements in the application of injectable hydrogels in treatment of MI. Finally, the current challenges associated with the clinical application of injectable hydrogels to MI and their potential solutions are discussed to help guide the future research on injectable hydrogels for translational therapeutic applications in regeneration of cardiac tissue after MI. PMID:27668147
The pathogenesis and treatment of cardiac atrophy in cancer cachexia.
Murphy, Kate T
2016-02-15
Cancer cachexia is a multifactorial syndrome characterized by a progressive loss of skeletal muscle mass associated with significant functional impairment. In addition to a loss of skeletal muscle mass and function, many patients with cancer cachexia also experience cardiac atrophy, remodeling, and dysfunction, which in the field of cancer cachexia is described as cardiac cachexia. The cardiac alterations may be due to underlying heart disease, the cancer itself, or problems initiated by the cancer treatment and, unfortunately, remains largely underappreciated by clinicians and basic scientists. Despite recent major advances in the treatment of cancer, little progress has been made in the treatment of cardiac cachexia in cancer, and much of this is due to lack of information regarding the mechanisms. This review focuses on the cardiac atrophy associated with cancer cachexia, describing some of the known mechanisms and discussing the current and future therapeutic strategies to treat this condition. Above all else, improved awareness of the condition and an increased focus on identification of mechanisms and therapeutic targets will facilitate the eventual development of an effective treatment for cardiac atrophy in cancer cachexia. Copyright © 2016 the American Physiological Society.
Preoperative prediction of intensive care unit stay following cardiac surgery.
De Cocker, Jeroen; Messaoudi, Nouredin; Stockman, Bernard A; Bossaert, Leo L; Rodrigus, Inez E R
2011-01-01
Following cardiac surgery, a great variety in intensive care unit (ICU) stay is observed, making it often difficult to adequately predict ICU stay preoperatively. Therefore, a study was conducted to investigate, which preoperative variables are independent risk factors for a prolonged ICU stay and whether a patient's risk of experiencing an extended ICU stay can be estimated from these predictors. The records of 1566 consecutive adult patients who underwent cardiac surgery at our institution were analysed retrospectively over a 2-year period. Procedures included in the analyses were coronary artery bypass grafting, valve replacement or repair, ascending and aortic arch surgery, ventricular rupture and aneurysm repair, septal myectomy and cardiac tumour surgery. For this patient group, ICU stay was registered and 57 preoperative variables were collected for analysis. Descriptives and log-rank tests were calculated and Kaplan-Meier curves drawn for all variables. Significant predictors in the univariate analyses were included in a Cox proportional hazards model. The definitive model was validated on an independent sample of 395 consecutive adult patients who underwent cardiac surgery at our institution over an additional 6-month period. In this patient group, the accuracy and discriminative abilities of the model were evaluated. Twelve independent preoperative predictors of prolonged ICU stay were identified: age at surgery>75 years, female gender, dyspnoea status>New York Heart Association class II (NYHA II), unstable symptoms, impaired kidney function (estimated glomerular filtration rate (eGFR)<60 ml min(-1)), extracardiac arterial disease, presence of arrhythmias, mitral insufficiency>colour flow mapping (CFM) grade II, inotropic support, intra-aortic balloon pumping (IABP), non-elective procedures and aortic surgery. The individual effect of every predictor on ICU stay was quantified and inserted into a mathematical algorithm (called the Morbidity Defining Cardiosurgical (MDC) index), making it possible to calculate a patient's risk of having an extended ICU stay. The model showed very good calibration and very good to excellent discriminative ability in predicting ICU stay >2, >5 and >7 days (C-statistic of 0.78; 0.82 and 0.85, respectively). Twelve independent preoperative risk factors for a prolonged ICU stay following cardiac surgery were identified and constructed into a proportional hazards model. Using this risk model, one can predict whether a patient will have a prolonged ICU stay or not. Copyright © 2010 European Association for Cardio-Thoracic Surgery. Published by Elsevier B.V. All rights reserved.
Grunau, Brian; Taylor, John; Scheuermeyer, Frank X; Stenstrom, Robert; Dick, William; Kawano, Takahisa; Barbic, David; Drennan, Ian; Christenson, Jim
2017-09-01
The Universal Termination of Resuscitation Rule (TOR Rule) was developed to identify out-of-hospital cardiac arrests eligible for field termination of resuscitation, avoiding futile transportation to the hospital. The validity of the rule in emergency medical services (EMS) systems that do not routinely transport out-of-hospital cardiac arrest patients to the hospital is unknown. We seek to validate the TOR Rule in British Columbia. This study included consecutive, nontraumatic, adult, out-of-hospital cardiac arrests treated by EMS in British Columbia from April 2011 to September 2015. We excluded patients with active do-not-resuscitate orders and those with missing data. Following consensus guidelines, we examined the validity of the TOR Rule after 6 minutes of resuscitation (to approximate three 2-minute cycles of resuscitation). To ascertain rule performance at the different time junctures, we recalculated TOR Rule classification accuracy at subsequent 1-minute resuscitation increments. Of 6,994 consecutive, adult, EMS-treated, out-of-hospital cardiac arrests, overall survival was 15%. At 6 minutes of resuscitation, rule performance was sensitivity 0.72, specificity 0.91, positive predictive value 0.98, and negative predictive value 0.36. The TOR Rule recommended care termination for 4,367 patients (62%); of these, 92 survived to hospital discharge (false-positive rate 2.1%; 95% confidence interval 1.7% to 2.5%); however, this proportion steadily decreased with later application. The TOR Rule recommended continuation of resuscitation in 2,627 patients (38%); of these, 1,674 died (false-negative rate 64%; 95% confidence interval 62% to 66%). Compared with 6-minute application, test characteristics at 30 minutes demonstrated nearly perfect positive predictive value (1.0) and specificity (1.0) but a lower sensitivity (0.46) and negative predictive value (0.25). In this cohort of adult out-of-hospital cardiac arrest patients, the TOR Rule applied at 6 minutes falsely recommended care termination for 2.1% of patients; however, this decreased with later application. Systems using the TOR Rule to cease resuscitation in the field should consider rule application at points later than 6 minutes. Copyright © 2017 American College of Emergency Physicians. Published by Elsevier Inc. All rights reserved.
Shah, Anoop S V; Anand, Atul; Sandoval, Yader; Lee, Kuan Ken; Smith, Stephen W; Adamson, Philip D; Chapman, Andrew R; Langdon, Timothy; Sandeman, Dennis; Vaswani, Amar; Strachan, Fiona E; Ferry, Amy; Stirzaker, Alexandra G; Reid, Alan; Gray, Alasdair J; Collinson, Paul O; McAllister, David A; Apple, Fred S; Newby, David E; Mills, Nicholas L
2015-12-19
Suspected acute coronary syndrome is the commonest reason for emergency admission to hospital and is a large burden on health-care resources. Strategies to identify low-risk patients suitable for immediate discharge would have major benefits. We did a prospective cohort study of 6304 consecutively enrolled patients with suspected acute coronary syndrome presenting to four secondary and tertiary care hospitals in Scotland. We measured plasma troponin concentrations at presentation using a high-sensitivity cardiac troponin I assay. In derivation and validation cohorts, we evaluated the negative predictive value of a range of troponin concentrations for the primary outcome of index myocardial infarction, or subsequent myocardial infarction or cardiac death at 30 days. This trial is registered with ClinicalTrials.gov (number NCT01852123). 782 (16%) of 4870 patients in the derivation cohort had index myocardial infarction, with a further 32 (1%) re-presenting with myocardial infarction and 75 (2%) cardiac deaths at 30 days. In patients without myocardial infarction at presentation, troponin concentrations were less than 5 ng/L in 2311 (61%) of 3799 patients, with a negative predictive value of 99·6% (95% CI 99·3-99·8) for the primary outcome. The negative predictive value was consistent across groups stratified by age, sex, risk factors, and previous cardiovascular disease. In two independent validation cohorts, troponin concentrations were less than 5 ng/L in 594 (56%) of 1061 patients, with an overall negative predictive value of 99·4% (98·8-99·9). At 1 year, these patients had a lower risk of myocardial infarction and cardiac death than did those with a troponin concentration of 5 ng/L or more (0·6% vs 3·3%; adjusted hazard ratio 0·41, 95% CI 0·21-0·80; p<0·0001). Low plasma troponin concentrations identify two-thirds of patients at very low risk of cardiac events who could be discharged from hospital. Implementation of this approach could substantially reduce hospital admissions and have major benefits for both patients and health-care providers. British Heart Foundation and Chief Scientist Office (Scotland). Copyright © 2015 Shah et al. Open Access article distributed under the terms of CC BY-NC-ND. Published by Elsevier Ltd.. All rights reserved.
Heart rate complexity: A novel approach to assessing cardiac stress reactivity.
Brindle, Ryan C; Ginty, Annie T; Phillips, Anna C; Fisher, James P; McIntyre, David; Carroll, Douglas
2016-04-01
Correlation dimension (D2), a measure of heart rate (HR) complexity, has been shown to decrease in response to acute mental stress and relate to adverse cardiovascular health. However, the relationship between stress-induced changes in D2 and HR has yet to be established. The present studies aimed to assess this relationship systematically while controlling for changes in respiration and autonomic activity. In Study 1 (N = 25) D2 decreased during stress and predicted HR reactivity even after adjusting for changes in respiration rate, and cardiac vagal tone. This result was replicated in Study 2 (N = 162) and extended by including a measure of cardiac sympathetic activity; correlation dimension remained an independent predictor of HR reactivity in a hierarchical linear model containing measures of cardiac parasympathetic and sympathetic activity and their interaction. These results suggest that correlation dimension may provide additional information regarding cardiac stress reactivity above that provided by traditional measures of cardiac autonomic function. © 2015 Society for Psychophysiological Research.
Atlantic salmon show capability for cardiac acclimation to warm temperatures.
Anttila, Katja; Couturier, Christine S; Overli, Oyvind; Johnsen, Arild; Marthinsen, Gunnhild; Nilsson, Göran E; Farrell, Anthony P
2014-06-24
Increases in environmental temperature predicted to result from global warming have direct effects on performance of ectotherms. Moreover, cardiac function has been observed to limit the tolerance to high temperatures. Here we show that two wild populations of Atlantic salmon originating from northern and southern extremes of its European distribution have strikingly similar cardiac responses to acute warming when acclimated to common temperatures, despite different local environments. Although cardiac collapse starts at 21-23 °C with a maximum heart rate of ~150 beats per min (bpm) for 12 °C-acclimated fish, acclimation to 20 °C considerably raises this temperature (27.5 °C) and maximum heart rate (~200 bpm). Only minor population differences exist and these are consistent with the warmer habitat of the southern population. We demonstrate that the considerable cardiac plasticity discovered for Atlantic salmon is largely independent of natural habitat, and we propose that observed cardiac plasticity may aid salmon to cope with global warming.
Chew, S T H; Mar, W M T; Ti, L K
2013-03-01
Postoperative acute kidney injury (AKI) is a frequent and serious complication after cardiac surgery. Clinical factors alone have failed to accurately predict the incidence of AKI after cardiac surgery. Ethnicity has been shown to be a predictor of AKI in the Western population. We tested the hypothesis that ethnicity is an independent predictor of AKI in patients undergoing cardiac surgery in a South East Asian population. A total of 1756 consecutive patients undergoing cardiac surgery were prospectively recruited. Among them, data of 1639 patients met the criteria for analysis. There were 1182 Chinese, 195 Indian, and 262 Malay patients. The main outcome was postoperative AKI, defined as a 25% or greater increase in preoperative to a maximum postoperative serum creatinine level within 3 days after surgery. Five hundred and seventy-nine patients (35.3%) developed AKI after cardiac surgery. Ethnicity was shown to be an independent predictor of AKI after cardiac surgery with Indians and Malays having a higher risk of developing AKI when compared with Chinese patients (odds ratio: Indian vs Chinese 1.44, Malay vs Chinese 1.51). Indians and Malays have a higher risk of developing AKI after cardiac surgery than Chinese in a South East Asian population. Ethnicity was shown to be an independent predictor of AKI after cardiac surgery.
Electrocardiographic consequences of cardiac iron overload in thalassemia major
Detterich, Jon; Noetzli, Leila; Dorey, Fred; Bar-Cohen, Yaniv; Harmatz, Paul; Coates, Thomas; Wood, John
2011-01-01
Background Iron cardiomyopathy is a leading cause of death in transfusion dependent thalassemia major (TM) patients and MRI (T2*) can recognize preclinical cardiac iron overload, but, is unavailable to many centers. Design and Methods We evaluated the ability of 12-lead electrocardiography to predict cardiac iron loading in TM. 12-lead electrocardiogram and cardiac T2* measurements were performed prospectively, with a detectable cardiac iron cutoff of T2*less than 20 ms. Patients with and without cardiac iron were compared using two-sample statistics and against population norms using age and gender-matched Z-scores. Results 45/78 patients had detectable cardiac iron. Patients having cardiac iron were older and more likely female but had comparable liver iron burdens and serum ferritin. Increased heart rate (HR) and prolonged corrected QT interval (QTc) were present, regardless of cardiac iron status. Repolarization abnormalities were the strongest predictors of cardiac iron, including QT/QTc prolongation, left shift of T-wave axis, and interpretation of ST/T-wave morphology. Recursive partitioning of the data for females using T-axis and HR and for males using QT, HR and T-axis produced algorithms with AUROC’s of 88.3 and 87.1 respectively. Conclusions Bradycardia and repolarization abnormalities on 12-lead electrocardiography were the most specific markers for cardiac iron in thalassemia major. Changes in these variables may be helpful to stratify cardiac risk when cardiac MRI is unavailable. However, diagnostic algorithms need to be vetted on larger and more diverse patient populations and longitudinal studies are necessary to determine reversibility of the observed abnormalities. PMID:22052662
Pirinen, Jani; Putaala, Jukka; Aarnio, Karoliina; Aro, Aapo L; Sinisalo, Juha; Kaste, Markku; Haapaniemi, Elena; Tatlisumak, Turgut; Lehto, Mika
2016-11-01
Ischemic stroke (IS) in a young patient is a disaster and recurrent cardiovascular events could add further impairment. Identifying patients with high risk of such events is therefore important. The prognostic relevance of ECG for this population is unknown. A total of 690 IS patients aged 15-49 years were included. A 12-lead ECG was obtained 1-14 d after the onset of stroke. We adjusted for demographic factors, comorbidities, and stroke characteristics, Cox regression models were used to identify independent ECG parameters associated with long-term risks of (1) any cardiovascular event, (2) cardiac events, and (3) recurrent stroke. Median follow-up time was 8.8 years. About 26.4% of patients experienced a cardiovascular event, 14.5% had cardiac events, and 14.6% recurrent strokes. ECG parameters associated with recurrent cardiovascular events were bundle branch blocks, P-terminal force, left ventricular hypertrophy, and a broader QRS complex. Furthermore, more leftward P-wave axis, prolonged QTc, and P-wave duration >120 ms were associated with increased risks of cardiac events. No ECG parameters were independently associated with recurrent stroke. A 12-lead ECG can be used for risk prediction of cardiovascular events but not for recurrent stroke in young IS patients. KEY MESSAGES ECG is an easy, inexpensive, and useful tool for identifying young ischemic stroke patients with a high risk for recurrent cardiovascular events and it has a statistically significant association with these events even after adjusting for confounding factors. Bundle branch blocks, P-terminal force, broader QRS complex, LVH according to Cornell voltage duration criteria, more leftward P-wave axis, prolonged QTc, and P-wave duration >120 ms are predictors for future cardiovascular or cardiac events in these patients. No ECG parameters were independently associated with recurrent stroke.
Respiratory muscle strength is not decreased in patients undergoing cardiac surgery.
Urell, Charlotte; Emtner, Margareta; Hedenstrom, Hans; Westerdahl, Elisabeth
2016-03-31
Postoperative pulmonary impairments are significant complications after cardiac surgery. Decreased respiratory muscle strength could be one reason for impaired lung function in the postoperative period. The primary aim of this study was to describe respiratory muscle strength before and two months after cardiac surgery. A secondary aim was to describe possible associations between respiratory muscle strength and lung function. In this prospective observational study 36 adult cardiac surgery patients (67 ± 10 years) were studied. Respiratory muscle strength and lung function were measured before and two months after surgery. Pre- and postoperative respiratory muscle strength was in accordance with predicted values; MIP was 78 ± 24 cmH2O preoperatively and 73 ± 22 cmH2O at two months follow-up (p = 0.19). MEP was 122 ± 33 cmH2O preoperatively and 115 ± 38 cmH2O at two months follow-up (p = 0.18). Preoperative lung function was in accordance with predicted values, but was significantly decreased postoperatively. At two-months follow-up there was a moderate correlation between MIP and FEV1 (r = 0.43, p = 0.009). Respiratory muscle strength was not impaired, either before or two months after cardiac surgery. The reason for postoperative lung function alteration is not yet known. Interventions aimed at restore an optimal postoperative lung function should focus on other interventions then respiratory muscle strength training.
Patron, Elisabetta; Messerotti Benvenuti, Simone; Palomba, Daniela
2016-01-01
To examine whether preoperative biomedical risk and depressive symptoms were associated with physical and mental components of health-related quality of life (HRQoL) in patients 1year after cardiac surgery. Seventy-five patients completed a psychological evaluation, including the Center for Epidemiological Study of Depression scale, the 12-item Short-Form Physical Component Scale (SF-12-PCS) and Mental Component Scale (SF-12-MCS), the Instrumental Activities of Daily Living questionnaire for depressive symptoms and HRQoL, respectively, before surgery and at 1-year follow-up. Preoperative depressive symptoms predicted the SF-12-PCS (beta=-.22, P<.05) and SF-12-MCS (beta=-.30, P<.04) scores in patients 1year after cardiac surgery, whereas the European System for Cardiac Operative Risk Evaluation was associated with SF-12-PCS (beta=-.28, P<.02), but not SF-12-MCS (beta=.01, P=.97) scores postoperatively. The current findings showed that preoperative depressive symptoms are associated with poor physical and mental components of HRQoL, whereas high biomedical risk predicts reduced physical, but not mental, functioning in patients postoperatively. This study suggests that a preoperative assessment of depressive symptoms in addition to the evaluation of common biomedical risk factors is essential to anticipate which patients are likely to show poor HRQoL after cardiac surgery. Copyright © 2016 Elsevier Inc. All rights reserved.
Adams, Jenny; Roberts, Joanne; Simms, Kay; Cheng, Dunlei; Hartman, Julie; Bartlett, Charles
2009-03-15
We designed a study to measure the functional capacity requirements of firefighters to aid in the development of an occupation-specific training program in cardiac rehabilitation; 23 healthy male firefighters with no history of heart disease completed a fire and rescue obstacle course that simulated 7 common firefighting tasks. They wore complete personal protective equipment and portable metabolic instruments that included a data collection mask. We monitored each subject's oxygen consumption (VO(2)) and working heart rate, then calculated age-predicted maximum heart rates (220 - age) and training target heart rates (85% of age-predicted maximum heart rate). During performance of the obstacle course, the subjects' mean working heart rates and peak heart rates were higher than the calculated training target heart rates (t(22) = 5.69 [working vs target, p <0.001] and t(22) = 15.14 [peak vs target, p <0.001]). These findings, with mean results for peak VO(2) (3,447 ml/min) and metabolic equivalents (11.9 METs), show that our subjects' functional capacity greatly exceeded that typically attained by patients in traditional cardiac rehabilitation programs (5 to 8 METs). In conclusion, our results indicate the need for intense, occupation-specific cardiac rehabilitation training that will help firefighters safely return to work after a cardiac event.
Siddiqui, Muhammad Rafay Sameen; Sajid, Muhammad Shafiq; Baig, Mirza Khurram
2009-04-01
The advancement of medical technology and future improvements in public health will lead to surgeons operating on high risk patients. One of these advances is to use intra-operative trans-oesophageal Doppler (TOD) to optimise fluid management. TOD is known to be the most effective technique for intraoperative cardiac monitoring. We report a case of a potentially life threatening complication from intraoperative TOD monitoring.
Jiang, Henry Y; Kohtakangas, Erica L; Asai, Kengo; Shum, Jeffrey B
2017-05-02
NSQIP Risk Calculator was developed to allow surgeons to inform their patients about their individual risks for surgery. Its ability to predict complication rates and length of stay (LOS) has made it an appealing tool for both patients and surgeons. However, the NSQIP Risk Calculator has been criticized for its generality and lack of detail towards surgical subspecialties, including the hepatopancreaticobiliary (HPB) surgery. We wish to determine whether the NSQIP Risk Calculator is predictive of post-operative complications and LOS with respect to Whipple's resections for our patient population. As well, we wish to identify strategies to optimize early surgical outcomes in patients with pancreatic cancer. We conducted a retrospective review of patients who underwent elective Whipple's procedure for benign or malignant pancreatic head lesions at Health Sciences North (Sudbury, Ontario), a tertiary care center, from February 2014 to August 2016. Comparisons of LOS and post-operative complications between NSQIP-predicted and actual ones were carried out. NSQIP-predicted complications rates were obtained using the NSQIP Risk Calculator through pre-defined preoperative risk factors. Clinical outcomes examined, at 30 days post-operation, included pneumonia, cardiac events, surgical site infection (SSI), urinary tract infection (UTI), venous thromboembolism (VTE), renal failure, readmission, and reoperation for procedural complications. As well, mortality, disposition to nursing or rehabilitation facilities, and LOS were assessed. A total of 40 patients underwent Whipple's procedure at our center from February 2014 to August 2016. The average age was 68 (50-85), and there were 22 males and 18 females. The majority of patients had independent baseline functional status (39/40) with minimal pre-operative comorbidities. The overall post-operative morbidity was 47.5% (19/40). The rate of serious complication was 17.5% with four Clavien grade II, two grade III, and one grade V complications. One mortality occurred within 30 days after surgery. NSQIP Risk Calculator was predictive for the majority of post-surgical complication types, including pneumonia, SSI, VTE, reoperation, readmission, and disposition to rehabilitation or nursing home. Our center appears to have a higher rate of UTI than NSQIP predicted (O/E = 3.9), as well, the rate of cardiac complication (O/E = 3.1) also appears to be higher at our center. With respect to readmission rates (O/E = 0.6) and renal failure (O/E = 0), NSQIP provided overestimated rates. The average LOS was 11.9 ± 0.9 days, which was not significantly different from the average LOS of 11.5 ± 0.3 days predicted by NSQIP (p = 0.3). Overall, 80% of discharges occurred less than or within 3 days of that predicted by NSQIP. NSQIP Risk Calculator is predictive of post-operative complications and LOS for patients who have undergone Whipple's at our center. A more HPB-focused NSQIP calculator may accurately project post-operative complication in the pre-operative period. Nevertheless, the generic NSQIP has allowed us to examine our existing practice of post-operative care and has paved way to reduce cardiac and urinary complications in the future.
Delayed Recall and Working Memory MMSE Domains Predict Delirium following Cardiac Surgery.
Price, Catherine C; Garvan, Cynthia; Hizel, Loren P; Lopez, Marcos G; Billings, Frederic T
2017-01-01
Reduced preoperative cognition is a risk factor for postoperative delirium. The significance for type of preoperative cognitive deficit, however, has yet to be explored and could provide important insights into mechanisms and prediction of delirium. Our goal was to determine if certain cognitive domains from the general cognitive screener, the Mini-Mental State Exam (MMSE), predict delirium after cardiac surgery. Patients completed a preoperative MMSE prior to undergoing elective cardiac surgery. Following surgery, delirium was assessed throughout ICU stay using the Confusion Assessment Method for ICU delirium and the Richmond Agitation and Sedation Scale. Cardiac surgery patients who developed delirium (n = 137) had lower total MMSE scores than patients who did not develop delirium (n = 457). In particular, orientation to place, working memory, delayed recall, and language domain scores were lower. Of these, only the working memory and delayed recall domains predicted delirium in a regression model adjusting for history of chronic obstructive pulmonary disease, age, sex, and duration of cardiopulmonary bypass. For each word not recalled on the three-word delayed recall assessment, the odds of delirium increased by 50%. For each item missed on the working memory index, the odds of delirium increased by 36%. Of the patients who developed delirium, 47% had a primary impairment in memory, 21% in working memory, and 33% in both domains. The area under the receiver operating characteristics curve using only the working memory and delayed recall domains was 0.75, compared to 0.76 for total MMSE score. Delirium risk is greater for individuals with reduced MMSE scores on the delayed recall and working memory domains. Research should address why patients with memory and executive vulnerabilities are more prone to postoperative delirium than those with other cognitive limitations.
Wynne-Jones, K; Jackson, M; Grotte, G; Bridgewater, B; North, W
2000-01-01
OBJECTIVE—To study the use of the Parsonnet score to predict mortality following adult cardiac surgery. DESIGN—Prospective study. SETTING—All centres performing adult cardiac surgery in the north west of England. SUBJECTS—8210 patients undergoing surgery between April 1997 and March 1999. MAIN OUTCOME MEASURES—Risk factors and in-hospital mortality were recorded according to agreed definitions. Ten per cent of cases from each centre were selected at random for validation. A Parsonnet score was derived for each patient and its predictive ability was studied. RESULTS—Data collection was complete. The operative mortality was 3.5% (95% confidence interval 3.1% to 3.9%), ranging from 2.7% to 3.8% across the centres. On validation, the incidence of discrepancies ranged from 0% to 13% for the different risk factors. The predictive ability of the Parsonnet score measured by area under the receiver operating characteristic curve was 0.74. The mean Parsonnet score for the region was 7.0, giving an observed to expected mortality ratio of 0.51 (range 0.4 to 0.64 across the centres). A new predictive model was derived from the data by multivariate analysis which includes nine objective risk factors, all with a significant association with mortality, which highlights some of the deficits of the Parsonnet score. CONCLUSIONS—Risk stratified mortality data were collected on 100% of patients undergoing adult cardiac surgery in two years within a defined geographical region and were used to set an audit standard. Problems with the Parsonnet score of subjectivity, inclusion of many items not associated with mortality, and the overprediction of mortality have been highlighted. Keywords: risk stratification; cardiac surgery; Parsonnet score; audit PMID:10862595
Frea, Simone; Bovolo, Virginia; Pidello, Stefano; Canavosio, Federico G; Botta, Michela; Bergerone, Serena; Gaita, Fiorenzo
2015-09-15
Advanced heart failure is associated with end-organ damage. Recent literature suggested an intriguing crosstalk between failing heart, abdomen and kidneys. Venous ammonia, as a by-product of the gut, could be a marker of abdominal injury in heart failure patients. The aim of the study was to investigate the clinical and prognostic role of ammonia in patients with advanced decompensated heart failure (ADHF). 90 patients admitted with ADHF were prospectively studied. The prognostic role of ammonia at admission was evaluated. Primary end-points were: a composite of cardiac death, urgent heart transplantation and mechanical circulatory support at 3 months and need for renal replacement therapies (RRT). In the study cohort (age 59.0 ± 12.0 years, FE 21.6 ± 9.0%, INTERMACS profile 3.7 ± 0.9, creatinine 1.71 ± 0.95 mg/dl) 27 patients (30%) underwent the cardiac composite endpoint, while 9 patients (10%) needed RRT. At ROC curve analysis ammonia ≥ 130 μg/dl (abdominal damage) showed the best diagnostic accuracy. At multivariate analysis abdominal damage predicted the cardiac composite endpoint. Abdominal damage further increased risk among patient with cold profile at admission (HR 2.7, 95% CI 1.1-7.0, p = 0.046). At multivariate analysis abdominal damage also predicted need for RRT (OR 10.8, 95% CI 1.5-75.8, p = 0.017). The combined use of estimated right atrial pressure and ammonia showed the highest diagnostic accuracy and a very high specificity in prediction of need for RRT. In a selected population admitted for ADHF ammonia, as a marker of abdominal derangement, predicted adverse cardiac events and need for RRT. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Ripley, Beth; Kelil, Tatiana; Cheezum, Michael K.; Goncalves, Alexandra; Di Carli, Marcelo F.; Rybicki, Frank J.; Steigner, Mike; Mitsouras, Dimitrios; Blankstein, Ron
2017-01-01
Background 3D printing is a promising technique that may have applications in medicine, and there is expanding interest in the use of patient-specific 3D models to guide surgical interventions. Objective To determine the feasibility of using cardiac CT to print individual models of the aortic root complex for transcatheter aortic valve replacement (TAVR) planning as well as to determine the ability to predict paravalvular aortic regurgitation (PAR). Methods This retrospective study included 16 patients (9 with PAR identified on blinded interpretation of post-procedure trans-thoracic echocardiography and 7 age, sex, and valve size-matched controls with no PAR). 3D printed models of the aortic root were created from pre-TAVR cardiac computed tomography data. These models were fitted with printed valves and predictions regarding post-implant PAR were made using a light transmission test. Results Aortic root 3D models were highly accurate, with excellent agreement between annulus measurements made on 3D models and those made on corresponding 2D data (mean difference of −0.34 mm, 95% limits of agreement: ± 1.3 mm). The 3D printed valve models were within 0.1 mm of their designed dimensions. Examination of the fit of valves within patient-specific aortic root models correctly predicted PAR in 6 of 9 patients (6 true positive, 3 false negative) and absence of PAR in 5 of 7 patients (5 true negative, 2 false positive). Conclusions Pre-TAVR 3D-printing based on cardiac CT provides a unique patient-specific method to assess the physical interplay of the aortic root and implanted valves. With additional optimization, 3D models may complement traditional techniques used for predicting which patients are more likely to develop PAR. PMID:26732862
Lysine Ubiquitination and Acetylation of Human Cardiac 20S Proteasomes
Lau, Edward; Choi, Howard JH; Ng, Dominic CM; Meyer, David; Fang, Caiyun; Li, Haomin; Wang, Ding; Zelaya, Ivette M; Yates, John R; Lam, Maggie PY
2016-01-01
Purpose Altered proteasome functions are associated with multiple cardiomyopathies. While the proteasome targets poly-ubiquitinated proteins for destruction, it itself is modifiable by ubiquitination. We aim to identify the exact ubiquitination sites on cardiac proteasomes and examine whether they are also subject to acetylations. Experimental design Assembled cardiac 20S proteasome complexes were purified from five human hearts with ischemic cardiomyopathy, then analyzed by high-resolution MS to identify ubiquitination and acetylation sites. We developed a library search strategy that may be used to complement database search in identifying PTM in different samples. Results We identified 63 ubiquitinated lysines from intact human cardiac 20S proteasomes. In parallel, 65 acetylated residues were also discovered, 39 of which shared with ubiquitination sites. Conclusion and clinical relevance This is the most comprehensive characterization of cardiac proteasome ubiquitination to-date. There are significant overlaps between the discovered ubiquitination and acetylation sites, permitting potential crosstalk in regulating proteasome functions. The information presented here will aid future therapeutic strategies aimed at regulating the functions of cardiac proteasomes. PMID:24957502
Lysine ubiquitination and acetylation of human cardiac 20S proteasomes.
Zong, Nobel; Ping, Peipei; Lau, Edward; Choi, Howard Jh; Ng, Dominic Cm; Meyer, David; Fang, Caiyun; Li, Haomin; Wang, Ding; Zelaya, Ivette M; Yates, John R; Lam, Maggie Py
2014-08-01
Altered proteasome functions are associated with multiple cardiomyopathies. While the proteasome targets polyubiquitinated proteins for destruction, it itself is modifiable by ubiquitination. We aim to identify the exact ubiquitination sites on cardiac proteasomes and examine whether they are also subject to acetylations. Assembled cardiac 20S proteasome complexes were purified from five human hearts with ischemic cardiomyopathy, then analyzed by high-resolution MS to identify ubiquitination and acetylation sites. We developed a library search strategy that may be used to complement database search in identifying PTM in different samples. We identified 63 ubiquitinated lysines from intact human cardiac 20S proteasomes. In parallel, 65 acetylated residues were also discovered, 39 of which shared with ubiquitination sites. This is the most comprehensive characterization of cardiac proteasome ubiquitination to date. There are significant overlaps between the discovered ubiquitination and acetylation sites, permitting potential crosstalk in regulating proteasome functions. The information presented here will aid future therapeutic strategies aimed at regulating the functions of cardiac proteasomes. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Analysis of temporal dynamics in imagery during acute limb ischemia and reperfusion
NASA Astrophysics Data System (ADS)
Irvine, John M.; Regan, John; Spain, Tammy A.; Caruso, Joseph D.; Rodriquez, Maricela; Luthra, Rajiv; Forsberg, Jonathon; Crane, Nicole J.; Elster, Eric
2014-03-01
Ischemia and reperfusion injuries present major challenges for both military and civilian medicine. Improved methods for assessing the effects and predicting outcome could guide treatment decisions. Specific issues related to ischemia and reperfusion injury can include complications arising from tourniquet use, such as microvascular leakage in the limb, loss of muscle strength and systemic failures leading to hypotension and cardiac failure. Better methods for assessing the viability of limbs/tissues during ischemia and reducing complications arising from reperfusion are critical to improving clinical outcomes for at-risk patients. The purpose of this research is to develop and assess possible prediction models of outcome for acute limb ischemia using a pre-clinical model. Our model relies only on non-invasive imaging data acquired from an animal study. Outcome is measured by pathology and functional scores. We explore color, texture, and temporal features derived from both color and thermal motion imagery acquired during ischemia and reperfusion. The imagery features form the explanatory variables in a model for predicting outcome. Comparing model performance to outcome prediction based on direct observation of blood chemistry, blood gas, urinalysis, and physiological measurements provides a reference standard. Initial results show excellent performance for the imagery-base model, compared to predictions based direct measurements. This paper will present the models and supporting analysis, followed by recommendations for future investigations.
Post-resuscitation care following out-of-hospital and in-hospital cardiac arrest
Girotra, Saket; Chan, Paul S; Bradley, Steven M
2016-01-01
Cardiac arrest is a leading cause of death in developed countries. Although a majority of cardiac arrest patients die during the acute event, a substantial proportion of cardiac arrest deaths occur in patients following successful resuscitation and can be attributed to the development of post-cardiac arrest syndrome. There is growing recognition that integrated post-resuscitation care, which encompasses targeted temperature management (TTM), early coronary angiography and comprehensive critical care, can improve patient outcomes. TTM has been shown to improve survival and neurological outcome in patients who remain comatose especially following out-of-hospital cardiac arrest due to ventricular arrhythmias. Early coronary angiography and revascularisation if needed may also be beneficial during the post-resuscitation phase, based on data from observational studies. In addition, resuscitated patients usually require intensive care, which includes mechanical ventilator, haemodynamic support and close monitoring of blood gases, glucose, electrolytes, seizures and other disease-specific intervention. Efforts should be taken to avoid premature withdrawal of life-supporting treatment, especially in patients treated with TTM. Given that resources and personnel needed to provide high-quality post-resuscitation care may not exist at all hospitals, professional societies have recommended regionalisation of post-resuscitation care in specialised ‘cardiac arrest centres’ as a strategy to improve cardiac arrest outcomes. Finally, evidence for post-resuscitation care following in-hospital cardiac arrest is largely extrapolated from studies in patients with out-of-hospital cardiac arrest. Future studies need to examine the effectiveness of different post-resuscitation strategies, such as TTM, in patients with in-hospital cardiac arrest. PMID:26385451
Cartledge, Susie; Finn, Judith; Bray, Janet E; Case, Rosalind; Barker, Lauren; Missen, Diane; Shaw, James; Stub, Dion
2018-02-01
Patients with a cardiac history are at future risk of cardiac events, including out-of-hospital cardiac arrest. Targeting cardiopulmonary resuscitation (CPR) training to family members of cardiac patients has long been advocated, but is an area in need of contemporary research evidence. An environment yet to be investigated for targeted training is cardiac rehabilitation. To evaluate the feasibility of providing CPR training in a cardiac rehabilitation programme among patients, their family members and staff. A prospective before and after study design was used. CPR training was delivered using video self-instruction CPR training kits, facilitated by a cardiac nurse. Data was collected pre-training, post-training and at one month. Cardiac patient participation rates in CPR classes were high ( n = 56, 72.7% of eligible patients) with a further 27 family members attending training. Patients were predominantly male (60.2%), family members were predominantly female (81.5%), both with a mean age of 65 years. Confidence to perform CPR and willingness to use skills significantly increased post-training (both p<0.001). Post training participants demonstrated a mean compression rate of 112 beats/min and a mean depth of 48 mm. Training reach was doubled as participants shared the video self-instruction kit with a further 87 people. Patients, family members and cardiac rehabilitation staff had positive feedback about the training. We demonstrated that cardiac rehabilitation is an effective and feasible environment to provide CPR training. Using video self-instruction CPR training kits enabled further training reach to the target population.
Cardiotoxicity screening: a review of rapid-throughput in vitro approaches.
Li, Xichun; Zhang, Rui; Zhao, Bin; Lossin, Christoph; Cao, Zhengyu
2016-08-01
Cardiac toxicity represents one of the leading causes of drug failure along different stages of drug development. Multiple very successful pharmaceuticals had to be pulled from the market or labeled with strict usage warnings due to adverse cardiac effects. In order to protect clinical trial participants and patients, the International Conference on Harmonization published guidelines to recommend that all new drugs to be tested preclinically for hERG (Kv11.1) channel sensitivity before submitting for regulatory reviews. However, extensive studies have demonstrated that measurement of hERG activity has limitations due to the multiple molecular targets of drug compound through which it may mitigate or abolish a potential arrhythmia, and therefore, a model measuring multiple ion channel effects is likely to be more predictive. Several phenotypic rapid-throughput methods have been developed to predict the potential cardiac toxic compounds in the early stages of drug development using embryonic stem cells- or human induced pluripotent stem cell-derived cardiomyocytes. These rapid-throughput methods include microelectrode array-based field potential assay, impedance-based or Ca(2+) dynamics-based cardiomyocytes contractility assays. This review aims to discuss advantages and limitations of these phenotypic assays for cardiac toxicity assessment.
Lanks, C; Kim, C B; Rossiter, H B
2017-09-08
Near-infrared spectroscopy (NIRS) has been used effectively post-cardiac-arrest to gauge adequacy of resuscitation and predict the likelihood of achieving a return of spontaneous circulation. However, preempting hemodynamic collapse is preferable to achieving ROSC through advanced cardiac life support. Minimizing "time down" without end-organ perfusion has always been a central pillar of ACLS. In many critically ill patients there is a prolonged phase of end-organ hypoperfusion preceding loss of palpable pulses and initiation of ACLS. Due to the relative infrequency of in-hospital cardiac arrest, NIRS has not previously evaluated the period immediately prior to hemodynamic collapse. Here we report a young man who suffered a pulseless electrical activity (PEA) arrest while cortical oxygenation was monitored using time-resolved near-infrared spectroscopy. The onset of cortical deoxygenation preceded the loss of palpable pulses by 15 min, suggesting that TRS-NIRS monitoring might provide a means of preempting PEA arrest. Our experience with this patient represents a promising new direction for continuous NIRS monitoring and has the potential to not only predict clinical outcomes, but affect them to the patient's benefit as well.
Feng, Bin; Lin, Jin; Jin, Jin; Qian, Wenwei; Cao, Shiliang; Weng, Xisheng
2018-01-01
Although coronary artery revascularization therapies are effective for treating coronary artery disease (CAD), these patients may be more susceptible to adverse cardiac events during later non-cardiac surgeries. The purpose of this study is to evaluate post-operative 90-day complications of total joint arthroplasty (TJA) in CAD patients with a history of CAD and to study the risk factors for cardiac complications. We performed a retrospective analysis of TJA patients between 2005 and 2015 at our institute by summarizing the history of CAD, cardiac revascularization, and cardiac complications within 90 days after the operation. Multivariate logistic regression was performed to identify the factors that predicted cardiac complications within 90 days after the operation. A total of 4414 patients were included; of these, 64 underwent cardiac revascularization and 201 CAD patients underwent medical therapy other than revascularization. All the revascularization had history of myocardial infarction (MI). The rate of cardiac complications within 90 days for the CAD with revascularization was 18.7%, 18.4% for the CAD without revascularization, and 2.0% for the non-CAD group. A history of CAD and revascularization, bilateral TJA, general anesthesia, body mass index ≥30 kg/m 2 , and history of MI were associated with a higher risk of cardiac complications. Patients who underwent TJA within 2 years after cardiac revascularization had a significantly higher cardiac complication rate, and the risk decreased with time. There is an increased risk of cardiac complications within 90 days after the operation among TJA patients with a history of CAD. Revascularization cannot significantly reduce the risk of cardiac complications after TJA for CAD patients. However, the risk decreased as the interval between revascularization and TJA increased. Copyright © 2017 Elsevier Inc. All rights reserved.
Sheng, Siyuan P; Howell, Lucius A; Caughey, Melissa C; Yeung, Michael; Vavalle, John P
2018-01-15
Patients with calcific aortic stenosis (AS) often have diffuse cardiac calcification involving the mitral valve apparatus and coronary arteries. We examined the association between global cardiac calcification quantified by a previously validated echocardiographic calcium score (eCS) with the severity of mitral stenosis (MS) and coronary artery disease (CAD) in patients with a clinical diagnosis of severe calcific AS. In this sample of 147 patients (mean age 81 ± 9 years, 50% male), 81 patients (55%) were determined by echocardiography to have some degree of MS. Higher mean eCS was observed in patients with more severe MS (r = 0.54, p < 0.0001). Higher eCS was also inversely associated with mitral valve area (r = -0.31, p = 0.001) and positively associated with mitral valve mean pressure gradient (r = 0.46, p < 0.0001) and mitral valve peak flow velocity (r = 0.55, p < 0.0001). The area under the receiver operating characteristic curve for using eCS to predict the presence of MS was 0.76. An eCS ≥ 8 predicted MS with a sensitivity of 68%, specificity of 76%, positive predictive value of 77%, and negative predictive value of 66%. High eCS, relative to low eCS, was associated with 2.70 times the adjusted odds of CAD (odds ratio = 2.70, 95% confidence interval 1.02 to 7.17). In conclusion, global cardiac calcification is associated with MS and CAD in patients with severe calcific AS, and eCS shows ability to predict the presence of MS. This study suggests that a simple eCS may be used as part of a risk-stratification tool in patients with severe calcific aortic valve stenosis. Copyright © 2017 Elsevier Inc. All rights reserved.
Candela-Toha, Ángel; Pardo, María Carmen; Pérez, Teresa; Muriel, Alfonso; Zamora, Javier
2018-04-20
and objective Acute kidney injury (AKI) diagnosis is still based on serum creatinine and diuresis. However, increases in creatinine are typically delayed 48h or longer after injury. Our aim was to determine the utility of routine postoperative renal function blood tests, to predict AKI one or 2days in advance in a cohort of cardiac surgery patients. Using a prospective database, we selected a sample of patients who had undergone major cardiac surgery between January 2002 and December 2013. The ability of the parameters to predict AKI was based on Acute Kidney Injury Network serum creatinine criteria. A cohort of 3,962 cases was divided into 2groups of similar size, one being exploratory and the other a validation sample. The exploratory group was used to show primary objectives and the validation group to confirm results. The ability to predict AKI of several kidney function parameters measured in routine postoperative blood tests, was measured with time-dependent ROC curves. The primary endpoint was time from measurement to AKI diagnosis. AKI developed in 610 (30.8%) and 623 (31.4%) patients in the exploratory and validation samples, respectively. Estimated glomerular filtration rate using the MDRD-4 equation showed the best AKI prediction capacity, with values for the AUC ROC curves between 0.700 and 0.946. We obtained different cut-off values for estimated glomerular filtration rate depending on the degree of AKI severity and on the time elapsed between surgery and parameter measurement. Results were confirmed in the validation sample. Postoperative estimated glomerular filtration rate using the MDRD-4 equation showed good ability to predict AKI following cardiac surgery one or 2days in advance. Copyright © 2018 Sociedad Española de Nefrología. Published by Elsevier España, S.L.U. All rights reserved.
Longitudinal relations between child vagal tone and parenting behavior: 2 to 4 years.
Kennedy, Amy E; Rubin, Kenneth H; Hastings, Paul D; Maisel, Beth
2004-07-01
The longitudinal relations between physiological markers of child emotion regulation and maternal parenting practices were examined from 2 to 4 years of age. At Time 1, cardiac vagal tone was assessed for one hundred four 2-year-olds (54 females); their mothers completed an assessment of parenting styles. Two years later, at Time 2, 84 of the original participants were reassessed on measures of cardiac vagal tone and parenting style. Results indicated both baseline cardiac vagal tone and maternal parenting practices to be stable from 2 to 4 years of age. Children's cardiac vagal tone predicted specific parenting practices from the toddler to preschool years. Further, child cardiac vagal tone moderated maternal restrictive-parenting practices from 2 to 4 years of age; mothers of children who were highly or moderately physiologically dysregulated were more likely to report restrictive parenting practices at both 2 and 4 years of age. Copyright 2004 Wiley Periodicals, Inc.
Non-invasive detection of human cardiomyocyte death using methylation patterns of circulating DNA.
Zemmour, Hai; Planer, David; Magenheim, Judith; Moss, Joshua; Neiman, Daniel; Gilon, Dan; Korach, Amit; Glaser, Benjamin; Shemer, Ruth; Landesberg, Giora; Dor, Yuval
2018-04-24
Detection of cardiomyocyte death is crucial for the diagnosis and treatment of heart disease. Here we use comparative methylome analysis to identify genomic loci that are unmethylated specifically in cardiomyocytes, and develop these as biomarkers to quantify cardiomyocyte DNA in circulating cell-free DNA (cfDNA) derived from dying cells. Plasma of healthy individuals contains essentially no cardiomyocyte cfDNA, consistent with minimal cardiac turnover. Patients with acute ST-elevation myocardial infarction show a robust cardiac cfDNA signal that correlates with levels of troponin and creatine phosphokinase (CPK), including the expected elevation-decay dynamics following coronary angioplasty. Patients with sepsis have high cardiac cfDNA concentrations that strongly predict mortality, suggesting a major role of cardiomyocyte death in mortality from sepsis. A cfDNA biomarker for cardiomyocyte death may find utility in diagnosis and monitoring of cardiac pathologies and in the study of normal human cardiac physiology and development.
Anger, hostility, and hospitalizations in patients with heart failure.
Keith, Felicia; Krantz, David S; Chen, Rusan; Harris, Kristie M; Ware, Catherine M; Lee, Amy K; Bellini, Paula G; Gottlieb, Stephen S
2017-09-01
Heart failure patients have a high hospitalization rate, and anger and hostility are associated with coronary heart disease morbidity and mortality. Using structural equation modeling, this prospective study assessed the predictive validity of anger and hostility traits for cardiovascular and all-cause rehospitalizations in patients with heart failure. 146 heart failure patients were administered the STAXI and Cook-Medley Hostility Inventory to measure anger, hostility, and their component traits. Hospitalizations were recorded for up to 3 years following baseline. Causes of hospitalizations were categorized as heart failure, total cardiac, noncardiac, and all-cause (sum of cardiac and noncardiac). Measurement models were separately fit for Anger and Hostility, followed by a Confirmatory Factor Analysis to estimate the relationship between the Anger and Hostility constructs. An Anger model consisted of State Anger, Trait Anger, Anger Expression Out, and Anger Expression In, and a Hostility model included Cynicism, Hostile Affect, Aggressive Responding, and Hostile Attribution. The latent construct of Anger did not predict any of the hospitalization outcomes, but Hostility significantly predicted all-cause hospitalizations. Analyses of individual trait components of each of the 2 models indicated that Anger Expression Out predicted all-cause and noncardiac hospitalizations, and Trait Anger predicted noncardiac hospitalizations. None of the individual components of Hostility were related to rehospitalizations or death. The construct of Hostility and several components of Anger are predictive of hospitalizations that were not specific to cardiac causes. Mechanisms common to a variety of health problems, such as self-care and risky health behaviors, may be involved in these associations. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Bridging the gap between computation and clinical biology: validation of cable theory in humans
Finlay, Malcolm C.; Xu, Lei; Taggart, Peter; Hanson, Ben; Lambiase, Pier D.
2013-01-01
Introduction: Computerized simulations of cardiac activity have significantly contributed to our understanding of cardiac electrophysiology, but techniques of simulations based on patient-acquired data remain in their infancy. We sought to integrate data acquired from human electrophysiological studies into patient-specific models, and validated this approach by testing whether electrophysiological responses to sequential premature stimuli could be predicted in a quantitatively accurate manner. Methods: Eleven patients with structurally normal hearts underwent electrophysiological studies. Semi-automated analysis was used to reconstruct activation and repolarization dynamics for each electrode. This S2 extrastimuli data was used to inform individualized models of cardiac conduction, including a novel derivation of conduction velocity restitution. Activation dynamics of multiple premature extrastimuli were then predicted from this model and compared against measured patient data as well as data derived from the ten-Tusscher cell-ionic model. Results: Activation dynamics following a premature S3 were significantly different from those after an S2. Patient specific models demonstrated accurate prediction of the S3 activation wave, (Pearson's R2 = 0.90, median error 4%). Examination of the modeled conduction dynamics allowed inferences into the spatial dispersion of activation delay. Further validation was performed against data from the ten-Tusscher cell-ionic model, with our model accurately recapitulating predictions of repolarization times (R2 = 0.99). Conclusions: Simulations based on clinically acquired data can be used to successfully predict complex activation patterns following sequential extrastimuli. Such modeling techniques may be useful as a method of incorporation of clinical data into predictive models. PMID:24027527
Interassociation Consensus Statement on Cardiovascular Care of College Student-Athletes.
Hainline, Brian; Drezner, Jonathan; Baggish, Aaron; Harmon, Kimberly G; Emery, Michael S; Myerburg, Robert J; Sanchez, Eduardo; Molossi, Silvana; Parsons, John T; Thompson, Paul D
2016-04-01
Cardiovascular evaluation and care of college student-athletes is gaining increasing attention from both the public and medical communities. Emerging strategies include screening of the general athlete population, recommendations of permissible levels of participation by athletes with identified cardiovascular conditions, and preparation for responding to unanticipated cardiac events in athletic venues. The primary focus has been sudden cardiac death and the utility of screening with or without advanced cardiac screening. The National Collegiate Athletic Association convened a multidisciplinary task force to address cardiovascular concerns in collegiate student-athletes and to develop consensus for an interassociation statement. This document summarizes the task force deliberations and follow-up discussions, and includes available evidence on cardiovascular risk, pre-participation evaluation, and the recognition of and response to cardiac arrest. Future recommendations for cardiac research initiatives, education, and collaboration are also provided. (J Am Coll Cardiol 2016;doi: 10.1016/j.jacc.2016.03.527.) ©2016 by the American College of Cardiology Foundation.
An epigenome-wide association analysis of cardiac autonomic responses among a population of welders.
Zhang, Jinming; Liu, Zhonghua; Umukoro, Peter E; Cavallari, Jennifer M; Fang, Shona C; Weisskopf, Marc G; Lin, Xihong; Mittleman, Murray A; Christiani, David C
2017-02-01
DNA methylation is one of the potential epigenetic mechanisms associated with various adverse cardiovascular effects; however, its association with cardiac autonomic dysfunction, in particular, is unknown. In the current study, we aimed to identify epigenetic variants associated with alterations in cardiac autonomic responses. Cardiac autonomic responses were measured with two novel markers: acceleration capacity (AC) and deceleration capacity (DC). We examined DNA methylation levels at more than 472,506 CpG probes through the Illumina Infinium HumanMethylation450 BeadChip assay. We conducted separate linear mixed models to examine associations of DNA methylation levels at each CpG with AC and DC. One CpG (cg26829071) located in the GPR133 gene was negatively associated with DC values after multiple testing corrections through false discovery rate. Our study suggests the potential functional importance of methylation in cardiac autonomic responses. Findings from the current study need to be replicated in future studies in a larger population.
Liu, Xiaoli; Hall, Sean R. R.; Wang, Zhihong; Huang, He; Ghanta, Sailaja; Di Sante, Moises; Leri, Annarosa; Anversa, Piero; Perrella, Mark A.
2015-01-01
Striated preferentially expressed gene (Speg) is a member of the myosin light chain kinase family. We previously showed that disruption of the Speg gene locus in mice leads to a dilated cardiomyopathy with immature-appearing cardiomyocytes. Here we show that cardiomyopathy of Speg−/− mice arises as a consequence of defects in cardiac progenitor cell (CPC) function, and that neonatal cardiac dysfunction can be rescued by in utero injections of wild-type CPCs into Speg−/− foetal hearts. CPCs harvested from Speg−/− mice display defects in clone formation, growth and differentiation into cardiomyocytes in vitro, which are associated with cardiac dysfunction in vivo. In utero administration of wild-type CPCs into the hearts of Speg−/− mice results in CPC engraftment, differentiation and myocardial maturation, which rescues Speg−/− mice from neonatal heart failure and increases the number of live births by fivefold. We propose that in utero administration of CPCs may have future implications for treatment of neonatal heart diseases. PMID:26593099
Adaptive potential of a Pacific salmon challenged by climate change
NASA Astrophysics Data System (ADS)
Muñoz, Nicolas J.; Farrell, Anthony P.; Heath, John W.; Neff, Bryan D.
2015-02-01
Pacific salmon provide critical sustenance for millions of people worldwide and have far-reaching impacts on the productivity of ecosystems. Rising temperatures now threaten the persistence of these important fishes, yet it remains unknown whether populations can adapt. Here, we provide the first evidence that a Pacific salmon has both physiological and genetic capacities to increase its thermal tolerance in response to rising temperatures. In juvenile chinook salmon (Oncorhynchus tshawytscha), a 4 °C increase in developmental temperature was associated with a 2 °C increase in key measures of the thermal performance of cardiac function. Moreover, additive genetic effects significantly influenced several measures of cardiac capacity, indicative of heritable variation on which selection can act. However, a lack of both plasticity and genetic variation was found for the arrhythmic temperature of the heart, constraining this upper thermal limit to a maximum of 24.5 +/- 2.2 °C. Linking this constraint on thermal tolerance with present-day river temperatures and projected warming scenarios, we predict a 17% chance of catastrophic loss in the population by 2100 based on the average warming projection, with this chance increasing to 98% in the maximum warming scenario. Climate change mitigation is thus necessary to ensure the future viability of Pacific salmon populations.
Beer, Meinrad; Weidemann, Frank; Breunig, Frank; Knoll, Anita; Koeppe, Sabrina; Machann, Wolfram; Hahn, Dietbert; Wanner, Christoph; Strotmann, Jörg; Sandstede, Jörn
2006-05-15
The present study evaluated the evolution of cardiac morphology, function, and late enhancement as a noninvasive marker of myocardial fibrosis, and their inter-relation during enzyme replacement therapy in patients with Fabry's disease using magnetic resonance imaging and color Doppler myocardial imaging. Late enhancement, which was present in up to 50% of patients, was associated with increased left ventricular mass, the failure of a significant regression of hypertrophy during enzyme replacement therapy, and worse segmental myocardial function. Late enhancement may predict the effect of enzyme replacement therapy on left ventricular mass and cardiac function.
Electrocardiogram findings in emergency department patients with syncope.
Quinn, James; McDermott, Daniel
2011-07-01
To determine the sensitivity and specificity of the San Francisco Syncope Rule (SFSR) electrocardiogram (ECG) criteria for determining cardiac outcomes and to define the specific ECG findings that are the most important in patients with syncope. A consecutive cohort of emergency department (ED) patients with syncope or near syncope was considered. The treating emergency physicians assessed 50 predictor variables, including an ECG and rhythm assessment. For the ECG assessment, the physicians were asked to categorize the ECG as normal or abnormal based on any changes that were old or new. They also did a separate rhythm assessment and could use any of the ECGs or available monitoring strips, including prehospital strips, when making this assessment. All patients were followed up to determine a broad composite study outcome. The final ECG criterion for the SFSR was any nonsinus rhythm or new ECG changes. In this specific study, the initial assessments in the database were used to determine only cardiac-related outcomes (arrhythmia, myocardial infarction, structural, sudden death) based on set criteria, and the authors determined the sensitivity and specificity of the ECG criteria for cardiac outcomes only. All ECGs classified as "abnormal" by the study criteria were compared to the official cardiology reading to determine specific findings on the ECG. Univariate and multivariate analysis were used to determine important specific ECG and rhythm findings. A total of 684 consecutive patients were considered, with 218 having positive ECG criteria and 42 (6%) having important cardiac outcomes. ECG criteria predicted 36 of 42 patients with cardiac outcomes, with a sensitivity of 86% (95% confidence interval [CI] = 71% to 94%), a specificity of 70% (95% CI = 66% to 74%), and a negative predictive value of 99% (95% CI = 97% to 99%). Regarding specific ECG findings, any nonsinus rhythm from any source and any left bundle conduction problem (i.e., any left bundle branch block, left anterior fascicular block, left posterior fascicular block, or QRS widening) were 2.5 and 3.5 times more likely associated with significant cardiac outcomes. The ECG criteria from the SFSR are relatively simple, and if used correctly can help predict which patients are at risk of cardiac outcomes. Furthermore, any left bundle branch block conduction problems or any nonsinus rhythms found during the ED stay should be especially concerning for physicians caring for patients presenting with syncope. © 2011 by the Society for Academic Emergency Medicine.
Gist, Katja M; Kaufman, Jonathan; da Cruz, Eduardo M; Friesen, Robert H; Crumback, Sheri L; Linders, Megan; Edelstein, Charles; Altmann, Christopher; Palmer, Claire; Jalal, Diana; Faubel, Sarah
2016-04-01
Renal near-infrared spectroscopy is known to be predictive of acute kidney injury in children following cardiac surgery using a series of complex equations and area under the curve. This study was performed to determine if a greater than or equal to 20% reduction in renal near-infrared spectroscopy for 20 consecutive minutes intraoperatively or within the first 24 postoperative hours is associated with 1) acute kidney injury, 2) increased acute kidney injury biomarkers, or 3) other adverse clinical outcomes in children following cardiac surgery. Prospective single center observational study. Pediatric cardiac ICU. Children less than or equal to age 4 years who underwent cardiac surgery with the use of cardiopulmonary bypass during the study period (June 2011-July 2012). None. A reduction in near-infrared spectroscopy was not associated with acute kidney injury. Nine of 12 patients (75%) with a reduction in renal near-infrared spectroscopy did not develop acute kidney injury. The remaining three patients had mild acute kidney injury (pediatric Risk, Injury, Failure, Loss, End stage-Risk). A reduction in renal near-infrared spectroscopy was associated with the following adverse clinical outcomes: 1) a longer duration of mechanical ventilation (p = 0.05), 2) longer intensive care length of stay (p = 0.05), and 3) longer hospital length of stay (p < 0.01). A decline in renal near-infrared spectroscopy in combination with an increase in serum interleukin-6 and serum interleukin-8 was associated with a longer intensive care length of stay, and the addition of urine interleukin-18 to this was associated with a longer hospital length of stay. In this cohort, the rate of acute kidney injury was much lower than anticipated thereby limiting the evaluation of a reduction in renal near-infrared spectroscopy as a predictor of acute kidney injury. A greater than or equal to 20% reduction in renal near-infrared spectroscopy was significantly associated with adverse outcomes in children following cardiac surgery. The addition of specific biomarkers to the model was predictive of worse outcomes in these patients. Thus, real-time evaluation of renal near-infrared spectroscopy using the specific levels of change of a 20% reduction for 20 minutes may be useful in predicting prolonged mechanical ventilation and other adverse outcomes in children undergoing cardiac surgery.
Prediction of oxygen consumption in cardiac rehabilitation patients performing leg ergometry
NASA Astrophysics Data System (ADS)
Alvarez, John Gershwin
The purpose of this study was two-fold. First, to determine the validity of the ACSM leg ergometry equation in the prediction of steady-state oxygen consumption (VO2) in a heterogeneous population of cardiac patients. Second, to determine whether a more accurate prediction equation could be developed for use in the cardiac population. Thirty-one cardiac rehabilitation patients participated in the study of which 24 were men and 7 were women. Biometric variables (mean +/- sd) of the participants were as follows: age = 61.9 +/- 9.5 years; height = 172.6 +/- 1.6 cm; and body mass = 82.3 +/- 10.6 kg. Subjects exercised on a MonarchTM cycle ergometer at 0, 180, 360, 540 and 720 kgm ˙ min-1. The length of each stage was five minutes. Heart rate, ECG, and VO2 were continuously monitored. Blood pressure and heart rate were collected at the end of each stage. Steady state VO 2 was calculated for each stage using the average of the last two minutes. Correlation coefficients, standard error of estimate, coefficient of determination, total error, and mean bias were used to determine the accuracy of the ACSM equation (1995). The analysis found the ACSM equation to be a valid means of estimating VO2 in cardiac patients. Simple linear regression was used to develop a new equation. Regression analysis found workload to be a significant predictor of VO2. The following equation is the result: VO2 = (1.6 x kgm ˙ min-1) + 444 ml ˙ min-1. The r of the equation was .78 (p < .05) and the standard error of estimate was 211 ml ˙ min-1. Analysis of variance was used to determine significant differences between means for actual and predicted VO2 values for each equation. The analysis found the ACSM and new equation to significantly (p < .05) under predict VO2 during unloaded pedaling. Furthermore, the ACSM equation was found to significantly (p < .05) under predict VO 2 during the first loaded stage of exercise. When the accuracy of the ACSM and new equations were compared based on correlation coefficients, coefficients of determinations, SEEs, total error, and mean bias the new equation was found to have equal or better accuracy at all workloads. The final form of the new equation is: VO2 (ml ˙ min-1) = (kgm ˙ min-1 x 1.6 ml ˙ kgm-1) + (3.5 ml ˙ kg-1 ˙ min-1 x body mass in kg) + 156 ml ˙ min-1.
Indik, Julia H; Conover, Zacherie; McGovern, Meghan; Silver, Annemarie E; Spaite, Daniel W; Bobrow, Bentley J; Kern, Karl B
2014-09-30
Previous investigations of out-of-hospital cardiac arrest (OHCA) have shown that the waveform characteristic amplitude spectral area (AMSA) can predict successful defibrillation and return of spontaneous circulation (ROSC) but has not been studied previously for survival. To determine whether AMSA computed from the ventricular fibrillation (VF) waveform is associated with pre-hospital ROSC, hospital admission, and hospital discharge. Adults with witnessed OHCA and an initial rhythm of VF from an Utstein style database were studied. AMSA was measured prior to each shock and averaged for each subject (AMSA-avg). Factors such as age, sex, number of shocks, time from dispatch to monitor/defibrillator application, first shock AMSA, and AMSA-avg that could predict pre-hospital ROSC, hospital admission, and hospital discharge were analyzed by logistic regression. Eighty-nine subjects (mean age 62 ± 15 years) with a total of 286 shocks were analyzed. AMSA-avg was associated with pre-hospital ROSC (p = 0.003); a threshold of 20.9 mV-Hz had a 95% sensitivity and a 43.4% specificity. Additionally, AMSA-avg was associated with hospital admission (p < 0.001); a threshold of 21 mV-Hz had a 95% sensitivity and a 54% specificity and with hospital discharge (p < 0.001); a threshold of 25.6 mV-Hz had a 95% sensitivity and a 53% specificity. First-shock AMSA was also predictive of pre-hospital ROSC, hospital admission, and discharge. Time from dispatch to monitor/defibrillator application was associated with hospital admission (p = 0.034) but not pre-hospital ROSC or hospital discharge. AMSA is highly associated with pre-hospital ROSC, survival to hospital admission, and hospital discharge in witnessed VF OHCA. Future studies are needed to determine whether AMSA computed during resuscitation can identify patients for whom continuing current resuscitation efforts would likely be futile. Copyright © 2014 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Guida, Pietro; Mastro, Florinda; Scrascia, Giuseppe; Whitlock, Richard; Paparella, Domenico
2014-12-01
A systematic review of the European System for Cardiac Operative Risk Evaluation (euroSCORE) II performance for prediction of operative mortality after cardiac surgery has not been performed. We conducted a meta-analysis of studies based on the predictive accuracy of the euroSCORE II. We searched the Embase and PubMed databases for all English-only articles reporting performance characteristics of the euroSCORE II. The area under the receiver operating characteristic curve, the observed/expected mortality ratio, and observed-expected mortality difference with their 95% confidence intervals were analyzed. Twenty-two articles were selected, including 145,592 procedures. Operative mortality occurred in 4293 (2.95%), whereas the expected events according to euroSCORE II were 4802 (3.30%). Meta-analysis of these studies provided an area under the receiver operating characteristic curve of 0.792 (95% confidence interval, 0.773-0.811), an estimated observed/expected ratio of 1.019 (95% confidence interval, 0.899-1.139), and observed-expected difference of 0.125 (95% confidence interval, -0.269 to 0.519). Statistical heterogeneity was detected among retrospective studies including less recent procedures. Subgroups analysis confirmed the robustness of combined estimates for isolated valve procedures and those combined with revascularization surgery. A significant overestimation of the euroSCORE II with an observed/expected ratio of 0.829 (95% confidence interval, 0.677-0.982) was observed in isolated coronary artery bypass grafting and a slight underestimation of predictions in high-risk patients (observed/expected ratio 1.253 and observed-expected difference 1.859). Despite the heterogeneity, the results from this meta-analysis show a good overall performance of the euroSCORE II in terms of discrimination and accuracy of model predictions for operative mortality. Validation of the euroSCORE II in prospective populations needs to be further studied for a continuous improvement of patients' risk stratification before cardiac surgery. Copyright © 2014 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.
Emanueli, Costanza; Shearn, Andrew I U; Laftah, Abas; Fiorentino, Francesca; Reeves, Barnaby C; Beltrami, Cristina; Mumford, Andrew; Clayton, Aled; Gurney, Mark; Shantikumar, Saran; Angelini, Gianni D
2016-01-01
Exosome nanoparticles carry a composite cargo, including microRNAs (miRs). Cultured cardiovascular cells release miR-containing exosomes. The exosomal trafficking of miRNAs from the heart is largely unexplored. Working on clinical samples from coronary-artery by-pass graft (CABG) surgery, we investigated if: 1) exosomes containing cardiac miRs and hence putatively released by cardiac cells increase in the circulation after surgery; 2) circulating exosomes and exosomal cardiac miRs correlate with cardiac troponin (cTn), the current "gold standard" surrogate biomarker of myocardial damage. The concentration of exosome-sized nanoparticles was determined in serial plasma samples. Cardiac-expressed (miR-1, miR-24, miR-133a/b, miR-208a/b, miR-210), non-cardiovascular (miR-122) and quality control miRs were measured in whole plasma and in plasma exosomes. Linear regression analyses were employed to establish the extent to which the circulating individual miRs, exosomes and exosomal cardiac miR correlated with cTn-I. Cardiac-expressed miRs and the nanoparticle number increased in the plasma on completion of surgery for up to 48 hours. The exosomal concentration of cardiac miRs also increased after CABG. Cardiac miRs in the whole plasma did not correlate significantly with cTn-I. By contrast cTn-I was positively correlated with the plasma exosome level and the exosomal cardiac miRs. The plasma concentrations of exosomes and their cargo of cardiac miRs increased in patients undergoing CABG and were positively correlated with hs-cTnI. These data provide evidence that CABG induces the trafficking of exosomes from the heart to the peripheral circulation. Future studies are necessary to investigate the potential of circulating exosomes as clinical biomarkers in cardiac patients.
Emanueli, Costanza; Fiorentino, Francesca; Reeves, Barnaby C.; Beltrami, Cristina; Mumford, Andrew; Clayton, Aled; Gurney, Mark; Shantikumar, Saran; Angelini, Gianni D.
2016-01-01
Introduction Exosome nanoparticles carry a composite cargo, including microRNAs (miRs). Cultured cardiovascular cells release miR-containing exosomes. The exosomal trafficking of miRNAs from the heart is largely unexplored. Working on clinical samples from coronary-artery by-pass graft (CABG) surgery, we investigated if: 1) exosomes containing cardiac miRs and hence putatively released by cardiac cells increase in the circulation after surgery; 2) circulating exosomes and exosomal cardiac miRs correlate with cardiac troponin (cTn), the current “gold standard” surrogate biomarker of myocardial damage. Methods and Results The concentration of exosome-sized nanoparticles was determined in serial plasma samples. Cardiac-expressed (miR-1, miR-24, miR-133a/b, miR-208a/b, miR-210), non-cardiovascular (miR-122) and quality control miRs were measured in whole plasma and in plasma exosomes. Linear regression analyses were employed to establish the extent to which the circulating individual miRs, exosomes and exosomal cardiac miR correlated with cTn-I. Cardiac-expressed miRs and the nanoparticle number increased in the plasma on completion of surgery for up to 48 hours. The exosomal concentration of cardiac miRs also increased after CABG. Cardiac miRs in the whole plasma did not correlate significantly with cTn-I. By contrast cTn-I was positively correlated with the plasma exosome level and the exosomal cardiac miRs. Conclusions The plasma concentrations of exosomes and their cargo of cardiac miRs increased in patients undergoing CABG and were positively correlated with hs-cTnI. These data provide evidence that CABG induces the trafficking of exosomes from the heart to the peripheral circulation. Future studies are necessary to investigate the potential of circulating exosomes as clinical biomarkers in cardiac patients. PMID:27128471
Nolan, Jerry P; Soar, Jasmeet; Smith, Gary B; Gwinnutt, Carl; Parrott, Francesca; Power, Sarah; Harrison, David A; Nixon, Edel; Rowan, Kathryn
2014-08-01
To report the incidence, characteristics and outcome of adult in-hospital cardiac arrest in the United Kingdom (UK) National Cardiac Arrest Audit database. A prospectively defined analysis of the UK National Cardiac Arrest Audit (NCAA) database. 144 acute hospitals contributed data relating to 22,628 patients aged 16 years or over receiving chest compressions and/or defibrillation and attended by a hospital-based resuscitation team in response to a 2222 call. The main outcome measures were incidence of adult in-hospital cardiac arrest and survival to hospital discharge. The overall incidence of adult in-hospital cardiac arrest was 1.6 per 1000 hospital admissions with a median across hospitals of 1.5 (interquartile range 1.2-2.2). Incidence varied seasonally, peaking in winter. Overall unadjusted survival to hospital discharge was 18.4%. The presenting rhythm was shockable (ventricular fibrillation or pulseless ventricular tachycardia) in 16.9% and non-shockable (asystole or pulseless electrical activity) in 72.3%; rates of survival to hospital discharge associated with these rhythms were 49.0% and 10.5%, respectively, but varied substantially across hospitals. These first results from the NCAA database describing the current incidence and outcome of adult in-hospital cardiac arrest in UK hospitals will serve as a benchmark from which to assess the future impact of changes in service delivery, organisation and treatment for in-hospital cardiac arrest. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Cardiac Remodeling: Endothelial Cells Have More to Say Than Just NO
Segers, Vincent F. M.; Brutsaert, Dirk L.; De Keulenaer, Gilles W.
2018-01-01
The heart is a highly structured organ consisting of different cell types, including myocytes, endothelial cells, fibroblasts, stem cells, and inflammatory cells. This pluricellularity provides the opportunity of intercellular communication within the organ, with subsequent optimization of its function. Intercellular cross-talk is indispensable during cardiac development, but also plays a substantial modulatory role in the normal and failing heart of adults. More specifically, factors secreted by cardiac microvascular endothelial cells modulate cardiac performance and either positively or negatively affect cardiac remodeling. The role of endothelium-derived small molecules and peptides—for instance NO or endothelin-1—has been extensively studied and is relatively well defined. However, endothelial cells also secrete numerous larger proteins. Information on the role of these proteins in the heart is scattered throughout the literature. In this review, we will link specific proteins that modulate cardiac contractility or cardiac remodeling to their expression by cardiac microvascular endothelial cells. The following proteins will be discussed: IL-6, periostin, tenascin-C, thrombospondin, follistatin-like 1, frizzled-related protein 3, IGF-1, CTGF, dickkopf-3, BMP-2 and−4, apelin, IL-1β, placental growth factor, LIF, WISP-1, midkine, and adrenomedullin. In the future, it is likely that some of these proteins can serve as markers of cardiac remodeling and that the concept of endothelial function and dysfunction might have to be redefined as we learn more about other factors secreted by ECs besides NO. PMID:29695980
Validation of EGSYS Score in Prediction of Cardiogenic Syncope
Kariman, Hamid; Harati, Sepideh; Safari, Saeed; Baratloo, Alireza; Pishgahi, Mehdi
2015-01-01
Introduction. Evaluation of Guidelines in Syncope Study (EGSYS) is designed to differentiate between cardiac and noncardiac causes of syncope. The present study aimed to evaluate the accuracy of this predictive model. Methods. In this prospective cross-sectional study, screening performance characteristics of EGSYS-U (univariate) and EGSYS-M (multivariate) in prediction of cardiac syncope were calculated for syncope patients who were referred to the emergency department (ED). Results. 198 patients with mean age of 59.26 ± 19.5 years were evaluated (62.3% male). 115 (58.4%) patients were diagnosed with cardiac syncope. Area under the ROC curve was 0.818 (95% CI: 0.75–0.87) for EGSYS-U and 0.805 (CI 95%: 0.74–0.86) for EGSYS-M (p = 0.53). Best cut-off point for both models was ≥3. Sensitivity and specificity were 86.08% (95% CI: 78.09–91.59) and 68.29% (95% CI: 56.97–77.86) for EGSYS-U and 91.30% (95% CI: 84.20–95.52) and 57.32% (95% CI: 45.92–68.02) for EGSYS-M, respectively. Conclusion. The results of this study demonstrated the acceptable accuracy of EGSYS score in predicting cardiogenic causes of syncope at the ≥3 cut-off point. It seems that using this model in daily practice can help physicians select at risk patients and properly triage them. PMID:26649200
Lee, Sang-Eun; Uhm, Jae-Sun; Kim, Jong-Youn; Pak, Hui-Nam; Lee, Moon-Hyoung; Joung, Boyoung
2015-07-01
Acute coronary lesions commonly trigger out-of-hospital cardiac arrest (OHCA). However, the prevalence of coronary artery disease (CAD) in Asian patients with OHCA and whether electrocardiogram (ECG) and other findings might predict acute myocardial infarction (AMI) have not been fully elucidated. Of 284 consecutive resuscitated OHCA patients seen between January 2006 and July 2013, we enrolled 135 patients who had undergone coronary evaluation. ECGs, echocardiography, and biomarkers were compared between patients with or without CAD. We included 135 consecutive patients aged 54 years (interquartile range 45-65) with sustained return of spontaneous circulation after OHCA between 2006 and 2012. Sixty six (45%) patients had CAD. The initial rhythm was shockable and non-shockable in 110 (81%) and 25 (19%) patients, respectively. ST-segment elevation predicted CAD with 42% sensitivity, 87% specificity, and 65% accuracy. ST elevation and/or regional wall motion abnormality (RWMA) showed 68% sensitivity, 52% specificity, and 70% accuracy in the prediction of CAD. Finally, a combination of ST elevation and/or RWMA and/or troponin T elevation predicted CAD with 94% sensitivity, 17% specificity, and 55% accuracy. In patients with OHCA without obvious non-cardiac causes, selection for coronary angiogram based on the combined criterion could detect 94% of CADs. However, compared with ECG only criteria, the combined criterion failed to improve diagnostic accuracy with a lower specificity.
Konstantinou, Dimitrios; Lei, Ming; Xia, Zhidao; Kanamarlapudi, Venkateswarlu
2015-04-01
Heart disease is the major leading cause of death worldwide and the use of stem cells promises new ways for its treatment. The relatively easy and quick acquisition of human umbilical cord matrix mesenchymal stem cells (HUMSCs) and their properties make them useful for the treatment of cardiac diseases. Therefore, the main aim of this investigation was to create cardiac polymicrotissue from HUMSCs using a combination of growth factors [sphingosine-1-phosphate (S1P) and suramin] and techniques (hanging drop and bioreactor). Using designated culture conditions of the growth factors (100 nM S1P and 500 µM suramin), cardiomyocyte differentiation medium (CDM), hanging drop, bioreactor and differentiation for 7 days, a potential specific cardiac polymicrotissue was derived from HUMSCs. The effectiveness of growth factors alone or in combination in differentiation of HUMSCs to cardiac polymicrotissue was analysed by assessing the presence of cardiac markers by immunocytochemistry. This analysis demonstrated the importance of those growth factors for the differentiation. This study for the first time demonstrated the formation of a cardiac polymicrotissue under specific culture conditions. The polymicrotissue thus obtained may be used in future as a 'patch' to cover the injured cardiac region and would thereby be useful for the treatment of heart diseases. © 2014 International Federation for Cell Biology.
In vivo, high-frequency three-dimensional cardiac MR elastography: Feasibility in normal volunteers.
Arani, Arvin; Glaser, Kevin L; Arunachalam, Shivaram P; Rossman, Phillip J; Lake, David S; Trzasko, Joshua D; Manduca, Armando; McGee, Kiaran P; Ehman, Richard L; Araoz, Philip A
2017-01-01
Noninvasive stiffness imaging techniques (elastography) can image myocardial tissue biomechanics in vivo. For cardiac MR elastography (MRE) techniques, the optimal vibration frequency for in vivo experiments is unknown. Furthermore, the accuracy of cardiac MRE has never been evaluated in a geometrically accurate phantom. Therefore, the purpose of this study was to determine the necessary driving frequency to obtain accurate three-dimensional (3D) cardiac MRE stiffness estimates in a geometrically accurate diastolic cardiac phantom and to determine the optimal vibration frequency that can be introduced in healthy volunteers. The 3D cardiac MRE was performed on eight healthy volunteers using 80 Hz, 100 Hz, 140 Hz, 180 Hz, and 220 Hz vibration frequencies. These frequencies were tested in a geometrically accurate diastolic heart phantom and compared with dynamic mechanical analysis (DMA). The 3D Cardiac MRE was shown to be feasible in volunteers at frequencies as high as 180 Hz. MRE and DMA agreed within 5% at frequencies greater than 180 Hz in the cardiac phantom. However, octahedral shear strain signal to noise ratios and myocardial coverage was shown to be highest at a frequency of 140 Hz across all subjects. This study motivates future evaluation of high-frequency 3D MRE in patient populations. Magn Reson Med 77:351-360, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Benhamou, Y; Boelle, P-Y; Baudin, B; Ederhy, S; Gras, J; Galicier, L; Azoulay, E; Provôt, F; Maury, E; Pène, F; Mira, J-P; Wynckel, A; Presne, C; Poullin, P; Halimi, J-M; Delmas, Y; Kanouni, T; Seguin, A; Mousson, C; Servais, A; Bordessoule, D; Perez, P; Hamidou, M; Cohen, A; Veyradier, A; Coppo, P
2015-02-01
Cardiac involvement is a major cause of mortality in patients with thrombotic thrombocytopenic purpura (TTP). However, diagnosis remains underestimated and delayed, owing to subclinical injuries. Cardiac troponin-I measurement (cTnI) on admission could improve the early diagnosis of cardiac involvement and have prognostic value. To assess the predictive value of cTnI in patients with TTP for death or refractoriness. The study involved a prospective cohort of adult TTP patients with acquired severe ADAMTS-13 deficiency (< 10%) and included in the registry of the French Reference Center for Thrombotic Microangiopathies. Centralized cTnI measurements were performed on frozen serum on admission. Between January 2003 and December 2011, 133 patients with TTP (mean age, 48 ± 17 years) had available cTnI measurements on admission. Thirty-two patients (24%) had clinical and/or electrocardiogram features. Nineteen (14.3%) had cardiac symptoms, mainly congestive heart failure and myocardial infarction. Electrocardiogram changes, mainly repolarization disorders, were present in 13 cases. An increased cTnI level (> 0.1 μg L(-1) ) was present in 78 patients (59%), of whom 46 (59%) had no clinical cardiac involvement. The main outcomes were death (25%) and refractoriness (17%). Age (P = 0.02) and cTnI level (P = 0.002) showed the greatest impact on survival. A cTnI level of > 0.25 μg L(-1) was the only independent factor in predicting death (odds ratio [OR] 2.87; 95% confidence interval [CI] 1.13-7.22; P = 0.024) and/or refractoriness (OR 3.03; 95% CI 1.27-7.3; P = 0.01). A CTnI level of > 0.25 μg L(-1) at presentation in patients with TTP appears to be an independent factor associated with a three-fold increase in the risk of death or refractoriness. Therefore, cTnI level should be considered as a prognostic indicator in patients diagnosed with TTP. © 2014 International Society on Thrombosis and Haemostasis.
Early Cardiac Arrest in Patients Hospitalized With Pneumonia
Yuen, Trevor C.; McConville, John F.; Kress, John P.; VandenHoek, Terry L.; Hall, Jesse B.; Edelson, Dana P.
2012-01-01
Background: Pneumonia is the leading infectious cause of death. Early deterioration and death commonly result from progressive sepsis, shock, respiratory failure, and cardiac complications. Recent data suggest that cardiac arrest may also be common, yet few previous studies have addressed this. Accordingly, we sought to characterize early cardiac arrest in patients who are hospitalized with coexisting pneumonia. Methods: We performed a retrospective analysis of a multicenter cardiac arrest database, with data from > 500 North American hospitals. We included in-hospital cardiac arrest events that occurred in community-dwelling adults with pneumonia within the first 72 h after hospital admission. We compared patient and event characteristics for patients with and without pneumonia. For patients with pneumonia, we also compared events according to event location. Results: We identified 4,453 episodes of early cardiac arrest in patients who were hospitalized with pneumonia. Among patients with preexisting pneumonia, only 36.5% were receiving mechanical ventilation and only 33.3% were receiving infusions of vasoactive drugs prior to cardiac arrest. Only 52.3% of patients on the ward were receiving ECG monitoring prior to cardiac arrest. Shockable rhythms were uncommon in all patients with pneumonia (ventricular tachycardia or fibrillation, 14.8%). Patients on the ward were significantly older than patients in the ICU. Conclusions: In patients with preexisting pneumonia, cardiac arrest may occur in the absence of preceding shock or respiratory failure. Physicians should be alert to the possibility of abrupt cardiopulmonary collapse, and future studies should address this possibility. The mechanism may involve myocardial ischemia, a maladaptive response to hypoxia, sepsis-related cardiomyopathy, or other phenomena. PMID:22194592
Sutton, Erica J; Rolfe, Danielle E; Landry, Mireille; Sternberg, Leonard; Price, Jennifer A D
2012-08-01
To report an exploration of the multidimensionality of safety in cardiac rehabilitation programmes as perceived by women who were enrolled in the Women's Cardiovascular Health Initiative in Toronto, Canada. Cardiovascular disease is the leading cause of death among women. Although cardiac rehabilitation is clinically effective, significantly fewer women than men participate in available programmes. The literature identifies factors affecting women's cardiac rehabilitation participation, and provides possible explanations for this gender disparity. Although safety is mentioned among the barriers to women's cardiac rehabilitation participation, the extent to which safety contributes to programme participation, completion, and maintenance remains under-explored in the cardiac rehabilitation literature. We conducted an exploratory qualitative study to examine the role safety and place play for women engaged in cardiac prevention and rehabilitation at the Women's Cardiovascular Health Initiative. Methods. From 2005-2006, 14 participants engaged in semi-structured, qualitative interviews lasting 30-90 minutes. Discussions addressed women's experiences at the Women's Cardiovascular Health Initiative. Interview transcripts were analysed using thematic analysis. Three themes were developed: 'Safety', which was sub-categorized according to physical, social, and symbolic interpretations of safety, 'searching for a sense of place', and 'confidence and empowerment'. Feeling physically, socially, and symbolically safe in one's cardiac rehabilitation environment may contribute to programme adherence and exercise maintenance for women. Focusing on comprehensive notions of safety in future cardiac rehabilitation research could offer insight into why many women do not maintain an exercise regimen in currently structured cardiac rehabilitation and community programmes. © 2012 Blackwell Publishing Ltd.
Assessment of cardiac risk before non-cardiac surgery: brain natriuretic peptide in 1590 patients.
Dernellis, J; Panaretou, M
2006-11-01
To evaluate the predictive value of brain natriuretic peptide (BNP) for assessment of cardiac risk before non-cardiac surgery. Consecutively treated patients (947 men, 643 women) whose BNP was measured before non-cardiac surgery were studied. Clinical and ECG variables were evaluated to identify predictors of postoperative cardiac events. Events occurred in 6% of patients: 21 cardiac deaths, 20 non-fatal myocardial infarctions, 41 episodes of pulmonary oedema and 14 patients with ventricular tachycardia. All of these patients had raised plasma BNP concentrations (best cut-off point 189 pg/ml). The only independent predictor of postoperative events was BNP (odds ratio 34.52, 95% confidence interval (CI) 17.08 to 68.62, p < 0.0001). Clinical variables of Goldman's multifactorial index identified 18% of patients in class I, 40% in class II, 24% in class III and 18% in class IV preoperatively; postoperative event rates were 2%, 3%, 7% and 14%, respectively. BNP identified 60% of patients as having zero risk (BNP 0-100 pg/ml), 22% low risk (101-200 pg/ml), 14% intermediate risk (201-300 pg/ml) and 4% high risk (> 300 pg/ml); postoperative event rates were 0%, 5%, 12% and 81%, respectively. In this population of patients evaluated before non-cardiac surgery, BNP is an independent predictor of postoperative cardiac events. BNP > 189 pg/ml identified patients at highest risk.
Post-resuscitation care following out-of-hospital and in-hospital cardiac arrest.
Girotra, Saket; Chan, Paul S; Bradley, Steven M
2015-12-01
Cardiac arrest is a leading cause of death in developed countries. Although a majority of cardiac arrest patients die during the acute event, a substantial proportion of cardiac arrest deaths occur in patients following successful resuscitation and can be attributed to the development of post-cardiac arrest syndrome. There is growing recognition that integrated post-resuscitation care, which encompasses targeted temperature management (TTM), early coronary angiography and comprehensive critical care, can improve patient outcomes. TTM has been shown to improve survival and neurological outcome in patients who remain comatose especially following out-of-hospital cardiac arrest due to ventricular arrhythmias. Early coronary angiography and revascularisation if needed may also be beneficial during the post-resuscitation phase, based on data from observational studies. In addition, resuscitated patients usually require intensive care, which includes mechanical ventilator, haemodynamic support and close monitoring of blood gases, glucose, electrolytes, seizures and other disease-specific intervention. Efforts should be taken to avoid premature withdrawal of life-supporting treatment, especially in patients treated with TTM. Given that resources and personnel needed to provide high-quality post-resuscitation care may not exist at all hospitals, professional societies have recommended regionalisation of post-resuscitation care in specialised 'cardiac arrest centres' as a strategy to improve cardiac arrest outcomes. Finally, evidence for post-resuscitation care following in-hospital cardiac arrest is largely extrapolated from studies in patients with out-of-hospital cardiac arrest. Future studies need to examine the effectiveness of different post-resuscitation strategies, such as TTM, in patients with in-hospital cardiac arrest. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
NASA Astrophysics Data System (ADS)
Ford, Steven J.; Deán-Ben, Xosé L.; Razansky, Daniel
2015-03-01
The fast heart rate (~7 Hz) of the mouse makes cardiac imaging and functional analysis difficult when studying mouse models of cardiovascular disease, and cannot be done truly in real-time and 3D using established imaging modalities. Optoacoustic imaging, on the other hand, provides ultra-fast imaging at up to 50 volumetric frames per second, allowing for acquisition of several frames per mouse cardiac cycle. In this study, we combined a recently-developed 3D optoacoustic imaging array with novel analytical techniques to assess cardiac function and perfusion dynamics of the mouse heart at high, 4D spatiotemporal resolution. In brief, the heart of an anesthetized mouse was imaged over a series of multiple volumetric frames. In another experiment, an intravenous bolus of indocyanine green (ICG) was injected and its distribution was subsequently imaged in the heart. Unique temporal features of the cardiac cycle and ICG distribution profiles were used to segment the heart from background and to assess cardiac function. The 3D nature of the experimental data allowed for determination of cardiac volumes at ~7-8 frames per mouse cardiac cycle, providing important cardiac function parameters (e.g., stroke volume, ejection fraction) on a beat-by-beat basis, which has been previously unachieved by any other cardiac imaging modality. Furthermore, ICG distribution dynamics allowed for the determination of pulmonary transit time and thus additional quantitative measures of cardiovascular function. This work demonstrates the potential for optoacoustic cardiac imaging and is expected to have a major contribution toward future preclinical studies of animal models of cardiovascular health and disease.
Erskine, Kathleen E.; Hidayatallah, Nadia Z.; Walsh, Christine A.; McDonald, Thomas V.; Cohen, Lilian; Marion, Robert W.; Dolan, Siobhan M.
2014-01-01
Genetic testing is becoming increasingly available for cardiac channelopathies, such as long QT syndrome and Brugada syndrome, which can lead to sudden cardiac death. Test results can be used to shape an individual’s medical management and to identify at-risk family members. In our qualitative study, all participants had a personal or family history of a diagnosed cardiac arrhythmia syndrome or sudden cardiac death. Open-ended interviews were conducted individually and in focus groups. Interviews were audio recorded, transcribed verbatim, and analyzed using a qualitative grounded-theory approach. Of 50 participants, 37 described their motivations for pursuing genetic testing for long QT syndrome or another cardiac channelopathy. Participants’ motivations included: to find an explanation for a family member’s sudden death, to relieve uncertainty regarding a diagnosis, to guide future medical management, to allay concern about children or other family members, and to comply with recommendations of physicians or family members. Perceived reasons not to pursue genetic testing included denial, fear, and lack of information. The genetic counseling and informed consent process can be enhanced by understanding and addressing an individual’s internal and external motivations either for or against pursuing genetic testing. PMID:24664857
Time delay between cardiac and brain activity during sleep transitions
NASA Astrophysics Data System (ADS)
Long, Xi; Arends, Johan B.; Aarts, Ronald M.; Haakma, Reinder; Fonseca, Pedro; Rolink, Jérôme
2015-04-01
Human sleep consists of wake, rapid-eye-movement (REM) sleep, and non-REM (NREM) sleep that includes light and deep sleep stages. This work investigated the time delay between changes of cardiac and brain activity for sleep transitions. Here, the brain activity was quantified by electroencephalographic (EEG) mean frequency and the cardiac parameters included heart rate, standard deviation of heartbeat intervals, and their low- and high-frequency spectral powers. Using a cross-correlation analysis, we found that the cardiac variations during wake-sleep and NREM sleep transitions preceded the EEG changes by 1-3 min but this was not the case for REM sleep transitions. These important findings can be further used to predict the onset and ending of some sleep stages in an early manner.
Nagata, Takashi; Abe, Takeru; Hasegawa, Manabu; Hagihara, Akihito
2017-04-01
To determine if termination of resuscitation should be considered for older individuals, we sought to identify factors associated with clinical outcome following out-of-hospital cardiac arrest (OHCA) in people ≥80 years old and over. A prospective, population-based, observational study was conducted for ≥80-year-old individuals who experienced out-of-hospital cardiac arrest and to whom resuscitation was provided by emergency responders between January 1, 2005 and December 31, 2012 (n=377,577). The primary endpoint was 1-month survival. Signal detection analysis was applied to estimate predictive factors among 17 variables. Among all out-of-hospital cardiac arrest cases, 59.4% were of cardiac origin, and 1-month survival rate was 3.3%. Following signal detection analysis, cases of both cardiac and non-cardiac origin were categorized into three subgroups defined by return of spontaneous circulation (ROSC) and epinephrine use. One-month survival ranged between 1.2 and 41.0% for the three subgroups of cardiac origin and between 2.0 and 41.1% for the three subgroups of non-cardiac origin. ROSC was the most significant predictor of 1-month survival among patients with cardiac and non-cardiac OHCA who were ≥80 years old. Absence of ROSC might be an important factor to the termination of resuscitation rule for OHCA in individuals who are ≥80years old. Copyright © 2017 Elsevier B.V. All rights reserved.
Translating Stem Cell Research to Cardiac Disease Therapies: Pitfalls and Prospects for Improvement
Rosen, Michael R.; Myerburg, Robert J.; Francis, Darrel P.; Cole, Graham D.; Marbán, Eduardo
2014-01-01
Over the past 2 decades, there have been numerous stem cell studies focused on cardiac diseases, ranging from proof-of-concept to phase 2 trials. This series of articles focuses on the legacy of these studies and the outlook for future treatment of cardiac diseases with stem cell therapies. The first section by Rosen and Myerburg is an independent review that analyzes the basic science and translational strategies supporting the rapid advance of stem cell technology to the clinic, the philosophies behind them, trial designs, and means for going forward that may impact favorably on progress. The second and third sections were collected in response to the initial section of this review. The commentary by Francis and Cole discusses the Rosen and Myerburg review and details how trial outcomes can be affected by noise, poor trial design (particularly the absence of blinding), and normal human tendencies toward optimism and denial. The final, independent article by Marbán takes a different perspective concerning the potential for positive impact of stem cell research applied to heart disease and future prospects for its clinical application. PMID:25169179
Syeda, Javeria N; Rutkofsky, Ian H; Muhammad, Adnan S; Balla Abdalla, Tarig H; Saghir, Zahid
2018-04-11
The association of major depressive disorder (MDD) with myocardial infarction (MI) and vice versa is not unknown. Depression, along with many other systemic factors like atherosclerosis, obesity, diabetes and vascular dysfunction, contributes to the development of adverse cardiac events in the future and, has always been a topic of interest in the fields of cardiology and psychosomatics. We wrote this review article to elaborate this relationship in detail. This article suggests that the individuals with type D personality who already had cardiovascular disease had undergone more serious myocardial damage. In addition, we elucidated the effects of depression on sympathetic activity and remodeling of myocardium after MI. The alterations in the neuroendocrine factors, which included the changes in levels of Serotonin (5-HT), Norepinephrine and Corticosterone, also geared towards the changes associated with depression-induced myocardial injury. However, we need more studies in the near future to further dig into this association process. Therefore, we recommend more research to explore the relationship of psychological factors and adverse cardiac outcomes.
Harbaoui, Brahim; Montoy, Mathieu; Charles, Paul; Boussel, Loic; Liebgott, Hervé; Girerd, Nicolas; Courand, Pierre-Yves; Lantelme, Pierre
2016-03-01
The principal objective was to determine the effect of total aortic calcification (TAC) burden on outcomes (cardiac mortality, all-cause mortality, and heart failure (HF)) after transcatheter aortic valve implantation (TAVI). The secondary aim was to assess the contribution of each segment of the aorta to these outcomes. Indications for TAVI are increasing in number. Even after procedural success, however, some patients die soon afterwards, indicating the futility of TAVI in certain cases. Aortic calcifications were measured on computed tomography in 164 patients treated by TAVI. TAC, ascending aortic calcification (AsAC), descending aorta calcifications, and abdominal aorta calcifications were expressed as tertiles and their prognostic values were assessed in a multivariable cox analysis adjusted for major confounders including EuroSCORE. Median duration of follow-up was 565 (interquartile range: 246 to 1000) days. TAC (tertile3 vs. tertile1) was significantly and strongly associated with cardiac mortality (hazard ratio [HR]: 16.74; 95% confidence interval [CI]: 2.21 to 127.05; p = 0.006) and all-cause mortality (HR: 2.39; 95% CI: 1.18 to 4.84; p = 0.015) but not with HF (HR: 1.84; 95% CI: 0.87 to 3.90; p = 0.110). Each segment was associated with cardiac mortality, while only AsAC (tertile 3 vs. tertile 1) appeared predictive of HF (hazard ratio: 2.29; 95% CI: 1.12 to 4.66; p = 0.023). TAC is an integrative predictor of cardiac and all-cause mortality after TAVI. It should be included in the assessment of patients before TAVI in order to predict cardiac outcome after valve replacement and avoid futile interventions. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Diet compounds, glycemic index and obesity-related cardiac effects.
Diniz, Yeda S; Burneiko, Regina M; Seiva, Fabio R F; Almeida, Flávia Q A; Galhardi, Cristiano Machado; Filho, José Luiz V B Novelli; Mani, Fernanda; Novelli, Ethel L B
2008-02-20
Diet compounds may influence obesity-related cardiac oxidative stress and metabolic sifting. Carbohydrate-rich diet may be disadvantageous from fat-rich diet to cardiac tissue and glycemic index rather than lipid profile may predict the obesity-related cardiac effects. Male Wistar rats were divided into three groups (n=8/group): (C) receiving standard chow (3.0 kcal/g); (CRD) receiving carbohydrate-rich diet (4.0 kcal/g), and (FRD) receiving fat-rich diet (4.0 kcal/g). Rats were sacrificed after the oral glucose tolerance test (OGTT) at 60 days of dietary treatments. Lipid profile and oxidative stress parameters were determined in serum. Myocardial samples were used to determine oxidative stress, metabolic enzymes, glycogen and triacylglycerol. FRD rats showed higher final body weight and body mass index than CRD and C. Serum cholesterol and low-density lipoprotein were higher in FRD than in CRD, while triacylglycerol and oxidized low-density lipoprotein cholesterol were higher in CRD than in FRD. CRD rats had the highest myocardial lipid hydroperoxide and diminished superoxide dismutase and catalase activities. Myocardial glycogen was lower and triacylglycerol was higher in CRD than in C and FRD rats. Although FRD rats had depressed myocardial-reducing power, no significant changes were observed in myocardial energy metabolism. Myocardial beta-hydroxyacyl coenzyme-A dehydrogenase and citrate synthase, as well as the enhanced lactate dehydrogenase/citrate synthase ratio indicated that fatty acid degradation was decreased in CRD rats. Glycemic index was positively correlated with obesity-related cardiac effects. Isoenergetic carbohydrate-rich and fat-rich diets induced different degree of obesity and differently affected lipid profile. Carbohydrate-rich diet was deleterious relative to fat-rich diet in the heart enhancing lipoperoxidation and shifting the metabolic pathway for energy production. Glycemic index rather than dyslipidemic profile may predict the obesity effects on cardiac tissue.
Podgoreanu, M V; White, W D; Morris, R W; Mathew, J P; Stafford-Smith, M; Welsby, I J; Grocott, H P; Milano, C A; Newman, M F; Schwinn, D A
2006-07-04
The inflammatory response triggered by cardiac surgery with cardiopulmonary bypass (CPB) is a primary mechanism in the pathogenesis of postoperative myocardial infarction (PMI), a multifactorial disorder with significant inter-patient variability poorly predicted by clinical and procedural factors. We tested the hypothesis that candidate gene polymorphisms in inflammatory pathways contribute to risk of PMI after cardiac surgery. We genotyped 48 polymorphisms from 23 candidate genes in a prospective cohort of 434 patients undergoing elective cardiac surgery with CPB. PMI was defined as creatine kinase-MB isoenzyme level > or = 10x upper limit of normal at 24 hours postoperatively. A 2-step analysis strategy was used: marker selection, followed by model building. To minimize false-positive associations, we adjusted for multiple testing by permutation analysis, Bonferroni correction, and controlling the false discovery rate; 52 patients (12%) experienced PMI. After adjusting for multiple comparisons and clinical risk factors, 3 polymorphisms were found to be independent predictors of PMI (adjusted P<0.05; false discovery rate <10%). These gene variants encode the proinflammatory cytokine interleukin 6 (IL6 -572G>C; odds ratio [OR], 2.47), and 2 adhesion molecules: intercellular adhesion molecule-1 (ICAM1 Lys469Glu; OR, 1.88), and E-selectin (SELE 98G>T; OR, 0.16). The inclusion of genotypic information from these polymorphisms improved prediction models for PMI based on traditional risk factors alone (C-statistic 0.764 versus 0.703). Functional genetic variants in cytokine and leukocyte-endothelial interaction pathways are independently associated with severity of myonecrosis after cardiac surgery. This may aid in preoperative identification of high-risk cardiac surgical patients and development of novel cardioprotective strategies.
Parsonage, William A; Greenslade, Jaimi H; Hammett, Christopher J; Lamanna, Arvin; Tate, Jillian R; Ungerer, Jacobus P; Chu, Kevin; Than, Martin; Brown, Anthony F T; Cullen, Louise
2014-02-17
To validate an accelerated biomarker strategy using a high-sensitivity cardiac troponin T (hs-cTnT) assay for diagnosing acute myocardial infarction (AMI) in patients presenting to the emergency department with chest pain; and to validate this strategy in combination with the National Heart Foundation of Australia/Cardiac Society of Australia and New Zealand risk stratification model. Single-centre, prospective, observational cohort study of 764 adults presenting to a tertiary hospital with symptoms of possible acute coronary syndrome between November 2008 and February 2011. AMI or cardiac death within 24 hours of presentation (primary), and major adverse cardiac events within 30 days (secondary). An elevated hs-cTnT assay result above the 99th percentile at either the 0 h or 2 h time points had sensitivity of 96.4% (95% CI, 87.9%-99.0%), specificity of 82.6% (95% CI, 79.7%-85.2%), negative predictive value of 99.7% (95% CI, 98.8%-99.9%) and positive predictive value of 30.5% (95% CI, 24.2%-37.6%) for diagnosing AMI. Compared with a traditional 6 h cardiac troponin testing strategy, the accelerated strategy led to reclassification of risk in only two patients with adverse cardiac outcomes, with no net effect on appropriate management. In patients presenting with chest pain, an accelerated biomarker strategy using the hs-cTnT assay performed well in the initial diagnosis of AMI. The accelerated strategy was also effective when incorporated into a comprehensive strategy of risk stratification that included clinical and demographic factors. The time saved by this approach could have a major impact on health service delivery. Australian New Zealand Clinical Trials Registry ACTRN12610000053022.
Predictive Modeling of Cardiac Ischemia
NASA Technical Reports Server (NTRS)
Anderson, Gary T.
1996-01-01
The goal of the Contextual Alarms Management System (CALMS) project is to develop sophisticated models to predict the onset of clinical cardiac ischemia before it occurs. The system will continuously monitor cardiac patients and set off an alarm when they appear about to suffer an ischemic episode. The models take as inputs information from patient history and combine it with continuously updated information extracted from blood pressure, oxygen saturation and ECG lines. Expert system, statistical, neural network and rough set methodologies are then used to forecast the onset of clinical ischemia before it transpires, thus allowing early intervention aimed at preventing morbid complications from occurring. The models will differ from previous attempts by including combinations of continuous and discrete inputs. A commercial medical instrumentation and software company has invested funds in the project with a goal of commercialization of the technology. The end product will be a system that analyzes physiologic parameters and produces an alarm when myocardial ischemia is present. If proven feasible, a CALMS-based system will be added to existing heart monitoring hardware.
NASA Astrophysics Data System (ADS)
Manan, Norhafizah A.; Abidin, Basir
2015-02-01
Five percent of patients who went through Percutaneous Coronary Intervention (PCI) experienced Major Adverse Cardiac Events (MACE) after PCI procedure. Risk prediction of MACE following a PCI procedure therefore is helpful. This work describes a review of such prediction models currently in use. Literature search was done on PubMed and SCOPUS database. Thirty literatures were found but only 4 studies were chosen based on the data used, design, and outcome of the study. Particular emphasis was given and commented on the study design, population, sample size, modeling method, predictors, outcomes, discrimination and calibration of the model. All the models had acceptable discrimination ability (C-statistics >0.7) and good calibration (Hosmer-Lameshow P-value >0.05). Most common model used was multivariate logistic regression and most popular predictor was age.
Denollet, J; Brutsaert, D L
1998-01-20
Patients with myocardial infarction (MI) with a decreased left ventricular ejection fraction (LVEF) have a poor prognosis, but the role of emotional stress in prognosis is not known. We hypothesized that emotional stress in these patients (1) is unrelated to the severity of cardiac disorder, (2) predicts cardiac events, and (3) is a function of basic personality traits. Eighty-seven patients with MI (age, 41 to 69 years) with an LVEF of < or =50% underwent psychological assessment at baseline. Patients and their families were contacted after 6 to 10 years (mean, 7.9 years); cardiac events were defined as cardiac death or nonfatal MI. Emotional distress was unrelated to the severity of cardiac disorder. At follow-up, 21 patients had experienced a cardiac event (13 fatal events). These events were related to LVEF of < or =30%, poor exercise tolerance, previous MI, anxiety, anger, and depression (all P< or =.02). Patients with a distressed personality (type D; ie, the tendency to suppress negative emotions) were more likely to experience an event over time compared with non-type D patients (P=.00005). Cox proportional hazards analysis yielded LVEF of < or =30% (relative risk, 3.0; 95% confidence interval, 1.2 to 7.7; P=.02) and type D (relative risk, 4.7; 95% confidence interval, 1.9 to 11.8; P=.001) as independent predictors. Anxiety, anger, and depression did not add to the predictive power of type D; these negative emotions were highly correlated and reflected the personality domain of negative affectivity. Personality influences the clinical course of patients with a decreased LVEF. Emotional distress in these patients is unrelated to disease severity but reflects individual differences in personality. Clinical trials should take a broad view of the target of intervention; assessment of LVEF and personality may identify patients at risk.
Baysal, Ayse; Saşmazel, Ahmet; Yildirim, Ayse; Ozyaprak, Buket; Gundogus, Narin; Kocak, Tuncer
2014-01-01
In children undergoing congenital heart surgery, plasma brain natriuretic peptide levels may have a role in development of low cardiac output syndrome that is defined as a combination of clinical findings and interventions to augment cardiac output in children with pulmonary hypertension. In a prospective observational study, fifty-one children undergoing congenital heart surgery with preoperative echocardiographic study showing pulmonary hypertension were enrolled. The plasma brain natriuretic peptide levels were collected before operation, 12, 24 and 48h after operation. The patients enrolled into the study were divided into two groups depending on: (1) Development of LCOS which is defined as a combination of clinical findings or interventions to augment cardiac output postoperatively; (2) Determination of preoperative brain natriuretic peptide cut-off value by receiver operating curve analysis for low cardiac output syndrome. The secondary end points were: (1) duration of mechanical ventilation ≥72h, (2) intensive care unit stay >7days, and (3) mortality. The differences in preoperative and postoperative brain natriuretic peptide levels of patients with or without low cardiac output syndrome (n=35, n=16, respectively) showed significant differences in repeated measurement time points (p=0.0001). The preoperative brain natriuretic peptide cut-off value of 125.5pgmL-1 was found to have the highest sensitivity of 88.9% and specificity of 96.9% in predicting low cardiac output syndrome in patients with pulmonary hypertension. A good correlation was found between preoperative plasma brain natriuretic peptide level and duration of mechanical ventilation (r=0.67, p=0.0001). In patients with pulmonary hypertension undergoing congenital heart surgery, 91% of patients with preoperative plasma brain natriuretic peptide levels above 125.5pgmL-1 are at risk of developing low cardiac output syndrome which is an important postoperative outcome. Copyright © 2013 Sociedade Brasileira de Anestesiologia. Publicado por Elsevier Editora Ltda. All rights reserved.
Automatic initialization and quality control of large-scale cardiac MRI segmentations.
Albà, Xènia; Lekadir, Karim; Pereañez, Marco; Medrano-Gracia, Pau; Young, Alistair A; Frangi, Alejandro F
2018-01-01
Continuous advances in imaging technologies enable ever more comprehensive phenotyping of human anatomy and physiology. Concomitant reduction of imaging costs has resulted in widespread use of imaging in large clinical trials and population imaging studies. Magnetic Resonance Imaging (MRI), in particular, offers one-stop-shop multidimensional biomarkers of cardiovascular physiology and pathology. A wide range of analysis methods offer sophisticated cardiac image assessment and quantification for clinical and research studies. However, most methods have only been evaluated on relatively small databases often not accessible for open and fair benchmarking. Consequently, published performance indices are not directly comparable across studies and their translation and scalability to large clinical trials or population imaging cohorts is uncertain. Most existing techniques still rely on considerable manual intervention for the initialization and quality control of the segmentation process, becoming prohibitive when dealing with thousands of images. The contributions of this paper are three-fold. First, we propose a fully automatic method for initializing cardiac MRI segmentation, by using image features and random forests regression to predict an initial position of the heart and key anatomical landmarks in an MRI volume. In processing a full imaging database, the technique predicts the optimal corrective displacements and positions in relation to the initial rough intersections of the long and short axis images. Second, we introduce for the first time a quality control measure capable of identifying incorrect cardiac segmentations with no visual assessment. The method uses statistical, pattern and fractal descriptors in a random forest classifier to detect failures to be corrected or removed from subsequent statistical analysis. Finally, we validate these new techniques within a full pipeline for cardiac segmentation applicable to large-scale cardiac MRI databases. The results obtained based on over 1200 cases from the Cardiac Atlas Project show the promise of fully automatic initialization and quality control for population studies. Copyright © 2017 Elsevier B.V. All rights reserved.
2011-09-01
New developments at King's College, London, suggest that the complexity of modern cardiovascular medicine, and the enormous prospects for future advances, means that smaller cities will find it hard to compete, reports Barry Shurlock, MA, PhD.
Mainigi, Sumeet K; Chebrolu, Lakshmi Hima Bindu; Romero-Corral, Abel; Mehta, Vinay; Machado, Rodolfo Rozindo; Konecny, Tomas; Pressman, Gregg S
2012-10-01
Cardiac calcification is associated with coronary artery disease, arrhythmias, conduction disease, and adverse cardiac events. Recently, we have described an echocardiographic-based global cardiac calcification scoring system. The objective of this study was to evaluate the severity of cardiac calcification in patients with permanent pacemakers as based on this scoring system. Patients with a pacemaker implanted within the 2-year study period with a previous echocardiogram were identified and underwent blinded global cardiac calcium scoring. These patients were compared to matched control patients without a pacemaker who also underwent calcium scoring. The study group consisted of 49 patients with pacemaker implantation who were compared to 100 matched control patients. The mean calcium score in the pacemaker group was 3.3 ± 2.9 versus 1.8 ± 2.0 (P = 0.006) in the control group. Univariate and multivariate analysis revealed glomerular filtration rate and calcium scoring to be significant predictors of the presence of a pacemaker. Echocardiographic-based calcium scoring correlates with the presence of severe conduction disease requiring a pacemaker. © 2012, Wiley Periodicals, Inc.
Simultaneous electrical recording of cardiac electrophysiology and contraction on chip
Qian, Fang; Huang, Chao; Lin, Yi-Dong; ...
2017-04-18
Prevailing commercialized cardiac platforms for in vitro drug development utilize planar microelectrode arrays to map action potentials, or impedance sensing to record contraction in real time, but cannot record both functions on the same chip with high spatial resolution. We report a novel cardiac platform that can record cardiac tissue adhesion, electrophysiology, and contractility on the same chip. The platform integrates two independent yet interpenetrating sensor arrays: a microelectrode array for field potential readouts and an interdigitated electrode array for impedance readouts. Together, these arrays provide real-time, non-invasive data acquisition of both cardiac electrophysiology and contractility under physiological conditions andmore » under drug stimuli. Furthermore, we cultured human induced pluripotent stem cell-derived cardiomyocytes as a model system, and used to validate the platform with an excitation–contraction decoupling chemical. Preliminary data using the platform to investigate the effect of the drug norepinephrine are combined with computational efforts. Finally, this platform provides a quantitative and predictive assay system that can potentially be used for comprehensive assessment of cardiac toxicity earlier in the drug discovery process.« less
Simultaneous electrical recording of cardiac electrophysiology and contraction on chip
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qian, Fang; Huang, Chao; Lin, Yi-Dong
Prevailing commercialized cardiac platforms for in vitro drug development utilize planar microelectrode arrays to map action potentials, or impedance sensing to record contraction in real time, but cannot record both functions on the same chip with high spatial resolution. We report a novel cardiac platform that can record cardiac tissue adhesion, electrophysiology, and contractility on the same chip. The platform integrates two independent yet interpenetrating sensor arrays: a microelectrode array for field potential readouts and an interdigitated electrode array for impedance readouts. Together, these arrays provide real-time, non-invasive data acquisition of both cardiac electrophysiology and contractility under physiological conditions andmore » under drug stimuli. Furthermore, we cultured human induced pluripotent stem cell-derived cardiomyocytes as a model system, and used to validate the platform with an excitation–contraction decoupling chemical. Preliminary data using the platform to investigate the effect of the drug norepinephrine are combined with computational efforts. Finally, this platform provides a quantitative and predictive assay system that can potentially be used for comprehensive assessment of cardiac toxicity earlier in the drug discovery process.« less
Haemodynamic coherence - The relevance of fluid therapy.
Arnemann, Philip; Seidel, Laura; Ertmer, Christian
2016-12-01
The ultimate goal of fluid therapy is to improve the oxygenation of cells by improving the cardiac output, thus improving microcirculation by optimizing macrocirculation. This haemodynamic coherence is often altered in patients with haemorrhagic shock and sepsis. The loss of haemodynamic coherence is associated with adverse outcomes. It may be influenced by the mechanisms of the underlying disease and properties of different fluids used for resuscitation in these critically ill patients. Monitoring microcirculation and haemodynamic coherence may be an additional tool to predict the response to fluid administration. In addition, microcirculatory analysis may support the clinician in his decision to not administer fluids when microcirculatory blood flow is preserved. In future, the indication, guidance and termination of fluid therapy may be assessed by bedside microvascular analysis in combination with standard haemodynamic monitoring. Copyright © 2016 Elsevier Ltd. All rights reserved.
Biologic therapies in the treatment of sarcoidosis.
Saketkoo, Lesley Ann; Baughman, Robert P
2016-08-01
Sarcoidosis is a disease of remarkable heterogeneity in organ manifestation, severity and natural history, characterized by the presence of non-caseating granulomas. The majority of cases are acute and self-limited or remit with short courses of glucocorticoids; however, a proportion progress to a life-threatening obliterative fibrotic type associated with significant disability related to pulmonary, cardiac, ocular or central nervous system involvement. Biologic agents have been demonstrated in the successful treatment of refractory organ-threatening sarcoidosis; and though sarcoidosis remains elusive in predictability of progression, strong evidence suggests an indisputably efficacious role for these agents in efforts to stave morbidity and mortality related to sarcoidosis. This paper provides a review of sarcoidosis mechanistic etiopathogenesis to highlight the hypothetical underpinnings of the utility and concerns of current biologic treatments in current use and the potential future applications of newer agents and those under development.
Sun, Hongyu; Zhou, Jing; Huang, Zhu; Qu, Linlin; Lin, Ning; Liang, Chengxiao; Dai, Ruiwu; Tang, Lijun; Tian, Fuzhou
2017-01-01
Carbon nanotubes (CNTs) provide an essential 2-D microenvironment for cardiomyocyte growth and function. However, it remains to be elucidated whether CNT nanostructures can promote cell–cell integrity and facilitate the formation of functional tissues in 3-D hydrogels. Here, single-walled CNTs were incorporated into collagen hydrogels to fabricate (CNT/Col) hydrogels, which improved mechanical and electrical properties. The incorporation of CNTs (up to 1 wt%) exhibited no toxicity to cardiomyocytes and enhanced cell adhesion and elongation. Through the use of immunohistochemical staining, transmission electron microscopy, and intracellular calcium-transient measurement, the incorporation of CNTs was found to improve cell alignment and assembly remarkably, which led to the formation of engineered cardiac tissues with stronger contraction potential. Importantly, cardiac tissues based on CNT/Col hydrogels were noted to have better functionality. Collectively, the incorporation of CNTs into the Col hydrogels improved cell alignment and the performance of cardiac constructs. Our study suggests that CNT/Col hydrogels offer a promising tissue scaffold for cardiac constructs, and might serve as injectable biomaterials to deliver cell or drug molecules for cardiac regeneration following myocardial infarction in the near future. PMID:28450785
Kurz, Kerstin; Giannitsis, Evangelos; Becker, Maike; Hess, Georg; Zdunek, Dietmar; Katus, Hugo A
2011-03-01
We sought to determine the performance of the new high sensitivity cardiac troponin T assay (TnThs) for early diagnosis of myocardial infarction in patients with suspected acute coronary syndrome (ACS) and compare it with the fourth generation cTnT assay, myoglobin and heart-type fatty acid binding protein (h-FABP). Ninety-four patients with diagnosis of suspected ACS without ST-segment elevation admitted to our chest pain unit were included. Patients were divided according to time from onset of symptoms to presentation into an early presenter group (<4 h) and a late presenter group (≥4 h). A median of six samples (range 2-8) were available per patient. The diagnostic performance of TnThs was assessed using ROC analysis. Areas under the curve (AUC) of baseline and follow-up results of TnThs, cTnT, myoglobin, and h-FABP were compared using c statistics. The TnThs assay allows an excellent prediction of non-ST-segment elevation myocardial infarction (non-STEMI) at presentation, particularly among late presenters. A follow-up sample improves diagnostic performance in a time-dependent manner. The AUC of TnThs was superior to cTnT at all time points. The performance of TnThs was at least as good as myoglobin and h-FABP at presentation and during follow-up. A baseline sample of TnThs allows an earlier prediction of non-STEMI than the less sensitive and precise fourth generation cTnT assay. Probably, this excellent performance of TnThs at baseline and follow-up could obviate the need for other early markers of necrosis in future.
C-reactive Protein as a Predictor of Adverse outcome in Patients with Acute Coronary Syndrome.
Sheikh, A S; Yahya, S; Sheikh, N S; Sheikh, A A
2012-01-01
The acute-phase reactant C-reactive protein (CRP) has been shown to reflect systemic and vascular inflammation and to predict future cardiovascular events. The objective of this study was to evaluate the prognostic value of CRP in predicting cardiovascular outcome in patients presenting with acute coronary syndromes. This prospective, single-centered study was carried out by the Department of Pathology in collaboration with the Department of Cardiology, Bolan Medical College Complex Quetta, Balochistan, Pakistan from January 2009 to December 2009. We studied 963 consecutive patients presenting with chest pain to Accident and Emergency Department. Patients were divided into four groups. Group-1 comprised patients with unstable angina; group-2 included patients with acute ST elevation myocardial infarction (STEMI); group-3 comprised patients with Non-ST elevation myocardial infarction (Non-STEMI) and group-4 was the control group. All four groups were followed-up for 90 days for occurrence of cardiovascular events. The CRP was elevated (>3 mg/L) among 27.6% patients in Group-1; 70.9% in group- 2; 77.9% in group-3 and 5.3% in the control group. Among cases with elevated CRP, 92.1% had a cardiac event compared to 34.3% among patients with CRP £3 mg/L (P < 0.0001). The mortality was significantly higher (P < 0.0001) in group-2 (8.9%) and group-3 (11.9%) as compared to group-1 (2.1%). There was no cardiac event or mortality in Group-4. Elevated CRP is a predictor of adverse outcome in patients with acute coronary syndromes and helps in identifying patients who may be at risk of cardiovascular complications.
C-reactive Protein as a Predictor of Adverse outcome in Patients with Acute Coronary Syndrome
Sheikh, A. S.; Yahya, S.; Sheikh, N. S.; Sheikh, A. A
2012-01-01
Background and Objectives: The acute-phase reactant C-reactive protein (CRP) has been shown to reflect systemic and vascular inflammation and to predict future cardiovascular events. The objective of this study was to evaluate the prognostic value of CRP in predicting cardiovascular outcome in patients presenting with acute coronary syndromes. Patients and Methods: This prospective, single-centered study was carried out by the Department of Pathology in collaboration with the Department of Cardiology, Bolan Medical College Complex Quetta, Balochistan, Pakistan from January 2009 to December 2009. We studied 963 consecutive patients presenting with chest pain to Accident and Emergency Department. Patients were divided into four groups. Group-1 comprised patients with unstable angina; group-2 included patients with acute ST elevation myocardial infarction (STEMI); group-3 comprised patients with Non-ST elevation myocardial infarction (Non-STEMI) and group-4 was the control group. All four groups were followed-up for 90 days for occurrence of cardiovascular events. Results: The CRP was elevated (>3 mg/L) among 27.6% patients in Group-1; 70.9% in group- 2; 77.9% in group-3 and 5.3% in the control group. Among cases with elevated CRP, 92.1% had a cardiac event compared to 34.3% among patients with CRP £3 mg/L (P < 0.0001). The mortality was significantly higher (P < 0.0001) in group-2 (8.9%) and group-3 (11.9%) as compared to group-1 (2.1%). There was no cardiac event or mortality in Group-4. Conclusions: Elevated CRP is a predictor of adverse outcome in patients with acute coronary syndromes and helps in identifying patients who may be at risk of cardiovascular complications. PMID:22754634
Hickey, Graeme L.; Grant, Stuart W.; Murphy, Gavin J.; Bhabra, Moninder; Pagano, Domenico; McAllister, Katherine; Buchan, Iain; Bridgewater, Ben
2013-01-01
OBJECTIVES Progressive loss of calibration of the original EuroSCORE models has necessitated the introduction of the EuroSCORE II model. Poor model calibration has important implications for clinical decision-making and risk adjustment of governance analyses. The objective of this study was to explore the reasons for the calibration drift of the logistic EuroSCORE. METHODS Data from the Society for Cardiothoracic Surgery in Great Britain and Ireland database were analysed for procedures performed at all National Health Service and some private hospitals in England and Wales between April 2001 and March 2011. The primary outcome was in-hospital mortality. EuroSCORE risk factors, overall model calibration and discrimination were assessed over time. RESULTS A total of 317 292 procedures were included. Over the study period, mean age at surgery increased from 64.6 to 67.2 years. The proportion of procedures that were isolated coronary artery bypass grafts decreased from 67.5 to 51.2%. In-hospital mortality fell from 4.1 to 2.8%, but the mean logistic EuroSCORE increased from 5.6 to 7.6%. The logistic EuroSCORE remained a good discriminant throughout the study period (area under the receiver-operating characteristic curve between 0.79 and 0.85), but calibration (observed-to-expected mortality ratio) fell from 0.76 to 0.37. Inadequate adjustment for decreasing baseline risk affected calibration considerably. DISCUSSIONS Patient risk factors and case-mix in adult cardiac surgery change dynamically over time. Models like the EuroSCORE that are developed using a ‘snapshot’ of data in time do not account for this and can subsequently lose calibration. It is therefore important to regularly revalidate clinical prediction models. PMID:23152436
Leukocyte diversity in resolving and nonresolving mechanisms of cardiac remodeling.
Tourki, Bochra; Halade, Ganesh
2017-10-01
In response to myocardial infarction (MI), time-dependent leukocyte infiltration is critical to program the acute inflammatory response. Post-MI leukocyte density, residence time in the infarcted area, and exit from the infarcted injury predict resolving or nonresolving inflammation. Overactive or unresolved inflammation is the primary determinant in heart failure pathology post-MI. Here, our review describes supporting evidence that the acute inflammatory response also guides the generation of healing and regenerative mediators after cardiac damage. Time-dependent leukocyte density and diversity and the magnitude of myocardial injury is responsible for the resolving and nonresolving pathway in myocardial healing. Post MI, the diversity of leukocytes, such as neutrophils, macrophages, and lymphocytes, has been explored that regulate the clearance of deceased cardiomyocytes by using the classic and reparative pathways. Among the innovative factors and intermediates that have been recognized as essential in acute the self-healing and clearance mechanism, we highlight specialized proresolving mediators as the emerging factor for post-MI reparative mechanisms-translational leukocyte modifiers, such as aging, the source of leukocytes, and the milieu around the leukocytes. In the clinical setting, it is possible that leukocyte diversity is more prominent as a result of risk factors, such as obesity, diabetes, and hypertension. Pharmacologic agents are critical modifiers of leukocyte diversity in healing mechanisms that may impair or stimulate the clearance mechanism. Future research is needed, with a focused approach to understand the molecular targets, cellular effectors, and receptors. A clear understanding of resolving and nonresolving inflammation in myocardial healing will help to develop novel targets with major emphasis on the resolution of inflammation in heart failure pathology.-Tourki, B., Halade, G. Leukocyte diversity in resolving and nonresolving mechanisms of cardiac remodeling. © FASEB.
Shih, Terry; Ryan, Andrew M; Gonzalez, Andrew A; Dimick, Justin B
2015-06-01
To project readmission penalties for hospitals performing cardiac surgery and examine how these penalties will affect minority-serving hospitals. The Hospital Readmissions Reduction Program will potentially expand penalties for higher-than-predicted readmission rates to cardiac procedures in the near future. The impact of these penalties on minority-serving hospitals is unknown. We examined national Medicare beneficiaries undergoing coronary artery bypass grafting in 2008 to 2010 (N = 255,250 patients, 1186 hospitals). Using hierarchical logistic regression, we calculated hospital observed-to-expected readmission ratios. Hospital penalties were projected according to the Hospital Readmissions Reduction Program formula using only coronary artery bypass grafting readmissions with a 3% maximum penalty of total Medicare revenue. Hospitals were classified into quintiles according to proportion of black patients treated. Minority-serving hospitals were defined as hospitals in the top quintile whereas non-minority-serving hospitals were those in the bottom quintile. Projected readmission penalties were compared across quintiles. Forty-seven percent of hospitals (559 of 1186) were projected to be assessed a penalty. Twenty-eight percent of hospitals (330 of 1186) would be penalized less than 1% of total Medicare revenue whereas 5% of hospitals (55 of 1186) would receive the maximum 3% penalty. Minority-serving hospitals were almost twice as likely to be penalized than non-minority-serving hospitals (61% vs 32%) and were projected almost triple the reductions in reimbursement ($112 million vs $41 million). Minority-serving hospitals would disproportionately bear the burden of readmission penalties if expanded to include cardiac surgery. Given these hospitals' narrow profit margins, readmission penalties may have a profound impact on these hospitals' ability to care for disadvantaged patients.
Job insecurity and prognosis after myocardial infarction: the SHEEP Study.
László, Krisztina D; Engström, Karin; Hallqvist, Johan; Ahlbom, Anders; Janszky, Imre
2013-09-10
The prognostic role of job insecurity in coronary heart disease is unknown. We aimed to analyze whether job insecurity predicts mortality and recurrent events after a first acute myocardial infarction (AMI). We studied non-fatal AMI cases involved in the Stockholm Heart Epidemiology Program who were in paid employment and younger than 65 years (n=676). Shortly after their AMI, patients completed a questionnaire about job insecurity, demographic, work-related, clinical and lifestyle factors and participated in a clinical examination three months after discharge from the hospital. They were followed for 8.5 years for mortality and cardiovascular events. After adjusting for previous morbidity, demographic and work-related factors, job insecurity was associated with an increased risk of the combined endpoint of cardiac death and non-fatal AMI, of total mortality and of heart failure; the hazard ratios (HR) and the 95% confidence intervals (CI) were 1.50 (1.02-2.22), 1.69 (1.04-2.75) and 1.62 (1.07-2.44), respectively. Similar associations, but with less statistical power were observed between job insecurity and cardiac death (HR (95% CI): 1.57 (0.80-3.09)) and stroke (HR (95% CI): 1.46 (0.71-3.02)), respectively. Adjustment for potential mediators, i.e. sleep problems, health behaviour, hypertension, blood lipids, glucose, inflammatory and coagulation factors did not alter considerably the relationship between job insecurity and the combination of cardiac mortality and non-fatal AMI. Our results suggest that job insecurity is an adverse prognostic factor in patients with a first AMI. Future studies are needed to confirm this finding and to determine the mechanisms underlying the observed relationship. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Gaibazzi, Nicola; Siniscalchi, Carmine; Porter, Thomas R; Crocamo, Antonio; Basaglia, Manuela; Boffetti, Francesca; Lorenzoni, Valentina
2018-06-01
We compared the long-term outcome of subjects without prior cardiac disease who underwent either vasodilator single-photon emission computed tomography (SPECT) or contrast stress-echocardiography (cSE) for suspected coronary artery disease (CAD). Subjects who underwent vasodilator SPECT or cSE between 2008 and 2012 for suspected CAD but no history of cardiac disease were included. We retrospectively compared the association of each method with combined all-cause death and nonfatal myocardial infarction and their positive predictive value (PPV) for angiographically obstructive CAD. A total of 1,387 subjects were selected: 497 who underwent SPECT and 890 who underwent cSE. During 4 years of mean follow-up there were 78 hard events in the cSE group and 51 in the SPECT group. Event-free survival in subjects testing positive for ischemia, either with SPECT or cSE, was significantly worse both in the overall population and after propensity matching patients. In multivariable analyses, vasodilator SPECT or cSE demonstrated significant stratification capability with an ischemic test doubling (SPECT) or more than doubling (cSE) the risk of future hard events independently from other variables. PPV of vasodilator SPECT for the diagnosis of obstructive CAD was inferior to vasodilator cSE (PPV = 63% vs 89%, respectively; P < .001). Our study suggests that the associations of vasodilator SPECT or cSE with outcome are comparable, with cSE demonstrating better diagnostic PPV for CAD. The absence of ionizing radiation and anticipated lower costs from higher PPV suggest that vasodilator cSE is a valid alternative to vasodilator SPECT as a gatekeeper in subjects without a prior history of CAD. Copyright © 2018 American Society of Echocardiography. Published by Elsevier Inc. All rights reserved.
Feingold, Brian; Mahle, William T; Auerbach, Scott; Clemens, Paula; Domenighetti, Andrea A; Jefferies, John L; Judge, Daniel P; Lal, Ashwin K; Markham, Larry W; Parks, W James; Tsuda, Takeshi; Wang, Paul J; Yoo, Shi-Joon
2017-09-26
For many neuromuscular diseases (NMDs), cardiac disease represents a major cause of morbidity and mortality. The management of cardiac disease in NMDs is made challenging by the broad clinical heterogeneity that exists among many NMDs and by limited knowledge about disease-specific cardiovascular pathogenesis and course-modifying interventions. The overlay of compromise in peripheral muscle function and other organ systems, such as the lungs, also makes the simple application of endorsed adult or pediatric heart failure guidelines to the NMD population problematic. In this statement, we provide background on several NMDs in which there is cardiac involvement, highlighting unique features of NMD-associated myocardial disease that require clinicians to tailor their approach to prevention and treatment of heart failure. Undoubtedly, further investigations are required to best inform future guidelines on NMD-specific cardiovascular health risks, treatments, and outcomes. © 2017 American Heart Association, Inc.
Neurologic sequelae of cardiac surgery in children.
Ferry, P C
1987-03-01
Major advances in surgical and cardiopulmonary bypass technology have occurred in the past 30 years. Total correction of previously inoperable congenital cardiac defects is being performed with increasing frequency and in children at progressively younger ages. While the majority of children undergoing cardiac surgery survive without incident, increasing concern is being raised about neurologic sequelae seen in some survivors. Complications such as embolization, hypoxia, inadequate cerebral perfusion, and biochemical disturbances may all lead to brain damage following cardiac surgery. Acute postoperative neurologic problems include seizures, impaired levels of consciousness, focal motor deficits, and movement disorders. Long-term sequelae include language and learning disorders, mental retardation, seizures, and cerebral palsy. Intraoperative cerebral monitoring techniques are as yet imperfect, but their use in combination with meticulous intraoperative and postoperative care currently provides the best means of reducing neurologic morbidity. Future studies should explore other methods of preserving neurologic integrity in children undergoing open heart surgery.
Kumar, Kris; Lotun, Kapildeo
2018-05-07
Out of hospital cardiac arrest management of patients with non-ST myocardial infarction per current American Heart Association and European Resuscitation Council guidelines leave the decision in regard to early angiography up to the physician operators. Guidelines are clear on the positive impact of early intervention on survival and improvement on left ventricular function in patients presenting with cardiac arrest and ST elevation myocardial infarction on electrocardiogram. This review aims to analyze the data that current guidelines are based upon in regards to out of hospital cardiac arrest with electrocardiogram findings of non-ST elevation myocardial infarction as well as other clinical trials that support early angiography and reperfusion strategies as well as future studies that are in trial to study the role of the coronary catheterization laboratory in cardiac arrest. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
The rise of cardiovascular medicine†
Braunwald, Eugene
2012-01-01
Modern cardiology was born at the turn of the nineteenth to twentieth centuries with three great discoveries: the X ray, the sphygmomanometer, and the electrocardiograph. This was followed by cardiac catheterization, which led to coronary angiography and to percutaneous coronary intervention. The coronary care units and early reperfusion reduced the early mortality owing to acute myocardial infarction, and the discovery of coronary risk factors led to the development of Preventive Cardiology. Other major advances include several cardiac imaging techniques, the birth and development of cardiac surgery, and the control of cardiac arrhythmias. The treatment of heart failure, although greatly improved, remains a challenge. Current cardiology practice is evidence-based and global in scope. Research and practice are increasingly conducted in cardiovascular centres and institutes. It is likely that in the future, a greater emphasis will be placed on prevention, which will be enhanced by genetic information. PMID:22416074
Evaluation of injury criteria for the prediction of commotio cordis from lacrosse ball impacts.
Dau, Nathan; Cavanaugh, John; Bir, Cynthia; Link, Mark
2011-11-01
Commotio Cordis (CC) is the second leading cause of mortality in youth sports. Impacts occurring directly over the left ventricle (LV) during a vulnerable period of the cardiac cycle can cause ventricular fibrillation (VF), which results in CC. In order to better understand the pathophysiology of CC, and develop a mechanical model for CC, appropriate injury criteria need to be developed. This effort consisted of impacts to seventeen juvenile porcine specimens (mass 21-45 kg). Impacts were delivered over the cardiac silhouette during the venerable period of the cardiac cycle. Four impact speeds were used: 13.4, 17.9, 22.4, and 26.8 m/s. The impactor was a lacrosse ball on an aluminum shaft instrumented with an accelerometer (mass 188 g-215 g). The impacts were recorded using high-speed video. LV pressure was measured with a catheter. Univariate binary logistic regression analyses were performed to evaluate the predictive ability of ten injury criteria. A total of 187 impacts were used in the analysis. The criteria were evaluated on their predictive ability based on Somers' D (D) and Goodman-Kruskal gamma (γ). Injury risk functions were created for all criteria using a 2-parameter Weibull distribution using survival analysis. The best criteria for predicting CC were impact force (D=0.52, and γ=0.52) force*compression (D=0.49, and γ=0.49), and impact power (D=0.49, and γ=0.49). All of these criteria proved significant in predicting the probability of CC from projectile impacts in youth sports (p<0.01). Force proved to be the most predictive of the ten criteria evaluated.
Comparison of aerobic capacity in annually certified and uncertified volunteer firefighters.
Hammer, Rodney L; Heath, Edward M
2013-05-01
The leading cause of mortality among firefighters has been cardiac arrest precipitated by stress and overexertion with volunteer firefighters having double the death rate from this cause compared with career firefighters. In an attempt to reduce on-duty sudden cardiac deaths, annual fitness testing, and certification, has been widely instigated in wildland firefighters, who have half the cardiac arrest death rate of structural firefighters. The hypothesis was that annual fitness testing would serve as motivation to produce higher cardiorespiratory fitness. This study compared predicted aerobic capacity in annually certified and uncertified volunteer firefighters. Each firefighter performed a submaximal treadmill test to predict V[Combining Dot Above]O2max. Certified volunteer firefighters, who participated in annual fitness testing, had a predicted V[Combining Dot Above]O2max of 39.9 ± 8.4 ml·kg·min. Uncertified volunteer firefighters had a predicted V[Combining Dot Above]O2max of 37.8 ± 8.5 ml·kg·min. Annual fitness testing during the certification process did not contribute to statistically higher (F2,78 = 0.627, p = 0.431) V[Combining Dot Above]O2max levels in certified volunteer firefighters. Although there was no significant difference in predicted V[Combining Dot Above]O2max values for certified and uncertified volunteer firefighters, it was reported that 30% of volunteer firefighters had predicted aerobic capacities below the recommended minimum V[Combining Dot Above]O2max level of 33.5 ml·kg·min. Current annual fitness testing for volunteer firefighters does not seem to be effective. Thus, the study emphasizes the need of a higher priority for firefighter fitness programs to best ensure the safety of firefighters and the public.
Devarajan, Prasad; Zappitelli, Michael; Sint, Kyaw; Thiessen-Philbrook, Heather; Li, Simon; Kim, Richard W.; Koyner, Jay L.; Coca, Steven G.; Edelstein, Charles L.; Shlipak, Michael G.; Garg, Amit X.; Krawczeski, Catherine D.
2011-01-01
Acute kidney injury (AKI) occurs commonly after pediatric cardiac surgery and associates with poor outcomes. Biomarkers may help the prediction or early identification of AKI, potentially increasing opportunities for therapeutic interventions. Here, we conducted a prospective, multicenter cohort study involving 311 children undergoing surgery for congenital cardiac lesions to evaluate whether early postoperative measures of urine IL-18, urine neutrophil gelatinase-associated lipocalin (NGAL), or plasma NGAL could identify which patients would develop AKI and other adverse outcomes. Urine IL-18 and urine and plasma NGAL levels peaked within 6 hours after surgery. Severe AKI, defined by dialysis or doubling in serum creatinine during hospital stay, occurred in 53 participants at a median of 2 days after surgery. The first postoperative urine IL-18 and urine NGAL levels strongly associated with severe AKI. After multivariable adjustment, the highest quintiles of urine IL-18 and urine NGAL associated with 6.9- and 4.1-fold higher odds of AKI, respectively, compared with the lowest quintiles. Elevated urine IL-18 and urine NGAL levels associated with longer hospital stay, longer intensive care unit stay, and duration of mechanical ventilation. The accuracy of urine IL-18 and urine NGAL for diagnosis of severe AKI was moderate, with areas under the curve of 0.72 and 0.71, respectively. The addition of these urine biomarkers improved risk prediction over clinical models alone as measured by net reclassification improvement and integrated discrimination improvement. In conclusion, urine IL-18 and urine NGAL, but not plasma NGAL, associate with subsequent AKI and poor outcomes among children undergoing cardiac surgery. PMID:21836147
Prediction of cognitive outcome based on the progression of auditory discrimination during coma.
Juan, Elsa; De Lucia, Marzia; Tzovara, Athina; Beaud, Valérie; Oddo, Mauro; Clarke, Stephanie; Rossetti, Andrea O
2016-09-01
To date, no clinical test is able to predict cognitive and functional outcome of cardiac arrest survivors. Improvement of auditory discrimination in acute coma indicates survival with high specificity. Whether the degree of this improvement is indicative of recovery remains unknown. Here we investigated if progression of auditory discrimination can predict cognitive and functional outcome. We prospectively recorded electroencephalography responses to auditory stimuli of post-anoxic comatose patients on the first and second day after admission. For each recording, auditory discrimination was quantified and its evolution over the two recordings was used to classify survivors as "predicted" when it increased vs. "other" if not. Cognitive functions were tested on awakening and functional outcome was assessed at 3 months using the Cerebral Performance Categories (CPC) scale. Thirty-two patients were included, 14 "predicted survivors" and 18 "other survivors". "Predicted survivors" were more likely to recover basic cognitive functions shortly after awakening (ability to follow a standardized neuropsychological battery: 86% vs. 44%; p=0.03 (Fisher)) and to show a very good functional outcome at 3 months (CPC 1: 86% vs. 33%; p=0.004 (Fisher)). Moreover, progression of auditory discrimination during coma was strongly correlated with cognitive performance on awakening (phonemic verbal fluency: rs=0.48; p=0.009 (Spearman)). Progression of auditory discrimination during coma provides early indication of future recovery of cognitive functions. The degree of improvement is informative of the degree of functional impairment. If confirmed in a larger cohort, this test would be the first to predict detailed outcome at the single-patient level. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Cardiac Hypertrophy is Positively Regulated by MicroRNA-24 in Rats
Gao, Juan; Zhu, Min; Liu, Rui-Feng; Zhang, Jian-Shu; Xu, Ming
2018-01-01
Background: MicroRNA-24 (miR-24) plays an important role in heart failure by reducing the efficiency of myocardial excitation-contraction coupling. Prolonged cardiac hypertrophy may lead to heart failure, but little is known about the role of miR-24 in cardiac hypertrophy. This study aimed to preliminarily investigate the function of miR-24 and its mechanisms in cardiac hypertrophy. Methods: Twelve Sprague-Dawley rats with a body weight of 50 ± 5 g were recruited and randomly divided into two groups: a transverse aortic constriction (TAC) group and a sham surgery group. Hypertrophy index was measured and calculated by echocardiography and hematoxylin and eosin staining. TargetScans algorithm-based prediction was used to search for the targets of miR-24, which was subsequently confirmed by a real-time polymerase chain reaction and luciferase assay. Immunofluorescence labeling was used to measure the cell surface area, and 3H-leucine incorporation was used to detect the synthesis of total protein in neonatal rat cardiac myocytes (NRCMs) with the overexpression of miR-24. In addition, flow cytometry was performed to observe the alteration in the cell cycle. Statistical analysis was carried out with GraphPad Prism v5.0 and SPSS 19.0. A two-sided P < 0.05 was considered as the threshold for significance. Results: The expression of miR-24 was abnormally increased in TAC rat cardiac tissue (t = −2.938, P < 0.05). TargetScans algorithm-based prediction demonstrated that CDKN1B (p27, Kip1), a cell cycle regulator, was a putative target of miR-24, and was confirmed by luciferase assay. The expression of p27 was decreased in TAC rat cardiac tissue (t = 2.896, P < 0.05). The overexpression of miR-24 in NRCMs led to the decreased expression of p27 (t = 4.400, P < 0.01), and decreased G0/G1 arrest in cell cycle and cardiomyocyte hypertrophy. Conclusion: MiR-24 promotes cardiac hypertrophy partly by affecting the cell cycle through down-regulation of p27 expression. PMID:29786048
Lazzeroni, Davide; Bini, Matteo; Camaiora, Umberto; Castiglioni, Paolo; Moderato, Luca; Bosi, Davide; Geroldi, Simone; Ugolotti, Pietro T; Brambilla, Lorenzo; Brambilla, Valerio; Coruzzi, Paolo
2018-01-01
Background High levels of serum uric acid have been associated with adverse outcomes in cardiovascular diseases such as myocardial infarction and heart failure. The aim of the current study was to evaluate the prognostic role of serum uric acid levels in patients undergoing cardiac rehabilitation after myocardial revascularization and/or cardiac valve surgery. Design We performed an observational prospective cohort study. Methods The study included 1440 patients with available serum uric acid levels, prospectively followed for 50 ± 17 months. Mean age was 67 ± 11 years; 781 patients (54%) underwent myocardial revascularization, 474 (33%) cardiac valve surgery and 185 (13%) valve-plus-coronary artery by-pass graft surgery. The primary endpoints were overall and cardiovascular mortality while secondary end-points were combined major adverse cardiac and cerebrovascular events. Results Serum uric acid level mean values were 286 ± 95 µmol/l and elevated serum uric acid levels (≥360 µmol/l or 6 mg/dl) were found in 275 patients (19%). Overall mortality (hazard ratio = 2.1; 95% confidence interval: 1.5-3.0; p < 0.001), cardiovascular mortality (hazard ratio = 2.0; 95% confidence interval: 1.2-3.2; p = 0.004) and major adverse cardiac and cerebrovascular events rate (hazard ratio = 1.5; 95% confidence interval: 1.0-2.0; p = 0.019) were significantly higher in patients with elevated serum uric acid levels, even after adjustment for age, gender, arterial hypertension, diabetes, glomerular filtration rate, atrial fibrillation and medical therapy. Moreover, strong positive correlations between serum uric acid level and probability of overall mortality ( p < 0.001), cardiovascular mortality ( p < 0.001) and major adverse cardiac and cerebrovascular events ( p = 0.003) were found. Conclusions Serum uric acid levels predict mortality and adverse cardiovascular outcome in patients undergoing myocardial revascularization and/or cardiac valve surgery even after the adjustment for age, gender, arterial hypertension, diabetes, glomerular filtration rate and medical therapy.
Cardiac Hypertrophy is Positively Regulated by MicroRNA‑24 in Rats
Gao, Juan; Zhu, Min; Liu, Rui-Feng; Zhang, Jian-Shu; Xu, Ming
2018-06-05
MicroRNA-24 (miR-24) plays an important role in heart failure by reducing the efficiency of myocardial excitation-contraction coupling. Prolonged cardiac hypertrophy may lead to heart failure, but little is known about the role of miR-24 in cardiac hypertrophy. This study aimed to preliminarily investigate the function of miR-24 and its mechanisms in cardiac hypertrophy. Twelve Sprague-Dawley rats with a body weight of 50 ± 5 g were recruited and randomly divided into two groups: a transverse aortic constriction (TAC) group and a sham surgery group. Hypertrophy index was measured and calculated by echocardiography and hematoxylin and eosin staining. TargetScans algorithm-based prediction was used to search for the targets of miR-24, which was subsequently confirmed by a real-time polymerase chain reaction and luciferase assay. Immunofluorescence labeling was used to measure the cell surface area, and 3 H-leucine incorporation was used to detect the synthesis of total protein in neonatal rat cardiac myocytes (NRCMs) with the overexpression of miR-24. In addition, flow cytometry was performed to observe the alteration in the cell cycle. Statistical analysis was carried out with GraphPad Prism v5.0 and SPSS 19.0. A two-sided P < 0.05 was considered as the threshold for significance. The expression of miR-24 was abnormally increased in TAC rat cardiac tissue (t = -2.938, P < 0.05). TargetScans algorithm-based prediction demonstrated that CDKN1B (p27, Kip1), a cell cycle regulator, was a putative target of miR-24, and was confirmed by luciferase assay. The expression of p27 was decreased in TAC rat cardiac tissue (t = 2.896, P < 0.05). The overexpression of miR-24 in NRCMs led to the decreased expression of p27 (t = 4.400, P < 0.01), and decreased G0/G1 arrest in cell cycle and cardiomyocyte hypertrophy. MiR-24 promotes cardiac hypertrophy partly by affecting the cell cycle through down-regulation of p27 expression.
Cardiac Auscultation Using Smartphones: Pilot Study.
Kang, Si-Hyuck; Joe, Byunggill; Yoon, Yeonyee; Cho, Goo-Yeong; Shin, Insik; Suh, Jung-Won
2018-02-28
Cardiac auscultation is a cost-effective, noninvasive screening tool that can provide information about cardiovascular hemodynamics and disease. However, with advances in imaging and laboratory tests, the importance of cardiac auscultation is less appreciated in clinical practice. The widespread use of smartphones provides opportunities for nonmedical expert users to perform self-examination before hospital visits. The objective of our study was to assess the feasibility of cardiac auscultation using smartphones with no add-on devices for use at the prehospital stage. We performed a pilot study of patients with normal and pathologic heart sounds. Heart sounds were recorded on the skin of the chest wall using 3 smartphones: the Samsung Galaxy S5 and Galaxy S6, and the LG G3. Recorded heart sounds were processed and classified by a diagnostic algorithm using convolutional neural networks. We assessed diagnostic accuracy, as well as sensitivity, specificity, and predictive values. A total of 46 participants underwent heart sound recording. After audio file processing, 30 of 46 (65%) heart sounds were proven interpretable. Atrial fibrillation and diastolic murmur were significantly associated with failure to acquire interpretable heart sounds. The diagnostic algorithm classified the heart sounds into the correct category with high accuracy: Galaxy S5, 90% (95% CI 73%-98%); Galaxy S6, 87% (95% CI 69%-96%); and LG G3, 90% (95% CI 73%-98%). Sensitivity, specificity, positive predictive value, and negative predictive value were also acceptable for the 3 devices. Cardiac auscultation using smartphones was feasible. Discrimination using convolutional neural networks yielded high diagnostic accuracy. However, using the built-in microphones alone, the acquisition of reproducible and interpretable heart sounds was still a major challenge. ClinicalTrials.gov NCT03273803; https://clinicaltrials.gov/ct2/show/NCT03273803 (Archived by WebCite at http://www.webcitation.org/6x6g1fHIu). ©Si-Hyuck Kang, Byunggill Joe, Yeonyee Yoon, Goo-Yeong Cho, Insik Shin, Jung-Won Suh. Originally published in JMIR Mhealth and Uhealth (http://mhealth.jmir.org), 28.02.2018.
Cardiac Auscultation Using Smartphones: Pilot Study
Kang, Si-Hyuck; Joe, Byunggill; Yoon, Yeonyee; Cho, Goo-Yeong; Shin, Insik
2018-01-01
Background Cardiac auscultation is a cost-effective, noninvasive screening tool that can provide information about cardiovascular hemodynamics and disease. However, with advances in imaging and laboratory tests, the importance of cardiac auscultation is less appreciated in clinical practice. The widespread use of smartphones provides opportunities for nonmedical expert users to perform self-examination before hospital visits. Objective The objective of our study was to assess the feasibility of cardiac auscultation using smartphones with no add-on devices for use at the prehospital stage. Methods We performed a pilot study of patients with normal and pathologic heart sounds. Heart sounds were recorded on the skin of the chest wall using 3 smartphones: the Samsung Galaxy S5 and Galaxy S6, and the LG G3. Recorded heart sounds were processed and classified by a diagnostic algorithm using convolutional neural networks. We assessed diagnostic accuracy, as well as sensitivity, specificity, and predictive values. Results A total of 46 participants underwent heart sound recording. After audio file processing, 30 of 46 (65%) heart sounds were proven interpretable. Atrial fibrillation and diastolic murmur were significantly associated with failure to acquire interpretable heart sounds. The diagnostic algorithm classified the heart sounds into the correct category with high accuracy: Galaxy S5, 90% (95% CI 73%-98%); Galaxy S6, 87% (95% CI 69%-96%); and LG G3, 90% (95% CI 73%-98%). Sensitivity, specificity, positive predictive value, and negative predictive value were also acceptable for the 3 devices. Conclusions Cardiac auscultation using smartphones was feasible. Discrimination using convolutional neural networks yielded high diagnostic accuracy. However, using the built-in microphones alone, the acquisition of reproducible and interpretable heart sounds was still a major challenge. Trial Registration ClinicalTrials.gov NCT03273803; https://clinicaltrials.gov/ct2/show/NCT03273803 (Archived by WebCite at http://www.webcitation.org/6x6g1fHIu) PMID:29490899
Predictors of Sudden Cardiac Death in Doberman Pinschers with Dilated Cardiomyopathy.
Klüser, L; Holler, P J; Simak, J; Tater, G; Smets, P; Rügamer, D; Küchenhoff, H; Wess, G
2016-05-01
Doberman Pinschers with dilated cardiomyopathy (DCM) are at high risk of sudden cardiac death (SCD). Risk factors for SCD are poorly defined. To assess cardiac biomarkers, Holter-ECG, echocardiographic variables and canine characteristics in a group of Doberman Pinschers with DCM dying of SCD and in a DCM control group to identify factors predicting SCD. A longitudinal prospective study was performed in 95 Doberman Pinschers with DCM. Forty-one dogs died within 3 months after the last cardiac examination (SCD-group) and were compared to 54 Doberman Pinschers with DCM surviving 1 year after inclusion. Holter-ECG, echocardiography, measurement of N-terminal prohormone of brain-natriuretic peptide (NT-proBNP), and cardiac Troponin I (cTnI) concentrations were recorded for all dogs. Volume overload of the left ventricle (left ventricular end-diastolic volume (LVEDV/BSA) > 91.3 mL/m²) was the single best variable to predict SCD. The probability of SCD increases 8.5-fold (CI0.95 = 0.8-35.3) for every 50 mL/m²-unit increment in LVEDV/BSA. Ejection fraction (EF), left ventricular end-systolic volume (LVESV/BSA) and NT-proBNP were highly correlated with LVEDV/BSA (r = -0.63, 0.96, 0.86, respectively). Generated conditional inference trees (CTREEs) revealed that the presence of ventricular tachycardia (VT), increased concentration of cTnI, and the fastest rate (FR) of ventricular premature complexes (VPC) ≥260 beats per minute (bpm) are additional important variables to predict SCD. Conditional inference trees provided in this study might be useful for risk assessment of SCD in Doberman Pinschers with DCM. Copyright © 2016 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.
NASA Astrophysics Data System (ADS)
Vitanovski, Dime; Tsymbal, Alexey; Ionasec, Razvan; Georgescu, Bogdan; Zhou, Shaohua K.; Hornegger, Joachim; Comaniciu, Dorin
2011-03-01
Congenital heart defect (CHD) is the most common birth defect and a frequent cause of death for children. Tetralogy of Fallot (ToF) is the most often occurring CHD which affects in particular the pulmonary valve and trunk. Emerging interventional methods enable percutaneous pulmonary valve implantation, which constitute an alternative to open heart surgery. While minimal invasive methods become common practice, imaging and non-invasive assessment tools become crucial components in the clinical setting. Cardiac computed tomography (CT) and cardiac magnetic resonance imaging (cMRI) are techniques with complementary properties and ability to acquire multiple non-invasive and accurate scans required for advance evaluation and therapy planning. In contrary to CT which covers the full 4D information over the cardiac cycle, cMRI often acquires partial information, for example only one 3D scan of the whole heart in the end-diastolic phase and two 2D planes (long and short axes) over the whole cardiac cycle. The data acquired in this way is called sparse cMRI. In this paper, we propose a regression-based approach for the reconstruction of the full 4D pulmonary trunk model from sparse MRI. The reconstruction approach is based on learning a distance function between the sparse MRI which needs to be completed and the 4D CT data with the full information used as the training set. The distance is based on the intrinsic Random Forest similarity which is learnt for the corresponding regression problem of predicting coordinates of unseen mesh points. Extensive experiments performed on 80 cardiac CT and MR sequences demonstrated the average speed of 10 seconds and accuracy of 0.1053mm mean absolute error for the proposed approach. Using the case retrieval workflow and local nearest neighbour regression with the learnt distance function appears to be competitive with respect to "black box" regression with immediate prediction of coordinates, while providing transparency to the predictions made.
Almashrafi, Ahmed; Alsabti, Hilal; Mukaddirov, Mirdavron; Balan, Baskaran; Aylin, Paul
2016-06-08
Two objectives were set for this study. The first was to identify factors influencing prolonged postoperative length of stay (LOS) following cardiac surgery. The second was to devise a predictive model for prolonged LOS in the cardiac intensive care unit (CICU) based on preoperative factors available at admission and to compare it against two existing cardiac stratification systems. Observational retrospective study. A tertiary hospital in Oman. All adult patients who underwent cardiac surgery at a major referral hospital in Oman between 2009 and 2013. 30.5% of the patients had prolonged LOS (≥11 days) after surgery, while 17% experienced prolonged ICU LOS (≥5 days). Factors that were identified to prolong CICU LOS were non-elective surgery, current congestive heart failure (CHF), renal failure, combined coronary artery bypass graft (CABG) and valve surgery, and other non-isolated valve or CABG surgery. Patients were divided into three groups based on their scores. The probabilities of prolonged CICU LOS were 11%, 26% and 28% for group 1, 2 and 3, respectively. The predictive model had an area under the curve of 0.75. Factors associated with prolonged overall postoperative LOS included the body mass index, the type of surgery, cardiopulmonary bypass machine use, packed red blood cells use, non-elective surgery and number of complications. The latter was the most important determinant of postoperative LOS. Patient management can be tailored for individual patient based on their treatments and personal attributes to optimise resource allocation. Moreover, a simple predictive score system to enable identification of patients at risk of prolonged CICU stay can be developed using data that are routinely collected by most hospitals. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Novel echocardiographic prediction of non-response to cardiac resynchronization therapy
NASA Astrophysics Data System (ADS)
Chan, R.; Tournoux, F.; Tournoux, A. C.; Nandigam, V.; Manzke, R.; Dalal, S.; Solis-Martin, J.; McCarty, D.; Ruskin, J. N.; Picard, M. H.; Weyman, A. E.; Singh, J. P.
2009-02-01
Imaging techniques try to identify patients who may respond to cardiac resynchronization therapy (CRT). However, it may be clinically more useful to identify patients for whom CRT would not be beneficial as the procedure would not be indicated for this group. We developed a novel, clinically feasible and technically-simple echocardiographic dyssynchrony index and tested its negative predictive value. Subjects with standard indications for CRT had echo preand post-device implantation. Atrial-ventricular dyssynchrony was defined as a left ventricular (LV) filling time of <40% of the cardiac cycle. Intra-ventricular dyssynchrony was quantified as the magnitude of LV apical rocking. The apical rocking was measured using tissue displacement estimates from echo data. In a 4-chamber view, a region of interest was positioned within the apical end of the middle segment within each wall. Tissue displacement curves were analyzed with custom software in MATLAB. Rocking was quantified as a percentage of the cardiac cycle over which the displacement curves showed discordant behavior and classified as non-significant for values <35%. Validation in 50 patients showed that absence of significant LV apical rocking or atrial-ventricular dyssynchrony was associated with non-response to CRT. This measure may therefore be useful in screening to avoid non-therapeutic CRT procedures.
Miller, Kerry Ann; Davidson, Scott; Liaros, Angela; Barrow, John; Lear, Marissa; Heine, Danielle; Hoppler, Stefan; MacKenzie, Alasdair
2008-05-15
Double knockouts of the Msx1 and Msx2 genes in the mouse result in severe cardiac outflow tract malformations similar to those frequently found in newborn infants. Despite the known role of the Msx genes in cardiac formation little is known of the regulatory systems (ligand receptor, signal transduction and protein-DNA interactions) that regulate the tissue-specific expression of the Msx genes in mammals during the formation of the outflow tract. In the present study we have used a combination of multi-species comparative genomics, mouse transgenic analysis and in-situ hybridisation to predict and validate the existence of a remote ultra-conserved enhancer that supports the expression of the Msx1 gene in migrating mouse cardiac neural crest and the outflow tract primordia. Furthermore, culturing of embryonic explants derived from transgenic lines with agonists of the PKC and PKA signal transduction systems demonstrates that this remote enhancer is influenced by PKA but not PKC dependent gene regulatory systems. These studies demonstrate the efficacy of combining comparative genomics and transgenic analyses and provide a platform for the study of the possible roles of Msx gene mis-regulation in the aetiology of congenital heart malformation.
Madonna, Rosalinda
2017-07-01
Heart failure due to antineoplastic therapy remains a major cause of morbidity and mortality in oncological patients. These patients often have no prior manifestation of disease. There is therefore a need for accurate identification of individuals at risk of such events before the appearance of clinical manifestations. The present article aims to provide an overview of cardiac imaging as well as new "-omics" technologies, especially with regard to genomics and proteomics as promising tools for the early detection and prediction of cardiotoxicity and individual responses to antineoplastic drugs. Copyright © 2017 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.
Differential diagnosis of cardiovascular diseases and T-wave alternans
NASA Astrophysics Data System (ADS)
Ramasamy, Mouli; Varadan, Vijay K.
2016-04-01
T wave alternans (TWA) is the variation of the T-wave in electrocardiogram that is observed between periodic beats. TWA is one of the important precursors used to diagnose sudden cardiac death (SCD). Several clinical studies have tried to determine the significance of using TWA analysis to detect abnormalities that may lead to Ventricular Arrhythmias, as well as establish metrics to perform risk stratification for cardiovascular patients with prior cardiac episodes. The statistical significance of TWA in predicting ventricular arrhythmias has been established in patients across several diagnoses. Studies have also shown the significance of the predictive value of TWA analysis in post myocardial infarction patients, risk of SCD, congestive heart failure, ischemic cardiomyopathy, and Chagas disease.
Choi, Seung Pill; Park, Kyu Nam; Wee, Jung Hee; Park, Jeong Ho; Youn, Chun Song; Kim, Han Joon; Oh, Sang Hoon; Oh, Yoon Sang; Kim, Soo Hyun; Oh, Joo Suk
2017-10-01
In cardiac arrest patients treated with targeted temperature management (TTM), it is not certain if somatosensory evoked potentials (SEPs) and visual evoked potentials (VEPs) can predict neurological outcomes during TTM. The aim of this study was to investigate the prognostic value of SEPs and VEPs during TTM and after rewarming. This retrospective cohort study included comatose patients resuscitated from cardiac arrest and treated with TTM between March 2007 and July 2015. SEPs and VEPs were recorded during TTM and after rewarming in these patients. Neurological outcome was assessed at discharge by the Cerebral Performance Category (CPC) Scale. In total, 115 patients were included. A total of 175 SEPs and 150 VEPs were performed. Five SEPs during treated with TTM and nine SEPs after rewarming were excluded from outcome prediction by SEPs due to an indeterminable N20 response because of technical error. Using 80 SEPs and 85 VEPs during treated with TTM, absent SEPs yielded a sensitivity of 58% and a specificity of 100% for poor outcome (CPC 3-5), and absent VEPs predicted poor neurological outcome with a sensitivity of 44% and a specificity of 96%. The AUC of combination of SEPs and VEPs was superior to either test alone (0.788 for absent SEPs and 0.713 for absent VEPs compared with 0.838 for the combination). After rewarming, absent SEPs and absent VEPs predicted poor neurological outcome with a specificity of 100%. When SEPs and VEPs were combined, VEPs slightly increased the prognostic accuracy of SEPs alone. Although one patient with absent VEP during treated with TTM had a good neurological outcome, none of the patients with good neurological outcome had an absent VEP after rewarming. Absent SEPs could predict poor neurological outcome during TTM as well as after rewarming. Absent VEPs may predict poor neurological outcome in both periods and VEPs may provide additional prognostic value in outcome prediction. Copyright © 2017 Elsevier B.V. All rights reserved.
Redlin, Matthias; Boettcher, Wolfgang; Dehmel, Frank; Cho, Mi-Young; Kukucka, Marian; Habazettl, Helmut
2017-11-01
When applying a blood-conserving approach in paediatric cardiac surgery with the aim of reducing the transfusion of homologous blood products, the decision to use blood or blood-free priming of the cardiopulmonary bypass (CPB) circuit is often based on the predicted haemoglobin concentration (Hb) as derived from the pre-CPB Hb, the prime volume and the estimated blood volume. We assessed the accuracy of this approach and whether it may be improved by using more sophisticated methods of estimating the blood volume. Data from 522 paediatric cardiac surgery patients treated with CPB with blood-free priming in a 2-year period from May 2013 to May 2015 were collected. Inclusion criteria were body weight <15 kg and available Hb data immediately prior to and after the onset of CPB. The Hb on CPB was predicted according to Fick's principle from the pre-CPB Hb, the prime volume and the patient blood volume. Linear regression analyses and Bland-Altman plots were used to assess the accuracy of the Hb prediction. Different methods to estimate the blood volume were assessed and compared. The initial Hb on CPB correlated well with the predicted Hb (R 2 =0.87, p<0.001). A Bland-Altman plot revealed little bias at 0.07 g/dL and an area of agreement from -1.35 to 1.48 g/dL. More sophisticated methods of estimating blood volume from lean body mass did not improve the Hb prediction, but rather increased bias. Hb prediction is reasonably accurate, with the best result obtained with the simplest method of estimating the blood volume at 80 mL/kg body weight. When deciding for or against blood-free priming, caution is necessary when the predicted Hb lies in a range of ± 2 g/dL around the transfusion trigger.
Tomaselli Muensterman, Elena; Tisdale, James E
2018-06-08
Prolongation of the heart rate-corrected QT (QTc) interval increases the risk for torsades de pointes (TdP), a potentially fatal arrhythmia. The likelihood of TdP is higher in patients with risk factors, which include female sex, older age, heart failure with reduced ejection fraction, hypokalemia, hypomagnesemia, concomitant administration of ≥ 2 QTc interval-prolonging medications, among others. Assessment and quantification of risk factors may facilitate prediction of patients at highest risk for developing QTc interval prolongation and TdP. Investigators have utilized the field of predictive analytics, which generates predictions using techniques including data mining, modeling, machine learning, and others, to develop methods of risk quantification and prediction of QTc interval prolongation. Predictive analytics have also been incorporated into clinical decision support (CDS) tools to alert clinicians regarding patients at increased risk of developing QTc interval prolongation. The objectives of this paper are to assess the effectiveness of predictive analytics for identification of patients at risk of drug-induced QTc interval prolongation, and to discuss the efficacy of incorporation of predictive analytics into CDS tools in clinical practice. A systematic review of English language articles (human subjects only) was performed, yielding 57 articles, with an additional 4 articles identified from other sources; a total of 10 articles were included in this review. Risk scores for QTc interval prolongation have been developed in various patient populations including those in cardiac intensive care units (ICUs) and in broader populations of hospitalized or health system patients. One group developed a risk score that includes information regarding genetic polymorphisms; this score significantly predicted TdP. Development of QTc interval prolongation risk prediction models and incorporation of these models into CDS tools reduces the risk of QTc interval prolongation in cardiac ICUs and identifies health-system patients at increased risk for mortality. The impact of these QTc interval prolongation predictive analytics on overall patient safety outcomes, such as TdP and sudden cardiac death relative to the cost of development and implementation, requires further study. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
The heart of the story: peripheral physiology during narrative exposure predicts charitable giving.
Barraza, Jorge A; Alexander, Veronika; Beavin, Laura E; Terris, Elizabeth T; Zak, Paul J
2015-02-01
Emotionally laden narratives are often used as persuasive appeals by charitable organizations. Physiological responses to a narrative may explain why some people respond to an appeal while others do not. In this study we tested whether autonomic and hormonal activity during a narrative predict subsequent narrative influence via charitable giving. Participants viewed a brief story of a father's experience with his 2-year-old son who has terminal cancer. After the story, participants were presented with an opportunity to donate some of their study earnings to a related charity. Measures derived from cardiac and electrodermal activity, including HF-HRV, significantly predicted donor status. Time-series GARCH models of physiology during the narrative further differentiated donors from non-donors. Moreover, cardiac activity and experienced concern were found to covary from moment-to-moment across the narrative. Our findings indicate that the physiological response to a stimulus, herein a narrative, can predict influence as indexed by stimulus-related behavior. Copyright © 2015 Elsevier B.V. All rights reserved.
Vassilikos, Vassilios P; Mantziari, Lilian; Dakos, Georgios; Kamperidis, Vasileios; Chouvarda, Ioanna; Chatzizisis, Yiannis S; Kalpidis, Panagiotis; Theofilogiannakos, Efstratios; Paraskevaidis, Stelios; Karvounis, Haralambos; Mochlas, Sotirios; Maglaveras, Nikolaos; Styliadis, Ioannis H
2014-01-01
Wider QRS and left bundle branch block morphology are related to response to cardiac resynchronization therapy (CRT). A novel time-frequency analysis of the QRS complex may provide additional information in predicting response to CRT. Signal-averaged electrocardiograms were prospectively recorded, before CRT, in orthogonal leads and QRS decomposition in three frequency bands was performed using the Morlet wavelet transformation. Thirty eight patients (age 65±10years, 31 males) were studied. CRT responders (n=28) had wider baseline QRS compared to non-responders and lower QRS energies in all frequency bands. The combination of QRS duration and mean energy in the high frequency band had the best predicting ability (AUC 0.833, 95%CI 0.705-0.962, p=0.002) followed by the maximum energy in the high frequency band (AUC 0.811, 95%CI 0.663-0.960, p=0.004). Wavelet transformation of the QRS complex is useful in predicting response to CRT. © 2013.
Levin, Anna Y; Linden, Wolfgang
2008-02-01
One of the major theories of psychosomatic medicine is that pervasive dissociations between physiological reactivity and simultaneous emotion awareness may be an important marker for the long-term development of cardiac problems. Subjective autonomic discrepancy (SAD) scores are proposed as a method of capturing the dissociation between physiological and emotional reactivity and increasing the explanatory power of predictive models of cardiac health outcomes. It was found that SAD scores for blood pressure indices show trait-like stability over a period of 3 years. Although linear 3-year prediction of systolic blood pressure came close to traditional definitions of significance, neither a linear nor a quadratic model was found to show significant prospective validity in predicting ambulatory blood pressure change over a 10-year period. Dissociation between physiological arousal and emotional awareness does not appear to be an important variable in the identification of individuals at risk for later cardiovascular health problems.
Current Evidence about Nutrition Support in Cardiac Surgery Patients-What Do We Know?
Hill, Aileen; Nesterova, Ekaterina; Lomivorotov, Vladimir; Efremov, Sergey; Goetzenich, Andreas; Benstoem, Carina; Zamyatin, Mikhail; Chourdakis, Michael; Heyland, Daren; Stoppe, Christian
2018-05-11
Nutrition support is increasingly recognized as a clinically relevant aspect of the intensive care treatment of cardiac surgery patients. However, evidence from adequate large-scale studies evaluating its clinical significance for patients’ mid- to long-term outcome remains sparse. Considering nutrition support as a key component in the perioperative treatment of these critically ill patients led us to review and discuss our understanding of the metabolic response to the inflammatory burst induced by cardiac surgery. In addition, we discuss how to identify patients who may benefit from nutrition therapy, when to start nutritional interventions, present evidence about the use of enteral and parenteral nutrition and the potential role of pharmaconutrition in cardiac surgery patients. Although the clinical setting of cardiac surgery provides advantages due to its scheduled insult and predictable inflammatory response, researchers and clinicians face lack of evidence and several limitations in the clinical routine, which are critically considered and discussed in this paper.
Abbasi, Mitra; Small, Ben G; Patel, Nikunjkumar; Jamei, Masoud; Polak, Sebastian
2017-02-01
To determine the predictive performance of in silico models using drug-specific preclinical cardiac electrophysiology data to investigate drug-induced arrhythmia risk (e.g. Torsade de pointes (TdP)) in virtual human subjects. To assess drug proarrhythmic risk, we used a set of in vitro electrophysiological measurements describing ion channel inhibition triggered by the investigated drugs. The Cardiac Safety Simulator version 2.0 (CSS; Simcyp, Sheffield, UK) platform was used to simulate human left ventricular cardiac myocyte action potential models. This study shows the impact of drug concentration changes on particular ionic currents by using available experimental data. The simulation results display safety threshold according to drug concentration threshold and log (threshold concentration/ effective therapeutic plasma concentration (ETPC)). We reproduced the underlying biophysical characteristics of cardiac cells resulted in effects of drugs associated with cardiac arrhythmias (action potential duration (APD) and QT prolongation and TdP) which were observed in published 3D simulations, yet with much less computational burden.
Ambler, Gareth; Omar, Rumana Z; Royston, Patrick
2007-06-01
Risk models that aim to predict the future course and outcome of disease processes are increasingly used in health research, and it is important that they are accurate and reliable. Most of these risk models are fitted using routinely collected data in hospitals or general practices. Clinical outcomes such as short-term mortality will be near-complete, but many of the predictors may have missing values. A common approach to dealing with this is to perform a complete-case analysis. However, this may lead to overfitted models and biased estimates if entire patient subgroups are excluded. The aim of this paper is to investigate a number of methods for imputing missing data to evaluate their effect on risk model estimation and the reliability of the predictions. Multiple imputation methods, including hotdecking and multiple imputation by chained equations (MICE), were investigated along with several single imputation methods. A large national cardiac surgery database was used to create simulated yet realistic datasets. The results suggest that complete case analysis may produce unreliable risk predictions and should be avoided. Conditional mean imputation performed well in our scenario, but may not be appropriate if using variable selection methods. MICE was amongst the best performing multiple imputation methods with regards to the quality of the predictions. Additionally, it produced the least biased estimates, with good coverage, and hence is recommended for use in practice.
Component fears of claustrophobia associated with mock magnetic resonance imaging.
McGlynn, F Dudley; Smitherman, Todd A; Hammel, Jacinda C; Lazarte, Alejandro A
2007-01-01
A conceptualization of claustrophobia [Rachman, S., & Taylor, S. (1993). Analyses of claustrophobia. Journal of Anxiety Disorders, 7, 281-291] was evaluated in the context of magnetic resonance imaging. One hundred eleven students responded to questionnaires that quantified fear of suffocation, fear of restriction, and sensitivity to anxiety symptoms. Sixty-four of them were then exposed to a mock magnetic resonance imaging assessment; maximum subjective fear during the mock assessment was self-reported, behavioral reactions to the mock assessment were characterized, and heart rates before and during the assessment were recorded. Scores for fear of suffocation, fear of restriction, and anxiety sensitivity were used to predict subjective, behavioral, and cardiac fear. Subjective fear during the mock assessment was predicted by fears of suffocation and public anxiousness. Behavioral fear (escape/avoidance) was predicted by fears of restriction and suffocation, and sensitivity to symptoms related to suffocation. Cardiac fear was predicted by fear of public anxiousness. The criterion variance predicted was impressive, clearly sufficient to legitimize both the research preparation and the conceptualization of claustrophobia that was evaluated.
Immune Modulation of Cardiac Repair and Regeneration: The Art of Mending Broken Hearts
Zlatanova, Ivana; Pinto, Cristina; Silvestre, Jean-Sébastien
2016-01-01
The accumulation of immune cells is among the earliest responses that manifest in the cardiac tissue after injury. Both innate and adaptive immunity coordinate distinct and mutually non-exclusive events governing cardiac repair, including elimination of the cellular debris, compensatory growth of the remaining cardiac tissue, activation of resident or circulating precursor cells, quantitative and qualitative modifications of the vascular network, and formation of a fibrotic scar. The present review summarizes the mounting evidence suggesting that the inflammatory response also guides the regenerative process following cardiac damage. In particular, recent literature has reinforced the central role of monocytes/macrophages in poising the refreshment of cardiomyocytes in myocardial infarction- or apical resection-induced cardiac insult. Macrophages dictate cardiac myocyte renewal through stimulation of preexisting cardiomyocyte proliferation and/or neovascularization. Nevertheless, substantial efforts are required to identify the nature of these macrophage-derived factors as well as the molecular mechanisms engendered by the distinct subsets of macrophages pertaining in the cardiac tissue. Among the growing inflammatory intermediaries that have been recognized as essential player in heart regeneration, we will focus on the role of interleukin (IL)-6 and IL-13. Finally, it is likely that within the mayhem of the injured cardiac tissue, additional types of inflammatory cells, such as neutrophils, will enter the dance to ignite and refresh the broken heart. However, the protective and detrimental inflammatory pathways have been mainly deciphered in animal models. Future research should be focused on understanding the cellular effectors and molecular signals regulating inflammation in human heart to pave the way for the development of factual therapies targeting the inflammatory compartment in cardiac diseases. PMID:27790620
Immune Modulation of Cardiac Repair and Regeneration: The Art of Mending Broken Hearts.
Zlatanova, Ivana; Pinto, Cristina; Silvestre, Jean-Sébastien
2016-01-01
The accumulation of immune cells is among the earliest responses that manifest in the cardiac tissue after injury. Both innate and adaptive immunity coordinate distinct and mutually non-exclusive events governing cardiac repair, including elimination of the cellular debris, compensatory growth of the remaining cardiac tissue, activation of resident or circulating precursor cells, quantitative and qualitative modifications of the vascular network, and formation of a fibrotic scar. The present review summarizes the mounting evidence suggesting that the inflammatory response also guides the regenerative process following cardiac damage. In particular, recent literature has reinforced the central role of monocytes/macrophages in poising the refreshment of cardiomyocytes in myocardial infarction- or apical resection-induced cardiac insult. Macrophages dictate cardiac myocyte renewal through stimulation of preexisting cardiomyocyte proliferation and/or neovascularization. Nevertheless, substantial efforts are required to identify the nature of these macrophage-derived factors as well as the molecular mechanisms engendered by the distinct subsets of macrophages pertaining in the cardiac tissue. Among the growing inflammatory intermediaries that have been recognized as essential player in heart regeneration, we will focus on the role of interleukin (IL)-6 and IL-13. Finally, it is likely that within the mayhem of the injured cardiac tissue, additional types of inflammatory cells, such as neutrophils, will enter the dance to ignite and refresh the broken heart. However, the protective and detrimental inflammatory pathways have been mainly deciphered in animal models. Future research should be focused on understanding the cellular effectors and molecular signals regulating inflammation in human heart to pave the way for the development of factual therapies targeting the inflammatory compartment in cardiac diseases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Mary, E-mail: maryfeng@umich.ed; Moran, Jean M.; Koelling, Todd
2011-01-01
Purpose: Cardiac toxicity is an important sequela of breast radiotherapy. However, the relationship between dose to cardiac structures and subsequent toxicity has not been well defined, partially due to variations in substructure delineation, which can lead to inconsistent dose reporting and the failure to detect potential correlations. Here we have developed a heart atlas and evaluated its effect on contour accuracy and concordance. Methods and Materials: A detailed cardiac computed tomography scan atlas was developed jointly by cardiology, cardiac radiology, and radiation oncology. Seven radiation oncologists were recruited to delineate the whole heart, left main and left anterior descending interventricularmore » branches, and right coronary arteries on four cases before and after studying the atlas. Contour accuracy was assessed by percent overlap with gold standard atlas volumes. The concordance index was also calculated. Standard radiation fields were applied. Doses to observer-contoured cardiac structures were calculated and compared with gold standard contour doses. Pre- and post-atlas values were analyzed using a paired t test. Results: The cardiac atlas significantly improved contour accuracy and concordance. Percent overlap and concordance index of observer-contoured cardiac and gold standard volumes were 2.3-fold improved for all structures (p < 0.002). After application of the atlas, reported mean doses to the whole heart, left main artery, left anterior descending interventricular branch, and right coronary artery were within 0.1, 0.9, 2.6, and 0.6 Gy, respectively, of gold standard doses. Conclusions: This validated University of Michigan cardiac atlas may serve as a useful tool in future studies assessing cardiac toxicity and in clinical trials which include dose volume constraints to the heart.« less
Hubbard, Gill; O'Carroll, Ronan; Munro, Julie; Mutrie, Nanette; Haw, Sally; Mason, Helen; Treweek, Shaun
2016-01-01
Pilot and feasibility work is conducted to evaluate the operational feasibility and acceptability of the intervention itself and the feasibility and acceptability of a trials' protocol design. The Cardiac Rehabilitation In Bowel cancer (CRIB) study was a pilot randomised controlled trial (RCT) of cardiac rehabilitation versus usual care (no rehabilitation) for post-surgical colorectal cancer patients. A key aim of the pilot trial was to test the feasibility and acceptability of the protocol design. A pilot RCT with embedded qualitative work was conducted in three sites. Participants were randomly allocated to cardiac rehabilitation or usual care groups. Outcomes used to assess the feasibility and acceptability of key trial parameters were screening, eligibility, consent, randomisation, adverse events, retention, completion, missing data, and intervention adherence rates. Colorectal patients' and clinicians' perceptions and experiences of the main trial procedures were explored by interview. Quantitative study. Three sites were involved. Screening, eligibility, consent, and retention rates were 79 % (156/198), 67 % (133/198), 31 % (41/133), and 93 % (38/41), respectively. Questionnaire completion rates were 97.5 % (40/41), 75 % (31/41), and 61 % (25/41) at baseline, follow-up 1, and follow-up 2, respectively. Sixty-nine percent (40) of accelerometer datasets were collected from participants; 31 % (20) were removed for not meeting wear-time validation. Qualitative study: Thirty-eight patients and eight clinicians participated. Key themes were benefits for people with colorectal cancer attending cardiac rehabilitation, barriers for people with colorectal cancer attending cardiac rehabilitation, generic versus disease-specific rehabilitation, key concerns about including people with cancer in cardiac rehabilitation, and barriers to involvement in a study about cardiac rehabilitation. The study highlights where threats to internal and external validity are likely to arise in any future studies of similar structured physical activity interventions for colorectal cancer patients using similar methods being conducted in similar contexts. This study shows that there is likely to be potential recruitment bias and potential imprecision due to sub-optimal completion of outcome measures, missing data, and sub-optimal intervention adherence. Hence, strategies to manage these risks should be developed to stack the odds in favour of conducting successful future trials. ISRCTN63510637.
Utens, Elisabeth M; Versluis-Den Bieman, Herma J; Witsenburg, Maarten; Bogers, Ad J J C; Hess, John; Verhulst, Frank C
2002-12-01
To assess the influence of age at a cardiac procedure of children, who underwent elective cardiac surgery or interventional cardiac catheterisation for treatment of congenital cardiac defects between 3 months and 7 years of age, on the longitudinal development of psychological distress and styles of coping of their parents. We used the General Health Questionnaire to measure psychological distress, and the Utrecht Coping List to measure styles of coping. Parents completed questionnaires on average respectively 5 weeks prior to, and 18.7 months after, cardiac surgery or catheter intervention for their child. Apart from one exception, no significant influence was found of the age at which children underwent elective cardiac surgery or catheter intervention on the pre- to postprocedural course of psychological distress and the styles of coping of their parents. Across time, parents of children undergoing surgery reported, on average, significantly higher levels of psychological distress than parents of children who underwent catheter intervention. After the procedure, parents of children who underwent either procedure reported significantly lower levels of psychological distress, and showed a weaker tendency to use several styles of coping, than did their reference groups. Age of the children at the time of elective cardiac surgery or catheter intervention did not influence the course of psychological distress of their parents, nor the styles of coping used by the parents. Future research should investigate in what way the age at which these cardiac procedures are performed influences the emotional and cognitive development of the children.
Rosa-Garrido, Manuel; Chapski, Douglas J.; Schmitt, Anthony D.; Kimball, Todd H.; Karbassi, Elaheh; Monte, Emma; Balderas, Enrique; Pellegrini, Matteo; Shih, Tsai-Ting; Soehalim, Elizabeth; Liem, David; Ping, Peipei; Galjart, Niels J.; Ren, Shuxun; Wang, Yibin; Ren, Bing
2017-01-01
Background: Cardiovascular disease is associated with epigenomic changes in the heart; however, the endogenous structure of cardiac myocyte chromatin has never been determined. Methods: To investigate the mechanisms of epigenomic function in the heart, genome-wide chromatin conformation capture (Hi-C) and DNA sequencing were performed in adult cardiac myocytes following development of pressure overload–induced hypertrophy. Mice with cardiac-specific deletion of CTCF (a ubiquitous chromatin structural protein) were generated to explore the role of this protein in chromatin structure and cardiac phenotype. Transcriptome analyses by RNA-seq were conducted as a functional readout of the epigenomic structural changes. Results: Depletion of CTCF was sufficient to induce heart failure in mice, and human patients with heart failure receiving mechanical unloading via left ventricular assist devices show increased CTCF abundance. Chromatin structural analyses revealed interactions within the cardiac myocyte genome at 5-kb resolution, enabling examination of intra- and interchromosomal events, and providing a resource for future cardiac epigenomic investigations. Pressure overload or CTCF depletion selectively altered boundary strength between topologically associating domains and A/B compartmentalization, measurements of genome accessibility. Heart failure involved decreased stability of chromatin interactions around disease-causing genes. In addition, pressure overload or CTCF depletion remodeled long-range interactions of cardiac enhancers, resulting in a significant decrease in local chromatin interactions around these functional elements. Conclusions: These findings provide a high-resolution chromatin architecture resource for cardiac epigenomic investigations and demonstrate that global structural remodeling of chromatin underpins heart failure. The newly identified principles of endogenous chromatin structure have key implications for epigenetic therapy. PMID:28802249
Rosa-Garrido, Manuel; Chapski, Douglas J; Schmitt, Anthony D; Kimball, Todd H; Karbassi, Elaheh; Monte, Emma; Balderas, Enrique; Pellegrini, Matteo; Shih, Tsai-Ting; Soehalim, Elizabeth; Liem, David; Ping, Peipei; Galjart, Niels J; Ren, Shuxun; Wang, Yibin; Ren, Bing; Vondriska, Thomas M
2017-10-24
Cardiovascular disease is associated with epigenomic changes in the heart; however, the endogenous structure of cardiac myocyte chromatin has never been determined. To investigate the mechanisms of epigenomic function in the heart, genome-wide chromatin conformation capture (Hi-C) and DNA sequencing were performed in adult cardiac myocytes following development of pressure overload-induced hypertrophy. Mice with cardiac-specific deletion of CTCF (a ubiquitous chromatin structural protein) were generated to explore the role of this protein in chromatin structure and cardiac phenotype. Transcriptome analyses by RNA-seq were conducted as a functional readout of the epigenomic structural changes. Depletion of CTCF was sufficient to induce heart failure in mice, and human patients with heart failure receiving mechanical unloading via left ventricular assist devices show increased CTCF abundance. Chromatin structural analyses revealed interactions within the cardiac myocyte genome at 5-kb resolution, enabling examination of intra- and interchromosomal events, and providing a resource for future cardiac epigenomic investigations. Pressure overload or CTCF depletion selectively altered boundary strength between topologically associating domains and A/B compartmentalization, measurements of genome accessibility. Heart failure involved decreased stability of chromatin interactions around disease-causing genes. In addition, pressure overload or CTCF depletion remodeled long-range interactions of cardiac enhancers, resulting in a significant decrease in local chromatin interactions around these functional elements. These findings provide a high-resolution chromatin architecture resource for cardiac epigenomic investigations and demonstrate that global structural remodeling of chromatin underpins heart failure. The newly identified principles of endogenous chromatin structure have key implications for epigenetic therapy. © 2017 The Authors.
Defauw, Arne; Dawyndt, Peter; Panfilov, Alexander V
2013-12-01
In relation to cardiac arrhythmias, heterogeneity of cardiac tissue is one of the most important factors underlying the onset of spiral waves and determining their type. In this paper, we numerically model heterogeneity of realistic size and value and study formation and dynamics of spiral waves around such heterogeneity. We find that the only sustained pattern obtained is a single spiral wave anchored around the heterogeneity. Dynamics of an anchored spiral wave depend on the extent of heterogeneity, and for certain heterogeneity size, we find abrupt regional increase in the period of excitation occurring as a bifurcation. We study factors determining spatial distribution of excitation periods of anchored spiral waves and discuss consequences of such dynamics for cardiac arrhythmias and possibilities for experimental testings of our predictions.
Electrical stimulation systems for cardiac tissue engineering
Tandon, Nina; Cannizzaro, Christopher; Chao, Pen-Hsiu Grace; Maidhof, Robert; Marsano, Anna; Au, Hoi Ting Heidi; Radisic, Milica; Vunjak-Novakovic, Gordana
2009-01-01
We describe a protocol for tissue engineering of synchronously contractile cardiac constructs by culturing cardiac cells with the application of pulsatile electrical fields designed to mimic those present in the native heart. Tissue culture is conducted in a customized chamber built to allow for cultivation of (i) engineered three-dimensional (3D) cardiac tissue constructs, (ii) cell monolayers on flat substrates or (iii) cells on patterned substrates. This also allows for analysis of the individual and interactive effects of pulsatile electrical field stimulation and substrate topography on cell differentiation and assembly. The protocol is designed to allow for delivery of predictable electrical field stimuli to cells, monitoring environmental parameters, and assessment of cell and tissue responses. The duration of the protocol is 5 d for two-dimensional cultures and 10 d for 3D cultures. PMID:19180087
Use of biomarkers for the assessment of chemotherapy-induced cardiac toxicity
Christenson, Eric S.; James, Theodore; Agrawal, Vineet; Park, Ben H.
2015-01-01
Objectives To review the evidence for the use of various biomarkers in the detection of chemotherapy associated cardiac damage. Design and methods Pubmed.gov was queried using the search words chemotherapy and cardiac biomarkers with the filters of past 10 years, humans, and English language. An emphasis was placed on obtaining primary research articles looking at the utility of biomarkers for the detection of chemotherapy-mediated cardiac injury. Results Biomarkers may help identify patients undergoing treatment who are at high risk for cardiotoxicity and may assist in identification of a low risk cohort that does not necessitate continued intensive screening. cTn assays are the best studied biomarkers in this context and may represent a promising and potentially valuable modality for detecting cardiac toxicity in patients undergoing chemotherapy. Monitoring cTnI levels may provide information regarding the development of cardiac toxicity before left ventricular dysfunction becomes apparent on echocardiography or via clinical symptoms. A host of other biomarkers have been evaluated for their utility in the field of chemotherapy related cardiac toxicity with intermittent success; further trials are necessary to determine what role they may end up playing for prediction and prognostication in this setting. Conclusions Biomarkers represent an exciting potential complement or replacement for echocardiographic monitoring of chemotherapy related cardiac toxicity which may allow for earlier realization of the degree of cardiac damage occurring during treatment, creating the opportunity for more timely modulation of therapy. PMID:25445234
Plasma cardiac troponin I concentration and cardiac death in cats with hypertrophic cardiomyopathy.
Borgeat, K; Sherwood, K; Payne, J R; Luis Fuentes, V; Connolly, D J
2014-01-01
The use of cardiac biomarkers to assist in the diagnosis of occult and symptomatic hypertrophic cardiomyopathy (HCM) in cats has been established. There is limited data describing their prognostic utility in cats with HCM. Circulating concentrations of N-terminal B-type natriuretic peptide (NTproBNP) and cardiac troponin I (cTnI) predict cardiac death in cats with HCM. Forty-one cats diagnosed with HCM at a veterinary teaching hospital, between February 2010 and May 2011. Prospective investigational study. Plasma samples were collected from cats diagnosed with HCM and concentrations of NTproBNP and cTnI were analyzed at a commercial laboratory. Echocardiographic measurements from the day of blood sampling were recorded. Long-term outcome data were obtained. Associations with time to cardiac death were analyzed using Cox proportional hazards models. When controlling for the presence/absence of heart failure and echocardiographic measures of left atrial size and function, cTnI > 0.7 ng/mL was independently associated with time to cardiac death. In univariable analysis, NTproBNP > 250 pmol/L was associated with cardiac death (P = .023), but this did not remain significant (P = .951) when controlling for the effect of clinical signs or left atrial size/function. Plasma concentration of cTnI (cutoff >0.7 ng/mL) is a predictor of cardiac death in cats with HCM that is independent of the presence of heart failure or left atrial dilatation. Copyright © 2014 by the American College of Veterinary Internal Medicine.
Singh, Neeraj; Parikh, Samir; Bhatt, Udayan; Vonvisger, Jon; Nori, Uday; Hasan, Ayesha; Samavedi, Srinivas; Andreoni, Kenneth; Henry, Mitchell; Pelletier, Ronald; Rajab, Amer; Elkhammas, Elmahdi; Pesavento, Todd
2012-12-27
The utility of cardiac stress testing as a risk-stratification tool before kidney transplantation remains debatable owing to discordance with coronary angiography and outcome yields at different centers. We conducted a retrospective study of 273 diabetic kidney transplant recipients from 2006 to 2010. By protocol, all diabetic patients underwent pharmacological radionucleotide stress test or dobutamine stress echocardiography before transplant. We compared the 1-year cardiac outcomes between those with negative stress test results and those with positive stress test results. Patients with a positive stress test result (n=67) underwent coronary angiogram, and significant coronary artery disease (≥70% coronary stenosis) was found in 35 (52.2%) patients. Of the latter, 32 (91.4%) underwent cardiac revascularization (24 underwent cardiac stenting and 8 underwent coronary artery bypass grafting). The rest (n=35) were treated medically. Within 1 year after transplant, the group with positive stress test results experienced more cardiac events (34.3% vs. 3.9%, P<0.001) including acute myocardial infarction (22.4% vs. 3.4%, P<0.001) and ventricular arrhythmias (8.9% vs. 0.05%, P=0.001), higher all-cause mortality (19.4% vs. 4.8%, P<0.001), and cardiac mortality (17.9% vs. 0.9%, P<0.001) compared with the group with negative stress test results. In this diabetic population, stress testing showed positive and negative predictive values of 34.3% and 96.1%, respectively. Pharmacological cardiac stress testing provided excellent risk stratification in diabetic kidney transplant recipients.
Design and formulation of functional pluripotent stem cell-derived cardiac microtissues
Thavandiran, Nimalan; Dubois, Nicole; Mikryukov, Alexander; Massé, Stéphane; Beca, Bogdan; Simmons, Craig A.; Deshpande, Vikram S.; McGarry, J. Patrick; Chen, Christopher S.; Nanthakumar, Kumaraswamy; Keller, Gordon M.; Radisic, Milica; Zandstra, Peter W.
2013-01-01
Access to robust and information-rich human cardiac tissue models would accelerate drug-based strategies for treating heart disease. Despite significant effort, the generation of high-fidelity adult-like human cardiac tissue analogs remains challenging. We used computational modeling of tissue contraction and assembly mechanics in conjunction with microfabricated constraints to guide the design of aligned and functional 3D human pluripotent stem cell (hPSC)-derived cardiac microtissues that we term cardiac microwires (CMWs). Miniaturization of the platform circumvented the need for tissue vascularization and enabled higher-throughput image-based analysis of CMW drug responsiveness. CMW tissue properties could be tuned using electromechanical stimuli and cell composition. Specifically, controlling self-assembly of 3D tissues in aligned collagen, and pacing with point stimulation electrodes, were found to promote cardiac maturation-associated gene expression and in vivo-like electrical signal propagation. Furthermore, screening a range of hPSC-derived cardiac cell ratios identified that 75% NKX2 Homeobox 5 (NKX2-5)+ cardiomyocytes and 25% Cluster of Differentiation 90 OR (CD90)+ nonmyocytes optimized tissue remodeling dynamics and yielded enhanced structural and functional properties. Finally, we demonstrate the utility of the optimized platform in a tachycardic model of arrhythmogenesis, an aspect of cardiac electrophysiology not previously recapitulated in 3D in vitro hPSC-derived cardiac microtissue models. The design criteria identified with our CMW platform should accelerate the development of predictive in vitro assays of human heart tissue function. PMID:24255110
Niendorf, Thoralf; Paul, Katharina; Oezerdem, Celal; Graessl, Andreas; Klix, Sabrina; Huelnhagen, Till; Hezel, Fabian; Rieger, Jan; Waiczies, Helmar; Frahm, Jens; Nagel, Armin M; Oberacker, Eva; Winter, Lukas
2016-09-01
The objective of this study was to document and review advances and groundbreaking progress in cardiac and body MR at ultrahigh fields (UHF, B0 ≥ 7.0 T) with the goal to attract talent, clinical adopters, collaborations and resources to the biomedical and diagnostic imaging communities. This review surveys traits, advantages and challenges of cardiac and body MR at 7.0 T. The considerations run the gamut from technical advances to clinical opportunities. Key concepts, emerging technologies, practical considerations, frontier applications and future directions of UHF body and cardiac MR are provided. Examples of UHF cardiac and body imaging strategies are demonstrated. Their added value over the kindred counterparts at lower fields is explored along with an outline of research promises. The achievements of cardiac and body UHF-MR are powerful motivators and enablers, since extra speed, signal and imaging capabilities may be invested to overcome the fundamental constraints that continue to hamper traditional cardiac and body MR applications. If practical obstacles, concomitant physics effects and technical impediments can be overcome in equal measure, sophisticated cardiac and body UHF-MR will help to open the door to new MRI and MRS approaches for basic research and clinical science, with the lessons learned at 7.0 T being transferred into broad clinical use including diagnostics and therapy guiding at lower fields. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
Cardiac telomere length in heart development, function, and disease.
Booth, S A; Charchar, F J
2017-07-01
Telomeres are repetitive nucleoprotein structures at chromosome ends, and a decrease in the number of these repeats, known as a reduction in telomere length (TL), triggers cellular senescence and apoptosis. Heart disease, the worldwide leading cause of death, often results from the loss of cardiac cells, which could be explained by decreases in TL. Due to the cell-specific regulation of TL, this review focuses on studies that have measured telomeres in heart cells and critically assesses the relationship between cardiac TL and heart function. There are several lines of evidence that have identified rapid changes in cardiac TL during the onset and progression of heart disease as well as at critical stages of development. There are also many factors, such as the loss of telomeric proteins, oxidative stress, and hypoxia, that decrease cardiac TL and heart function. In contrast, antioxidants, calorie restriction, and exercise can prevent both cardiac telomere attrition and the progression of heart disease. TL in the heart is also indicative of proliferative potential and could facilitate the identification of cells suitable for cardiac rejuvenation. Although these findings highlight the involvement of TL in heart function, there are important questions regarding the validity of animal models, as well as several confounding factors, that need to be considered when interpreting results and planning future research. With these in mind, elucidating the telomeric mechanisms involved in heart development and the transition to disease holds promise to prevent cardiac dysfunction and potentiate regeneration after injury. Copyright © 2017 the American Physiological Society.
Association of Ambient Fine Particles With Out-of-Hospital Cardiac Arrests in New York City
Silverman, Robert A.; Ito, Kazuhiko; Freese, John; Kaufman, Brad J.; De Claro, Danilynn; Braun, James; Prezant, David J.
2010-01-01
Cardiovascular morbidity has been associated with particulate matter (PM) air pollution, although the relation between pollutants and sudden death from cardiac arrest has not been established. This study examined associations between out-of-hospital cardiac arrests and fine PM (of aerodynamic diameter ≤2.5 μm, or PM2.5), ozone, nitrogen dioxide, sulfur dioxide, and carbon monoxide in New York City. The authors analyzed 8,216 out-of-hospital cardiac arrests of primary cardiac etiology during the years 2002–2006. Time-series and case-crossover analyses were conducted, controlling for season, day-of-week, same-day, and delayed/apparent temperature. An increased risk of cardiac arrest in time-series (relative risk (RR) = 1.06, 95% confidence interval (CI): 1.02, 1.10) and case-crossover (RR = 1.04, 95% CI: 0.99, 1.08) analysis for a PM2.5 increase of 10 μg/m3 in the average of 0- and 1-day lags was found. The association was significant in the warm season (RR = 1.09, 95% CI: 1.03, 1.15) but not the cold season (RR = 1.01, 95% CI: 0.95, 1.07). Associations of cardiac arrest with other pollutants were weaker. These findings, consistent with studies implicating acute cardiovascular effects of PM, support a link between PM2.5 and out-of-hospital cardiac arrests. Since few individuals survive an arrest, air pollution control may help prevent future cardiovascular mortality. PMID:20729350
Sakuta, Juri; Ito, Yoshikazu; Kimura, Yukihiko; Park, Jinho; Tokuuye, Koichi; Ohyashiki, Kazuma
2010-12-01
Cardiac dysfunction due to transfusional iron overload is one of the most critical complications for patients with transfusion-dependent hematological disorders. Clinical parameters such as total red blood cell (RBC) transfusion units and serum ferritin level are usually considered as indicators for initiation of iron chelation therapy. We used MRI-T2*, MRI-R2* values, and left ventricular ejection fraction in 19 adult patients with blood transfusion-dependent hematological disorders without consecutive oral iron chelation therapy, and propose possible formulae of cardiac function using known parameters, such as total RBC transfusion units and serum ferritin levels. We found a positive correlation in all patients between both R2* values (reciprocal values of T2*) and serum ferritin levels (r = 0.81) and also total RBC transfusion volume (r = 0.90), but not when we analyzed subgroups of patients whose T2* values were over 30 ms (0.52). From the formulae of the R2*, we concluded that approximately 50 Japanese units or 2,900 pmol/L ferritin might be the cutoff value indicating possible future cardiac dysfunction.
Modular assembly of thick multifunctional cardiac patches
Fleischer, Sharon; Shapira, Assaf; Feiner, Ron; Dvir, Tal
2017-01-01
In cardiac tissue engineering cells are seeded within porous biomaterial scaffolds to create functional cardiac patches. Here, we report on a bottom-up approach to assemble a modular tissue consisting of multiple layers with distinct structures and functions. Albumin electrospun fiber scaffolds were laser-patterned to create microgrooves for engineering aligned cardiac tissues exhibiting anisotropic electrical signal propagation. Microchannels were patterned within the scaffolds and seeded with endothelial cells to form closed lumens. Moreover, cage-like structures were patterned within the scaffolds and accommodated poly(lactic-co-glycolic acid) (PLGA) microparticulate systems that controlled the release of VEGF, which promotes vascularization, or dexamethasone, an anti-inflammatory agent. The structure, morphology, and function of each layer were characterized, and the tissue layers were grown separately in their optimal conditions. Before transplantation the tissue and microparticulate layers were integrated by an ECM-based biological glue to form thick 3D cardiac patches. Finally, the patches were transplanted in rats, and their vascularization was assessed. Because of the simple modularity of this approach, we believe that it could be used in the future to assemble other multicellular, thick, 3D, functional tissues. PMID:28167795
Systematic review and meta-analysis in cardiac surgery: a primer.
Yanagawa, Bobby; Tam, Derrick Y; Mazine, Amine; Tricco, Andrea C
2018-03-01
The purpose of this article is to review the strengths and weaknesses of systematic reviews and meta-analyses to inform our current understanding of cardiac surgery. A systematic review and meta-analysis of a focused topic can provide a quantitative estimate for the effect of a treatment intervention or exposure. In cardiac surgery, observational studies and small, single-center prospective trials provide most of the clinical outcomes that form the evidence base for patient management and guideline recommendations. As such, meta-analyses can be particularly valuable in synthesizing the literature for a particular focused surgical question. Since the year 2000, there are over 800 meta-analysis-related publications in our field. There are some limitations to this technique, including clinical, methodological and statistical heterogeneity, among other challenges. Despite these caveats, results of meta-analyses have been useful in forming treatment recommendations or in providing guidance in the design of future clinical trials. There is a growing number of meta-analyses in the field of cardiac surgery. Knowledge translation via meta-analyses will continue to guide and inform cardiac surgical practice and our practice guidelines.
Modern Perspectives on Numerical Modeling of Cardiac Pacemaker Cell
Maltsev, Victor A.; Yaniv, Yael; Maltsev, Anna V.; Stern, Michael D.; Lakatta, Edward G.
2015-01-01
Cardiac pacemaking is a complex phenomenon that is still not completely understood. Together with experimental studies, numerical modeling has been traditionally used to acquire mechanistic insights in this research area. This review summarizes the present state of numerical modeling of the cardiac pacemaker, including approaches to resolve present paradoxes and controversies. Specifically we discuss the requirement for realistic modeling to consider symmetrical importance of both intracellular and cell membrane processes (within a recent “coupled-clock” theory). Promising future developments of the complex pacemaker system models include the introduction of local calcium control, mitochondria function, and biochemical regulation of protein phosphorylation and cAMP production. Modern numerical and theoretical methods such as multi-parameter sensitivity analyses within extended populations of models and bifurcation analyses are also important for the definition of the most realistic parameters that describe a robust, yet simultaneously flexible operation of the coupled-clock pacemaker cell system. The systems approach to exploring cardiac pacemaker function will guide development of new therapies, such as biological pacemakers for treating insufficient cardiac pacemaker function that becomes especially prevalent with advancing age. PMID:24748434
[Genetics of congenital heart diseases].
Bonnet, Damien
2017-06-01
Developmental genetics of congenital heart diseases has evolved from analysis of serial slices in embryos towards molecular genetics of cardiac morphogenesis with a dynamic view of cardiac development. Genetics of congenital heart diseases has also changed from formal genetic analysis of familial recurrences or population-based analysis to screening for mutations in candidates genes identified in animal models. Close cooperation between molecular embryologists, pathologists involved in heart development and pediatric cardiologists is crucial for further increase of knowledge in the field of cardiac morphogenesis and genetics of cardiac defects. The genetic model for congenital heart disease has to be revised to favor a polygenic origin rather than a monogenic one. The main mechanism is altered genic dosage that can account for heart diseases in chromosomal anomalies as well as in point mutations in syndromic and isolated congenital heart diseases. The use of big data grouping information from cardiac development, interactions between genes and proteins, epigenetic factors such as chromatin remodeling or DNA methylation is the current source for improving our knowledge in the field and to give clues for future therapies. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Estimating cardiac fiber orientations in pig hearts using registered ultrasound and MR image volumes
NASA Astrophysics Data System (ADS)
Dormer, James D.; Meng, Yuguang; Zhang, Xiaodong; Jiang, Rong; Wagner, Mary B.; Fei, Baowei
2017-03-01
Heart fiber mechanics can be important predictors in current and future cardiac function. Accurate knowledge of these mechanics could enable cardiologists to provide a diagnosis before conditions progress. Magnetic resonance diffusion tensor imaging (MR-DTI) has been used to determine cardiac fiber orientations. Ultrasound is capable of providing anatomical information in real time, enabling a physician to quickly adjust parameters to optimize image scans. If known fiber orientations from a template heart measured using DTI can be accurately deformed onto a cardiac ultrasound volume, fiber orientations could be estimated for the patient without the need for a costly MR scan while still providing cardiologists valuable information about the heart mechanics. In this study, we apply the method to pig hearts, which are a close representation of human heart anatomy. Experiments from pig hearts show that the registration method achieved an average Dice similarity coefficient (DSC) of 0.819 +/- 0.050 between the ultrasound and deformed MR volumes and that the proposed ultrasound-based method is able to estimate the cardiac fiber orientation in pig hearts.
Larkin, Gregory Luke; Copes, Wayne S; Nathanson, Brian H; Kaye, William
2010-03-01
To evaluate key pre-arrest factors and their collective ability to predict post-cardiopulmonary arrest mortality. CPR is often initiated indiscriminately after in-hospital cardiopulmonary arrest. Improved understanding of pre-arrest factors associated with mortality may inform advance care planning. A cohort of 49,130 adults who experienced pulseless cardiopulmonary arrest from January 2000 to September 2004 was obtained from 366 US hospitals participating in the National Registry for Cardiopulmonary Resuscitation (NRCPR). Logistic regression with bootstrapping was used to model in-hospital mortality, which included those discharged in unfavorable and severely worsened neurologic state (Cerebral Performance Category >/=3). Overall in-hospital mortality was 84.1%. Advanced age, black race, non-cardiac, non-surgical illness category, pre-existing malignancy, acute stroke, trauma, septicemia, hepatic insufficiency, general floor or Emergency Department location, and pre-arrest use of vasopressors or assisted/mechanical ventilation were independently predictive of in-hospital mortality. Retained peri-arrest factors including cardiac monitoring, and shockable initial pulseless rhythms, were strongly associated with survival. The validation model's AUROC curve (0.77) revealed fair performance. Predictive pre-resuscitation factors may supplement patient-specific information available at bedside to assist in revising resuscitation plans during the patient's hospitalization. Copyright 2009. Published by Elsevier Ireland Ltd.
Fang, Jing; Ayala, Carma; Luncheon, Cecily; Ritchey, Matthew; Loustalot, Fleetwood
2017-08-25
Heart disease is the leading cause of death in the United States (1). Each year, approximately 790,000 adults have a myocardial infarction (heart attack), including 210,000 that are recurrent heart attacks (2). Cardiac rehabilitation (rehab) includes exercise counseling and training, education for heart-healthy living, and counseling to reduce stress. Cardiac rehab provides patients with education regarding the causes of heart attacks and tools to initiate positive behavior change, and extends patients' medical management after a heart attack to prevent future negative sequelae (3). A systematic review has shown that after a heart attack, patients using cardiac rehab were 53% (95% confidence interval [CI] = 41%-62%) less likely to die from any cause and 57% (95% CI = 21%-77%) less likely to experience cardiac-related mortality than were those who did not use cardiac rehab (3). However, even with long-standing national recommendations encouraging use of cardiac rehab (4), the intervention has been underutilized. An analysis of 2005 Behavioral Risk Factor Surveillance System (BRFSS) data found that only 34.7% of adults who reported a history of a heart attack also reported subsequent use of cardiac rehab (5). To update these estimates, CDC used the most recent BRFSS data from 2013 and 2015 to assess the use of cardiac rehab among adults following a heart attack. Overall use of cardiac rehab was 33.7% in 20 states and the District of Columbia (DC) in 2013 and 35.5% in four states in 2015. Cardiac rehab use was underutilized overall and differences were evident by sex, age, race/ethnicity, level of education, cardiovascular risk status, and by state. Increasing use of cardiac rehab after a heart attack should be encouraged by health systems and supported by the public health community.
Nakane, Takahiko; Nakamae, Hirohisa; Muro, Takashi; Yamagishi, Hiroyuki; Kobayashi, Yoshiki; Aimoto, Mizuki; Sakamoto, Erina; Terada, Yoshiki; Nakamae, Mika; Koh, Ki-Ryang; Yamane, Takahisa; Yoshiyama, Minoru; Hino, Masayuki
2009-09-01
Recent reports have shown that cardiomyopathy caused by hemochromatosis in severe aplastic anemia is reversible after reduced-intensity allogeneic stem-cell transplantation (RIST). We comprehensively evaluated cardiac and autonomic nerve function to determine whether cardiac dysfunction due to causes other than hemochromatosis is attenuated after RIST. In five patients with cardiac dysfunction before transplant, we analyzed the changes in cardiac and autonomic nerve function after transplant, using electrocardiography (ECG), echocardiography, radionuclide angiography (RNA), serum markers, and heart rate variability (HRV), before and up to 100 days after transplant. There was no significant improvement in cardiac function in any patient and no significant alteration in ECG, echocardiogram, RNA, or serum markers. However, on time-domain analysis of HRV, the SD of normal-to-normal RR intervals (SDNN) and the coefficient of variation of the RR interval (CVRR) decreased significantly 30 and 60 days after transplant (P = 0.04 and 0.01, respectively). Similarly, on frequency-domain analysis of HRV, low and high frequency power (LF and HF) significantly and temporarily decreased (P = 0.003 and 0.03, respectively). Notably, in one patient who had acute heart failure after transplantation, the values of SDNN, CVRR, r-MSSD, LF, and HF at 30 and 60 days after transplantation were the lowest of all the patients. In conclusion, this study suggests that (a) RIST is well-tolerated in patients with cardiac dysfunction, but we cannot expect improvement in cardiac dysfunction due to causes other than hemochromatosis; and (b) monitoring HRV may be useful in predicting cardiac events after RIST.
Allan, Catherine K; Thiagarajan, Ravi R; Beke, Dorothy; Imprescia, Annette; Kappus, Liana J; Garden, Alexander; Hayes, Gavin; Laussen, Peter C; Bacha, Emile; Weinstock, Peter H
2010-09-01
Resuscitation of pediatric cardiac patients involves unique and complex physiology, requiring multidisciplinary collaboration and teamwork. To optimize team performance, we created a multidisciplinary Crisis Resource Management training course that addressed both teamwork and technical skill needs for the pediatric cardiac intensive care unit. We sought to determine whether participation improved caregiver comfort and confidence levels regarding future resuscitation events. We developed a simulation-based, in situ Crisis Resource Management curriculum using pediatric cardiac intensive care unit scenarios and unit-specific resuscitation equipment, including an extracorporeal membrane oxygenation circuit. Participants replicated the composition of a clinical team. Extensive video-based debriefing followed each scenario, focusing on teamwork principles and technical resuscitation skills. Pre- and postparticipation questionnaires were used to determine the effects on participants' comfort and confidence regarding participation in future resuscitations. A total of 182 providers (127 nurses, 50 physicians, 2 respiratory therapists, 3 nurse practitioners) participated in the course. All participants scored the usefulness of the program and scenarios as 4 of 5 or higher (5 = most useful). There was significant improvement in participants' perceived ability to function as a code team member and confidence in a code (P < .001). Participants reported they were significantly more likely to raise concerns about inappropriate management to the code leader (P < .001). We developed a Crisis Resource Management training program in a pediatric cardiac intensive care unit to teach technical resuscitation skills and improve team function. Participants found the experience useful and reported improved ability to function in a code. Further work is needed to determine whether participation in the Crisis Resource Management program objectively improves team function during real resuscitations. 2010 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.
Humanitarian Cardiology and Cardiac Surgery in Sub-Saharan Africa: Can We Reshape the Model?
Tefera, Endale; Nega, Berhanu; Yadeta, Dejuma; Chanie, Yilkal
2016-11-01
In recent decades, humanitarian cardiology and cardiac surgery have shifted toward sending short-term surgical and catheter missions to treat patients. Although this model has been shown to be effective in bringing cardiovascular care to the patients' environment, its effectiveness in creating sustainable service is questioned. This study reports the barriers to contribution of missions to effective skill transfer and possible improvements needed in the future, from the perspective of both the local and overseas teams. We reviewed the mission-based activities in the Children's Heart Fund Cardiac Center in the past six years. We distributed questionnaires to the local surgeons and the lead surgeons of the overseas teams. Twenty-six missions visited the center 57 times. There were 371 operating days and 605 surgical procedures. Of the procedures performed, 498 were open-heart surgeries. Of the operations, 360 were congenital cases and 204 were rheumatic. Six local surgeons and 18 overseas surgeons responded. Both groups agree the current model of collaboration is not optimal for effective skill transfer. The local surgeons suggested deeper involvement of the universities, governmental institutions, defined training goals and time frame, and communication among the overseas teams themselves as remedies in the future. Majority of the overseas surgeons agree that networking and regular communication among the missions themselves are needed. Some reflected that it would be convenient if the local surgeons are trained by one or two frequently visiting surgeons in their early years and later exposed to multiple teams if needed. The current model of collaboration has brought cardiac care to patients having cardiac diseases. However, the model appears to be suboptimal for skill transfer. The model needs to be reshaped to achieve this complex goal. © The Author(s) 2016.
Indigenous cardiac patients' and relatives' experiences of hospitalisation: A narrative inquiry.
Mbuzi, Vainess; Fulbrook, Paul; Jessup, Melanie
2017-12-01
To explore Indigenous people's experiences of hospitalisation for acute cardiac care. Indigenous Australians suffer a higher burden of cardiovascular ill health and hospitalisation rates in comparison with other Australians, but there is little research that explores their perspectives of hospitalisation. Narrative inquiry. Interviews were undertaken using storytelling to facilitate participants' descriptions of their hospital experience. Data were collected during 2014-2015. A purposive sample of Indigenous cardiac patients that were admitted to hospital and their relatives participated. The narrative revealed three linked themes that characterised Indigenous people's hospitalisation experiences: The impact of the past; The reality of the present; and Anticipating the future. Hospitalisation was challenging for participants due to their sense of dislocation and disorientation, a lack of cultural and spiritual aspects to care practices, and the poor interpersonal relationships they experienced. Findings revealed that there were many unmet needs during hospitalisation for Indigenous people. Past experiences and future expectations were connected in a way that impacted on participants' current hospitalisation experience. Understanding this context, with incorporation of cultural and spiritual aspects of care may help nurses and other healthcare professionals to provide more positive interactions that in turn may contribute to improved cardiac care experiences of Indigenous people during hospitalisation. Healthcare professionals need to be aware and focused on person-specific and contextualised aspects of Indigenous people's experience of hospitalisation for cardiac care in order to impact outcomes. Healthcare professionals need to understand Indigenous people's perspectives that contribute to improved health outcomes. Stories of participants' experiences may assist in the identification of aspects which might further the development of culturally appropriate continuity models that could effectively provide support throughout Indigenous people's hospital journeys, and beyond the hospital, and help improve associated health outcomes. © 2017 John Wiley & Sons Ltd.
Cardiac rehabilitation: a comprehensive review
Lear, Scott A; Ignaszewski, Andrew
2001-01-01
Cardiac rehabilitation (CR) is a commonly used treatment for men and women with cardiovascular disease. To date, no single study has conclusively demonstrated a comprehensive benefit of CR. Numerous individual studies, however, have demonstrated beneficial effects such as improved risk-factor profile, slower disease progression, decreased morbidity, and decreased mortality. This paper will review the evidence for the use of CR and discuss the implications and limitations of these studies. The safety, relevance to special populations, challenges, and future directions of CR will also be reviewed. PMID:11806801
Functional importance of cardiac enhancer-associated noncoding RNAs in heart development and disease
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ounzain, Samir; Pezzuto, Iole; Micheletti, Rudi
We report here that the key information processing units within gene regulatory networks are enhancers. Enhancer activity is associated with the production of tissue-specific noncoding RNAs, yet the existence of such transcripts during cardiac development has not been established. Using an integrated genomic approach, we demonstrate that fetal cardiac enhancers generate long noncoding RNAs (lncRNAs) during cardiac differentiation and morphogenesis. Enhancer expression correlates with the emergence of active enhancer chromatin states, the initiation of RNA polymerase II at enhancer loci and expression of target genes. Orthologous human sequences are also transcribed in fetal human hearts and cardiac progenitor cells. Throughmore » a systematic bioinformatic analysis, we identified and characterized, for the first time, a catalog of lncRNAs that are expressed during embryonic stem cell differentiation into cardiomyocytes and associated with active cardiac enhancer sequences. RNA-sequencing demonstrates that many of these transcripts are polyadenylated, multi-exonic long noncoding RNAs. Moreover, knockdown of two enhancer-associated lncRNAs resulted in the specific downregulation of their predicted target genes. Interestingly, the reactivation of the fetal gene program, a hallmark of the stress response in the adult heart, is accompanied by increased expression of fetal cardiac enhancer transcripts. Altogether, these findings demonstrate that the activity of cardiac enhancers and expression of their target genes are associated with the production of enhancer-derived lncRNAs.« less
Functional importance of cardiac enhancer-associated noncoding RNAs in heart development and disease
Ounzain, Samir; Pezzuto, Iole; Micheletti, Rudi; ...
2014-08-19
We report here that the key information processing units within gene regulatory networks are enhancers. Enhancer activity is associated with the production of tissue-specific noncoding RNAs, yet the existence of such transcripts during cardiac development has not been established. Using an integrated genomic approach, we demonstrate that fetal cardiac enhancers generate long noncoding RNAs (lncRNAs) during cardiac differentiation and morphogenesis. Enhancer expression correlates with the emergence of active enhancer chromatin states, the initiation of RNA polymerase II at enhancer loci and expression of target genes. Orthologous human sequences are also transcribed in fetal human hearts and cardiac progenitor cells. Throughmore » a systematic bioinformatic analysis, we identified and characterized, for the first time, a catalog of lncRNAs that are expressed during embryonic stem cell differentiation into cardiomyocytes and associated with active cardiac enhancer sequences. RNA-sequencing demonstrates that many of these transcripts are polyadenylated, multi-exonic long noncoding RNAs. Moreover, knockdown of two enhancer-associated lncRNAs resulted in the specific downregulation of their predicted target genes. Interestingly, the reactivation of the fetal gene program, a hallmark of the stress response in the adult heart, is accompanied by increased expression of fetal cardiac enhancer transcripts. Altogether, these findings demonstrate that the activity of cardiac enhancers and expression of their target genes are associated with the production of enhancer-derived lncRNAs.« less
Verweij, E J; Hogenbirk, Karin; Roest, Arno A W; van Brempt, Ronald; Hazekamp, Mark G; de Jonge, Evert
2012-10-01
Low cardiac output syndrome is common after paediatric cardiac surgery. Previous studies suggested that hydrocortisone administration may improve haemodynamic stability in case of resistant low cardiac output syndrome in critically ill children. This study was set up to test the hypothesis that the effects of hydrocortisone on haemodynamics in children with low cardiac output syndrome depend on the presence of (relative) adrenal insufficiency. A retrospective study was done on paediatric patients who received hydrocortisone when diagnosed with resistant low cardiac output syndrome after paediatric cardiac surgery in the period from 1 November 2005 to 31 December 2008. We studied the difference in effects of treatment with hydrocortisone administration between patients with adrenal insufficiency defined as an exploratory cut-off value of total cortisol of <100 nmol/l and patients with a serum total cortisol of ≥ 100 nmol/l. A total of 62 of patients were enrolled, meeting the inclusion criteria for low cardiac output syndrome. Thirty-two patients were assigned to Group 1 (<100 nmol/l) and 30 were assigned to Group 2 (≥ 100 nmol/l). Haemodynamics improved after hydrocortisone administration, with an increase in blood pressure, a decrease in administered vasopressors and inotropic drugs, an increase in urine production and a decrease in plasma lactate concentrations. The effects of treatment with hydrocortisone in children with low cardiac output after cardiac surgery was similar in patients with a low baseline serum cortisol concentration and those with normal baseline cortisol levels. A cortisol value using an exploratory cut-off value of 100 nmol/l for adrenal insufficiency should not be used as a criterion to treat these patients with hydrocortisone.
Ducharme-Crevier, Laurence; Press, Craig A; Kurz, Jonathan E; Mills, Michele G; Goldstein, Joshua L; Wainwright, Mark S
2017-05-01
The role of sleep architecture as a biomarker for prognostication after resuscitation from cardiac arrest in children hospitalized in an ICU remains poorly defined. We sought to investigate the association between features of normal sleep architecture in children after cardiac arrest and a favorable neurologic outcome at 6 months. Retrospective review of medical records and continuous electroencephalography monitoring. Cardiac and PICU of a tertiary children's hospital. All patients from 6 months to 18 years old resuscitated from cardiac arrest who underwent continuous electroencephalography monitoring in the first 24 hours after in- or out-of-hospital cardiac arrest from January 2010 to June 2015. None. Thirty-four patients underwent continuous electroencephalography monitoring after cardiac arrest. The median age was 6.1 years (interquartile range, 1.5-12.5 yr), 20 patients were male (59%). Most cases (n = 23, 68%) suffered from in-hospital cardiac arrest. Electroencephalography monitoring was initiated a median of 9.3 hours (5.8-14.9 hr) after return of spontaneous circulation, for a median duration of 14.3 hours (6.0-16.0 hr) within the first 24-hour period after the cardiac arrest. Five patients had normal spindles, five had abnormal spindles, and 24 patients did not have any sleep architecture. The presence of spindles was associated with a favorable neurologic outcome at 6-month postcardiac arrest (p = 0.001). Continuous electroencephalography monitoring can be used in children to assess spindles in the ICU. The presence of spindles on continuous electroencephalography monitoring in the first 24 hours after resuscitation from cardiac arrest is associated with a favorable neurologic outcome. Assessment of sleep architecture on continuous electroencephalography after cardiac arrest could improve outcome prediction.
Cardiac data mining (CDM); organization and predictive analytics on biomedical (cardiac) data
NASA Astrophysics Data System (ADS)
Bilal, M. Musa; Hussain, Masood; Basharat, Iqra; Fatima, Mamuna
2013-10-01
Data mining and data analytics has been of immense importance to many different fields as we witness the evolution of data sciences over recent years. Biostatistics and Medical Informatics has proved to be the foundation of many modern biological theories and analysis techniques. These are the fields which applies data mining practices along with statistical models to discover hidden trends from data that comprises of biological experiments or procedures on different entities. The objective of this research study is to develop a system for the efficient extraction, transformation and loading of such data from cardiologic procedure reports given by Armed Forces Institute of Cardiology. It also aims to devise a model for the predictive analysis and classification of this data to some important classes as required by cardiologists all around the world. This includes predicting patient impressions and other important features.
Andreev, Victor P; Head, Trajen; Johnson, Neil; Deo, Sapna K; Daunert, Sylvia; Goldschmidt-Clermont, Pascal J
2013-01-01
Sudden Cardiac Death (SCD) is responsible for at least 180,000 deaths a year and incurs an average cost of $286 billion annually in the United States alone. Herein, we present a novel discrete event simulation model of SCD, which quantifies the chains of events associated with the formation, growth, and rupture of atheroma plaques, and the subsequent formation of clots, thrombosis and on-set of arrhythmias within a population. The predictions generated by the model are in good agreement both with results obtained from pathological examinations on the frequencies of three major types of atheroma, and with epidemiological data on the prevalence and risk of SCD. These model predictions allow for identification of interventions and importantly for the optimal time of intervention leading to high potential impact on SCD risk reduction (up to 8-fold reduction in the number of SCDs in the population) as well as the increase in life expectancy.
Ripley, Beth; Kelil, Tatiana; Cheezum, Michael K; Goncalves, Alexandra; Di Carli, Marcelo F; Rybicki, Frank J; Steigner, Mike; Mitsouras, Dimitrios; Blankstein, Ron
2016-01-01
3D printing is a promising technique that may have applications in medicine, and there is expanding interest in the use of patient-specific 3D models to guide surgical interventions. To determine the feasibility of using cardiac CT to print individual models of the aortic root complex for transcatheter aortic valve replacement (TAVR) planning as well as to determine the ability to predict paravalvular aortic regurgitation (PAR). This retrospective study included 16 patients (9 with PAR identified on blinded interpretation of post-procedure trans-thoracic echocardiography and 7 age, sex, and valve size-matched controls with no PAR). 3D printed models of the aortic root were created from pre-TAVR cardiac computed tomography data. These models were fitted with printed valves and predictions regarding post-implant PAR were made using a light transmission test. Aortic root 3D models were highly accurate, with excellent agreement between annulus measurements made on 3D models and those made on corresponding 2D data (mean difference of -0.34 mm, 95% limits of agreement: ± 1.3 mm). The 3D printed valve models were within 0.1 mm of their designed dimensions. Examination of the fit of valves within patient-specific aortic root models correctly predicted PAR in 6 of 9 patients (6 true positive, 3 false negative) and absence of PAR in 5 of 7 patients (5 true negative, 2 false positive). Pre-TAVR 3D-printing based on cardiac CT provides a unique patient-specific method to assess the physical interplay of the aortic root and implanted valves. With additional optimization, 3D models may complement traditional techniques used for predicting which patients are more likely to develop PAR. Copyright © 2016 Society of Cardiovascular Computed Tomography. Published by Elsevier Inc. All rights reserved.
Xiao-ting, Wang; Hua, Zhao; Da-wei, Liu; Hong-min, Zhang; Huai-wu, He; Yun, Long; Wen-zhao, Chai
2015-10-01
The objective is to explore the value of end-tidal carbon dioxide (ETCO2) in replacing cardiac index for evaluating fluid responsiveness during the passive leg raising (PLR) test and mini-fluid challenge (mini-FC). Patients experiencing septic shock and who were on mechanical ventilation in an intensive care unit were divided into responder and nonresponder groups according to whether their cardiac index increased by more than 10% after the FC. Before and after those tests, the changes in ETCO2, central venous pressure, heart rate, mean arterial pressure, pulse pressure, and cardiac output were recorded. Of the 48 patients in the study, 34 had fluid responsiveness according to the changes in cardiac output or stroke volume. The ΔCI and ΔETCO2 in the responder group were larger than the changes in the nonresponder group during the PLR test (1.1 ± 0.7 vs 0.2 ± 0.4 L/min per square meter, 3.0 ± 3.0 vs 0.5 ± 2.5 mm Hg; P < .05) but not during mini-FC. ΔETCO2 greater than or equal to 5% during the PLR test predicted fluid responsiveness with 93.4% specificity and 75.8% sensitivity in a receiver operating characteristic curve. The area under the curve was 0.849 (95% confidence interval, 0.739-0.930). ΔETCO2 greater than or equal to 3% during the mini-FC predicted fluid responsiveness with 93.4% specificity and 33.3% sensitivity in a receiver operating characteristic curve, and the area under the curve was 0.781 (95% confidence interval, 0.646-0.915). The changes in ETCO2 may predict fluid responsiveness during the PLR test in patients with septic shock, but similar results were not found with the mini-FC. Copyright © 2015 Elsevier Inc. All rights reserved.
Impact of Medicaid Expansion on Cardiac Surgery Volume and Outcomes.
Charles, Eric J; Johnston, Lily E; Herbert, Morley A; Mehaffey, J Hunter; Yount, Kenan W; Likosky, Donald S; Theurer, Patricia F; Fonner, Clifford E; Rich, Jeffrey B; Speir, Alan M; Ailawadi, Gorav; Prager, Richard L; Kron, Irving L
2017-10-01
Thirty-one states approved Medicaid expansion after implementation of the Affordable Care Act. The objective of this study was to evaluate the effect of Medicaid expansion on cardiac surgery volume and outcomes comparing one state that expanded to one that did not. Data from the Virginia (nonexpansion state) Cardiac Services Quality Initiative and the Michigan (expanded Medicaid, April 2014) Society of Thoracic and Cardiovascular Surgeons Quality Collaborative were analyzed to identify uninsured and Medicaid patients undergoing coronary bypass graft or valve operations, or both. Demographics, operative details, predicted risk scores, and morbidity and mortality rates, stratified by state and compared across era (preexpansion: 18 months before vs postexpansion: 18 months after), were analyzed. In Virginia, there were no differences in volume between eras, whereas in Michigan, there was a significant increase in Medicaid volume (54.4% [558 of 1,026] vs 84.1% [954 of 1,135], p < 0.001) and a corresponding decrease in uninsured volume. In Virginia Medicaid patients, there were no differences in predicted risk of morbidity or mortality or postoperative major morbidities. In Michigan Medicaid patients, a significant decrease in predicted risk of morbidity or mortality (11.9% [8.1% to 20.0%] vs 11.1% [7.7% to 17.9%], p = 0.02) and morbidities (18.3% [102 of 558] vs 13.2% [126 of 954], p = 0.008) was identified. Postexpansion was associated with a decreased risk-adjusted rate of major morbidity (odds ratio, 0.69; 95% confidence interval, 0.51 to 0.91; p = 0.01) in Michigan Medicaid patients. Medicaid expansion was associated with fewer uninsured cardiac surgery patients and improved predicted risk scores and morbidity rates. In addition to improving health care financing, Medicaid expansion may positively affect patient care and outcomes. Copyright © 2017 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.
Lanspa, Michael J; Brown, Samuel M; Hirshberg, Eliotte L; Jones, Jason P; Grissom, Colin K
2012-12-01
Volume expansion is a common therapeutic intervention in septic shock, although patient response to the intervention is difficult to predict. Central venous pressure (CVP) and shock index have been used independently to guide volume expansion, although their use is questionable. We hypothesize that a combination of these measurements will be useful. In a prospective, observational study, patients with early septic shock received 10-mL/kg volume expansion at their treating physician's discretion after brief initial resuscitation in the emergency department. Central venous pressure and shock index were measured before volume expansion interventions. Cardiac index was measured immediately before and after the volume expansion using transthoracic echocardiography. Hemodynamic response was defined as an increase in a cardiac index of 15% or greater. Thirty-four volume expansions were observed in 25 patients. A CVP of 8 mm Hg or greater and a shock index of 1 beat min(-1) mm Hg(-1) or less individually had a good negative predictive value (83% and 88%, respectively). Of 34 volume expansions, the combination of both a high CVP and a low shock index was extremely unlikely to elicit hemodynamic response (negative predictive value, 93%; P = .02). Volume expansion in patients with early septic shock with a CVP of 8 mm Hg or greater and a shock index of 1 beat min(-1) mm Hg(-1) or less is unlikely to lead to an increase in cardiac index. Copyright © 2012 Elsevier Inc. All rights reserved.
Development of a positive psychology intervention for patients with acute cardiovascular disease
Huffman, Jeff C.; Mastromauro, Carol A.; Boehm, Julia K.; Seabrook, Rita; Fricchione, Gregory L.; Denninger, John W.; Lyubomirsky, Sonja
2011-01-01
The management of depression and other negative psychological states in cardiac patients has been a focus of multiple treatment trials, though such trials have not led to substantial improvements in cardiac outcomes. In contrast, there has been minimal focus on interventions to increase positive psychological states in cardiac patients, despite the fact that optimism and other positive states have been associated with superior cardiovascular outcomes. Our objective was to develop an 8-week, phone-based positive psychology intervention for patients hospitalized with acute cardiac disease (acute coronary syndrome or decompensated heart failure). Such an intervention would consist of positive psychology exercises adapted for this specific population, and it would need to be feasible for practitioners and patients in real-world settings. By adapting exercises that were previously validated in healthy individuals, we were able to generate a positive psychology telemedicine intervention for cardiac patients that focused on optimism, kindness, and gratitude. In addition, we successfully created a companion treatment manual for subjects to enhance the educational aspects of the intervention and facilitate completion of exercises. Finally, we successfully performed a small pilot trial of this intervention, and found that the positive psychology intervention appeared to be feasible and well-accepted in a cohort of patients with acute cardiac illness. Future studies should further develop this promising intervention and examine its impact on psychological and medical outcomes in this vulnerable population of cardiac patients. PMID:23825741
Development of a positive psychology intervention for patients with acute cardiovascular disease.
Huffman, Jeff C; Mastromauro, Carol A; Boehm, Julia K; Seabrook, Rita; Fricchione, Gregory L; Denninger, John W; Lyubomirsky, Sonja
2011-09-29
The management of depression and other negative psychological states in cardiac patients has been a focus of multiple treatment trials, though such trials have not led to substantial improvements in cardiac outcomes. In contrast, there has been minimal focus on interventions to increase positive psychological states in cardiac patients, despite the fact that optimism and other positive states have been associated with superior cardiovascular outcomes. Our objective was to develop an 8-week, phone-based positive psychology intervention for patients hospitalized with acute cardiac disease (acute coronary syndrome or decompensated heart failure). Such an intervention would consist of positive psychology exercises adapted for this specific population, and it would need to be feasible for practitioners and patients in real-world settings. By adapting exercises that were previously validated in healthy individuals, we were able to generate a positive psychology telemedicine intervention for cardiac patients that focused on optimism, kindness, and gratitude. In addition, we successfully created a companion treatment manual for subjects to enhance the educational aspects of the intervention and facilitate completion of exercises. Finally, we successfully performed a small pilot trial of this intervention, and found that the positive psychology intervention appeared to be feasible and well-accepted in a cohort of patients with acute cardiac illness. Future studies should further develop this promising intervention and examine its impact on psychological and medical outcomes in this vulnerable population of cardiac patients.
Younes, Mohamed; Robert, Céline; Cottin, François; Barrey, Eric
2015-01-01
Nearly 50% of the horses participating in endurance events are eliminated at a veterinary examination (a vet gate). Detecting unfit horses before a health problem occurs and treatment is required is a challenge for veterinarians but is essential for improving equine welfare. We hypothesized that it would be possible to detect unfit horses earlier in the event by measuring heart rate recovery variables. Hence, the objective of the present study was to compute logistic regressions of heart rate, cardiac recovery time and average speed data recorded at the previous vet gate (n-1) and thus predict the probability of elimination during successive phases (n and following) in endurance events. Speed and heart rate data were extracted from an electronic database of endurance events (80–160 km in length) organized in four countries. Overall, 39% of the horses that started an event were eliminated—mostly due to lameness (64%) or metabolic disorders (15%). For each vet gate, logistic regressions of explanatory variables (average speed, cardiac recovery time and heart rate measured at the previous vet gate) and categorical variables (age and/or event distance) were computed to estimate the probability of elimination. The predictive logistic regressions for vet gates 2 to 5 correctly classified between 62% and 86% of the eliminated horses. The robustness of these results was confirmed by high areas under the receiving operating characteristic curves (0.68–0.84). Overall, a horse has a 70% chance of being eliminated at the next gate if its cardiac recovery time is longer than 11 min at vet gate 1 or 2, or longer than 13 min at vet gates 3 or 4. Heart rate recovery and average speed variables measured at the previous vet gate(s) enabled us to predict elimination at the following vet gate. These variables should be checked at each veterinary examination, in order to detect unfit horses as early as possible. Our predictive method may help to improve equine welfare and ethical considerations in endurance events. PMID:26322506
Younes, Mohamed; Robert, Céline; Cottin, François; Barrey, Eric
2015-01-01
Nearly 50% of the horses participating in endurance events are eliminated at a veterinary examination (a vet gate). Detecting unfit horses before a health problem occurs and treatment is required is a challenge for veterinarians but is essential for improving equine welfare. We hypothesized that it would be possible to detect unfit horses earlier in the event by measuring heart rate recovery variables. Hence, the objective of the present study was to compute logistic regressions of heart rate, cardiac recovery time and average speed data recorded at the previous vet gate (n-1) and thus predict the probability of elimination during successive phases (n and following) in endurance events. Speed and heart rate data were extracted from an electronic database of endurance events (80-160 km in length) organized in four countries. Overall, 39% of the horses that started an event were eliminated--mostly due to lameness (64%) or metabolic disorders (15%). For each vet gate, logistic regressions of explanatory variables (average speed, cardiac recovery time and heart rate measured at the previous vet gate) and categorical variables (age and/or event distance) were computed to estimate the probability of elimination. The predictive logistic regressions for vet gates 2 to 5 correctly classified between 62% and 86% of the eliminated horses. The robustness of these results was confirmed by high areas under the receiving operating characteristic curves (0.68-0.84). Overall, a horse has a 70% chance of being eliminated at the next gate if its cardiac recovery time is longer than 11 min at vet gate 1 or 2, or longer than 13 min at vet gates 3 or 4. Heart rate recovery and average speed variables measured at the previous vet gate(s) enabled us to predict elimination at the following vet gate. These variables should be checked at each veterinary examination, in order to detect unfit horses as early as possible. Our predictive method may help to improve equine welfare and ethical considerations in endurance events.
The fractal heart — embracing mathematics in the cardiology clinic
Captur, Gabriella; Karperien, Audrey L.; Hughes, Alun D.; Francis, Darrel P.; Moon, James C.
2017-01-01
For clinicians grappling with quantifying the complex spatial and temporal patterns of cardiac structure and function (such as myocardial trabeculae, coronary microvascular anatomy, tissue perfusion, myocyte histology, electrical conduction, heart rate, and blood-pressure variability), fractal analysis is a powerful, but still underused, mathematical tool. In this Perspectives article, we explain some fundamental principles of fractal geometry and place it in a familiar medical setting. We summarize studies in the cardiovascular sciences in which fractal methods have successfully been used to investigate disease mechanisms, and suggest potential future clinical roles in cardiac imaging and time series measurements. We believe that clinical researchers can deploy innovative fractal solutions to common cardiac problems that might ultimately translate into advancements for patient care. PMID:27708281
High Serum sTREM-1 Correlates With Myocardial Dysfunction and Predicts Prognosis in Septic Patients.
Li, Zhenyu; Zhang, Enyuan; Hu, Yipeng; Liu, Yi; Chen, Bing
2016-06-01
This study aimed to evaluate the predictive and prognostic value of soluble triggering receptor expressed on myeloid cells-1 (sTREM-1) in patients with myocardial dysfunction induced by severe sepsis and septic shock. A total of 84 patients with severe sepsis and septic shock were enrolled between May 2013 and December 2014.The patients were monitored by pulse indicator continuous cardiac output system and divided into myocardial depression group (cardiac function index [CFI] < 4.1/minute, n = 37) and nonmyocardial depression group (CFI ≥ 4.1/minute, n = 47 ). Additionally, the patients were divided into survival group (n = 40) and nonsurvival group (n = 44) based on 28-day mortality. Hemodynamic parameters and serum sTREM-1, B-type natriuretic peptide (BNP) and cardiac troponin I (cTnI) levels were collected on days 1, 3 and 5 after admission to intensive care unit. (1) The serum values of sTREM-1, BNP and cTnI in myocardial depression group were higher than those in nonmyocardial depression group (P < 0.01); and CFI, cardiac index, stroke volume, global ejection fraction and left ventricular contractility index (dpmax) in myocardial depression group were lower than those in nonmyocardial depression group on day 1 (P < 0.05); (2) serum sTREM-1 negatively correlated with left ventricular ejection fraction, CFI, cardiac index, global ejection fraction and dpmax, and it positively correlated with BNP and cTnI (P < 0.01); (3) the area under the receiver operating characteristics curve for sTREM-1 in the prediction of myocardial depression was 0.671 with a sensitivity of 83.8% and a specificity of 46.8% when cutoff point was 174.5ng/mL, the power of predicting septic depression for sTREM-1 was lower than that of BNP; logistic regression analysis showed that serum sTREM-1 was not an independent predictor of septic myocardial depression; the area under the receiver operating characteristics curve was 0.773 for sTREM-1 in predicting outcome with a sensitivity of 86.4% and a specificity of 80% when cutoff point was 182.3ng/mL, the power of predicting prognosis for sTREM-1 was superior to those of BNP and cTnI; (4) there was a decrease trend for sTREM-1 levels and an increasing trend for CFI in the survival group (P < 0.05). Myocardial dysfunction is common in patients with severe sepsis and septic shock and high serum levels of sTREM-1 correlates with myocardial dysfunction to some extent but is not an independent predictor, which more importantly showed prognostic value for septic shock outcome. Copyright © 2016 Southern Society for Clinical Investigation. Published by Elsevier Inc. All rights reserved.
Tazawa, Yasushi; Mori, Nobuyoshi; Ogawa, Yoshiko; Ito, Osamu; Kohzuki, Masahiro
2016-06-01
Arterial stiffness is widely used in assessing arteriosclerosis in the background of increased cardiovascular events. Arteriosclerosis also causes reduction in exercise capacity, which is a most important prognostic factor in patients with cardiovascular disease; however, data on the association between arterial stiffness and exercise capacity are limited. Therefore, a simple and noninvasive measurement of arterial stiffness that reflects the central circulation and exercise capacity is needed. The arterial velocity pulse index (AVI) is a parameter of arterial stiffness measurable with the cuff oscillometric method; however, the clinical utility of this method is unclear. We aimed to evaluate the trend of AVI in patients with coronary artery disease (CAD), and the association between AVI and exercise capacity. A cross-sectional study of 116 patients with cardiac disease (34 CAD and 82 non-CAD patients) was performed. Non-CAD patients were those with any cardiac diseases who did not have proven CAD. The results showed that the AVI was significantly higher in CAD patients than non-CAD patients (P < 0.05, analysis of covariance). The AVI was inversely correlated with peakVO2 (r = -0.239, P < 0.05) and was a significant explanatory variable for peakVO2 in stepwise regression analysis (β = -14.62, t = -2.5, P < 0.05). These results indicate that the AVI is strongly associated with CAD and predictive of the exercise capacity in patients with cardiac diseases. We, therefore, propose that the cuff oscillometric method is clinically useful in evaluating arterial stiffness in patients with cardiac diseases, especially CAD.
Ai, Amy L; Hall, Daniel; Pargament, Kenneth; Tice, Terrence N
2013-04-01
Despite the growing knowledge of posttraumatic growth, only a few studies have examined personal growth in the context of cardiac health. Similarly, longitudinal research is lacking on the implications of religion/spirituality for patients with advanced cardiac diseases. This paper aims to explore the effect of preoperative religious coping on long-term postoperative personal growth and potential mediation in this effect. Analyses capitalized on a preoperative survey and medical indices from the Society of Thoracic Surgeons' National Database of patients undergoing cardiac surgery. Participants in the current follow-up study completed a mailed survey 30 months after surgery. Hierarchical regression analysis was performed to evaluate the extent to which preoperative use of religious coping predicted growth at follow-up, after controlling for key demographics, medical indices, mental health, and protective factors. Predictors of posttraumatic growth at follow-up were positive religious coping and a living status without a partner. Medical indices, optimistic expectations, social support, and other religious factors were unrelated to posttraumatic growth. Including religious factors diminished effects of gender, age, and race. Including perceived spiritual support completely eliminated the role of positive religious coping, indicating mediation. Preoperative positive religious coping may have a long-term effect on postoperative personal growth, explainable by higher spiritual connections as a part of significance-making. These results suggest that spirituality may play a favorable role in cardiac patients' posttraumatic growth after surviving a life-altering operation. The elimination of demographic effects may help explain previously mixed findings concerning the association between these factors and personal growth.
Khosrow-Khavar, Farzad; Tavakolian, Kouhyar; Blaber, Andrew; Menon, Carlo
2016-10-12
The purpose of this research was to design a delineation algorithm that could detect specific fiducial points of the seismocardiogram (SCG) signal with or without using the electrocardiogram (ECG) R-wave as the reference point. The detected fiducial points were used to estimate cardiac time intervals. Due to complexity and sensitivity of the SCG signal, the algorithm was designed to robustly discard the low-quality cardiac cycles, which are the ones that contain unrecognizable fiducial points. The algorithm was trained on a dataset containing 48,318 manually annotated cardiac cycles. It was then applied to three test datasets: 65 young healthy individuals (dataset 1), 15 individuals above 44 years old (dataset 2), and 25 patients with previous heart conditions (dataset 3). The algorithm accomplished high prediction accuracy with the rootmean- square-error of less than 5 ms for all the test datasets. The algorithm overall mean detection rate per individual recordings (DRI) were 74, 68, and 42 percent for the three test datasets when concurrent ECG and SCG were used. For the standalone SCG case, the mean DRI was 32, 14 and 21 percent. When the proposed algorithm applied to concurrent ECG and SCG signals, the desired fiducial points of the SCG signal were successfully estimated with a high detection rate. For the standalone case, however, the algorithm achieved high prediction accuracy and detection rate for only the young individual dataset. The presented algorithm could be used for accurate and non-invasive estimation of cardiac time intervals.
Moldable elastomeric polyester-carbon nanotube scaffolds for cardiac tissue engineering.
Ahadian, Samad; Davenport Huyer, Locke; Estili, Mehdi; Yee, Bess; Smith, Nathaniel; Xu, Zhensong; Sun, Yu; Radisic, Milica
2017-04-01
Polymer biomaterials are used to construct scaffolds in tissue engineering applications to assist in mechanical support, organization, and maturation of tissues. Given the flexibility, electrical conductance, and contractility of native cardiac tissues, it is desirable that polymeric scaffolds for cardiac tissue regeneration exhibit elasticity and high electrical conductivity. Herein, we developed a facile approach to introduce carbon nanotubes (CNTs) into poly(octamethylene maleate (anhydride) 1,2,4-butanetricarboxylate) (124 polymer), and developed an elastomeric scaffold for cardiac tissue engineering that provides electrical conductivity and structural integrity to 124 polymer. 124 polymer-CNT materials were developed by first dispersing CNTs in poly(ethylene glycol) dimethyl ether porogen and mixing with 124 prepolymer for molding into shapes and crosslinking under ultraviolet light. 124 polymers with 0.5% and 0.1% CNT content (wt) exhibited improved conductivity against pristine 124 polymer. With increasing the CNT content, surface moduli of hybrid polymers were increased, while their bulk moduli were decreased. Furthermore, increased swelling of hybrid 124 polymer-CNT materials was observed, suggesting their improved structural support in an aqueous environment. Finally, functional characterization of engineered cardiac tissues using the 124 polymer-CNT scaffolds demonstrated improved excitation threshold in materials with 0.5% CNT content (3.6±0.8V/cm) compared to materials with 0% (5.1±0.8V/cm) and 0.1% (5.0±0.7V/cm), suggesting greater tissue maturity. 124 polymer-CNT materials build on the advantages of 124 polymer elastomer to give a versatile biomaterial for cardiac tissue engineering applications. Achieving a high elasticity and a high conductivity in a single cardiac tissue engineering material remains a challenge. We report the use of CNTs in making electrically conductive and mechanically strong polymeric scaffolds in cardiac tissue regeneration. CNTs were incorporated in elastomeric polymers in a facile and reproducible approach. Polymer-CNT materials were able to construct complicated scaffold structures by injecting the prepolymer into a mold and crosslinking the prepolymer under ultraviolet light. CNTs enhanced electrical conductivity and structural support of elastomeric polymers. Hybrid polymeric scaffolds containing 0.5wt% CNTs increased the maturation of cardiac tissues fabricated on them compared to pure polymeric scaffolds. The cardiac tissues on hybrid polymer-CNT scaffolds showed earlier beating than those on pure polymer scaffolds. In the future, fabricated polymer-CNT scaffolds could also be used to fabricate other electro-active tissues, such neural and skeletal muscle tissues. In the future, fabricated polymer-CNT scaffolds could also be used to fabricate other electro-active tissues, such as neural and skeletal muscle tissues. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Does Parsonnet scoring model predict mortality following adult cardiac surgery in India?
Srilata, Moningi; Padhy, Narmada; Padmaja, Durga; Gopinath, Ramachandran
2015-01-01
To validate the Parsonnet scoring model to predict mortality following adult cardiac surgery in Indian scenario. A total of 889 consecutive patients undergoing adult cardiac surgery between January 2010 and April 2011 were included in the study. The Parsonnet score was determined for each patient and its predictive ability for in-hospital mortality was evaluated. The validation of Parsonnet score was performed for the total data and separately for the sub-groups coronary artery bypass grafting (CABG), valve surgery and combined procedures (CABG with valve surgery). The model calibration was performed using Hosmer-Lemeshow goodness of fit test and receiver operating characteristics (ROC) analysis for discrimination. Independent predictors of mortality were assessed from the variables used in the Parsonnet score by multivariate regression analysis. The overall mortality was 6.3% (56 patients), 7.1% (34 patients) for CABG, 4.3% (16 patients) for valve surgery and 16.2% (6 patients) for combined procedures. The Hosmer-Lemeshow statistic was <0.05 for the total data and also within the sub-groups suggesting that the predicted outcome using Parsonnet score did not match the observed outcome. The area under the ROC curve for the total data was 0.699 (95% confidence interval 0.62-0.77) and when tested separately, it was 0.73 (0.64-0.81) for CABG, 0.79 (0.63-0.92) for valve surgery (good discriminatory ability) and only 0.55 (0.26-0.83) for combined procedures. The independent predictors of mortality determined for the total data were low ejection fraction (odds ratio [OR] - 1.7), preoperative intra-aortic balloon pump (OR - 10.7), combined procedures (OR - 5.1), dialysis dependency (OR - 23.4), and re-operation (OR - 9.4). The Parsonnet score yielded a good predictive value for valve surgeries, moderate predictive value for the total data and for CABG and poor predictive value for combined procedures.
Casillas, Jean-Marie; Joussain, Charles; Gremeaux, Vincent; Hannequin, Armelle; Rapin, Amandine; Laurent, Yves; Benaïm, Charles
2015-02-01
To develop a new predictive model of maximal heart rate based on two walking tests at different speeds (comfortable and brisk walking) as an alternative to a cardiopulmonary exercise test during cardiac rehabilitation. Evaluation of a clinical assessment tool. A Cardiac Rehabilitation Department in France. A total of 148 patients (133 men), mean age of 59 ±9 years, at the end of an outpatient cardiac rehabilitation programme. Patients successively performed a 6-minute walk test, a 200 m fast-walk test (200mFWT), and a cardiopulmonary exercise test, with measure of heart rate at the end of each test. An all-possible regression procedure was used to determine the best predictive regression models of maximal heart rate. The best model was compared with the Fox equation in term of predictive error of maximal heart rate using the paired t-test. Results of the two walking tests correlated significantly with maximal heart rate determined during the cardiopulmonary exercise test, whereas anthropometric parameters and resting heart rate did not. The simplified predictive model with the most acceptable mean error was: maximal heart rate = 130 - 0.6 × age + 0.3 × HR200mFWT (R(2) = 0.24). This model was superior to the Fox formula (R(2) = 0.138). The relationship between training target heart rate calculated from measured reserve heart rate and that established using this predictive model was statistically significant (r = 0.528, p < 10(-6)). A formula combining heart rate measured during a safe simple fast walk test and age is more efficient than an equation only including age to predict maximal heart rate and training target heart rate. © The Author(s) 2014.
Buckley, Belinda; Farnworth, Mark J; Whalley, Gillian
2016-01-08
Regional disparity in both utilisation and the cardiac sonographer workforce has previously been identified. We sought to model the capacity of the cardiac sonographer workforce at a national and District Health Board level to better understand these regional differences. In 2013, surveys were distributed to 18 hospitals who employ cardiac sonographers (return rate 100%). Questions related to cardiac sonographer demographics, echo utilisation and workflow. Actual clinical capacity was calculated from scan duration and annual scan volumes. New Zealand national actual capacity was compared to predicted capacity from three international models. Potential clinical capacity was calculated from the workforce size in fulltime equivalent (FTE) and clinical availability. In New Zealand, scan duration and population-based clinical capacity varies between centres. The New Zealand capacity is similar to the UK 30:70 model, and consistently less than the US model for all scan types. There are marked regional differences in potential versus actual capacity, with 10/16 DHBs demonstrating excess potential capacity. There is regional disparity in the capacity of the cardiac sonographer workforce, which appears to be strongly related to scan duration. Workforce capacity modelling should be used with need and demand modelling to plan adequate levels of service provision.
Bolkier, Yoav; Nevo-Caspi, Yael; Salem, Yishay; Vardi, Amir; Mishali, David; Paret, Gideon
2016-04-01
To test the hypothesis that cardiac-enriched micro-RNAs can serve as accurate biomarkers that reflect myocardial injury and to predict the postoperative course following pediatric cardiac surgery. Micro-RNAs have emerged as plasma biomarkers for many pathologic states. We aimed to quantify preoperative and postoperative plasma levels of cardiac-enriched micro-RNA-208a, -208b, and -499 in children undergoing cardiac surgery and to evaluate correlations between their levels, the extent of myocardial damage, and the postoperative clinical course. PICU. Thirty pediatric patients that underwent open heart surgery for the correction of congenital heart defects between January 2012 to July 2013. None. At 12 hours post surgery, the plasma levels of the micro-RNAs increased by 300- to 4,000-fold. At 24 hours, their levels decreased but remained significantly higher than before surgery. Micro-RNA levels were associated with troponin levels, longer cardiopulmonary bypass and aortic crossclamp times, maximal postoperative aspartate aminotransferase levels, and delayed hospital discharge. Circulating micro-RNA-208a, -208b, and -499 are detectable in the plasma of children undergoing cardiac surgery and may serve as novel biomarkers for monitoring and forecasting postoperative myocardial injury and recovery.
Aldosterone Promotes Cardiac Endothelial Cell Proliferation In Vivo
Gravez, Basile; Tarjus, Antoine; Pelloux, Véronique; Ouvrard‐Pascaud, Antoine; Delcayre, Claude; Samuel, Janelise; Clément, Karine; Farman, Nicolette; Jaisser, Fréderic; Messaoudi, Smail
2015-01-01
Background Experimentally, aldosterone in association with NaCl induces cardiac fibrosis, oxidative stress, and inflammation through mineralocorticoid receptor activation; however, the biological processes regulated by aldosterone alone in the heart remain to be identified. Methods and Results Mice were treated for 7 days with aldosterone, and then cardiac transcriptome was analyzed. Aldosterone regulated 60 transcripts (51 upregulated and 9 downregulated) in the heart (fold change ≥1.5, false discovery rate <0.01). To identify the biological processes modulated by aldosterone, a gene ontology analysis was performed. The majority of aldosterone‐regulated genes were involved in cell division. The cardiac Ki‐67 index (an index of proliferation) of aldosterone‐treated mice was higher than that of nontreated mice, confirming microarray predictions. Costaining of Ki‐67 with vinculin, CD68, α‐smooth muscle actin, CD31, or caveolin 1 revealed that the cycling cells were essentially endothelial cells. Aldosterone‐induced mineralocorticoid receptor–dependent proliferation was confirmed ex vivo in human endothelial cells. Moreover, pharmacological‐specific blockade of mineralocorticoid receptor by eplerenone inhibited endothelial cell proliferation in a preclinical model of heart failure (transverse aortic constriction). Conclusions Aldosterone modulates cardiac gene expression and induces the proliferation of cardiac endothelial cells in vivo. PMID:25564371
San Juan, R; Aguado, J M; López, M J; Lumbreras, C; Enriquez, F; Sanz, F; Chaves, F; López-Medrano, F; Lizasoain, M; Rufilanchas, J J
2005-03-01
Postsurgical mediastinitis (PSM) remains a major cause of morbidity and mortality in patients undergoing cardiac surgery procedures. Although prompt diagnosis is crucial in these patients, neither clinical data nor imaging techniques have shown enough sensitivity or specificity for early diagnosis of PSM. The aim of the present study was to assess the validity of blood cultures as a diagnostic test for the early detection of PSM in patients who become febrile after cardiac surgery procedures. During a 4-year period (1999-2002), patients who developed fever (>37.8 degrees C) in the first 60 days after a cardiac surgery procedure were evaluated. Blood cultures were drawn from these patients. PSM was defined as deep infection involving retrosternal tissue and/or the sternal bone directly observed by the surgeon and confirmed microbiologically. Three criteria for positivity of blood cultures were applied: bacteremia, staphylococcal bacteremia, or Staphylococcus aureus bacteremia. For purposes of the analysis, a positive blood culture in patients with PSM was considered a true-positive test and a negative blood culture a false-negative test. Otherwise, in febrile patients without PSM in the postsurgery period, a positive blood culture was considered a false-positive test and a negative blood culture a true-negative test. Blood cultures were drawn from 266 febrile patients in the postsurgery period. PSM occurred in 38 patients (26 cases due to S. aureus, 8 to Staphylococcus epidermidis, 3 to gram-negative enteric bacteria, and one to Pseudomonas aeruginosa). Within the 60-day postsurgical period, blood culture as a diagnostic test was most accurate in patients with S. aureus bacteremia, providing 68% sensitivity, 98% specificity, a positive predictive value of 87%, and a negative predictive value of 95%. If the analysis was limited to the period during which patients are at maximum risk for PSM (day 7-20), the values in patients with S. aureus bacteremia were as follows: 73% sensitivity, 98% specificity, 90% positive predictive value, and 93% negative predictive value. Blood culture is an accurate test for the early diagnosis of PSM in febrile patients after cardiac surgery, particularly in institutions where S. aureus is prevalent in this context. A negative blood culture practically excludes PSM and, during the period of maximum risk for PSM, the presence of S. aureus bacteremia should compel early surgical management.
Meisner, Allison; Kerr, Kathleen F; Thiessen-Philbrook, Heather; Coca, Steven G; Parikh, Chirag R
2016-02-01
Individual biomarkers of renal injury are only modestly predictive of acute kidney injury (AKI). Using multiple biomarkers has the potential to improve predictive capacity. In this systematic review, statistical methods of articles developing biomarker combinations to predict AKI were assessed. We identified and described three potential sources of bias (resubstitution bias, model selection bias, and bias due to center differences) that may compromise the development of biomarker combinations. Fifteen studies reported developing kidney injury biomarker combinations for the prediction of AKI after cardiac surgery (8 articles), in the intensive care unit (4 articles), or other settings (3 articles). All studies were susceptible to at least one source of bias and did not account for or acknowledge the bias. Inadequate reporting often hindered our assessment of the articles. We then evaluated, when possible (7 articles), the performance of published biomarker combinations in the TRIBE-AKI cardiac surgery cohort. Predictive performance was markedly attenuated in six out of seven cases. Thus, deficiencies in analysis and reporting are avoidable, and care should be taken to provide accurate estimates of risk prediction model performance. Hence, rigorous design, analysis, and reporting of biomarker combination studies are essential to realizing the promise of biomarkers in clinical practice.
Magdy, Abdel Hamid; Bakhoum, Sameh; Sharaf, Yasser; Sabry, Dina; El-Gengehe, Ahmed T; Abdel-Latif, Ahmed
2016-01-01
Endothelial progenitor cells (EPCs) and circulating endothelial cells (CECs) are mobilized from the bone marrow and increase in the early phase after ST-elevation myocardial infarction (STEMI). The aim of this study was to assess the prognostic significance of CECs and indices of endothelial dysfunction in patients with STEMI. In 78 patients with acute STEMI, characterization of CD34+/VEGFR2+ CECs, and indices of endothelial damage/dysfunction such as brachial artery flow mediated dilatation (FMD) were determined. Blood samples for CECs assessment and quantification were obtained within 24 hours of admission and FMD was assessed during the index hospitalization. At 30 days follow up, the primary composite end point of major cardiac adverse events (MACE) consisting of all-cause mortality, recurrent non-fatal MI, or heart failure and the secondary endpoint of early adverse left ventricular (LV) remodeling were analyzed. The 17 patients (22%) who developed MACE had significantly higher CEC level (P = 0.004), vWF level (P =0.028), and significantly lower FMD (P = 0.006) compared to the remaining patients. Logistic regression analysis showed that CECs level and LV ejection fraction were independent predictors of MACE. The areas under the receiver operating characteristic curves (ROC) for CEC level, FMD, and the logistic model with both markers were 0.73, 0.75, and 0.82 respectively for prediction of the MACE. The 16 patients who developed the secondary endpoint had significantly higher CEC level compared to remaining patients (p =0.038). In conclusion, increased circulating endothelial cells and endothelial dysfunction predicted the occurrence of major adverse cardiac events and adverse cardiac remodeling in patients with STEMI. PMID:26864952
Bouzas-Mosquera, Alberto; Peteiro, Jesús; Broullón, Francisco J; Álvarez-García, Nemesio; Maneiro-Melón, Nicolás; Pardo-Martinez, Patricia; Sagastagoitia-Fornie, Marta; Martínez, Dolores; Yáñez, Juan C; Vázquez-Rodríguez, José Manuel
2016-08-01
Although cardiac stress testing may help establish the safety of early discharge in patients with suspected acute coronary syndromes and negative troponins, more cost-effective strategies are necessary. We aimed to develop a clinical prediction rule to safely obviate the need for cardiac stress testing in this setting. A decision rule was derived in a prospective cohort of 3001 patients with acute chest pain and negative troponins, and validated in a set of 1473 subjects. The primary end point was a composite of positive cardiac stress testing (in the absence of a subsequent negative coronary angiogram), positive coronary angiography, or any major coronary events within 3 months. A score chart was built based on 7 variables: male sex (+2), age (+1 per decade from the fifth decade), diabetes mellitus (+2), hypercholesterolemia (+1), prior coronary revascularization (+2), type of chest pain (typical angina, +5; non-specific chest pain, -3), and non-diagnostic repolarization abnormalities (+2). In the validation set, the model showed good discrimination (c statistic = 0.84; 95% confidence interval, 0.82-0.87) and calibration (Hosmer-Lemeshow goodness-of-fit test, P= .34). If stress tests were avoided in patients in the validation sample with a sum score of 0 or lower, the number of referrals would be reduced by 23.4%, yielding a negative predictive value of 98.8% (95% confidence interval, 97.0%-99.7%). This novel prediction rule based on a combination of readily available clinical characteristics may be a valuable tool to decide whether stress testing can be reliably avoided in patients with acute chest pain and negative troponins. Copyright © 2016 Elsevier Inc. All rights reserved.
Intracardiac electrophysiology study (EPS)
... rhythm Determine whether you are at risk for future heart events, especially sudden cardiac death See if ... patient with suspected arrhythmia. In: Goldman L, Schafer AI, eds. Goldman's Cecil Medicine . 25th ed. Philadelphia, PA: ...
Pänkäälä, Mikko; Paasio, Ari
2014-01-01
Both respiratory and cardiac motions reduce the quality and consistency of medical imaging specifically in nuclear medicine imaging. Motion artifacts can be eliminated by gating the image acquisition based on the respiratory phase and cardiac contractions throughout the medical imaging procedure. Electrocardiography (ECG), 3-axis accelerometer, and respiration belt data were processed and analyzed from ten healthy volunteers. Seismocardiography (SCG) is a noninvasive accelerometer-based method that measures accelerations caused by respiration and myocardial movements. This study was conducted to investigate the feasibility of the accelerometer-based method in dual gating technique. The SCG provides accelerometer-derived respiratory (ADR) data and accurate information about quiescent phases within the cardiac cycle. The correct information about the status of ventricles and atria helps us to create an improved estimate for quiescent phases within a cardiac cycle. The correlation of ADR signals with the reference respiration belt was investigated using Pearson correlation. High linear correlation was observed between accelerometer-based measurement and reference measurement methods (ECG and Respiration belt). Above all, due to the simplicity of the proposed method, the technique has high potential to be applied in dual gating in clinical cardiac positron emission tomography (PET) to obtain motion-free images in the future. PMID:25120563
Reproductive Decision Making and Genetic Predisposition to Sudden Cardiac Death
Barlevy, Dorit; Wasserman, David; Stolerman, Marina; Erskine, Kathleen E.; Dolan, Siobhan M.
2012-01-01
Background With current genetic technology, it is possible to detect mutations associated with long QT syndrome (LQTS), a hereditary cardiac arrhythmia syndrome. As a result, prospective parents diagnosed with LQTS will have to decide whether or not to prevent its transmission to future generations, either by not procreating or through the use of assisted reproductive technologies or prenatal testing. This paper explores how a hereditary predisposition to sudden cardiac death can influence reproductive decision making. Methods This study draws from interviews and focus groups with individuals who have personal or family histories of cardiac arrhythmia or sudden death. A keyword search was conducted on interview transcripts to identify quotes for analysis. Results Participants expressed complex, often ambivalent attitudes about the prospect of having a child with a predisposition to sudden cardiac death. Their comments reveal conflicting understandings of genetic responsibility and reflect the variable effects of personal experience on reproductive decision making. This paper compares attitudes towards LQTS and other genetic conditions in analyzing the themes that emerged in interviews and focus groups. Conclusions The “disability critique” of prenatal testing should be applied carefully to a context of genetic predisposition to sudden cardiac death in order to understand reproductive decision making. Firsthand experience with the condition, among other factors, can weigh heavily in those decisions. PMID:22822470
Idriss, Salim F; Berger, Stuart; Harmon, Kimberly G; Kindman, Allen; Kleiman, Robert; Lopez-Anderson, Martha; Molossi, Silvana; Saarel, Tess Elizabeth; Strnadova, Colette; Todaro, Thomas; Shinagawa, Kaori; Morrow, Valarie; Krucoff, Mitchell; Vetter, Victoria; Wright, Theressa J
2017-08-01
This White Paper, prepared by members of the Cardiac Safety Research Consortium, discusses important issues regarding sudden cardiac death in the young (SCDY), a problem that does not discriminate by gender, race, ethnicity, education, socioeconomic level, or athletic status. The occurrence of SCDY has devastating impact on families and communities. Sudden cardiac death in the young is a matter of national and international public health, and its prevention has generated deep interest from multiple stakeholders, including families who have lost children, advocacy groups, academicians, regulators, and the medical industry. To promote scientific and clinical discussion of SCDY prevention and to germinate future initiatives to move this field forward, a Cardiac Safety Research Consortium-sponsored Think Tank was held on February 21, 2015 at the US Food and Drug Administration's White Oak facilities, Silver Spring, MD. The ultimate goal of the Think Tank was to spark initiatives that lead to the development of a rational, reliable, and sustainable national health care resource focused on SCDY prevention. This article provides a detailed summary of discussions at the Think Tank and descriptions of related multistakeholder initiatives now underway: it does not represent regulatory guidance. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Fathil, M. F. M.; Arshad, M. K. Md; Gopinath, Subash C. B.; Adzhri, R.; Ruslinda, A. R.; Hashim, U.
2017-03-01
This paper presents preparation and characterization of conventional enzyme-linked immunosorbent assay (ELISA) for cardiac troponin detection to determine the selectivity of the cardiac troponin monoclonal antibodies. Monoclonal antibodies, used to capture and bind the targets in this experiment, are cTnI monoclonal antibody (MAb-cTnI) and cTnT monoclonal antibody (MAb-cTnT), while both cardiac troponin I (cTnI) and T (cTnT) are used as targets. ELISA is performed inside two microtiter plates for MAb-cTnI and MAb-cTnT. For each plate, monoclonal antibodies are tested by various concentrations of cTnI and cTnT ranging from 0-6400 µg/l. The binding selectivity and level of detection between monoclonal antibodies and antigen are determined through visual observation based on the color change inside each well on the plate. ELISA reader is further used to quantitatively measured the optical density of the color changes, thus produced more accurate reading. The results from this experiment are utilized to justify the use of these monoclonal antibodies as bio-receptors for cardiac troponin detection by using field-effect transistor (FET)-based biosensors coupled with substrate-gate in the future.
Suzuki, Hideaki; Arakawa, Yasuhiro; Ito, Masaki; Yamada, Hisashi; Horiguchi-Yamada, Junko
2006-01-01
To elucidate the molecular pathogenesis behind increased levels of laminin in cardiac muscle cells in cardiomyopathy by using a yeast hybrid screen. The present study reports the cloning of a newly identified heart-specific troponin I isoform, which is putatively linked to laminin. Future studies will explore the functional significance of this connection. Yeast two-hybrid screen analysis was performed using MLF1-interacting protein (amino acids 1 to 318) as bait. The human heart complementary DNA library was screened by using the yeast-mating method for overnight culture. Two final positive clones from the heart library were isolated. These two clones encoded the same protein, a short isoform of human cardiac troponin I (TnI) that lacked TnI exons 5 and 6. The TnI isoform has a heart-specific expression pattern and it shares several sequence features with human cardiac TnI; however, it lacks the troponin T binding portion. The heart-specific segment of the human cardiac TnI isoform shares several sequence features with human cardiac TnI, but it lacks the troponin T binding portion. These results suggest that the heart-specific TnI isoform may be involved in cardiac development and disease.
Suzuki, Hideaki; Arakawa, Yasuhiro; Ito, Masaki; Yamada, Hisashi; Horiguchi-Yamada, Junko
2006-01-01
OBJECTIVE To elucidate the molecular pathogenesis behind increased levels of laminin in cardiac muscle cells in cardiomyopathy by using a yeast hybrid screen. The present study reports the cloning of a newly identified heart-specific troponin I isoform, which is putatively linked to laminin. Future studies will explore the functional significance of this connection. METHODS Yeast two-hybrid screen analysis was performed using MLF1-interacting protein (amino acids 1 to 318) as bait. The human heart complementary DNA library was screened by using the yeast-mating method for overnight culture. RESULTS Two final positive clones from the heart library were isolated. These two clones encoded the same protein, a short isoform of human cardiac troponin I (TnI) that lacked TnI exons 5 and 6. The TnI isoform has a heart-specific expression pattern and it shares several sequence features with human cardiac TnI; however, it lacks the troponin T binding portion. CONCLUSION The heart-specific segment of the human cardiac TnI isoform shares several sequence features with human cardiac TnI, but it lacks the troponin T binding portion. These results suggest that the heart-specific TnI isoform may be involved in cardiac development and disease. PMID:18651010
Moon, Seong Ho; Kim, Jong Woo; Byun, Joung Hun; Kim, Sung Hwan; Kim, Ki Nyun; Choi, Jun Young; Jang, In Seok; Lee, Chung Eun; Yang, Jun Ho; Kang, Dong Hun; Park, Hyun Oh
2017-11-01
Per the American Heart Association guidelines, extracorporeal cardiopulmonary resuscitation should be considered for in-hospital patients with easily reversible cardiac arrest. However, there are currently no consensus recommendations regarding resuscitation for prolonged cardiac arrest cases. We encountered a 48-year-old man who survived a cardiac arrest that lasted approximately 1.5 hours. He visited a local hospital's emergency department complaining of chest pain and dyspnea that had started 3 days earlier. Immediately after arriving in the emergency department, a cardiac arrest occurred; he was transferred to our hospital for extracorporeal membrane oxygenation (ECMO). Resuscitation was performed with strict adherence to the American Heart Association/American College of Cardiology advanced cardiac life support guidelines until ECMO could be placed. On hospital day 7, he had a full neurologic recovery. On hospital day 58, additional treatments, including orthotopic heart transplantation, were considered necessary; he was transferred to another hospital. To our knowledge, this is the first case in South Korea of patient survival with good neurologic outcomes after resuscitation that lasted as long as 1.5 hours. Documenting cases of prolonged resuscitation may lead to updated guidelines and improvement of outcomes of similar cases in future. Copyright © 2017 The Authors. Published by Wolters Kluwer Health, Inc. All rights reserved.
Rodríguez Fernández, Antonio; Bethencourt González, Armando
2016-08-01
Because of advances in cardiac structural interventional procedures, imaging techniques are playing an increasingly important role. Imaging studies show sufficient anatomic detail of the heart structure to achieve an excellent outcome in interventional procedures. Up to 98% of atrial septal defects at the ostium secundum can be closed successfully with a percutaneous procedure. Candidates for this type of procedure can be identified through a systematic assessment of atrial septum anatomy, locating and measuring the size and shape of all defects, their rims, and the degree and direction of shunting. Three dimensional echocardiography has significantly improved anatomic assessments and the end result itself. In the future, when combined with other imaging techniques such as cardiac computed tomography and fluoroscopy, 3-dimensional echocardiography will be particularly useful for procedure guidance. Percutaneous closure of the left atrial appendage offers an alternative for treating patients with atrial fibrillation and contraindication for oral anticoagulants. In the future, the clinical focus may well turn to stroke prevention in selected patients. Percutaneous closure is effective and safe; device implantation is successful in 94% to 99% of procedures. However, the procedure requires an experienced cardiac structural interventional team. At present, 3-dimensional echocardiography is the most appropriate imaging technique to assess anatomy suitability, select device type and size, guide the procedure alongside fluoroscopy, and to follow-up the patient afterwards. Copyright © 2016 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.
Flora, Parminder K; McMahon, Casey J; Locke, Sean R; Brawley, Lawrence R
2018-03-01
Cardiac rehabilitation (CR) exercise therapy facilitates patient recovery and better health following a cardiovascular event. However, post-CR adherence to self-managed (SM)-exercise is suboptimal. Part of this problem may be participants' view of CR staff as mainly responsible for help and program structure. Does post-CR exercise adherence for those perceiving high CR staff responsibility suffer as a consequence? Participants in this prospective, observational study were followed over 12 weeks of CR and one month afterward. High perceived staff responsibility individuals were examined for a decline in the strength of adherence-related social cognitions and exercise. Those high and low in perceived staff responsibility were also compared. High perceived staff responsibility individuals reported significant declines in anticipated exercise persistence (d = .58) and number of different SM-exercise options (d = .44). High versus low responsibility comparisons revealed a significant difference in one-month post-CR SM-exercise volume (d = .67). High perceived staff responsibility individuals exercised half of the amount of low responsibility counterparts at one month post-CR. Perceived staff responsibility and CR SRE significantly predicted SM-exercise volume, R 2 adj = .10, and persistence, R 2 adj = .18, one month post-CR. Viewing helpful well-trained CR staff as mainly responsible for participant behavior may be problematic for post-CR exercise maintenance among those more staff dependent. © 2017 The International Association of Applied Psychology.
Characterization of mitochondrial injury after cardiac arrest (COMICA).
Donnino, Michael W; Liu, Xiaowen; Andersen, Lars W; Rittenberger, Jon C; Abella, Benjamin S; Gaieski, David F; Ornato, Joseph P; Gazmuri, Raúl J; Grossestreuer, Anne V; Cocchi, Michael N; Abbate, Antonio; Uber, Amy; Clore, John; Peberdy, Mary Anne; Callaway, Clifton W
2017-04-01
Mitochondrial injury post-cardiac arrest has been described in pre-clinical settings but the extent to which this injury occurs in humans remains largely unknown. We hypothesized that increased levels of mitochondrial biomarkers would be associated with mortality and neurological morbidity in post-cardiac arrest subjects. We performed a prospective multicenter study of post-cardiac arrest subjects. Inclusion criteria were comatose adults who suffered an out-of-hospital cardiac arrest. Mitochondrial biomarkers were measured at 0, 12, 24, 36 and 48h after return of spontaneous circulation as well as in healthy controls. Out of 111 subjects enrolled, 102 had evaluable samples at 0h. Cardiac arrest subjects had higher baseline cytochrome c levels compared to controls (2.18ng/mL [0.74, 7.74] vs. 0.16ng/mL [0.03, 0.91], p<0.001), and subjects who died had higher 0h cytochrome c levels compared to survivors (3.66ng/mL [1.40, 14.9] vs. 1.27ng/mL [0.16, 2.37], p<0.001). There were significantly higher Ribonuclease P (RNaseP) (3.3 [1.2, 5.7] vs. 1.2 [0.8, 1.2], p<0.001) and Beta-2microglobulin (B2M) (12.0 [1.0, 22.9], vs. 0.6 [0.6, 1.3], p<0.001) levels in cardiac arrest subjects at baseline compared to the control subjects. There were no differences between survivors and non-survivors for mitochondrial DNA, nuclear DNA, or cell free DNA. Cytochrome c was increased in post- cardiac arrest subjects compared to controls, and in post-cardiac arrest non-survivors compared to survivors. Nuclear DNA and cell free DNA was increased in plasma of post-cardiac arrest subjects. There were no differences in mitochondrial DNA, nuclear DNA, or cell free DNA between survivors and non-survivors. Mitochondrial injury markers showed mixed results in the post-cardiac arrest period. Future research needs to investigate these differences. Copyright © 2017 Elsevier B.V. All rights reserved.
Coronary ostium occlusion by coronary cusp displacement in Williams syndrome.
Shiohama, Tadashi; Fujii, Katsunori; Ebata, Ryota; Funabashi, Nobusada; Matsumiya, Goro; Saito, Yuko Kazato; Takechi, Fumie; Yonemori, Yoko; Nakatani, Yukio; Shimojo, Naoki
2016-06-01
Williams syndrome is a contiguous gene deletion syndrome resulting from a heterozygous deletion on chromosome 7q11.23, and is characterized by distinctive facial features and supravalvular aortic stenosis (SVAS). This syndrome rarely presents unpredictable cardiac death, and yet, as illustrated in the present case, it is still not possible to predict it, even on close monitoring. We herein describe the case of a 6-year-old Japanese girl with Williams syndrome, who had sudden cardiac collapse due to cardiac infarction after pharyngitis. Cardiac failure followed a critical course that did not respond to catecholamine support or heart rest with extracardiac mechanical support. Although marked coronary stenosis was not present, the left coronary cusp abnormally adhered to the aortic wall, which may synergistically cause coronary ostium occlusion with SVAS. Altered hemodynamic state, even that caused by the common cold, may lead to critical myocardial events in Williams syndrome with SVAS. © 2015 Japan Pediatric Society.
Recent advances in the noninvasive strategies of cardiac amyloidosis.
Zhao, Lei; Fang, Quan
2016-11-01
The heart, like any organ in the body, is susceptible to amyloid deposition. Although more than 30 types of protein can cause amyloidosis, only two types commonly deposit in the ventricular myocardium: amyloid light chain and amyloid transthyretin. Amyloid cardiomyopathy is usually a major determinant of patient outcomes, and the diagnosis of heart involvement can be often relatively under-diagnosed, owing to nonspecific presenting symptoms and signs at a subclinical stage. The diagnosis of cardiac amyloidosis is usually performed by endomyocardial biopsy; however, the invasive nature and related high-risk complications restrict its wide use in clinical settings. Recently, with the advent of innovative techniques used for evaluating cardiac amyloidosis, noninvasive methods become increasingly important, especially in earlier diagnosis, distinguishing typing, risk prediction and response to treatment. Here, we will review recent developments in the noninvasive methods used in the assessment of cardiac amyloidosis, focused on the laboratory biomarkers and imaging modalities.
Role of renal biomarkers as predictors of acute kidney injury in cardiac surgery.
Ghatanatti, Ravi; Teli, Anita; Tirkey, Sundeep Sanjivan; Bhattacharya, Subhankar; Sengupta, Gautam; Mondal, Ansuman
2014-02-01
Cardiac surgery is unique in using cardiopulmonary bypass in various clinical scenarios. Injury of vital organs is unavoidable in the perioperative period. Acute kidney injury is a consequence of the systemic inflammatory response after bypass, emboli, ischemia, and low cardiac output states, reportedly occurring in 30%-40% of open heart surgeries. Acute kidney injury is associated with increased morbidity, mortality, and cost. Many preventive measures (off-pump procedures, decreased crossclamp time, pulsatile flow, adequate hydration) are taken in the perioperative period to avoid organ injury, but in vain. Traditionally, blood urea, serum creatinine, and creatinine clearance rate were applied for prediction of acute kidney injury. The recent emergence of biomarkers such as neutrophil gelatinase-associated lipocalin, cystatin C, liver-type fatty acid binding protein, interleukin-18, kidney injury molecule-1, and tetrahydrobiopterin have helped in detecting acute kidney injury long before the rise of serum creatinine. These biomarkers can also be used as tools for predicting therapeutic effects in acute kidney injury and for monitoring drug toxicity. This review consolidates the knowledge of biomarkers and their application in acute kidney injury management.
Lee, Eugene K; Tran, David D; Keung, Wendy; Chan, Patrick; Wong, Gabriel; Chan, Camie W; Costa, Kevin D; Li, Ronald A; Khine, Michelle
2017-11-14
Accurately predicting cardioactive effects of new molecular entities for therapeutics remains a daunting challenge. Immense research effort has been focused toward creating new screening platforms that utilize human pluripotent stem cell (hPSC)-derived cardiomyocytes and three-dimensional engineered cardiac tissue constructs to better recapitulate human heart function and drug responses. As these new platforms become increasingly sophisticated and high throughput, the drug screens result in larger multidimensional datasets. Improved automated analysis methods must therefore be developed in parallel to fully comprehend the cellular response across a multidimensional parameter space. Here, we describe the use of machine learning to comprehensively analyze 17 functional parameters derived from force readouts of hPSC-derived ventricular cardiac tissue strips (hvCTS) electrically paced at a range of frequencies and exposed to a library of compounds. A generated metric is effective for then determining the cardioactivity of a given drug. Furthermore, we demonstrate a classification model that can automatically predict the mechanistic action of an unknown cardioactive drug. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Yun, J S; Kim, S Y
2015-08-01
The identification of biomarkers for toxicity prediction is crucial for drug development and safety evaluation. The selective and specific biomarkers for antihistamines-induced cardiotoxicity is not well identified yet. In order to evaluate the mechanism of the life-threatening effects caused by antihistamines, we used DNA microarrays to analyze genomic profiles in H9C2 rat cardiomyocytes that were treated with antihistamines. The gene expression profiles from drug-treated cells revealed changes in the integrin signaling pathway, suggesting that cardiac arrhythmias induced by antihistamine treatment may be mediated by changes in integrin-mediated signaling. It has been reported that integrin plays a role in QT prolongation that may induce cardiac arrhythmia. These results indicate that the integrin-mediated signaling pathway induced by antihistamines is involved in various biological mechanisms that lead to cardiac QT prolongation. Therefore, we suggest that genomic profiling of antihistamine-treated cardiomyocytes has the potential to reveal the mechanism of adverse drug reactions, and this signal pathway is applicable to prediction of in vitro cardiotoxicity induced by antihistamines as a biomarker candidate. © The Author(s) 2014.
Oh, Sang Hoon; Park, Kyu Nam; Shon, Young-Min; Kim, Young-Min; Kim, Han Joon; Youn, Chun Song; Kim, Soo Hyun; Choi, Seung Pill; Kim, Seok Chan
2015-09-22
Modern treatments have improved the survival rate following cardiac arrest, but prognostication remains a challenge. We examined the prognostic value of continuous electroencephalography according to time by performing amplitude-integrated electroencephalography on patients with cardiac arrest receiving therapeutic hypothermia. We prospectively studied 130 comatose patients treated with hypothermia from September 2010 to April 2013. We evaluated the time to normal trace (TTNT) as a neurological outcome predictor and determined the prognostic value of burst suppression and status epilepticus, with a particular focus on their time of occurrence. Fifty-five patients exhibited a cerebral performance category score of 1 to 2. The area under the curve for TTNT was 0.97 (95% confidence interval, 0.92-0.99), and the sensitivity and specificity of TTNT<24 hours after resuscitation as a threshold for predicting good neurological outcome were 94.6% (95% confidence interval, 84.9%-98.9%) and 90.7% (95% confidence interval, 81.7%-96.2%), respectively. The threshold displaying 100% specificity for predicting poor neurological outcome was TTNT>36 hours. Burst suppression and status epilepticus predicted poor neurological outcome (positive predictive value of 98.3% and 96.4%, respectively). The combination of these factors predicted a negative outcome at a median of 6.2 hours after resuscitation (sensitivity and specificity of 92.0% and 96.4%, respectively). A TTNT<24 hours was associated with good neurological outcome. The lack of normal trace development within 36 hours, status epilepticus, and burst suppression were predictors of poor outcome. The combination of these negative predictors may improve their prognostic performance at an earlier stage. © 2015 The Authors.
Chhor, Vibol; Merceron, Sybille; Ricome, Sylvie; Baron, Gabriel; Daoud, Omar; Dilly, Marie-Pierre; Aubier, Benjamin; Provenchere, Sophie; Philip, Ivan
2010-08-01
Although results of cardiac surgery are improving, octogenarians have a higher procedure-related mortality and more complications with increased length of stay in ICU. Consequently, careful evaluation of perioperative risk seems necessary. The aims of our study were to assess and compare the performances of EuroSCORE and CARE score in the prediction of perioperative mortality among octogenarians undergoing aortic valve replacement for aortic stenosis and to compare these predictive performances with those obtained in younger patients. This retrospective study included all consecutive patients undergoing cardiac surgery in our institution between November 2005 and December 2007. For each patient, risk assessment for mortality was performed using logistic EuroSCORE, additive EuroSCORE and CARE score. The main outcome measure was early postoperative mortality. Predictive performances of these scores were assessed by calibration and discrimination using goodness-of-fit test and area under the receiver operating characteristic curve, respectively. During this 2-year period, we studied 2117 patients, among whom 134/211 octogenarians and 335/1906 nonoctogenarians underwent an aortic valve replacement for aortic stenosis. When considering patients with aortic stenosis, discrimination was poor in octogenarians and the difference from nonoctogenarians was significant for each score (0.58, 0.59 and 0.56 vs. 0.82, 0.81 and 0.77 for additive EuroSCORE, logistic EuroSCORE and CARE score in octogenarians and nonoctogenarians, respectively, P < 0.05). Moreover, in the whole cohort, logistic EuroSCORE significantly overestimated mortality among octogenarians. Predictive performances of these scores are poor in octogenarians undergoing cardiac surgery, especially aortic valve replacement. Risk assessment and therapeutic decisions in octogenarians should not be made with these scoring systems alone.
2013-01-01
Background Echocardiography (echo) is a first line test to assess cardiac structure and function. It is not known if cardiovascular magnetic resonance (CMR) with late gadolinium enhancement (LGE) ordered during routine clinical practice in selected patients can add additional prognostic information after routine echo. We assessed whether CMR improves outcomes prediction after contemporaneous echo, which may have implications for efforts to optimize processes of care, assess effectiveness, and allocate limited health care resources. Methods and results We prospectively enrolled 1044 consecutive patients referred for CMR. There were 38 deaths and 3 cardiac transplants over a median follow-up of 1.0 years (IQR 0.4-1.5). We first reproduced previous survival curve strata (presence of LGE and ejection fraction (EF) < 50%) for transplant free survival, to support generalizability of any findings. Then, in a subset (n = 444) with contemporaneous echo (median 3 days apart, IQR 1–9), EF by echo (assessed visually) or CMR were modestly correlated (R2 = 0.66, p < 0.001), and 30 deaths and 3 transplants occurred over a median follow-up of 0.83 years (IQR 0.29-1.40). CMR EF predicted mortality better than echo EF in univariable Cox models (Integrated Discrimination Improvement (IDI) 0.018, 95% CI 0.008-0.034; Net Reclassification Improvement (NRI) 0.51, 95% CI 0.11-0.85). Finally, LGE further improved prediction beyond EF as determined by hazard ratios, NRI, and IDI in all Cox models predicting mortality or transplant free survival, adjusting for age, gender, wall motion, and EF. Conclusions Among those referred for CMR after echocardiography, CMR with LGE further improves risk stratification of individuals at risk for death or death/cardiac transplant. PMID:23324403
Depression and anxiety as predictors of heart rate variability after myocardial infarction.
Martens, E J; Nyklícek, I; Szabó, B M; Kupper, N
2008-03-01
Reduced heart rate variability (HRV) is a prognostic factor for cardiac mortality. Both depression and anxiety have been associated with increased risk for mortality in cardiac patients. Low HRV may act as an intermediary in this association. The present study examined to what extent depression and anxiety differently predict 24-h HRV indices recorded post-myocardial infarction (MI). Ninety-three patients were recruited during hospitalization for MI and assessed on self-reported symptoms of depression and anxiety. Two months post-MI, patients were assessed on clinical diagnoses of lifetime depressive and anxiety disorder. Adequate 24-h ambulatory electrocardiography data were obtained from 82 patients on average 78 days post-MI. In unadjusted analyses, lifetime diagnoses of major depressive disorder was predictive of lower SDNN [standard deviation of all normal-to-normal (NN) intervals; beta=-0.26, p=0.022] and SDANN (standard deviation of all 5-min mean NN intervals; beta=0.25, p=0.023), and lifetime anxiety disorder of lower RMSSD (root mean square of successive differences; beta=-0.23, p=0.039). Depression and anxiety symptoms did not significantly predict HRV. After adjustment for age, sex, cardiac history and multi-vessel disease, lifetime depressive disorder was no longer predictive of HRV. Lifetime anxiety disorder predicted reduced high-frequency spectral power (beta=-0.22, p=0.039) and RMSSD (beta=-0.25, p=0.019), even after additional adjustment of anxiety symptoms. Clinical anxiety, but not depression, negatively influenced parasympathetic modulation of heart rate in post-MI patients. These findings elucidate the physiological mechanisms underlying anxiety as a risk factor for adverse outcomes, but also raise questions about the potential role of HRV as an intermediary between depression and post-MI prognosis.
Akutsu, Yasushi; Kaneko, Kyouichi; Kodama, Yusuke; Li, Hui-Ling; Asano, Taku; Suyama, Jumpei; Tanno, Kaoru; Namiki, Atsuo; Shinozuka, Akira; Gokan, Takehiko; Kobayashi, Youichi
2013-09-01
Atrial fibrillation (AF) can be a potentially life-threatening arrhythmia when it conducts rapidly through the accessory pathway, which was not predicted by the noninvasive method. We evaluated the cardiac sympathetic activity for predicting the occurrence of AF in patients with Wolff-Parkinson-White (WPW) syndrome. Iodine-123 metaiodobenzylguanidine scintigraphy was performed under stable sinus rhythm conditions at rest <1 week before an electrophysiologic study (EPS) to assess the sympathetic activity using the heart/mediastinum (H/M) ratio in 45 consecutive patients with WPW who had a history of supraventricular tachycardia (mean ± SD, age: 47 ± 17 years, 42.2% women). The study also included 15 normal healthy volunteers (56 ± 17 years, 40% women). The H/M ratio was lower in patients with WPW syndrome than in the normal control group, and in the 15 patients with AF induced during EPS than in the 30 patients without AF (p <0.0001). The sensitivity of H/M ratio ≤2.8 for predicting the AF induced during EPS was 75% in 12 of 16 patients, and the specificity was 89.7% in 26 of 29 patients. The H/M ratio was positively correlated with anterograde effective refractory period (r = 0.514, p <0.0001). The sensitivity of H/M ratio ≤2.75 for predicting the AF with a short anterograde effective refractory period (≤250 ms) was 91.7% in 11 of 12 patients, and the specificity was 90.9% in 30 of 33 patients. In conclusion, the severe cardiac sympathetic dysfunction was associated with the occurrence of AF, particularly in those with rapid AF and in patients with WPW syndrome. Copyright © 2013 Elsevier Inc. All rights reserved.
Induction of human cardiomyocyte-like cells from fibroblasts by defined factors.
Wada, Rie; Muraoka, Naoto; Inagawa, Kohei; Yamakawa, Hiroyuki; Miyamoto, Kazutaka; Sadahiro, Taketaro; Umei, Tomohiko; Kaneda, Ruri; Suzuki, Tomoyuki; Kamiya, Kaichiro; Tohyama, Shugo; Yuasa, Shinsuke; Kokaji, Kiyokazu; Aeba, Ryo; Yozu, Ryohei; Yamagishi, Hiroyuki; Kitamura, Toshio; Fukuda, Keiichi; Ieda, Masaki
2013-07-30
Heart disease remains a leading cause of death worldwide. Owing to the limited regenerative capacity of heart tissue, cardiac regenerative therapy has emerged as an attractive approach. Direct reprogramming of human cardiac fibroblasts (HCFs) into cardiomyocytes may hold great potential for this purpose. We reported previously that induced cardiomyocyte-like cells (iCMs) can be directly generated from mouse cardiac fibroblasts in vitro and vivo by transduction of three transcription factors: Gata4, Mef2c, and Tbx5, collectively termed GMT. In the present study, we sought to determine whether human fibroblasts also could be converted to iCMs by defined factors. Our initial finding that GMT was not sufficient for cardiac induction in HCFs prompted us to screen for additional factors to promote cardiac reprogramming by analyzing multiple cardiac-specific gene induction with quantitative RT-PCR. The addition of Mesp1 and Myocd to GMT up-regulated a broader spectrum of cardiac genes in HCFs more efficiently compared with GMT alone. The HCFs and human dermal fibroblasts transduced with GMT, Mesp1, and Myocd (GMTMM) changed the cell morphology from a spindle shape to a rod-like or polygonal shape, expressed multiple cardiac-specific proteins, increased a broad range of cardiac genes and concomitantly suppressed fibroblast genes, and exhibited spontaneous Ca(2+) oscillations. Moreover, the cells matured to exhibit action potentials and contract synchronously in coculture with murine cardiomyocytes. A 5-ethynyl-2'-deoxyuridine assay revealed that the iCMs thus generated do not pass through a mitotic cell state. These findings demonstrate that human fibroblasts can be directly converted to iCMs by defined factors, which may facilitate future applications in regenerative medicine.
Reliability of Modern Scores to Predict Long-Term Mortality After Isolated Aortic Valve Operations.
Barili, Fabio; Pacini, Davide; D'Ovidio, Mariangela; Ventura, Martina; Alamanni, Francesco; Di Bartolomeo, Roberto; Grossi, Claudio; Davoli, Marina; Fusco, Danilo; Perucci, Carlo; Parolari, Alessandro
2016-02-01
Contemporary scores for estimating perioperative death have been proposed to also predict also long-term death. The aim of the study was to evaluate the performance of the updated European System for Cardiac Operative Risk Evaluation II, The Society of Thoracic Surgeons Predicted Risk of Mortality score, and the Age, Creatinine, Left Ventricular Ejection Fraction score for predicting long-term mortality in a contemporary cohort of isolated aortic valve replacement (AVR). We also sought to develop for each score a simple algorithm based on predicted perioperative risk to predict long-term survival. Complete data on 1,444 patients who underwent isolated AVR in a 7-year period were retrieved from three prospective institutional databases and linked with the Italian Tax Register Information System. Data were evaluated with performance analyses and time-to-event semiparametric regression. Survival was 83.0% ± 1.1% at 5 years and 67.8 ± 1.9% at 8 years. Discrimination and calibration of all three scores both worsened for prediction of death at 1 year and 5 years. Nonetheless, a significant relationship was found between long-term survival and quartiles of scores (p < 0.0001). The estimated perioperative risk by each model was used to develop an algorithm to predict long-term death. The hazard ratios for death were 1.1 (95% confidence interval, 1.07 to 1.12) for European System for Cardiac Operative Risk Evaluation II, 1.34 (95% CI, 1.28 to 1.40) for the Society of Thoracic Surgeons score, and 1.08 (95% CI, 1.06 to 1.10) for the Age, Creatinine, Left Ventricular Ejection Fraction score. The predicted risk generated by European System for Cardiac Operative Risk Evaluation II, The Society of Thoracic Surgeons score, and Age, Creatinine, Left Ventricular Ejection Fraction scores cannot also be considered a direct estimate of the long-term risk for death. Nonetheless, the three scores can be used to derive an estimate of long-term risk of death in patients who undergo isolated AVR with the use of a simple algorithm. Copyright © 2016 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.
Shi, Lei; Sun, Peng; Pang, Yu; Luo, Zhiyong; Wang, Wei; Wang, Yanxiang
2016-02-01
Heart rate variability (HRV) is the difference between the successive changes in the heartbeat cycle, and it is produced in the autonomic nervous system modulation of the sinus node of the heart. The HRV is a valuable indicator in predicting the sudden cardiac death and arrhythmic events. Traditional analysis of HRV is based on a multielectrocardiogram (ECG), but the ECG signal acquisition is complex, so we have designed an HRV analysis system based on photoplethysmography (PPG). PPG signal is collected by a microcontroller from human's finger, and it is sent to the terminal via USB-Serial module. The terminal software not only collects the data and plot waveforms, but also stores the data for future HRV analysis. The system is small in size, low in power consumption, and easy for operation. It is suitable for daily care no matter whether it is used at home or in a hospital.
EEG as an Indicator of Cerebral Functioning in Postanoxic Coma.
Juan, Elsa; Kaplan, Peter W; Oddo, Mauro; Rossetti, Andrea O
2015-12-01
Postanoxic coma after cardiac arrest is one of the most serious acute cerebral conditions and a frequent cause of admission to critical care units. Given substantial improvement of outcome over the recent years, a reliable and timely assessment of clinical evolution and prognosis is essential in this context, but may be challenging. In addition to the classic neurologic examination, EEG is increasingly emerging as an important tool to assess cerebral functions noninvasively. Although targeted temperature management and related sedation may delay clinical assessment, EEG provides accurate prognostic information in the early phase of coma. Here, the most frequently encountered EEG patterns in postanoxic coma are summarized and their relations with outcome prediction are discussed. This article also addresses the influence of targeted temperature management on brain signals and the implication of the evolution of EEG patterns over time. Finally, the article ends with a view of the future prospects for EEG in postanoxic management and prognostication.
Frenette, Anne Julie; Bouchard, Josée; Bernier, Pascaline; Charbonneau, Annie; Nguyen, Long Thanh; Rioux, Jean-Philippe; Troyanov, Stéphan; Williamson, David R
2014-11-14
The risk of acute kidney injury (AKI) with the use of albumin-containing fluids compared to starches in the surgical intensive care setting remains uncertain. We evaluated the adjusted risk of AKI associated with colloids following cardiac surgery. We performed a retrospective cohort study of patients undergoing on-pump cardiac surgery in a tertiary care center from 2008 to 2010. We assessed crystalloid and colloid administration until 36 hours after surgery. AKI was defined by the RIFLE (risk, injury, failure, loss and end-stage kidney disease) risk and Acute Kidney Injury Network (AKIN) stage 1 serum creatinine criterion within 96 hours after surgery. Our cohort included 984 patients with a baseline glomerular filtration rate of 72 ± 19 ml/min/1.73 m(2). Twenty-three percent had a reduced left ventricular ejection fraction (LVEF), thirty-one percent were diabetics and twenty-three percent underwent heart valve surgery. The incidence of AKI was 5.3% based on RIFLE risk and 12.0% based on the AKIN criterion. AKI was associated with a reduced LVEF, diuretic use, anemia, heart valve surgery, duration of extracorporeal circulation, hemodynamic instability and the use of albumin, pentastarch 10% and transfusions. There was an important dose-dependent AKI risk associated with the administration of albumin, which also paralleled a higher prevalence of concomitant risk factors for AKI. To address any indication bias, we derived a propensity score predicting the likelihood to receive albumin and matched 141 cases to 141 controls with a similar risk profile. In this analysis, albumin was associated with an increased AKI risk (RIFLE risk: 12% versus 5%, P = 0.03; AKIN stage 1: 28% versus 13%, P = 0.002). We repeated this methodology in patients without postoperative hemodynamic instability and still identified an association between the use of albumin and AKI. Albumin administration was associated with a dose-dependent risk of AKI and remained significant using a propensity score methodology. Future studies should address the safety of albumin-containing fluids on kidney function in patients undergoing cardiac surgery.
2013-01-01
Background Despite well-established medical recommendations, many cardiac patients do not exercise regularly either independently or through formal cardiac prevention and rehabilitation programs (CPRP). This non-adherence is even more pronounced among minority ethnic groups. Illness cognition (IC), i.e. the way people perceive the situation they encounter, has been recognized as a crucial determinant of health-promoting behavior. Few studies have applied a cognitive perspective to explain the disparity in exercising and CPRP attendance between cardiac patients from different ethnic backgrounds. Based on the Health Belief Model (HBM) and the Common Sense Model (CSM), the objective was to assess the association of IC with exercising and with participation in CPRP among Jewish/majority and Arab/minority patients hospitalized with acute coronary syndrome. Methods Patients (N = 420) were interviewed during hospitalization (January-2009 until August- 2010) about IC, with 6-month follow-up interviews about exercise habits and participation in CPRP. Determinants that predict active lifestyle and participation in CPRP were assessed using backward stepwise logistic regression. Results Perceived susceptibility to heart disease and sense and personal control were independently associated with exercising 6 months after the acute event (OR = 0.58, 95% CI: 0.42-0.80 and OR = 1.09, 95% CI: 1.02-1.17, per unit on a 5-point scale). Perceived benefits of regular exercise and a sense of personal control were independently associated with participation in CPRP (OR = 1.56, 95% CI: 1.12-2.16 and OR = 1.08, 95% CI: 1.01-1.15, per unit on a 5-point scale). None of the IC variables assessed could explain the large differences in health promoting behaviors between the majority and minority ethnic groups. Conclusions IC should be taken into account in future interventions to promote physical activity and participation in CPRP for both ethnic groups. Yet, because IC failed to explain the gap between Arab and Jewish patients in those behaviors, other explanatory pathways such as psychological state or cultural views should be considered as potential areas for further research. PMID:24119027
Magnoni, Marco; Gallone, Guglielmo; Ceriotti, Ferruccio; Vergani, Vittoria; Giorgio, Daniela; Angeloni, Giulia; Maseri, Attilio; Cianflone, Domenico
2018-09-01
High-sensitivity cardiac troponin T (hsTnT) was recently approved for clinical use by the Food and Drug Administration. The transition from contemporary to hsTnT assays requires a thorough understanding of the clinical differences between these assays. HsTnT may provide a more accurate prognostic stratification than contemporary cardiac troponin I (cTnI) in patients with non-ST-segment elevation acute coronary syndromes (NSTE-ACS). HsTnT and cTnI were measured in 644 patients with CK-MB negative NSTE-ACS who were enrolled in the prospective multicenter SPAI (Stratificazione Prognostica dell'Angina Instabile) study. Patients were stratified at the 99th percentile reference limit for each assay. The primary endpoint was cardiovascular death (CVD) or non-fatal myocardial infarction (MI); the secondary endpoint was the occurrence of unstable angina (UA). Follow-up lasted 180 days. Patients with hsTnT ≥99th percentile were at higher risk of CVD/MI (30-day: 5.9% vs 0.8%, p = 0.001; 180-day: 11.1% vs 4.7%, p = 0.004), also after adjusting for TIMI Risk Score. No significant difference in CVD/MI at 180-day was found between hsTnT-positive/cTnI-negative and hsTnT-negative/cTnI-negative patients (adjHR 1.61, 95% CI 0.74-3.49, p = 0.232). Occurrence of UA was not differently distributed between hsTnT groups dichotomized at the 99th percentile (12.4% vs 12.5% p = 0.54). Our investigation on a real-world NSTE-ACS population showed good prognostic performance of hsTnT in the risk stratification of the hard endpoint, but did not demonstrate the improved prognostic ability of hsTnT over contemporary cTn. Neither troponin assay predicted the recurrence of UA, suggesting the acute rise of cardiac troponin as a marker of severity, but not the occurrence of future coronary instability.
Abdurrachim, Desiree; Nabben, Miranda; Hoerr, Verena; Kuhlmann, Michael T; Bovenkamp, Philipp; Ciapaite, Jolita; Geraets, Ilvy M E; Coumans, Will; Luiken, Joost J F P; Glatz, Jan F C; Schäfers, Michael; Nicolay, Klaas; Faber, Cornelius; Hermann, Sven; Prompers, Jeanine J
2017-08-01
Heart failure is associated with altered myocardial substrate metabolism and impaired cardiac energetics. Comorbidities like diabetes may influence the metabolic adaptations during heart failure development. We quantified to what extent changes in substrate preference, lipid accumulation, and energy status predict the longitudinal development of hypertrophy and failure in the non-diabetic and the diabetic heart. Transverse aortic constriction (TAC) was performed in non-diabetic (db/+) and diabetic (db/db) mice to induce pressure overload. Magnetic resonance imaging, 31P magnetic resonance spectroscopy (MRS), 1H MRS, and 18F-fluorodeoxyglucose-positron emission tomography (PET) were applied to measure cardiac function, energy status, lipid content, and glucose uptake, respectively. In vivo measurements were complemented with ex vivo techniques of high-resolution respirometry, proteomics, and western blotting to elucidate the underlying molecular pathways. In non-diabetic mice, TAC induced progressive cardiac hypertrophy and dysfunction, which correlated with increased protein kinase D-1 (PKD1) phosphorylation and increased glucose uptake. These changes in glucose utilization preceded a reduction in cardiac energy status. At baseline, compared with non-diabetic mice, diabetic mice showed normal cardiac function, higher lipid content and mitochondrial capacity for fatty acid oxidation, and lower PKD1 phosphorylation, glucose uptake, and energetics. Interestingly, TAC affected cardiac function only mildly in diabetic mice, which was accompanied by normalization of phosphorylated PKD1, glucose uptake, and cardiac energy status. The cardiac metabolic adaptations in diabetic mice seem to prevent the heart from failing upon pressure overload, suggesting that restoring the balance between glucose and fatty acid utilization is beneficial for cardiac function. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions please email: journals.permissions@oup.com.
Mongardon, Nicolas; Savary, Guillaume; Geri, Guillaume; El Bejjani, Marie-Rose; Silvera, Stéphane; Dumas, Florence; Charpentier, Julien; Pène, Frédéric; Mira, Jean-Paul; Cariou, Alain
2018-05-28
Adrenal gland volume is associated with survival in septic shock. As sepsis and post-cardiac arrest syndrome share many pathophysiological features, we assessed the association between adrenal gland volume measured by computerized tomography (CT)-scan and post-cardiac arrest shock and intensive care unit (ICU) mortality, in a large cohort of out-of-hospital cardiac arrest (OHCA) patients. We also investigated the association between adrenal hormonal function and both adrenal gland volume and outcomes. Prospective analysis of CT-scan performed at hospital admission in patients admitted after OHCA (2007-2012). A pair of blinded radiologist calculated manually adrenal gland volume. In a subgroup of patients, plasma cortisol was measured at admission and 60 min after a cosyntropin test. Factors associated with post-cardiac arrest shock and ICU mortality were identified using multivariate logistic regression. Among 775 patients admitted during this period after OHCA, 138 patients were included: 72 patients (52.2%) developed a post-cardiac arrest shock, and 98 patients (71.1%) died. In univariate analysis, adrenal gland volume was not different between patients with and without post-cardiac arrest shock: 10.6 and 11.3 cm 3 , respectively (p = 0.9) and between patients discharged alive or dead: 10.2 and 11.8 cm 3 , respectively (p = 0.4). Multivariate analysis confirmed that total adrenal gland volume was associated neither with post-cardiac arrest shock nor mortality. Neither baseline cortisol level nor delta between baseline and after cosyntropin test cortisol levels were associated with adrenal volume, post-cardiac arrest shock onset or mortality. After OHCA, adrenal gland volume is not associated with post-cardiac arrest shock onset or ICU mortality. Adrenal gland volume does not predict adrenal gland hormonal response. Copyright © 2018 Elsevier B.V. All rights reserved.
Morel, Jerome; Grand, Nathalie; Axiotis, Gregory; Bouchet, Jean Baptiste; Faure, Michael; Auboyer, Christian; Vola, Marco; Molliex, Serge
2016-12-01
Alteration of tissue perfusion is a main contributor of organ dysfunction. In cardiac surgery, the importance of organ dysfunction is associated with worse outcome. Central venous-arterial difference in CO 2 tension (ΔCO 2 ) has been proposed as a global marker of the adequacy of tissue perfusion in shock states. We hypothesized that ΔCO 2 could be increased in case of postoperative organ failure or worse outcome. In this monocentric retrospective cohort study, we retrieved, from our database, 220 consecutive patients admitted in intensive care after an elective cardiac surgery. Four time points were formed: ICU admission, and 6, 24 and 48 h after. A ΔCO 2 below 6 mmHg defined the normal range values. The SOFA score, intensive care unit and hospital length of stay, hospital and 6-month mortality rate were recorded. We compared patient with low ΔCO 2 (<6 mmHg) and high ΔCO 2 (≥6 mmHg). We included 55 (25 %) and 165 patients in low and high ΔCO 2 groups, respectively. The SOFA score, the hospital and 6 months mortality rate were higher in patients with low ΔCO 2 . Surprisingly, we did not find results previously published in other surgical settings. In cardiac surgery, ΔCO 2 has a low predictive value of outcome.
Yang, Lixia; Xia, Chunmei; Mu, Yuming; Guan, Lina; Wang, Chunmei; Tang, Qi; Verocai, Flavia Gomes; Fonseca, Lea Mirian Barbosa da; Shih, Ming Chi
2016-03-01
Real time myocardial contrast echocardiography (RTMCE) is a cost-effective and simple method to quantify coronary flow reserve (CFR). We aimed to determine the value of RTMCE to predict cardiac events after percutaneous coronary intervention (PCI). We have studied myocardial blood volume (A), velocity (β), flow indexes (MBF, A × β), and vasodilator reserve (stress-to-rest ratios) in 36 patients with acute coronary syndrome (ACS) who underwent PCI. CFR (MBF at stress/MBF at rest) was calculated for each patient. Perfusion scores were used for visual interpretation by MCE and correlation with TIMI flow grade. In qualitative RTMCE assessment, post-PCI visual perfusion scores were higher than pre-PCI (Z = -7.26, P < 0.01). Among 271 arteries with TIMI flow grade 3 post-PCI, 72 (36%) did not reach visual perfusion score 1. The β- and A × β-reserve of the abnormal segments supplied by obstructed arteries increased after PCI comparing to pre-PCI values (P < 0.01). Patients with adverse cardiac events had significantly lower β- and lower A × β-reserve than patients without adverse cardiac events. In the former group, the CFR was ≥ 1.5 both pre- and post-PCI. CFR estimation by RTMCE can quantify myocardial perfusion in patients with ACS who underwent PCI. The parameters β-reserve and CFR combined might predict cardiac events on the follow-up. © 2015, Wiley Periodicals, Inc.
Almawazini, Abdulmajid M; Hanafi, Hamdi K; Madkhali, Hasan A; Majrashi, Noura B
2017-10-01
To evaluate the effectiveness of critical congenital heart disease (CCHD) screening program for early diagnosis of cardiac anomalies in newborn infants. Methods: This is a hospital-based prospective cross-sectional study conducted in the Pediatric and Neonatology Department, King Fahad Hospital at Albaha, Saudi Arabia, between February 2016 and February 2017. Results: We screened 2961 (95.4%) of 3103 patients in a nursery unit; 142 (4.6%) patients were not screened. The test was positive in 114 (3.9%) patients and negative in 2847 (96.1%). There were 94 (3.2%) false positives and 20 (0.7%) true positives. Critical cardiac defects were diagnosed in 7 (0.2%) patients of all screened infants, and severe pulmonary hypertension was diagnosed in 13 (0.4%) patients. True negative results were found in 2841(96%) patients, and no cardiac defect was diagnosed, whereas false negative results were seen in 6 (0.2%) patients diagnosed with ventricular septal defect. The sensitivity was 77%, and the specificity was very high at 97%, with a positive predictive value of 18%, and a negative predictive value of 99.8% (95% confidence interval 13.78-19.18, p=0.0001). Conclusion: Pulse oximetry was found to be easy, safe, sensitive, and highly specific for diagnosis of CCHD.